jackkuo commited on
Commit
267c778
·
verified ·
1 Parent(s): 11907b3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf +3 -0
  2. -9FIT4oBgHgl3EQf9SvZ/vector_store/index.faiss +3 -0
  3. -9FIT4oBgHgl3EQf9SvZ/vector_store/index.pkl +3 -0
  4. -tE0T4oBgHgl3EQfxAG2/content/tmp_files/2301.02641v1.pdf.txt +2370 -0
  5. -tE0T4oBgHgl3EQfxAG2/content/tmp_files/load_file.txt +0 -0
  6. .gitattributes +51 -0
  7. 0dE1T4oBgHgl3EQf4wVz/content/2301.03504v1.pdf +3 -0
  8. 0dE1T4oBgHgl3EQf4wVz/vector_store/index.pkl +3 -0
  9. 1NE1T4oBgHgl3EQflATa/content/tmp_files/2301.03281v1.pdf.txt +1708 -0
  10. 1NE1T4oBgHgl3EQflATa/content/tmp_files/load_file.txt +0 -0
  11. 2NFQT4oBgHgl3EQf2DZm/content/2301.13422v1.pdf +3 -0
  12. 2NFQT4oBgHgl3EQf2DZm/vector_store/index.pkl +3 -0
  13. 2dE1T4oBgHgl3EQflgSY/content/tmp_files/2301.03286v1.pdf.txt +3015 -0
  14. 2dE1T4oBgHgl3EQflgSY/content/tmp_files/load_file.txt +0 -0
  15. 2tE4T4oBgHgl3EQfawwa/content/tmp_files/2301.05066v1.pdf.txt +712 -0
  16. 2tE4T4oBgHgl3EQfawwa/content/tmp_files/load_file.txt +339 -0
  17. 3tAyT4oBgHgl3EQfo_h3/content/2301.00517v1.pdf +3 -0
  18. 3tAyT4oBgHgl3EQfo_h3/vector_store/index.pkl +3 -0
  19. 59FJT4oBgHgl3EQflCzy/content/tmp_files/2301.11582v1.pdf.txt +1844 -0
  20. 59FJT4oBgHgl3EQflCzy/content/tmp_files/load_file.txt +0 -0
  21. 5dE5T4oBgHgl3EQfPA60/content/2301.05502v1.pdf +3 -0
  22. 5dE5T4oBgHgl3EQfPA60/vector_store/index.pkl +3 -0
  23. 8NE2T4oBgHgl3EQfPgby/vector_store/index.faiss +3 -0
  24. 8NE2T4oBgHgl3EQfPgby/vector_store/index.pkl +3 -0
  25. 8dE2T4oBgHgl3EQfPwZL/content/tmp_files/2301.03762v1.pdf.txt +1435 -0
  26. 8dE2T4oBgHgl3EQfPwZL/content/tmp_files/load_file.txt +0 -0
  27. 99E2T4oBgHgl3EQfQQZv/content/tmp_files/2301.03768v1.pdf.txt +1247 -0
  28. 99E2T4oBgHgl3EQfQQZv/content/tmp_files/load_file.txt +0 -0
  29. 9tE0T4oBgHgl3EQffwDm/content/2301.02410v1.pdf +3 -0
  30. ANE0T4oBgHgl3EQfxgKB/vector_store/index.pkl +3 -0
  31. C9FQT4oBgHgl3EQfPDYj/content/2301.13277v1.pdf +3 -0
  32. C9FQT4oBgHgl3EQfPDYj/vector_store/index.pkl +3 -0
  33. CNA0T4oBgHgl3EQfAP_i/vector_store/index.faiss +3 -0
  34. CdE0T4oBgHgl3EQfyQI7/vector_store/index.faiss +3 -0
  35. CdE4T4oBgHgl3EQfFgzX/vector_store/index.faiss +3 -0
  36. CdE4T4oBgHgl3EQfFgzX/vector_store/index.pkl +3 -0
  37. DNAzT4oBgHgl3EQfwf6z/vector_store/index.faiss +3 -0
  38. DNE4T4oBgHgl3EQfew0W/vector_store/index.faiss +3 -0
  39. DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf +3 -0
  40. DtAzT4oBgHgl3EQfif1c/vector_store/index.pkl +3 -0
  41. E9E1T4oBgHgl3EQf-gaE/content/tmp_files/2301.03570v1.pdf.txt +1433 -0
  42. E9E1T4oBgHgl3EQf-gaE/content/tmp_files/load_file.txt +0 -0
  43. ENE5T4oBgHgl3EQfUg_2/content/tmp_files/2301.05545v1.pdf.txt +1100 -0
  44. ENE5T4oBgHgl3EQfUg_2/content/tmp_files/load_file.txt +470 -0
  45. EdE1T4oBgHgl3EQfEgNA/content/tmp_files/2301.02890v1.pdf.txt +692 -0
  46. EdE1T4oBgHgl3EQfEgNA/content/tmp_files/load_file.txt +0 -0
  47. EtFJT4oBgHgl3EQfCSzh/content/2301.11429v1.pdf +3 -0
  48. EtFJT4oBgHgl3EQfCSzh/vector_store/index.faiss +3 -0
  49. EtFJT4oBgHgl3EQfCSzh/vector_store/index.pkl +3 -0
  50. FdAzT4oBgHgl3EQfxP4S/content/tmp_files/2301.01733v1.pdf.txt +1643 -0
-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1303443dbf3f162e20d4c8eb7b82309e90316e2788c23036111477c234ccb7ec
3
+ size 111618
-9FIT4oBgHgl3EQf9SvZ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d9a0c7d2c62c78cf41b3949cf2977159316e11f42e2782225481639f1f582b
3
+ size 1769517
-9FIT4oBgHgl3EQf9SvZ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74acc05138a943ce8567c8d6040bc94d25e5877c4afea3fb5a190b661e33b074
3
+ size 73544
-tE0T4oBgHgl3EQfxAG2/content/tmp_files/2301.02641v1.pdf.txt ADDED
@@ -0,0 +1,2370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Can the double-slit experiment distinguish between quantum interpretations?
2
+ Ali Ayatollah Rafsanjani,1, 2, ∗ MohammadJavad Kazemi,3, † Alireza Bahrampour,1, 3 and Mehdi Golshani2
3
+ 1Department of Physics, Sharif University of Technology, Tehran, Iran
4
+ 2School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
5
+ 3Research center for quantum engineering and photonics technology, Sharif University of Technology, Tehran, Iran
6
+ Despite the astonishing successes of quantum mechanics, due to some fundamental problems
7
+ such as the measurement problem and quantum arrival time problem, the predictions of the theory
8
+ are in some cases not quite clear and unique. Especially, there are various predictions for the joint
9
+ spatiotemporal distribution of particle detection events on a screen, which are derived from different
10
+ formulations and interpretations of the quantum theory. Although the differences are typically small,
11
+ our studies show that these predictions can be experimentally distinguished by an unconventional
12
+ double-slit configuration, which is realizable using present-day single-atom interferometry.
13
+ I.
14
+ INTRODUCTION
15
+ In textbook quantum theory, time is a parameter in the
16
+ Schr¨odinger equation, not a self-adjoint operator, hence
17
+ there is no unique and unambiguous way to compute the
18
+ temporal probability distribution of events from the first
19
+ principles (i.e.
20
+ the Born rule) [1].
21
+ Nonetheless, since
22
+ clocks exist and time measurements are routinely per-
23
+ formed in quantum experiments [2, 3], a complete quan-
24
+ tum theory must be able to predict the temporal statis-
25
+ tics of detection events. For example, in the famous dou-
26
+ ble slit experiment, each particle is detected at a ran-
27
+ dom time as same as at a random position on the de-
28
+ tection screen [4–8].
29
+ Therefore, one can ask: What is
30
+ the position-time joint probability density P(x, t) on the
31
+ screen? Although this question is very old [9–12], it is
32
+ still open [13–18]. In fact, the ambiguity in the arrival
33
+ time distribution even prevents a clear prediction of cu-
34
+ mulative arrival position distribution,
35
+
36
+ P(x, t)dt, which
37
+ is typically measured in a non-time-resolved double-slit
38
+ experiment [19].
39
+ Nonetheless, usual experiments are performed in the
40
+ far-field (or scattering) regime, where a semiclassical
41
+ analysis is often sufficient [13, 19]. In this analysis, it is
42
+ assumed that particles move along classical trajectories,
43
+ and the arrival time distribution is computed using the
44
+ quantum momentum distribution [8, 20, 21]. However,
45
+ because of the quantum backflow effect [22], even in free
46
+ space, the quantum mechanical time evolution of position
47
+ probability density is not consistent with the underlying
48
+ uniform motion assumption, especially in near-field inter-
49
+ ference phenomena [23]. In fact, due to recent progress in
50
+ the ultra-fast detectors technology (e.g. see [24–27]), it
51
+ will be soon possible to investigate the near-field regime,
52
+ where the semiclassical approximation breaks down and
53
+ a deeper analysis would be demanded [13, 28, 29].
54
+ To remedy this problem, based on various interpre-
55
+ tations and formulations of quantum theory, several at-
56
+ tempts have been made to introduce a suitable arrival
57
58
59
+ time distribution.
60
+ On the one hand, according to the
61
+ (generalized) standard canonical interpretation, the ar-
62
+ rival distribution is considered as a generalized observ-
63
+ able, which is described by a positive-operator-valued
64
+ measure (POVM), satisfying some required symmetries
65
+ [10, 11, 30, 31].
66
+ On the other hand, in the realistic-
67
+ trajectory-based formulations of quantum theory, such
68
+ as the Bohmian mechanics [32], Nelson stochastic me-
69
+ chanics [33], and many interacting worlds interpretation
70
+ [34], the arrival time distribution could be obtained from
71
+ particles trajectories [7, 18, 35, 36]. Moreover, in other
72
+ approaches, the arrival time distribution is computed via
73
+ phenomenological modeling of the detection process, such
74
+ as the (generalized) path integral formalism in the pres-
75
+ ence of an absorbing boundary [12, 37–39], Schr¨odinger
76
+ equation with complex potential or absorbing boundary
77
+ [40–44], and so on [45–47].
78
+ In principle, the results of these approaches are dif-
79
+ ferent. However, in most of the experimental situations,
80
+ the differences are typically slight, and so far as we know,
81
+ in the situation where differences are significant, none of
82
+ the proposals have been backed up by experiments in a
83
+ strict manner [8, 36]. An experiment that can probe these
84
+ differences would undoubtedly enrich our understanding
85
+ of the foundations of quantum mechanics. The purpose
86
+ of the present paper is to make it evident, via numerical
87
+ simulations, that the famous two-slit experiment could be
88
+ utilized to investigate these differences if we simply use
89
+ a horizontal screen instead of a vertical one: see Fig. 1.
90
+ Using current laser cooling and magneto-optical trapping
91
+ technologies, this type of experiment can be realized by
92
+ Bose-Einstein condensates, as a controllable source of co-
93
+ herent matter waves [48–50]. Moreover, our numerical
94
+ study shows that the required space-time resolution in
95
+ particle detection is achievable using fast single-atom de-
96
+ tectors, such as the recent delay-line detectors described
97
+ in [51, 52] or the detector used in [6, 53].
98
+ The structure of this paper is as follows: In Section
99
+ II, we study the main proposed intrinsic arrival distri-
100
+ butions. Then, in section III we compare them in the
101
+ double-slit setup with vertical and horizontal screens and
102
+ in different detection schemes. In Section IV, we study
103
+ the screen back-effect, and we summarize in section V.
104
+ arXiv:2301.02641v1 [quant-ph] 6 Jan 2023
105
+
106
+ 2
107
+ II.
108
+ “INTRINSIC” ARRIVAL DISTRIBUTIONS
109
+ In this section, we first review the semi-classical ap-
110
+ proximation and then scrutinize two main proposed in-
111
+ trinsic arrival time distributions [16, 36] and their asso-
112
+ ciated screen observables. In these approaches, the effect
113
+ of the detector’s presence on the wave function evolution,
114
+ before particle detection, is not considered. We discuss
115
+ this effect in section IV.
116
+ A.
117
+ Semiclassical approximation
118
+ As mentioned, in the experiments in which the detec-
119
+ tors are placed far away from the support of the initial
120
+ wave function (i.e.
121
+ far-field regime), the semiclassical
122
+ arrival time distribution is routinely used to the descrip-
123
+ tion of the particle time-of-flight [21, 54–57]. In this ap-
124
+ proximation, it is assumed that particles move classically
125
+ between the preparation and measurement. In this ap-
126
+ proach, the arrival time randomness is understood as a
127
+ result of the uncertainty of momentum, and so the arrival
128
+ time distribution is obtained from momentum distribu-
129
+ tion [13, 17, 36, 58].
130
+ In the one-dimensional case, the
131
+ classical arrival time is given by
132
+ t = m(L − x0)/p0,
133
+ (1)
134
+ which is applicable for a freely moving particle of mass
135
+ m that at the initial t = 0 had position x0 and momen-
136
+ tum p0 arriving at a distant point L on a line. Hence,
137
+ for a particle with the momentum wave fuction ˜ψ0(p),
138
+ assuming ∆x0 ≪|L − ⟨x⟩0|, the semiclassical arrival time
139
+ distribution reads [58]
140
+ ΠSC(t|x=L) = mL
141
+ t2 | ˜ψ0(mL/t)|2.
142
+ (2)
143
+ This analysis could be generalized in three-dimensional
144
+ space. Then, the distribution of arrival time at a screen
145
+ surface S is given by [36]
146
+ ΠSC(t|x∈S) = m3
147
+ t4
148
+
149
+ S
150
+ | ˜ψ0(mx/t)|2 x · dS,
151
+ (3)
152
+ where the dS is the surface element directed outward.
153
+ The other main distribution that should be demanded
154
+ is the joint position-time probability distribution on the
155
+ screen, which is also called ”screen observable” [11]. Us-
156
+ ing the conditional probability definition, the joint prob-
157
+ ability of finding the particle in dS and in a time in-
158
+ terval [t, t+dt] could be written as P(x, t|x ∈ S)dSdt =
159
+ [Π(t|x∈S)dt] × [P(x|x∈S, t)dS] . In this regard, one can
160
+ use the fact that ψt(x) is the state of the system, con-
161
+ ditioned on the time being t in the Schr¨odinger picture.
162
+ This implies that |ψt(x)|2 refers to the position probabil-
163
+ ity density conditioned at a specific time t [14, 15, 59].
164
+ Therefore, in the semiclassical approximation, the joint
165
+ spatiotemporal probability density reads as
166
+ PSC(x, t|x∈S) = NSCΠSC(t|x∈S) |ψt(x)|2
167
+ (4)
168
+ in which NSC ≡1/
169
+
170
+ S dS |ψt(x)|2 is the normalization con-
171
+ stant, and dS =n·dS, where n is the outward unit normal
172
+ vector at x∈S.
173
+ B.
174
+ “Standard” approach
175
+ The first attempts to investigate the arrival time prob-
176
+ lem, based on the standard rules of quantum theory, were
177
+ made at the beginning of the 1960s by Aharonov and
178
+ Bohm [60], and also Paul [61]. This approach starts with
179
+ a symmetric quantization of classical arrival time expres-
180
+ sion (1), as follows [62]:
181
+ ˆtAB = mL ˆp −1 − m
182
+ 2 (ˆp −1 ˆx + ˆx ˆp −1),
183
+ (5)
184
+ where ˆx and ˆp=−i ∂/∂x are the usual position and mo-
185
+ mentum operators, respectively, and ˆtAB is called the
186
+ Aharonov-Bohm time operator. This operator satisfies
187
+ the canonical commutation relation with the free Hamil-
188
+ tonian operator, [ˆtAB, ˆp2/2m] = iℏ, which has been used
189
+ to establish the energy-time uncertainty relation [63, 64].
190
+ However, although ˆtAB is Hermitian (or symmetric in
191
+ mathematics literature), it is not a self-adjoint operator
192
+ [65]—a fact that is in agreement with Pauli’s theorem
193
+ [1]. The origin of this non-self-adjointness can be under-
194
+ stood as a result of the singularity at p = 0 in the mo-
195
+ mentum representation, ˆtAB → (iℏm/2)(p−2 − 2p−1∂p)
196
+ [65]. Nevertheless, although the (generalized) eigenfunc-
197
+ tions of ˆtAB are not orthogonal, they constitute an over-
198
+ complete set and provide a POVM, which are used to
199
+ define the arrival-time distribution as follows [63, 65]:
200
+ ΠSTD(t|x=L)=
201
+ 1
202
+ 2πℏ
203
+
204
+ α=±
205
+ �����
206
+ � ∞
207
+ −∞
208
+ dp θ(αp)
209
+
210
+ |p|
211
+ m
212
+ ˜ψt(p)e
213
+ i
214
+ ℏ Lp
215
+ �����
216
+ 2
217
+ ,
218
+ (6)
219
+ where θ(·) is Heaviside’s step function and ˜ψt(p) is the
220
+ wave function in the momentum representation which
221
+ could be obtained from the initial wave function ˜ψ0(p), as
222
+ ˜ψt(p) = ˜ψ0(p) exp
223
+
224
+ − itp2/2mℏ
225
+
226
+ . The distribution ΠSTD
227
+ and its generalization in the presence of interaction po-
228
+ tential have been referred to as the ”standard arrival-
229
+ time distribution” by some authors [16, 66–69]. In fact,
230
+ Grot, Rovelli, and Tate treated the singularity of (5) by
231
+ symmetric regularization and obtained equation (6) via
232
+ the standard Born rule [64]. The generalizations of equa-
233
+ tions (5) and (6) in the presence of interaction potential
234
+ have been investigated in various works [16, 31, 70–75].
235
+ Using these developments, it has been shown that the
236
+ non-self-adjointness of the free arrival time operator can
237
+ also be lifted by spatial confinement [71, 76], and the
238
+ above arrival time distribution could be derived from the
239
+ limit of the arrival time distribution in a confining box
240
+ as the length of the box increases to infinity [72]. Fur-
241
+ thermore, recently, the distribution (6) is derived from a
242
+ space-time-symmetric extension of non-relativistic quan-
243
+ tum mechanics [77].
244
+
245
+ 3
246
+ The three-dimensional generalization of (6) is derived
247
+ by Kijowski’s [10] via an axiomatic approach. The as-
248
+ sumed axioms are implied by the principle of the prob-
249
+ ability theory, the mathematical structure of standard
250
+ quantum mechanics, and the Galilei invariance [78].
251
+ Based on these axioms, Kijowski constructed the follow-
252
+ ing arrival time distribution for a free particle that passes
253
+ through a two-dimensional plane S as
254
+ ΠSTD(t|x ∈ S)
255
+ =
256
+ 1
257
+ 2πℏ
258
+
259
+ α=±
260
+
261
+ R2d2p∥
262
+ ×
263
+ �����
264
+ � ∞
265
+ −∞
266
+ dp⊥ θ(αp.n)
267
+
268
+ |p⊥|
269
+ m
270
+ ˜ψt(p)e
271
+ i
272
+ ℏ x.p⊥
273
+ �����
274
+ 2
275
+ ,
276
+ (7)
277
+ where p⊥ ≡(p . n)n and p∥ ≡ p − p⊥ are perpendicular
278
+ and parallel components of p relative to S respectively,
279
+ and n is the outward normal of plane S.
280
+ In fact, he
281
+ first proves the above expression for the wave functions
282
+ whose supports lie in the positive (or negative) amounts
283
+ of p⊥. Then he uniquely derives the following self-adjoint
284
+ variant of the (three-dimensional version of) Aharonov-
285
+ Bohm arrival time operator, by demanding that the time
286
+ operator be self-adjoint and leads to (7) for these special
287
+ cases via the Born rule [10, 78]:
288
+ ˆtL = sgn(ˆp⊥)
289
+
290
+ mLˆp−1
291
+ ⊥ − m
292
+ 2 (ˆp−1
293
+ ⊥ ˆx⊥ + ˆx⊥ˆp−1
294
+ ⊥ )
295
+
296
+ ,
297
+ (8)
298
+ where ˆx⊥ ≡ ˆx.n and L (≡ x.n) represent the distance
299
+ between the detection surface and the origin [29].
300
+ Fi-
301
+ nally, for an arbitrary wave function, the equation (7)
302
+ could be derived from this self-adjoint operator. More-
303
+ over, considering this time operator, besides the com-
304
+ ponents of the position operator in the detection plane,
305
+ ˆx∥ ≡ ˆx − (ˆx.n)n, Kijowski obtains the following expres-
306
+ sion as the joint position-time distribution on the detec-
307
+ tion screen via the Born rule [78]:
308
+ PSTD(x, t|x∈S) =
309
+
310
+ α=±
311
+ |ψα
312
+ S (x, t)|2,
313
+ (9)
314
+ in which ψ±
315
+ S (x, t) is the wave function on the basics of
316
+ joint eigenstates of the operators ˆtL and ˆx∥. Explicitly
317
+ ψ±
318
+ S (x, t) =
319
+ 1
320
+ (2πℏ)3/2
321
+
322
+ d3p θ(±p.n)
323
+
324
+ |p⊥|
325
+ m
326
+ ˜ψt(p)e
327
+ i
328
+ ℏ x.p.
329
+ (10)
330
+ Note that, the arrival time distribution (7) could be re-
331
+ produced by taking the integral of (9) over the whole of
332
+ the screen plane. The joint space-time probability distri-
333
+ bution (9), and its generalization for the particles with
334
+ arbitary spin, have been also derived by Werner in an-
335
+ other axiomatic manner [11]. Moreover, it is easy to see
336
+ that the results (7) and (9) can be obtained from a reg-
337
+ ularized version of the (three-dimensional generalization
338
+ of) Aharonov-Bohm time operator, which is the same as
339
+ the procedure used by Grot, Rovelli and Tate in one-
340
+ dimensional cases [64].
341
+ C.
342
+ Quantum flux and Bohmian approach
343
+ Inspiring by classical intuition, another proper candi-
344
+ date for screen observables is the perpendicular compo-
345
+ nent of the quantum probability current to the screen
346
+ surface, J(x, t).n, where
347
+ J(x, t) = − ℏ
348
+ m Im [ψ∗
349
+ t (x)∇ψt(x)] ,
350
+ (11)
351
+ and n is the outward normal to the screen S. This pro-
352
+ posal is applicable for a particle in a generic external
353
+ potential and a generic screen surface, not necessarily
354
+ an infinite plane. There are several attempts to derive
355
+ this proposal in various approaches, such as Bohmian
356
+ mechanics for the scattering case in [79], decoherent his-
357
+ tories approach in [80] as an approximation, or in [81] as
358
+ an exact formula using the concept of extended probabil-
359
+ ities, and so on [45, 46, 82]. Howover, even if the wave
360
+ function contains only momentum in the same direction
361
+ as n, the J(x, t) · n could be negative due to the back-
362
+ flow effect [22]. This property is incompatible with the
363
+ standard notion of probability. Nevertheless, this prob-
364
+ lem could be treated from the Bohmian point of view:
365
+ Using Bohmian trajectories, it can be shown that the
366
+ positive and negative values of J(x, t) · n correspond to
367
+ the particles that reach the point x at S in the same di-
368
+ rection of n or the opposite direction of it, respectively
369
+ [83, 84]. In this regard, through the Bohmian mechanics
370
+ in one-dimension, Leavens demonstrates that the time
371
+ distribution of arrival to x=L from both sides could be
372
+ obtained from the absolute form of probability flux as
373
+ [35, 85]
374
+ ΠQF(t|x=L) =
375
+ |J(L, t)|
376
+
377
+ dt |J(L, t)|,
378
+ (12)
379
+ which is free from the aforementioned problem.
380
+ The three-dimensional justification of J(x, t) · n as an
381
+ operational formulation of the arrival time model has
382
+ been made in [82]. Also, the generalization of (12) for
383
+ arrival to the surface S is given by [7, 13, 16, 86]
384
+ ΠQF(t|x∈S) =
385
+
386
+ S dS|J(x, t)·n|
387
+
388
+ dt
389
+
390
+ S dS|J(x, t).n|,
391
+ (13)
392
+ with dS =n·dS the magnitude of the surface element dS
393
+ which is directed outward at x ∈ S. To illustrate (13)
394
+ and to generalize it to the case of joint arrival distri-
395
+ bution, we can use the Bohmian point of view. In this
396
+ theory, each particle has a specific trajectory, depending
397
+ on the initial position, and so the rate of passing par-
398
+ ticles through an area element dS centered at x ∈ S, in
399
+ the time interval between t and t + dt, is proportional to
400
+ ρt(x)|v(x, t)·dS|dt, where v(x, t)=J(x, t)/|ψt(x)|2 is the
401
+ Bohmian velocity of the particle. Hence, using quantum
402
+ equilibrium condition [87, 88], ρt(x) = |ψt(x)|2, and ac-
403
+ complishing normalization, the joint arrival distribution
404
+ could be represented by the absolute value of the current
405
+ density as
406
+
407
+ 4
408
+ PQF(x, t|x∈S) =
409
+ |J(x, t)·n|
410
+
411
+ dt
412
+
413
+ S dS|J(x, t)·n|.
414
+ (14)
415
+ Now, by integrating (14) over all x ∈ S, we arrive at the
416
+ three-dimensional arrival time distribution (13) for the
417
+ screen surface S.
418
+ It should be noted that Eq.
419
+ (14) is
420
+ not necessarily followed for an ensemble of classical par-
421
+ ticles because a positive or negative current at a space-
422
+ time point, (x, t), can in general have contributions from
423
+ all the particles arriving to x at t from any direction.
424
+ Nonetheless, since the Bohmian velocity field is single-
425
+ valued, the particle trajectories cannot intersect each
426
+ other at any point of space-time and so only a single tra-
427
+ jectory contributes to the current density J(x, t) at the
428
+ particular space-time point (x, t).
429
+ Moreover, this fact
430
+ implies that when v(x, t) · n>0 we can say that the tra-
431
+ jectory and consequently the particle has passed through
432
+ the screen from the inside and vice versa for v(x, t)·n<0.
433
+ Hence, one can define the joint probability distribution
434
+ for the time of arrival to each side of S as
435
+
436
+ QF(x, t|x∈S) =
437
+ J±(x, t)·n
438
+
439
+ dt
440
+
441
+ S dS J±(x, t)·n,
442
+ (15)
443
+ where J±(x, t) = ± θ(±J·n) J(x, t). In addition, note
444
+ that there may be some trajectories which cross S more
445
+ than once—and we have multi-crossing trajectories (see
446
+ the typical Bohmian trajectory in Fig. 1). The course
447
+ of the above inference to Eq. (14) was in such a manner
448
+ that multi-crossing trajectories could contribute several
449
+ times (see Fig. 2 (a)).
450
+ However, one could assume the
451
+ detection surface as a barrier that does not allow the
452
+ crossed particle to return inside (see Fig. 2 (c)). In this
453
+ case, it is suggested to use the truncated current defined
454
+ as
455
+ ˜J(x, t) :=
456
+ �J(x, t)
457
+ if (x, t) is a first exit through S
458
+ 0
459
+ otherwise
460
+ (16)
461
+ where (x, t) is a first exit event through the boundary
462
+ surface S, if the trajectory passing through x at time t
463
+ leaves inside S at this time, for the first time since t = 0
464
+ [13, 79, 89]. The limiting condition in (16), imposes that
465
+ the joint probability distribution based on it should be
466
+ computed numerically using trajectories:
467
+ ˜PQF(x, t|x∈S) =
468
+ ˜J(x, t)·n
469
+
470
+ dt
471
+
472
+ S dS ˜J(x, t)·n
473
+ .
474
+ (17)
475
+ Of course, the detection screen is not always a barrier-
476
+ like surface (see Fig. 2 (b)), and one could assume that
477
+ there is a point-like detector that lets the multi-crossing
478
+ trajectories to contribute to the distribution and we can
479
+ use (14) in such cases.
480
+ Horizontal screen
481
+ Vertical screen
482
+ Ly
483
+ Lx
484
+ x
485
+ y
486
+ s
487
+ o
488
+ FIG. 1.
489
+ Schematic double-slit experiment setup.
490
+ The cen-
491
+ ter of two slits is considered as the coordinate origin, and
492
+ the vertical and horizontal screens are placed at x = Lx and
493
+ y = Ly, respectively. The dashed black line shows a typical
494
+ Bohmian trajectory that arrives at the horizontal screen. A
495
+ suitable single-particle detector, in addition to particle arrival
496
+ position, can record the arrival time using a proper clock.
497
+ III.
498
+ “INTRINSIC” SCREEN OBSERVABLE IN
499
+ TWO-SLIT EXPERIMENT
500
+ In this section, we study the discussed proposals in the
501
+ previous section for the double-slit experiment. We com-
502
+ pare the results of these proposals in the cases of vertical
503
+ and horizontal screens (see Fig. 1), and also in different
504
+ detection schemes. The main motivation for the study
505
+ of the horizontal screen is the non-classical particles’ mo-
506
+ tions along the y-direction, in the Bohmian perspective;
507
+ see a typical Bohmian trajectory in Fig. 1. This behav-
508
+ ior is due to changing the sign of the probability cur-
509
+ rent’s component in the y-direction. This behavior does
510
+ not occur for x-component of J and consequently for the
511
+ Bohmian motion of a particle along the x-direction.
512
+ As shown in Fig. 1, the setup contains two identical
513
+ slits at y = ±s, and screens are placed at x = Lx and
514
+ y=Ly correspond to the vertical and horizontal screens,
515
+ respectively. To avoid the mathematical complexity of
516
+ Fresnel diffraction at the sharp-edge slits, it is supposed
517
+ that the slits have soft edges that generate waves hav-
518
+ ing identical Gaussian profiles in the y-direction. So, for
519
+ each slit, we can take the wave function as an uncorre-
520
+ lated two-dimensional Gaussian wave packet, which in
521
+ each dimension has the form
522
+ ψ(i)
523
+ G (x, t) = (2πs2
524
+ t)- 1
525
+ 4 exp
526
+
527
+ (x − x(i)
528
+ 0 − uxt)2
529
+ 4σ0st
530
+
531
+ × exp
532
+ � i
533
+ ℏmux(x − x(i)
534
+ 0 − uxt
535
+ 2 )
536
+
537
+ (i = 1, 2),
538
+ (18)
539
+ with m the particle’s mass, σ0 the initial dispersion, ux
540
+
541
+ 5
542
+ S
543
+ S
544
+ S
545
+ (a)
546
+ (b)
547
+ (c)
548
+ First-arrival
549
+ Second-arrival
550
+ Third-arrival
551
+ FIG. 2. Different schemes of particle detection on the screen
552
+ surface S. In the Bohmian point of view, particles could have a
553
+ recursive motion on surface S and cross it more than once (e.g.
554
+ see the trajectory that plotted in Fig. 1). Assuming different
555
+ detector types, one can prob variant possible observables on
556
+ the screen. In panel (a) a conceivable particle trajectory is
557
+ depicted, which crosses S three times. In this panel, a movable
558
+ point-like detector is placed on S, which can survey the whole
559
+ screen and detect particles that arrive only from one side,
560
+ while in panel (b) a two-sided point detector is placed on
561
+ S, which can move along it and detect particles that arrive
562
+ from up and down. In addition, one can assume there is (c)
563
+ an array of side-by-side detectors covering the entire screen
564
+ surface S. The last configuration blocks the trajectory and
565
+ does not allow the crossed particle to return. In this scheme,
566
+ we only detect first-arrivals from one side.
567
+ the wave packet’s velocity, x(i)
568
+ 0
569
+ the initial position of wave
570
+ packet or in other words the location of i-th slit, and
571
+ st = σ0(1 + iℏt/(2mσ2
572
+ 0)). Therefore, when the particle
573
+ passes through the slits, we have the total wave function
574
+ as
575
+ ψ(x, y, t) =
576
+ 1
577
+
578
+ 2[ψ(1)
579
+ G (x, t)ψ(1)
580
+ G (y, t) + ψ(2)
581
+ G (x, t)ψ(2)
582
+ G (y, t)],
583
+ (19)
584
+ where superscripts (1) and (2) correspond to upper and
585
+ lower slits, respectively. This form of Gaussian superpo-
586
+ sition state is commonly used in the literature [7, 90–93]
587
+ and is feasible to implement by quantum technologies be-
588
+ cause such a state could be produced and controlled read-
589
+ ily [94, 95], even without using slits [49]. In this paper,
590
+ we have chosen the metastable helium atom, with mass
591
+ m = 6.64 × 10−27 kg, as the interfering particle, and the
592
+ parameters as s = 10 µm, σx = 0.04 µm, σy = 0.5 µm,
593
+ ux = 3 m/s, and uy = 0 m/s. These values are feasible
594
+ according to the performed experiments [96]. Moreover,
595
+ the meta-stable helium atom could be detected with high
596
+ efficiency because of its large internal energy [52, 97].
597
+ A.
598
+ Vertical screen
599
+ The arrival time distribution for the vertical screen
600
+ placed at different distances from the two-slit is shown
601
+ in Fig. 3. As one can see this distribution is the same for
602
+ all methods, and their average arrival time is close to the
603
+ corresponding quantity in classical uniform motion. To
604
+ calculate the mean time of arrival to the screen, we use
605
+ the arrival time distribution of each method presented in
606
+ sec II, i.e., Eq. (3), (7) and (13), and we have
607
+ ¯tS =
608
+ � ∞
609
+ 0
610
+ dt Π(t|x∈S) t,
611
+ (20)
612
+ as the mean arrival time at the surface S. Furthermore,
613
+ we can compute the average arrival time to each point
614
+ on the screen using the joint probability distribution as
615
+ ¯tx =
616
+ � ∞
617
+ 0
618
+ dt P(x, t|x∈S) t
619
+ � ∞
620
+ 0
621
+ dt P(x, t|x∈S) .
622
+ (21)
623
+ This observable is depicted in Fig. 4-b for a vertical screen
624
+ placed at Lx = 300 mm. Apparently, the results of the
625
+ standard and quantum flux methods are the same and
626
+ similar to one that resulted in [7] by Nelson’s mechanics.
627
+ Nevertheless, they are different from the semiclassical ap-
628
+ proximation. However, when the interference pattern is
629
+ calculated by either method, we see that their predicted
630
+ cumulative position distributions do not differ much from
631
+ the others (Fig. 4-a). This observable can be calculated
632
+ by using the joint distribution as
633
+ ▲▲▲▲▲▲▲▲
634
+
635
+
636
+
637
+
638
+
639
+
640
+ ▲▲▲▲▲▲▲
641
+
642
+
643
+
644
+
645
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
646
+ 70
647
+ 80
648
+ 90
649
+ 100
650
+ 110
651
+ 120
652
+ 130
653
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
654
+
655
+
656
+
657
+
658
+
659
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
660
+ 70
661
+ 80
662
+ 90
663
+ 100
664
+ 110
665
+ 120
666
+ 130
667
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
668
+
669
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
670
+ 70
671
+ 80
672
+ 90
673
+ 100
674
+ 110
675
+ 120
676
+ 130
677
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
678
+ 70
679
+ 80
680
+ 90
681
+ 100
682
+ 110
683
+ 120
684
+ 130
685
+ Lx =330 mm
686
+ Lx =300 mm
687
+ Lx =270 mm
688
+ Lx =240 mm
689
+ Π(t | x = Lx)
690
+ t (ms)
691
+ 0
692
+ 0.08
693
+ 0
694
+ 0.08
695
+ 0
696
+ 0.08
697
+ 0
698
+ 0.08
699
+ Semiclassical
700
+ Quantum flux
701
+ Standard
702
+ FIG. 3. Arrival time distributions of particles that arrive at
703
+ the vertical screen of the double-slit experiment at different
704
+ screen distances.
705
+
706
+ 6
707
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
708
+
709
+
710
+ ▲▲
711
+
712
+
713
+ ▲▲
714
+
715
+
716
+
717
+ ▲▲
718
+
719
+
720
+ ▲▲
721
+
722
+
723
+
724
+ ▲▲
725
+
726
+
727
+ ▲▲
728
+
729
+
730
+
731
+
732
+
733
+
734
+
735
+ ▲▲
736
+
737
+
738
+
739
+
740
+
741
+
742
+
743
+ ▲▲
744
+
745
+
746
+
747
+
748
+
749
+
750
+
751
+ ▲▲
752
+
753
+
754
+ ▲▲
755
+
756
+
757
+
758
+ ▲▲
759
+
760
+
761
+ ▲▲
762
+
763
+
764
+
765
+ ▲▲
766
+
767
+
768
+ ▲▲
769
+
770
+
771
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
772
+ -4
773
+ -2
774
+ 0
775
+ 2
776
+ 4
777
+
778
+
779
+
780
+ ▲▲▲
781
+
782
+
783
+ ▲▲
784
+
785
+
786
+
787
+ ▲▲
788
+
789
+
790
+ ▲▲
791
+
792
+
793
+
794
+ ▲▲
795
+
796
+
797
+ ▲▲
798
+
799
+
800
+
801
+
802
+
803
+
804
+
805
+ ▲▲
806
+
807
+
808
+
809
+
810
+ ▲▲
811
+
812
+
813
+
814
+
815
+
816
+
817
+
818
+
819
+
820
+
821
+
822
+
823
+
824
+
825
+
826
+
827
+
828
+
829
+
830
+
831
+
832
+
833
+
834
+
835
+
836
+
837
+
838
+
839
+
840
+
841
+ ▲▲▲▲
842
+
843
+
844
+
845
+
846
+
847
+
848
+
849
+
850
+
851
+
852
+
853
+
854
+
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+
864
+
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+ ▲▲
873
+
874
+
875
+
876
+
877
+ ▲▲
878
+
879
+
880
+
881
+
882
+
883
+
884
+
885
+ ▲▲
886
+
887
+
888
+ ▲▲
889
+
890
+
891
+
892
+ ▲▲
893
+
894
+
895
+ ▲▲
896
+
897
+
898
+
899
+ ▲▲
900
+
901
+
902
+ ▲▲▲
903
+
904
+
905
+
906
+ -4
907
+ -2
908
+ 0
909
+ 2
910
+ 4
911
+ 94
912
+ 96
913
+ 98
914
+ 100
915
+ 102
916
+ 104
917
+ 106
918
+ (a)
919
+ (b)
920
+ Averaged arrival time (ms)
921
+ P(y)
922
+ y (mm)
923
+ 0
924
+ 0.5
925
+ Semiclassical
926
+ Standard
927
+ Quantum flux
928
+ FIG. 4. (a) The cumulative arrival position distribution, Eq.
929
+ (22), for the vertical screen at Lx = 300 mm, and (b) the
930
+ average arrival time at each point of the screen, Eq. (21).
931
+ P(x|x∈S)=
932
+ � ∞
933
+ 0
934
+ dt P(x, t|x∈S)
935
+ � ∞
936
+ 0
937
+ dt
938
+
939
+ S dS P(x, t|x∈S).
940
+ (22)
941
+ As mentioned, it should be noted that, |ψt(x)|2 is just the
942
+ conditional position probability density at the specific
943
+ time t, not the position-time joint probability density
944
+ and so the accumulated interference pattern, P(x|x∈S),
945
+ is not given by
946
+
947
+ dt|ψt(x)|2 [98].
948
+ B.
949
+ Horizontal screen
950
+ In this section, we are going to compare the mentioned
951
+ proposals in the double-slit setup with a horizontal de-
952
+ tection screen (see Fig. 1). In this regard, in Fig. 5, the
953
+ arrival time distributions at the screen are plotted for
954
+ some horizontal screens which are located at Ly =15, 20,
955
+ 25, and 30 µm. In this figure, solid-black, dashed-green,
956
+ and dash-dotted-blue curves represent the distributions
957
+ ΠST D, ΠQF and ΠSC respectively.
958
+ Also, the vertical
959
+ lines show the average time of arrival to the screen, ¯tS,
960
+ associated with these arrival time distributions.
961
+ From
962
+ this figure, one can see that, although the averages al-
963
+ most coincide, the distributions are distinct. Moreover,
964
+ as expected, when the screen’s distance from the center
965
+ of the two slits Ly decreases, the difference between dis-
966
+ tributions increases. Most of these differences occur in
967
+ the early times, which are associated with the particles
968
+ that arrive at the S in the near field. Furthermore, we
969
+ observe that the ΠSC behaves quite differently from ΠQF
970
+ and ΠST D. The distributions ΠQF and ΠST D are more
971
+ or less in agreement, however, for the screen that is lo-
972
+ cated at Ly =15 µm, a significant difference between the
973
+ standard and quantum flux distributions occurs around
974
+ t≈0.2 ms.
975
+ 0.1
976
+ 0.5
977
+ 1
978
+ 5
979
+ 10
980
+ 0.0
981
+ 0.2
982
+ 0.4
983
+ 0.6
984
+ 0.8
985
+ 1.0
986
+ 1.2
987
+ 1.4
988
+ 0.1
989
+ 0.5
990
+ 1
991
+ 5
992
+ 10
993
+ 0.0
994
+ 0.2
995
+ 0.4
996
+ 0.6
997
+ 0.8
998
+ 1.0
999
+ 0.1
1000
+ 0.5
1001
+ 1
1002
+ 5
1003
+ 10
1004
+ 0.0
1005
+ 0.2
1006
+ 0.4
1007
+ 0.6
1008
+ 0.8
1009
+ 0.1
1010
+ 0.5
1011
+ 1
1012
+ 5
1013
+ 10
1014
+ 0.0
1015
+ 0.1
1016
+ 0.2
1017
+ 0.3
1018
+ 0.4
1019
+ 0.5
1020
+ 0.6
1021
+ 0.7
1022
+ Π(t | y = Ly)
1023
+ t (ms)
1024
+ Ly = 30 µm
1025
+ Ly = 25 µm
1026
+ Ly = 20 µm
1027
+ Ly = 15 µm
1028
+ Semiclassical
1029
+ Standard
1030
+ Quantum flux
1031
+ FIG. 5.
1032
+ Arrival time distributions of particles that arrive
1033
+ on the horizontal screen at four different distances from the
1034
+ center of two slits. The vertical lines show the average arrival
1035
+ time.
1036
+ To have a more comprehensive insight, we can look at
1037
+ the joint spatiotemporal arrival distributions in Fig. 6.
1038
+ In this figure, joint distributions, PSC, PSTD and PQF are
1039
+ plotted in three panels, for the horizontal screen surface
1040
+ located at Ly = 15 µm.
1041
+ These density plots clearly
1042
+ visualize differences between the mentioned arrival dis-
1043
+ tribution proposals. In these plots, we can see separated
1044
+ fringes with different shapes, which this fact imply
1045
+ that the particles arrive at the screen in some detached
1046
+ space-time regions. In the insets, one can see that the
1047
+ shapes of these regions are different for each proposal.
1048
+ In the joint density of the semiclassical approximation
1049
+
1050
+ 7
1051
+ (Fig.6-a), fringes are well-separated, while the standard
1052
+ distribution (Fig. 6-b) exhibits more continuity in its
1053
+ fringes. In addition, in the pattern of the quantum flux
1054
+ proposal (Fig. 6-c) there are grooves between every two
1055
+ fringes which is due to changing the sign of J(x, t) · n in
1056
+ (14). In all panels of Fig.6, the duration of “temporal
1057
+ no-arrival windows” between every two typical fringes
1058
+ variate in the range between 0.01 and 0.2 ms which
1059
+ has a spatial extension of about 0.3 to 2 mm.
1060
+ These
1061
+ space-time scales are utterly amenable empirically by
1062
+ current technologies [53, 96], which could be used to test
1063
+ these results.
1064
+ 0.0
1065
+ 0.5
1066
+ 1.0
1067
+ 1.5
1068
+ 2.0
1069
+ 0.0
1070
+ 0.5
1071
+ 1.0
1072
+ 1.5
1073
+ 2.0
1074
+ 0
1075
+ 1
1076
+ 2
1077
+ 3
1078
+ 4
1079
+ 5
1080
+ 6
1081
+ 0.0
1082
+ 0.5
1083
+ 1.0
1084
+ 1.5
1085
+ 2.0
1086
+ 0.02
1087
+ 0.04
1088
+ 0.08
1089
+ 0.16
1090
+ 0.32
1091
+ 0.64
1092
+ 1.28
1093
+ 3.20
1094
+ 4.00
1095
+ 0.00
1096
+ 0.02
1097
+ 0.04
1098
+ 0.08
1099
+ 0.16
1100
+ 0.32
1101
+ 0.64
1102
+ 1.28
1103
+ 3.20
1104
+ 5.00
1105
+ 0.00
1106
+ 0.02
1107
+ 0.04
1108
+ 0.08
1109
+ 0.16
1110
+ 0.32
1111
+ 0.64
1112
+ 1.28
1113
+ 3.00
1114
+ 0.00
1115
+ t (ms)
1116
+ t (ms)
1117
+ t (ms)
1118
+ x (mm)
1119
+ Quantum flux
1120
+ Standard
1121
+ Semiclassical
1122
+ (c)
1123
+ (b)
1124
+ (a)
1125
+ FIG. 6. Density plots of joint arrival position-time distribu-
1126
+ tions for particles that arrive at the horizontal screen of the
1127
+ double-slit experiment. Panels (a), (b), and (c) represent PSC,
1128
+ PSTD and PQF, respectively. Insets: Magnified contour plots
1129
+ of the joint distributions.
1130
+ The average time of arrival to each point of the screen
1131
+ and cumulative position interference pattern could be cal-
1132
+ culated as in the vertical screen case by Eqs. (21) and
1133
+ (22). In Fig. 7(a)-(b), these two quantities are shown for
1134
+ the horizontal screen which is placed at y = 15 µm. In
1135
+ contrast to the vertical screen, the cumulative position
1136
+ distribution of the semiclassical approximation is entirely
1137
+ separate from the two other proposals. The cumulative
1138
+ position distribution resulting from standard and quan-
1139
+ tum flux approaches have obvious differences from each
1140
+ other, as well.
1141
+ As one can see in Fig. 7(b), the aver-
1142
+ age arrival times are the same for all three methods at
1143
+ first and begin to deviate from each other at x ≈ 5 mm;
1144
+ then again, these curves converge to each other at x≈25
1145
+ mm, approximately. The maximum deviation between
1146
+ the standard and quantum flux average arrival time oc-
1147
+ curs at x≈19 mm, which is quite in the far-field regime—
1148
+ the width of the initial wave function is ∼ O(10−3)mm
1149
+ which is smaller than 19 mm. Therefore one can suggest
1150
+ the average arrival time in the gray region of Fig. 7(b) as
1151
+ a practical target for comparing these approaches experi-
1152
+ mentally. To this end, we study arrival time distributions
1153
+ at some points of this region as local arrival distributions.
1154
+ The arrival time distribution conditioned at a specific
1155
+ point x on the screen can be obtained as follow
1156
+ Πx(t|x∈S) =
1157
+ P(x, t|x∈S)
1158
+ � ∞
1159
+ 0
1160
+ dt P(x, t|x∈S).
1161
+ (23)
1162
+ Using the associated joint distribution of each proposal,
1163
+ we have plotted Fig. 7(c)-(f) that show Πx(t|x ∈ S) at
1164
+ the positions x=16.2, 17.4, 18.4, 19.2 mm, on the screen
1165
+ placed at Ly = 15 µm.
1166
+ The broken black curves in
1167
+ Fig. 7 (c)-(f), resulting from the quantum flux proposal,
1168
+ against the smooth curves of the other two methods could
1169
+ be understood as the result of the changing the signa-
1170
+ ture of the y-component of the probability current: Note
1171
+ that, quantum flux distribution is given by the absolute
1172
+ value of the probability current. The origin of distinc-
1173
+ tions between the local average arrival times is more per-
1174
+ ceptible from these local arrival distributions. In princi-
1175
+ ple, these distributions could be probed using fast and
1176
+ high-resolution single-atom detectors [53, 97]. In partic-
1177
+ ular, the delay-line detector that is recently developed
1178
+ by Keller et al. [51] seems suitable for our purpose: It
1179
+ has the capability to resolve single-atom detection events
1180
+ temporally with 220 ps and spatially with 177µm at rates
1181
+ of several 106 events per second.
1182
+ We estimate by a numerical investigation that these lo-
1183
+ cal arrival distributions could be well reconstructed from
1184
+ about 104 number of detection events. As an example,
1185
+ in Fig. 7, the histograms associated with the probability
1186
+ densities of the panel (f) are plotted in panel (g), using
1187
+ 104 numerical random sampling. It is easy to estimate
1188
+ that the recording of 104 particle detection events can de-
1189
+ termine the local average arrival time with a statistical
1190
+ error of about 10−2ms, while the differences between local
1191
+ average arrival times of various proposals are almost big-
1192
+ ger than 10−1ms. Using cumulative position distribution,
1193
+
1194
+ 0.90
1195
+ 0.85
1196
+ 0.80
1197
+ 0.75
1198
+ 0.70
1199
+ 0.65
1200
+ 1.8
1201
+ 2.0
1202
+ 2.2
1203
+ 2.4
1204
+ 2.6
1205
+ 2.8
1206
+ 3.00.90
1207
+ 0.85
1208
+ 0.80
1209
+ 0.75
1210
+ 0.70
1211
+ 0.65
1212
+ 1.8
1213
+ 2.0
1214
+ 2.2
1215
+ 2.4
1216
+ 2.6
1217
+ 2.8
1218
+ 3.00.90
1219
+ 0.85
1220
+ 0.80
1221
+ 0.75
1222
+ 0.70
1223
+ 0.65
1224
+ 1.8
1225
+ 2.0
1226
+ 2.2
1227
+ 2.4
1228
+ 2.6
1229
+ 2.8
1230
+ 3.08
1231
+ 5
1232
+ 6
1233
+ 7
1234
+ 8
1235
+ 5
1236
+ 6
1237
+ 7
1238
+ 8
1239
+ 5
1240
+ 6
1241
+ 7
1242
+ 8
1243
+ 5
1244
+ 6
1245
+ 7
1246
+ 8
1247
+ 5
1248
+ 6
1249
+ 7
1250
+ 8
1251
+ x=19.2 mm
1252
+ x=18.4 mm
1253
+ x=17.4 mm
1254
+ x=16.2 mm
1255
+ Πx(t|x ∈ S)
1256
+ t (ms)
1257
+ ∆N
1258
+ (g)
1259
+ (f)
1260
+ (e)
1261
+ (d)
1262
+ (c)
1263
+ 0
1264
+ 1.5
1265
+ 0
1266
+ 1.5
1267
+ 0
1268
+ 1
1269
+ 0
1270
+ 1
1271
+ 0
1272
+ 600
1273
+ Semiclassical
1274
+ Standard
1275
+ Quantum flux
1276
+ 0
1277
+ 5
1278
+ 10
1279
+ 15
1280
+ 20
1281
+ 25
1282
+ 0
1283
+ 2
1284
+ 4
1285
+ 6
1286
+ 8
1287
+ 3
1288
+ 4
1289
+ 5
1290
+ 6
1291
+ 7
1292
+ 8
1293
+ 1.0
1294
+ 1.5
1295
+ 2.0
1296
+ 2.5
1297
+ 0
1298
+ 5
1299
+ 12
1300
+ 14
1301
+ 16
1302
+ 18
1303
+ 20
1304
+ 22
1305
+ 24
1306
+ 26
1307
+ 0.001
1308
+ 0.003
1309
+ 0.005
1310
+ Averaged arrival time (ms)
1311
+ x (mm)
1312
+ P(x)
1313
+ (b)
1314
+ (a)
1315
+ 0
1316
+ 0.4
1317
+ FIG. 7. The space-time arrival statistics for the double-slit experiment with a horizontal screen placed at Ly =15 µm. Panel (a)
1318
+ represents the average time of arrival at each point of the screen, ¯tx. Panel (b) represents the cumulative position probability den-
1319
+ sity. The panels (c)-(f) show the local arrival time probability densities, Πx(t|x∈S), at the at the points x=16.2, 17.4, 18.4, 19.2
1320
+ mm on the screen, which are chosen from the gray region in panel (b). The vertical lines in these panels represent the average
1321
+ arrival times. Panel (g) is Histograms associated with probability densities of panel (f), which are generated by 104 numerical
1322
+ random sampling.
1323
+ Fig. 7(b), one can estimate that, if the total number of
1324
+ particles that arrived at the screen is about 108, we have
1325
+ about 104 particles around x = 19.2 mm, in the spacial
1326
+ interval (19.1, 19.3). Using recent progress in laser cool-
1327
+ ing and magneto-optical trapping [97], the preparation
1328
+ of a coherent ensemble of metastable helium atoms with
1329
+ this number of particles is quite achievable [51].
1330
+ One might be inclined to think that the difference be-
1331
+ tween the quantum flux and standard average arrival
1332
+ times is just due to changing the signature of J(x, t) · n,
1333
+ but in the following, we show that even without the con-
1334
+ tribution of the negative part of J(x, t)·n, these proposals
1335
+ are significantly distinguishable: see Fig. 8.
1336
+ C.
1337
+ Detection schemes
1338
+ As we mentioned in section II C, according to the
1339
+ Bohmian deterministic point of view, there are several
1340
+ possible schemes to detect arrived particles, especially
1341
+ for the horizontal screen surface which we have recursive
1342
+ motions on it (see Fig. 1 and 2). One can assume that
1343
+ the horizontal screen is swept with a point-like detector
1344
+ that surveys all arrived particles at the surface S, which
1345
+ we call spot-detection scheme. In this scheme, one option
1346
+ is to use a unilateral detector to detect arrived particles
1347
+ at the top or bottom of S. In this case, the positive and
1348
+ negative parts of the quantum probability current have
1349
+ respectively corresponded to particles that arrive at the
1350
+ top or bottom of S (as shown in Fig. 2 (a)), and we must
1351
+ use Eq. (15) to calculate the screen observables. Addi-
1352
+ tionally, we can choose a bilateral detector (or two uni-
1353
+ lateral detectors) that prob all particles that arrive from
1354
+ both sides of S, along the time with several repeats of
1355
+ the experiment (as shown in Fig. 2 (b)). In these circum-
1356
+ stances (i.e. spot-detection scheme), there is no barrier
1357
+ in front of the particles before they reach the point of
1358
+ detection and we can use Eq. (14) to obtain the screen
1359
+ observables as in the two previous subsections.
1360
+ As we have already shown in section II C, whether the
1361
+ particles arrive from the top or bottom of S, the abso-
1362
+ lute value of the quantum probability current yield the
1363
+ trajectories’ density and consequently give the joint dis-
1364
+ tribution of the total arrival at each point of S.
1365
+ This
1366
+ fact is the case for the standard method, as well, how-
1367
+ ever, there is a subtle difference between the two propos-
1368
+ als in the spot-detection scheme. When we talk about
1369
+
1370
+ 9
1371
+ 0
1372
+ 5
1373
+ 10
1374
+ 15
1375
+ 20
1376
+ 25
1377
+ 5
1378
+ 20
1379
+ 0
1380
+ 2
1381
+ 4
1382
+ 6
1383
+ 8
1384
+ 0
1385
+ 5
1386
+ 10
1387
+ 15
1388
+ 20
1389
+ 25
1390
+ 0
1391
+ 2
1392
+ 4
1393
+ 6
1394
+ 8
1395
+ 0.00
1396
+ 0.05
1397
+ 0.10
1398
+ 0.15
1399
+ 0.20
1400
+ 0.25
1401
+ 0.30
1402
+ 0
1403
+ 1
1404
+ 2
1405
+ 3
1406
+ 4
1407
+ 5
1408
+ 6
1409
+ 0.0
1410
+ 0.5
1411
+ 1.0
1412
+ 1.5
1413
+ 2.0
1414
+ x (mm)
1415
+ t (ms)
1416
+ First arrivals
1417
+ Second arrivals
1418
+ Third arrivals
1419
+ All arrivals
1420
+ First arrivals
1421
+ Quantum flux
1422
+ FIG. 8. The space-time Bohmian arrival statistics for the double-slit experiment with a horizontal screen placed at Ly =15 µm.
1423
+ The interior curves in the central figure are the averaged times of arrival obtained by different detection schemes: see Fig. 2.
1424
+ The Left and top plots are marginal arrival time distributions and marginal arrival position distributions, respectively. The
1425
+ scatter plot is generated using 2 × 106 Bohmian trajectories, and the black, blue, and green points of the scatter plot represent
1426
+ the first, second, and third arrivals of Bohmian particles to the screen, respectively. The inset is a zoom-in of the dashed
1427
+ rectangle.
1428
+ the spot-detection in the Bohmian approach, it would
1429
+ be considered the possibility of multi-crossing and the
1430
+ distribution includes all-arrivals at S. Although, in the
1431
+ standard method there is an interpretation for ψ+
1432
+ S (x, t)
1433
+ and ψ−
1434
+ S (x, t) in Eq. (10), which relates them to the par-
1435
+ ticles arrive at S in a direction which is the same or op-
1436
+ posite with the direction of outward normal of the screen
1437
+ n, respectively [10, 64], nevertheless, since there are no
1438
+ defined paths in this approach, it is obscure whether it
1439
+ counts only the first-arrivals to each side of the screen or
1440
+ includes recursive movements of particles.
1441
+ Alternatively, along with the spot-detection scheme, it
1442
+ could be assumed that there is a continuous flat barrier
1443
+ in front of the particle’s paths as the detection surface
1444
+ or screen surface that does not allow particles to cross
1445
+ this surface. Depending on the screen’s length and posi-
1446
+ tion, there are several possibilities for the detection pro-
1447
+ cess. In each case, a specific number of particle paths
1448
+ contribute to the distribution of arrival time.
1449
+ In the
1450
+ simplest case, the screen blocks all the trajectories that
1451
+ reach the horizontal surface S, and we only detect the
1452
+ first-arrivals. In such a setup, we can no longer use the
1453
+ quantum flux method to represent Bohmian trajectories’
1454
+ first encounter with the surface; hence, the screen ob-
1455
+ servables must be obtained by numerical analysis, due to
1456
+ the definition of truncated current as in Eq. (16) and its
1457
+ corresponding joint distribution, ˜PQF(x, t|x∈S), defined
1458
+ in Eq. (17). By computing the Bohmian trajectories,
1459
+ we can find positions and times of the first-arrivals to
1460
+ the screen, and consequently calculate the arrival time
1461
+ distribution which mathematically could be defined as
1462
+ ˜ΠQF(t|x∈S) =
1463
+
1464
+ S
1465
+ ˜PQF(x, t|x∈S)dS.
1466
+ (24)
1467
+ Also, other observable quantities such as the cumulative
1468
+ spatial distribution and averaged arrival time over the
1469
+ detection surface could be defined and calculated numer-
1470
+ ically in a similar way—by substituting ˜PQF(x, t|x ∈ S)
1471
+ in Eqs. (21) and (22). Furthermore, we can complete the
1472
+ computations to find the second and third encounters to
1473
+ the surface (regardless of the barrier).
1474
+ In Fig. 8, we show our numerical results of Bohmian
1475
+ trajectories simulation. The background scatter plot is
1476
+ the position and time of arrivals of 2 × 106 trajectories.
1477
+ In this plot, the second and third arrivals are shown in
1478
+ blue and green, respectively. Here, it is more clear why
1479
+
1480
+ 10
1481
+ 5
1482
+ 6
1483
+ 7
1484
+ 8
1485
+ 5
1486
+ 6
1487
+ 7
1488
+ 8
1489
+ 5
1490
+ 6
1491
+ 7
1492
+ 8
1493
+ 5
1494
+ 6
1495
+ 7
1496
+ 8
1497
+ x=19.2 mm
1498
+ x=18.4 mm
1499
+ x=17.4 mm
1500
+ x=16.2 mm
1501
+ Π(t| x, y)
1502
+ t (ms)
1503
+ 0
1504
+ 1.5
1505
+ 0
1506
+ 1.5
1507
+ 0
1508
+ 1.2
1509
+ 0
1510
+ 1.5
1511
+ First arrivals
1512
+ Quantum flux
1513
+ All arrivals
1514
+ FIG. 9. Arrival time distribution at the horizontal screen po-
1515
+ sitions x = 16.2, 17.4, 18.4, 19.2 mm, and Ly = 15 µm, which
1516
+ are in the gray region of Fig (8). The width of sampling in
1517
+ each point is about δx = 0.25 mm, and 108 Bohmian trajec-
1518
+ tories are simulated to obtain these distributions.
1519
+ we interpret the grooves of the quantum flux density plot
1520
+ (Fig. 6 (c)) as a result of the multi-crossing of Bohmian
1521
+ trajectories.
1522
+ The three middle graphs are the average
1523
+ time of the first and all-arrivals, which are simulation re-
1524
+ sults of 108 trajectories, and are compared by the quan-
1525
+ tum flux method. As expected, the average time of all-
1526
+ arrivals fits on the quantum flux curve. However, the av-
1527
+ erage time of first-arrivals deviates from all-arrivals in the
1528
+ area discussed in the previous section (between x = 16.2
1529
+ mm and x = 19.2 mm).
1530
+ To scrutinize the deviation zone of Fig. 8 (the gray re-
1531
+ gion), Fig. 9 is drawn to show the arrival time distribu-
1532
+ tions of screen positions x = 16.2, 17.4, 18.4, 19.2 mm.
1533
+ As one can see, at the first recursive points of quantum
1534
+ flux distribution, the first-arrival distributions raise down
1535
+ to zero. This implies that in the presence of a barrier-
1536
+ like screen, there would be a big temporal gap between
1537
+ arrived particles. These gaps could be investigated as a
1538
+ result of the non-intersection property of Bohmian tra-
1539
+ jectories that cause a unilateral motion of particles along
1540
+ the direction of the probability current field.
1541
+ IV.
1542
+ SCREEN BACK-EFFECT
1543
+ In principle, the presence of the detector could mod-
1544
+ ify the wave function evolution, before the particle detec-
1545
+ tion, which is called detector back-effect. To have a more
1546
+ thorough investigation of detection statistics, we should
1547
+ consider this effect. Howsoever, due to the measurement
1548
+ problem and the quantum Zeno effect [9], a complete in-
1549
+ vestigation of the detector effects is problematic at the
1550
+ fundamental level, and it is less obvious how to model
1551
+ an ideal detector. Nonetheless, some phenomenological
1552
+ non-equivalent models are proposed, such as the gener-
1553
+ alized Feynman path integral approach in the presence
1554
+ of absorbing boundary [12, 37–39], Schr¨odinger equation
1555
+ with a complex potential [44], Schr¨odinger equation with
1556
+ absorbing (or complex Robin) boundary condition [40–
1557
+ 44], and so on. The results of these approaches are not
1558
+ the same, and a detailed study of the differences is an in-
1559
+ teresting topic. In this section, we provide a brief review
1560
+ of the absorbing boundary rule (ABR) and path-Integral
1561
+ with absorbing boundary (PAB) models, then we com-
1562
+ pare them in the double-slit setup with the horizontal
1563
+ screen.
1564
+ A.
1565
+ Absorbing Boundary Rule
1566
+ Among the above-mentioned phenomenological mod-
1567
+ els, the absorbing boundary condition approach has the
1568
+ most compatibility with Bohmian mechanics [42]. The
1569
+ application of absorbing boundary condition in arrival
1570
+ time problem was first proposed by Werner [40], and re-
1571
+ cently it is re-derived and generalized by Tumulka and
1572
+ others using various methods [41–44]. Especially, it is re-
1573
+ cently shown that in a suitable (non-obvious) limit, the
1574
+ imaginary potential approach yields the distribution of
1575
+ detection time and position in agreement with the ab-
1576
+ sorbing boundary rule [44]. According to this rule, the
1577
+ particle wave function ψ evolves according to the free
1578
+ Schr¨odinger equation, while the presence of a detection
1579
+ screen is modeled by imposing the following boundary
1580
+ conditions on the Detection screen, x ∈ S,
1581
+ n · ∇ψ = iκψ,
1582
+ (25)
1583
+ where κ>0 is a constant characterizing the type of detec-
1584
+ tor, in which ℏκ/m represents the momentum that the
1585
+ detector is most sensitive to. This boundary condition
1586
+ ensures that waves with wave number κ are completely
1587
+ absorbed while waves with other wave numbers are partly
1588
+ absorbed and partly reflected [41, 99]. In the absorbing
1589
+ boundary rule, the joint spatiotemporal distribution of
1590
+ the detection event is given by quantum flux. Consider-
1591
+ ing (25), this distribution reads
1592
+ PABR(t, x|x∈S) =
1593
+ |ψABC|2
1594
+
1595
+ dt
1596
+
1597
+ S dS|ψABC|2 ,
1598
+ (26)
1599
+ where ψABC represent the solution of the free Schr¨odinger
1600
+ equation satisfying the aforementioned absorbing bound-
1601
+ ary condition.
1602
+ This distribution can be understood in
1603
+ terms of Bohmian trajectories.
1604
+ The Bohmian particle
1605
+ equation of motion, ˙X = (ℏ/m)Im [∇ψABC/ψABC], to-
1606
+ gether with the boundary condition (25), imply that tra-
1607
+ jectories can cross the boundary S only outwards and so
1608
+ there are no multi-crossing trajectories. If it is assumed
1609
+
1610
+ 11
1611
+ that the detector clicks when and where the Bohmian
1612
+ particle reaches S, the probability distribution of detec-
1613
+ tion events is given by (26), because the initial distribu-
1614
+ tion of the Bohmian particle is |ψABC(x, 0)|2 [41].
1615
+ B.
1616
+ Path-Integral with Absorbing Boundary
1617
+ In several papers [12, 37–39], Marchuwka and Schuss
1618
+ develop an interesting method to calculate the detec-
1619
+ tion effect of absorbing surface using the Feynman path
1620
+ integral method.
1621
+ They postulate a separation princi-
1622
+ ple for the wave function in which we could consider
1623
+ the (bounded wave function) as a sum of two parts,
1624
+ ψ(x, t) = ψ1(x, t) + ψ2(x, t), such that ψ1(x, t) corre-
1625
+ sponds to the survival part of the wave which is orthogo-
1626
+ nal to ψ2(x, t) at a time t and evolve independently [38].
1627
+ So, we can obtain the probability of survival of the parti-
1628
+ cle, denoted S(t), which is the probability of the particle
1629
+ not being absorbed by the time t, as
1630
+
1631
+ D d3x|ψ1(x, t)|2,
1632
+ where the integral is over the domain D, outside the ab-
1633
+ sorbing region.
1634
+ By discretizing the path integral in a
1635
+ time interval [0, t] and eliminating the trajectories that,
1636
+ in each time interval [t′, t′+∆t′] for all t′ < t, are reached
1637
+ to the absorbing surface S, the survival and consequently
1638
+ absorbing probability would be obtained. Based on this
1639
+ analysis, we could define a unidirectional probability cur-
1640
+ rent into the surface as d
1641
+ dt[1−S(t)], which yields a normal
1642
+ component of the multidimensional probability current
1643
+ density at any point on S as
1644
+ J(x, t)·n= λℏ
1645
+ mπ |n·∇ψ(x, t)|2
1646
+ × exp
1647
+
1648
+ − λℏ
1649
+
1650
+ � t
1651
+ 0
1652
+ dt′
1653
+
1654
+ S
1655
+ dS|n·∇ψ(x′, t′)|2
1656
+
1657
+ ,
1658
+ (27)
1659
+ where dS = n · dS is the magnitude of the surface ele-
1660
+ ment dS, n is the unit outer normal to the absorbing
1661
+ surface S, and λ is a proportionality factor with the di-
1662
+ mension of length [37, 62]. Also, ψ(x, t) is the solution
1663
+ of Schr¨odinger equation bounded and normalized in the
1664
+ domain D. Moreover, the normal component J(x, t)·n is
1665
+ supposed to be the probability density for observing the
1666
+ particle at the point x on the screen at time t [12, 39].
1667
+ C.
1668
+ Screen back-effect in two-slit experiment
1669
+ In order to complete the investigations carried out
1670
+ in section III, we are going to study the screen back-
1671
+ effect in the double-slit experiment with a horizontal
1672
+ screen.
1673
+ In this regard, we compare the arrival distri-
1674
+ butions which are resulted from the absorbing bound-
1675
+ ary rule (ABR), path-Integral with absorbing boundary
1676
+ (PAB), and Bohmian truncated current (BTC).
1677
+ We continue with the same initial conditions as in sec-
1678
+ tion III, and choose κ = 1 µm−1 for ABR. This value of
1679
+ 0.0
1680
+ 0.5
1681
+ 1.0
1682
+ 1.5
1683
+ 2.0
1684
+ 0.0
1685
+ 0.5
1686
+ 1.0
1687
+ 1.5
1688
+ 2.0
1689
+ 0
1690
+ 1
1691
+ 2
1692
+ 3
1693
+ 4
1694
+ 5
1695
+ 6
1696
+ 0.0
1697
+ 0.5
1698
+ 1.0
1699
+ 1.5
1700
+ 2.0
1701
+ 0.02
1702
+ 0.04
1703
+ 0.08
1704
+ 0.16
1705
+ 0.32
1706
+ 0.64
1707
+ 1.28
1708
+ 2.56
1709
+ 5.12
1710
+ 0.00
1711
+ 0.02
1712
+ 0.04
1713
+ 0.08
1714
+ 0.16
1715
+ 0.32
1716
+ 0.64
1717
+ 2.50
1718
+ 6.25
1719
+ 12.50
1720
+ 0.00
1721
+ 0.02
1722
+ 0.04
1723
+ 0.08
1724
+ 0.16
1725
+ 0.32
1726
+ 0.64
1727
+ 1.28
1728
+ 3.20
1729
+ 6.00
1730
+ 0.00
1731
+ t (ms)
1732
+ t (ms)
1733
+ t (ms)
1734
+ x (mm)
1735
+ Bohmian truncated current
1736
+ Path-Integral with Absorbing Boundary
1737
+ Absorbing Boundary Rule
1738
+ (c)
1739
+ (b)
1740
+ (a)
1741
+ FIG. 10.
1742
+ Density plots of joint probability distributions of
1743
+ position and time (screen observable) for the horizontal screen
1744
+ placed at y = 15 µm in the double-slit experiment.
1745
+ These
1746
+ densities are calculated by the three methods which take the
1747
+ screen effects into account.
1748
+ κ leads to the maximum absorption probability—which
1749
+ is almost 0.4—for the chosen initial wave function. In
1750
+ addition, for a more meaningful comparison, we consider
1751
+ λ = 1 µm in the PAB method, which leads to the same
1752
+ absorption probability as ABR. The resulting joint ar-
1753
+ rival time-position distributions of the three methods are
1754
+ depicted in Fig. 10. As one can see, the distributions of
1755
+ the ABR and PAB methods—i.e., panels (a) and (b) in
1756
+ Fig. 10—have more compatibility with each other than
1757
+ the result of the BTC method. However, there are dif-
1758
+ ferences between them which are more obvious in the
1759
+ zoomed areas. The joint density of the ABR is more uni-
1760
+
1761
+ 0.90
1762
+ 0.85
1763
+ 0.80
1764
+ 0.75
1765
+ 0.70
1766
+ 0.65
1767
+ 1.8
1768
+ 2.0
1769
+ 2.2
1770
+ 2.4
1771
+ 2.6
1772
+ 2.8
1773
+ 3.00.90
1774
+ 0.85
1775
+ 0.80
1776
+ 0.75
1777
+ 0.70
1778
+ 0.65
1779
+ 1.8
1780
+ 2.0
1781
+ 2.2
1782
+ 2.4
1783
+ 2.6
1784
+ 2.8
1785
+ 3.00.90
1786
+ 0.85
1787
+ 0.80
1788
+ 0.75
1789
+ 0.70
1790
+ 0.65
1791
+ 1.8
1792
+ 2.0
1793
+ 2.2
1794
+ 2.4
1795
+ 2.6
1796
+ 2.8
1797
+ 3.012
1798
+
1799
+ ▲ ▲ ▲
1800
+
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+
1810
+
1811
+ ▲ ▲
1812
+
1813
+ ▲ ▲ ▲ ▲
1814
+
1815
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1816
+
1817
+
1818
+
1819
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1820
+
1821
+
1822
+
1823
+
1824
+
1825
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1826
+
1827
+
1828
+
1829
+
1830
+
1831
+ 0
1832
+ 2
1833
+ 4
1834
+ 6
1835
+ 8
1836
+ 0.0
1837
+ 0.5
1838
+ 1.0
1839
+ 1.5
1840
+ 2.0
1841
+ 2.5
1842
+ ▲ ▲ ▲ ▲ ▲
1843
+
1844
+
1845
+
1846
+
1847
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1848
+
1849
+ ▲ ▲
1850
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1851
+
1852
+ ▲ ▲ ▲
1853
+ ▲ ▲ ▲ ▲
1854
+
1855
+
1856
+ ▲ ▲ ▲ ▲
1857
+
1858
+
1859
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1860
+
1861
+
1862
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1863
+ 2
1864
+ 4
1865
+ 6
1866
+ 8
1867
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
1868
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
1869
+
1870
+
1871
+ ▲▲
1872
+
1873
+
1874
+ ▲▲▲▲▲▲▲▲▲▲
1875
+
1876
+
1877
+
1878
+ ▲▲▲▲▲▲▲▲▲▲
1879
+
1880
+
1881
+
1882
+
1883
+
1884
+ ▲▲▲▲
1885
+
1886
+
1887
+
1888
+
1889
+ ▲▲▲▲
1890
+
1891
+
1892
+
1893
+
1894
+ ▲▲
1895
+
1896
+
1897
+
1898
+
1899
+ ▲▲
1900
+
1901
+
1902
+ ▲▲
1903
+
1904
+
1905
+ ▲▲
1906
+
1907
+
1908
+ ▲▲
1909
+ ▲▲
1910
+
1911
+ ▲▲▲▲
1912
+ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
1913
+
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+ ▲▲▲▲▲▲▲▲▲▲
1922
+ 0
1923
+ Averaged arrival time (ms)
1924
+ x (mm)
1925
+ P(x)
1926
+ Π(t | y)
1927
+ 0.0
1928
+ 0.8
1929
+ 2.5
1930
+ 0
1931
+ Absorbing Boundary Rule
1932
+ Path-Integral with Absorbing Boundary
1933
+ Bohmian truncated current
1934
+ FIG. 11. Averaged time of arrival at each point of the screen
1935
+ (central figure), cumulative interference pattern (upper fig-
1936
+ ure), and distribution of time of arrival to the horizontal
1937
+ screen of the double-slit experiment placed at y = 15 µm
1938
+ (right-hand figure).
1939
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+ ▲ ▲ ▲ ▲ ▲
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1961
+ 5
1962
+ 6
1963
+ 7
1964
+ 8
1965
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1966
+
1967
+
1968
+
1969
+
1970
+
1971
+
1972
+
1973
+
1974
+
1975
+ ▲ ▲ ▲
1976
+
1977
+
1978
+
1979
+
1980
+
1981
+
1982
+
1983
+
1984
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1985
+ 5
1986
+ 6
1987
+ 7
1988
+ 8
1989
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
1990
+
1991
+
1992
+
1993
+
1994
+
1995
+ ▲ ▲
1996
+ ▲ ▲ ▲
1997
+
1998
+
1999
+
2000
+
2001
+
2002
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
2003
+ ▲ ▲
2004
+
2005
+ ▲ ▲ ▲
2006
+
2007
+ ▲ ▲
2008
+ ▲ ▲
2009
+
2010
+
2011
+
2012
+ ▲ ▲ ▲
2013
+ ▲ ▲ ▲
2014
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
2015
+ 5
2016
+ 6
2017
+ 7
2018
+ 8
2019
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
2020
+ ▲ ▲ ▲ ▲ ▲ ▲
2021
+ ▲ ▲ ▲
2022
+
2023
+ ▲ ▲
2024
+
2025
+
2026
+ ▲ ▲ ▲
2027
+
2028
+ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
2029
+ 5
2030
+ 6
2031
+ 7
2032
+ 8
2033
+ x=19.2 mm
2034
+ x=18.4 mm
2035
+ x=17.4 mm
2036
+ x=16.2 mm
2037
+ Π(t| x, y)
2038
+ t (ms)
2039
+ 0
2040
+ 1.5
2041
+ 0
2042
+ 1.5
2043
+ 0
2044
+ 1.2
2045
+ 0
2046
+ 1.5
2047
+ ABR
2048
+ PAB
2049
+ BTC
2050
+ FIG. 12. Arrival time distribution at the horizontal screen po-
2051
+ sitions x = 16.2, 17.4, 18.4, 19.2 mm, and Ly = 15 µm, which
2052
+ are calculated for the three methods which take the screen
2053
+ effects into account.
2054
+ formly distributed than of the PAB method. The empty
2055
+ areas between the fringes of the panel (c) of Fig. 10 are
2056
+ due to the elimination of the recursive trajectories—or
2057
+ in other words, are due to the elimination of second and
2058
+ third arrivals in Fig. 8.
2059
+ For a more detailed comparison, in Fig. 11 the spa-
2060
+ tial and temporal marginal distributions are shown. In
2061
+ addition, the associated local average arrival times are
2062
+ compared in the central panel of this figure. The PAB
2063
+ method leads to significant discrepancies in marginal dis-
2064
+ tributions; The maximum difference is about 40% that
2065
+ occurs around x≈0.8 mm, which seems testable clearly.
2066
+ In contrast to the previous results on intrinsic distri-
2067
+ butions, in which the difference between average arrival
2068
+ times was significant, there is a good agreement in this
2069
+ observable for the ABR and PAB methods.
2070
+ However,
2071
+ there is a significant difference between the average ar-
2072
+ rival time in these two methods and BTC around x = 6
2073
+ mm.
2074
+ In Fig. 12, the local arrival time distributions at
2075
+ some points on the screen are plotted, which show simi-
2076
+ lar behavior.
2077
+ V.
2078
+ SUMMARY AND DISCUSSION
2079
+ When and where does the wave function collapse? How
2080
+ one can model a detector in quantum theory? These are
2081
+ the questions that we investigated in this work. We tried
2082
+ to show that there is no agreed answer for these ques-
2083
+ tions, even for the double-slit experiment that has in it
2084
+ the heart of quantum mechanics [100]. This is a practical
2085
+ encounter with the measurement problem [73]. In this
2086
+ regard, we numerically investigated and compared the
2087
+ main proposed answers to these questions for a double-
2088
+ slit setup with a horizontal detection screen. It is shown
2089
+ that these proposals lead to experimentally distinguish-
2090
+ able predictions, thanks to the current single-atom de-
2091
+ tection technology.
2092
+ In this work, we suggest the meta-stable helium atom
2093
+ as a proper coherent source of the matter wave, however,
2094
+ other sources may lead to some practical improvements.
2095
+ For example, using heavier condensate atoms can lead
2096
+ to more clear discrepancies. Moreover, it is worth not-
2097
+ ing that although the experiment with photons may have
2098
+ some practical advantages, there are more complications
2099
+ in its theoretical analysis. This is partially because of the
2100
+ relativistic localization-causality problem [101–104]. The
2101
+ theoretical investigation of a proposed experiment for
2102
+ photons would be an interesting extension of the present
2103
+ work, which has been left for future studies.
2104
+ ACKNOWLEDGMENTS
2105
+ We sincerely thank Mohammad Hossein Barati for
2106
+ carefully reviewing the manuscript, and Sheldon Gold-
2107
+ stein for his helpful comments.
2108
+
2109
+ 13
2110
+ [1] As shown by Pauli [105], if the Hamiltonian spectrum
2111
+ is discrete or has a lower bound, then there is no
2112
+ self-adjoint time operator canonically conjugate to the
2113
+ Hamiltonian.
2114
+ [2] T. c. v. Zimmermann, S. Mishra, B. R. Doran, D. F.
2115
+ Gordon, and A. S. Landsman, Phys. Rev. Lett. 116,
2116
+ 233603 (2016).
2117
+ [3] M. Kataoka, N. Johnson, C. Emary, P. See, J. P. Grif-
2118
+ fiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, M. Pepper,
2119
+ and T. J. B. M. Janssen, Phys. Rev. Lett. 116, 126803
2120
+ (2016).
2121
+ [4] P. Kolenderski, C. Scarcella, K. D. Johnsen, D. R.
2122
+ Hamel, C. Holloway, L. K. Shalm, S. Tisa, A. Tosi, K. J.
2123
+ Resch, and T. Jennewein, Scientific reports 4, 1 (2014).
2124
+ [5] S. Frabboni, A. Gabrielli, G. Carlo Gazzadi, F. Giorgi,
2125
+ G. Matteucci, G. Pozzi, N. S. Cesari, M. Villa, and
2126
+ A. Zoccoli, Ultramicroscopy 116, 73 (2012).
2127
+ [6] C. Kurtsiefer, T. Pfau, and J. Mlynek, Nature 386, 150
2128
+ (1997).
2129
+ [7] H. Nitta and T. Kudo, Phys. Rev. A 77, 014102 (2008).
2130
+ [8] S. Das, M. N¨oth, and D. D¨urr, Phys. Rev. A 99, 052124
2131
+ (2019).
2132
+ [9] G. Allcock, Annals of Physics 53, 253 (1969).
2133
+ [10] J. Kijowski, Rep. Math. Phys. 6, 361 (1974).
2134
+ [11] R. Werner, J. Math. Phys. 27, 793 (1986).
2135
+ [12] A. Marchewka and Z. Schuss, Phys. Rev. A 63, 032108
2136
+ (2001).
2137
+ [13] N. Vona, G. Hinrichs, and D. D¨urr, Phys. Rev. Lett.
2138
+ 111, 220404 (2013).
2139
+ [14] L. Maccone and K. Sacha, Phys. Rev. Lett. 124, 110402
2140
+ (2020).
2141
+ [15] E. O. Dias and F. Parisio, Phys. Rev. A 95, 032133
2142
+ (2017).
2143
+ [16] S. Das and M. N¨oth, Proceedings of the Royal Society
2144
+ A 477, 20210101 (2021).
2145
+ [17] S. Das and W. Struyve, Phys. Rev. A 104, 042214
2146
+ (2021).
2147
+ [18] M.
2148
+ Kazemi
2149
+ and
2150
+ V.
2151
+ Hosseinzadeh,
2152
+ arXiv
2153
+ preprint
2154
+ arXiv:2208.01325 (2022).
2155
+ [19] Note that, the Heisenberg position operator describes
2156
+ position measurement at a specific time, not position
2157
+ measurements at random times [106, 107]. In the other
2158
+ words, |ψt(x)|2 is just the conditional position proba-
2159
+ bility density P(x|t) [14, 15, 104], not the position-time
2160
+ joint probability density P(x, t) [78, 79, 98].
2161
+ [20] D. S. Shucker, Journal of Functional Analysis 38, 146
2162
+ (1980).
2163
+ [21] S. Wolf and H. Helm, Phys. Rev. A 62, 043408 (2000).
2164
+ [22] A. J. Bracken and G. F. Melloy, Journal of Physics A:
2165
+ Mathematical and General 27, 2197 (1994).
2166
+ [23] H. F. Hofmann, Phys. Rev. A 96, 020101 (2017).
2167
+ [24] B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M.
2168
+ Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bum-
2169
+ ble, M. Colangelo, et al., Nature Photonics 14, 250
2170
+ (2020).
2171
+ [25] S. Steinhauer, S. Gyger, and V. Zwiller, Applied Physics
2172
+ Letters 118, 100501 (2021).
2173
+ [26] H. Azzouz, S. N. Dorenbos, D. De Vries, E. B. Ure˜na,
2174
+ and V. Zwiller, AIP Advances 2, 032124 (2012).
2175
+ [27] M. Rosticher, F. Ladan, J. Maneval, S. Dorenbos,
2176
+ T. Zijlstra, T. Klapwijk, V. Zwiller, A. Lupa¸scu, and
2177
+ G. Nogues, Applied Physics Letters 97, 183106 (2010).
2178
+ [28] F. Delgado, J. G. Muga, and G. Garc´ıa-Calder´on, Phys.
2179
+ Rev. A 74, 062102 (2006).
2180
+ [29] The presence of sgn(ˆp⊥) operator ensures the self-
2181
+ adjointness
2182
+ of
2183
+ this
2184
+ time
2185
+ operator,
2186
+ however,
2187
+ leads
2188
+ to a modified commutation relation, i.e. [ˆtK, ˆH] =
2189
+ iℏ sgn(ˆp⊥).
2190
+ [30] G. C. Hegerfeldt and J. G. Muga, Journal of Physics A:
2191
+ Mathematical and Theoretical 43, 505303 (2010).
2192
+ [31] G. C. Hegerfeldt, J. G. Muga, and J. Mu˜noz, Phys. Rev.
2193
+ A 82, 012113 (2010).
2194
+ [32] D. Bohm, Phys. Rev. 85, 166 (1952).
2195
+ [33] E. Nelson, Phys. Rev. 150, 1079 (1966).
2196
+ [34] M. J. W. Hall, D.-A. Deckert, and H. M. Wiseman,
2197
+ Phys. Rev. X 4, 041013 (2014).
2198
+ [35] C. R. Leavens, Phys. Rev. A 58, 840 (1998).
2199
+ [36] S. Das and D. D¨urr, Sci. Rep. 9, 2242 (2019).
2200
+ [37] A. Marchewka and Z. Schuss, Physics Letters A 240,
2201
+ 177 (1998).
2202
+ [38] A. Marchewka and Z. Schuss, Phys. Rev. A 61, 052107
2203
+ (2000).
2204
+ [39] A. Marchewka and Z. Schuss, Phys. Rev. A 65, 042112
2205
+ (2002).
2206
+ [40] R.
2207
+ Werner,
2208
+ in
2209
+ Annales de l’IHP Physique th´eorique,
2210
+ Vol. 47 (1987) pp. 429–449.
2211
+ [41] R. Tumulka, Annals of Physics 442, 168910 (2022).
2212
+ [42] R. Tumulka, Phys. Rev. A 106, 042220 (2022).
2213
+ [43] V. Dubey, C. Bernardin, and A. Dhar, Phys. Rev. A
2214
+ 103, 032221 (2021).
2215
+ [44] R. Tumulka, Communications in Theoretical Physics
2216
+ (2022).
2217
+ [45] J. A. Damborenea, I. L. Egusquiza, G. C. Hegerfeldt,
2218
+ and J. G. Muga, Phys. Rev. A 66, 052104 (2002).
2219
+ [46] J. Muga, S. Brouard, and D. Macias, Annals of Physics
2220
+ 240, 351 (1995).
2221
+ [47] J. J. Halliwell, Phys. Rev. A 77, 062103 (2008).
2222
+ [48] M. Andrews, C. Townsend, H.-J. Miesner, D. Durfee,
2223
+ D. Kurn, and W. Ketterle, Science 275, 637 (1997).
2224
+ [49] Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E.
2225
+ Pritchard, and A. E. Leanhardt, Phys. Rev. Lett. 92,
2226
+ 050405 (2004).
2227
+ [50] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard,
2228
+ Rev. Mod. Phys. 81, 1051 (2009).
2229
+ [51] M. Keller, M. Kotyrba, F. Leupold, M. Singh, M. Ebner,
2230
+ and A. Zeilinger, Phys. Rev. A 90, 063607 (2014).
2231
+ [52] R. I. Khakimov, B. Henson, D. Shin, S. Hodgman,
2232
+ R. Dall, K. Baldwin, and A. Truscott, Nature 540, 100
2233
+ (2016).
2234
+ [53] C. Kurtsiefer and J. Mlynek, Applied Physics B 64, 85
2235
+ (1996).
2236
+ [54] A. Gliserin, M. Walbran, and P. Baum, Review of Sci-
2237
+ entific Instruments 87, 033302 (2016).
2238
+ [55] C. Kurtsiefer, T. Pfau, C. R. Ekstrom, and J. Mlynek,
2239
+ Applied Physics B 60, 229 (1995).
2240
+ [56] J. R. Copley and T. J. Udovic, Journal of research of
2241
+ the National Institute of Standards and Technology 98,
2242
+ 71 (1993).
2243
+ [57] A. Kothe, J. Metje, M. Wilke, A. Moguilevski, N. Engel,
2244
+ R. Al-Obaidi, C. Richter, R. Golnak, I. Y. Kiyan, and
2245
+ E. F. Aziz, Review of Scientific Instruments 84, 023106
2246
+ (2013).
2247
+
2248
+ 14
2249
+ [58] N. Vona and D. D¨urr (Springer, 2015) pp. 95–112.
2250
+ [59] J. C. Arce, Phys. Rev. A 85, 042108 (2012).
2251
+ [60] Y. Aharonov and D. Bohm, Physical Review 122, 1649
2252
+ (1961).
2253
+ [61] H. Paul, Annalen der Physik 464, 252 (1962).
2254
+ [62] J. Muga and C. Leavens, Physics Reports 338, 353
2255
+ (2000).
2256
+ [63] R. Giannitrapani, International Journal of Theoretical
2257
+ Physics 36, 1575 (1997).
2258
+ [64] N. Grot, C. Rovelli, and R. S. Tate, Phys. Rev. A 54,
2259
+ 4676 (1996).
2260
+ [65] I. L. Egusquiza and J. G. Muga, Phys. Rev. A 61,
2261
+ 012104 (1999).
2262
+ [66] G.
2263
+ Muga,
2264
+ R.
2265
+ S.
2266
+ Mayato,
2267
+ and
2268
+ I.
2269
+ Egusquiza,
2270
+ Time in quantum mechanics,
2271
+ Vol.
2272
+ 734
2273
+ (Springer
2274
+ Science & Business Media, 2007).
2275
+ [67] I. Egusquiza, J. Muga, B. Navarro, and A. Ruschhaupt,
2276
+ Physics Letters A 313, 498 (2003).
2277
+ [68] C. Leavens, Physics Letters A 338, 19 (2005).
2278
+ [69] C. Leavens, Physics Letters A 362, 256 (2007).
2279
+ [70] E. A. Galapon, Journal of mathematical physics 45,
2280
+ 3180 (2004).
2281
+ [71] E. A. Galapon, R. F. Caballar, and R. T. B. Jr, Phys.
2282
+ Rev. Lett. 93, 180406 (2004).
2283
+ [72] E. A. Galapon, F. Delgado, J. G. Muga, and I. n.
2284
+ Egusquiza, Phys. Rev. A 72, 042107 (2005).
2285
+ [73] E. A. Galapon, Proceedings of the Royal Society A:
2286
+ Mathematical, Physical and Engineering Sciences 465,
2287
+ 71 (2009).
2288
+ [74] P. C. M. Flores and E. A. Galapon, Phys. Rev. A 99,
2289
+ 042113 (2019).
2290
+ [75] E. A. Galapon, Phys. Rev. Lett. 108, 170402 (2012).
2291
+ [76] E. A. Galapon, Proceedings of the Royal Society of Lon-
2292
+ don. Series A: Mathematical, Physical and Engineering
2293
+ Sciences 458, 2671 (2002).
2294
+ [77] E. O. Dias and F. Parisio, Physical Review A 95, 032133
2295
+ (2017).
2296
+ [78] J. Kijowski, Phys. Rev. A 59, 897 (1999).
2297
+ [79] M. Daumer, D. D¨urr, S. Goldstein, and N. Zangh`ı, Jour-
2298
+ nal of Statistical Physics 88, 967 (1997).
2299
+ [80] J. Halliwell and J. Yearsley, Physics Letters A 374, 154
2300
+ (2009).
2301
+ [81] S. Boonchui and A. Hutem, Journal of Physics A: Math-
2302
+ ematical and Theoretical 46, 105305 (2013).
2303
+ [82] V. Hannstein, G. C. Hegerfeldt, and J. G. Muga, Journal
2304
+ of Physics B: Atomic, Molecular and Optical Physics 38,
2305
+ 409 (2005).
2306
+ [83] C. Leavens, Physics Letters A 178, 27 (1993).
2307
+ [84] W. R. McKinnon and C. R. Leavens, Phys. Rev. A 51,
2308
+ 2748 (1995).
2309
+ [85] C. Leavens, Superlattices and Microstructures 23, 795
2310
+ (1998).
2311
+ [86] M. M. Ali, A. S. Majumdar, D. Home, and S. Sengupta,
2312
+ Phys. Rev. A 68, 042105 (2003).
2313
+ [87] D. D¨urr, S. Goldstein, and N. Zanghi, Journal of Sta-
2314
+ tistical Physics 67, 843 (1992).
2315
+ [88] A. Valentini and H. Westman, Proceedings of the Royal
2316
+ Society A: Mathematical, Physical and Engineering Sci-
2317
+ ences 461, 253 (2005).
2318
+ [89] G. Gr¨ubl and K. Rheinberger, Journal of Physics A:
2319
+ Mathematical and General 35, 2907 (2002).
2320
+ [90] M. J. W. Hall, D.-A. Deckert, and H. M. Wiseman,
2321
+ Phys. Rev. X 4, 041013 (2014).
2322
+ [91] A. Viale, M. Vicari, and N. Zangh`ı, Phys. Rev. A 68,
2323
+ 063610 (2003).
2324
+ [92] T. Paul and T. Qureshi, Phys. Rev. A 95, 042110
2325
+ (2017).
2326
+ [93] S. Mishra, A. Venugopalan, and T. Qureshi, Phys. Rev.
2327
+ A 100, 042122 (2019).
2328
+ [94] A.-p. Fang, Y.-l. Chen, F.-l. Li, H.-r. Li, and P. Zhang,
2329
+ Phys. Rev. A 81, 012323 (2010).
2330
+ [95] J. Laurat, G. Keller, J. A. Oliveira-Huguenin, C. Fabre,
2331
+ T. Coudreau, A. Serafini, G. Adesso, and F. Illuminati,
2332
+ Journal of Optics B: Quantum and Semiclassical Optics
2333
+ 7, S577 (2005).
2334
+ [96] A. R. Barnea, O. Cheshnovsky, and U. Even, Phys. Rev.
2335
+ A 97, 023601 (2018).
2336
+ [97] W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron,
2337
+ C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl,
2338
+ P. Cancio, and M. Trippenbach, Rev. Mod. Phys. 84,
2339
+ 175 (2012).
2340
+ [98] S. Das, D.-A. Deckert, L. Kellers, and W. Struyve, arXiv
2341
+ preprint arXiv:2211.13362 (2022).
2342
+ [99] T. Fevens and H. Jiang, SIAM Journal on Scientific
2343
+ Computing 21, 255 (1999).
2344
+ [100] Y. Aharonov, E. Cohen, F. Colombo, T. Landsberger,
2345
+ I. Sabadini, D. C. Struppa, and J. Tollaksen, Proceed-
2346
+ ings of the National Academy of Sciences 114, 6480
2347
+ (2017).
2348
+ [101] G. C. Hegerfeldt, Phys. Rev. Lett. 54, 2395 (1985).
2349
+ [102] C. T. Sebens, Foundations of Physics 49, 365 (2019).
2350
+ [103] M. J. Kazemi, H. Hashamipour, and M. H. Barati, Phys.
2351
+ Rev. A 98, 012125 (2018).
2352
+ [104] D. R. Terno, Phys. Rev. A 89, 042111 (2014).
2353
+ [105] W.
2354
+ Pauli,
2355
+ in
2356
+ in Encyclopedia of Physics,
2357
+ Vol.
2358
+ 5/1,
2359
+ edited by S. Flugge (Springer,Berlin, 1958) p. 60.
2360
+ [106] D. D¨urr, S. Goldstein, and N. Zangh`ı, Journal of Sta-
2361
+ tistical Physics 116, 959 (2004).
2362
+ [107] D.
2363
+ D¨urr
2364
+ and
2365
+ S.
2366
+ Teufel,
2367
+ in
2368
+ Multiscale Methods in Quantum Mechanics (Springer,
2369
+ 2004) pp. 41–58.
2370
+
-tE0T4oBgHgl3EQfxAG2/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -8269,3 +8269,54 @@ odFQT4oBgHgl3EQfrDYd/content/2301.13382v1.pdf filter=lfs diff=lfs merge=lfs -tex
8269
  P9AyT4oBgHgl3EQftvku/content/2301.00599v1.pdf filter=lfs diff=lfs merge=lfs -text
8270
  tNAzT4oBgHgl3EQfcvzv/content/2301.01410v1.pdf filter=lfs diff=lfs merge=lfs -text
8271
  XNE3T4oBgHgl3EQf1Qsz/content/2301.04744v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8269
  P9AyT4oBgHgl3EQftvku/content/2301.00599v1.pdf filter=lfs diff=lfs merge=lfs -text
8270
  tNAzT4oBgHgl3EQfcvzv/content/2301.01410v1.pdf filter=lfs diff=lfs merge=lfs -text
8271
  XNE3T4oBgHgl3EQf1Qsz/content/2301.04744v1.pdf filter=lfs diff=lfs merge=lfs -text
8272
+ XNE3T4oBgHgl3EQf1Qsz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8273
+ zNE1T4oBgHgl3EQfRAN4/content/2301.03047v1.pdf filter=lfs diff=lfs merge=lfs -text
8274
+ sNE0T4oBgHgl3EQfrgFB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8275
+ i9FAT4oBgHgl3EQf-B7W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8276
+ p9E0T4oBgHgl3EQfqwF-/content/2301.02557v1.pdf filter=lfs diff=lfs merge=lfs -text
8277
+ YNE0T4oBgHgl3EQfmgH3/content/2301.02501v1.pdf filter=lfs diff=lfs merge=lfs -text
8278
+ _tE2T4oBgHgl3EQfmwdA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8279
+ K9FOT4oBgHgl3EQfzjRn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8280
+ EtFJT4oBgHgl3EQfCSzh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8281
+ aNFLT4oBgHgl3EQfWy86/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8282
+ PdFJT4oBgHgl3EQfIywm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8283
+ b9AyT4oBgHgl3EQfi_hp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8284
+ EtFJT4oBgHgl3EQfCSzh/content/2301.11429v1.pdf filter=lfs diff=lfs merge=lfs -text
8285
+ CNA0T4oBgHgl3EQfAP_i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8286
+ 9tE0T4oBgHgl3EQffwDm/content/2301.02410v1.pdf filter=lfs diff=lfs merge=lfs -text
8287
+ C9FQT4oBgHgl3EQfPDYj/content/2301.13277v1.pdf filter=lfs diff=lfs merge=lfs -text
8288
+ 0dE1T4oBgHgl3EQf4wVz/content/2301.03504v1.pdf filter=lfs diff=lfs merge=lfs -text
8289
+ p9E0T4oBgHgl3EQfqwF-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8290
+ DNAzT4oBgHgl3EQfwf6z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8291
+ YNAyT4oBgHgl3EQfvfmK/content/2301.00632v1.pdf filter=lfs diff=lfs merge=lfs -text
8292
+ wdE4T4oBgHgl3EQfXgwy/content/2301.05041v1.pdf filter=lfs diff=lfs merge=lfs -text
8293
+ Z9E2T4oBgHgl3EQfZgdy/content/2301.03865v1.pdf filter=lfs diff=lfs merge=lfs -text
8294
+ wtAzT4oBgHgl3EQfCPrg/content/2301.00957v1.pdf filter=lfs diff=lfs merge=lfs -text
8295
+ mNAzT4oBgHgl3EQfN_sI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8296
+ DNE4T4oBgHgl3EQfew0W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8297
+ mNAzT4oBgHgl3EQfN_sI/content/2301.01156v1.pdf filter=lfs diff=lfs merge=lfs -text
8298
+ Z9E2T4oBgHgl3EQfZgdy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8299
+ jdAzT4oBgHgl3EQfbfxY/content/2301.01386v1.pdf filter=lfs diff=lfs merge=lfs -text
8300
+ tNAzT4oBgHgl3EQfcvzv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8301
+ 5dE5T4oBgHgl3EQfPA60/content/2301.05502v1.pdf filter=lfs diff=lfs merge=lfs -text
8302
+ q9AyT4oBgHgl3EQfZfeI/content/2301.00225v1.pdf filter=lfs diff=lfs merge=lfs -text
8303
+ W9FLT4oBgHgl3EQfTS_4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8304
+ QtFPT4oBgHgl3EQfpDVG/content/2301.13136v1.pdf filter=lfs diff=lfs merge=lfs -text
8305
+ 3tAyT4oBgHgl3EQfo_h3/content/2301.00517v1.pdf filter=lfs diff=lfs merge=lfs -text
8306
+ k9E2T4oBgHgl3EQfdwdn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8307
+ kdAzT4oBgHgl3EQfNftb/content/2301.01149v1.pdf filter=lfs diff=lfs merge=lfs -text
8308
+ QtFPT4oBgHgl3EQfpDVG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8309
+ -9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf filter=lfs diff=lfs merge=lfs -text
8310
+ CdE0T4oBgHgl3EQfyQI7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8311
+ CdE4T4oBgHgl3EQfFgzX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8312
+ YNE0T4oBgHgl3EQfmgH3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8313
+ iNE4T4oBgHgl3EQfrw2W/content/2301.05211v1.pdf filter=lfs diff=lfs merge=lfs -text
8314
+ 8NE2T4oBgHgl3EQfPgby/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8315
+ -9FIT4oBgHgl3EQf9SvZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
8316
+ DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf filter=lfs diff=lfs merge=lfs -text
8317
+ kb_51/content/kb_51.pdf filter=lfs diff=lfs merge=lfs -text
8318
+ zdFKT4oBgHgl3EQfMy2q/content/2301.11752v1.pdf filter=lfs diff=lfs merge=lfs -text
8319
+ cdFQT4oBgHgl3EQfiTZ3/content/2301.13349v1.pdf filter=lfs diff=lfs merge=lfs -text
8320
+ 2NFQT4oBgHgl3EQf2DZm/content/2301.13422v1.pdf filter=lfs diff=lfs merge=lfs -text
8321
+ kdE1T4oBgHgl3EQf0gUD/content/2301.03455v1.pdf filter=lfs diff=lfs merge=lfs -text
8322
+ q9AyT4oBgHgl3EQfZfeI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0dE1T4oBgHgl3EQf4wVz/content/2301.03504v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c1b59a893769939d31cbff865fe3d963815a14a85a2f9cc451c08c31d23240
3
+ size 1273258
0dE1T4oBgHgl3EQf4wVz/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bb3ed9ebfa189af7b2c7c1d1152de4651e925930d8909237ac53f7f31ce64c2
3
+ size 191427
1NE1T4oBgHgl3EQflATa/content/tmp_files/2301.03281v1.pdf.txt ADDED
@@ -0,0 +1,1708 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
2
+ 1
3
+ The state-of-the-art 3D anisotropic intracranial
4
+ hemorrhage segmentation on non-contrast head CT:
5
+ The INSTANCE challenge
6
+ Xiangyu Li, Gongning Luo, Kuanquan Wang, Hongyu Wang, Shuo Li, Jun Liu, Xinjie Liang, Jie Jiang,
7
+ Zhenghao Song, Chunyue Zheng, Haokai Chi, Mingwang Xu, Yingte He, Xinghua Ma, Jingwen Guo, Yifan Liu,
8
+ Chuanpu Li, Zeli Chen, Md Mahfuzur Rahman Siddiquee, Andriy Myronenko, Antoine P. Sanner, Anirban
9
+ Mukhopadhyay, Ahmed E. Othman, Xingyu Zhao, Weiping Liu, Jinhuang Zhang, Xiangyuan Ma, Qinghui Liu,
10
+ Bradley J MacIntosh, Wei Liang, Moona Mazher, Abdul Qayyum, Valeriia Abramova, Xavier Llad´o
11
+ Abstract—Automatic intracranial hemorrhage segmentation in
12
+ 3D non-contrast head CT (NCCT) scans is significant in clinical
13
+ practice. Existing hemorrhage segmentation methods usually
14
+ ignores the anisotropic nature of the NCCT, and are evaluated
15
+ on different in-house datasets with distinct metrics, making it
16
+ highly challenging to improve segmentation performance and
17
+ perform objective comparisons among different methods. The
18
+ 2022 intracranial hemorrhage segmentation on non-contrast head
19
+ CT (INSTANCE 2022) was a grand challenge held in conjunc-
20
+ tion with the 2022 International Conference on Medical Image
21
+ Computing and Computer Assisted Intervention (MICCAI). It is
22
+ intended to resolve the above-mentioned problems and promote
23
+ the development of both intracranial hemorrhage segmentation
24
+ and anisotropic data processing. The INSTANCE released a
25
+ training set of 100 cases with ground-truth and a validation set
26
+ with 30 cases without ground-truth labels that were available to
27
+ the participants. A held-out testing set with 70 cases is utilized
28
+ for the final evaluation and ranking. The methods from different
29
+ participants are ranked based on four metrics, including Dice
30
+ Similarity Coefficient (DSC), Hausdorff Distance (HD), Relative
31
+ Volume Difference (RVD) and Normalized Surface Dice (NSD).
32
+ A total of 13 teams submitted distinct solutions to resolve
33
+ the challenges, making several baseline models, pre-processing
34
+ strategies and anisotropic data processing techniques available to
35
+ future researchers. The winner method achieved an average DSC
36
+ of 0.6925, demonstrating a significant growth over our proposed
37
+ baseline method. To the best of our knowledge, the proposed
38
+ INSTANCE challenge releases the first intracranial hemorrhage
39
+ segmentation benchmark, and is also the first challenge that
40
+ intended to resolve the anisotropic problem in 3D medical image
41
+ segmentation, which provides new alternatives in these research
42
+ fields.
43
+ Index Terms—Intracranial hemorrhage Segmentation Chal-
44
+ lenge Anisotropic data
45
+ I. INTRODUCTION
46
+ I
47
+ NTRACRANIAL hemorrhage (ICH) is a severe brain dis-
48
+ ease and a main cause of stroke [1], [2]. It has a high
49
+ mortality rate of 40% within one month [3], [4]. Furthermore,
50
+ ICH even causes significant disability in survivor patients,
51
+ with only 20% of patients expected to be capable of living
52
+ independently in half year [5]. Therefore, early and accurate
53
+ diagnosis of the ICH is important for saving patients’ lives
54
+ and improve their prognosis in clinical practice [1], [6].
55
+ Non-contract head computerized tomography (NCCT) is the
56
+ primary imaging modality to diagnosing ICH for its widely
57
+ availability in most emergency rooms and high sensitivity for
58
+ detecting ICH. Moreover, NCCT enables accurate monitoring
59
+ of hemorrhage progression, and effectively quantify hematoma
60
+ volumes in ICH [1], [4], [7], making it a gold standard
61
+ examination for the diagnosis of ICH.
62
+ Hematoma volume estimation is significant for the prog-
63
+ nosis and treatment decisions for ICH patients. In recent
64
+ clinical trials, the hematoma volume has been utilized as
65
+ a reliable indicator to determine the optimal candidates for
66
+ intervention [8]–[10]. Thus, volume quantification of ICH has
67
+ become an essential procedure for outcome predictions and
68
+ ICH therapy. The hematoma volume can be estimated by
69
+ semiautomated methods with the aid of radiologists, which
70
+ is time-consuming [11] and suffers from inter-rater variability
71
+ [12]. The ABC/2 method [13] is an effective technique to
72
+ estimate hematoma volume in clinical practice since it is
73
+ simple to implement. However, the estimation accuracy of the
74
+ ABC/2 method dramatically decreases with irregular or large
75
+ scale hemorrhages [8], [14]. The ICH segmentation methods,
76
+ enabling accurate and rapid hematoma volume quantification,
77
+ have become the leading criterion in ICH diagnosis.
78
+ However, there exists plenty of challenges to segment ICH
79
+ for automatic methods. For example, the hemorrhage struc-
80
+ tures vary considerably across patients in terms of shape, size,
81
+ and localization, preventing the use of valuable location and
82
+ shape priors that are significant elements in the segmentation
83
+ of many other anatomical structures. The blurred boundaries
84
+ for the ICH region further improve the difficulty of the
85
+ segmentation task [15].
86
+ Because of the clinical significance and the intrinsic chal-
87
+ lenges, the task of automatic intracranial hemorrhage segmen-
88
+ tation has attracted extensive attention in the past few years.
89
+ Recently, deep learning–based ICH segmentation models that
90
+ segment ICH regions and quantify hematoma volume have
91
+ been performed to effectively diagnose ICH and have achieved
92
+ competitive results [6], [16]–[20]. However, all those above-
93
+ mentioned ICH segmentation methods ignore the anisotropic
94
+ nature of the NCCT volume by simply performing 2D or 3D
95
+ convolutional networks, and they were evaluated on different
96
+ in-house hemorrhage segmentation datasets with distinct met-
97
+ rics, making it highly challenging to improve segmentation
98
+ performance and perform objective comparisons among these
99
+ arXiv:2301.03281v1 [eess.IV] 9 Jan 2023
100
+
101
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
102
+ 2
103
+ methods. Consequently, it remains hard to determine which
104
+ kinds of segmentation techniques may be valuable to follow
105
+ in clinical practice and research; what exactly the performance
106
+ is of the state-of-the-art methods.
107
+ To resolve the above-mentioned challenges on fair com-
108
+ parisons of different methods, we organized the INtracranial
109
+ hemorrhage SegmenTAtioN ChallengE on non-contrast head
110
+ CT (INSTANCE) in conjunction with the 2022 international
111
+ conference on Medical Image Computing and Computer As-
112
+ sisted Interventions (MICCAI) in Singapore. To this end,
113
+ we collected and released an ICH segmentation dataset of
114
+ 200 3D volumes with refined labeling from several experi-
115
+ enced radiologists, and encouraged the participants to develop
116
+ novel algorithms to effectively segment hematoma region with
117
+ anisotropic NCCT volumes. Moreover, we evaluate different
118
+ benchmark ICH segmentation methods with the same metrics,
119
+ including Dice Similarity Coefficient (DSC), Hausdorff dis-
120
+ tance (HD), relative volume difference (RVD) and normalized
121
+ surface dice (NSD). Each of these benchmark methods was
122
+ implemented by different challenge participants on a subset of
123
+ the ICH dataset, and tested on a isolated testing dataset against
124
+ the manually delineated groundtruth labels. To the best of our
125
+ knowledge, INSTANCE is the first public intracranial hemor-
126
+ rhage segmentation challenge, and also the first challenge that
127
+ intended to deal with the anisotropic problem in 3D biomedical
128
+ image segmentation. It is served as a solid benchmark for ICH
129
+ segmentation tasks, and would also promote the development
130
+ of intracranial hemorrhage segmentation and anisotropic data
131
+ processing.
132
+ II. PRIOR WORKS
133
+ A. Related intracranial hemorrhage segmentation methods
134
+ A large numbers of methods have been proposed to automat-
135
+ ically segment intracranial hemorrhage in CT scans. Among
136
+ them, deep learning techniques are widely adopted for its
137
+ excellent performance in medical image segmentation tasks
138
+ [15], [21]. Ironside et al. utilized U-Net [22] to automati-
139
+ cally segment ICH and estimate the hematoma volume. They
140
+ achieved comparable accuracy and greater efficiency compared
141
+ to manual and semi-automated segmentation techniques [8].
142
+ To address the issue of insufficient annotation data for ICH
143
+ segmentation tasks, Kuo et al. proposed a patch-based FCN
144
+ network and segmented ICH in an active learning manner [23].
145
+ Chang et al. proposed an ROI-based framework that is opti-
146
+ mized specifically for ICH detection and segmentation tasks by
147
+ projecting 3D features to 2D networks in the feature pyramid
148
+ network [18]. Kwon et al. proposed a Siamese U-Net method
149
+ to segment ICH by leveraging the dissimilarity between
150
+ learned features of healthy templates and input images [20].
151
+ Kyung et al. proposed a supervised multi-task aiding represen-
152
+ tation transfer learning network for ICH, which was divided
153
+ into upstream and downstream. In the upstream, effective
154
+ representation learning was performed by multi-task learning
155
+ (classification, segmentation, reconstruction) and differences
156
+ in the specific head of the consistency loss mitigation target are
157
+ added. For downstream, feature extractor trained upstream is
158
+ combined with 3D operator (classifier or divider) to implement
159
+ specific tasks [16]. Wu et al. proposed a combination of an
160
+ attention-based convolutional neural network and a variational
161
+ Gaussian process for multiple instance learning method for
162
+ predicting intracranial hemorrhage slices [24]. Toikkanen et
163
+ al. proposed a residual segmentation method based on gener-
164
+ ative adversarial network, which generates the image without
165
+ bleeding in the original section through the model, and then
166
+ calculates the difference between the generated image and the
167
+ original image, so as to obtain the segmented image [17].
168
+ Abramova et al. introduced the squeeze-excitation block into
169
+ 3D U-Net to solve the problem of segment hemorrhagic stroke
170
+ lesions. Moreover, a restrictive patch sampling is proposed to
171
+ alleviate the class imbalance problem and also to deal with
172
+ the issue of intra-ventricular hemorrhage [25]. Kuang et al.
173
+ designed new self-attention blocks and contextual attention
174
+ blocks that take full advantage of both in-chip and inter-
175
+ chip information. In addition, multilevel training strategies are
176
+ proposed to reduce the influence of inter-class imbalance [26].
177
+ Wang et al. propose a Masked Multi-Task Network method
178
+ to detect brain CT volumes with intracranial hemorrhage and
179
+ distinguish hemorrhage type by leveraging different types of
180
+ intracranial hemorrhage at different locations [27]. Guo et al.
181
+ propose a full convolutional neural network for simultaneous
182
+ classification and segmentation of ICH, and the ConvLSTM
183
+ module was used to address this issue of the loss of spatial
184
+ information [28]. Kadam et al. propose architectures combined
185
+ Xception and LSTM/GRU for classification of Intracranial
186
+ Hemorrhage. It is also found through experiments that Xcep-
187
+ tion GRU model has better performance on most of the metrics
188
+ as compared to the Xception and Xception LSTM models [29].
189
+ Despite the excelent results reported in the above pa-
190
+ pers, it is still challenging to identify the best performing
191
+ method among them because of the varied testing datasets
192
+ and evaluation metrics. The proposed INSTANCE challenge
193
+ provides a standardized procedure to systematically evaluate
194
+ and compare different SOTA methods on the same testing
195
+ dataset and consistent evaluation metrics, enabling objective
196
+ and fair comparison among different techniques.
197
+ B. Medical Image Segmentation Challenges
198
+ Recently years have witnessed the growing popularity for
199
+ biomedical image analysis challenges, especially for medical
200
+ image segmentation challenges. To name a few, there were 25,
201
+ 20, and 40 accepted challenges at the International Conference
202
+ on Medical Image Computing and Computer-Assisted Inter-
203
+ vention (MICCAI) 2020, 2021, and 2022, respectively. From
204
+ 2020 to 2022, the number of challenges nearly doubled, and
205
+ the segmentation-related challenges occupied 38% of all the
206
+ challenges1. Similarly, in the largest biomedical image chal-
207
+ lenge platform ’Grand Challenge2’, 149 out of 315 (47.3%)
208
+ challenges are designed for segmentation tasks. There are lots
209
+ of successful challenges in medical image segmentation, for
210
+ example, the Brain Tumor Segmentation (BraTS) challenge
211
+ [30] provide a solid benchmark for multimodal brain tumor
212
+ 1https://www.biomedical-challenges.org/
213
+ 2https://grand-challenge.org/
214
+
215
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
216
+ 3
217
+ segmentation task, numerous methods on brain tumor seg-
218
+ mentation and multi-modal learning have been validated on
219
+ this benchmark, significantly improving the development of
220
+ those research fields. The Head and neck tumor segmentation
221
+ challenge (Hecktor) [31] organized a novel challenge for head
222
+ and neck tumor segmentation on PET/CT modalities, which
223
+ claimed to be the pioneer work on this field. The abdomen ct
224
+ organ segmentation [32] first consider the inference time, and
225
+ GPU memory consumption as extra evaluation metrics instead
226
+ of simply focusing on the segmentation accuracy, providing a
227
+ novel benchmark with more comprehensive evaluation metrics.
228
+ The Kidney Tumor Segmentation (KiTS) ( [33] ) challenge
229
+ allow participants to compare their methods on kidney and
230
+ kidney tumor segmentation tasks.
231
+ Those above challenges have made great progress in pro-
232
+ moting the development of specific medical field. However, to
233
+ the best of our knowledge, there are no challenges intended
234
+ to resolve the ICH segmentation with anisotropic 3D volumes.
235
+ Hence, the INSTANCE is the first released grand challenge for
236
+ the ICH segmentation and also the first challenge that intended
237
+ to deal with the anisotropic problem in 3D medical image
238
+ segmentation. We believe that the ICH data and algorithms
239
+ provided in this benchmark would be helpful to promote
240
+ the development of both ICH diagnosis and anisotropic data
241
+ processing.
242
+ III. THE ORGANIZATION OF THE INSTANCE CHALLENGE
243
+ The proposed INSTANCE challenge was organized in 2022
244
+ and was in conjunction with the 25rd MICCAI conference
245
+ as a satellite event. It was deployed on the Grand Challenge
246
+ platform. The official webpage of the INSTANCE challenge
247
+ is https://instance.grand-challenge.org/. Meanwhile, we also
248
+ construct a Github repository
249
+ 3 which provides plenty of
250
+ resources related to the challenge, for example, the agree-
251
+ ment files for accessing the dataset, the docker rules and
252
+ submission examples, and also the baseline models. For the
253
+ challenge schedule, the registration is open to the public on
254
+ March 28, 2022. The training and validation dataset were
255
+ released on April 6 and July 15, respectively. The dead-
256
+ line of the open validation phase and the testing phase is
257
+ on August 7 and August 14, respectively. In the validation
258
+ phase, the participants uploaded their segmentation results to
259
+ the Grand challenge website, and the platform automatically
260
+ calculated the evaluation metrics by comparing them with
261
+ the ground-truth labels we provided, and then displayed the
262
+ calculated metrics on the validation leaderboard 4 In the testing
263
+ phase, the participants are required to submit one successful
264
+ docker image that contains their algorithms, and we ran the
265
+ docker images from different participants on the closed testing
266
+ dataset. The dataset of the INSTANCE challenge are currently
267
+ available to the public on Grand Challenge platform after
268
+ signing an agreement file and the post-challenge leaderboard
269
+ submission is open for researches in this community. The
270
+ following sections summarizes the detailed implementation of
271
+ the INSTANCE challenge.
272
+ 3https://github.com/PerceptionComputingLab/INSTANCE2022
273
+ 4https://instance.grand-challenge.org/evaluation/challenge/leaderboard/
274
+ A. Dataset
275
+ We obtained the approval from Peking university, shougang
276
+ hospital to perform a retrospective analysis of the patients that
277
+ were diagnosed as intracranial hemorrhage between 2017 and
278
+ 2019. We then collected 200 non-contrast head CT volumes
279
+ of those patients to construct challenge dataset. For these
280
+ 200 cases, they were diagnosed as different kinds of ICHs,
281
+ including intraparenchymal hemorrhage (IPH), intraventricular
282
+ hemorrhage (IPH), subarachnoid hemorrhage (SAH), subdural
283
+ hemorrhage (SDH), and epidural hemorrhage (EDH), an exam-
284
+ ple for each kind of ICH is illustrated in Fig. 1. We then split
285
+ the 200 cases into training, validation and testing, with 100, 30,
286
+ and 70 cases respectively. The CT scans and the labels of the
287
+ training set are available to the participant for model training,
288
+ while only the CT scans are provided for them to tune their
289
+ algorithms on the Grand Challenge platform. Finally, in the
290
+ testing phase, we provide a closed test set for fair comparison
291
+ between different methods.
292
+ For each of the subject in INSTANCE dataset, we first
293
+ converted the traditional Digital Imaging and Communications
294
+ in Medicine (DICOM) files to the Neuroimaging Informatics
295
+ Technology Initiative (NIfTI) format. In this way, each subject
296
+ only has one single NIfTI file instead of a bunch of DICOM
297
+ files, making it easier to process in a image segmentation
298
+ program. The volume sizes ranges from 512 × 512 × 20 to
299
+ 512 × 512 × 70, and the pixel spacing of a CT volume is
300
+ 0.42mm × 0.42mm × 5mm, hence the volume is anisotropic
301
+ with inter-slice resolution much smaller than the within-slice
302
+ resolution. The window width and the window center is 90HU
303
+ and 40HU, respectively. We kept the original Hu value in
304
+ the NIfTI volume since the participants can conduct different
305
+ windowing strategies.
306
+ For the data annotation, we gathered several experienced
307
+ radiologists and some postgraduate students majored in med-
308
+ ical imaging to perform hemorrhage region annotation in
309
+ the NCCT scans. To improve the efficiency of the annota-
310
+ tion process, we adopted a coarse-to-fine annotation strategy.
311
+ Specifically, the ICH lesions were first manually delineated in
312
+ the NCCT volumes with a popular annotation software in med-
313
+ ical imaging, Seg3D5 [34]. Then the experienced radiologists
314
+ checked the coarse annotations and manually refined them.
315
+ Finally, all the radiologists double-check the annotations from
316
+ other annotators, and discuss to achieve the final annotations
317
+ with majority voting strategy.
318
+ B. Evaluation Measures and Ranking Method
319
+ The INSTANCE challenge adopted four accuracy-related
320
+ evaluation metrics: Dice Similarity Coefficient (DSC), Haus-
321
+ dorff Distance (HD), Relative Volume Difference (RVD) and
322
+ Surface Dice (NSD) [35]. We utilized DSC and HD since
323
+ they are widely used in different medical image segmentation
324
+ challenges. They are complementary metrics for evaluating
325
+ segmentation performance. DSC was utilized to measure the
326
+ region overlapping error between ground truth and segmen-
327
+ tation results, while HD is used to evaluate the coincidence
328
+ 5https://www.sci.utah.edu/cibc-software/seg3d.html
329
+
330
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
331
+ 4
332
+ Fig. 1: Different kinds of intracranial hemorrhages, including intraparenchymal hemorrhage (IPH), intraventricular hemorrhage
333
+ (IPH), subarachnoid hemorrhage (SAH), subdural hemorrhage (SDH), and epidural hemorrhage (EDH). The varied shapes and
334
+ positions for different kinds of hemorrhages promote the difficulties of the segmentation task.
335
+ TABLE I: The Correspondence between the Team names and
336
+ the aliases.
337
+ Team
338
+ Alias
339
+ vegetable
340
+ T1
341
+ nvauto
342
+ T2
343
+ mec-lab
344
+ T3
345
+ ibot
346
+ T4
347
+ stubmers
348
+ T5
349
+ crainet
350
+ T6
351
+ superembrace
352
+ T7
353
+ scan
354
+ T8
355
+ dolphins
356
+ T9
357
+ nic-vicorob
358
+ T10
359
+ 2i mtl
360
+ T11
361
+ avich
362
+ T12
363
+ visal
364
+ T13
365
+ between segmented surface and target surface. We used the
366
+ RVD since the purpose for the ICH segmentation is to quantify
367
+ the hematoma volume, making the volume differences be-
368
+ tween the predictions and the labels significant for the results
369
+ analysis. Moreover, we further added the NSD metric as a
370
+ complement evaluation for the HD metric because the HD
371
+ would become infinite when the prediction is a normal head
372
+ CT scan without hemorrhages. The NSD also measures the
373
+ discrepancy between the target and predicted boundaries.
374
+ We intended to rank different algorithms based on the
375
+ above-mentioned four metrics. Motivated from the former
376
+ challenges [31], [36], we utilized a “aggregate-then-rank”
377
+ scheme for ranking, including the following three steps: (1)
378
+ Calculate the average DSC, HD, RVD and NSD metrics for
379
+ all cases in the testing dataset. (2) Rank all the participant
380
+ teams on these four metrics, hence each team would get four
381
+ ranks. (3)Based on the rankings generated from (2), we then
382
+ averaged these rankings and achieved the final ranking for each
383
+ team. Moreover, for some extreme cases, e.g., the HD metric
384
+ is infinite because the algorithm mistakenly treated some hard
385
+ ICH cased as normal head scans. In this case, we treat all
386
+ ‘inf’ teams the same rank on HD which are inferior to others.
387
+ Because we believe effectively diagnosis hard samples is also
388
+ important in our challenge.
389
+ IV. RESULTS
390
+ A. Participation and submissions
391
+ The INSTANCE 2022 received over 500 applications on
392
+ grand-challenge platform and 70 teams were approved to be
393
+ able to access the challenge dataset. The reason why we
394
+ refused the other applications was that they didn’t submit the
395
+ signed agreement files that we provided in the participation
396
+ rules. In the validation phase, 30 teams uploaded their results
397
+ with over 350 valid submissions on the grand challenge
398
+ website. The final validation leaderboard is available on Grand
399
+ challenge website. In the testing phase, 13 teams successfully
400
+ submitted the Docker containers and the short papers.
401
+ B. Algorithm summary
402
+ We adopted the SLEX-NET [6] as the baseline model in
403
+ the proposed INSTANCE challenge. It is noted that the dataset
404
+ utilized in the SLEX-NET is different from INSTANCE 2022.
405
+ Therefore, we re-trained the algorithm of baseline model
406
+ on the INSTANCE 2022 dataset, with other training details
407
+ consistent with the settings in the original paper.
408
+ For the participants’ models, we find out that all the partic-
409
+ ipants chose U-Net-related architectures, including attention
410
+ U-Net [37], U-Net [22], 3D U-Net [38], nnU-Net [39], etc.
411
+ Among them, nnUNet is still the most popular model, 7 out
412
+ of 13 teams adopted it as their backbone network. Moreover,
413
+ we also summarized other key factors in the methods by those
414
+ participants, including data augmentation, loss functions, pre-
415
+ processing, post-processing, and etc. The detailed summaries
416
+ are illustrated in Table II. It shows that all teams used data
417
+ augmentation, and 10 out of 13 teams conducted ensemble
418
+ learning to improve their performance. In addition, four teams
419
+ utilized the 2D implementation, seven teams adopted the
420
+ 3D implementation, and two teams combined 2D/3D imple-
421
+ mentations. For the pre-processing and post-processing, all
422
+ teams conducted different kinds of pre-processings, including
423
+ normalization, windowing, skull-stripping, and etc, while only
424
+ one team applied post-processing. To improve the learning
425
+ of deep models, each team utilized different losses, such as
426
+ Dice loss, cross-entropy loss, focal loss, and etc. Detailed
427
+ descriptions of their methods can be found in the Appendix A.
428
+ More importantly, we also released their submitted papers on
429
+
430
+ IPH
431
+ IVH
432
+ SAH
433
+ SDH
434
+ EDHJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
435
+ 5
436
+ TABLE II: Summary of the algorithms in terms of key factors in the methods by those participants: backbone network,
437
+ 2D/3D, stages, pre-processing, data augmentation, loss functions, ensembles, post-processing. Abbreviation: Normalization
438
+ (N), Windowing(W), Skull stripping(SS), Cropping (CP), Cross-Entropy(CE), Tversky (TV), Contour loss (CT)
439
+ Team
440
+ Backbone
441
+ 2D/3D
442
+ Preprocess
443
+ Stage
444
+ Augmentation
445
+ Loss
446
+ Ensemble
447
+ Postprocess
448
+ Patch-based
449
+ T1
450
+ nnU-Net
451
+ 2D/3D
452
+ N
453
+ 1
454
+
455
+ Dice+WCE
456
+
457
+
458
+
459
+ T2
460
+ ResUNet
461
+ 2D
462
+ N
463
+ 2
464
+
465
+ Dice+CE
466
+
467
+
468
+
469
+ T3
470
+ nnU-Net
471
+ 3D
472
+ SS
473
+ 1
474
+
475
+ Dice+CE+CT
476
+
477
+
478
+
479
+ T4
480
+ nnU-Net
481
+ 3D
482
+ N+W+CP
483
+ 1
484
+
485
+ Dice+CE
486
+
487
+
488
+
489
+ T5
490
+ nnU-Net
491
+ 3D
492
+ N+SS
493
+ 1
494
+
495
+ Dice+CE
496
+
497
+
498
+
499
+ T6
500
+ nnU-Net
501
+ 3D
502
+ N+W
503
+ 2
504
+
505
+ Dice+Focal
506
+
507
+
508
+
509
+ T7
510
+ nnU-Net
511
+ 3D
512
+ N+W
513
+ 1
514
+
515
+ Dice+CE
516
+
517
+
518
+
519
+ T8
520
+ U-Net
521
+ 3D
522
+ W
523
+ 1
524
+
525
+ CE
526
+
527
+
528
+
529
+ T9
530
+ nnU-Net
531
+ 2D/3D
532
+ N
533
+ 2
534
+
535
+ CE
536
+
537
+
538
+
539
+ T10
540
+ U-Net
541
+ 3D
542
+ N+SS
543
+ 1
544
+
545
+ Dice+CE
546
+
547
+
548
+
549
+ T11
550
+ Attention U-Net
551
+ 2D
552
+ N
553
+ 2
554
+
555
+ Dice+CE+TV
556
+
557
+
558
+
559
+ T12
560
+ U-Net
561
+ 2D
562
+ N
563
+ 1
564
+
565
+ Dice
566
+
567
+
568
+
569
+ T13
570
+ U-Net3+
571
+ 2D
572
+ SS
573
+ 1
574
+
575
+ Dice+CE
576
+
577
+
578
+
579
+ TABLE III: Summary of the INSTANCE 2022 validation phase. The average DSC, RVD, NSD and HD are reported for the
580
+ baseline models and the submitted algorithms from each participant. The unit of HD is [mm]. Bold values represent the best
581
+ scores for each metric.
582
+ Team
583
+ DSC(%)↑
584
+ NSD(%)↑
585
+ RVD↓
586
+ HD↓
587
+ T1
588
+ 79.12±23.00
589
+ 50.26±19.91
590
+ 0.21±0.20
591
+ 29.02±26.34
592
+ T2
593
+ 78.21±18.45
594
+ 55.28±12.67
595
+ 0.20±0.18
596
+ 32.30±30.04
597
+ T3
598
+ 71.60±30.10
599
+ 50.60±21.30
600
+ 0.29±0.30
601
+ inf
602
+ T4
603
+ 73.55±26.74
604
+ 51.57±18.10
605
+ 0.24±0.24
606
+ 27.16±32.41
607
+ T5
608
+ 73.39±27.38
609
+ 51.93±18.99
610
+ 0.25±0.27
611
+ inf
612
+ T6
613
+ 79.53 ±17.18
614
+ 56.81±12.47
615
+ 0.20±0.18
616
+ 21.56±25.02
617
+ T7
618
+ 71.12±29.38
619
+ 50.19±20.56
620
+ 0.27±0.30
621
+ inf
622
+ T8
623
+ 72.34±28.52
624
+ 48.93±19.57
625
+ 0.58±1.65
626
+ 35.37±29.53
627
+ T9
628
+ 69.96±30.26
629
+ 48.75±19.66
630
+ 0.26±0.27
631
+ inf
632
+ T10
633
+ 69.28±28.39
634
+ 46.34±19.54
635
+ 0.36±0.44
636
+ 36.23±2.01
637
+ T11
638
+ 52.87±29.66
639
+ 27.36±14.38
640
+ 2.16±4.86
641
+ 149.77±44.52
642
+ T12
643
+ 64.76±31.42
644
+ 40.26±19.93
645
+ 0.52±0.76
646
+ 57.13±22.53
647
+ T13
648
+ 67.16±33.19
649
+ 45.58±22.35
650
+ 0.27±0.29
651
+ 38.88±39.56
652
+ Baseline [6]
653
+ 64.08±27.48
654
+ 46.21±20.12
655
+ 0.514±1.14
656
+ 277.63±163.00
657
+ the official challenge website 6 for comprehensive introduction
658
+ of their methods.
659
+ C. Evaluation results and Analysis
660
+ 1) Segmentation performance: The segmentation perfor-
661
+ mance of the baseline model and other participants’ algorithms
662
+ for validation and testing set are illustrated in Table. III
663
+ and Table. IV respectively. In Table. IV, we reported the
664
+ average DSC, RVD, NSD and HD in the table, respectively.
665
+ Our baseline model, SLEX-Net [6] obtained a DSC score of
666
+ 52.83%. Most of other teams improved the baseline model
667
+ in all four metrics. The average DSC score, RVD, NSD for
668
+ the participants lies in [40.22%,72.06%], [0.21, 1.55], and
669
+ [25.11%, 53.59%], respectively. The best results on DSC,
670
+ RVD, and NSD metrics achieved only 72.06%, 0.21, 53.59%,
671
+ respectively. The overall performances are much lower than
672
+ many other segmentation tasks, proving the great challenge of
673
+ intracranial hemorrhage segmentation task. More importantly,
674
+ most of the teams obtained ’infinite’ for the averaged HD
675
+ because their method mistakenly diagnosed some difficult ICH
676
+ 6https://instance.grand-challenge.org/results/
677
+ cases with tiny hemorrhages as normal subjects. The infinite
678
+ results made it challenging to effectively rank the HD metric
679
+ for different methods. In our challenge, we treat all ‘inf’ teams
680
+ the same rank on HD which are inferior to others. Because we
681
+ believe effectively diagnosis hard samples is also important
682
+ in this task. Moreover, Fig. 2(a)-(d) demonstrate the results
683
+ distribution across all the subjects in the testing dataset with
684
+ box plots. It can be inferred that the standard deviations of the
685
+ results distribution for top ranking teams are smaller that that
686
+ of lower ranking ones, and also fewer outliers exists for them
687
+ as well.
688
+ 2) Hematoma Volume Analysis: In this section, we ana-
689
+ lyzed the relationship between hematoma volume size and
690
+ the segmentation performances for different algorithms. The
691
+ volume sizes of ICH are calculated by multiplying the
692
+ voxel numbers of ICH and the pixel spacing in x,y,z di-
693
+ mensions, which is consistent with the method in [6], [8].
694
+ Fig. 3 highlights the correlation between volume size and
695
+ the DSC scores with a scatter plot. It demonstrates that
696
+ hemorrhages with small volume sizes are difficult to seg-
697
+ ment, while large hematoma ICHs are relatively easier to
698
+ achieve better segmentation results. Fig. 4 shows the segmen-
699
+
700
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
701
+ 6
702
+ TABLE IV: Summary of the INSTANCE 2022 testing phase. The average DSC, RVD, NSD and HD are reported for the
703
+ baseline models and the submitted algorithms from each participant. The unit of HD is [mm]. The ranking is only provided
704
+ for teams that successfully submitted the docker image and the technical paper descriptions in the testing phase. Bold values
705
+ represent the best scores for each metric.
706
+ Team
707
+ DSC(%)↑
708
+ NSD(%)↑
709
+ RVD↓
710
+ HD↓
711
+ Ranking
712
+ T1
713
+ 69.25±19.14
714
+ 53.59±15.65
715
+ 0.21±0.20
716
+ 35.27±28.47
717
+ 1
718
+ T2
719
+ 72.06±21.07
720
+ 53.43±16.45
721
+ 0.26±0.25
722
+ inf
723
+ 2
724
+ T3
725
+ 69.00±24.68
726
+ 51.25±18.94
727
+ 0.31±0.28
728
+ inf
729
+ 3
730
+ T4
731
+ 68.94±25.06
732
+ 50.36±19.35
733
+ 0.32±0.29
734
+ inf
735
+ 4
736
+ T5
737
+ 67.97±25.07
738
+ 49.46±18.73
739
+ 0.32±0.28
740
+ inf
741
+ 5
742
+ T6
743
+ 67.39±26.91
744
+ 48.40±20.84
745
+ 0.32±0.31
746
+ inf
747
+ 6
748
+ T7
749
+ 66.84±24.75
750
+ 48.09±18.68
751
+ 0.33±0.27
752
+ 43.90±33.78
753
+ 7
754
+ T8
755
+ 65.28±27.98
756
+ 47.49±21.70
757
+ 0.37±0.31
758
+ inf
759
+ 8
760
+ T9
761
+ 64.97±26.78
762
+ 46.86±19.58
763
+ 0.34±0.31
764
+ inf
765
+ 9
766
+ T10
767
+ 62.14±27.70
768
+ 42.01±19.88
769
+ 0.33±0.30
770
+ inf
771
+ 10
772
+ T11
773
+ 61.95±25.91
774
+ 42.80±18.75
775
+ 0.40±0.78
776
+ 55.36±26.53
777
+ 11
778
+ T12
779
+ 57.04±28.20
780
+ 36.73±19.17
781
+ 0.43±0.50
782
+ 60.81±25.22
783
+ 12
784
+ T13
785
+ 40.22±32.35
786
+ 25.11±21.54
787
+ 1.55±4.67
788
+ 68.36±41.79
789
+ 13
790
+ Baseline [6]
791
+ 52.83±28.92
792
+ 38.42±21.04
793
+ 0.725±2.06
794
+ 309.06±287.31
795
+ (a) Dice Coefficient
796
+ (b) Normalized Surface Dice
797
+ (c) Relative Volume Difference
798
+ (d) Hausdorff Distance
799
+ Fig. 2: Box plots of the experimental results on different evaluation metrics for all the submitted teams. The dots denote the
800
+ individual scores of the 70 cases in the testing set.
801
+
802
+ 0.8
803
+ DiceCoefficient(%
804
+ 0.6
805
+ 0.4
806
+ 0.2
807
+ 0.00.8
808
+ SurfaceDice(%)
809
+ 0.6
810
+ 0.4
811
+ 0.2
812
+ 0.0
813
+ T6T7T8T9Relative VolumeDifference
814
+ 1.00
815
+ 0.75
816
+ 0.50
817
+ 0.25
818
+ 0.00
819
+ T1T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13150
820
+ HausdorffDistance
821
+ 100
822
+ 50
823
+ T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
824
+ 7
825
+ Fig. 3: The relationship between different Dice coefficients
826
+ and the hematoma volume sizes demonstrates that the cases
827
+ with smaller hematoma volumes are hard cases.
828
+ Fig.
829
+ 4:
830
+ The
831
+ team-wise
832
+ ’Volumn-DSC’
833
+ relationship
834
+ fig-
835
+ ure shows that the DSC scores improve with the in-
836
+ crease of volume sizes for different algorithms from the
837
+ participants. It is generated by separating the 70 test-
838
+ ing cases with four different volume size groups: in-
839
+ cluding [0, 4213], [4213, 7235], [7235, 19640], [19640, inf], re-
840
+ spectively, and the average DSC score was calculated based
841
+ on the results in each group.
842
+ Fig. 5: The bar chart on Dice Coefficient for different kinds of
843
+ intracranial hemorrhages shows that SAH is the most difficult
844
+ class to segment.
845
+ tation performance for all the methods with four hematoma
846
+ volume size groups. It is generated by separating the 70
847
+ testing cases with four different volume size groups: in-
848
+ cluding [0, 4213], [4213, 7235], [7235, 19640], [19640, inf], re-
849
+ spectively, and the average DSC score was calculated based on
850
+ the results in each group. Fig. 4 further proves that the DSC
851
+ scores improve with the increase of volume sizes for different
852
+ algorithms from the participants.
853
+ 3) Hemorrhage Sub-type Analysis: Different sub-types of
854
+ the intracranial hemorrhages are located at distinct positions
855
+ of the brain, and patients can suffer from combinations of
856
+ several kinds of hemorrhages. Certain types of hemorrhages
857
+ usually present various different characteristics, leading to
858
+ varied difficulties for distinguishing from normal brain tissues.
859
+ Fig. 5 illustrates the average DSC value for different kinds
860
+ of hemorrhages. It demonstrates that the SAH achieved the
861
+ worst results in all metrics compared to other four kinds of
862
+ ICHs. Hence, how to effectively segment SAH might be the
863
+ most urgent problem needed to be solved to improve the ICH
864
+ segmentation.
865
+ D. Challenge Ranking Analysis
866
+ Similar to the significance analysis in many biomedical
867
+ image segmentation challenges [31], [32], we utilized the
868
+ significance map to demonstrate the pairwise significant su-
869
+ periority between different algorithms, as is illustrated in Fig.
870
+ 6. Specifically, we choose to perform significant test with one-
871
+ sided Wilcoxon signed rank test at 5% significance level. In
872
+ Fig. 6 (a-d), most of the yellow blocks are above the diagonal
873
+ and the blue blocks are under the diagonal, indicating that most
874
+ of the teams with smaller rank are significantly superior to
875
+ those with larger ranks. Moreover, it also shows that different
876
+ metrics have distinct ability to distinguish the good and bad
877
+
878
+ 1.0
879
+ 0.8
880
+ 0.6
881
+ Dice
882
+ 0.4
883
+ 0.2
884
+ 0.0
885
+ 0
886
+ 30000
887
+ 00009
888
+ 00006
889
+ 120000 150000 180000
890
+ Volumein[mm"T1
891
+ 0.8
892
+ T2
893
+ T3
894
+ T5
895
+ T6
896
+ T7
897
+ T8
898
+ Average test DSC
899
+ 0.6
900
+ T9
901
+ T10
902
+ T11
903
+ T12
904
+ T13
905
+ 0.4
906
+ 0.2
907
+ 0.0
908
+ [0,4213]
909
+ [4213,7235]
910
+ [7235,19640]
911
+ [19640,inf]
912
+ Volume in [mm3]0.88
913
+ DICE
914
+ RVD
915
+ 0.8
916
+ NSD
917
+ 0.73
918
+ 0.68
919
+ 0.67
920
+ 0.62
921
+ 0.63
922
+ 0.6
923
+ 0.52
924
+ 0.54
925
+ 0.41
926
+ 0.43
927
+ 0.4
928
+ 0.39
929
+ 0.36
930
+ 0.32
931
+ 0.29
932
+ 0.2
933
+ 0.09
934
+ 0.0
935
+ SDH
936
+ EDH
937
+ SAH
938
+ IPH
939
+ IVHJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
940
+ 8
941
+ (a) Significance map for Dice Coefficient
942
+ (b) Significance map for Normalized Surface Dice
943
+ (c) Significance map for Relative Volume Difference
944
+ (d) Significance map for Hausdorff Distance
945
+ Fig. 6: The significant superiority maps for ranking robustness analysis of different evaluation metrics. In each of the four
946
+ maps, yellow blocks means that the evaluation metric for teams on the x-axis are significantly superior to those from the teams
947
+ on the y-axis, which blue blocks means no significant superiority. The pairwise significant test with one-sided Wilcoxon signed
948
+ rank test at 5% significance level is adopted in our experiment.
949
+ performances among different algorithms. For example, the
950
+ DSC, NSD and HD of T7 are significantly superior to that of
951
+ T12, however, there exists no significant superiority on RVD
952
+ metric.
953
+ V. DISCUSSIONS
954
+ A. 2D/3D architecture Choice
955
+ The algorithm summary in section IV-B shows that the
956
+ participants chose different algorithm implementations for 2D
957
+ or 3D methods. We noticed that the winner method adopted
958
+ the 2D/3D combination method, and most of the 3D methods
959
+ outperformed the 2D implementations, yet we cannot draw
960
+ definite conclusions on which kinds of methods are superior
961
+ to another since there are many other factors contributing to
962
+ the final results. However, we believe that directly utilizing 2D
963
+ networks would lose significant context information among
964
+ slices, which has been proved in numerous medical image
965
+ segmentation tasks [6], [40]–[42]. Therefore, how to effec-
966
+ tive incorporate inter-slice contextual information would be
967
+ a fundamental problem for improving ICH segmentation. To
968
+ this end, many participants utilized 3D UNet implementation,
969
+ however, this might not be the optimal solution considering
970
+ that the CT volumes in this challenge are anisotropic (pixel
971
+ spacing: 0.42mm×0.42mm×5mm) [43], thus more effective
972
+ techniques for exploiting inter-slice context for anisotropic
973
+ volumes are needed.
974
+ B. Bottlenecks for ICH segmentation
975
+ The hematoma volume analysis in section IV-C2 demon-
976
+ strates the inferior segmentation performance for hemorrhages
977
+
978
+ T13
979
+ T12
980
+ TII
981
+ T10
982
+ T9
983
+ T8
984
+ T7
985
+ T6
986
+ T5
987
+ T4
988
+ T3
989
+ T2
990
+ T1
991
+ T1
992
+ T13T13
993
+ T12
994
+ T11
995
+ T10
996
+ T9
997
+ T8
998
+ T7
999
+ T6
1000
+ T5
1001
+ T4
1002
+ T3
1003
+ T2
1004
+ T1
1005
+ T1
1006
+ T2T3T4T5T6T7T8T9T10T11T12T13T13
1007
+ T12
1008
+ T11
1009
+ T10
1010
+ T9
1011
+ T8
1012
+ T7
1013
+ T6
1014
+ T5
1015
+ T4
1016
+ T3
1017
+ T2
1018
+ T1
1019
+ T1
1020
+ T2T3T4T5
1021
+ T6T7T8T9T10 T11T12 T13T13
1022
+ T12
1023
+ T11
1024
+ T10
1025
+ T9
1026
+ T8
1027
+ T7
1028
+ T6
1029
+ T5
1030
+ T4
1031
+ T3
1032
+ T2
1033
+ T1
1034
+ T1
1035
+ T2JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1036
+ 9
1037
+ with small volume sizes. The degradation of the segmentation
1038
+ indicates that the hemorrhage cases with small volume sizes
1039
+ are hard to segment. Fig. 3 shows that all the methods pro-
1040
+ posed by the participants have trouble dealing with very small
1041
+ hemorrhages. The majority of the cases that achieve a DSC
1042
+ score lower than 0.3 are those subjects with hemorrhage vol-
1043
+ ume smaller than 15000m3, and the overall DSC performances
1044
+ for all the subjects significantly deteriorate with substantial
1045
+ low DSC scores. Therefore, one important bottleneck for ICH
1046
+ segmentation is the small hemorrhage lesion segmentation, and
1047
+ effectively resolving this problem would certainty improve the
1048
+ overall segmentation performance and achieve better ranking
1049
+ in the challenge. Besides, the hemorrhage sub-type analysis in
1050
+ section IV-C3 shows that the subarachnoid hemorrhage (SAH)
1051
+ achieved the worst results in all metrics, with average DSC
1052
+ score for only 0.41. Thus, another bottleneck for ICH seg-
1053
+ mentation is how to deal with the subarachnoid hemorrhage.
1054
+ In conclusion, the future directions for the researches of ICH
1055
+ segmentation may be concentrated on the above-mentioned
1056
+ two bottlenecks. The researches of the hemorrhage diagnosis
1057
+ would be greatly improved by resolving these extremely hard
1058
+ cases.
1059
+ C. Evaluation Metrics Analysis
1060
+ We highly suggest the use of DSC, NSD and the RVD as
1061
+ the evaluation metrics for the ICH segmentation benchmark.
1062
+ According to the descriptions in section III-B, and section
1063
+ IV-C1. The HD and NSD are similar metrics that are used
1064
+ to evaluate the discrepancy between the target and predicted
1065
+ boundaries. However, we came across multiple extreme cases
1066
+ with average HD metrics equal to infinite when the predicted
1067
+ methods mistakenly diagnosed those hard cases with small
1068
+ hemorrhage lesions as normal head scans. The infinite values
1069
+ make it challenging to effectively rank different algorithms
1070
+ on that metric. However, the NSD metric has the same
1071
+ upper bound as DSC (100%), and there will be no such
1072
+ circumstances occur. Therefore, Hausdorff distance might not
1073
+ be a good metric choice for the INSTANCE challenge, and we
1074
+ consider abandoning it in the future INSTANCE challenges.
1075
+ D. Limitations and Future work
1076
+ Although this year’s INSTANCE challenge has achieved
1077
+ great success with numerous participants around the world, it
1078
+ still suffers from lots of limitations. They are mainly consist
1079
+ of three aspects:
1080
+ 1) Data collection and annotation:
1081
+ Even though the
1082
+ INSTANCE2022 challenge has provided a relatively large
1083
+ dataset, they are mainly collected from a single institution
1084
+ with the same CT scanner. Although it could work in our
1085
+ challenge, it would definitely restrict the generalization of the
1086
+ model developed by different participants. In addition, for the
1087
+ data annotation, we only delineate the hemorrhage regions as
1088
+ foreground without considering the ICH sub-types, which are
1089
+ actually important information in clinical diagnosis and can
1090
+ also guide the segmentation of ICH.
1091
+ 2) Task designs: In this years’ INSTANCE challenge, we
1092
+ only consider the hemorrhage segmentation task. However, it
1093
+ is also significant to perform ICH classification and hematoma
1094
+ volume quantification, which are highly clinical-related. The
1095
+ design of multiple tasks would simultaneously make the chal-
1096
+ lenge more comprehensive and provide more diverse research
1097
+ directions for the participants. In conclude, we will enhance
1098
+ the single-task challenge to a multi-task one in the future
1099
+ challenges.
1100
+ 3) Source code Availability: In this years’ INSTANCE
1101
+ challenge, we highly recommended the participants to make
1102
+ their implementations to the public, and didn’t make it a
1103
+ mandatory option. As a result, we only find out one team make
1104
+ their code available. We didn’t demand them to share the code
1105
+ because we don’t expect it to be an obstacle for participating
1106
+ in this challenge. However, we notice that the code is too
1107
+ significant to be ignored for promoting the development in this
1108
+ research field. Therefore, we consider making it mandatory for
1109
+ top participants to make their code public available for future
1110
+ INSTANCE challenges.
1111
+ 4) Future works for INSTANCE: We are currently working
1112
+ to promote the INSTANCE 2022 Challenge in many different
1113
+ aspects. Detailed improving directions are as follows:
1114
+ • More multi-institutional data. We will collect more ICH
1115
+ data from different CT scanner and different hospitals to
1116
+ improve the generalization of methods that are trained
1117
+ based on the INSTANCE benchmark.
1118
+ • More annotations and comprehensive task designs.
1119
+ We will annotate the different ICH sub-types of each CT
1120
+ scans and also calculate the hematoma volume of each
1121
+ cases to provide more clinical-related datasets. Mean-
1122
+ while, based on the above-mentioned extra annotations,
1123
+ we further expand the single-task challenge to a multi-
1124
+ task one, which simultaneously performs hemorrhage
1125
+ segmentation, classification and volume quantification
1126
+ tasks.
1127
+ • Mandatory options for open-source code. To pro-
1128
+ mote the advancement of the intracranial hemorrhage
1129
+ diagnosis, the top participants in the future INSTANCE
1130
+ challenge are required to share their code to the public.
1131
+ VI. CONCLUSION
1132
+ The INSTANCE challenge provides a novel benchmark
1133
+ for objectively measuring different intracranial hemorrhage
1134
+ segmentation methods in non-contrast head CT scans. A total
1135
+ of 13 teams successfully submitted their methods, and the
1136
+ winner solution achieved a DSC score of 0.6925 on the
1137
+ testing set, dramatically improving our baseline network. We
1138
+ have made the training set, the methodology descriptions and
1139
+ evaluation code public available on the challenge website,
1140
+ we hope this would promote the development in the ICH
1141
+ segmentation field. The challenge is now remains open for
1142
+ post-challenge submissions via Grand Challenge platform for
1143
+ benchmarking further algorithm exploitation. In the future,
1144
+ we will collect more multi-institutional data to improve the
1145
+ generalization of methods that are trained on the benchmark,
1146
+ and also perform more clinical-relevant annotations on ICH
1147
+
1148
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1149
+ 10
1150
+ Fig. 7: Segmentation results for different ICH sub-types in terms of DSC and NSD scores. The blue color denotes the ICH
1151
+ lesion.
1152
+ sub-type and hematoma volumes and expand the single-task
1153
+ challenge to a multi-task one.
1154
+ ACKNOWLEDGMENTS
1155
+ We sincerely appreciate all the members in INSTANCE2022
1156
+ organization team for their hard work. Without your con-
1157
+ tinuous devotion to this challenge, it would not be that
1158
+ successful. This work was supported by the National Nat-
1159
+ ural Science Foundation of China under Grant 62001144,
1160
+ 62272135 and 62001141, and by Science and Technology
1161
+ Innovation Committee of Shenzhen Municipality under Grant
1162
+ RCBS20210609103820029 and JCYJ20210324131800002.
1163
+ APPENDIX
1164
+ In (Li and Chen, 2022), Li and Chen used a combination
1165
+ of nnU-Net and uncertainty estimation ensemble strategy.
1166
+ Their experiments showed that even though the 2D nnU-
1167
+ Net could not achieve the overall dice accuracy of 3D nnU-
1168
+ Net, it performed better results than 3D nnU-Net when the
1169
+ intracranial hemorrhage had very small area or blurred bound-
1170
+ aries. Therefore, they use both 2D and 3D nnU-Net to predict
1171
+ the final result. Furthermore, in order to further alleviate the
1172
+ segmentation issue of small area intracranial hemorrhage and
1173
+ maintain stability during training, they utilized the weighted
1174
+ cross-entropy loss to replace simple cross-entropy loss in
1175
+ the nnU-Net. Due to the unbalanced intracranial hemorrhage
1176
+ types and intracranial hemorrhage areas, the models trained
1177
+ in different folds might predict completely different results.
1178
+ Simply average the predicted results from the models provide
1179
+ no additional benefit for these cases. To this end, they propose
1180
+ a simple but efficient uncertainty estimation ensemble strategy.
1181
+
1182
+ DSC:89.9 NSD:65.4
1183
+ DSC:90.2 NSD:60.8
1184
+ DSC:90.4 NSD:60
1185
+ Case 1
1186
+ DSC:89.9 NSD:64.6
1187
+ DSC:93.3 NSD:69.9
1188
+ DSC:91.4 NSD:65.3
1189
+ Case 2
1190
+ DSC:55.3 NSD:46.3
1191
+ DSC:47.9 NSD:43.8
1192
+ DSC:48.4 NSD:39.8
1193
+ N
1194
+ Case 3
1195
+ DSC:65.1 NSD:45.9
1196
+ DSC:72.2 NSD:4S.6
1197
+ DSC:67.8 NSD:43.2
1198
+ Case 4
1199
+ DSC:67.7 NSD:48.9
1200
+ DSC:43.5 NSD:37.0
1201
+ DSC:29.1 NSD:19.7
1202
+ Case 5
1203
+ (a)Image
1204
+ (b)Ground Truth
1205
+ (c)T1
1206
+ (d)T3
1207
+ (e)T9JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1208
+ 11
1209
+ For those cases with high uncertainty values, they use the
1210
+ voting method to get the final result. Use nnU-Net’s own data
1211
+ augmentation methods.
1212
+ In (Siddiquee et al., 2022 [44]), Siddiquee et al. used the
1213
+ 2D version of encoder-decoder backbone based on with an
1214
+ asymmetrically larger encoder to extract image features and
1215
+ a smaller decoder to reconstruct the segmentation mask7. For
1216
+ the encoder part, they used 5 stages of down-sampling and
1217
+ 2D ResNet blocks that each block’s output is followed by an
1218
+ additive identity skip connection. Furthermore, they used batch
1219
+ normalization and ReLU. For the decoder part, the decoder
1220
+ structure is similar to the encoder one, but with a single
1221
+ block per each spatial level. Each decoder level begins with
1222
+ upsizing with transposed convolution. In the preprocessing,
1223
+ they applied random rotation and random zoom on each axis
1224
+ with a probability of 0.4 and random contrast adjustment
1225
+ and random Gaussian noise with a probability of 0.2. The
1226
+ random coarse shuffle and random flips were applied on each
1227
+ axis with a probability of 0.5. In the training, they randomly
1228
+ split the entire dataset into 5-folds and trained a model for
1229
+ each. Moreover, they used L2 norm regularization on the
1230
+ convolution kernel parameters with a weight of 1e−5. The
1231
+ DiceCE loss is used for training.
1232
+ In (Sanner and Mukhopadhyay, 2022), Sanner and
1233
+ Mukhopadhyay used nnU-Net for the segmentation and pro-
1234
+ pose an evaluation of contour-based losses. Specifically, they
1235
+ integrated both the Hausdorff-distance loss as proposed by
1236
+ [45] and the contour loss proposed by [46]. While the former
1237
+ estimates the Hausdorff distance, the latter extracts the contour
1238
+ of both the prediction and the ground truth and minimizes the
1239
+ mean square error between them. In practice, Dice loss and
1240
+ CE loss were used as loss function and the Hausdorff-distance
1241
+ loss or the contour loss was used depending on the experiment.
1242
+ Furthermore, rather than using the standard z-normalization
1243
+ of nnU-Net for input images, they chose to clip the intensity
1244
+ values to [0 - 100]. A five-fold cross-validation was used to
1245
+ train five models and all models were ensembled to make the
1246
+ final prediction. The ”insane DA” scheme was used for data
1247
+ augmentation.
1248
+ In (Zhao et al., 2022), Zhao et al. used two stage 3D
1249
+ cascade U-Net network for ICH segmentation. For the stage 1,
1250
+ the basic module of the encoder and decoder is Conv-Instance
1251
+ Norm-LeakyReLU [47]. The operation of downsampling in
1252
+ the encoder is achieved by max pooling. The upsampling
1253
+ operation in the decoder is achieved by using the transpose
1254
+ convolution of 2 × 2 × 2. For the stage 2, a 3D U-Net was
1255
+ cascaded to the model, whose input is the output of probability
1256
+ map of the first stage. The 5-fold cross-validation was used for
1257
+ the training. In the preprocessing, the HU of CT images were
1258
+ clipped according to three different windows and levels, and
1259
+ corresponding range of HU were [0, 80], [-20, 180] and [-150,
1260
+ 230]. The intensity of the voxel above the range were assigned
1261
+ the value of upper limit in range, and the intensity below the
1262
+ range is assigned the value of lower limit in range. Then the
1263
+ three images with different HU range clip were served as three
1264
+ channels and treated as one image.
1265
+ 7Implementation: https://monai.io/apps/auto3dseg
1266
+ In (Zhang and Ma, 2022), Zhang and Ma used the
1267
+ standard nnU-Net.First, a 3D U-Net processes downsampled
1268
+ data, the resulting segmentation maps are upsampled to the
1269
+ original resolution.Then, these segmentations are concatenated
1270
+ as one-hot encodings to the full resolution data and refined
1271
+ by a second 3D U-Net. The preprocessing includes crop-
1272
+ ping,resampling and normalization. Meanwhile, random rota-
1273
+ tion, random scaling, random elastic transformation, gamma
1274
+ correction, and mirror were used to augment the data. The 3D
1275
+ nnU-Net was trained with an weighted combination of Dice
1276
+ loss and cross-entropy loss. The results on the test set were
1277
+ obtained as an ensemble of five models.
1278
+ In (Liu et al., 2022 [48]), Liu et al. used an ensemble
1279
+ model that combined viola-Unet and nnU-Net networks8.
1280
+ For the viola-Unet, it relies on voxels in feature space that
1281
+ intersect along orthogonal levels to provide an attention U-Net,
1282
+ which is an asymmetric encoder-decoder architecture with 7-
1283
+ depth layers. Overall, the Viola module is composed of three
1284
+ key blocks, i.e., the adaptive average pooling (AdaAvgPool)
1285
+ module that squeezes the input feature volume into three latent
1286
+ representation spaces along each axis of the input feature
1287
+ patch. The customized dense dilated convolutions merging
1288
+ (DDCM) networks fuses cross-channel and non-local contex-
1289
+ tual information on each orthogonal direction with adaptive
1290
+ kernel sizes, dilated ratios and strides. The Viola unit con-
1291
+ structs the voxels intersecting along orthogonal level attention
1292
+ volume based on fused and reshaped cross-channel-direction
1293
+ latent representation spaces. They trained all networks with
1294
+ randomly sampled patches of fixed size as input and applied
1295
+ a combination loss function of the dice loss and Focal loss
1296
+ for all their experiments. In preprocessing, CT image and
1297
+ ground truth labels were reoriented into ”RAS” format, then
1298
+ resized to a standard spacing of 1×1×5 mm3 using trilinear
1299
+ interpolation for the image and nearest-neighbor interpolation
1300
+ for the label. Each CT image was windowed into three image
1301
+ intensity ranges, and re-scaled to the range [0, 1] by min-max
1302
+ normalization and then stacked as 3-channel volumes to serve
1303
+ as inputs with the (C, H, W, D) shape, and then the 3-channel
1304
+ 3D volume was normalized on only non-zero values with
1305
+ calculated mean and std on each channel separately. The data
1306
+ augmentations include random crop, random zoom, Gaussian
1307
+ noise, Gaussian smooth, rotation, random shift, random scale,
1308
+ flips, random contrast. Furthermore, they manually select
1309
+ the best prediction on each validation example from each
1310
+ submission as the pseudo-label and put them into our training
1311
+ set to fine-tune our models repeatedly in practice.
1312
+ In (Liang, 2022), Liang proposed a nnUNet-based method
1313
+ for 3-dimensional intracranial hemorrhage segmentation. In
1314
+ the preprocessing, the authors first deal with the data in method
1315
+ windowing and decide to choose a width of 59 and a center of
1316
+ 96 for the image windowing by experiment. After windowing,
1317
+ in order to arrange the information of image, the author used
1318
+ a threshold to ensure the gray value of the image in a certain
1319
+ standard interval, unified data input. Then, downsampling the
1320
+ X and y axes, normalize the spacing of the slice axis to
1321
+ Slice down scale. A sampling includes maximum sampling,
1322
+ 8Implementation: https://github.com/samleoqh/Viola-Unet
1323
+
1324
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1325
+ 12
1326
+ average sampling, summation area sampling, and random area
1327
+ sampling. Finally, nnU-Net does the rest of the preprocessing.
1328
+ In the training, the author uses CE loss + DICE loss as
1329
+ loss function. Furthermore, to deal with category imbalance,
1330
+ oversampling was used, with 66.7% of the samples coming
1331
+ from random locations in the selected training sample’s, while
1332
+ 33.3% of the patches were guaranteed to contain one of the
1333
+ foreground classes present in the selected training sample
1334
+ (randomly selected). The number of foreground patches was
1335
+ rounded to force a minimum value of 1 (resulting in one
1336
+ random patch and one foreground patch with a batch size of
1337
+ 2). Use nnU-Net’s own data augmentation methods.
1338
+ In (Geiger et al., 2022), Geiger et al. used classic U-
1339
+ Net architecture and the network was conducted with the jax
1340
+ version of the e3nn library which enables the creation of neural
1341
+ networks equivariant to translations, rotations, and mirroring.
1342
+ Specially, the convolution kernels in the original architecture
1343
+ are replaced by a 3D e3nn voxel convolution of diameter
1344
+ 5 mm. Furthermore, they used three 2x2x2 downsampling
1345
+ operations which halve the resolution in the encoding path
1346
+ and three corresponding trilinear upsampling operations on the
1347
+ decoding path. A Gaussian error linear unit activation function
1348
+ and instance normalization was used after each convolution.
1349
+ For the preprocessing, each CT volume was windowed to three
1350
+ different Hounsfield unit value ranges, scaled, and added to a
1351
+ separate channel which served as the model input. To increase
1352
+ the variety in the data, a random diffeomorphic deformation
1353
+ was performed on each training sample. The loss function em-
1354
+ ployed was cross-entropy loss. Eight models were trained, each
1355
+ on 80 randomly sampled subsets from the training dataset. The
1356
+ final prediction was performed by applying each of the eight
1357
+ models to patches of size 144x144x13 with padding discarding
1358
+ 22x22x2 pixels on each side, a sliding window with an overlap
1359
+ of 26 pixels and Gaussian weighing, and then averaging the
1360
+ model outputs. For the final prediction, they take the ensemble
1361
+ average of the eight models.
1362
+ In (Qayyum et al., 2022), Qayyum et al. developed a
1363
+ coarse and fine segmentation model for intracranial hemor-
1364
+ rhage segmentations. They trained two different models for
1365
+ intracranial hemorrhage segmentations. In the first model, they
1366
+ trained 2DDensNet for coarse segmentation and cascaded the
1367
+ coarse segmentation masks output in the fine segmentation
1368
+ model along with input training samples. The proposed model
1369
+ is implemented made by a dense encoder followed by a non-
1370
+ dense decoder. The dense encoder consists of 5 dense blocks,
1371
+ each consisting of 6 dense layers followed by a transition
1372
+ layer. Each dense layer consists of 2 convolutional layers
1373
+ with batch normalization and ReLU activation functions. The
1374
+ model is trained using 5-fold cross-validation. To compute the
1375
+ final prediction, 2D images are stacked to make a 3D seg-
1376
+ mentation mask. The predicted segmentation mask is further
1377
+ cascaded in a fine segmentation model. In the fine stage, they
1378
+ used the nnU-Net model with fivefold cross-validation. The
1379
+ binary cross-entropy function was used as loss function. Hor-
1380
+ izontalFlip (p=0.5), VerticalFlip (p=0.5), and RandomGamma
1381
+ (p=0.8) were used to augment the dataset for training the
1382
+ proposed model. In addition, the dataset is normalized between
1383
+ 0 and 1 using the max and min intensity normalization method.
1384
+ The training shape of each volume is fixed (256x256x16) and
1385
+ resample the prediction mask to the original shape for each
1386
+ validation volume using the linear interpolation method.
1387
+ In (Abramova et al., 2022), Abramova et al. used an
1388
+ approach based on a 3D U-Net architecture which incorporates
1389
+ squeeze-and-excitation blocks that similarly to their previous
1390
+ work [25]. For the preprocessing, coil removal and skull
1391
+ stripping were used, and a symmetric image was created
1392
+ for each case by flipping the original non-contrast CT and
1393
+ registering it to the initial one using the FLIRT algorithm from
1394
+ the FSL toolbox. For the normalization of input images, they
1395
+ performed percentile based range adjustment and used 0.5 and
1396
+ 99.5 percentiles of brain-related voxels for clipping together
1397
+ with image-based calculated mean and standard deviation
1398
+ normalization. For the issue of class imbalance, they used
1399
+ a balanced sampling patch extraction technique, where we
1400
+ extracted an equal number of patches representing both classes
1401
+ from each image. Specifically, to avoid extracting a lot of
1402
+ patches from image background, they restricted the area to
1403
+ extract the negative patches within the brain mask and set a
1404
+ target number of patches to extract from each image in the
1405
+ training set. Half of them are uniformly extracted from the
1406
+ brain tissue area and represent negative class, while the other
1407
+ half is extracted from the lesion voxels. They augment the
1408
+ proposed dataset by choosing difficult cases and adding them
1409
+ into the training set again, meanwhile performing flipping and
1410
+ rotation, ensuring that more difficult patches are generated for
1411
+ training. The Dice loss and cross-entropy loss was used as
1412
+ loss function. To prevent overfitting, they used early stopping
1413
+ technique when approaching the minimal loss on validation
1414
+ set. The five-fold cross-validation strategy was used for the
1415
+ training. For the validation and testing stages, an ensemble
1416
+ with all the 5 models obtained in the cross-validation exper-
1417
+ iment was used to generate the final prediction masks. The
1418
+ probability masks obtained from the 5 models were averaged
1419
+ and thresholded to obtain the final binary mask for each case.
1420
+ Considering the results on the validation set, postprocessing
1421
+ was added to their pipeline to reduce the number of false
1422
+ positives. Specifically, as sizes of lesions vastly vary in the
1423
+ provided images, they remove all the lesions with the volume
1424
+ less than 10% of the biggest one in the post-processed image.
1425
+ In (Montagnon and Letourneau-Guillon, 2022), Mon-
1426
+ tagnon and Letourneau-Guillon used an ensemble approach
1427
+ including the Attention U-Net and SegResNet (with or without
1428
+ variational autoencoder) architectures combined with different
1429
+ loss functions. Specifically, they trained U-Net and SegResNet
1430
+ separately to use different loss functions including combina-
1431
+ tions of Dice with either Cross-Entropy loss or Focal loss,
1432
+ Tversky loss and Generalised Dice loss. Then leveraging all
1433
+ predictions, an ensemble voting approach allowed prediction
1434
+ of a final volume. Finally, to further remove potential false pos-
1435
+ itive predictions, predicted clusters were filtered by preserving
1436
+ ones with a volume larger than 36 pixels, an elevation above or
1437
+ equal to 3 slices and a mean density within [40; 80] HU range.
1438
+ In the preprocessing, in order to assess hemorrhage properties,
1439
+ they used DBSCAN, a density-based clustering algorithm, in
1440
+ order to extract connected pixels corresponding to hemorrhagic
1441
+ areas in each exam. Then they clipped images in the range [-
1442
+
1443
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1444
+ 13
1445
+ 10; 140] HU. Taking into account the intracranial hemorrhage
1446
+ subtype distribution in the training dataset, they using Euler
1447
+ transforms consisting of rotations of either - π
1448
+ 2 or - π
1449
+ 2 around
1450
+ z-axis and translations ranging from -30 to 30 pixels, 10 pixels
1451
+ stepwise for subarachnoid and subdural hemorrhage subtypes
1452
+ images. Considering the limited size of the dataset, they used
1453
+ random orthogonal rotations and cropping for images in the
1454
+ training phase. In order to limit class imbalance issues, models
1455
+ were trained only on images containing at least one pixel of
1456
+ positive class. All models were trained using original images
1457
+ size (i.e. 512 × 512), clipped within [-10;140] and divided
1458
+ by the range of considered densities, which is 150 in their
1459
+ configuration.
1460
+ In (Roca et al., 2022), Roca et al. used a simple 2D Unet-
1461
+ like model and trained it with a binary cross-entropy loss.
1462
+ Especially, the model input is a layer that performs the clipping
1463
+ operation between [0, 256] and a normalization between [-
1464
+ 0.5, 3.5] directly inside the model. In the preprocessing,
1465
+ they clipping the HU intensities in the soft tissue range of
1466
+ interest. For the data augmentation, they performed rotations
1467
+ and mirroring in the axial plane, plus some amount of intensity
1468
+ shift. Due to the data stratification was based on the presence
1469
+ of a segmentation on a given slice (positive cohort) vs. absence
1470
+ of segmentation (negative cohort), they used during training a
1471
+ balanced 50% / 50% of each cohort per mini-batch.
1472
+ In (Sindhura et al., 2022), Sindhura et al. proposed a deep
1473
+ learning framework which involves clinical knowledge and
1474
+ used U-Net3+ network for the segmentation. Specifically, they
1475
+ proposed a new data augmentation approach that leverages
1476
+ from the clinical knowledge that the two hemispheres of
1477
+ the human brain exhibit approximate symmetry. Due to the
1478
+ brain is approximately divided into two equal hemispheres by
1479
+ the midsagittal plane (MSP). So they use the MSP flipped
1480
+ versions of the CT scans as extra data. To extract MSP,
1481
+ they first apply the sobel edge detection method followed by
1482
+ thresholding to obtain the outline of the skull. An initial plane
1483
+ of reference is chosen to be the exact middle slice in the
1484
+ sagittal direction. A similarity metric is computed between the
1485
+ two hemispheres that are divided with the plane of reference.
1486
+ The reference plane is rotated by an angle of ±0.5◦. The
1487
+ plane which yields maximum similarity is the required MSP.
1488
+ Furthermore, to improve the robustness of the model, the
1489
+ usual data augmentations such as shear, rotation, zoom, flip,
1490
+ elastic transform, noise etc are being used. In view of there
1491
+ exists a very high class imbalance between the hematoma
1492
+ and non-hematoma pixels. So only the slices which contain
1493
+ hemorrhages are used in the training process and all slices
1494
+ of each scan are tested in the testing phase. In addition, to
1495
+ differentiate between the hemorrhage region and skull bone,
1496
+ which share similar intensities, they have performed skull
1497
+ stripping on each scan for both the training and testing process.
1498
+ The sum of focal loss and Dice similarity loss is used as the
1499
+ loss function in the training process.
1500
+ REFERENCES
1501
+ [1] J. A. Caceres and J. N. Goldstein, “Intracranial hemorrhage,” Emergency
1502
+ medicine clinics of North America, vol. 30, no. 3, pp. 771–794, 2012.
1503
+ [2] A. Morotti, F. Arba, G. Boulouis, and A. Charidimou, “Noncontrast ct
1504
+ markers of intracerebral hemorrhage expansion and poor outcome: a
1505
+ meta-analysis,” Neurology, vol. 95, no. 14, pp. 632–643, 2020.
1506
+ [3] C. J. van Asch, M. J. Luitse, G. J. Rinkel, I. van der Tweel, A. Algra,
1507
+ and C. J. Klijn, “Incidence, case fatality, and functional outcome of
1508
+ intracerebral haemorrhage over time, according to age, sex, and ethnic
1509
+ origin: a systematic review and meta-analysis,” Lancet. Neurol, vol. 9,
1510
+ no. 2, pp. 167–176, Feb. 2010.
1511
+ [4] J. J. Heit, M. Iv, and M. Wintermark, “Imaging of intracranial hemor-
1512
+ rhage,” Journal of stroke, vol. 19, no. 1, p. 11, 2017.
1513
+ [5] J. N. Goldstein and A. J. Gilson, “Critical care management of acute
1514
+ intracerebral hemorrhage,” Curr. Treat. Option. Ne, vol. 13, no. 2, pp.
1515
+ 204–216, Jan. 2011.
1516
+ [6] X. Li, G. Luo, W. Wang, K. Wang, Y. Gao, and S. Li, “Hematoma
1517
+ expansion context guided intracranial hemorrhage segmentation and
1518
+ uncertainty estimation,” IEEE Journal of Biomedical and Health In-
1519
+ formatics, vol. 26, no. 3, pp. 1140–1151, 2021.
1520
+ [7] F. Macellari, M. Paciaroni, G. Agnelli, and V. Caso, “Neuroimaging in
1521
+ intracerebral hemorrhage,” Stroke, vol. 45, no. 3, pp. 903–908, 2014.
1522
+ [8] N. Ironside, C.-J. Chen, S. Mutasa, J. Sim, D. Roh, D. Ding, S. Mayer,
1523
+ A. Lignelli, and E. Connolly, “Fully automated segmentation algorithm
1524
+ for hematoma volumetric analysis in spontaneous intracerebral hemor-
1525
+ rhage,” Stroke, vol. 51, no. Suppl 1, pp. A78–A78, Nov. 2020.
1526
+ [9] D. F. Hanley, R. E. Thompson, M. Rosenblum, G. Yenokyan, K. Lane,
1527
+ N. McBee, S. W. Mayo, A. J. Bistran-Hall, D. Gandhi, W. A. Mould
1528
+ et al., “Efficacy and safety of minimally invasive surgery with thrombol-
1529
+ ysis in intracerebral haemorrhage evacuation (mistie iii): a randomised,
1530
+ controlled, open-label, blinded endpoint phase 3 trial,” The Lancet, vol.
1531
+ 393, no. 10175, pp. 1021–1032, 2019.
1532
+ [10] J. P. Broderick, T. G. Brott, J. E. Duldner, T. Tomsick, and G. Huster,
1533
+ “Volume of intracerebral hemorrhage. a powerful and easy-to-use pre-
1534
+ dictor of 30-day mortality.” Stroke, vol. 24, no. 7, pp. 987–993, Jan.
1535
+ 1993.
1536
+ [11] K. B. Prakash, S. Zhou, T. C. Morgan, D. F. Hanley, and W. L.
1537
+ Nowinski, “Segmentation and quantification of intra-ventricular/cerebral
1538
+ hemorrhage in ct scans by modified distance regularized level set
1539
+ evolution technique,” Int. J. Comput. Ass. Rad, vol. 7, no. 5, pp. 785–
1540
+ 798, Feb. 2012.
1541
+ [12] M. Islam, P. Sanghani, A. A. Q. See, M. L. James, N. K. K. King,
1542
+ and H. Ren, “Ichnet: Intracerebral hemorrhage (ich) segmentation using
1543
+ deep learning,” in Proc. Int. MICCAI Brainlesion Workshop.
1544
+ Springer,
1545
+ 2018, pp. 456–463.
1546
+ [13] R. U. Kothari, T. Brott, J. P. Broderick, W. G. Barsan, L. R. Sauerbeck,
1547
+ M. Zuccarello, and J. Khoury, “The abcs of measuring intracerebral
1548
+ hemorrhage volumes,” Stroke, vol. 27, no. 8, pp. 1304–1305, Aug. 1996.
1549
+ [14] A. J. Webb, N. L. Ullman, T. C. Morgan, J. Muschelli, J. Kornbluth,
1550
+ I. A. Awad, S. Mayo, M. Rosenblum, W. Ziai, M. Zuccarrello et al.,
1551
+ “Accuracy of the abc/2 score for intracerebral hemorrhage: systematic
1552
+ review and analysis of mistie, clear-ivh, and clear iii,” Stroke, vol. 46,
1553
+ no. 9, pp. 2470–2476, Aug. 2015.
1554
+ [15] J. Cho, K.-S. Park, M. Karki, E. Lee, S. Ko, J. K. Kim, D. Lee,
1555
+ J. Choe, J. Son, M. Kim et al., “Improving sensitivity on identification
1556
+ and delineation of intracranial hemorrhage lesion using cascaded deep
1557
+ learning models,” J. Digit. Imaging, vol. 32, no. 3, pp. 450–461, Jan.
1558
+ 2019.
1559
+ [16] S. Kyung, K. Shin, H. Jeong, K. D. Kim, J. Park, K. Cho, J. H.
1560
+ Lee, G. Hong, and N. Kim, “Improved performance and robustness of
1561
+ multi-task representation learning with consistency loss between pretexts
1562
+ for intracranial hemorrhage identification in head ct,” Medical Image
1563
+ Analysis, vol. 81, p. 102489, 2022.
1564
+ [17] M. Toikkanen, D. Kwon, and M. Lee, “Resgan: Intracranial hemorrhage
1565
+ segmentation with residuals of synthetic brain ct scans,” in International
1566
+ Conference on Medical Image Computing and Computer-Assisted Inter-
1567
+ vention.
1568
+ Springer, 2021, pp. 400–409.
1569
+ [18] P. D. Chang, E. Kuoy, J. Grinband, B. D. Weinberg, M. Thompson,
1570
+ R. Homo, J. Chen, H. Abcede, M. Shafie, L. Sugrue et al., “Hybrid
1571
+ 3d/2d convolutional neural network for hemorrhage evaluation on head
1572
+ ct,” American Journal of Neuroradiology, vol. 39, no. 9, pp. 1609–1616,
1573
+ 2018.
1574
+ [19] A. Patel, F. H. Schreuder, C. J. Klijn, M. Prokop, B. v. Ginneken, H. A.
1575
+ Marquering, Y. B. Roos, M. Baharoglu, F. J. Meijer, and R. Manniesing,
1576
+ “Intracerebral haemorrhage segmentation in non-contrast ct,” Scientific
1577
+ reports, vol. 9, no. 1, pp. 1–11, 2019.
1578
+ [20] D. Kwon, J. Ahn, J. Kim, I. Choi, S. Jeong, Y.-S. Lee, J. Park, and
1579
+ M. Lee, “Siamese u-net with healthy template for accurate segmentation
1580
+ of intracranial hemorrhage,” in International Conference on Medical
1581
+
1582
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1583
+ 14
1584
+ Image Computing and Computer-Assisted Intervention. Springer, 2019,
1585
+ pp. 848–855.
1586
+ [21] H. Lee, S. Yune, M. Mansouri, M. Kim, S. H. Tajmir, C. E. Guerrier,
1587
+ S. A. Ebert, S. R. Pomerantz, J. M. Romero, S. Kamalian et al.,
1588
+ “An explainable deep-learning algorithm for the detection of acute
1589
+ intracranial haemorrhage from small datasets,” Nat. Biomed. Eng, vol. 3,
1590
+ no. 3, p. 173, Dec. 2019.
1591
+ [22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
1592
+ for biomedical image segmentation,” in International Conference on
1593
+ Medical image computing and computer-assisted intervention. Springer,
1594
+ 2015, pp. 234–241.
1595
+ [23] W. Kuo, C. H¨ane, E. Yuh, P. Mukherjee, and J. Malik, “Patchfcn for
1596
+ intracranial hemorrhage detection,” arXiv preprint arXiv:1806.03265,
1597
+ 2018.
1598
+ [24] Y. Wu, A. Schmidt, E. Hern´andez-S´anchez, R. Molina, and A. K.
1599
+ Katsaggelos, “Combining attention-based multiple instance learning
1600
+ and gaussian processes for ct hemorrhage detection,” in International
1601
+ Conference on Medical Image Computing and Computer-Assisted Inter-
1602
+ vention.
1603
+ Springer, 2021, pp. 582–591.
1604
+ [25] V. Abramova, A. Cl`erigues, A. Quiles, D. G. Figueredo, Y. Silva, S. Pe-
1605
+ draza, A. Oliver, and X. Llad´o, “Hemorrhagic stroke lesion segmentation
1606
+ using a 3d u-net with squeeze-and-excitation blocks,” Computerized
1607
+ Medical Imaging and Graphics, vol. 90, p. 101908, 2021.
1608
+ [26] Z. Kuang, X. Deng, L. Yu, H. Wang, T. Li, and S. Wang, “ψ-net:
1609
+ Focusing on the border areas of intracerebral hemorrhage on ct images,”
1610
+ Computer Methods and Programs in Biomedicine, vol. 194, p. 105546,
1611
+ 2020.
1612
+ [27] D. Wang, C. Wang, L. Masters, and M. Barnett, “Masked multi-task
1613
+ network for case-level intracranial hemorrhage classification in brain ct
1614
+ volumes,” in International Conference on Medical Image Computing
1615
+ and Computer-Assisted Intervention.
1616
+ Springer, 2020, pp. 145–154.
1617
+ [28] D. Guo, H. Wei, P. Zhao, Y. Pan, H.-Y. Yang, X. Wang, J. Bai, K. Cao,
1618
+ Q. Song, J. Xia et al., “Simultaneous classification and segmentation
1619
+ of intracranial hemorrhage using a fully convolutional neural network,”
1620
+ in 2020 IEEE 17th International Symposium on Biomedical Imaging
1621
+ (ISBI).
1622
+ IEEE, 2020, pp. 118–121.
1623
+ [29] P. Kadam, J. Raphael, P. Karale, I. D’silva, and K. Sonawane, “A cnn-
1624
+ rnn based approach for simultaneous detection, identification and clas-
1625
+ sification of intracranial hemorrhage,” in 2021 International Conference
1626
+ on Communication information and Computing Technology (ICCICT).
1627
+ IEEE, 2021, pp. 1–6.
1628
+ [30] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
1629
+ J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest et al., “The
1630
+ multimodal brain tumor image segmentation benchmark (brats),” IEEE
1631
+ transactions on medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.
1632
+ [31] V. Oreiller, V. Andrearczyk, M. Jreige, S. Boughdad, H. Elhalawani,
1633
+ J. Castelli, M. Valli`eres, S. Zhu, J. Xie, Y. Peng et al., “Head and neck
1634
+ tumor segmentation in pet/ct: the hecktor challenge,” Medical image
1635
+ analysis, vol. 77, p. 102336, 2022.
1636
+ [32] J. Ma, Y. Zhang, S. Gu, X. An, Z. Wang, C. Ge, C. Wang, F. Zhang,
1637
+ Y. Wang, Y. Xu et al., “Fast and low-gpu-memory abdomen ct organ
1638
+ segmentation: The flare challenge,” Medical Image Analysis, vol. 82, p.
1639
+ 102616, 2022.
1640
+ [33] N. Heller, F. Isensee, K. H. Maier-Hein, X. Hou, C. Xie, F. Li, Y. Nan,
1641
+ G. Mu, Z. Lin, M. Han et al., “The state of the art in kidney and
1642
+ kidney tumor segmentation in contrast-enhanced ct imaging: Results of
1643
+ the kits19 challenge,” Medical image analysis, vol. 67, p. 101821, 2021.
1644
+ [34] CIBC, 2016, seg3D: Volumetric Image Segmentation and Visualization.
1645
+ Scientific Computing and Imaging Institute (SCI), Download from:
1646
+ http://www.seg3d.org.
1647
+ [35] S. Nikolov, S. Blackwell, A. Zverovitch, R. Mendes, M. Livne,
1648
+ J. De Fauw, Y. Patel, C. Meyer, H. Askham, B. Romera-Paredes
1649
+ et al., “Clinically applicable segmentation of head and neck anatomy
1650
+ for radiotherapy: deep learning algorithm development and validation
1651
+ study,” Journal of medical Internet research, vol. 23, no. 7, p. e26151,
1652
+ 2021.
1653
+ [36] A. Lalande, Z. Chen, T. Pommier, T. Decourselle, A. Qayyum, M. Sa-
1654
+ lomon, D. Ginhac, Y. Skandarani, A. Boucher, K. Brahim et al., “Deep
1655
+ learning methods for automatic evaluation of delayed enhancement-mri.
1656
+ the results of the emidec challenge,” Medical Image Analysis, vol. 79,
1657
+ p. 102428, 2022.
1658
+ [37] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa,
1659
+ K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz et al., “Atten-
1660
+ tion u-net: Learning where to look for the pancreas,” arXiv preprint
1661
+ arXiv:1804.03999, 2018.
1662
+ [38]
1663
+ ¨O. C¸ ic¸ek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
1664
+ “3d u-net: learning dense volumetric segmentation from sparse anno-
1665
+ tation,” in International conference on medical image computing and
1666
+ computer-assisted intervention.
1667
+ Springer, 2016, pp. 424–432.
1668
+ [39] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein,
1669
+ “nnu-net: a self-configuring method for deep learning-based biomedical
1670
+ image segmentation,” Nature methods, vol. 18, no. 2, pp. 203–211, 2021.
1671
+ [40] J. Chen, L. Yang, Y. Zhang, M. Alber, and D. Z. Chen, “Combining fully
1672
+ convolutional and recurrent neural networks for 3d biomedical image
1673
+ segmentation,” in Proc. Adv. Neural Inf. Process. Syst, 2016, pp. 3036–
1674
+ 3044.
1675
+ [41] Q. Zheng, H. Delingette, N. Duchateau, and N. Ayache, “3-d consistent
1676
+ and robust segmentation of cardiac images by deep learning with spatial
1677
+ propagation,” IEEE Trans. Med. Imaging, vol. 37, no. 9, pp. 2137–2148,
1678
+ Sept. 2018.
1679
+ [42] Q. Dou, H. Chen, L. Yu, J. Qin, and P.-A. Heng, “Multilevel contextual
1680
+ 3-d cnns for false positive reduction in pulmonary nodule detection,”
1681
+ IEEE Trans. Biomed. Eng., vol. 64, no. 7, pp. 1558–1567, July 2016.
1682
+ [43] S. Liu, D. Xu, S. K. Zhou, O. Pauly, S. Grbic, T. Mertelmeier,
1683
+ J. Wicklein, A. Jerebko, W. Cai, and D. Comaniciu, “3d anisotropic
1684
+ hybrid network: Transferring convolutional features from 2d images
1685
+ to 3d anisotropic volumes,” in Proc. Int. Conf. Med. Image Comput.
1686
+ Comput.-Assisted Intervention.
1687
+ Springer, 2018, pp. 851–858.
1688
+ [44] M. M. R. Siddiquee, D. Yang, Y. He, D. Xu, and A. Myronenko,
1689
+ “Automated segmentation of intracranial hemorrhages from 3d ct,” arXiv
1690
+ preprint arXiv:2209.10648, 2022.
1691
+ [45] D. Karimi and S. E. Salcudean, “Reducing the hausdorff distance in
1692
+ medical image segmentation with convolutional neural networks,” IEEE
1693
+ Transactions on medical imaging, vol. 39, no. 2, pp. 499–513, 2019.
1694
+ [46] R. E. Jurdi, C. Petitjean, P. Honeine, V. Cheplygina, and F. Abdallah,
1695
+ “A surprisingly effective perimeter-based loss for medical image seg-
1696
+ mentation,” in Medical Imaging with Deep Learning.
1697
+ PMLR, 2021,
1698
+ pp. 158–167.
1699
+ [47] X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural network
1700
+ with leakyrelu for environmental sound classification,” in 2017 22nd
1701
+ international conference on digital signal processing (DSP).
1702
+ IEEE,
1703
+ 2017, pp. 1–5.
1704
+ [48] Q. Liu, B. J. MacIntosh, T. Schellhorn, K. Skogen, K. Emblem, and
1705
+ A. Bjørnerud, “Voxels intersecting along orthogonal levels attention u-
1706
+ net (viola-unet) to segment intracerebral haemorrhage using computed
1707
+ tomography head scans,” arXiv preprint arXiv:2208.06313, 2022.
1708
+
1NE1T4oBgHgl3EQflATa/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NFQT4oBgHgl3EQf2DZm/content/2301.13422v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c9ecf055aa40ca493afa824bd5bf744fa3c125540870b49de9a93ebcd6420cc
3
+ size 1066465
2NFQT4oBgHgl3EQf2DZm/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e47c776720682598c3c3aee3f063a4d6cc7a787e76881d3aba0032439c3a18ba
3
+ size 146430
2dE1T4oBgHgl3EQflgSY/content/tmp_files/2301.03286v1.pdf.txt ADDED
@@ -0,0 +1,3015 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03286v1 [eess.SP] 9 Jan 2023
2
+ 1
3
+ A Dual-Function Radar-Communication System
4
+ Empowered by Beyond Diagonal Reconfigurable
5
+ Intelligent Surface
6
+ Bowen Wang, Student Member, IEEE, Hongyu Li, Student Member, IEEE,
7
+ Ziyang Cheng, Member, IEEE, Shanpu Shen, Member, IEEE,
8
+ and Bruno Clerckx, Fellow, IEEE
9
+ Abstract—This work focuses on the use of reconfigurable
10
+ intelligent surface (RIS) in dual-function radar-communication
11
+ (DFRC) systems to improve communication capacity and sensing
12
+ precision, and enhance coverage for both functions. In contrast
13
+ to most of the existing RIS aided DFRC works where the RIS
14
+ is modeled as a diagonal phase shift matrix and can only reflect
15
+ signals to half space, we propose a novel beyond diagonal RIS
16
+ (BD-RIS) aided DFRC system. Specifically, the proposed BD-RIS
17
+ supports the hybrid reflecting and transmitting mode, and is com-
18
+ patible with flexible single/group/fully-connected architectures,
19
+ enabling the system to realize full-space coverage. To achieve the
20
+ expected benefits, we jointly optimize the transmit waveform, the
21
+ BD-RIS coefficients, and sensing receive filters, by maximizing
22
+ the minimum signal-to-clutter-plus-noise ratio for fair target
23
+ detection, subject to the constraints of the communication quality
24
+ of service, different BD-RIS architectures and power budget.
25
+ To solve the non-convex and non-smooth max-min problem, a
26
+ general solution based on the alternating direction method of
27
+ multipliers is provided for all considered BD-RIS architectures.
28
+ Numerical simulations validate the efficacy of the proposed
29
+ algorithm and show the superiority of the BD-RIS aided DFRC
30
+ system in terms of both communication and sensing compared
31
+ to conventional RIS aided DFRC.
32
+ Index Terms—Beyond diagonal reconfigurable intelligent sur-
33
+ faces, dual-function radar-communication, full-space coverage,
34
+ max-min optimization.
35
+ I. INTRODUCTION
36
+ In recent years, spectrum resources are becoming increas-
37
+ ingly limited and valuable due to the exponential growth of
38
+ services in wireless communications. Meanwhile, radar sys-
39
+ tems are competing for the same scarce sources, which moti-
40
+ vates the emergence of the dual-function radar-communication
41
+ (DFRC) technology to achieve spectrum sharing between
42
+ communication and radar. In DFRC systems, communication
43
+ and radar functionalities are integrated on a common platform,
44
+ which brings the benefit of enhanced spectrum efficiency while
45
+ (Corresponding author: Ziyang Cheng, Shanpu Shen).
46
+ B. Wang and Z. Cheng are with the School of Information & Communica-
47
+ tion Engineering, University of Electronic Science and Technology of China,
48
+ Chengdu, China. (email: B W [email protected], [email protected]).
49
+ H. Li is with the Department of Electrical & Electronic Engineering, Impe-
50
+ rial College London, London SW7 2AZ, U.K. (email: [email protected]).
51
+ S. Shen is with the Department of Electronic and Computer Engineering,
52
+ The Hong Kong University of Science and Technology, Clear Water Bay,
53
+ Kowloon, Hong Kong (email: [email protected]).
54
+ B. Clerckx is with the Department of Electrical & Electronic Engineering,
55
+ Imperial College London, London, SW7 2AZ, U.K. and with Silicon Austria
56
+ Labs (SAL), Graz A-8010, Austria (email: [email protected]).
57
+ reducing power consumption and hardware costs. Therefore,
58
+ DFRC is envisioned to play an important role in emerging
59
+ environment-aware applications [1], such as vehicular net-
60
+ works, environmental monitoring, and smart houses.
61
+ Due to the benefits of DFRC, plenty of technical efforts have
62
+ been devoted to designing DFRC systems. The design method-
63
+ ology can be roughly divided into three categories: radar-
64
+ centric design [2]–[4], communication-centric design [5]–[7],
65
+ and joint waveform design [8], [9]. Radar-centric approaches
66
+ utilize the radar waveform as the information carrier, where
67
+ the communication symbols are embedded in conventional
68
+ radar signals, such as linear frequency modulation [2] and
69
+ frequency hopping [4]. On the other hand, communication-
70
+ centric approaches realize the radar sensing tasks by modifying
71
+ existing communication protocols [5] and waveforms [6], [7].
72
+ In contrast to the first two categories [2]–[7], the DFRC
73
+ waveforms can be jointly designed to provide more design
74
+ freedoms so as to enhance both functionalities [8], [9]. Despite
75
+ the above works [2]–[9] achieve satisfactory sensing and
76
+ communication performance, one limitation is that they rely on
77
+ the line-of-sight (LoS) links between the base station (BS) and
78
+ communication users/sensing targets, which however yields
79
+ the following two issues in practice: 1) The LoS link toward
80
+ sensing targets or communication users can be easily blocked
81
+ by obstacles. 2) The LoS channels may suffer from severe
82
+ path loss especially for high frequencies.
83
+ To overcome these issues, a promising technology named
84
+ reconfigurable intelligent surface (RIS) [10]–[13] can be lever-
85
+ aged. Specifically, RIS consists of numerous passive reconfig-
86
+ urable scattering elements with low hardware cost and power
87
+ consumption [10]–[13]. By properly placing and adjusting
88
+ the RIS, it can establish virtual non-LOS (NLoS) links to
89
+ “bypass” obstacles, and therefore compensate for the path
90
+ loss and enhance system performance. Due to its advantages,
91
+ RIS has been investigated for communications [14]–[16] and
92
+ sensing [17]–[20] fields. Furthermore, RIS has been explored
93
+ in various DFRC systems [21]–[27] to enhance both the
94
+ communication and sensing performance, which are classified
95
+ into the following two categories. The first category assumes
96
+ LoS links exist from BS to users and targets. In this category,
97
+ the RIS is used to compensate for the propagation loss and
98
+ to improve the performance [21]–[23]. The second category
99
+ focuses on the scenario where either communication users or
100
+ sensing targets are blocked by barriers. In this category, RIS
101
+
102
+ 2
103
+ is utilized to establish a NLoS link to bypass the barriers and
104
+ thus enable DFRC [24]–[27].
105
+ The limitation of the aforementioned works [21]–[27] is that
106
+ they assume the RIS can only reflect signals towards the same
107
+ side as the BS. In this case, both communication users and
108
+ sensing targets should be located at the same side of RIS,
109
+ i.e., within the same half-space, which limits the coverage
110
+ and beam control flexibility of the RIS enabled DFRC sys-
111
+ tem. To address this limitation, a novel hybrid transmissive
112
+ and reflective RIS, namely simultaneously transmitting and
113
+ reflecting RIS (STAR-RIS) [28] or intelligent omni-surface
114
+ [29], is proposed to support signal reflection and transmission
115
+ and thus extend the coverage. The integration of STAR-
116
+ RIS and DFRC is first studied in [30], where the system is
117
+ designed by minimizing the Cram´er-Rao bound (CRB) for
118
+ radar target estimation subject to communication constraints.
119
+ Then, a STAR-RIS is deployed at the vehicle to improve both
120
+ sensing and communication performance [31]. Nevertheless,
121
+ the achievable performance of STAR-RIS aided DFRC in [30],
122
+ [31] is limited by the simple architecture of STAR-RIS without
123
+ fully exploiting the architecture of RIS.
124
+ To enhance the performance of RIS, a novel branch, namely
125
+ beyond diagonal RIS (BD-RIS) [32]–[35], is proposed by
126
+ exploring different architectures/modes of RIS. BD-RIS with
127
+ group/fully-connected architectures under the reflective mode
128
+ is first proposed in [32], which provides more controllable
129
+ scattering matrices than conventional RIS. Then, the hybrid
130
+ reflective and transmissive BD-RIS is proposed in [33] to
131
+ achieve full-space coverage. It is proved that STAR-RIS is
132
+ essentially a particular instance of two-port group-connected
133
+ reconfigurable impedance network when each two antenna
134
+ ports are connected to each other, namely cell-wise single-
135
+ connected (CW-SC) architecture in [33]. More general cell-
136
+ wise group/fully-connected (CW-GC/FC) architectures are
137
+ also proposed based on the flexible connections among more
138
+ antenna ports, which achieves better performance than STAR-
139
+ RIS. Furthermore, a multi-sector BD-RIS is proposed in [35],
140
+ which not only achieves full-space coverage but also provides
141
+ higher performance gain than hybrid BD-RIS.
142
+ Due to the benefits of BD-RIS, in this paper, we propose
143
+ to adopt BD-RIS in DFRC systems to achieve full-space cov-
144
+ erage and better performance. To the best of our knowledge,
145
+ adopting BD-RIS in DFRC has not been investigated in the
146
+ literature. In addition, in contrast to [30], [31] which ignore
147
+ the signal-dependent clutters, we consider a more general and
148
+ practical multi-target detection scenario with the presence of
149
+ multiple clutters. The main contributions of this work are
150
+ summarized as follows:
151
+ Proposing BD-RIS aided DFRC. We propose a BD-RIS
152
+ aided DFRC system, which consists of a BD-RIS enabling
153
+ the full-space coverage, multiple users, and multiple sensing
154
+ targets corrupted by multiple clutters. The BD-RIS divides
155
+ the space into two sides and establishes virtual NLoS links
156
+ for communication and sensing, where the dual-function BS
157
+ (DFBS) performs communication tasks in one half space and
158
+ sensing tasks in another side. To avoid multi-step path loss,
159
+ we implement the radar sensing receiver on the BD-RIS for
160
+ multi-target detection.
161
+ Formulating Max-min fairness problem. We formulate
162
+ the optimization problem to jointly design the transmit wave-
163
+ form at the DFBS, the reflective and transmissive beamforming
164
+ at the BD-RIS, and matched filters at the radar sensing
165
+ receiver, to maximize the minimum radar output signal-to-
166
+ clutter-plus-noise ratio (SCNR), subject to the communication
167
+ quality of service (QoS) requirement for downlink communi-
168
+ cations, the transmit power constraint at the DFBS, and the
169
+ BD-RIS constraints with different architectures.
170
+ Developing joint design framework. The joint design of
171
+ BD-RIS aided DFRC is challenging due to the complicated
172
+ and non-smooth objective, and newly introduced non-convex
173
+ constraints of BD-RIS. To overcome these difficulties, we
174
+ propose to decouple the BD-RIS constraints by the alternat-
175
+ ing direction method of multipliers (ADMM) framework so
176
+ that the resulting sub-problems are reformulated into easily
177
+ handled forms and iteratively solved until convergence.
178
+ Providing insights and numerical validation. We provide
179
+ simulation results to illustrate the performance improvement
180
+ achieved by BD-RIS. It is shown that benefiting from the
181
+ high flexibility of BD-RIS, and the joint design of transmit
182
+ waveform, BD-RIS, and the matched filters, the CW-GC/FC
183
+ BD-RISs can achieve higher radar SCNR than CW-SC (STAR-
184
+ RIS) ones under the same communication requirement. It
185
+ is also shown the BD-RIS can substantially improve the
186
+ performance and coverage compared to the conventional RIS,
187
+ which shows the high flexibility of BD-RIS in manipulating
188
+ the incident signal for enhancing the DFRC system.
189
+ Organization: Section II presents the system model of
190
+ the proposed BD-RIS aided DFRC. Section III formulates
191
+ the max-min fairness problem and provides a joint design
192
+ algorithm. Section IV evaluates the performance of the pro-
193
+ posed algorithm and compares different BD-RIS architectures.
194
+ Section V concludes this work.
195
+ Notation: Scalars, vectors and matrices are denoted by stan-
196
+ dard lowercase letter a, lower case boldface letter a and upper
197
+ case boldface letter A, respectively. Cn and Cm×n denote
198
+ the n-dimensional complex-valued vector space and m × n
199
+ complex-valued matrix space, respectively. (·)T , (·)H, and
200
+ (·)−1 denote the transpose, conjugate-transpose operations,
201
+ and inversion, respectively. ℜ{·} and ℑ{·} denote the real and
202
+ imaginary part of a complex number, respectively. ∥ · ∥F and
203
+ | · | denote the Frobenius norm and magnitude, respectively.
204
+ Diag(·) denotes a diagonal matrix. BlkDiag(·) denotes a block
205
+ matrix such that the main-diagonal blocks are matrices and all
206
+ off-diagonal blocks are zero matrices. IL indicates an L × L
207
+ identity matrix.  denotes imaginary unit. ∠(·) represent the
208
+ phase values of a matrix. Tr(·) denotes the summation of
209
+ diagonal elements of a matrix. ⌊·⌋ is the round-down operation.
210
+ II. SYSTEM MODEL
211
+ As depicted in Fig. 1, we consider a DFRC system, where
212
+ an NT-antenna DFBS simultaneously sends communication
213
+ symbols to U single-antenna users and detects K targets in
214
+ the presence of Q strong clutters with the assistance of an
215
+ NS-cell BD-RIS. The BD-RIS adopts the hybrid transmissive
216
+ and reflective mode, which divides the whole space into two
217
+
218
+ 3
219
+ Target
220
+ Target
221
+ Clutter
222
+ Clutter
223
+ Transmissive Area
224
+ for Radar
225
+ Cell 1
226
+ BD-RIS
227
+ Target 1
228
+ Target K
229
+ Clutter 1
230
+ Clutter Q
231
+ Reflective Area for
232
+ Communication
233
+ Transmissive Area
234
+ for Radar
235
+ User
236
+ User
237
+ DFBS
238
+ Reflective Area for
239
+ Communication
240
+ RIS elements
241
+ Sensor elements
242
+ User 1
243
+ User NU
244
+ DFBS
245
+ NT
246
+ Fig. 1. Illustration of a BD-RIS aided DFRC system.
247
+ half areas, i.e., the transmissive and reflective areas. The DFBS
248
+ provides communication services at the reflective area while
249
+ performing radar sensing at the transmissive area aided by BD-
250
+ RIS. The radar sensing receiver with NR antennas is installed
251
+ adjacent to the BD-RIS to collect target echos and conduct
252
+ target detection tasks. In the following subsections, we will
253
+ review the modeling of BD-RIS with different architectures,
254
+ and establish the communication and radar models.
255
+ A. BD-RIS Architecture Model
256
+ According to [33], the hybrid reflective and transmissive
257
+ mode is essentially based on the group-connected reconfig-
258
+ urable impedance network. Specifically, each two antenna
259
+ ports are connected to each other, constructing one cell as
260
+ illustrated in Fig. 1. Within each cell, two antennas with uni-
261
+ directional radiation pattern are back to back placed such that
262
+ each antenna covers half space. Mathematically, the BD-RIS
263
+ with hybrid reflective and transmissive mode is characterized
264
+ by two matrices, i.e., ΦR ∈ CNS×NS and ΦT ∈ CNS×NS.
265
+ Depending on the inter-cell connection strategies, the BD-RIS
266
+ can be categorized into the following three architectures.
267
+ 1) CW-SC BD-RIS Architecture: As shown in Fig. 2(a),
268
+ we provide a simple example of CW-SC BD-RIS with 2 cells,
269
+ from which we can observe that different RIS cells are not
270
+ connected to each other. Therefore, matrices ΦT, ΦR are all
271
+ restricted to be diagonal, i.e., ΦT = Diag(φT,1, . . . , φT,NS) and
272
+ ΦR = Diag(φR,1, . . . , φR,NS), and satisfy
273
+ |φT,i|2 + |φR,i|2 = 1, ∀i = 1, · · · , NS,
274
+ (1)
275
+ which conforms to the STAR-RIS constraints, indicating that
276
+ the STAR-RIS is a special case of BD-RIS with CW-SC
277
+ architecture [28], [29].
278
+ 2) CW-FC BD-RIS Architecture: Fig. 2(b) depicts an exam-
279
+ ple of CW-FC BD-RIS with 2 cells. In contrast to CW-SC case,
280
+ all cells of the CW-FC BD-RIS are connected to each other
281
+ through reconfigurable impedance components. Accordingly,
282
+ ΦT, ΦR are all full matrices satisfying
283
+ ΦH
284
+ T ΦT + ΦH
285
+ R ΦR = INS.
286
+ (2)
287
+ 3) CW-GC BD-RIS Architecture: As a balance between the
288
+ above two extreme cases, CW-GC divides all cells into several
289
+ Cell�
290
+ User�
291
+ User�
292
+ BD�RIS
293
+ DFBS
294
+ Target�
295
+ Target�
296
+ Clutter�
297
+ Clutter�
298
+ Reflective�Area�for�
299
+ Communication
300
+ Transmissive�Area�
301
+ for�Radar
302
+ Antenna�3
303
+ Antenna�1
304
+ Antenna�4
305
+ Z3,4
306
+ Z3
307
+ Z1,3
308
+ Z1
309
+ Z2,4
310
+ Z1,2
311
+ Z1,4
312
+ Z2,3
313
+ Z2
314
+ Z4
315
+ Antenna�2
316
+ 2�Cell�CW�FC�BD�RIS
317
+ (b)
318
+ Cell�1
319
+ Cell�2
320
+ Antenna�4
321
+ Z2,4
322
+ Z2
323
+ Z4
324
+ Antenna�2
325
+ 2�Cell�CW�SC�BD�RIS�
326
+ (a)
327
+ Cell�2
328
+ Antenna�5
329
+ Antenna�1
330
+ Antenna�6
331
+ Z5,6
332
+ Z5
333
+ Z1,5
334
+ Z1
335
+ Z2,6
336
+ Z1,2
337
+ Z1,6
338
+ Z2,5
339
+ Z2
340
+ Z6
341
+ Antenna�2
342
+ 4�Cell�CW�GC�BD�RIS
343
+ Antenna�7
344
+ Antenna�3
345
+ Antenna�8
346
+ Z7,8
347
+ Z7
348
+ Z3,7
349
+ Z3
350
+ Z4,8
351
+ Z3,4
352
+ Z3,8
353
+ Z4,7
354
+ Z4
355
+ Z8
356
+ Antenna�4
357
+ Group�1
358
+ Group�2
359
+ (c)
360
+ Cell�1
361
+ Cell�2
362
+ Cell�3
363
+ Cell�4
364
+ Antenna�3
365
+ Antenna�1
366
+ Z3
367
+ Z1,3
368
+ Z1
369
+ Cell�1
370
+ Fig. 2. Examples of (a) CW-SC BD-RIS, (b) CW-FC BD-RIS, and (c) CW-
371
+ GC BD-RIS.
372
+ groups and cells in each group adopt the the fully-connected
373
+ architecture. Depending on the group division strategies, there
374
+ are plenty of CW-GS architectures. For simplicity, here we
375
+ consider the case where NS cells of the BD-RIS are uniformly
376
+ divided into G groups and each group has the same size M =
377
+ NS/G. For ease of understanding, an example of a 4-cell BD-
378
+ RIS with CW-GC architecture having 2 groups is illustrated
379
+ in Fig. 2(c). Hence, the model for CW-GC BD-RIS can be
380
+ expressed as
381
+ ΦT = BlkDiag(ΦT,1, . . . , ΦT,G),
382
+ ΦR = BlkDiag(ΦR,1, . . . , ΦR,G),
383
+ ΦH
384
+ T,gΦT,g + ΦH
385
+ R,gΦR,g = IM, ∀g = 1, · · · , G.
386
+ (3)
387
+ where ΦT,g ∈ CM×M and ΦR,g ∈ CM×M.
388
+ Remark 1. The CW-GC architecture of BD-RIS is a general
389
+ case, which becomes the CW-SC architecture (STAR-RIS) with
390
+ a simple circuit when G = NS, and the CW-FC architecture
391
+ achieving the best performance as G = 1. This means that
392
+ CW-SC and CW-FC architectures are special cases of CW-GC
393
+ architecture and the beam control flexibility/ability of CW-GC
394
+ BD-RIS can be improved by decreasing G, but at the expense
395
+ of increasing circuit complexity.
396
+ B. Communication Model
397
+ In this paper, we consider a standard multiuser multiple
398
+ input single output (MISO) downlink scenario, where the
399
+ DFBS provides communication services to the reflective area
400
+ aided by the BD-RIS. We assume the direct links between the
401
+ DFBS and downlink users are blocked and the channel state
402
+ information (CSI) is available at the DFBS. The data symbol
403
+ vector sl = [sl [1] , · · · , sl [U]]T ∈ CU contains the overall
404
+ U data symbols in the l-th time slot, which are assumed to
405
+
406
+ 4
407
+ be drawn from a standard M order phase-shift keying (M-
408
+ PSK) modulation constellation. Furthermore, the data symbol
409
+ vector sl is mapped to the transmit waveform w [l] ∈ CNT at
410
+ the DFBS. Accordingly, the received signal of the u-th user
411
+ at symbol time t is
412
+ yu (t) = e2πfct
413
+ L
414
+
415
+ l=1
416
+ hH
417
+ u ΦRGw [l] rect (t − l∆t) + nc,u (t) ,
418
+ (4)
419
+ where fc is the carrier frequency, L is the number of time slots
420
+ during one transmission duration, G ∈ CNS×NT and hu ∈
421
+ CNS stand for the channel coefficients of the communication
422
+ links DFBS→BD-RIS and BD-RIS→u-th user, ∆t stands for
423
+ symbol duration, rect (t) is the rectangle window function that
424
+ takes the value 1 for t ∈ [0, ∆t] and 0 otherwise, and nc,u (t)
425
+ is the additive white Gaussian noise (AWGN).
426
+ By down converting the signal into baseband and sampling
427
+ received signal yu (t) at the rate fs = 1/∆t within the symbol
428
+ duration, the discrete baseband signal at the l-th time slot is
429
+ yu [l] = hH
430
+ u ΦRGw [l] + nc,u [l] ,
431
+ (5)
432
+ where nc,u [l] is the AWGN with zero mean and variance σ2
433
+ C,u.
434
+ In this work, we adopt the recently emerged symbol level
435
+ beamforming (SLB) technology for communication in DFRC.
436
+ Specifically, SLB technology utilizes the constructive inter-
437
+ ference (CI), which is defined as the multi-user interference
438
+ (MUI) that pushes the received symbols away from the detec-
439
+ tion thresholds of the modulation constellation, to enhance the
440
+ communication QoS while reducing BER [36], [37]. Here we
441
+ briefly review the concept of SLB as follows.
442
+ Fig. 3 takes quadrature-PSK (QPSK) as an example, where
443
+ point A stands for the desired symbol sl [u] with the required
444
+ signal-to-noise-ratio (SNR) threshold Γu,l of the u-th user, i.e.,
445
+ −→
446
+ OA =
447
+
448
+ σ2
449
+ C,uΓu,lsl [u], and point D is the received noise-
450
+ free signal, i.e., −→
451
+ OD = ˜yu [l] = hH
452
+ u ΦRGw [u]. The CI region
453
+ refers to a polyhedron bounded by hyperplanes parallel to
454
+ decision boundaries of the constellation, which is depicted
455
+ as blue-shaded area in Fig. 3. The key of SLB is to enforce
456
+ the received signal located in the CI region, which means the
457
+ received signal is pushed away from decision boundaries and
458
+ the SNR is guaranteed to be no less than the SNR threshold
459
+ Γu,l. To mathematically depict the SLB constraint, we project
460
+ point D into the direction of −→
461
+ OA at point C, and extend −→
462
+ CD
463
+ to intersect with the nearest boundary of CI region at point B.
464
+ Consequently, one of the criteria that specifies the location of
465
+ −→
466
+ OD in the CI region is
467
+ |−→
468
+ CD|
469
+ |−→
470
+ AC|
471
+ =
472
+ ��ℑ
473
+
474
+ hH
475
+ u ΦRGw [l] e∠(su[l])���
476
+
477
+
478
+ hH
479
+ u ΦRGw [l] e∠(su[l])�
480
+
481
+
482
+ σ2
483
+ C,uΓu,l
484
+ ≤ tan Ω,
485
+ (6)
486
+ where Ω = π/M is half of the angular range of the CI resign.
487
+ Remark 2. In this work, we adopt SLB instead of con-
488
+ ventional block-level beamforing (BLB) due to the following
489
+ two reasons: 1) By adopting SLB technology in our con-
490
+ sidered DFRC system, we directly design transmit waveform
491
+ W ∈ CNT×L for L time slots. However, the BLB in the
492
+ D
493
+ B
494
+ � �
495
+
496
+
497
+ u
498
+ l
499
+ y
500
+
501
+
502
+ C
503
+ Received
504
+ Symbol
505
+ � �
506
+
507
+
508
+ 2
509
+ ,
510
+ u
511
+ c
512
+ u l
513
+ l
514
+ y
515
+ � �
516
+
517
+
518
+
519
+ � �
520
+ u l
521
+ y�
522
+ CI�Region
523
+ 2
524
+ ,
525
+ c
526
+ u l
527
+ � �
528
+ O
529
+
530
+ Imag
531
+ Real
532
+ A
533
+ Fig. 3. Description of the CI region for a QPSK symbol.
534
+ same scenario requires the design of the transmit beamformer
535
+ Wl ∈ CNT×U, ∀l for all data symbols and time slots due
536
+ to the linear mapping, which results in an increasing com-
537
+ putational complexity [38]. 2) BLB regards the MUI as a
538
+ harmful component and suppresses the MUI to guarantee
539
+ communication QoS. However, the SLB utilizes the MUI to
540
+ enhance the communication QoS, which provides additional
541
+ design flexibility in DFRC [21].
542
+ C. Radar Model
543
+ To improve the sensing performance of the BD-RIS aided
544
+ DFRC system, as shown in Fig. 1, we adopt a novel sensor-
545
+ at-RIS architecture [20], where the radar receiving sensors
546
+ are installed adjacent to the BD-RIS to collect the echo
547
+ signals. This architecture greatly reduces the multi-step path-
548
+ loss compared with the sensor-at-DFBS architecture [21]–[23].
549
+ Moreover, we consider a scenario where the radar receiver
550
+ attempts to detect K targets in the presence of Q strong
551
+ clutters. Specifically, the k-th target of interest is characterized
552
+ by angle ϕk and time delay τ k
553
+ T , respectively, while the q-th
554
+ clutter is characterized by angle ϑq and delay τq
555
+ C, respectively1.
556
+ The backscattered signal at the radar receiver after down
557
+ conversion is thus [39]–[41]
558
+ r (t) =
559
+ K
560
+
561
+ k=1
562
+ L
563
+
564
+ l=1
565
+ αkA (ϕk) ΦTGw [l] rect
566
+
567
+ t − l∆t − τk
568
+ T
569
+
570
+ +
571
+ Q
572
+
573
+ q=1
574
+ L
575
+
576
+ l=1
577
+ βqA (ϑq) ΦTGw [l] rect (t − l∆t − τq
578
+ C)
579
+ + nr (t) ,
580
+ (7)
581
+ where αk and βq, respectively, denote the propagation co-
582
+ efficient for the k-th target and q-th clutter consisting of
583
+ radar cross section (RCS) and channel propagation effects
584
+ with E(|αk|2)
585
+ =
586
+ ζ2
587
+ k
588
+ and E(|βq|2)
589
+ =
590
+ ξ2
591
+ q. A (ϕ)
592
+ =
593
+ aR (ϕ) aH
594
+ T (ϕ) ∈ CNR×NS is the effective radar channel,
595
+ where aT (ϕ) =
596
+ 1
597
+ √NS [1, · · · , ej 2π
598
+ λ d(NS−1) sin ϕ]T and aR (ϕ) =
599
+ 1
600
+ √NR [1, · · · , ej 2π
601
+ λ d(NR−1) sin ϕ]T denote the the transmit and
602
+ 1In this paper, we assume the targets and clutters are slowly moving or stay
603
+ still, whose Doppler frequencies equal to zeros.
604
+
605
+ 5
606
+ receive steering vector, respectively, with d and λ being
607
+ element spacing and wavelength. nr (t) denotes AWGN.
608
+ Then, we select the first target echo as the reference and
609
+ sample the received signal r (t) at fs = 1/∆t, yielding the
610
+ following received baseband signal
611
+ R =
612
+ K
613
+
614
+ k=1
615
+ αkA (ϕk) ΦTGWJrk
616
+ T
617
+
618
+ ��
619
+
620
+ Target Echos
621
+ +
622
+ Q
623
+
624
+ q=1
625
+ βqA (ϑq) ΦTGWJrq
626
+ C
627
+
628
+ ��
629
+
630
+ Clutter Returns
631
+ + Nr,
632
+ (8)
633
+ where Jr = [0L×r, IL, 0L×(Lobs−L−r)] ∈ CL×Lobs is the shift
634
+ matrix with Lobs = L + {maxk rk
635
+ T} − {mink rk
636
+ T} being the
637
+ receiver observation length, rk
638
+ T = ⌊(τ k
639
+ T − {min˜k τ ˜k
640
+ T })fs⌋ the
641
+ rang ring of the k-th target, and rq
642
+ C = ⌊(τ q
643
+ C − {mink τ k
644
+ T })fs⌋
645
+ the rang ring of the q-th clutter. Nr = [nr [1] , · · · , nr [L]] ∈
646
+ CNR×L
647
+ is
648
+ the
649
+ Gaussian
650
+ noise
651
+ matrix
652
+ with
653
+ nr [l]
654
+
655
+ CN
656
+
657
+ 0, σ2
658
+ RINR
659
+
660
+ , ∀l.
661
+ Finally, by performing the matched filter Uk ∈ CNR×Lobs
662
+ to the k-th target at radar receiver, the k-th target detection
663
+ problem can formulated as a binary hypothesis test [39]–[41]:
664
+
665
+
666
+
667
+
668
+
669
+
670
+
671
+
672
+
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+
691
+
692
+
693
+
694
+
695
+
696
+
697
+
698
+
699
+
700
+
701
+
702
+
703
+
704
+
705
+
706
+
707
+ Hk
708
+ 1 : αkUH
709
+ k A (ϕk) ΦTGWJrk
710
+ T
711
+ (9a)
712
+ +
713
+ K
714
+
715
+ p=1,p̸=k
716
+ αpUH
717
+ k A (ϕp) ΦTGWJrp
718
+ T
719
+ +
720
+ Q
721
+
722
+ q=1
723
+ βqUH
724
+ k A (ϑq) ΦTGWJrq
725
+ C + Nr,
726
+ (9b)
727
+ Hk
728
+ 0 :
729
+ K
730
+
731
+ p=1,p̸=k
732
+ αpUH
733
+ k A (ϕp) ΦTGWJrp
734
+ T
735
+ (9c)
736
+ +
737
+ Q
738
+
739
+ q=1
740
+ βqUH
741
+ k A (ϑq) ΦTGWJrq
742
+ C + Nr.
743
+ (9d)
744
+ According to the above binary hypothesis test (9), the detection
745
+ probability P k
746
+ D of the k-th target can be evaluated as [41]
747
+ P k
748
+ D = Q
749
+ ��
750
+ 2SCNRk,
751
+
752
+ −2 ln (Pfa)
753
+
754
+ ,
755
+ (10)
756
+ where Q (·, ·) is the Marcum Q-function of order 1, Pfa is the
757
+ false alarm probability, and the radar output SCNR of the k-th
758
+ target after the matched filtering is given by
759
+ SCNRk(W, ΦT, Uk) = ς−1
760
+ k |Tr(αkUH
761
+ k A(ϕk)ΦTGWJrk
762
+ T )|
763
+ 2,
764
+ (11)
765
+ where ςk
766
+ = �K
767
+ p=1,p̸=k |Tr(αpUH
768
+ p A (ϕp) ΦTGWJrp
769
+ T )|
770
+ 2 +
771
+ �Q
772
+ q=1 |Tr(βqUHA (ϑq) ΦTGWJrq
773
+ C)|
774
+ 2 + σ2
775
+ R ∥Uk∥2
776
+ F , ∀k.
777
+ III. MAX-MIN FAIRNESS FOR BD-RIS AIDED DFRC
778
+ In this section, we first formulate the joint design problem
779
+ for BD-RIS aided DFRC, followed by a general algorithm.
780
+ Finally, we propose an initialization scheme and analyze the
781
+ computational complexity of the proposed algorithm.
782
+ A. Problem Formulation
783
+ Given that (10) is strictly increasing in SCNRk, for a
784
+ specified value of false alarm probability Pfa, improving
785
+ the detection probability P k
786
+ D of the k-th target is equivalent
787
+ to maximize the radar output SCNR of the k-th target.
788
+ Moreover, for multiple target detection cases, beamforming
789
+ design usually aims to improve the detection probability for
790
+ all targets, especially for the weakest targets. Therefore, to
791
+ improve the overall target detection probability and guarantee
792
+ target detection fairness, we propose to maximize the minimal
793
+ radar output SCNR among the K targets by jointly designing
794
+ the transmit beamformer W, the BD-RIS matrices {ΦT, ΦR},
795
+ and radar receiver filters {Uk}∀k, subject to communication
796
+ QoS constraints, transmit power constraint, and BD-RIS con-
797
+ straints. The joint design problem is thus formulated as2
798
+ P1
799
+
800
+
801
+
802
+
803
+
804
+
805
+
806
+
807
+
808
+
809
+
810
+
811
+
812
+
813
+
814
+
815
+
816
+
817
+
818
+
819
+
820
+
821
+
822
+
823
+
824
+
825
+
826
+
827
+
828
+
829
+
830
+
831
+
832
+ max
833
+ W,ΦT,ΦR,{Uk}
834
+
835
+ min
836
+ ∀k SCNRk (W, ΦT, Uk)
837
+
838
+ (12a)
839
+ s.t.
840
+ ���ℑ
841
+
842
+ ˜hH
843
+ u w [l]
844
+ ����
845
+
846
+
847
+ ˜hH
848
+ u w [l]
849
+
850
+
851
+
852
+ σ2
853
+ C,uΓu,l
854
+ ≤ tan Ω, (12b)
855
+ ∥W∥2
856
+ F = E,
857
+ (12c)
858
+ ΦT = BlkDiag (ΦT,1, · · · , ΦT,G) ,
859
+ (12d)
860
+ ΦR = BlkDiag (ΦR,1, · · · , ΦR,G) ,
861
+ (12e)
862
+ ΦH
863
+ T,gΦT,g + ΦH
864
+ R,gΦR,g = ING, ∀g,
865
+ (12f)
866
+ where ˜hH
867
+ u
868
+ =
869
+ hH
870
+ u ΦRG is the equivalent channel for
871
+ DFBS→DB-RIS→ u-th user and E is the transmit power.
872
+ Problem P1 is a challenging non-convex problem. Partic-
873
+ ularly, the non-convexity stems from the complicated frac-
874
+ tional SCNR expression in the objective and highly coupled
875
+ optimization variables. To simplify the joint design, in the
876
+ following subsection, we propose a series of transformations
877
+ and an ADMM based framework to decouple problem (12)
878
+ into multiple more tractable sub-problems.
879
+ B. Overview of Proposed Joint Design Framework
880
+ To facilitate the joint design, we propose to re-arrange the
881
+ SCNR (11) into explicit and compact forms. By defining uk =
882
+ Vec(Uk), w = Vec(W) and φT = Vec (ΦT), and applying
883
+ basic vectorization properties [42], the SCNR in (11) shares
884
+ the following three equivalent expressions
885
+ SCNRk (W, ΦT, Uk) =
886
+ uH
887
+ k ΨT,kuk
888
+ uH
889
+ k (ΨC,k + σ2
890
+ RINRL) uk
891
+ ,
892
+ (13a)
893
+ =
894
+ wHΥT,kw
895
+ wHΥC,kw + σ2
896
+ R ∥Uk∥2
897
+ F
898
+ ,
899
+ (13b)
900
+ =
901
+ φH
902
+ T ΞT,kφT
903
+ φH
904
+ T ΞC,kφT + σ2
905
+ R ∥Uk∥2
906
+ F
907
+ ,
908
+ (13c)
909
+ where
910
+ ΨT,k =ζ2
911
+ k
912
+ � ¯
913
+ MT (k, ΦT)
914
+
915
+ wwH� ¯
916
+ MT (k, ΦT)
917
+ �H,
918
+ 2Based on the discussion in Remark 1, herein we focus on the design when
919
+ the BD-RIS has CW-GC architecture, which is a general case including both
920
+ CW-SC and CW-FC cases.
921
+
922
+ 6
923
+ ΨC,k =
924
+ K
925
+
926
+ p=1,p̸=k
927
+ ζ2
928
+ p
929
+ � ¯
930
+ MT (p, ΦT)
931
+
932
+ wwH� ¯
933
+ MT (p, ΦT)
934
+ �H
935
+ +
936
+ Q
937
+
938
+ q=1
939
+ ξ2
940
+ q
941
+ � ¯
942
+ MC (q, ΦT)
943
+
944
+ wwH� ¯
945
+ MC (q, ΦT)
946
+ �H,
947
+ ΥT,k =ζ2
948
+ k
949
+ � ¯
950
+ MT (k, ΦT)
951
+ �HukuH
952
+ k
953
+ � ¯
954
+ MT (k, ΦT)
955
+
956
+ ,
957
+ ΥC,k =
958
+ K
959
+
960
+ p=1,p̸=k
961
+ ζ2
962
+ p
963
+ � ¯
964
+ MT (p, ΦT)
965
+ �HukuH
966
+ k
967
+ � ¯
968
+ MT (p, ΦT)
969
+
970
+ +
971
+ Q
972
+
973
+ q=1
974
+ ξ2
975
+ q
976
+ � ¯
977
+ MC (q, ΦT)
978
+ �HukuH
979
+ k
980
+ � ¯
981
+ MC (q, ΦT)
982
+
983
+ ,
984
+ ΞT,k =ζ2
985
+ k
986
+
987
+ ˜
988
+ MT (k, W)
989
+ �H
990
+ ukuH
991
+ k
992
+
993
+ ˜
994
+ MT (k, W)
995
+
996
+ ,
997
+ ΞC,k =
998
+ K
999
+
1000
+ p=1,p̸=k
1001
+ ζ2
1002
+ p
1003
+
1004
+ ˜
1005
+ MT (p, W)
1006
+ �H
1007
+ ukuH
1008
+ k
1009
+
1010
+ ˜
1011
+ MT (p, W)
1012
+
1013
+ +
1014
+ Q
1015
+
1016
+ q=1
1017
+ ξ2
1018
+ q
1019
+
1020
+ ˜
1021
+ MC (q, W)
1022
+ �H
1023
+ ukuH
1024
+ k
1025
+
1026
+ ˜
1027
+ MC (q, W)
1028
+
1029
+ ,
1030
+ with ¯
1031
+ MT (k, ΦT) = JT
1032
+ rk
1033
+ T ⊗ (A (ϕk) ΦTG), ¯
1034
+ MC(q, ΦT) =
1035
+ JT
1036
+ rq
1037
+ C ⊗ (A (ϑq) ΦTG), ˜
1038
+ MT(k, W) = (JT
1039
+ rk
1040
+ T WT GT ) ⊗ A(ϕk),
1041
+ ˜
1042
+ MC(q, W) = (JT
1043
+ rq
1044
+ CWT GT ) ⊗ A(ϑk).
1045
+ Based on the above derivations, the objective in problem P1
1046
+ is more tractable with respect to uk, w, or φT. However, it is
1047
+ still difficult to find the solution to P1 due to non-convex and
1048
+ coupled constraints (12b), (12c), and (12f). To tackle constraint
1049
+ (12f), we first define Φg = [ΦH
1050
+ T,g, ΦH
1051
+ R,g]H and rewrite (12f) as
1052
+ ΦH
1053
+ g Φg = IM. Then, we introduce auxiliary variables Θg =
1054
+ [ΘH
1055
+ T,g, ΘH
1056
+ R,g]H = Φg and decouple constraint (12f) into two
1057
+ separate constraints by adding the equality, which yields the
1058
+ following problem:
1059
+ P2
1060
+
1061
+
1062
+
1063
+
1064
+
1065
+
1066
+
1067
+
1068
+
1069
+
1070
+
1071
+
1072
+
1073
+ max
1074
+ {Uk},W,{Φg},{Θg}
1075
+
1076
+ min
1077
+ ∀k SCNRk (W, ΦT, Uk)
1078
+
1079
+ (15a)
1080
+ s.t.
1081
+ (12b), (12c), (12d), (12e),
1082
+ (15b)
1083
+ ΘH
1084
+ g Θg = IM, ∀g,
1085
+ (15c)
1086
+ Φg = Θg, ∀g.
1087
+ (15d)
1088
+ Problem P2 is a typical multi-variable optimization, which
1089
+ could be solved based on the ADMM framework using block
1090
+ coordinate descent (BCD) methods. To facilitate ADMM, we
1091
+ place the equality constraints Φg = Θg, ∀g into the objective
1092
+ function, and obtain the augmented Lagrangian (AL) as
1093
+ L ({Uk} , W, {Φg} , {Θg}) = −{min
1094
+ ∀k SCNRk (W, ΦT, Uk)}
1095
+ +
1096
+ G
1097
+
1098
+ g=1
1099
+
1100
+
1101
+ Tr
1102
+
1103
+ ΛH
1104
+ g (Φg − Θg)
1105
+ ��
1106
+ + ̺
1107
+ 2
1108
+ G
1109
+
1110
+ g=1
1111
+ ∥Φg − Θg∥2
1112
+ F ,
1113
+ (16)
1114
+ where Λg ∈ C2M×M, ∀g are dual variables associated with
1115
+ Φg = Θg, and ̺ ≥ 0 is the corresponding penalty parameter.
1116
+ Replacing the original objective function with AL function
1117
+ (16), we obtain the AL minimization problem as
1118
+ P2
1119
+ AL
1120
+
1121
+ min
1122
+ {Uk},W,{Φg},{Θg} L ({Uk} , W, {Φg} , {Θg}) (17a)
1123
+ s.t.
1124
+ (12b)-(12e), (15c).
1125
+ (17b)
1126
+ Now, the ADMM framework is constructed as follows, where
1127
+ the superscript of notations refers to the iteration index:
1128
+ Un+1
1129
+ k
1130
+ = arg min
1131
+ Uk L
1132
+
1133
+ {Uk} , Wn,
1134
+
1135
+ Φn
1136
+ g
1137
+
1138
+ ,
1139
+
1140
+ Θn
1141
+ g
1142
+ ��
1143
+ (18a)
1144
+ Wn+1 = arg min
1145
+ W L
1146
+ ��
1147
+ Un+1
1148
+ k
1149
+
1150
+ , W,
1151
+
1152
+ Φn
1153
+ g
1154
+
1155
+ ,
1156
+
1157
+ Θn
1158
+ g
1159
+ ��
1160
+ s.t. (12b), (12c).
1161
+ (18b)
1162
+
1163
+ Φn+1
1164
+ g
1165
+
1166
+ = arg min
1167
+ Φg L
1168
+ ��
1169
+ Un+1
1170
+ k
1171
+
1172
+ , Wn+1, {Φg} ,
1173
+
1174
+ Θn
1175
+ g
1176
+ ��
1177
+ s.t. (12b), (12d), (12e).
1178
+ (18c)
1179
+
1180
+ Θn+1
1181
+ g
1182
+
1183
+ = arg min
1184
+ Θg L
1185
+ ��
1186
+ Un+1
1187
+ k
1188
+
1189
+ , Wn+1,
1190
+
1191
+ Φn+1
1192
+ g
1193
+
1194
+ , {Θg}
1195
+
1196
+ s.t. (15c),
1197
+ (18d)
1198
+ Λn+1
1199
+ g
1200
+ = Λn
1201
+ g + ̺
1202
+
1203
+ Φn+1
1204
+ g
1205
+ − Θn+1
1206
+ g
1207
+
1208
+ .
1209
+ (18e)
1210
+ Variables (18a) to (18e) are successively updated by solving
1211
+ corresponding sub-problems until some stopping conditions
1212
+ are reached. In the following subsection3, we will elaborate
1213
+ on the solutions to sub-problems (18a) to (18d).
1214
+ C. Solution to Sub-problems
1215
+ 1) Sub-problem w.r.t Uk: Given other variables, the opti-
1216
+ mization problem for updating Uk can be expressed as
1217
+ P2
1218
+ AL,{Uk}
1219
+
1220
+ max
1221
+ {Uk}
1222
+
1223
+ min
1224
+ ∀k
1225
+ uH
1226
+ k ΨT,kuk
1227
+ uH
1228
+ k (ΨC,k + σ2
1229
+ RINRL) uk
1230
+
1231
+ .
1232
+ (19)
1233
+ It can be observed that P2
1234
+ AL,{Uk} is an unconstrained optimiza-
1235
+ tion problem and has K separable objective functions, each of
1236
+ which has the following form
1237
+ max
1238
+ Uk
1239
+ uH
1240
+ k ΨT,kuk
1241
+ uH
1242
+ k (ΨC,k + σ2
1243
+ RINRL) uk
1244
+ , ∀k.
1245
+ (20)
1246
+ Problem (20) is a classical generalized fractional quadratic
1247
+ optimization problem, whose optimal solution can be obtained
1248
+ by taking the generalized eigenvalue decomposition as [39]
1249
+ uk = EIG
1250
+ ��
1251
+ ΨCN,k + σ2
1252
+ RINRL
1253
+ �−1 × ΨT,k
1254
+
1255
+ , ∀k.
1256
+ (21)
1257
+ where EIG (·) represents the eigenvector operator.
1258
+ 2) Sub-problem w.r.t W: Given other variables, the opti-
1259
+ mization problem for updating W can be expressed as
1260
+ P2
1261
+ AL,W
1262
+
1263
+
1264
+
1265
+
1266
+
1267
+
1268
+
1269
+
1270
+
1271
+
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+
1278
+
1279
+
1280
+
1281
+ max
1282
+ W
1283
+
1284
+ min
1285
+ ∀k
1286
+ wHΥT,kw
1287
+ wHΥC,kw + σ2
1288
+ R ∥Uk∥2
1289
+ F
1290
+
1291
+ (22a)
1292
+ s.t.
1293
+ ���ℑ
1294
+
1295
+ ˜hH
1296
+ u w [l]
1297
+ ����
1298
+
1299
+
1300
+ ˜hH
1301
+ u w [l]
1302
+
1303
+
1304
+
1305
+ σ2
1306
+ C,uΓu,l
1307
+ ≤ tan Ω, (22b)
1308
+ ∥W∥2
1309
+ F = E.
1310
+ (22c)
1311
+ Problem P2
1312
+ AL,W is hard to settle due to the non-smooth
1313
+ objective function and complicated non-convex constraints.
1314
+ To simplify the design, we first equivalently transform the
1315
+ 3When introducing solutions to sub-problems, we omit the superscript of
1316
+ notations for conciseness unless otherwise stated.
1317
+
1318
+ 7
1319
+ objective into a smooth form by introducing an auxiliary
1320
+ variable γ, which yields the following problem
1321
+ P2−1
1322
+ AL,W
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+ max
1339
+ W,γ
1340
+ γ
1341
+ (23a)
1342
+ s.t. min
1343
+ ∀k
1344
+ wHΥT,kw
1345
+ wHΥC,kw + σ2
1346
+ R ∥Uk∥2
1347
+ F
1348
+ ≥ γ,
1349
+ (23b)
1350
+ γ ≥ 0,
1351
+ (23c)
1352
+ (22b), (22c).
1353
+ (23d)
1354
+ Then, we deal with constraints (23b), (22b), and (22c) step-
1355
+ by-step detailed as follows.
1356
+ Step 1: Majorization minimization (MM) to (23b). We first
1357
+ rewrite constraint (23b) as
1358
+ wHΥC,kw − wHΥT,kw
1359
+ γ
1360
+ + σ2
1361
+ R ∥Uk∥2
1362
+ F ≤ 0, ∀k,
1363
+ (24)
1364
+ where the second term is a composite function with both
1365
+ w and γ. To simplify the joint design of problem (27), we
1366
+ perform MM and propose the following lemma.
1367
+ Lemma 1. Assume Υ is positive definite and γ > 0. A
1368
+ majorizer of f (w, γ) = wHΥw
1369
+ γ
1370
+ is
1371
+ f (w, γ; wn, γn) = 2ℜ
1372
+
1373
+ (wn)HΥw
1374
+
1375
+ γn
1376
+ − γ (wn)HΥwn
1377
+ (γn)2
1378
+ .
1379
+ Proof: Please refer to Appendix A.
1380
+ Using Lemma 1, we conduct the majorization on constraint
1381
+ (24) at point (wn, γn), yielding
1382
+ wHΥC,kw − 2ℜ
1383
+
1384
+ (wn)HΥT,kw
1385
+
1386
+ γn
1387
+ + γ (wn)HΥT,kwn
1388
+ (γn)2
1389
+ + σ2
1390
+ R ∥Uk∥2
1391
+ F ≤ 0, ∀k,
1392
+ (25)
1393
+ where γn is computed by
1394
+ γn = min
1395
+ ∀k
1396
+ (wn)HΥT,kwn
1397
+ (wn)HΥC,kwn + σ2
1398
+ R ∥Uk∥2
1399
+ F
1400
+ .
1401
+ (26)
1402
+ Step 2: Reformulation to (22b). After some algebraic ma-
1403
+ nipulations, we rewrite (22b) as
1404
+ (22b) ⇔
1405
+
1406
+
1407
+
1408
+
1409
+ �¯hH
1410
+ u,1 (ΦR) w [l]
1411
+
1412
+
1413
+
1414
+ σ2
1415
+ C,uΓu,l sin Ω,
1416
+ (27a)
1417
+
1418
+ �¯hH
1419
+ u,2 (ΦR) w [l]
1420
+
1421
+
1422
+
1423
+ σ2
1424
+ C,uΓu,l sin Ω,
1425
+ (27b)
1426
+ where ¯hu,1 (ΦR) = GHΦH
1427
+ R hu(sin Ω + e π
1428
+ 2 cos Ω)e−∠(su[l])
1429
+ and ¯hu,2 (ΦR) = GHΦH
1430
+ R hu(sin Ω − e π
1431
+ 2 cos Ω)e−∠(su[l]).
1432
+ Step 3: Simplification to (22c). We first scale the equality
1433
+ constraint (22c) as E−ǫ ≤ ∥W∥2
1434
+ F ≤ E+ǫ, where ǫ ≥ 0 is an
1435
+ auxiliary variable whose value approaches to zero. It is easy
1436
+ to notice that the right-hand side ∥W∥2
1437
+ F ≤ E + ǫ is convex,
1438
+ while the left-hand side E − ǫ ≤ ∥W∥2
1439
+ F is non-convex. To
1440
+ convexify the non-convex part, we perform MM and transform
1441
+ (22c) as two convex constraints
1442
+
1443
+ ∥W∥2
1444
+ F − E − ǫ ≤ 0,
1445
+ (28a)
1446
+ 2ℜ {Tr (WnW)} − ∥Wn∥2
1447
+ F − E + ǫ ≥ 0.
1448
+ (28b)
1449
+ Replacing non-convex contraints in (23) with (25), (27) and
1450
+ (28) based on Steps 1-3, and penalizing the slack variable ǫ
1451
+ into the objective function, we minimize the following problem
1452
+ P2−2
1453
+ AL,W
1454
+
1455
+
1456
+
1457
+
1458
+
1459
+ min
1460
+ W,γ,ǫ −γ + κǫ
1461
+ (29a)
1462
+ s.t. γ ≥ 0, ǫ ≥ 0,
1463
+ (29b)
1464
+ (25), (27a), (27b), (28a), (28b) ,
1465
+ (29c)
1466
+ where κ ≥ 0 represents the penalty parameter to scale the
1467
+ impact of the penalty term. Problem P2−2
1468
+ AL,W is a convex
1469
+ second-order cone programming (SOCP) problem and can be
1470
+ globally solved by the interior point method (IPM).
1471
+ 3) Sub-problem w.r.t {Φg}: Given other variables, the sub-
1472
+ problem for updating {Φg} is
1473
+ P2
1474
+ AL,{Φg}
1475
+
1476
+
1477
+
1478
+
1479
+
1480
+
1481
+
1482
+
1483
+
1484
+
1485
+
1486
+
1487
+
1488
+
1489
+
1490
+
1491
+
1492
+
1493
+
1494
+
1495
+
1496
+
1497
+
1498
+
1499
+
1500
+
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+
1507
+
1508
+
1509
+
1510
+
1511
+
1512
+
1513
+
1514
+
1515
+
1516
+
1517
+
1518
+
1519
+
1520
+
1521
+
1522
+ min
1523
+ Φg −
1524
+
1525
+ min
1526
+ ∀k
1527
+ φH
1528
+ T ΞT,kφT
1529
+ φH
1530
+ T ΞC,kφT + σ2
1531
+ R ∥Uk∥2
1532
+ F
1533
+
1534
+ +
1535
+ G
1536
+
1537
+ g=1
1538
+
1539
+
1540
+ Tr
1541
+
1542
+ ΛH
1543
+ g (Φg − Θg)
1544
+ ��
1545
+
1546
+ 2
1547
+ G
1548
+
1549
+ g=1
1550
+ ∥Φg − Θg∥2
1551
+ F
1552
+ (30a)
1553
+ s.t.
1554
+ ���ℑ
1555
+
1556
+ ˜hH
1557
+ u w [l]
1558
+ ����
1559
+
1560
+
1561
+ ˜hH
1562
+ u w [l]
1563
+
1564
+
1565
+
1566
+ σ2
1567
+ C,uΓu,l
1568
+ ≤ tan Ω, (30b)
1569
+ ΦT = BlkDiag (ΦT,1, · · · , ΦT,G) ,
1570
+ (30c)
1571
+ ΦR = BlkDiag (ΦR,1, · · · , ΦR,G) ,
1572
+ (30d)
1573
+ where ΦR and ΦT are separable in both objective and con-
1574
+ straints, and thus can be designed in parallel as follows.
1575
+ Solution to ΦR: The problem regarding ΦR is
1576
+ P2
1577
+ AL,ΦR
1578
+
1579
+
1580
+
1581
+
1582
+
1583
+
1584
+
1585
+
1586
+
1587
+
1588
+
1589
+
1590
+
1591
+
1592
+
1593
+
1594
+
1595
+
1596
+
1597
+
1598
+
1599
+
1600
+
1601
+
1602
+
1603
+
1604
+
1605
+
1606
+
1607
+ min
1608
+ ΦR
1609
+ G
1610
+
1611
+ g=1
1612
+
1613
+
1614
+ Tr
1615
+
1616
+ ΛH
1617
+ R,g (ΦR,g − ΘR,g)
1618
+ ��
1619
+
1620
+ 2
1621
+ G
1622
+
1623
+ g=1
1624
+ ∥ΦR,g − ΘR,g∥2
1625
+ F
1626
+ (31a)
1627
+ s.t.
1628
+ ��ℑ
1629
+
1630
+ Tr
1631
+ � ¯Hu,lΦR
1632
+ ����
1633
+
1634
+
1635
+ Tr
1636
+ � ¯Hu,lΦR
1637
+ ��
1638
+
1639
+
1640
+ σ2
1641
+ C,uΓu,l
1642
+ ≤ tan Ω, (31b)
1643
+ ΦR = BlkDiag (ΦR,1, · · · , ΦR,G) ,
1644
+ (31c)
1645
+ where ΛR,g is extracted from the last M rows of Λg, ¯Hu,l =
1646
+ e∠(su[l])Gw [l] hH
1647
+ u . The difficulty of solving problem (31)
1648
+ comes from constraints (31b) and (31c), which can be tackled
1649
+ based on the following matrix arrangements. Specifically, we
1650
+ partition ¯Hu,l as
1651
+ ¯Hu,l =
1652
+
1653
+ 
1654
+ ¯H11
1655
+ u,l
1656
+ · · ·
1657
+ ¯H1G
1658
+ u,l
1659
+ ...
1660
+ ...
1661
+ ...
1662
+ ¯HG1
1663
+ u,l
1664
+ · · ·
1665
+ ¯HGG
1666
+ u,l
1667
+
1668
+  , ∀u, l,
1669
+ (32)
1670
+ where ¯Hij
1671
+ u,l ∈ CM×M. By defining ˜Hu,l = [ ¯H11
1672
+ u,l, · · · , ¯HGG
1673
+ u,l ],
1674
+ and re-arranging (31c) as ˜ΦR = [ΦR,1, · · · , ΦR,G], constraints
1675
+ (31b) and (31c) are merged into the following constraint
1676
+ ���ℑ
1677
+
1678
+ Tr
1679
+
1680
+ ˜Hu,l ˜ΦR
1681
+ �����
1682
+
1683
+
1684
+ Tr
1685
+
1686
+ ˜Hu,l ˜ΦR
1687
+ ��
1688
+
1689
+
1690
+ σ2
1691
+ C,uΓu,l
1692
+ ≤ tan Ω, ∀u, l,
1693
+ (33a)
1694
+
1695
+ 8
1696
+
1697
+
1698
+
1699
+
1700
+
1701
+
1702
+ Tr
1703
+
1704
+ ˆHu,l,1 ˜ΦR
1705
+ ��
1706
+
1707
+
1708
+ σ2
1709
+ C,uΓu,l sin Ω,
1710
+
1711
+
1712
+ Tr
1713
+
1714
+ ˆHu,l,2 ˜ΦR
1715
+ ��
1716
+
1717
+
1718
+ σ2
1719
+ C,uΓu,l sin Ω,
1720
+ ∀u, l, (33b)
1721
+ where ˆHu,l,1 =
1722
+ ˜Hu,l
1723
+
1724
+ sin Ω + e− π
1725
+ 2 cos Ω
1726
+
1727
+ and ˆHu,l,2 =
1728
+ ˜Hu,l
1729
+
1730
+ sin Ω − e− π
1731
+ 2 cos Ω
1732
+
1733
+ . This brings the following opti-
1734
+ mization problem
1735
+ P2−1
1736
+ AL,˜ΦR
1737
+
1738
+
1739
+
1740
+
1741
+
1742
+
1743
+
1744
+
1745
+
1746
+ min
1747
+ ˜ΦR
1748
+
1749
+
1750
+ Tr
1751
+
1752
+ ˜ΛH
1753
+ R
1754
+
1755
+ ˜ΦR − ˜ΘR
1756
+ ���
1757
+
1758
+ 2∥˜ΦR − ˜ΘR∥2
1759
+ F
1760
+ (34a)
1761
+ s.t.
1762
+ (33b),
1763
+ (34b)
1764
+ where
1765
+ ˜ΘR
1766
+ =
1767
+ [ΘR,1, · · · , ΘR,G]
1768
+ and
1769
+ ˜ΛR
1770
+ =
1771
+ [ΛH
1772
+ R,1, · · · , ΛH
1773
+ R,G]H. Problem P2−1
1774
+ AL,˜ΦR is a quadratic program
1775
+ (QP) with linear constraints and can be efficiently tackled
1776
+ via many existing optimization tools, such as the active set
1777
+ method and the primal-dual subgradient method [43].
1778
+ Solution to ΦT: The problem regarding ΦT is
1779
+ P2
1780
+ AL,ΦT
1781
+
1782
+
1783
+
1784
+
1785
+
1786
+
1787
+
1788
+
1789
+
1790
+
1791
+
1792
+
1793
+
1794
+
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+
1810
+ min
1811
+ ΦT −
1812
+
1813
+ min
1814
+ ∀k
1815
+ φH
1816
+ T ΞT,kφT
1817
+ φH
1818
+ T ΞC,kφT + σ2
1819
+ R ∥Uk∥2
1820
+ F
1821
+
1822
+ +
1823
+ G
1824
+
1825
+ g=1
1826
+
1827
+
1828
+ Tr
1829
+
1830
+ ΛH
1831
+ T,g (ΦT,g − ΘT,g)
1832
+ ��
1833
+
1834
+ 2
1835
+ G
1836
+
1837
+ g=1
1838
+ ∥ΦT,g − ΘT,g∥2
1839
+ F
1840
+ (35a)
1841
+ s.t. ΦT = BlkDiag (ΦT,1, · · · , ΦT,G) ,
1842
+ (35b)
1843
+ Similarly, we re-organize P2
1844
+ AL,ΦT into a concise form as
1845
+ P2−1
1846
+ AL,˜ΦT
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+
1855
+
1856
+
1857
+
1858
+
1859
+
1860
+
1861
+
1862
+
1863
+
1864
+
1865
+
1866
+ min
1867
+ ˜ΦT,η
1868
+ −η + ℜ
1869
+
1870
+ Tr
1871
+
1872
+ ˜ΛH
1873
+ T
1874
+
1875
+ ˜ΦT − ˜ΘT
1876
+ ���
1877
+
1878
+ 2
1879
+ ���˜ΦT − ˜ΘT
1880
+ ���
1881
+ 2
1882
+ F
1883
+ (36a)
1884
+ s.t. min
1885
+ ∀k
1886
+ ˜φH
1887
+ T ˜ΞT,k ˜φT
1888
+ ˜φH
1889
+ T ˜ΞC,k ˜φT + σ2
1890
+ R ∥Uk∥2
1891
+ F
1892
+ ≥ η,
1893
+ (36b)
1894
+ η ≥ 0,
1895
+ (36c)
1896
+ where ˜ΦT = [ΦT,1, · · · , ΦT,G], ˜ΘT = [ΘT,1, · · · , ΘT,G],
1897
+ ˜ΛT = [ΛH
1898
+ T,1, · · · , ΛH
1899
+ T,G]H with ΛT,g extracted from the first
1900
+ M rows of Λg, and ˜φT = Vec(˜ΦT). ˜ΞT,k = KGΞT,kKH
1901
+ G
1902
+ and ˜ΞC,k = KGΞC,kKH
1903
+ G, where KG = BlkDiag([IM ⊗
1904
+ [0M,(g−1)M, IM, 0M,(G−g)M]]G
1905
+ g=1) ∈ {0, 1}MNS×N 2
1906
+ S denotes
1907
+ the linear mapping matrix. Using Lemma 1 to simplify
1908
+ constraint (36b), we have
1909
+ P2−2
1910
+ AL,˜ΦT
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+
1934
+
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+ min
1951
+ ˜ΦT,η
1952
+ −η + ℜ
1953
+
1954
+ Tr
1955
+
1956
+ ˜ΛH
1957
+ T
1958
+
1959
+ ˜ΦT − ˜ΘT
1960
+ ���
1961
+
1962
+ 2
1963
+ ���˜ΦT − ˜ΘT
1964
+ ���
1965
+ 2
1966
+ F
1967
+ (37a)
1968
+ s.t. ˜φH
1969
+ T ˜ΞC,k ˜φT −
1970
+ 2ℜ
1971
+
1972
+ ( ˜��n
1973
+ T)H ˜ΞT,k ˜φT
1974
+
1975
+ ηn
1976
+
1977
+ 2ℜ
1978
+
1979
+ ( ˜φn
1980
+ T)H ˜ΞT,k ˜φn
1981
+ T
1982
+
1983
+ (ηn)2
1984
+ +σ2
1985
+ R ∥Uk∥2
1986
+ F ≤ 0, ∀k,
1987
+ (37b)
1988
+ η ≥ 0.
1989
+ (37c)
1990
+ Algorithm 1 Max-Min Fairness for BD-RIS Aided DFRC.
1991
+ Input: hu, ∀u, G, ̺ and system parameters.
1992
+ 1: Initialize
1993
+
1994
+ U0
1995
+ k
1996
+
1997
+ , W0, Φ0
1998
+ T, and Φ0
1999
+ R.
2000
+ 2: Set n = 1.
2001
+ 3: repeat
2002
+ 4:
2003
+ Calculate radar receive filters {Un
2004
+ k} by (21) in parallel.
2005
+ 5:
2006
+ Update transmit waveform Wn by solving (29).
2007
+ 6:
2008
+ Compute BD-RIS matrix Φn
2009
+ R by solving (34).
2010
+ 7:
2011
+ Update BD-RIS matrix Φn
2012
+ T by solving (37).
2013
+ 8:
2014
+ Obtain auxiliary variables
2015
+
2016
+ Θn
2017
+ g
2018
+
2019
+ by Theorem 1.
2020
+ 9:
2021
+ Update dual variables
2022
+
2023
+ Λn
2024
+ g
2025
+
2026
+ by (18e).
2027
+ 10:
2028
+ n = n + 1.
2029
+ 11: until convergence.
2030
+ 12: Return {Un
2031
+ k}, Wn, Φn
2032
+ T and Φn
2033
+ R.
2034
+ Output: {U⋆
2035
+ k} = {Un
2036
+ k}, W⋆ = Wn, Φ⋆
2037
+ T = Φn
2038
+ T, Φ⋆
2039
+ R = Φn
2040
+ R.
2041
+ Problem P2−2
2042
+ AL,˜ΦT is a convex SOCP and can be solved by IPM.
2043
+ 4) Sub-problem w.r.t {Θg}: Given the other variables, the
2044
+ sub-problem for updating {Θg} is
2045
+ P2
2046
+ AL,{Θg}
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+
2065
+
2066
+ min
2067
+ Φg
2068
+ G
2069
+
2070
+ g=1
2071
+
2072
+
2073
+ Tr
2074
+
2075
+ ΛH
2076
+ g (Φg − Θg)
2077
+ ��
2078
+
2079
+ 2
2080
+ G
2081
+
2082
+ g=1
2083
+ ∥Φg − Θg∥2
2084
+ F
2085
+ (38a)
2086
+ s.t. ΘH
2087
+ g Θg = IM, ∀g,
2088
+ (38b)
2089
+ Problem P2
2090
+ AL,{Θg} can be split into G sub-problems, each of
2091
+ which has the following form
2092
+ P2−1
2093
+ AL,Θg
2094
+
2095
+
2096
+
2097
+
2098
+
2099
+
2100
+
2101
+
2102
+
2103
+ min
2104
+ Φg ℜ
2105
+
2106
+ Tr
2107
+
2108
+ ΛH
2109
+ g (Φg − Θg)
2110
+ ��
2111
+
2112
+ 2 ∥Φg − Θg∥2
2113
+ F
2114
+ (39a)
2115
+ s.t. ΘH
2116
+ g Θg = IM.
2117
+ (39b)
2118
+ Now, the remaining challenge of solving problem P2
2119
+ AL,Θg lies
2120
+ in the unitary constraint (39b). The unitary constraint (39b)
2121
+ forms a 2M dimensional complex Stiefel manifold [44], which
2122
+ can be approximately solved via manifold based algorithms,
2123
+ e.g., Riemannian conjugate gradient (RCG) and Riemannian
2124
+ trust regions (RTR). However, the iterative procedure of man-
2125
+ ifold methods might cause a lot of computational burdens.
2126
+ To speed-up the design, we provide a closed-form solution of
2127
+ problem P2
2128
+ AL,Θg in the following theorem.
2129
+ Theorem 1. With the unitary constraint (39b), the optimal
2130
+ solution for Θg is given by
2131
+ Θg = Bg [IM×M, 0M×M] DH
2132
+ g
2133
+ (40)
2134
+ where BgΣgDH
2135
+ g = Λg + ̺Φg is the singular value decom-
2136
+ position (SVD) of Λg + ̺Φg.
2137
+ Proof: Please refer to Appendix B.
2138
+ Based on the above derivations, the procedure of the above
2139
+ ADMM based algorithm is summarized in Algorithm 1.
2140
+
2141
+ 9
2142
+ D. Initialization Scheme
2143
+ Given that the ADMM procedure is usually sensitive to
2144
+ initial values, we present a 2-step initialization strategy to
2145
+ accelerate the convergence.
2146
+ Step1: Since it is not that straightforward to quickly find
2147
+ proper ΦT and ΦR, we randomly generate ΦT and ΦR, which
2148
+ satisfy the BD-RIS constraints.
2149
+ Step2: With initialized ΦR, we obtain the cascaded channel
2150
+ ˜hH
2151
+ u (ΦR) = hH
2152
+ u ΦRG for the communication link. To provide
2153
+ a feasible and “good” initial point satisfying the constraint
2154
+ (12b), we initialize the transmit waveform W by solving the
2155
+ following QoS-constrained problem
2156
+ max
2157
+ W,Γ
2158
+ Γ
2159
+ s.t.
2160
+
2161
+ �¯hH
2162
+ u,1 (ΦR) w [l]
2163
+
2164
+
2165
+
2166
+ σ2
2167
+ C,uΓ sin Ω, ∀u, l,
2168
+
2169
+ �¯hH
2170
+ u,2 (ΦR) w [l]
2171
+
2172
+
2173
+
2174
+ σ2
2175
+ C,uΓ sin Ω, ∀u, l,
2176
+ ∥W∥2
2177
+ F ≤ E,
2178
+ (41)
2179
+ which is a convex problem and can be efficiently solved by
2180
+ many numerical approaches [43].
2181
+ E. Complexity Analysis
2182
+ We provide a broad complexity analysis for Algorithms 1,
2183
+ which is summarized as follows
2184
+ 1) Initialization: The main computational complexity of
2185
+ this stage comes from step 2 by solving the SOCP problem
2186
+ (41) with IPM, which requires approximately O
2187
+
2188
+ N 3
2189
+ TL3�
2190
+ .
2191
+ 2) ADMM: This stage includes the iterative design of the
2192
+ radar receive filters Uk, transmit beamformer W, BD-RIS
2193
+ coefficients (ΦT, ΦR) and auxiliary variable {Θg}. Updating
2194
+ radar receive filters Uk requires O
2195
+
2196
+ KN 3
2197
+ R
2198
+
2199
+ . Solving problem
2200
+ (29) for updating W with IPM method needs complexity
2201
+ O
2202
+
2203
+ N 3
2204
+ TL3�
2205
+ . The complexity of updating BD-RIS coefficients
2206
+ (ΦT, ΦR) can be upper bounded by O
2207
+
2208
+ GN 3
2209
+ S
2210
+
2211
+ . Using Theo-
2212
+ rem 1 to update auxiliary variable {Θg} requires complexity
2213
+ of O
2214
+
2215
+ GM 3�
2216
+ . Therefore, the overall complexity of the ADMM
2217
+ framework is O(N0(KN 3
2218
+ R + N 3
2219
+ TL3 + GN 3
2220
+ S + GM 3)), where
2221
+ N0 denotes the maximum number of iterations.
2222
+ IV. PERFORMANCE EVALUATION
2223
+ In this section, we provided extensive simulation results to
2224
+ validate the effectiveness of the proposed algorithm and the
2225
+ performance of the proposed BD-RIS aided DFRC system.
2226
+ A. System Setup
2227
+ We assume that the DFBS equipped with NT = 8 antennas
2228
+ transmits QPSK symbols (M = 4) to U = 4 downlink users
2229
+ and detects K = 3 targets with the assistance of a BD-RIS
2230
+ having NS = 16 cells. The radar sensing receiver colocated
2231
+ with the BD-RIS has NR = 8 receive elements. The code
2232
+ length is L = 16 and the power budget at the DFBS is
2233
+ set as E = 10 W. The noise power at the users and radar
2234
+ sensing receiver are set as σ2
2235
+ C,u = σ2
2236
+ R = −100 dBm, ∀u.
2237
+ The communication QoS threshold is set the same for all
2238
+ users, i.e., Γu,l = Γ, ∀u, l. In addition, the distance-dependent
2239
+ TABLE I
2240
+ INFORMATION OF K TARGETS.
2241
+ Target Index
2242
+ Range (m)
2243
+ Azimuth (◦)
2244
+ RCS (dB)
2245
+ Target 1
2246
+ 10
2247
+ 30
2248
+ 5
2249
+ Target 2
2250
+ 14
2251
+ 0
2252
+ 8
2253
+ Target 3
2254
+ 19
2255
+ -20
2256
+ 10
2257
+ TABLE II
2258
+ INFORMATION OF Q CLUTTERS.
2259
+ No. of clutters
2260
+ Range (m)
2261
+ Azimuth (◦)
2262
+ RCS (dB)
2263
+ 5
2264
+ 15
2265
+ [20:2:28]
2266
+ 25
2267
+ 4
2268
+ 20
2269
+ [-3:2:3]
2270
+ 25
2271
+ 9
2272
+ [6:1:14]
2273
+ 10
2274
+ 25
2275
+ 5
2276
+ [16:1:20]
2277
+ -30
2278
+ 25
2279
+ path loss is modeled as η (d) = ℵ (d/d0)−ℓ, where ℵ =
2280
+ −30 dB denotes the signal attenuation at the reference distance
2281
+ d0 = 1 m, and ℓ represents the path loss exponent. We
2282
+ set the path loss exponents for the DFBS→BD-RIS, BD-
2283
+ RIS→user, BD-RIS→target, and BD-RIS→clutter as 2.2, 2.2,
2284
+ 2, and 2, respectively. The DFBS and BD-RIS are located as
2285
+ (−20 m, 0 m) and (0 m, 0 m), respectively, which results in
2286
+ the distance between DFBS and BD-RIS as dBR = 20 m.
2287
+ The U users are randomly located at reflective side with
2288
+ the same distance dRU = 16 m. The DFBS→BD-RIS and
2289
+ BD-RIS→user channels are assumed to follow the Rician
2290
+ fading model with the Rician factor being 3 dB. For the radar
2291
+ function, we assume K = 3 targets and 4 groups (Q = 23)
2292
+ of strong clutters are located in the transmissive side, whose
2293
+ detailed information is presented in Tables I and II. Moreover,
2294
+ we assume the range resolution as ∆d = 1 m, which indicates
2295
+ the radar sampling rate fs = 150 MHz. Combining Table I and
2296
+ the path loss model, the ratio of the propagation coefficients
2297
+ of the three radar targets is ζ2
2298
+ 1 : ζ2
2299
+ 2 : ζ2
2300
+ 3 ≈ 3.2 : 1.6 : 0.7
2301
+ [17]–[19], [21], indicating that target 3 is the weakest target.
2302
+ B. Benchmark Schemes
2303
+ For comparison, we consider the following two benchmark
2304
+ schemes in the simulations.
2305
+ 1) Benchmark 1: The radar-only case is selected as the up-
2306
+ per bound of the radar performance. We obtain this benchmark
2307
+ by changing the BD-RIS into transmissive mode and removing
2308
+ the downlink users, where the resultant problem can be tackled
2309
+ by modifying the proposed algorithm.
2310
+ 2) Benchmark 2: We consider a doulbe-RIS case where
2311
+ one diagonal RIS working on the reflective mode while
2312
+ another
2313
+ working
2314
+ on
2315
+ the
2316
+ transmissive
2317
+ mode
2318
+ are
2319
+ adja-
2320
+ cently placed to achieve full-space coverage [30]. This
2321
+ baseline
2322
+ is
2323
+ a
2324
+ special
2325
+ case
2326
+ of
2327
+ BD-RIS
2328
+ with
2329
+ CW-SC
2330
+ where ΦT
2331
+ = Diag([φT,1, · · · , φT, NS
2332
+ 2 ], 01× NS
2333
+ 2 ) and ΦR
2334
+ =
2335
+ Diag(01× NS
2336
+ 2 , [φR,1, · · · , φR, NS
2337
+ 2 ]). Therefore, we can obtain this
2338
+ benchmark by modifying the proposed algorithm.
2339
+ C. Simulation Results
2340
+ 1) Convergence Performance: In Fig. 4, we investigate
2341
+ the convergence of the proposed Algorithm 1 for different
2342
+
2343
+ 10
2344
+ 0
2345
+ 20
2346
+ 40
2347
+ 60
2348
+ 80
2349
+ 100
2350
+ 120
2351
+ 140
2352
+ 160
2353
+ 180
2354
+ 200
2355
+ Number of Iteration
2356
+ 0
2357
+ 5
2358
+ 10
2359
+ 15
2360
+ 20
2361
+ Radar Output SCNR (dB)
2362
+ CW-FC, Target 1
2363
+ CW-FC, Target 2
2364
+ CW-FC, Target 3
2365
+ CW-GC, Target 1
2366
+ CW-GC, Target 2
2367
+ CW-GC, Target 3
2368
+ CW-SC, Target 1
2369
+ CW-SC, Target 2
2370
+ CW-SC, Target 3
2371
+ (a)
2372
+ 0
2373
+ 50
2374
+ 100
2375
+ 150
2376
+ 200
2377
+ 250
2378
+ 300
2379
+ Number of Iteration
2380
+ -5
2381
+ 0
2382
+ 5
2383
+ 10
2384
+ 15
2385
+ 20
2386
+ Radar Output SCNR (dB)
2387
+ CW-FC, Target 1
2388
+ CW-FC, Target 2
2389
+ CW-FC, Target 3
2390
+ CW-GC, Target 1
2391
+ CW-GC, Target 2
2392
+ CW-GC, Target 3
2393
+ CW-SC, Target 1
2394
+ CW-SC, Target 2
2395
+ CW-SC, Target 3
2396
+ (b)
2397
+ Fig. 4. Radar output SCNR versus the number of iterations. (a) communica-
2398
+ tion threshold Γ = 0 dB, (b) communication threshold Γ = 15 dB.
2399
+ BD-RIS architectures. It can be observed that the proposed
2400
+ algorithm quickly converges to a stationary point. Specifically,
2401
+ after several iterations, all targets have nearly the same SCNR
2402
+ value, demonstrating that our algorithm can achieve fairness
2403
+ for multiple targets. Moreover, the CW-FC architecture enjoys
2404
+ faster convergence than other architectures under the same
2405
+ communication threshold. At the same time, the CW-SC re-
2406
+ quires nearly twice as many iterations of CW-FC to converge.
2407
+ For the same architecture, the proposed algorithm with a large
2408
+ communication threshold Γ needs more iterations to converge.
2409
+ This is due to the fact that if the intended communication
2410
+ threshold Γ is higher, fewer degrees of freedom (DoFs) in the
2411
+ optimization problem can be used.
2412
+ 2) System Performance with Varying Parameters: In Fig.
2413
+ 5, we study the minimum radar output SCNR versus the
2414
+ communication threshold Γ for different architectures. As ex-
2415
+ pected, the radar output SCNR monotonically decreases with
2416
+ Γ. This is because when the intended Γ is higher, less resource
2417
+ can be used to maximize the radar SCNR, which indicates
2418
+ that there is a trade-off between communication QoS and
2419
+ radar output SCNR. Meanwhile, the proposed algorithm with
2420
+ different architectures outperform the conventional RIS, which
2421
+ validates the advantage of deploying BD-RIS. In addition, the
2422
+ output SCNR gap between CW-FC/GC and CW-SC becomes
2423
+ large with increasing communication QoS requirement, which
2424
+ indicates that the advantage of CW-FC/GC BD-RIS is more
2425
+ prominent in high communication QoS requirement scenarios.
2426
+ Fig. 6 displays the minimum radar output SCNR as a
2427
+ 0
2428
+ 5
2429
+ 10
2430
+ 15
2431
+ 20
2432
+ Communication QoS Threshold (dB)
2433
+ 2
2434
+ 4
2435
+ 6
2436
+ 8
2437
+ 10
2438
+ 12
2439
+ 14
2440
+ 16
2441
+ 18
2442
+ 20
2443
+ Minimum Radar Output SCNR (dB)
2444
+ Radar Only, CW-FC
2445
+ BD-RIS, CW-FC
2446
+ BD-RIS, CW-GC
2447
+ BD-RIS, CW-SC
2448
+ Double-RIS, CW-SC
2449
+ Fig. 5. Minimum radar output SCNR versus the communication threshold Γ
2450
+ for different architecture.
2451
+ 10
2452
+ 20
2453
+ 30
2454
+ 40
2455
+ 50
2456
+ Transmit Power (W)
2457
+ 5
2458
+ 10
2459
+ 15
2460
+ 20
2461
+ 25
2462
+ Minimum Radar Output SCNR (dB)
2463
+ Radar Only, CW-FC
2464
+ BD-RIS, CW-FC
2465
+ BD-RIS, CW-GC
2466
+ BD-RIS, CW-SC
2467
+ Double-RIS, CW-SC
2468
+ Fig. 6.
2469
+ Minimum radar output SCNR versus the transmit power E wit
2470
+ communication threshold Γ = 15 dB for different architectures.
2471
+ function of transmit power E under different architectures.
2472
+ It can be observed that the output SCNR for all schemes
2473
+ grows with the increase of transmit power E. Meanwhile,
2474
+ the growth of SCNR becomes slow when the transmit power
2475
+ is substantially large for all considered architectures. This
2476
+ is because we can improve transmit power to boost system
2477
+ performance to some degree, but excessive power will not
2478
+ improve performance further. Moreover, the slope variation of
2479
+ the BD-RIS scheme with CW-FC/GC/SC architectures is more
2480
+ significant than its competitors, indicating that CW-FC/GC/SC
2481
+ architectures are more sensitive to power budget.
2482
+ In Fig. 7, we present the minimum radar SCNR versus
2483
+ the number of groups G with different numbers of BD-RIS
2484
+ cells. We observe that with the same number of groups, the
2485
+ radar output SCNR increases with the increasing number of
2486
+ BD-RIS cells. The performance enhancement comes from
2487
+ the additional DoF of passive beamforming induced by the
2488
+ increasing number of cells, and the joint design of transmit
2489
+ waveform, the BD-RIS with more general constraints, and the
2490
+
2491
+ 11
2492
+ 1
2493
+ 2
2494
+ 4
2495
+ 8
2496
+ 12
2497
+ 16
2498
+ 20 24
2499
+ 32
2500
+ 40
2501
+ Number of groups, G
2502
+ 0
2503
+ 2
2504
+ 4
2505
+ 6
2506
+ 8
2507
+ 10
2508
+ 12
2509
+ 14
2510
+ 16
2511
+ 18
2512
+ 20
2513
+ Minimum Radar Output SCNR (dB)
2514
+ CW-SC
2515
+ CW-FC
2516
+ Fig. 7. Minimum radar output SCNR versus the number of groups G with
2517
+ different BD-RIS cells NS and communication threshold Γ = 15 dB.
2518
+ -80
2519
+ -60
2520
+ -40
2521
+ -20
2522
+ 0
2523
+ 20
2524
+ 40
2525
+ 60
2526
+ 80
2527
+ Angle (Degree)
2528
+ -40
2529
+ -35
2530
+ -30
2531
+ -25
2532
+ -20
2533
+ -15
2534
+ -10
2535
+ -5
2536
+ 0
2537
+ Normalized Transmit Beampattern (dB)
2538
+ Target 1
2539
+ Target 2
2540
+ Target 3
2541
+ Radar Only, CW-FC
2542
+ BD-RIS, CW-FC
2543
+ BD-RIS, CW-GC
2544
+ BD-RIS, CW-SC
2545
+ (a)
2546
+ -80
2547
+ -60
2548
+ -40
2549
+ -20
2550
+ 0
2551
+ 20
2552
+ 40
2553
+ 60
2554
+ 80
2555
+ Angle (Degree)
2556
+ -40
2557
+ -35
2558
+ -30
2559
+ -25
2560
+ -20
2561
+ -15
2562
+ -10
2563
+ -5
2564
+ 0
2565
+ Normalized Transmit Beampattern (dB)
2566
+ Target 1
2567
+ Target 2
2568
+ Target 3
2569
+ Radar Only, CW-FC
2570
+ BD-RIS, CW-FC
2571
+ BD-RIS, CW-GC
2572
+ BD-RIS, CW-SC
2573
+ (b)
2574
+ Fig. 8.
2575
+ Transmit beampattern of BD-RIS obtained via proposed algorithm
2576
+ for different architectures. (a) communication threshold Γ = 0 dB, (b)
2577
+ communication threshold Γ = 15 dB.
2578
+ matched filters, which also confirms the results in [33]. More
2579
+ importantly, the slope of each carve becomes steeper with the
2580
+ increasing number of groups, which indicates that the number
2581
+ of non-zero elements of BD-RIS matrices plays a significant
2582
+ role in increasing system performance.
2583
+ 3) Radar Performance: In Fig. 8, we present the transmit
2584
+ beampattern obtained by the proposed algorithm. Results show
2585
+ that regardless of BD-RIS architectures, the transmit power
2586
+ (a) Radar-only, CW-FC
2587
+ (b) BD-RIS, CW-FD
2588
+ (c) BD-RIS, CW-GD
2589
+ (d) BD-RIS, CW-SD
2590
+ Fig. 9. The space-range beampattern behavors of the receive weights for the
2591
+ target 3 detection with communication threshold Γ = 10 dB.
2592
+ mainly concentrates around the three targets, which guarantees
2593
+ a high SCNR output at target directions. Moreover, the BD-
2594
+ RIS with CW-FC/GC architectures can focus more energy
2595
+ toward targets and has a lower sidelobe than that with CW-SC
2596
+ architecture, thanks to the more flexible passive beamfomring
2597
+ control provided by the CW-FC/GC architectures. We also
2598
+ observe that the transmit power towards target 3 is much high
2599
+ than other targets. This is because, as mentioned early, target
2600
+ 3 is the weakest one, which needs more energy to improve
2601
+ the output radar SCNR. In addition, the transmit beampattern
2602
+ performance for BD-RIS with all architectures gets worse
2603
+ with larger communication QoS thresholds, which confirms
2604
+ the conclusion in Fig. 5.
2605
+ Fig. 9 shows the space-range beampattern of the designed
2606
+ waveform when BD-RIS has different architectures, where the
2607
+ beampattern of the k-th target is computed as P k
2608
+ R (θ, l) =
2609
+ |Tr{(U⋆
2610
+ k)H A (θ) ΦTGW⋆Jrl}|2 [39]–[41]. Without loss of
2611
+ generality, we take target 3 (k = 3) as an example to illustrate
2612
+ the space-range behavior of the designed waveform. Results
2613
+ show that the space-range beampattern can form a mainlobe
2614
+ at the location of the target k = 3 (green circle), but achieve
2615
+ null points at the locations of the other non-of-interest targets
2616
+ (red circles) and strong clutter sources (black rectangles) for
2617
+ all proposed architectures. This phenomenon can be explained
2618
+ as follows: i) To detect target k, the other targets are regarded
2619
+ as interference. ii) BD-RIS with more general architectures
2620
+ can provide more DoFs to resist strong clutters.
2621
+ V. CONCLUSION
2622
+ This paper considers the use of BD-RIS in the DFRC system
2623
+ in the presence of multiple targets and strong clutters. We
2624
+ start by reviewing the BD-RIS architectures, and deriving
2625
+ the communication and radar models. Our objective is to
2626
+ maximize the minimum radar output SCNR subject to the
2627
+ constraints of communication QoS, BD-RIS coefficients, and
2628
+ power budget. Then, a general algorithm utilizing the ADMM
2629
+
2630
+ -30
2631
+ -40
2632
+ -50
2633
+ -600.8
2634
+ ncy (sino)
2635
+ 0.6
2636
+ 0.4-70
2637
+ -80
2638
+ -90
2639
+ -100
2640
+ -110
2641
+ 120
2642
+ 5
2643
+ 30Normalized Spatial freque
2644
+ 0.2
2645
+ 0
2646
+ 0.2
2647
+ 0.4
2648
+ -0.6
2649
+ -0.8
2650
+ 1
2651
+ 5
2652
+ 10
2653
+ 15
2654
+ 20
2655
+ Range (m)-30
2656
+ -40
2657
+ -50
2658
+ -600.8
2659
+ ncy (sino)
2660
+ 0.6
2661
+ 0.4-70
2662
+ -80
2663
+ -90
2664
+ -100
2665
+ -110
2666
+ 120
2667
+ 5
2668
+ 30Normalized Spatial freque
2669
+ 0.2
2670
+ 0
2671
+ -0.2
2672
+ 0.4
2673
+ 0.6
2674
+ -0.8
2675
+ -1
2676
+ 5
2677
+ 10
2678
+ 15
2679
+ 20
2680
+ Range (m)-30
2681
+ -40
2682
+ -50
2683
+ -600.8
2684
+ ncy(sino)
2685
+ 0.6
2686
+ 0.4-70
2687
+ -80
2688
+ -90
2689
+ -100
2690
+ -110
2691
+ 120
2692
+ 5
2693
+ 30Normalized Spatial freque
2694
+ 0.2
2695
+ 0
2696
+ -0.2
2697
+ 0.4
2698
+ 0.6
2699
+ -0.8
2700
+ -1
2701
+ 5
2702
+ 10
2703
+ 15
2704
+ 20
2705
+ Range (m)-30
2706
+ -40
2707
+ -50
2708
+ -600.8
2709
+ ncy (sino)
2710
+ 0.6
2711
+ 0.4-70
2712
+ dB
2713
+ -80
2714
+ -90
2715
+ -100
2716
+ -110
2717
+ -120
2718
+ 5
2719
+ 30Normalized Spatial freque
2720
+ 0.2
2721
+ 0
2722
+ 0.2
2723
+ 0.4
2724
+ 0.6
2725
+ -0.8
2726
+ -1
2727
+ 5
2728
+ 10
2729
+ 15
2730
+ 20
2731
+ Range (m)12
2732
+ approach is developed to solve the resulting complicated non-
2733
+ convex max-min optimization problem. Finally, simulation
2734
+ results demonstrate the effectiveness of the proposed design
2735
+ algorithm, and the superiority of employing the BD-RIS in
2736
+ DFRC systems in terms of enhancing both communication and
2737
+ radar performance. Based on this initial work, there are many
2738
+ issues worth studying for future research on BD-RIS aided
2739
+ DFRC, such as wideband waveform design, the scenarios for
2740
+ target estimation, as well as exploring the application of multi-
2741
+ sector BD-RIS in DFRC systems.
2742
+ APPENDIX A
2743
+ PROOF OF LEMMA 1
2744
+ Given that f (w, γ) = wHΥw
2745
+ γ
2746
+ is jointly concave in w and
2747
+ γ when Υ ⪰ 0 and γ ≥ 0 [43], the first order approximation
2748
+ of f (w, γ), denoted by f (w, γ; wn, γn), is a majorizer of
2749
+ f (w, γ) at the point (wn, γn), which is
2750
+ f (w, γ; wn, γn)
2751
+ = f (wn, γn) + ( ∂f
2752
+ ∂w|w=wn)T (w − wn)
2753
+ (42a)
2754
+ + ( ∂f
2755
+ ∂w∗ |w=(wn)∗)T (w − (wn)∗)
2756
+ + (∂f
2757
+ ∂γ |γ=γn)T (γ − γn) + ( ∂f
2758
+ ∂γ∗ |γ=(γn)∗)T (γ − (γn)∗)
2759
+ = (wn)HΥwn
2760
+ γn
2761
+ + 2ℜ
2762
+
2763
+
2764
+
2765
+
2766
+ 2Υwn
2767
+ γn
2768
+ (wn)HΥwn
2769
+ (γn)2
2770
+ �H �
2771
+ w − wn
2772
+ γ − γn
2773
+ �
2774
+
2775
+
2776
+ = 2ℜ
2777
+
2778
+ (wn)HAw
2779
+
2780
+ γn
2781
+ − γ (wn)HΥwn
2782
+ (γn)2
2783
+ .
2784
+ The proof is thereby completed.
2785
+ APPENDIX B
2786
+ PROOF OF THEOREM 1
2787
+ We start by rewriting objective (39a) as [43]
2788
+
2789
+
2790
+ Tr
2791
+
2792
+ ΛH
2793
+ g (Φg − Θg)
2794
+ ��
2795
+ + ̺
2796
+ 2 ∥Φg − Θg∥2
2797
+ F
2798
+ = −ℜ
2799
+
2800
+ Tr
2801
+
2802
+ ΘH
2803
+ g (Λg + ̺Φg)
2804
+ ��
2805
+ + ̺
2806
+ 2 ∥Φg∥2
2807
+ F + ̺M
2808
+
2809
+ ��
2810
+
2811
+ constant
2812
+ .
2813
+ Then, problem P2−1
2814
+ AL,Θg can be symplified as
2815
+ max
2816
+ Φg
2817
+
2818
+
2819
+ Tr
2820
+
2821
+ ΘH
2822
+ g (Λg + ̺Φg)
2823
+ ��
2824
+ s.t. ΘH
2825
+ g Θg = IM.
2826
+ (43)
2827
+ Performing SVD to Λg + ̺Φg as BgΣgDH
2828
+ g = Λg +̺Φg, we
2829
+ can re-arrange the objective of (43) as
2830
+
2831
+
2832
+ Tr
2833
+
2834
+ ΘH
2835
+ g (Λg + ̺Φg)
2836
+ ��
2837
+ = ℜ {Tr (ΣgZg)} =
2838
+ M
2839
+
2840
+ i=1
2841
+ Σg [i, i] Zg [i, i] ,
2842
+ (44)
2843
+ where Zg = DH
2844
+ g ΘH
2845
+ g Bg. (44) achieves its maximum when
2846
+ Zg
2847
+ =
2848
+ IM×2M, yielding the optimal solution Θg
2849
+ =
2850
+ Bg [IM×M, 0M×M] DH
2851
+ g . The proof is thus completed.
2852
+ REFERENCES
2853
+ [1] Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communi-
2854
+ cations for ubiquitous iot: Applications, trends, and challenges,” IEEE
2855
+ Netw., vol. 35, no. 5, pp. 158–167, 2021.
2856
+ [2] M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-designed radar-
2857
+ communication using linear frequency modulation waveform,” IEEE
2858
+ Aerosp. Electron. Syst. Mag., vol. 31, no. 10, pp. 28–35, 2016.
2859
+ [3] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Signaling
2860
+ strategies for dual-function radar communications: An overview,” IEEE
2861
+ Aerosp. Electron. Syst. Mag., vol. 31, no. 10, pp. 36–45, 2016.
2862
+ [4] K. Wu, J. A. Zhang, X. Huang, and Y. J. Guo, “Frequency-hopping
2863
+ MIMO radar-based communications: An overview,” IEEE Aerosp. Elec-
2864
+ tron. Syst. Mag., 2021.
2865
+ [5] P. Kumari, J. Choi, N. Gonz´alez-Prelcic, and R. W. Heath, “IEEE 802.11
2866
+ ad-based radar: An approach to joint vehicular communication-radar
2867
+ system,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012–3027, 2017.
2868
+ [6] S. H. Dokhanchi, B. S. Mysore, K. V. Mishra, and B. Ottersten, “A
2869
+ mmWave automotive joint radar-communications system,” IEEE Trans.
2870
+ Aerosp. Electron. Syst., vol. 55, no. 3, pp. 1241–1260, 2019.
2871
+ [7] C. Sturm and W. Wiesbeck, “Waveform design and signal processing
2872
+ aspects for fusion of wireless communications and radar sensing,” Proc.
2873
+ IEEE, vol. 99, no. 7, pp. 1236–1259, 2011.
2874
+ [8] J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng et al.,
2875
+ “An overview of signal processing techniques for joint communication
2876
+ and radar sensing,” IEEE J. Sel. Topics Signal Process., 2021.
2877
+ [9] R. Liu, M. Li, H. Luo, Q. Liu, and A. L. Swindlehurst, “Inte-
2878
+ grated sensing and communication with reconfigurable intelligent sur-
2879
+ faces: Opportunities, applications, and future directions,” arXiv preprint
2880
+ arXiv:2206.08518, 2022.
2881
+ [10] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen et al.,
2882
+ “Smart radio environments empowered by reconfigurable intelligent
2883
+ surfaces: How it works, state of research, and the road ahead,” IEEE
2884
+ J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, 2020.
2885
+ [11] S. Gong, X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y.-C.
2886
+ Liang, “Toward smart wireless communications via intelligent reflecting
2887
+ surfaces: A contemporary survey,” IEEE Commun. Surveys Tuts., vol. 22,
2888
+ no. 4, pp. 2283–2314, 2020.
2889
+ [12] K.-K. Wong, K.-F. Tong, Z. Chu, and Y. Zhang, “A vision to smart
2890
+ radio environment: Surface wave communication superhighways,” IEEE
2891
+ Wireless Commun., vol. 28, no. 1, pp. 112–119, 2020.
2892
+ [13] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
2893
+ Intelligent reflecting surface aided wireless network,” IEEE Commun.
2894
+ Mag., vol. 58, no. 1, pp. 106–112, 2019.
2895
+ [14] ——, “Intelligent reflecting surface enhanced wireless network via
2896
+ joint active and passive beamforming,” IEEE Trans. Wireless Commun.,
2897
+ vol. 18, no. 11, pp. 5394–5409, 2019.
2898
+ [15] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid
2899
+ beamforming for reconfigurable intelligent surface based multi-user
2900
+ communications: Achievable rates with limited discrete phase shifts,”
2901
+ IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1809–1822, 2020.
2902
+ [16] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan et al., “Multicell MIMO
2903
+ communications relying on intelligent reflecting surfaces,” IEEE Trans.
2904
+ Wireless Commun., vol. 19, no. 8, pp. 5218–5233, 2020.
2905
+ [17] A. Aubry, A. De Maio, and M. Rosamilia, “Reconfigurable intelligent
2906
+ surfaces for N-LOS radar surveillance,” IEEE Trans. Veh. Technol.,
2907
+ vol. 70, no. 10, pp. 10 735–10 749, 2021.
2908
+ [18] S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Radar target detection
2909
+ aided by reconfigurable intelligent surfaces,” IEEE Signal Process. Lett.,
2910
+ vol. 28, pp. 1315–1319, 2021.
2911
+ [19] W. Lu, Q. Lin, N. Song, Q. Fang, X. Hua, and B. Deng, “Target detection
2912
+ in intelligent reflecting surface aided distributed MIMO radar systems,”
2913
+ IEEE Sens. Lett., vol. 5, no. 3, pp. 1–4, 2021.
2914
+ [20] X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with
2915
+ intelligent reflecting surface: Architecture and performance,” IEEE J.
2916
+ Sel. Areas Commun., 2022.
2917
+ [21] R. Liu, M. Li, Y. Liu, Q. Wu, and Q. Liu, “Joint transmit waveform
2918
+ and passive beamforming design for RIS-aided DFRC systems,” IEEE
2919
+ J. Sel. Topics Signal Process., 2022.
2920
+ [22] T.
2921
+ Wei,
2922
+ L.
2923
+ Wu,
2924
+ K.
2925
+ V.
2926
+ Mishra,
2927
+ and
2928
+ M.
2929
+ Shankar,
2930
+ “Multi-IRS-
2931
+ aided
2932
+ Doppler-tolerant
2933
+ wideband
2934
+ DFRC
2935
+ system,”
2936
+ arXiv
2937
+ preprint
2938
+ arXiv:2207.02157, 2022.
2939
+ [23] S. Yan, S. Cai, W. Xia, J. Zhang, and S. Xia, “A reconfigurable intelligent
2940
+ surface aided dual-function radar and communication system,” in 2022
2941
+ 2nd IEEE International Symposium on Joint Communications & Sensing
2942
+ (JC&S).
2943
+ IEEE, 2022, pp. 1–6.
2944
+ [24] X. Song, T. X. Han, and J. Xu, “Cram´er-rao bound minimization for IRS-
2945
+ enabled multiuser integrated sensing and communication with extended
2946
+ target,” arXiv preprint arXiv:2210.16592, 2022.
2947
+
2948
+ 13
2949
+ [25] M. Hua, Q. Wu, C. He, S. Ma, and W. Chen, “Joint active and passive
2950
+ beamforming design for IRS-aided radar-communication,” IEEE Trans.
2951
+ Wireless Commun., pp. 1–1, 2022.
2952
+ [26] X. Wang, Z. Fei, J. Huang, and H. Yu, “Joint waveform and discrete
2953
+ phase shift design for RIS-assisted integrated sensing and communi-
2954
+ cation system under cram´er-rao bound constraint,” IEEE Trans. Veh.
2955
+ Technol., vol. 71, no. 1, pp. 1004–1009, 2021.
2956
+ [27] R. P. Sankar, B. Deepak, and S. P. Chepuri, “Joint communication and
2957
+ radar sensing with reconfigurable intelligent surfaces,” in 2021 IEEE
2958
+ 22nd International Workshop on Signal Processing Advances in Wireless
2959
+ Communications (SPAWC).
2960
+ IEEE, 2021, pp. 471–475.
2961
+ [28] J. Xu, Y. Liu, X. Mu, and O. A. Dobre, “STAR-RISs: Simultaneous
2962
+ transmitting and reflecting reconfigurable intelligent surfaces,” IEEE
2963
+ Commun. Lett., vol. 25, no. 9, pp. 3134–3138, 2021.
2964
+ [29] H. Zhang, S. Zeng, B. Di, Y. Tan, M. Di Renzo, M. Debbah, Z. Han,
2965
+ H. V. Poor, and L. Song, “Intelligent omni-surfaces for full-dimensional
2966
+ wireless communications: Principles, technology, and implementation,”
2967
+ IEEE Commun. Mag., vol. 60, no. 2, pp. 39–45, 2022.
2968
+ [30] Z. Wang, X. Mu, and Y. Liu, “STARS enabled integrated sensing and
2969
+ communications,” arXiv preprint arXiv:2207.10748, 2022.
2970
+ [31] K. Meng, Q. Wu, W. Chen, and D. Li, “Sensing-assisted communi-
2971
+ cation in vehicular networks with intelligent surface,” arXiv preprint
2972
+ arXiv:2211.11475, 2022.
2973
+ [32] S. Shen, B. Clerckx, and R. Murch, “Modeling and architecture design
2974
+ of reconfigurable intelligent surfaces using scattering parameter network
2975
+ analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1229–1243,
2976
+ 2021.
2977
+ [33] H. Li, S. Shen, and B. Clerckx, “Beyond diagonal reconfigurable intelli-
2978
+ gent surfaces: From transmitting and reflecting modes to single-, group-
2979
+ , and fully-connected architectures,” IEEE Trans. Wireless Commun.,
2980
+ 2022.
2981
+ [34] M. Nerini, S. Shen, and B. Clerckx, “Optimal group and fully connected
2982
+ design for beyond diagonal reconfigurable intelligent surfaces,” arXiv
2983
+ preprint arXiv:2211.06117, 2022.
2984
+ [35] H. Li, S. Shen, and B. Clerckx, “Beyond diagonal reconfigurable
2985
+ intelligent surfaces: A multi-sector mode enabling highly directional
2986
+ full-space wireless coverage,” arXiv preprint arXiv:2209.00301, 2022.
2987
+ [36] A. Li, D. Spano, J. Krivochiza, S. Domouchtsidis, C. G. Tsinos, C. Ma-
2988
+ souros, S. Chatzinotas, Y. Li, B. Vucetic, and B. Ottersten, “A tutorial
2989
+ on interference exploitation via symbol-level precoding: Overview, state-
2990
+ of-the-art and future directions,” IEEE Commun. Surveys Tuts., vol. 22,
2991
+ no. 2, pp. 796–839, 2020.
2992
+ [37] A. Li and C. Masouros, “Interference exploitation precoding made
2993
+ practical: Optimal closed-form solutions for PSK modulations,” IEEE
2994
+ Trans. Wireless Commun., vol. 17, no. 11, pp. 7661–7676, 2018.
2995
+ [38] Z. Cheng, L. Wu, B. Wang, M. B. Shankar et al., “Double-phase-
2996
+ shifter based hybrid beamforming for mmwave DFRC in the presence
2997
+ of extended target and clutters,” IEEE Trans. Wireless Commun., 2022.
2998
+ [39] Z. Cheng, B. Liao, Z. He, Y. Li, and J. Li, “Spectrally compatible
2999
+ waveform design for MIMO radar in the presence of multiple targets,”
3000
+ IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3543–3555, 2018.
3001
+ [40] G. Cui, H. Li, and M. Rangaswamy, “MIMO radar waveform design
3002
+ with constant modulus and similarity constraints,” IEEE Trans. Signal
3003
+ Process., vol. 62, no. 2, pp. 343–353, 2013.
3004
+ [41] A. De Maio, S. De Nicola, Y. Huang, Z.-Q. Luo et al., “Design of phase
3005
+ codes for radar performance optimization with a similarity constraint,”
3006
+ IEEE Trans. Signal Process., vol. 57, no. 2, pp. 610–621, 2008.
3007
+ [42] X.-D. Zhang, Matrix analysis and applications.
3008
+ Cambridge University
3009
+ Press, 2017.
3010
+ [43] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
3011
+ Cambridge university press, 2004.
3012
+ [44] P.-A. Absil, R. Mahony, and R. Sepulchre, “Optimization algorithms
3013
+ on matrix manifolds,” in Optimization Algorithms on Matrix Manifolds.
3014
+ Princeton University Press, 2009.
3015
+
2dE1T4oBgHgl3EQflgSY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tE4T4oBgHgl3EQfawwa/content/tmp_files/2301.05066v1.pdf.txt ADDED
@@ -0,0 +1,712 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05066v1 [math.RT] 12 Jan 2023
2
+ Branching symplectic monogenics using
3
+ a Mickelsson–Zhelobenko algebra
4
+ David Eelbode and Guner Muarem
5
+ Abstract. In this paper we consider (polynomial) solution spaces for
6
+ the symplectic Dirac operator (with a focus on 1-homogeneous solu-
7
+ tions). This space forms an infinite-dimensional representation space for
8
+ the symplectic Lie algebra sp(2m). Because so(m) ⊂ sp(2m), this leads
9
+ to a branching problem which generalises the classical Fischer decom-
10
+ position in harmonic analysis. Due to the infinite nature of the solution
11
+ spaces for the symplectic Dirac operators, this is a non-trivial question:
12
+ both the summands appearing in the decomposition and their explicit
13
+ embedding factors will be determined in terms of a suitable Mickelsson-
14
+ Zhelobenko algebra.
15
+ Mathematics Subject Classification (2010). Primary 15A66, 17B10;
16
+ Secondary 00A00.
17
+ Keywords. Branching, Symplectic Dirac operator, Mickelsson–Zhelobenko
18
+ algebra, simplicial harmonics.
19
+ 1. Introduction
20
+ The Dirac operator is a first-order differential operator acting on spinor-
21
+ valued functions which factorises the Laplace operator ∆ on Rm. It was
22
+ originally introduced by Dirac in a famous attempt to factorise the wave op-
23
+ erator, hence obtaining a relativistically invariant version of the Schr¨odinger
24
+ equation. Since then, this operator has played a crucial role in mathemati-
25
+ cal domains such as representation theory and Clifford analysis. The latter
26
+ is a multidimensional function theory which is often described as a refine-
27
+ ment of harmonic analysis, and a generalisation of complex analysis. It is
28
+ centred around a generalisation of the operator introduced by Dirac (his
29
+ operator /∂ is defined in 4 dimensions), and can be seen as a contraction
30
+ between the generators ek for a Clifford algebra (acting as endomorphisms
31
+ on so-called spinors) and corresponding partial derivatives ∂xk. To be more
32
+ precise, introducing the Clifford algebra by means of the defining relations
33
+
34
+ 2
35
+ David Eelbode and Guner Muarem
36
+ {ea, eb} = eaeb + ebea = −2δab (with 1 ≤ a, b ≤ m) the Dirac operator is
37
+ given by
38
+ ∂x =
39
+
40
+ e1
41
+ . . .
42
+ em
43
+
44
+ Idm
45
+
46
+
47
+
48
+ x1
49
+ ...
50
+ xm
51
+
52
+
53
+  =
54
+ m
55
+
56
+ j=1
57
+ ej∂xj ,
58
+ whereby the (m × m)−identity matrix Idm has been added to explain what
59
+ is meant by the ‘contraction’. Null-solutions for ∂x are called monogenics,
60
+ and can be seen as generalisations of holomorphic functions. One often starts
61
+ with the study of k-homogeneous polynomial solutions for the Dirac operator,
62
+ which belong to the space Mk(Rm, S), where S stands for the aforementioned
63
+ spinor space.
64
+ An obvious generalisation of the operator ∂x can be obtained by using
65
+ another matrix than Idm when contracting algebraic generators with partial
66
+ derivatives. An important example is the symplectic Dirac operator, which
67
+ is introduced on a symplectic space rather than an orthogonal space (see for
68
+ example the work of Habermann [5]). This operator, denoted by Ds, is de-
69
+ fined as a contraction between generators for a symplectic Clifford algebra
70
+ and partial derivatives, using a skew-symmetric matrix Ω0 (rather than Idm).
71
+ The symplectic Clifford algebra generators satisfy the Heisenberg relations
72
+ [∂zj, zk] = δjk (the symplectic analogue of the Clifford relations for the gener-
73
+ ators ek from above). Note that the symbols zj stand for real variables here,
74
+ they are chosen because the sets of (real) variables xj and yj will also appear
75
+ in this paper. In sharp contrast to the orthogonal case, the symplectic Clifford
76
+ algebra is no longer finite-dimensional. This trend continues, in the sense that
77
+ the associated symplectic spinor space S∞
78
+ 0 also becomes infinite-dimensional.
79
+ In this paper, we study infinite-dimensional spaces defined in terms of
80
+ solutions for the symplectic Dirac operator (generalised monogenics). These
81
+ spaces can be defined algebraically
82
+ S∞
83
+ k = Ms
84
+ k(R2m, S∞
85
+ 0 ) := Pk(R2m, C) ⊠ S∞
86
+ 0
87
+ (k ∈ N).
88
+ Here ⊠ denotes the Cartan product of the sp(2m)-representations Pk(R2m, C),
89
+ the kth-symmetric power of the fundamental vector representation (modelled
90
+ by polynomials), and the symplectic spinor space S∞
91
+ 0 (also referred to as the
92
+ Segal-Shale-Weil representation). These spaces contain k-homogeneous S∞
93
+ 0 -
94
+ valued solutions for the symplectic Dirac operator. The behaviour of these
95
+ spaces as representations for sp(2m) is known (see e.g. [1] and the references
96
+ therein), but in this paper we will look at these spaces as orthogonal repre-
97
+ sentation spaces. This is motivated by the fact that so(m) ⊂ sp(2m), which
98
+ means that we are dealing with a branching problem.
99
+ In general, a branching problem can be described as follows: given a rep-
100
+ resentation ρ of a Lie algebra g and a subalgebra h, we would like to under-
101
+ stand how the representation ρ behaves as a h-representation. This restricted
102
+ representation ρ|h will no longer be irreducible, but will decompose into h-
103
+ irreducible representations. A branching rule then describes the irreducible
104
+
105
+ Branching symplectic monogenics using a M–Z algebra
106
+ 3
107
+ pieces which will occur, together with their multiplicities. For the symplec-
108
+ tic spinors (i.e. for the space S∞
109
+ 0 ), this gives the Fischer decomposition in
110
+ harmonic analysis, which means that the branching problem for S∞
111
+ k leads to
112
+ generalisations thereof. To describe the branching of the infinite-dimensional
113
+ symplectic representation space S∞
114
+ k
115
+ under the inclusion so(m) ⊂ sp(2m),
116
+ we will make use of a quadratic algebra which is known as a Mickelson-
117
+ Zhelobenko algebra (see [9] for the general construction and properties).
118
+ 2. The symplectic Dirac operator and monogenics
119
+ We will work with the symplectic space R2m and coordinates (x, y) equipped
120
+ with the canonical symplectic form ω0 = �m
121
+ j=1 dxj ∧ dyj. The matrix repre-
122
+ sentation of the symplectic form is given by
123
+ Ω0 =
124
+
125
+ 0
126
+ Idm
127
+ −Idm
128
+ 0
129
+
130
+ .
131
+ The group consisting of all invertible linear transformations preserving this
132
+ non-degenerate skew-symmetric bilinear form is called the symplectic group
133
+ and is formally defined as follows:
134
+ Sp(2m, R) = {M ∈ GL(2m, R) | M T Ω0M = Ω0}.
135
+ This is a non-compact group of dimension 2m2+m. Its (real) Lie algebra will
136
+ be denoted by sp(2m, R). In the orthogonal case, the spin group determined
137
+ by the sequence
138
+ 1 → Z2 → Spin(m) → SO(m) → 1
139
+ plays a crucial role concerning the invariance of the Dirac operator ∂x and
140
+ the definition of the spinors S. In the symplectic case, this role is played by
141
+ the metaplectic group Mp(2m, R) fixed by the exact sequence
142
+ 1 → Z2 → Mp(2m, R) → Sp(2m, R) → 1.
143
+ Despite the analogies, there are some fundamental differences:
144
+ (i) First of all, the group SO(m) is compact, whereas Sp(2m, R) is not. This
145
+ has important consequences for the representation theory. As a matter
146
+ of fact, the metaplectic group is not a matrix group and does not admit
147
+ (faithful) finite-dimensional representations.
148
+ (ii) The orthogonal spinors S can be realised as a maximal left ideal in the
149
+ Clifford algebra, but this is not the case for the symplectic spinors. The
150
+ latter are often modelled as smooth vectors in the infinite-dimensional
151
+ Segal-Shale-Weil representation (see [7] and the references therein). One
152
+ can also identify the symplectic spinor space S∞
153
+ 0 with the space P(Rm, C)
154
+ of polynomials in the variables (z1, . . . , zm) ∈ Rm, which is the approach
155
+ we will use in this paper.
156
+ Definition 2.1. Let (V, ω) be a symplectic vector space. The symplectic
157
+ Clifford algebra Cls(V, ω) is defined as the quotient algebra of the tensor
158
+ algebra T (V ) of V by the two-sided ideal Iω := {v ⊗ u − u ⊗ v + ω(v, u) :
159
+
160
+ 4
161
+ David Eelbode and Guner Muarem
162
+ u, v ∈ V }. In other words Cls(V, ω) := T (V )/Iω is the algebra generated by
163
+ V in terms of the relation [v, u] = −ω(v, u), where we have omitted the tensor
164
+ product symbols.
165
+ Definition 2.2. Denote by ⟨u, v⟩ := �m
166
+ k=1 ukvk the canonical inner product
167
+ on Rm (where we allow partial derivatives to appear as coefficients, see the
168
+ operators below). We then define the following operators acting on polyno-
169
+ mial functions in P(R3m, C):
170
+ (i) The symplectic Dirac operator Ds = ⟨z, ∂y⟩ − ⟨∂x, ∂z⟩.
171
+ (ii) The adjoint operator Xs = ⟨y, ∂z⟩+⟨x, z⟩ with respect to the symplectic
172
+ Fischer product (see Section 5 of [2] for more details).
173
+ (iii) The Euler operator E = �m
174
+ j=1(xj∂xj + yj∂yj) = Ex + Ey measuring the
175
+ degree of homogeneity in the base variables (x, y) ∈ R2m.
176
+ Note that some authors use the notation ⟨∇x, ∇y⟩ for an expression such as
177
+
178
+ k ∂xk∂yk, but we will use the Dirac operator symbol here instead of the
179
+ nabla operator.
180
+ Lemma 2.3. The three operators X =
181
+
182
+ 2Ds, Y =
183
+
184
+ 2Xs and their commu-
185
+ tator H = [X, Y ] = −2(Ex + Ey + m) give rise to a copy of the Lie algebra
186
+ sl(2).
187
+ One now easily sees that the symplectic Dirac operator is nothing more than
188
+ the contraction between the Weyl algebra generators (zk, ∂zk) with the vector
189
+ fields (∂xk, ∂yk) for k = 1, . . . , m using the canonical symplectic form Ω0.
190
+ Definition 2.4. The space of k-homogeneous symplectic monogenics is de-
191
+ fined by S∞
192
+ k := ker(Ds)∩
193
+
194
+ Pk(R2m, C) ⊗ P(Rm, C)
195
+
196
+ , where the space P(Rm, C)
197
+ in the vector variable z ∈ Rm plays the role of the symplectic spinor space
198
+ S∞
199
+ 0 .
200
+ Note that as an sp(2m, R)-module, S∞
201
+ k is reducible and decomposes into two
202
+ irreducible parts: S∞
203
+ k = S∞
204
+ k,+ ⊕ S∞
205
+ k,− with highest weights
206
+ S∞
207
+ k,+ ←→
208
+
209
+ k − 1
210
+ 2, −1
211
+ 2, . . . , −1
212
+ 2
213
+
214
+ and
215
+ S∞
216
+ k,+ ←→
217
+
218
+ k − 1
219
+ 2, −1
220
+ 2, . . . , −3
221
+ 2
222
+
223
+ .
224
+ These weight entries are fixed by the Cartan algebra h = Alg(Xjj : 1 ≤ j ≤
225
+ m), where the elements Xjj are defined in the lemma below. In this paper, we
226
+ will omit the parity signs and work with S∞
227
+ k as a notation which incorporates
228
+ both the positive and negative spinors (in our model, this will correspond to
229
+ even or odd in the variable z ∈ Rm, see below, so it is always easy to ��decom-
230
+ pose’ into irreducible components when necessary).
231
+ The three operators from Lemma 2.3 can be proven to be invariant under the
232
+ action of the symplectic Lie algebra, in the sense that they commute with
233
+ the following generators (see also Lemma 3.3 in [3]):
234
+
235
+ Branching symplectic monogenics using a M–Z algebra
236
+ 5
237
+ Lemma 2.5. The symplectic Lie algebra sp(2m) has the following realisation
238
+ on the space of symplectic spinor-valued polynomials P(R2m, C) ⊗ S∞
239
+ 0 :
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+ Xjk = xj∂xk − yk∂yj − (zk∂zj + 1
256
+ 2δjk)
257
+ 1 ≤ j, k ≤ m
258
+ Yjk = xj∂yk + xk∂yj − ∂zj∂zk
259
+ 1 ≤ j < k ≤ m
260
+ Zjk = yj∂xk + yk∂xj + zjzk
261
+ 1 ≤ j < k ≤ m
262
+ Yjj = xj∂yj − 1
263
+ 2∂2
264
+ zj
265
+ 1 ≤ j ≤ m
266
+ Zjj = yj∂xj + 1
267
+ 2z2
268
+ j
269
+ 1 ≤ j ≤ m
270
+ (2.1)
271
+ The branching rule for S∞
272
+ 0 , when considering it as a representation space for
273
+ the orthogonal Lie algebra so(m) ⊂ sp(2m), leads to the Fischer decomposi-
274
+ tion for C-valued polynomials in the variable z ∈ Rm (see below). Note that
275
+ so(m) is generated by the operators Xjk −Xkj for 1 ≤ j < k ≤ m, giving rise
276
+ to the well-known angular operators ubiquitous in quantum mechanics (often
277
+ denoted by Lab with 1 ≤ a < b ≤ m). In our previous paper [3], we therefore
278
+ tackled the next case k = 1 as this is a natural generalisation of said Fischer
279
+ decomposition. The main problem with our branching rule (Theorem 5.6 in
280
+ [3]) is the fact that these so(m)-spaces appear with infinite multiplicities,
281
+ which are not always easy to keep track of. Therefore the main goal of this
282
+ paper is to show that one can organise these in an algebraic framework which
283
+ extends to other values for k too, using a certain quadratic algebra.
284
+ 3. Simplicial harmonics in three vector variables
285
+ In this section we describe a generalisation of harmonic polynomials, in three
286
+ vector variables. This will be done in terms of a solution space for a ‘natural’
287
+ collection of so(m)-invariant differential operators. The corresponding Howe
288
+ dual pair will be useful for the branching problem addressed above. For the
289
+ sake of completeness, we recall the following basic definition:
290
+ Definition 3.1. A function f(x) on Rm is called harmonic if ∆f(x) = 0. The
291
+ k-homogeneous harmonics are defined as Hk(Rm, C) := Pk(Rm, C) ∩ ker(∆).
292
+ These spaces define irreducible representations for so(m) with highest weight
293
+ (k, 0, . . . , 0) for all k ∈ Z+.
294
+ It is well-known that the space of k-homogeneous polynomials Pk(Rm, C) is
295
+ reducible as an so(m)-module (see for example [4]) and decomposes into har-
296
+ monic polynomials. In fact, the decomposition of the full space of polynomials
297
+ is known as the aforementioned Fischer decomposition, given by
298
+ P(Rm, C) =
299
+
300
+
301
+ k=0
302
+ Pk(Rm, C) =
303
+
304
+
305
+ k=0
306
+
307
+
308
+ p=0
309
+ |z|2pHk(Rm, C).
310
+ This can all be generalised to the case of several vector variables (sometimes
311
+ also called ‘a matrix variable’): for any highest weight for so(m) there is a
312
+ (polynomial) model in terms of simplicial harmonics (or monogenics for the
313
+ half-integer representations). We refer to [8] for more details. In this paper,
314
+
315
+ 6
316
+ David Eelbode and Guner Muarem
317
+ we will consider these spaces for so(m)-weights characterised by three inte-
318
+ gers (a, b, c) where a ≥ b ≥ c ≥ 0. Also note that trailing zeros in the weight
319
+ notation will be omitted from now on, so for instance (k, 0, . . . , 0) will be writ-
320
+ ten as (k). First of all, we consider homogeneous polynomials Pa,b,c(z; x, y)
321
+ in three vector variables (z; x, y) ∈ R3m. Here we use the notation (z; x, y)
322
+ to stress the difference between the variable z (the spinor variable, refer-
323
+ ring to an element in S∞
324
+ 0 ) from the other two variables (x, y) ∈ R2m, which
325
+ are ‘ordinary’ variables. The parameters (a, b, c) then refer to the degrees of
326
+ homogeneity in (z; x, y). These polynomials carry the regular representation
327
+ of the orthogonal group (or the derived so(m)-action in terms of angular
328
+ momentum operators Lab from above).
329
+ We further introduce the Weyl algebra in three vector variables as the
330
+ algebra generated by the variables and their corresponding derivatives:
331
+ W(R3m, C) := Alg(xα, yβ, zγ, ∂xδ, ∂yε, ∂zζ) with α, β, γ, δ, ε, ζ ∈ {1, . . ., m} .
332
+ Just like in the case of the classical Fischer decomposition, where the Lie
333
+ algebra sl(2) appears as a Howe dual partner, there is a Lie algebra appearing
334
+ here. To be precise, it is the Lie algebra sp(6) = g−2⊕g0⊕g+2, with parabolic
335
+ subalgebra p := g−2 ⊕ g0 and Levi subalgebra g0 ∼= gl(3). The subspaces g±2
336
+ contain six ‘pure’ operators each (i.e. only variables, acting as a multiplication
337
+ operator, or only derivatives). More specifically, the subspaces are spanned
338
+ by the following SO(m)-invariant operators:
339
+ g−2 := span(∆x, ∆y, ∆z, ⟨∂x, ∂y⟩, ⟨∂y, ∂z⟩, ⟨∂x, ∂z⟩)
340
+ g0 := span(⟨x, ∂y⟩, ⟨y, ∂x⟩, ⟨x, ∂z⟩, ⟨z, ∂x⟩, ⟨y, ∂z⟩, ⟨z, ∂y⟩, Ex, Ey, Ez)
341
+ g+2 := span(|x|2, |y|2, |z|2, ⟨x, y⟩, ⟨y, z⟩, ⟨x, z⟩)
342
+ Definition 3.2. The space of Howe harmonics of degree (a, b, c) in the vari-
343
+ ables (z, x, y) is defined as H∗
344
+ a,b,c(R3m, C) := Pa,b,c(R3m, C) ∩ ker(g−2).
345
+ In what follows the notation ker(A1, . . . , An) stands for ker(A1)∩. . .∩ker(An),
346
+ so ker(g−2) means that simplicial harmonics are annihilated by all (pure dif-
347
+ ferential) operators in sp(6). As a representation space for so(m), the spaces
348
+ H∗
349
+ a,b,c are not irreducible. In order to obtain an irreducible (sub)space, we
350
+ have to impose extra conditions.
351
+ Definition 3.3. The vector space of simplicial harmonics of degree (a, b, c)
352
+ in the variables (z, x, y) is defined by means of
353
+ Ha,b,c(R3m, C) := H∗
354
+ a,b,c(R3m, C) ∩ ker
355
+
356
+ ⟨z, ∂x⟩, ⟨z, ∂y⟩, ⟨x, ∂y⟩
357
+
358
+ .
359
+ As was shown in [8], this defines an irreducible representation space for so(m)
360
+ with highest weight (a, b, c), where the dominant weight condition a ≥ b ≥ c
361
+ must hold. This now leads to the following generalisation of the result above
362
+ (the Fisher decompostion in three vector variables):
363
+
364
+ Branching symplectic monogenics using a M–Z algebra
365
+ 7
366
+ Theorem 3.4. The space P(R3m, C) of complex-valued polynomials in three
367
+ vector variables (in Rm) has a multiplicity-free decomposition under the ac-
368
+ tion of sp(6) × SO(m) by means of:
369
+ P(R3m, C) ∼=
370
+
371
+ a≥b≥c
372
+ V∞
373
+ a,b,c ⊗ Ha,b,c(R3m, C),
374
+ where we used the dominant weight condition in the summation. The notation
375
+ V∞
376
+ a,b,c hereby refers to a Verma module (see for example [6]) for sp(6).
377
+ 4. The Mickelsson-Zhelobenko algebra (general setup)
378
+ We have now introduced 21 differential operators giving rise to a realisation
379
+ of the Lie algebra sp(6) inside the Weyl algebra (on 3 vector variables in
380
+ Rm). In this section we construct a related algebra, the so-called Mickelsson-
381
+ Zhelobenko algebra (also called transvector or step algebra) Z. Let g be
382
+ a Lie algebra and let s ⊂ g be a reductive subalgebra. We then have the
383
+ decomposition g = s ⊕ t, where t carries an s-action for the commutator (i.e.
384
+ [s, t] ⊂ t). For s we then fix a triangular decomposition s = s− ⊕ h ⊕ s+,
385
+ where s± consists of the positive (resp. negative roots) with respect to the
386
+ Cartan subalgebra h ⊂ s. We then also define a left ideal J ⊂ U(g) in the
387
+ universal enveloping algebra U(g) by means of U(g)s+. This allows us to
388
+ define a certain subalgebra of U(g) which is known as the normaliser:
389
+ Norm(J) := {u ∈ U(g) | Ju ⊂ J}.
390
+ The crucial point is that J is a two-sided ideal of Norm(J), which allows us
391
+ two define the quotient algebra S(g, s) = Norm(J)/J which is known as the
392
+ Mickelsson algebra.
393
+ In a last step of the construction, we consider an extension of U(g) to a
394
+ suitable localisation U′(g) given by
395
+ U′(g) = U′(g) ⊗U(h) Frac(U(h)) ,
396
+ where Frac(U(h)) is the field of fractions in the (universal enveloping algebra
397
+ of the) Cartan algebra. The ideal J′ can be introduced for this extension
398
+ too (in a completely similar way) and the corresponding quotient algebra
399
+ Z(g, s) := Norm(J′)/J′ is the Mickelsson-Zhelobenko algebra. These two al-
400
+ gebras are naturally identified, since one has that
401
+ Z(g, s) = S(g, s) ⊗U(h) Frac(U(h)) .
402
+ Note that this algebra is sometimes referred to as a ‘transvector algebra’,
403
+ which is what we will often use in what follows.
404
+ 5. The Mickelsson-Zhelobenko algebra Z(sp(6), so(4))
405
+ We will now define a specific example of the construction from above, which
406
+ will help us to understand how the branching of S∞
407
+ k
408
+ works. First of all, we
409
+ note the following:
410
+
411
+ 8
412
+ David Eelbode and Guner Muarem
413
+ Lemma 5.1. The three (orthogonally invariant) operators
414
+ L := ⟨x, ∂y⟩ − 1
415
+ 2∆z
416
+ R := ⟨y, ∂x⟩ + 1
417
+ 2|z|2
418
+ E := Ey − Ex + Ez + n
419
+ 2
420
+ give rise to yet another copy of the Lie algebra sl(2). This Lie algebra com-
421
+ mutes with the Lie algebra sl(2) ∼= Alg(Ds, Xs).
422
+ This thus means that we have now obtained a specific realisation for the Lie
423
+ algebra so(4) ∼= Alg(Ds, Xs) ⊕ Alg(L, R) ∼= sl(2) ⊕ sl(2) which appears as a
424
+ subalgebra of sp(6). This algebra will play the role of s from Section 4. Let
425
+ us therefore consider the lowest weight vectors in so(4):
426
+ Y1 = Ds = ⟨z, ∂y⟩ − ⟨∂z, ∂x⟩
427
+ and
428
+ Y2 = L = ⟨x, ∂y⟩ − 1
429
+ 2∆z .
430
+ We will focus on the solutions of both lowest weight vectors, i.e. ker(Ds, L).
431
+ Note that the operators in sp(6) do not necessarily act as endomorphisms
432
+ on this space, but the transvector framework allows us to ‘replace’ these
433
+ operators by (related) transvector algebra generators which do act as endo-
434
+ morphisms. We start with proving the reductiveness of the algebra so(4) in
435
+ sp(6).
436
+ Lemma 5.2. The Lie algebra so(4) is reductive in sp(6).
437
+ Proof. We need to show that sp(6) decomposes as so(4) + t, where the sub-
438
+ space t carries an action of so(4). For that purpose we introduce the following
439
+ 15 (linearly independent) differential operators:
440
+ ∆x
441
+ ⟨z, ∂x⟩
442
+ ⟨y, ∂x⟩ − |z|2
443
+ ⟨y, z⟩
444
+ |y|2
445
+ ⟨∂x, ∂y⟩
446
+ ⟨z, ∂y⟩ + ⟨∂z, ∂x⟩
447
+ Ex − Ey + 2Ez + m
448
+ ⟨x, z⟩ − ⟨y, ∂z⟩
449
+ ⟨x, y⟩
450
+ ∆y
451
+ ⟨∂y, ∂z⟩
452
+ ⟨x, ∂y⟩ + ∆z
453
+ ⟨x, ∂z⟩
454
+ |x|2
455
+ It is now a straightforward computation to check that for each of these op-
456
+ erators the commutator with one of the operators in so(4) is again a linear
457
+ combination of the operators above.
458
+
459
+ In order to construct the generators for the algebra Z(g, s) with g = sp(6)
460
+ and s = so(4), we need the following:
461
+ Definition 5.3. The extremal projector for the Lie algebra sl(2) = Alg(X, Y, H)
462
+ is the idempotent operator π given by the (formal) expression
463
+ π := 1 +
464
+
465
+
466
+ j=1
467
+ (−1)j
468
+ j!
469
+ Γ(H + 2)
470
+ Γ(H + 2 + j)Y jXj .
471
+ (5.1)
472
+ This operator satisfies Xπ = πY = 0 and π2 = π.
473
+ Note that this operator is defined on the extension U′(sl(2)) of the universal
474
+ enveloping algebra defined earlier, so that formal series containing the oper-
475
+ ator H in the denominator are well-defined (in practice it will always reduce
476
+ to a finite summation).
477
+
478
+ Branching symplectic monogenics using a M–Z algebra
479
+ 9
480
+ Lemma 5.4. The extremal projector πso(4) is given by the product of the
481
+ extremal projectors for the Lie algebras sl(2), i.e. πso(4) = πDsπL = πLπDs
482
+ (the operator appearing as an index here refers to the realisation for sl(2)
483
+ that was used).
484
+ Proof. This is due to the fact that the two copies of sl(2) commute.
485
+
486
+ The operator πso(4) is thus explicitly given by
487
+
488
+ 1 +
489
+
490
+
491
+ j=1
492
+ (−1)j
493
+ j!
494
+ Γ(E + 2)
495
+ Γ(E + 2 + j)Xj
496
+ sDj
497
+ s
498
+
499
+
500
+
501
+ 1 +
502
+
503
+
504
+ j=1
505
+ (−1)j
506
+ j!
507
+ Γ(E + 2)
508
+ Γ(E + 2 + j)RjLj
509
+
510
+
511
+ and satisfies Dsπso(4) = Lπso(4) = 0 = πso(4)Xs = πso(4)R. This means that
512
+ we now have a natural object that can be used to project polynomials on the
513
+ intersection of the kernel of the operators Ds and L.
514
+ The 15 operators in t ⊂ sp(6) as such do not preserve this kernel space
515
+ (as these operators do not necessarily commute with Ds and L), but their
516
+ projections will belong to End(ker(Ds, L)). In what follows we will use the
517
+ notation Qa,b, where a ∈ {±2, 0} and b ∈ {±4, ±2, 0}, to denote the operators
518
+ in t (see Lemma 5.2, and the scheme below). For each operator Qa,b we then
519
+ also define an associated operator Pa,b := πso(4)Qa,b. For instance P4,−2 =
520
+ πso(4)|y|2.
521
+ The P-operators will then be used to define the generators for our
522
+ transvector algebra. The diagram below should then be seen as the analogue
523
+ of the 15 operators Qa,b given above, grouped into a 5 × 3 rectangle, where
524
+ each operator α ∈ t carries a label. The meaning of the labels (a, b) comes
525
+ from the observation that t ∼= V4 ⊗ V2 as a representation for sl(2) ⊕ sl(2),
526
+ with Vn the standard notation for the irreducible representation of dimension
527
+ (n+1). Given an operator α ∈ t, the numbers a and b can thus be retrieved as
528
+ eigenvalues for the commutator action of the Cartan elements in so(4). Note
529
+ that the projection operator so(4) commutes with these Cartan elements (i.e.
530
+ the operators Qa,b and Pa,b indeed carry the same labels).
531
+ −2
532
+ 0
533
+ 2
534
+ −4
535
+ − 2
536
+ 0
537
+ 2
538
+ 4
539
+ Despite the fact that Z(sp(6), so(4)) is not a Lie algebra, we have organised
540
+ these operators in such a way that the notions of ‘positive’ and ‘negative’
541
+ roots can be used. To be more precise: black dots (resp. grey dots) refer
542
+ to negative (resp. positive) operators, and the white dot plays the role of
543
+ a ‘Cartan element’ (this analogy will come in handy below). The 7 black
544
+
545
+ 10
546
+ David Eelbode and Guner Muarem
547
+ dots (resp. 7 grey dots) will be referred to as operators in ρ− (resp. in ρ+).
548
+ Together with the operator P0,0 we then get the set
549
+ GZ = {Pa,b : a ∈ {±2, 0}, b ∈ {±4, ±2, 0}},
550
+ containing all the generators for the transvector algebra Z(sp(6), so(4)).
551
+ Due to a general result by Zhelobenko, these generators then satisfy
552
+ quadratic relations (i.e. different from the classical Lie brackets). In the next
553
+ theorem, we will relate the spaces Ha,b,c(R3m, C) introduced in Definition
554
+ 3.3 to the space of polynomial solutions for the symplectic Dirac operator
555
+ Ds, the lowering operator L and the negative ‘roots’ ρ− which we have just
556
+ introduced (i.e. the operators Pa,b corresponding to black dots).
557
+ Theorem 5.5. The solutions for the operators Ds and L and the negative
558
+ roots ρ− ⊂ GZ which are homogeneous of degree (a, b, c) in the variables
559
+ (z, x, y) are precisely given by the simplicial harmonics Ha,b,c(R3m, C). In
560
+ other words, we have:
561
+ Pa,b,c(R3m, C) ∩ ker(Ds, L, ρ−) = Ha,b,c(R3m, C).
562
+ Proof. The idea behind this proof is a recursive argument, where the or-
563
+ dering on the black dots will be from left to right and from bottom to
564
+ top in the rectangular scheme above (in terms of labels this means that
565
+ (2, −4) > (0, −4) > (2, −2), as an example). The reason for doing so is the
566
+ following: the commutators [L, Qa,b] and [Ds, Qa,b] give an operator situated
567
+ below or to the left of the operator Qa,b we started from. Up to a con-
568
+ stant, these operators are equal to Qa+2,b and Qa,b−2 respectively (or trivial
569
+ whenever the parameters a and b are not in the correct range). This means
570
+ that combinations of the form LQa,b and DsQab act trivially on functions
571
+ H(z; x, y) in the kernel of L and Ds, provided we know that also Qa+2,b and
572
+ Qa,b−2 act trivially. Given the fact that each operator Pa,b ∈ ρ− is of the
573
+ form
574
+ Pa,b =
575
+
576
+ 1 + O1L
577
+ ��
578
+ 1 + O2Ds
579
+
580
+ Qa,b ,
581
+ where Oj is a short-hand notation for the correction terms coming from
582
+ the extremal projection operator (which, unless this operator reduces to the
583
+ identity operator, always contains either an operator L or Ds at the right).
584
+ The upshot of our recursive scheme is that once we know that Qa+2,b and
585
+ Qa,b−2 act trivially, this immediately tells us that Pa,bH = 0 ⇒ Qa,bH = 0.
586
+ Because P2,−4H = 0 and P2,−4 = Q−2,4 = ∆y, we can immediately conclude
587
+ that the following operators will then act trivially:
588
+ ∆y
589
+ ⟨∂x, ∂y⟩
590
+ ∆x
591
+ ⟨∂y, ∂z⟩
592
+ ⟨z, ∂y⟩ + ⟨∂x, ∂z⟩
593
+ ⟨z, ∂x⟩
594
+ ⟨x, ∂y⟩ + ∆z .
595
+ In order to be simplicial harmonic, H(z; x, y) should belong to the kernel of
596
+ 9 operators in sp(6) (see Definition 3.3), but it is straightforward to see that
597
+ one can reproduce these operators as commutators of the 7 operators on the
598
+ previous line. For example: ∆x(⟨x, ∂y⟩ + ∆z)H = 0 leads to ∆zH = 0, since
599
+ ⟨∂x, ∂y⟩H = 0 (and so on).
600
+
601
+
602
+ Branching symplectic monogenics using a M–Z algebra
603
+ 11
604
+ 6. Application: branching symplectic monogenics
605
+ We will now use the operators Pa,b to explicitly describe the branching of the
606
+ k-homogeneous symplectic monogenics S∞
607
+ k . By this we mean that it will give
608
+ us a systematic way to define the ‘embedding factors’ realising the isomorphic
609
+ copy of those spaces in S∞
610
+ k . To do so, we will make an analogy again: one can
611
+ consider the asssociative algebra U(Z), the ‘universal enveloping algebra’ of
612
+ Z(sp(6), so(4)). The meaning should be clear here: it is a tensor algebra � V
613
+ (with V the span of GZ-generators as an underlying vector space) modulo
614
+ the ideal spanned ‘by the quadratic relations’ in the transvector algebra. We
615
+ will refer to elements in this algebra as ‘words’ in ‘an alphabet’ that can be
616
+ ordered. This statement, which should thus be seen as an analogue of the
617
+ Poincar´e–Birkhoff–Witt theorem (PBW theorem), requires a proof but we
618
+ will not do this in the present paper. As a matter of fact, the general case
619
+ k ∈ Z+ will be treated in an upcoming (longer) paper, in the present article
620
+ we will focus on the case k = 1 as a guiding example.
621
+ The main idea is the following: imposing the lexicographic ordering on
622
+ the labels (a, b) will dictate the position of our letters in the alphabet (from
623
+ left to right), with e.g. (4, 0) > (4, −2) > (2, 2). Letting such a word acting as
624
+ an operator on simplicial harmonics Ha,b,c(z; x, y), it should be clear (in view
625
+ of the previous theorem) that only the ‘letters’ corresponding to grey dots
626
+ in the scheme will play a role (the white dot acts as a constant, whereas the
627
+ black dots act trivially). Considering the fact that the total degree of ‘a word’
628
+ in x and y should not exceed k = 1, we can only use the operators Pa,b from
629
+ the third and fourth column in our example. Note that once the operator
630
+ Pab has been chosen (i.e.
631
+ the ‘word’ in front of the simplicial harmonics),
632
+ the degree (a, b, c) of these polynomials Ha,b,c(z; x, y) is automatically fixed
633
+ too: the total degree in z and (x, y) is then equal to k and 1 respectively. So,
634
+ when the ‘word’ is homogeneous of degree one in (x, y) we get contributions
635
+ of the form P0,0Ha,1,0 and P2,0Ha,1,0. Whereas when the chosen ‘word’ is
636
+ homogeneous of degree zero we get P−2,2Ha,0,0, P0,2Ha,0,0 and P2,2Ha,0,0.
637
+ Finally, we note that we can still act with the raising operator R ∈ sl(2) on
638
+ each of the polynomials from above (i.e. a suitable projection operator acting
639
+ on a suitable space of simplicial harmonics) to arrive at a direct sum of
640
+ Verma modules which can be embedded into S∞
641
+ 1 . This is based on the trivial
642
+ albeit crucial observation that [R, Ds] = 0, so that acting with R preserves
643
+ symplectic monogenic solutions. This means that we have now resolved the
644
+ branching problem for k = 1 in a completely different way. Resulting in the
645
+ decomposition
646
+ S∞
647
+ 1
648
+ �
649
+ sp(2m)
650
+ so(m)
651
+ ∼=
652
+
653
+ a≥1
654
+
655
+
656
+ ℓ=0
657
+ Rℓ(Ha,1 ⊕ P2,0Ha,1)
658
+
659
+
660
+ a≥0
661
+
662
+
663
+ ℓ=0
664
+ Rℓ(P−2,2Ha ⊕ P−2,0Ha ⊕ P−2,−2Ha).
665
+
666
+ 12
667
+ David Eelbode and Guner Muarem
668
+ Summarising the idea behind this decomposition, we thus claim that S∞
669
+ k can
670
+ be decomposed under the joint action of
671
+ so(m) × sl(2) × Z(sp(6), so(4)),
672
+ whereby the final decomposition will contain summands of the form
673
+ Rp �
674
+ U(ρ+)Ha,b,c
675
+
676
+ for suitable ‘words’ in the algebra U(ρ+) and suitable spaces of simplicial
677
+ harmonics.
678
+ Acknowledgments
679
+ The author G.M. was supported by the FWO-EoS project G0H4518N.
680
+ References
681
+ [1] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis. Research Notes in
682
+ Mathematics 76, Pitman, London, 1982.
683
+ [2] H. De Bie, M. Hol´ıkov´a, P. Somberg, Basic aspects of symplectic Clifford analysis
684
+ for the symplectic Dirac operator. Advances in Applied Clifford Algebras 27(2)
685
+ (2017), 1103–1132.
686
+ [3] D. Eelbode, G. Muarem, The Orthogonal Branching Problem for Symplectic
687
+ Monogenics. Advances in Applied Clifford Algebras 33(3) (2022).
688
+ [4] J. Gilbert, M. Murray, Clifford Algebras and Dirac Operators in Harmonic Anal-
689
+ ysis. Cambridge University Press, 1991
690
+ [5] K. Habermann, L. Habermann, Introduction to Symplectic Dirac Operators. In
691
+ Lecture Notes in Mathematics, Springer Berlin Heidelberg, 2006.
692
+ [6] R. Howe, Remarks on classical invariant theory. Transactions of the American
693
+ Mathematical Society 33(2) (1989), 539—570
694
+ [7] P. Robinson, J. Rawnsley, The Metaplectic Representation, Mpc Structures and
695
+ Geometric Quantization. Memoirs of the A.M.S. vol. 81, no. 410, 1989.
696
+ [8] P. Van Lancker, F. Sommen, D. Constales, Models for irreducible representations
697
+ of Spin(m). Advances in Applied Clifford Algebras 11 (2001), 271–289.
698
+ [9] D. Zhelobenko, Extremal projectors and generalised Mickelsson algebras over
699
+ reductive Lie algebras. In Mathematics of the USSR 33(1) (1989), 85—100.
700
+ David Eelbode
701
+ Department of Mathematics
702
+ University of Antwerp
703
+ Middelheimlaan 1
704
+ 2020 Antwerp, Belgium
705
+ e-mail: [email protected]
706
+ Guner Muarem
707
+ Department of Mathematics
708
+ University of Antwerp
709
+ Middelheimlaan 1
710
+ 2020 Antwerp, Belgium
711
+ e-mail: [email protected]
712
+
2tE4T4oBgHgl3EQfawwa/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf,len=338
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
3
+ page_content='05066v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
4
+ page_content='RT] 12 Jan 2023 Branching symplectic monogenics using a Mickelsson–Zhelobenko algebra David Eelbode and Guner Muarem Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
5
+ page_content=' In this paper we consider (polynomial) solution spaces for the symplectic Dirac operator (with a focus on 1-homogeneous solu- tions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
6
+ page_content=' This space forms an infinite-dimensional representation space for the symplectic Lie algebra sp(2m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
7
+ page_content=' Because so(m) ⊂ sp(2m), this leads to a branching problem which generalises the classical Fischer decom- position in harmonic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
8
+ page_content=' Due to the infinite nature of the solution spaces for the symplectic Dirac operators, this is a non-trivial question: both the summands appearing in the decomposition and their explicit embedding factors will be determined in terms of a suitable Mickelsson- Zhelobenko algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
9
+ page_content=' Mathematics Subject Classification (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
10
+ page_content=' Primary 15A66, 17B10;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
11
+ page_content=' Secondary 00A00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
12
+ page_content=' Keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
13
+ page_content=' Branching, Symplectic Dirac operator, Mickelsson–Zhelobenko algebra, simplicial harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
14
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
15
+ page_content=' Introduction The Dirac operator is a first-order differential operator acting on spinor- valued functions which factorises the Laplace operator ∆ on Rm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
16
+ page_content=' It was originally introduced by Dirac in a famous attempt to factorise the wave op- erator, hence obtaining a relativistically invariant version of the Schr¨odinger equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
17
+ page_content=' Since then, this operator has played a crucial role in mathemati- cal domains such as representation theory and Clifford analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
18
+ page_content=' The latter is a multidimensional function theory which is often described as a refine- ment of harmonic analysis, and a generalisation of complex analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
19
+ page_content=' It is centred around a generalisation of the operator introduced by Dirac (his operator /∂ is defined in 4 dimensions), and can be seen as a contraction between the generators ek for a Clifford algebra (acting as endomorphisms on so-called spinors) and corresponding partial derivatives ∂xk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
20
+ page_content=' To be more precise, introducing the Clifford algebra by means of the defining relations 2 David Eelbode and Guner Muarem {ea, eb} = eaeb + ebea = −2δab (with 1 ≤ a, b ≤ m) the Dirac operator is given by ∂x = � e1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
21
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
22
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
23
+ page_content=' em � Idm \uf8eb \uf8ec \uf8ed x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
24
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
25
+ page_content=' xm \uf8f6 \uf8f7 \uf8f8 = m � j=1 ej∂xj , whereby the (m × m)−identity matrix Idm has been added to explain what is meant by the ‘contraction’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
26
+ page_content=' Null-solutions for ∂x are called monogenics, and can be seen as generalisations of holomorphic functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
27
+ page_content=' One often starts with the study of k-homogeneous polynomial solutions for the Dirac operator, which belong to the space Mk(Rm, S), where S stands for the aforementioned spinor space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
28
+ page_content=' An obvious generalisation of the operator ∂x can be obtained by using another matrix than Idm when contracting algebraic generators with partial derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
29
+ page_content=' An important example is the symplectic Dirac operator, which is introduced on a symplectic space rather than an orthogonal space (see for example the work of Habermann [5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
30
+ page_content=' This operator, denoted by Ds, is de- fined as a contraction between generators for a symplectic Clifford algebra and partial derivatives, using a skew-symmetric matrix Ω0 (rather than Idm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
31
+ page_content=' The symplectic Clifford algebra generators satisfy the Heisenberg relations [∂zj, zk] = δjk (the symplectic analogue of the Clifford relations for the gener- ators ek from above).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
32
+ page_content=' Note that the symbols zj stand for real variables here, they are chosen because the sets of (real) variables xj and yj will also appear in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
33
+ page_content=' In sharp contrast to the orthogonal case, the symplectic Clifford algebra is no longer finite-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
34
+ page_content=' This trend continues, in the sense that the associated symplectic spinor space S∞ 0 also becomes infinite-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
35
+ page_content=' In this paper, we study infinite-dimensional spaces defined in terms of solutions for the symplectic Dirac operator (generalised monogenics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
36
+ page_content=' These spaces can be defined algebraically S∞ k = Ms k(R2m, S∞ 0 ) := Pk(R2m, C) ⊠ S∞ 0 (k ∈ N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
37
+ page_content=' Here ⊠ denotes the Cartan product of the sp(2m)-representations Pk(R2m, C), the kth-symmetric power of the fundamental vector representation (modelled by polynomials), and the symplectic spinor space S∞ 0 (also referred to as the Segal-Shale-Weil representation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
38
+ page_content=' These spaces contain k-homogeneous S∞ 0 - valued solutions for the symplectic Dirac operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
39
+ page_content=' The behaviour of these spaces as representations for sp(2m) is known (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
40
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
41
+ page_content=' [1] and the references therein), but in this paper we will look at these spaces as orthogonal repre- sentation spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
42
+ page_content=' This is motivated by the fact that so(m) ⊂ sp(2m), which means that we are dealing with a branching problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
43
+ page_content=' In general, a branching problem can be described as follows: given a rep- resentation ρ of a Lie algebra g and a subalgebra h, we would like to under- stand how the representation ρ behaves as a h-representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
44
+ page_content=' This restricted representation ρ|h will no longer be irreducible, but will decompose into h- irreducible representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
45
+ page_content=' A branching rule then describes the irreducible Branching symplectic monogenics using a M–Z algebra 3 pieces which will occur, together with their multiplicities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
46
+ page_content=' For the symplec- tic spinors (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
47
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
48
+ page_content=' for the space S∞ 0 ), this gives the Fischer decomposition in harmonic analysis, which means that the branching problem for S∞ k leads to generalisations thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
49
+ page_content=' To describe the branching of the infinite-dimensional symplectic representation space S∞ k under the inclusion so(m) ⊂ sp(2m), we will make use of a quadratic algebra which is known as a Mickelson- Zhelobenko algebra (see [9] for the general construction and properties).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
50
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
51
+ page_content=' The symplectic Dirac operator and monogenics We will work with the symplectic space R2m and coordinates (x, y) equipped with the canonical symplectic form ω0 = �m j=1 dxj ∧ dyj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
52
+ page_content=' The matrix repre- sentation of the symplectic form is given by Ω0 = � 0 Idm −Idm 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
53
+ page_content=' The group consisting of all invertible linear transformations preserving this non-degenerate skew-symmetric bilinear form is called the symplectic group and is formally defined as follows: Sp(2m, R) = {M ∈ GL(2m, R) | M T Ω0M = Ω0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
54
+ page_content=' This is a non-compact group of dimension 2m2+m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
55
+ page_content=' Its (real) Lie algebra will be denoted by sp(2m, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
56
+ page_content=' In the orthogonal case, the spin group determined by the sequence 1 → Z2 → Spin(m) → SO(m) → 1 plays a crucial role concerning the invariance of the Dirac operator ∂x and the definition of the spinors S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
57
+ page_content=' In the symplectic case, this role is played by the metaplectic group Mp(2m, R) fixed by the exact sequence 1 → Z2 → Mp(2m, R) → Sp(2m, R) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
58
+ page_content=' Despite the analogies, there are some fundamental differences: (i) First of all, the group SO(m) is compact, whereas Sp(2m, R) is not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
59
+ page_content=' This has important consequences for the representation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
60
+ page_content=' As a matter of fact, the metaplectic group is not a matrix group and does not admit (faithful) finite-dimensional representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
61
+ page_content=' (ii) The orthogonal spinors S can be realised as a maximal left ideal in the Clifford algebra, but this is not the case for the symplectic spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
62
+ page_content=' The latter are often modelled as smooth vectors in the infinite-dimensional Segal-Shale-Weil representation (see [7] and the references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
63
+ page_content=' One can also identify the symplectic spinor space S∞ 0 with the space P(Rm, C) of polynomials in the variables (z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
64
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
65
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
66
+ page_content=' , zm) ∈ Rm, which is the approach we will use in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
67
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
68
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
69
+ page_content=' Let (V, ω) be a symplectic vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
70
+ page_content=' The symplectic Clifford algebra Cls(V, ω) is defined as the quotient algebra of the tensor algebra T (V ) of V by the two-sided ideal Iω := {v ⊗ u − u ⊗ v + ω(v, u) : 4 David Eelbode and Guner Muarem u, v ∈ V }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
71
+ page_content=' In other words Cls(V, ω) := T (V )/Iω is the algebra generated by V in terms of the relation [v, u] = −ω(v, u), where we have omitted the tensor product symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
72
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
73
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
74
+ page_content=' Denote by ⟨u, v⟩ := �m k=1 ukvk the canonical inner product on Rm (where we allow partial derivatives to appear as coefficients, see the operators below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
75
+ page_content=' We then define the following operators acting on polyno- mial functions in P(R3m, C): (i) The symplectic Dirac operator Ds = ⟨z, ∂y⟩ − ⟨∂x, ∂z⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
76
+ page_content=' (ii) The adjoint operator Xs = ⟨y, ∂z⟩+⟨x, z⟩ with respect to the symplectic Fischer product (see Section 5 of [2] for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
77
+ page_content=' (iii) The Euler operator E = �m j=1(xj∂xj + yj∂yj) = Ex + Ey measuring the degree of homogeneity in the base variables (x, y) ∈ R2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
78
+ page_content=' Note that some authors use the notation ⟨∇x, ∇y⟩ for an expression such as � k ∂xk∂yk, but we will use the Dirac operator symbol here instead of the nabla operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
79
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
80
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
81
+ page_content=' The three operators X = √ 2Ds, Y = √ 2Xs and their commu- tator H = [X, Y ] = −2(Ex + Ey + m) give rise to a copy of the Lie algebra sl(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
82
+ page_content=' One now easily sees that the symplectic Dirac operator is nothing more than the contraction between the Weyl algebra generators (zk, ∂zk) with the vector fields (∂xk, ∂yk) for k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
83
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
84
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
85
+ page_content=' , m using the canonical symplectic form Ω0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
86
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
87
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
88
+ page_content=' The space of k-homogeneous symplectic monogenics is de- fined by S∞ k := ker(Ds)∩ � Pk(R2m, C) ⊗ P(Rm, C) � , where the space P(Rm, C) in the vector variable z ∈ Rm plays the role of the symplectic spinor space S∞ 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
89
+ page_content=' Note that as an sp(2m, R)-module, S∞ k is reducible and decomposes into two irreducible parts: S∞ k = S∞ k,+ ⊕ S∞ k,− with highest weights S∞ k,+ ←→ � k − 1 2, −1 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
90
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
91
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
92
+ page_content=' , −1 2 � and S∞ k,+ ←→ � k − 1 2, −1 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
93
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
94
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
95
+ page_content=' , −3 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
96
+ page_content=' These weight entries are fixed by the Cartan algebra h = Alg(Xjj : 1 ≤ j ≤ m), where the elements Xjj are defined in the lemma below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
97
+ page_content=' In this paper, we will omit the parity signs and work with S∞ k as a notation which incorporates both the positive and negative spinors (in our model, this will correspond to even or odd in the variable z ∈ Rm, see below, so it is always easy to ‘decom- pose’ into irreducible components when necessary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
98
+ page_content=' The three operators from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
99
+ page_content='3 can be proven to be invariant under the action of the symplectic Lie algebra, in the sense that they commute with the following generators (see also Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
100
+ page_content='3 in [3]): Branching symplectic monogenics using a M–Z algebra 5 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
101
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
102
+ page_content=' The symplectic Lie algebra sp(2m) has the following realisation on the space of symplectic spinor-valued polynomials P(R2m, C) ⊗ S∞ 0 : \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 Xjk = xj∂xk − yk∂yj − (zk∂zj + 1 2δjk) 1 ≤ j, k ≤ m Yjk = xj∂yk + xk∂yj − ∂zj∂zk 1 ≤ j < k ≤ m Zjk = yj∂xk + yk∂xj + zjzk 1 ≤ j < k ≤ m Yjj = xj∂yj − 1 2∂2 zj 1 ≤ j ≤ m Zjj = yj∂xj + 1 2z2 j 1 ≤ j ≤ m (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
103
+ page_content='1) The branching rule for S∞ 0 , when considering it as a representation space for the orthogonal Lie algebra so(m) ⊂ sp(2m), leads to the Fischer decomposi- tion for C-valued polynomials in the variable z ∈ Rm (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
104
+ page_content=' Note that so(m) is generated by the operators Xjk −Xkj for 1 ≤ j < k ≤ m, giving rise to the well-known angular operators ubiquitous in quantum mechanics (often denoted by Lab with 1 ≤ a < b ≤ m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
105
+ page_content=' In our previous paper [3], we therefore tackled the next case k = 1 as this is a natural generalisation of said Fischer decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
106
+ page_content=' The main problem with our branching rule (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
107
+ page_content='6 in [3]) is the fact that these so(m)-spaces appear with infinite multiplicities, which are not always easy to keep track of.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
108
+ page_content=' Therefore the main goal of this paper is to show that one can organise these in an algebraic framework which extends to other values for k too, using a certain quadratic algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
109
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
110
+ page_content=' Simplicial harmonics in three vector variables In this section we describe a generalisation of harmonic polynomials, in three vector variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
111
+ page_content=' This will be done in terms of a solution space for a ‘natural’ collection of so(m)-invariant differential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
112
+ page_content=' The corresponding Howe dual pair will be useful for the branching problem addressed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
113
+ page_content=' For the sake of completeness, we recall the following basic definition: Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
114
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
115
+ page_content=' A function f(x) on Rm is called harmonic if ∆f(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
116
+ page_content=' The k-homogeneous harmonics are defined as Hk(Rm, C) := Pk(Rm, C) ∩ ker(∆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
117
+ page_content=' These spaces define irreducible representations for so(m) with highest weight (k, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
118
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
119
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
120
+ page_content=' , 0) for all k ∈ Z+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
121
+ page_content=' It is well-known that the space of k-homogeneous polynomials Pk(Rm, C) is reducible as an so(m)-module (see for example [4]) and decomposes into har- monic polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
122
+ page_content=' In fact, the decomposition of the full space of polynomials is known as the aforementioned Fischer decomposition, given by P(Rm, C) = ∞ � k=0 Pk(Rm, C) = ∞ � k=0 ∞ � p=0 |z|2pHk(Rm, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
123
+ page_content=' This can all be generalised to the case of several vector variables (sometimes also called ‘a matrix variable’): for any highest weight for so(m) there is a (polynomial) model in terms of simplicial harmonics (or monogenics for the half-integer representations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
124
+ page_content=' We refer to [8] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
125
+ page_content=' In this paper, 6 David Eelbode and Guner Muarem we will consider these spaces for so(m)-weights characterised by three inte- gers (a, b, c) where a ≥ b ≥ c ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
126
+ page_content=' Also note that trailing zeros in the weight notation will be omitted from now on, so for instance (k, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
127
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
128
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
129
+ page_content=' , 0) will be writ- ten as (k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
130
+ page_content=' First of all, we consider homogeneous polynomials Pa,b,c(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
131
+ page_content=' x, y) in three vector variables (z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
132
+ page_content=' x, y) ∈ R3m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
133
+ page_content=' Here we use the notation (z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
134
+ page_content=' x, y) to stress the difference between the variable z (the spinor variable, refer- ring to an element in S∞ 0 ) from the other two variables (x, y) ∈ R2m, which are ‘ordinary’ variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
135
+ page_content=' The parameters (a, b, c) then refer to the degrees of homogeneity in (z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
136
+ page_content=' x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
137
+ page_content=' These polynomials carry the regular representation of the orthogonal group (or the derived so(m)-action in terms of angular momentum operators Lab from above).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
138
+ page_content=' We further introduce the Weyl algebra in three vector variables as the algebra generated by the variables and their corresponding derivatives: W(R3m, C) := Alg(xα, yβ, zγ, ∂xδ, ∂yε, ∂zζ) with α, β, γ, δ, ε, ζ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
139
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
140
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
141
+ page_content=', m} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
142
+ page_content=' Just like in the case of the classical Fischer decomposition, where the Lie algebra sl(2) appears as a Howe dual partner, there is a Lie algebra appearing here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
143
+ page_content=' To be precise, it is the Lie algebra sp(6) = g−2⊕g0⊕g+2, with parabolic subalgebra p := g−2 ⊕ g0 and Levi subalgebra g0 ∼= gl(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
144
+ page_content=' The subspaces g±2 contain six ‘pure’ operators each (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
145
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
146
+ page_content=' only variables, acting as a multiplication operator, or only derivatives).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
147
+ page_content=' More specifically, the subspaces are spanned by the following SO(m)-invariant operators: g−2 := span(∆x, ∆y, ∆z, ⟨∂x, ∂y⟩, ⟨∂y, ∂z⟩, ⟨∂x, ∂z⟩) g0 := span(⟨x, ∂y⟩, ⟨y, ∂x⟩, ⟨x, ∂z⟩, ⟨z, ∂x⟩, ⟨y, ∂z⟩, ⟨z, ∂y⟩, Ex, Ey, Ez) g+2 := span(|x|2, |y|2, |z|2, ⟨x, y⟩, ⟨y, z⟩, ⟨x, z⟩) Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
148
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
149
+ page_content=' The space of Howe harmonics of degree (a, b, c) in the vari- ables (z, x, y) is defined as H∗ a,b,c(R3m, C) := Pa,b,c(R3m, C) ∩ ker(g−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
150
+ page_content=' In what follows the notation ker(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
151
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
153
+ page_content=' , An) stands for ker(A1)∩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
154
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
155
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
156
+ page_content='∩ker(An), so ker(g−2) means that simplicial harmonics are annihilated by all (pure dif- ferential) operators in sp(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
157
+ page_content=' As a representation space for so(m), the spaces H∗ a,b,c are not irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
158
+ page_content=' In order to obtain an irreducible (sub)space, we have to impose extra conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
159
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
160
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
161
+ page_content=' The vector space of simplicial harmonics of degree (a, b, c) in the variables (z, x, y) is defined by means of Ha,b,c(R3m, C) := H∗ a,b,c(R3m, C) ∩ ker � ⟨z, ∂x⟩, ⟨z, ∂y⟩, ⟨x, ∂y⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
162
+ page_content=' As was shown in [8], this defines an irreducible representation space for so(m) with highest weight (a, b, c), where the dominant weight condition a ≥ b ≥ c must hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
163
+ page_content=' This now leads to the following generalisation of the result above (the Fisher decompostion in three vector variables): Branching symplectic monogenics using a M–Z algebra 7 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
164
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
165
+ page_content=' The space P(R3m, C) of complex-valued polynomials in three vector variables (in Rm) has a multiplicity-free decomposition under the ac- tion of sp(6) × SO(m) by means of: P(R3m, C) ∼= � a≥b≥c V∞ a,b,c ⊗ Ha,b,c(R3m, C), where we used the dominant weight condition in the summation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
166
+ page_content=' The notation V∞ a,b,c hereby refers to a Verma module (see for example [6]) for sp(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
167
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
168
+ page_content=' The Mickelsson-Zhelobenko algebra (general setup) We have now introduced 21 differential operators giving rise to a realisation of the Lie algebra sp(6) inside the Weyl algebra (on 3 vector variables in Rm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
169
+ page_content=' In this section we construct a related algebra, the so-called Mickelsson- Zhelobenko algebra (also called transvector or step algebra) Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
170
+ page_content=' Let g be a Lie algebra and let s ⊂ g be a reductive subalgebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
171
+ page_content=' We then have the decomposition g = s ⊕ t, where t carries an s-action for the commutator (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
172
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
173
+ page_content=' [s, t] ⊂ t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
174
+ page_content=' For s we then fix a triangular decomposition s = s− ⊕ h ⊕ s+, where s± consists of the positive (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
175
+ page_content=' negative roots) with respect to the Cartan subalgebra h ⊂ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
176
+ page_content=' We then also define a left ideal J ⊂ U(g) in the universal enveloping algebra U(g) by means of U(g)s+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
177
+ page_content=' This allows us to define a certain subalgebra of U(g) which is known as the normaliser: Norm(J) := {u ∈ U(g) | Ju ⊂ J}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
178
+ page_content=' The crucial point is that J is a two-sided ideal of Norm(J), which allows us two define the quotient algebra S(g, s) = Norm(J)/J which is known as the Mickelsson algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
179
+ page_content=' In a last step of the construction, we consider an extension of U(g) to a suitable localisation U′(g) given by U′(g) = U′(g) ⊗U(h) Frac(U(h)) , where Frac(U(h)) is the field of fractions in the (universal enveloping algebra of the) Cartan algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
180
+ page_content=' The ideal J′ can be introduced for this extension too (in a completely similar way) and the corresponding quotient algebra Z(g, s) := Norm(J′)/J′ is the Mickelsson-Zhelobenko algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
181
+ page_content=' These two al- gebras are naturally identified, since one has that Z(g, s) = S(g, s) ⊗U(h) Frac(U(h)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
182
+ page_content=' Note that this algebra is sometimes referred to as a ‘transvector algebra’, which is what we will often use in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
183
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
184
+ page_content=' The Mickelsson-Zhelobenko algebra Z(sp(6), so(4)) We will now define a specific example of the construction from above, which will help us to understand how the branching of S∞ k works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
185
+ page_content=' First of all, we note the following: 8 David Eelbode and Guner Muarem Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
186
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
187
+ page_content=' The three (orthogonally invariant) operators L := ⟨x, ∂y⟩ − 1 2∆z R := ⟨y, ∂x⟩ + 1 2|z|2 E := Ey − Ex + Ez + n 2 give rise to yet another copy of the Lie algebra sl(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
188
+ page_content=' This Lie algebra com- mutes with the Lie algebra sl(2) ∼= Alg(Ds, Xs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
189
+ page_content=' This thus means that we have now obtained a specific realisation for the Lie algebra so(4) ∼= Alg(Ds, Xs) ⊕ Alg(L, R) ∼= sl(2) ⊕ sl(2) which appears as a subalgebra of sp(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
190
+ page_content=' This algebra will play the role of s from Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
191
+ page_content=' Let us therefore consider the lowest weight vectors in so(4): Y1 = Ds = ⟨z, ∂y⟩ − ⟨∂z, ∂x⟩ and Y2 = L = ⟨x, ∂y⟩ − 1 2∆z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
192
+ page_content=' We will focus on the solutions of both lowest weight vectors, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
193
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
194
+ page_content=' ker(Ds, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
195
+ page_content=' Note that the operators in sp(6) do not necessarily act as endomorphisms on this space, but the transvector framework allows us to ‘replace’ these operators by (related) transvector algebra generators which do act as endo- morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
196
+ page_content=' We start with proving the reductiveness of the algebra so(4) in sp(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
197
+ page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
198
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
199
+ page_content=' The Lie algebra so(4) is reductive in sp(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
200
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
201
+ page_content=' We need to show that sp(6) decomposes as so(4) + t, where the sub- space t carries an action of so(4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
202
+ page_content=' For that purpose we introduce the following 15 (linearly independent) differential operators: ∆x ⟨z, ∂x⟩ ⟨y, ∂x⟩ − |z|2 ⟨y, z⟩ |y|2 ⟨∂x, ∂y⟩ ⟨z, ∂y⟩ + ⟨∂z, ∂x⟩ Ex − Ey + 2Ez + m ⟨x, z⟩ − ⟨y, ∂z⟩ ⟨x, y⟩ ∆y ⟨∂y, ∂z⟩ ⟨x, ∂y⟩ + ∆z ⟨x, ∂z⟩ |x|2 It is now a straightforward computation to check that for each of these op- erators the commutator with one of the operators in so(4) is again a linear combination of the operators above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
203
+ page_content=' □ In order to construct the generators for the algebra Z(g, s) with g = sp(6) and s = so(4), we need the following: Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
204
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
205
+ page_content=' The extremal projector for the Lie algebra sl(2) = Alg(X, Y, H) is the idempotent operator π given by the (formal) expression π := 1 + ∞ � j=1 (−1)j j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
206
+ page_content=' Γ(H + 2) Γ(H + 2 + j)Y jXj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
207
+ page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
208
+ page_content='1) This operator satisfies Xπ = πY = 0 and π2 = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
209
+ page_content=' Note that this operator is defined on the extension U′(sl(2)) of the universal enveloping algebra defined earlier, so that formal series containing the oper- ator H in the denominator are well-defined (in practice it will always reduce to a finite summation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
210
+ page_content=' Branching symplectic monogenics using a M–Z algebra 9 Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
211
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
212
+ page_content=' The extremal projector πso(4) is given by the product of the extremal projectors for the Lie algebras sl(2), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
213
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
214
+ page_content=' πso(4) = πDsπL = πLπDs (the operator appearing as an index here refers to the realisation for sl(2) that was used).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
215
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
216
+ page_content=' This is due to the fact that the two copies of sl(2) commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
217
+ page_content=' □ The operator πso(4) is thus explicitly given by \uf8eb \uf8ed1 + ∞ � j=1 (−1)j j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
218
+ page_content=' Γ(E + 2) Γ(E + 2 + j)Xj sDj s \uf8f6 \uf8f8 \uf8eb \uf8ed1 + ∞ � j=1 (−1)j j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
219
+ page_content=' Γ(E + 2) Γ(E + 2 + j)RjLj \uf8f6 \uf8f8 and satisfies Dsπso(4) = Lπso(4) = 0 = πso(4)Xs = πso(4)R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
220
+ page_content=' This means that we now have a natural object that can be used to project polynomials on the intersection of the kernel of the operators Ds and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
221
+ page_content=' The 15 operators in t ⊂ sp(6) as such do not preserve this kernel space (as these operators do not necessarily commute with Ds and L), but their projections will belong to End(ker(Ds, L)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
222
+ page_content=' In what follows we will use the notation Qa,b, where a ∈ {±2, 0} and b ∈ {±4, ±2, 0}, to denote the operators in t (see Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
223
+ page_content='2, and the scheme below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
224
+ page_content=' For each operator Qa,b we then also define an associated operator Pa,b := πso(4)Qa,b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
225
+ page_content=' For instance P4,−2 = πso(4)|y|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
226
+ page_content=' The P-operators will then be used to define the generators for our transvector algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
227
+ page_content=' The diagram below should then be seen as the analogue of the 15 operators Qa,b given above, grouped into a 5 × 3 rectangle, where each operator α ∈ t carries a label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
228
+ page_content=' The meaning of the labels (a, b) comes from the observation that t ∼= V4 ⊗ V2 as a representation for sl(2) ⊕ sl(2), with Vn the standard notation for the irreducible representation of dimension (n+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
229
+ page_content=' Given an operator α ∈ t, the numbers a and b can thus be retrieved as eigenvalues for the commutator action of the Cartan elements in so(4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
230
+ page_content=' Note that the projection operator so(4) commutes with these Cartan elements (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
231
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
232
+ page_content=' the operators Qa,b and Pa,b indeed carry the same labels).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
233
+ page_content=' −2 0 2 −4 − 2 0 2 4 Despite the fact that Z(sp(6), so(4)) is not a Lie algebra, we have organised these operators in such a way that the notions of ‘positive’ and ‘negative’ roots can be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
234
+ page_content=' To be more precise: black dots (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
235
+ page_content=' grey dots) refer to negative (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
236
+ page_content=' positive) operators, and the white dot plays the role of a ‘Cartan element’ (this analogy will come in handy below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
237
+ page_content=' The 7 black 10 David Eelbode and Guner Muarem dots (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
238
+ page_content=' 7 grey dots) will be referred to as operators in ρ− (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
239
+ page_content=' in ρ+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
240
+ page_content=' Together with the operator P0,0 we then get the set GZ = {Pa,b : a ∈ {±2, 0}, b ∈ {±4, ±2, 0}}, containing all the generators for the transvector algebra Z(sp(6), so(4)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
241
+ page_content=' Due to a general result by Zhelobenko, these generators then satisfy quadratic relations (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
242
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
243
+ page_content=' different from the classical Lie brackets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
244
+ page_content=' In the next theorem, we will relate the spaces Ha,b,c(R3m, C) introduced in Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
245
+ page_content='3 to the space of polynomial solutions for the symplectic Dirac operator Ds, the lowering operator L and the negative ‘roots’ ρ− which we have just introduced (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
246
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
247
+ page_content=' the operators Pa,b corresponding to black dots).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
248
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
249
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
250
+ page_content=' The solutions for the operators Ds and L and the negative roots ρ− ⊂ GZ which are homogeneous of degree (a, b, c) in the variables (z, x, y) are precisely given by the simplicial harmonics Ha,b,c(R3m, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
251
+ page_content=' In other words, we have: Pa,b,c(R3m, C) ∩ ker(Ds, L, ρ−) = Ha,b,c(R3m, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
252
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
253
+ page_content=' The idea behind this proof is a recursive argument, where the or- dering on the black dots will be from left to right and from bottom to top in the rectangular scheme above (in terms of labels this means that (2, −4) > (0, −4) > (2, −2), as an example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
254
+ page_content=' The reason for doing so is the following: the commutators [L, Qa,b] and [Ds, Qa,b] give an operator situated below or to the left of the operator Qa,b we started from.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
255
+ page_content=' Up to a con- stant, these operators are equal to Qa+2,b and Qa,b−2 respectively (or trivial whenever the parameters a and b are not in the correct range).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
256
+ page_content=' This means that combinations of the form LQa,b and DsQab act trivially on functions H(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
257
+ page_content=' x, y) in the kernel of L and Ds, provided we know that also Qa+2,b and Qa,b−2 act trivially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
258
+ page_content=' Given the fact that each operator Pa,b ∈ ρ− is of the form Pa,b = � 1 + O1L �� 1 + O2Ds � Qa,b , where Oj is a short-hand notation for the correction terms coming from the extremal projection operator (which, unless this operator reduces to the identity operator, always contains either an operator L or Ds at the right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
259
+ page_content=' The upshot of our recursive scheme is that once we know that Qa+2,b and Qa,b−2 act trivially, this immediately tells us that Pa,bH = 0 ⇒ Qa,bH = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
260
+ page_content=' Because P2,−4H = 0 and P2,−4 = Q−2,4 = ∆y, we can immediately conclude that the following operators will then act trivially: ∆y ⟨∂x, ∂y⟩ ∆x ⟨∂y, ∂z⟩ ⟨z, ∂y⟩ + ⟨∂x, ∂z⟩ ⟨z, ∂x⟩ ⟨x, ∂y⟩ + ∆z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
261
+ page_content=' In order to be simplicial harmonic, H(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
262
+ page_content=' x, y) should belong to the kernel of 9 operators in sp(6) (see Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
263
+ page_content='3), but it is straightforward to see that one can reproduce these operators as commutators of the 7 operators on the previous line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
264
+ page_content=' For example: ∆x(⟨x, ∂y⟩ + ∆z)H = 0 leads to ∆zH = 0, since ⟨∂x, ∂y⟩H = 0 (and so on).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
265
+ page_content=' □ Branching symplectic monogenics using a M–Z algebra 11 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
266
+ page_content=' Application: branching symplectic monogenics We will now use the operators Pa,b to explicitly describe the branching of the k-homogeneous symplectic monogenics S∞ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
267
+ page_content=' By this we mean that it will give us a systematic way to define the ‘embedding factors’ realising the isomorphic copy of those spaces in S∞ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
268
+ page_content=' To do so, we will make an analogy again: one can consider the asssociative algebra U(Z), the ‘universal enveloping algebra’ of Z(sp(6), so(4)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
269
+ page_content=' The meaning should be clear here: it is a tensor algebra � V (with V the span of GZ-generators as an underlying vector space) modulo the ideal spanned ‘by the quadratic relations’ in the transvector algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
270
+ page_content=' We will refer to elements in this algebra as ‘words’ in ‘an alphabet’ that can be ordered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
271
+ page_content=' This statement, which should thus be seen as an analogue of the Poincar´e–Birkhoff–Witt theorem (PBW theorem), requires a proof but we will not do this in the present paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
272
+ page_content=' As a matter of fact, the general case k ∈ Z+ will be treated in an upcoming (longer) paper, in the present article we will focus on the case k = 1 as a guiding example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
273
+ page_content=' The main idea is the following: imposing the lexicographic ordering on the labels (a, b) will dictate the position of our letters in the alphabet (from left to right), with e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
274
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
275
+ page_content=' (4, 0) > (4, −2) > (2, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
276
+ page_content=' Letting such a word acting as an operator on simplicial harmonics Ha,b,c(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
277
+ page_content=' x, y), it should be clear (in view of the previous theorem) that only the ‘letters’ corresponding to grey dots in the scheme will play a role (the white dot acts as a constant, whereas the black dots act trivially).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
278
+ page_content=' Considering the fact that the total degree of ‘a word’ in x and y should not exceed k = 1, we can only use the operators Pa,b from the third and fourth column in our example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
279
+ page_content=' Note that once the operator Pab has been chosen (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
280
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
281
+ page_content=' the ‘word’ in front of the simplicial harmonics), the degree (a, b, c) of these polynomials Ha,b,c(z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
282
+ page_content=' x, y) is automatically fixed too: the total degree in z and (x, y) is then equal to k and 1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
283
+ page_content=' So, when the ‘word’ is homogeneous of degree one in (x, y) we get contributions of the form P0,0Ha,1,0 and P2,0Ha,1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
284
+ page_content=' Whereas when the chosen ‘word’ is homogeneous of degree zero we get P−2,2Ha,0,0, P0,2Ha,0,0 and P2,2Ha,0,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
285
+ page_content=' Finally, we note that we can still act with the raising operator R ∈ sl(2) on each of the polynomials from above (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
286
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
287
+ page_content=' a suitable projection operator acting on a suitable space of simplicial harmonics) to arrive at a direct sum of Verma modules which can be embedded into S∞ 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
288
+ page_content=' This is based on the trivial albeit crucial observation that [R, Ds] = 0, so that acting with R preserves symplectic monogenic solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
289
+ page_content=' This means that we have now resolved the branching problem for k = 1 in a completely different way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
290
+ page_content=' Resulting in the decomposition S∞ 1 \uf8e6\uf8e6\uf8e6� sp(2m) so(m) ∼= � a≥1 ∞ � ℓ=0 Rℓ(Ha,1 ⊕ P2,0Ha,1) ⊕ � a≥0 ∞ � ℓ=0 Rℓ(P−2,2Ha ⊕ P−2,0Ha ⊕ P−2,−2Ha).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
291
+ page_content=' 12 David Eelbode and Guner Muarem Summarising the idea behind this decomposition, we thus claim that S∞ k can be decomposed under the joint action of so(m) × sl(2) × Z(sp(6), so(4)), whereby the final decomposition will contain summands of the form Rp � U(ρ+)Ha,b,c � for suitable ‘words’ in the algebra U(ρ+) and suitable spaces of simplicial harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
292
+ page_content=' Acknowledgments The author G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
293
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
294
+ page_content=' was supported by the FWO-EoS project G0H4518N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
295
+ page_content=' References [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
296
+ page_content=' Brackx, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
297
+ page_content=' Delanghe and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
298
+ page_content=' Sommen, Clifford Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
299
+ page_content=' Research Notes in Mathematics 76, Pitman, London, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
300
+ page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
301
+ page_content=' De Bie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
302
+ page_content=' Hol´ıkov´a, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
303
+ page_content=' Somberg, Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
304
+ page_content=' Advances in Applied Clifford Algebras 27(2) (2017), 1103–1132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
305
+ page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
306
+ page_content=' Eelbode, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
307
+ page_content=' Muarem, The Orthogonal Branching Problem for Symplectic Monogenics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
308
+ page_content=' Advances in Applied Clifford Algebras 33(3) (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
309
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
310
+ page_content=' Gilbert, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
311
+ page_content=' Murray, Clifford Algebras and Dirac Operators in Harmonic Anal- ysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
312
+ page_content=' Cambridge University Press, 1991 [5] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
313
+ page_content=' Habermann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
314
+ page_content=' Habermann, Introduction to Symplectic Dirac Operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
315
+ page_content=' In Lecture Notes in Mathematics, Springer Berlin Heidelberg, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
316
+ page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
317
+ page_content=' Howe, Remarks on classical invariant theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
318
+ page_content=' Transactions of the American Mathematical Society 33(2) (1989), 539—570 [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
319
+ page_content=' Robinson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
320
+ page_content=' Rawnsley, The Metaplectic Representation, Mpc Structures and Geometric Quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
321
+ page_content=' Memoirs of the A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
322
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
323
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
324
+ page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
325
+ page_content=' 81, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
326
+ page_content=' 410, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
327
+ page_content=' [8] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
328
+ page_content=' Van Lancker, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
329
+ page_content=' Sommen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
330
+ page_content=' Constales, Models for irreducible representations of Spin(m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
331
+ page_content=' Advances in Applied Clifford Algebras 11 (2001), 271–289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
332
+ page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
333
+ page_content=' Zhelobenko, Extremal projectors and generalised Mickelsson algebras over reductive Lie algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
334
+ page_content=' In Mathematics of the USSR 33(1) (1989), 85—100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
335
+ page_content=' David Eelbode Department of Mathematics University of Antwerp Middelheimlaan 1 2020 Antwerp, Belgium e-mail: david.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
336
+ page_content='eelbode@uantwerpen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
337
+ page_content='be Guner Muarem Department of Mathematics University of Antwerp Middelheimlaan 1 2020 Antwerp, Belgium e-mail: guner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
338
+ page_content='muarem@uantwerpen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
339
+ page_content='be' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE4T4oBgHgl3EQfawwa/content/2301.05066v1.pdf'}
3tAyT4oBgHgl3EQfo_h3/content/2301.00517v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1317fcd8012d77958e75e1d24848e222adc3e075f1278866a0b49ffe3e719e8d
3
+ size 358689
3tAyT4oBgHgl3EQfo_h3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f63b0baea2e44cc8378f800102481196de163691efb5fa339f7247acb6bb498c
3
+ size 176039
59FJT4oBgHgl3EQflCzy/content/tmp_files/2301.11582v1.pdf.txt ADDED
@@ -0,0 +1,1844 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Adaptive Least-Squares Methods for Convection-Dominated
2
+ Diffusion-Reaction Problems
3
+ Zhiqiang Cai∗
4
+ Binghe Chen†
5
+ Jing Yang‡
6
+ Abstract
7
+ This paper studies adaptive least-squares finite element methods for convection-
8
+ dominated diffusion-reaction problems. The least-squares methods are based on the
9
+ first-order system of the primal and dual variables with various ways of imposing
10
+ outflow boundary conditions. The coercivity of the homogeneous least-squares func-
11
+ tionals are established, and the a priori error estimates of the least-squares methods
12
+ are obtained in a norm that incorporates the streamline derivative. All methods have
13
+ the same convergence rate provided that meshes in the layer regions are fine enough.
14
+ To increase computational accuracy and reduce computational cost, adaptive least-
15
+ squares methods are implemented and numerical results are presented for some test
16
+ problems.
17
+ ADAPTIVE FOSLS FOR THE CONVECTION-DOMINATED PROBLEMS
18
+ 1
19
+ Introduction
20
+ Due to the small diffusion coefficient, the solution of the convection-dominated diffusion-
21
+ reaction problem develops the boundary or interior layers, i.e., narrow regions where
22
+ derivatives of the solution change dramatically. It is well known that the conventional
23
+ numerical methods do not work well on either stability or accuracy for such problems. For
24
+ example, the standard Galerkin method with continuous linear elements exhibits large
25
+ spurious oscillation in the boundary layer region.
26
+ Over the decades, many successful
27
+ numerical methods have been studied and may be roughly grouped into three categories:
28
+ the mesh-fitted approach, the operator-fitted approach, and the stabilization approach.
29
+ The mesh-fitted approach utilizes the a priori information of the solution including the
30
+ location and the width of the layer to construct a layer-fitted mesh, e.g., the Shishkin
31
+ mesh. The operator-fitted approach applies the layer-alike functions as the bases of the
32
+ approximation space.
33
+ The stabilization approach adds some stabilization term to the
34
+ ∗Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-
35
+ 2067, [email protected]. This work was supported in part by the National Science Foundation under
36
+ grants DMS-1217081 and DMS-1522707.
37
+ †Wells
38
+ Fargo
39
+ Corporate
40
+ &
41
+ Investment
42
+ Banking,
43
+ Charlotte,
44
+ NC
45
+ 28202-4200,
46
47
+ ‡School of Mathematical Science, Peking University, No.5 Yiheyuan Road Haidian District, Beijing,
48
+ P.R.China 100871, [email protected].
49
+ 1
50
+ arXiv:2301.11582v1 [math.NA] 27 Jan 2023
51
+
52
+ 2
53
+ bilinear form. For example, the well-known streamline upwind Petrov-Galerkin (SUPG)
54
+ method [21] adds the original equation tested by the convection term as the stabilization.
55
+ For a comprehensive collection of the methods, see [23] and the references therein.
56
+ Recently, least-squares methods have been intensively studied for fluid flow and elas-
57
+ ticity problems (see, e.g., [5, 7, 8, 9, 12, 14, 15, 16]). The least-squares methods minimize
58
+ certain norms of the residual of the first-order system over appropriate finite element
59
+ spaces. The method always leads to a symmetric positive definite problem, and choices
60
+ of finite element spaces for the primal and dual variables are not subject to the LBB
61
+ condition. Moreover, one striking feature of the least-squares method is that the value of
62
+ the least-squares functional at the current approximation provides an accurate estimates
63
+ of the true error.
64
+ The application of the least-squares methods to the convection-dominated diffusion-
65
+ reaction problems is still in its infancy. Reported in [17] is a new least-squares formulation
66
+ with inflow boundary conditions weakly imposed and outflow boundary conditions ultra-
67
+ weakly imposed. This formulation works well on regions away from the boundary layer,
68
+ even on coarse meshes. However, it does not resolve the boundary layer, which is the
69
+ primary interest of the problem. This phenomena is also observed in the DG method [4],
70
+ where the boundary conditions are weakly imposed. These works motivate us to treat
71
+ outflow boundary conditions in different fashions. In particular, we study least-squares
72
+ method for the convection-dominated diffusion-reaction problem with three different ways
73
+ to handle the outflow boundary conditions. The a priori error estimates of finite element
74
+ approximations based on these formulations are established.
75
+ The solution of the convection-dominated diffusion-reaction problem usually consists
76
+ of two parts: the solution of a transport problem (ϵ = 0) and the correction (i.e., the
77
+ boundary layer). To compute the first part, it is sufficient to use a coarse mesh, while it
78
+ requires a very fine mesh to resolve the boundary layer. Without the a priori information
79
+ on locations of the layers, this observation motivates the use of adaptive mesh refinement
80
+ algorithm, which has been vastly studied (see, e.g., [2, 3, 6, 13, 19, 24]). However, many a
81
+ posteriori error estimators are not suitable for the convection-dominated diffusion-reaction
82
+ problems, since they depend on the small diffusion parameter.
83
+ To design a robust a
84
+ posteriori error estimator is non-trivial. Nevertheless, for a least-squares formulation, the a
85
+ posteriori error estimator is handy, which is simply the value of the least-squares functional
86
+ at the current approximation. Since the least-squares functional has been computed when
87
+ solving the algebraic equation, there is no additional cost. Besides, the reliability and
88
+ the efficiency stem easily from the coercivity and the continuity of the bilinear form,
89
+ respectively.
90
+ In this paper, we present numerical results of adaptive mesh refinement
91
+ algorithms using the least-squares estimator.
92
+ The rest of this paper is organized as follows. In section 2, we present the convection-
93
+ dominated diffusion-reaction problem and its first-order linear system. Based on the first-
94
+ order system, three least-squares formulations are introduced and their coercivity are
95
+ established in section 3. Section 4 is a computable counterpart of the previous section,
96
+ which introduces the computable mesh dependent norms to replace the fractional norms
97
+ in the least-squares functionals.
98
+ The main objective of section 5 is to establish the a
99
+ priori error estimates. The adaptive mesh refinement algorithm and the numerical tests
100
+
101
+ 3
102
+ are exhibited in section 6 and section 7, respectively.
103
+ 1.1
104
+ Notation
105
+ We use the standard notation and definitions for the Sobolev spaces Hs(Ω)d and Hs(∂Ω)d
106
+ for s ≥ 0. The standard associated inner products are denoted by (·, ·)s,Ω and (·, ·)s,∂Ω,
107
+ and their respective norms are denoted by ∥·∥s,Ω and ∥·∥s,∂Ω. (We suppress the superscript
108
+ d because the dependence on dimension will be clear by context. We also omit the subscript
109
+ Ω from the inner product and norm designation when there is no risk of confusion.) For
110
+ s = 0, Hs(Ω)d coincides with L2(Ω)d. In this case, the inner product and norm will be
111
+ denoted by (·, ·) and ∥ · ∥, respectively. Finally, we define some spaces
112
+ H1
113
+ D(Ω) := {q ∈ H1(Ω) : q = 0 on ΓD},
114
+ H1
115
+ D±(Ω) := {q ∈ H1(Ω) : q = 0 on ΓD±},
116
+ and
117
+ H(div; Ω) = {v ∈ L2(Ω)2 : ∇ · v ∈ L2(Ω)},
118
+ which is a Hilbert space under the norm
119
+ ∥v∥H(div; Ω) =
120
+
121
+ ∥v∥2 + ∥∇ · v∥2� 1
122
+ 2 .
123
+ 2
124
+ The convection-diffusion-reaction problem
125
+ Let Ω be a bounded, open, connected subset in Rd (d = 2, 3) with a Lipschitz continu-
126
+ ous boundary ∂Ω. Denote by n = (n1, · · · , nd)t the outward unit vector normal to the
127
+ boundary. For a given vector-valued function β, denote by
128
+ Γ+ = {x ∈ ∂Ω : β · n(x) > 0}
129
+ and
130
+ Γ− = {x ∈ ∂Ω : β · n(x) < 0}
131
+ the outflow and inflow boundaries, respectively.
132
+ Consider the following stationary convection-dominated diffusion-reaction problem:
133
+ −ϵ ∆u + β · ∇u + c u = f
134
+ in Ω,
135
+ (2.1)
136
+ where the diffusion coefficient ϵ is a given small constant, i.e., 0 < ϵ ≪ 1; and c and
137
+ f are given scalar-valued functions. For simplicity, we consider homogeneous Dirichlet
138
+ boundary condition:
139
+ u|∂Ω = 0.
140
+ (2.2)
141
+ For the convection and reaction coefficients, we assume that:
142
+ (1) β ∈ W 1
143
+ ∞(Ω)d and c ∈ L∞(Ω) with ∥c∥∞ ≤ γ;
144
+ (2) there exists a positive constant α0 such that
145
+ 0 < α0 ≤ c − 1
146
+ 2∇ · β
147
+ a.e. in Ω.
148
+ (2.3)
149
+
150
+ 4
151
+ Introducing the dual variable
152
+ σ = −ϵ1/2∇u,
153
+ (2.1) may be rewritten as the following first-order system:
154
+
155
+ σ + ϵ1/2∇u
156
+ =
157
+ 0
158
+ in Ω,
159
+ ϵ1/2∇ · σ + β · ∇u + c u
160
+ =
161
+ f
162
+ in Ω.
163
+ (2.4)
164
+ 3
165
+ Least-squares formulations
166
+ In this section, we study three least-squares formulations based on the first-order system in
167
+ (2.4) with the inflow boundary conditions imposed strongly. These formulations differ in
168
+ how to handle the outflow boundary conditions. More specifically, the outflow boundary
169
+ conditions are treated strongly for the first one and weakly for the other two through
170
+ weighted boundary functionals.
171
+ To this end, introduce the following least-squares functionals:
172
+ G1(τ, v; f)
173
+ =
174
+ ∥τ + ϵ1/2 ∇v∥2 + ∥ϵ1/2 ∇ · τ + β · ∇v + c v − f∥2,
175
+ (3.1)
176
+ G2(τ, v; f)
177
+ =
178
+ G1(τ, v; f) + ∥ϵ−1/2 v∥2
179
+ 1/2,Γ+,
180
+ (3.2)
181
+ and
182
+ G3(τ, v; f)
183
+ =
184
+ G1(τ, v; f) + ∥v∥2
185
+ 1/2,Γ+.
186
+ (3.3)
187
+ Since ϵ is very small, the outflow boundary conditions are enforced stronger in G2 than in
188
+ G3. Let
189
+ U1 = H(div; Ω) × H1
190
+ 0(Ω)
191
+ and
192
+ U2 = U3 = H(div; Ω) × H1
193
+ Γ−(Ω).
194
+ Then the least-squares formulations are to find (σ, u) ∈ Ui such that
195
+ Gi(σ, u; f) =
196
+ min
197
+ (τ , v)∈ Ui
198
+ Gi(τ, v; f)
199
+ (3.4)
200
+ for i = 1, 2, 3.
201
+ For any (τ, v) ∈ Ui, define the following norms:
202
+ M1(τ, v) = ∥τ∥2 + ∥v∥2 + ∥ϵ1/2 ∇v∥2,
203
+ M2(τ, v) = M1(τ, v) + ∥ϵ−1/2 v∥2
204
+ 1/2,Γ+,
205
+ and
206
+ M3(τ, v) = M1(τ, v) + ∥v∥2
207
+ 1/2,Γ+.
208
+ Below we show that the homogeneous least-squares functionals are coercive with respect
209
+ to the corresponding norms. In particular, the coercivity of the functionals G1 and G2 are
210
+ independent of the ϵ.
211
+ Theorem 3.1 (Coercivity). For all (τ, v) ∈ Ui with i = 1, 2, 3, there exist positive
212
+ constants Ci such that
213
+ Mi(τ, v) ≤ Ci Gi(τ, v; 0),
214
+ (3.5)
215
+ where C1 and C2 are independent of the ϵ and C3 is proportional to ϵ−1/2.
216
+
217
+ 5
218
+ Proof. We provide proofs for i = 2 and 3 in detail with an emphasis on how the weight in
219
+ G2 leads to the coercivity constant independent of the ϵ. The case of i = 1 may be proved
220
+ in a similar fashion as the case of i = 2.
221
+ For all (τ, v) ∈ Ui with i = 1, 2, 3, the triangle inequality gives
222
+ ∥τ∥ ≤ ∥τ + ϵ1/2 ∇v∥ + ∥ϵ1/2 ∇v∥ ≤ G1/2
223
+ 1
224
+ (τ, v; 0) + ∥ϵ1/2 ∇v∥.
225
+ (3.6)
226
+ Hence, to show the validity of (3.5), it suffices to prove that
227
+ ∥v∥2 + ∥ϵ1/2 ∇v∥2 ≤ Ci Gi(τ, v; 0)
228
+ ∀ (τ, v) ∈ Ui.
229
+ (3.7)
230
+ To this end, let
231
+ I = −
232
+
233
+ ϵ1/2 ∇v, τ
234
+
235
+ +
236
+
237
+ v, (c − 1
238
+ 2 ∇ · β) v
239
+
240
+ + 1
241
+ 2 ∥(β · n)1/2 v∥2
242
+ 0,Γ+.
243
+ (3.8)
244
+ It follows from the definition of the outflow boundary condition and the Cauchy-Schwarz
245
+ inequality that
246
+ ∥ϵ1/2 ∇v∥2 + α0 ∥v∥2 ≤ (ϵ1/2 ∇v, ϵ1/2∇v + τ) + I ≤ ∥ϵ1/2 ∇v∥ G1(τ, v; 0) + I,
247
+ which implies
248
+ ∥ϵ1/2 ∇v∥2 + ∥v∥2 ≤ C (G1(σ, u; 0) + I) .
249
+ (3.9)
250
+ To bound I, first note that integration by parts and the boundary conditions imply that
251
+ (ϵ1/2 ∇v, τ)
252
+ =
253
+ (v, ϵ1/2 τ · n)∂Ω − (ϵ1/2 v, ∇ · τ) = (v, ϵ1/2 τ · n)Γ+ − (ϵ1/2 v, ∇ · τ)
254
+ =
255
+ (v, ϵ1/2 τ · n)Γ+ + (v, c v) − (v, ϵ1/2 ∇ · τ + β · ∇v + c v) + (v β, ∇v)
256
+ and that
257
+ (∇v, v β)
258
+ =
259
+ 1
260
+ 2 ∥(β · n)1/2 v∥2
261
+ 0,Γ+ − 1
262
+ 2 (v, v ∇ · β) .
263
+ Combining the above two equalities yields
264
+ I =
265
+
266
+ v, ϵ1/2 ∇ · τ + β · ∇v + c v
267
+
268
+ − (v, ϵ1/2 τ · n)Γ+.
269
+ (3.10)
270
+ By the trace theorem and the Cauchy-Schwarz inequality, we have
271
+ ∥τ · n∥−1/2,Γ+
272
+
273
+ C
274
+
275
+ ∥τ∥ + ∥∇ · τ∥
276
+
277
+
278
+ C
279
+
280
+ G1/2
281
+ 1
282
+ (τ, v; 0) + ∥ϵ1/2 ∇v∥ + ϵ−1/2 ∥β · ∇v∥ + ϵ−1/2 ∥c v∥
283
+
284
+
285
+ C ϵ−1/2�
286
+ G1/2
287
+ 1
288
+ (τ, v; 0) + ∥∇v∥ + ∥v∥
289
+
290
+ .
291
+ (3.11)
292
+
293
+ 6
294
+ Let αi = 1 for i = 2 or 1/2 for i = 3. Then it follows from (3.10), the Cauchy-Schwarz
295
+ inequality, the definition of the dual norm, and (3.11) that for i = 2 and 3
296
+ I
297
+
298
+ ∥v∥ ∥ϵ1/2 ∇ · τ + β · ∇v + c v∥ + ∥ϵ1/2−αi v∥1/2,Γ+ ∥ϵαi τ · n∥−1/2,Γ+
299
+ (3.12)
300
+
301
+ C
302
+
303
+ ∥v∥ + ∥ϵαi τ · n∥−1/2,Γ+
304
+
305
+ G1/2
306
+ i
307
+ (τ, v; 0)
308
+
309
+ C Gi(τ, v; 0) + C
310
+
311
+ ∥ϵαi−1/2 ∇v∥ + ∥v∥
312
+
313
+ G1/2
314
+ i
315
+ (τ, v; 0),
316
+ which, together with (3.9), implies
317
+ ∥ϵ1/2 ∇v∥2 + α0 ∥v∥2 ≤ Ci Gi(τ, v; 0)
318
+ (3.13)
319
+ with C2 independent of ϵ and C3 proportional to ϵ−1/2. This completes the proof of (3.7)
320
+ and, hence, (3.5) for i = 2 and 3.
321
+ The validity of (3.5) for i = 1 may be established in a similar fashion by noticing that
322
+ the boundary term of I in (3.8) vanishes due to the boundary conditions. This completes
323
+ the proof of the theorem.
324
+ 4
325
+ Mesh-dependent least-squares functionals
326
+ For computational feasibility, in this section, we replace the 1
327
+ 2-norm in the least-squares
328
+ functionals defined in (3.2) and (3.3) by mesh-dependent L2-norms. For the simplicity
329
+ of presentation, assume that the domain Ω is a convex polygon in the two dimensional
330
+ plane. (The extension to the higher dimension is straightforward.) Let Th = {K} be a
331
+ triangulation of Ω with triangular elements K of diameter less than or equal to h. Assume
332
+ that the triangulation Th is regular and quasi-uniform (see [18]).
333
+ Denote by Eh the set of all edges of the triangulation Th. The least-squares functionals
334
+ G2 and G3 defined in (3.2) and (3.3) are modified by the following computable least-squares
335
+ functionals:
336
+ Gh
337
+ 2(τ, v; f)
338
+ =
339
+ G1(τ, v; f) +
340
+
341
+ e∈Eh∩Γ+
342
+ h−1
343
+ e ∥ϵ−1/2 v∥2
344
+ 0,e
345
+ (4.1)
346
+ and
347
+ Gh
348
+ 3(τ, v; f)
349
+ =
350
+ G1(τ, v; f) +
351
+
352
+ e∈Eh∩Γ+
353
+ h−1
354
+ e ∥v∥2
355
+ 0,e,
356
+ (4.2)
357
+ where he denotes the diameter of the edge e.
358
+ For any triangle K ∈ Th, let Pk(K) be the space of polynomials of degree less than or
359
+ equal to k on K and denote the local Raviart–Thomas space of index k on K by
360
+ RTk(K) = Pk(K)2 +
361
+ � x1
362
+ x2
363
+
364
+ Pk(K).
365
+ Then the standard H(div; Ω) conforming Raviart–Thomas space of index k [22] and the
366
+ standard (conforming) continuous piecewise polynomials of degree k + 1 are defined, re-
367
+ spectively, by
368
+ Σk
369
+ h = {τ ∈ H(div; Ω) : τ|K ∈ RTk(K), ∀ K ∈ Th},
370
+ (4.3)
371
+ V k+1
372
+ h
373
+ = {v ∈ H1(Ω) : v ∈ Pk+1(K), ∀ K ∈ Th}.
374
+ (4.4)
375
+
376
+ 7
377
+ These spaces have the following approximation properties: let k ≥ 0 be an integer, and
378
+ let l ∈ (0, k + 1]:
379
+ inf
380
+ τ ∈ Σk
381
+ h
382
+ ∥σ − τ∥H(div; Ω) ≤ C hl (∥σ∥l + ∥∇ · σ∥l)
383
+ (4.5)
384
+ for σ ∈ Hl(Ω)2 ∩ H(div; Ω) with ∇ · σ ∈ Hl(Ω) and
385
+ inf
386
+ v∈V k+1
387
+ h
388
+ ∥u − v∥1 ≤ C hl ∥u∥l+1
389
+ (4.6)
390
+ for u ∈ Hl+1(Ω). In the subsequent sections, based on the smoothness of σ and u, we will
391
+ choose k + 1 to be the smallest integer greater than or equal to l. Since the triangulation
392
+ Th is regular, the following inverse inequalities hold for all K ∈ Th:
393
+ ∥τ∥1,K
394
+
395
+ C h−1
396
+ K ∥τ∥K,
397
+ ∀ τ ∈ RTk(K)
398
+ (4.7)
399
+ ∥v∥1,K
400
+
401
+ C h−1
402
+ K ∥v∥K,
403
+ ∀ v ∈ Pk(K)
404
+ (4.8)
405
+ with positive constant C independent of hK.
406
+ Denote by Uh
407
+ i the finite dimensional subspaces of Ui:
408
+ Uh
409
+ i =
410
+
411
+ Σk
412
+ h × V k+1
413
+ h
414
+
415
+ ∩ Ui.
416
+ (4.9)
417
+ For any (τ, v) ∈ Uh
418
+ i , define the following norms:
419
+ Mh
420
+ 2 (τ, v)
421
+ =
422
+ M1(τ, v) +
423
+
424
+ e∈Eh∩Γ+
425
+ h−1
426
+ e ∥ϵ−1/2 v∥2
427
+ 0,e
428
+ and
429
+ Mh
430
+ 3 (τ, v)
431
+ =
432
+ M1(τ, v) +
433
+
434
+ e∈Eh∩Γ+
435
+ h−1
436
+ e ∥v∥2
437
+ 0,e.
438
+ Below we establish the discrete version of Theorem 3.1, i.e., the coercivity of the discrete
439
+ functionals (4.1) and (4.2) with respect to the norms defined above. For the consistence
440
+ of notation, we also let Gh
441
+ 1 = G1 and Mh
442
+ 1 = M1.
443
+ Theorem 4.1. For all (τ, v) ∈ Uh
444
+ i with i = 2 and 3, there exist positive constants Ci
445
+ independent of ϵ such that
446
+ Mh
447
+ i (τ, v) ≤ Ci Gh
448
+ i (τ, v; 0).
449
+ (4.10)
450
+ Proof. Similar to the argument in the proof of Theorem 3.1, in order to establish (4.10),
451
+ it suffices to show that
452
+ ∥ϵ1/2 ∇v∥2 + ∥v∥2 ≤ C Gh
453
+ i (τ, v; 0)
454
+ (4.11)
455
+ for all (τ, v) ∈ Uh
456
+ i . Moreover, we have
457
+ ∥ϵ1/2 ∇v∥2 + ∥v∥2 ≤ C
458
+
459
+ Gh
460
+ i (τ, v; 0) + I
461
+
462
+ (4.12)
463
+
464
+ 8
465
+ with I defined in (3.8).
466
+ For any e ∈ Eh ∩ Γ+, let e be an edge of element K ∈ Th. It follows from the trace
467
+ theorem and the inverse inequality in (4.7) that
468
+ he ∥τ · n∥2
469
+ 0,e ≤ C he ∥τ∥2
470
+ 0,e ≤ C he ∥τ∥0,K∥τ∥1,K ≤ C ∥τ∥2
471
+ 0,K,
472
+ which, together with (3.6), implies
473
+
474
+
475
+
476
+ e∈Eh∩Γ+
477
+ he ∥τ · n∥2
478
+ 0,e
479
+
480
+
481
+ 1/2
482
+ ≤ C ∥τ∥ ≤ C
483
+
484
+ G1/2
485
+ 1
486
+ (τ, v; 0) + ∥ϵ1/2 ∇v∥
487
+
488
+ .
489
+ (4.13)
490
+ Let αi = 1 for i = 2 or 1/2 for i = 3. It follows from (3.10), the Cauchy-Schwarz
491
+ inequality, and (4.13) that
492
+ I
493
+ =
494
+
495
+ v, ϵ1/2 ∇ · τ + β · ∇v + c v
496
+
497
+ − (v, ϵ1/2 τ · n)Γ+
498
+
499
+ C
500
+
501
+ �∥v∥ + ϵαi
502
+
503
+
504
+ e∈Eh∩Γ+
505
+ he ∥τ · n∥2
506
+ 0,e
507
+ �1/2
508
+
509
+ � Gh
510
+ i (τ, v; 0)1/2
511
+
512
+ C Gh
513
+ i (τ, v; 0) + C
514
+
515
+ ∥v∥ + ∥ϵ1/2∇v∥
516
+
517
+ Gh
518
+ i (τ, v; 0)1/2
519
+ which, together with (4.12), implies the validity of (4.11) and, hence, (4.10). This com-
520
+ pletes the proof of the theorem.
521
+ Remark 4.2. Note that the coercivity constant C3 in the discrete version is no longer
522
+ depending on ϵ, that is better than the continuous version (see Theorem 3.1).
523
+ 5
524
+ Finite element approximations
525
+ The least-squares problems are to find (σ, u) ∈ Ui (i = 1, 2, 3) such that
526
+ Gh
527
+ i (σ, u; f) =
528
+ min
529
+ (τ , v)∈ Ui
530
+ Gh
531
+ i (τ, v; f).
532
+ (5.1)
533
+ The corresponding variational problems are to find (σ, u) ∈ Ui such that
534
+ ai(σ, u; τ, v) = Fi(τ, v),
535
+ ∀ (τ, v) ∈ Ui,
536
+ (5.2)
537
+ where the bilinear forms ai(· ; ·) are symmetric and given by
538
+ a1(σ, u; τ, v)
539
+ =
540
+ (σ + ϵ1/2 ∇u, τ + ϵ1/2 ∇v)
541
+ +(ϵ1/2 ∇ · σ + β · ∇u + c u, ϵ1/2 ∇ · τ + β · ∇v + c v),
542
+ a2(σ, u; τ, v)
543
+ =
544
+ a1(σ, u; τ, v) +
545
+
546
+ e ∈Eh∩Γ+
547
+ h−1
548
+ e
549
+ ϵ−1 (u, v)0,e,
550
+ a3(σ, u; τ, v)
551
+ =
552
+ a1(σ, u; τ, v) +
553
+
554
+ e ∈Eh∩Γ+
555
+ h−1
556
+ e
557
+ (u, v)0,e,
558
+
559
+ 9
560
+ and the linear forms Fi(·) are given by
561
+ Fi(τ, v) = (f, ϵ1/2 ∇ · τ + β · ∇v + c v)
562
+ for i = 1, 2, 3.
563
+ The least-squares finite element approximations to the variational problems in (5.2)
564
+ are to find (σi
565
+ h, ui
566
+ h) ∈ Uh
567
+ i such that
568
+ ai(σi
569
+ h, ui
570
+ h; τ, v) = Fi(τ, v),
571
+ ∀ (τ, v) ∈ Uh
572
+ i ,
573
+ (5.3)
574
+ for i = 1, 2, 3. Taking the difference between (5.2) and (5.3) implies the following orthog-
575
+ onality:
576
+ ai(σ − σi
577
+ h, u − ui
578
+ h; τ, v) = 0,
579
+ ∀ (τ, v) ∈ Uh
580
+ i .
581
+ (5.4)
582
+ In the rest of this section, we consider a stronger norm which incorporates the norm
583
+ of the streamline derivative:
584
+ |||(τ, v)|||2
585
+ i = Mh
586
+ i (τ, v) +
587
+
588
+ K∈Th
589
+ δK ∥β · ∇v∥2
590
+ K,
591
+ where δK is a positive constant to be determined. In the following lemma, we show that
592
+ Gh
593
+ i (σ, u; 0) are also elliptic with respect to these norms if the δK is appropriately chosen.
594
+ Lemma 5.1. For all K ∈ Th, assume that 0 < δK ≤ min{h2
595
+ K/ϵ, C}, then there exist
596
+ positive constants Ci independent of ϵ such that
597
+ |||(τ, v)|||2
598
+ i ≤ Ci Gh
599
+ i (τ, v; 0),
600
+ ∀ (τ, v) ∈ Uh
601
+ i ,
602
+ i = 1, 2, 3.
603
+ Proof. By Theorems 3.1 and 4.1, to prove the validity of the lemma, it suffices to show
604
+ that
605
+
606
+ K∈Th
607
+ δK ∥β · ∇v∥2
608
+ K ≤ Ci Gh
609
+ i (τ, v; 0).
610
+ (5.5)
611
+ To this end, note the facts that
612
+ δK ≤ C
613
+ and
614
+ δK ϵ
615
+ h2
616
+ K
617
+ ≤ min
618
+
619
+ 1, C ϵ
620
+ h2
621
+ K
622
+
623
+ ≤ C.
624
+ Now it follows from the Cauchy-Schwarz inequality and the inverse inequality in (4.7) that
625
+
626
+ K∈Th
627
+ δK ∥β · ∇v∥2
628
+ K
629
+
630
+ C
631
+
632
+ K∈Th
633
+ δK
634
+
635
+ Gh
636
+ 1,K (τ, v; 0) + ∥ϵ1/2 ∇ · τ∥2
637
+ K + ∥c v∥2
638
+ K
639
+
640
+
641
+ C
642
+
643
+ K∈Th
644
+
645
+ Gh
646
+ 1,K (τ, v; 0) + δK ϵ
647
+ h2
648
+ K
649
+ ∥τ∥2
650
+ K + ∥v∥2
651
+ K
652
+
653
+
654
+ C
655
+
656
+ Gh
657
+ 1 (τ, v; 0) + ∥τ∥2 + ∥v∥2�
658
+ ≤ C Gh
659
+ i (τ, v; 0),
660
+ which establishes (5.5) and hence completes the proof of the lemma.
661
+
662
+ 10
663
+ To choose δK properly, first define the local mesh P´eclet number by
664
+ PeK = ∥β∥0,∞,K hK
665
+ 2 ϵ
666
+ ,
667
+ then partition the triangulation Th into two subsets:
668
+ T c
669
+ h = {K ∈ Th : PeK > 1}
670
+ and
671
+ T d
672
+ h = {K ∈ Th : PeK ≤ 1}.
673
+ (5.6)
674
+ The elements in T c
675
+ h are referred to the convection-dominated elements, while the elements
676
+ in T d
677
+ h the diffusion-dominated elements. Now, the δK is chosen to be
678
+ δK =
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+ 2 hK
691
+ ∥β∥0,∞,K
692
+ ,
693
+ if K ∈ T c
694
+ h ,
695
+ h2
696
+ K
697
+ ϵ ,
698
+ if K ∈ T d
699
+ h .
700
+ (5.7)
701
+ Remark 5.2. The δK defined in (5.7) satisfies the assumption in Lemma 5.1, i.e.,
702
+ δK ≤ min{h2
703
+ K/ϵ, C}.
704
+ (5.8)
705
+ Proof. Since ∥β∥0,∞,K is large comparing to hK, we have
706
+ 2 hK
707
+ ∥β∥0,∞,K
708
+ ≤ C.
709
+ (5.9)
710
+ For any K ∈ T c
711
+ h , the fact that PeK > 1 implies
712
+ 2 hK
713
+ ∥β∥0,∞,K
714
+ < h2
715
+ K
716
+ ϵ ,
717
+ which, together with (5.9), yields (5.8). For any K ∈ T d
718
+ h , (5.8) is again a consequence of
719
+ the definition of δK in (5.7), the fact that PeK ≤ 1, and (5.9).
720
+ Denote by T ∂
721
+ h the set of elements that intersect the outflow boundary nontrivially, i.e.,
722
+ T ∂
723
+ h = {K ∈ Th : meas( ¯K ∩ Γ+) > 0}.
724
+ In this paper, we assume that
725
+ T ∂
726
+ h ⊂ T d
727
+ h .
728
+ (5.10)
729
+ For any K ∈ T d
730
+ h , the fact that PeK ≤ 1 implies
731
+ hK <
732
+ 2 ϵ
733
+ ∥β∥0,∞,K
734
+ .
735
+ Hence, assumption (5.10) means that the mesh size in the boundary layer region is com-
736
+ parable to the perturbation parameter ϵ.
737
+
738
+ 11
739
+ Theorem 5.3. Let (σ, u) be the solution of (5.2). Assume that (σ, u) ∈ Hl(Ω)2×Hl+1(Ω)
740
+ and that ∇ · σ ∈ Hl(Ω). Let (σi
741
+ h, ui
742
+ h), i = 1, 2, 3, be the solution of (5.3) with k = l.
743
+ Under the assumption in (5.10), we have the following a priori error estimation:
744
+ Ci
745
+ ������(σ − σi
746
+ h, u − ui
747
+ h)
748
+ ������2
749
+ i
750
+
751
+
752
+ K∈T c
753
+ h
754
+ h2l−1
755
+ K
756
+
757
+ ϵ ∥∇ · σ∥2
758
+ l,K + hK ∥σ∥2
759
+ l,K + ∥u∥2
760
+ l+1,K
761
+
762
+ +
763
+
764
+ K∈T d
765
+ h
766
+ h2l−1
767
+ K
768
+ � ϵ2
769
+ hK
770
+ ∥∇ · σ∥2
771
+ l,K + hK ∥σ∥2
772
+ l,K + ϵ
773
+ hK
774
+ ∥u∥2
775
+ l+1,K
776
+
777
+ ,
778
+ (5.11)
779
+ where constants Ci > 0 are independent of ϵ.
780
+ Proof. We provide proof of (5.11) only for i = 2 and 3 since (5.11) may be obtained in a
781
+ similar fashion.
782
+ To this end, let σI and uI be the interpolants of σ and u, respectively, such that the
783
+ approximation properties in (4.5) and (4.6) hold and that
784
+ (∇ · (σ − σI), v) = 0,
785
+ ∀ v ∈ Dh
786
+ k,
787
+ (5.12)
788
+ where Dh
789
+ k = {v ∈ L2(Ω) : v|K ∈ Pk(K) ∀ K ∈ Th} is the space of discontinuous piecewise
790
+ polynomials of degree less than or equal to k ≥ 0. Let
791
+ EI = σ − σI,
792
+ Ei
793
+ h = σI − σi
794
+ h,
795
+ eI = u − uI,
796
+ and
797
+ ei
798
+ h = uI − ui
799
+ h.
800
+ Since Ei = σ − σi
801
+ h = EI + Ei
802
+ h and ei = u − ui
803
+ h = eI + ei
804
+ h, the triangle inequality gives
805
+ ������(Ei, ei)
806
+ ������
807
+ i ≤ |||(EI, eI)|||i +
808
+ ������(Ei
809
+ h, ei
810
+ h)
811
+ ������
812
+ i.
813
+ (5.13)
814
+ Let αi = −1 or 0 for i = 2, 3. By approximation property (4.6) and assumption (5.10),
815
+ we have
816
+
817
+ e ∈Eh∩Γ+
818
+ h−1
819
+ e
820
+ ϵαi ∥eI∥2
821
+ 0,e ≤ C
822
+
823
+ K∈T ∂
824
+ h
825
+ h2l
826
+ K ϵαi ∥u∥2
827
+ l+1,K ≤ C
828
+
829
+ K∈T ∂
830
+ h
831
+ h2l+αi
832
+ K
833
+ ∥u∥2
834
+ l+1,K.
835
+ Now, it follows from (4.5), (4.6), the trace theorem, and the fact δK ≤ C that
836
+ |||(EI, eI)|||2
837
+ i
838
+
839
+ C
840
+
841
+ �∥EI∥2 + ∥eI∥2 + ∥ϵ1/2 ∇eI∥2 +
842
+
843
+ e∈Γ+
844
+ h−1
845
+ e
846
+ ϵαi ∥eI∥2
847
+ e +
848
+
849
+ K∈Th
850
+ ∥β · ∇eI∥2
851
+ K
852
+
853
+
854
+
855
+ C
856
+
857
+ � �
858
+ K∈Th
859
+ h2l
860
+ K ∥σ∥2
861
+ l,K +
862
+
863
+ K∈Th
864
+ h2l
865
+ K ∥u∥2
866
+ l+1,K +
867
+
868
+ K∈T ∂
869
+ h
870
+ h2l+αi
871
+ K
872
+ ∥u∥2
873
+ l+1,K
874
+
875
+ � .
876
+ (5.14)
877
+
878
+ 12
879
+ To bound the second term of the right-hand side in (5.13), by Lemma 5.1 and orthog-
880
+ onality (5.4), we have
881
+ Ci
882
+ ������(Ei
883
+ h, ei
884
+ h)
885
+ ������2
886
+ i ≤ ai(Ei
887
+ h, ei
888
+ h; Ei
889
+ h, ei
890
+ h) = ai(Ei
891
+ h, ei
892
+ h; −EI, −eI) ≡ Ii
893
+ 1 + Ii
894
+ 2 + Ii
895
+ 3 + Ii
896
+ 4, (5.15)
897
+ where
898
+ Ii
899
+ 1
900
+ =
901
+ (c ei
902
+ h, −ϵ1/2 ∇ · EI − β · ∇eI − c eI) + (Ei
903
+ h + ϵ1/2 ∇ei
904
+ h, −EI − ϵ1/2 ∇eI),
905
+ Ii
906
+ 2
907
+ =
908
+ (ϵ1/2 ∇ · Ei
909
+ h, −ϵ1/2 ∇ · EI − β · ∇eI − c eI),
910
+ Ii
911
+ 3
912
+ =
913
+ (β · ∇ei
914
+ h, −ϵ1/2 ∇ · EI − β · ∇eI − c eI),
915
+ and
916
+ Ii
917
+ 4
918
+ =
919
+
920
+ e ∈Eh∩Γ+
921
+ h−1
922
+ e
923
+ ϵαi (ei
924
+ h, −eI)0,e.
925
+ It follows from the triangle and Cauchy-Schwarz inequalities, (4.5), and (4.6) that
926
+ Ii
927
+ 1
928
+ ≤ C ∥ei
929
+ h∥
930
+
931
+ ∥ϵ1/2∇ · EI∥ + ∥∇eI∥ + ∥eI∥
932
+
933
+ + C
934
+
935
+ ∥Ei
936
+ h∥ + ∥ϵ1/2∇ei
937
+ h∥
938
+ � �
939
+ ∥EI∥ + ∥ϵ1/2∇eI)∥
940
+
941
+ ≤C
942
+
943
+ ∥ei
944
+ h∥ + ∥Ei
945
+ h∥ + ∥ϵ1/2∇ei
946
+ h∥
947
+
948
+
949
+ � �
950
+ K∈Th
951
+ h2l
952
+ K
953
+
954
+ ϵ∥∇ · σ∥2
955
+ l,K + ∥σ∥2
956
+ l,K + ∥u∥2
957
+ l+1,K
958
+
959
+
960
+
961
+ 1/2
962
+ . (5.16)
963
+ By (5.12), the Cauchy-Schwarz and triangle inequalities, and the inverse inequality in
964
+ (4.7), we have
965
+ Ii
966
+ 2 = −(ϵ1/2 ∇ · Ei
967
+ h, β · ∇eI + c eI),
968
+ ≤ C
969
+
970
+ K∈Th
971
+ ϵ1/2
972
+ hK
973
+ ∥Ei
974
+ h∥K
975
+
976
+ ∥∇eI∥K + ∥eI∥K
977
+
978
+ ≤ C ∥Ei
979
+ h∥
980
+
981
+ � �
982
+ K∈Th
983
+ ϵ h2l−2
984
+ K
985
+ ∥u∥2
986
+ l+1,K
987
+
988
+
989
+ 1/2
990
+ . (5.17)
991
+ By the Cauchy-Schwarz and the triangle inequalities, I3 is bounded by
992
+ Ii
993
+ 3 ≤ C
994
+
995
+ K∈Th
996
+ ∥β · ∇ei
997
+ h∥K
998
+
999
+ ϵ1/2 ∥∇ · EI∥K + ∥∇eI∥K + ∥eI∥K
1000
+
1001
+
1002
+ C
1003
+
1004
+ K∈Th
1005
+ ∥β · ∇ei
1006
+ h∥K
1007
+
1008
+ ϵ1/2 hl
1009
+ K ∥∇ · σ∥l,K + hl
1010
+ K ∥u∥l+1,K
1011
+
1012
+ ≤ C
1013
+
1014
+ � �
1015
+ K∈Th
1016
+ δK∥β · ∇ei
1017
+ h∥2
1018
+ K
1019
+
1020
+
1021
+ 1/2�
1022
+ � �
1023
+ K∈Th
1024
+ δ−1
1025
+ K
1026
+
1027
+ ϵ h2l
1028
+ K ∥∇ · σ∥2
1029
+ l,K + h2l
1030
+ K ∥u∥2
1031
+ l+1,K
1032
+
1033
+
1034
+
1035
+ 1/2
1036
+ .(5.18)
1037
+
1038
+ 13
1039
+ For Ii
1040
+ 4, it follows from the Cauchy-Schwarz inequality and the trace theorem that
1041
+ Ii
1042
+ 4
1043
+
1044
+ C
1045
+
1046
+
1047
+
1048
+ e ∈Eh∩Γ+
1049
+ h−1
1050
+ e
1051
+ ϵαi ∥ei
1052
+ h∥2
1053
+ 0,e
1054
+
1055
+
1056
+ 1/2 �
1057
+
1058
+
1059
+ e ∈Eh∩Γ+
1060
+ h−1
1061
+ e
1062
+ ϵαi ∥eI∥2
1063
+ 0,e
1064
+
1065
+
1066
+ 1/2
1067
+
1068
+ C
1069
+
1070
+
1071
+
1072
+ e ∈Eh∩Γ+
1073
+ h−1
1074
+ e
1075
+ ϵαi ∥ei
1076
+ h∥2
1077
+ 0,e
1078
+
1079
+
1080
+ 1/2 �
1081
+ � �
1082
+ K∈T ∂
1083
+ h
1084
+ h2l+αi
1085
+ K
1086
+ ∥u∥2
1087
+ l+1,K
1088
+
1089
+
1090
+ 1/2
1091
+ .
1092
+ (5.19)
1093
+ Combining (5.15), (5.16), (5.17), (5.18), (5.19), and (5.8), we have
1094
+ Ci
1095
+ ������(Ei
1096
+ h, ei
1097
+ h)
1098
+ ������2
1099
+ i
1100
+
1101
+
1102
+ K∈Th
1103
+ h2l
1104
+ K∥σ∥2
1105
+ l,K +
1106
+
1107
+ K∈Th
1108
+
1109
+ 1 + δ−1
1110
+ K
1111
+
1112
+ ϵ h2l
1113
+ K ∥∇ · σ∥2
1114
+ l,K +
1115
+
1116
+ K∈T ∂
1117
+ h
1118
+ h2l+αi
1119
+ K
1120
+ ∥u∥2
1121
+ l+1,K
1122
+ +
1123
+
1124
+ K∈Th
1125
+
1126
+ 1 + ϵ h−2
1127
+ K + δ−1
1128
+ K
1129
+
1130
+ h2l
1131
+ K∥u∥2
1132
+ l+1,K
1133
+
1134
+
1135
+ K∈Th
1136
+ �ϵ h2l
1137
+ K
1138
+ δK
1139
+ ∥∇ · σ∥2
1140
+ l,K + h2l
1141
+ K ∥σ∥2
1142
+ l,K + h2l
1143
+ K
1144
+ δK
1145
+ ∥u∥2
1146
+ l+1,K
1147
+
1148
+ +
1149
+
1150
+ K∈T ∂
1151
+ h
1152
+ h2l+αi
1153
+ K
1154
+ ∥u∥2
1155
+ l+1,K,
1156
+ which, together with the definition of δK in (5.7), implies
1157
+ Ci
1158
+ ������(Ei
1159
+ h, ei
1160
+ h)
1161
+ ������2
1162
+ i
1163
+
1164
+
1165
+ K∈T c
1166
+ h
1167
+ h2l−1
1168
+ K
1169
+
1170
+ ϵ ∥∇ · σ∥2
1171
+ l,K + hK ∥σ∥2
1172
+ l,K + ∥u∥2
1173
+ l+1,K
1174
+
1175
+ +
1176
+
1177
+ K∈T d
1178
+ h
1179
+ h2l−1
1180
+ K
1181
+ � ϵ2
1182
+ hK
1183
+ ∥∇ · σ∥2
1184
+ l,K + hK ∥σ∥2
1185
+ l,K + ϵ
1186
+ hK
1187
+ ∥u∥2
1188
+ l+1,K
1189
+
1190
+ .
1191
+ Now, (5.11) is a consequence of (5.13) and (5.14). This completes the proof of the theorem.
1192
+ Note that the a priori error estimate in Theorem 5.3 is not optimal. This is because
1193
+ the coercivity of the homogeneous least-squares functionals in Lemma 5.1 are established
1194
+ in a norm that is weaker than the norm used for the continuity of the functionals. To
1195
+ restore the full order of convergence, one may use piecewise polynomials of degree l + 1 to
1196
+ approximate u.
1197
+ Theorem 5.4. Let (σi
1198
+ h, ui
1199
+ h), i = 1, 2, 3, be the solution of (5.3) with Uh
1200
+ i = (Σl
1201
+ h×V l+1
1202
+ h
1203
+ )∩ Ui.
1204
+
1205
+ 14
1206
+ Under the assumption of Theorem 5.3, we have the following a priori error estimation:
1207
+ Ci
1208
+ ������(σ − σi
1209
+ h, u − ui
1210
+ h)
1211
+ ������2
1212
+ i
1213
+
1214
+
1215
+ K∈T c
1216
+ h
1217
+ h2l
1218
+ K
1219
+
1220
+ ∥∇ · σ∥2
1221
+ l,K + ∥σ∥2
1222
+ l,K + hK ∥u∥2
1223
+ l+2,K
1224
+
1225
+ +
1226
+
1227
+ K∈T d
1228
+ h
1229
+ h2l
1230
+ K
1231
+ � ϵ2
1232
+ h2
1233
+ K
1234
+ ∥∇ · σ∥2
1235
+ l,K + ∥σ∥2
1236
+ l,K + ϵ ∥u∥2
1237
+ l+2,K
1238
+
1239
+ ,
1240
+ (5.20)
1241
+ where constants Ci > 0 are independent of ϵ.
1242
+ Proof. The a priori error estimate in (5.20) may be obtained in a similar fashion by noting
1243
+ that
1244
+ ∥u − uI∥1 ≤ C hl+1∥u∥l+2.
1245
+ 6
1246
+ Adaptive algorithm
1247
+ Asymptotic analysis (see, e.g., [20]) shows that the solution of a convection-dominated
1248
+ diffusion-reaction problem consists of two parts: the solution of the reduced equation
1249
+ (ϵ = 0) and the correction, i.e., the boundary or interior layers.
1250
+ The boundary and
1251
+ interior layers are narrow regions where derivatives of the solution change dramatically.
1252
+ For example, for the following problem [20]:
1253
+
1254
+
1255
+
1256
+
1257
+
1258
+ −ϵ ∆u + ∂u
1259
+ ∂y = f
1260
+ in Ω = (0, 1)2,
1261
+ u = 0
1262
+ on ∂Ω,
1263
+ the exponential layer is of width O(ϵ) at y = 1, and the width of the parabolic boundary
1264
+ layers is O(ϵ1/2) at both x = 0 and x = 1.
1265
+ Therefore, two sets of largely different
1266
+ scales exist simultaneously in the convection-dominated diffusion problem, and hence it is
1267
+ difficult computationally.
1268
+ On the one hand, one can apply the small scale over the entire domain, i.e., to use
1269
+ uniform fine meshes. With such a fine mesh, the standard Galerkin finite element method
1270
+ can also produce a good approximation. However, it is computationally inefficient due to
1271
+ the small region of the boundary and/or interior layers. On the other hand, one can use
1272
+ the large scale over the entire domain. If the outflow boundary conditions are imposed
1273
+ strongly, the numerical solution (away from the boundary layers) will be polluted. In
1274
+ contrast, if the outflow boundary conditions are imposed weakly, the boundary layers can
1275
+ not be resolved (see, e.g., numerical results in [4, 17]).
1276
+ Neither of the above two approaches leads to a satisfactory numerical scheme. The fail-
1277
+ ure is due to the fact that these approaches ignore this intrinsic property of the convection-
1278
+ dominated diffusion problem. In contrast, the Shishkin mesh is aware of and respect it.
1279
+
1280
+ 15
1281
+ Basically, the Shishkin mesh is a piecewise uniform mesh. In the diffusion-dominated re-
1282
+ gion where the layers stand, it is a fine mesh suitable to the layer and in the convective
1283
+ region, it turns to be a coarse mesh. The disadvantage of the Shishkin mesh is that it
1284
+ needs the a priori information of the solution, such as the location and the width of the
1285
+ layer, in order to construct a mesh of high quality. However, this information is not always
1286
+ available in advance, especially, for a complex problem.
1287
+ Based on the above considerations, we employ adaptive least-squares finite element
1288
+ methods. The least-squares estimators are simply defined as the value of the least-squares
1289
+ functionals at the current approximation. To this end, for each element K ∈ Th, denote
1290
+ the local least-squares functionals by
1291
+ Gh
1292
+ 1,K(τ, v; f)
1293
+ =
1294
+ ∥τ + ϵ1/2 ∇v∥2
1295
+ K + ∥ϵ1/2 ∇ · τ + β · ∇v + c v − f∥2
1296
+ K,
1297
+ Gh
1298
+ 2,K(τ, v; f)
1299
+ =
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+ Gh
1306
+ 1,K(τ, v; f),
1307
+ if K ∩ Γ+ = ∅,
1308
+ Gh
1309
+ 1,K(τ, v; f) +
1310
+
1311
+ e∈K∩Γ+
1312
+ h−1
1313
+ e ∥ϵ−1/2v∥2
1314
+ 0, e,
1315
+ otherwise,
1316
+ and Gh
1317
+ 3,K(τ, v; f)
1318
+ =
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+ Gh
1325
+ 1,K(τ, v; f),
1326
+ if K ∩ Γ+ = ∅,
1327
+ Gh
1328
+ 1,K(τ, v; f) +
1329
+
1330
+ e∈K∩Γ+
1331
+ h−1
1332
+ e ∥v∥2
1333
+ 0, e,
1334
+ otherwise.
1335
+ Let (ˆσh
1336
+ i , ˆuh
1337
+ i ) be the current approximations to the solutions of (5.3) for i = 1, 2, 3. Then
1338
+ the least-squares indicators are simply the square root of the value of the local least-squares
1339
+ functionals at the current approximation:
1340
+ ηi
1341
+ K = Gh
1342
+ i,K (ˆσi
1343
+ h, ˆui
1344
+ h; f)1/2
1345
+ (6.1)
1346
+ for all K ∈ Th and for i = 1, 2, 3. The least-squares estimators are
1347
+ ηi =
1348
+
1349
+ � �
1350
+ K∈Th
1351
+
1352
+ ηi
1353
+ K
1354
+ �2
1355
+
1356
+
1357
+ 1/2
1358
+ = Gh
1359
+ i (ˆσi
1360
+ h, ˆui
1361
+ h; f)1/2
1362
+ (6.2)
1363
+ for i = 1, 2, 3.
1364
+ Let (σ, u) be the solution of (5.2) and denote the true errors by
1365
+ ˆEi = σ − ˆσi
1366
+ h
1367
+ and
1368
+ ˆei = u − ˆu1
1369
+ h
1370
+ for
1371
+ i = 1, 2, 3.
1372
+ Theorem 6.1. There exist positive constants Ce,1 and Cr,1 independent of ϵ such that
1373
+ η1
1374
+ K ≤ Ce,1
1375
+
1376
+ M1,K(ˆE1, ˆe1) + ∥β · ∇ ˆe1∥2
1377
+ K + ϵ ∥∇ · ˆE1∥2
1378
+ K
1379
+ �1/2
1380
+ (6.3)
1381
+ for all K ∈ T and that
1382
+ M1(ˆE1, ˆe1)1/2 ≤ Cr,1 η1.
1383
+ (6.4)
1384
+
1385
+ 16
1386
+ Proof. Since the exact solution (σ, u) satisfies (2.4), we have
1387
+
1388
+ η1
1389
+ K
1390
+ �2 = Gh
1391
+ 1,K(ˆE1, ˆe1; 0)
1392
+ and
1393
+
1394
+ η1�2 = Gh
1395
+ 1(ˆE1, ˆe1; 0).
1396
+ which, together with the triangle inequality and Theorem 3.1, imply the efficiency and the
1397
+ reliability bounds, respectively.
1398
+ Theorem 6.2. There exist positive constants Ce,i independent of ϵ such that
1399
+ Ce, i
1400
+
1401
+ ηi
1402
+ K
1403
+ �2 ≤ Mh
1404
+ i,K(ˆEi, ˆei) + ∥β · ∇ˆei∥2
1405
+ K + ϵ ∥∇ · ˆEi∥2
1406
+ (6.5)
1407
+ for all K ∈ T and i = 2, 3.
1408
+ Proof. Let αi = −1 for i = 2 or 0 for i = 3. With the fact that (σ, u) is the exact solution
1409
+ satisfying (2.4), we have
1410
+ ηi(ˆσh
1411
+ i , ˆuh
1412
+ i )2 = Gh
1413
+ i (ˆσh
1414
+ i , ˆuh
1415
+ i ; f)
1416
+ =
1417
+ ∥ˆσh
1418
+ i + ϵ1/2 ∇ˆuh
1419
+ i ∥2 + ∥ϵ1/2 ∇ · ˆσh
1420
+ i + β · ∇ˆuh
1421
+ i + c ˆuh
1422
+ i − f∥2 +
1423
+
1424
+ e∈Eh∩Γ+
1425
+ ϵαi h−1
1426
+ e ∥ˆuh
1427
+ i ∥2
1428
+ 0,e
1429
+ =
1430
+ ∥ˆEi + ϵ1/2 ∇ˆei∥2 + ∥ϵ1/2 ∇ · ˆEi + β · ∇ˆei + c ˆei∥2 +
1431
+
1432
+ e∈Eh∩Γ+
1433
+ ϵαi h−1
1434
+ e ∥ˆei∥
1435
+ =
1436
+ Gh
1437
+ i (ˆEi, ˆei; 0),
1438
+ (6.6)
1439
+ with which, the efficiency bound simply follows from (6.6) and the Cauchy-Schwarz in-
1440
+ equality.
1441
+ In the remainder of this section, we describe the standard adaptive mesh refinement
1442
+ algorithm. Starting with an initial triangulation T0, a sequence of nested triangulations
1443
+ {Tl} is generated through the well known AFEM-Loop:
1444
+ SOLVE −→ ESTIMATE −→ MARK −→ REFINE.
1445
+ The SOLVE step solves (5.3) in the finite element space corresponding to the mesh
1446
+ Tl for a numerical approximation (σi
1447
+ h(l), ui
1448
+ h(l)) ∈ Uh
1449
+ i (l), where Uh
1450
+ i (l) is the finite element
1451
+ space defined on Tl. Hereafter, we shall explicitly express the dependence of a quantity
1452
+ on the level l by either the subscript like Tl or the variable like Uh
1453
+ i (l).
1454
+ The ESTIMATE step computes the indicators {ηi
1455
+ K(l)} and the estimator ηi(l) defined
1456
+ in (6.1) and (6.2), respectively.
1457
+ The way to choose elements for refinement influences the efficiency of the adaptive
1458
+ algorithm. If most of elements are marked for refinement, then it is comparable to uniform
1459
+ refinement, which does not take full advantage of the adaptive algorithm and results in
1460
+ redundant degrees of freedom. On the other hand, if few elements are refined, then it
1461
+ requires many iterations, which undermines the efficiency of the adaptive algorithm, since
1462
+ each iteration is costly. For the singularly perturbed problems, it is well known that the
1463
+ indicators associated with the elements in the layer region are much larger than others.
1464
+
1465
+ 17
1466
+ Therefore, we MARK by the maximum algorithm, which defines the set ˆTl of marked
1467
+ elements such that for all K ∈ ˆTl
1468
+ ηi
1469
+ K(l) ≥ θ max
1470
+ K∈Tl ηi
1471
+ K(l).
1472
+ The REFINE step is to bisect all the triangles in ˆTl into two sub-triangles to generate
1473
+ a new triangulation Tl+1. Note that some triangles in Tl \ ˆTl adjacent to triangles in ˆTl are
1474
+ also refined in order to avoid hanging nodes.
1475
+ In summary, the adaptive least-squares finite element algorithm can be cast as follows:
1476
+ with the initial mesh T0, marking parameter θ ∈ (0, 1), and the maximal number of
1477
+ iteration maxIt, for l = 0, 1, · · · , maxIt, do
1478
+ (1) (σi
1479
+ h(l), ui
1480
+ h(l)) = SOLVE(Tl);
1481
+ (2) {ηi
1482
+ K(l)} = ESTIMATE(Tl, σi
1483
+ h(l), ui
1484
+ h(l));
1485
+ (3) ˆTl = MARK(Tl, {ηi
1486
+ K(l)});
1487
+ (4) Tl+1 = REFINE(Tl, ˆTl).
1488
+ 7
1489
+ Numerical experiments
1490
+ In this section, we conduct several numerical experiments on two model problems used by
1491
+ many authors (see, e.g., [4, 17]). Both the model problems are defined in the unit square
1492
+ and all numerical experiments are started with the same initial mesh, which consists of
1493
+ sixteen isosceles right triangles. The marking parameter θ is chosen to be 0.6.
1494
+ 7.1
1495
+ Boundary layer
1496
+ In this example, β = [1, 1]T , and c = 0, and the external force f is chosen such that the
1497
+ exact solution is
1498
+ u(x, y) = sin πx
1499
+ 2 + sin πy
1500
+ 2
1501
+
1502
+ 1 − sin πx
1503
+ 2
1504
+
1505
+ + e−1/ϵ − e−(1−x)(1−y)/ϵ
1506
+ 1 − e−1/ϵ
1507
+ .
1508
+ This solution is smooth, but develops boundary layers at x = 1 and y = 1 with width
1509
+ O(ϵ). This example is suitable for testing capability of the numerical approximations on
1510
+ resolving the boundary layers.
1511
+ In this numerical experiment, ϵ = 10−3. Given the tolerance tol = 0.5, computation is
1512
+ terminated if
1513
+ ηi(l) ≤ tol.
1514
+ (7.1)
1515
+ Since the exact solution is available, the true error is computed and the effectivity index
1516
+ is defined as follows:
1517
+ eff-index :=
1518
+ ηi(σi
1519
+ h, ui
1520
+ h)
1521
+ ������(σ − σi
1522
+ h, u − ui
1523
+ h)
1524
+ ������
1525
+ i
1526
+ .
1527
+ (7.2)
1528
+
1529
+ 18
1530
+ Figure 1: The final meshes and the numerical solutions are, respectively, displayed in the
1531
+ first and the second columns and the rows are corresponding to i = 1, 2, 3.
1532
+ The final meshes are displayed in the first column of Figure 1 when the stopping criterion
1533
+ (7.1) is satisfied. They clearly show that the refinements cluster around the boundary
1534
+ layer area. The numerical solutions on the final meshes are depicted in the second column
1535
+ of Figure 1. All the three methods successfully capture the sharp boundary layers, and
1536
+ no visible oscillation appears in the numerical solutions.
1537
+ Reported in Figure 2 is the
1538
+
1539
+ 0.9 .
1540
+ 0.5
1541
+ 0.1 .
1542
+ 0.2 ..
1543
+ A
1544
+ :
1545
+ 0.6
1546
+ : -?
1547
+ 0.8
1548
+ 0.4
1549
+ 0.b
1550
+ 0.2
1551
+ ...
1552
+ 0.4
1553
+ c.2
1554
+ 00.5 .
1555
+ 0.5 .
1556
+ 0.4 .
1557
+ 0.2
1558
+ 0.2
1559
+ 0.6
1560
+ 0.8
1561
+ 0.4
1562
+ 0.6
1563
+ 0.2
1564
+ 0.4
1565
+ c.2
1566
+ 00.5 .
1567
+ 0.5 .
1568
+ 0.4 .
1569
+ 0.2
1570
+ 5
1571
+ 0.2
1572
+ 0.6
1573
+ 0.8
1574
+ 0.4
1575
+ 0.6
1576
+ 0.2
1577
+ 0.4
1578
+ c.2
1579
+ 019
1580
+ convergence rates of the numerical solutions. The errors with the norm |||·|||i that are
1581
+ used in the a priori error estimate are tracked, which converge in the order of (DoF)−1.
1582
+ Moreover, the convergence rate is independent of the value of ϵ. This is also verified by
1583
+ the test problem with ϵ = 10−4, where the convergence rate does not deteriorate (see the
1584
+ second column of Figure 2).
1585
+ Figure 2: The convergence rates corresponding to ϵ = 10−3 and 10−4 are displayed in the
1586
+ first and the second columns, respectively, and the rows are corresponding to i = 1, 2, 3.
1587
+
1588
+ 10°
1589
+ 10°
1590
+ 10
1591
+ 10°
1592
+ 10
1593
+ 10*
1594
+ 10°
1595
+ errEne3
1596
+ estimator
1597
+ DoF-1
1598
+ effindex
1599
+ 10
1600
+ 102
1601
+ 103
1602
+ 104
1603
+ 105
1604
+ 10°
1605
+ Degree of Freedom10°
1606
+ 10
1607
+ 00.000
1608
+ 10°
1609
+ 10~
1610
+ 10°
1611
+ 10
1612
+ 10
1613
+ errEne
1614
+ estimator
1615
+ 10
1616
+ DoF-1
1617
+ effindex
1618
+ 10°
1619
+ 102
1620
+ 103
1621
+ 104
1622
+ 105
1623
+ 10°
1624
+ Degree of Freedom10°
1625
+ 102
1626
+ 10°
1627
+ DODO
1628
+ 00:
1629
+ 080:00
1630
+ 10°
1631
+ 10
1632
+ 10*
1633
+ 10°
1634
+ 10
1635
+ errEne
1636
+ estimator
1637
+ 10
1638
+ DoF-1
1639
+ effindex
1640
+ 10
1641
+ 102
1642
+ 103
1643
+ 104
1644
+ 105
1645
+ 10°
1646
+ Degree of Freedom10
1647
+ 10
1648
+ 0000::
1649
+ 80:8
1650
+ 10
1651
+ 10~
1652
+ 10*
1653
+ 10
1654
+ 10
1655
+ erEne
1656
+ estimator
1657
+ 10
1658
+ DoF-1
1659
+ effindex
1660
+ 10
1661
+ 102
1662
+ 103
1663
+ 104
1664
+ 105
1665
+ 10°
1666
+ Degree of Freedom10
1667
+ 10
1668
+ 10
1669
+ 10°
1670
+ 10
1671
+ 10°
1672
+ 10
1673
+ errEne
1674
+ estimator
1675
+ 10
1676
+ DoF-1
1677
+ effindex
1678
+ 0
1679
+ 10
1680
+ 102
1681
+ 103
1682
+ 10*
1683
+ 105
1684
+ 10°
1685
+ Degree of Freedom10°
1686
+ 10
1687
+ :*黑
1688
+ %08
1689
+ 00:000
1690
+ 10°
1691
+ 10~
1692
+ 10*
1693
+ 10
1694
+ 10
1695
+ errEne
1696
+ estimator
1697
+ 10
1698
+ DoF-1
1699
+ effindex
1700
+ 10°
1701
+ 102
1702
+ 103
1703
+ 104
1704
+ 105
1705
+ 10°
1706
+ Degree of Freedom20
1707
+ 7.2
1708
+ Interior layer
1709
+ In the second example, β = [1/2,
1710
+
1711
+ 3/2]T , c = 0, f = 0, and the boundary condition is
1712
+ u =
1713
+
1714
+
1715
+
1716
+
1717
+
1718
+
1719
+
1720
+ 1,
1721
+ on {(x, y) : y = 0, 0 ≤ x ≤ 1},
1722
+ 1,
1723
+ on {(x, y) : x = 0, 0 ≤ y ≤ 1/5},
1724
+ 0,
1725
+ otherwise.
1726
+ The exact solution of the problem remains unknown. However, it is known that, additional
1727
+ to the boundary layers, the solution develops an interior layer along the line y =
1728
+
1729
+ 3 x+0.2
1730
+ due to the discontinuity at (0, 0.2) of the boundary condition. The problem is chosen to
1731
+ test whether the formulations can capture the interior layers.
1732
+ Figure 3 shows that all the three methods capture both the boundary and the interior
1733
+ layers. Moreover, the numerical solutions do not exhibit any visible oscillation, which is
1734
+ much better than the results reported in [4].
1735
+ Figure 3: Numerical solutions corresponding to i = 1, 2, 3 from left to right.
1736
+ Acknowledgements
1737
+ We thank Dr. Shuhao Cao for the discussion and helpful suggestions on the computation
1738
+ of the test problems.
1739
+ References
1740
+ [1] D.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
1741
+ [2] L. Angermann, Balanced a posteriori error estimates for finite volume type dis-
1742
+ cretizations of convection-dominated elliptic problems, Computing, 55:4 (1995), 305-
1743
+ 323. 1
1744
+ [3] M. Anisworth, A. Allends, G.R. Barrenechea, and R. Rankin, Fully com-
1745
+ putable a posteriori error bounds for stabilized FEM approximations of convecton-
1746
+ reaction-diffusion problems in three dimensions, Int. J. Numer. Meth. Fluids, 73:9
1747
+ (2013), 765-790. 1
1748
+
1749
+ 1.2
1750
+ 0.9 .
1751
+ 0.3.
1752
+ 0.4 ..
1753
+ 0.2 .
1754
+ -0.2
1755
+ 1
1756
+ 0.6
1757
+ 0.8
1758
+ 0.4
1759
+ 0.b
1760
+ 0.2
1761
+ 0.4
1762
+ c.21.2
1763
+ 0.9 .
1764
+ 0.3.
1765
+ 0.4 ..
1766
+ 0.2 .
1767
+ -0.2
1768
+ 1
1769
+ 0.6
1770
+ 0.8
1771
+ 0.4
1772
+ 0.b
1773
+ 0.2
1774
+ 0.4
1775
+ c.21.2
1776
+ 0.9.
1777
+ 0.3.
1778
+ 0.4 ..
1779
+ 0.2 .
1780
+ -0.2
1781
+ 1
1782
+ 0.6
1783
+ 0.8
1784
+ 0.4
1785
+ 0.b
1786
+ 0.2
1787
+ 0.4
1788
+ c.2
1789
+ 021
1790
+ [4] B. Ayuso and L.D. Marini, Discountinuous Glerkin methods for advection-
1791
+ diffusion-reaction problem, SIAM J. Numer. Anal., 47 (2009), 1391-1420. 1, 6, 7,
1792
+ 7.2
1793
+ [5] A. Aziz and A. Stephens, Least-squares methods for elliptic systems, Math. Comp.,
1794
+ 44 (1985), 53-70. 1
1795
+ [6] S. Berron, Robustness in a posteriori error analysis for FEM flow models, Numer.
1796
+ Math. 91:3 (2002), 389-422. 1
1797
+ [7] P.B. Bochev and M.D. Gunzburger, Analysis of least-squares finite element
1798
+ methods for the Stokes equations, Math. Comp., 63 (1994), 479–506. 1
1799
+ [8] P.B. Bochev and M.D. Gunzburger, Least-squares for the velocity-pressure-
1800
+ stress formulation of the Stokes equations, Comput. Methods Appl. Mech. Engrg.,
1801
+ 126 (1995), 267–287. 1
1802
+ [9] P.B. Bochev and M.D. Gunzburger, Finite element methods of least-squares
1803
+ type, SIAM Rev., 40 (1998), 789–837. 1
1804
+ [10] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Appli-
1805
+ cations, Springer, New York, 2013.
1806
+ [11] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Meth-
1807
+ ods, Springer, New York, 1994.
1808
+ [12] F. Brezzi, J. Rappaz, and P.A. Raviart, Finite-dimensional approximation of
1809
+ nonlinear problems, Part 1: Branches of nonsingular solutions, Numer. Math., 36
1810
+ (1980), 1-25. 1
1811
+ [13] I. Babu˘ska and M. Vogelius, Feeback and adaptive finite element solution of
1812
+ one-dimensional boundary value problems, Numer. Math., 44 (1984), 75-102. 1
1813
+ [14] Z. Cai, B. Lee, and P. Wang, Least-squares methods for incompressible newtonian
1814
+ fluid flow: linear stationary problems, SIAM J. Numer. Anal., 42 (2004), 843-859. 1
1815
+ [15] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares
1816
+ for velocity-vorticity- pressure form of the Stokes equations, with application to linear
1817
+ elasticity, Electron. Trans. Numer. Anal., 3 (1995), 150-159. 1
1818
+ [16] Z. Cai, T.A. Manteuffel, and S.F. McCormick, First-order system least
1819
+ squares for the Stokes equations, with application to linear elasticity, SIAM J. Numer.
1820
+ Anal., 34 (1997), 1727-1741. 1
1821
+ [17] H. Chen, G. Fu, J. Li, and W. Qiu, First order least squares method with weakly
1822
+ imposed boundary condition for convection dominated diffusion problems. Comput.
1823
+ Math. Appl, 68 (2014), 1635-1652. 1, 6, 7
1824
+ [18] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland,
1825
+ Amsterdam, 1978. 4
1826
+
1827
+ 22
1828
+ [19] W.D¨orfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Nu-
1829
+ meri. Anal., 33 (1996), 1106-1124. 1
1830
+ [20] W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland, Ams-
1831
+ terdam, 1979. 6
1832
+ [21] T.J.R. Hughes and A. Brooks, Streamline upwind/Petrov Galerkin formulations
1833
+ for the convection dominated flows with particular emphasis on the incompressible
1834
+ Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 54 (1982), 199-259.
1835
+ 1
1836
+ [22] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order
1837
+ elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes
1838
+ in Math. 606, I. Galligani and E. Magenes, eds., Springer, New York, 1977, 292-315.
1839
+ 4
1840
+ [23] H. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly
1841
+ Perturbed Differential Equations, Springer, Berlin, 2008. 1
1842
+ [24] R. Verfurth, A posteriori error estimation and adaptive mesh-refinement tech-
1843
+ niques, J. Comput. Appl. Math., 50 (1994), 67-83. 1
1844
+
59FJT4oBgHgl3EQflCzy/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dE5T4oBgHgl3EQfPA60/content/2301.05502v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4176d3da762f09df0db6757c8642ae9e8e629043e400f2544abcb5f9e1851d
3
+ size 388996
5dE5T4oBgHgl3EQfPA60/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0210840c2c36cfc7c411dd2b5bb318ef107c0991ed91fcfdf4bf30cdbfab8fd8
3
+ size 184347
8NE2T4oBgHgl3EQfPgby/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76c2240dd85f598fd0a72e43f9fd46ae0f21f19f4aa3bf0a206212a56ea0d564
3
+ size 6094893
8NE2T4oBgHgl3EQfPgby/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1a53f00c959035760d5b9c6e34a83c1b79cdb99c032aa48bd075381701db0e3
3
+ size 190389
8dE2T4oBgHgl3EQfPwZL/content/tmp_files/2301.03762v1.pdf.txt ADDED
@@ -0,0 +1,1435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03762v1 [math.AG] 10 Jan 2023
2
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES WITH COHOMOLOGY RINGS
3
+ GENERATED IN DEGREE TWO
4
+ MIKIYA MASUDA AND TAKASHI SATO
5
+ Abstract. A regular semisimple Hessenberg variety Hess(S, h) is a smooth subvariety of the flag variety
6
+ determined by a square matrix S with distinct eigenvalues and a Hessenberg function h. The cohomology
7
+ ring H∗(Hess(S, h)) is independent of the choice of S and is not explicitly described except for a few cases.
8
+ In this paper, we characterize the Hessenberg function h such that H∗(Hess(S, h)) is generated in degree two
9
+ as a ring. It turns out that such h is what is called a (double) lollipop.
10
+ 1. Introduction
11
+ The flag variety Fl(n) consists of nested sequences of linear subspaces in the complex vector space Cn:
12
+ Fl(n) = {V• = (V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn) | dimC Vi = i
13
+ (∀i ∈ [n] = {1, 2, . . ., n})}.
14
+ A Hessenberg function h: [n] → [n] is a monotonically non-decreasing function satisfying h(j) ≥ j for any
15
+ j ∈ [n]. We often express a Hessenberg function h as a vector (h(1), . . . , h(n)) by listing the values of h.
16
+ Given an n × n matrix A and a Hessenberg function h, a Hessenberg variety Hess(A, h) is defined as
17
+ Hess(A, h) = {V• ∈ Fl(n) | AVi ⊂ Vh(i)
18
+ (∀i ∈ [n])}
19
+ where the matrix A is regarded as a linear operator on Cn. Note that Hess(A, h) = Fl(n) if h = (n, . . . , n).
20
+ The family of Hessenberg varieties Hess(A, h) contains important varieties such as Springer fibers (A is
21
+ nilpotent and h = (1, 2, . . ., n)), Peterson varieties (A is regular nilpotent and h = (2, 3, . . . , n, n)), and
22
+ permutohedral varieties (A is regular semisimple and h = (2, 3, . . . , n, n)), which are toric varieties with
23
+ permutohedra as moment polytopes.
24
+ Among n × n matrices, regular semisimple ones S (i.e. matrices S having distinct eigenvalues) are generic
25
+ and Hess(S, h) is called a regular semisimple Hessenberg variety. The regular semisimple Hessenberg variety
26
+ Hess(S, h) has nice properties. For instance, it is smooth and its cohomology H∗(Hess(S, h)) becomes a
27
+ module over the symmetric group Sn on [n] by Tymoczko’s dot action [20]. Remarkably, the solution of
28
+ Shareshian–Wachs conjecture [18] by Brosnan and Chow [5] (and Guay-Paquet [10]) connected H∗(Hess(S, h))
29
+ as an Sn-module and chromatic symmetric functions on certain graphs. This opened a way to prove the
30
+ famous Stanley–Stembridge conjecture in graph theory through the geometry or topology of Hessenberg
31
+ varieties and motivated us to study H∗(Hess(S, h)). Note that H∗(Hess(S, h)) (indeed the diffeomorphism
32
+ type of Hess(S, h)) is independent of the choice of S. We write the regular semisimple Hessenberg variety
33
+ Hess(S, h) as X(h) for brevity since our concern in this paper is its cohomology ring.
34
+ The Sn-module structure on H∗(X(h)) is determined in some cases (e.g. [12]). In particular, that on
35
+ H2(X(h)) was explicitly described by Chow [7] combinatorially (through the theorem by Brosnan-Chow
36
+ mentioned above) and by Cho-Hong-Lee [6] geometrically. Motivated by their works, Ayzenberg and the
37
+ authors [4] reproved their results by giving explicit additive generators of H2(X(h)) in terms of GKM theory.
38
+ The ring structure on H∗(X(h)) is not explicitly described except for a few cases. Remember that X(h)
39
+ for h = (n, . . . , n) is the flag variety Fl(n) and H∗(Fl(n)) is generated in degree 2 as a ring. Moreover, X(h)
40
+ for h = (2, 3, . . . , n, n) is the permutohedral variety and H∗(X(h)) is also generated in degree 2 as a ring. On
41
+ the other hand, for h = (h(1), n, . . . , n) with h(1) arbitrary, a result of [2] shows that H∗(X(h)) is generated
42
+ Date: January 11, 2023.
43
+ 2020 Mathematics Subject Classification. Primary: 57S12, Secondary: 14M15.
44
+ Key words and phrases. Hessenberg variety, torus action, GKM theory, equivariant cohomology, lollipop.
45
+ 1
46
+
47
+ 2
48
+ M. MASUDA AND T. SATO
49
+ in degree 2 as a ring if and only if h(1) = 2 or n, where X(h) = Fl(n) for the latter case. Therefore, it is
50
+ natural to ask when H∗(X(h)) is generated in degree 2 as a ring. The answer is the following, which is our
51
+ main result in this paper.
52
+ Theorem 1.1. Assume that h(j) ≥ j + 1 for j ∈ [n − 1]. Then H∗(X(h)) is generated in degree 2 as a ring
53
+ if and only if h is of the following form (1.1) for some 1 ≤ a < b ≤ n,
54
+ (1.1)
55
+ h(j) =
56
+
57
+
58
+
59
+
60
+
61
+ a + 1
62
+ (1 ≤ j ≤ a)
63
+ j + 1
64
+ (a < j < b)
65
+ n
66
+ (b ≤ j ≤ n).
67
+ Remark 1.1.
68
+ (1) X(h) is connected if and only if h(j) ≥ j + 1 for any j ∈ [n − 1]. When X(h) is not
69
+ connected, each connected component of X(h) is a product of smaller regular semisimple Hessenberg
70
+ varieties.
71
+ (2) X(h) is the flag variety Fl(n) when (a, b) = (n − 1, n) and is the permutohedral variety when (a, b) =
72
+ (1, n).
73
+ (3) We will give an explicit presentation of the ring structure on H∗(X(h)) for h of the form (1.1) in a
74
+ forthcoming paper [17].
75
+ We can visualize a Hessenberg function h by drawing a configuration of the shaded boxes on a square
76
+ grid of size n × n, which consists of boxes in the i-th row and the j-th column satisfying i ≤ h(j). Since
77
+ h(j) ≥ j for any j ∈ [n], the essential part is the shaded boxes below the diagonal. For example, Figure
78
+ 1 below is the configurations of two Hessenberg functions h of the form (1.1) with n = 11: one is h =
79
+ (2, 3, 4, 5, 6, 7, 11, 11, 11, 11) where (a, b) = (1, 7) and the other is h = (4, 4, 4, 5, 6, 7, 11, 11, 11, 11) where
80
+ (a, b) = (3, 7). We often identify a Hessenberg function h with its configuration.
81
+ ❅❅
82
+ ❅❅
83
+ ❅❅
84
+ ❅❅
85
+ ❅❅
86
+ ❅❅
87
+ ❅❅
88
+ ❅❅
89
+ ❅❅
90
+ ❅❅
91
+ ❅❅
92
+ ❅❅
93
+ ❅❅
94
+ ❅❅
95
+ ❅❅
96
+ ❅❅
97
+ ❅❅
98
+ ❅❅
99
+ ❅❅
100
+ ❅❅
101
+ ❅❅
102
+ ❅❅
103
+ Figure 1. The configurations for h = (2, 3, 4, 5, 6, 7, 11, 11, 11, 11) and h = (4, 4, 4, 5, 6, 7, 11, 11, 11, 11)
104
+ The chromatic symmetric functions and LLT polynomials associated with h of the form (1.1) are studied
105
+ from the viewpoint of combinatorics in [8, 13], and when a = 1 or b = n, the corresponding Hessenberg
106
+ functions
107
+ h = (2, 3, . . . , b, n, . . ., n)
108
+ or
109
+ (a + 1, . . . , a + 1, a + 2, . . . , n − 1, n, n)
110
+ are called lollipops in those papers, so the Hessenberg function of the form (1.1) may be called a double
111
+ lollipop.
112
+ The paper is organized as follows.
113
+ In Section 2, we review GKM theory to compute the equivariant
114
+ cohomology of X(h).
115
+ We prove the “only if” part in Theorem 1.1 in Section 3.
116
+ Indeed, we consider a
117
+ Morse-Bott function fh on X(h), where the inverse image of the minimum or maximum value of fh is a
118
+ regular semisimple Hessenberg variety X(h′) with h′ of size one less than that of h. Then a property of the
119
+
120
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES
121
+ 3
122
+ Morse-Bott function fh shows the surjectivity of the restriction map H∗(X(h); Q) → H∗(X(h′); Q), and this
123
+ enables us to use an inductive argument to prove the “only if” part. In Section 4, we prove the “if” part in
124
+ Theorem 1.1 by applying the method developed in [2, 9] together with the explicit generators of H2(X(h))
125
+ obtained in our previous work [4].
126
+ 2. Regular semisimple Hessenberg varieties
127
+ We first recall some properties of a regular semisimple Hessenberg variety X(h).
128
+ Theorem 2.1 ([14]).
129
+ (1) X(h) is smooth.
130
+ (2) dimC X(h) = �n
131
+ j=1(h(j) − j).
132
+ (3) X(h) is connected if and only if h(j) ≥ j + 1 for ∀j ∈ [n − 1].
133
+ (4) Hodd(X(h)) = 0 and the 2k-th Betti number of X(h) is given by
134
+ #{w ∈ Sn | ℓh(w) = k}
135
+ where
136
+ (2.1)
137
+ ℓh(w) = #{1 ≤ j < i ≤ n | w(j) > w(i), i ≤ h(j)}.
138
+ For calculation of the cohomology ring of X(h), we use equivariant cohomology which we shall explain. We
139
+ assume that the matrix S in X(h) = Hess(S, h) is a diagonal matrix. Let T be an algebraic torus consisting
140
+ of diagonal matrices in the general linear group GLn(C). The linear action of T on Cn induces an action on
141
+ the flag variety Fl(n) and preserves X(h) since S commutes with T . The fixed point sets of the T -actions on
142
+ X(h) and Fl(n) consist of all permutation flags, that is,
143
+ (2.2)
144
+ X(h)T = Fl(n)T ∼= Sn.
145
+ Since T can naturally be identified with (C∗)n, the classifying space BT of T is B(C∗)n = (CP ∞)n.
146
+ Let pi : T → C∗ be the projection on the i-th diagonal component of T and ti = p∗
147
+ i (t) ∈ H2(BT ) where
148
+ p∗
149
+ i : H∗(BC∗) → H∗(BT ) and t ∈ H2(BC∗) is the first Chern class of the tautological line bundle over
150
+ BC∗ = CP ∞. Then
151
+ (2.3)
152
+ H∗(BT ) = Z[t1, . . . , tn].
153
+ The equivariant cohomology of the T -variety X(h) is defined as
154
+ H∗
155
+ T (X(h)) := H∗(ET ×T X(h))
156
+ where ET is the total space of the universal principal T -bundle ET → BT and ET ×T X(h) is the orbit
157
+ space of the product ET × X(h) by the diagonal T -action. The projection ET × X(h) → ET on the first
158
+ factor induces a fibration
159
+ X(h)
160
+ ρ−→ ET ×T X(h)
161
+ π−→ BT.
162
+ Since Hodd(X(h)) = 0 as in Theorem 2.1 and Hodd(BT ) = 0, the Serre spectral sequence of the fibration above
163
+ collapses. It implies that ρ∗ : H∗
164
+ T (X(h)) → H∗(X(h)) is surjective and induces a graded ring isomorphism
165
+ (2.4)
166
+ H∗(X(h)) ∼= H∗
167
+ T (X(h))/(π∗(t1), . . . , π∗(tn))
168
+ by (2.3). Therefore, one can find the ring structure on H∗(X(h)) through H∗
169
+ T (X(h)).
170
+ Since Hodd(X(h)) = 0, it follows from the localization theorem that the homomorphism
171
+ (2.5)
172
+ H∗
173
+ T (X(h)) → H∗
174
+ T (X(h)T ) =
175
+
176
+ w∈Sn
177
+ H∗
178
+ T (w) =
179
+
180
+ w∈Sn
181
+ Z[t1, . . . , tn] = Map(Sn, Z[t1, . . . , tn])
182
+ induced from the inclusion map X(h)T → X(h) is injective, where X(h)T is identified with Sn by (2.2) and
183
+ Map(P, Q) denotes the set of all maps from P to Q. The T -variety X(h) is what is called a GKM manifold
184
+ and the image of the homomorphism in (2.5) is described in [20] as follows;
185
+ (2.6)
186
+ {f ∈ Map(Sn, Z[t1, . . . , tn]) | f(w) − f(w(i, j)) ∈ (tw(i) − tw(j)), for ∀w ∈ Sn, j < i ≤ h(j)},
187
+
188
+ 4
189
+ M. MASUDA AND T. SATO
190
+ where (i, j) denotes the transposition interchanging i and j. We note that the image of π∗(ti) ∈ π∗(H∗(BT )) ⊂
191
+ H∗
192
+ T (X(h)) by the homomorphism in (2.5) is the constant function ti ∈ Map(Sn, Z[t1, . . . , tn]).
193
+ Guillemin and Zara [11] assigned a labeled graph to a GKM manifold. The labeled graph of X(h) is as
194
+ follows. The vertex set is the fixed point set X(h)T = Sn. There is an edge between vertices w and v if and
195
+ only if v = w(i, j) for some j ≤ i ≤ h(j), and the edge between w and w(i, j) is labeled by tw(i) − tw(j) up to
196
+ sign.
197
+ Example 2.1. Let n = 3. For h = (2, 3, 3) and h′ = (3, 3, 3), the labeled graphs of X(h) and X(h′) are
198
+ drawn in Figure 2, where we use the one-line notation for each vertex.
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+ ✟✟✟
212
+ ✟✟✟
213
+
214
+
215
+
216
+
217
+
218
+
219
+ 123
220
+ 321
221
+ 132
222
+ 312
223
+ 213
224
+ 231
225
+ X(h)
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+ ✟✟✟
246
+ ✟✟✟
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+ 123
268
+ 321
269
+ 132
270
+ 312
271
+ 213
272
+ 231
273
+ X(h′) = Fl(3)
274
+ labels
275
+ : t1 − t2
276
+ : t2 − t3
277
+ : t1 − t3
278
+ Figure 2. The labeled graphs of X(h) and X(h′)
279
+ In general, labeled graphs and their graph cohomologies are defined as follows.
280
+ Definition 2.2. Let R be a ring. A labeled graph (Γ, α) consists of a graph Γ = (V, E) and a labeling
281
+ α: E → R. The graph cohomology of a labeled graph (Γ, α) is defined as
282
+ H∗(Γ, α) = {f ∈ Map(V, R) | f(w) − f(v) ∈ (α(e)) for ∀e = wv ∈ E}.
283
+ The graph cohomology H∗(Γ, α) is a subring of Map(V, R) with the coordinate-wise sum and multiplication.
284
+ Note that we may ignore the signs of the labels α(e) since (α(e)) = (−α(e)).
285
+ The observation above shows that the graph cohomology of the labeled graph of X(h) coincides with
286
+ H∗
287
+ T (X(h)).
288
+ Sending ti to tσ(i) for σ ∈ Sn and i ∈ [n] induces an action of Sn on Z[t1, . . . , tn]. Then, the module
289
+ Map(Sn, Z[t1, . . . , tn]) becomes an Sn-module under what is called the dot action defined by
290
+ (σ · f)(w) := σ(f(σ−1w)).
291
+ As easily checked, the graph cohomology of X(h) is invariant under the dot action and H∗
292
+ T (X(h)) becomes
293
+ a module over Sn.
294
+ Moreover, since the action of Sn preserves the ideal (π∗(t1), . . . , π∗(tn)), the action
295
+ descends to H∗(X(h)) and H∗(X(h)) also becomes an module over Sn.
296
+ Obviously, constant functions in Map(Sn, Z[t1, . . . , tn]) satisfy the condition in (2.6).
297
+ They are ele-
298
+ ments corresponding to π∗(H∗(BT )) ⊂ H∗
299
+ T (X(h)).
300
+ Below are three types of elements xi, yj,k, and τA
301
+ in Map(Sn, Z[t1, . . . , tn]) which satisfy the condition in (2.6), so they are in H∗
302
+ T (X(h)). Let
303
+ ⊥(h) : = {j ∈ [n − 1] | h(j − 1) = h(j) = j + 1}
304
+ L(h) : = {j ∈ [n − 1] | h(j − 1) = j and h(j) = j + 1}
305
+ (2.7)
306
+ where we understand h(0) = 1.
307
+ Definition 2.3.
308
+ (1) For i ∈ [n], xi(w) := tw(i).
309
+ (2) For j ∈ [n − 1] with j ∈ ⊥(h) and k ∈ [n],
310
+ yj,k(w) :=
311
+
312
+ tk − tw(j+1)
313
+ (if k ∈ {w(1), . . . , w(j)})
314
+ 0
315
+ (otherwise).
316
+
317
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES
318
+ 5
319
+ (3) For A ⊂ [n] with |A| ∈ L(h)
320
+ τA(w) :=
321
+
322
+ tw(|A|) − tw(|A|+1)
323
+ (if {w(1), . . . , w(|A|)} = A)
324
+ 0
325
+ (otherwise).
326
+ The cohomological degrees of the elements xk, yj,k, τA are two. One can easily check that the dot actions
327
+ of σ ∈ Sn on these elements are given as follows:
328
+ (2.8)
329
+ σ · xk = xk,
330
+ σ · yj,k = yj,σ(k),
331
+ σ · τA = τσ(A).
332
+ Remark 2.1. Here is a geometrical meaning of xk’s (regarded as elements in H2(X(h)) through the isomor-
333
+ phism (2.4)). There is a nested sequence of tautological vector bundles over the flag variety Fl(n):
334
+ F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = Fl(n) × Cn
335
+ where
336
+ Fk := {(V•, v) ∈ Fl(n) × Cn | v ∈ Vk}
337
+ and
338
+ V• = ({0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn).
339
+ Then xk (k ∈ [n]) is the image of the first Chern class of the quotient line bundle Fk/Fk−1 over Fl(n) by the
340
+ homomorphism
341
+ ι∗ : H∗(Fl(n)) → H∗(X(h))
342
+ induced from the inclusion map ι: X(h) → Fl(n). The dot action on H∗(Fl(n)) is trivial, so the image of ι∗
343
+ must be contained in the ring of invariants H∗(X(h))Sn. In fact, it follows from [1, Theorems A and B] that
344
+ the image of ι∗ agrees with H∗(X(h))Sn when tensoring with Q and
345
+ (2.9)
346
+ H∗(X(h))Sn ⊗ Q = Q[x1, . . . , xn]/(fh(1),1, . . . , fh(n),n)
347
+ where
348
+ (2.10)
349
+ fh(j),j =
350
+ j
351
+
352
+ k=1
353
+
354
+ xk
355
+ h(j)
356
+
357
+ ℓ=j+1
358
+ (xk − xℓ)
359
+
360
+  .
361
+ In particular, the Hilbert series of H∗(X(h))Sn is given by
362
+ (2.11)
363
+ Hilb(H∗(X(h))Sn, √q) =
364
+ n−1
365
+
366
+ j=1
367
+ [h(j) − j]q
368
+ where the Hilbert series of a graded algebra A = �∞
369
+ r=0 Ar over Z is defined as
370
+ Hilb(A, q) :=
371
+
372
+
373
+ r=0
374
+ (rankZAr)qr.
375
+ Through the isomorphism (2.4), the elements xk, yj,k, τA determine elements in H2(X(h)), denoted by the
376
+ same notation.
377
+ Theorem 2.4 ([4, Theorem 5.1]). The elements
378
+ {xk, yj,k, τA | k ∈ [n], j ∈ ⊥(h)\{n − 1}, A ⊂ [n] with |A| ∈ L(h)\{n − 1}}
379
+ generate H2(X(h)) with relations
380
+ (1) �n
381
+ k=1 xk = 0,
382
+ (2) �n
383
+ k=1 yj,k = (x1 + · · · + xj) − jxj+1 for j ∈ ⊥(h)\{n − 1},
384
+ (3) �
385
+ |A|=j τA = xj − xj+1 for j ∈ L(h)\{n − 1}.
386
+ Remark 2.2 (see Subsection 6.2 in [4] for more details). The element yj,k is defined by looking at the j-th
387
+ column of the configuration associated to the Hessenberg function h. Similarly, one can define an element
388
+ y∗
389
+ i,k of H∗
390
+ T (Hess(S, h)) by looking at the i-th row of the configuration as follows. For i ∈ [n], we define
391
+ h∗(i) := min{j ∈ [n] | h(j) ≥ i},
392
+
393
+ 6
394
+ M. MASUDA AND T. SATO
395
+ so that the shaded boxes in the i-th row and under the diagonal in the configuration associated to h are at
396
+ positions (i, ℓ) (h∗(i) ≤ ℓ < i). When h∗(i) = i − 1, we define
397
+ (2.12)
398
+ y∗
399
+ i,k(w) :=
400
+
401
+ tk − tw(i−1)
402
+ (k ∈ {w(i), . . . , w(n)})
403
+ 0
404
+ (otherwise).
405
+ One can see that y∗
406
+ i.k is in H2
407
+ T (Hess(S, h)) and we may replace yj,k’s for j ∈ ⊥(h)\{n − 1} in the generating
408
+ set in Theorem 2.4 by y∗
409
+ i,k’s for i ≥ 3 such that h∗(i) = h∗(i + 1) = i − 1.
410
+ Example 2.2. When h = (4, 4, 4, 5, 6, 7, 11, 11, 11, 11) in Figure 1 (i.e. (a, b) = (3, 7)), we have
411
+ ⊥(h) = {3, 10},
412
+ L(h) = {4, 5, 6},
413
+ so Theorem 2.4 says that H2(X(h)) is generated by
414
+ xk (k ∈ [11]),
415
+ y3,k (k ∈ [11]),
416
+ τA for A ⊂ [11] with |A| = 4, 5 or 6.
417
+ Moreover, it follows from Remark 2.2 that y3,k above may be replaced by y∗
418
+ 8,k.
419
+ 3. Necessity
420
+ In this section, we study a necessary condition on h for H∗(X(h)) to be generated in degree 2 as a ring.
421
+ 3.1. Moment maps. Let µ: Fl(n) → Rn be the standard moment map on the flag variety Fl(n). Its image is
422
+ the permutohedron Πn obtained as the convex hull of the orbits of (1, 2, . . . , n) by permuting its coordinates.
423
+ Indeed, if ew (w ∈ Sn) denotes the permutation flag associated with w, then we have
424
+ µ(ew) = (w−1(1), . . . , w−1(n)) ∈ Rn
425
+ (see [16, Lemma 3.1] for example). Let
426
+ (3.1)
427
+ Sr
428
+ n := {w ∈ Sn | w(r) = n}.
429
+ Then µ(Sr
430
+ n) is the set of all vertices of Πn whose n-th coordinate is r. Therefore the projection
431
+ πn : Πn → R,
432
+ πn(x1, . . . , xn) = xn
433
+ on the n-th coordinate takes minimum on S1
434
+ n and maximum on Sn
435
+ n. The composition of µ and πn
436
+ (3.2)
437
+ f := πn ◦ µ: Fl(n) → R
438
+ is the moment map induced from the following S1-action on Cn
439
+ (3.3)
440
+ (z1, . . . , zn) → (z1, . . . , zn−1, gzn)
441
+ (g ∈ S1 ⊂ C),
442
+ and it is a Morse-Bott function.
443
+ Let hj be the Hessenberg function obtained by removing all the boxes in the j-th row and all the boxes
444
+ in the j-th column from its configuration (see Figure 3). To be precise, hj is given as follows.
445
+ hj(i) =
446
+
447
+
448
+
449
+
450
+
451
+ h(i)
452
+ (i < j, h(i) < j)
453
+ h(i) − 1
454
+ (i < j, h(i) ≥ j)
455
+ h(i + 1) − 1
456
+ (i ≥ j)
457
+
458
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES
459
+ 7
460
+ j-th row →
461
+
462
+ j-th column
463
+ h
464
+
465
+ remove
466
+
467
+ տ
468
+
469
+
470
+ hj
471
+ Figure 3. The configuration corresponding to hj.
472
+ The following is a key lemma in our argument.
473
+ Lemma 3.1. The restriction maps
474
+ H∗(X(h); Q) → H∗(X(h1); Q),
475
+ H∗(X(h); Q) → H∗(X(hn); Q)
476
+ are surjective.
477
+ Proof. Let fh be the map f in (3.2) restricted to X(h), which is also a Morse-Bott function. The inverse
478
+ image of the minimum value under fh is X(h1), so it follows from [19, Lemma 3.1] that the restriction map
479
+ (3.4)
480
+ H∗
481
+ S1(X(h); Q) → H∗
482
+ S1(X(h1); Q)
483
+ is surjective, where the S1-action on X(h) is the induced one from the S1-action defined in (3.3). Since the
484
+ S1-action on X(h1) is trivial, we have H∗
485
+ S1(X(h1); Q) = H∗(BS1; Q)⊗ H∗(X(h1); Q) and hence the forgetful
486
+ map H∗
487
+ S1(X(h1); Q) → H∗(X(h1); Q) is surjective. Therefore, the surjectivity of (3.4) implies the surjectivity
488
+ of the restriction map
489
+ H∗(X(h); Q) → H∗(X(h1); Q)
490
+ in ordinary cohomology. The same argument applied to −fh proves the statement for X(hn).
491
+
492
+ Remark 3.1. The surjectivity of the above restriction maps (even with Z coefficients) can also be verified by
493
+ GKM theory as follows. Recall that the inclusion of the fixed point set induces an injective homomorphism
494
+ H∗
495
+ T (X(h)) → H∗
496
+ T (X(h)T ) ∼= Map(Sn, H∗(BT )). The equivariant cohomology H∗
497
+ T (X(h)) has an H∗(BT )-
498
+ module basis {σw,h | w ∈ Sn} (see [6, Definition 2.9 and Proposition 2.11]). It corresponds to a natural
499
+ paving and then it is a ‘flow-up basis.’
500
+ Note that any element of Sn
501
+ n = Sn−1 is not greater than any
502
+ element of Sn \ Sn
503
+ n.
504
+ The restriction of {σw,h | w ∈ Sn
505
+ n} onto X(hn), that is, its restriction onto the
506
+ fixed point set Sn
507
+ n = X(hn)T as elements of Map(Sn, H∗(BT )), is a flow-up basis of H∗
508
+ T (X(hn)). Hence
509
+ H∗
510
+ T (X(h)) → H∗
511
+ T (X(hn)) is surjective, and then H∗(X(h)) → H∗(X(hn)) is also surjective. The surjectivity
512
+ of H∗(X(h)) → H∗(X(h1)) can be verified by a similar argument.
513
+ Given a Hessenberg function h, we obtain a smaller Hessenberg function by removing the first column and
514
+ row or the last column and row repeatedly, i.e. by taking h1 or hn repeatedly. We call it a minor of h. The
515
+ following corollary follows from Lemma 3.1.
516
+ Corollary 3.2. Let h′ be a minor of h.
517
+ If H∗(X(h); Q) is generated in degree 2 as a ring, then so is
518
+ H∗(X(h′); Q).
519
+ An easy argument shows that h being of the form (1.1) can be rephrased as follows.
520
+ Proposition 3.3. The Hessenberg function h is of the form (1.1) if and only if h has neither
521
+ (α, β, . . . , β), (β − 1, . . . , β − 1, β, . . . , β
522
+
523
+ ��
524
+
525
+ α
526
+ ) for 3 ≤ α < β, nor (2, γ − 1, . . . , γ − 1, γ, γ) for γ ≥ 5
527
+ as its minor.
528
+
529
+ 8
530
+ M. MASUDA AND T. SATO
531
+ Recall that if h† denotes the Hessenberg function obtained by flipping the configuration of h along the
532
+ anti-diagonal, then X(h†) ∼= X(h) as varieties. Therefore
533
+ X((α, β, . . . , β)) ∼= X((β − 1, . . . , β − 1, β, . . . , β
534
+
535
+ ��
536
+
537
+ α
538
+ )).
539
+ Here, we know that H∗(X((α, β, . . . , β)); Q) is not generated in degree 2 for 3 ≤ α < β by [2, Theorem 4.3].
540
+ Thus, it suffices to treat the last case in Proposition 3.3, which we shall discuss in the next subsection.
541
+ 3.2. The case h = (2, n − 1, . . . , n − 1, n, n). In this subsection we prove the following proposition.
542
+ Proposition 3.4. H∗(X(h); Q) is not generated in degree 2 when h = (2, n − 1, . . . , n − 1, n, n) for n ≥ 5.
543
+ Some computation is involved in the proof of this proposition but the idea of the proof is simple. We
544
+ compute the Poincar´e polynomial of X(h) using Theorem 2.1(4). On the other hand, using explicit generators
545
+ of H2(X(h)) by [4], we compute an upper bound of the Hilbert series of the subring of H∗(X(h)) generated
546
+ by H2(X(h)). Then it turns out that the latter is strictly smaller than the former at a certain degree.
547
+ 3.2.1. Poincar´e polynomial of X(h). The following proposition, which easily follows from Theorem 2.1(4),
548
+ enables us to compute the Poincar´e polynomial of X(h) inductively.
549
+ Proposition 3.5 ([4, Proposition 3.1]).
550
+ (3.5)
551
+ Poin(X(h), √q) =
552
+ n
553
+
554
+ j=1
555
+ qh(j)−j Poin(X(hj), √q).
556
+ Using the proposition above, the Poincar´e polynomial of X(h) is explicitly computed as follows when
557
+ h = (h(1), n, . . . , n).
558
+ Proposition 3.6 ([2]). When h = (h(1), n . . . , n), we have
559
+ (3.6)
560
+ Poin(X(h), √q) = [h(1)]q[n − 1]q! + (n − 1)qh(1)−1[n − h(1)]q[n − 2]q!,
561
+ where
562
+ [m]q = 1 − qm
563
+ 1 − q ,
564
+ [m]q! = [1]q[2]q · · · [m]q =
565
+ m
566
+
567
+ j=1
568
+ 1 − qj
569
+ 1 − q .
570
+ Now, let h = (2, n − 1, . . . , n − 1, n, n) and set
571
+ Pn(q) := Poin(X(h), √q).
572
+ Lemma 3.7. For n ≥ 5, the following recurrence formula holds
573
+ Pn(q) = (1 + q)2[n − 2]q! + (n − 2)(q + q2)[n − 3]q[n − 3]q!
574
+ + (n − 1)(q + qn−3) {(1 + q)[n − 3]q! + (n − 3)q[n − 4]q[n − 4]q!}
575
+ + (q + q2 + · · · + qn−4)Pn−1(q).
576
+ Proof. Let Fn(q) denote the right-hand side of (3.6) with h(1) = 2, that is,
577
+ (3.7)
578
+ Fn(q) := (1 + q)[n − 1]q! + (n − 1)q[n − 2]q[n − 2]q!.
579
+ Then we have
580
+ Poin(X(h1), √q) = Poin(X(hn), √q) = Fn−1(q)
581
+ Poin(X(h2), √q) = Poin(X(hn−1), √q) = (n − 1)Fn−2(q)
582
+ Poin(X(hj), √q) = Pn−1(q)
583
+ (3 ≤ j ≤ n − 2),
584
+
585
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES
586
+ 9
587
+ where we note that X(h2) consists of n − 1 copies of Fl(n − 2). Hence, by (3.5), we have
588
+ Pn(q) = qFn−1(q) + (n − 1)qn−3Fn−2(q) + (qn−4 + · · · + q)Pn−1(q)
589
+ + (n − 1)qFn−2(q) + Fn−1(q)
590
+ = (1 + q)Fn−1(q) + (n − 1)(q + qn−3)Fn−2(q) + (q + · · · + qn−4)Pn−1(q).
591
+ Combining this equation with (3.7), we obtain the desired equation.
592
+
593
+ Lemma 3.8. For n ≥ 4, let
594
+ Qn(q) = (1 + 2nq + n(n − 1)q2)[n − 2]q! + n(n − 3)
595
+ 2
596
+ qn−3.
597
+ Then we have
598
+ Pn(q) ≡ Qn(q)
599
+ mod (qn−2).
600
+ In other words, Pn(q) and Qn(q) coincide up to degree n − 3.
601
+ Proof. We prove the lemma by induction on n. When n = 4, we have
602
+ P4(q) = 1 + 11q + 11q2 + q3,
603
+ Q4(q) = 1 + 11q + 20q2 + 12q3,
604
+ and the lemma is true for n = 4.
605
+ Let n be given and suppose that the lemma is true for n − 1, that is,
606
+ (3.8)
607
+ Pn−1(q) ≡ Qn−1(q)
608
+ mod (qn−3).
609
+ Hereafter, in this proof, all congruences will be taken modulo qn−2 unless otherwise stated. Since we have
610
+ (q + q2)[n − 3]q[n − 3]q! ≡ (q + q2)[n − 2]q!
611
+ q2[n − 4]q[n − 4]q! ≡ q2[n − 3]q!,
612
+ the recurrence formula in Lemma 3.7 reduces to the following congruence relation:
613
+ Pn(q) ≡ (1 + nq + (n − 1)q2)[n − 2]q! + (n − 1)(q + (n − 2)q2)[n − 3]q!
614
+ + (n − 1)qn−3 + (q + · · · + qn−4)Pn−1(q).
615
+ (3.9)
616
+ It follows from (3.8) and the definition of Qn that the sum of the last two terms above becomes as follows.
617
+ (n − 1)qn−3 + (q + · · · + qn−4)Pn−1(q)
618
+ ≡ (n − 1)qn−3 +
619
+
620
+ 1 + (2n − 2)q + (n − 1)(n − 2)q2�
621
+ (q + · · · + qn−4)[n − 3]q! + (n − 1)(n − 4)
622
+ 2
623
+ qn−3
624
+ =
625
+
626
+ 1 − q + (n − 1)q(1 − q) + nq + (n − 1)2q2�
627
+ (q + · · · + qn−4)[n − 3]q! + (n − 1)(n − 2)
628
+ 2
629
+ qn−3
630
+
631
+
632
+ q − qn−3 + (n − 1)q2 + (nq + (n − 1)2q2)(q + · · · + qn−4)
633
+
634
+ [n − 3]q! + (n − 1)(n − 2)
635
+ 2
636
+ qn−3
637
+
638
+
639
+ q + (n − 1)q2 + (nq + (n − 1)2q2)(q + · · · + qn−4)
640
+
641
+ [n − 3]q! + n(n − 3)
642
+ 2
643
+ qn−3
644
+ By substituting it to (3.9), we obtain
645
+ Pn(q) ≡ (1 + nq + (n − 1)q2)[n − 2]q!
646
+ +
647
+
648
+ (nq + (n − 1)2q2) + (nq + (n − 1)2q2)(q + · · · + qn−4)
649
+
650
+ [n − 3]q! + n(n − 3)
651
+ 2
652
+ qn−3
653
+ ≡ (1 + nq + (n − 1)q2)[n − 2]q! + (nq + (n − 1)2q2)[n − 2]q! + n(n − 3)
654
+ 2
655
+ qn−3
656
+ = (1 + 2nq + n(n − 1)q2)[n − 2]q! + n(n − 3)
657
+ 2
658
+ qn−3
659
+ = Qn(q).
660
+
661
+ 10
662
+ M. MASUDA AND T. SATO
663
+ This completes the induction step and the lemma has been proved.
664
+
665
+ 3.2.2. Hilbert series of the subring generated by H2(X(h)). When h = (2, n − 1, . . ., n − 1, n, n) for n ≥ 5, we
666
+ first observe H2(X(h)). By (2.7), we have
667
+ ⊥(h) = {n − 2},
668
+ L(h) = {1, n − 1}.
669
+ Therefore, it follows from Theorem 2.4 that H2(X(h)) is generated by the following elements
670
+ (3.10)
671
+ xk,
672
+ yk := yn−2,k,
673
+ τk := τ{k}
674
+ (k ∈ [n]),
675
+ where
676
+ xk(w) = tw(k),
677
+ yk(w) = yn−2,k(w) =
678
+
679
+ tk − tw(n−1)
680
+ (if k ∈ {w(1), . . . , w(n − 2)})
681
+ 0
682
+ (otherwise),
683
+ τk(w) = τ{k}(w) =
684
+
685
+ tw(1) − tw(2)
686
+ (if k = w(1))
687
+ 0
688
+ (otherwise)
689
+ (3.11)
690
+ for w ∈ Sn by Definition 2.3, and
691
+ (3.12)
692
+ n
693
+
694
+ k=1
695
+ yk = x1 + · · · + xn−2 − (n − 2)xn−1,
696
+ n
697
+
698
+ k=1
699
+ τk = x1 − x2
700
+ by Theorem 2.4. We also have
701
+ σ · xk = xk,
702
+ σ · yk = yσ(k),
703
+ σ · τk = τσ(k)
704
+ for σ ∈ Sn by (2.8).
705
+ To make the following argument clearer, we introduce elements ρk for k ∈ [n] defined by
706
+ (3.13)
707
+ ρk(w) :=
708
+
709
+ tw(n−1) − tw(n)
710
+ (if k = w(n))
711
+ 0
712
+ (otherwise).
713
+ Similarly to τk, the ρk satisfies the condition (2.6) so that it defines an element of H2
714
+ T (X(h)) and H2(X(h))
715
+ and
716
+ (3.14)
717
+ n
718
+
719
+ k=1
720
+ ρk = xn−1 − xn,
721
+ σ · ρk = ρσ(k)
722
+ for σ ∈ Sn.
723
+ An elementary check shows that
724
+ (yk − yℓ)(w) − (ρk − ρℓ)(w) = tk − tℓ
725
+ (k, ℓ ∈ [n], w ∈ Sn)
726
+ and hence yk − yℓ = ρk − ρℓ in H2(X(h)). Moreover, �n
727
+ k=1 yk and �n
728
+ k=1 ρk are both linear polynomials in
729
+ xi’s by (3.12) and (3.14), so we may replace yk’s in the generating set (3.10) by ρk’s. Namely H2(X(h)) is
730
+ generated by
731
+ xk,
732
+ τk,
733
+ ρk
734
+ (k ∈ [n])
735
+ with relations
736
+ (3.15)
737
+ n
738
+
739
+ k=1
740
+ xk = 0,
741
+ n
742
+
743
+ k=1
744
+ τk = x1 − x2,
745
+ n
746
+
747
+ k=1
748
+ ρk = xn−1 − xn,
749
+ and the actions of σ ∈ Sn on those generators are given by
750
+ (3.16)
751
+ σ · xk = xk,
752
+ σ · τk = τσ(k),
753
+ σ · ρk = ρσ(k).
754
+
755
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES
756
+ 11
757
+ Our purpose is to find a sharp upper bound of the Hilbert series of the subring R(h) of H∗(X(h)) generated
758
+ by H2(X(h)). Let A(h) be the subring of H∗(X(h)) generated by xk’s and we regard R(h) as a module over
759
+ A(h). It follows from (3.11) and (3.13) that
760
+ τkτℓ =
761
+
762
+ (x1 − x2)τk
763
+ (k = ℓ)
764
+ 0
765
+ (k ̸= ℓ),
766
+ ρkρℓ =
767
+
768
+ (xn−1 − xn)ρk
769
+ (k = ℓ)
770
+ 0
771
+ (k ̸= ℓ),
772
+ τkρk = 0.
773
+ Therefore, R(h) is generated by 1, τk, ρk (k ∈ [n]), and τiρj (i ̸= j ∈ [n]) as a module over A(h). The subring
774
+ A(h) itself is a submodule of R(h) over A(h). We consider three other submodules of R(h) over A(h):
775
+ B(h) :={
776
+ n
777
+
778
+ k=1
779
+ bkτk | bk ∈ A(h),
780
+ n
781
+
782
+ k=1
783
+ bk = 0},
784
+ C(h) :={
785
+ n
786
+
787
+ k=1
788
+ ckρk | ck ∈ A(h),
789
+ n
790
+
791
+ k=1
792
+ ck = 0},
793
+ D(h) :={
794
+
795
+ 1≤i,j≤n
796
+ dijτiρj | dij ∈ A(h),
797
+ n
798
+
799
+ j=1
800
+ dij = 0 for i ∈ [n],
801
+ n
802
+
803
+ i=1
804
+ dij = 0 for j ∈ [n]}
805
+ (3.17)
806
+ where dkk = 0 for k ∈ [n]. Note that A(h)⊗Q agrees with the ring of invariants H∗(X(h); Q)Sn as mentioned
807
+ in Remark 2.1.
808
+ Lemma 3.9. R(h) is additively generated by A(h), B(h), C(h), and D(h) when tensoring with Q.
809
+ Proof. Since H∗(X(h)) is generated by 1, τk, ρk (k ∈ [n]), and τiρj (i ̸= j ∈ [n]) as a module over A(h), it
810
+ suffices to show that any element of the form
811
+ (3.18)
812
+ n
813
+
814
+ k=1
815
+ bkτk +
816
+ n
817
+
818
+ k=1
819
+ ckρk +
820
+
821
+ 1≤i,j≤n
822
+ dijτiρj
823
+ (bk, ck, dij ∈ A(h), dkk = 0)
824
+ can be expressed as a sum of elements in A(h), B(h), C(h), and D(h) when tensoring with Q.
825
+ Step 1. Set b := �n
826
+ k=1 bk and c := �n
827
+ k=1 ck. Since �n
828
+ k=1 τk = x1 −x2 and �n
829
+ k=1 ρk = xn−1 −xn by (3.15),
830
+ we have
831
+ n
832
+
833
+ k=1
834
+ bkτk +
835
+ n
836
+
837
+ k=1
838
+ ckρk =
839
+ n
840
+
841
+ k=1
842
+
843
+ bk − b
844
+ n
845
+
846
+ τk + b
847
+ n(x1 − x2) +
848
+ n
849
+
850
+ k=1
851
+
852
+ ck − c
853
+ n
854
+
855
+ ρk + c
856
+ n(xn−1 − xn).
857
+ Here the two sums at the right hand side above respectively belong to B(h) ⊗ Q and C(h) ⊗ Q, and the
858
+ remaining two terms belong to A(h) ⊗ Q.
859
+ Step 2. As for the last term in (3.18), since �n
860
+ i=1 τi = x1 − x2, we have
861
+
862
+ 1≤i,j≤n
863
+ dijτiρj =
864
+ n
865
+
866
+ j=1
867
+ � n
868
+
869
+ i=1
870
+
871
+ dij − dj
872
+ n
873
+
874
+ τi
875
+
876
+ ρj +
877
+ n
878
+
879
+ j=1
880
+ dj
881
+ n (x1 − x2)ρj
882
+ =
883
+
884
+ 1≤i,j≤n
885
+ ˜dijτiρj +
886
+ n
887
+
888
+ j=1
889
+ dj
890
+ n (x1 − x2)ρj
891
+ (3.19)
892
+ where
893
+ dj :=
894
+ n
895
+
896
+ i=1
897
+ dij
898
+ and
899
+ ˜dij := dij − dj
900
+ n .
901
+ The last sum in (3.19) is a sum of elements in A(h) ⊗ Q and C(h) ⊗ Q by Step 1. We shall show that the
902
+ sum �
903
+ 1≤i,j≤n ˜dijτiρj in (3.19) is a sum of elements in A(h) ⊗ Q, B(h) ⊗ Q, and D(h) ⊗ Q. We note that
904
+ (3.20)
905
+ n
906
+
907
+ i=1
908
+ ˜dij =
909
+ n
910
+
911
+ i=1
912
+
913
+ dij − dj
914
+ n
915
+
916
+ =
917
+ n
918
+
919
+ i=1
920
+ dij − dj = 0
921
+
922
+ 12
923
+ M. MASUDA AND T. SATO
924
+ and set
925
+ (3.21)
926
+ ˜di :=
927
+ n
928
+
929
+ j=1
930
+ ˜dij.
931
+ Since �n
932
+ j=1 ρj = xn−1 − xn, we have
933
+ (3.22)
934
+
935
+ 1≤i,j≤n
936
+ ˜dijτiρj =
937
+ n
938
+
939
+ i=1
940
+
941
+
942
+ n
943
+
944
+ j=1
945
+
946
+ ˜dij −
947
+ ˜di
948
+ n
949
+
950
+ ρj
951
+
952
+  τi +
953
+ n
954
+
955
+ i=1
956
+ ˜di
957
+ n (xn−1 − xn)τi.
958
+ Here the second sum at the right hand side of (3.22) is a sum of elements in A(h) ⊗ Q and B(h) ⊗ Q by Step
959
+ 1. As for the coefficients ˜dij −
960
+ ˜di
961
+ n of τiρj in the first sum at the right hand side of (3.22), it follows from
962
+ (3.20) and (3.21) that we have
963
+ n
964
+
965
+ i=1
966
+
967
+ ˜dij −
968
+ ˜di
969
+ n
970
+
971
+ =
972
+ n
973
+
974
+ i=1
975
+ ˜dij − 1
976
+ n
977
+ n
978
+
979
+ i=1
980
+ ˜di = − 1
981
+ n
982
+ n
983
+
984
+ i=1
985
+ n
986
+
987
+ j=1
988
+ ˜dij = −
989
+ n
990
+
991
+ j=1
992
+ � n
993
+
994
+ i=1
995
+ ˜dij
996
+
997
+ = 0,
998
+ n
999
+
1000
+ j=1
1001
+
1002
+ ˜dij −
1003
+ ˜di
1004
+ n
1005
+
1006
+ =
1007
+ n
1008
+
1009
+ j=1
1010
+ ˜dij − ˜di = 0.
1011
+ Thus, the first sum at the right hand side of (3.22) belongs to D(h) ⊗ Q. This completes the proof of the
1012
+ lemma.
1013
+
1014
+ We shall calculate upper bounds of the Hilbert series of A(h), B(h), C(h), and D(h).
1015
+ Hilbert series of A(h). Since A(h) ⊗ Q = H∗(X(h))Sn ⊗ Q and h = (2, n − 1, . . . , n − 1, n, n) in our case,
1016
+ it follows from (2.11) that
1017
+ (3.23)
1018
+ Hilb(A(h), √q) =
1019
+ n−1
1020
+
1021
+ j=1
1022
+ [h(j) − j]q = (1 + q)2[n − 2]q!.
1023
+ Hilbert series of B(h). It follows from(3.11) that (x1 − tk)τk vanishes at every w ∈ Sn, so we have
1024
+ (3.24)
1025
+ (x1 − tk)τk = 0
1026
+ in H∗
1027
+ T (X(h))
1028
+ and hence
1029
+ x1τk = 0
1030
+ in H∗(X(h)).
1031
+ Therefore, B(h) is indeed a module over A(h)/(x1). Here
1032
+ A(h)/(x1) ⊗ Q = A(h1) ⊗ Q
1033
+ by (2.9) and (2.10). Since h1 = (n − 2, . . . , n − 2, n − 1, n − 1), it follows from (2.11) that
1034
+ Hilb(A(h)/(x1), √q) =
1035
+ n−2
1036
+
1037
+ j=1
1038
+ [h1(j) − j]q = (1 + q)[n − 2]q!.
1039
+ Since B(h) is a module over A(h)/(x1) generated by τi − τi+1 (i ∈ [n − 1]) and the cohomological degrees of
1040
+ τk’s are two, we obtain an upper bound of Hilb(B(h), q) as follows:
1041
+ (3.25)
1042
+ Hilb(B(h), √q) ≤ (n − 1)q Hilb(A(h)/(x1), √q) = (n − 1)(q + q2)[n − 2]q!.
1043
+ Here �∞
1044
+ i=0 aiqi ≤ �∞
1045
+ i=0 biqi (ai, bi ∈ Z) means that ai ≤ bi for all i’s.
1046
+ Hilbert series of C(h). To f ∈ Map(Sn, Z[t1, . . . , tn]) we associate f ∨ ∈ Map(Sn, Z[t1, . . . , tn]) defined by
1047
+ f ∨(w) := f(ww0)
1048
+ for w ∈ Sn,
1049
+ where w0 denotes the longest element in Sn, i.e. w0 = n n − 1 · · · 2 1 in one-line notation. This defines an
1050
+ involution on Map(Sn, Z[t1, . . . , tn]) and one can easily check that
1051
+ x∨
1052
+ k = xn−k+1,
1053
+ τ ∨
1054
+ k = −ρk,
1055
+ ρ∨
1056
+ k = −τk
1057
+
1058
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES
1059
+ 13
1060
+ from (3.11) and (3.13). Hence the involution gives an isomorphism between B(h) and C(h), and the same
1061
+ inequality as (3.25) holds for C(h), i.e.
1062
+ (3.26)
1063
+ Hilb(C(h), √q) ≤ (n − 1)(q + q2)[n − 2]q!.
1064
+ Hilbert series of D(h). We have x1τk = 0 by (3.24). Similarly we have xnρk = 0 since (x1τk)∨ = −xnρk.
1065
+ (The fact xnρk = 0 also follows from the definition (3.11) and (3.13) of xk and ρk.) Therefore, D(h) is indeed
1066
+ a module over A(h)/(x1, xn).
1067
+ As mentioned in Remark 2.1, A(h) ⊗ Q = H∗(X(h))Sn ⊗ Q and it is the image of the restriction map
1068
+ ι∗ : H∗(Fl(n)) → H∗(X(h)). Therefore, A(h)/(x1, xn) is the image of the restriction map from H∗(Fl(n−2))
1069
+ and hence
1070
+ Hilb(A(h)/(x1, xn), √q) ≤ [n − 2]q!.
1071
+ (In fact, the equality holds above.) There are 2n relations among dij (i ̸= j) in the definition (3.17) of D(h),
1072
+ but one relation can be obtained from the other 2n−1 relations because �n
1073
+ i=1
1074
+ ��n
1075
+ j=1 dij
1076
+
1077
+ = �n
1078
+ j=1 (�n
1079
+ i=1 dij).
1080
+ Moreover, there are n(n − 1) number of dij’s and the cohomological degree of τiρj is four. Thus
1081
+ (3.27)
1082
+ Hilb(D(h), √q) ≤ Hilb(A(h)/(x1, xn), √q) {n(n − 1) − (2n − 1)} q2 ≤ (n2 − 3n + 1)q2[n − 2]q!.
1083
+ Proof of Proposition 3.4. It follows from Lemma 3.9, (3.23), (3.25), (3.26), and (3.27) that
1084
+ Hilb(R(h), √q) ≤ (1 + q)2[n − 2]q! + 2(n − 1)(q + q2)[n − 2]q! + (n2 − 3n + 1)q2[n − 2]q!
1085
+ = (1 + 2nq + n(n − 1)q2)[n − 2]q!.
1086
+ The coefficient of qn−3 in the last term above is less than that of Pn(q) in Lemma 3.8 by n(n − 3)/2, proving
1087
+ the proposition.
1088
+
1089
+ 4. Sufficiency
1090
+ The purpose of this section is to prove the following proposition, which implies the sufficiency of Theorem
1091
+ 1.1.
1092
+ Proposition 4.1. When h is of the form (1.1), the equivariant cohomology H∗
1093
+ T (X(h)) is generated in degree
1094
+ 2 as an algebra over H∗(BT ).
1095
+ By Theorem 2.1(3), X(h) is not connected when h(k) = k for some 1 ≤ k ≤ n − 1. In this case, a flag
1096
+ V• = (V0 ⊂ V1 ⊂ · · · ⊂ Vn) ∈ X(h) is of the form Vk = ⟨ei1, ei2, . . . , eik⟩ for some {i1, . . . , ik} ⊂ [n], where ei
1097
+ is the i-th standard basis vector of Cn. Therefore, decomposing V• into two flags (V0 ⊂ V1 ⊂ · · · ⊂ Vk) and
1098
+ (V ′
1099
+ 0 ⊂ V ′
1100
+ 1 ⊂ · · · ⊂ V ′
1101
+ n−k), where V ′
1102
+ i = Vk+i/Vk, one can see that X(h) is the disjoint union of
1103
+ �n
1104
+ k
1105
+
1106
+ copies of
1107
+ X(h1) × X(h2), where h1 and h2 are the Hessenberg function obtained by restricting h onto intervals [k] and
1108
+ [k + 1, n], respectively. Each copy corresponds to the choice of a k-subset {i1, . . . , ik} ⊂ [n]. To be precise,
1109
+ h2 : [n − k] → [n − k] is given by shift−1
1110
+ k
1111
+ ◦ h ◦ shiftk, where shiftk : [n − k] → [k + 1, n] shifts integers by k.
1112
+ Suppose h is of the form (1.1) and 1 ≤ r ≤ n. Then
1113
+ X(hr) is not connected ⇐⇒ a + 1 ≤ r ≤ b
1114
+ by Theorem 2.1(3) and that hr is also of the form (1.1) when r < a + 1 or r > b. When a + 1 ≤ r ≤ b, each
1115
+ connected component of X(hr) is isomorphic to X(h1) × X(h2) and both h1 and h2 are of the form (1.1).
1116
+ Let Γ(Sn, h) denote the labeled graph of X(h). Recall that H∗
1117
+ T (X(h)) ∼= H∗(Γ(Sn, h)). For the subset
1118
+ Sr
1119
+ n ⊂ Sn in (3.1), let Γ(Sr
1120
+ n, h) be the induced labeled subgraph of Γ(Sn, h) on the subset Sr
1121
+ n of vertices,
1122
+ and let Γ0(Sr
1123
+ n, h) denote a connected component of Γ(Sr
1124
+ n, h).
1125
+ Lemma 4.2. When h is of the form (1.1), the restriction map H2(Γ(Sn, h)) → H2(Γ0(Sr
1126
+ n, h)) is surjective.
1127
+ We admit the lemma and complete the proof of Proposition 4.1.
1128
+ Before that, we shall observe that
1129
+ Γ0(Sr
1130
+ n, h) is essentially a connected component of a labeled graph of X(hr). Indeed, for 1 ≤ r ≤ n, let cr be
1131
+ the cyclic permutation (r r + 1 r + 2 · · · n) and
1132
+ ϕr : Γ0(Sr
1133
+ n, h) → Γ0(Sn−1, hr)
1134
+
1135
+ 14
1136
+ M. MASUDA AND T. SATO
1137
+ a graph isomorphism defined by ϕr(w) = wcr for w ∈ Sr
1138
+ n. When i, j ̸= r, the (i, j)-th box in the configuration
1139
+ for h corresponds to the (c−1
1140
+ r (i), c−1
1141
+ r (j))-th box in the configuration for hr (see Figure 3). In particular,
1142
+ v = w(i, j) corresponds to vcr = wcr(c−1
1143
+ r (i), c−1
1144
+ r (j)) and the edges between these vertices have the same
1145
+ label tw(i) − tw(j). Therefore, ϕr induces an isomorphism
1146
+ (4.1)
1147
+ ϕ∗
1148
+ r : H∗(Γ0(Sn−1, hr))
1149
+
1150
+ =
1151
+ −→ H∗(Γ0(Sr
1152
+ n, h))
1153
+ of graded algebras over H∗(BT ).
1154
+ Proof of Proposition 4.1. Recall that H∗
1155
+ T (X(h)) ∼= H∗(Γ(Sn, h)). We prove the proposition by induction on
1156
+ n. Let 1 ≤ r ≤ n. For any z ∈ H∗(Γ(Sn, h)) that vanishes on �r−1
1157
+ j=1 Sj
1158
+ n, it is sufficient to show the existence
1159
+ of a polynomial f in elements of H2(Γ(Sn, h)) such that z − f vanishes on �r
1160
+ j=1 Sj
1161
+ n. Then the induction on
1162
+ r proves the proposition. We shall show the existence of f by division into cases according to the value of r.
1163
+ Case 1. The case 1 ≤ r ≤ a. In this case, Γ(Sr
1164
+ n, h) is connected. We note that z vanishes on �r−1
1165
+ j=1 Sj
1166
+ n
1167
+ and this implies that z(w) for w ∈ Sr
1168
+ n decomposes as follows:
1169
+ (4.2)
1170
+ z(w) =
1171
+
1172
+
1173
+ r−1
1174
+
1175
+ j=1
1176
+ (tw(j) − tn)
1177
+
1178
+  g(w),
1179
+ g ∈ H∗(Γ(Sr
1180
+ n, h)).
1181
+ Indeed, for w ∈ Sr
1182
+ n, we have w(r) = n and w(j, r) ∈ Sj
1183
+ n. If j ≤ r − 1, then there is an edge in the graph
1184
+ Γ(Sn, h) between the vertices w and w(j, r). The label on the edge is tw(j) −tw(r) = tw(j) −tn and z vanishes
1185
+ at w(j, r) ∈ Sj
1186
+ n (j ≤ r − 1) by assumption. Therefore z(w) is divisible by the product in the big parenthesis
1187
+ in (4.2) and g ∈ Map(Sr
1188
+ n, H∗(BT )). Furthermore, one can easily check that the g is indeed in H∗(Γ(Sr
1189
+ n, h))
1190
+ since z is in H∗(Γ(Sn, h)).
1191
+ Since H∗(Γ(Sr
1192
+ n, h)) ∼= H∗(Γ(Sn−1, hr)) by (4.1), g is a polynomial in elements of H2(Γ(Sr
1193
+ n, h)) by induc-
1194
+ tion on n. Moreover, by Lemma 4.2, there is a polynomial ˜g in H2(Γ(Sn, h)) which coincides with g on Sr
1195
+ n.
1196
+ On the other hand, �r−1
1197
+ j=1(xj −tn) coincides with the product in (4.2) on Sr
1198
+ n since xj(w) = tw(j) by definition
1199
+ of xj, and vanishes on �r−1
1200
+ j=1 Sj
1201
+ n since xj(w) = tw(j) = tn for w ∈ Sj
1202
+ n. Therefore,
1203
+ � �r−1
1204
+ j=1(xj − tn)
1205
+
1206
+ ˜g coincides
1207
+ with the element z on �r
1208
+ j=1 Sj
1209
+ n. Thus
1210
+ � �r−1
1211
+ j=1(xj − tn)
1212
+
1213
+ ˜g is a desired polynomial f.
1214
+ Case 2. The case r = a + 1. Similarly to Case 1, z(w) for w ∈ Sa+1
1215
+ n
1216
+ decomposes as follows:
1217
+ (4.3)
1218
+ z(w) =
1219
+
1220
+
1221
+ a
1222
+
1223
+ j=1
1224
+ (tw(j) − tn)
1225
+
1226
+  g(w),
1227
+ g ∈ H∗(Γ(Sa+1
1228
+ n
1229
+ , h)).
1230
+ Note that Γ(Sa+1
1231
+ n
1232
+ , h) is not connected. Two vertices v, w ∈ Sa+1
1233
+ n
1234
+ lie in the same connected component if
1235
+ and only if
1236
+ {v(1), . . . , v(a)} = {w(1), . . . , w(a)} ⊂ [n − 1].
1237
+ For K := {k1, . . . , ka} ⊂ [n − 1], we consider the element ρK defined by
1238
+ ρK =
1239
+ a
1240
+
1241
+ j=1
1242
+ ya,kj,
1243
+ where
1244
+ ya,k(w) =
1245
+
1246
+ tk − tw(a+1)
1247
+ (k ∈ {w(1), . . . , w(a)})
1248
+ 0
1249
+ (k /∈ {w(1), . . . , w(a)})
1250
+ by definition. Therefore, since w(a + 1) = n for w ∈ Sa+1
1251
+ n
1252
+ , we have
1253
+ ρK(w) =
1254
+ ��a
1255
+ j=1(tw(j) − tn)
1256
+ (K = {w(1), . . . , w(a)})
1257
+ 0
1258
+ (K ̸= {w(1), . . . , w(a)}).
1259
+ Hence ρK coincides with the product in the big parentheses of (4.3) on the connected component
1260
+ (4.4)
1261
+ {w ∈ Sa+1
1262
+ n
1263
+ | w([a]) = K}
1264
+
1265
+ REGULAR SEMISIMPLE HESSENBERG VARIETIES
1266
+ 15
1267
+ and vanishes on the other components. Since n /∈ K and w(j) = n for w ∈ Sj
1268
+ n, ρK also vanishes on �a
1269
+ j=1 Sj
1270
+ n.
1271
+ On the other hand, the element g in (4.3) restricted to the connected component (4.4) is obtained as the
1272
+ restriction of a polynomial ˜gK in H2(Γ(Sn, h)) similarly to Case 1. Therefore, we obtain a desired polynomial
1273
+ f as
1274
+
1275
+ K⊂[n−1], |K|=a
1276
+ ρK˜gK.
1277
+ Case 3. The case a + 2 ≤ r ≤ b. In this case, z(w) for w ∈ Sr
1278
+ n decomposes as follows:
1279
+ (4.5)
1280
+ z(w) = (tw(r−1) − tw(r))g(w),
1281
+ g ∈ H∗(Γ(Sr
1282
+ n, h)).
1283
+ Similarly to Case 2, Γ(Sr
1284
+ n, h) is not connected and two vertices v, w ∈ Sr
1285
+ n lie in the same connected component
1286
+ if and only if
1287
+ {v(1), . . . , v(r − 1)} = {w(1), . . . , w(r − 1)} ⊂ [n − 1].
1288
+ For A ⊂ [n − 1] with |A| = r − 1, we have
1289
+ τA(w) =
1290
+
1291
+ tw(r−1) − tw(r)
1292
+ (A = {w(1), . . . , w(r − 1)})
1293
+ 0
1294
+ (A ̸= {w(1), . . . , w(r − 1)})
1295
+ by definition. Hence, τA coincides with the factor of the right-hand side of (4.5) on the connected component
1296
+ {w ∈ Sr
1297
+ n | w([r − 1]) = A}, and vanishes on the other connected components. Since n /∈ A and w(j) = n for
1298
+ w ∈ Sj
1299
+ n, τA also vanishes on �r−1
1300
+ j=1 Sj
1301
+ n. Therefore, similarly to Case 2, we obtain a desired polynomial f as
1302
+
1303
+ A⊂[n−1], |A|=r−1
1304
+ τA˜gA, where ˜gA is a polynomial in H2(Γ(Sn, h)).
1305
+ Case 4. The case b + 1 ≤ r ≤ n. In this case, z(w) for w ∈ Sr
1306
+ n decomposes as follows:
1307
+ (4.6)
1308
+ z(w) =
1309
+
1310
+
1311
+ r−1
1312
+
1313
+ j=b
1314
+ (tn − tw(j))
1315
+
1316
+  g(w),
1317
+ g ∈ H∗(Γ(Sr
1318
+ n, h)).
1319
+ Similarly to Case 1, X(hr) is connected and g is the restriction of a polynomial ˜g in H2(Γ(Sn, h)).
1320
+ We consider the element y∗
1321
+ b+1,n ∈ H∗(Γ(Sn, h)) in Remark 2.2, which is defined as
1322
+ y∗
1323
+ b+1,n(w) =
1324
+
1325
+ tn − tw(b)
1326
+ (n ∈ {w(b + 1), . . . , w(n)})
1327
+ 0
1328
+ (n /∈ {w(b + 1), . . . , w(n)}).
1329
+ Then
1330
+
1331
+ y∗
1332
+ b+1,n
1333
+ r−1
1334
+
1335
+ j=b+1
1336
+ (tn − xj)
1337
+
1338
+  (w) =
1339
+ ��r−1
1340
+ j=b(tn − tw(j))
1341
+ (n ∈ {w(b + 1), . . . , w(n)})
1342
+ 0
1343
+ (n /∈ {w(b + 1), . . . , w(n)}).
1344
+ Hence y∗
1345
+ b+1,n
1346
+ �r−1
1347
+ j=b+1(tn − xj) coincides with the product in the big parentheses of (4.6) on Sr
1348
+ n, and vanishes
1349
+ on �r−1
1350
+ j=1 Sj
1351
+ n. Therefore,
1352
+
1353
+ y∗
1354
+ b+1,n
1355
+ �r−1
1356
+ j=b+1(tn − xj)
1357
+
1358
+ ˜g is a desired polynomial f.
1359
+
1360
+ Finally we give a proof of Lemma 4.2.
1361
+ Proof of Lemma 4.2. It follows from Theorem 2.4 and Remark 2.2 that when h is of the form (1.1), the
1362
+ elements in
1363
+ {xi, ya,k, τA, ti | i, k ∈ [n], A ⊂ [n], a + 1 ≤ |A| < b}
1364
+ span H2(Γ(Sn, h)). Through the isomorphism (4.1), one can find generators of H2(Γ0(Sr
1365
+ n, h)) which corre-
1366
+ spond to the generators of H2(Γ0(Sn−1, hr)). They are given as restrictions of
1367
+ xi for i ∈ [n], i ̸= r,
1368
+ ti for i ∈ [n],
1369
+ and the following elements in H2(Γ(Sn, h)).
1370
+ Case 1. When 1 ≤ r ≤ a,
1371
+ ya,k for k ∈ [n − 1],
1372
+ τA⊔{n} for A ⊂ [n − 1], a ≤ |A| < b − 1.
1373
+
1374
+ 16
1375
+ M. MASUDA AND T. SATO
1376
+ Case 2. When r = a + 1, for a connected component Γ0(Sa+1
1377
+ n
1378
+ , h) which contains σ ∈ Sa+1
1379
+ n
1380
+ ;
1381
+ τB⊔σ([a+1]) for B ⊂ σ([n]\[a + 1]), 1 ≤ |B| < b − (a + 1).
1382
+ Case 3. When a + 1 < r ≤ b, for a connected component Γ0(Sr
1383
+ n, h) which contains σ ∈ Sr
1384
+ n;
1385
+ ya,k for k ∈ [n − 1],
1386
+ τA for A ⊂ σ([r − 1]), a + 1 ≤ |A| < r − 1,
1387
+ τB⊔σ([r]) for B ⊂ σ([n] \ [r]), 1 ≤ |B| < b − r.
1388
+ Case 4. When b < r ≤ n,
1389
+ ya,k for k ∈ [n − 1],
1390
+ τA for A ⊂ [n − 1], a + 1 ≤ |A| < b.
1391
+ This proves the lemma.
1392
+
1393
+ Acknowledgment.
1394
+ We thank Yunhyung Cho for his help on moment map. Masuda was supported in part by JSPS Grant-
1395
+ in-Aid for Scientific Research 22K03292 and a HSE University Basic Research Program. This work was
1396
+ partly supported by Osaka Central Advanced Mathematical Institute (MEXT Joint Usage/Research Center
1397
+ on Mathematics and Theoretical Physics JPMXP0619217849).
1398
+ References
1399
+ [1] H. Abe, M. Harada, T. Horiguchi, and M. Masuda, The cohomology rings of regular nilpotent Hessenberg varieties in Lie
1400
+ type A, Int. Math. Res. Not. IMRN (2019), no. 17, 5316–5388.
1401
+ [2] H. Abe, T. Horiguchi, and M. Masuda, The cohomology rings of regular semisimple Hessenberg varieties for h =
1402
+ (h(1), n, ..., n), J. Comb. 10.1 (2019), pp. 27–59.
1403
+ [3] T. Abe, T. Horiguchi, M. Masuda, S. Murai, and T. Sato, Hessenberg varieties and hyperplane arrangements, J. f¨ur die
1404
+ Reine und Angew. Math. (Crelles Journal), vol. 2020, no. 764, 2020, pp. 241–286. https://doi.org/10.1515/crelle-2018-0039.
1405
+ [4] A. Ayzenberg, M. Masuda, and T. Sato, The second cohomology of regular semisimple Hessenberg varieties from GKM
1406
+ theory, Proc. Steklov Inst. Math., DOI: 10.1134/S0081543822020018.
1407
+ [5] P. Brosnan and T. Chow, Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg
1408
+ varieties, Adv. Math. 329 (2018), 955–1001.
1409
+ [6] S. Cho, J. Hong, and E. Lee, Permutation module decomposition of the second cohomology of a regular semisimple Hessenberg
1410
+ variety, arXiv:2107.00863
1411
+ [7] T. Chow, e-positivity of the coefficient of t in XG(t), http://timothychow.net/h2.pdf
1412
+ [8] S. Dahlberg and S. van Willigenburg, Lollipop and lariat symmetric functions, SIAM J. Discrete Math. 32 (2) (2018)
1413
+ 1029–1039.
1414
+ [9] Y. Fukukawa, H. Ishida, and M. Masuda, The cohomology ring of the GKM graph of a flag manifold of classical type, Kyoto
1415
+ J. Math. 54 (2014), 653–677.
1416
+ [10] M. Guay-Paquet, A modular law for the chromatic symmetric functions of (3 + 1)-free posets, arXiv:1306.2400v1.
1417
+ [11] V. Guillemin and C. Zara, 1-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J. 107 (2001), no. 2, 283–349.
1418
+ [12] M. Harada and M. Precup, The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture, Alge-
1419
+ braic Combinatorics, 2 (2019) no. 6, pp. 1059–1108.
1420
+ [13] J. Huh, S-Y. Nam, and M. Yoo, Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular
1421
+ LLT polynomials, Discrete Math. 343 (2020), 111728.
1422
+ [14] F. De Mari, C. Procesi, and M. A. Shayman, Hessenberg varieties, Trans. Amer. Math. Soc. 332 (1992), no. 2, 529–534.
1423
+ [15] W. Fulton and J. Harris, Representation Theory, A First Course, GTM 129, Springer 2004.
1424
+ [16] E. Lee, M. Masuda, and S. Park, Toric Bruhat interval polytopes, J. Combin. Theory Ser. A, 179:105387, 41pp, 2021.
1425
+ [17] M. Masuda and T. Sato, The cohomology ring of a regular semisimple Hessenberg variety of double lollipop type, in
1426
+ preparation.
1427
+ [18] J. Shareshian and M. L. Wachs, Chromatic quasisymmetric functions, Adv. Math. 295 (2016), 497–551.
1428
+ [19] S. Tolman and J. Weitsman, The cohomology rings of symplectic quotients, Comm. Anal. Geom. 11 (2003), 751–773.
1429
+ [20] J. Tymoczko, Permutation actions on equivariant cohomology of flag varieties, Toric topology, 365–384, Contemp. Math.,
1430
+ 460, Amer. Math. Soc., Providence, RI, 2008.
1431
+ Osaka Metropolitan University Advanced Mathematical Institute, Sumiyoshi-ku, Osaka 558-8585, Japan.
1432
+ Email address: [email protected]
1433
+ Osaka Metropolitan University Advanced Mathematical Institute, Sumiyoshi-ku, Osaka 558-8585, Japan.
1434
+ Email address: [email protected]
1435
+
8dE2T4oBgHgl3EQfPwZL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
99E2T4oBgHgl3EQfQQZv/content/tmp_files/2301.03768v1.pdf.txt ADDED
@@ -0,0 +1,1247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Prepared for submission to JHEP
2
+ Search for lepton-flavor-violating τ decays into a
3
+ lepton and a vector meson using the full Belle data
4
+ sample
5
+ The Belle Collaboration
6
+ N. Tsuzuki
7
+ , K. Inami
8
+ , I. Adachi
9
+ , H. Aihara
10
+ , D. M. Asner
11
+ , H. Atmacan
12
+ ,
13
+ T. Aushev
14
+ , R. Ayad
15
+ , V. Babu
16
+ , Sw. Banerjee
17
+ , P. Behera
18
+ , K. Belous
19
+ ,
20
+ J. Bennett
21
+ , M. Bessner
22
+ , B. Bhuyan
23
+ , T. Bilka
24
+ , D. Biswas
25
+ , D. Bodrov
26
+ ,
27
+ J. Borah
28
+ , A. Bozek
29
+ , M. Braˇcko
30
+ , P. Branchini
31
+ , T. E. Browder
32
+ , A. Budano
33
+ ,
34
+ M. Campajola
35
+ , D. ˇCervenkov
36
+ , M.-C. Chang
37
+ , B. G. Cheon
38
+ , K. Chilikin
39
+ ,
40
+ H. E. Cho
41
+ , K. Cho
42
+ , S.-J. Cho
43
+ , S.-K. Choi
44
+ , Y. Choi
45
+ , S. Choudhury
46
+ ,
47
+ D. Cinabro
48
+ , J. Cochran
49
+ , S. Das
50
+ , N. Dash
51
+ , G. De Nardo
52
+ , G. De Pietro
53
+ ,
54
+ R. Dhamija
55
+ , F. Di Capua
56
+ , Z. Doleˇzal
57
+ , T. V. Dong
58
+ , D. Dossett
59
+ , S. Dubey
60
+ ,
61
+ D. Epifanov
62
+ , T. Ferber
63
+ , D. Ferlewicz
64
+ , B. G. Fulsom
65
+ , V. Gaur
66
+ , A. Giri
67
+ ,
68
+ P. Goldenzweig
69
+ , Y. Guan
70
+ , K. Gudkova
71
+ , X. Han
72
+ , T. Hara
73
+ , K. Hayasaka
74
+ ,
75
+ H. Hayashii
76
+ , M. T. Hedges
77
+ , D. Herrmann
78
+ , W.-S. Hou
79
+ , C.-L. Hsu
80
+ ,
81
+ T. Iijima
82
+ , N. Ipsita
83
+ , A. Ishikawa
84
+ , R. Itoh
85
+ , M. Iwasaki
86
+ , W. W. Jacobs
87
+ ,
88
+ E.-J. Jang
89
+ , S. Jia
90
+ , Y. Jin
91
+ , T. Kawasaki
92
+ , C. Kiesling
93
+ , C. H. Kim
94
+ ,
95
+ D. Y. Kim
96
+ , K.-H. Kim
97
+ , Y.-K. Kim
98
+ , K. Kinoshita
99
+ , P. Kodyˇs
100
+ , T. Konno
101
+ ,
102
+ A. Korobov
103
+ , S. Korpar
104
+ , E. Kovalenko
105
+ , P. Kriˇzan
106
+ , P. Krokovny
107
+ , M. Kumar
108
+ ,
109
+ K. Kumara
110
+ , A. Kuzmin
111
+ , Y.-J. Kwon
112
+ , S. C. Lee
113
+ , J. Li
114
+ , L. K. Li
115
+ , Y. Li
116
+ ,
117
+ J. Libby
118
+ , K. Lieret
119
+ , Y.-R. Lin
120
+ , D. Liventsev
121
+ , Y. Ma
122
+ , A. Martini
123
+ ,
124
+ M. Masuda
125
+ , K. Matsuoka
126
+ , D. Matvienko
127
+ , S. K. Maurya
128
+ , F. Meier
129
+ ,
130
+ M. Merola
131
+ , K. Miyabayashi
132
+ , R. Mizuk
133
+ , G. B. Mohanty
134
+ , M. Nakao
135
+ ,
136
+ Z. Natkaniec
137
+ , A. Natochii
138
+ , L. Nayak
139
+ , M. Niiyama
140
+ , N. K. Nisar
141
+ , S. Nishida
142
+ ,
143
+ S. Ogawa
144
+ , H. Ono
145
+ , P. Oskin
146
+ , G. Pakhlova
147
+ , T. Pang
148
+ , S. Pardi
149
+ , H. Park
150
+ ,
151
+ J. Park
152
+ , S.-H. Park
153
+ , A. Passeri
154
+ , S. Paul
155
+ , T. K. Pedlar
156
+ , R. Pestotnik
157
+ ,
158
+ L. E. Piilonen
159
+ , T. Podobnik
160
+ , E. Prencipe
161
+ , M. T. Prim
162
+ , A. Rostomyan
163
+ ,
164
+ N. Rout
165
+ , G. Russo
166
+ , S. Sandilya
167
+ , A. Sangal
168
+ , L. Santelj
169
+ , V. Savinov
170
+ ,
171
+ G. Schnell
172
+ , C. Schwanda
173
+ , Y. Seino
174
+ , K. Senyo
175
+ , M. E. Sevior
176
+ , W. Shan
177
+ ,
178
+ M. Shapkin
179
+ , C. Sharma
180
+ , J.-G. Shiu
181
+ , E. Solovieva
182
+ , M. Stariˇc
183
+ ,
184
+ M. Sumihama
185
+ , T. Sumiyoshi
186
+ , M. Takizawa
187
+ , U. Tamponi
188
+ , K. Tanida
189
+ ,
190
+ F. Tenchini
191
+ , M. Uchida
192
+ , T. Uglov
193
+ , Y. Unno
194
+ , S. Uno
195
+ , P. Urquijo
196
+ ,
197
+ Y. Ushiroda
198
+ , S. E. Vahsen
199
+ , G. Varner
200
+ , A. Vinokurova
201
+ , D. Wang
202
+ , E. Wang
203
+ ,
204
+ M.-Z. Wang
205
+ , X. L. Wang
206
+ , S. Watanuki
207
+ , X. Xu
208
+ , B. D. Yabsley
209
+ , W. Yan
210
+ ,
211
+ S. B. Yang
212
+ , J. Yelton
213
+ , Y. Yook
214
+ , L. Yuan
215
+ , Y. Zhai
216
+ , V. Zhilich
217
+ ,
218
+ V. Zhukova
219
+ ,
220
+ arXiv:2301.03768v1 [hep-ex] 10 Jan 2023
221
+
222
+ Abstract: Charged-lepton-flavor-violation is predicted in several new physics scenarios.
223
+ We update the analysis of τ lepton decays into a light charged lepton (ℓ = e± or µ±) and a
224
+ vector meson (V 0 = ρ0, φ, ω, K∗0, or K∗0) using 980 fb−1 of data collected with the Belle
225
+ detector at the KEKB collider. No significant excess of such signal events is observed, and
226
+ thus 90% credibility level upper limits are set on the τ → ℓV 0 branching fractions in the
227
+ range of (1.7–4.2) × 10−8. These limits are improved by 30% on average from the previous
228
+ results.
229
+ Keywords: e+–e− Experiments, Tau Physics
230
+
231
+ Contents
232
+ 1
233
+ Introduction
234
+ 1
235
+ 2
236
+ Belle experiment
237
+ 1
238
+ 3
239
+ Reconstruction and event selection
240
+ 2
241
+ 4
242
+ Signal efficiency and background estimation
243
+ 6
244
+ 5
245
+ Results
246
+ 10
247
+ 6
248
+ Conclusion
249
+ 11
250
+ 1
251
+ Introduction
252
+ In the Standard Model, charged-lepton-flavor-violation (CLFV) is so strongly suppressed
253
+ that it is undiscoverable by current experiments. Therefore, a discovery of a CLFV event
254
+ indicates new physics (NP). Verifying various NP models requires many searches of various
255
+ CLFV modes [1]. Whereas the CLFV constraints are much more stringent for µ-to-e than
256
+ for τ through the precise measurements [2–4], we are interested in τ, the third-generation
257
+ and heaviest lepton. So-called B-anomalies, which indicate NP effects in B semileptonic
258
+ decays [5–16], also motivate the CLFV searches.
259
+ We focus on τ CLFV decays into a charged lepton (ℓ = e± or µ±) and a neutral vector
260
+ meson (V 0 = ρ0, φ, ω, K∗0, or K∗0). In refs. [17–22], the τ → µφ mode is a sensitive probe
261
+ for leptoquark models that can explain the B-anomalies.1 Some other NP models predict
262
+ branching fractions of O(10−10)–O(10−8) for τ → ℓV 0 [25–28].
263
+ We previously searched for τ → ℓV 0 events using 854 fb−1 of Belle data, and set
264
+ 90% credibility level (C.L.) upper limits on the branching fractions in the range of (1.2–
265
+ 8.4) × 10−8 [29].2 This paper reports an updated search for τ → ℓV 0 using the full 980
266
+ fb−1 Belle data set. The signal efficiency is improved through new event selection criteria
267
+ with a multivariate analysis.
268
+ 2
269
+ Belle experiment
270
+ The Belle detector is a spectrometer that covers large solid angles of the e+e− collision
271
+ events from the KEKB accelerator [30, 31]. The detector consists of a silicon vertex de-
272
+ tector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov
273
+ 1One of the B-anomalies which motivated the models described in those references is the R(K(∗))
274
+ anomaly reported by the LHCb experiment [23], but it disappeared in their updated analysis [24].
275
+ 2In common high energy physics usage, this credibility level has been reported as “confidence level,”
276
+ which is a frequentist-statistics term.
277
+ – 1 –
278
+
279
+ counters, time-of-flight scintillation counters, and an electromagnetic calorimeter composed
280
+ of 8736 CsI(Tl) crystals (ECL). These devices are located inside a superconducting solenoid
281
+ coil that provides a 1.5 T magnetic field. An iron flux return located outside of the coil is
282
+ instrumented to detect K0
283
+ L mesons and identify muons. The Belle detector is described in
284
+ detail elsewhere [32, 33].
285
+ Of the 980 fb−1 data set, 703 fb−1 was collected at the Υ(4S) resonance, 121 fb−1 at
286
+ the Υ(5S), 89 fb−1 at an energy 60 MeV below the Υ(4S), 28 fb−1 of energy-scans above the
287
+ Υ(4S), and the remainder at and near the Υ(1–3S). Compared to the previous paper [29],
288
+ the following data sets have been added: 78 fb−1 at and near the Υ(5S), 38 fb−1 at and
289
+ near the Υ(1–3S), and 10 fb−1 at an energy 60 MeV below the Υ(4S).
290
+ The e+e− collision events in the Belle detector are simulated by the Monte Carlo (MC)
291
+ method. Signal MC events of τ → ℓV 0 are generated by a dedicated MC with KKMC and
292
+ TAUOLA [34], where τ +τ − pairs are initially produced and one of the τ’s decays into ℓV 0
293
+ and the other decays generically. The numbers of generated signal MC events are 1.1×106
294
+ events at the Υ(4S) resonance, 0.4 × 106 events at the Υ(5S), 0.1 × 106 events at each of
295
+ the Υ(1–3S), and 0.1 × 106 events at an energy 60 MeV below the Υ(4S). We assume a
296
+ uniform CLFV decay angle in the τ rest frame. No specific NP model is assumed in the
297
+ CLFV decay process, and the spin direction of V 0 is set randomly and independently of the
298
+ spin of the mother τ. For background MC simulations, e+e− → q¯q (q = u, d, s, c), e+e− →
299
+ τ +τ −, Bhabha, and two-photon processes are generated by EvtGen [35], KKMC [34],
300
+ BHLUMI [36], and AAFH [37], respectively.
301
+ The detector responses are simulated by
302
+ GEANT3 [38].
303
+ 3
304
+ Reconstruction and event selection
305
+ A signal τ is reconstructed from a lepton and a neutral vector meson. We separate the
306
+ event into two hemispheres in the center-of-mass (c.m.) frame by a plane perpendicular
307
+ to the thrust vector (⃗nT ) [39, 40]. The thrust vector is obtained by maximizing the thrust
308
+ T = Σi|⃗p c.m.
309
+ i
310
+ · ⃗nT |/Σi|⃗p c.m.
311
+ i
312
+ |, where i runs over all tracks and photons, and ⃗p c.m.
313
+ i
314
+ is the
315
+ momentum in the c.m. frame. In the hemisphere that contains a τ CLFV decay (called
316
+ signal side and τsig), V 0 is reconstructed as follows: ρ0 from π+π− within the reconstructed
317
+ mass window of 0.445–1.08 GeV/c2, φ from K+K− within 1.00–1.04 GeV/c2, ω from
318
+ π+π−π0 within 0.7–0.9 GeV/c2, K∗0 from K+π− within 0.7–1.1 GeV/c2, and K∗0 from
319
+ K−π+ within 0.7–1.1 GeV/c2. In the other hemisphere (called tag side), the other τ (τtag)
320
+ is reconstructed from ℓ±νν, π±ν, π±π0ν, π±π0π0ν, or π±π∓π±ν. This τtag information
321
+ enables the suppression of background events that have no neutrinos in the tag side.
322
+ The signal τ → ℓV 0 events have a unique kinematical feature; the ℓV 0 invariant mass
323
+ (MℓV 0) is close to the τ mass and the difference of the ℓV 0 energy from the beam energy
324
+ in the c.m. frame (∆E) is close to zero. The signal events within 1.65 GeV/c2 < MℓV 0 <
325
+ 1.90 GeV/c2 and |∆E| < 0.5 GeV are reconstructed in this paper.
326
+ We follow a blind
327
+ analysis approach in this search by not looking at the signal candidates in the data set
328
+ until finalizing the event selection and background estimation. The blind region is 1.75
329
+ – 2 –
330
+
331
+ GeV/c2 ≤ MℓV 0 < 1.81 GeV/c2 and |∆E| < 0.08 GeV for the µρ0, µφ and µK∗0(K∗0)
332
+ modes, and 1.74 GeV/c2 ≤ MℓV 0 < 1.82 GeV/c2 and |∆E| < 0.1 GeV for the other modes.
333
+ Charged tracks, photons, and π0s should satisfy the following selection criteria. Each
334
+ charged track or photon is within the fiducial volume defined by −0.866 < cos θ < 0.956,
335
+ where θ is the polar angle with respect to the direction opposite to the e+ beam in the
336
+ laboratory frame. Charged tracks come from the interaction point; the distance of the
337
+ closest point from the interaction point is less than 0.5 cm in the transverse direction and
338
+ less than 3.0 cm in the longitudinal direction. Each π0 is reconstructed from two photons
339
+ inside the same hemisphere and the photon energy (Eγ) should be larger than 0.05 GeV.
340
+ The π0 mass window is 0.12 GeV/c2 < Mγγ < 0.15 GeV/c2, corresponding to ±3σ in the π0
341
+ mass resolution. A π0 mass-constrained fit is performed to improve the energy resolution.
342
+ After reconstructing the signal and tag τ’s, no extra charged tracks are allowed. We
343
+ count the number of photons (nγ) with Eγ larger than 0.1 GeV in the signal side, and
344
+ require nγ ≤ 3 for the ℓω mode, which includes a π0 → γγ, and nγ ≤ 1 for the other
345
+ modes.
346
+ Particle identification is effective in suppressing the main background events of three-
347
+ hadron-track to the τ → ℓV 0 signal. We use likelihood ratios for electron identification
348
+ (P(e)) [41] and muon identification (P(µ)) [42].
349
+ The lepton identification criteria are
350
+ P(e) > 0.9 for electrons, and P(µ) > 0.95 and the momentum is larger than 0.6 GeV/c for
351
+ muons. The electron (muon) identification efficiency is 90% (75%), whereas the probability
352
+ of misidentifying a pion as an electron (muon) is 0.1% (2%). The energy loss of an electron
353
+ by bremsstrahlung is recovered by adding back the energy of every photon within 0.05
354
+ radians from the electron track direction into the electron momentum. To suppress low-
355
+ multiplicity background events like Bhabha, ee → eeee, or ee → eeµµ, an electron veto
356
+ (P(e) < 0.9) is applied to all hadron candidate tracks.
357
+ For hadron identification, we use a binary likelihood ratio P(i|j) = Li/(Li+Lj), where
358
+ Li(j) is the likelihood of particle i (j) [43] and i (j) is π, K, or p. The kaon identification
359
+ criteria are P(K|π) > 0.6 for both charged kaons from φ decay and P(K|π) > 0.8 for the
360
+ charged kaon from K∗0 and K∗0 decays. The kaon identification efficiency is 86% (77%),
361
+ whereas the probability of misidentifying a charged pion as a kaon is 4% (2%) for the kaons
362
+ from φ (K∗0, K∗0). A kaon veto (P(K|π) < 0.6) is applied to both charged pions from
363
+ ρ0 in the signal side, and 96% of pions are retained, whereas 14% of kaons are not vetoed.
364
+ To suppress muons from kaons decaying inside the CDC (K± → µ±ν), the kaon veto is
365
+ also applied to the signal-side muon track for the hadronic tags (τtag → πν, ππ0ν, πππν,
366
+ or ππ0π0ν). For the µV 0 modes with the hadronic tags, a proton veto (P(p|K) < 0.6 and
367
+ P(p|π) < 0.6) is applied for the tag-side tracks.
368
+ The signal events have one or two neutrinos from the τtag decay. We introduce some
369
+ event selection criteria requiring one or more neutrinos in the tag side. The missing mo-
370
+ mentum due to the neutrino(s) is calculated by subtracting the vector sum of the momenta
371
+ of all tracks and photons from the sum of the beam momenta. The missing energy is also
372
+ calculated by subtracting the sum of the energy of all tracks and photons from the sum
373
+ of the beam energy. Here, extra photons that are not used for the τ reconstruction are
374
+ included. The transverse missing momentum is required to be larger than 0.5 GeV/c, and
375
+ – 3 –
376
+
377
+ the missing energy in the c.m. frame (Ec.m.
378
+ miss) is required to be larger than 0 GeV. Events
379
+ with missing particles other than neutrinos should be rejected as background events. These
380
+ non-neutrino missing particles can arise in two ways: neutral particles pass through the
381
+ gaps between the barrel and end-cap ECLs, and any particles go outside the CDC volume.
382
+ Thus, the direction of the missing momentum is required not to point to such regions. The
383
+ missing particles should be in the tag side and hence cos θc.m.
384
+ miss−tag > 0, where θc.m.
385
+ miss−tag
386
+ is the angle between the missing momentum and the vector sum of the momenta of the
387
+ tag-side tracks and photons in the c.m. frame. The neutrino angle with respect to the τtag
388
+ momentum direction is restricted in a τtag two-body decay; thus cos θc.m.
389
+ miss−tag < 0.85 is also
390
+ applied for the ℓρ0 modes with τtag → πν.
391
+ We require features of a generic τ decay in the tag side. The invariant mass of the
392
+ particles including all photons in the tag hemisphere should be less than the τ mass (1.777
393
+ GeV/c2). For τtag decays into ππ0ν (3πν), the reconstructed mass of those pions is required
394
+ to be 0.4 GeV/c2 < Mππ0 < 1.3 GeV/c2 (0.7 GeV/c2 < M3π < 1.7 GeV/c2), which
395
+ corresponds to the mass of ρ± (a±
396
+ 1 ).
397
+ After the above event reconstruction, the background sources are the q¯q continuum
398
+ (q = u, d, s, c), generic τ +τ −, and low-multiplicity events.
399
+ The low-multiplicity events
400
+ especially contribute to the background events for eV 0 modes that have electron tracks.
401
+ We suppress the low-multiplicity events first, and then use a maltivariate analysis tool to
402
+ suppress the q¯q continuum and generic τ +τ − events.
403
+ The Bhabha events have tracks from photon conversion. To suppress these background
404
+ events for the eV 0 modes, the invariant mass of the electron and one of the tracks from the
405
+ V 0, assigned the electron-mass hypothesis, should be larger than 0.2 GeV/c2. In addition,
406
+ for the eK∗0 and eK∗0 modes, the invariant mass of the two tracks from the V 0, each
407
+ assigned the electron-mass hypothesis, is required to be larger than 0.1 GeV/c2.
408
+ This
409
+ event selection also suppresses some of the generic τ +τ − events, which have tracks from
410
+ photon conversion.
411
+ The low-multiplicity background events are still not negligible for the events with elec-
412
+ trons: τ → eV 0 or τtag → eνν. Because the missing particles of the low-multiplicity back-
413
+ ground events are the bremsstrahlung photons from the electron in the tag side, cos θc.m.
414
+ miss−tag
415
+ is close to one (Figure 1). In addition, the missing energy is small for some low-multiplicity
416
+ background events. For the µρ0 mode with τtag → eνν, cos θc.m.
417
+ miss−tag < 0.99 and Ec.m.
418
+ miss > 0.4
419
+ GeV selection criteria are applied. For the eV 0 modes with τtag → eνν or πν, cos θc.m.
420
+ miss−tag <
421
+ 0.97 is applied. For the eV 0 modes with τtag → eνν, Ec.m.
422
+ miss should be larger than 0.4, 2.0,
423
+ and 1.5 GeV for eφ, eρ0, and the other eV 0 modes, respectively.
424
+ The remaining background events are mainly from the q¯q continuum (q = u, d, s, c)
425
+ and generic τ +τ − events, which have three charged pion tracks in the signal side. We use a
426
+ two-class Boosted Decision Tree (BDT) for signal and these background classification. The
427
+ BDT library is LightGBM [44]. This BDT outputs a signal probability using the following
428
+ input variables:
429
+ • MV 0, M2
430
+ ν , P c.m.
431
+ ν
432
+ , T, P sig
433
+ ℓ , Ehemi
434
+ tag , cos θc.m.
435
+ miss−tag
436
+ • (categorical variables) τtag decay mode, collision energy
437
+ – 4 –
438
+
439
+ Figure 1: The cos θc.m.
440
+ miss−tag distribution of the τ → eρ0 mode with a electron tag track
441
+ after the reconstruction, particle identification, and photon conversion event suppression.
442
+ Black points with error bars are the data outside the blind region. Red solid histogram
443
+ is the signal MC. The signal MC is scaled to the number of events corresponding to 100
444
+ times as large branching fraction as the current upper limit. The red dashed line is the
445
+ upper limit to remove the low-multiplicity events.
446
+ The low-multiplicity events cluster
447
+ around cos θc.m.
448
+ miss−tag = 1, whereas the other background events are linearly distributed in
449
+ the region of cos θc.m.
450
+ miss−tag > 0.8.
451
+ • (additional for the ℓω modes) P sig
452
+ π0 , Elow
453
+ γ
454
+ ,
455
+ where MV 0 is the invariant mass of the vector meson, M2
456
+ ν is the missing mass squared, P c.m.
457
+ ν
458
+ is the missing momentum in the c.m. frame, T is the magnitude of the thrust vector [39, 40],
459
+ P sig
460
+
461
+ is the momentum of the lepton in the signal side, Ehemi
462
+ tag
463
+ is the energy sum of the tracks
464
+ and photons in the tag hemisphere, P sig
465
+ π0 is the momentum of π0 from ω and Elow
466
+ γ
467
+ is the
468
+ lower energy of the two photons from the π0. The variables of neutrino kinematics (M2
469
+ ν and
470
+ P c.m.
471
+ ν
472
+ ) were not used for the event selection in the previous paper [29]. They are calculated
473
+ from the momenta of the reconstructed τsig and τtag, where the energy of τsig is fixed to the
474
+ half of the beam energy in the c.m. frame. The q¯q continuum background events can be
475
+ effectively suppressed by a M2
476
+ ν selection in the hadronic tags, involving only one neutrino
477
+ (Figure 2).
478
+ The training, validation and evaluation of the BDT are done with 40%, 10%, and
479
+ 50% of the signal MC, respectively. Regarding the training and validation samples for
480
+ the background events, we utilize hadron background enhanced data that are obtained by
481
+ removing the lepton identification for the signal-side leptons but with a lepton identification
482
+ veto (P(e) ≤ 0.9 and P(µ) ≤ 0.95) for all the signal-side tracks in the data. The hadron
483
+ background enhanced data have a much larger number of events than the background data
484
+ with the nominal selection criteria, whereas both data sets are composed mainly of three
485
+ charged pions from τ decays or from continuum events. The training is done with 80%
486
+ of the hadron background enhanced data and the validation is done with 20%. During
487
+ BDT training, a weight is applied to each of the signal MC events such that the sum of
488
+ the weights is equal to the number of background events.
489
+ We monitor the area under
490
+ – 5 –
491
+
492
+ t→μpo, electron tag
493
+ 70
494
+ BR(→μp0)=1.2×10-8 × 100
495
+ Number of events/(0.01)
496
+ 60
497
+ data
498
+ 50
499
+ 40
500
+ 30
501
+ 20
502
+ 10
503
+ t+.+-
504
+ 0.2
505
+ 0.0
506
+ 0.4
507
+ 0.6
508
+ 0.8
509
+ 1.0
510
+ CosAc.m.
511
+ miss -tagcurve (AUC) of the Receiver Operating Characteristic curve [45] for the validation samples
512
+ during the training and choose the BDT with the best AUC score.
513
+ The event selection with the BDT output (BDT selection) is determined only by a
514
+ target signal efficiency.
515
+ The target signal efficiency is determined based on the signal
516
+ efficiency with a cut-based event selection.
517
+ In the cut-based event selection, the MV 0
518
+ windows correspond to ±2σ of reconstructed mass distribution, and the M2
519
+ ν windows are
520
+ set for each ℓV 0 mode and each τtag decay mode so that the expected number of background
521
+ events inside the signal region (NBG, see the next section) is approximately one or less.
522
+ The target signal efficiency with the BDT selection is set as relatively 5% larger than that
523
+ with the cut-based event selection, because we expect improvement in separating the signal
524
+ events from the background events.
525
+ The finalized BDT selection shows similar NBG to that of the cut-based event selection.
526
+ The BDT selection is not applied to the ℓφ modes because NBG in each of the two modes
527
+ is small enough.
528
+ Figure 2: The M2
529
+ ν distribution of the τ → µρ0 mode with the hadronic tags after the
530
+ event selection except for the requirement of the BDT output. Black points with error bars
531
+ are the data outside the blind region. Red solid histogram is the signal MC. The signal MC
532
+ is scaled to the number of events corresponding to 100 times as large a branching fraction
533
+ as the current upper limit. The events constituting the upper tail of the signal distribution
534
+ originate from wrong or missing π0 in the tag side.
535
+ 4
536
+ Signal efficiency and background estimation
537
+ We define the signal region with an ellipse in the MℓV 0–∆E plane. Most of the signal
538
+ events cluster around MℓV 0 = 1.777 GeV/c2 and ∆E = 0 GeV with some correlation. The
539
+ ellipse oblateness and the rotation angle are calculated from the covariance matrix of the
540
+ signal MC distribition after the event selection. The center of the ellipse is the mean of the
541
+ distribution. The ellipse size is determined to maximize the figure-of-merit (FOM) [46],
542
+ FOM =
543
+ ε
544
+ α
545
+ 2 + √NBG
546
+ ,
547
+ (4.1)
548
+ – 6 –
549
+
550
+ t→μpo, hadronic tag
551
+ 300
552
+ BR(t→μp°)=l.2×10-8 × 100
553
+ 250
554
+ data
555
+ 200
556
+ 150
557
+ 100
558
+ 50
559
+ -2
560
+ -1
561
+ 0
562
+ 1
563
+ 2
564
+ M2 (GeV2/c4)where ε is the signal efficiency inside the ellipse, α is the confidence coefficient (α = 1.64
565
+ at 90% C.L.).
566
+ Figure 3: The MℓV 0 vs. ∆E distribution of the τ → µρ0 hadron background enhanced
567
+ samples: the data (upper side), the generic τ +τ − MC (lower left) and the q¯q continuum
568
+ MC (lower right, q = u, d, s, c). The range of the ∆E axis is limited to the fitting region.
569
+ The MC sets are scaled to the data. The low-multiplicity background events are negligible
570
+ for the hadron background enhanced samples and are not shown in this figure.
571
+ We estimate NBG through interpolation from the sideband data. Here the sideband
572
+ data is a set of data passing the event selection and inside the sideband region: 1.65 GeV/c2
573
+ < MℓV 0 < 1.9 GeV/c2 and |∆E| < 0.1 GeV outside of the blind region. The interpolation
574
+ is based on a function in the MℓV 0–∆E plane. This function is obtained by fitting the
575
+ distribution of the hadron background enhanced data within |∆E| < 0.1 GeV, and then it
576
+ is scaled to the sideband data. Figure 3 shows the distributions of the hadron background
577
+ enhanced data and MC for the µρ0 mode. The function is:
578
+ F(MℓV 0, ∆E) = f(MℓV 0) ×
579
+ 1
580
+ 1 + exp[ay(∆E − y0)] + cflat
581
+ 0 ,
582
+ (4.2)
583
+ – 7 –
584
+
585
+ data
586
+ 0.100
587
+ 100
588
+ 0.075
589
+ 0.050
590
+ 80
591
+ △E (GeV)
592
+ 0.025
593
+ 60
594
+ 0.000
595
+ -0.025
596
+ 40
597
+ -0.050
598
+ 20
599
+ -0.075
600
+ -0.100
601
+ 0
602
+ 1.65
603
+ 1.70
604
+ 1.75
605
+ 1.80
606
+ 1.85
607
+ 1.90
608
+ Mμpo (GeV/c2)t+t- MC
609
+ 0.100
610
+ 0.075
611
+ 80
612
+ 0.050
613
+ △E (GeV)
614
+ 60
615
+ 0.025
616
+ 0.000
617
+ 40
618
+ -0.025
619
+ -0.050
620
+ 20
621
+ -0.075
622
+ -0.100
623
+ 0
624
+ 1.65
625
+ 1.70
626
+ 1.75
627
+ 1.80
628
+ 1.85
629
+ 1.90
630
+ Mμpo (GeV/c2)qq MC (q = u, d,s,c)
631
+ 0.100
632
+ 8
633
+ 0.075
634
+ 7
635
+ 0.050
636
+ 6
637
+ (GeV)
638
+ 0.025
639
+ 5
640
+ 0.000
641
+ 4
642
+ △E
643
+ -0.025
644
+ 3
645
+ -0.050
646
+ 2
647
+ -0.075
648
+ 1
649
+ -0.100
650
+ 0
651
+ 1.65
652
+ 1.70
653
+ 1.75
654
+ 1.80
655
+ 1.85
656
+ 1.90
657
+ Mμpo (GeV/c2)f(x) =
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+ � x+5σ
668
+ x−5σ
669
+ g(x′) ×
670
+ 1
671
+
672
+ 2πσexp
673
+ �−(x − x′)2
674
+ 2σ2
675
+
676
+ dx′
677
+ (V 0 = ρ0, ω)
678
+ c1(x − x0)2 + c0
679
+ (V 0 = K∗0, K∗0)
680
+ c0
681
+ (V 0 = φ)
682
+ g(x) =
683
+
684
+
685
+
686
+
687
+
688
+ c1[(x − x0)2 + k(x − x0)] + c0
689
+ (x < x0, V 0 = ρ0)
690
+ c1(x − x0) + c0
691
+ (x < x0, V 0 = ω)
692
+ c0
693
+ (x ≥ x0)
694
+ (4.3)
695
+ where f(x) represents the background distribution as a function of MℓV 0; c1, c0, x0, and k
696
+ are parameters that define the shape of the function; ay represents sharpness of the sigmoid
697
+ function along the ∆E axis; y0 is the center of the sigmoid function; and cflat
698
+ 0
699
+ is a term of
700
+ flat background events in the MℓV 0–∆E plane. We define f(x) for each V 0 in eq. (4.3) and
701
+ the functions for the ℓρ0 (ℓω) modes are smeared by a Gaussian with standard deviation
702
+ (σ) of 6.6 (9.6) MeV/c2. This σ corresponds to the mass resolution that affects the edge
703
+ of the MℓV 0 distribution close to the τ mass for the τ +τ − background. The edge is broad
704
+ for the other modes owing to wrong mass assignment of fake kaons. The τ +τ − background
705
+ events for the ℓφ modes are included in c0 because they are flat along the MℓV 0 axis in
706
+ 1.65 GeV/c2 < MℓV 0 < 1.9 GeV/c2.
707
+ We obtain the optimal fit parameters by a likelihood fit using MINUIT [47].
708
+ The
709
+ following region is excluded from the fitting to avoid D+ → K−π+π+ and D+ → π+φ
710
+ background events, which cluster around the D meson mass: 1.83(1.82) GeV/c2 ≤ MℓV 0 <
711
+ 1.89 GeV/c2 and ∆E < 0.04 GeV for the µK∗0 (eK∗0) and µφ (eφ) modes.
712
+ The parameters of ay, y0, k, and x0 are fixed at the fit results of the hadron background
713
+ enhanced data within |∆E| < 0.1 GeV. The fit uncertainties of these fixed parameters are
714
+ included in the systematic uncertainty of NBG. The other fit parameters correspond to
715
+ the scale factors of each background component: generic τ +τ − (c1), and continuum and
716
+ low-multiplicity background events (c0 and cflat
717
+ 0 ). We fit the function floating these scale
718
+ factors (c1, c0, and cflat
719
+ 0 ) to the sideband data. The same region around the D meson mass
720
+ as for the fit to the hadron background enhanced data is excluded from the fitting for the
721
+ ℓφ and ℓK∗0 modes. The functions are integrated in the elliptical signal regions to deduce
722
+ NBG, which are in the range of 0.25–0.95.
723
+ Another systematic uncertainty on NBG comes from difference of the MℓV 0–∆E dis-
724
+ tributions between the sideband data and the hadron background enhanced data within
725
+ |∆E| < 0.1 GeV. The difference mainly arises from the electron (muon) identification
726
+ fake rate, Rfake
727
+ e(µ)(P, θ), which depends on the momentum P and θ of the track. The side-
728
+ band data have a pion misidentified as a lepton, which tends to have a lower momen-
729
+ tum than the pions in the hadron background enhanced data. We evaluate a change of
730
+ NBG when the parameters—ay, y0, k, and x0—are redetermined with weighted hadron
731
+ background enhanced data, where each event is weighted by the ratio of Rfake
732
+ e(µ)(P, θ) to
733
+ 1 − Rfake
734
+ e
735
+ (P, θ) − Rfake
736
+ µ
737
+ (P, θ) for the track in order to conform the MℓV 0–∆E distribution
738
+ to the one of the sideband data. The amout of change of NBG is taken as the systematic
739
+ uncertainty of NBG.
740
+ The statistical uncertainty of NBG is calculated as follows: We generate 100 sets of
741
+ – 8 –
742
+
743
+ pseudo-data for each mode in the MℓV 0–∆E histogram. The content of each bin in the
744
+ histogram is set randomly following a Poisson distribution, with the mean taken from the
745
+ function fitted to the sideband data. We fit the function to each set of the pseudo-data to
746
+ deduce NBG, and the standard deviation of these NBG is taken as the statistical uncertainty.
747
+ The major contribution to NBG comes from the MℓV 0 flat term in eq. (4.2) (c0 and
748
+ cflat
749
+ 0 ), which corresponds to the continuum or low-multiplicity background events.
750
+ The
751
+ contribution of the generic τ +τ − background events, which depends on MℓV 0, is about
752
+ one-third as large as the other background contributions. We cannot distinguish the back-
753
+ ground components of the ℓφ modes through the fit to the data, because the generic τ +τ −
754
+ background events are distributed evenly along the MℓV 0 axis.
755
+ The systematic uncertainties of the expected number of signal events are listed in
756
+ Table 1. The dominant uncertainties are from the particle identification.
757
+ The track and photon energy resolutions in the MC are corrected such that the
758
+ mass resolution of the D(∗)+ meson matches between the data and MC, where D(∗)+ →
759
+ K−π+π+(π0) is reconstructed with similar event selection criteria to the signal ones (e.g.
760
+ |∆E| < 0.5 GeV). The uncertainty of the data mass resolution propagates to the uncer-
761
+ tainties of the corrected energy resolutions. We generate two additional signal MC sets in
762
+ which the track (photon) energy resolution is different by plus and minus its uncertainty,
763
+ and take the half of the difference in the expected number of the signal events as the
764
+ systematic uncertainty.
765
+ All the uncertainties in Table 1 are summed in quadrature to yield the total systematic
766
+ uncertainties shown in Table 2.
767
+ Table 1: List of the systematic uncertainties of the expected number of signal events. The
768
+ average number of tracks (particles) in the reconstructed τ +τ − events for each signal mode
769
+ is represented as Ntrack(particle). When the uncertainty is different mode by mode, we show
770
+ the range of the uncertainty.
771
+ Source
772
+ σsyst (%)
773
+ Integrated luminosity
774
+ 1.4
775
+ ee → ττ(γ) cross section [48]
776
+ 0.3
777
+ B(φ → KK) and B(ω → πππ0)
778
+ 1.2 and 0.7
779
+ Trigger efficiency
780
+ 0.2–0.9
781
+ Tracking efficiency
782
+ 0.35 × Ntrack
783
+ Electron identification efficiency
784
+ 1.7 × Nelectron
785
+ Muon identification efficiency
786
+ 1.8 × Nmuon
787
+ K and π identification efficiency
788
+ 1.6 (ρ0), 1.8 (φ) and 1.1 (K∗0 and K∗0)
789
+ π0 efficiency
790
+ 2.2 × Nπ0
791
+ Electron veto for hadrons
792
+ 0.4–1.2
793
+ MC statistics
794
+ 0.3–0.5
795
+ Track energy resolution
796
+ 0.3–1.3
797
+ Photon energy resolution
798
+ 0.0–0.4
799
+ – 9 –
800
+
801
+ 5
802
+ Results
803
+ Figures 4 and 5 show the observed event distributions in the MℓV 0–∆E plane. The observed
804
+ number of events in the signal region (Nobs) has no excess over NBG.
805
+ We set 90% C.L. upper limits on the branching fractions based on a Bayesian method
806
+ with the use of Markov Chain Monte Carlo [49].
807
+ The probability density function of
808
+ the branching fraction (B(τ → ℓV 0)) is calculated assuming that Nobs follows a Poisson
809
+ distribution function whose mean value is the expected number of events (Nexp),
810
+ Nexp = L × 2σττB(τ → ℓV 0) × ε + NBG,
811
+ (5.1)
812
+ where L is the integrated luminosity (980.4 ± 13.7 fb−1), σττ is the cross section of τ-pair
813
+ production that is calculated with KKMC [48] (the weighted average of σττ at all the beam
814
+ energies is 0.916 ± 0.003 nb), and ε is the signal efficiency including the branching fraction
815
+ of the V 0. We assume that these values (L, σττ, ε, and NBG) follow a Gaussian distribution
816
+ with the width equal to the uncertainty of each value.
817
+ The upper limits on B(τ → ℓV 0) are listed in Table 2. The average of the limits is
818
+ better than that of the previous results using 854 fb−1 [29] by 30%. This is due to the
819
+ additional 15% of integrated luminosity; the addition of π±π∓π±ν and π±π0π0ν modes in
820
+ τtag reconstruction, which increases the signal efficiency by 9.6%; and the event selection
821
+ by multivariate analysis (BDT). The upper limit on B(τ → µρ0) is worse than that of
822
+ the previous result, though the expected upper limit before unblinding is better. This is
823
+ because we use the Bayesian limits instead of the Frequentist limits, which are negatively
824
+ proportional to NBG when Nobs is fixed.
825
+ Table 2: The signal efficiency (ε), the expected number of background events (NBG),
826
+ total systematic uncertainty of the expected number of signal events (σsyst), the number
827
+ of observed events in the signal region (Nobs), and the observed 90% C.L. upper limits on
828
+ the branching fraction (Bobs (10−8)).
829
+ Mode
830
+ ε (%)
831
+ NBG
832
+ σsyst (%)
833
+ Nobs
834
+ Bobs (×10−8)
835
+ τ − → µ−ρ0
836
+ 7.78
837
+ 0.95±0.20(stat.) ±0.11(syst.)
838
+ 4.6
839
+ 0
840
+ < 1.7
841
+ τ − → e−ρ0
842
+ 8.49
843
+ 0.80±0.27(stat.) ±0.02(syst.)
844
+ 4.4
845
+ 1
846
+ < 2.2
847
+ τ − → µ−φ
848
+ 5.59
849
+ 0.47±0.15(stat.) ±0.05(syst.)
850
+ 4.8
851
+ 0
852
+ < 2.3
853
+ τ − → e−φ
854
+ 6.45
855
+ 0.38±0.21(stat.) ±0.00(syst.)
856
+ 4.5
857
+ 0
858
+ < 2.0
859
+ τ − → µ−ω
860
+ 3.27
861
+ 0.32±0.23(stat.) ±0.03(syst.)
862
+ 4.8
863
+ 0
864
+ < 3.9
865
+ τ − → e−ω
866
+ 5.41
867
+ 0.74±0.43(stat.) ±0.01(syst.)
868
+ 4.5
869
+ 0
870
+ < 2.4
871
+ τ − → µ−K∗0
872
+ 4.52
873
+ 0.84±0.25(stat.) ±0.03(syst.)
874
+ 4.3
875
+ 0
876
+ < 2.9
877
+ τ − → e−K∗0
878
+ 6.94
879
+ 0.54±0.21(stat.) ±0.12(syst.)
880
+ 4.1
881
+ 0
882
+ < 1.9
883
+ τ − → µ−K∗0
884
+ 4.58
885
+ 0.58±0.17(stat.) ±0.06(syst.)
886
+ 4.3
887
+ 1
888
+ < 4.2
889
+ τ − → e−K∗0
890
+ 7.45
891
+ 0.25±0.11(stat.) ±0.01(syst.)
892
+ 4.1
893
+ 0
894
+ < 1.7
895
+ – 10 –
896
+
897
+ 6
898
+ Conclusion
899
+ To conclude, we searched for lepton-flavor-violating τ decays into one lepton and one vector
900
+ meson using the full 980 fb−1 of Belle data. No statistically significant signal candidates are
901
+ observed, and the 90% C.L. upper limits on the branching fraction are in the range of (1.7–
902
+ 4.2) × 10−8 for τ → µV 0 and (1.7–2.4) × 10−8 for τ → eV 0. The upper limits are improved
903
+ by 30% on average from the previous results. We achieve these improvements both with
904
+ the reconsideration of the event selection criteria and with the 126 fb−1 of additional data
905
+ set.
906
+ Acknowledgments
907
+ This work, based on data collected using the Belle detector, which was operated until
908
+ June 2010, was supported by the Ministry of Education, Culture, Sports, Science, and
909
+ Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS),
910
+ and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Re-
911
+ search Council including grants DP180102629, DP170102389, DP170102204, DE220100462,
912
+ DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Re-
913
+ search (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural
914
+ Science Foundation of China under Contracts No. 11675166, No. 11705209; No. 11975076;
915
+ No. 12135005; No. 12175041; No. 12161141008; Key Research Program of Frontier Sci-
916
+ ences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; Project
917
+ ZR2022JQ02 supported by Shandong Provincial Natural Science Foundation; the Ministry
918
+ of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020;
919
+ the Czech Science Foundation Grant No. 22-18469S; Horizon 2020 ERC Advanced Grant
920
+ No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the
921
+ Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Uni-
922
+ verse, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identi-
923
+ fication No.
924
+ RTI 4002) and the Department of Science and Technology of India; the
925
+ Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of
926
+ Korea Grant Nos. 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970,
927
+ RS202200197659, 2019R1I1A3A01058933, 2021R1A6A1A03043957, 2021R1F1A1060423,
928
+ 2021R1F1A1064008, 2021R1A4A2001897, 2022R1A2C1003993; Radiation Science Research
929
+ Institute, Foreign Large-size Research Facility Application Supporting project, the Global
930
+ Science Experimental Data Hub Center of the Korea Institute of Science and Technology
931
+ Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Ed-
932
+ ucation and the National Science Center; the Ministry of Science and Higher Education
933
+ of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Re-
934
+ search Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438,
935
+ and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and
936
+ P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science
937
+ Foundation; the Ministry of Education and the Ministry of Science and Technology of Tai-
938
+ wan; and the United States Department of Energy and the National Science Foundation.
939
+ – 11 –
940
+
941
+ These acknowledgements are not to be interpreted as an endorsement of any statement
942
+ made by any of our institutes, funding agencies, governments, or their representatives. We
943
+ thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics
944
+ group for the efficient operation of the solenoid; and the KEK computer group and the
945
+ Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Labora-
946
+ tory (EMSL) computing group for strong computing support; and the National Institute of
947
+ Informatics, and Science Information NETwork 6 (SINET6) for valuable network support.
948
+ – 12 –
949
+
950
+ (a) τ → µρ0
951
+ (b) τ → µφ
952
+ (c) τ → µω
953
+ (d) τ → µK∗0
954
+ (e) τ → µK∗0
955
+ Figure 4: Observed event distributions of MℓV 0 vs. ∆E after the τ → µV 0 event selection.
956
+ Black points are the data, blue squares show the signal MC distribution with an arbitrary
957
+ normalization. The red ellipse line is the signal region. The estimation of the number of
958
+ background events is done using the data between the red horizontal lines except the blind
959
+ region.
960
+ – 13 –
961
+
962
+ 0.4
963
+
964
+ Data
965
+ 0.2
966
+ △E (GeV)
967
+ 0.0
968
+ -0.2
969
+ -0.4
970
+ 1.65
971
+ 1.70
972
+ 1.75
973
+ 1.80
974
+ 1.85
975
+ 1.90
976
+ Muk*0 (GeV/c2)0.4
977
+
978
+ Data
979
+ 0.2
980
+ (GeV)
981
+ 0.0
982
+ △E (
983
+ -0.2
984
+ -0.4
985
+ 1.65
986
+ 1.70
987
+ 1.75
988
+ 1.80
989
+ 1.85
990
+ 1.90
991
+ Mμpo (GeV/c2)口
992
+ 0.4
993
+ Data
994
+ 0.2
995
+ (GeV)
996
+ 0.0
997
+ △E (
998
+ -0.2
999
+ :
1000
+ -0.4
1001
+ 1.65
1002
+ 1.70
1003
+ 1.75
1004
+ 1.80
1005
+ 1.85
1006
+ 1.90
1007
+ Mus (GeV/c2)3n↑
1008
+
1009
+ 0.4
1010
+ Data
1011
+ 0.2
1012
+ △E (GeV)
1013
+ 0.0
1014
+ -0.2
1015
+ -0.4
1016
+ 1.70
1017
+ 1.65
1018
+ 1.75
1019
+ 1.80
1020
+ 1.85
1021
+ 1.90
1022
+ Mμw (GeV/c2)0.4
1023
+
1024
+ Data
1025
+ 0.2
1026
+ (GeV)
1027
+ 0.0
1028
+ △E (
1029
+ .
1030
+ -0.2
1031
+
1032
+ ..
1033
+ -0.4
1034
+ 1.65
1035
+ 1.70
1036
+ 1.75
1037
+ 1.80
1038
+ 1.85
1039
+ 1.90
1040
+ Muk*0 (GeV/c2)(a) τ → eρ0
1041
+ (b) τ → eφ
1042
+ (c) τ → eω
1043
+ (d) τ → eK∗0
1044
+ (e) τ → eK∗0
1045
+ Figure 5: Observed event distributions of MℓV 0 vs. ∆E after the τ → eV 0 event selection.
1046
+ Black points are the data, blue squares show the signal MC distribution with an arbitrary
1047
+ normalization. The red ellipse line is the signal region. The estimation of the number of
1048
+ background events is done using the data between the red horizontal lines except the blind
1049
+ region.
1050
+ – 14 –
1051
+
1052
+ 0.4
1053
+
1054
+ Data
1055
+ 0.2
1056
+ (GeV)
1057
+ 0.0
1058
+ △E (
1059
+ -0.2
1060
+ -0.4
1061
+ 1.65
1062
+ 1.70
1063
+ 1.75
1064
+ 1.80
1065
+ 1.85
1066
+ 1.90
1067
+ Mepo (GeVc2)t→ed
1068
+
1069
+ 0.4
1070
+ Data
1071
+ 0.2
1072
+ (GeV)
1073
+ 0.0
1074
+ △E (
1075
+ -0.2
1076
+ -0.4
1077
+ 1.65
1078
+ 1.70
1079
+ 1.75
1080
+ 1.80
1081
+ 1.85
1082
+ 1.90
1083
+ Mes (GeV/c²)ma↑
1084
+ 0.4
1085
+ Data
1086
+ 0.2
1087
+ E (GeV)
1088
+ 0.0
1089
+ V
1090
+ -0.2
1091
+ -0.4
1092
+ 1.65
1093
+ 1.70
1094
+ 1.75
1095
+ 1.80
1096
+ 1.85
1097
+ 1.90
1098
+ Mew (GeV/c2)T→ek*0
1099
+
1100
+ 0.4
1101
+ Data
1102
+ 0.2
1103
+ (GeV)
1104
+ 0.0
1105
+ E(
1106
+ -0.2
1107
+ -0.4
1108
+ 1.80
1109
+ 1.85
1110
+ 1.65
1111
+ 1.70
1112
+ 1.75
1113
+ 1.90
1114
+ Mek* (GeV/c2)T→ek*0
1115
+
1116
+ 0.4
1117
+ Data
1118
+ 0.2
1119
+ E (GeV)
1120
+ 0.0
1121
+ V
1122
+ -0.2
1123
+ -0.4
1124
+ 1.65
1125
+ 1.75
1126
+ 1.80
1127
+ 1.85
1128
+ 1.90
1129
+ 1.70
1130
+ Mek* (GeV/c2)References
1131
+ [1] A. Celis, V. Cirigliano and E. Passemar, Model-discriminating power of lepton flavor
1132
+ violating τ decays, Phys. Rev. D 89 (2014) 095014 [1403.5781].
1133
+ [2] MEG collaboration, Search for the lepton flavour violating decay µ+ → e+γ with the full
1134
+ dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [1605.05081].
1135
+ [3] SINDRUM collaboration, Search for the Decay µ+ → e+e+e−, Nucl. Phys. B 299 (1988) 1.
1136
+ [4] SINDRUM II collaboration, A Search for muon to electron conversion in muonic gold, Eur.
1137
+ Phys. J. C 47 (2006) 337.
1138
+ [5] BaBar collaboration, Evidence for an excess of ¯B → D(∗)τ −¯ντ decays, Phys. Rev. Lett. 109
1139
+ (2012) 101802 [1205.5442].
1140
+ [6] BaBar collaboration, Measurement of an Excess of ¯B → D(∗)τ −¯ντ Decays and Implications
1141
+ for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [1303.0571].
1142
+ [7] Belle collaboration, Measurement of the branching ratio of ¯B → D(∗)τ −¯ντ relative to
1143
+ ¯B → D(∗)ℓ−¯νℓ decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014
1144
+ [1507.03233].
1145
+ [8] Belle collaboration, Measurement of the τ lepton polarization and R(D∗) in the decay
1146
+ ¯B → D∗τ −¯ντ, Phys. Rev. Lett. 118 (2017) 211801 [1612.00529].
1147
+ [9] Belle collaboration, Measurement of R(D) and R(D∗) with a semileptonic tagging method,
1148
+ Phys. Rev. Lett. 124 (2020) 161803 [1910.05864].
1149
+ [10] LHCb collaboration, Measurement of the ratio of branching fractions
1150
+ B( ¯B0 → D∗+τ −¯ντ)/B( ¯B0 → D∗+µ−¯νµ), Phys. Rev. Lett. 115 (2015) 111803 [1506.08614].
1151
+ [11] LHCb collaboration, Measurement of the ratio of the B0 → D∗−τ +ντ and B0 → D∗−µ+νµ
1152
+ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802
1153
+ [1708.08856].
1154
+ [12] LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the
1155
+ B0 → D∗−τ +ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018)
1156
+ 072013 [1711.02505].
1157
+ [13] Belle collaboration, Lepton-Flavor-Dependent Angular Analysis of B → K∗ℓ+ℓ−, Phys.
1158
+ Rev. Lett. 118 (2017) 111801 [1612.05014].
1159
+ [14] LHCb collaboration, Measurement of CP-Averaged Observables in the B0 → K∗0µ+µ−
1160
+ Decay, Phys. Rev. Lett. 125 (2020) 011802 [2003.04831].
1161
+ [15] LHCb collaboration, Angular Analysis of the B+ → K∗+µ+µ− Decay, Phys. Rev. Lett. 126
1162
+ (2021) 161802 [2012.13241].
1163
+ [16] LHCb collaboration, Branching Fraction Measurements of the Rare B0
1164
+ s → φµ+µ− and
1165
+ B0
1166
+ s → f ′
1167
+ 2(1525)µ+µ− Decays, Phys. Rev. Lett. 127 (2021) 151801 [2105.14007].
1168
+ [17] C. Hati, J. Kriewald, J. Orloff and A.M. Teixeira, The fate of V1 vector leptoquarks: the
1169
+ impact of future flavour data, Eur. Phys. J. C 81 (2021) 1066 [2012.05883].
1170
+ [18] L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia and S. Renner, Maximal Flavour
1171
+ Violation: a Cabibbo mechanism for leptoquarks, JHEP 11 (2018) 081 [1808.00942].
1172
+ – 15 –
1173
+
1174
+ [19] J. Kumar, D. London and R. Watanabe, Combined Explanations of the b → sµ+µ− and
1175
+ b → cτ −¯ν Anomalies: a General Model Analysis, Phys. Rev. D 99 (2019) 015007
1176
+ [1806.07403].
1177
+ [20] A. Crivellin, C. Greub, D. M¨uller and F. Saturnino, Importance of Loop Effects in Explaining
1178
+ the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark, Phys. Rev.
1179
+ Lett. 122 (2019) 011805 [1807.02068].
1180
+ [21] A. Crivellin, D. M¨uller and F. Saturnino, Flavor Phenomenology of the Leptoquark
1181
+ Singlet-Triplet Model, JHEP 06 (2020) 020 [1912.04224].
1182
+ [22] P.S. Bhupal Dev, R. Mohanta, S. Patra and S. Sahoo, Unified explanation of flavor
1183
+ anomalies, radiative neutrino masses, and ANITA anomalous events in a vector leptoquark
1184
+ model, Phys. Rev. D 102 (2020) 095012 [2004.09464].
1185
+ [23] LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18
1186
+ (2022) 277 [2103.11769].
1187
+ [24] LHCb collaboration, Test of lepton universality in b → sℓ+ℓ− decays, 2212.09152.
1188
+ [25] A. Ilakovac, Lepton flavor violation in the standard model extended by heavy singlet Dirac
1189
+ neutrinos, Phys. Rev. D 62 (2000) 036010 [hep-ph/9910213].
1190
+ [26] Z.-H. Li, Y. Li and H.-X. Xu, Unparticle-Induced Lepton Flavor Violating Decays
1191
+ τ → ℓ(V 0, P 0), Phys. Lett. B 677 (2009) 150 [0901.3266].
1192
+ [27] A. Arhrib, R. Benbrik and C.-H. Chen, Lepton flavor violating tau decays in type-III seesaw
1193
+ mechanism, Phys. Rev. D 81 (2010) 113003 [0903.1553].
1194
+ [28] I. Pacheco and P. Roig, Lepton flavour violation in hadron decays of the tau lepton within the
1195
+ littlest Higgs model with T-parity, JHEP 09 (2022) 144 [2207.04085].
1196
+ [29] Belle collaboration, Search for Lepton-Flavor-Violating tau Decays into a Lepton and a
1197
+ Vector Meson, Phys. Lett. B 699 (2011) 251 [1101.0755].
1198
+ [30] S. Kurokawa and E. Kikutani, Overview of the KEKB accelerators, Nucl. Instrum. Meth. A
1199
+ 499 (2003) 1.
1200
+ [31] T. Abe et al., Achievements of KEKB, PTEP 2013 (2013) 03A001.
1201
+ [32] Belle collaboration, The Belle Detector, Nucl. Instrum. Meth. A 479 (2002) 117.
1202
+ [33] Belle collaboration, Physics Achievements from the Belle Experiment, PTEP 2012 (2012)
1203
+ 04D001 [1212.5342].
1204
+ [34] S. Jadach, B.F.L. Ward and Z. Was, The Precision Monte Carlo event generator K K for
1205
+ two fermion final states in e+e− collisions, Comput. Phys. Commun. 130 (2000) 260
1206
+ [hep-ph/9912214].
1207
+ [35] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462
1208
+ (2001) 152.
1209
+ [36] S. Jadach, E. Richter-Was, B.F.L. Ward and Z. Was, Monte Carlo program BHLUMI-2.01
1210
+ for Bhabha scattering at low angles with Yennie-Frautschi-Suura exponentiation, Comput.
1211
+ Phys. Commun. 70 (1992) 305.
1212
+ [37] F.A. Berends, P.H. Daverveldt and R. Kleiss, Monte Carlo Simulation of Two Photon
1213
+ Processes. 2. Complete Lowest Order Calculations for Four Lepton Production Processes in
1214
+ electron Positron Collisions, Comput. Phys. Commun. 40 (1986) 285.
1215
+ – 16 –
1216
+
1217
+ [38] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson et al., GEANT:
1218
+ Detector Description and Simulation Tool; Oct 1994, CERN Program Library, CERN,
1219
+ Geneva (1993), 10.17181/CERN.MUHF.DMJ1.
1220
+ [39] S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The Principal axis of jets. An
1221
+ Attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57.
1222
+ [40] E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587.
1223
+ [41] K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima and T. Tsukamoto, Electron identification in
1224
+ Belle, Nucl. Instrum. Meth. A 485 (2002) 490 [hep-ex/0108044].
1225
+ [42] A. Abashian et al., Muon identification in the Belle experiment at KEKB, Nucl. Instrum.
1226
+ Meth. A 491 (2002) 69.
1227
+ [43] E. Nakano, Belle PID, Nucl. Instrum. Meth. A 494 (2002) 402.
1228
+ [44] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma et al., LightGBM: A Highly Efficient
1229
+ Gradient Boosting Decision Tree, in Advances in Neural Information Processing Systems,
1230
+ I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan et al., eds.,
1231
+ vol. 30, Curran Associates, Inc., 2017,
1232
+ https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-
1233
+ Paper.pdf.
1234
+ [45] J.A. Hanley and B.J. McNeil, The meaning and use of the area under a receiver operating
1235
+ characteristic (ROC) curve., Radiology 143 (1982) 29
1236
+ [https://doi.org/10.1148/radiology.143.1.7063747].
1237
+ [46] G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C030908
1238
+ (2003) MODT002 [physics/0308063].
1239
+ [47] F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the
1240
+ Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343.
1241
+ [48] S. Banerjee, B. Pietrzyk, J.M. Roney and Z. Was, Tau and muon pair production
1242
+ cross-sections in electron-positron annihilations at √s = 10.58 GeV, Phys. Rev. D 77 (2008)
1243
+ 054012 [0706.3235].
1244
+ [49] A. Caldwell, D. Kollar and K. Kroninger, BAT: The Bayesian Analysis Toolkit, Comput.
1245
+ Phys. Commun. 180 (2009) 2197 [0808.2552].
1246
+ – 17 –
1247
+
99E2T4oBgHgl3EQfQQZv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE0T4oBgHgl3EQffwDm/content/2301.02410v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f31be7b6c6d4f30b45b082d68a41da7ecd1570dc59d5031b56e362169140dcf
3
+ size 1827967
ANE0T4oBgHgl3EQfxgKB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9b878f01eda265541ec7ca97dd63dcb401c3fae046fa55ded3571fa30fac2a
3
+ size 248067
C9FQT4oBgHgl3EQfPDYj/content/2301.13277v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd7a2f7cb8f19896a14634233d1505d22fab3f47c87321e5bcacf27fa9bd9a62
3
+ size 524318
C9FQT4oBgHgl3EQfPDYj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5065fd30e9d73d602edcc4c57eb8360c751dab1a2158851dcad545cefdbd950
3
+ size 138193
CNA0T4oBgHgl3EQfAP_i/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:805cba8e27c38cbfb7092713e8fa63cf73b570e57b676dbb376511028be8a7e8
3
+ size 2883629
CdE0T4oBgHgl3EQfyQI7/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88c2c607a91149eac90c1e58efc5e0441250a50e1a232cc815d40be8d6a073a7
3
+ size 8650797
CdE4T4oBgHgl3EQfFgzX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad205e07d40e98c66b4cb971309aa803f20f5ede6a93494d878aab44d9623c4b
3
+ size 4718637
CdE4T4oBgHgl3EQfFgzX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1025c50fd5793e99fb3e9e67db1e59574b4112791fbc1ec83f7283dddc700880
3
+ size 170169
DNAzT4oBgHgl3EQfwf6z/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf7bbef1feddc4da1b3ae3de981ff71b17595cd53234a0fc93ffecf997dba971
3
+ size 5308461
DNE4T4oBgHgl3EQfew0W/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5d763190a191b9b41f5d1e681ea3fa55e78494c51636b05d3755538150d15e6
3
+ size 6357037
DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaef0a3be8d287e4b81d8e403adedb634b68dfff74dd3d477b5a82946311cc00
3
+ size 801638
DtAzT4oBgHgl3EQfif1c/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e15cad13868954b7e26ba35bd9a2e789dbdb7695efb19a2dcaf3a9712763eb5f
3
+ size 52294
E9E1T4oBgHgl3EQf-gaE/content/tmp_files/2301.03570v1.pdf.txt ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Principal deuterium Hugoniot via Quantum Monte Carlo and ∆-learning
2
+ Giacomo Tenti,1, ∗ Andrea Tirelli,1, † Kousuke Nakano,1, 2, ‡ Michele Casula,3 and Sandro Sorella1, 4
3
+ 1International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
4
+ 2School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
5
+ 3Institut de Min´eralogie, de Physique des Mat´eriaux et de Cosmochimie (IMPMC),
6
+ Sorbonne Universit´e, CNRS UMR 7590, MNHN, 4 Place Jussieu, 75252 Paris, France
7
+ 4Computational Materials Science Research Team,
8
+ RIKEN Center for Computational Science (R-CCS), Kobe, Hyogo 650-0047, Japan
9
+ (Dated: January 10, 2023)
10
+ We present a study of the principal deuterium Hugoniot for pressures up to 150 GPa, using
11
+ Machine Learning potentials (MLPs) trained with Quantum Monte Carlo (QMC) energies, forces
12
+ and pressures. In particular, we adopted a recently proposed workflow based on the combination
13
+ of Gaussian kernel regression and ∆-learning.
14
+ By fully taking advantage of this method, we
15
+ explicitly considered finite-temperature electrons in the dynamics, whose effects are highly relevant
16
+ for temperatures above 10 kK. The Hugoniot curve obtained by our MLPs shows an excellent
17
+ agreement with the most recent experiments, with an accuracy comparable to the best DFT
18
+ functionals. Our work demonstrates that QMC can be successfully combined with ∆-learning to
19
+ deploy reliable MLPs for complex extended systems across different thermodynamic conditions, by
20
+ keeping the QMC precision at the computational cost of a mean-field calculation.
21
+ Introduction −
22
+ The study of hydrogen under extreme
23
+ conditions has been a very active topic in condensed
24
+ matter physics. Hydrogen is the most abundant element
25
+ in the universe and the accurate knowledge of its phase
26
+ diagram at pressures of the order of hundreds of GPa is
27
+ extremely important for a variety of applications, such
28
+ as modelling the interior of stars and giant gas planets
29
+ [1–3], the inertial-confinement fusion [4], and the high-
30
+ Tc hydrogen-based superconductors [5, 6]. Nevertheless,
31
+ several properties of this system are still highly debated,
32
+ even at the qualitative level [7–10].
33
+ One of the main reasons that hamper our full
34
+ understanding of high-pressure hydrogen is the difficulty
35
+ of reproducing extreme pressures in a laboratory. Typical
36
+ shock-wave experiments [11] make use of accelerated flyer
37
+ plates to compress a material sample in a very short time,
38
+ thus allowing to study the specimen at high temperatures
39
+ and pressures.
40
+ In particular, the set of possible end-
41
+ states that the system can reach from some given initial
42
+ conditions, also named principal Hugoniot, must satisfy
43
+ a set of equations, known as Rankine-Hugoniot (RH)
44
+ relations [12], linking the thermodynamic properties of
45
+ the final shocked state with those of the starting one.
46
+ During the years, the principal deuterium Hugoniot has
47
+ been measured for a wide range of pressures and with a
48
+ great degree of accuracy [13–20], reaching a relative error
49
+ on the density as small as 2% in recent experiments.
50
+ In this context, numerical approaches, - in particular
51
+ Ab Initio Molecular Dynamics (AIMD) simulations -,
52
+ are extremely valuable, since they are not constrained
53
+ by any experimental setup and can thus give further
54
+ insight into this part of the phase diagram [21].
55
+ The
56
+ Hugoniot region is particularly important because of
57
+ the availability of experimental data that can be used
58
+ to benchmark different theoretical methods.
59
+ Among
60
+ them, Density Functional Theory (DFT) simulations
61
+ have been extensively used and provided excellent
62
+ results for the Hugoniot curve [22–28].
63
+ However,
64
+ the approximations behind the particular exchange-
65
+ correlation functional often produce discrepancies across
66
+ existing DFT schemes whose accuracy varies according to
67
+ the thermodynamic conditions, making the functional-
68
+ based approach unsatisfactory. Quantum Monte Carlo
69
+ (QMC) simulations, which depend on more controllable
70
+ approximations,
71
+ have also been performed [29, 30].
72
+ Although in principle more accurate and systematically
73
+ improvable,
74
+ these calculations have a much larger
75
+ computational cost than DFT, and they are thus
76
+ limited in system size and simulation length. Moreover,
77
+ previous QMC calculations seem to give results for
78
+ the principal Hugoniot in disagreement with the most
79
+ recent experimental data, with the possible origin of this
80
+ discrepancy being recently debated [31].
81
+ To overcome the large computational cost of ab
82
+ initio simulations, machine learning techniques, aimed
83
+ at constructing accurate potential energy surfaces, have
84
+ become increasingly popular. Within this approach, one
85
+ uses a dataset of configurations, i.e.
86
+ the training set,
87
+ to build a machine learning potential (MLP) that is
88
+ able to reproduce energies and forces calculated with
89
+ the given target method [32].
90
+ Unlike DFT MLPs,
91
+ the QMC ones are relatively less common, given the
92
+ larger computational cost and the consequent difficulty of
93
+ generating large datasets, usually necessary to construct
94
+ accurate MLPs.
95
+ In this work, we have successfully built a very accurate
96
+ MLP with QMC energies, forces and pressures in the
97
+ region of the deuterium Hugoniot, using the so-called ∆-
98
+ learning approach. The Hugoniot curve computed by the
99
+ MLP shows an excellent agreement with the most recent
100
+ arXiv:2301.03570v1 [cond-mat.str-el] 9 Jan 2023
101
+
102
+ 2
103
+ experiments, and it shares with the best DFT functionals
104
+ the same, - if not better -, accuracy.
105
+ Computational details −
106
+ In order to build an MLP
107
+ with QMC references, we employed a combination of
108
+ Gaussian Kernel Regression (GKR), Smooth Overlap
109
+ of Atomic Positions (SOAP) descriptors [33], and ∆-
110
+ learning. The same approach has been recently proposed
111
+ in Ref. 34, where it was applied to the study of high-
112
+ pressure hydrogen in similar thermodynamic conditions.
113
+ Following the ∆-learning approach, an MLP is trained
114
+ on the difference between the target method and a
115
+ usually much cheaper baseline potential.
116
+ Here, we
117
+ trained 5 different MLPs,
118
+ using Variational Monte
119
+ Carlo (VMC) and Lattice Regularized Diffusion Monte
120
+ Carlo (LRDMC) [35, 36] datapoints as targets, and
121
+ several DFT baselines, with the Perdew-Zunger Local
122
+ Density Approximation (PZ-LDA) [37], the Perdew-
123
+ Burke-Ernzerhof (PBE) [38] and the van der Waals
124
+ (vdW) -DF [39, 40] functionals. The QMC calculations
125
+ were performed using the TurboRVB package [41].
126
+ To determine the principal Hugoniot, we made use of
127
+ the RH jump equation:
128
+ H(ρ, T) = e(ρ, T) − e0 + 1
129
+ 2(ρ−1 − ρ−1
130
+ 0 ) [p(ρ, T) + p0] = 0,
131
+ (1)
132
+ where ρ,
133
+ T,
134
+ e(ρ, T),
135
+ p(ρ, T) and ρ0,
136
+ T0,
137
+ e0,
138
+ p0
139
+ are the density, temperature, energy per particle and
140
+ pressure of the final and initial states, respectively. In
141
+ particular, we ran a first set of NV T simulations at
142
+ several temperatures in the [4 kK : 10 kK] range, and
143
+ Wigner-Seitz radii between 1.80 Bohr and 2.28 Bohr,
144
+ corresponding to the range where the zero of H(ρ, T) was
145
+ expected. These simulations were performed considering
146
+ classical nuclei and ground-state electrons, as quantum
147
+ corrections and thermal effects have been shown to be
148
+ negligible for these temperatures [30]. At each step, the
149
+ energy, forces and pressure were calculated using the
150
+ Quantum Espresso package in its GPU accelerated
151
+ version [42–44] with the chosen functional (PBE in most
152
+ cases), and then corrected with our MLP trained on the
153
+ difference between QMC and DFT data. The resulting
154
+ dynamics has the same efficiency as a standard DFT
155
+ AIMD simulation, which is roughly 100 times faster
156
+ than the original QMC one.
157
+ The details of our QMC
158
+ simulations are reported in the Supplemental Material
159
+ (SM) [45].
160
+ For the DFT simulations, we considered a
161
+ 60 Ry plane-wave cutoff with a Projector Augmented
162
+ Wave (PAW) pseudopotential [46] and a 4 × 4 × 4
163
+ Monkhorst-Pack k-point grid, while for the dynamics we
164
+ used a time step of 0.25 fs and a Langevin thermostat [47,
165
+ 48] with damping γ = 13 ps−1. For each temperature, the
166
+ Hugoniot (ρ∗, p∗) coordinates are determined by fitting
167
+ the Hugoniot function H(ρ, T) and the pressure p(ρ, T)
168
+ with a spline function, and by numerically finding ρ∗ and
169
+ the corresponding p∗.
170
+ Within our approach, we can fully take advantage
171
+ of the ∆-learning method by estimating the effect
172
+ of thermalized electrons in our calculations.
173
+ To do
174
+ so, we considered two MLPs trained on the VMC-
175
+ LDA and LRDMC-LDA differences, respectively, and
176
+ ran simulations at temperatures T = 10 kK, 15 kK,
177
+ and 35 kK with the corrected Karasiev-Sjostrom-Dufty-
178
+ Trickey (KSDT) finite-temperature (FT) LDA functional
179
+ [49–51] as baseline, in place of the usual ground-state PZ-
180
+ LDA functional. In this way, we can include the effects of
181
+ thermally excited electrons in our MLP without changing
182
+ it, at least at the DFT level of theory.
183
+ Results and Discussion −
184
+ Fig. 1a shows our results
185
+ together with several experimental values for pressures
186
+ below 150 GPa [16, 19, 20]. We also report the principal
187
+ Hugoniot obtained by directly using the PBE baseline,
188
+ and the Coupled Electron Ion Monte Carlo (CEIMC)
189
+ results of Ref. 30 for comparison. For T = 10 kK we
190
+ show both the ground-state and FT results obtained
191
+ with the procedure described previously, while for larger
192
+ temperatures we plotted only the latter. Both the VMC
193
+ and LRDMC models seem to reproduce very accurately
194
+ the experimental points over the entire range of pressure
195
+ considered.
196
+ With respect to the most accurate data
197
+ of Ref. 19, our estimate of the relative density ρ/ρ0 at
198
+ the compressibility peak is only 1% lower for the VMC
199
+ model and 3% lower for the LRDMC model, both being
200
+ compatible within one error bar.
201
+ Our results are in
202
+ better agreement with experiments than the CEIMC ones
203
+ reported in Ref. 30, which predicts a relative density 10%
204
+ larger for the Hugoniot curve. The disagreement between
205
+ the two results seems to be due to a large difference in the
206
+ pressure estimates between the two methods, as further
207
+ discussed in the SM [45].
208
+ Fig. 1b displays the same points in the up − Us space,
209
+ where up is the particle velocity and Us is the shock
210
+ velocity, the two being calculated using the following RH
211
+ relations:
212
+ up =
213
+
214
+ (p + p0)(ρ−1
215
+ 0
216
+ − ρ−1),
217
+ Us = ρ−1
218
+ 0
219
+
220
+ p + p0
221
+ ρ−1
222
+ 0
223
+ − ρ−1 .
224
+ The difference ∆Us between these points and the linear
225
+ fit on the gas-gun data re-analyzed in Ref. 19 is also
226
+ shown (bottom panel of Fig. 1b). Notice that the drop
227
+ in the slope of Us relative to up coincides with the
228
+ onset of the molecular-atomic (MA) transition, while the
229
+ magnitude of the ∆Us minimum relates to the position
230
+ of the relative compression peak.
231
+ In particular, the
232
+ PBE Hugoniot curve manifests a premature start of the
233
+ dissociation, while it predicts correctly the magnitude of
234
+ the compressibility maximum.
235
+ Remarkably, our QMC
236
+ results are very similar to the experimental findings not
237
+
238
+ 3
239
+ 2.5
240
+ 3.0
241
+ 3.5
242
+ 4.0
243
+ 4.5
244
+ 5.0
245
+ /
246
+ 0
247
+ 0
248
+ 20
249
+ 40
250
+ 60
251
+ 80
252
+ 100
253
+ 120
254
+ 140
255
+ 160
256
+ Pressure (GPa)
257
+ PBE-FT
258
+ VdW-DF1 (Ref.19)
259
+ Experiments
260
+ VMC
261
+ VMC-FT
262
+ LRDMC
263
+ LRDMC-FT
264
+ VMC (Ref. 30)
265
+ RMC (Ref. 30)
266
+ (a)
267
+ 15
268
+ 20
269
+ 25
270
+ 30
271
+ 35
272
+ Shock velocity Us (km/s)
273
+ 10
274
+ 15
275
+ 20
276
+ 25
277
+ Particle velocity up (km/s)
278
+ 0.0
279
+ 0.5
280
+ 1.0
281
+ 1.5
282
+ Us (km/s)
283
+ (b)
284
+ FIG. 1: (1a) Principal Hugoniot in the density-pressure space. Red and yellow circles are the results obtained with our
285
+ MLPs trained on VMC and LRDMC datapoints, respectively, and a PBE baseline. Empty symbols refer to the results
286
+ obtained using the finite-temperature (FT) KSDT functional as baseline. Blue and pink triangles are the PBE result
287
+ calculated in this work and the VdW-DF1 result of Ref. 19 respectively. CEIMC results of Ref. 30 based on Variational
288
+ Monte Carlo (VMC) and Reptation Monte Carlo (RMC) are reported in green squares. Cyan diamonds are the experimental
289
+ results of Refs. 16, 19, and 20. Dashed-dotted lines are guides for the eye. (1b) [top panel] Hugoniot in the up–Us space.
290
+ Black-dashed line is the re-analyzed gas-gun fit reported in Ref. 19. [bottom panel] Relative shock velocity with respect to the
291
+ gas-gun fit. Only the experimental points of Ref. 19 are reported.
292
+ only for the compressibility peak but also for the shock
293
+ velocity slope.
294
+ Thus, the Hugoniot curve obtained by our MLPs
295
+ shows a much better agreement with the most recent
296
+ experiments than the PBE functional, and is close to
297
+ improved functionals, such as VdW-DF1 reported in Fig.
298
+ 1, which has been proved more accurate than PBE for
299
+ high pressure hydrogen [52]. Cancellation of errors taking
300
+ place in the DFT Hugoniot [31] is less apparent in the
301
+ ∆Us = ∆Us(up) relation (Fig. 1b), where the difference
302
+ between PBE and improved theories is clear.
303
+ The presence of an MA transition is also investigated
304
+ in Fig. 2,
305
+ where we report the radial distribution
306
+ function, g(r), calculated on trajectories obtained with
307
+ the LRDMC model for several temperatures at densities
308
+ close to the Hugoniot curve. The inset of Fig. 2 displays
309
+ the value of the molecular fraction m, defined as the
310
+ percentage of atoms that stay within a distance of 2 Bohr
311
+ (roughly corresponding to the first g(r) minimum after
312
+ the molecular peak) from another particle for longerthan
313
+ a characteristic time, here set to 6 fs. The results show
314
+ a distinct atomic character for T ≥ 10 kK and a clear
315
+ molecular peak at lower temperatures.
316
+ Error analysis −
317
+ To
318
+ assess
319
+ the
320
+ quality
321
+ of
322
+ our
323
+ principal Hugoniot determination,
324
+ we analyzed the
325
+ possible sources of errors in relation to our machine
326
+ learning scheme. There are three main sources of errors:
327
+ the uncertainties in the fit of H(ρ, T), the prediction error
328
+ of the MLP, and the uncertainties in the reference state
329
+ energy estimate, i.e. e0 in Eq.(1). We verified that, in our
330
+ case, the error produced by the fit is negligible compared
331
+ to the other two sources, which we will discuss next.
332
+ As mentioned before, we followed Ref. 34 to construct
333
+ our MLPs and used a GKR model based on a modified
334
+ version of the SOAP kernel [33].
335
+ Our final dataset,
336
+ including both training and test sets, comprises 871
337
+ configurations selected through an iterative procedure
338
+ with 128 hydrogen atoms each, where we calculated
339
+ energies, pressures and forces at the VMC and LRDMC
340
+ levels. These configurations correspond to temperatures
341
+ from 4 kK up to 35 kK and Wigner-Seitz radii from 1.80
342
+ Bohr to 2.12 Bohr. Finite size corrections have also been
343
+ estimated using the KZK functional [53].
344
+ Details on the training set construction and the QMC
345
+ calculations, together with the performances of all MLP
346
+ models can be found in the SM [45]. In particular we
347
+ found a final root mean square error, calculated on the
348
+ test set, of the order of 20 meV/atom for the energy, 130
349
+ meV/˚A for the forces, and 0.1 GPa for the pressures.
350
+ At this point, it is worth to highlight some favourable
351
+
352
+ 4
353
+ 0
354
+ 1
355
+ 2
356
+ 3
357
+ 4
358
+ 5
359
+ 6
360
+ 7
361
+ 8
362
+ r (Bohr)
363
+ 0.0
364
+ 0.5
365
+ 1.0
366
+ 1.5
367
+ 2.0
368
+ 2.5
369
+ 3.0
370
+ 3.5
371
+ g(r)
372
+ T = 4 kK
373
+ T = 6 kK
374
+ T = 7 kK
375
+ T = 8 kK
376
+ T = 10 kK
377
+ T = 15 kK
378
+ T = 35 kK
379
+ 3.0
380
+ 3.5
381
+ 4.0
382
+ 4.5
383
+ /
384
+ 0
385
+ 25
386
+ 50
387
+ 75
388
+ 100
389
+ 125
390
+ 150
391
+ Pressure (GPa)
392
+ 0.92
393
+ 0.58 0.43
394
+ 0.34
395
+ 0.21
396
+ 0.12
397
+ 0.03
398
+ FIG. 2:
399
+ g(r) for several temperatures and densities close to
400
+ the principal Hugoniot, obtained using the LRDMC model.
401
+ The molecular fraction value, m, is reported in the inset,
402
+ beside each point distributed according to their
403
+ corresponding location in the density-pressure space.
404
+ features of our machine learning approach, especially in
405
+ applications where it is coupled with computationally
406
+ expensive methods such as QMC. They can be itemized
407
+ as follows:
408
+ • transferability: the total energy of the system is
409
+ expressed as a sum of local terms [32], therefore our
410
+ models are capable of making accurate predictions
411
+ on
412
+ configurations
413
+ whose
414
+ size
415
+ has
416
+ never
417
+ been
418
+ encountered in the training set. In particular, our
419
+ MLPs find their applicability to systems with an
420
+ arbitrary number of atoms N.
421
+ • efficiency and accuracy:
422
+ within the ∆-learning
423
+ framework, the machine learning task becomes
424
+ easier.
425
+ Indeed, we obtained very accurate QMC
426
+ potentials, by training models on small datasets
427
+ and, thus, by reducing the amount of calculations
428
+ needed.
429
+ Moreover, since the computational cost
430
+ of the ML inference is negligible compared to the
431
+ baseline DFT calculation, we were able to perform
432
+ QMC-driven MD simulations at the cost of a DFT
433
+ dynamics.
434
+ • overfitting prevention: using a local sparsification
435
+ technique based on the farthest point sampling
436
+ (see SM of Ref. 34), we discarded from each
437
+ configuration a possibly large fraction of the
438
+ corresponding N local environments, preventing
439
+ overfitting and allowing for an increased predictive
440
+ power of the model on unseen data.
441
+ Since
442
+ the computational cost of the predictions scales
443
+ with the size of the training set, this procedure
444
+ drastically improves the efficiency of the final
445
+ model.
446
+ We further validated the accuracy of our MLP models
447
+ by comparing the Hugoniot curve obtained using three
448
+ potentials, independently trained with the same target,
449
+ e.g. VMC, but with different baselines. In particular,
450
+ we found the results to be consistent within an error of
451
+ ≲ 1% and ≲ 2% for density and pressure, respectively.
452
+ We now turn to the last source of error we identified,
453
+ i.e.
454
+ the one related to the calculation of e0 and p0.
455
+ To estimate the reference state energy and pressure, we
456
+ followed a procedure similar to Ref. 30. We performed a
457
+ path integral molecular dynamics (PIMD) simulation [54]
458
+ on a system of N = 64 deuterium atoms at a temperature
459
+ T = 22 K and density ρ0 = 0.167 g/cm3 (corresponding
460
+ to the initial conditions reported in Ref. 19), using DFT-
461
+ PBE energy and forces. Details of this simulation are
462
+ reported in the SM [45]. From the PIMD trajectory, we
463
+ extracted 170 configurations and we calculated energies
464
+ and pressures with both DFT-PBE and QMC at VMC
465
+ and LRDMC levels, adding the necessary finite size
466
+ corrections.
467
+ The reference sample was generated by
468
+ extracting atomic positions from one of the 128 beads
469
+ taken at random, belonging to de-correlated snapshots
470
+ of the trajectory. Results for e0 for the various methods
471
+ are reported in Tab. I. The reference state pressure p0 is
472
+ not reported, since it is two orders of magnitude smaller
473
+ than the shocked pressure, and thus irrelevant for the
474
+ Hugoniot determination. Also in this case, we studied
475
+ the effect of varying e0 within its confidence interval on
476
+ the Hugoniot density and pressure. Its variability within
477
+ standard deviation leads to shifts in the final principal
478
+ Hugoniot which fall in the stochastic error range of our
479
+ predictions.
480
+ To summarize, we estimated the MLP prediction error
481
+ to be the most relevant source of uncertainty for the
482
+ Hugoniot, yielding, as discussed before, an error of 1%
483
+ and 2% on the relative density and pressure, respectively,
484
+ reflected on the error bars reported in Fig. 1. Notice that
485
+ our Hugoniot curve is consistent with the experiments
486
+ even after considering the possible uncertainties.
487
+ epot (Ha/atom) e0 (Ha/atom)
488
+ PBE
489
+ -0.58217(2)
490
+ -0.58055(2)
491
+ VMC
492
+ -0.58465(3)
493
+ -0.58303(3)
494
+ LRDMC
495
+ -0.58653(2)
496
+ -0.58491(2)
497
+ TABLE I: Estimated potential (epot) and total (e0)
498
+ energies per atom of the reference state at ρ0 = 0.167
499
+ g/cm3 and T = 22 K for different methods.
500
+
501
+ 5
502
+ Conclusions −
503
+ In conclusion,
504
+ using our recently
505
+ proposed workflow for the construction of MLPs, we have
506
+ been able to run reliable VMC- and LRDMC-based MD
507
+ simulations and study the principal deuterium Hugoniot,
508
+ in a pressure range relevant for experiments.
509
+ The
510
+ accuracy of the MLPs employed here has been extensively
511
+ tested, supporting the validity of our calculations. The
512
+ resulting Hugoniot curve shows an excellent agreement
513
+ with the most recent measures, comparable to the best
514
+ DFT functionals and better than previous QMC results.
515
+ Moreover, within the ∆-learning framework, we have
516
+ also been able to treat FT electrons effects in a QMC-
517
+ MLP, and we have thus managed to perform accurate
518
+ simulations at higher temperatures.
519
+ The efficiency
520
+ of this approach could be further improved, e.g., by
521
+ using cheaper baseline potentials than DFT. Longer
522
+ simulations and larger systems will then be at reach.
523
+ Other many-body methods, even more expensive than
524
+ QMC, can also be used as targets for this type of
525
+ MLPs, since the required size of the dataset is at
526
+ least one order of magnitude smaller compared to other
527
+ ML approaches.
528
+ Finally, our MLPs, and in particular
529
+ those trained on LRDMC datapoints, are promising for
530
+ exploring the hydrogen phase diagram by keeping a high
531
+ level of accuracy across a wide range of thermodynamic
532
+ conditions.
533
+ Data availability −
534
+ The machine learning code used
535
+ in this work is available upon request.
536
+ Additional
537
+ information, such as datasets and detailed results of
538
+ the simulations are available at https://github.com/
539
+ giacomotenti/QMC_hugoniot.
540
+ Acknowledgments. The computations in this work have
541
+ mainly been performed using the Fugaku supercomputer
542
+ provided by RIKEN through the HPCI System Research
543
+ Project (Project ID: hp210038 and hp220060) and
544
+ Marconi100 provided by CINECA through the ISCRA
545
+ project No. HP10BGJH1X and the SISSA three-year
546
+ agreement 2022. K.N. is also grateful for computational
547
+ resources from the facilities of Research Center for
548
+ Advanced Computing Infrastructure at Japan Advanced
549
+ Institute of Science and Technology (JAIST).
550
+ A.T. acknowledges financial support from the MIUR
551
+ Progetti di Ricerca di Rilevante Interesse Nazionale
552
+ (PRIN)
553
+ Bando
554
+ 2017
555
+ -
556
+ grant
557
+ 2017BZPKSZ.
558
+ K.N.
559
+ acknowledges
560
+ a
561
+ support
562
+ from
563
+ the
564
+ JSPS
565
+ Overseas
566
+ Research Fellowships, that from Grant-in-Aid for Early-
567
+ Career Scientists Grant Number JP21K17752, and that
568
+ from Grant-in-Aid for Scientific Research(C) Grant
569
+ Number JP21K03400.
570
+ This work is supported by the
571
+ European Centre of Excellence in Exascale Computing
572
+ TREX - Targeting Real Chemical Accuracy at the
573
+ Exascale.
574
+ This project has received funding from
575
+ the European Union’s Horizon 2020 - Research and
576
+ Innovation program - under grant agreement no. 952165.
577
+ We dedicate this paper to the memory of Prof. Sandro
578
+ Sorella (SISSA), who tragically passed away during
579
+ this project, remembering him as one of the most
580
+ influential contributors to the quantum Monte Carlo
581
+ community,and in particular for deeply inspiring this
582
+ work with the development of the ab initio QMC code,
583
+ TurboRVB.
584
585
586
+ ‡ kousuke [email protected]
587
+ [1] D. Saumon, G. Chabrier, and H. M. van Horn, The
588
+ astrophysical journal supplement series 99, 713 (1995).
589
+ [2] J. J. Fortney and N. Nettelmann, Space Science Reviews
590
+ 152, 423 (2009).
591
+ [3] Y. Miguel, T. Guillot, and L. Fayon, Astronomy &
592
+ Astrophysics 596, A114 (2016).
593
+ [4] S. Hu, V. Goncharov, T. Boehly, R. McCrory, S. Skupsky,
594
+ L. A. Collins, J. D. Kress, and B. Militzer, Physics of
595
+ Plasmas 22, 056304 (2015).
596
+ [5] A.
597
+ P.
598
+ Drozdov,
599
+ M.
600
+ I.
601
+ Eremets,
602
+ I.
603
+ A.
604
+ Troyan,
605
+ V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).
606
+ [6] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe,
607
+ M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley,
608
+ Phys. Rev. Lett. 122, 027001 (2019).
609
+ [7] J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M.
610
+ Ceperley, Rev. Mod. Phys. 84, 1607 (2012).
611
+ [8] B. Cheng, G. Mazzola, C. J. Pickard, and M. Ceriotti,
612
+ Nature 585, 217 (2020).
613
+ [9] V. V. Karasiev, J. Hinz, S. X. Hu, and S. B. Trickey,
614
+ Nature 600, E12 (2021).
615
+ [10] B. Cheng, G. Mazzola, C. J. Pickard, and M. Ceriotti,
616
+ Nature 600, E15 (2021).
617
+ [11] W. J. Nellis, Reports on Progress in Physics 69, 1479
618
+ (2006).
619
+ [12] G. E. Duvall and R. A. Graham, Rev. Mod. Phys. 49,
620
+ 523 (1977).
621
+ [13] W.
622
+ J.
623
+ Nellis,
624
+ A.
625
+ C.
626
+ Mitchell,
627
+ M.
628
+ van
629
+ Thiel,
630
+ G.
631
+ J.
632
+ Devine,
633
+ R.
634
+ J.
635
+ Trainor,
636
+ and
637
+ N.
638
+ Brown,
639
+ The Journal of Chemical Physics 79, 1480 (1983),
640
+ https://doi.org/10.1063/1.445938.
641
+ [14] M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall,
642
+ J. R. Asay, and W. W. Anderson, Phys. Rev. Lett. 87,
643
+ 225501 (2001).
644
+ [15] G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, V. D. Selemir,
645
+ G. V. Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin,
646
+ and W. J. Nellis, Phys. Rev. B 71, 092104 (2005).
647
+ [16] M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall,
648
+ J. R. Asay, and C. Deeney, Phys. Rev. B 69, 144209
649
+ (2004).
650
+ [17] D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert,
651
+ S. J. Moon, D. D. Meyerhofer, and G. W. Collins, Phys.
652
+ Rev. B 79, 014112 (2009).
653
+ [18] P. Loubeyre, S. Brygoo, J. Eggert, P. M. Celliers, D. K.
654
+ Spaulding, J. R. Rygg, T. R. Boehly, G. W. Collins, and
655
+ R. Jeanloz, Phys. Rev. B 86, 144115 (2012).
656
+ [19] M. D. Knudson and M. P. Desjarlais, Physical Review
657
+ Letters 118, 1 (2017).
658
+ [20] A. Fernandez-Pa˜nella, M. Millot, D. E. Fratanduono,
659
+ M. P. Desjarlais, S. Hamel, M. C. Marshall, D. J. Erskine,
660
+ P. A. Sterne, S. Haan, T. R. Boehly, G. W. Collins, J. H.
661
+
662
+ 6
663
+ Eggert, and P. M. Celliers, Phys. Rev. Lett. 122, 255702
664
+ (2019).
665
+ [21] M. D. Knudson and M. P. Desjarlais, Journal of Applied
666
+ Physics 129, 10.1063/5.0050878 (2021).
667
+ [22] T. J. Lenosky, S. R. Bickham, J. D. Kress, and L. A.
668
+ Collins, Phys. Rev. B 61, 1 (2000).
669
+ [23] G. Galli, R. Q. Hood, A. U. Hazi, and F. m. c. Gygi,
670
+ Phys. Rev. B 61, 909 (2000).
671
+ [24] S. Bagnier, P. Blottiau, and J. Cl´erouin, Phys. Rev. E
672
+ 63, 015301 (2000).
673
+ [25] S. A. Bonev, B. Militzer, and G. Galli, Phys. Rev. B 69,
674
+ 014101 (2004).
675
+ [26] B. Holst, R. Redmer, and M. P. Desjarlais, Phys. Rev. B
676
+ 77, 184201 (2008).
677
+ [27] L. Caillabet, S. Mazevet, and P. Loubeyre, Phys. Rev. B
678
+ 83, 094101 (2011).
679
+ [28] V. V. Karasiev, S. X. Hu, M. Zaghoo, and T. R. Boehly,
680
+ Physical Review B 99, 1 (2019).
681
+ [29] N.
682
+ M.
683
+ Tubman,
684
+ E.
685
+ Liberatore,
686
+ C.
687
+ Pierleoni,
688
+ M. Holzmann, and D. M. Ceperley, Physical Review
689
+ Letters 115, 1 (2015).
690
+ [30] M.
691
+ Ruggeri,
692
+ M.
693
+ Holzmann,
694
+ D.
695
+ M.
696
+ Ceperley,
697
+ and
698
+ C. Pierleoni, Physical Review B 102, 144108 (2020),
699
+ arXiv:2008.00269.
700
+ [31] R. C. Clay, M. P. Desjarlais, and L. Shulenburger,
701
+ Physical Review B 100, 75103 (2019).
702
+ [32] J. Behler and M. Parrinello, Physical Review Letters 98,
703
+ 1 (2007).
704
+ [33] S. De, A. P. Bart´ok, G. Cs´anyi, and M. Ceriotti, Phys.
705
+ Chem. Chem. Phys. 18, 13754 (2016).
706
+ [34] A. Tirelli, G. Tenti, K. Nakano, and S. Sorella, Phys.
707
+ Rev. B 106, L041105 (2022).
708
+ [35] M. Casula, C. Filippi, and S. Sorella, Phys. Rev. Lett.
709
+ 95, 100201 (2005).
710
+ [36] K. Nakano, R. Maezono, and S. Sorella, Phys. Rev. B
711
+ 101, 155106 (2020).
712
+ [37] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048
713
+ (1981).
714
+ [38] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
715
+ Lett. 77, 3865 (1996).
716
+ [39] M. Dion, H. Rydberg, E. Schr¨oder, D. C. Langreth, and
717
+ B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
718
+ [40] K. Berland,
719
+ V. R. Cooper,
720
+ K. Lee,
721
+ E. Schr¨oder,
722
+ T. Thonhauser, P. Hyldgaard, and B. I. Lundqvist,
723
+ Reports on Progress in Physics 78, 066501 (2015).
724
+ [41] K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti,
725
+ M. Casula, E. Coccia, M. Dagrada, C. Genovese, Y. Luo,
726
+ G. Mazzola, A. Zen, and S. Sorella, J. Chem. Phys. 152,
727
+ 204121 (2020).
728
+ [42] P. Giannozzi,
729
+ S. Baroni,
730
+ N. Bonini,
731
+ M. Calandra,
732
+ R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti,
733
+ M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli,
734
+ S. Fabris,
735
+ G. Fratesi,
736
+ R. Gebauer,
737
+ U. Gerstmann,
738
+ C. Gougoussis,
739
+ A. Kokalj,
740
+ M. Lazzeri,
741
+ L. Martin-
742
+ Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini,
743
+ A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo,
744
+ G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari,
745
+ and R. M. Wentzcovitch, Journal of Physics: Condensed
746
+ Matter 21, 395502 (2009).
747
+ [43] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
748
+ M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni,
749
+ D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo,
750
+ A. D. Corso,
751
+ S. de Gironcoli,
752
+ P. Delugas,
753
+ R. A.
754
+ DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,
755
+ R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia,
756
+ M. Kawamura, H.-Y. Ko, A. Kokalj, E. K¨u¸c¨ukbenli,
757
+ M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L.
758
+ Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto,
759
+ S. Ponc´e, D. Rocca, R. Sabatini, B. Santra, M. Schlipf,
760
+ A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser,
761
+ P. Umari, N. Vast, X. Wu, and S. Baroni, Journal of
762
+ Physics: Condensed Matter 29, 465901 (2017).
763
+ [44] P. Giannozzi, O. Baseggio, P. Bonf`a, D. Brunato, R. Car,
764
+ I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas,
765
+ F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov,
766
+ A. Urru, and S. Baroni, The Journal of Chemical Physics
767
+ 152, 154105 (2020), https://doi.org/10.1063/5.0005082.
768
+ [45] See Supplemental Material at [URL will be inserted
769
+ by
770
+ publisher]
771
+ for
772
+ additional
773
+ information
774
+ about
775
+ the
776
+ computational
777
+ details
778
+ of
779
+ QMC
780
+ calculations,
781
+ the
782
+ MLP
783
+ training
784
+ and
785
+ validation,
786
+ the
787
+ reference
788
+ state
789
+ calculations, finite-size corrections, finite temperature
790
+ DFT simulations, and comparison with previous results
791
+ [28, 30, 34–36, 48–51, 53, 55–65].
792
+ [46] H.pbek-jpaw psl.1.0.0.UPF pseudopotential available
793
+ at http://pseudopotentials.quantum-espresso.org/
794
+ legacy_tables/ps-library/h.
795
+ [47] A. Ricci and G. Ciccotti, Molecular Physics - MOL PHYS
796
+ 101, 1927 (2003).
797
+ [48] C. Attaccalite and S. Sorella, Phys. Rev. Lett. 100,
798
+ 114501 (2008).
799
+ [49] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey,
800
+ Phys. Rev. Lett. 112, 076403 (2014).
801
+ [50] V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys.
802
+ Rev. Lett. 120, 076401 (2018).
803
+ [51] S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A.
804
+ Marques, SoftwareX 7, 1 (2018).
805
+ [52] R. C. Clay, J. Mcminis, J. M. McMahon, C. Pierleoni,
806
+ D. M. Ceperley, and M. A. Morales, Phys. Rev. B 89,
807
+ 184106 (2014).
808
+ [53] H. Kwee, S. Zhang, and H. Krakauer, Phys. Rev. Lett.
809
+ 100, 126404 (2008).
810
+ [54] F. Mouhat, S. Sorella, R. Vuilleumier, A. M. Saitta,
811
+ and
812
+ M.
813
+ Casula,
814
+ Journal
815
+ of
816
+ Chemical
817
+ Theory
818
+ and
819
+ Computation 13, 2400 (2017).
820
+ [55] M. Casula and S. Sorella, J. Chem. Phys. 119, 6500
821
+ (2003).
822
+ [56] S. Sorella, M. Casula, and D. Rocca, J. Chem. Phys. 127,
823
+ 014105 (2007).
824
+ [57] K. Nakano, T. Morresi, M. Casula, R. Maezono, and
825
+ S. Sorella, Phys. Rev. B 103, L121110 (2021).
826
+ [58] K. Nakano, A. Raghav, and S. Sorella, The Journal of
827
+ Chemical Physics 156, 034101 (2022).
828
+ [59] C. J. Umrigar, Int. J. Quantum Chem 36, 217 (1989).
829
+ [60] S. Sorella and L. Capriotti, J. Chem. Phys. 133, 234111
830
+ (2010).
831
+ [61] C. Filippi, R. Assaraf, and S. Moroni, J. Chem. Phys.
832
+ 144, 194105 (2016).
833
+ [62] J. van Rhijn, C. Filippi, S. De Palo, and S. Moroni,
834
+ Journal of chemical theory and computation 18, 118
835
+ (2021).
836
+ [63] S. Pathak and L. K. Wagner, AIP Adv. 10, 085213
837
+ (2020).
838
+ [64] P. Reynolds, R. Barnett, B. Hammond, R. Grimes, and
839
+ W. Lester Jr, Int. J. Quantum Chem. 29, 589 (1986).
840
+ [65] N. D. Mermin, Phys. Rev. 137, A1441 (1965).
841
+
842
+ Supplemental material: Principal deuterium Hugoniot via Quantum Monte
843
+ Carlo and ∆-Learning
844
+ Giacomo Tenti∗ and Andrea Tirelli†
845
+ International School for Advanced Studies (SISSA),
846
+ Via Bonomea 265, 34136 Trieste, Italy
847
+ Kousuke Nakano‡
848
+ International School for Advanced Studies (SISSA),
849
+ Via Bonomea 265, 34136 Trieste, Italy and
850
+ School of Information Science, JAIST,
851
+ Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
852
+ Michele Casula
853
+ Institut de Min´eralogie, de Physique des Mat´eriaux et de Cosmochimie (IMPMC),
854
+ Sorbonne Universit´e, CNRS UMR 7590,
855
+ MNHN, 4 Place Jussieu, 75252 Paris, France
856
+ Sandro Sorella
857
+ International School for Advanced Studies (SISSA),
858
+ Via Bonomea 265, 34136 Trieste, Italy and
859
+ Computational Materials Science Research Team,
860
+ RIKEN Center for Computational Science (R-CCS), Kobe, Hyogo 650-0047, Japan
861
+ (Dated: January 10, 2023)
862
+ 1
863
+ arXiv:2301.03570v1 [cond-mat.str-el] 9 Jan 2023
864
+
865
+ I.
866
+ COMPUTATIONAL DETAILS OF QMC CALCULATIONS
867
+ The Variational Monte Carlo (VMC) and lattice regularized diffusion Monte Carlo (LRDMC) [1]
868
+ calculations in this study were performed by TurboRVB package [2]. The package employs a
869
+ many-body WF ansatz Ψ which can be written as the product of two terms, i.e., Ψ = ΦAS × exp J ,
870
+ where the term exp J and ΦAS are conventionally called Jastrow and antisymmetric parts, re-
871
+ spectively. The antisymmetric part is denoted as the Antisymmetrized Geminal Power (AGP)
872
+ that reads:
873
+ ΨAGP (r1, . . . , rN) =
874
+ ˆA
875
+
876
+ Φ
877
+
878
+ r↑
879
+ 1, r↓
880
+ 1
881
+
882
+ Φ
883
+
884
+ r↑
885
+ 2, r↓
886
+ 2
887
+
888
+ · · · Φ
889
+
890
+ r↑
891
+ N/2, r↓
892
+ N/2
893
+ ��
894
+ , where ˆA is the an-
895
+ tisymmetrization operator, and Φ
896
+
897
+ r↑, r↓�
898
+ is called the paring function [3].
899
+ The spatial part
900
+ of the geminal function is expanded over the Gaussian-type atomic orbitals: ΦAGP
901
+
902
+ ri, rj
903
+
904
+ =
905
+
906
+ l,m,a,b f{a,l},{b,m}ψa,l (ri) ψb,m
907
+
908
+ r j
909
+
910
+ where ψa,l and ψb,m are primitive Gaussian atomic orbitals, their
911
+ indices l and m indicate different orbitals centered on atoms a and b, and i and j are coordi-
912
+ nates of spin up and down electrons, respectively, and f{a,l},{b,m} are the variational parameters. In
913
+ this study, a basis set composed of [4s2p1d] Gaussian atomic orbitals (GTOs) was employed
914
+ for the atomic orbitals of the antisymmetric part.
915
+ The pairing function can be also written
916
+ as ΦAGPn
917
+
918
+ ri, r j
919
+
920
+ = �M
921
+ k=1 λkφk(ri)φk(rj) with λk > 0, where φk(r) is a molecular orbital, i.e.,
922
+ φk(r) = �L
923
+ i=1 ci,kψi(r). When the paring function is expanded over M molecular orbitals where
924
+ M is equal to half of the total number of electrons (N/2), the AGP coincides with the Slater-
925
+ Determinant ansatz. In this study, we restricted ourselves to a Jastrow-Slater determinant (JSD) by
926
+ setting M = 1
927
+ 2 ·N, wherein the coefficients of atomic orbitals, i.e., ci,k, were obtained by the build-in
928
+ Density Functional theory (DFT) package (prep), and were fixed during a VMC optimization.
929
+ The Jastrow term is composed of one-body, two-body and three/four-body factors (J = J1 +
930
+ J2 + J3/4). The one-body and two-body factors are essentially used to fulfill the electron-ion and
931
+ electron-electron cusp conditions, respectively, and the three/four-body factor is employed to con-
932
+ sider further electron-electron correlations (e.g., electron-nucleus-electron). The one-body Jastrow
933
+ is decomposed into the so-called homogeneous and inhomogeneous parts, i.e., J1 = Jhom
934
+ 1
935
+ + Jinh
936
+ 1 .
937
+ The homogeneous one-body Jastrow factor is J1
938
+ hom (r1, . . . , rN) = �
939
+ i,I
940
+
941
+ −(2ZI)3/4u
942
+
943
+ 2ZI
944
+ 1/4 |ri − RI|
945
+ ��
946
+ where ri are the electron positions, RI are the atomic positions with corresponding atomic number
947
+ ZI, and u (r) is a short-range function containing a variational parameter b: u (r) = b
948
+ 2
949
+
950
+ 1 − e−r/b�
951
+ .
952
+ The inhomogeneous one-body Jastrow factor Jinh
953
+ 1
954
+ is represented as:
955
956
957
958
+ 2
959
+
960
+ Jinh
961
+ 1 (r1, . . . , rN) = �N
962
+ i=1
963
+ �Natom
964
+ a=1
965
+ ��
966
+ l Ma,lχa,l (ri)
967
+
968
+ , where ri are the electron positions, Ra are the
969
+ atomic positions with corresponding atomic number Za, l runs over atomic orbitals χa,l (e.g., GTO)
970
+ centered on the atom a, Natom is the total number of atoms in a system, and {Ma,l} are variational
971
+ parameters. The two-body Jastrow factor is defined as: J2 (r1, . . . rN) = exp
972
+ ��
973
+ i<j v
974
+ ����ri − r j
975
+ ���
976
+ ��
977
+ ,
978
+ where v (r) = 1
979
+ 2r · (1 − F · r)−1 and F is a variational parameter. The three-body Jastrow factor
980
+ is: J3/4 (r1, . . . rN) = exp
981
+ ��
982
+ i< j ΦJas
983
+
984
+ ri, r j
985
+ ��
986
+ , and ΦJas
987
+
988
+ ri, rj
989
+
990
+ = �
991
+ l,m,a,b ga,l,m,bχJas
992
+ a,l (ri) χJas
993
+ b,m
994
+
995
+ r j
996
+
997
+ , where the
998
+ indices l and m again indicate different orbitals centered on corresponding atoms a and b. In this
999
+ study, the coefficients of the three/four-body Jastrow factor were set to zero for a � b because it
1000
+ significantly decreases the number of variational parameters while rarely affects variational ener-
1001
+ gies. A basis set composed of [3s] GTOs was employed for the atomic orbitals of the Jastrow part.
1002
+ The variational parameters in the Jastrow factor were optimized by the so-called stochastic recon-
1003
+ figuration [4] implemented in TurboRVB. Total energies and forces are calculated at the VMC and
1004
+ the LRDMC levels with the optimized wavefunctions. The LRDMC calculations were performed
1005
+ by the original single-grid scheme [1] with the discretization grid size a = 0.20 Bohr. To alleviate
1006
+ the one-body finite-size effects, we have used twisted average boundary conditions (TABC) with
1007
+ a 4 × 4 × 4 Monkhorst-Pack grid.
1008
+ To obtain a statistically meaningful value of VMC and LRDMC forces with finite variance [5],
1009
+ the so-called reweighting techniques are needed because the Hellmann–Feynman (HF) and Pulay
1010
+ terms may diverge when the minimum electron–nucleus distance vanishes and when an electronic
1011
+ configuration is close to the nodal surface, respectively [6]. The infinite variance of the first term
1012
+ is cured by applying the so-called space-warp coordinate transformation (SWCT) algorithm [6–9],
1013
+ whereas that of the second term can be alleviated by modifying the VMC sampling distribution
1014
+ using a modified trial wave function that differs from the original trial wave function only in the
1015
+ vicinity of the nodal surface [10], which we dub the Attaccalite and Sorella (AS) regularization.
1016
+ The AS regularization is not an optimal regularization for this purpose because it enforces a finite
1017
+ density of walkers on the nodal surface [11]. Therefore, in this study, we employed the regular-
1018
+ ization technique recently proposed by Pathak and Wagner [12] combined with mixed-averaged
1019
+ forces proposed by Reynolds [13].
1020
+ 3
1021
+
1022
+ II.
1023
+ MLP TRAINING AND VALIDATION
1024
+ A.
1025
+ Dataset construction
1026
+ To construct our dataset, we performed a first set of PBE MD simulations on a system of N =
1027
+ 128 atoms for temperatures in the range [4kK, 20kK] and densities in the range [1.80 Bohr, 2.20
1028
+ Bohr], from which we extracted 500 decorrelated snapshots. We then added other configurations
1029
+ according to an active learning scheme: with a model trained using this first dataset we ran MD
1030
+ simulations and iteratively selected new points where the MLP performances were expected to be
1031
+ poor. In particular we did this by monitoring, for each unseen configuration, the quantity
1032
+ χ = 1
1033
+ N
1034
+ N
1035
+
1036
+ i=1
1037
+ min
1038
+ µ∈training set K(Ri, Rµ)
1039
+ (1)
1040
+ where K(Ri, Rµ) is the normalized SOAP kernel between the i-th local environment of the con-
1041
+ figuration Ri and the µ-th local environment in the training set Rµ. The number χ defined in (1)
1042
+ gives a quantitative measure of ”how far” the unknown configuration is from what is already in-
1043
+ cluded in the training set. At the end the final dataset, i.e., the one for which χ did not drop under
1044
+ a certain fixed threshold (0.80 in our case) during the dynamics, comprised 871 configurations
1045
+ of 128 atoms in total. The final range of temperatures and Wigner-Seitz radii spanned by these
1046
+ configurations was [4 kK : 35 kK ] and [1.80 Bohr : 2.12 Bohr ], respectively.
1047
+ B.
1048
+ Training details
1049
+ For the training procedure we followed the strategy outlined in [14, §I.B]: the cost function C
1050
+ employed is the regularised weighted sum of the RMSE on the observables, i.e.
1051
+ C = C(cµ) = αMSE(E, ˆE(cµ)) + βMSE(F, ˆF(cµ)) + γMSE(P, ˆP(cµ)) + λ||cµ||2,
1052
+ where E, F, P are the vectors representing the observables obtained through QMC simulations and
1053
+ ˆE, ˆF, ˆP are the observables computed through GKR. For the choice of the model hyperparameters,
1054
+ a cross-validation test led the following:
1055
+ • the cutoff radius used to compute local environments has been set to rc = 5.0 Bohr.
1056
+ • the parameters α, β, γ and λ determining the cost function C(cµ) have been set to 10−1, 1, 102
1057
+ and 10−5 respectively.
1058
+ 4
1059
+
1060
+ C.
1061
+ Models performance
1062
+ The performances of the models employed are measured through the root mean squared error
1063
+ (RMSE) on the observables on which the models were trained. Such RMSEs are reported in Table
1064
+ I.
1065
+ D.
1066
+ Effect of different baselines
1067
+ In order to further validate the accuracy of a MLP, a common strategy is to compare the results
1068
+ of the dynamics obtained using the trained model with those obtained with the target ab initio
1069
+ method directly, at least for some small system sizes. In our case this is not an easy task, given the
1070
+ large computational time that would be needed for computing energies and forces at each step with
1071
+ QMC. An alternative way to establish the performances of the models is to look at the variance of
1072
+ the results obtained with MLPs trained using different baselines. The Hugoniot function H(ρ, T)
1073
+ and pressure at T = 8 kK are shown in Fig.(1).
1074
+ We can estimate the error produced by using different baselines as 1% in the Hugoniot density
1075
+ and 1 − 2% (≲ 1GPa) in the Hugoniot pressure.
1076
+ III.
1077
+ REFERENCE STATE CALCULATIONS
1078
+ As explained in the main text, a crucial part in the numerical determination of the Hugoniot is
1079
+ to estimate the reference state energy per atom e0 and pressure p0. In particular, having a precise
1080
+ Nconf Nenvs RMSEE (Ha / atom) RMSE f (Ha / Bohr) RMSEp (a.u.) RMSEp (GPa)
1081
+ VMC - PBE
1082
+ 666 4965
1083
+ 8.34 × 10−4
1084
+ 2.396 × 10−3
1085
+ 2.09 × 10−6
1086
+ 0.061
1087
+ VMC - LDA
1088
+ 778 4966
1089
+ 8.25 × 10−4
1090
+ 3.358 × 10−3
1091
+ 2.48 × 10−6
1092
+ 0.073
1093
+ VMC - DF1
1094
+ 785 4961
1095
+ 7.20 × 10−4
1096
+ 2.215 × 10−3
1097
+ 1.63 × 10−6
1098
+ 0.048
1099
+ LRDMC - PBE
1100
+ 666 4965
1101
+ 7.28 × 10−4
1102
+ 2.507 × 10−3
1103
+ 3.36 × 10−6
1104
+ 0.098
1105
+ LRDMC - LDA 666 4965
1106
+ 8.44 × 10−4
1107
+ 3.374 × 10−3
1108
+ 3.64 × 10−6
1109
+ 0.11
1110
+ TABLE I: Training set size and value of the RMSE on different observables as calculated on the
1111
+ test set for the final models used in the simulations.
1112
+ 5
1113
+
1114
+ 1.90
1115
+ 1.95
1116
+ 2.00
1117
+ rs
1118
+ 0.02
1119
+ 0.00
1120
+ H(rs,T)
1121
+ T = 8000K
1122
+ PBE + ML
1123
+ LDA + ML
1124
+ DF1 + ML
1125
+ (a)
1126
+ 1.90
1127
+ 1.95
1128
+ 2.00
1129
+ rs
1130
+ 40
1131
+ 50
1132
+ Pressure( GPa )
1133
+ T = 8000K
1134
+ PBE + ML
1135
+ LDA + ML
1136
+ DF1 + ML
1137
+ (b)
1138
+ FIG. 1: Results for the Hugoniot function H(rs, T) for T = 8 kK with different MLPs trained on
1139
+ VMC data, using different baselines potentials.
1140
+ value of e0 within the target method is important to take advantage of possible error cancellation
1141
+ effects and remove biases related to finite basis sets. We considered a system of N = 64 deuterium
1142
+ atoms at T0 = 22K and ρ0 = 0.167g/cm−3 and ran a path integral Ornstein-Uhlenbeck molecular
1143
+ dynamics [15] (PIOUMD) simulation to account for quantum effects, which are required because
1144
+ of the light deuterium mass and low temperature. Forces and energy were calculated with Density
1145
+ functional theory (DFT) through the Quantum-Espresso package. We checked the dependence of
1146
+ thermodynamic quantities on the number of replicas (or beads) M and on the choice of the DFT
1147
+ functional by studying the quantum kinetic energy T for several values of M using the BLYP and
1148
+ PBE functionals. In particular we considered two estimators for T, namely the virial and primitive
1149
+ (or Barker) estimator, given respectively by
1150
+ TM,vir = N
1151
+ 2β + 1
1152
+ 2M
1153
+ 3N
1154
+
1155
+ i=1
1156
+ M
1157
+
1158
+ j=1
1159
+
1160
+ x(j)
1161
+ i
1162
+ − ¯xi
1163
+
1164
+ ∂x(j)
1165
+ i V
1166
+ (2)
1167
+ TM,pri = 3NM
1168
+
1169
+ − mM
1170
+ 2β2ℏ2
1171
+ M
1172
+
1173
+ j=1
1174
+
1175
+ x( j)
1176
+ i
1177
+ − x(j−1)
1178
+ i
1179
+ �2
1180
+ (3)
1181
+ where M is the number of replicas used in the PIOUMD simulation, x( j) =
1182
+
1183
+ x(j)
1184
+ 1 , . . . , x( j)
1185
+ 3N
1186
+
1187
+ are
1188
+ the coordinates of the system belonging to the j-th bead, ¯xi =
1189
+ 1
1190
+ M
1191
+ �M
1192
+ j=1 x(j)
1193
+ i
1194
+ is the centroid position
1195
+ and β = kBT0. The results are shown in Fig.(2).
1196
+ We noticed that a very large number of replicas is necessary for having a sufficiently converged
1197
+ result, while the value obtained with the two functionals is extremely similar for all values of M.
1198
+ 6
1199
+
1200
+ 50
1201
+ 100
1202
+ 150
1203
+ 200
1204
+ 250
1205
+ # beads
1206
+ 0.02
1207
+ 0.04
1208
+ 0.06
1209
+ 0.08
1210
+ 0.10
1211
+ 0.12
1212
+ Kinetic energy (Ha)
1213
+ virial PBE
1214
+ primitive PBE
1215
+ virial BLYP
1216
+ primitive BLYP
1217
+ FIG. 2: Convergence of virial and primitive estimators for the quantum kinetic energy, as
1218
+ computed with Eqs. (2) (3), with the number of replica used in the PIMD simulation.
1219
+ At the end we chose to use the PBE functional and M = 128 replicas to have a reasonable trade-
1220
+ off between convergence and computational cost. For the DFT calculation we used a 60 Ry plane
1221
+ waves cutoff and a 2 × 2 × 2 Monkhorst-Pack k point mesh; for the dynamics we used a time
1222
+ step of 0.3 fm and let the system thermalize for 0.3 ps. We then extracted one configuration from
1223
+ a randomly chosen bead every 10 MD steps, for a total of Nsample = 170 snapshots. Finally the
1224
+ potential energy of these configurations was calculated using the appropriate method (PBE, VMC
1225
+ or LRDMC). We then estimated e0 for each method as
1226
+ e0 = 1
1227
+ N
1228
+ ��������
1229
+ 1
1230
+ Nsample
1231
+
1232
+ sample
1233
+ Epot (xi) + T PBE
1234
+ 256,pri
1235
+ ��������
1236
+ (4)
1237
+ using the value of the primitive estimator at M = 256 beads as the best guess for the converged
1238
+ value of the kinetic energy. The approximation for the potential energy was checked by running
1239
+ PBE simulations on this set and confirming that the ”true” mean value (as calculated by averaging
1240
+ over the beads and the trajectory) was consistent with our estimate obtained by averaging over the
1241
+ sample.
1242
+ 7
1243
+
1244
+ IV.
1245
+ FINITE SIZE CORRECTIONS
1246
+ In this section we investigate the effect of finite size corrections (as estimated using the KZK
1247
+ functional [16]) on our results. In Fig.(3) we show the Hugoniot function ( at T = 4 kK and
1248
+ T = 8 kK) given by two models trained on VMC and VMC with finite size corrections respectively,
1249
+ both with a PBE baseline potential. The difference between the two turns out to be similar to the
1250
+ prediction error evaluated in Sec. II D, for the system size used in the simulations (i.e., N = 128).
1251
+ At the end we chose to apply finite size correction only for the model trained with LRDMC data.
1252
+ 2.20
1253
+ 2.25
1254
+ rs (a.u.)
1255
+ 0.0025
1256
+ 0.0000
1257
+ 0.0025
1258
+ 0.0050
1259
+ Hugoniot (Ha)
1260
+ T = 4000K
1261
+ VMC
1262
+ VMC- FSC
1263
+ (a)
1264
+ 1.90
1265
+ 1.95
1266
+ 2.00
1267
+ rs (a.u.)
1268
+ 0.01
1269
+ 0.00
1270
+ Hugoniot (Ha)
1271
+ T = 8000K
1272
+ VMC
1273
+ VMC- FSC
1274
+ (b)
1275
+ FIG. 3: Hugoniot function obtained using two MLPs trained on the difference between PBE and
1276
+ VMC with and without finite size corrections respectively, for T = 4 kK and T = 8 kK.
1277
+ V.
1278
+ FINITE TEMPERATURE DFT SIMULATIONS
1279
+ Using Mermin’s extension of the Hohenberg and Kohn theorems to non-zero temperature [17]
1280
+ we can treat finite temperature electrons in DFT by appropriately occupying the bands of the
1281
+ system according to the Fermi-Dirac distribution and minimizing the Helmholtz free energy func-
1282
+ tional A = E − TS . In this work we performed finite temperature DFT (FT-DFT) simulations to
1283
+ obtain the PBE Hugoniot and estimating the effect on the QMC Hugoniot. In the former case we
1284
+ used the zero temperature PBE functional for the simulations. Even if this is not rigorous, recent
1285
+ FT-DFT results on the Hugoniot using a temperature dependent GGA functional [18] have shown
1286
+ that for T ≲ 40 kK this approximation provides consistent results. For the latter application, we
1287
+ decided to use an explicitly temperature dependent functional to replace the LDA baseline of one
1288
+ 8
1289
+
1290
+ of the MLPs. In particular we used the corr-KSDT functional [19, 20], as implemented in the
1291
+ Libxc [21] library. This functional has the nice property to recover the standard PZ-LDA func-
1292
+ tional (that was used for the construction of the MLP under consideration) when T = 0K. In Fig.
1293
+ (4) we show the convergence of the free energy and some force components with the number of
1294
+ bands calculated for the KSDT functional at two values of temperature. In the simulations we
1295
+ decided to use 120 bands for T = 10 kK and T = 15 kK and 150 bands for T = 35 kK.
1296
+ 100
1297
+ 200
1298
+ 300
1299
+ # of Bands
1300
+ 0.5484
1301
+ 0.5483
1302
+ 0.5482
1303
+ 0.5481
1304
+ Aft (Ha / atom)
1305
+ T= 8kK
1306
+ (a)
1307
+ 100
1308
+ 200
1309
+ 300
1310
+ # of Bands
1311
+ 0.025
1312
+ 0.000
1313
+ 0.025
1314
+ 0.050
1315
+ Force (Ha/bohr)
1316
+ T= 8kK
1317
+ (b)
1318
+ 100
1319
+ 200
1320
+ 300
1321
+ # of Bands
1322
+ 0.580
1323
+ 0.575
1324
+ 0.570
1325
+ 0.565
1326
+ Aft (Ha / atom)
1327
+ T= 30kK
1328
+ (c)
1329
+ 100
1330
+ 200
1331
+ 300
1332
+ # of Bands
1333
+ 0.05
1334
+ 0.00
1335
+ 0.05
1336
+ Force (Ha/bohr)
1337
+ T= 30kK
1338
+ (d)
1339
+ FIG. 4: Convergence of the free Energy A = E − TS and some forces components vs the number
1340
+ of bands calculated in the DFT for T = 8 kK (4a, 4b) and T = 30 kK (4c, 4d). Bands are
1341
+ occupied using the Fermi-Dirac distribution at the appropriate temperature.
1342
+ 9
1343
+
1344
+ VI.
1345
+ COMPARISON WITH QMC CALCULATIONS OF REF. [22].
1346
+ The equations of state at T = 8 kK reported in Ref. [22] for both variational and reptation
1347
+ Monte Carlo are shown in Fig. (5), together with the VMC-MLP, LRDMC-MLP and the ab initio
1348
+ PBE ones. From this figure we can observe a huge discrepancy between the pressure estimated
1349
+ with our MLPs and the one in Ref. [22], which causes a sizable difference in the position of the
1350
+ Hugoniot. In our case the VMC and LRDMC pressures, which we then used for training, were
1351
+ calculated using the adjoint algorithmic differentiation method to obtain directly the derivative of
1352
+ the total energy with respect to the cell parameters. For LDA orbitals, as the ones used in this
1353
+ work, the pressure obtained with this procedure is not biased (see [14, §I.A]). Instead, in Ref. [22]
1354
+ a virial estimator was used, which can in principle produce discrepancies of the order of magnitude
1355
+ observed here, as shown in Ref. [23]. We also point out that the similarity between the LRDMC
1356
+ and VMC results suggests an overall robustness of our pressure estimation.
1357
+ 1.80
1358
+ 1.85
1359
+ 1.90
1360
+ 1.95
1361
+ 2.00
1362
+ 2.05
1363
+ rs (a.u.)
1364
+ 30
1365
+ 35
1366
+ 40
1367
+ 45
1368
+ 50
1369
+ 55
1370
+ Pressure (GPa)
1371
+ PBE
1372
+ LRDMC
1373
+ VMC
1374
+ VMC Ref. 22
1375
+ RMC Ref. 22
1376
+ FIG. 5: Average pressure vs rs for T = 8 kK. Results obtained with our MLP are shown together
1377
+ with the ones reported in [22]
1378
+ 10
1379
+
1380
+ [1] M. Casula, C. Filippi, and S. Sorella, Diffusion monte carlo method with lattice regularization, Phys.
1381
+ Rev. Lett. 95, 100201 (2005).
1382
+ [2] K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, C. Genovese,
1383
+ Y. Luo, G. Mazzola, A. Zen, and S. Sorella, Turborvb: A many-body toolkit for ab initio electronic
1384
+ simulations by quantum monte carlo, J. Chem. Phys. 152, 204121 (2020).
1385
+ [3] M. Casula and S. Sorella, Geminal wave functions with jastrow correlation: A first application to
1386
+ atoms, J. Chem. Phys. 119, 6500 (2003).
1387
+ [4] S. Sorella, M. Casula, and D. Rocca, Weak binding between two aromatic rings: Feeling the van der
1388
+ waals attraction by quantum monte carlo methods, J. Chem. Phys. 127, 014105 (2007).
1389
+ [5] K. Nakano, T. Morresi, M. Casula, R. Maezono, and S. Sorella, Atomic forces by quantum monte
1390
+ carlo: Application to phonon dispersion calculations, Phys. Rev. B 103, L121110 (2021).
1391
+ [6] K. Nakano, A. Raghav, and S. Sorella, Space-warp coordinate transformation for efficient ionic force
1392
+ calculations in quantum monte carlo, The Journal of Chemical Physics 156, 034101 (2022).
1393
+ [7] C. J. Umrigar, Two aspects of quantum monte carlo: determination of accurate wavefunctions and
1394
+ determination of potential energy surfaces of molecules, Int. J. Quantum Chem 36, 217 (1989).
1395
+ [8] S. Sorella and L. Capriotti, Algorithmic differentiation and the calculation of forces by quantum monte
1396
+ carlo, J. Chem. Phys. 133, 234111 (2010).
1397
+ [9] C. Filippi, R. Assaraf, and S. Moroni, Simple formalism for efficient derivatives and multi-determinant
1398
+ expansions in quantum monte carlo, J. Chem. Phys. 144, 194105 (2016).
1399
+ [10] C. Attaccalite and S. Sorella, Stable liquid hydrogen at high pressure by a novel ab initio molecular-
1400
+ dynamics calculation, Phys. Rev. Lett. 100, 114501 (2008).
1401
+ [11] J. van Rhijn, C. Filippi, S. De Palo, and S. Moroni, Energy derivatives in real-space diffusion monte
1402
+ carlo, Journal of chemical theory and computation 18, 118 (2021).
1403
+ [12] S. Pathak and L. K. Wagner, A light weight regularization for wave function parameter gradients in
1404
+ quantum monte carlo, AIP Adv. 10, 085213 (2020).
1405
+ [13] P. Reynolds, R. Barnett, B. Hammond, R. Grimes, and W. Lester Jr, Quantum chemistry by quantum
1406
+ monte carlo: Beyond ground-state energy calculations, Int. J. Quantum Chem. 29, 589 (1986).
1407
+ [14] A. Tirelli, G. Tenti, K. Nakano, and S. Sorella, High-pressure hydrogen by machine learning and
1408
+ quantum monte carlo, Phys. Rev. B 106, L041105 (2022).
1409
+ 11
1410
+
1411
+ [15] F. Mouhat, S. Sorella, R. Vuilleumier, A. M. Saitta, and M. Casula, Fully quantum description of the
1412
+ zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics, Journal
1413
+ of Chemical Theory and Computation 13, 2400 (2017).
1414
+ [16] H. Kwee, S. Zhang, and H. Krakauer, Finite-size correction in many-body electronic structure calcu-
1415
+ lations, Phys. Rev. Lett. 100, 126404 (2008).
1416
+ [17] N. D. Mermin, Thermal properties of the inhomogeneous electron gas, Phys. Rev. 137, A1441 (1965).
1417
+ [18] V. V. Karasiev, S. X. Hu, M. Zaghoo, and T. R. Boehly, Exchange-correlation thermal effects in
1418
+ shocked deuterium: Softening the principal Hugoniot and thermophysical properties, Physical Re-
1419
+ view B 99, 1 (2019).
1420
+ [19] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, Accurate homogeneous electron gas exchange-
1421
+ correlation free energy for local spin-density calculations, Phys. Rev. Lett. 112, 076403 (2014).
1422
+ [20] V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Nonempirical semilocal free-energy density functional
1423
+ for matter under extreme conditions, Phys. Rev. Lett. 120, 076401 (2018).
1424
+ [21] S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, Recent developments in libxc — a
1425
+ comprehensive library of functionals for density functional theory, SoftwareX 7, 1 (2018).
1426
+ [22] M. Ruggeri, M. Holzmann, D. M. Ceperley, and C. Pierleoni, Quantum Monte Carlo determination of
1427
+ the principal Hugoniot of deuterium, Physical Review B 102, 144108 (2020), arXiv:2008.00269.
1428
+ [23] R. C. Clay, M. P. Desjarlais, and L. Shulenburger, Deuterium Hugoniot: Pitfalls of thermodynamic
1429
+ sampling beyond density functional theory, Physical Review B 100, 75103 (2019).
1430
+ [24] K. Nakano, R. Maezono, and S. Sorella, Speeding up ab initio diffusion monte carlo simulations by a
1431
+ smart lattice regularization, Phys. Rev. B 101, 155106 (2020).
1432
+ 12
1433
+
E9E1T4oBgHgl3EQf-gaE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENE5T4oBgHgl3EQfUg_2/content/tmp_files/2301.05545v1.pdf.txt ADDED
@@ -0,0 +1,1100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ STAR-RIS Assisted Over-the-Air Vertical Federated
2
+ Learning in Multi-Cell Wireless Networks
3
+ Xiangyu Zeng∗†‡, Yijie Mao∗, and Yuanming Shi∗
4
+ ∗School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
5
+ †Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China
6
+ ‡University of Chinese Academy of Sciences, Beijing 100049, China
7
+ E-mail: {zengxy, maoyj, shiym}@shanghaitech.edu.cn
8
+ Abstract—Vertical federated learning (FL) is a critical enabler
9
+ for distributed artificial intelligence services in the emerging
10
+ 6G era, as it allows for secure and efficient collaboration of
11
+ machine learning among a wide range of Internet of Things
12
+ devices. However, current studies of wireless FL typically con-
13
+ sider a single task in a single-cell wireless network, ignoring
14
+ the impact of inter-cell interference on learning performance.
15
+ In this paper, we investigate a simultaneous transmitting and
16
+ reflecting reconfigurable intelligent surface (STAR-RIS) assisted
17
+ over-the-air computation based vertical FL system in multi-cell
18
+ networks, in which a STAR-RIS is deployed at the cell edge
19
+ to facilitate the completion of different FL tasks in different
20
+ cells. We establish the convergence of the proposed system
21
+ through theoretical analysis and introduce the Pareto boundary
22
+ of the optimality gaps to characterize the trade-off among cells.
23
+ Based on the analysis, we then jointly design the transmit and
24
+ receive beamforming as well as the STAR-RIS transmission and
25
+ reflection coefficient matrices to minimize the sum of the gaps of
26
+ all cells. To solve the non-convex resource allocation problem, we
27
+ introduce a successive convex approximation based algorithm.
28
+ Numerical experiments demonstrate that compared with con-
29
+ ventional approaches, the proposed STAR-RIS assisted vertical
30
+ FL model and the cooperative resource allocation algorithm
31
+ achieve much lower mean-squared error for both uplink and
32
+ downlink transmission in multi-cell wireless networks, resulting
33
+ in improved learning performance for vertical FL.
34
+ I. INTRODUCTION
35
+ Federated learning (FL) is a machine learning (ML) ap-
36
+ proach that enables multiple parties to collaboratively train a
37
+ learning model without revealing their individual data. This
38
+ is beneficial in a variety of fields where data privacy is a
39
+ concern, as FL allows parties to maintain control over their
40
+ own data while still benefiting from the combined knowledge
41
+ of all parties. In modern wireless Internet of Things (IoT)
42
+ networks, data is often collected from various types of devices
43
+ [1]. To facilitate data analysis in such settings, vertical FL,
44
+ a variation of FL that is designed to address the challenges
45
+ of training machine learning models on vertically partitioned
46
+ data silos, is commonly adopted [2]–[6].
47
+ One major issue that prevents the implementation of (ver-
48
+ tical) FL in real-world application is the communication
49
+ latency. To address this issue, over-the-air computation (Air-
50
+ Comp) has been proposed to facilitate fast wireless data
51
+ aggregation. By utilizing the superposition property of wire-
52
+ less multiple access channels (MAC) to concurrently transmit
53
+ and aggregate local updates, AirComp significantly reduces
54
+ communication latency compared to orthogonal transmission.
55
+ Previous research has explored the use of AirComp in FL,
56
+ such as the joint design of device selection and beamforming
57
+ for fast global model aggregation in [5], and the development
58
+ of a broadband analog aggregation scheme for low latency FL
59
+ with linear growth of latency reduction ratio in [7].
60
+ On the other hand, the coexistence of multiple FL tasks
61
+ in multi-cell networks has yet to be fully explored. Though
62
+ the authors in [8] have studied the bandwidth allocation
63
+ for multiple FL tasks, the system model is limited to a
64
+ single-cell network and the impact of inter-cell interference
65
+ on FL performance remains unplumbed. It has been well
66
+ investigated that reconfigurable intelligent surface (RIS), a
67
+ metasurface composed of reconfigurable passive elements,
68
+ can modify the propagation environment of wireless signal
69
+ and reduce multi-cell interference [9]. However, conventional
70
+ RISs are reflecting only with limited wireless coverage [10].
71
+ The recently introduced simultaneous transmitting and reflect-
72
+ ing RIS (STAR-RIS), which allows the source and destination
73
+ to be located at either side of the metasurface, has been
74
+ recognized as a promising strategy to enhance the coverage
75
+ of each cell and further reduce inter-cell interference [11].
76
+ STAR-RIS is therefore a promising technique to facilitate FL
77
+ in multi-cell networks. To the best of our knowledge, STAR-
78
+ RIS assisted vertical FL has not been studied yet.
79
+ In this paper, inspired by the benefits of AirComp for global
80
+ aggregation [12] and the merits of STAR-RIS in multi-cell
81
+ networks, we fill the research gap and propose a STAR-RIS
82
+ assisted AirComp-based vertical FL in multi-cell networks,
83
+ where a STAR-RIS is deployed at the cell edge to assist each
84
+ cell in completing different FL tasks. Through theoretical
85
+ analysis, we demonstrate the convergence of our proposed
86
+ vertical FL process and introduce the Pareto boundary of the
87
+ gap region to characterize the trade-off performance among
88
+ multiple cells. This allows us to formulate an optimization
89
+ problem with the aim of minimizing the sum of error-induced
90
+ gaps for all cells using the proposed algorithm based on suc-
91
+ cessive convex approximation (SCA). Numerical experiments
92
+ confirm the validity of our theoretical analysis and show the
93
+ superiority of our proposed approach.
94
+ II. SYSTEM MODEL
95
+ A. Learning Framework
96
+ Consider a STAR-RIS assisted multi-cell wireless net-
97
+ work consisting of M base stations (BS) with N an-
98
+ arXiv:2301.05545v1 [cs.IT] 13 Jan 2023
99
+
100
+ tennas, where BS m
101
+
102
+ M
103
+ =
104
+ {1, 2, . . . , M} aims
105
+ to
106
+ train
107
+ an
108
+ ML
109
+ model
110
+ by
111
+ coordinating
112
+ Km
113
+ single-
114
+ antenna devices located in cell m. Specifically, device
115
+ k ∈ Km =
116
+ ��m−1
117
+ l=1 Kl + 1, �m−1
118
+ l=1 Kl + 2, . . . , �m−1
119
+ l=1 Kl+
120
+ Km} is associated with BS m. And there is one STAR-RIS
121
+ equipped with Q passive reflecting/transmitting elements, de-
122
+ ployed at the cell-edge of all cells to boost the signal strength
123
+ of edge devices. Each cell is equipped with a vertically
124
+ partitioned dataset, where different devices hold different
125
+ features of the same samples. For simplicity, we assume that
126
+ each cell has the same number of samples and that devices
127
+ within each cell contain the same number of non-overlapping
128
+ features. Let Dm = {(xi
129
+ m,1, · · · , xi
130
+ m,Km), yi
131
+ m}Lm
132
+ i=1 denote the
133
+ whole training dataset of Lm samples in cell m, where xi
134
+ m,k
135
+ denotes the partial features of sample i located at device k in
136
+ cell m, and yi
137
+ m denotes the corresponding label. In vertical
138
+ FL, it is assumed that the BS holds all labels ym = {yi
139
+ m}Lm
140
+ i=1,
141
+ and device k is only available to its own local feature set
142
+ Dm,k = {xi
143
+ m,k}Lm
144
+ i=1. And xi
145
+ m = [(xi
146
+ m,1)T, · · · , (xi
147
+ m,Km)T]T
148
+ denotes the overall feature vector of sample i.
149
+ The goal of vertical FL in cell m is to collaboratively learn
150
+ a global model wm (concatenated vector of wk for k ∈ Km)
151
+ that maps an input to the corresponding prediction through
152
+ a continuously differentiable function σ(·). Since features of
153
+ one sample are distributed at different devices, we assume
154
+ that device k maps the local feature xk to local prediction
155
+ result gk(wk; xk). This paper considers a linear form for the
156
+ local prediction function, i.e., gk(wk; xk) = wT
157
+ k xk. By ag-
158
+ gregating local prediction results, the final prediction in cell m
159
+ can be obtained by σ(wm; xm) = σ(�
160
+ k∈Km gk(wk; xk)) =
161
+ σ(wT
162
+ mxm). In order to learn the global model wm in cell m,
163
+ we propose to minimize the loss function as
164
+ min
165
+ wm F(wm) =
166
+ 1
167
+ Lm
168
+ Lm
169
+
170
+ i=1
171
+ f
172
+
173
+ σ(wT
174
+ mxi
175
+ m); yi
176
+ m
177
+
178
+ ,
179
+ (1)
180
+ where f(·) is the sample-wise loss function.
181
+ In our multi-cell system, each cell performs a unique FL
182
+ task using the full batch gradient descent (GD) approach,
183
+ which is described in the following subsection. We assume
184
+ universal frequency reuse, meaning that all cells share the
185
+ same frequency channel, leading to inter-cell interference.
186
+ B. GD Algorithm for Vertical FL
187
+ In this subsection, we introduce the framework of GD
188
+ algorithm for vertical FL. For brevity, the subscript of cell m
189
+ is omitted for Lm, wm, xm, ym. The GD algorithm specified
190
+ in this subsection is applied for all cells. Let ∇F(w) denote
191
+ the gradient of F respect to w, which is calculated as
192
+ ∇F(w) = 1
193
+ L
194
+ L
195
+
196
+ i=1
197
+ ∇f(σ(wTxi); yi),
198
+ (2)
199
+ where
200
+ ∇f(σ(wTxi); yi)
201
+ denote
202
+ the
203
+ gradient
204
+ of
205
+ f(σ(wTxi); yi) respect to w. Based on the chain rule,
206
+ the gradient of f is rewritten as
207
+ ∇f(σ(wTxi); yi) = G(wTxi; yi)xi,
208
+ (3)
209
+ where G(wTxi; yi) = ∂f(σ(wTxi); yi)/∂wTxi is an auxil-
210
+ iary function. Hence, ∇F(w) can be rewritten as
211
+ ∇F(w) = 1
212
+ L
213
+ L
214
+
215
+ i=1
216
+ G(wTxi; yi)xi.
217
+ (4)
218
+ Recall that the BS holds all labels y, so G(wTxi; yi) can
219
+ be calculated at the BS only if the BS can access the
220
+ aggregation of local predictions {wTxi}L
221
+ i=1. Specifically, at
222
+ the t-th communication round, the BS and the edge devices
223
+ in each cell perform the following three procedures:
224
+ Broadcasting: The BS computes {G((w(t))Txi; yi)}L
225
+ i=1
226
+ and broadcasts the result back to its corresponding devices.
227
+ Local model update: After broadcasting, device k com-
228
+ putes the partial gradient ∇kF(wk) with local data Dk, given
229
+ as
230
+ ∇kF(wk) = 1
231
+ L
232
+ L
233
+
234
+ i=1
235
+ G(wTxi; yi)xi
236
+ k.
237
+ (5)
238
+ Each device can thus update its local model by taking a step
239
+ of GD with learning rate µ(t) as
240
+ w(t+1)
241
+ k
242
+ = w(t)
243
+ k
244
+ − µ(t)∇kF(w(t)
245
+ k ),
246
+ (6)
247
+ where w(t)
248
+ k
249
+ is the local model of device k at the t-th round.
250
+ Local prediction and global aggregation: device k com-
251
+ putes the local prediction results {(w(t+1)
252
+ k
253
+ )Txi
254
+ k}L
255
+ i=1 and
256
+ sends to the BS. And BS aggregates them to get final
257
+ prediction result {(w(t+1))Txi}L
258
+ i=1.
259
+ Since the BS only needs the aggregation of local prediction
260
+ results, i.e., neither local features nor local models need be
261
+ uploaded to the BS, which significantly enhances privacy pro-
262
+ tection. In addition, the communication efficiency is improved
263
+ since the local prediction result is usually low-dimensional.
264
+ C. Communication Model
265
+ In this subsection, the proposed communication model is
266
+ delineated with a special focus on the STAR-RIS assisted
267
+ uplink and downlink transmission models.
268
+ 1) STAR-RIS: The STAR-RIS is a type of RIS that can
269
+ produce omnidirectional radiation by implementing equiva-
270
+ lent electric and magnetic currents in its hardware. It has
271
+ three protocols for use in wireless networks: energy splitting,
272
+ mode switching, and time switching. In this article, we focus
273
+ on the mode-switching protocol, in which each element of
274
+ the STAR-RIS can operate in either the reflection mode (R
275
+ mode) or the transmission mode (T mode). Such on-off type
276
+ of operating protocol is simpler to implement compared to
277
+ the energy splitting protocol. Specifically, one group consists
278
+ of Qt elements operating in the T mode, while the other
279
+ group contains Qr elements operating in the R mode, where
280
+ Qt + Qr = Q. Accordingly, the STAR-RIS transmission-
281
+ coefficient
282
+ and
283
+ reflection-coefficient
284
+ matrices
285
+ are
286
+ given
287
+ by Θt
288
+ = diag
289
+ ��
290
+ βt
291
+ 1ejθt
292
+ 1,
293
+
294
+ βt
295
+ 2ejθt
296
+ 2, . . . ,
297
+
298
+ βt
299
+ Qejθt
300
+ Q
301
+
302
+ and
303
+ Θr
304
+ = diag
305
+ ��
306
+ βr
307
+ 1ejθr
308
+ 1,
309
+
310
+ βr
311
+ 2ejθr
312
+ 2, . . . ,
313
+
314
+ βr
315
+ Qejθr
316
+ Q
317
+
318
+ , respec-
319
+ tively, where βt
320
+ q, βr
321
+ q ∈ {0, 1}, βt
322
+ q + βr
323
+ q = 1, and θt
324
+ q, θr
325
+ q ∈
326
+
327
+ [0, 2π), ∀q ∈ {1, 2, . . . , Q}. The M cells can be divided
328
+ into two groups Mr and Mt. Specifically, cell m is in the
329
+ reflection dimension with m ∈ Mr and in the transmission
330
+ dimension with m ∈ Mt.
331
+ Let hm,k ∈ CN, hr
332
+ k ∈ CQ and Gm ∈ CQ×N denote the
333
+ equivalent channels from edge device k to BS m, from edge
334
+ device k to the STAR-RIS, and from the STAR-RIS to BS
335
+ m, respectively. The combined channel from the k-th edge
336
+ device to the BS m via the STAR-RIS can be written as
337
+ ¯hm,k =
338
+ � hm,k + GH
339
+ mΘthr
340
+ k, ∀m ∈ Mt,
341
+ hm,k + GH
342
+ mΘrhr
343
+ k, ∀m ∈ Mr.
344
+ Note that the uplink and downlink STAR-RIS matrices can be
345
+ separatively designed. For simplify, we write Θt and Θr for
346
+ uplink and downlink transmission in terms of Θul and Θdl,
347
+ respectively.
348
+ 2) Uplink transmission: In the uplink transmission, we
349
+ assume the devices communicate with the BS via AirComp,
350
+ which has a wide range of FL applications.
351
+ Specifically, we denote sk = [s1
352
+ k, s2
353
+ k, · · · , sL
354
+ k ]T ∈ CL
355
+ as the local prediction results at device k, where the local
356
+ prediction result of the i-th sample si
357
+ k = wT
358
+ k xi
359
+ k. At each
360
+ time slot i ∈ {1, 2, · · · , Lm}, each device in cell m sends
361
+ the corresponding prediction result of the i-th sample to BS
362
+ m. And we assume that sk is normalized with zero mean
363
+ and unit variance [13]. We denote gm(i) = �
364
+ k∈Km si
365
+ k as the
366
+ target function to be estimated through AirComp at the i-th
367
+ time slot. To simplify the notation, we omit the time index by
368
+ writing g(i) and si
369
+ k as g and sul
370
+ k , respectively. And we assume
371
+ that the signals transmitted by all devices are synchronized
372
+ at the BS. Then the received signal at BS m is given by
373
+ yul
374
+ m =
375
+
376
+ k
377
+ ¯hm,kbksul
378
+ k + nul
379
+ m,
380
+ (7)
381
+ where bk ∈ C is the transmit scalar at device k, and nul
382
+ m is the
383
+ additive white Gaussian noise with zero mean and variance
384
+ (σul)2 at BS m. The transmit power constraint at device k is
385
+ E(|bksul
386
+ k |2) = |bk|2 ≤ P ul, where P ul > 0 is the maximum
387
+ transmit power. The scaled signal received at BS m is
388
+ ¯gm =
389
+ 1
390
+ √ηm
391
+ rH
392
+ myul
393
+ m =
394
+ 1
395
+ √ηm
396
+ rH
397
+ m
398
+
399
+ k∈K
400
+ ¯hm,kbksul
401
+ k + rH
402
+ mnul
403
+ m
404
+ √ηm
405
+ , (8)
406
+ where rm ∈ CN is the receive beamforming vector and ηm
407
+ is a normalizing factor for cell m. To compensate for the
408
+ phase distortion introduced by complex channel responses,
409
+ the transmit scalar at device k in cell m is set to bk =
410
+ √ηm
411
+ (rH
412
+ m¯hm,k)H
413
+ |rHm¯hm,k|2 , ∀k ∈ Km, and ηm can be expressed as
414
+ ηm = P ul mink∈Km |rH
415
+ m¯hm,k|2. Then the estimated function
416
+ at BS for cell m is given as
417
+ ˆgm = ℜ{¯gm}
418
+ = ℜ{gm +
419
+ 1
420
+ √ηm
421
+ rH
422
+ m
423
+
424
+ l̸=m
425
+
426
+ j∈Kl
427
+ ¯hm,jbjsul
428
+ j + rH
429
+ mnul
430
+ m
431
+ √ηm
432
+
433
+ ��
434
+
435
+ eulm
436
+ }
437
+ = gm + ℜ{eul
438
+ m}
439
+ (9)
440
+ 3) Downlink transmission: After obtaining the estimate
441
+ ˆgm in the cell m, BS m computes G(ˆgm; y) with noisy
442
+ aggregation ˆgm, and then broadcasts the result to the associ-
443
+ ated devices in Km. And we write G(ˆgm; y) in terms of Gm
444
+ for simplify. Without loss of generality, we assume that the
445
+ transmitted signal follows the standard Gaussian distribution,
446
+ i.e., Gm ∼ CN(0, 1). The received signal at device k is
447
+ ydl
448
+ k =
449
+
450
+ m
451
+ ¯hH
452
+ m,ktmGm + ndl
453
+ k ,
454
+ (10)
455
+ where tm denotes the transmit beamforming vector at BS
456
+ m, and ndl
457
+ k ∼ CN
458
+
459
+ 0, (σdl)2�
460
+ is the additive white Gaus-
461
+ sian noise with zero mean and variance (σdl)2 at device
462
+ k. The maximum transmit power at BS m is P dl, i.e.,
463
+ E(∥Gmtm∥2) = ∥tm∥2 ≤ P dl.
464
+ To compensate for the phase distortion introduced by
465
+ complex channel responses, the receive scalar at device k
466
+ in cell m is set to rk =
467
+ (¯hH
468
+ m,ktm)H
469
+ |¯hH
470
+ m,ktm|
471
+ 2 . The estimated Gm at
472
+ device k is given as
473
+ ˆGm,k = ℜ{rkydl
474
+ k }
475
+ = ℜ{Gm +
476
+ (¯hH
477
+ m,ktm)H
478
+ ���¯hH
479
+ m,ktm
480
+ ���
481
+ 2
482
+
483
+ ��
484
+ l̸=m
485
+ ¯hH
486
+ l,ktlGl + ndl
487
+ k
488
+
489
+
490
+
491
+ ��
492
+
493
+ ¯edl
494
+ k
495
+ }
496
+ = Gm + ℜ{¯edl
497
+ k }.
498
+ (11)
499
+ Note that the uplink noise is embedded in function Gm. In
500
+ order to directly describe the effective noise, we expand Gm
501
+ to its first-order Taylor expansion as follows
502
+ ˆGm,k
503
+ = Gm + ℜ{¯edl
504
+ k }
505
+ = G(gm + ℜ{eul
506
+ m}; y) + ℜ{¯edl
507
+ k }
508
+ = G(gm; y) + G
509
+ ′(gm; y)ℜ{eul
510
+ m} + O(|ℜ{eul
511
+ m}|2) + ℜ{¯edl
512
+ k }
513
+ ≈ G(gm; y) + G
514
+ ′(gm; y)ℜ{eul
515
+ m} + ℜ{¯edl
516
+ k }
517
+
518
+ ��
519
+
520
+ edl
521
+ k
522
+ ,
523
+ (12)
524
+ where G′(·) is the first derivative of G(·). Assume that the
525
+ noise amplitude is small, the term O(|ℜ{eul
526
+ m}|2) is neglected,
527
+ which implies the last approximation in (12).
528
+ III. CONVERGENCE ANALYSIS AND PROBLEM
529
+ FORMULATION
530
+ A. Convergence Analysis
531
+ In previous work [12], [14], [15], the convergence analysis
532
+ of the AirComp-based vertical FL process in each cell has
533
+ been established under the following assumptions.
534
+ Assumption 1 (α-strongly convexity). The function F(·) is
535
+ assumed to be α-strongly convex on Rd with constant α,
536
+ namely, for all x, y ∈ Rd, we have
537
+ F(y) ≥ F(x) + ∇F(x)T(y − x) + α
538
+ 2 ∥y − x∥2
539
+ 2.
540
+
541
+ Assumption 2 (β-smoothness). The function F(·) is assumed
542
+ to be β-smooth on Rd with constant β, namely, for all x, y ∈
543
+ Rd, we have
544
+ F(y) ≤ F(x) + ∇F(x)T(y − x) + β
545
+ 2 ∥y − x∥2
546
+ 2.
547
+ Theorem 1 (Convergence of vertical FL process). Suppose
548
+ that Assumption 1 and 2 hold, setting the learning rate to
549
+ be 0 < µ(t) ≤
550
+ 1
551
+ β , then the expected optimality gap after T
552
+ communication rounds is upper bounded by
553
+ E
554
+
555
+ F(w(T )
556
+ m ) − F(w∗
557
+ m)
558
+
559
+ ≤ ρT E
560
+
561
+ F(w(0)
562
+ m ) − F(w∗
563
+ m)
564
+
565
+ +
566
+ 1
567
+ 2βL2
568
+ T −1
569
+
570
+ t=0
571
+ ρT −t−1 �
572
+ k∈Km
573
+
574
+ Φ1,kE[|ℜ{eul
575
+ m}|2] + Φ2,kE[|ℜ{¯edl
576
+ k }|2]
577
+
578
+ ,
579
+ (13)
580
+ where ρ = 1−α/β, Φ1,k = �L
581
+ i=1 ∥(Gi
582
+ m,k)
583
+ ′xi
584
+ k∥2
585
+ 2 and Φ2,k =
586
+ �L
587
+ i=1 ∥xi
588
+ k∥2
589
+ 2.
590
+ Proof. Please refer to previous work [12].
591
+ B. Problem Formulation
592
+ According to Theorem 1, the convergence optimality gap
593
+ is largely determined by the mean-squared-error (MSE) of
594
+ both gm and Gm. However, solely optimizing MSE for each
595
+ cell through AirComp may result in significant inter-cell
596
+ interference in the considered multi-cell wireless networks,
597
+ which can negatively impact the learning performance of
598
+ other cells. As such, it is necessary to carefully balance the
599
+ learning performance among various FL tasks in multiple
600
+ cells through a cooperative design.
601
+ We begin by identifying the gap region G, to be the set of
602
+ tuples (∆1, ∆2, . . . , ∆M), which represents the instantaneous
603
+ errors that cause gaps in all cells, and can be achieved simul-
604
+ taneously under specific downlink and uplink transmission
605
+ power constraints. The gap region G can be represented as
606
+ G =
607
+
608
+ {(∆1, ∆2, . . . , ∆M)|∆m ≥ Gapm, ∀m ∈ M}, (14)
609
+ where
610
+ Gapm =
611
+
612
+ k∈Km
613
+
614
+ Φ1,kE[|ℜ{eul
615
+ m}|2] + Φ2,kE[|ℜ{¯edl
616
+ k }|2]
617
+
618
+ ,
619
+ (15)
620
+ E[|ℜ{eul
621
+ m}|2] =
622
+
623
+ l̸=m,j∈Kl
624
+ ηl|rH
625
+ m¯hm,j|2
626
+ ηm|rH
627
+ l ¯hl,j|2 + ∥rm∥2σ2
628
+ ul
629
+ ηm
630
+ ,
631
+ E[|ℜ{¯edl
632
+ k }|2] =
633
+
634
+ l̸=m |¯hH
635
+ l,ktl|2 + (σdl)2
636
+ ���¯hH
637
+ m,ktm
638
+ ���
639
+ 2
640
+ .
641
+ (16)
642
+ As previously stated, in order to decrease the error-induced
643
+ gap in one cell, the gaps of other cells maybe increased.
644
+ In light of this, our objective is to find a suitable solution
645
+ that allows us to achieve the Pareto boundary of the gap
646
+ region G, so as to balance the performance of learning among
647
+ multiple cells. In this context, the Pareto optimality of a tuple
648
+ is described as follows [16].
649
+ Here, we leverage the profiling technique [17] to char-
650
+ acterize the Pareto boundary by coordinating all BSs to
651
+ minimize the sum of Gap of all cells. Specifically, let
652
+ κ = [κ1, κ2, . . . , κM] denote a given profiling vector, which
653
+ satisfies κm ≥ 0, ∀m ∈ M, and �
654
+ m∈M κm = 1. The gap
655
+ tuple on Pareto boundary can be obtained by solving the
656
+ following problem
657
+ minimize
658
+ ζ,{rm},{tm},Θt,Θr
659
+ ζ
660
+ (17a)
661
+ s.t.
662
+ Gapm ≤ κmζ, ∀m ∈ M
663
+ (17b)
664
+ ζ ≥ 0,
665
+ (17c)
666
+ where ζ denotes the sum of the gaps of all cells. Thus,
667
+ the gap tuple can be represented as (∆1, ∆2, . . . , ∆M) =
668
+ (κ1ζ, κ2ζ, . . . , κMζ), where a smaller value of κm implies a
669
+ more stringent requirement for the gap of cell m.
670
+ Denote ζ = ζul +ζdl, where ζul and ζdl are used to quan-
671
+ tify the sum of instantaneous error-induced gaps generated by
672
+ uplink and downlink transmissions, respectively. Hence, we
673
+ rewrite problem (17) as
674
+ minimize
675
+ ζul,ζdl,{rm},{tm},Θt,Θr
676
+ ζul + ζdl
677
+ (18a)
678
+ s.t.
679
+ Gapul
680
+ m ≤ κmζul, ∀m ∈ M
681
+ (18b)
682
+ Gapdl
683
+ m ≤ κmζdl, ∀m ∈ M
684
+ (18c)
685
+ ζul ≥ 0
686
+ (18d)
687
+ ζdl ≥ 0.
688
+ (18e)
689
+ The downlink and uplink transmissions can be decoupled in
690
+ problem (18), which allows us to separately optimize the
691
+ downlink and uplink transmission resources.
692
+ IV. OPTIMIZATION FRAMEWORK
693
+ In this section, we specify the optimization framework
694
+ for solving the uplink and downlink optimization problems,
695
+ respectively.
696
+ A. Uplink Optimization
697
+ For the uplink aggregation, the optimization problem is
698
+ minimize
699
+ ζul,{rm},Θul
700
+ ζul
701
+ (19a)
702
+ s.t.
703
+
704
+ l̸=m
705
+
706
+ j∈Kl
707
+ ηl|rH
708
+ m¯hm,j|2
709
+ ηm|rH
710
+ l ¯hl,j|2
711
+ (19b)
712
+ + ∥rm∥2(σul)2
713
+ ηm
714
+ ≤ κmζul, ∀m ∈ M
715
+ (19c)
716
+ ζul ≥ 0.
717
+ (19d)
718
+ By setting optimzing varibales qi = ri/√ηi, ∀i ∈ M, the
719
+ problem can be converted to
720
+ minimize
721
+ ζul,{qm},Θul
722
+ ζul
723
+ (20a)
724
+ s.t.
725
+
726
+ l̸=m
727
+
728
+ j∈Kl
729
+ |qH
730
+ m¯hm,j|2
731
+ |qH
732
+ l ¯hl,j|2
733
+ + (σul)2∥qH
734
+ m∥2 ≤ κmζul, ∀m ∈ M
735
+ (20b)
736
+ |qH
737
+ m¯hm,k|2 ≥ 1
738
+ Pul
739
+ , ∀m, ∀k ∈ Km
740
+ (20c)
741
+ (19d).
742
+
743
+ Then we let
744
+ |qH
745
+ m¯hm,j|2
746
+ |qH
747
+ l ¯hl,j|2
748
+ ≤ bl,j, the optimization problem
749
+ relaxes to
750
+ minimize
751
+ ζul,{qm,b},Θul
752
+ ζul
753
+ (21a)
754
+ s.t.
755
+
756
+ l̸=m
757
+
758
+ j∈Kl
759
+ bl,j + (σul)2∥qH
760
+ m∥2 ≤ κmζul, ∀m
761
+ (21b)
762
+ |qH
763
+ m¯hm,j|2
764
+ |qH
765
+ l ¯hl,j|2 ≤ bl,j, ∀l, j
766
+ (21c)
767
+ (19d), (20c).
768
+ However, constraint (21c) is still non-convex, then we use
769
+ the SCA method to transform (21c) into a linear con-
770
+ straint which satisfies the property of convex. Let al,j =
771
+ [ℜ(qH
772
+ l ¯hl,j), ℑ(qH
773
+ l ¯hl,j)], the corresponding approximated lin-
774
+ ear constraint is
775
+ |qH
776
+ m¯hm,j|2
777
+ bl,j
778
+ ≤ ∥al,j∥2
779
+ ≤ ∥a(t)
780
+ l,j ∥2 + 2(a(t)
781
+ l,j )T(al,j − a(t)
782
+ l,j )
783
+ (22)
784
+ and
785
+ ∥a(t)
786
+ m,k∥2 + 2(a(t)
787
+ m,k)T(am,k − a(t)
788
+ m,k) ≥ 1
789
+ Pul
790
+ .
791
+ (23)
792
+ The origin problem (21) is then approximated as
793
+ minimize
794
+ ζul,{qm,b,a},Θul
795
+ ζul
796
+ s.t.
797
+ al,j = [ℜ(qH
798
+ l ¯hl,j), ℑ(qH
799
+ l ¯hl,j)], ∀l, j
800
+ (19d), (21b), (22), (23).
801
+ (24)
802
+ And we can observe that the above problem turns out to be
803
+ highly intractable due to the non-convexity of multiplication
804
+ between variables q and Θul. Hence, a classical alternative
805
+ optimization algorithm can be used to solve it.
806
+ B. Downlink Optimization
807
+ For the downlink dissemination, the optimization problem
808
+ can be written as
809
+ minimize
810
+ ζdl,{tm},Θdl
811
+ ζdl
812
+ (25a)
813
+ s.t.
814
+
815
+ k∈Km
816
+
817
+ l̸=m |¯hH
818
+ l,ktl|2 + (σdl)2
819
+ ���¯hH
820
+ m,ktm
821
+ ���
822
+ 2
823
+ ≤ κmζdl, ∀m
824
+ (25b)
825
+ ∥tm∥2 ≤ P dl,
826
+ (25c)
827
+ ζdl ≥ 0.
828
+ (25d)
829
+ By letting
830
+
831
+ l̸=m |¯hH
832
+ l,ktl|2+(σdl)2
833
+ |¯hH
834
+ m,ktm|
835
+ 2
836
+ ≤ dk, the optimization prob-
837
+ lem is relaxed to
838
+ minimize
839
+ ζdl,{tm},Θdl
840
+ ζdl
841
+ (26a)
842
+ s.t.
843
+
844
+ k∈Km
845
+ dk ≤ κmζdl, ∀m ∈ M
846
+ (26b)
847
+
848
+ l̸=m |¯hH
849
+ l,ktl|2 + (σdl)2
850
+ ���¯hH
851
+ m,ktm
852
+ ���
853
+ 2
854
+ ≤ dk,
855
+ (26c)
856
+ (25c), (25d).
857
+ Similar as the uplink optimization, we can still convert
858
+ (26c) to linear constraints using the SCA method. By setting
859
+ cm,k = [ℜ(¯hH
860
+ m,ktm), ℑ(¯hH
861
+ m,ktm)], the relaxed problem is
862
+ given as
863
+ minimize
864
+ ζdl,{tm,c},Θdl
865
+ ζdl
866
+ (27a)
867
+ s.t.
868
+
869
+ l̸=m |¯hH
870
+ l,ktl|2 + (σdl)2
871
+ dk
872
+
873
+ ∥c(t)
874
+ m,k∥2 + 2(c(t)
875
+ m,k)T(cm,k − c(t)
876
+ m,k), ∀m, k
877
+ (27b)
878
+ cm,k = [ℜ(¯hH
879
+ m,ktm), ℑ(¯hH
880
+ m,ktm)], ∀m, k
881
+ (27c)
882
+ (25c), (25d), (26b).
883
+ The above problem (27) can be solved in the same way as
884
+ uplink optimization.
885
+ V. SIMULATION RESULTS
886
+ In this section, we conduct extensive numerical experi-
887
+ ments to evaluate the performance of the proposed SCA
888
+ algorithm for the STAR-RIS assisted AirComp-based vertical
889
+ FL system in multi-cell wireless network.
890
+ We consider a STAR-RIS assisted two-cell wireless vertical
891
+ FL network in a two-dimensional space, where the coordi-
892
+ nates of the BSs are (0m, 0m) and (40m, 0m), the STAR-
893
+ RIS is deployed at the edge of two cells, i.e., (20m, 0m).
894
+ And the devices in each cell are uniformly located within a
895
+ circular region centered at their corresponding BS with radius
896
+ 20 meters. All channel coefficients are modeled as
897
+ h = ρ−α/2
898
+ ��
899
+ β
900
+ 1 + β hLoS +
901
+
902
+ 1
903
+ 1 + β hNLoS
904
+
905
+ (28)
906
+ and vary independently over different rounds, where ρ denotes
907
+ the distance between the transmitter and the receiver, α = 2.5
908
+ denotes the pathloss exponent, β = 5 dB represents the Ri-
909
+ cian factor, hLoS denotes the line-of-sight (LoS) component,
910
+ and hNLoS denotes the non-line-of-sight (NLoS) exponent.
911
+ In addition, the noise power are set to
912
+
913
+ σul�2 =
914
+
915
+ σdl�2 =
916
+ −10dBm. All simulation results in the following are obtained
917
+ by averaging over 100 experiments.
918
+ We first evaluate the performance of uplink aggregation
919
+ using AirComp and downlink dissemination error by consid-
920
+ ering the MSE as the metric. As shown in Fig. 1, the MSE
921
+
922
+ 5
923
+ 10
924
+ 15
925
+ 20
926
+ 25
927
+ 0
928
+ 0.02
929
+ 0.04
930
+ 0.06
931
+ 0.08
932
+ 0.1
933
+ 0.12
934
+ (a) MSE of AirComp versus the num-
935
+ ber of elements at STAR-RIS when
936
+ N = 8 and Km = 4.
937
+ 5
938
+ 10
939
+ 15
940
+ 20
941
+ 25
942
+ 0.01
943
+ 0.015
944
+ 0.02
945
+ 0.025
946
+ 0.03
947
+ 0.035
948
+ 0.04
949
+ 0.045
950
+ (b) Downlink MSE versus the num-
951
+ ber of elements at STAR-RIS when
952
+ N = 8 and Km = 4.
953
+ Fig. 1. Performance of uplink aggregation via AirComp under
954
+ different settings.
955
+ 10
956
+ 20
957
+ 30
958
+ 40
959
+ 50
960
+ 60
961
+ 70
962
+ 80
963
+ 90
964
+ 100
965
+ 0
966
+ 0.1
967
+ 0.2
968
+ 0.3
969
+ 0.4
970
+ 0.5
971
+ 0.6
972
+ 0.7
973
+ (a) Training loss vs. Round
974
+ 10
975
+ 20
976
+ 30
977
+ 40
978
+ 50
979
+ 60
980
+ 70
981
+ 80
982
+ 90
983
+ 100
984
+ 40
985
+ 50
986
+ 60
987
+ 70
988
+ 80
989
+ 90
990
+ 100
991
+ Average Testing Accuracy (%)
992
+ (b) Testing accuracy vs. Round
993
+ Fig. 2. Performance of AirComp assisted Vertical FL.
994
+ decreases as the number of STAR-RIS elements increases for
995
+ both downlink and uplink transmission, indicating that STAR-
996
+ RIS can effectively enhance the signal transmission quality,
997
+ particularly when it has a large number of elements.
998
+ We further evaluate the performance of our proposed
999
+ STAR-RIS assisted vertical FL system, where Km = 4
1000
+ devices in each cell cooperatively train a regularized logistic
1001
+ regression model. The number of antennas at each BS is
1002
+ N = 8, and the number of elements at STAR-RIS is Q = 10.
1003
+ We simulate the image classification task on Fashion-MNIST
1004
+ dataset [18]. And we assume that each cell perform a different
1005
+ binary classification task for simplify (0-1 in cell 1, 2-3 in
1006
+ cell 2). The traditional binary cross-entropy loss function is
1007
+ given as
1008
+ F(w) = − 1
1009
+ L
1010
+ L
1011
+
1012
+ i=1
1013
+
1014
+ yi �
1015
+ wxi�
1016
+ − ln
1017
+
1018
+ 1 + exp(wxi)
1019
+ ��
1020
+ .
1021
+ The learning rate µ(t) is set to 0.01.
1022
+ We consider the noiseless case as the performance upper
1023
+ bound. Fig. 2 shows that our proposed STAR-RIS assisted
1024
+ system converges quickly and achieves 96% testing accuracy
1025
+ in inference, which is far ahead compared with the other two
1026
+ cases. And it is even close to the performance upper bound.
1027
+ VI. CONCLUSION
1028
+ In this paper, we proposed a STAR-RIS assisted AirComp-
1029
+ based vertical FL system in multi-cell networks. To be
1030
+ specific, a STAR-RIS is deployed at the cell edge to facilitate
1031
+ the completion of different FL tasks by each cell. The Pareto
1032
+ boundary of the gap region is introduced to characterize
1033
+ the trade-off of learning performance among cells. We then
1034
+ formulate an optimization problem to minimize the sum of
1035
+ error-induced gaps across all cells, which is then solved by
1036
+ SCA-based algorithms. Our simulation results demonstrate
1037
+ that the proposed STAR-RIS assisted system can significantly
1038
+ improve the learning performance in both training and infer-
1039
+ ence phases thanks to its powerful capability of reducing the
1040
+ transmission errors.
1041
+ REFERENCES
1042
+ [1] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
1043
+ 6g: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas
1044
+ Commun., vol. 40, no. 1, pp. 5–36, 2022.
1045
+ [2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
1046
+ roadmap to 6g: Ai empowered wireless networks,” IEEE Commun.
1047
+ Mag., vol. 57, no. 8, pp. 84–90, 2019.
1048
+ [3] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
1049
+ efficient edge ai: Algorithms and systems,” IEEE Commun. Surveys
1050
+ Tuts., vol. 22, no. 4, pp. 2167–2191, 2020.
1051
+ [4] Z. Wang, Y. Shi, Y. Zhou, H. Zhou, and N. Zhang, “Wireless-
1052
+ powered over-the-air computation in intelligent reflecting surface-aided
1053
+ iot networks,” IEEE Internet Things J., vol. 8, no. 3, pp. 1585–1598,
1054
+ 2020.
1055
+ [5] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning over-the-air
1056
+ computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–
1057
+ 2035, 2020.
1058
+ [6] Y. Yang, Y. Zhou, Y. Wu, and Y. Shi, “Differentially private fed-
1059
+ erated learning via reconfigurable intelligent surface,” arXiv preprint
1060
+ arXiv:2203.17028, 2022.
1061
+ [7] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
1062
+ low-latency federated edge learning,” IEEE Trans. Wireless Commun.,
1063
+ vol. 19, no. 1, pp. 491–506, 2019.
1064
+ [8] J. Xu, H. Wang, and L. Chen, “Bandwidth allocation for multiple
1065
+ federated learning services in wireless edge networks,” IEEE Trans.
1066
+ Wireless Commun., vol. 21, no. 4, pp. 2534–2546, 2021.
1067
+ [9] C. Luo, X. Li, S. Jin, and Y. Chen, “Reconfigurable intelligent surface-
1068
+ assisted multi-cell MISO communication systems exploiting statistical
1069
+ CSI,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp. 2313–2317,
1070
+ 2021.
1071
+ [10] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen,
1072
+ R. Zhang, M. Di Renzo, and M. Debbah, “Holographic MIMO surfaces
1073
+ for 6G wireless networks: Opportunities, challenges, and trends,” IEEE
1074
+ Wireless Commun., vol. 27, no. 5, pp. 118–125, 2020.
1075
+ [11] Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo,
1076
+ “STAR: Simultaneous transmission and reflection for 360° coverage by
1077
+ intelligent surfaces,” IEEE Wireless Commun., vol. 28, no. 6, pp. 102–
1078
+ 109, 2021.
1079
+ [12] X. Zeng, S. Xia, K. Yang, Y. Wu, and Y. Shi, “Over-the-air computation
1080
+ for vertical federated learning,” in 2022 IEEE Int. Conf. Commun.
1081
+ Workshops (ICC Workshops), pp. 788–793, 2022.
1082
+ [13] H. Liu, X. Yuan, and Y.-J. A. Zhang, “Reconfigurable intelligent surface
1083
+ enabled federated learning: A unified communication-learning design
1084
+ approach,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7595–
1085
+ 7609, 2021.
1086
+ [14] Z. Wang, J. Qiu, Y. Zhou, Y. Shi, L. Fu, W. Chen, and K. B.
1087
+ Letaief, “Federated learning via intelligent reflecting surface,” IEEE
1088
+ Tran. Wireless Commun., vol. 21, no. 2, pp. 808–822, 2021.
1089
+ [15] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
1090
+ of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.
1091
+ [16] E. A. Jorswieck, E. G. Larsson, and D. Danev, “Complete characteriza-
1092
+ tion of the pareto boundary for the MISO interference channel,” IEEE
1093
+ Trans. Signal Process., vol. 56, no. 10, pp. 5292–5296, 2008.
1094
+ [17] X. Cao, G. Zhu, J. Xu, and K. Huang, “Cooperative interference man-
1095
+ agement for over-the-air computation networks,” IEEE Trans. Wireless
1096
+ Commun., vol. 20, no. 4, pp. 2634–2651, 2020.
1097
+ [18] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
1098
+ dataset for benchmarking machine learning algorithms,” arXiv preprint
1099
+ arXiv:1708.07747, 2017.
1100
+
ENE5T4oBgHgl3EQfUg_2/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf,len=469
2
+ page_content='STAR-RIS Assisted Over-the-Air Vertical Federated Learning in Multi-Cell Wireless Networks Xiangyu Zeng∗†‡, Yijie Mao∗, and Yuanming Shi∗ ∗School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China †Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China ‡University of Chinese Academy of Sciences, Beijing 100049, China E-mail: {zengxy, maoyj, shiym}@shanghaitech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
3
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
4
+ page_content='cn Abstract—Vertical federated learning (FL) is a critical enabler for distributed artificial intelligence services in the emerging 6G era, as it allows for secure and efficient collaboration of machine learning among a wide range of Internet of Things devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
5
+ page_content=' However, current studies of wireless FL typically con- sider a single task in a single-cell wireless network, ignoring the impact of inter-cell interference on learning performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
6
+ page_content=' In this paper, we investigate a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted over-the-air computation based vertical FL system in multi-cell networks, in which a STAR-RIS is deployed at the cell edge to facilitate the completion of different FL tasks in different cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
7
+ page_content=' We establish the convergence of the proposed system through theoretical analysis and introduce the Pareto boundary of the optimality gaps to characterize the trade-off among cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
8
+ page_content=' Based on the analysis, we then jointly design the transmit and receive beamforming as well as the STAR-RIS transmission and reflection coefficient matrices to minimize the sum of the gaps of all cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
9
+ page_content=' To solve the non-convex resource allocation problem, we introduce a successive convex approximation based algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
10
+ page_content=' Numerical experiments demonstrate that compared with con- ventional approaches, the proposed STAR-RIS assisted vertical FL model and the cooperative resource allocation algorithm achieve much lower mean-squared error for both uplink and downlink transmission in multi-cell wireless networks, resulting in improved learning performance for vertical FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
11
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
12
+ page_content=' INTRODUCTION Federated learning (FL) is a machine learning (ML) ap- proach that enables multiple parties to collaboratively train a learning model without revealing their individual data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
13
+ page_content=' This is beneficial in a variety of fields where data privacy is a concern, as FL allows parties to maintain control over their own data while still benefiting from the combined knowledge of all parties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
14
+ page_content=' In modern wireless Internet of Things (IoT) networks, data is often collected from various types of devices [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
15
+ page_content=' To facilitate data analysis in such settings, vertical FL, a variation of FL that is designed to address the challenges of training machine learning models on vertically partitioned data silos, is commonly adopted [2]–[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
16
+ page_content=' One major issue that prevents the implementation of (ver- tical) FL in real-world application is the communication latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
17
+ page_content=' To address this issue, over-the-air computation (Air- Comp) has been proposed to facilitate fast wireless data aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
18
+ page_content=' By utilizing the superposition property of wire- less multiple access channels (MAC) to concurrently transmit and aggregate local updates, AirComp significantly reduces communication latency compared to orthogonal transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
19
+ page_content=' Previous research has explored the use of AirComp in FL, such as the joint design of device selection and beamforming for fast global model aggregation in [5], and the development of a broadband analog aggregation scheme for low latency FL with linear growth of latency reduction ratio in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
20
+ page_content=' On the other hand, the coexistence of multiple FL tasks in multi-cell networks has yet to be fully explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
21
+ page_content=' Though the authors in [8] have studied the bandwidth allocation for multiple FL tasks, the system model is limited to a single-cell network and the impact of inter-cell interference on FL performance remains unplumbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
22
+ page_content=' It has been well investigated that reconfigurable intelligent surface (RIS), a metasurface composed of reconfigurable passive elements, can modify the propagation environment of wireless signal and reduce multi-cell interference [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
23
+ page_content=' However, conventional RISs are reflecting only with limited wireless coverage [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
24
+ page_content=' The recently introduced simultaneous transmitting and reflect- ing RIS (STAR-RIS), which allows the source and destination to be located at either side of the metasurface, has been recognized as a promising strategy to enhance the coverage of each cell and further reduce inter-cell interference [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
25
+ page_content=' STAR-RIS is therefore a promising technique to facilitate FL in multi-cell networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
26
+ page_content=' To the best of our knowledge, STAR- RIS assisted vertical FL has not been studied yet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
27
+ page_content=' In this paper, inspired by the benefits of AirComp for global aggregation [12] and the merits of STAR-RIS in multi-cell networks, we fill the research gap and propose a STAR-RIS assisted AirComp-based vertical FL in multi-cell networks, where a STAR-RIS is deployed at the cell edge to assist each cell in completing different FL tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
28
+ page_content=' Through theoretical analysis, we demonstrate the convergence of our proposed vertical FL process and introduce the Pareto boundary of the gap region to characterize the trade-off performance among multiple cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
29
+ page_content=' This allows us to formulate an optimization problem with the aim of minimizing the sum of error-induced gaps for all cells using the proposed algorithm based on suc- cessive convex approximation (SCA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
30
+ page_content=' Numerical experiments confirm the validity of our theoretical analysis and show the superiority of our proposed approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
31
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
32
+ page_content=' SYSTEM MODEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
33
+ page_content=' Learning Framework Consider a STAR-RIS assisted multi-cell wireless net- work consisting of M base stations (BS) with N an- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
34
+ page_content='05545v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
35
+ page_content='IT] 13 Jan 2023 tennas, where BS m ∈ M = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
36
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
37
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
38
+ page_content=' , M} aims to train an ML model by coordinating Km single- antenna devices located in cell m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
39
+ page_content=' Specifically, device k ∈ Km = ��m−1 l=1 Kl + 1, �m−1 l=1 Kl + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
41
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
42
+ page_content=' , �m−1 l=1 Kl+ Km} is associated with BS m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
43
+ page_content=' And there is one STAR-RIS equipped with Q passive reflecting/transmitting elements, de- ployed at the cell-edge of all cells to boost the signal strength of edge devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
44
+ page_content=' Each cell is equipped with a vertically partitioned dataset, where different devices hold different features of the same samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
45
+ page_content=' For simplicity, we assume that each cell has the same number of samples and that devices within each cell contain the same number of non-overlapping features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
46
+ page_content=' Let Dm = {(xi m,1, · · · , xi m,Km), yi m}Lm i=1 denote the whole training dataset of Lm samples in cell m, where xi m,k denotes the partial features of sample i located at device k in cell m, and yi m denotes the corresponding label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
47
+ page_content=' In vertical FL, it is assumed that the BS holds all labels ym = {yi m}Lm i=1, and device k is only available to its own local feature set Dm,k = {xi m,k}Lm i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
48
+ page_content=' And xi m = [(xi m,1)T, · · · , (xi m,Km)T]T denotes the overall feature vector of sample i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
49
+ page_content=' The goal of vertical FL in cell m is to collaboratively learn a global model wm (concatenated vector of wk for k ∈ Km) that maps an input to the corresponding prediction through a continuously differentiable function σ(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
50
+ page_content=' Since features of one sample are distributed at different devices, we assume that device k maps the local feature xk to local prediction result gk(wk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
51
+ page_content=' xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
52
+ page_content=' This paper considers a linear form for the local prediction function, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
53
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
54
+ page_content=', gk(wk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
55
+ page_content=' xk) = wT k xk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
56
+ page_content=' By ag- gregating local prediction results, the final prediction in cell m can be obtained by σ(wm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
57
+ page_content=' xm) = σ(� k∈Km gk(wk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
58
+ page_content=' xk)) = σ(wT mxm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
59
+ page_content=' In order to learn the global model wm in cell m, we propose to minimize the loss function as min wm F(wm) = 1 Lm Lm � i=1 f � σ(wT mxi m);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
60
+ page_content=' yi m � , (1) where f(·) is the sample-wise loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
61
+ page_content=' In our multi-cell system, each cell performs a unique FL task using the full batch gradient descent (GD) approach, which is described in the following subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
62
+ page_content=' We assume universal frequency reuse, meaning that all cells share the same frequency channel, leading to inter-cell interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
63
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
64
+ page_content=' GD Algorithm for Vertical FL In this subsection, we introduce the framework of GD algorithm for vertical FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
65
+ page_content=' For brevity, the subscript of cell m is omitted for Lm, wm, xm, ym.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
66
+ page_content=' The GD algorithm specified in this subsection is applied for all cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
67
+ page_content=' Let ∇F(w) denote the gradient of F respect to w, which is calculated as ∇F(w) = 1 L L � i=1 ∇f(σ(wTxi);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
68
+ page_content=' yi), (2) where ∇f(σ(wTxi);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
69
+ page_content=' yi) denote the gradient of f(σ(wTxi);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
70
+ page_content=' yi) respect to w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
71
+ page_content=' Based on the chain rule, the gradient of f is rewritten as ∇f(σ(wTxi);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
72
+ page_content=' yi) = G(wTxi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
73
+ page_content=' yi)xi, (3) where G(wTxi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
74
+ page_content=' yi) = ∂f(σ(wTxi);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
75
+ page_content=' yi)/∂wTxi is an auxil- iary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
76
+ page_content=' Hence, ∇F(w) can be rewritten as ∇F(w) = 1 L L � i=1 G(wTxi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
77
+ page_content=' yi)xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
78
+ page_content=' (4) Recall that the BS holds all labels y, so G(wTxi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
79
+ page_content=' yi) can be calculated at the BS only if the BS can access the aggregation of local predictions {wTxi}L i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
80
+ page_content=' Specifically, at the t-th communication round, the BS and the edge devices in each cell perform the following three procedures: Broadcasting: The BS computes {G((w(t))Txi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
81
+ page_content=' yi)}L i=1 and broadcasts the result back to its corresponding devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
82
+ page_content=' Local model update: After broadcasting, device k com- putes the partial gradient ∇kF(wk) with local data Dk, given as ∇kF(wk) = 1 L L � i=1 G(wTxi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
83
+ page_content=' yi)xi k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
84
+ page_content=' (5) Each device can thus update its local model by taking a step of GD with learning rate µ(t) as w(t+1) k = w(t) k − µ(t)∇kF(w(t) k ), (6) where w(t) k is the local model of device k at the t-th round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
85
+ page_content=' Local prediction and global aggregation: device k com- putes the local prediction results {(w(t+1) k )Txi k}L i=1 and sends to the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
86
+ page_content=' And BS aggregates them to get final prediction result {(w(t+1))Txi}L i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
87
+ page_content=' Since the BS only needs the aggregation of local prediction results, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
88
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
89
+ page_content=', neither local features nor local models need be uploaded to the BS, which significantly enhances privacy pro- tection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
90
+ page_content=' In addition, the communication efficiency is improved since the local prediction result is usually low-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
91
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
92
+ page_content=' Communication Model In this subsection, the proposed communication model is delineated with a special focus on the STAR-RIS assisted uplink and downlink transmission models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
93
+ page_content=' 1) STAR-RIS: The STAR-RIS is a type of RIS that can produce omnidirectional radiation by implementing equiva- lent electric and magnetic currents in its hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
94
+ page_content=' It has three protocols for use in wireless networks: energy splitting, mode switching, and time switching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
95
+ page_content=' In this article, we focus on the mode-switching protocol, in which each element of the STAR-RIS can operate in either the reflection mode (R mode) or the transmission mode (T mode).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
96
+ page_content=' Such on-off type of operating protocol is simpler to implement compared to the energy splitting protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
97
+ page_content=' Specifically, one group consists of Qt elements operating in the T mode, while the other group contains Qr elements operating in the R mode, where Qt + Qr = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
98
+ page_content=' Accordingly, the STAR-RIS transmission- coefficient and reflection-coefficient matrices are given by Θt = diag �� βt 1ejθt 1, � βt 2ejθt 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
99
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
100
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
101
+ page_content=' , � βt Qejθt Q � and Θr = diag �� βr 1ejθr 1, � βr 2ejθr 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
102
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
103
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
104
+ page_content=' , � βr Qejθr Q � , respec- tively, where βt q, βr q ∈ {0, 1}, βt q + βr q = 1, and θt q, θr q ∈ [0, 2π), ∀q ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
105
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
106
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
107
+ page_content=' , Q}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
108
+ page_content=' The M cells can be divided into two groups Mr and Mt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
109
+ page_content=' Specifically, cell m is in the reflection dimension with m ∈ Mr and in the transmission dimension with m ∈ Mt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
110
+ page_content=' Let hm,k ∈ CN, hr k ∈ CQ and Gm ∈ CQ×N denote the equivalent channels from edge device k to BS m, from edge device k to the STAR-RIS, and from the STAR-RIS to BS m, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
111
+ page_content=' The combined channel from the k-th edge device to the BS m via the STAR-RIS can be written as ¯hm,k = � hm,k + GH mΘthr k, ∀m ∈ Mt, hm,k + GH mΘrhr k, ∀m ∈ Mr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
112
+ page_content=' Note that the uplink and downlink STAR-RIS matrices can be separatively designed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
113
+ page_content=' For simplify, we write Θt and Θr for uplink and downlink transmission in terms of Θul and Θdl, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
114
+ page_content=' 2) Uplink transmission: In the uplink transmission, we assume the devices communicate with the BS via AirComp, which has a wide range of FL applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
115
+ page_content=' Specifically, we denote sk = [s1 k, s2 k, · · · , sL k ]T ∈ CL as the local prediction results at device k, where the local prediction result of the i-th sample si k = wT k xi k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
116
+ page_content=' At each time slot i ∈ {1, 2, · · · , Lm}, each device in cell m sends the corresponding prediction result of the i-th sample to BS m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
117
+ page_content=' And we assume that sk is normalized with zero mean and unit variance [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
118
+ page_content=' We denote gm(i) = � k∈Km si k as the target function to be estimated through AirComp at the i-th time slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
119
+ page_content=' To simplify the notation, we omit the time index by writing g(i) and si k as g and sul k , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
120
+ page_content=' And we assume that the signals transmitted by all devices are synchronized at the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
121
+ page_content=' Then the received signal at BS m is given by yul m = � k ¯hm,kbksul k + nul m, (7) where bk ∈ C is the transmit scalar at device k, and nul m is the additive white Gaussian noise with zero mean and variance (σul)2 at BS m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
122
+ page_content=' The transmit power constraint at device k is E(|bksul k |2) = |bk|2 ≤ P ul, where P ul > 0 is the maximum transmit power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
123
+ page_content=' The scaled signal received at BS m is ¯gm = 1 √ηm rH myul m = 1 √ηm rH m � k∈K ¯hm,kbksul k + rH mnul m √ηm , (8) where rm ∈ CN is the receive beamforming vector and ηm is a normalizing factor for cell m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
124
+ page_content=' To compensate for the phase distortion introduced by complex channel responses, the transmit scalar at device k in cell m is set to bk = √ηm (rH m¯hm,k)H |rHm¯hm,k|2 , ∀k ∈ Km, and ηm can be expressed as ηm = P ul mink∈Km |rH m¯hm,k|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
125
+ page_content=' Then the estimated function at BS for cell m is given as ˆgm = ℜ{¯gm} = ℜ{gm + 1 √ηm rH m � l̸=m � j∈Kl ¯hm,jbjsul j + rH mnul m √ηm � �� � eulm } = gm + ℜ{eul m} (9) 3) Downlink transmission: After obtaining the estimate ˆgm in the cell m, BS m computes G(ˆgm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
126
+ page_content=' y) with noisy aggregation ˆgm, and then broadcasts the result to the associ- ated devices in Km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
127
+ page_content=' And we write G(ˆgm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
128
+ page_content=' y) in terms of Gm for simplify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
129
+ page_content=' Without loss of generality, we assume that the transmitted signal follows the standard Gaussian distribution, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
130
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
131
+ page_content=', Gm ∼ CN(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
132
+ page_content=' The received signal at device k is ydl k = � m ¯hH m,ktmGm + ndl k , (10) where tm denotes the transmit beamforming vector at BS m, and ndl k ∼ CN � 0, (σdl)2� is the additive white Gaus- sian noise with zero mean and variance (σdl)2 at device k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
133
+ page_content=' The maximum transmit power at BS m is P dl, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
134
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
135
+ page_content=', E(∥Gmtm∥2) = ∥tm∥2 ≤ P dl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
136
+ page_content=' To compensate for the phase distortion introduced by complex channel responses, the receive scalar at device k in cell m is set to rk = (¯hH m,ktm)H |¯hH m,ktm| 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
137
+ page_content=' The estimated Gm at device k is given as ˆGm,k = ℜ{rkydl k } = ℜ{Gm + (¯hH m,ktm)H ���¯hH m,ktm ��� 2 � �� l̸=m ¯hH l,ktlGl + ndl k � � � �� � ¯edl k } = Gm + ℜ{¯edl k }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
138
+ page_content=' (11) Note that the uplink noise is embedded in function Gm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
139
+ page_content=' In order to directly describe the effective noise, we expand Gm to its first-order Taylor expansion as follows ˆGm,k = Gm + ℜ{¯edl k } = G(gm + ℜ{eul m};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
140
+ page_content=' y) + ℜ{¯edl k } = G(gm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
141
+ page_content=' y) + G ′(gm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
142
+ page_content=' y)ℜ{eul m} + O(|ℜ{eul m}|2) + ℜ{¯edl k } ≈ G(gm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
143
+ page_content=' y) + G ′(gm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
144
+ page_content=' y)ℜ{eul m} + ℜ{¯edl k } � �� � edl k , (12) where G′(·) is the first derivative of G(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
145
+ page_content=' Assume that the noise amplitude is small, the term O(|ℜ{eul m}|2) is neglected, which implies the last approximation in (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
146
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
147
+ page_content=' CONVERGENCE ANALYSIS AND PROBLEM FORMULATION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
148
+ page_content=' Convergence Analysis In previous work [12], [14], [15], the convergence analysis of the AirComp-based vertical FL process in each cell has been established under the following assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
149
+ page_content=' Assumption 1 (α-strongly convexity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
150
+ page_content=' The function F(·) is assumed to be α-strongly convex on Rd with constant α, namely, for all x, y ∈ Rd, we have F(y) ≥ F(x) + ∇F(x)T(y − x) + α 2 ∥y − x∥2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
151
+ page_content=' Assumption 2 (β-smoothness).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
152
+ page_content=' The function F(·) is assumed to be β-smooth on Rd with constant β, namely, for all x, y ∈ Rd, we have F(y) ≤ F(x) + ∇F(x)T(y − x) + β 2 ∥y − x∥2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
153
+ page_content=' Theorem 1 (Convergence of vertical FL process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
154
+ page_content=' Suppose that Assumption 1 and 2 hold, setting the learning rate to be 0 < µ(t) ≤ 1 β , then the expected optimality gap after T communication rounds is upper bounded by E � F(w(T ) m ) − F(w∗ m) � ≤ ρT E � F(w(0) m ) − F(w∗ m) � + 1 2βL2 T −1 � t=0 ρT −t−1 � k∈Km � Φ1,kE[|ℜ{eul m}|2] + Φ2,kE[|ℜ{¯edl k }|2] � , (13) where ρ = 1−α/β, Φ1,k = �L i=1 ∥(Gi m,k) ′xi k∥2 2 and Φ2,k = �L i=1 ∥xi k∥2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
155
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
156
+ page_content=' Please refer to previous work [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
157
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
158
+ page_content=' Problem Formulation According to Theorem 1, the convergence optimality gap is largely determined by the mean-squared-error (MSE) of both gm and Gm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
159
+ page_content=' However, solely optimizing MSE for each cell through AirComp may result in significant inter-cell interference in the considered multi-cell wireless networks, which can negatively impact the learning performance of other cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
160
+ page_content=' As such, it is necessary to carefully balance the learning performance among various FL tasks in multiple cells through a cooperative design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
161
+ page_content=' We begin by identifying the gap region G, to be the set of tuples (∆1, ∆2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
162
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
163
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
164
+ page_content=' , ∆M), which represents the instantaneous errors that cause gaps in all cells, and can be achieved simul- taneously under specific downlink and uplink transmission power constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
165
+ page_content=' The gap region G can be represented as G = � {(∆1, ∆2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
166
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
167
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
168
+ page_content=' , ∆M)|∆m ≥ Gapm, ∀m ∈ M}, (14) where Gapm = � k∈Km � Φ1,kE[|ℜ{eul m}|2] + Φ2,kE[|ℜ{¯edl k }|2] � , (15) E[|ℜ{eul m}|2] = � l̸=m,j∈Kl ηl|rH m¯hm,j|2 ��m|rH l ¯hl,j|2 + ∥rm∥2σ2 ul ηm , E[|ℜ{¯edl k }|2] = � l̸=m |¯hH l,ktl|2 + (σdl)2 ���¯hH m,ktm ��� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
169
+ page_content=' (16) As previously stated, in order to decrease the error-induced gap in one cell, the gaps of other cells maybe increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
170
+ page_content=' In light of this, our objective is to find a suitable solution that allows us to achieve the Pareto boundary of the gap region G, so as to balance the performance of learning among multiple cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
171
+ page_content=' In this context, the Pareto optimality of a tuple is described as follows [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
172
+ page_content=' Here, we leverage the profiling technique [17] to char- acterize the Pareto boundary by coordinating all BSs to minimize the sum of Gap of all cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
173
+ page_content=' Specifically, let κ = [κ1, κ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
174
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
175
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
176
+ page_content=' , κM] denote a given profiling vector, which satisfies κm ≥ 0, ∀m ∈ M, and � m∈M κm = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
177
+ page_content=' The gap tuple on Pareto boundary can be obtained by solving the following problem minimize ζ,{rm},{tm},Θt,Θr ζ (17a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
178
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
179
+ page_content=' Gapm ≤ κmζ, ∀m ∈ M (17b) ζ ≥ 0, (17c) where ζ denotes the sum of the gaps of all cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
180
+ page_content=' Thus, the gap tuple can be represented as (∆1, ∆2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
181
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
182
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
183
+ page_content=' , ∆M) = (κ1ζ, κ2ζ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
184
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
185
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
186
+ page_content=' , κMζ), where a smaller value of κm implies a more stringent requirement for the gap of cell m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
187
+ page_content=' Denote ζ = ζul +ζdl, where ζul and ζdl are used to quan- tify the sum of instantaneous error-induced gaps generated by uplink and downlink transmissions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
188
+ page_content=' Hence, we rewrite problem (17) as minimize ζul,ζdl,{rm},{tm},Θt,Θr ζul + ζdl (18a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
189
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
190
+ page_content=' Gapul m ≤ κmζul, ∀m ∈ M (18b) Gapdl m ≤ κmζdl, ∀m ∈ M (18c) ζul ≥ 0 (18d) ζdl ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
191
+ page_content=' (18e) The downlink and uplink transmissions can be decoupled in problem (18), which allows us to separately optimize the downlink and uplink transmission resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
192
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
193
+ page_content=' OPTIMIZATION FRAMEWORK In this section, we specify the optimization framework for solving the uplink and downlink optimization problems, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
194
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
195
+ page_content=' Uplink Optimization For the uplink aggregation, the optimization problem is minimize ζul,{rm},Θul ζul (19a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
196
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
197
+ page_content=' � l̸=m � j∈Kl ηl|rH m¯hm,j|2 ηm|rH l ¯hl,j|2 (19b) + ∥rm∥2(σul)2 ηm ≤ κmζul, ∀m ∈ M (19c) ζul ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
198
+ page_content=' (19d) By setting optimzing varibales qi = ri/√ηi, ∀i ∈ M, the problem can be converted to minimize ζul,{qm},Θul ζul (20a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
199
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
200
+ page_content=' � l̸=m � j∈Kl |qH m¯hm,j|2 |qH l ¯hl,j|2 + (σul)2∥qH m∥2 ≤ κmζul, ∀m ∈ M (20b) |qH m¯hm,k|2 ≥ 1 Pul , ∀m, ∀k ∈ Km (20c) (19d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
201
+ page_content=' Then we let |qH m¯hm,j|2 |qH l ¯hl,j|2 ≤ bl,j, the optimization problem relaxes to minimize ζul,{qm,b},Θul ζul (21a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
202
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
203
+ page_content=' � l̸=m � j∈Kl bl,j + (σul)2∥qH m∥2 ≤ κmζul, ∀m (21b) |qH m¯hm,j|2 |qH l ¯hl,j|2 ≤ bl,j, ∀l, j (21c) (19d), (20c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
204
+ page_content=' However, constraint (21c) is still non-convex, then we use the SCA method to transform (21c) into a linear con- straint which satisfies the property of convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
205
+ page_content=' Let al,j = [ℜ(qH l ¯hl,j), ℑ(qH l ¯hl,j)], the corresponding approximated lin- ear constraint is |qH m¯hm,j|2 bl,j ≤ ∥al,j∥2 ≤ ∥a(t) l,j ∥2 + 2(a(t) l,j )T(al,j − a(t) l,j ) (22) and ∥a(t) m,k∥2 + 2(a(t) m,k)T(am,k − a(t) m,k) ≥ 1 Pul .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
206
+ page_content=' (23) The origin problem (21) is then approximated as minimize ζul,{qm,b,a},Θul ζul s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
207
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
208
+ page_content=' al,j = [ℜ(qH l ¯hl,j), ℑ(qH l ¯hl,j)], ∀l, j (19d), (21b), (22), (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
209
+ page_content=' (24) And we can observe that the above problem turns out to be highly intractable due to the non-convexity of multiplication between variables q and Θul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
210
+ page_content=' Hence, a classical alternative optimization algorithm can be used to solve it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
211
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
212
+ page_content=' Downlink Optimization For the downlink dissemination, the optimization problem can be written as minimize ζdl,{tm},Θdl ζdl (25a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
213
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
214
+ page_content=' � k∈Km � l̸=m |¯hH l,ktl|2 + (σdl)2 ���¯hH m,ktm ��� 2 ≤ κmζdl, ∀m (25b) ∥tm∥2 ≤ P dl, (25c) ζdl ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
215
+ page_content=' (25d) By letting � l̸=m |¯hH l,ktl|2+(σdl)2 |¯hH m,ktm| 2 ≤ dk, the optimization prob- lem is relaxed to minimize ζdl,{tm},Θdl ζdl (26a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
216
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
217
+ page_content=' � k∈Km dk ≤ κmζdl, ∀m ∈ M (26b) � l̸=m |¯hH l,ktl|2 + (σdl)2 ���¯hH m,ktm ��� 2 ≤ dk, (26c) (25c), (25d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
218
+ page_content=' Similar as the uplink optimization, we can still convert (26c) to linear constraints using the SCA method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
219
+ page_content=' By setting cm,k = [ℜ(¯hH m,ktm), ℑ(¯hH m,ktm)], the relaxed problem is given as minimize ζdl,{tm,c},Θdl ζdl (27a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
220
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
221
+ page_content=' � l̸=m |¯hH l,ktl|2 + (σdl)2 dk ≤ ∥c(t) m,k∥2 + 2(c(t) m,k)T(cm,k − c(t) m,k), ∀m, k (27b) cm,k = [ℜ(¯hH m,ktm), ℑ(¯hH m,ktm)], ∀m, k (27c) (25c), (25d), (26b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
222
+ page_content=' The above problem (27) can be solved in the same way as uplink optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
223
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
224
+ page_content=' SIMULATION RESULTS In this section, we conduct extensive numerical experi- ments to evaluate the performance of the proposed SCA algorithm for the STAR-RIS assisted AirComp-based vertical FL system in multi-cell wireless network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
225
+ page_content=' We consider a STAR-RIS assisted two-cell wireless vertical FL network in a two-dimensional space, where the coordi- nates of the BSs are (0m, 0m) and (40m, 0m), the STAR- RIS is deployed at the edge of two cells, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
226
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
227
+ page_content=', (20m, 0m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
228
+ page_content=' And the devices in each cell are uniformly located within a circular region centered at their corresponding BS with radius 20 meters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
229
+ page_content=' All channel coefficients are modeled as h = ρ−α/2 �� β 1 + β hLoS + � 1 1 + β hNLoS � (28) and vary independently over different rounds, where ρ denotes the distance between the transmitter and the receiver, α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
230
+ page_content='5 denotes the pathloss exponent, β = 5 dB represents the Ri- cian factor, hLoS denotes the line-of-sight (LoS) component, and hNLoS denotes the non-line-of-sight (NLoS) exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
231
+ page_content=' In addition, the noise power are set to � σul�2 = � σdl�2 = −10dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
232
+ page_content=' All simulation results in the following are obtained by averaging over 100 experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
233
+ page_content=' We first evaluate the performance of uplink aggregation using AirComp and downlink dissemination error by consid- ering the MSE as the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
234
+ page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
235
+ page_content=' 1, the MSE 5 10 15 20 25 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
236
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
237
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
238
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
239
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
240
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
241
+ page_content='12 (a) MSE of AirComp versus the num- ber of elements at STAR-RIS when N = 8 and Km = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
242
+ page_content=' 5 10 15 20 25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
243
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
244
+ page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
245
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
246
+ page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
247
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
248
+ page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
249
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
250
+ page_content='045 (b) Downlink MSE versus the num- ber of elements at STAR-RIS when N = 8 and Km = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
251
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
252
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
253
+ page_content=' Performance of uplink aggregation via AirComp under different settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
254
+ page_content=' 10 20 30 40 50 60 70 80 90 100 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
255
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
256
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
257
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
258
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
259
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
260
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
261
+ page_content='7 (a) Training loss vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
262
+ page_content=' Round 10 20 30 40 50 60 70 80 90 100 40 50 60 70 80 90 100 Average Testing Accuracy (%) (b) Testing accuracy vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
263
+ page_content=' Round Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
264
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
265
+ page_content=' Performance of AirComp assisted Vertical FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
266
+ page_content=' decreases as the number of STAR-RIS elements increases for both downlink and uplink transmission, indicating that STAR- RIS can effectively enhance the signal transmission quality, particularly when it has a large number of elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
267
+ page_content=' We further evaluate the performance of our proposed STAR-RIS assisted vertical FL system, where Km = 4 devices in each cell cooperatively train a regularized logistic regression model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
268
+ page_content=' The number of antennas at each BS is N = 8, and the number of elements at STAR-RIS is Q = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
269
+ page_content=' We simulate the image classification task on Fashion-MNIST dataset [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
270
+ page_content=' And we assume that each cell perform a different binary classification task for simplify (0-1 in cell 1, 2-3 in cell 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
271
+ page_content=' The traditional binary cross-entropy loss function is given as F(w) = − 1 L L � i=1 � yi � wxi� − ln � 1 + exp(wxi) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
272
+ page_content=' The learning rate µ(t) is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
273
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
274
+ page_content=' We consider the noiseless case as the performance upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
275
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
276
+ page_content=' 2 shows that our proposed STAR-RIS assisted system converges quickly and achieves 96% testing accuracy in inference, which is far ahead compared with the other two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
277
+ page_content=' And it is even close to the performance upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
278
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
279
+ page_content=' CONCLUSION In this paper, we proposed a STAR-RIS assisted AirComp- based vertical FL system in multi-cell networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
280
+ page_content=' To be specific, a STAR-RIS is deployed at the cell edge to facilitate the completion of different FL tasks by each cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
281
+ page_content=' The Pareto boundary of the gap region is introduced to characterize the trade-off of learning performance among cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
282
+ page_content=' We then formulate an optimization problem to minimize the sum of error-induced gaps across all cells, which is then solved by SCA-based algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
283
+ page_content=' Our simulation results demonstrate that the proposed STAR-RIS assisted system can significantly improve the learning performance in both training and infer- ence phases thanks to its powerful capability of reducing the transmission errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
284
+ page_content=' REFERENCES [1] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
285
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
286
+ page_content=' Letaief, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
287
+ page_content=' Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
288
+ page_content=' Lu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
289
+ page_content=' Lu, “Edge artificial intelligence for 6g: Vision, enabling technologies, and applications,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
290
+ page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
291
+ page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
292
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
293
+ page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
294
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
295
+ page_content=' 5–36, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
296
+ page_content=' [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
297
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
298
+ page_content=' Letaief, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
299
+ page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
300
+ page_content=' Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
301
+ page_content=' Zhang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
302
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
303
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
304
+ page_content=' Zhang, “The roadmap to 6g: Ai empowered wireless networks,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
305
+ page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
306
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
307
+ page_content=' 57, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
308
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
309
+ page_content=' 84–90, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
310
+ page_content=' [3] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
311
+ page_content=' Shi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
312
+ page_content=' Yang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
313
+ page_content=' Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
314
+ page_content=' Zhang, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
315
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
316
+ page_content=' Letaief, “Communication- efficient edge ai: Algorithms and systems,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
317
+ page_content=' Surveys Tuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
318
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
319
+ page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
320
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
321
+ page_content=' 2167–2191, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
322
+ page_content=' [4] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
323
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
324
+ page_content=' Shi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
325
+ page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
326
+ page_content=' Zhou, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
327
+ page_content=' Zhang, “Wireless- powered over-the-air computation in intelligent reflecting surface-aided iot networks,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
328
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
329
+ page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
330
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
331
+ page_content=' 1585–1598, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
332
+ page_content=' [5] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
333
+ page_content=' Yang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
334
+ page_content=' Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
335
+ page_content=' Shi, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
336
+ page_content=' Ding, “Federated learning over-the-air computation,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
337
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
338
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
339
+ page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
340
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
341
+ page_content=' 2022– 2035, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
342
+ page_content=' [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
343
+ page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
344
+ page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
345
+ page_content=' Wu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
346
+ page_content=' Shi, “Differentially private fed- erated learning via reconfigurable intelligent surface,” arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
347
+ page_content='17028, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
348
+ page_content=' [7] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
349
+ page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
350
+ page_content=' Wang, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
351
+ page_content=' Huang, “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
352
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
353
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
354
+ page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
355
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
356
+ page_content=' 491–506, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
357
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
358
+ page_content=' Xu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
359
+ page_content=' Wang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
360
+ page_content=' Chen, “Bandwidth allocation for multiple federated learning services in wireless edge networks,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
361
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
362
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
363
+ page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
364
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
365
+ page_content=' 2534–2546, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
366
+ page_content=' [9] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
367
+ page_content=' Luo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
368
+ page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
369
+ page_content=' Jin, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
370
+ page_content=' Chen, “Reconfigurable intelligent surface- assisted multi-cell MISO communication systems exploiting statistical CSI,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
371
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
372
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
373
+ page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
374
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
375
+ page_content=' 2313–2317, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
376
+ page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
377
+ page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
378
+ page_content=' Hu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
379
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
380
+ page_content=' Alexandropoulos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
381
+ page_content=' Zappone, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
382
+ page_content=' Yuen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
383
+ page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
384
+ page_content=' Di Renzo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
385
+ page_content=' Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
386
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
387
+ page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
388
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
389
+ page_content=' 118–125, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
390
+ page_content=' [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
391
+ page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
392
+ page_content=' Mu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
393
+ page_content=' Xu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
394
+ page_content=' Schober, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
395
+ page_content=' Hao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
396
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
397
+ page_content=' Poor, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
398
+ page_content=' Hanzo, “STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
399
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
400
+ page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
401
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
402
+ page_content=' 102– 109, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
403
+ page_content=' [12] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
404
+ page_content=' Zeng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
405
+ page_content=' Xia, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
406
+ page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
407
+ page_content=' Wu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
408
+ page_content=' Shi, “Over-the-air computation for vertical federated learning,” in 2022 IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
409
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
410
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
411
+ page_content=' Workshops (ICC Workshops), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
412
+ page_content=' 788–793, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
413
+ page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
414
+ page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
415
+ page_content=' Yuan, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
416
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
417
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
418
+ page_content=' Zhang, “Reconfigurable intelligent surface enabled federated learning: A unified communication-learning design approach,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
419
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
420
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
421
+ page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
422
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
423
+ page_content=' 7595– 7609, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
424
+ page_content=' [14] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
425
+ page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
426
+ page_content=' Qiu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
427
+ page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
428
+ page_content=' Shi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
429
+ page_content=' Fu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
430
+ page_content=' Chen, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
431
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
432
+ page_content=' Letaief, “Federated learning via intelligent reflecting surface,” IEEE Tran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
433
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
434
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
435
+ page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
436
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
437
+ page_content=' 808–822, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
438
+ page_content=' [15] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
439
+ page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
440
+ page_content=' Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
441
+ page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
442
+ page_content=' Wang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
443
+ page_content=' Zhang, “On the convergence of fedavg on non-iid data,” arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
444
+ page_content='02189, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
445
+ page_content=' [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
446
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
447
+ page_content=' Jorswieck, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
448
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
449
+ page_content=' Larsson, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
450
+ page_content=' Danev, “Complete characteriza- tion of the pareto boundary for the MISO interference channel,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
451
+ page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
452
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
453
+ page_content=' 56, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
454
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
455
+ page_content=' 5292–5296, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
456
+ page_content=' [17] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
457
+ page_content=' Cao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
458
+ page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
459
+ page_content=' Xu, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
460
+ page_content=' Huang, “Cooperative interference man- agement for over-the-air computation networks,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
461
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
462
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
463
+ page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
464
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
465
+ page_content=' 2634–2651, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
466
+ page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
467
+ page_content=' Xiao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
468
+ page_content=' Rasul, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
469
+ page_content=' Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
470
+ page_content='07747, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE5T4oBgHgl3EQfUg_2/content/2301.05545v1.pdf'}
EdE1T4oBgHgl3EQfEgNA/content/tmp_files/2301.02890v1.pdf.txt ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02890v1 [math.DS] 7 Jan 2023
2
+ ERGODICITY AND PERIODIC ORBITS OF p-ADIC (1, 2)-RATIONAL
3
+ DYNAMICAL SYSTEMS WITH TWO FIXED POINTS
4
+ I.A. SATTAROV, E.T. ALIEV
5
+ Abstract. We consider (1, 2)-rational functions given on the field of p-adic numbers Qp.
6
+ In general, such a function has four parameters. We study the case when such a function
7
+ has two fixed points and show that when there are two fixed points then (1, 2)-rational
8
+ function is conjugate to a two-parametric (1, 2)-rational function.
9
+ Depending on these
10
+ two parameters we determine type of the fixed points, find Siegel disks and the basin of
11
+ attraction of the fixed points. Moreover, we classify invariant sets and study ergodicity
12
+ properties of the function on each invariant set. We describe 2- and 3-periodic orbits of
13
+ the p-adic dynamical systems generated by the two-parametric (1, 2)-rational functions.
14
+ 1. Introduction and preliminaries
15
+ A function is called a (n, m)-rational function if and only if it can be written in the
16
+ form f(x) = Pn(x)
17
+ Qm(x), where Pn(x) and Qm(x) are polynomial functions with degree n and m
18
+ respectively, Qm(x) is non zero polynomial.
19
+ In this paper we study dynamical systems generated by a (1.2-)rational function. Our
20
+ investigations based on methods of [1], [3], [13]-[17]. For motivations of the study see [2],
21
+ [4]-[6], [10]-[12] and the references therein.
22
+ Let us give main definitions. Let Q be the field of rational numbers. The greatest common
23
+ divisor of the positive integers n and m is denotes by (n, m). Every rational number x ̸= 0
24
+ can be represented in the form x = pr n
25
+ m, where r, n ∈ Z, m is a positive integer, (p, n) = 1,
26
+ (p, m) = 1 and p is a fixed prime number.
27
+ The p-adic norm of x ∈ Q is given by
28
+ |x|p =
29
+
30
+ p−r,
31
+ for x ̸= 0,
32
+ 0,
33
+ for x = 0.
34
+ It has the following properties:
35
+ 1) |x|p ≥ 0 and |x|p = 0 if and only if x = 0,
36
+ 2) |xy|p = |x|p|y|p,
37
+ 3) the strong triangle inequality
38
+ |x + y|p ≤ max{|x|p, |y|p},
39
+ 3.1) if |x|p ̸= |y|p then |x + y|p = max{|x|p, |y|p},
40
+ 2010 Mathematics Subject Classification. 46S10, 12J12, 11S99, 30D05, 54H20.
41
+ Key words and phrases. Rational dynamical systems; fixed point; invariant set; Siegel disk; complex
42
+ p-adic field.
43
+ 1
44
+
45
+ 2
46
+ I.A. SATTAROV, E.T. ALIEV
47
+ 3.2) if |x|p = |y|p then |x + y|p ≤ |x|p.
48
+ The completion of Q with respect to p-adic norm defines the p-adic field which is denoted
49
+ by Qp (see [8]).
50
+ For any a ∈ Qp and r > 0 denote
51
+ Ur(a) = {x ∈ Qp : |x − a|p < r},
52
+ Vr(a) = {x ∈ Qp : |x − a|p ≤ r},
53
+ Sr(a) = {x ∈ Qp : |x − a|p = r}.
54
+ A function f : Ur(a) → Qp is said to be analytic if it can be represented by
55
+ f(x) =
56
+
57
+
58
+ n=0
59
+ fn(x − a)n,
60
+ fn ∈ Qp,
61
+ which converges uniformly on the ball Ur(a).
62
+ Now let f : U → U be an analytic function. Denote f n(x) = f ◦ · · · ◦ f
63
+
64
+ ��
65
+
66
+ n
67
+ (x).
68
+ If f(x0) = x0 then x0 is called a fixed point. The set of all fixed points of f is denoted
69
+ by Fix(f). A fixed point x0 is called an attractor if there exists a neighborhood U(x0) of
70
+ x0 such that for all points x ∈ U(x0) it holds lim
71
+ n→∞ f n(x) = x0. If x0 is an attractor then its
72
+ basin of attraction is
73
+ A(x0) = {x ∈ Qp : f n(x) → x0, n → ∞}.
74
+ A fixed point x0 is called repeller if there exists a neighborhood U(x0) of x0 such that
75
+ |f(x) − x0|p > |x − x0|p for x ∈ U(x0), x ̸= x0.
76
+ Let x0 be a fixed point of a function f(x). Put λ = f ′(x0). The point x0 is attractive if
77
+ 0 < |λ|p < 1, indifferent if |λ|p = 1, and repelling if |λ|p > 1.
78
+ The ball Ur(x0) is said to be a Siegel disk if each sphere Sρ(x0), ρ < r is an invariant
79
+ sphere of f(x), i.e. if x ∈ Sρ(x0) then all iterated points f n(x) ∈ Sρ(x0) for all n = 1, 2 . . . .
80
+ The union of all Siegel desks with the center at x0 is said to a maximum Siegel disk and is
81
+ denoted by SI(x0).
82
+ Let f : A → A and g : B → B be two maps. f and g are said to be topologically conjugate
83
+ if there exists a homeomorphism h : A → B such that, h◦f = g ◦h. The homeomorphism h
84
+ is called a topological conjugacy. Mappings which are topologically conjugate are completely
85
+ equivalent in terms of their dynamics.
86
+ In this paper we consider (1, 2)-rational function f : Qp → Qp defined by
87
+ f(x) =
88
+ ax + b
89
+ x2 + cx + d,
90
+ x ̸= ˆx1,2 = −c ±
91
+
92
+ c2 − 4d
93
+ 2
94
+ (1.1)
95
+ where the parameters of the function satisfy the following conditions
96
+ a ̸= 0,
97
+ a, b, c, d,
98
+
99
+ c2 − 4d ∈ Qp.
100
+ We study p-adic dynamical systems generated by the rational function (1.1). The equa-
101
+ tion f(x) = x for fixed points of the function (1.1) is equivalent to the equation
102
+ x3 + cx2 + (d − a)x − b = 0.
103
+ (1.2)
104
+ The equation (1.2) may have three solutions with one of the following relations:
105
+
106
+ ERGODICITY AND PERIODIC ORBITS
107
+ 3
108
+ (i) one solution having multiplicity three;
109
+ (ii) two solutions, one of which has multiplicity two;
110
+ (iii) three distinct solutions.
111
+ Remark 1. Since the behavior of dynamical system depends on the set of fixed points, each
112
+ of the above mentioned case (i)-(iii) has its own character of dynamics. In [15] the case (i)
113
+ was considered. In this paper we consider the case (ii), i.e., we investigate the behavior of
114
+ the trajectories of an arbitrary (1, 2)-rational dynamical system in Qp when there are two
115
+ fixed points for f. The case (iii) will be considered in a separate paper.
116
+ The paper is organized as follows. In Section 2 under some assumptions we show that
117
+ four-parametric function (1.1) is conjugate to a two-parametric (1,2)-rational function. In
118
+ Section 3 we study the p-adic dynamics generated by the two-parametric function and give
119
+ Siegel disks, the basin of attractions and classification of all invariant sets. In Section 4 we
120
+ investigate ergodicity of this dynamical systems on invariant sets. In Section 5 we describe
121
+ 2- and 3-periodic orbits.
122
+ 2. A function conjugate to (1.1)
123
+ Denote by x1 and x2 the two solutions of the equation (1.2), where x2 has multiplicity
124
+ two. Then we have x3 + cx2 + (d − a)x − b = (x − x1)(x − x2)2 and
125
+
126
+
127
+
128
+
129
+
130
+ x1 + 2x2 = −c
131
+ x2
132
+ 2 + 2x1x2 = d − a
133
+ x1x2
134
+ 2 = b.
135
+ (2.1)
136
+ Let homeomorphism h : Qp → Qp be defined by h(t) = t+x2. We note that, the function
137
+ f is topologically conjugate to function h−1 ◦ f ◦ h. We have
138
+ (h−1 ◦ f ◦ h)(t) = −x2t2 + Bt
139
+ t2 + Dt + B ,
140
+ (2.2)
141
+ where B = x2
142
+ 2 + cx2 + d and D = 2x2 + c.
143
+ In [13] the case x2 ̸= 0 is studied.
144
+ Thus in this paper we consider the case x2 = 0 in (2.2). If x2 = 0, then B = d = a and
145
+ D = c. Thus we have the following proposition
146
+ Proposition 1. Any (1,2)-rational function having two distinct fixed points is topologically
147
+ conjugate to one of the following functions
148
+ f(x) =
149
+ ax2 + bx
150
+ x2 + cx + b,
151
+ ab(a − c) ̸= 0,
152
+ a, b, c ∈ Qp,
153
+ and
154
+ f(x) =
155
+ ax
156
+ x2 + cx + a,
157
+ ac ̸= 0,
158
+ a, c, ∈ Qp.
159
+ (2.3)
160
+ where x ̸= ˆx1,2 = −c±
161
+
162
+ c2−4a
163
+ 2
164
+ .
165
+ We study the dynamical system (Qp, f) with f given by (2.3).
166
+
167
+ 4
168
+ I.A. SATTAROV, E.T. ALIEV
169
+ 3. p-Adic dynamics of (2.3)
170
+ Note that, the function (2.3) has two fixed points x1 = 0 and x2 = −c. We have
171
+ f ′(x1) = 1 and f ′(x2) = 1 − c2
172
+ a .
173
+ Thus, the point x1 is an indifferent point for (2.3), i.e., x1 is a center of some Siegel disk
174
+ SI(x1). In this section we determine the character of the fixed point x2 for each cases.
175
+ Then we find Siegel disk or basin of attraction of the fixed point x2, when x2 is indifferent
176
+ or attractive, respectively. In the case where x2 is repelling, we find open ball Ur(x2), such
177
+ that the inequality |f(x) − x2|p > |x − x2|p holds for all x ∈ Ur(x2). Moreover, we study a
178
+ relation between the sets SI(x1) and SI(x2) when x2 is an indifferent.
179
+ For any x ∈ Qp, x ̸= ˆx1,2, by simple calculations we get
180
+ |f(x)|p = |x|p ·
181
+ |a|p
182
+ |x − ˆx1|p|x − ˆx2|p
183
+ .
184
+ (3.1)
185
+ Denote
186
+ P = {x ∈ Qp : ∃n ∈ N ∪ {0}, f n(x) ∈ {ˆx1, ˆx2}},
187
+ α = min{|ˆx1|p, |ˆx2|p} and β = max{|ˆx1|p, |ˆx2|p}.
188
+ (3.2)
189
+ Since ˆx1 + ˆx2 = −c, we have |c|p ≤ α for α = β and |c|p = β for α < β. Also, since
190
+ ˆx1ˆx2 = a, we have |a|p = αβ.
191
+ Theorem 1. The p-adic dynamical system generated by the function (2.3) has the following
192
+ properties:
193
+ 1. SI(x1) = Uα(0).
194
+ 2. If |c|p < α = β, then x2 is indifferent fixed point for (2.3) and
195
+ SI(x2) = SI(x1).
196
+ 3. If |c|p = α = β and |a − c2|p = α2, then x2 is indifferent fixed point for (2.3) and
197
+ SI(x2) = Uα(x2),
198
+ SI(x2) ∩ SI(x1) = ∅.
199
+ 4. If |c|p = α = β and |a − c2|p < α2, then x2 is attractive fixed point for (2.3) and
200
+ A(x2) = Uα(x2) ⊂ Sα(0).
201
+ 5. If α < β, then x2 ∈ Sβ(0) is repelling fixed point for (2.3) and the inequality
202
+ |f(x) − x2|p > |x − x2|p holds for all x ∈ Uβ(x2), x ̸= x2.
203
+ Proof. 1. Let x ∈ Sr(x1), i.e., |x|p = r. Then, from the equalities (3.1), (3.2) and the
204
+ properties of the p-adic norm, we have the following
205
+ |f(x)|p =
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+ r,
214
+ if r < α,
215
+ ≥ α,
216
+ if α ≤ r ≤ β,
217
+ |a|p
218
+ r ,
219
+ if r > β.
220
+ From this equality, f(Sr(x1)) ⊂ Sr(x1) for arbitrary r < α, i.e. we have SI(x1) = Uα(0).
221
+
222
+ ERGODICITY AND PERIODIC ORBITS
223
+ 5
224
+ 2. Note that |a|p = αβ. If |c|p < α = β, then |f ′(x2)|p =
225
+ ���1 − c2
226
+ a
227
+ ���
228
+ p = 1. From this x2 is
229
+ indifferent fixed point. Let x ∈ Sr(x2), i.e., |x − x2|p = r. Then from the equality
230
+ |f(x) − x2|p = |x − x2|p ·
231
+ |x2(x − x2) + (x2
232
+ 2 − a)|p
233
+ |(x − x2) + ˆx1|p|(x − x2) + ˆx2|p
234
+ (3.3)
235
+ we have |f(x) − x2|p = r for all r < α and |f(x) − x2|p ≥ r for r = α. Thus, f(Sr(x2)) ⊂
236
+ Sr(x2) for arbitrary r < α, i.e. we have SI(x2) = Uα(x2). In this case, we have |x2|p =
237
+ |c|p < α, so x2 ∈ Uα(0) = SI(x1). Since these two Siegel disks have the same radii and
238
+ share a common point, they are the same, i.e., SI(x2) = SI(x1).
239
+ 3. If |c|p = α = β and |a − c2|p = α2, then |f ′(x2)|p =
240
+ ��� a−c2
241
+ a
242
+ ���
243
+ p = 1. From this x2 is
244
+ indifferent fixed point. As above, from equation (3.3) we get SI(x2) = Uα(x2). However,
245
+ in this case x2 ∈ Sα(0), so SI(x2) ∩ SI(x1) = ∅.
246
+ 4. If |c|p = α = β and |a − c2|p < α2, then |f ′(x2)|p =
247
+ ��� a−c2
248
+ a
249
+ ���
250
+ p < 1. From this x2 is
251
+ attractive fixed point. Note that |x2|p = α. Let x ∈ Uα(x2) ⊂ Sα(0). Then from equality
252
+ (3.3) and using the strong triangle inequality of the p-adic norm we derive the relation
253
+ |f(x) − x2|p < |x − x2|p for all x ∈ Uα(x2). Similarly, if x /∈ Uα(x2), then we have the
254
+ relation |f(x) − x2|p ≥ α.
255
+ Note that, the set of valuations of p-adic norm is {pm| m ∈ Z}.
256
+ Thus, the relation
257
+ |f(x) − x2|p < |x − x2|p is equivalent to the relation |f(x) − x2|p ≤ 1
258
+ p|x − x2|p. This means
259
+ that the map f : Uα(x2) → Uα(x2) is a contraction map. According to the properties of
260
+ contraction map, we have the equality A(x2) = Uα(x2).
261
+ 5. If α < β, then we have |x2|p = β, i.e., x2 ∈ Sβ(0). Also, |f ′(x2)|p =
262
+ ���1 − c2
263
+ a
264
+ ���
265
+ p = β
266
+ α > 1.
267
+ Let x ∈ Sr(x2), i.e., |x − x2|p = r. Then from the equality (3.3) we get
268
+ |f(x) − x2|p =
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+ β
287
+ α|x − x2|p,
288
+ if r < α,
289
+ ≥ β,
290
+ if r = α,
291
+ β,
292
+ if α < r < β,
293
+ ≤ β,
294
+ if r = β,
295
+ β,
296
+ if r > β.
297
+ From this we conclude that the inequality |f(x)−x2|p > |x−x2|p is holds for all x ∈ Uβ(x2),
298
+ x ̸= x2.
299
+
300
+ Corollary 1. • The spheres Sr(x1) is invariant for f if and only if r < α.
301
+ • The spheres Sr(x2) is invariant for f if and only if one of the statements holds
302
+ a) |c|p < α = β and r < α;
303
+ b) |c|p = α = β, |a − c2|p = α2 and r < α.
304
+
305
+ 6
306
+ I.A. SATTAROV, E.T. ALIEV
307
+ 4. Ergodicity of the dynamical systems on invariant spheres
308
+ Recall that an invariant measure is a measure that is preserved by some function. In
309
+ ergodic theory of dynamical systems an invariant measure is very important .
310
+ Let G be a topological group. If G is abelian and locally compact, then it is well known
311
+ [7] that it has a nonzero translation-invariant measure µ, which is unique up to scalar. This
312
+ is called the Haar measure.
313
+ In the field of p-adic numbers let Σ be the minimal σ-algebra containing all open and
314
+ closed (clopen) subsets.
315
+ A measure µ(Vρ) = ρ, Vρ ∈ Σ is usually called a Haar measure, where Vρ is a ball with
316
+ radius ρ.
317
+ However, in some cases, the problem of studying the dynamical system of a function that
318
+ mapping a compact subset of Qp to itself arises. At this time, is needed a measure defined
319
+ on σ-algebra with the unit a compact set. If this compact set has some algebraic structure,
320
+ then can we look at the natural Haar measure? If the considered compact set is a ball or a
321
+ sphere, the answer to this question is positive, which is given as follows in [16].
322
+ Let Vr(a) be the ball (Sr(a) be the sphere) with the center at the point a ∈ Qp and B is
323
+ the algebra generated by clopen subsets of Vr(a) (Sr(a)). It is known that every element of
324
+ B is a union of some balls Vρ(s) ⊂ Vr(a), s ∈ Vr(a) (Vρ(s) ⊂ Sr(a), s ∈ Sr(a)).
325
+ Theorem 2. [16] A measure ¯µ : B → pZ is a Haar measure if it is defined by ¯µ(Vρ(s)) = ρ
326
+ for all Vρ(s) ∈ B.
327
+ Also, ergodic theory often deals with ergodic transformations. Here is the definition:
328
+ Definition 1. [18] Let T : X → X be a measure-preserving transformation on a measure
329
+ space (X, Σ, µ), with µ(X) = 1. Then T is ergodic if for every E in Σ with T −1(E) = E,
330
+ either µ(E) = 0 or µ(E) = 1.
331
+ In this section we are interested in ergodicity (with respect to Haar measure) of the
332
+ dynamical systems on invariant spheres with the center at the fixed point..
333
+ Remark 2. Corollary 1 in the previous section gives a classification of invariant spheres
334
+ centered at a fixed point. Also, in part 2 of Theorem 1, it is proved that maximal Siegel discs
335
+ consisting of union of invariant spheres fall on top of each other. Therefore, the center of
336
+ invariant spheres is not significant when |c|p < α = β. However, when |c|p = α = β, it
337
+ is necessary to consider separately the ergodicity of dynamical systems in invariant spheres
338
+ with centers x1 and x2.
339
+ For each invariant sphere we consider a measurable space (Sr(xi), B), here B is the algebra
340
+ generated by closed subsets of Sr(xi), i = 1, 2. Every element of B is a union of some balls
341
+ Vρ(s) ⊂ Sr(xi).
342
+ A measure ¯µ : B → R is a Haar measure if it is defined by ¯µ(Vρ(s)) = ρ for all s ∈ Sr(xi)
343
+ and ρ ∈ pZ such that Vρ(s) ⊂ Sr(xi).
344
+ Note that Sr(xi) = Vr(xi) \ V r
345
+ p (xi). So, we have ¯µ(Sr(xi)) = r(1 − 1
346
+ p).
347
+
348
+ ERGODICITY AND PERIODIC ORBITS
349
+ 7
350
+ We consider normalized (probability) Haar measure:
351
+ µ(Vρ(s)) = ¯µ(Vρ(s))
352
+ ¯µ(Sr(xi)) =
353
+
354
+ (p − 1)r.
355
+ Theorem 3. Let Sr(xi), i = 1, 2 be invariant sphere for the function f given by (2.3).
356
+ Then the function f : Sr(xi) → Sr(xi) is an isometry.
357
+ Proof. By the Corollary 1, if the sphere Sr(xi), i = 1, 2 is invariant for (2.3), then r < α.
358
+ Let i = 1. From relation x, y ∈ Sr(x1) we have |x|p = |y|p = r. Then, we get the following
359
+ |f(x) − f(y)|p = |x − y|p ·
360
+ |a|p|a − xy|p
361
+ |(x − ˆx1)(x − ˆx2)(y − ˆx1)(y − ˆx2)|p
362
+ .
363
+ (4.1)
364
+ Note that |a|p = αβ and |x|p = |y|p = r < α ≤ β. Then,
365
+ |f(x) − f(y)|p = |x − y|p · α2β2
366
+ α2β2 = |x − y|p.
367
+ Consequently, the function f : Sr(x1) → Sr(x1) is an isometry.
368
+ Let i = 2. Then by Corollary 1 we have two cases. If |c|p < α = β , then by Remark
369
+ 2, this case overlaps with case i = 1. If |c|p = α = β and |a − c2|p = α2, then by part 3
370
+ of Theorem 1, we have the relation Sr(x2) ⊂ Sα(0) for all invariant sphere. So, we have
371
+ |x − x2|p = r < α and |x|p = α for all x ∈ Sr(x2).
372
+ Let x, y ∈ Sr(x2). Then
373
+ |f(x) − f(y)|p = |x − y|p ·
374
+ |a|p|(a − x2
375
+ 2) + x2(x2 − y) + y(x2 − x)|p
376
+ |[(x − x2) + ˆx1][(x − x2) + ˆx2][(y − x2) + ˆx1][(y − x2) + ˆx2]|p
377
+ .
378
+ Note that |a|p = α2, |x − x2|p = |y − x2|p = r < α and |a − x2
379
+ 2|p = |a − c2|p = α2. Then,
380
+ |f(x) − f(y)|p = |x − y|p · α4
381
+ α4 = |x − y|p.
382
+ Consequently, the function f : Sr(x2) → Sr(x2) is an isometry.
383
+
384
+ Corollary 2. Let the conditions of the above theorem be satisfied. Then f : Sr(xi) → Sr(xi),
385
+ i = 1, 2 is a measure-preserving transformation on a measure space (Sr(xi), B, µ), where µ
386
+ is a normalized Haar measure.
387
+ In [16], given an important results about the dynamics of isometric maps, and since the
388
+ function (2.3) we are considering is also an isometry, the results obtained in [16] are also
389
+ relevant for the dynamics of the function (2.3), i.e., if Sr(xi), i = 1, 2 is invariant sphere for
390
+ the function f given by (2.3), then we have the following:
391
+ • The function f : Sr(xi) → Sr(xi), i = 1, 2 is bijection.
392
+ • For any initial point x ∈ Sr(xi), i = 1, 2 (except fixed point) the orbit {f n(x)| n ∈ N}
393
+ isn’t convergent.
394
+ The result of the following Lemma is given as a condition in [16]. Let Sr(xi), i = 1, 2 be
395
+ invariant sphere for the function f given by (2.3), then we denote ρ(r, x) = |f(x) − x|p for
396
+ x ∈ Sr(xi).
397
+
398
+ 8
399
+ I.A. SATTAROV, E.T. ALIEV
400
+ Lemma 1. If r ̸= |c|p, then for the function f given by (2.3) the value ρ(r, x) does not
401
+ depend to x.
402
+ Proof. We consider all cases in Corollary 1. Let i = 1. Then r < α. By simple calculation
403
+ we get
404
+ ρ(r, x) =
405
+ ����
406
+ ax
407
+ x2 + cx + a − x
408
+ ����
409
+ p
410
+ = |x|2
411
+ p ·
412
+ |x + c|p
413
+ |x − ˆx1|p|x − ˆx2|p
414
+ =
415
+
416
+
417
+
418
+ r2|c|p
419
+ αβ ,
420
+ if r < |c|p,
421
+ r3
422
+ αβ,
423
+ if r > |c|p.
424
+ Let i = 2. In this case, according to Remark 2, it is sufficient to prove the Lemma when
425
+ |c|p = α = β. So, we have r = |x − x2|p = |x + c|p < α and
426
+ ρ(r, x) =
427
+ ����
428
+ ax
429
+ x2 + cx + a − x
430
+ ����
431
+ p
432
+ = |x + c|p ·
433
+ |(x + c) − c|2
434
+ p
435
+ |(x + c) + ˆx1|p|(x + c) + ˆx2|p
436
+ = r.
437
+
438
+ So, we denote ρ(r) = |f(x) − x|p for all x ∈ Sr(xi), i = 1, 2, r ̸= |c|p. In that case, we
439
+ have the following assertions from [16]:
440
+ • The ball with radius ρ(r) is minimal invariant ball for f : Sr(xi) → Sr(xi), i = 1, 2,
441
+ r ̸= |c|p.
442
+ • Let µ be normalized Haar measure on Sr(xi). Then
443
+ a) the dynamical system (Sr(xi), f, µ) is not ergodic for all p ≥ 3;
444
+ b) the dynamical system (Sr(xi), f, µ) may be ergodic if and only if r = 2ρ(r) for
445
+ p = 2.
446
+ Let p = 2.
447
+ Then according to the above the dynamical system (Sr(x2), f, µ) is not
448
+ ergodic, because r = ρ(r) for i = 2.
449
+ If i = 1, then x1 = 0 and we consider the dynamical system (Sr(0), f, µ).
450
+ Recall Z2 = {x ∈ Q2 : |x|2 ≤ 1}. So we have 1 + 2Z2 = S1(0). The following theorem
451
+ gives a criterion of ergodicity for the rational functions mapping S1(0) to itself:
452
+ Theorem 4. [9] Let f, g : 1 + 2Z2 → 1 + 2Z2 be polynomials whose coefficients are 2-adic
453
+ integers.
454
+ Set f(x) = �
455
+ i aixi, g(x) = �
456
+ i bixi, and
457
+ A1 =
458
+
459
+ i odd
460
+ ai,
461
+ A2 =
462
+
463
+ i even
464
+ ai,
465
+ B1 =
466
+
467
+ i odd
468
+ bi,
469
+ B2 =
470
+
471
+ i even
472
+ bi.
473
+ The rational function R =
474
+ f
475
+ g is ergodic if and only if one of the following situations
476
+ occurs:
477
+ (1) A1 = 1(mod 4), A2 = 2(mod 4), B1 = 0(mod 4) and B2 = 1(mod 4).
478
+ (2) A1 = 3(mod4), A2 = 2(mod 4), B1 = 0(mod 4) and B2 = 3(mod 4).
479
+ (3) A1 = 1(mod 4), A2 = 0(mod 4), B1 = 2(mod 4) and B2 = 1(mod 4).
480
+ (4) A1 = 3(mod 4), A2 = 0(mod 4), B1 = 2(mod 4) and B2 = 3(mod 4).
481
+ (5) One of the previous cases with f and g interchanged.
482
+
483
+ ERGODICITY AND PERIODIC ORBITS
484
+ 9
485
+ Consider x = g(t) = r−1t for t ∈ S1(0), then g−1 ◦ f ◦ g : S1(0) → S1(0). Let B (resp.
486
+ B1) be the algebra generated by closed subsets of Sr(0) (resp. S1(0)), and µ (resp. µ1) be
487
+ normalized Haar measure on B (resp. B1).
488
+ Theorem 5. [14] The dynamical system (Sr(0), f, µ) is ergodic if and only if
489
+ (S1(0), g−1 ◦ f ◦ g, µ1) is ergodic.
490
+ Now using the above mentioned results for (2.3) when p = 2 and we prove the following
491
+ Theorem 6. Let p = 2. Then the dynamical system (Sr(0), f, µ) is ergodic if and only if
492
+ |c|2 = β and r = α
493
+ 2 .
494
+ Proof. Let r = 2l, α = 2m, β = 2k and |c|2 = 2q. Since α ≤ β we have m ≤ k. Also, since
495
+ c = −ˆx1 − ˆx2 and a = ˆx1ˆx2 we have q ≤ k and |a|2 = 2m+k.
496
+ Note that the sphere S2l(0) is invariant for f iff l < m.
497
+ We consider the function
498
+ g : S1(0) → Sr(0) defined by x = g(t) = 2−lt. Note that the function
499
+ g−1(f(g(t))) : S1(0) → S1(0) has the following form
500
+ g−1(f(g(t))) =
501
+ t
502
+ 2−2l
503
+ a t2 + 2−lc
504
+ a t + 1
505
+ ,
506
+ (4.2)
507
+ for the function f given by (2.3). Note that k, l, m, q ∈ Z, l < m ≤ k and q ≤ k. So we
508
+ have the inequalities l − m ≤ −1 and l − k ≤ −1. In (4.2) we can easily see the following
509
+ ����
510
+ 2−2l
511
+ a t2
512
+ ����
513
+ 2
514
+ = 22l−(m+k) ≤ 2−2,
515
+ ����
516
+ 2−lc
517
+ a t
518
+ ����
519
+ 2
520
+ = 2l+q−(m+k) ≤ 2−1.
521
+ Consequently,
522
+ t =: γ1(t),
523
+ is such that γ1 : 1 + 2Z2 → 1 + 2Z2
524
+ and
525
+ 2−2l
526
+ a t2 + 2−lc
527
+ a t + 1 =: γ2(t) is such that γ2 : 1 + 2Z2 → 1 + 2Z2.
528
+ Hence the function (4.2) satisfies all condition of Theorem 4, therefore using this theorem,
529
+ we get
530
+ A1 = 1,
531
+ A2 = 0,
532
+ B1 = 2−lc
533
+ a
534
+ and B2 = 2−2l
535
+ a
536
+ + 1.
537
+ Moreover,
538
+ A1 = 1(mod 4),
539
+ A2 = 0(mod 4),
540
+ B1 ∈ 2m+k−(l+q)(1 + 2Z2) and B2 = 1(mod 4).
541
+ By these relations and Theorem 4 we get m+k−(l+q) = (m−l)+(k−q) = 1. Note that
542
+ l < m and q ≤ k. Therefore we conclude that the dynamical system (S1(0), g−1 ◦ f ◦ g, µ1)
543
+ is ergodic if and only if q = k and l = m − 1, i.e., |c|2 = β and r = α
544
+ 2 . Consequently, by
545
+ Theorem 5, (Sr(0), f, µ) is ergodic if and only if |c|2 = β and r = α
546
+ 2 .
547
+
548
+
549
+ 10
550
+ I.A. SATTAROV, E.T. ALIEV
551
+ 5. Periodic orbits
552
+ In this section we are interested in periodic trajectories and their characteristics. Since
553
+ our function is an isometry on an invariant sphere, we get the following result about periodic
554
+ trajectories from [16]:
555
+ Theorem 7. If the dynamical system (Sr(xi), f), i = 1, 2 has n-periodic orbit
556
+ y0 → y1 → ... → yn → y0,
557
+ then the following statements hold:
558
+ 1. yk ∈ Vρ(r)(y0) for all k ∈ {1, 2, ..., n};
559
+ 2. Character of periodic points is indifferent;
560
+ 3. If ρ ≤ ρ(r), then we have f(Sρ(yk)) ⊂ Sρ(yk+1) for any k ∈ {0, 1, ...n − 1} and
561
+ f(Sρ(yn)) ⊂ Sρ(y0).
562
+ Now we prove the following theorems about the existence of 2-periodic and 3-periodic
563
+ trajectories:
564
+ Theorem 8. If
565
+
566
+ c2 − 2a ∈ Qp, then the function (2.3) has unique 2-periodic orbit {t1, t2},
567
+ where t1,2 = −c ±
568
+
569
+ c2 − 2a.
570
+ Proof. We consider the equation
571
+ f 2(x) − x
572
+ f(x) − x = 0.
573
+ Then we obtain the following
574
+ (x2 + 2cx + 2a)(x2 + cx + a) = 0.
575
+ Since x2 + cx + a ̸= 0, we get x2 + 2cx + 2a = 0, and t1,2 = −c ±
576
+
577
+ c2 − 2a.
578
+
579
+ Theorem 9. Let Sr(xi), i = 1, 2 be invariant sphere for (2.3) and assume that the param-
580
+ eter a ∈ Sr(xi). Then the function (2.3) has 3-periodic orbit
581
+
582
+ a, f(a), f 2(a)
583
+
584
+ if and only
585
+ if
586
+ (a, c) ∈
587
+
588
+ (h(q), qh(q) − 1) : q ∈ Qp \
589
+
590
+ 0, −1, −2
591
+ 3
592
+
593
+ , |h(q)|p = r
594
+
595
+ ,
596
+ for i = 1,
597
+ (5.1)
598
+ (a, c) ∈
599
+
600
+ (h(q), qh(q) − 1) : q ∈ Qp \
601
+
602
+ 0, −1, −2
603
+ 3
604
+
605
+ , |h(q)(q + 1) − 1|p = r
606
+
607
+ ,
608
+ for i = 2,
609
+ (5.2)
610
+ where h(q) =
611
+ 3q2+2q
612
+ 6q3+11q2+6q+1.
613
+ Proof. We consider the equation
614
+ f 3(x) − x
615
+ f(x) − x = 0.
616
+ By simplifying this equation, we get the following equation
617
+ P(x) = x6 + 6cx5 + (11c2 + 6a)x4 + (6c3 + 20ac)x3 + (15ac2 + 9a2)x2 + 12a2cx + 3a3 = 0.
618
+
619
+ ERGODICITY AND PERIODIC ORBITS
620
+ 11
621
+ Necessity. Let a ∈ Sr(xi) be a 3-periodic point. Then P(a) = 0 and from this we have the
622
+ equality
623
+ a3 + 6(c + 1)a2 + (11c + 9)(c + 1)a + 3(2c + 1)(c + 1)2 = 0.
624
+ (5.3)
625
+ According to equality (5.3), since a ̸= 0, we have c ̸= −1. Denote
626
+ q = c + 1
627
+ a
628
+ .
629
+ Then by (5.3) we get (6q3 + 11q2 + 6q + 1)a − (3q2 + 2q) = 0.
630
+ If we denote
631
+ a := h(q) =
632
+ 3q2 + 2q
633
+ 6q3 + 11q2 + 6q + 1,
634
+ then c = qh(q) − 1. Notice that h(q) is undefined at q = −1. Applying the conditions that
635
+ a(c + 1) ̸= 0 we see that q ̸= 0 and q ̸= − 2
636
+ 3.
637
+ For i = 1, we have |a|p = |h(q)|p = r, analogically for i = 2 we have
638
+ |a + c|p = |h(q)(q + 1) − 1|p = r. Summarizing the above, we get (5.1) and (5.2).
639
+ Sufficiency.
640
+ Let conditions (5.1) and (5.2) be satisfied.
641
+ Then it is easy to see that
642
+ P(a) = 0. Hence, a ∈ Sr(xi) is 3-periodic point for f given by (2.3).
643
+
644
+ 6. Availability of data
645
+ The datasets supporting the conclusions of this article are included in the article.
646
+ Acknowledgements
647
+ We thank our supervisor U.A. Rozikov for the useful discussions.
648
+ References
649
+ [1] S. Albeverio, U.A. Rozikov, I.A. Sattarov. p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal.
650
+ Appl. 398(2) (2013), 553–566.
651
+ [2] S. Albeverio, P. E. Kloeden, A. Khrennikov, Human memory as a p-adic dynamical system, Theor.
652
+ Math. Phys. 114(3) (1998), 1414–1422.
653
+ [3] E.T. Aliev, I.A. Sattarov. p-Adic (1, 2)-rational dynamical systems with two fixed points on Cp. Uzbek
654
+ Mathematical Journal, 65(2) (2021), 5–14.
655
+ [4] V.S. Anashin. The p-adic ergodic theory and applications, DOI: 10.13140/2.1.3548.0647., Book. De-
656
+ cember 2014.
657
+ [5] V.S. Anashin, A.Yu. Khrennikov. Applied Algebraic Dynamics, V. 49, de Gruyter Expositions in Math-
658
+ ematics. Walter de Gruyter, Berlin, New York, 2009.
659
+ [6] A. Fan, S. Fan, L. Liao, Y. Wang, On minimal decomposition of p-adic homographic dynamical systems.
660
+ Adv. Math. 257 (2014), 92–135.
661
+ [7] S. Kantorovitz, Introduction to modern analysis, Oxford University Press. 2003.
662
+ [8] N. Koblitz, p-adic numbers, p-adic analysis and zeta-function Springer, Berlin, 1977.
663
+ [9] N. Memi´c, Characterization of ergodic rational functions on the set 2-adic units. Inter. J. Number
664
+ Theory. 13 (2017), 1119–1128.
665
+ [10] F.M. Mukhamedov, O.N. Khakimov, On metric properties of unconventional limit sets of contractive
666
+ non-Archimedean dynamical systems. Dyn. Syst. 31(4) (2016), 506–524.
667
+ [11] F.M. Mukhamedov, O.N. Khakimov, Phase transition and chaos: p-adic Potts model on a Cayley tree.
668
+ Chaos Solitons Fractals 87 (2016), 190–196.
669
+
670
+ 12
671
+ I.A. SATTAROV, E.T. ALIEV
672
+ [12] F.M. Mukhamedov, U.A. Rozikov, A plynomial p-adic dynamical system. Theor. Math. Phys. 170(3)
673
+ (2012), 376–383.
674
+ [13] U.A. Rozikov, I.A. Sattarov, Dynamical Systems of the p-Adic (2, 2)-Rational Functions with Two
675
+ Fixed Points, Results in Mathematics, 100(75) (2020), 1–37.
676
+ [14] U.A. Rozikov, I.A. Sattarov. p-adic dynamical systems of (2, 2)-rational functions with unique fixed
677
+ point. Chaos, Solitons and Fractals, 105 (2017), 260–270.
678
+ [15] U.A. Rozikov, I.A. Sattarov. S. Yam. p-adic dynamical systems of the function
679
+ ax
680
+ x2 + a. p-Adic Numbers,
681
+ Ultrametric Analysis and Applications, 11(1) (2019), 77–87.
682
+ [16] I.A. Sattarov. Group structure of the p-adic ball and dynamical system of isometry on a sphere.
683
+ arXiv:2208.03513, doi.org/10.48550/arXiv.2208.03513
684
+ [17] I.A. Sattarov. p-adic (3, 2)-rational dynamical systems. p-Adic Numbers, Ultrametric Analysis and
685
+ Applications, 7(1) (2015), 39–55.
686
+ [18] P.Walters, An introduction to ergodic theory. Springer, Berlin-Heidelberg-New York, (1982).
687
+ I. A. Sattarov, Namangan Satate University, 316, Uychi str., 160100, Namangan, Uzbekistan.
688
+ Email address: [email protected]
689
+ E. T. Aliev, Namangan Institute of Engineering Technology, 7, Kosonsoy str., 160115,
690
+ Namangan, Uzbekistan.
691
+ Email address: [email protected]
692
+
EdE1T4oBgHgl3EQfEgNA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EtFJT4oBgHgl3EQfCSzh/content/2301.11429v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96b5c80450a1e336a9a816f0afe2a072b72db8995a3aae59fa219a264ffeea1b
3
+ size 1804511
EtFJT4oBgHgl3EQfCSzh/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d125c9d4093ab92e37815faf12eb4557b72bff360291abedfb38ba421b9e4f
3
+ size 3997741
EtFJT4oBgHgl3EQfCSzh/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09450116fcb00584ed02713a127852f9ce2efe26d0b414a4a1ddbd88e5f73107
3
+ size 131703
FdAzT4oBgHgl3EQfxP4S/content/tmp_files/2301.01733v1.pdf.txt ADDED
@@ -0,0 +1,1643 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Enhancing the Accuracy of Density Functional Tight Binding Models Through
2
+ ChIMES Many-body Interaction Potentials
3
+ Nir Goldman,1, 2 Laurence E. Fried,1 Rebecca K. Lindsey,3 C. Huy Pham,1 and R.
4
+ Dettori1
5
+ 1)Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory,
6
+ Livermore, CA 94550 USAa)
7
+ 2)Department of Chemical Engineering, University of California, Davis, California 95616,
8
+ United States
9
+ 3)Department of Chemical Engineering, University of Michigan, Ann Arbor,
10
+ Michigan 48109, United States
11
+ (Dated: 5 January 2023)
12
+ Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are
13
+ attractive methods for obtaining quantum simulation data at longer time and length scale
14
+ than possible with standard approaches. However, application of these models can require
15
+ lengthy effort due to the lack of a systematic approach for their development. In this work,
16
+ we discuss use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to
17
+ create rapidly parameterized DFTB models which exhibit strong transferability due to the
18
+ inclusion of many-body interactions that might otherwise be underestimated. We apply
19
+ our modeling approach to silicon polymorphs and review previous work on titanium hy-
20
+ dride. We also review creation of a general purpose DFTB/ChIMES model for organic
21
+ molecules and compounds that approaches hybrid functional and coupled cluster accuracy
22
+ with two orders of magnitude fewer parameters than similar neural network approaches.
23
+ In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method
24
+ with orders of magnitude improvement in computational cost. Our developments provide
25
+ a way to create computationally efficient and highly accurate semi-empirical models for
26
+ studies where physical and chemical properties can be difficult to interrogate directly and
27
+ there is historically a significant reliance on theoretical approaches for interpretation and
28
+ validation of experimental results.
29
+ a)Electronic mail: [email protected]
30
+ 1
31
+ arXiv:2301.01733v1 [cond-mat.mtrl-sci] 4 Jan 2023
32
+
33
+ I.
34
+ INTRODUCTION
35
+ Atomistic calculation approaches for materials modeling can be used as an independent route
36
+ to aid in new materials synthesis1, characterizing mixtures for use as fuel2,3, or quantifying rates
37
+ for chemical decomposition of organic materials4. These types of studies generally rely on quan-
38
+ tum mechanical approaches such as Kohn-Sham Density Functional Theory (DFT) in order to aid
39
+ in experimental interpretation and/or new materials design. In particular, DFT has been shown ex-
40
+ tensively to yield accurate descriptions of condensed phase physical and chemical data, such as the
41
+ material equation of state under compressive or tensile loads5, heats of formation/mixture of new
42
+ phases6,7, and the energetics of chemical bond breaking and forming under reactive conditions8.
43
+ However, standard DFT is also renown for its significant computational expense and poor com-
44
+ putational scaling (generally O(N 3)) resulting from solving for the Kohn-Sham eigenstates. As a
45
+ result, DFT molecular dynamics (MD) simulations can be limited to system sizes of hundreds of
46
+ atoms for timescales of tens of picoseconds or smaller for many systems9. In contrast, many pro-
47
+ cesses of interest have properties that can span orders of magnitude larger scales, including large-
48
+ scale carbon heterocycle synthesis10, the rational design of 3D materials11, and defect formation
49
+ and grain boundary interactions in crystalline systems12. Thus, the need for alternate simulation
50
+ approaches remains a highly active research area where the goal is to develop methods that can
51
+ harness the accuracy of DFT while yielding vastly improved computational efficiency and scaling.
52
+ In this regard, machine learning approaches for the development of interatomic atomic po-
53
+ tentials have been an effective route for modeling materials under reactive and nonreactive
54
+ conditions13,14. For example, neural networks have been used successfully to model structural
55
+ properties of catalytic materials15 as well as the phase stability of high-entropy ceramics16. Gaus-
56
+ sian Process Regression in the form of the Gaussian Approximation Potential (GAP) has been
57
+ used for a number of materials, including silicon based materials17. Regardless, the development
58
+ of these potentials tends to remain a highly labor-intensive task, where frequently a high-degree
59
+ of expertise and months to years of human effort are required for a single application area. As
60
+ a result, it can be difficult for these efforts to keep up with experimental needs particularly in
61
+ the area of materials synthesis, where the number of permutations of different starting materials,
62
+ thermodynamic conditions, and catalysts can be combinatorially large.
63
+ Semi-empirical quantum mechanical approaches hold promise as a middle ground for acceler-
64
+ ated simulations with a high degree of accuracy. These methods combine approximate quantum
65
+ 2
66
+
67
+ mechanics with empirical functions to yield approaches that can achieve several orders of magni-
68
+ tude longer time scales in quantum MD simulations.18,19 In addition, semi-empirical approaches
69
+ tend to utilize significantly fewer computational resources, allowing for ensembles of statistically
70
+ independent trajectories and improved statistical sampling of desired properties.20 These methods
71
+ also tend to show much stronger transferability to systems and conditions outside of their training
72
+ set compared to interatomic potentials, in part due to the accuracy of the approximate quantum
73
+ mechanics and subsequent reduced reliance on empirical functions.21
74
+ Density Functional Tight Binding (DFTB) is one such semi-empirical quantum mechanical
75
+ method22,23 that has had widespread success in modeling both gas-phase molecules24 as well
76
+ as condensed matter under inert and reactive conditions25–27, including extreme pressures and
77
+ temperatures28,29. The DFTB total energy is derived from an expansion of the Kohn-Sham en-
78
+ ergy to either second or third-order in charge fluctuations, resulting in the following expression:
79
+ EDFTB = EBS + ECoul + Erep.
80
+ (1)
81
+ Here, EBS corresponds to the band structure energy, ECoul is the charge fluctuation term, and
82
+ Erep is the repulsive energy. EBS is calculated as a sum over occupied electronic states from the
83
+ DFTB Hamiltonian. The DFTB Hamiltonian matrix elements are determined from pre-tabulated
84
+ Slater-Koster tables derived from reference calculations with a minimal basis set. The onsite
85
+ matrix elements are the free-atom orbital energies and the off-site terms are computed with a two-
86
+ center approximation where both wavefunctions and electron density are subjected to confining
87
+ potentials. Erep corresponds to ion-ion repulsions, as well as Hartree and exchange-correlation
88
+ double counting terms. This term can be expressed as an empirical function where parameters
89
+ are fit to reproduce high-level quantum or experimental reference data. In practice, an additional
90
+ dispersion correction can be included, including those in standard use for DFT calculations30,31.
91
+ DFTB is approximately three orders of magnitude more efficient than DFT calculations though
92
+ it also tends to exhibit O(N 3) scaling due to the need to solve for the band structure eigenstates.
93
+ DFTB has been shown to exhibit transferability across element types and diverse conditions32–34
94
+ and has been applied to a broad range of materials35–39.
95
+ However, DFTB model development can be challenging in terms of optimizing the hyperpa-
96
+ rameters needed for the approximate quantum mechanical parts of the calculations. These include
97
+ the separate confining potentials for the wavefunctions and electron density (which can be differ-
98
+ ent for each angular momentum channel of an element),38 choice of second-order vs. third-order
99
+ 3
100
+
101
+ charge fluctuations for the energy expression40, and whether to use density or potential superposi-
102
+ tion when computing the Slater-Koster tables.36,41 The DFTB Hamiltonian tends to be highly sen-
103
+ sitive to these options42, and in general there does not exist a predefined recipe for how to choose
104
+ these parameters nor how to explore that specific phase space. Prediction of physical and/or chem-
105
+ ical properties are in turn are closely coupled to the empirical repulsive energy, which itself has a
106
+ wide variety of options in terms of functional form and data to be fit35. ERep is usually taken to be
107
+ strictly pairwise (two-center), though a number of systems can require many-body terms as well
108
+ for accurate predictions28. Novel approaches for determination of ERep include constrained spline
109
+ optimization34, neural networks43,44, and Gaussian Process Regression45,46. Machine learning ap-
110
+ proaches though tend to be highly data intensive14 and prone to overfitting21, which can pose dif-
111
+ ficulties for any method that leverages these techniques. Thus, DFTB method development would
112
+ be holistically improved through a more automatic method for parameterization, where candidate
113
+ models could be screened rapidly and efficiently, thereby allowing the user to quickly determine
114
+ an optimal model for their specific needs.
115
+ In this work, we discuss our recent efforts to overcome these issues through use of the Cheby-
116
+ shev Interaction Model for Efficient simulation (ChIMES),47,48 which can be used to determine
117
+ ERep for molecular and condensed phase systems relatively quickly and with comparatively lower
118
+ data requirements. ChIMES is a many-body reactive force field based on linear combinations
119
+ of Chebyshev polynomials. It was initially developed for pure MD simulation (i.e., where all
120
+ aspects of a quantum mechanical calculation have been mapped onto the ChIMES functional
121
+ form). This has included both non-reactive and reactive materials, such as water under ambi-
122
+ ent and high pressure-temperature conditions49,50, high pressure C/O systems51,52, and detonating
123
+ energetic materials53. DFTB/ChIMES models have been created for a wide variety of materials,
124
+ including actinides and their oxides54,55, titanium-based systems36, and silicon (discussed below).
125
+ Additionally, ChIMES has been used to improve the accuracy of DFTB by including many-body
126
+ energies and forces through ∆-learning, where ChIMES augments a pre-existing DFTB param-
127
+ eterization for organic materials under ambient56 and reactive conditions39. We note that similar
128
+ to other machine-learning methods21, ChIMES can be used within any semi-empirical quantum
129
+ mechanical approach. However, we choose to focus on DFTB due to its close resemblance to
130
+ Kohn-Sham DFT as well as its proven accuracy for a variety of materials and conditions.
131
+ We begin with a brief discussion of the ChIMES formalism, including discussion of its func-
132
+ tional form and methods for optimization. Next we present some recent results on a general pur-
133
+ 4
134
+
135
+ pose DFTB/ChIMES model for silicon polymorphs, which has remained an outstanding issue in
136
+ DFTB model development. We note that all DFTB calculations discussed within this work were
137
+ performed with the DFTB+ code57,58. We then summarize previous work on a semi-automated
138
+ workflow for screening DFTB hyperparameters and ERep determination in creating a models for
139
+ TiH2, a candidate hydrogen storage material with several potential uses. Finally, we review our
140
+ recent results in using ChIMES to create DFTB models that approach hybrid-functional and cou-
141
+ pled cluster accuracy for organic compounds and molecular solids. In all cases, the advantages to
142
+ use of DFTB/ChIMES lies in its rapid parameterization time, small data requirements relative to
143
+ other machine-learned approaches, and the relative ease with which overfitting can be prevented
144
+ due to regularization within linear optimization approaches as well as the orthogonal nature of the
145
+ underlying basis set.
146
+ II.
147
+ METHODS
148
+ A.
149
+ ChIMES Formalism
150
+ The design philosophy behind ChIMES is based on a many-body expansion of the DFT total
151
+ energy. Briefly, the DFT total energy can be thought of as a sum of contributions of clusters
152
+ containing different numbers of atoms:
153
+ EDFT =
154
+ na
155
+
156
+ i1
157
+ 1Ei1+
158
+ na
159
+
160
+ i1>i2
161
+ 2Ei1i2+
162
+ na
163
+
164
+ i1>i2>i3
165
+ 3Ei1i2i3+
166
+ na
167
+
168
+ i1>i2>i3>i4
169
+ 4Ei1i2i3i4+· · ·+
170
+ na
171
+
172
+ i1>i2... inB−1>inB
173
+ nBEi1i2...inB.
174
+ (2)
175
+ Here, the one-body energies, 1Ei1, correspond to the atomic energy constants, the two-body ener-
176
+ gies, 2Ei1i2, to all pair-wise energies with indices {i1, i2}, the three-body energies, 3Ei1i2i3, to all
177
+ triplet energies with indicies {i1, i2, i3}, etc., all the way up to some predeterimed maximum bod-
178
+ iedness, nB. These terms are summed over all cluster combinations within the system containing
179
+ na total number of atoms.
180
+ In the ChIMES formalism, we represent each of the terms in our n-body expansion as a lin-
181
+ ear combination of Chebyshev polynomials. Chebyshev polynomials of the first kind of order m
182
+ are defined by the expression Tm (cos θ) = cos (mθ), more commonly written as Tm(x), where
183
+ x = cos θ and thus exists over the range [−1, 1]. Chebyshev polynomials offer a number of dis-
184
+ tinct advantages for interpolation that bear mentioning. Chebyshev polynomials of the first kind
185
+ 5
186
+
187
+ are orthogonal with respect to the weighting function 1/
188
+
189
+ 1 − x2. They can be computed with
190
+ a recurrence relationship and define a complete basis set, allowing for arbitrary complexity in a
191
+ potential energy surface. Their orthogonality allows for simple regularization where higher-order
192
+ polynomial coefficients can be set to zero without necessarily adversely affecting the quality of
193
+ the optimization. Polynomial expansions with Chebyshev polynomials of the first kind will have
194
+ exponentially decreasing coefficients for higher-order terms due to their monic form, helping to
195
+ prevent overfitting. In addition, they yield a “nearly optimal” error function, where the error in
196
+ an expansion will closely resemble a minimax polynomial. The derivaties of Chebyshev polyno-
197
+ mials of the first kind are related to Chebyshev polynomials of the kind Um(x) by the expression
198
+ dTm/dx = mUm−1, where Um (cos θ) = sin [(n + 1) θ] /sin θ. Chebyshev polynomials of the
199
+ second kind also form an orthogonal basis set (with respect to the weighting function
200
+
201
+ 1 − x2)
202
+ and can also be generated via a recurrence relation. This can allow for arbitrary complexity for
203
+ structural optimization or molecular dynamics calculations, where atomic forces are needed.
204
+ As a result, we can now write the two-body (2B) energy term in Equation 2 as the following
205
+ expression:
206
+ 2Ei1i2 = fp (ri1i2) + f
207
+ ei1ei2
208
+ c
209
+ (ri1i2)
210
+ O2
211
+
212
+ m=1
213
+ C
214
+ ei1ei2
215
+ m
216
+ Tm(s
217
+ ei1ei2
218
+ i1i2 )
219
+ (3)
220
+ In this case, C
221
+ ei1ei2
222
+ m
223
+ is the corresponding permutationally invariant coefficient for the interaction
224
+ between atom types ei1 and ei2, taken from the set of all possible element types, {e}. Tm
225
+
226
+ s
227
+ ei1ei2
228
+ i1i2
229
+
230
+ represents a Chebyshev polynomial of order m, and s
231
+ ei1ei2
232
+ i1i2
233
+ is the pair distance transformed to
234
+ occur over the interval [−1, 1] using a Morse-like function59,60. For that coordinate transform,
235
+ s
236
+ ei1ei2
237
+ i1i2
238
+ ∝ exp (−ri1i2/λe1e2) and λe1e2 is an element-pair distance scaling constant, usually taken
239
+ to be the peak position of the first coordination shell. Further details are discussed in Ref. 47. The
240
+ term f
241
+ ei1ei2
242
+ c
243
+ (ri1i2) is a Tersoff cutoff function61 which is set to zero beyond a maximum distance
244
+ defined for a given {e1, e2} pair set. In order to prevent sampling of ri1i2 distances below what is
245
+ sampled in our DFT training set, we introduce use of a smooth penalty function fp(ri1i2).
246
+ We can create greater than two-body orthogonal polynomials by defining a cluster of size n and
247
+ taking the product of the Chebyshev polynomials derived from the constituent
248
+ �n
249
+ 2
250
+
251
+ unique pairs.
252
+ For example, the three-body polynomials will be products of
253
+ �3
254
+ 2
255
+
256
+ = 3 two-body polynomials. We
257
+ thus write the ChIMES three-body (3B) energy as the following:
258
+ 6
259
+
260
+ 3Ei1i2i3 = f
261
+ ei1ei2
262
+ c
263
+ (ri1i2) f
264
+ ei1ei3
265
+ c
266
+ (ri1i3) f
267
+ ei2ei3
268
+ c
269
+ (ri2i3)
270
+ O3
271
+
272
+ m=0
273
+ O3
274
+
275
+ p=0
276
+ O3
277
+
278
+ q=0
279
+
280
+ C
281
+ ei1ei2ei3
282
+ mpq
283
+ Tm
284
+
285
+ s
286
+ ei1ei2
287
+ i1i2
288
+
289
+ Tp
290
+
291
+ s
292
+ ei1ei3
293
+ i1i3
294
+
295
+ Tq
296
+
297
+ s
298
+ ei2ei3
299
+ i2i3
300
+
301
+ .
302
+ (4)
303
+ We take a triple sum for the i1i2, i1i3, and i2i3 polynomials over the hypercube up to O3, and
304
+ include a single permutationally invariant coefficient for each set of powers and atom types,
305
+ C
306
+ ei1ei2ei3
307
+ mpq
308
+ . We use the primed sum to denote that only terms for which two or more of the m, p, q
309
+ polynomial powers are greater than zero are included in order to guarantee that three distinct
310
+ atom-centers are evaluated. The expression for 3Ei1i2i3 also contains the fc smoothly varying cut-
311
+ off functions for each constituent pair distance. Penalty functions are not included in this case and
312
+ instead are handled entirely by the two-body interaction.
313
+ Higher bodied terms are included in ChIMES in a similar fashion. For example, four-body (4B)
314
+ terms are regularly included in ChIMES optimizations53, where 4Ei1i2i3i4 is now determined from
315
+ the sum over the product of the
316
+ �4
317
+ 2
318
+
319
+ = 6 constituent pair-wise polynomials multiplied by a single
320
+ permutationally invariant coefficient. In practice, even higher bodied terms could be included in
321
+ ChIMES, though this can lead to a combinatorially large polynomial space and hence parameter
322
+ explosion that can lead to overfitting and excessive computational expense. Hence, the norm
323
+ with ChIMES optimization is generally to include up to four-body terms, though DFTB/ChIMES
324
+ models tend to be converged with up to three-body terms, only.36,39,54–56
325
+ Optimal ChIMES parameters (the coefficients of linear combination) can then readily be deter-
326
+ mined through the overdetermined matrix equation wAC = wBrep. The matrix A corresponds
327
+ to the derivatives of the ChIMES energy or force expression with respect to the fitting coefficients.
328
+ The column vectors C and Brep correspond to the linear ChIMES coefficients for which we are
329
+ solving and the numerical values for the training data, respectively. The symbol w corresponds
330
+ to a diagonal matrix of weights to be applied to the elements of Brep and rows of A. This linear
331
+ least-squares optimization problem can be solved for with any number of established algorithms,
332
+ discussed below.
333
+ B.
334
+ ChIMES optimization for ERep or ∆-learning
335
+ The ChIMES training set for determination of ERep or ∆-learning proceed in a similar fashion.
336
+ ERep training is computed by calculating DFTB forces (F), stress tensor components (σ), and
337
+ 7
338
+
339
+ possibly system energies Etot for each configuration in the training set with the chosen set of
340
+ Hamiltonian parameters (i.e., {Rψ}, {Rn}, density or potential superposition, second or third-
341
+ order DFTB) with zero values for those components from ERep. These “repulsive energy free”
342
+ results are then subtracted from the DFT values for those quantities, i.e.,
343
+ Eτ∗
344
+ Rep = Eτ
345
+ DFTi − Eτ
346
+ QM,DFTBi
347
+ F τ∗
348
+ Repαi = F τ
349
+ DFTαi − F τ
350
+ QM,DFTBαi
351
+ στ∗
352
+ Repαβ = στ
353
+ DFTαβ − στ
354
+ QM,DFTBαβ
355
+ (5)
356
+ Here, τ corresponds to a specific MD configuration, α and β to the cartesian directions, and i is
357
+ the atomic index. In practice, we have used the diagonal components of the stress tensor, only
358
+ (i.e., α = β in Equation 5). The ‘*’ is used to denote that the quantities being computed are part of
359
+ the training set, and ‘QM,DFTB’ refers to the quantum components of the DFTB calculation, i.e.,
360
+ only forces and stresses from EBS and ECoul. Calculation of a ∆-learning training set is identical
361
+ with the exception that the quantities in Equation 5 are no longer repulsive energy free but instead
362
+ contain terms from the DFTB repulsive energy model of choice. This results in the following
363
+ objective function:
364
+ Fobj =
365
+
366
+
367
+
368
+ � 1
369
+ Nd
370
+ ×
371
+ � M
372
+
373
+ τ=1
374
+ N
375
+
376
+ i=1
377
+ 3
378
+
379
+ α=1
380
+ w2
381
+ Fαi (∆Fαi)2 +
382
+ M
383
+
384
+ τ=1
385
+ 3
386
+
387
+ α=1
388
+ w2σαα (∆σαα)2 +
389
+ M
390
+
391
+ τ=1
392
+ w2
393
+ Ei (∆Ei)2
394
+
395
+ ,
396
+ (6)
397
+ where M is the total number of configurations in the training set and Nd is the total number of data
398
+ entries (3MN force components plus 3M stress tensor components plus M energy components).
399
+ In addition, ∆Fαi = F τ
400
+ ChIMESαi − F τ∗
401
+ Repαi, ∆σαβ = στ
402
+ ChIMESαβ − στ∗
403
+ Repαβ, and ∆Ei = Eτ
404
+ ChIMESi −
405
+ Eτ∗
406
+ Repi.
407
+ ChIMES bears some resemblance to the Atomic Cluster Expansion approach (ACE)62,63, where
408
+ many-body interactions are represented by a product of Chebyshev polynomials and real spherical
409
+ harmonics. These models also differ from ChIMES in that the underlying polynomial basis set is
410
+ atom-centered (similar in spirit to an embedded atom model64) rather than using a cluster approach
411
+ as we adopt here. Similarly, the spectral neighbor analysis potential (SNAP) uses bispectrum
412
+ components to compute the total energy of a system as a sum over atom energies, which are
413
+ expressed as a weighted sum over bispectrum components65.
414
+ 8
415
+
416
+ C.
417
+ Linear least-squares approaches for ChIMES optimization
418
+ The ChIMES potential is linear with respect to the fitting coefficients, which allows for use
419
+ of powerful global optimization tools that are unavailable to non-linear machine-learned models.
420
+ In our efforts, we have focussed on the Singular Value Decomposition (SVD) and Least-Angle
421
+ Regression (LARS) with Least Absolute Selection and Shrinkage Operator (LASSO) regulariza-
422
+ tion methods. We now offer a brief discussion of each method and leave details to the pertinent
423
+ references.
424
+ SVD66 solves for optimal fitting coefficients directly by performing an eigendecomposition
425
+ of the generally rectangular A matrix and computing its pseudo-inverse. Regularization can be
426
+ performed by setting singular values (eigenvalues of the square matrix in the SVD decomposition)
427
+ with an absolute value below a given threshold to zero. In our work, we take this parameter to be
428
+ Dmaxϵ, where Dmax is the maximum singular value of A and ϵ is a factor below a value of one.
429
+ LARS is a type of forward step-wise or iterative regression67,68. Here, all model coefficients are
430
+ initialized to zero and the covariate (i.e., polynomial values) most correlated to the error residual is
431
+ determined (i.e., those having the most significant impact on the fit). The corresponding ChIMES
432
+ parameter is modified incrementally to minimize the error residual until a second covariate yields
433
+ an equal correlation. At this point, it is included in the active parameter set and both coefficients are
434
+ modified simultaneously. The process continues until all coefficients are included in the solution,
435
+ at which point a result equivalent to ordinary least squares fitting is obtained. In practice, LARS
436
+ optimization can be performed using only a subset of all possible parameters.
437
+ LASSO69 is an L1-norm regularization method whereby regularization is based on the sum
438
+ of the absolute values of the fitting coefficients, which has the effect of shrinking a subset of
439
+ parameters to zero. In this case, the objective function Fobj (Equation 6) is minimized with the
440
+ following additional constraint:
441
+ F LASSO
442
+ obj
443
+ = Fobj + 2α
444
+ ni
445
+
446
+ i=1
447
+ |ci| .
448
+ (7)
449
+ Here, ni is the total number of unique fitting parameters, ci. The parameter α regularizes the
450
+ magnitude of the fitting coefficients, which reduces possible overfitting. The LASSO method
451
+ can be implemented as a variant of LARS where parameters are either added or removed at each
452
+ solution stage. We find the LASSO variant of LARS to be numerically stable for ill-conditioned
453
+ A matrices, which are often found in force matching.
454
+ 9
455
+
456
+ III.
457
+ RESULTS
458
+ A.
459
+ DFTB/ChIMES Models for Silicon Polymorphs
460
+ Silicon has proven to be a significant challenge for DFTB model parameterization likely due to
461
+ the fact that its different polymorphs can have different coordination numbers and nearest neigh-
462
+ bor distances. This yields a variety of bond lengths and energies that need to be accounted for in
463
+ order to obtain a single, transferable DFTB model that does not have to be specific for a given solid
464
+ phase. Previous work has shown that standard two-body repulsive energies do not exhibit sufficient
465
+ complexity to accurately account for several Si phases with different bonding environments,34 in
466
+ contrast to carbon, where multiple phases can be represented by a single two-body polynomial
467
+ expansion70. Neural network (NN) approaches have been used for the repulsive energy in order
468
+ to account for many-body interactions in ERep,44 and the results are promising. NN approaches
469
+ though generally require large amounts of data and can frequently optimize to local minima, po-
470
+ tentially complicating their use. Here, we attempt to overcome this issue by creating a many-body
471
+ ChIMES ERep for silicon that is transferable to a number of different Si polymorphs as well as
472
+ prediction of vibrational spectra and calculation of defect formation energies.
473
+ In our work, we target two previous Si DFTB parameterizations, pbc-0-371 and siband-1-1,41
474
+ which have different strengths and weaknesses. The pbc-0-3 parameter was creating using density
475
+ superposition (i.e., the quantum mechanical potential VQM (ρ) was expressed as V (ρA + ρB) for
476
+ atoms A and B) , which tends to be preferred due to its improved representation of chemical
477
+ bonding and vibrations36. However, d-orbital interactions were not tabulated aside from the d-
478
+ orbital onsite energy, which could have ramifications for some material properties. In contrast,
479
+ the siband-1-1 parameter set was specifically created with d-orbital interactions but with potential
480
+ superposition (i.e., VQM (ρ) = V (ρA) + V (ρB)) in order to yield accurate prediction of electronic
481
+ properties, including the electronic band structure of Si-containing solids. In addition, the siband-
482
+ 1-1 parameter set does not contain a repulsive energy of any sort, precluding its use in structural
483
+ relaxation or MD simulation which severely limits its usefulness overall.
484
+ Our goal is to thus to create new ChIMES ERep potentials for each set of Slater-Koster interac-
485
+ tion parameters using identical DFT training data and ChIMES hyperparameters in order to com-
486
+ pare and contrast the effectiveness of each as a possible one-fits-all model. Calculations for our sil-
487
+ icon DFT dataset were performed using the Vienna ab initio Simulation Package (VASP)72–74, with
488
+ 10
489
+
490
+ projector-augmented wave function (PAW) pseudopotentials75,76 and the Perdew-Burke-Ernzerhof
491
+ exchange-correlation functional (PBE)77. We found our results to be converged with a planewave
492
+ cutoff of 500 eV, which was used in all of the calculations discussed here. We have used an
493
+ electron density convergence criteria of 10−6 eV, with a force convergence of 10−2 eV/ ˚A for all
494
+ geometry/cell optimizations. The Mermin functional78 smearing was set to 0.03 eV for all calcu-
495
+ lations performed in this work. The system energy and pressure was found to be converged with
496
+ sampling of the Brillouin Zone with a 2 × 2 × 2 Monkhorst-Pack mesh79 for all supercells. We
497
+ then generated cold curves for each phase by isotropically expanding and contracting the simula-
498
+ tion cell lattice. Here, we used a diamond structure supercell of 64 atoms, a bcc structure of 54
499
+ atoms, a simple cubic structure of 64 atoms, and a graphene sheet of 32 atoms. This yielded an
500
+ initial set of 463 configurations for our ChIMES ERep optimization.
501
+ In order to sample forces from a variety different configurations, we have also included MD
502
+ data for the diamond and graphene phases, using the same number of atoms in each supercell as
503
+ before. These supercells were isotropically expanded and contracted between 90% to 110% of
504
+ the ground-state density. Each MD simulation was run for ∼5 picoseconds at 600 K, from which
505
+ we took snapshots at fixed intervals of ∼200 femtoseconds for our training set. This yielded
506
+ an additional 405 configurations for our ChIMES ERep determination. In all, our final training set
507
+ contained a total of 838 configurations of different silicon phases. ChIMES ERep optimization was
508
+ then performed using values of rmin = 2.0 ˚A and rmax = 4.0 ˚A. The value of rmax was informed
509
+ in part from previous development of a neural network repulsive energy,34 which resulted in a
510
+ minimization of the root mean square (RMS) error in our fit. In addition, we found that a value of
511
+ rmax = 4.0 ˚A yielded an improved description of the expanded states in our training set, where the
512
+ bonded interactions between Si atoms is longer than the ground-state.
513
+ We now refer to our ChIMES model based on pbc-0-3 as pbc/ChIMES and our model based
514
+ on siband-1-1 as siband/ChIMES. Both pbc/ChIMES and siband/ChIMES were created with a 2B
515
+ order of 12, 3B order of 8, and a LASSO regularization parameter (α) value of 10−3, similar to
516
+ previous efforts36. We have used the Morse coordinate transform with a value of λ = 2.4 ˚A, which
517
+ corresponds to the first peak in the diamond phase radial distribution function. For pbc/ChIMES,
518
+ this yielded an overall RMS error of 1.44 eV/ ˚A in the forces, 0.43 GPA in the pressure, and
519
+ 0.038 eV/atom in energy. The RMS errors for siband/ChIMES were slightly higher, with values
520
+ of 2.22 eV/ ˚A for the forces, 0.55 GPa for the pressure, and 0.16 eV/atom for the energy. Use
521
+ of a Chebyshev basis set 2B order of 16, 3B order of 12, and 4B order of 4 yielded reduction in
522
+ 11
523
+
524
+ the RMS errors of < 1% with similarly marginal improvement in validation quantities such as the
525
+ computed defect energies. Use of a value of λ = 3.0 ˚A also had only a small effect on the resulting
526
+ model. All ChIMES/DFTB calculations were performed with self-consistent charges using similar
527
+ parameters to our DFT calculations. This included charge convergence criteria of 2.72 × 10−5 eV
528
+ (10−6 au), a force convergence of 10−2 eV/ ˚A for all geometry optimizations, and 2×2×2 k-point
529
+ mesh for all calculations.
530
+ TABLE I: Ground state energies relative to diamond (∆Ediam) in eV/atom and nearest neighbor
531
+ distances (NN) in ˚A for the Si polymorphs considered in this work.
532
+ diamond
533
+ bcc
534
+ simple cubic
535
+ graphene
536
+ bc8
537
+ NN ∆Ediam NN ∆Ediam NN ∆Ediam NN ∆Ediam NN ∆Ediam
538
+ pbc/ChIMES
539
+ 2.37
540
+ 0.00
541
+ 2.67
542
+ 0.55
543
+ 2.53
544
+ 0.30
545
+ 2.23
546
+ 0.70
547
+ 2.37
548
+ 0.14
549
+ siband/ChIMES 2.36
550
+ 0.00
551
+ 2.65
552
+ 0.53
553
+ 2.54
554
+ 0.31
555
+ 2.26
556
+ 0.59
557
+ 2.39
558
+ 0.15
559
+ DFT
560
+ 2.37
561
+ 0.00
562
+ 2.68
563
+ 0.54
564
+ 2.53
565
+ 0.30
566
+ 2.25
567
+ 0.65
568
+ 2.39
569
+ 0.16
570
+ In order to test the applicability of our ChIMES/DFTB models to different of Si phases, we have
571
+ computed the relative energies and nearest neighbor distances for several polymorphs, including
572
+ those in our training set as well as the bc8 phase (Table I). Our results indicate strong agreement
573
+ with DFT for both models. We observe close agreement for all properties for both pbc/ChIMES
574
+ and siband/ChIMES, where the energy of each phase relative to the diamond ground-state tends
575
+ to agree with DFT within 0.01 eV, and the subsequent nearest neighbor distances agree within
576
+ 0.01 − 0.02 ˚A. The graphene phase is a small exception, where pbc/ChIMES yielded a relative
577
+ energy of 0.70 eV/atom and siband/ChIMES a relative energy of 0.59 eV, compared to a value of
578
+ 0.65 eV for DFT. However, both models still yield the correct energetic ordering of the phases.
579
+ Similar to previous efforts34,44, we have determined cold energy curves under isotropic com-
580
+ pression and expansion for all phases in this study (Fig. 1).
581
+ Overall, both pbc/ChIMES and
582
+ siband/ChIMES yield close agreement with DFT. Both models have particularly close agreement
583
+ for the diamond and simple cubic phases. The siband/ChIMES model exhibited a small oscil-
584
+ lation in the bcc cold curve at a nearest neighbor distance of 2.7 ˚A which is not present in the
585
+ pbc/ChIMES result. However, the agreement with DFT is reasonable for both models. The largest
586
+ disagreement for pbc/ChIMES is with graphene, where it yields a more positive curvature at ex-
587
+ panded densities, whereas siband/ChIMES yields closer agreement to DFT overall. Both models
588
+ 12
589
+
590
+ −5.6
591
+ −5.4
592
+ −5.2
593
+ −5
594
+ −4.8
595
+ −4.6
596
+ −4.4
597
+ −4.2
598
+ −4
599
+ 2.2
600
+ 2.3
601
+ 2.4
602
+ 2.5
603
+ 2.6
604
+ 2.7
605
+ 2.8
606
+ 2.9
607
+ 3
608
+ Energy/atom (eV)
609
+ NN (Å)
610
+ (a) pbc/ChIMES
611
+ −5.6
612
+ −5.4
613
+ −5.2
614
+ −5
615
+ −4.8
616
+ −4.6
617
+ −4.4
618
+ −4.2
619
+ −4
620
+ 2.2
621
+ 2.3
622
+ 2.4
623
+ 2.5
624
+ 2.6
625
+ 2.7
626
+ 2.8
627
+ 2.9
628
+ 3
629
+ Energy/atom (eV)
630
+ NN (Å)
631
+ (b) siband/ChIMES
632
+ FIG. 1: Cold curves for several silicon polymorphs from pbc/ChIMES and siband/ChIMES
633
+ DFTB models (points) compared to results from DFT (solid lines). The black curves correspond
634
+ to the diamond phase, blue to bcc, red to simple cubic, and the green to graphene. The orange
635
+ marks correspond to the bc8 phase and were not a part of the training set.
636
+ predict very similar agreement for the bc8 phase, where each yielded a small oscillation in the
637
+ cold curve around 2.5 ˚A. This is likely due to insufficient sampling of these Si-Si distances and
638
+ bonding environments in our training set. Regardless, these results indicate strong agreement for
639
+ energy vs. volume relationships, which could indicate accurate force prediction from each model.
640
+ We now assess the force output from each model through comparison of the resulting vibra-
641
+ tional density of states (VDOS) for the diamond phase to results from DFT (Fig. 2). These were
642
+ computed from Fourier Transform of the velocity autocorrelation function which was determined
643
+ from MD simulations at constant volume-temperature (NVT), conducted at 600 K, using a Nos´e-
644
+ Hoover thermostatted chain80–82 and run for 15–20 ps using a timestep of 1 ps. Our results for
645
+ pbc/ChIMES indicate fairly close agreement with DFT. Prediction of the lowest lying vibrational
646
+ peak is off by only ∼7 cm−1, with a value of 134 cm−1 compared to a value of 127 cm−1 from
647
+ DFT. DFT yields a small peak at 231 cm−1 which appears as a broad, higher intensity shoulder
648
+ at 224 cm−1 in the pbc/ChIMES spectrum. The remaining peaks in the spectrum show similarly
649
+ strong agreement with some variation in the intensity of the peaks, including accurate prediction
650
+ from pbc/ChIMES of the vibron peak at 450 cm−1 compared to a frequency of 453 cm−1 from
651
+ DFT.
652
+ 13
653
+
654
+ −20
655
+ 0
656
+ 20
657
+ 40
658
+ 60
659
+ 80
660
+ 100
661
+ 120
662
+ 140
663
+ 160
664
+ 180
665
+ 200
666
+ 100
667
+ 200
668
+ 300
669
+ 400
670
+ 500
671
+ Intensity
672
+ Frequency (cm−1)
673
+ FIG. 2: Vibrational density of states for the Si diamond phase, computed at 600 K. The red line
674
+ corresponds to pbc/ChIMES. the blue line to siband/ChIMES, and the black dashed line to DFT.
675
+ In contrast, siband/ChIMES shows slightly less accurate agreement with DFT overall. The
676
+ agreement for the lowest vibrational peak is fairly close, with a frequency of 120 cm−1. The
677
+ remainder of the siband/ChIMES spectrum yields an accurate overall shape of the VDOS, though
678
+ with some errors in peak positions and intensities. There is some deviation in the siband/ChIMES
679
+ spectrum for next two vibrational peaks, where we observe a frequency of 173 cm−1 for the second
680
+ lowest frequency peak compared to a value of 188 cm−1 from DFT and a frequency of 217 cm−1
681
+ for the low intensity peak after that compared to the previously mentioned DFT peak at 231 cm−1.
682
+ The siband/ChIMES spectrum yields a close match in intensity and frequency with DFT for the
683
+ VDOS peak at 344 cm−1. However, the subsequent two peaks are red shifted in frequency and
684
+ lower in intensity, with values of peak positions of 413 and 472 cm−1, compared to values of 396
685
+ and 453 cm−1 from DFT. The improved VDOS determination from pbc/ChIMES could be due
686
+ in part to its parameterization with density superposition, which has been shown to yield more
687
+ accurate predictions over potential superposition36. We note that these peak position differences
688
+ discussed here correspond to small changes in energy, where 20 cm−1 corresponds to ∼ 2.5 ×
689
+ 10−3 eV. Hence, it is possible that siband/ChIMES will still yield sufficiently accurate forces for
690
+ some applications.
691
+ 14
692
+
693
+ (a) Vacancy
694
+ (b) Tetrahedral
695
+ (c) Hexagonal
696
+ FIG. 3: Images of the diamond phase point defects investigated in this study. All defects are
697
+ shown as a red sphere for the sake of clarity.
698
+ TABLE II: Defect formation energies for the Si diamond phase. All energies are in eV.
699
+ Defect
700
+ pbc/ChIMES siband/ChIMES DFT (PBE)
701
+ vacancy
702
+ 3.45
703
+ 4.60
704
+ 3.84
705
+ tetrahedral
706
+ 5.11
707
+ 4.88
708
+ 3.84
709
+ hexagonal
710
+ 5.87
711
+ 4.79
712
+ 3.61
713
+ Finally, we have computed defect formation energies from our DFTB/ChIMES models (Fig. 3).
714
+ Here, we have investigated a single Si atom vacancy as well as an interstitial atom in either a
715
+ hexagonal or tetrahedral site, which were determined from use of the pymatgen software suite83.
716
+ The tetrahedral interstitial site occurs where an additional Si atom is coordinated by four atoms
717
+ from the lattice, whereas the hexagonal interstitial site occurs when the additional Si atom re-
718
+ sides in a hexagonal opening within the lattice. The defect formation energy Eform is computed
719
+ as Eform = Edef − NdefEdiam, where Edef is the total energy of the defect containing system,
720
+ Ndef is the number of Si atoms in that configuration, and Ediam is the energy per atom of the
721
+ perfect diamond phase. Similar to previous Si DFTB efforts44, calculations were initialized from
722
+ an optimized 216 atom supercell where we retained a Monkhorst-Pack mesh of 2 × 2 × 2, after
723
+ which we created the point defect and optimized the ionic positions of each configuration using
724
+ the same k-point mesh. Our results indicate some agreement with previous PBE-DFT calculations
725
+ from Ref. 44. The pbc/ChIMES model agrees with the DFT vacancy energy within 0.4 eV, but
726
+ yields results that are 1–2 eV too high for both interstitial energies. In particular, the three defect
727
+ energies from pbc/CHIMES differ over a range of over 2.4 eV, with the both interstitial energies
728
+ 15
729
+
730
+ yielding larger results than that of the vacancy. In contrast, the result from DFT all lie relatively
731
+ close together (within a range of 0.23 eV) and DFT exhibits equal formation energy values for
732
+ the vacancy and tetrahedral interstitial. It is likely that the interstitial energies would be decreased
733
+ with full accounting of d-orbital off-site interactions, which are absent in the original pbc-0-3
734
+ parameter set. The siband/ChIMES model yields defect formation energies that are consistently
735
+ ∼1 eV too high relative to DFT. However, the siband/ChIMES results differ over an energy range
736
+ of 0.28 eV, yielding improved agreement with DFT in this respect. It is likely that there would
737
+ be some variation in DFT results depending on the choice of exchange-correlation function and
738
+ possible inclusion of a dispersion energy correction.
739
+ Overall, our we able to create two new DFTB/ChIMES models that more closely approach a
740
+ single-purpose approach for silicon phases under different conditions. The pbc/ChIMES model ap-
741
+ pears to yield a somewhat improved description of atomic forces, whereas as the siband/ChIMES
742
+ model yields more systematically consistent defect formation energies that could make it prefer-
743
+ able for some calculations. As mentioned, some of the limitations of the pbc/ChIMES model could
744
+ possibly be overcome through inclusion of d-orbital two-center interactions in the corresponding
745
+ Slater-Koster file. Regardless, we now provide a repulsive energy for the siband-1-1 parameter
746
+ set, which will allow its use for structural relaxations and/or dynamics calculations in addition to
747
+ its accuracy for electronic properties. It is possible that the slightly longer cutoff radius for our
748
+ ChIMES ERep could be mitigated through optimization of the choice of DFTB confining radii
749
+ (discussed in the next section). Future improvement of these models could also involve inclusion
750
+ of data from MD simulations of amorphous or defect containing systems at different temperatures
751
+ and pressures.
752
+ B.
753
+ Semi-automated Workflow for DFTB/ChIMES Model Creation
754
+ In this subsection, we summarize previous work on TiH236 which indicates the utility in using a
755
+ ChIMES ERep in a semi-automated fashion to screen for optimal confining radii in a Slater-Koster
756
+ file parameterization. TiH2 has a number of industrial uses as a functional material, including
757
+ in hydrogen storage alloys84, superconductors85, and as a blending agent for porous foams86. Its
758
+ ground-state structure exhibits face-centered-cubic (fcc) symmetry, with the (111) facet computed
759
+ to have the lowest surface energy (Fig. 4). Several adsorption sites are illustrated, including Top
760
+ (directly above a Ti atom), Hollow (in an interstitial cavity), and several Bridge sites (existing in
761
+ 16
762
+
763
+ between Ti-Ti and H-H nearest neighbors) sites. TiH2 is a somewhat ideal system for DFTB model
764
+ development in that DFT calculations on small supercells are relatively tractable, which allows for
765
+ straightforward validation. DFT calculations though are generally too computationally inefficient
766
+ for the larger supercells needed to model grain boundaries and crystalline defects at sufficiently
767
+ low concentration, allowing for several applications of a new TiH2 DFTB model in future studies.
768
+ Ti
769
+ H
770
+ x
771
+ o
772
+ o
773
+ o
774
+ o
775
+ o
776
+ o
777
+ o
778
+ x2
779
+ x1
780
+ (111) surface
781
+ (011) surface
782
+ Bulk
783
+ FIG. 4: Pictures of TiH2 bulk and surfaces. The left panel shows the bulk fcc lattice. The middle
784
+ panel shows the (111) crystalline surface the Top (marked with an ‘O’) and Hollow (‘X’)
785
+ adsorption sites indicated. The right panel shows the (011) crystalline surface with the Top (‘O’),
786
+ Bridge-1 (‘X1’) and Bridge-2 (‘X2’) sites indicated. Reprinted with permission from Journal of
787
+ Chemical Theory and Computation 2021 17 (7), 4435-4448. Copyright 2021, American
788
+ Chemical Society.
789
+ Here, we have leveraged rapid ChIMES ERep optimzation by creating a workflow that allowed
790
+ us to perform a semi-exhaustive search of all DFTB and ChIMES hyperparameters (Fig. 5). We
791
+ first compute a matrix of thirty Slater-Koster files from titanium wavefunction confining radii
792
+ (RTi
793
+ ψ ) and density confining radii (RTi
794
+ n ) sampled over a range of 3.2 ≤ RTi
795
+ ψ
796
+ ≤ 5.0 au and
797
+ 6.0 ≤ RTi
798
+ n
799
+ ≤ 17.0 au. Hydrogen interaction parameters were taken from the miomod-hh-0-1
800
+ parameter set. Model down selection could then be performed over the entire grid Slater-Koster
801
+ tables through comparison to our selected validation data, which allowed us to determine optimal
802
+ ChIMES polynomial orders and the LASSO regularization parameter.
803
+ For this work, our DFT training set consisted of molecular dynamics simulations of unit cell
804
+ configurations (12 atoms total), run for 5 ps at 400 K with simulation cells initially optimized to
805
+ pressures in a range from −8 to 100 GPa. All MD calculations were run in the constant temperature
806
+ and volume (NV T) ensemble with Nos´e-Hoover thermostat chains80–82 and a timestep of 0.2 fs.
807
+ The slightly elevated temperature and wide pressure range including negative pressure were chosen
808
+ in order to yield a broad sampling of the underlying potential energy surface. Atomic forces and
809
+ the diagonal of the stress tensor were then sampled from MD configurations at fixed time intervals
810
+ 17
811
+
812
+ bbSelect !", $!, $";
813
+ Create SKF files.
814
+ Compute DFTB training set:
815
+ ⃗&DFT − ⃗&DFTB (no ERep)
816
+ (##,DFT −(##,DFTB (no ERep)
817
+ Desired accuracy
818
+ achieved?
819
+ Validation set:
820
+
821
+ Bulk: lattice const., VDOS, 1H and 2H
822
+ vacancies.
823
+
824
+ (001), (011), and (111) surface energies
825
+
826
+ Eads on (011) and (111) surfaces (5 total)
827
+
828
+ (011) and (111) surface and subsurface
829
+ H vacancy energies (8 total)
830
+ Choose ChIMES 2B, 3B,
831
+ 4B orders, cutoff radii
832
+ and determine )$%&.
833
+ Yes
834
+ No
835
+ Complete
836
+ Compute
837
+ DFT-MD
838
+ data
839
+ FIG. 5: Flowchart for creation of DFTB Erep models through ChIMES force field
840
+ parameterization. Reprinted with permission from Journal of Chemical Theory and Computation
841
+ 2021 17 (7), 4435-4448. Copyright 2021, American Chemical Society.
842
+ of ∼ 160 fs in order ensure configurations were as statistically uncorrelated as possible. This
843
+ yielded up to 30 MD snapshots for each pressure. Inclusion of system energies in our training data
844
+ did not appear to improve the quality of our optimization and hence were omitted. In addition, in
845
+ order to sample hyper- and hypo-coordinated configurations in the system, we included MD data
846
+ for a unit cell with a single hydrogen interstitial or single vacancy site, each run for 5 ps. This
847
+ yielded a total of 153 unit cell-sized configurations for our training set. Validation calculations
848
+ for all of our DFTB/ChIMES models were performed on the bulk lattice constant, single and
849
+ double hydrogen vacancy energies, and the vibrational density of states. We also validated our
850
+ models against a number of surface properties, including the surface energies of the (001), (011)
851
+ and (111) facets, five different hydrogen adsorption energies on the (011) and (111) surfaces, and
852
+ surface and subsurface hydrogen vacancy energies on the same two facets. Validation data for
853
+ hydrogen interactions with the (001) surface were omitted from our study due to the presence of a
854
+ significant surface dipole on this facet.
855
+ Once again, all DFT calculations were performed with VASP using PAW pseudopotentials and
856
+ PBE. We found our results to be converged with a planewave cutoff of 400 eV and an energy
857
+ 18
858
+
859
+ convergence criteria of 10−6 eV, both of which were used for the results reported here. Fourth
860
+ order Methfessel-Paxton smearing87 was used with a value of 0.13 eV for all geometry and cell
861
+ lattice optimizations in order to ensure energy convergence without dependence on the electronic
862
+ smearing temperature. The Mermin functional78 with the same electronic temperature was used for
863
+ all MD calculations in order to avoid spurious forces due to possible negative occupation numbers
864
+ from the Methfessel-Paxton approach. Brillouin Zone sampling for all TiH2 unit cell calculations
865
+ was performed with a 10 × 10 × 10 k-point mesh, whereas we used a mesh of 5 × 5 × 5 for
866
+ 32 formula unit (96 atom) bulk calculations. We used system sizes of 168 atoms/7 layers for
867
+ the (001) surface, 144 atoms/6 layers for the (011) surface, and 192 atoms/8 layers for the (111)
868
+ surface, each with a vacuum of 20 ˚A and a k-point mesh of 5×5×1 in the direction of the surface.
869
+ DFTB+ calculations were performed using self-consistent charges (SCC)22 and charge conver-
870
+ gence criteria of 2.72 × 10−5 eV (10−6 au). Inclusion of an external van der Waals correction31,88
871
+ is beyond the scope of our present study. We have performed “shell-resolved” SCC calculations,
872
+ where separate Hubbard U parameters were determined for each orbital angular momentum shell.
873
+ All minimum and cutoff radii for the ChIMES ERep were set to include the first coordination shell
874
+ sampled in our training set, only: 2.5 ≤ rTiTi ≤ 3.5 ˚A and 1.5 ≤ rHTi ≤ 2.5 ˚A . We use values
875
+ of λTiTi = 3.0 ˚A and λHTi = 2.0 ˚A for the Morse-like coordinate transforms. H-H repulsive
876
+ interaction were not sampled in our training set and were thus also taken from the miomod-hh-0-1
877
+ parameter set.
878
+ Our results for a subset of our validation data (Fig. 6) allow us to describe general trends
879
+ regarding the confining radii. We observe an approximate linear relationship between RTi
880
+ ψ and
881
+ RTi
882
+ n in terms of the accuracy of the E111 energy, where the most accurate surface energy results
883
+ from either small or large choice for both radii. All of the DFTB/ChIMES models created in this
884
+ iteration tend to under-predict the (E001/E111) ratio (i.e., the ratio of highest to lowest surface
885
+ energies in our study) relative to our DFT calculations, where we observe values of 1.35–1.44
886
+ compared to the DFT ratio of 1.70. We note that is is likely in part due to the surface dipole
887
+ moment present in our construction of the (001) facet. In addition, our results indicate a much
888
+ smaller dependence on choice of RTi
889
+ n for a given RTi
890
+ ψ . We note that there can be strong dependence
891
+ of the surface energies on choice of DFT functional (e.g., Ref. 89), although the relative energetic
892
+ ordering tends to be consistent.
893
+ Our final set of hyper-parameter values includes {RTi
894
+ ψ = 3.6 au, RTi
895
+ n = 6.0 au} and {O2B = 8,
896
+ O3B = 4}, optimized with LASSO/LARS and regularization of α = 10−3. This model yields
897
+ 19
898
+
899
+ 6
900
+ 8
901
+ 10
902
+ 12
903
+ 14
904
+ 16
905
+ 18
906
+ 3
907
+ 3.5
908
+ 4
909
+ 4.5
910
+ 5
911
+ RTi
912
+ n (au)
913
+ RTi
914
+ ψ (au)
915
+ −0.2
916
+ −0.15
917
+ −0.1
918
+ −0.05
919
+ 0
920
+ 0.05
921
+ 0.1
922
+ 0.15
923
+ Fractional Deviation of E111
924
+ 6
925
+ 8
926
+ 10
927
+ 12
928
+ 14
929
+ 16
930
+ 18
931
+ 3
932
+ 3.5
933
+ 4
934
+ 4.5
935
+ 5
936
+ RTi
937
+ n (au)
938
+ RTi
939
+ ψ (au)
940
+ −0.35
941
+ −0.34
942
+ −0.33
943
+ −0.32
944
+ −0.31
945
+ −0.3
946
+ −0.29
947
+ −0.28
948
+ −0.27
949
+ −0.26
950
+ ∆(E001/E111)
951
+ FIG. 6: Results for sweep of values of RTi
952
+ ψ and RTi
953
+ n , where the ChIMES ERep was determined
954
+ with a 2B order of 12 and 3B order of 8. The top panel corresponds to the fractional deviation of
955
+ the surface energy,
956
+
957
+ EDFTB
958
+ 111
959
+ − EDFT
960
+ 111
961
+
962
+ /EDFT
963
+ 111 , and the middle panel to the deviation of
964
+ (E001/E111) relative to DFT. Reprinted with permission from Journal of Chemical Theory and
965
+ Computation 2021 17 (7), 4435-4448. Copyright 2021, American Chemical Society.
966
+ RMS errors of 0.076 eV/ ˚A for hydrogen forces, 0.056 eV/ ˚A for titanium forces, and 0.35 GPa for
967
+ the stress tensor diagonal. Results for bulk properties indicate that DFTB/ChIMES yields a lattice
968
+ constant with errors of only ∼0.4% and 1.0% from DFT and experiment90, respectively. However,
969
+ our model yields a hydrogen bulk vacancy energy (Evac) that is ∼0.5 eV too small. We found
970
+ that a systematic ∼0.5 eV underestimation of vacancy energies in a variety of environments and
971
+ concentrations was typical for all ChIMES parameterizations created in this work, which could be
972
+ rectified with improved training data or adaptations to DFTB such as the inclusion of multi-center
973
+ terms in the Hamiltonian.91.
974
+ Overall, our final model yields accurate surface energies for all three low-index facets investi-
975
+ gated in this study (Table III). In particular, the E011 and E111 values are nearly identical to those
976
+ from DFT. The E001 value from DFTB/ChIMES is around 17% lower than than that for our DFT
977
+ calculations (0.114 vs. 0.136 eV/ ˚A2). This could be due in part to the internal electric field on the
978
+ (001) surface configuration studied here, as mentioned. DFTB generally can underestimate surface
979
+ electrostatic interactions due to its determination of atom-centered point charges only in Coulom-
980
+ bic interactions92. Our DFTB/ChIMES results show similarly strong agreement with hydrogen
981
+ surface adsorption energies (Table IV). We compute the correct energetic ordering of adsorption
982
+ on the (111) Top and Hollow sites, though the Hollow site energy is 0.35 eV smaller than that from
983
+ 20
984
+
985
+ DFT. We see similar agreement with DFT for the (011) surface. Here, DFTB/ChIMES show close
986
+ agreement for Top site adsorption with a difference of only 0.05 eV from DFT. Our model yields
987
+ Bridge-1 and Bridge-2 adsorption energies that differ from DFT by 0.29 eV and 0.21 eV, respec-
988
+ tively, and incorrectly predicts that the Top site is the lowest energetically of the three. Regardless,
989
+ these values are similar in energy for all surface sites and we have overall favorable agreement.
990
+ TABLE III: TiH2 surface energies (in eV/ ˚A2). Reprinted with permission from Journal of
991
+ Chemical Theory and Computation 2021 17 (7), 4435-4448. Copyright 2021, American
992
+ Chemical Society.
993
+ Surface DFTB/ChIMES DFT
994
+ 111
995
+ 0.080
996
+ 0.080
997
+ 011
998
+ 0.105
999
+ 0.101
1000
+ 001
1001
+ 0.114
1002
+ 0.136
1003
+ TABLE IV: Surface hydrogen adsorption energies on TiH2 surface sites (in eV). Reprinted with
1004
+ permission from Journal of Chemical Theory and Computation 2021 17 (7), 4435-4448.
1005
+ Copyright 2021, American Chemical Society.
1006
+ Surface
1007
+ Site
1008
+ DFTB/ChIMES DFT
1009
+ 111
1010
+ Top
1011
+ -1.888
1012
+ -1.760
1013
+ Hollow
1014
+ -2.081
1015
+ -2.440
1016
+ 011
1017
+ Top
1018
+ -2.383
1019
+ -2.332
1020
+ Bridge-1
1021
+ -2.154
1022
+ -2.442
1023
+ Bridge-2
1024
+ -2.132
1025
+ -2.342
1026
+ Our results indicate DFTB/ChIMES models can be accurately determined based on relatively
1027
+ small training data (unit cell MD calculations in this work), even for physically complex sys-
1028
+ tems such as those containing surface chemistry. Further refinement of our TiH2 model could
1029
+ involve inclusion of training data from additional phases and thermodynamic state points. Re-
1030
+ gardless, our current effort yields accurate results for bulk and surface TiH2 properties, and our
1031
+ model shows strong transferability to bulk α-Ti and gas phase TiH4 (not shown here). The small
1032
+ training set could yield significant advantages for computationally challenging systems such as
1033
+ 21
1034
+
1035
+ magnetic materials and their interfaces, where DFT data is limited and difficult to generate. Over-
1036
+ all, our DFTB/ChIMES approach can have particular impact on myriad of research areas, such as
1037
+ interpretation of imaging and spectroscopy studies on bulk and interfacial systems, where there is
1038
+ traditionally a strong coupling with atomistic simulation approaches.
1039
+ C.
1040
+ ∆-learning to Enhance the Accuracy of DFTB for Organic Materials
1041
+ In this subsection we review our recent efforts to leverage a high-level quantum chemical
1042
+ database to create an “out-of-the-box” model with accuracy beyond standard DFT approaches
1043
+ (e.g., PBE) that is generally applicable to many organic molecular systems56. In this work, we have
1044
+ used the ANI-1x quantum chemical data set93,94 to create a DFTB/ChIMES model that approaches
1045
+ hybrid-functional and/or coupled cluster accuracy. Here, ChIMES is used as a ∆-learning po-
1046
+ tential where we have included it as an extra energy term to the 3ob-3-1 parameterization40,95,
1047
+ which includes third-order charge fluctuation terms in the DFTB energy. This parameterization is
1048
+ known to yield reliable accuracy for many organic molecules and thus was a reasonable starting
1049
+ point for our efforts. We have found that the advantage of ChIMES over a neural network ap-
1050
+ proach is two-fold: (1) the training set requirements of ChIMES is significantly lower, where only
1051
+ a small fraction of the ANI-1x dataset was required to achieve a high degree of accuracy, and (2)
1052
+ our ChIMES potential required two-order of magnitude fewer parameters than several recent NN-
1053
+ based semi-empirical approaches. These effects allow for a much easier to parameterize model
1054
+ that is less likely to be hampered by overfitting.
1055
+ The original ANI-1x database was developed for the creation of ML-based general-purpose
1056
+ organic potentials where the data set was determined through an active learning process94, result-
1057
+ ing in approximately 5 million molecular equilibrium and non-equilibrium configurations. Our
1058
+ ∆-learning optimization used an iterative approach by first creating a subset of ANI-1x called
1059
+ “sub ANI-1x” that only contained results computed from CCSD(T) (coupled-cluster consider-
1060
+ ing single, double, and perturbative triple excitations) and using a well-known hybrid functional,
1061
+ wB97X96. This corresponded to 459,464 molecular confirmations from computed from 1895
1062
+ unique molecules, or ∼10% of the original ANI-1x database. We note that there are no atomic
1063
+ force data from CCSD(T)/CBS calculations. Hence, we used wB97X results computed with a
1064
+ large basis set (def2-TZVPP) data for fitting purposes, with the remainder of the data set available
1065
+ for validation.
1066
+ 22
1067
+
1068
+ We then used an iterative approach to ChIMES optimization (Fig. 7) where we first randomly
1069
+ selected only 1% of sub ANI-1x and performed an initial ChIMES optimization. Validation cal-
1070
+ culations agains the remainder of sub ANI-1x resulted in some large deviations in the computed
1071
+ energies and forces. We then selected an additional equivalent of 1% of the data set from con-
1072
+ figurations with the highest force deviations and added them to our training set and repeated the
1073
+ process, where each increment of the training process would include the equivalent of an additional
1074
+ 1% of sub ANI-1x. Our DFTB/ChIMES ∆-learning was converged after three iterations of our
1075
+ optimization scheme, using only 3% of sub ANI-1x or 0.3% of the original ANI-1x database. Our
1076
+ model was ultimately validated against the entire sub ANI-1x data set, though its size is somewhat
1077
+ arbitrary and it is possible that a smaller subset of ANI-1x could have been used for our purposes.
1078
+ -2000 -1000
1079
+ 0
1080
+ 1000
1081
+ 2000
1082
+ FDFT(kcal/mol/Å)
1083
+ -2000
1084
+ -1000
1085
+ 0
1086
+ 1000
1087
+ 2000
1088
+ FDFTB/ChIMES(kcal/mol/Å)
1089
+ -2000 -1000
1090
+ 0
1091
+ 1000
1092
+ 2000
1093
+ FDFT(kcal/mol/Å)
1094
+ -2000
1095
+ -1000
1096
+ 0
1097
+ 1000
1098
+ 2000
1099
+ -2000 -1000
1100
+ 0
1101
+ 1000
1102
+ 2000
1103
+ FDFT(kcal/mol/Å)
1104
+ -2000
1105
+ -1000
1106
+ 0
1107
+ 1000
1108
+ 2000
1109
+ -20
1110
+ 0
1111
+ 20
1112
+ 40
1113
+ 60
1114
+ EDFT(kcal/mol/atom)
1115
+ -20
1116
+ 0
1117
+ 20
1118
+ 40
1119
+ 60
1120
+ EDFTB/ChIMES(kcal/mol/atom)
1121
+ circle 0
1122
+ 1% train and 99% validation
1123
+ -20
1124
+ 0
1125
+ 20
1126
+ 40
1127
+ 60
1128
+ EDFT(kcal/mol/atom)
1129
+ -20
1130
+ 0
1131
+ 20
1132
+ 40
1133
+ 60
1134
+ circle 1
1135
+ 2% train and 98% validation
1136
+ -20
1137
+ 0
1138
+ 20
1139
+ 40
1140
+ 60
1141
+ EDFT(kcal/mol/atom)
1142
+ -20
1143
+ 0
1144
+ 20
1145
+ 40
1146
+ 60
1147
+ circle 2
1148
+ 3% train and 97% validation
1149
+ a)
1150
+ b)
1151
+ c)
1152
+ d)
1153
+ e)
1154
+ f)
1155
+ FIG. 7: Comparison of energies per atom (top panels) and forces (bottom panels) predicted by
1156
+ DFT (wB97X) and DFTB/ChIMES for all configurations in the validation set. The dataset used
1157
+ here is ‘sub ANI-1x’, ∼10% of the full ANI-1x. Reprinted with permission from J. Phys. Chem.
1158
+ Lett. 2022 13 (13), 2934-2942. Copyright 2022, American Chemical Society.
1159
+ Our final model used ChIMES polynomial orders of {2B = 24, 3B = 10, 4B = 0} with a
1160
+ somewhat long radial cutoff of 4.0 ˚A used for all atom pairs. This longer cutoff helped account
1161
+ for some dispersion interactions that would otherwise be absent from standard DFTB calculations,
1162
+ though future efforts will involve shorter cutoffs combined with a dispersion interaction model.
1163
+ 23
1164
+
1165
+ Further details about our ChIMES model for organics can be found in the Supporting Information
1166
+ in Ref. 56. Ultimately, our DFTB/ChIMES model resulted in 5546 parameters and was trained to
1167
+ ∼372k data points. This is in contrast to the recently developed AIQM1 semi-empirical quantum
1168
+ model, which utilizes an NN trained to the entire ANI-1x data set, resulting in 322,660 parameters.
1169
+ Similarly, a recent DFTB-NN approach using deep-tensor neural networks used a training set of
1170
+ ∼800k data points, resulting in 228,865 parameters.
1171
+ TABLE V: Performance of DFTB and DFTB/ChIMES in predicting reference energies and/or
1172
+ atomic forces in the GDB-10to13, ISO34, and GDML data set. The MAE and RMSE for the
1173
+ energies and forces (labeled with subscripts ‘E’ and ‘F’) are in kcal/mol and kcal/mol- ˚A,
1174
+ respectively. Reference molecular energies and atomic forces in the GDB-10to13 data set are at
1175
+ the wB97X/6-31G* level of theory. Isomerization energies in the ISO34 data set are a mixture of
1176
+ experimental- and CCSD(T) extrapolation energies. The CCSD(T)/cc-pVTZ atomic forces of
1177
+ 2000 configurations of ethanol in the GDML data set are used for comparison. Reprinted with
1178
+ permission from J. Phys. Chem. Lett. 2022 13 (13), 2934-2942. Copyright 2022, American
1179
+ Chemical Society.
1180
+ GDB-10to13
1181
+ ISO34
1182
+ GDML
1183
+ method
1184
+ MAEE/RMSEE MAEF/RMSEF MAEE/RMSEE MAEF/RMSEF
1185
+ DFTB
1186
+ 9.10/11.70
1187
+ 6.34/9.85
1188
+ 3.69/4.96
1189
+ 4.52/6.12
1190
+ DFTB/ChIMES
1191
+ 3.57/4.72
1192
+ 3.62/5.33
1193
+ 2.06/2.56
1194
+ 2.72/3.61
1195
+ ANI-197
1196
+ 3.12/4.74
1197
+ 3.96/7.09
1198
+ -
1199
+ -
1200
+ ANI-1x97
1201
+ 2.30/3.21
1202
+ 3.67/6.01
1203
+ -
1204
+ -
1205
+ DFTB-NNrep98
1206
+ -
1207
+ -
1208
+ 2.21/3.30
1209
+ -
1210
+ PBE098
1211
+ -
1212
+ -
1213
+ 1.82/2.48
1214
+ -
1215
+ We then tested the transferability of our DFTB/ChIMES model through comparison to different
1216
+ quantum chemical data that were computed at the wB97X or CCSD(T) level but were not a part
1217
+ of ANI-1x (Table V). For example, the GDB-10to13 data set97 consists of the molecular energies
1218
+ and forces at the wB97X level of nearly 3000 molecules containing 10-13 C, N, or O atoms for a
1219
+ total of 47,670 configurations. Our DFTB/ChIMES model exhibits a 60% reduction in the mean
1220
+ average error (MAE) and RMSE error in the energies and a 45 % decrease in the forces over
1221
+ 24
1222
+
1223
+ standard DFTB. The accuracy of DFTB/ChIMES is similar to values from the ANI-1 and ANI-
1224
+ 1x neural network interatomic potentials97 (i.e., stand-alone potentials without explicit quantum
1225
+ mechanical elements), and are smaller than the variations between wB97X itself and higher levels
1226
+ of theory such as CCSD(T) and MP2 (4.9/5.9 kcal/mol for energies and 4.6/5.9 kcal/mol- ˚A for
1227
+ forces)93.
1228
+ Our DFTB/ChIMES model is validated against additional CCSD(T) reference data from the
1229
+ ISO34 data set99, which consists of energies of 34 isomers containing the elements C, H, N,
1230
+ and O. We observe that the accuracy of DFTB/ChIMES is much better than that for standard
1231
+ DFTB, is slightly improved over that from DFTB-NNrep, and approaches the PBE0 data given
1232
+ in Ref. 98. To test the performance of our model on high accuracy force data specifically, we
1233
+ compare DFTB/ChIMES with the CCSD(T)/cc-pVTZ data for 2000 configurations of ethanol in
1234
+ the GDML data set100 (54,000 data points total). Again our DFTB/ChIMES gives an improvement
1235
+ over standard DFTB as MAE and RMSE are both reduced by ∼40%. A direct force comparison to
1236
+ DFTB-NNrep or the ISO34 reference was unavailable. Additional validation of our model included
1237
+ calculation of the n-butane dihedral potential and correct prediction of the energetic ordering of
1238
+ coumarin molecular crystals.
1239
+ We have also validated DFTB/ChIMES against vibrational frequencies of 342 gas-phase
1240
+ molecules from the Computational Chemistry Comparison and Benchmark Database or CC-
1241
+ CBDB (https://cccbdb.nist.gov/), computed with MP2/cc-pVTZ and wB97XD (with dispersion
1242
+ correction), amongst other methods (Fig. 8). Here, DFTB/ChIMES yields errors in the frequency
1243
+ prediction of MAE/RMSE = 36/61 cm−1, indicating improved accuracy over PBE and with similar
1244
+ accuracy to accuracy to wB97XD. In all of our validation tests, DFTB/ChIMES shows marked
1245
+ improvement over standard DFTB and PBE, and shows similar accuracy to results from wB97X or
1246
+ other higher-levels of theory. Further details of all validation calculations are provided in Ref. 56.
1247
+ Lastly, though the DFTB/ChIMES model developed here is trained on gas phase molecular
1248
+ data, we have also tested its performance in reproducing the structural properties of bulk graphite
1249
+ and diamond. We compare predicted density and lattice parameters from different methods in
1250
+ Table VI.
1251
+ For graphite, all computational models considered here give an accurate descrip-
1252
+ tion of the in-plane lattice parameters. DFTB and PBE overestimate the interlayer separation
1253
+ (c/2) by over 25% and 30%, respectively, due to their under-prediction of dispersion interactions.
1254
+ DFTB/ChIMES predicts the lattice parameters and density in excellent agreement with the exper-
1255
+ imental value, with a deviation of less than 1%. For diamond, the computed values using DFTB,
1256
+ 25
1257
+
1258
+ 0
1259
+ 1000
1260
+ 2000
1261
+ 3000
1262
+ 4000
1263
+ Frequency (cm
1264
+ -1)
1265
+ Distribution
1266
+ MP2
1267
+ ωB97XD
1268
+ DFTB/ChIMES
1269
+ PBE
1270
+ DFTB
1271
+ FIG. 8: The distribution of the calculated frequency values using DFTB and DFTB/ChIMES for
1272
+ 342 neutral molecules taken from the CCCBDB database. The MP2 and DFT (PBE and
1273
+ wB97XD) calculations using cc-pVTZ basis set in the CCCBDB are selected for comparison.
1274
+ Reprinted with permission from J. Phys. Chem. Lett. 2022 13 (13), 2934-2942. Copyright 2022,
1275
+ American Chemical Society.
1276
+ DFTB/ChIMES, and PBE-DFT differ by ∼1% from experimental values for lattice parameters
1277
+ and ∼3% for the density.
1278
+ Ultimately, we have shown that ChIMES can be used to extend DFTB to hybrid functional
1279
+ accuracy or greater. DFTB/ChIMES has the capability of reproducing vast quantities of high-level
1280
+ reference data while requiring only a small fraction of it for training. On the basis of the results
1281
+ presented here, DFTB/ChIMES represents a promising direction for developing general purpose
1282
+ quantum models that are applicable to a wide range of materials and conditions. The small training
1283
+ set required as well as the small number of potential parameters relative to neural network methods
1284
+ could yield significant advantages for future development of computational efficient models with
1285
+ up to coupled cluster accuracy. The ease of parameterization and transferability of DFTB/ChIMES
1286
+ 26
1287
+
1288
+ TABLE VI: Comparison of predicted density and lattice parameters of graphite and diamond for
1289
+ DFTB, DFTB/ChIMES, PBE-DFT with experimental data. Reprinted with permission from J.
1290
+ Phys. Chem. Lett. 2022 13 (13), 2934-2942. Copyright 2022, American Chemical Society.
1291
+ phase
1292
+ method
1293
+ density (g/cm3) a( ˚A) c/2( ˚A)
1294
+ graphite Expt.101
1295
+ 2.26
1296
+ 2.462 3.356
1297
+ PBE-DFT102
1298
+ 1.71
1299
+ 2.470 4.420
1300
+ DFTB/ChIMES
1301
+ 2.25
1302
+ 2.461 3.379
1303
+ DFTB
1304
+ 1.77
1305
+ 2.474 4.248
1306
+ diamond Expt.101
1307
+ 3.51
1308
+ 3.567
1309
+ PBE-DFT70
1310
+ 3.48
1311
+ 3.580
1312
+ DFTB/ChIMES
1313
+ 3.42
1314
+ 3.600
1315
+ DFTB
1316
+ 3.42
1317
+ 3.600
1318
+ allows for high-level quantum theory accuracy in systems where traditional wavefunction or hybrid
1319
+ functional methods are far too computationally intensive for intensive use.
1320
+ IV.
1321
+ DISCUSSION AND FUTURE WORK
1322
+ ChIMES was initially developed as a method for creating many-body force fields for molecular
1323
+ dynamics simulations. However, it has also proven robust as a repulsive energy for DFTB models,
1324
+ where the standard two-center approach for both quantum mechanical and repulsive terms can be
1325
+ insufficient for many systems. The strength in ChIMES as an element of a semi-empirical quantum
1326
+ model or MD model lies in its use of linear combinations of many-body Chebyshev polynomials,
1327
+ where the nearly optimal nature of the polynomials as well as the linear least-squares fitting allow
1328
+ for rapid optimizations that require far fewer parameters and significantly smaller data sets than the
1329
+ neural network models reviewed here. In addition, ChIMES adds very little extra computational
1330
+ time to DFTB calculations, where the matrix diagonalization and SCC convergence use the vast
1331
+ majority of the CPU effort.
1332
+ Future work will involve extending ChIMES to systems with four or more elements, where de-
1333
+ velopment of training sets and proper validation approaches remains an open question. It is likely
1334
+ that these ChIMES models will require larger data sets and the potentials themselves will have
1335
+ 27
1336
+
1337
+ significantly more parameters than those presented in this work due to the combinatorial effect
1338
+ of forming many-body clusters with different possible combinations of elements. Determination
1339
+ of ERep for these systems will likely yield significant advantages over pure interatomic potentials
1340
+ due to the short-ranged nature of the repulsive energy as well as the general accuracy of the quan-
1341
+ tum mechanical parts of DFTB. Both of these considerations make creation of DFTB/ChIMES
1342
+ model in general more tractable than optimizing ChIMES on its own as an atomistic force field.
1343
+ DFTB/ChIMES can serve as either a stand-alone model for running dynamics and determining
1344
+ physical and chemical properties of a system, or as a surrogate for DFT in a “boot-strapping” op-
1345
+ timization, where it can serve to generate reasonably high fidelity training data for pure ChIMES
1346
+ MD models. Overall, our approach can be used to enhance the speed of quantum accurate pre-
1347
+ dictions for both molecular and condensed matter systems, where there is a historic reliance on
1348
+ computationally intensive quantum simulations for predictions of chemical and physical properties
1349
+ related to experiments.
1350
+ ACKNOWLEDGMENTS
1351
+ This work performed under the auspices of the U.S. Department of Energy by Lawrence Liv-
1352
+ ermore National Laboratory under Contract DE-AC52-07NA27344. The assigned release number
1353
+ is LLNL-JRNL-XXXXXX.
1354
+ 28
1355
+
1356
+ REFERENCES
1357
+ 1K. R. S. Chandrakumar, A. J. Page, S. Irle,
1358
+ and K. Morokuma, “Carbon coating precedes
1359
+ SWCNT nucleation on silicon nanoparticles: Insights from QM/MD simulations,” J. Phys.
1360
+ Chem. C 117, 4238–4244 (2013).
1361
+ 2A. Sharma, G. D. Cody, and R. J. Hemley, “In situ diamond-anvil cell observations of methano-
1362
+ genesis at high pressures and temperatures,” Energy & Fuels 23, 5571 (2009).
1363
+ 3W. Peiman, I. Pioro, K. Gabriel, and M. Hosseiny, “Thermal aspects of conventional and alter-
1364
+ native fuels,” in Handbook of Generation IV Nuclear Reactors, Woodhead Publishing Series in
1365
+ Energy, edited by I. L. Pioro (Woodhead Publishing, 2016) Chap. 18, pp. 583–635.
1366
+ 4B. A. Steele, N. Goldman, I.-F. W. Kuo, and M. P. Kroonblawd, “Mechanochemical synthesis of
1367
+ glycine oligomers in a virtual rotational diamond anvil cell,” Chem. Sci. 11, 7760–7771 (2020).
1368
+ 5E. Schwegler, M. Sharma, F. Gygi, and G. Galli, “Melting of ice under pressure,” Proc. Nat.
1369
+ Acad. Sci.(USA) 105, 14779 (2008).
1370
+ 6A. A. Correa, S. A. Bonev, and G. Galli, “Carbon under extreme conditions: Phase boundaries
1371
+ and electronic properties from first-principles theory,” Proc. Natl. Acad. Sci. U. S. A. 103, 1204–
1372
+ 1208 (2006).
1373
+ 7M. P. Kroonblawd and N. Goldman, “Mechanochemical formation of heterogeneous diamond
1374
+ structures during rapid uniaxial compression in graphite,” Phys. Rev. B 97, 184106 (2018).
1375
+ 8M. R. Manaa, E. J. Reed, L. E. Fried, and N. Goldman, “Nitrogen-rich heterocycles as reactivity
1376
+ retardants in shocked insensitive explosives,” J. Am. Chem. Soc. 131, 5493–5487 (2009).
1377
+ 9R. G. Mullen and N. Goldman, “Quantum accurate prediction of plutonium-plutonium dihy-
1378
+ dride phase equilibrium using a lattice gas model,” J. Phys. Chem. C 124, 20881–20888 (2020).
1379
+ 10M. P. Kroonblawd, R. K. Lindsey, and N. Goldman, “Synthesis of nitrogen-containing poly-
1380
+ cyclic aromatic hydrocarbons in impacting glycine solutions,” Chemical Science 10, 6091
1381
+ (2019).
1382
+ 11T. Sours, A. Patel, J. Norskov, S. Siahrostami, and A. Kulkarni, “Circumventing scaling re-
1383
+ lations in oxygen electrochemistry using metal-organic frameworks,” The Journal of Physical
1384
+ Chemistry Letters 11, 10029–10036 (2020).
1385
+ 12M. Sliwa, D. McGonegle, C. Wehrenberg, C. A. Bolme, P. G. Heighway, A. Higginbotham,
1386
+ A. Lazicki, H. J. Lee, B. Nagler, H. S. Park, R. E. Rudd, M. J. Suggit, D. Swift, F. Tavella,
1387
+ L. Zepeda-Ruiz, B. A. Remington, and J. S. Wark, “Femtosecond x-ray diffraction studies
1388
+ 29
1389
+
1390
+ of the reversal of the microstructural effects of plastic deformation during shock release of
1391
+ tantalum,” Phys. Rev. Lett. 120, 265502 (2018).
1392
+ 13H. Wang, L. Zhang, J. Han, and W. E, “Deepmd-kit: A deep learning package for many-body
1393
+ potential energy representation and molecular dynamics,” Computer Physics Communications
1394
+ 228, 178–184 (2018).
1395
+ 14B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, “Ab initio thermodynamics of
1396
+ liquid and solid water,” Proc. Natl. Acad. Sci. U.S.A. 116, 1110–1115 (2019).
1397
+ 15R. Rana, F. D. Vila, A. R. Kulkarni, and S. R. Bare, “Bridging the gap between the x-ray
1398
+ absorption spectroscopy and the computational catalysis communities in heterogeneous cataly-
1399
+ sis: A perspective on the current and future research directions,” ACS Catal. 12, 13813–13830
1400
+ (2022).
1401
+ 16C. Oses, M. Esters, D. Hicks, S. Divilov, H. Eckert, R. Friedrich, M. J. Mehl, A. Smolyanyuk,
1402
+ X. Campilongo, A. van de Walle, J. Schroers, A. G. Kusne, I. Takeuchi, E. Zurek, M. Buon-
1403
+ giorno Nardelli, M. Fornari, Y. Lederer, O. Levy, C. Toher, and S. Curtarolo, “aflow++: a C++
1404
+ framework for autonomous materials design,” Comp. Mat. Sci. 217, 111889 (2023).
1405
+ 17A. P. Bart´ok, J. Kermode, N. Bernstein, and G. Cs´anyi, “Machine learning a general-purpose
1406
+ interatomic potential for silicon,” Phys. Rev. X 8, 041048 (2018).
1407
+ 18E. J. Reed, “Electron-ion coupling in shocked energetic materials,” J. Phys. Chem. C 116, 2205
1408
+ (2012).
1409
+ 19E. J. Reed, A. W. Rodriguez, M. R. Manaa, L. E. Fried, and C. M. Tarver, “Ultrafast detonation
1410
+ of hydrazoic acid (HN3),” Phys. Rev. Lett. 109, 038301 (2012).
1411
+ 20M. P. Kroonblawd, N. Goldman, and J. P. Lewicki, “Chemical degradation pathways in silox-
1412
+ ane polymers following phenyl excitations,” The Journal of Physical Chemistry B 122, 12201–
1413
+ 12210 (2018).
1414
+ 21G. Zhou, N. Lubbers, K. Barros, S. Tretiak, and B. Nebgen, “Deep learning of dynamically
1415
+ responsive chemical hamiltonians with semiempirical quantum mechanics,” Proc. Natl. Acad.
1416
+ Sci. U.S.A. 19, e2120333119 (2022).
1417
+ 22M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and
1418
+ G. Seifert, “Self-consistent-charge density-functional tight-binding method for simulations of
1419
+ complex materials properties,” Phys. Rev. B 58, 7260–7268 (1998).
1420
+ 23A. S. Christensen, T. Kubaˇr, Q. Cui, and M. Elstner, “Semiempirical quantum mechanical
1421
+ methods for noncovalent interactions for chemical and biochemical applications,” Chemical
1422
+ 30
1423
+
1424
+ Reviews 116, 5301–5337 (2016).
1425
+ 24J. J. Kranz, M. Kubillus, R. Ramakrishnan, O. A. von Lilienfeld, and M. Elstner, “Generalized
1426
+ density-functional tight-binding repulsive potentials from unsupervised machine learning,” J.
1427
+ Chem. Theory Comput. 14, 2341–2352 (2018).
1428
+ 25M. R. Manaa, L. E. Fried, C. F. Melius, M. Elstner, and T. Frauenheim, “Decomposition of
1429
+ HMX at extreme conditions: A molecular dynamics simulation,” J. Phys. Chem. A 106, 9024
1430
+ (2002).
1431
+ 26P. Goyal, H.-J. Qian, S. Irle, X. Lu, D. Roston, T. Mori, M. Elstner, and Q. Cui, “Molecular sim-
1432
+ ulation of water and hydration effects in different environments: Challenges and developments
1433
+ for DFTB based models,” The Journal of Physical Chemistry B 118, 11007–11027 (2014).
1434
+ 27R. K. Szilagyi, N. P. Stadie, S. Irle,
1435
+ and H. Nishihara, “Mechanical properties of zeolite-
1436
+ templated carbons from approximate density functional theory calculations,” Carbon Reports
1437
+ 1, 231–240 (2022).
1438
+ 28N. Goldman, S. G. Srinivasan, S. Hamel, L. E. Fried, M. Gaus, and M. Elstner, “Determination
1439
+ of a density functional tight binding model with an extended basis set and three-body repulsion
1440
+ for carbon under extreme pressures and temperatures,” J. Phys. Chem. C 117, 7885 – 7894
1441
+ (2013).
1442
+ 29S. G. Srinivasan, N. Goldman, I. Tamblyn, S. Hamel, and M. Gaus, “Determination of a density
1443
+ functional tight binding model with an extended basis set and three-body repulsion for hydrogen
1444
+ under extreme thermodynamic conditions,” J. Phys. Chem. A 118, 5520–5528 (2014).
1445
+ 30A. Tkatchenko and M. Scheffler, “Accurate molecular van der Waals interactions from ground-
1446
+ state electron density and free-atom reference data,” Phys. Rev. Lett. 102, 073005 (2009).
1447
+ 31S. Grimme, J. Antony, S. Ehrlich,
1448
+ and H. Krieg, “A consistent and accurate ab initio
1449
+ parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,”
1450
+ The Journal of Chemical Physics 132, 154104 (2010).
1451
+ 32C.-P. Chou, Y. Nishimura, C.-C. Fan, G. Mazur, S. Irle, and H. A. Witek, “Automatized param-
1452
+ eterization of DFTB using particle swarm optimization,” J. Chem. Theory Comput. 12, 53–64
1453
+ (2016).
1454
+ 33M. Hellstr¨om, K. Jorner, M. Bryngelsson, S. E. Huber, J. Kullgren, T. Frauenheim, and P. Bro-
1455
+ qvist, “An SCC-DFTB repulsive potential for various ZnO polymorphs and the ZnO–water
1456
+ system,” J. Phys. Chem. C 117, 17004–17015 (2013).
1457
+ 34A. K. A. Kandy, E. Wadbro, B. Aradi, P. Broqvist, and J. Kullgren, “Curvature constrained
1458
+ 31
1459
+
1460
+ splines for DFTB repulsive potential parametrization,” J. Chem. Theory Comput. 1771-1781,
1461
+ 21 (2021).
1462
+ 35N. Goldman, L. Koziol, and L. E. Fried, “Using force-matched potentials to improve the accu-
1463
+ racy of density functional tight binding for reactive conditions,” J. Chem. Theory Comput. 11,
1464
+ 4530–4535 (2015).
1465
+ 36N. Goldman, K. E. Kweon, B. Sadigh, T.-W. Heo, R. K. Lindsey, C. H. Pham, L. E. Fried,
1466
+ B. Aradi, K. Holliday, J. R. Jeffries, and B. C. Wood, “Semi-automated creation of Density
1467
+ Functional Tight Binding models through leveraging Chebyshev polynomial-based force fields,”
1468
+ J. Chem. Theory Comput. 17, 4435–4448 (2021).
1469
+ 37P. Mir´o and C. J. Cramer, “Water clusters to nanodrops: a tight-binding density functional
1470
+ study,” Phys. Chem. Chem. Phys. 15, 1837–1843 (2013).
1471
+ 38V. Q. Vuong, J. M. L. Madridejos, B. Aradi, B. G. Sumpter, G. F. Metha, and S. Irle, “Density-
1472
+ Functional Tight-Binding for phosphine-stabilized nanoscale gold clusters,” Chem. Sci. 11,
1473
+ 13113–13128 (2020).
1474
+ 39R. K. Lindsey, S. Bastea, N. Goldman, and L. E. Fried, “Investigating 3,4-bis(3-nitrofurazan-4-
1475
+ yl)furoxan detonation with a rapidly tuned Density Functional Tight Binding model,” J. Chem.
1476
+ Phys. 154, 164115 (2021).
1477
+ 40M. Gaus, Q. Cui, and M. Elstner, “DFTB3: Extension of the self-consistent-charge density-
1478
+ functional tight-binding method (SCC-DFTB),” J. Chem. Theory Comput. 7, 931 (2011).
1479
+ 41S. Markov, B. Aradi, C.-Y. Yam, H. Xie, T. Frauenheim, and G. Chen, “Atomic level mod-
1480
+ eling of extremely thin silicon-on-insulator mosfets including the silicon dioxide: Electronic
1481
+ structure,” IEEE Transactions on Electronic Devices 62, 696–704 (2015).
1482
+ 42J. Kullgren, M. J. Wolf, K. Hermansson, C. K¨ohler, B. Aradi, T. Fauenheim, and P. Broqvist,
1483
+ “Self-consistent-charge Density-Functional Tight-Binding (SCC-DFTB) parameters for ceria in
1484
+ 0D to 3D,” J. Phys. Chem. C 121, 4593–4607 (2017).
1485
+ 43M. St¨ohr, L. Medrano Sandonas, and A. Tkatchenko, “Accurate many-body repulsive potentials
1486
+ for density-functional tight binding from deep tensor neural networks,” The Journal of Physical
1487
+ Chemistry Letters 11, 6835–6843 (2020).
1488
+ 44D. Bissuel, T. Albaret, and T. A. Niehaus, “Critical assessment of machine-learned repulsive
1489
+ potentials for the density functional based tight-binding method: A case study for pure silicon,”
1490
+ J. Chem. Phys. 156, 064101 (2022).
1491
+ 45C. Panosetti, A. Engelmann, L. Nemec, K. Reuter, and J. T. Margraf, “Learning to use the
1492
+ 32
1493
+
1494
+ force: Fitting repulsive potentials in density-functional tight-binding with gaussian process re-
1495
+ gression,” J. Chem. Theory Comput. 16, 2181–2191 (2020).
1496
+ 46S. Wengert, G. Cs´anyi, K. Reuter,
1497
+ and J. T. Margraf, “Data-efficient machine learning for
1498
+ molecular crystal structure prediction,” Chem. Sci. 12, 4536 (2021).
1499
+ 47R. K. Lindsey, L. E. Fried, and N. Goldman, “ChIMES: A force matched potential with explicit
1500
+ three-body interactions for molten carbon,” J. Chem. Theory Comput. 13, 6222–6229 (2017).
1501
+ 48R. K. Lindsey, L. E. Fried, N. Goldman, and S. Bastea, “Active learning for robust, high-
1502
+ complexity reactive atomistic simulations,” J. Chem. Phys. 153, 134117 (2020).
1503
+ 49L. Koziol, L. E. Fried, and N. Goldman, “Using force matching to determine reactive force
1504
+ fields for water under extreme thermodynamic conditions,” J. Chem. Theory Comput. 13, 135–
1505
+ 146 (2017).
1506
+ 50R. K. Lindsey, L. E. Fried, and N. Goldman, “Application of the ChIMES force field to non-
1507
+ reactive molecular systems: Water at ambient conditions,” Journal of Chemical Theory and
1508
+ Computation 15, 436–447 (2019).
1509
+ 51M. R. Armstrong, R. K. Lindsey, N. Goldman, M. H. Nielsen, E. Stavrou, L. E. Fried, J. M.
1510
+ Zaug, and S. Bastea, “Ultrafast shock synthesis of nanocarbon from a liquid precursor,” Nature
1511
+ Communications 11, 353 (2020).
1512
+ 52R. K. Lindsey, N. Goldman, L. E. Fried, and S. Bastea, “Many-body reactive force field de-
1513
+ velopment for carbon condensation in C/O systems under extreme conditions,” J. Chem. Phys.
1514
+ 153, 054103 (2020).
1515
+ 53C. H. Pham, R. K. Lindsey, L. E. Fried, and N. Goldman, “Calculation of the detonation state
1516
+ of HN3 with quantum accuracy,” J. Chem. Phys. 153, 224102 (2021).
1517
+ 54N. Goldman, B. Aradi, R. K. Lindsey, and L. E. Fried, “Development of a multicenter Density
1518
+ Functional Tight Binding model for plutonium surface hydriding,” J. Chem. Theory. Comput.
1519
+ 14, 2652–2660 (2018).
1520
+ 55N. Goldman, L. Zepeda-Ruiz, R. G. Mullen, R. K. Lindsey, C. H. Pham, L. E. Fried, and J. L.
1521
+ Belof, “Estimates of quantum tunneling effects for hydrogen diffusion in PuO2,” Appl. Sci. 12,
1522
+ 11005 (2022).
1523
+ 56C. H. Pham, R. K. Lindsel, L. E. Fried, and N. Goldman, “High-accuracy semiempirical quan-
1524
+ tum models based on a minimal training set,” J. Phys. Chem. Lett. 13, 2934–2942 (2022).
1525
+ 57B. Aradi, B. Hourahine, and T. Frauenheim, “DFTB+, a sparse matrix-based implementation
1526
+ of the DFTB method,” J. Phys. Chem. A 111, 5678–5684 (2007).
1527
+ 33
1528
+
1529
+ 58B. Hourahine, B. Aradi, V. Blum, F. Bonaf´e, A. Buccheri, C. Camacho, C. Cevallos, M. Y.
1530
+ Deshaye, T. Dumitric˘a, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann,
1531
+ S. Irle, J. J. Kranz, C. K¨ohler, T. Kowalczyk, T. Kubaˇr, I. S. Lee, V. Lutsker, R. J. Maurer,
1532
+ S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia,
1533
+ G. Penazzi, M. P. Persson, J. ˇRezi´aˇc, C. G. S´anchez, M. Sternberg, M. St¨ohr, F. Stuckenberg,
1534
+ A. Tkatchenko, V. W.-z. Yu, and T. Frauenheim, “DFTB+, a software package for efficient
1535
+ approximate density functional theory based atomistic simulations,” The Journal of Chemical
1536
+ Physics 152, 124101 (2020).
1537
+ 59Y. Wang, B. C. Shepler, B. J. Braams, and J. M. Bowman, “Full-dimensional, ab initio potential
1538
+ energy and dipole moment surfaces for water,” J. Chem. Phys. 131, 054511 (2009).
1539
+ 60Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, “Flexible, ab initio
1540
+ potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the
1541
+ 22-mer,” J. Chem. Phys. 134, 094509 (2011).
1542
+ 61J. Tersoff, “Empirical interatomic potential for carbon, with application to amorphous-carbon,”
1543
+ Phys. Rev. Lett. 61, 2879 (1988).
1544
+ 62R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic potentials,”
1545
+ Phys. Rev. B 99, 014104 (2019).
1546
+ 63D. P. Kov´acs, C. van der Oord, J. Kucera, A. E. A. Allen, D. J. Cole, C. Ortner, and G. Cs´anyi,
1547
+ “Linear atomic cluster expansion force fields for organic molecules: Beyond RMSE,” J. Chem.
1548
+ Theory. Comput. 17, 7696–7711 (2021).
1549
+ 64K. A. Fichthorn, R. A. Miron, Y. Wang,
1550
+ and Y. Tiwary, “Accelerated molecular dynamics
1551
+ simulation of thin-film growth with the bond-boost method,” Journal of Physics: Condensed
1552
+ Matter 21, 084212 (2009).
1553
+ 65Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Cs´anyi, A. V. Shapeev, A. P. Thomp-
1554
+ son, M. A. Wood, and S. P. Ong, “A performance and cost assessment of machine learning
1555
+ interatomic potentials,” J. Phys. Chem. A 124, 731 (2021).
1556
+ 66W. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Wetterling, Numerical Recipes (Cambridge
1557
+ University Press, Cambridge, 1989).
1558
+ 67B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” The Annals of
1559
+ statistics 32, 407–499 (2004).
1560
+ 68J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models
1561
+ via coordinate descent,” Journal of statistical software 33, 1 (2010).
1562
+ 34
1563
+
1564
+ 69R. Tibshirani, “Regression shrinkage and selection via the LASSO,” Journal of the Royal Sta-
1565
+ tistical Society: Series B (Methodological) 58, 267–288 (1996).
1566
+ 70N. Goldman and L. E. Fried, “Extending the density functional tight binding method to carbon
1567
+ under extreme conditions,” J. Phys. Chem. C 116, 2198–2204 (2012).
1568
+ 71A. Sieck, T. Frauenheim, and K. A. Jackson, “Shape transition of medium-sized neutral silicon
1569
+ clusters,” phys. stat. sol. (b) 240, 537 (2003).
1570
+ 72G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47,
1571
+ 558–561 (1993).
1572
+ 73G. Kresse and J. Hafner, “Ab initio molecular dynamics simulation of the liquid-metal-
1573
+ amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14271 (1994).
1574
+ 74G. Kresse and J. Furthm¨uller, “Efficient iterative schemes for ab initio total-energy calculations
1575
+ using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
1576
+ 75P. E. Bl¨ochl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
1577
+ 76G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave
1578
+ method,” Phys. Rev. B 59, 1758–1775 (1999).
1579
+ 77J. P. Perdew, K. Burke, and M. Enzerhof, “Generalized gradient approximation made simple,”
1580
+ Phys. Rev. Lett. 77, 3865–3868 (1996).
1581
+ 78N. D. Mermin, “Thermal properties of the inhomogenous electron gas,” Phys. Rev. 137, 1441–
1582
+ 1443 (1965).
1583
+ 79H. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone integrations,” Phys. Rev. B
1584
+ 13, 5188–5192 (1976).
1585
+ 80S. Nos´e, Molecular Physics 52, 255 (1984).
1586
+ 81W. G. Hoover, Physical Review A 31, 1695 (1985).
1587
+ 82G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nos´e-Hoover chains: The canonical ensemble
1588
+ via continuous dynamics,” The Journal of Chemical Physics 97, 2635–2643 (1992).
1589
+ 83https://pymatgen.org.
1590
+ 84K. Kitabayashi, K. Edalati, H.-W. Li, E. Akiba, and Z. Horita, “Phase transformations in MgH2-
1591
+ TiH2 hydrogen storage system by high-pressure torsion process,” Advanced Engineering Mate-
1592
+ rials 22, 1900027 (2020).
1593
+ 85K. V. Shanavas, L. Lindsay, and D. S. Parker, “Electronic structure and electron-phonon cou-
1594
+ pling in TiH2,” Scientific Reports 6, 28102 (2016).
1595
+ 86Q. Peng, B. Yang, L. Liu, C. Song, and B. Friedrich, “Porous tial alloys fabricated by sintering
1596
+ 35
1597
+
1598
+ of tih2 and al powder mixtures,” Journal of Alloys and Compounds 656, 530–538 (2016).
1599
+ 87M. Methfessel and A. T. Paxton, “High-precision sampling for brillouin-zone integration in
1600
+ metals,” Phys. Rev. B 40, 3616–3621 (1989).
1601
+ 88A. K. Rapp´e, C. J. Casewitt, K. S. Colwell, W. A. G. III, and W. M. Skiff, “UFF, a full periodic
1602
+ table force field for molecular mechanics and molecular dynamics simulations,” J. Am. Chem.
1603
+ Soc. 114, 10024–10039 (1992).
1604
+ 89Y. Han, K. C. Lai, A. Lii-Rosales, M. C. Tringides, J. W. Evans, and P. A. Thiel, “Surface
1605
+ energies, adhesion energies, and exfoliation energies relevant to copper-graphene and copper-
1606
+ graphite systems,” Surface Science 685, 48–58 (2019).
1607
+ 90D. Moser, D. J. Bull, T. Sato, D. Nor´eus, D. Kyoi, T. Sakai, N. Kitamura, H. Yusa, T. Taniguchi,
1608
+ W. P. Kalisvaart, and P. Notten, “Structure and stability of high pressure synthesized Mg-Tm
1609
+ hydrides (Tm = Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen
1610
+ storage,” J. Mater. Chem. 19, 8150–8161 (2009).
1611
+ 91N. Goldman, “Multi-center semi-empirical quantum models for carbon under extreme thermo-
1612
+ dynamic conditions,” Chem. Phys. Lett. 622, 128–136 (2015).
1613
+ 92R. Podeszwa, W. Jankiewicz, M. Krzu´s, and H. A. Witek, “Correcting long-range electrostatics
1614
+ in DFTB,” J. Chem. Phys. 150, 234110 (2019).
1615
+ 93J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak,
1616
+ O. Isayev, and A. E. Roitberg, “Approaching coupled cluster accuracy with a general-purpose
1617
+ neural network potential through transfer learning,” Nat. Commun. 10, 1–8 (2019).
1618
+ 94J. S. Smith, R. Zubatyuk, B. Nebgen, N. Lubbers, K. Barros, A. E. Roitberg, O. Isayev, and
1619
+ S. Tretiak, “The ANI-1CCx and ANI-1x data sets, coupled-cluster and density functional theory
1620
+ properties for molecules,” Sci. Data 7, 1–10 (2020).
1621
+ 95M. Gaus, A. Goez, and M. Elstner, “Parametrization and benchmark of DFTB3 for organic
1622
+ molecules,” Journal of Chemical Theory and Computation 9, 338–354 (2013).
1623
+ 96J.-D. Chai and M. Head-Gordon, “Systematic optimization of long-range corrected hybrid den-
1624
+ sity functionals,” J. Chem. Phys. 128, 084106 (2008).
1625
+ 97J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg, “Less is more: Sampling
1626
+ chemical space with active learning,” J. Chem. Phys. 148, 241733 (2018).
1627
+ 98M. St¨ohr, L. Medrano Sandonas, and A. Tkatchenko, “Accurate many-body repulsive potentials
1628
+ for density-functional tight binding from deep tensor neural networks,” J. Phys. Chem. Lett. 11,
1629
+ 6835–6843 (2020).
1630
+ 36
1631
+
1632
+ 99S. Grimme, M. Steinmetz, and M. Korth, “How to compute isomerization energies of organic
1633
+ molecules with quantum chemical methods,” J. Org. Chem. 72, 2118–2126 (2007).
1634
+ 100H. E. Sauceda, M. Gastegger, S. Chmiela, K.-R. M¨uller, and A. Tkatchenko, “Molecular force
1635
+ fields with Gradient-Domain Machine Learning (GDML): Comparison and synergies with clas-
1636
+ sical force fields,” J. Chem. Phys. 153, 124109 (2020).
1637
+ 101Y. X. Zhao and I. L. Spain, “X-ray diffraction data for graphite to 20 GPa,” Phys. Rev. B 40,
1638
+ 994 (1989).
1639
+ 102T. Buˇcko, J. Hafner, S. Leb`egue, and J. G. ´Angy´an, “Improved description of the structure of
1640
+ molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections,” J.
1641
+ Phys. Chem. A 114, 11814–11824 (2010).
1642
+ 37
1643
+