jackkuo commited on
Commit
218b359
·
verified ·
1 Parent(s): 12e89b8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -dE2T4oBgHgl3EQfQgYx/content/2301.03770v1.pdf +3 -0
  2. -dE2T4oBgHgl3EQfQgYx/vector_store/index.pkl +3 -0
  3. .gitattributes +56 -0
  4. 0NE2T4oBgHgl3EQf4gjD/content/tmp_files/2301.04182v1.pdf.txt +996 -0
  5. 0NE2T4oBgHgl3EQf4gjD/content/tmp_files/load_file.txt +0 -0
  6. 0dAzT4oBgHgl3EQfRPuW/content/tmp_files/2301.01213v1.pdf.txt +1369 -0
  7. 0dAzT4oBgHgl3EQfRPuW/content/tmp_files/load_file.txt +0 -0
  8. 1dFKT4oBgHgl3EQfOy1w/content/tmp_files/2301.11760v1.pdf.txt +0 -0
  9. 1dFKT4oBgHgl3EQfOy1w/content/tmp_files/load_file.txt +0 -0
  10. 29FQT4oBgHgl3EQfGTVE/vector_store/index.faiss +3 -0
  11. 2NE1T4oBgHgl3EQf5QXz/content/2301.03511v1.pdf +3 -0
  12. 2NE1T4oBgHgl3EQf5QXz/vector_store/index.faiss +3 -0
  13. 2NE1T4oBgHgl3EQf5QXz/vector_store/index.pkl +3 -0
  14. 3tE2T4oBgHgl3EQf6AiT/content/tmp_files/2301.04196v1.pdf.txt +1188 -0
  15. 3tE2T4oBgHgl3EQf6AiT/content/tmp_files/load_file.txt +0 -0
  16. 4dE0T4oBgHgl3EQfvQGV/content/tmp_files/2301.02616v1.pdf.txt +259 -0
  17. 4dE0T4oBgHgl3EQfvQGV/content/tmp_files/load_file.txt +122 -0
  18. 4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf +3 -0
  19. 4dE1T4oBgHgl3EQfAwIb/vector_store/index.faiss +3 -0
  20. 7NFLT4oBgHgl3EQfAC40/content/2301.11964v1.pdf +3 -0
  21. 7NFLT4oBgHgl3EQfAC40/vector_store/index.faiss +3 -0
  22. 7NFLT4oBgHgl3EQfAC40/vector_store/index.pkl +3 -0
  23. 8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf +3 -0
  24. 8tFQT4oBgHgl3EQfITXl/vector_store/index.faiss +3 -0
  25. 8tFQT4oBgHgl3EQfITXl/vector_store/index.pkl +3 -0
  26. 99E0T4oBgHgl3EQfgAA0/content/2301.02411v1.pdf +3 -0
  27. 99E0T4oBgHgl3EQfgAA0/vector_store/index.faiss +3 -0
  28. 99E0T4oBgHgl3EQfgAA0/vector_store/index.pkl +3 -0
  29. BdFIT4oBgHgl3EQf_ywO/content/tmp_files/2301.11416v1.pdf.txt +648 -0
  30. BtAzT4oBgHgl3EQfTfyw/vector_store/index.pkl +3 -0
  31. D9A0T4oBgHgl3EQfAv_u/vector_store/index.pkl +3 -0
  32. DtE5T4oBgHgl3EQfUQ_q/vector_store/index.faiss +3 -0
  33. G9AzT4oBgHgl3EQfUvyD/content/tmp_files/2301.01272v1.pdf.txt +470 -0
  34. G9AzT4oBgHgl3EQfUvyD/content/tmp_files/load_file.txt +409 -0
  35. HdE2T4oBgHgl3EQfTwd_/content/tmp_files/2301.03806v1.pdf.txt +974 -0
  36. HdE2T4oBgHgl3EQfTwd_/content/tmp_files/load_file.txt +0 -0
  37. INAyT4oBgHgl3EQf5vp6/vector_store/index.faiss +3 -0
  38. INAyT4oBgHgl3EQf5vp6/vector_store/index.pkl +3 -0
  39. INE5T4oBgHgl3EQfWw9u/vector_store/index.faiss +3 -0
  40. JNFOT4oBgHgl3EQfxjTe/content/2301.12925v1.pdf +3 -0
  41. JNFOT4oBgHgl3EQfxjTe/vector_store/index.faiss +3 -0
  42. JNFOT4oBgHgl3EQfxjTe/vector_store/index.pkl +3 -0
  43. JdFRT4oBgHgl3EQfzjg4/content/tmp_files/2301.13650v1.pdf.txt +0 -0
  44. JdFRT4oBgHgl3EQfzjg4/content/tmp_files/load_file.txt +0 -0
  45. LdE2T4oBgHgl3EQfAwbl/content/tmp_files/2301.03596v1.pdf.txt +450 -0
  46. LdE2T4oBgHgl3EQfAwbl/content/tmp_files/load_file.txt +357 -0
  47. M9FOT4oBgHgl3EQf1zQJ/content/2301.12940v1.pdf +3 -0
  48. MNFOT4oBgHgl3EQf0zS8/content/tmp_files/2301.12937v1.pdf.txt +1514 -0
  49. MNFOT4oBgHgl3EQf0zS8/content/tmp_files/load_file.txt +0 -0
  50. OtFAT4oBgHgl3EQfyx73/content/2301.08695v1.pdf +3 -0
-dE2T4oBgHgl3EQfQgYx/content/2301.03770v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abe659ec55771464608cf9aaa4b29f63b8fea6e28bbdf6124951d385a552a09f
3
+ size 792058
-dE2T4oBgHgl3EQfQgYx/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e85db76e641dc74ad39040534bd45665af6f8f997fb0f5582dbfa8de002e74
3
+ size 240853
.gitattributes CHANGED
@@ -3606,3 +3606,59 @@ fNA0T4oBgHgl3EQfHf-p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
3606
  RdE3T4oBgHgl3EQfDQlE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3607
  g9E_T4oBgHgl3EQf3Rw9/content/2301.08345v1.pdf filter=lfs diff=lfs merge=lfs -text
3608
  EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3606
  RdE3T4oBgHgl3EQfDQlE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3607
  g9E_T4oBgHgl3EQf3Rw9/content/2301.08345v1.pdf filter=lfs diff=lfs merge=lfs -text
3608
  EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf filter=lfs diff=lfs merge=lfs -text
3609
+ gdE3T4oBgHgl3EQffwpl/content/2301.04555v1.pdf filter=lfs diff=lfs merge=lfs -text
3610
+ ttE4T4oBgHgl3EQfWAzx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3611
+ 4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf filter=lfs diff=lfs merge=lfs -text
3612
+ wdAzT4oBgHgl3EQf7f5k/content/2301.01890v1.pdf filter=lfs diff=lfs merge=lfs -text
3613
+ VtA0T4oBgHgl3EQfEv_z/content/2301.02024v1.pdf filter=lfs diff=lfs merge=lfs -text
3614
+ VtA0T4oBgHgl3EQfEv_z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3615
+ 29FQT4oBgHgl3EQfGTVE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3616
+ 7NFLT4oBgHgl3EQfAC40/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3617
+ 99E0T4oBgHgl3EQfgAA0/content/2301.02411v1.pdf filter=lfs diff=lfs merge=lfs -text
3618
+ 7NFLT4oBgHgl3EQfAC40/content/2301.11964v1.pdf filter=lfs diff=lfs merge=lfs -text
3619
+ h9AzT4oBgHgl3EQfMvvr/content/2301.01139v1.pdf filter=lfs diff=lfs merge=lfs -text
3620
+ PtAyT4oBgHgl3EQfhPgp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3621
+ S9AzT4oBgHgl3EQfXfyn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3622
+ 8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf filter=lfs diff=lfs merge=lfs -text
3623
+ W9E3T4oBgHgl3EQf1AvA/content/2301.04743v1.pdf filter=lfs diff=lfs merge=lfs -text
3624
+ 8tFQT4oBgHgl3EQfITXl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3625
+ M9FOT4oBgHgl3EQf1zQJ/content/2301.12940v1.pdf filter=lfs diff=lfs merge=lfs -text
3626
+ PtAyT4oBgHgl3EQfhPgp/content/2301.00372v1.pdf filter=lfs diff=lfs merge=lfs -text
3627
+ sNAzT4oBgHgl3EQfcvwO/content/2301.01406v1.pdf filter=lfs diff=lfs merge=lfs -text
3628
+ 4dE1T4oBgHgl3EQfAwIb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3629
+ sNAzT4oBgHgl3EQfcvwO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3630
+ OtFAT4oBgHgl3EQfyx73/content/2301.08695v1.pdf filter=lfs diff=lfs merge=lfs -text
3631
+ INE5T4oBgHgl3EQfWw9u/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3632
+ DtE5T4oBgHgl3EQfUQ_q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3633
+ ktAyT4oBgHgl3EQfYPen/content/2301.00200v1.pdf filter=lfs diff=lfs merge=lfs -text
3634
+ wtAyT4oBgHgl3EQfnfhR/content/2301.00489v1.pdf filter=lfs diff=lfs merge=lfs -text
3635
+ etE4T4oBgHgl3EQfqA2v/content/2301.05197v1.pdf filter=lfs diff=lfs merge=lfs -text
3636
+ ndFLT4oBgHgl3EQffi-_/content/2301.12096v1.pdf filter=lfs diff=lfs merge=lfs -text
3637
+ sNFKT4oBgHgl3EQfJi1O/content/2301.11738v1.pdf filter=lfs diff=lfs merge=lfs -text
3638
+ VdAzT4oBgHgl3EQfl_1k/content/2301.01556v1.pdf filter=lfs diff=lfs merge=lfs -text
3639
+ gtAzT4oBgHgl3EQfMfvB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3640
+ mtAyT4oBgHgl3EQfYvcj/content/2301.00208v1.pdf filter=lfs diff=lfs merge=lfs -text
3641
+ etE4T4oBgHgl3EQfqA2v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3642
+ ktAyT4oBgHgl3EQfYPen/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3643
+ b9E0T4oBgHgl3EQf4wKo/content/2301.02743v1.pdf filter=lfs diff=lfs merge=lfs -text
3644
+ sNFKT4oBgHgl3EQfJi1O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3645
+ PNE3T4oBgHgl3EQfxguY/content/2301.04712v1.pdf filter=lfs diff=lfs merge=lfs -text
3646
+ b9E0T4oBgHgl3EQf4wKo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3647
+ y9E0T4oBgHgl3EQf_AIq/content/2301.02820v1.pdf filter=lfs diff=lfs merge=lfs -text
3648
+ 99E0T4oBgHgl3EQfgAA0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3649
+ vdFQT4oBgHgl3EQfuzZ_/content/2301.13395v1.pdf filter=lfs diff=lfs merge=lfs -text
3650
+ JNFOT4oBgHgl3EQfxjTe/content/2301.12925v1.pdf filter=lfs diff=lfs merge=lfs -text
3651
+ mtAyT4oBgHgl3EQfYvcj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3652
+ INAyT4oBgHgl3EQf5vp6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3653
+ rtAzT4oBgHgl3EQfrf2X/content/2301.01645v1.pdf filter=lfs diff=lfs merge=lfs -text
3654
+ rtAzT4oBgHgl3EQfrf2X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3655
+ PtAyT4oBgHgl3EQftfn_/content/2301.00598v1.pdf filter=lfs diff=lfs merge=lfs -text
3656
+ y9E0T4oBgHgl3EQf_AIq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3657
+ xNE2T4oBgHgl3EQfhAd2/content/2301.03943v1.pdf filter=lfs diff=lfs merge=lfs -text
3658
+ -dE2T4oBgHgl3EQfQgYx/content/2301.03770v1.pdf filter=lfs diff=lfs merge=lfs -text
3659
+ 2NE1T4oBgHgl3EQf5QXz/content/2301.03511v1.pdf filter=lfs diff=lfs merge=lfs -text
3660
+ TNE3T4oBgHgl3EQfaApj/content/2301.04502v1.pdf filter=lfs diff=lfs merge=lfs -text
3661
+ vdFQT4oBgHgl3EQfuzZ_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3662
+ 2NE1T4oBgHgl3EQf5QXz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3663
+ JNFOT4oBgHgl3EQfxjTe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3664
+ i9FRT4oBgHgl3EQfVze1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0NE2T4oBgHgl3EQf4gjD/content/tmp_files/2301.04182v1.pdf.txt ADDED
@@ -0,0 +1,996 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ schlably: A Python Framework for Deep
2
+ Reinforcement Learning Based Scheduling
3
+ Experiments
4
+ Constantin Waubert de Puiseau, Jannik Peters, Christian Dörpelkus,
5
+ Tobias Meisen
6
+ Institute for Technologies and Management of the Digital Transformation
7
+ University of Wuppertal
8
+ Rainer-Gruenter-Str. 21, Wuppertal, 42119, NRW, Germany
9
+ Abstract
10
+ Research on deep reinforcement learning (DRL) based production schedul-
11
+ ing (PS) has gained a lot of attention in recent years, primarily due to the
12
+ high demand for optimizing scheduling problems in diverse industry settings.
13
+ Numerous studies are carried out and published as stand-alone experiments
14
+ that often vary only slightly with respect to problem setups and solution
15
+ approaches. The programmatic core of these experiments is typically very
16
+ similar. Despite this fact, no standardized and resilient framework for ex-
17
+ perimentation on PS problems with DRL algorithms could be established so
18
+ far. In this paper, we introduce schlably, a Python-based framework that
19
+ provides researchers a comprehensive toolset to facilitate the development
20
+ of PS solution strategies based on DRL. schlably eliminates the redundant
21
+ overhead work that the creation of a sturdy and flexible backbone requires
22
+ and increases the comparability and reusability of conducted research work.
23
+ Keywords:
24
+ Scheduling, Reinforcement Learning, JSSP, Framework
25
+ Preprint submitted to SoftwareX
26
+ January 12, 2023
27
+ arXiv:2301.04182v1 [cs.LG] 10 Jan 2023
28
+
29
+ Required Metadata
30
+ Current code version
31
+ Nr.
32
+ Code metadata description
33
+ Please fill in this column
34
+ C1
35
+ Current code version
36
+ v0.1.0
37
+ C2
38
+ Permanent link to code/repository
39
+ used for this code version
40
+ https://github.com/tmdt-
41
+ buw/schlably
42
+ C4
43
+ Legal Code License
44
+ Apache License, 2.0 (Apache-2.0)
45
+ C5
46
+ Code versioning system used
47
+ git
48
+ C6
49
+ Software code languages, tools, and
50
+ services used
51
+ Python,
52
+ OpenAI
53
+ Gym,
54
+ RLlib,
55
+ Weights and Biases
56
+ C7
57
+ Compilation requirements, operat-
58
+ ing environments & dependencies
59
+ Python 3.10
60
+ C8
61
+ If available Link to developer docu-
62
+ mentation/manual
63
+ https://github.com/tmdt-
64
+ buw/schlably/tree/main/docs
65
+ C9
66
+ Support email for questions
67
68
+ Table 1: Code metadata (mandatory)
69
+ 1. Motivation and Significance
70
+ Production scheduling (PS) is a challenging and highly researched prob-
71
+ lem in operations research (OR) and optimization. It deals with allocating
72
+ resources to production jobs over time to minimize criteria such as time,
73
+ effort, and cost [1]. PS problems are considered NP-hard and therefore re-
74
+ quire much computation effort to be solved sufficiently well with increasing
75
+ problem sizes. In recent years, with increasingly powerful algorithms and
76
+ computational hardware, deep reinforcement learning (DRL) has emerged as
77
+ a promising tool to address PS problems [2, 3, 4, 5, 6, 7, 8]. DRL is a ma-
78
+ chine learning paradigm, in which deep learning models are trained through
79
+ interaction with an environment to autonomously derive solution strategies
80
+ for sequential tasks [9].
81
+ The young research field of DRL-based PS lies at the intersection of op-
82
+ erations research and artificial intelligence and as such is characterized by
83
+ a heterogeneous community with varying problem-solving approaches and
84
+ technical skill sets. Yet, all empirical studies apply a very similar experi-
85
+ mental setup consisting of the same main software components: An envi-
86
+ ronment representing the production facility layout and logic, a scheduling
87
+ problem generator, a DRL agent algorithm, and logging as well as evalua-
88
+ tion tools. The difference between different experimental setups usually lies
89
+ 2
90
+
91
+ within one or more of these components, for example by incorporating a new
92
+ DRL algorithm [10, 11, 12], interaction logic between agent and environ-
93
+ ment [6, 3], training procedure [13], learning objective [14, 12] or additional
94
+ problem constraint [14, 15]. Regardless of large overlaps, all researchers im-
95
+ plement their own individual experimentation framework with the following
96
+ two consequences: Large initial ramp-up efforts when experimenting with
97
+ new methodologies or custom problem settings, and scarcity of empirical
98
+ comparisons to other works. In this paper, we address these shortcomings
99
+ and present the software framework schlably for developing and evaluating
100
+ DRL-based PS solutions. schlably provides the following contributions:
101
+ • It is modular, so individual changes may be adapted without much
102
+ overhead.
103
+ • It works out of the box with functioning environments, data-generation
104
+ scripts, agents, logging functions, training, and testing scripts.
105
+ • It provides benchmark datasets for different scheduling problem classes
106
+ and sizes.
107
+ • It includes widely recognized benchmark algorithms and results.
108
+ • It facilitates the application of algorithms designed for one problem
109
+ class and size to other problems.
110
+ schlably will accelerate the research area of DRL-based PS under real-
111
+ world conditions by lowering the barrier of entry for researchers from different
112
+ domains with different perspectives, levels of expertise, and objectives.
113
+ 2. Background and Related Work
114
+ schlably started as a code base for experiments on a real-world inspired
115
+ scheduling problem in the context of a university research project with in-
116
+ dustrial partners. As such, several requirements became apparent early on
117
+ that can be summarized in four general design goals. First, from the ap-
118
+ plied industrial perspective, schlably has to offer the integration of DRL
119
+ methods and heuristics which work out of the box. Second, it also has to
120
+ cover different scheduling scenarios, e.g. including such bounded by resource
121
+ constraints. Third, from the scientific research perspective, schlably should
122
+ support detailed comparable evaluations of methods. Lastly, it has to be
123
+ easy to interact with at the code level, to enable students with limited expe-
124
+ rience to quickly understand the topic, concepts, and implementation. The
125
+ implications of these design goals are discussed in this section.
126
+ 3
127
+
128
+ In the following, we present an overview of related published experi-
129
+ mental frameworks and compare them to our design goals in schlably. In
130
+ the comparison, we include frameworks dedicated to being used by others
131
+ [16, 17, 18, 19, 20] and frameworks published in a supplementary fashion
132
+ along with research papers and projects [21, 22, 23, 24, 25, 26], because in
133
+ practice both may serve as starting points for additional experiment designs.
134
+ The frameworks were found via references in scientific publications and a
135
+ search of "Scheduling Reinforcement Learning" on GitHub. We do not claim
136
+ the list to be exhaustive but are not aware of any other popular frameworks
137
+ at the time of writing this paper. Commercial or proprietary scheduling soft-
138
+ ware was excluded because license fees and other accompanying challenges
139
+ introduce a major barrier. However, we are not aware of any commercial
140
+ software that provides the tight integration of DRL and PS. Table 2 provides
141
+ an overview of the frameworks.
142
+ In addition, we assessed them regarding
143
+ their fulfillment of our design goals which are formally categorized into the
144
+ following four groups.
145
+ Pre-Implemented Benchmarks. Several frameworks either provide pre-
146
+ implemented DRL agents and scripts for training or the easy integration of
147
+ agents from popular DRL libraries, e.g. from StableBaselines [27] or RLlib
148
+ [28]. Like [20], our goal is to enable and facilitate both, the manual extensions
149
+ of basic DRL algorithms, like DQN and PPO, as well as the usage of powerful
150
+ third-party libraries. Both options are important to empower users to choose
151
+ the appropriate approach for their respective research interests. Additionally,
152
+ for the sake of comparability, it is crucial to provide common benchmarks
153
+ in the form of popular priority dispatching rules (PDRs), such as Shortest-
154
+ Processing-Time-First, and a flexible optimal solver that can handle several
155
+ scheduling problem types. Most frameworks only cover a few PDRs, often
156
+ missing competitive ones, such as Most-Tasks-Remaining and even random
157
+ baselines, where agent actions are sampled from a normal distribution.
158
+ Scheduling Instance Generation. Generating new data with varying prob-
159
+ lem cases is necessary to enable comprehensive training and testing of a DRL
160
+ agent. Accordingly, a suitable framework must implement a flexible problem
161
+ instance generator. This generator enables the user to create scheduling prob-
162
+ lems of different popular categories (e.g. the Job Shop Scheduling Problem
163
+ (JSSP) or the Flexible Job Shop Scheduling Problem (FJSSP) [1]) instances
164
+ with any combination of instance variables, like the number of jobs, number
165
+ of tasks, runtimes, and more. Moreover, its design simplifies the integration
166
+ 4
167
+
168
+ [16] [17] [18] [21] [19] [20] [22] [23] [24] [25] [26] schlably
169
+ B
170
+ Implemented RL-agents
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+ Implemented PDRs
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+ Implemented opt. solver
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+ Interface for RLLib
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+ S
223
+ Flexible Data Generation
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+ JSSP
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+ FJSSP
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+ Different problem types
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+ Resource constraint tool
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+ L
289
+ Log achieved results
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+
300
+
301
+
302
+ Evaluate achieved results
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+ ��
311
+
312
+ ��
313
+
314
+
315
+ Visualize Gantt-Chart
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+ Comparison to solver
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+ Comparison to PDRs
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+ C
355
+ Paper
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+ README
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+ Code documentation
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+ Easily personalizable
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+ Works out-of-the-box
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+
419
+
420
+ User manual in Readme
421
+
422
+
423
+
424
+
425
+
426
+
427
+ ��
428
+
429
+ ��
430
+
431
+
432
+
433
+ OpenAI Gym Env
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+ Legend:
447
+ �not fulfilled
448
+ �half-fulfilled
449
+ �fulfilled
450
+ Table 2: Overview of related frameworks and their fulfillment regarding pre-
451
+ implemented benchmarks (B), scheduling instances (S), logging and evalua-
452
+ tion (L), and code usability (C)
453
+ 5
454
+
455
+ of additional scheduling problem types to encourage the implementation of
456
+ individual, more complex, or more specific use cases. Finally, to the best
457
+ of our knowledge, this is the first framework providing an optional resource
458
+ constraint. Concretely, the user is able to specify a required tool per opera-
459
+ tion.
460
+ Logging and Evaluation. Logging results and evaluation metrics in a struc-
461
+ tured manner is key for quick feedback during training runs, but also for
462
+ identifying patterns in and drawing conclusions from large-scale experiments.
463
+ Our objective with schlably is to provide extensive logging options that may
464
+ be turned on and off, and where results and models may be shared to promote
465
+ collaboration on projects. This design goal is met to a large degree by [20]
466
+ from which we took much inspiration in this regard. All other frameworks
467
+ do not address this design goal. For the evaluation of solutions generated
468
+ by DRL agents, a comprehensive framework should apply the benchmarks
469
+ mentioned above and provide an overview of the overall performance. Most
470
+ of the reviewed frameworks lack functionality in this aspect. Moreover, to
471
+ get a graphical overview and to visually support the tracking of very specific
472
+ actions in a production schedule, a Gantt chart plotter is useful for human
473
+ inspection. The Gantt chart should display all metadata of operations, e.g.
474
+ the runtime or required tool, and has been found to be helpful for debugging
475
+ and evaluating DRL agents. Many other frameworks, but not all, include a
476
+ Gantt chart plotter.
477
+ Code Usability. As usability is of utmost importance, a framework has to
478
+ offer easy access through full documentation and must include a README,
479
+ user application programming interface (API) manual, and formal functional-
480
+ ity description. Within the reviewed frameworks, only [20] covers all criteria.
481
+ To be usable with different skill sets our explicit goal is to enable users to
482
+ start experimenting with small design decisions by only using the configura-
483
+ tion files but at the same time facilitate substantial logical changes to routines
484
+ and components by means of their own implementations. For that reason, we
485
+ would favor comprehensibility over efficiency wherever a trade-off is unavoid-
486
+ able. This requires a careful balance. In our opinion, all other frameworks
487
+ overemphasize one side: [20] offers many functional changes through configu-
488
+ ration files but at the cost of a comparatively complex software architecture.
489
+ On the other hand, all other frameworks are much smaller and easier to get
490
+ an overview of, at the expense of limited functionality. Lastly, a framework
491
+ with a claim to widespread use should stick to conventional APIs. In the
492
+ 6
493
+
494
+ context of DRL, the most commonly used API is the OpenAI Gym [29] API.
495
+ Only half of the reviewed frameworks adhere to it.
496
+ 3. Software Architecture
497
+ This chapter describes our framework with focus on implementation-
498
+ specific details. We are providing a general overview of the code itself, fo-
499
+ cusing on currently existing exemplary implementations while also pointing
500
+ out open interfaces. Furthermore, we describe details regarding the main
501
+ components of schlably to demonstrate the realization of the design goals, as
502
+ introduced in Chapter 2, and to enable users to fit schlably to their needs.
503
+ The overall structure is illustrated in Figure 1. We divided the code base
504
+ into six main components, which are described below in detail. Following
505
+ this component-oriented approach, and in combination with comprehensive
506
+ code documentation, schlably adheres to the objective of the fourth design
507
+ goal, which requires easy interaction and usability at the code level.
508
+ agents
509
+ code_tests
510
+ environments
511
+ utils
512
+ visuals_generator
513
+ data_generator
514
+ GanttChartPlotter
515
+ + VISUALS_DIRECTORY
516
+ + get_gantt_chart_image
517
+ + get_gantt_chart_gif_and_save
518
+ EvaluationHandler
519
+ + rewards
520
+ + makespan
521
+ + record_environment_episode
522
+ + evaluate_test
523
+ Logger
524
+ + WANDB_PROJECT
525
+ + LOG_MODE_DEFAULT
526
+ + record
527
+ + dump
528
+ + dump_wandb
529
+ ui_tools
530
+ file_handler
531
+ ConfigHandler
532
+ DataHandler
533
+ FileChooser
534
+ ProgressBar
535
+ MessageBox
536
+ agent_tests
537
+ data_generator_tests
538
+ visuals_generator_tests
539
+ Runner
540
+ Env
541
+ + num_jobs
542
+ + num_machines
543
+ + reset
544
+ + step
545
+ EnvIndirectAction
546
+ + get_action_mask
547
+ EnvironmentLoader
548
+ + ENVIRONMENT_MAPPER_DICT
549
+ + load
550
+ + check_environment_agent_compatibility
551
+ InstanceFactory
552
+ SPFactory
553
+ + SP(Enum)
554
+ + generate_instances
555
+ Task
556
+ + job_index
557
+ + task_index
558
+ heuristic
559
+ reinforcement_learning
560
+ solver
561
+ dqn
562
+ ppo
563
+ ppo_masked
564
+ intermediate_test
565
+ test
566
+ train
567
+ Figure 1: Overview of schlably project and code structure.
568
+ 7
569
+
570
+ Data generator. The general data structure of scheduling problems, as
571
+ used in schlably, is represented by so-called instances. A user can generate
572
+ infinite instances of a scheduling problem, however, each instance is a spe-
573
+ cific configuration and entity. The specific configuration, contained within
574
+ an instance, is given by a number of jobs, with a job simply being an encom-
575
+ passing logical container consisting of individual tasks. The data_generator
576
+ component incorporates the necessary classes to generate such an instance
577
+ and the individual tasks. From the scheduling problem point-of-view, it is
578
+ the centerpiece of the problem formulation and representation. The Task
579
+ class is a specifically designed data class and its entities are the atomic
580
+ units of a scheduling problem instance.
581
+ Such an instance can be created
582
+ via the SPFactory, which allows the generation of different types of schedul-
583
+ ing problems that are given via the included Enum. If users would like to
584
+ introduce a new type of scheduling problem into schlably, they would have
585
+ to include their function in this class and add it to the Enum. Finally, the
586
+ InstanceFactory enables high-level access to the problem factory class and
587
+ manages the configuration-based creation of batches of instances. Thus, the
588
+ data_generator component realizes the foundation of the second design
589
+ goal, which requires the implementation and handling of different scheduling
590
+ scenarios.
591
+ Environment. An environment defines the observation space, action space,
592
+ and reward strategy.
593
+ Thus, it represents a simulation of the agent’s en-
594
+ vironment and interaction dynamics and is the central piece of any DRL
595
+ approach. All schlably environments are included in the environments com-
596
+ ponent. Exemplary, we provide a simple scheduling Env as well as a derived
597
+ version named EnvIndirectAction to showcase the expandability. All en-
598
+ vironments adhere to the Gym API and are explicitly derived from a base
599
+ Gym environment. The EnvironmentLoader class enables high-level access
600
+ and management of the different environment types and appropriate algo-
601
+ rithms, as not all algorithms are feasible for every environment. New envi-
602
+ ronments have to be included in this component and added to the managing
603
+ EnvironmentLoader. This encapsulated approach, in conjunction with the
604
+ data_generator component, represents the implementation of the second
605
+ design goal.
606
+ Agent. The agents component combines the heuristic functionalities, the
607
+ solver, and implementations of DRL algorithms as well as the train and test
608
+ functions for the DRL approach. Users can to integrate functionalities from
609
+ 8
610
+
611
+ other DRL frameworks, like more extensive training procedures, model types,
612
+ and learning algorithms via pre-defined interfaces. As such, the agents com-
613
+ ponent realizes the first design goal, to support and simplify the integration
614
+ of out-of-the-box-methods as well as pre-implemented benchmarks.
615
+ Visual generator. The component visuals_generator incorporates all
616
+ classes and scripts which are used to create visualizations of the problem
617
+ instances and generated solutions.
618
+ These functionalities are intentionally
619
+ isolated as different scheduling problem environments and still share the same
620
+ visualization approach. schlably, for example, introduces a GanttChartPlotter
621
+ that enables a user to generate individual Gantt chart images (see Figure 2b)
622
+ or create a GIF of the scheduling progress. Thus, it is part of the implemen-
623
+ tation of the third design goal.
624
+ Utils. The utils component aggregates classes and functions which have a
625
+ supporting character for the main functionalities of schlably. Specifically, it
626
+ includes user interface components (ui_tools), data interface components
627
+ (file_handler), e.g. to load and save data, and the high-level Logger class.
628
+ Accordingly, the utils component realizes the third design goal, facilitating
629
+ logging and evaluations for comparisons.
630
+ Code tests. All code tests that ensure the crucial functionality of the de-
631
+ scribed components are collected in the code_tests component. Up to this
632
+ point, we included multiple unit tests with a central Runner. These are also
633
+ intended as an example for users that plan to extend the code base.
634
+ 4. Illustrative Example
635
+ To illustrate a typical use case, we consider a scenario in which an ML
636
+ engineer wants to compare the learning behavior of two PPO agents. It is also
637
+ part of our tutorial in the documentation. One agent is trained on 6x6 JSSP
638
+ instances and receives a reward based on the change in the time to complete
639
+ all tasks (i.e. the makespan) per step, as proposed in [3]. This setup is also the
640
+ default setting delivered in the framework. The other one is trained on a 3x4
641
+ tool-constrained JSSP instance and receives a zero reward per step with the
642
+ exception of the last step, where the reward is equal to the overall achieved
643
+ makespan. The remaining training parameters are kept constant. The second
644
+ training requires only minimal manual changes to the base model. These
645
+ include setting different configuration parameters, generating new data, and
646
+ 9
647
+
648
+ Figure 2: Comparing agent runs in Weights&Biases (screenshot from the web interface
649
+ shown on the left-hand side). a) Visualized training curves for interpreting the learning
650
+ performance of the agent. b) Gantt chart depicting the solution of the trained agent on a
651
+ selected test instance. c) Table providing evaluation results and comparison of the trained
652
+ agents and benchmark methods on the test instances.
653
+ changing the reward function in the base environment. Details may be found
654
+ in the documentation. The integrated interface to Weights&Biases [30] makes
655
+ it easy to compare the training curves and achieved results, as depicted in
656
+ Figure 2.
657
+ The described short example reflects several of our design goals. Figure
658
+ 2c) demonstrates that the agents’ performance is automatically compared
659
+ to many other benchmarks and with respect to different dimensions such
660
+ as the reward or the gap to the optimal solver.
661
+ The continuous logging
662
+ and graphical depiction are visible in Figure 2a) and b). The example also
663
+ showcases our understanding of high code usability. The experiments could
664
+ be defined by changing training parameters (only a few lines in configuration
665
+ files) and minimal intended changes to the source code. Examples of the
666
+ most common changes which are intended to be coded are explained in more
667
+ detailed follow-along tutorials in the provided documentation.
668
+ 10
669
+
670
+ wandb web interface
671
+ agent_training/entropy_loss
672
+ agent_training/policy_gradient_loss
673
+ agent_training/value_loss
674
+ a
675
+ still-river-17
676
+ swept-blaze-15
677
+ still-river-17
678
+ - swept-blaze-15
679
+ still-river-17
680
+ swept-blaze-15
681
+ 400
682
+ 0.1
683
+ 0.08
684
+ 300
685
+ agent_.training/loss
686
+ 1.42
687
+ 0.06
688
+ 200
689
+ 0.04
690
+ 1.44
691
+ 100
692
+ 1.46
693
+ runs.summary["Final Evaluation Table"]
694
+ Agent
695
+ Mean Rewal
696
+ Mean Tardin
697
+ Tardiness M
698
+ Mean Makesp
699
+ MakespanS
700
+ Tardiness ST
701
+ Gap To Solv
702
+ 1 agent
703
+ -81.333
704
+ 35.167
705
+ 20.667
706
+ 81.333
707
+ 13.237
708
+ 53.108
709
+ 17.167
710
+ Ganttchart
711
+ 2 rand
712
+ -94.667
713
+ 10.949
714
+ 19.117
715
+ 30.5
716
+ b
717
+ 3EDD
718
+ -180.5
719
+ 15.575
720
+ 68.966
721
+ 116.333
722
+ 4 SPT
723
+ 155.16
724
+ 24.423
725
+ 56.782
726
+ 91
727
+ 5 MTR
728
+ -76.333
729
+ 23.5
730
+ 17.833
731
+ 76.333
732
+ 11.146
733
+ 31.261
734
+ 12.167
735
+ C
736
+ 6 LTR
737
+ -187.333
738
+ 255.5
739
+ 93.5
740
+ 187.333
741
+ 18.436
742
+ 52.677
743
+ 123.167
744
+ - 6 of 14
745
+ Export as CSV Columns...
746
+ Reset Table
747
+ lidden Panels 5. Impact
748
+ schlably is useful for the entire community around PS with DRL. Com-
749
+ pared to other frameworks, it is particularly useful to reduce the entry barrier
750
+ for researchers from the OR or other related domains, who want to empir-
751
+ ically explore a new methodology for scheduling problems, and for DRL
752
+ researchers who want to test a new algorithm on a challenging and impactful
753
+ problem domain. We believe that the seamless interchangeability of prob-
754
+ lem settings offered by schlably will also encourage researchers in the domain
755
+ of PS with DRL to try out methodologies applied to one particular prob-
756
+ lem setting (e.g. 6x6 JSSP) on different problem settings (e.g. 11x11 tool-
757
+ constrained JSSP). This has the potential to greatly speed up the transfer of
758
+ research from academic problems to real-world problems.
759
+ In several projects where our test partners and we have used schlably, it
760
+ has significantly increased the throughput of experiments. This is achieved
761
+ because new methodological ideas can be integrated more quickly and the
762
+ results of experiments can be compared more easily. schlably facilitates the
763
+ generation of new problem instances and the training and evaluation of cus-
764
+ tom DRL agents. Due to the various pre-implementations in the framework,
765
+ such as training and testing routines, well-known scheduling benchmarks,
766
+ and visualization of logged results, it is much easier to conduct experimental
767
+ research in DRL for PS. In addition, collaboration has become more effec-
768
+ tive because design changes can be compared easily and the results of peers
769
+ can be viewed online through Weights&Biases. We have further experienced
770
+ a substantial increase in productivity in research projects, where new re-
771
+ searchers and university students, who had no prior domain knowledge and
772
+ little coding skills, had to conduct experiments on the PS domain. This, we
773
+ mainly attribute to the code documentation and modular structure, but also
774
+ to the fact that schlably is 100% written in Python and therefore runs on all
775
+ relevant operation systems.
776
+ 6. Discussion and limitations
777
+ In its current state, schlably serves as a useful framework for empiri-
778
+ cal DRL-based PS research. It has reached a maturity level, at which it
779
+ works out-of-the-box and, to the best of our knowledge, offers the broadest
780
+ range of different easy-to-implement design choices compared to any pub-
781
+ lished framework. schlably, on the one hand, is intended to be abstract and
782
+ modular enough to offer different instance generation, training, and testing
783
+ configurations without many lines of code. On the other hand, it is designed
784
+ to not be too interwoven in its code structure to hinder the extension with
785
+ 11
786
+
787
+ fundamentally different features experts might find desirable. As such, the
788
+ development required a balancing act and certain compromises, which some
789
+ may see as limitations.
790
+ For example, one deliberate choice was made in
791
+ favor of a class-based problem description as opposed to a vector representa-
792
+ tion. The class-based description simplifies the search and usage of certain
793
+ information about the current state of jobs and increases code readability
794
+ compared to a vector problem representation. Hence, the choice was made
795
+ between readability and computational efficiency in favor of the former.
796
+ 7. Conclusions
797
+ In this paper, we introduced schlably, a software framework for research
798
+ on DRL-based PS. With the release of the framework, we strive towards
799
+ two main goals: the first is to lower the entry barrier for researchers, who
800
+ have little experience with production scheduling, deep reinforcement learn-
801
+ ing (DRL) and/or coding. The second goal is to encourage researchers al-
802
+ ready active in the field to apply and test their methods on other problem
803
+ settings, which is largely facilitated by schlably. Both goals aim at promoting
804
+ the transfer of DRL methods to real-world scheduling applications. In the
805
+ future, we plan to include more problem settings, such as the dynamic JSSP
806
+ and stochastic properties of environments like machine breakdowns to get
807
+ even closer to real-world scenarios.
808
+ 8. Conflict of Interest
809
+ We wish to confirm that there are no known conflicts of interest associated
810
+ with this publication and there has been no significant financial support for
811
+ this work that could have influenced its outcome.
812
+ Acknowledgements
813
+ This research work was undertaken within the research project AlphaMES
814
+ funded by the German Federal Ministry for Economic Affairs and Climate
815
+ Action (BMWK).
816
+ References
817
+ [1] M. Pinedo, Scheduling:
818
+ Theory, algorithms, and systems, fifth edi-
819
+ tion Edition, Springer International Publishing, 2016. doi:10.1007/
820
+ 978-3-319-26580-3.
821
+ 12
822
+
823
+ [2] I. Bello, H. Pham, Q. Le V, M. Norouzi, S. Bengio, Neural combinatorial
824
+ optimization with reinforcement learning (2016). doi:10.48550/ARXIV.
825
+ 1611.09940.
826
+ URL http://arxiv.org/pdf/1611.09940v3
827
+ [3] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, X. Chi, Learning
828
+ to dispatch for job shop scheduling via deep reinforcement learning,
829
+ Advances in Neural Information Processing Systems 33 (2020) 1621–
830
+ 1632.
831
+ [4] A. Kuhnle, J.-P. Kaiser, F. Theiß, N. Stricker, G. Lanza, Designing
832
+ an adaptive production control system using reinforcement learning,
833
+ Journal of Intelligent Manufacturing 32 (44) (2021) 855–876.
834
+ doi:
835
+ 10.1007/s10845-020-01612-y.
836
+ [5] T. van Ekeris, R. Meyes, T. Meisen, Discovering heuristics and meta-
837
+ heuristics for job shop scheduling from scratch via deep reinforcement
838
+ learning, Proceedings of the Conference on Production Systems and Lo-
839
+ gistics : CPSL 2021 1 (2021) 709–718. doi:10.15488/11231.
840
+ [6] V. Samsonov, K. B. Hicham, T. Meisen, Reinforcement learning in man-
841
+ ufacturing control: Baselines, challenges and ways forward, Engineering
842
+ Applications of Artificial Intelligence vol. C (112) (2022).
843
+ [7] C. W. de Puiseau, R. Meyes, T. Meisen, On reliability of reinforcement
844
+ learning based production scheduling systems: a comparative survey,
845
+ Journal of Intelligent Manufacturing 33 (4) (2022) 911–927. doi:10.
846
+ 1007/s10845-022-01915-2.
847
+ [8] Sebastian Pol, Schirin Baer, Danielle Turner, Vladimir Samsonov, To-
848
+ bias Meisen, Global reward design for cooperative agents to achieve
849
+ flexible production control under real-time constraints, in: Proceedings
850
+ of the 23rd International Conference on Enterprise Information Sys-
851
+ tems - Volume 1: ICEIS„ INSTICC, SciTePress, 2021, pp. 515–526.
852
+ doi:10.5220/0010455805150526.
853
+ [9] R. S. Sutton, A. Barto, Reinforcement learning: An introduction, second
854
+ edition Edition, Adaptive computation and machine learning, The MIT
855
+ Press, Cambridge, Massachusetts, London, England, 2018.
856
+ [10] A. Rinciog, C. Mieth, P. M. Scheikl, A. Meyer, Sheet-metal produc-
857
+ tion scheduling using alphago zero, Proceedings of the Conference on
858
+ Production Systems and Logistics :
859
+ CPSL 2020 1 (2020) 342–352.
860
+ doi:10.15488/9676.
861
+ 13
862
+
863
+ [11] M. Monaci, V. Agasucci, G. Grani, An actor-critic algorithm with deep
864
+ double recurrent agents to solve the job shop scheduling problem (2021).
865
+ doi:10.48550/ARXIV.2110.09076.
866
+ URL https://arxiv.org/pdf/2110.09076
867
+ [12] S. Luo, Dynamic scheduling for flexible job shop with new job insertions
868
+ by deep reinforcement learning, Applied Soft Computing 91 (2020). doi:
869
+ 10.1016/j.asoc.2020.106208.
870
+ [13] Z. Iklassov, D. Medvedev, R. Solozabal, M. Takac, Learning to gener-
871
+ alize dispatching rules on the job shop scheduling, Advances in Neural
872
+ Information Processing Systems 33 (2020) 1621–1632. doi:10.48550/
873
+ ARXIV.2206.04423.
874
+ URL https://arxiv.org/pdf/2206.04423
875
+ [14] A. H. Sakr, A. Aboelhassan, S. Yacout, S. Bassetto, Simulation and
876
+ deep reinforcement learning for adaptive dispatching in semiconductor
877
+ manufacturing systems, Journal of Intelligent Manufacturing 1 (2021)
878
+ 1–14. doi:10.1007/s10845-021-01851-7.
879
+ URL
880
+ https://link.springer.com/article/10.1007/
881
+ s10845-021-01851-7
882
+ [15] P. C. Luo, H. Q. Xiong, B. W. Zhang, J. Y. Peng, Z. F. Xiong, Multi-
883
+ resource constrained dynamic workshop scheduling based on proximal
884
+ policy optimisation, International journal of production research 60 (19)
885
+ (2022) 5937–5955. doi:10.1080/00207543.2021.1975057.
886
+ [16] P.
887
+ Tassel,
888
+ M.
889
+ Gebser,
890
+ K.
891
+ Schekotihin,
892
+ Job_shop_scheduling_problem_with_reinforcement_learning,
893
+ GitHub (2021).
894
+ URL
895
+ https://github.com/dmksjfl/Job_Shop_Scheduling_
896
+ Problem_with_Reinforcement_Learning
897
+ [17] L. Zheng, L. Zijun, Y. Dai, X. Li, B. Yuan, Gymjsp, GitHub (2022).
898
+ URL https://github.com/yunhui1998/gymjsp
899
+ [18] Dr-ilyassPHx, Auto-rl-competition: Dynamic job shop scheduling prob-
900
+ lem challenge, GitHub (2022).
901
+ URL https://github.com/Dr-ilyassPHx/Auto-RL-Competition
902
+ [19] P. Tassel, P. Willms, Jssenv: An openai gym environment for the job
903
+ shop scheduling problem., GitHub (2022).
904
+ URL https://github.com/prosysscience/JSSEnv
905
+ 14
906
+
907
+ [20] V. Samsonov, optimization-with-rl-in-manufacturing-control, GitHub
908
+ (2021).
909
+ URL
910
+ https://github.com/v-samsonov/
911
+ optimization-with-rl-in-manufacturing-control
912
+ [21] tejaswini medi, Rl_scheduling_system, GitHub (2022).
913
+ URL https://github.com/tejaswini-medi/RL_scheduling_system
914
+ [22] D. Venturelli, D. Marchand, G. Rojo, job-shop-scheduling: Determine a
915
+ schedule for running a set of jobs., GitHub (2015).
916
+ URL https://github.com/dwave-examples/job-shop-scheduling
917
+ [23] samy barrech, Flexible-job-shop-scheduling-problem, GitHub (2018).
918
+ URL
919
+ https://github.com/samy-barrech/
920
+ Flexible-Job-Shop-Scheduling-Problem
921
+ [24] C. Zhang, W. Song, Z. Cao, J. Zhan, P. Tan, X. Chi, L2d: Official
922
+ implementation of paper "learning to dispatch for job shop scheduling
923
+ via deep reinforcement learning", GitHub (2020).
924
+ URL https://github.com/zcaicaros/L2D
925
+ [25] V. Kumar, Jobschedulingrlenv:
926
+ Reinforcement learning environment
927
+ for job scheduling written in python., GitHub (2019).
928
+ URL
929
+ https://github.com/TimeTraveller-San/
930
+ JobSchedulingRLenv
931
+ [26] T. van Ekeris, jobshop: Deep reinforcement learning (drl) for jobshop
932
+ scheduling problems (jsp) - an evaluation framework, GitLab (2020).
933
+ URL https://gitlab.com/tvanekeris/jobshop
934
+ [27] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dor-
935
+ mann, Stable-baselines3: Reliable reinforcement learning implementa-
936
+ tions, Journal of Machine Learning Research 22 (268) (2021) 1–8.
937
+ URL http://jmlr.org/papers/v22/20-1364.html
938
+ [28] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
939
+ Ken Goldberg, Joseph Gonzalez, Michael Jordan, Ion Stoica, Rllib: Ab-
940
+ stractions for distributed reinforcement learning, International Confer-
941
+ ence on Machine Learning (2018) 3053–3062.
942
+ URL https://proceedings.mlr.press/v80/liang18b.html
943
+ [29] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
944
+ J. Tang, W. Zaremba, Openai gym (2016). arXiv:arXiv:1606.01540.
945
+ 15
946
+
947
+ [30] L. Biewald, Experiment tracking with weights and biases (2020).
948
+ URL https://www.wandb.com/
949
+ Current executable software version
950
+ Ancillary data table required for sub version of the executable software:
951
+ (x.1, x.2 etc.)
952
+ kindly replace examples in right column with the correct
953
+ information about your executables, and leave the left column as it is.
954
+ Nr.
955
+ (Executable)
956
+ software
957
+ meta-
958
+ data description
959
+ Please fill in this column
960
+ S1
961
+ Current software version
962
+ v0.1.0
963
+ S2
964
+ Permanent link to executables of
965
+ this version
966
+ https://github.com/tmdt-
967
+ buw/schlably
968
+ S3
969
+ Legal Software License
970
+ Apache License, 2.0 (Apache-2.0)
971
+ S4
972
+ Computing
973
+ platforms/Operating
974
+ Systems
975
+ Python,
976
+ OpenAI
977
+ Gym,
978
+ DRL-
979
+ lib,Weights and Biases
980
+ S5
981
+ Installation requirements & depen-
982
+ dencies
983
+ Python 3.10
984
+ S6
985
+ If available, link to user manual - if
986
+ formally published include a refer-
987
+ ence to the publication in the refer-
988
+ ence list
989
+ https://github.com/tmdt-
990
+ buw/schlably/docs
991
+ S7
992
+ Support email for questions
993
994
+ Table 3: Software metadata (optional)
995
+ 16
996
+
0NE2T4oBgHgl3EQf4gjD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dAzT4oBgHgl3EQfRPuW/content/tmp_files/2301.01213v1.pdf.txt ADDED
@@ -0,0 +1,1369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01213v1 [physics.optics] 3 Jan 2023
2
+ Numerical study of magneto-optical binding between two dipolar particles under
3
+ illumination by two counter-propagating waves
4
+ Ricardo Mart´ın Abraham-Ekeroth
5
+ Instituto de F´ısica Arroyo Seco, IFAS (UNCPBA), Tandil, Argentina and
6
+ CIFICEN (UNCPBA-CICPBA-CONICET), Grupo de Plasmas Densos, Pinto 399, 7000 Tandil, Argentina∗
7
+ The formation of a stable magneto plasmonic dimer with THz resonances is theoretically studied
8
+ for the principal directions of the system. Unlike a recent report, our work provides a complete
9
+ description of the full photonic coupling for arbitrary magnetic fields as, for instance, unbalanced
10
+ particle spins. As an illustration, we consider two small, n-doped InSb nanoparticles under illumina-
11
+ tion by two counter-propagating plane waves. Remarkably, when an external magnetic field exists,
12
+ the symmetry in the system is broken, and a resonant radiation pressure for the dimer appears.
13
+ Similarly, tunable inter-particle forces and spins are exerted on the non-reciprocal dimer. The sys-
14
+ tem is also characterized when the magnetic field is absent. Moreover, we show how the mechanical
15
+ observables truly characterize the dimer since their resonance dependency contains detailed informa-
16
+ tion about the system. Unlike far-field observables like absorption, mechanical magnitudes depend
17
+ on the system’s near-field. In addition, the nature of the particle spins is originally explained by
18
+ the energy flow’s behavior around the dimer. This work constitutes a generalization of any previ-
19
+ ous approach to optical binding between small nanoparticles. It paves the way for fully controlling
20
+ optical matter and nano factory designs based on surface plasmon polaritons.
21
+ Keywords:
22
+ Magneto plasmonics,
23
+ Spin torques,
24
+ Dimers, Optical Binding, Photonics, Poynting field,
25
+ Radiation Pressure, Optical Matter
26
+ I.
27
+ INTRODUCTION
28
+ Optical matter (OM) consists of arrays of micro or
29
+ nanoparticles that are somehow bound and controlled
30
+ by light [10].
31
+ An OM able to self-assemble at will
32
+ to develop solid technology is a long-standing goal in
33
+ photonics [38]. The background for OM is the particle
34
+ manipulation by optical forces; the first results were
35
+ applied to microparticles due to the lack of technology
36
+ and the presence of thermal noise for smaller systems
37
+ [4, 5].
38
+ Generally, OM comprises multiple particles
39
+ subjected to electromagnetic forces that come from
40
+ their mutually scattered light. However, this multiple
41
+ scattering phenomena can be very complex and bring
42
+ about unusual effects such as “non-reciprocal” forces,
43
+ torque opposite to the illumination angular momen-
44
+ tum, and non-conservative forces [2, 38]. Appropri-
45
+ ate control of OM by forces and torques could lead to
46
+ programmable materials for optomechanical, rheologi-
47
+ cal, and biological applications. In this respect, many
48
+ works studied the optical binding between nanopar-
49
+ ticles as a primary tool to develop OM. Some ap-
50
+ proached specific combinations of optical beams like
51
+ those with programmable phase [24, 31]. For example,
52
+ light-induced rotation of objects holds potential for
53
+ various applications such as sensing, cargo transporta-
54
+ tion, drug delivery, and micro/nanosurgery [3, 7, 42].
55
+ Optical traps use the combination of beams as a po-
56
+ tent characterization tool for material science and bio-
57
+ physics, as in Ref. [23], which uses electrostatic focus-
58
+ ing to obtain the mass spectrum of SARS-CoV-2 and
59
60
+ BoHV-1 virions. However, the high intensity at the
61
+ focal spot may introduce laser heating, which is an
62
+ issue for bio applications [31].
63
+ On the other hand, recent advances in THz tech-
64
+ nology call for new devices and materials that exhibit
65
+ a non-reciprocal behavior for photonic networks and
66
+ optical information processing [41].
67
+ Non-reciprocal
68
+ devices are a crucial component of modern commu-
69
+ nication technology. They are nowadays required for
70
+ miniaturized electronic and photonic devices [32]. One
71
+ way to create optical non-reciprocity at the THz range
72
+ is using magneto-optical (MO) systems like graphene,
73
+ hexaferrites, and semiconductors [27]. For instance,
74
+ Ref. [15] presented MO measurement of several sam-
75
+ ples of InSb with different carriers and carrier con-
76
+ centrations for low external magnetic field and room
77
+ temperatures.
78
+ With these advantages, dimers and
79
+ trimers of InSb particles have been studied to enhance
80
+ THz spectroscopy by forming electric and magnetic
81
+ hotspots in the gap between them [6, 40]. Anisotropic
82
+ materials like InSb in OM would make it strongly
83
+ dependent on the beam combinations, allowing for
84
+ countless possibilities [39].
85
+ Recently, several efforts
86
+ have focused on MO nanoparticle systems to shape
87
+ OM and optical traps with a reasonable degree of con-
88
+ trol and accuracy, besides other relevant applications
89
+ [1, 18, 20, 22, 26]. on a broader sense, magnetoplas-
90
+ monics relates the plasmonic behavior of nanoparticles
91
+ with the presence of external magnetic fields.
92
+ The
93
+ modulation and tunability of plasmonic resonances
94
+ offered by magnetoplasmonics results auspicious for
95
+ ultra-sensitive sensors and active plasmonic devices
96
+ [28].
97
+ In particular, the formation of stable optical
98
+ binding between two small magnetoplasmonic parti-
99
+ cles has been lately studied [19]. Equilibrium binding
100
+ distances were predicted and found tunable by the
101
+ incoming wave’s polarization state and the magnetic
102
+ field’s magnitude. However, the model developed in
103
+ that report is valid only for relatively small magnetic
104
+
105
+ 2
106
+ field values. Moreover, it predicts stable dimers only
107
+ using alternating magnetic static fields and polariza-
108
+ tion angles to remove azimuthal, unbalanced forces.
109
+ More importantly, this work needs to discuss possible
110
+ rotations of the particles due to angular momentum
111
+ transfer in the multiple scattering scheme.
112
+ In this paper, we study the formation of stable MO
113
+ dimers for small nanoparticles in a complete frame-
114
+ work involving all the possible optomechanical induc-
115
+ tions. The dimer’s isotropic and anisotropic responses
116
+ are assessed as a base for OM designs, i.e., under the
117
+ presence/absence of an external magnetic field. This
118
+ field can be of arbitrary magnitude in our model. The
119
+ illumination consists of two counter-propagating plane
120
+ waves with circular polarization, which simulates a
121
+ simple optical trap in the vacuum.
122
+ We found sev-
123
+ eral possibilities to create stable dimers even when
124
+ the magnetic field is off. The beams do not exert net
125
+ forces for reciprocal dimers but may exert torques on
126
+ them. On the contrary, there is a net radiation pres-
127
+ sure and spin for the whole system when the static
128
+ field is on, allowing complete control of the system’s
129
+ movement. The results will enable one to infer that
130
+ the mechanical variables can be used as near-field ob-
131
+ servables to explore the content of unknown samples.
132
+ Conversely, they can be used to accurately control the
133
+ dimer’s creation/destruction and its mobility. Finally,
134
+ the spins predicted are explained in terms of the en-
135
+ ergy flows around the dimer, which constitutes a novel
136
+ scattering-force effect for interacting particle arrays.
137
+ II.
138
+ MODEL
139
+ In the following, we assume two equal particles of
140
+ the same non-reciprocal material immersed in the vac-
141
+ uum. Then the method of discrete dipoles (MDD) [17]
142
+ simplifies considerably to
143
+ p1 = ǫ0ˆαE0,1 + k2
144
+ 0 ˆα ˆGp2,
145
+ (1)
146
+ p2 = ǫ0ˆαE0,2 + k2
147
+ 0 ˆα ˆGp1,
148
+ (2)
149
+ where ˆα is the polarizability tensor representing the
150
+ particles. The following definition automatically in-
151
+ cludes the radiative corrections necessary to fulfill the
152
+ optical theorem [21]
153
+ ˆα =
154
+
155
+ ˆα−1
156
+ 0
157
+ − ik3
158
+ 0 ˆI
159
+
160
+ �−1
161
+ (3)
162
+ where ˆα0 is the so-called quasistatic polarizability,
163
+ which can be given by
164
+ ˆα−1
165
+ 0
166
+ = 1
167
+ V
168
+
169
+ ˆL + [ˆǫr − ˆI]−1�
170
+ (4)
171
+ being V the particles’ volume, ˆL = ˆI/3 is the elec-
172
+ trostatic depolarization tensor specified for spheres or
173
+ cubes, and ˆǫr is the relative dielectric tensor.
174
+ The
175
+ system of equations 1 can be solved straightforwardly,
176
+ leading to
177
+ p1 = ǫ0 ˆF
178
+
179
+ E0,1 + k2
180
+ 0 ˆα ˆGˆαE0,2
181
+
182
+ ,
183
+ (5)
184
+ p2 = ǫ0 ˆF
185
+
186
+ E0,2 + k2
187
+ 0 ˆα ˆGˆαE0,1
188
+
189
+ ,
190
+ (6)
191
+ where we define ˆF =
192
+
193
+ ˆα − k4
194
+ 0 ˆGˆα ˆG
195
+ �−1
196
+ . In this work,
197
+ a counter-propagating configuration is assumed as a
198
+ superposition of two left-handed circularly polarized
199
+ (LCP) plane waves with the same intensity I0 [11, 18],
200
+ see Fig. 1, namely,
201
+ E0 = E0
202
+
203
+ 2
204
+
205
+ (ˇx + iˇy) eik0z + (ˇx − iˇy) e−ik0z�
206
+ .
207
+ (7)
208
+ This field is used in Eq. 5 to calculate the incident
209
+ field at the particles’ positions E0,1 and E0,2.
210
+ The absorption cross section of the system can be
211
+ calculated once the dipole moments are known by
212
+ σabs =
213
+ k0
214
+ ǫ0wtot
215
+ E
216
+ Im
217
+
218
+ p1 ·
219
+
220
+ ˆα−1
221
+ 0 p1
222
+ �∗ + p2 ·
223
+
224
+ ˆα−1
225
+ 0 p2
226
+ �∗�
227
+ (8)
228
+ where wtot
229
+ E
230
+ = ǫ0|E0|2. The i-component of the forces
231
+ exerted on each particle can be obtained from the
232
+ time-averaged force within the Rayleigh approxima-
233
+ tion [13]. This is
234
+ F1,i = 1
235
+ 2Re{pt
236
+ 1[∂iE∗(r, ω)|r=r1}
237
+ (9)
238
+ F2,i = 1
239
+ 2Re{pt
240
+ 2[∂iE∗(r, ω)|r=r2}
241
+ (10)
242
+ where the derivatives of the total field ∂iE(r, ω)|r=rn
243
+ at the dipoles’ positions rn, n = {1, 2} can be obtained
244
+ from [12]:
245
+ ∂iE(r, ω)|r=r1 = ∂iE0(r, ω)|r=r1+
246
+ + k2
247
+ 0
248
+ ǫ0
249
+ (∂iG(r, r2))r=r1p2]}
250
+ (11)
251
+ ∂iE(r, ω)|r=r2 = ∂iE0(r, ω)|r=r2+
252
+ + k2
253
+ 0
254
+ ǫ0
255
+ (∂iG(r1, r))r=r2p1]}
256
+ (12)
257
+ The total force exerted on the dimer results from
258
+ adding the force components for each particle, namely,
259
+ Ftot,i = F1,i + F2,i. In particular, the net radiation
260
+ pressure for the dimer under the illumination given
261
+ by Eq. 7 is defined by taking i = 3, or the z compo-
262
+ nents, as
263
+ Ftot,z = F1,z + F2,z
264
+ (13)
265
+ Another useful mechanical variable is the binding
266
+ force, which in the present case is defined as
267
+ ∆ = (F1 − F2) · ˇn
268
+ (14)
269
+ where ˇn =
270
+ r2−r1
271
+ |r2−r1| is the dimer’s versor. The optical
272
+ torques can also be calculated, as given in Ref. [14]:
273
+ Nspin,1 =
274
+ 1
275
+ 2ǫ0
276
+ Re
277
+
278
+ p1 ×
279
+ ��
280
+ ˆα−1
281
+ 0
282
+ �∗ p∗
283
+ 1
284
+ ����
285
+ (15)
286
+ Norb,1 = r1 × F1
287
+ (16)
288
+ N1 = Nspin,1 + Norb,1
289
+ (17)
290
+
291
+ 3
292
+ FIG. 1.
293
+ (Color online) Dimer configurations and in-
294
+ cident
295
+ waves
296
+ treated
297
+ in
298
+ this
299
+ work.
300
+ Two
301
+ counter-
302
+ propagating waves with left circular polarization illumi-
303
+ nate the magneto-optical dimer. The leading example con-
304
+ sists of two n-doped InSb particles separated by a gap of
305
+ a particle’s diameter, g = 2R. (a) Parallel [(b) perperdic-
306
+ ular] configuration. The static magnetic field B is parallel
307
+ to +z direction (green arrow). In (b), φ is the azimuthal
308
+ angle of the dimer’s position.
309
+ Nspin,2 =
310
+ 1
311
+ 2ǫ0
312
+ Re
313
+
314
+ p2 ×
315
+ ��
316
+ ˆα−1
317
+ 0
318
+ �∗ p∗
319
+ 2
320
+ ��
321
+ (18)
322
+ Norb,2 = r2 × F2
323
+ (19)
324
+ N2 = Nspin,2 + Norb,2
325
+ (20)
326
+ The definitions of the orbital and spin torques were
327
+ discussed previously in Refs. [14, 33, 34], among oth-
328
+ ers. The spin torques are always defined with respect
329
+ to the centers of the particles. Otherwise, the refer-
330
+ ence system is located at the dimer’s center of mass,
331
+ and orbital torques are set. Thus, the total torque
332
+ exerted on the dimer is
333
+ Norb = Norb,1 + Norb,2
334
+ (21)
335
+ Nspin = Nspin,1 + Nspin,2
336
+ (22)
337
+ Ntot = N1 + N2 = Norb + Nspin
338
+ (23)
339
+ In particular, this study simulates nanoparticles made
340
+ of n-doped Indium antimonide (n-InSb) [37].
341
+ In-
342
+ dium antimonide (InSb) is one example of the most
343
+ widely studied polar semiconductors for magnetoplas-
344
+ monic applications because it can be easily doped
345
+ for sizable magnetic-induced effects [15, 30]. As re-
346
+ viewed in Refs. [30, 37], n-InSb is an exciting mate-
347
+ rial that has two kinds of surface resonances in the
348
+ absence of static field, namely, the phonon polari-
349
+ ton (SPhP, higher-energy) and the plasmon polariton
350
+ (SPP, lower-energy).
351
+ Its model properties were de-
352
+ scribed on Refs. [1, 18, 30], among others. Since we
353
+ are interested in the near-field interactions between
354
+ the particles, the study focuses on an example for
355
+ which the interparticle’s gap equals one particle di-
356
+ ameter (g = 2R); see Fig. 1. We add complementary
357
+ examples for other values of the gap in the Supple-
358
+ mentary Material (SM).
359
+ III.
360
+ RESULTS
361
+ In this section, all the optical variables were scaled
362
+ by the proper factors to make them adimensional.
363
+ The following characteristic magnitudes, namely, wtot
364
+ E ,
365
+ Ap = πR2, Vp =
366
+ 4
367
+ 3πR3, and Vint =
368
+ 4
369
+ 3π (|r2 − r1|)3
370
+ redefine the variables as Qabs = σabs
371
+ 2Ap for the absorp-
372
+ tion efficiency, Frad =
373
+ Ftot,z
374
+ wtot
375
+ E Ap and ∆′ =
376
+
377
+ wtot
378
+ E Ap for
379
+ the radiation pressure and the binding forces, and
380
+ N′
381
+ spin =
382
+ Nspin
383
+ wtot
384
+ E Vp for the spin torque.
385
+ The variable
386
+ N′
387
+ orb =
388
+ Norb
389
+ wtot
390
+ E Vint for the orbital torque is only shown
391
+ by an example in the SM since it gave negligible re-
392
+ sults unless the gap is minimal, see Figs. S1 and S2
393
+ for details. We calculate the scaled Poynting vector
394
+ as S =
395
+ 1
396
+ 2I0 Re{E × H∗} where the magnetic field H
397
+ comes from an MDD equation similar to that for E
398
+ [36]. The curl of S is calculated using an appropriate
399
+ tridimensional mesh around the system’s near-field.
400
+ A.
401
+ Parallel Illumination.
402
+ Fig. 2 shows the spectral results for parallel illumi-
403
+ nation when the magnetic field is off (B = 0, black
404
+ line) and on (B = 1 T, red line with squares). The
405
+ absorption efficiencies, Fig. 2a, result independent of
406
+ the direction of the dimer so that the same spectra
407
+ remain for any other illumination configuration. The
408
+ low-energy resonance (around 73µm) corresponds to
409
+ an SPP, while the high-energy resonance (48.7µm)
410
+ corresponds to an SPhP [30, 37]. Making use of the
411
+ Plasmon Hybridization Model (PHM) for two dipo-
412
+ lar particles, both kinds of surface modes show as
413
+ bright antibonding modes for transverse electric fields
414
+ according to the configuration shown in Fig. 1a, see
415
+ Ref. [35] for details.
416
+ When B is on, each isotropic surface mode splits
417
+ into two modes due to degeneracy removal. The ab-
418
+ sorption is the only far-field observable shown in this
419
+ work since negligible scattering occurs for small sys-
420
+ tems [8]. As it is illumination-independent, the spec-
421
+ tra obtained remain invariant for all illumination di-
422
+ rections concerning the dimer’s axis. Thus, the only
423
+ available far-field observable is neither adequate to
424
+ study the interactions occurring in the dimer nor valu-
425
+ able to predict the dimer’s dynamics. In Fig. 2b, there
426
+ is no net radiation pressure when B is off due to the
427
+ high symmetry of both the system and incident field.
428
+ On the other hand, there is a resonant pressure for the
429
+ MO dimer when B is on, revealing the magnetoplas-
430
+ monic resonances and directing the dimer upwards or
431
+ downwards according to their energy. As a result of
432
+
433
+ IKA
434
+ LCP
435
+ B
436
+ KB
437
+ B
438
+ Z
439
+ X
440
+ X
441
+ KA
442
+ 1
443
+ -
444
+ 2R
445
+ g
446
+ LCP
447
+ kB
448
+ (a)
449
+ (b)4
450
+ the interaction, the radiation pressure identifies the
451
+ modes by the sign of the force. Fig. 2c shows that
452
+ the binding force leads to repulsion between the par-
453
+ ticles for both cases, B = 0 and B = 1 T. In other
454
+ words, there cannot be a stable dimer under this par-
455
+ allel configuration. The response is still resonant but
456
+ less sensitive than the radiation pressure.
457
+ Remark-
458
+ ably, the results agree with the interpretation given
459
+ by the PHM.
460
+ Notably, although we are dealing with a dimer sys-
461
+ tem, our results agree with those reported in [18]
462
+ for a single particle under the same illumination. In
463
+ general, the absorption efficiency Qabs behaves like
464
+ Re{α11}, both the radiation pressure Frad and the
465
+ spin N ′
466
+ spin,z on z behave like Im{α12}, and the bind-
467
+ ing force ∆′ resembles −Re{α11}, being αij the carte-
468
+ sian components of the polarizability tensor ˆα.
469
+ In
470
+ the case of the spins in Fig. 2d, these behave like
471
+ ±Im{α33} for each particle respectively (polarizabil-
472
+ ities not shown here). These functional dependencies
473
+ are due exclusively to the type of illumination; oth-
474
+ erwise, other αij-terms would appear in the spectral
475
+ variables [18].
476
+ Following
477
+ angular
478
+ momentum’s
479
+ conservation,
480
+ Fig. 2d shows that the net spin for the system is zero
481
+ when B is off (black line).
482
+ To put it another way,
483
+ the spins for each particle are equal and opposite,
484
+ showing the resonant modes for the isotropic case
485
+ (see red and blue lines with symbols).
486
+ When B is
487
+ on, however (Fig. 2e), there is a net spin for the
488
+ system, black line, which is twice the spin for each
489
+ particle (red line with squares). The spin resonates
490
+ sensitively with the dimer’s modes, quite like the
491
+ radiation pressure. Consequently, the spins become
492
+ much stronger than those for B off, compare the
493
+ scales of Fig. 2d and e. Thus, the radiation pressure
494
+ and spins constitute the most sensitive observables
495
+ in the near field, giving a common spectral shape
496
+ (compare spectra in Figs. 2b and e).
497
+ B.
498
+ Perpendicular Illumination.
499
+ Now we vary the dimer’s azimuthal angle since a de-
500
+ pendency on the net polarization is expected. Figs. 3
501
+ and 4 show maps as a function of the incident wave-
502
+ length and azimuthal angle for B = 0 and B = 1 T,
503
+ respectively. Similarly to that found in the previous
504
+ subsection, there is no net radiation pressure when B
505
+ is off (not shown). Yet this time, a different behav-
506
+ ior is found for the binding force, Fig. 3a. The sys-
507
+ tem offers a resonant spectral response but depends on
508
+ the angle φ. Maxima [minima] of binding are found
509
+ around φ = 90, 270 [φ = 0, 180] deg, meaning inter-
510
+ particle attraction [repulsion]. This fact also defines
511
+ stable positions for the dimer around the strongest
512
+ optical resonance, namely the SPhP at 48.7µm, and
513
+ around φ = 34, 145.6, 214.5, 325.7 deg for all wave-
514
+ lengths when B is off (follow the black lines). A sim-
515
+ ilar situation is found for the second resonant wave-
516
+ length ≈ 72.6µm (SPP), where the variations are less
517
+ pronounced. Regarding the spin, Fig. 3b shows a re-
518
+ maining behavior for the whole system, which is res-
519
+ onant with the surface modes and coordinated with
520
+ the binding phenomenon. Remarkably, the spin gets
521
+ its extremals (maxima or minima) when the dimer
522
+ reaches its stable positions; namely, neither attraction
523
+ nor repulsion, compare Figs. 3a and b. As mentioned
524
+ above, the most sensitive resonance corresponds to the
525
+ excitation of the SPhP.
526
+ Noteworthy, our results are consistent with the in-
527
+ terpretation of the PHM for isotropic, dipolar par-
528
+ ticles [35].
529
+ In particular, each value φ = nπ [φ =
530
+ (n + 1/2)π] rad with n ∈ Z, the binding force shows
531
+ repulsion [attraction] for both types of resonances,
532
+ namely, the SPhP and SPP, see Fig. 3a. This outcome
533
+ is due to the net polarization; the electric field is along
534
+ ˇy, see the map for φ = 0 at the SPhP wavelength in
535
+ Fig. 3c. Thus, φ = 0 corresponds to a transverse elec-
536
+ tric field compared with the dimer’s direction, mean-
537
+ ing an antibonding bright mode in the context of the
538
+ PHM. Differently, φ = 90 deg corresponds to a parallel
539
+ electric field compared with the dimer’s axis, meaning
540
+ a bright bonding mode in the PHM (map not shown).
541
+ In Fig. 4a, there is a remaining radiation pressure for
542
+ the whole system due to the symmetry breaking that
543
+ appears only at the resonances’ locations. This spec-
544
+ trum results invariant with φ and follows the same
545
+ resonances as in absorption in Fig. 2a when B is on
546
+ (red line with squares). Thus the presence of a static
547
+ magnetic field induces the dimer to move forward or
548
+ backward in the illumination’s direction when the in-
549
+ cident energy is that of a surface mode.
550
+ Likewise,
551
+ the system shows a resonant binding (Fig. 4b). As in
552
+ Fig. 3a, the black lines follow the values of zero force.
553
+ Note that the map strongly distorts by the presence
554
+ of the resonances when B is on, making the dynam-
555
+ ics more complex and even reducing the extremals of
556
+ the binding force. However, the possibility to obtain
557
+ stable binding enhances around the SPhP due to the
558
+ overlapping of MO modes, which means more degree
559
+ of control in the dimer’s creation and stability.
560
+ In Fig. 4c, the system’s spin follows a trend simi-
561
+ lar to that for the radiation pressure in Fig. 4a. This
562
+ behavior is quite different from that found for B = 0.
563
+ Note that spin is enhanced when B is on; the color-
564
+ bar limits show values ≈ 6.2 − 7.5 times higher than
565
+ those for B off, compare Figs. 3b and 4c. As a re-
566
+ sult, the MO system could be readily identified in an
567
+ experiment by observing the dimer’s dynamics at the
568
+ resonance wavelengths.
569
+ Fig. 4d shows the electric field around the dimer’s
570
+ plane z = 0 for the SPhP found at 49.85µm. This
571
+ wavelength corresponds to the most robust resonance
572
+ when B is on. The rest of the configuration is equal to
573
+ that given in Fig. 3c. The field hot spots are leaned on
574
+ the right ≈ 65 deg from the x axis by the MO effect.
575
+ Up to this point, we have explored a few examples
576
+ of MO dimers to approach the idea of controlling the
577
+ particle dynamics and ”photonic molecule” stability
578
+ [25] in the presence/absence of a static magnetic field
579
+ B.
580
+
581
+ 5
582
+ FIG. 2. (Color online) Optical properties for parallel configuration. (a) Absorption efficiency, which is independent of
583
+ the dimer’s orientation. (b) Radiation pressure (total force along z). (c) Binding force. Black line [red line with squares]
584
+ for magnetic field B = 0 [B = 1] T. (d) [(e)] Spin torques for B = 0 [B = 1] T. In (d), the net spin torque is zero for all
585
+ wavelengths.
586
+ Below, we discuss the behavior of the dynamic ob-
587
+ servables in terms of the information contained in
588
+ the Poynting field. The reader is reminded that the
589
+ particles’ photonic interaction matches a multiple-
590
+ scattering framework [16, 29]. The near fields involve
591
+ the evanescent waves, which play a crucial role in the
592
+ particles’ interaction for surface modes and close par-
593
+ ticles. This phenomenon can be seen through the en-
594
+ ergy flows because they may have all the information
595
+ of the near fields E and H.
596
+ Generally, the magni-
597
+ tudes obtained from far-field calculations lose some of
598
+ the information about the system [36].
599
+ C.
600
+ Nature of the spins through an examination
601
+ of the Poynting fields
602
+ We explore the spins exerted on the system by show-
603
+ ing a few calculations of the Poynting field around
604
+ the dimer for perpendicular configuration. The paral-
605
+ lel configuration is less interesting since it would only
606
+ lead to repulsion states without dimer formation for
607
+ any gap under both cases B = 0 and 1 T, see Fig. 2c
608
+ for the example g = 2R. More clarifications can be
609
+ found in the SM.
610
+ Figs. 5a-d [e-f] consist of maps related to the en-
611
+ ergy flow when B is off [on] upon different azimuthal
612
+ angles. The wavelengths coincide with that for the
613
+ strongest SPhP in each case. The left column (a-c-e)
614
+ shows the Poynting field S when z = 0.
615
+ Similarly,
616
+ the right column (b-d-f) shows the z-component of
617
+ ∇ × S. The white arrows are rescaled to visualize the
618
+ maps easily. Interestingly, Figs. 5a-b show an exam-
619
+ ple of a repulsion state with zero spins when φ = 0,
620
+ see Figs. 3a and b. Even though S aligns in a single
621
+ direction, a resonant magnitude and a non-negligible
622
+ curl appear near the surface of the particles. This res-
623
+ onance is due to the excitation of the SPhP. However,
624
+ the contributions to the spin cancel out due to high
625
+ symmetry evidenced by these maps and zero net spin
626
+ results for the system.
627
+ Figs. 5c-d show the attrac-
628
+ tion state with maximum positive spin when φ = 135
629
+ deg, see Figs. 3a and b. This time, two hot spots of
630
+ maximum magnitude face each other, and a kind of
631
+ saddle point emerges in the gap region between the
632
+ particles, Fig. 5c. As a result, the values of the curl
633
+ clearly show a rotational state for light as the field
634
+ spots have ”turbine-blade” shapes, Fig. 5d, explain-
635
+ ing the net positive spin calculated for the system in
636
+ Fig. 3b for φ = 135 deg. It is also evident from Fig. 5d
637
+ that the two particles have the same spin, visually
638
+ showing that the net spin is two times the spin of one
639
+ particle. Finally, we show the example when B is on
640
+ and φ = 67.2 deg, which coincides with the hot spot
641
+ of maximum attraction at the resonance 49.85µm of
642
+ the SPhP, see Fig. 4b.
643
+ Notice in passing that this
644
+ value for φ is close to the angle of the electric spots in
645
+ Fig. 4d, namely, ≈ 65 deg. Remarkably, Fig. 5e illus-
646
+ trates that the energy flow would make the particles
647
+ spin counterclockwise. Moreover, it is also notewor-
648
+ thy the vortex that appears in the field region between
649
+ the particles with clockwise orientation, resembling a
650
+ ”gear” mechanism which coordinates field and parti-
651
+ cles [9, 21, 38]. Consistently, the curl’s map shows a
652
+
653
+ 2.0
654
+ 0
655
+ 4.
656
+ B=O T
657
+ B=O T
658
+ 1.5
659
+ 11
660
+ 1.0
661
+ ×10-1
662
+ 3
663
+ -2
664
+ 0.5
665
+ 1 0.0
666
+ 2
667
+ Qabs
668
+ -0.5
669
+ -1.0
670
+ B=O T
671
+ (a)
672
+ (b)
673
+ (c)
674
+ -1.5
675
+ 1T
676
+ 5
677
+ -2.0
678
+ 20
679
+ 60
680
+ 80
681
+ 100
682
+ 20
683
+ 60
684
+ 80
685
+ 40
686
+ 40
687
+ 100
688
+ 20
689
+ 40
690
+ 60
691
+ 80
692
+ 100
693
+ 120
694
+ 120
695
+ 120
696
+ Wavelength (μm)
697
+ Wavelength (μm)
698
+ Wavelength (μm)
699
+ 5
700
+ 321
701
+
702
+ 23
703
+ system
704
+ system
705
+ -3
706
+ 45
707
+ np. 1 = np. 2
708
+ (d)
709
+ (e)
710
+ np. 2
711
+ 6-
712
+ 20
713
+ 40
714
+ 60
715
+ 100
716
+ 120
717
+ 20
718
+ 40
719
+ 60
720
+ 80
721
+ 100
722
+ 80
723
+ 120
724
+ Wavelength (μm)
725
+ Wavelength (μum)6
726
+ FIG. 3.
727
+ (Color online) Near-field observables for per-
728
+ pendicular configuration in the absence of magnetic field,
729
+ B = 0 T. (a-b) Maps of the mechanical variables as a
730
+ function of wavelength and dimer’s azimuthal angle. (a)
731
+ Binding force. The black lines correspond to zero force.
732
+ (b) Spin torque for the system. In this case, the net radi-
733
+ ation pressure is zero for all wavelengths (not shown). (c)
734
+ Distribution of electric field around the dimer for z = 0 at
735
+ the resonance wavelength 48.85µm for φ = 0.
736
+ structure similar to that in Fig. 5d but this time en-
737
+ hanced and possessing a structure in the gap region
738
+ that contains the vortex indicated in Fig. 5e, see in-
739
+ set in Fig. 5f. The inset zooms this region so that a
740
+ connection between the curl hot spots is appreciated.
741
+ FIG. 4. (Color online) Near-field observables for perpen-
742
+ dicular configuration and B = 1 T. (a-c) Maps of the me-
743
+ chanical variables as a function of wavelength and dimer’s
744
+ azimuthal angle. (a) Radiation pressure for the system.
745
+ (b) Binding force. The black lines correspond to zero force.
746
+ (c) Spin torque for the system. (d) Distribution of electric
747
+ field around the dimer for z = 0 at the resonant wave-
748
+ length 49.85µm for φ = 0.
749
+
750
+ 360
751
+ 10.2
752
+ (a)
753
+ 315
754
+ 0.14
755
+ 270
756
+ 0.09
757
+ 225
758
+ 0.03
759
+ 180
760
+ -0.02
761
+ 135
762
+ -0.08
763
+ 90
764
+ 45
765
+ -0.14
766
+ 0.18
767
+ 20
768
+ 30
769
+ 40
770
+ 50
771
+ 60
772
+ 70
773
+ 80
774
+ 90
775
+ 100
776
+ 120
777
+ Wavelength (μm)
778
+ 360
779
+ 0.79
780
+ 315
781
+ (b)
782
+ 270
783
+ 0.5
784
+ 225
785
+ 0.25
786
+ 135
787
+ 0
788
+ 90
789
+ 45
790
+ 0.15
791
+ 0.32
792
+ 20
793
+ 30
794
+ 40
795
+ 50
796
+ 60
797
+ 70
798
+ 80
799
+ 90
800
+ 100110
801
+ 120
802
+ Wavelength(μum)
803
+ N'
804
+ spin,z
805
+ 360
806
+ (C)
807
+ 6
808
+ 315
809
+ 4
810
+ 270
811
+ 225
812
+ 2
813
+ 0
814
+ 135
815
+ 90
816
+ 45
817
+ -4
818
+ -5
819
+ 0
820
+ 20
821
+ 30
822
+ 40
823
+ 50
824
+ 60
825
+ 7080
826
+ 90
827
+ 100
828
+ 110120
829
+ Wavelength (μum)
830
+ [E
831
+ Eo
832
+
833
+ 1
834
+ 0.75
835
+ 6
836
+ (d)
837
+ 0.5
838
+ 5
839
+ 0.25
840
+ (wn)
841
+ 4
842
+ 0
843
+ y
844
+ -0.25
845
+ 3
846
+ -0.5
847
+ 2
848
+ -0.75
849
+ 1
850
+ -1-0.75-0.5-0.2500.25 0.5 0.75
851
+ x (μum)△(-)
852
+ 360
853
+ 1.2
854
+ 315
855
+ 1
856
+ 270
857
+ 0.7
858
+ 225
859
+ 0.5
860
+ leg)
861
+ 0. 3
862
+ 0180
863
+ 135
864
+ 106
865
+ -0.2
866
+ 45
867
+ -0.4
868
+ 0
869
+ -0.6
870
+ 20
871
+ 30
872
+ 40
873
+ 50
874
+ 60
875
+ 70
876
+ 80
877
+ 90
878
+ 100
879
+ 110
880
+ 120
881
+ Wavelength (μm)
882
+ 360
883
+ 0.8
884
+ 315
885
+ (b)
886
+ 270
887
+ 0.4
888
+ 0
889
+ 135
890
+ 90
891
+ -0.4
892
+ 45
893
+ -0.8
894
+ 0
895
+ 20
896
+ 30
897
+ 40
898
+ 50
899
+ 60
900
+ 70
901
+ 80
902
+ 90
903
+ 100
904
+ 110
905
+ 120
906
+ Wavelength (μm)
907
+ [E
908
+ Eo
909
+ (c)
910
+ 0.75
911
+ 6
912
+ 0.5
913
+ 5
914
+ 0.25
915
+ (un)
916
+ 4
917
+ 0
918
+ y
919
+ 3
920
+ -0.25
921
+ -0.5
922
+ 2
923
+ -0.75
924
+ -1-0.75-0.5-0.25 00.25 0.50.75
925
+ x(μm)7
926
+ FIG. 5. Scaled energy flows around the dimer for z = 0 under perpendicular configuration and at the strongest SPhP.
927
+ The color scale corresponds to the magnitude; the white arrows show the Poynting flow (2× their original size). Left
928
+ [right] column for the [z-component of the curl of the] Poynting field. (a-d) [(e-f)] Examples for B = 0 [B = 1] T; the
929
+ wavelength is 48.85µm [49.85µm]. (a-b) For φ = 0 deg, (c-d) φ = 135 deg, and (e-f) 67.2 deg. The inset in (f) zooms the
930
+ gap region up to a maximum of 0.05 in the colorbar.
931
+
932
+ [Sxy]
933
+ 2RI(V × S)zl
934
+ 1o
935
+ o
936
+ 0.8
937
+ 0.8
938
+ 0.4
939
+ 6
940
+ (b)
941
+ (a)
942
+ 0.6
943
+ 0.6
944
+ 5
945
+ 0.4
946
+ 0.4
947
+ 0.3
948
+ 00
949
+ 4
950
+ 0.2
951
+ 0.2
952
+ (wn
953
+ 0
954
+ 0
955
+ 0.2
956
+ -0.2
957
+ 2
958
+ -0.4
959
+ 0.1
960
+ -0.4
961
+ -0.6
962
+ -0.6
963
+ -0.8
964
+ -0.8
965
+ 0
966
+ -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8
967
+ -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8
968
+ x (μm)
969
+ x (μm)
970
+ 0.8
971
+ 0.8
972
+ 0.4
973
+ (d)
974
+ 0.6
975
+ 0.6
976
+ 6
977
+ 0.4
978
+ 0.4
979
+ 0.3
980
+ 5
981
+ 0.2
982
+ 0.2
983
+ (wn)
984
+ (wn)
985
+ 0
986
+ 0.2
987
+ 0
988
+ 3
989
+ y
990
+ -0.2
991
+ 2
992
+ -0.4
993
+ 0.1
994
+ -0.4
995
+ -0.6
996
+ -0.6
997
+ -0.8
998
+ 0
999
+ -0.8
1000
+ 0
1001
+ -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8
1002
+ -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8
1003
+ x (μm)
1004
+ x (um)
1005
+ 0.8
1006
+ 0.8
1007
+ 4
1008
+ (f)
1009
+ e)
1010
+ 0.6
1011
+ 0.6
1012
+ 0.8
1013
+ 0.4
1014
+ 0.4
1015
+ 3
1016
+ 0.2
1017
+ 0.2
1018
+ 0.6
1019
+ (wn)
1020
+ (wn)
1021
+ 0
1022
+ 0
1023
+ 0.4
1024
+ -0.2
1025
+ -0.4
1026
+ -0.4
1027
+ 0.2
1028
+ -0.6
1029
+ -0.6
1030
+ -0.8
1031
+ -0.8
1032
+ -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8
1033
+ -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8
1034
+ x (μum)
1035
+ x (μum)8
1036
+ IV.
1037
+ CONCLUSIONS
1038
+ By a simple dipolar model, this work explores the
1039
+ behavior of small nanoparticle dimers when magneto-
1040
+ optical materials like n-doped InSb and moderate
1041
+ magnetic fields are used.
1042
+ Two counter-propagating
1043
+ waves with equal circular polarization are used as il-
1044
+ lumination to simulate a simple optical trap with nei-
1045
+ ther net gradient nor scattering forces. Our results
1046
+ show that the system can be thoroughly character-
1047
+ ized by observing its mechanical inductions, provided
1048
+ these latter depend on the near field.
1049
+ Besides, we
1050
+ found no possibility of forming stable dimers when
1051
+ the dimer is aligned with the illumination since the
1052
+ inter-particle force only leads to repulsion.
1053
+ On the
1054
+ contrary, under ”perpendicular” alignment, there are
1055
+ several ways to obtain stable dimers or inter-particle
1056
+ attraction, at least under this ”static” model for which
1057
+ the particles’ velocities and accelerations are not con-
1058
+ sidered. As the results strongly depend on the mag-
1059
+ netic field’s presence, this study constitutes a novel
1060
+ background to build OM or photonic molecule nano
1061
+ factories and control their movements, or conversely,
1062
+ to study samples containing this class of multimers.
1063
+ Finally, we give an original explanation for the ap-
1064
+ pearance of particle spins based on the energy flows.
1065
+ This interpretation offers satisfactory results from the
1066
+ ”scattering” forces produced by the interaction be-
1067
+ tween the particles. Gradient forces were also inves-
1068
+ tigated but showed no appreciable influence on the
1069
+ spins’ appearances (results not shown in this work).
1070
+ ACKNOWLEDGMENTS
1071
+ The author would like to thank A. Garc´ıa-Mart´ın
1072
+ from IMN-CSIC and M.I. Marqu´es from Universidad
1073
+ Aut´onoma de Madrid for their valuable discussions
1074
+ during his postdoc in Spain.
1075
+ CONFLICTS OF INTEREST
1076
+ The authors declare that the research was con-
1077
+ ducted in the absence of any commercial or financial
1078
+ relationships that could be construed as a potential
1079
+ conflict of interest.
1080
+ [1] Abraham Ekeroth, R. M., Garc´ıa-Mart´ın, A., and
1081
+ Cuevas, J. C. (2017).
1082
+ Thermal discrete dipole ap-
1083
+ proximation for the description of thermal emis-
1084
+ sion and radiative heat transfer of magneto-optical
1085
+ systems.
1086
+ Phys.
1087
+ Rev.
1088
+ B
1089
+ 95,
1090
+ 235428.
1091
+ doi:
1092
+ 10.1103/PhysRevB.95.235428
1093
+ [2] Albaladejo,
1094
+ S.,
1095
+ Marqu´es,
1096
+ M.
1097
+ I.,
1098
+ Laroche,
1099
+ M.,
1100
+ and S´aenz, J. J. (2009).
1101
+ Scattering Forces from
1102
+ the Curl of the Spin Angular Momentum of a
1103
+ Light Field.
1104
+ Phys. Rev. Lett. 102, 113602.
1105
+ doi:
1106
+ 10.1103/PhysRevLett.102.113602
1107
+ [3] Arita, Y., Simpson, S. H., Zem´anek, P., and Dholakia,
1108
+ K. (2020). Coherent oscillations of a levitated birefrin-
1109
+ gent microsphere in vacuum driven by nonconserva-
1110
+ tive rotation-translation coupling. Science Advances
1111
+ 6, eaaz9858. doi:10.1126/sciadv.aaz9858
1112
+ [4] Ashkin, A. and Dziedzic, J. M. (1975). Optical Levi-
1113
+ tation of Liquid Drops by Radiation Pressure. Science
1114
+ 187, 1073–1075. doi:10.1126/science.187.4181.1073
1115
+ [5] Ashkin, A. and Dziedzic, J. M. (1989). Internal cell
1116
+ manipulation using infrared laser traps.
1117
+ Proc Natl
1118
+ Acad Sci U S A 86, 7914–7918
1119
+ [6] Bakker, R. M., Permyakov, D., Yu, Y. F., Markovich,
1120
+ D., Paniagua-Dom´ınguez, R., Gonzaga, L., et al.
1121
+ (2015).
1122
+ Magnetic and Electric Hotspots with Sili-
1123
+ con Nanodimers.
1124
+ Nano Lett. 15, 2137–2142.
1125
+ doi:
1126
+ 10.1021/acs.nanolett.5b00128
1127
+ [7] Bl´azquez-Castro, A., Fern´andez-Piqueras, J., and
1128
+ Santos, J. (2020). Genetic Material Manipulation and
1129
+ Modification by Optical Trapping and Nanosurgery-A
1130
+ Perspective. Frontiers in Bioengineering and Biotech-
1131
+ nology 8
1132
+ [8] Bohren, C. F. and Huffman, D. R. (1998). Absorption
1133
+ and Scattering of Light by Small Particles (Weinheim:
1134
+ Wiley-VCH), edici´on: new edition edn.
1135
+ [9] Boriskina, S. V. (2013).
1136
+ Plasmonics with a Twist:
1137
+ Taming Optical Tornadoes on the Nanoscale. In Plas-
1138
+ monics: Theory and Applications, eds. T. V. Shah-
1139
+ bazyan and M. I. Stockman (Dordrecht:
1140
+ Springer
1141
+ Netherlands),
1142
+ Challenges and Advances in Com-
1143
+ putational Chemistry and Physics. 431–461.
1144
+ doi:
1145
+ 10.1007/978-94-007-7805-4˙12
1146
+ [10] Burns, M. M., Fournier, J.-M., and Golovchenko,
1147
+ J. A. (1990).
1148
+ Optical Matter:
1149
+ Crystallization and
1150
+ Binding in Intense Optical Fields. Science 249, 749–
1151
+ 754. doi:10.1126/science.249.4970.749
1152
+ [11] Cameron,
1153
+ R.
1154
+ P.,
1155
+ Barnett,
1156
+ S.
1157
+ M.,
1158
+ and
1159
+ Yao,
1160
+ A.
1161
+ M.
1162
+ (2014).
1163
+ Optical
1164
+ helicity
1165
+ of
1166
+ interfering
1167
+ waves.
1168
+ Journal of Modern Optics 61, 25–31.
1169
+ doi:
1170
+ 10.1080/09500340.2013.829874
1171
+ [12] Chaumet, P. C. and Billaudeau, C. (2007). Coupled
1172
+ dipole method to compute optical torque: Application
1173
+ to a micropropeller. Journal of Applied Physics 101,
1174
+ 023106. doi:10.1063/1.2409490
1175
+ [13] Chaumet, P. C. and Nieto-Vesperinas, M. (2000).
1176
+ Time-averaged total force on a dipolar sphere in an
1177
+ electromagnetic field. Opt. Lett., OL 25, 1065–1067.
1178
+ doi:10.1364/OL.25.001065
1179
+ [14] Chaumet, P. C. and Rahmani, A. (2009).
1180
+ Electro-
1181
+ magnetic force and torque on magnetic and negative-
1182
+ index scatterers.
1183
+ Opt. Express, OE 17, 2224–2234.
1184
+ doi:10.1364/OE.17.002224
1185
+ [15] Chochol, J., Postava, K., ˇCada, M., Vanwolleghem,
1186
+ M., Halagaˇcka, L., Lampin, J.-F., et al. (2016).
1187
+ Magneto-optical properties of InSb for terahertz
1188
+ applications.
1189
+ AIP
1190
+ Advances
1191
+ 6,
1192
+ 115021.
1193
+ doi:
1194
+ 10.1063/1.4968178
1195
+ [16] Conoir, J.-M. (2007).
1196
+ Multiple Scattering, Interac-
1197
+ tion of Time-Harmonic Waves with N Obstacles. The
1198
+ Journal of the Acoustical Society of America 121,
1199
+ 2473–2473. doi:10.1121/1.2715667
1200
+
1201
+ 9
1202
+ [17] de Sousa, N., Froufe-P´erez, L. S., S´aenz, J. J., and
1203
+ Garc´ıa-Mart´ın, A. (2016). Magneto-Optical Activity
1204
+ in High Index Dielectric Nanoantennas. Sci Rep 6,
1205
+ 30803. doi:10.1038/srep30803
1206
+ [18] Edelstein,
1207
+ S.,
1208
+ Abraham-Ekeroth,
1209
+ R. M.,
1210
+ Serena,
1211
+ P.
1212
+ A.,
1213
+ S´aenz,
1214
+ J.
1215
+ J.,
1216
+ Garc´ıa-Mart´ın,
1217
+ A.,
1218
+ and
1219
+ Marqu´es,
1220
+ M. I. (2019).
1221
+ Magneto-optical Stern-
1222
+ Gerlach forces and nonreciprocal torques on small
1223
+ particles.
1224
+ Phys. Rev. Research 1, 013005.
1225
+ doi:
1226
+ 10.1103/PhysRevResearch.1.013005
1227
+ [19] Edelstein, S., Garc´ıa-Mart´ın, A., Serena, P. A., and
1228
+ Marqu´es, M. I. (2021). Magneto-optical binding in the
1229
+ near field. Sci Rep 11, 20820. doi:10.1038/s41598-021-
1230
+ 00217-6
1231
+ [20] Edelstein,
1232
+ S., Garcia-Martin,
1233
+ A., Serena, P. A.,
1234
+ and Marqu´es, M. I. (2022).
1235
+ Circular dichroism in
1236
+ magneto-optical forces. Opt. Express 30, 28668. doi:
1237
+ 10.1364/OE.464252
1238
+ [21] Ekeroth, R. M. A. (2019). Optical forces and torques
1239
+ exerted on coupled silica nanospheres: Novel contri-
1240
+ butions due to multiple scattering. J. Opt. 21, 045001.
1241
+ doi:10.1088/2040-8986/ab0533
1242
+ [22] Emile, O., Bardou, F., Salomon, C., Laurent, P.,
1243
+ Nadir, A., and Clairon, A. (1992).
1244
+ Observation of
1245
+ a New Magneto-optical Trap.
1246
+ EPL 20, 687.
1247
+ doi:
1248
+ 10.1209/0295-5075/20/8/004
1249
+ [23] Erdogan, R. T., Alkhaled, M., Kaynak, B. E., Alh-
1250
+ moud, H., Pisheh, H. S., Kelleci, M., et al. (2022).
1251
+ Atmospheric Pressure Mass Spectrometry of Single
1252
+ Viruses and Nanoparticles by Nanoelectromechan-
1253
+ ical Systems.
1254
+ ACS Nano 16,
1255
+ 3821–3833.
1256
+ doi:
1257
+ 10.1021/acsnano.1c08423
1258
+ [24] Han, F., Parker, J. A., Yifat, Y., Peterson, C.,
1259
+ Gray, S. K., Scherer, N. F., et al. (2018). Crossover
1260
+ from positive to negative optical torque in mesoscale
1261
+ optical
1262
+ matter.
1263
+ Nat Commun
1264
+ 9,
1265
+ 4897.
1266
+ doi:
1267
+ 10.1038/s41467-018-07376-7
1268
+ [25] Hong, Y., Boriskina, S., Ahn, W., and Reinhard,
1269
+ B. M. (2013). Self-assembled optoplasmonic molecules
1270
+ for enhanced light focusing and manipulation on
1271
+ nanometer length scales. In 2013 15th International
1272
+ Conference on Transparent Optical Networks (IC-
1273
+ TON). 1–3. doi:10.1109/ICTON.2013.6602726
1274
+ [26] Hu, X., Wei, C.-W., Xia, J., Pelivanov, I., O’Donnell,
1275
+ M., and Gao, X. (2013). Trapping and Photoacoustic
1276
+ Detection of CTCs at the Single Cell per Milliliter
1277
+ Level with Magneto-Optical Coupled Nanoparticles.
1278
+ Small 9, 2046–2052. doi:10.1002/smll.201202085
1279
+ [27] Kimel, A., Zvezdin, A., Sharma, S., Shallcross, S.,
1280
+ de Sousa, N., Garc´ıa-Mart´ın, A., et al. (2022). The
1281
+ 2022 magneto-optics roadmap.
1282
+ J. Phys. D: Appl.
1283
+ Phys. 55, 463003. doi:10.1088/1361-6463/ac8da0
1284
+ [28] Lacroix, J. C., Martin, P., and Randriamahazaka, H.
1285
+ (2012).
1286
+ Active Plasmonic Devices.
1287
+ In Encyclope-
1288
+ dia of Nanotechnology, ed. B. Bhushan (Dordrecht:
1289
+ Springer Netherlands). 56–69.
1290
+ doi:10.1007/978-90-
1291
+ 481-9751-4˙24
1292
+ [29] Mishchenko, M. I., Travis, L. D., and Lacis, A. A.
1293
+ (2006). Multiple Scattering of Light by Particles: Ra-
1294
+ diative Transfer and Coherent Backscattering (Cam-
1295
+ bridge University Press)
1296
+ [30] Moncada-Villa, E., Fern´andez-Hurtado, V., Garc´ıa-
1297
+ Vidal, F. J., Garc´ıa-Mart´ın, A., and Cuevas, J. C.
1298
+ (2015). Magnetic field control of near-field radiative
1299
+ heat transfer and the realization of highly tunable hy-
1300
+ perbolic thermal emitters. Phys. Rev. B 92, 125418.
1301
+ doi:10.1103/PhysRevB.92.125418
1302
+ [31] Nan, F., Li, X., Zhang, S., Ng, J., and Yan, Z. (2022).
1303
+ Creating stable trapping force and switchable optical
1304
+ torque with tunable phase of light. Science Advances
1305
+ 8, eadd6664. doi:10.1126/sciadv.add6664
1306
+ [32] Nature, E. (2020). Directions for non-reciprocal elec-
1307
+ tronics. Nat Electron 3, 233–233. doi:10.1038/s41928-
1308
+ 020-0424-x
1309
+ [33] Nieto-Vesperinas, M. (2015). Optical torque: Electro-
1310
+ magnetic spin and orbital-angular-momentum conser-
1311
+ vation laws and their significance. Phys. Rev. A 92,
1312
+ 043843. doi:10.1103/PhysRevA.92.043843
1313
+ [34] Nieto-Vesperinas, M. (2015). Optical torque on small
1314
+ bi-isotropic particles. Opt. Lett., OL 40, 3021–3024.
1315
+ doi:10.1364/OL.40.003021
1316
+ [35] Nordlander, P., Oubre, C., Prodan, E., Li, K., and
1317
+ Stockman, M. I. (2004).
1318
+ Plasmon Hybridization in
1319
+ Nanoparticle Dimers.
1320
+ Nano Lett. 4, 899–903.
1321
+ doi:
1322
+ 10.1021/nl049681c
1323
+ [36] Novotny, L. and Hecht, B. (2006). Principles of Nano-
1324
+ Optics (Cambridge:
1325
+ Cambridge University Press).
1326
+ doi:10.1017/CBO9780511813535
1327
+ [37] Palik, E. D., Kaplan, R., Gammon, R. W., Kaplan,
1328
+ H., Wallis, R. F., and Quinn, J. J. (1976).
1329
+ Cou-
1330
+ pled surface magnetoplasmon-optic-phonon polariton
1331
+ modes on InSb. Phys. Rev. B 13, 2497–2506.
1332
+ doi:
1333
+ 10.1103/PhysRevB.13.2497
1334
+ [38] Parker, J., Peterson, C. W., Yifat, Y., Rice, S. A.,
1335
+ Yan,
1336
+ Z.,
1337
+ Gray,
1338
+ S. K.,
1339
+ et al. (2020).
1340
+ Optical
1341
+ matter machines:
1342
+ Angular momentum conversion
1343
+ by collective modes in optically bound nanoparti-
1344
+ cle arrays.
1345
+ Optica, OPTICA 7, 1341–1348.
1346
+ doi:
1347
+ 10.1364/OPTICA.396147
1348
+ [39] Roichman, Y., Sun, B., Roichman, Y., Amato-Grill,
1349
+ J., and Grier, D. G. (2008). Optical Forces Arising
1350
+ from Phase Gradients. Phys. Rev. Lett. 100, 013602.
1351
+ doi:10.1103/PhysRevLett.100.013602
1352
+ [40] Sadrara, M. and Miri, M. (2019). Electric and Mag-
1353
+ netic Hotspots via Hollow InSb Microspheres for En-
1354
+ hanced Terahertz Spectroscopy. Sci Rep 9, 2926. doi:
1355
+ 10.1038/s41598-018-35833-2
1356
+ [41] Shui, T., Yang, W.-X., Cheng, M.-T., and Lee, R.-
1357
+ K. (2022).
1358
+ Optical nonreciprocity and nonrecipro-
1359
+ cal photonic devices with directional four-wave mix-
1360
+ ing effect.
1361
+ Opt. Express, OE 30, 6284–6299.
1362
+ doi:
1363
+ 10.1364/OE.446238
1364
+ [42] Xin, H., Li, Y., Liu, Y.-C., Zhang, Y., Xiao, Y.-F.,
1365
+ and Li, B. (2020). Optical Forces: From Fundamental
1366
+ to Biological Applications.
1367
+ Advanced Materials 32,
1368
+ 2001994. doi:10.1002/adma.202001994
1369
+
0dAzT4oBgHgl3EQfRPuW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dFKT4oBgHgl3EQfOy1w/content/tmp_files/2301.11760v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dFKT4oBgHgl3EQfOy1w/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29FQT4oBgHgl3EQfGTVE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77ec4c32fbf9a257205f67c2e96492810e85b3667f52bfb5aa8b6fb28f3d8791
3
+ size 2687021
2NE1T4oBgHgl3EQf5QXz/content/2301.03511v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20aa6dc008f0aebd86995dcd71127065c19e1dd2870f2fc3ed53f25df6bedaca
3
+ size 641989
2NE1T4oBgHgl3EQf5QXz/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:530d0a154ba3a13a97622ffe4d76c09caf35839d78fec49dd337994676372a43
3
+ size 3080237
2NE1T4oBgHgl3EQf5QXz/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:191df6646ece9ddb610dc11fb232de1fc30957c2e16b55bcc0fdd964bcd135a0
3
+ size 126486
3tE2T4oBgHgl3EQf6AiT/content/tmp_files/2301.04196v1.pdf.txt ADDED
@@ -0,0 +1,1188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Detection of Beyond-Quantum Non-locality based on Standard Local Quantum
2
+ Observables
3
+ Hayato Arai1, ∗ and Masahito Hayashi2, 3, 1, †
4
+ 1Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
5
+ 2Shenzhen Institute for Quantum Science and Engineering,
6
+ Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, China
7
+ 3International Quantum Academy (SIQA), Shenzhen 518048, China
8
+ Bell-CHSH inequality is one of the important ways to detect quantum non-locality because the
9
+ whole protocol can be implemented by local observables. However, there are theoretically many
10
+ types of beyond-quantum non-locality in General Probabilistic Theories. One important class is
11
+ Entanglement Structures (ESs), which contain beyond-quantum non-local states even though their
12
+ local systems are completely equivalent to standard quantum systems.
13
+ It is known that Bell’s
14
+ inequality cannot detect any beyond-quantum non-local states in ESs, and its detection based on
15
+ local observables is open.
16
+ This paper gives a way based on local observables to detect beyond-
17
+ quantum non-local states in ESs, and especially, we give a way to detect beyond-quantum non-local
18
+ states in two-qubit ESs by observing only spin observables on local systems.
19
+ Introduction—Bell’s inequality [2] (or CHSH inequal-
20
+ ity [3]) is one of the important ways to detect quantum
21
+ non-locality in our physical systems. Bell-CHSH inequal-
22
+ ity (hereinafter, CHSH inequality) consists of bipartite
23
+ players and their local operations.
24
+ It is especially im-
25
+ portant that the protocol of CHSH inequality can be
26
+ implemented by local observables.
27
+ In other words, by
28
+ implementing the protocol of CHSH inequality as a bi-
29
+ partite communication task, we can experimentally de-
30
+ tect quantum non-locality of our physical systems when
31
+ Bell-CHSH inequality is violated. Actually, the violation
32
+ of CHSH inequality is confirmed in physical experiments
33
+ [4–9]. These remarkable results played an important role
34
+ in the early studies of quantum physics and quantum
35
+ information theory to ensure that our physical systems
36
+ truly possess quantum non-locality.
37
+ However, there are many other theoretical models with
38
+ non-locality than quantum systems.
39
+ Such models can
40
+ be described as General Probabilistic Theories (GPTs)
41
+ [11–33, 36]. GPT is a framework for general theoretical
42
+ models with states and measurements, including classi-
43
+ cal and quantum systems. PR-box [11–13] is a typical
44
+ example of non-local models with beyond-quantum non-
45
+ locality.
46
+ Actually, the CHSH value in PR-box attains
47
+ four even though the bound in quantum theory is given
48
+ as 2
49
+
50
+ 2, known as Tirelson’s bound [10]. In other words,
51
+ the CHSH inequality can detect such beyond-quantum
52
+ non-locality, including PR-box.
53
+ On the other hand, a class in GPTs, called Entan-
54
+ glement Structures (ESs) with local quantum subsys-
55
+ tems, is not easily distinguished from the Standard En-
56
+ tanglement Structure (SES), i.e., the standard quantum
57
+ model defined by the tensor product. An ES is defined
58
+ as a model of a composite system whose local systems
59
+ are completely equivalent to standard quantum systems.
60
+ Studies of GPTs have revealed that ESs are not uniquely
61
+ determined as the SES, even if we impose operational
62
+ postulates about local structures [24, 28–31, 36]. Some
63
+ ESs have fewer non-local states than the SES [28, 30],
64
+ and also, some ESs has beyond-quantum non-local states,
65
+ i.e., non-local states that do not belong to the SES
66
+ [29, 31, 33, 36].
67
+ Preceding studies [21–23, 33] showed that some sym-
68
+ metric condition derives the SES. However, such con-
69
+ ditions are not operational and especially not observ-
70
+ able even though the conditions are mathematically nat-
71
+ ural; therefore, these results do not enable us to de-
72
+ tect that our models truly obey the SES experimen-
73
+ tally. On the other hand, CHSH inequality can be exper-
74
+ imentally implemented. However, preceding studies [34–
75
+ 36] have revealed that all ESs satisfy Tirelson’s bound,
76
+ i.e., CHSH inequality cannot distinguish the SES from
77
+ beyond-quantum non-local states in any ES. Also, as an-
78
+ other result about an experimental condition, the refer-
79
+ ence [33] shows that verification of maximally entangled
80
+ states cannot experimentally detect some ESs. In other
81
+ words, such an experimental detection cannot deny the
82
+ possibility of other ESs than the SES.
83
+ In this way, it is an important problem to detect other
84
+ ESs than the SES experimentally. Therefore, this paper
85
+ gives a way to detect beyond-quantum non-local states by
86
+ an experimental protocol. First, we give a criterion sep-
87
+ arating an arbitrary given beyond-quantum state from
88
+ all standard quantum states as an inequality defined by
89
+ local observables (Theorem 5). Next, we give a bipartite
90
+ protocol to implement the above criterion. Our proto-
91
+ col consists of local operations by bipartite players Alice
92
+ and Bob and classical communication by them. In the
93
+ protocol, Alice and Bob detect whether a target state
94
+ is beyond-quantum or not. If the target state is truly
95
+ beyond-quantum, Alice and Bob conclude that the tar-
96
+ get state is beyond-quantum with high probability.
97
+ Our criterion and protocol are implemented by a com-
98
+ plicated sequence of local observables in general. How-
99
+ ever, in the 2-qubits case, i.e., in the 2 × 2-dimensional
100
+ case, we give a simple detection of a beyond-quantum
101
+ arXiv:2301.04196v1 [quant-ph] 10 Jan 2023
102
+
103
+ 2
104
+ non-local state by observing Pauli’s spin observables in
105
+ a specific order. It is known that maximally entangled
106
+ states are detected when Alice and Bob observe Pauli’s
107
+ spin observable σx, σy, σz in the same order with the se-
108
+ quence of coefficients (1, 1, −1) [40, 41]. In contrast to
109
+ this result, we clarify that the sequence of coefficients
110
+ (1, 1, 1) detects a beyond-quantum non-local state (The-
111
+ orem 6).
112
+ Moreover, like Bell’s scenario, any beyond-
113
+ quantum non-local “pure” state can be detected by se-
114
+ quential local observables biased in the same way as
115
+ σx, σy, σz (Theorem 8).
116
+ As a result, we give a conve-
117
+ nient detection for beyond-quantum non-local states like
118
+ Bell’s inequality in the 2-qubits case.
119
+ The setting of GPTs and entanglement structures—A
120
+ model of GPTs is defined as follows.
121
+ Definition 1 (A Model of GPTs). A model of GPTs is
122
+ defined by a tuple G = (V, ⟨ , ⟩, C, u), where (V, ⟨ , ⟩), C,
123
+ and u are a real-vector space with inner product, a proper
124
+ cone, and an order unit of C∗, respectively.
125
+ For a model of GPTs G, state space and measurement
126
+ space are defined as follows.
127
+ Definition 2 (State Space of GPTs). Given a model of
128
+ GPTs G = (V, ⟨ , ⟩, C, u), the state space of G is defined
129
+ as
130
+ S(G) := {ρ ∈ V|⟨ρ, u⟩ = 1} .
131
+ (1)
132
+ Here, we call an element ρ ∈ S(G) a state of G.
133
+ Definition 3 (Measurements of GPTs). Given a model
134
+ of GPTs G = (V, ⟨ , ⟩, C, u), we say that an family
135
+ {Mi}i∈I is a measurement if Mi ∈ C∗ and �
136
+ i∈I Mi = u.
137
+ Besides, the index i is called an outcome of the mea-
138
+ surement. Here, the set of all measurements is denoted
139
+ as M(G). Especially, the set of measurements with n-
140
+ number of outcomes is denoted as Mn(G).
141
+ In this setting, state space and measurement space are
142
+ always convex. We call an element pure when the element
143
+ is extremal. Also, when a state ρ ∈ S(G) is measured by
144
+ a measurement {Mi} ∈ M(G), the probability pi to get
145
+ an outcome i is given as
146
+ pi := ⟨ρ, Mi⟩.
147
+ (2)
148
+ Quantum theory is a typical example of a model of
149
+ GPTs, i.e., quantum theory is given as a model G =
150
+ (LH(H), Tr, L+
151
+ H(H)), I), where LH(H) and L+
152
+ H(H) be the
153
+ set of Hermitian matrices and the set of positive semi-
154
+ definite matrices on a finite dimensional Hilbert space
155
+ H, respectively. In this model, the state space is the set
156
+ of density matrices, also the measurement space is the
157
+ set of Positive Operator Valued Measures (POVMs).
158
+ In order to discuss Bell scenario, we introduce the
159
+ model of composite systems in GPTs. Given two mod-
160
+ els in GPTs GA = (VA, ⟨ , ⟩A, CA, uA) and GB =
161
+ (VB, ⟨ , ⟩B, CB, uB), a model G = (V, ⟨ , ⟩, C, u) of
162
+ composite system of two models is defined as follows
163
+ [13]: The vector space V is defined as the tensor prod-
164
+ uct V = VA ⊗ VB. The inner product ⟨ , ⟩ is defined
165
+ as the induced inner product by the tensor product,
166
+ i.e., the inner product ⟨x1, x2⟩ is defined as ⟨x1, x2⟩ =
167
+
168
+ i,j⟨a(i)
169
+ 1 , a(j)
170
+ 2 ⟩A⟨b(i)
171
+ 1 , b(j)
172
+ 2 ⟩B for elements x1 = �
173
+ i a(i)
174
+ 1
175
+
176
+ b(i)
177
+ 1
178
+ ∈ V and x2 = �
179
+ j a(j)
180
+ 2
181
+ ⊗ b(j)
182
+ 2
183
+ ∈ V. The cone C is
184
+ chosen as a cone satisfying the inequality
185
+ CA ⊗ CB ⊂ C ⊂ (C∗
186
+ A ⊗ C∗
187
+ B)∗ ,
188
+ (3)
189
+ where the tensor product CA ⊗ CB is defined as
190
+ CA ⊗ CB :=
191
+ ��
192
+ i
193
+ ai ⊗ bi
194
+ �����ai ∈ CA, bi ∈ CB
195
+
196
+ .
197
+ (4)
198
+ The order unit u is defined as u = uA ⊗ uB ∈ V.
199
+ Especially, in this paper, we mainly consider Entan-
200
+ glement Structures (ESs) with local quantum subsystems
201
+ (hereinafter, we simply call them ESs), i.e., models of
202
+ composite systems G whose local systems GA and GB
203
+ are equivalent to quantum theory.
204
+ By modifying the
205
+ above conditions of the definition of composite systems,
206
+ we define an ES as follows.
207
+ Definition 4 (Entanglement Structure [13, 24, 29, 33]).
208
+ We say that a model G = (LH(HA ⊗ HB), Tr, C, I) is an
209
+ entanglement structure if C satisfies
210
+ SEP(A; B) ⊂ C ⊂ SEP(A; B)∗,
211
+ (5)
212
+ where the proper cone SEP(A; B) is defined as
213
+ SEP(A; B) := L+
214
+ H(HA) ⊗ L+
215
+ H(HB).
216
+ (6)
217
+ By definition, an ES is given by a positive cone with
218
+ (5), and therefore, an ES is denoted as the corresponding
219
+ positive cone C.
220
+ The inclusion relation (5) implies that a model of quan-
221
+ tum composite system is not uniquely determined. On
222
+ the other hand, standard quantum systems obey the only
223
+ model SES(A; B) := L+
224
+ H(HA⊗HB). In this paper, we call
225
+ this model the Standard Entanglement Structure (SES).
226
+ The set SEP(A; B)∗ contains non-positive Hermitian ma-
227
+ trices, and therefore, a non-positive state is available in
228
+ an ES C ̸⊂ SES(A; B).
229
+ We call a non-positive state,
230
+ i.e., a state ρ ∈ S(SEP∗(A; B))\S(SES(A; B)) a beyond-
231
+ quantum state. Our interest is how we detect beyond-
232
+ quantum states if they exist.
233
+ Observables and CHSH inequality in GPTs—Next, we
234
+ introduce observables and CHSH inequality in GPTs.
235
+ In a model G, an observable O is defined as a pair of
236
+ a measurement {Mi(O)}i∈I ∈ M(G) and its outcomes
237
+ oi(O)
238
+ (i ∈ I). In this paper, we consider a bipartite
239
+ composite model whose local models are given by GA
240
+ and GB. When Alice’s and Bob’s local observables are
241
+
242
+ 3
243
+ given as OA = {M A
244
+ i , oA
245
+ i }i∈I and OB = {M B
246
+ j , oB
247
+ j }j∈J,
248
+ respectively, the total observable is given as OA ⊗ OB =
249
+ {M A
250
+ i ⊗ M B
251
+ j , oA
252
+ i oB
253
+ j }i∈I,j∈J.
254
+ Given an observable O = {Mi, oi}i∈I and a state ρ, an
255
+ expectation value of the outcome of O with ρ is given as
256
+ ⟨O⟩ρ :=
257
+
258
+ i∈I
259
+ oi ⟨ρ, Mi⟩ .
260
+ (7)
261
+ In a composite model G of local modesl GA and GB,
262
+ CHSH inequality is defined by the following function
263
+ B(ρ; OA
264
+ 1 , OA
265
+ 2 , OB
266
+ 1 , OB
267
+ 2 )
268
+ :=
269
+ ���
270
+
271
+ OA
272
+ 1 ⊗ OB
273
+ 1
274
+
275
+ ρ +
276
+
277
+ OA
278
+ 1 ⊗ OB
279
+ 2
280
+
281
+ ρ
282
+ +
283
+
284
+ OA
285
+ 2 ⊗ OB
286
+ 1
287
+
288
+ ρ −
289
+
290
+ OA
291
+ 2 ⊗ OB
292
+ 2
293
+
294
+ ρ
295
+ ���,
296
+ (8)
297
+ where ρ ∈ S(G) is a global state and OA
298
+ 1 , OA
299
+ 2 ∈ M2(GA),
300
+ OB
301
+ 1 , OB
302
+ 2 ∈ M2(GB) are observables with two outcomes
303
+ ±1. The general CHSH inequality is defined as the bound
304
+ of the function B(ρ; OA
305
+ 1 , OA
306
+ 2 , OB
307
+ 1 , OB
308
+ 2 ). For example, in
309
+ the model SES(A; B), B(ρ; OA
310
+ 1 , OA
311
+ 2 , OB
312
+ 1 , OB
313
+ 2 ) ≤ 2
314
+
315
+ 2,
316
+ known as Tirelson’s bound.
317
+ However, the reference [35] shows that the inequal-
318
+ ity B(G) ≤ 2
319
+
320
+ 2 holds whenever the local systems GA
321
+ and GB are equivalent to quantum theory.
322
+ This im-
323
+ plies that any ES G satisfies Tirelson’s bound, i.e.,
324
+ B(ρ; OA
325
+ 1 , OA
326
+ 2 , OB
327
+ 1 , OB
328
+ 2 ) ≤ 2
329
+
330
+ 2.
331
+ In this way, CHSH in-
332
+ equality can not detect whether an entanglement struc-
333
+ ture has beyond-quantum state or not.
334
+ Criterion to Detect Beyond-Quantum State and Its
335
+ Implementation—In this way, CHSH inequality is not
336
+ enough to detect beyond-quantum states in ESs. In con-
337
+ trast to CHSH inequality, we give a detection of an arbi-
338
+ trary given beyond-quantum state in ESs.
339
+ As a preliminary, we consider a standard quantum ob-
340
+ servable whose measurement is given by a Projection-
341
+ Valued Measure (PVM) {Mi}i∈I. In this case, we regard
342
+ an observable O as a Hermitian matrix �
343
+ i∈I oiMi, where
344
+ oi is an outcome of the observable.
345
+ Conversely, when
346
+ a Hemitian matrix T is written as T = �
347
+ i∈I oiMi by
348
+ spectral decomposition, the matrix T is regarded as an
349
+ observable O = {Mi, oi}i∈I with PVM. For example, the
350
+ following Hermitian matrices are regarded as standard
351
+ Pauli’s spin observables in the qubit-system:
352
+ σx :=
353
+
354
+ 0 1
355
+ 1 0
356
+
357
+ ,
358
+ σy :=
359
+
360
+ 0 −i
361
+ i
362
+ 0
363
+
364
+ ,
365
+ σz :=
366
+
367
+ 1
368
+ 0
369
+ 0 −1
370
+
371
+ .
372
+ (9)
373
+ Due to this correspondence, the expectation value of an
374
+ observable O defined by a Hermitian matrix TO with a
375
+ state ρ is given as
376
+ ⟨O⟩ρ = Tr ρTO.
377
+ (10)
378
+ Hereinafter, we consider only observables defined as a
379
+ Hermitian matrix, and an observable is denoted as a Her-
380
+ mitian matrix.
381
+ Now, we consider a detection of beyond-quantum
382
+ states in ESs. First, as the following theorem, we give
383
+ a criterion detecting beyond-quantum state based on lo-
384
+ cal quantum observables.
385
+ Theorem
386
+ 5.
387
+ Given
388
+ an
389
+ arbitrary
390
+ state
391
+ σ
392
+
393
+ S(SEP∗(A; B)) \ S(SES(A; B)), there exist a family
394
+ of observables {OA
395
+ i
396
+ ⊗ OB
397
+ i }m
398
+ i=1 and a real number α
399
+ satisfying the following two properties:
400
+ 1. �m
401
+ i=1
402
+
403
+ OA
404
+ i ⊗ OB
405
+ i
406
+
407
+ ρ ≤ α for any ρ ∈ S(SES(A; B)).
408
+ 2. �m
409
+ i=1
410
+
411
+ OA
412
+ i ⊗ OB
413
+ i
414
+
415
+ σ > α.
416
+ Theorem 5 states that the value �m
417
+ i=1
418
+
419
+ OA
420
+ i ⊗ OB
421
+ i
422
+
423
+ ρ
424
+ separates the beyond-quantum state σ from standard
425
+ quantum states.
426
+ As the proof of Theorem 5, we give
427
+ the following deterministic way to find the observables
428
+ {OA
429
+ i ⊗ OB
430
+ i }m
431
+ i=1 and a real number α for any given state
432
+ σ ∈ S(SEP∗(A; B)) \ S(SES(A; B)).
433
+ At first, because the state space S(SES(A; B)) is a
434
+ closed convex set and the relation σ ̸∈ S(SES(A; B)),
435
+ hyperplane separation theorem [42] ensures the existence
436
+ of a hyperplane that separates σ from the convex set
437
+ S(SES(A; B)).
438
+ In other words, there exist an element
439
+ x ∈ LH(HA ⊗ HB) and a real number α ∈ R such that
440
+ Tr xσ > α and Tr xρ ≤ α for any ρ ∈ S(SES(A; B)). In
441
+ practical situation, we need to find such a Hermitian ma-
442
+ trix x by an analytical way, but x = σ separates σ and
443
+ S(SES(A; B)) as follows. Any ρ ∈ S(SES(A; B)) satisfies
444
+ the following inequality:
445
+ |Tr σρ|
446
+ (a)
447
+ < ∥σ∥2∥ρ∥2
448
+ (b)
449
+ ≤ ∥σ∥2.
450
+ (11)
451
+ The inequality (a) is shown by Schwarz inequality and
452
+ its equality condition. The equality condition of Schwarz
453
+ inequality holds only when ρ is proportional to σ, which
454
+ never holds because ρ is positive semi-definite and σ is
455
+ not positive semi-definite. The inequality (b) is shown by
456
+ ∥ρ∥ ≤ 1 for any ρ ∈ S(SES(A; B)). On the other hand,
457
+ the equation Tr σ2 = ∥σ∥2 holds by definition, therefore
458
+ we find at least one element x = σ separating σ and
459
+ S(SES(A; B)). Due to the latter discussion, we consider
460
+ general separation x here.
461
+ Next, we formulate the element x as a tensor product
462
+ form. Because the element x belongs to the vector space
463
+ LH(HA ⊗ HB) = LH(HA) ⊗ LH(HB), the element x is
464
+ written as x = �m
465
+ i=1 xA
466
+ i ⊗ xB
467
+ i , where xA
468
+ i ∈ LH(HA) and
469
+ xB
470
+ i ∈ LH(HB). As seen in the latter discussion, the Her-
471
+ mitian matrices xA
472
+ i and xB
473
+ i
474
+ can be regarded as observ-
475
+ ables OA
476
+ i and OB
477
+ i , respectively. Finally, the observables
478
+
479
+ 4
480
+ OA
481
+ i and OB
482
+ i satisfy the equation
483
+ m
484
+
485
+ i=1
486
+
487
+ OA
488
+ i ⊗ OB
489
+ i
490
+
491
+ ρ = Tr xρ
492
+ (12)
493
+ for any ρ ∈ S(SEP∗(A; B)).
494
+ This criterion is implemented as the following detec-
495
+ tion protocol on bipartite scenario (Figure 1).
496
+ • Aim and Strategy
497
+ – Alice and Bob aim to determine whether a
498
+ given target global state ρ is beyond-quantum
499
+ or not.
500
+ – Alice and Bob choose {OA
501
+ i ⊗ OB
502
+ i }m
503
+ i=1 and α
504
+ given in Theorem 5 based on their prediction
505
+ that the target state ρ is close to a beyond-
506
+ quantum state σ.
507
+ – Alice and Bob repeat the following protocol
508
+ by nm-times for sufficiently large n.
509
+ • The Whole Protocol
510
+ 1. Set Up: Alice and Bob prepare a generator
511
+ of the target state ρ. The generator always
512
+ transmits the same global state ρ.
513
+ 2. i-th Round:
514
+ The generator transmits the
515
+ state ρ to the composite system of Alice’s and
516
+ Bob’s systems. Alice and Bob measure their
517
+ local observables OA
518
+ j and OB
519
+ j with i = kn + j
520
+ (1 ≤ k ≤ m). As a result, they get outcomes
521
+ oA
522
+ i and oB
523
+ i , respectively.
524
+ 3. Determination: Alice and Bob share their
525
+ outcomes with classical communication. They
526
+ then calculate the value
527
+ 1
528
+ n
529
+ �nm
530
+ i=1 oA
531
+ i oB
532
+ i .
533
+ If
534
+ the inequality
535
+ 1
536
+ n
537
+ �nm
538
+ i=1 oA
539
+ i oB
540
+ i > α holds, Alice
541
+ and Bob conclude that the target state ρ is
542
+ beyond-quantum.
543
+ • Justification
544
+ – On the limit n → ∞, the value 1
545
+ n
546
+ �nm
547
+ i=1 oA
548
+ i oB
549
+ i
550
+ approximates
551
+ the
552
+ expectation
553
+ value
554
+ �m
555
+ i=1
556
+
557
+ OA
558
+ i ⊗ OB
559
+ i
560
+
561
+ ρ.
562
+ – If n is sufficiently larger and the inequality
563
+ 1
564
+ n
565
+ �nm
566
+ i=1 oA
567
+ i oB
568
+ i > α holds, Theorem 5 ensures
569
+ that the target state ρ is beyond-quantum
570
+ state with sufficiently large probability.
571
+ – If 1
572
+ n
573
+ �nm
574
+ i=1 oA
575
+ i oB
576
+ i ≤ α holds for sufficiently large
577
+ n, their prediction σ is sufficiently different
578
+ from the target state ρ.
579
+ In this way, any beyond-quantum state can be detected
580
+ by a finite number of local quantum observables with
581
+ large probability. In general dimensional cases, a certain
582
+ family of observables is not applied to general beyond-
583
+ quantum states but only to certain beyond-quantum
584
+ states, and the number of observables might be large in
585
+ Generator
586
+ Alice’s System
587
+ Bob’s System
588
+ Classical
589
+ Communication
590
+ Local Observable
591
+ Local Observable
592
+ Outcome
593
+ Target State
594
+ Outcome
595
+ FIG. 1.
596
+ The Detection Protocol of Criterion Given in The-
597
+ orem 5.
598
+ A generator of global state ρ is given.
599
+ Alice and
600
+ Bob aim to detect whether ρ is beyond-quantum. Alice and
601
+ Bob prepare only their local observables with a certain order
602
+ given in Theorem 5, and they estimate the expectation value
603
+ in Theorem 5 as average of all outcomes gotten in nm-rounds
604
+ of observation.
605
+ general. However, in the 2 × 2 dimensional case, our cri-
606
+ terion detects any pure beyond-quantum states based on
607
+ three Pauli’s spin observables as the following discussion.
608
+ Detection
609
+ of
610
+ beyond-quantum
611
+ state
612
+ on
613
+ 2 × 2-
614
+ dimensional system by Pauli’s spin observables—Now,
615
+ we
616
+ consider
617
+ an
618
+ arbitrary
619
+ bipartite
620
+ model
621
+ G
622
+ =
623
+ (T (H), Tr, C, I) of two local quantum systems with di-
624
+ mension 2,
625
+ i.e.,
626
+ we consider the case dim(HA)
627
+ =
628
+ dim(HB) = 2.
629
+ First, we introduce the following function A(ρ) as
630
+ A(ρ) :=
631
+
632
+ i=x,y,z
633
+ ⟨σi ⊗ σi⟩ρ = Tr
634
+
635
+
636
+
637
+
638
+ 1
639
+ 0
640
+ 0
641
+ 0
642
+ 0 −1
643
+ 2
644
+ 0
645
+ 0
646
+ 2
647
+ −1 0
648
+ 0
649
+ 0
650
+ 0
651
+ 1
652
+
653
+
654
+
655
+ � ρ. (13)
656
+ Now, we see how the function A(ρ) detects beyond-
657
+ quantum states. The following theorem holds.
658
+ Theorem 6. The function A(ρ) satisfies the following
659
+ two properties:
660
+ 1. A(ρ) ≤ 1 for any ρ ∈ S(SES(A; B)).
661
+ 2. A(ρ0) = 3, where ρ0 ∈ S(SEP ∗(A; B)) is defined
662
+ as
663
+ ρ0 =
664
+
665
+
666
+
667
+
668
+ 1
669
+ 2 0 0 0
670
+ 0 0
671
+ 1
672
+ 2 0
673
+ 0
674
+ 1
675
+ 2 0 0
676
+ 0 0 0
677
+ 1
678
+ 2
679
+
680
+
681
+
682
+
683
+ (14)
684
+ Proof of Theorem 6 lays in Appendix. Due to The-
685
+ orem 6, we detect the beyond-quantum state ρ0 by the
686
+ criterion based on the function A(ρ). Besides, because
687
+ the observables (9) are available in standard quantum
688
+ theory, we detect the beyond quantum states sufficiently
689
+ close to ρ0.
690
+
691
+ OB2B25
692
+ Moreover, the function A(ρ) satisfies the following
693
+ property.
694
+ Theorem 7. The function A(ρ) satisfies
695
+ max{A(ρ) | ρ ∈ S(SEP∗(A; B))} = 3
696
+ (15)
697
+ and attains the maximum only on ρ = ρ0.
698
+ Proof of Theorem 7 lays in Appendix. Due to The-
699
+ orem 7, the function A(ρ) distinguishes ρ0 not only
700
+ from all standard quantum states but also from all other
701
+ beyond-quantum states.
702
+ Next, we give a more efficient criterion.
703
+ Similar to
704
+ Bell’s scenario, we generalize the function A by replacing
705
+ an arbitrary three observables Oi (i = x, y, z) biased in
706
+ ths same way as σx, σy, σz. In other words, we consider
707
+ the situation Oi = U †σiU in (13). We define the gen-
708
+ eralized function of A(ρ) for unitary matrices UA, UB on
709
+ HA and HB as
710
+ A(ρ; UA, UB) := A
711
+
712
+ (UA ⊗ UB) ρ
713
+
714
+ U †
715
+ A ⊗ U †
716
+ B
717
+ ��
718
+ .
719
+ (16)
720
+ The function A(ρ; UA, UB) can also be experimentally
721
+ obtained by the shared global state ρ, local observables
722
+ σx, σy, σz, and local quantum operations UA, UB. Then,
723
+ we define the maximization of A(ρ; UA, UB) as
724
+ Amax(ρ) := max
725
+
726
+ A(ρ; UA, UB)
727
+ ���
728
+ UA, UB : unitary matrices on HA and HB
729
+
730
+ .
731
+ (17)
732
+ The function Amax(ρ) separates any beyond-quantum
733
+ pure state from standard quantum states more efficiently
734
+ as the following theorem.
735
+ Theorem 8. The function Amax(ρ) satisfies the follow-
736
+ ing two properties:
737
+ 1. Amax(ρ) ≤ 1 for any ρ ∈ S(SES(A; B)).
738
+ 2. Amax(σ) > 1 for any beyond-quantum pure state
739
+ σ ∈ S(SEP∗(A; B)).
740
+ Proof of Theorem 8 lays in Appendix.
741
+ Theorem 8
742
+ states that the function Amax(ρ) completely detects any
743
+ beyond-quantum pure state in S(SEP ∗(A; B)). In other
744
+ words, if a target state ρ is beyond-quantum pure, there
745
+ exists a pair of unitary matrices UA and UB such that
746
+ A(ρ; UA, UB) detects the target state ρ from all standard
747
+ quantum states. The criterion given in Theorem 8 is ap-
748
+ proximately implemented by a reiteration of the protocol
749
+ in Figure 1 with several unitary operations.
750
+ Conclusion—In this paper, we have discussed the de-
751
+ tection of beyond-quantum states in ESs of GPTs. Even
752
+ though local systems of ESs are equivalent to standard
753
+ quantum systems, CHSH inequality cannot separate any
754
+ beyond-quantum states in ESs from the standard quan-
755
+ tum states in the SES. In contrast to CHSH inequality,
756
+ we have given a criterion to separate an arbitrary given
757
+ beyond-quantum state in any ES from the SES based
758
+ on local standard quantum observables. Also, we have
759
+ given an experimental implementation of the criterion
760
+ as a bipartite protocol. As an example of the detection
761
+ in the 2-qubits case, we have given a simple detection
762
+ based on Pauli’s spin observables. Moreover, like Bell’s
763
+ scenario, we have clarified that all beyond-quantum non-
764
+ local pure states can be detected by a sequential local
765
+ observables biased by the same way as Pauli’s spin ob-
766
+ servables σx, σy, σz.
767
+ Finally, we give some open problems. First, we have
768
+ not given a strict estimation of the error probability of
769
+ the detection protocol. In order to discuss how surely
770
+ our models contains beyond-quantum non-local states,
771
+ we need to discuss the protocol in the context of hypoth-
772
+ esis testing. This is an open proble. Second, our criterion
773
+ cannot detect beyond-quantum state efficiently in general
774
+ dimension. For a practical situation, it is important that
775
+ we detect beyond-quantum states based on a small num-
776
+ ber of observables.
777
+ In other words, it is important to
778
+ estimate how many observables we need for the criterion
779
+ given in Theorem 5 This is another open problem.
780
+ ACKNOWLEDGMENTS
781
+ HA is supported by a JSPS Grant-in-Aids for JSPS
782
+ Research Fellows No.
783
+ JP22J14947.
784
+ MH is supported
785
+ in part by the National Natural Science Foundation of
786
+ China (Grant No. 62171212) and Guangdong Provincial
787
+ Key Laboratory (Grant No. 2019B121203002).
788
789
790
+ [1] A. Riccardi, D. Chru´sci´nski, and C. Macchiavello “Opti-
791
+ mal entanglement witnesses from limited local measure-
792
+ ments.” Phys. Rev. A 101, 062319 (2020).
793
+ [2] J. S. Bell, “On the Einstein Podolsky Rosen paradox.”
794
+ Phys. Phys. Fiz. 1, 195 (1964).
795
+ [3] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
796
+ “Proposed Experiment to Test Local Hidden-Variable
797
+ Theories.” Phys. Rev. Lett. 23, 880 (1970).
798
+ [4] S. J. Freedman and J. F. Clauser, “Experimental Test
799
+ of Local Hidden-Variable Theories.” Phys. Rev. Lett. 28,
800
+ 938 (1972).
801
+ [5] A. Aspect, J. Dalibard, and G. Roger, “Experimental
802
+ Test of Bell’s Inequalities Using Time-Varying Analyz-
803
+ ers.” Phys. Rev. Lett. 49, 1804 (1982).
804
+ [6] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and
805
+ A. Zeilinger, “Violation of Bell’s Inequality under Strict
806
+ Einstein Locality Conditions.” Phys. Rev. Lett. 81, 5039
807
+ (1998).
808
+ [7] M. ˙Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ek-
809
+ ert, ““Event-ready-detectors” Bell experiment via entan-
810
+ glement swapping.” Phys. Rev. Lett. 71, 4287 (1993).
811
+
812
+ 6
813
+ [8] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W.
814
+ M. Itano, C. Monroe and D. J. Wineland, “Experimental
815
+ violation of a Bell’s inequality with efficient detection.”
816
+ Nature 409, 791–794 (2001).
817
+ [9] T. Scheidl, R. Ursin, J. Kofler, and A. Zeilinger, “Viola-
818
+ tion of local realism with freedom of choice.” PNAS 107,
819
+ 19708 (2010).
820
+ [10] B. S. Cirel’son, “Quantum generalizations of Bell’s in-
821
+ equality.” Lett. Math. Phys. 4, 93–100 (1980).
822
+ [11] S. Popescu and D. Rohrlich, “Quantum nonlocality as an
823
+ axiom.” Found. Phys. 24, 379 (1994).
824
+ [12] M. Pl´avala and M. Ziman, “Popescu-Rohrlich box imple-
825
+ mentation in general probabilistic theory of processes.”
826
+ Phys. Rett. A 384, 126323 (2020).
827
+ [13] M. Plavala, “General probabilistic theories: An introduc-
828
+ tion.” arXiv:2103.07469, (2021).
829
+ [14] M. Paw´lowski., T. Patere., D. Kaszlikowski, et al., “In-
830
+ formation causality as a physical principle.” Nature 461,
831
+ 1101–1104 (2009).
832
+ [15] A. J. Short and S. Wehner, “Entropy in general physical
833
+ theories.” New J. Phys. 12, 033023 (2010).
834
+ [16] H. Barnum, J. Barrett, L. O. Clark, et.al., “Entropy
835
+ and Information Causality in General Probabilistic The-
836
+ ories.” New J. Phys. 14, 129401 (2012).
837
+ [17] J. Barrett, “Information processing in generalized prob-
838
+ abilistic theories.” Phis. Rev. A 75, 032304 (2007).
839
+ [18] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Prob-
840
+ abilistic theories with purification.” Phys. Rev. A 81,
841
+ 062348 (2010).
842
+ [19] G. Chiribella, C. M. Scandolo, “Operational axioms for
843
+ diagonalizing states.” EPTCS 195, 96-115 (2015).
844
+ [20] G.
845
+ Chiribella,
846
+ C.
847
+ M.
848
+ Scandolo,
849
+ “Entanglement
850
+ as
851
+ an
852
+ axiomatic
853
+ foundation
854
+ for
855
+ statistical
856
+ mechanics.”
857
+ arXiv:1608.04459 (2016).
858
+ [21] M. P. M¨uller and C. Ududec, “Structure of Reversible
859
+ Computation Determines the Self-Duality of Quantum
860
+ Theory.” PRL 108, 130401 (2012).
861
+ [22] H Barnum, C. M. Lee, C. M. Scandolo, J. H. Selby,
862
+ “Ruling out Higher-Order Interference from Purity Prin-
863
+ ciples.” Entropy 19, 253 (2017).
864
+ [23] H. Barnum and J. Hilgert, “Strongly symmetric spec-
865
+ tral convex bodies are Jordan algebra state spaces.”
866
+ arXiv:1904.03753 (2019).
867
+ [24] P. Janotta and H. Hinrichsen, “Generalized probability
868
+ theories: what determines the structure of quantum the-
869
+ ory?” J. Phys. A: Math. Theor. 47, 323001 (2014).
870
+ [25] M. Krumm, H. Barnum, J. Barrett, and M. P. M¨uller,
871
+ “Thermodynamics and the structure of quantum theory.”
872
+ New J. Phys. 19, 043025 (2017).
873
+ [26] K. Matsumoto and G. Kimura, “Information storing
874
+ yields a point-asymmetry of state space in general prob-
875
+ abilistic theories.” arXiv:1802.01162 (2018).
876
+ [27] R. Takagi and B. Regula, “General Resource Theories
877
+ in Quantum Mechanics and Beyond: Operational Char-
878
+ acterization via Discrimination Tasks.” Phys. Rev. X 9,
879
+ 031053 (2019).
880
+ [28] H. Arai, Y. Yoshida, and M. Hayashi, “Perfect discrimi-
881
+ nation of non-orthogonal separable pure states on bipar-
882
+ tite system in general probabilistic theory.” J. Phys. A
883
+ 52, 465304 (2019).
884
+ [29] G. Aubrun, L. Lami, C. Palazuelos, et al., “Entangleabil-
885
+ ity of cones.” Geom. Funct. Anal. 31, 181-205 (2021).
886
+ [30] Y. Yoshida, H. Arai, and M. Hayashi, “Perfect Dis-
887
+ crimination in Approximate Quantum Theory of General
888
+ Probabilistic Theories.” PRL, 125, 150402 (2020).
889
+ [31] G. Aubrun, L. Lami, C. Palazuelos, et al., “Entanglement
890
+ and superposition are equivalent concepts in any physical
891
+ theory.” arXiv:2109.04446 (2021).
892
+ [32] S. Minagawa and H. Arai and F. Buscemi, “von Neu-
893
+ mann’s information engine without the spectral theo-
894
+ rem,” Physical Review Research 4, 033091 (2022).
895
+ [33] H.Arai and M. Hayashi, “Pseudo standard entanglement
896
+ structure cannot be distinguished from standard entan-
897
+ glement structure.” arXiv:2203.07968 [quant-ph] (2022).
898
+ [34] M. Banik, MD. R. Gazi, S. Ghosh, and G. Kar, “De-
899
+ gree of Complementarity Determines the Nonlocality in
900
+ Quantum Mechanics.” Phys. Rev. A. 87, 052125 (2013).
901
+ [35] N. Stevens and P. Busch, “Steering, incompatibility, and
902
+ Bell inequality violations in a class of probabilistic theo-
903
+ ries.” Phys. Rev. A. 89, 022123 (2014).
904
+ [36] H. Barnum, C. Philipp, and A. Wilce, “Ensemble Steer-
905
+ ing, Weak Self-Duality, and the Structure of Probabilistic
906
+ Theories” Found. Phys. 43, 1411–1427 (2013).
907
+ [37] D. Chru´sci´nski and G. Sarbicki, “Entanglement wit-
908
+ nesses:
909
+ construction, analysis and classification.” J.
910
+ Phys. A 47, 483001 (2014).
911
+ [38] M. Marciniak, “On extremal positive maps acting be-
912
+ tween type I factors Noncommutative Harmonic Analysis
913
+ with Application to Probability II.” Polish Academy of
914
+ Sciences Mathematics 89 201 (2010).
915
+ [39] A. Peres, “Separability Criterion for Density Matrices.”
916
+ Phys. Rev. Lett. 77, 1413 (1996).
917
+ [40] M. Hayashi, K. Matsumoto, and Y. Tsuda, “A study
918
+ of LOCC-detection of a maximally entangled state using
919
+ hypothesis testing.” J. Phys. A: Math. Gen. 39 14427
920
+ (2006).
921
+ [41] H. Zhu and M. Hayashi “Optimal verification and fidelity
922
+ estimation of maximally entangled states.” Phys. Rev. A
923
+ 99, 052346 (2019).
924
+ [42] S. Boyd and L. Vandenberge, “Convex Optimization.”
925
+ Cambridge University Press (2004).
926
+ APPENDIX
927
+ Proof of Theorem 6
928
+ Proof. STEP1: Proof of the statement 1.
929
+ At first, the matrix given in (13) is calculated as
930
+ A :=
931
+
932
+
933
+
934
+
935
+ 1
936
+ 0
937
+ 0
938
+ 0
939
+ 0 −1
940
+ 2
941
+ 0
942
+ 0
943
+ 2
944
+ −1 0
945
+ 0
946
+ 0
947
+ 0
948
+ 1
949
+
950
+
951
+
952
+ � = I −
953
+
954
+
955
+
956
+
957
+ 0
958
+ 0
959
+ 0
960
+ 0
961
+ 0
962
+ 2
963
+ −2 0
964
+ 0 −2
965
+ 2
966
+ 0
967
+ 0
968
+ 0
969
+ 0
970
+ 0
971
+
972
+
973
+
974
+ � . (18)
975
+ the second matrix in right-hand-side is positive semi-
976
+ definite with rank 1. Therefore, the maximum eigenvalue
977
+ of A is 1., which implies that A(ρ) ≤ 1 for any positive
978
+ semi-definite matrix ρ with Tr ρ = 1.
979
+ STEP2: Proof of the statement 2.
980
+
981
+ 7
982
+ This is shown by the following simple calculation.
983
+ A(ρ0) = Tr
984
+
985
+
986
+
987
+
988
+ 1
989
+ 0
990
+ 0
991
+ 0
992
+ 0 −1
993
+ 2
994
+ 0
995
+ 0
996
+ 2
997
+ −1 0
998
+ 0
999
+ 0
1000
+ 0
1001
+ 1
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+ 1
1011
+ 2 0 0 0
1012
+ 0 0
1013
+ 1
1014
+ 2 0
1015
+ 0
1016
+ 1
1017
+ 2 0 0
1018
+ 0 0 0
1019
+ 1
1020
+ 2
1021
+
1022
+
1023
+
1024
+ � = 3. (19)
1025
+ As the above, Theorem 6 has been proven.
1026
+ Proof of Theorem 7
1027
+ In order to show Theorem 7, we apply the following
1028
+ proposition.
1029
+ Proposition 9 (essentially shown in [37, Prop 5.6] or
1030
+ [38]). In 2 × 2-dimensional case, the set of all extremal
1031
+ points of S(SEP∗(A; B)) is given as
1032
+ Ext(SEP∗(A; B))
1033
+ ={Γ(ρ) | ρ ∈ S(SES(A; B)) ρ is entangled pure}
1034
+ ∪ {ρ | ρ ∈ S(SES(A; B)) ρ is pure}.
1035
+ (20)
1036
+ Actually, the reference [37, Prop 5.6] shows that the
1037
+ all extremal points of the set of decomposable elements
1038
+ in S(SEP∗(A; B)) is given as (20). It is known that all
1039
+ elements in SEP∗(A; B) are decomposable [39] in 2 × 2-
1040
+ dimensional case, and therefore, Proposition 9 holds.
1041
+ Proof of Theorem 7. Because of Proposition 9, the func-
1042
+ tion of A(ρ) is attained by an element in Ext(A; B). Also,
1043
+ because of Theorem 6, the function of A(ρ) is attained
1044
+ by an element Γ(ρ), where ρ is positive semi-definite with
1045
+ rank 1. Then, the statement is obtained as follows:
1046
+ A(Γ(ρ)) + 1
1047
+ (a)
1048
+ = Tr
1049
+
1050
+
1051
+
1052
+
1053
+
1054
+
1055
+
1056
+
1057
+
1058
+
1059
+
1060
+ 1
1061
+ 0
1062
+ 0
1063
+ 0
1064
+ 0 −1
1065
+ 2
1066
+ 0
1067
+ 0
1068
+ 2
1069
+ −1 0
1070
+ 0
1071
+ 0
1072
+ 0
1073
+ 1
1074
+
1075
+
1076
+
1077
+ � + I
1078
+
1079
+
1080
+
1081
+
1082
+
1083
+
1084
+
1085
+ Γ(ρ)
1086
+ = Tr Γ
1087
+
1088
+
1089
+
1090
+
1091
+ 2 0 0 2
1092
+ 0 0 0 0
1093
+ 0 0 0 0
1094
+ 2 0 0 2
1095
+
1096
+
1097
+
1098
+ � Γ(ρ) = Tr
1099
+
1100
+
1101
+
1102
+
1103
+ 2 0 0 2
1104
+ 0 0 0 0
1105
+ 0 0 0 0
1106
+ 2 0 0 2
1107
+
1108
+
1109
+
1110
+ � ρ
1111
+ (b)
1112
+ ≤ 4.
1113
+ (21)
1114
+ The equation (a) holds because Tr Γ(ρ) = 1. The inequal-
1115
+ ity (b) holds because Φ and ρ are positive semi-definite
1116
+ with rank 1.
1117
+ Proof of Theorem 8
1118
+ Proof. The statement (1) is similarly shown by Theo-
1119
+ rem 8 because any unitary matrix does not change the
1120
+ trace. We will show the statement (2).
1121
+ Let
1122
+ σ
1123
+ be
1124
+ a
1125
+ beyond-quantum
1126
+ pure
1127
+ state
1128
+ in
1129
+ S(SEP∗(A; B), i.e., σ is written as Γ(ρ),
1130
+ where ρ
1131
+ is entangled positive semi-definite with trace 1 by
1132
+ Proposition 9. Then, we obtain the following equation:
1133
+ Amax(Γ(ρ)) + 1 = A((UA ⊗ UB) (Γ(ρ) + I)
1134
+
1135
+ U †
1136
+ A ⊗ U †
1137
+ B
1138
+
1139
+ = Tr
1140
+
1141
+
1142
+
1143
+
1144
+ 2 0 0 0
1145
+ 0 0 2 0
1146
+ 0 2 0 0
1147
+ 0 0 0 2
1148
+
1149
+
1150
+
1151
+ � (UA ⊗ UB) Γ(ρ)
1152
+
1153
+ U †
1154
+ A ⊗ U †
1155
+ B
1156
+
1157
+ = Tr 4Γ(Φ) (UA ⊗ UB) Γ(ρ)
1158
+
1159
+ U †
1160
+ A ⊗ U †
1161
+ B
1162
+
1163
+ = Tr 4Γ(Φ)Γ (UA ⊗ U ′
1164
+ B) ρ
1165
+
1166
+ U †
1167
+ A ⊗ U ′†
1168
+ B
1169
+
1170
+ = Tr 4Γ(Φ)Γ(ρ0) = Tr 4Φρ0,
1171
+ (22)
1172
+ where U ′
1173
+ B := U ⊤
1174
+ B and ρ0 := (UA ⊗ U ′
1175
+ B) ρ
1176
+
1177
+ U †
1178
+ A ⊗ U ′†
1179
+ B
1180
+
1181
+ .
1182
+ Because ρ0 is entangled and Φ is maximally entangled
1183
+ in the 2 × 2-dimensional bipartite quantum system, the
1184
+ inequality Tr Φρ0 > 1
1185
+ 2 holds, which implies the statement
1186
+ (2).
1187
+ As the above, Theorem 8 has been proven.
1188
+
3tE2T4oBgHgl3EQf6AiT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4dE0T4oBgHgl3EQfvQGV/content/tmp_files/2301.02616v1.pdf.txt ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ On the Width of the Regular n-Simplex
2
+ Sariel Har-Peled∗
3
+ Eliot W. Robson†
4
+ January 9, 2023
5
+ Abstract
6
+ Consider the regular n-simplex ∆n – it is formed by the convex-hull of n+1 points in Euclidean
7
+ space, with each pair of points being in distance exactly one from each other. We prove an exact
8
+ bound on the width of ∆n which is ≈
9
+
10
+ 2/n. Specifically, width(∆n) =
11
+
12
+ 2
13
+ n+1 if n is odd, and
14
+ width(∆n) =
15
+
16
+ 2(n+1)
17
+ n(n+2) if n is even. While this bound is well known [GK92, Ale77], we provide a
18
+ self-contained elementary proof that might (or might not) be of interest.
19
+ 1. The width of the regular simplex
20
+ A regular n-simplex ∆n is a set of n + 1 points in Euclidean space such that every pair of points is
21
+ in distance exactly 1 from each other. For simplicity, it is easier to work with the simplex Dn formed
22
+ by the convex-hull of e1, . . . , en+1 ∈ Rn+1, where ei is the ith standard unit vector1. Observe that
23
+ ∥eiej∥ =
24
+
25
+ 2, which implies that Dn =
26
+
27
+ 2∆n.
28
+ All the vertices of Dn lie on the hyperplane h ≡
29
+ �n+1
30
+ i=1 xi =
31
+
32
+ (x1, . . . , xn+1), 1
33
+
34
+ = 1, where 1 = (1, 1, . . . , 1). In particular, the point cn = 1/(n + 1) ∈ Dn
35
+ is the center of Dn, and is in equal distance
36
+
37
+ Rn = ∥cnei∥ =
38
+
39
+ n
40
+ 1
41
+ (n + 1)2 +
42
+
43
+ 1 −
44
+ 1
45
+ n + 1
46
+ �2
47
+ =
48
+
49
+ 1 −
50
+ 2
51
+ n + 1 +
52
+ n + 1
53
+ (n + 1)2 =
54
+
55
+ n
56
+ n + 1.
57
+ from all the vertices of Dn. Note that the largest ball one can place in h, which is still contained in Dn,
58
+ is centered at cn. Furthermore, it has radius
59
+ �rn =
60
+ ��cn−(0, cn−1)
61
+ �� =
62
+
63
+ 1
64
+ (n + 1)2 + n
65
+ �1
66
+ n −
67
+ 1
68
+ n + 1
69
+ �2
70
+ =
71
+
72
+ n + 1
73
+ n(n + 1)2 =
74
+ 1
75
+
76
+ n(n + 1)
77
+ .
78
+ For a unit vector u, and a set P ⊆ Rn+1, let
79
+ ω(u, P) = max
80
+ p∈P ⟨u, p⟩ − min
81
+ p∈P ⟨u, p⟩
82
+ denote the projection width of P in the direction of u. The width of P is the minimum projection
83
+ width over all directions.
84
+ ∗Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
85
+ [email protected]; http://sarielhp.org/.
86
+ Work on this paper was partially supported by a NSF AF award
87
+ CCF-1907400.
88
+ †Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
89
+ [email protected]; https://eliotwrobson.github.io/.
90
+ 1That is, ei is 0 in all coordinates except the ith coordinate where it is 1.
91
+ 1
92
+ arXiv:2301.02616v1 [cs.CG] 6 Jan 2023
93
+
94
+ Energy of points.
95
+ For a vector v = (v1, . . . , vn+1) ∈ Rn+1, let µ(v) = �
96
+ i vi/(n + 1), and let
97
+ �v = v − µ(v)1,
98
+ be the translation of v by its centroid µ(v)1 so that ⟨�v, 1⟩ = 0. The energy of v is σ(v) = ∥�v∥2. The
99
+ energy is the minimum 1-mean clustering price of the numbers v1, . . . , vn+1. We need the following
100
+ standard technical claim, which implies that if we move a value away from the centroid, the 1-mean
101
+ clustering price of the set goes up.
102
+ Claim 1.1. Let v = (v1, . . . , vn+1) ∈ Rn+1 be a point, and let u be a point that is identical to v in
103
+ all coordinates except the ith one, where ui > vi ≥ µ(v).
104
+ Then σ(u) > σ(v).
105
+ The same holds if
106
+ ui < vi < µ(v).
107
+ Proof: Let δi = (ui − vi)/(n + 1), and observe that µ(u) = µ(v) + δi. As such, we have
108
+ σ(u) =
109
+
110
+ j(uj − µ(u))2 =
111
+
112
+ j(vj − µ(v) + δi)2 − (vi − µ(v) + δi)2 + (ui − µ(v) + δi)2.
113
+ Since �
114
+ j(vj − µ(v)) = 0, we have that
115
+
116
+ j(vj − µ(v) + δi)2 =
117
+
118
+ j(vj − µ(v))2 +
119
+
120
+ 2δi
121
+
122
+ j(vj − µ(v))
123
+
124
+ +
125
+
126
+ j δ2
127
+ i = σ(v) + (n + 1)δ2
128
+ i .
129
+ Rearranging the above and using that ui > vi ≥ µ(v), we have
130
+ σ(u) − σ(v) = (n + 1)δ2
131
+ i + (ui − µ(v) + δi)2 − (vi − µ(v) + δi)2 > (ui − vi)(ui + vi − 2µ(v) + 2δi) > 0.
132
+ Lemma 1.2. For n odd, the width of Dn is 2/√n + 1, and this is realized by they projection width of
133
+ all the directions in H =
134
+
135
+ v/√n + 1
136
+ �� v ∈ {−1, +1}n+1 and ⟨v, 1⟩ = 0
137
+
138
+ (and no other direction).
139
+ Proof: Consider a unit vector z that realizes the minimum width of Dn – here, in addition to ∥z∥ = 1,
140
+ we also require that ⟨z, 1⟩ = 0, as one has to consider only directions that are parallel to the hyperplane
141
+ containing Dn. To this end, let β = maxi zi and α = mini zi and observe that
142
+ width(Dn) = ω(z, Dn) = max
143
+ i
144
+ ⟨z, ei⟩ − min
145
+ i
146
+ ⟨z, ei⟩ = β − α.
147
+ Next, Consider the point u, where for all i we set
148
+ ui =
149
+
150
+ α
151
+ zi < 0
152
+ β
153
+ zi ≥ 0.
154
+ A careful repeated application of Claim 1.1, implies that σ(u) > σ(z) if any coordinate of z is not
155
+ already either α or β. But then the point �u has (i) “width” β − α, (ii)∥�u∥ > 1, and (iii) ⟨�u, 1⟩ = 0. But
156
+ this implies that the projection width of Dn on �u/∥�u∥ is (β − α)/∥�u∥ < β − α, which is a contradiction
157
+ to the choice of z.
158
+ Thus, it must be that all the coordinates of z are either α or β. Let t be the number of coordinates
159
+ of z that are α, and observe that
160
+ σ(z) =∥z∥2 = tα2 + (n + 1 − t)β2 = 1
161
+ and
162
+ ⟨z, 1⟩ = tα + (n + 1 − t)β = 0.
163
+ 2
164
+
165
+ This implies that β = −
166
+ t
167
+ n+1−tα, and thus
168
+ tα2 + (n + 1 − t)t2
169
+ (n + 1 − t)2 α2 = 1
170
+ =⇒
171
+ t(n + 1 − t) + t2
172
+ n + 1 − t
173
+ α2 = 1
174
+ =⇒
175
+ α = −
176
+
177
+ n + 1 − t
178
+ t(n + 1) .
179
+ Thus, the width of Dn is β −α =
180
+
181
+ 1+
182
+ t
183
+ n+1−t
184
+ ��
185
+ n+1−t
186
+ t(n+1) =
187
+
188
+ n+1
189
+ t(n+1−t). The last quantity is minimized when
190
+ the denominator is maximized, which happens for t = (n + 1)/2. Namely, the width of Dn is 2/√n + 1.
191
+ We have that tα + tβ = 0, which implies that α = −β and thus β = 1/√n + 1. It follows that
192
+ z ∈ H.
193
+ Lemma 1.3. For n even, the width of Dn is 2
194
+
195
+ n+1
196
+ n(n+2).
197
+ Proof: The proof of Lemma 1.2 goes through with minor modifications. The minimum value is realized
198
+ by t = n/2. This implies that
199
+ α = −
200
+
201
+ n + 1 − t
202
+ t(n + 1) = −
203
+
204
+ n + 2
205
+ n(n + 1)
206
+ and
207
+ β = −
208
+ t
209
+ n + 1 − tα =
210
+
211
+ n
212
+ (n + 1)(n + 2).
213
+ As a sanity check, observe that tα2 + (n + 1 − t)β2 = n
214
+ 2
215
+ n+2
216
+ n(n+1) + n+2
217
+ 2
218
+ n
219
+ (n+1)(n+2) = 1. Thus, the width of
220
+ Dn is
221
+ β − α =
222
+
223
+ n
224
+ (n + 1)(n + 2) +
225
+
226
+ n + 2
227
+ n(n + 1) =
228
+ 2(n + 1)
229
+
230
+ n(n + 1)(n + 2)
231
+ = 2
232
+
233
+ n + 1
234
+ n(n + 2).
235
+ Using that ∆n = Dn/
236
+
237
+ 2 and rescaling the above bounds, we get the following.
238
+ Corollary 1.4. The width of the regular n-simplex ∆n is
239
+
240
+ 2/(n + 1) if n is odd. The width is
241
+
242
+ 2(n+1)
243
+ n(n+2)
244
+ if n is even.
245
+ The inradius (i.e., radius of largest ball inside ∆n) is rn = 1/
246
+
247
+ 2n(n + 1), and the
248
+ circumradius (i.e., radius of minimum ball enclosing ∆n is Rn =
249
+
250
+ n
251
+ 2(n+1).
252
+ References
253
+ [Ale77]
254
+ R. Alexander. The width and diameter of a simplex. Geometriae Dedicata, 6(1), 1977.
255
+ [GK92]
256
+ P. Gritzmann and V. Klee. Inner and outer j-radii of convex bodies in finite-dimensional
257
+ normed spaces. Discret. Comput. Geom., 7: 255–280, 1992.
258
+ 3
259
+
4dE0T4oBgHgl3EQfvQGV/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf,len=121
2
+ page_content='On the Width of the Regular n-Simplex Sariel Har-Peled∗ Eliot W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
3
+ page_content=' Robson† January 9, 2023 Abstract Consider the regular n-simplex ∆n – it is formed by the convex-hull of n+1 points in Euclidean space, with each pair of points being in distance exactly one from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
4
+ page_content=' We prove an exact bound on the width of ∆n which is ≈ � 2/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
5
+ page_content=' Specifically, width(∆n) = � 2 n+1 if n is odd, and width(∆n) = � 2(n+1) n(n+2) if n is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
6
+ page_content=' While this bound is well known [GK92, Ale77], we provide a self-contained elementary proof that might (or might not) be of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
7
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
8
+ page_content=' The width of the regular simplex A regular n-simplex ∆n is a set of n + 1 points in Euclidean space such that every pair of points is in distance exactly 1 from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
9
+ page_content=' For simplicity, it is easier to work with the simplex Dn formed by the convex-hull of e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
10
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
11
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
12
+ page_content=' , en+1 ∈ Rn+1, where ei is the ith standard unit vector1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
13
+ page_content=' Observe that ∥eiej∥ = √ 2, which implies that Dn = √ 2∆n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
14
+ page_content=' All the vertices of Dn lie on the hyperplane h ≡ �n+1 i=1 xi = � (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
15
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
16
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
17
+ page_content=' , xn+1), 1 � = 1, where 1 = (1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
18
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
19
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
20
+ page_content=' , 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
21
+ page_content=' In particular, the point cn = 1/(n + 1) ∈ Dn is the center of Dn, and is in equal distance � Rn = ∥cnei∥ = � n 1 (n + 1)2 + � 1 − 1 n + 1 �2 = � 1 − 2 n + 1 + n + 1 (n + 1)2 = � n n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
22
+ page_content=' from all the vertices of Dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
23
+ page_content=' Note that the largest ball one can place in h, which is still contained in Dn, is centered at cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
24
+ page_content=' Furthermore, it has radius �rn = ��cn−(0, cn−1) �� = � 1 (n + 1)2 + n �1 n − 1 n + 1 �2 = � n + 1 n(n + 1)2 = 1 � n(n + 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
25
+ page_content=' For a unit vector u, and a set P ⊆ Rn+1, let ω(u, P) = max p∈P ⟨u, p⟩ − min p∈P ⟨u, p⟩ denote the projection width of P in the direction of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
26
+ page_content=' The width of P is the minimum projection width over all directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
27
+ page_content=' ∗Department of Computer Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
28
+ page_content=' University of Illinois;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
29
+ page_content=' 201 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
30
+ page_content=' Goodwin Avenue;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
31
+ page_content=' Urbana, IL, 61801, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
32
+ page_content=' sariel@illinois.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
33
+ page_content='edu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
34
+ page_content=' http://sarielhp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
35
+ page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
36
+ page_content=' Work on this paper was partially supported by a NSF AF award CCF-1907400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
37
+ page_content=' †Department of Computer Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
38
+ page_content=' University of Illinois;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
39
+ page_content=' 201 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
40
+ page_content=' Goodwin Avenue;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
41
+ page_content=' Urbana, IL, 61801, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
42
+ page_content=' erobson2@illinois.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
43
+ page_content='edu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
44
+ page_content=' https://eliotwrobson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
45
+ page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
46
+ page_content='io/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
47
+ page_content=' 1That is, ei is 0 in all coordinates except the ith coordinate where it is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
48
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
49
+ page_content='02616v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
50
+ page_content='CG] 6 Jan 2023 Energy of points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
51
+ page_content=' For a vector v = (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
53
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
54
+ page_content=' , vn+1) ∈ Rn+1, let µ(v) = � i vi/(n + 1), and let �v = v − µ(v)1, be the translation of v by its centroid µ(v)1 so that ⟨�v, 1⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
55
+ page_content=' The energy of v is σ(v) = ∥�v∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
56
+ page_content=' The energy is the minimum 1-mean clustering price of the numbers v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
57
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
58
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
59
+ page_content=' , vn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
60
+ page_content=' We need the following standard technical claim, which implies that if we move a value away from the centroid, the 1-mean clustering price of the set goes up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
61
+ page_content=' Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
62
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
63
+ page_content=' Let v = (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
64
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
65
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
66
+ page_content=' , vn+1) ∈ Rn+1 be a point, and let u be a point that is identical to v in all coordinates except the ith one, where ui > vi ≥ µ(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
67
+ page_content=' Then σ(u) > σ(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
68
+ page_content=' The same holds if ui < vi < µ(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
69
+ page_content=' Proof: Let δi = (ui − vi)/(n + 1), and observe that µ(u) = µ(v) + δi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
70
+ page_content=' As such, we have σ(u) = � j(uj − µ(u))2 = � j(vj − µ(v) + δi)2 − (vi − µ(v) + δi)2 + (ui − µ(v) + δi)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
71
+ page_content=' Since � j(vj − µ(v)) = 0, we have that � j(vj − µ(v) + δi)2 = � j(vj − µ(v))2 + � 2δi � j(vj − µ(v)) � + � j δ2 i = σ(v) + (n + 1)δ2 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
72
+ page_content=' Rearranging the above and using that ui > vi ≥ µ(v), we have σ(u) − σ(v) = (n + 1)δ2 i + (ui − µ(v) + δi)2 − (vi − µ(v) + δi)2 > (ui − vi)(ui + vi − 2µ(v) + 2δi) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
73
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
74
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
75
+ page_content=' For n odd, the width of Dn is 2/√n + 1, and this is realized by they projection width of all the directions in H = � v/√n + 1 �� v ∈ {−1, +1}n+1 and ⟨v, 1⟩ = 0 � (and no other direction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
76
+ page_content=' Proof: Consider a unit vector z that realizes the minimum width of Dn – here, in addition to ∥z∥ = 1, we also require that ⟨z, 1⟩ = 0, as one has to consider only directions that are parallel to the hyperplane containing Dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
77
+ page_content=' To this end, let β = maxi zi and α = mini zi and observe that width(Dn) = ω(z, Dn) = max i ⟨z, ei⟩ − min i ⟨z, ei⟩ = β − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
78
+ page_content=' Next, Consider the point u, where for all i we set ui = � α zi < 0 β zi ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
79
+ page_content=' A careful repeated application of Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
80
+ page_content='1, implies that σ(u) > σ(z) if any coordinate of z is not already either α or β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
81
+ page_content=' But then the point �u has (i) “width” β − α, (ii)∥�u∥ > 1, and (iii) ⟨�u, 1⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
82
+ page_content=' But this implies that the projection width of Dn on �u/∥�u∥ is (β − α)/∥�u∥ < β − α, which is a contradiction to the choice of z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
83
+ page_content=' Thus, it must be that all the coordinates of z are either α or β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
84
+ page_content=' Let t be the number of coordinates of z that are α, and observe that σ(z) =∥z∥2 = tα2 + (n + 1 − t)β2 = 1 and ⟨z, 1⟩ = tα + (n + 1 − t)β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
85
+ page_content=' 2 This implies that β = − t n+1−tα, and thus tα2 + (n + 1 − t)t2 (n + 1 − t)2 α2 = 1 =⇒ t(n + 1 − t) + t2 n + 1 − t α2 = 1 =⇒ α = − � n + 1 − t t(n + 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
86
+ page_content=' Thus, the width of Dn is β −α = � 1+ t n+1−t �� n+1−t t(n+1) = � n+1 t(n+1−t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
87
+ page_content=' The last quantity is minimized when the denominator is maximized, which happens for t = (n + 1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
88
+ page_content=' Namely, the width of Dn is 2/√n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
89
+ page_content=' We have that tα + tβ = 0, which implies that α = −β and thus β = 1/√n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
90
+ page_content=' It follows that z ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
91
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
92
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
93
+ page_content=' For n even, the width of Dn is 2 � n+1 n(n+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
94
+ page_content=' Proof: The proof of Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
95
+ page_content='2 goes through with minor modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
96
+ page_content=' The minimum value is realized by t = n/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
97
+ page_content=' This implies that α = − � n + 1 − t t(n + 1) = − � n + 2 n(n + 1) and β = − t n + 1 − tα = � n (n + 1)(n + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
98
+ page_content=' As a sanity check, observe that tα2 + (n + 1 − t)β2 = n 2 n+2 n(n+1) + n+2 2 n (n+1)(n+2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
99
+ page_content=' Thus, the width of Dn is β − α = � n (n + 1)(n + 2) + � n + 2 n(n + 1) = 2(n + 1) � n(n + 1)(n + 2) = 2 � n + 1 n(n + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
100
+ page_content=' Using that ∆n = Dn/ √ 2 and rescaling the above bounds, we get the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
101
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
102
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
103
+ page_content=' The width of the regular n-simplex ∆n is � 2/(n + 1) if n is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
104
+ page_content=' The width is � 2(n+1) n(n+2) if n is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
105
+ page_content=' The inradius (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
106
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
107
+ page_content=', radius of largest ball inside ∆n) is rn = 1/ � 2n(n + 1), and the circumradius (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
108
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
109
+ page_content=', radius of minimum ball enclosing ∆n is Rn = � n 2(n+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
110
+ page_content=' References [Ale77] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
111
+ page_content=' Alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
112
+ page_content=' The width and diameter of a simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
113
+ page_content=' Geometriae Dedicata, 6(1), 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
114
+ page_content=' [GK92] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
115
+ page_content=' Gritzmann and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
116
+ page_content=' Klee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
117
+ page_content=' Inner and outer j-radii of convex bodies in finite-dimensional normed spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
118
+ page_content=' Discret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
119
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
120
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
121
+ page_content=', 7: 255–280, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
122
+ page_content=' 3' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE0T4oBgHgl3EQfvQGV/content/2301.02616v1.pdf'}
4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3e431c5118a5397146b68633fe4abe8096a3e745394f61a64fd3d3feb8e5eba
3
+ size 195936
4dE1T4oBgHgl3EQfAwIb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f6cece5f1a42b0752a0172a210aa240343d02d47ecf02f4412ca9c3bb09103
3
+ size 1835053
7NFLT4oBgHgl3EQfAC40/content/2301.11964v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94cd219a5ad5a63551f9539ff83afd39d2b135d28d265d45aee887c1fc83a3fa
3
+ size 459517
7NFLT4oBgHgl3EQfAC40/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fd7b819f46e343d3007dab56f80d2d2f02de7889732af7e10a4bd7a84cd6d7e
3
+ size 3211309
7NFLT4oBgHgl3EQfAC40/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a6c0ad731d36b12b6296f59ce83ace440f75a0ce757514f173d4fecc3c6cf8a
3
+ size 110359
8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d7d3e8b49c381772249c500b2f2126af20871cebd830ad0f2d93637dc421b20
3
+ size 1396773
8tFQT4oBgHgl3EQfITXl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27a1ec2a6fc72200a67ddb7943f9c6618848f082068e5f00fac9a7ec0715d7ab
3
+ size 1376301
8tFQT4oBgHgl3EQfITXl/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf5243faf478001f458235c761bab04f04c66d0695e1d7755e08bfdc26eb52d6
3
+ size 50739
99E0T4oBgHgl3EQfgAA0/content/2301.02411v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:670a8959b5c3e3773ce50a1b118150d84845fc79817c5180b825b8c5d44c62ec
3
+ size 647956
99E0T4oBgHgl3EQfgAA0/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47200c0d2fdc148adce1f18f3a7914e6904aa83b0d33c857abd9fd396092cc84
3
+ size 8781869
99E0T4oBgHgl3EQfgAA0/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4573048185d2584cc0149fc954b98560ded73d0f5124b7379afbb734481568d
3
+ size 359516
BdFIT4oBgHgl3EQf_ywO/content/tmp_files/2301.11416v1.pdf.txt ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ FEATURE SPACE EXPLORATION AS AN ALTERNATIVE FOR DESIGN
4
+ SPACE EXPLORATION BEYOND THE PARAMETRIC SPACE
5
+ TOMAS CABEZON PEDROSO1 and JINMO RHEE2 and DARAGH
6
+ BYRNE3
7
+ 1,2,3Carnegie Mellon University, USA.
8
+ [email protected], 0000-0002-5483-2676
9
+ [email protected], 0000-0003-4710-7385
10
+ [email protected], 0000-0001-7193-006X
11
+
12
+ Abstract. This paper compares the parametric design space with a
13
+ feature space generated by the extraction of design features using
14
+ deep learning (DL) as an alternative way for design space
15
+ exploration. In this comparison, the parametric design space is
16
+ constructed by creating a synthetic dataset of 15.000 elements using
17
+ a parametric algorithm and reducing its dimensions for visualization.
18
+ The feature space — reduced-dimensionality vector space of
19
+ embedded data features — is constructed by training a DL model on
20
+ the same dataset. We analyze and compare the extracted design
21
+ features by reducing their dimension and visualizing the results. We
22
+ demonstrate that parametric design space is narrow in how it
23
+ describes the design solutions because it is based on the combination
24
+ of individual parameters. In comparison, we observed that the
25
+ feature design space can intuitively represent design solutions
26
+ according to complex parameter relationships. Based on our results,
27
+ we discuss the potential of translating the features learned by DL
28
+ models to provide a mechanism for intuitive design exploration
29
+ space and visualization of possible design solutions.
30
+ Keywords. Deep Learning, VAE, Design Space, Feature Design Space,
31
+ Parametric Design Space, Design Exploration.
32
+ 1. Introduction
33
+
34
+ Parametric modeling has acquired widespread acceptance among creative
35
+ practitioners as it allows the synthesis of various design options and solutions.
36
+ Changing the parameters in this modeling process, either manually or randomly,
37
+ can rapidly create a vast set of design variations (Toulkeridou, 2019). Navigating
38
+ the resulting parametric design space — where the design variants are
39
+ topologically placed by their parameters — is part of the design exploration
40
+ process — a crucial step in the development of new alternatives and design
41
+ solutions. Exploration of the parametric design space allows creative practitioners
42
+
43
+
44
+
45
+ T. CABEZON PEDROSO, J. RHEE AND D. BYRNE
46
+
47
+
48
+ many benefits: to reach satisfying solutions, better define design problems, and
49
+ understand the opportunities and limitations of the possible solutions.
50
+ Despite these benefits, design exploration is laborious within the parametric space
51
+ and challenged along two fronts: comparison and selection (Fuchkina et al., 2018).
52
+ Parametric design exploration is an iterative process that focuses on the variation
53
+ of these individual parameters, rather than on the relationship among them
54
+ (Yamamoto and Nakakoji, 2005). Hence, comparing one design solution with
55
+ others by their parameters alone does not always result in a superior solution; for
56
+ example, the variants generated by the local combination of parameters might not
57
+ match the design requirements. Moreover, infinite alternative design solutions can
58
+ be generated by inputting new parameter values. Thus, the parametric design
59
+ space consists of a huge amount of design variants that cannot be fully or
60
+ sufficiently explored.
61
+
62
+ We propose an alternative way to construct and examine the design space, by
63
+ extracting features from a DL model. By comparing and analyzing how the DL
64
+ feature design space differs from the parametric design space, we illustrate the
65
+ potential of feature design space for design practitioners during the design
66
+ exploration process and provide a new way to compare, examine and select the
67
+ design alternatives based on the exploration of a properly constrained design
68
+ space.
69
+
70
+ No previous approach to compare the parametric design space and feature design
71
+ space as design exploration tools has been found. To demonstrate how the feature
72
+ space compares to the parametric space, we designed an experiment to construct
73
+ both a parametric design space and a feature design space using the same dataset.
74
+ The dataset consists of 15.000 synthetic 3D models produced by a parametric
75
+ algorithm with five parameters. This parametric design space consists of five axes;
76
+ each axis corresponds to each of the parameters that are used as inputs of the
77
+ parametric algorithm. Subsequently, this same dataset is used to train a DL model
78
+ to compress the data into a feature vector of 128 dimensions. Both the parametric
79
+ space (five-axes) and the feature space (128 axes) are not directly visualizable due
80
+ to their high dimensionality. Nevertheless, as visual feedback plays an important
81
+ role in design exploration (Bradner, Iorio and Davis, 2014), we employ a
82
+ dimensionality reduction algorithm (t-SNE) to the design space. We are able to
83
+ illustrate the design exploration space, showing how the data is distributed across
84
+ both the parametric and feature design spaces.
85
+
86
+ In the next section, we describe the generation of the dataset, as well as the
87
+ construction of parametric design space and its visualization. In Section 3., we
88
+ illustrate how training a DL model resulted in a feature space for design
89
+ exploration and comparison with the parametric approach. Then, in Section 4., we
90
+ will compare, contrast, and discuss the characteristics of the DL feature space and
91
+ the parametric space. (Figure 1.)
92
+
93
+ FEATURE SPACE EXPLORATION AS AN ALTERNATIVE FOR DESIGN
94
+ SPACE EXPLORATION BEYOND THE PARAMETRIC SPACE
95
+
96
+
97
+
98
+
99
+ Figure 1. The overall process of comparing parametric design space and feature space from deep
100
+ learning
101
+
102
+ 2. Constructing Parametric Design Space
103
+ 2.1. DATASET GENERATION
104
+
105
+ To conduct a design space comparison, a simple parametric modeling system was
106
+ designed: a parametric algorithm for generating different styles of vessels. As with
107
+ handcraft of pottery wheel throwing, a simple Bezier curve with three control
108
+ points was turned around an axis to generate each 3D digital vessels; the form of
109
+ each vessel is specified by the five parameters that were used as inputs. These
110
+ parameters, as can be seen in Figure 2, are: the height of the vessel, the width of
111
+ the base, the width of the top opening, and the horizontal and vertical coordinates
112
+ of the central control point of the Bezier curve that are used to create the curve of
113
+ the form. The five parameters are represented as a vector, and each vector
114
+ corresponds to a specific 3D model of a vessel.
115
+
116
+ Using this system, we created a 3D vessel dataset by randomly generating a total
117
+ of 15.000 different vessels. The total shape of the parametric representation of the
118
+ vessel dataset is [15.000, 5], however, as it will be explained in the next section,
119
+
120
+ Parametric
121
+ 5
122
+ algorithm
123
+ Parametric
124
+ Data
125
+ parameters
126
+ Design Space
127
+ Comparison
128
+ Feature
129
+ VAE
130
+ DesignSpace
131
+ ENCODER
132
+ DECODERT. CABEZON PEDROSO, J. RHEE AND D. BYRNE
133
+
134
+
135
+ only 3.000 vessels were used for the space exploration and visualization, so this
136
+ will be a design space of size [3.000, 5].
137
+
138
+
139
+
140
+ Figure 2. Upper: An illustration of the dataset parameters. Lower: Three illustrative examples from
141
+ the dataset with the parameters and the resulting 3D form side-by-side.
142
+
143
+ 2.2. DIMENSIONALITY REDUCTION
144
+
145
+ As a five-dimensional space makes it hard to compare models and to visualize
146
+ and compare the characteristics, we employed a dimensionality reduction process
147
+ to reduce the space to two-dimensions and enable the objects to be plotted and
148
+ compared to one another. Figure 3. shows the overall process of visualizing the
149
+ space using t-Distributed Stochastic Neighbour Embedding (t-SNE) algorithm
150
+ (van der Maaten and Hinton, 2008). t-SNE is a popular dimensionality-reduction
151
+ algorithm for visualizing high-dimensional data. The hyper-parameters used for
152
+ this reduction are: perplexity: 30; learning rate: 200; and iterations: 1.000.
153
+
154
+ Figure 3. Illustration of the dimensional reduction process for the 3D vessel dataset, and the
155
+ construction of a parametric design space.
156
+
157
+ After dimensional reduction, each point in the plot represents the corresponding
158
+ embedding of a vessel in the parametric design space. Each point is expressed as
159
+
160
+ 1. Pot top width
161
+ 2. Pot bottom width
162
+ 3. Control point horizontal coordinate
163
+ 4. Control point vertical coordinate
164
+ 5. Pot height
165
+ 2TopLevelApp (400 x 400)
166
+ Parameters:
167
+ bottomWidth: 0.452
168
+ topWidth: 0.943
169
+ height: 0.593
170
+ thickness: 0.050
171
+ bMp_x: 0.797
172
+ bMp_y: 0.093
173
+ bLp_x: 0.943
174
+ ≤69'0 :K_d7q
175
+ Figure 1
176
+ Press:
177
+ d, to display the mesh
178
+ s, to savethe,sti file
179
+ 100
180
+ 75
181
+ 50
182
+ 25
183
+ 0
184
+ 25
185
+ 50
186
+ 75
187
+ 100
188
+ 100
189
+ 50
190
+ 100
191
+ 50
192
+ 0
193
+ 50
194
+ 50
195
+ 100
196
+ 100
197
+ x=-93.6943,y=126.5305,z=148.6895TopLevelApp(400x400)
198
+ Parameters:
199
+ bottomWidth: 0.652
200
+ topWidth: 0.676
201
+ height: 0.595
202
+ thickness: 0.050
203
+ bMp_x: 0.675
204
+ bMp_y: 0.019
205
+ bLp_xc 0.676
206
+ bLp_y: 0.595
207
+ Figure1
208
+ Press:
209
+ d, to display the mesh
210
+ bezier
211
+ s, to save the,sti flle
212
+ 100
213
+ 50
214
+ 0
215
+ -50
216
+ -100
217
+ 100
218
+ 50
219
+ -100
220
+ 0
221
+ -50
222
+ 50
223
+ 0
224
+ 50
225
+ -100
226
+ 100
227
+ x=-71.5373,y=146.2703,z=159.6157TopLevelApp(400x400)
228
+ Parameters:
229
+ bottomWidth: 0.273
230
+ height: 0.755
231
+ thickness: 0.050
232
+ bMp_x: 0.719
233
+ bMp_y: 0.524
234
+ bLp_xc 0.904
235
+ bLp_y: 0.755
236
+ Figure1
237
+ Press:
238
+ d, to display the mesh
239
+ bezier
240
+ s, to save the,sti flle
241
+ 75
242
+ 50
243
+ 25
244
+ 0
245
+ -25
246
+ 50
247
+ 75
248
+ 100
249
+ 75
250
+ 50
251
+ 25
252
+ -100
253
+ 0
254
+ -75
255
+ _50
256
+ -25
257
+ -25
258
+ 0
259
+ 50
260
+ 25
261
+ 75
262
+ 50
263
+ 75
264
+ 100
265
+ 100[3k,5]
266
+ [3k,2]
267
+ dimension 1
268
+ PLOT
269
+ ...
270
+ t-SNE
271
+ x
272
+ Parametric
273
+ Dimensional
274
+ dimension 0
275
+ Design Space
276
+ ReductionFEATURE SPACE EXPLORATION AS AN ALTERNATIVE FOR DESIGN
277
+ SPACE EXPLORATION BEYOND THE PARAMETRIC SPACE
278
+ a 2D image of the profile cut section of the corresponding vessel. Figure 4.
279
+ represents the reduced parametric design space of the dataset.
280
+
281
+ Figure 4. A 2D visualization of the parametric design space of the vessel dataset. Inset image: a
282
+ detailed section for a subset of the models.
283
+ 3. Constructing the Feature Space
284
+
285
+ To construct the design space based on the features and not the parameters, we
286
+ used a Variational Autoencoder (VAE) as a tool for extracting the morphological
287
+ features of the vessels. VAEs (Kingma and Welling, 2013) are a type of generative
288
+ deep neural network used for statistical inference problems as they generalize a
289
+ probabilistic distribution of the given dataset and synthesize new data samples
290
+ from that distribution. VAEs are composed of two modules: encoder and decoder.
291
+ The encoder abstracts the input data into smaller dimensional vectors, latent
292
+ vectors, and the decoder reconstructs the latent vector back into a 3D shape.
293
+ During the encoding process, the network captures and extracts the features of the
294
+ input data. These features can be topologically placed in the data space, namely,
295
+ latent space. In the latent space, the distance between two data points represents
296
+ the degree of resemblance of data: the closer points, the more resembled. We
297
+ translate this latent space as the feature space for an alternative way to explore the
298
+ design space.
299
+ 3.1. DATA PRE-PROCESSING
300
+
301
+ Different representations of 3D data have been used in DL research, like point
302
+ clouds (Achlioptas et al., 2018), meshes (Ranjan et al., 2018), or voxels (Wu et al.,
303
+ 2017). As resolutions of the data is not key for our purpose rather than the
304
+ extracted features of it; and because we will implement a VAE for this experiment
305
+ that needs fixed space inputs for the Convolutional Neural Networks (CNNs), we
306
+ will be representing our 3D data with voxels. Voxels are discretized three-
307
+ dimensional grids containing a binary value of volumetric occupancy of an object;
308
+ they distinguish between the elements on the grid that are filled with material and
309
+ those that are empty. The size of the voxel will determine the number of divisions
310
+
311
+ -
312
+ -
313
+ 1
314
+ -
315
+ 4
316
+ I
317
+ --
318
+ I
319
+ -
320
+ -
321
+ 1
322
+ 1
323
+ 1
324
+ 1
325
+ 1
326
+ -
327
+ I
328
+ !
329
+ 1
330
+ I
331
+ 1
332
+ 1
333
+ 1
334
+ I
335
+ 1
336
+ 1
337
+ 1
338
+ I
339
+ 1
340
+ I
341
+ =T. CABEZON PEDROSO, J. RHEE AND D. BYRNE
342
+
343
+
344
+ of the grid, consequently, the resolution at which we represent our 3D models; the
345
+ larger size, the more detailed 3D models. In this experiment, we used 32-sized
346
+ voxels so that a 3D vessel model is represented by 32x32x32 grid, the shape of
347
+ the entire dataset is [15.000, 32, 32, 32]. Finally, the dataset was then divided into
348
+ two groups: 80% of the dataset (12.000 vessels) was used for training the DL
349
+ model, and the remaining 20% (3.000 vessels) was used for testing the model and
350
+ the parametric and feature space analysis and comparison.
351
+ 3.2. TRAINING
352
+
353
+ For training the model, we adopted the VAE architecture implemented in
354
+ ‘Adversarial Generation of Continuous Implicit Shape Representations’
355
+ (Kleineberg, Fey and Weichert, 2020). The encoder consists of four residual
356
+ blocks. Each residual block is composed of a 3D convolution layer, followed by
357
+ a batch normalization and a Leaky ReLu activation layer. The decoder, on the
358
+ contrary, comprises four residual blocks. Each block starts with a batch
359
+ normalization, followed by a Leaky ReLu activation layer, and finally a 3D
360
+ transposed convolution layer. The following hyper-parameters are used for
361
+ training the VAE with the voxelized vessel dataset: batch size 32, Adam
362
+ optimizer (Kingma and Ba, 2015), learning rate 5e-. The model was trained in
363
+ Google Colab Pro using the Nvidia Tesla T4 GPU.
364
+
365
+ Figure 5. Training process losses.
366
+
367
+ The model was trained for a total of 240 epochs. We early stopped the model
368
+ before the model started to overfit, Figure 5. The loss function used during
369
+ training was a combination of two losses. The first one, is the Kullback–Leibler
370
+ divergence (KLD) loss (Kullback and Leibler, 1951), with a weight in the total
371
+ loss formula of 1. This function is a measurement of the difference between two
372
+ statistical distributions. The second loss is the Minimum Square Distance (MSE)
373
+ loss (Sammut and Webb, 2010). It is used as the reconstruction loss and measures
374
+ the error between the input voxels and the reconstructed output. Figure 6. shows
375
+ the reasonable quality of the reconstruction of the training result after 240 epochs.
376
+ To ensure the performance of the model, it was evaluated using the test set and
377
+ showed that the model maintained the accuracy with the new dataset, which shows
378
+
379
+ 0.07
380
+ IMSE Loss
381
+ 0.06
382
+ KLD Loss
383
+ Total Loss
384
+ Total Loss
385
+ 0.05
386
+ 0.04
387
+ 0.03
388
+ 0.02
389
+ 0.01
390
+ 0
391
+ 50
392
+ 100
393
+ 150
394
+ 200
395
+ 250
396
+ EpochsFEATURE SPACE EXPLORATION AS AN ALTERNATIVE FOR DESIGN
397
+ SPACE EXPLORATION BEYOND THE PARAMETRIC SPACE
398
+ that the model generalizes well to new data and is able to encode never seen before
399
+ 3D vessels.
400
+
401
+
402
+ Figure 6. Two examples of reconstructions from the trained VAE: the section slides and 3D voxels
403
+ of the ground truth (the top row of each example) and the reconstruction (bottom of each example).
404
+ 3.3. DIMENSIONALITY REDUCTION
405
+
406
+ Figure 7. Feature space generation and visualization diagram.
407
+
408
+ Once the VAE is trained, the encoder is used to extract the features of each vessel
409
+ in the test dataset from 32.768 dimensions, the size of each voxelized vessel, into
410
+ 128-dimensional vectors, the latent vectors. Consequently, the entire test dataset
411
+ of the vessels is represented into vectors whose total shape is [3.000, 128].
412
+
413
+ Like in the parametric case, 128 dimensions are non-visualizable so the same
414
+ process as in Section 2 is followed. t-SNE algorithm is used to reduce the
415
+ dimensionality of each vector and plot the resulting two dimensions in an image
416
+ with the section of each of the vessels (Figure 7.). The hyper-parameters used for
417
+ this reduction are: perplexity: 50; learning rate: 700; and iterations: 3. Figure 8.
418
+ shows the results of distributed feature vectors in the reduced dimensional space,
419
+ the feature space.
420
+
421
+ 1- Input (Ground truth)
422
+ 10
423
+ 10
424
+ 10
425
+ 20
426
+ 30
427
+ 05
428
+ 20
429
+ 20
430
+ 20
431
+ 20
432
+ 0.0
433
+ 0.0
434
+ 0.5
435
+ 1.0
436
+ Output
437
+ 10
438
+ to
439
+ 10
440
+ O1
441
+ 1o
442
+ 20
443
+ 20
444
+ 20
445
+ 20
446
+ 20
447
+ 20
448
+ 30
449
+ 20
450
+ 0
451
+ 20
452
+ 20
453
+ 20
454
+ 20
455
+ 20
456
+ 0.0
457
+ 0.0
458
+ 20
459
+ 0.5
460
+ 1.0
461
+ 2- Input (Ground truth)
462
+ 10
463
+ 10
464
+ 10
465
+ 10
466
+ 10
467
+ 20
468
+ 20
469
+ 20
470
+ 20
471
+ 30
472
+ 20
473
+ 20
474
+ 20
475
+ 20
476
+ 20
477
+ 0.0
478
+ 0.0
479
+ 0.5
480
+ 1.0
481
+ Output
482
+ 10
483
+ OT
484
+ 10
485
+ 10
486
+ 10
487
+ 10
488
+ .6
489
+ 20
490
+ 20
491
+ 20
492
+ 20
493
+ 20
494
+ 20
495
+ 20
496
+ 30
497
+ 20
498
+ 20
499
+ 20
500
+ 20
501
+ 0
502
+ 20
503
+ o
504
+ 20
505
+ 0
506
+ 20
507
+ 0.0-
508
+ 0.0
509
+ 0.5
510
+ 1.0[3k,128]
511
+ [3k,2]
512
+ dimension
513
+ ENCODER
514
+ PLOT
515
+ voxel.npy
516
+ t-SNE
517
+ :
518
+ dimension 0
519
+ Latent
520
+ Dimensional
521
+ object.stl
522
+ Space
523
+ ReductionT. CABEZON PEDROSO, J. RHEE AND D. BYRNE
524
+
525
+
526
+
527
+ Figure 8. A 2D visualization of the feature design space of the vessel dataset. Inset image: a detailed
528
+ section for a subset of the models.
529
+ 4. Comparison Between the spaces
530
+
531
+ Figure 8. shows that similar vessels have been clustered together. Thinner vessels
532
+ are located at the top right of the image, in contrast to the opposite lower bottom
533
+ corner with the bigger vessels. The figure illustrates how the VAE model is able
534
+ to understand the relationship between the parameters and their influence on the
535
+ output morphological shape.
536
+
537
+ On the contrary, in the parametric space (Figure 4.), we can see how concave
538
+ vessels were gathered at the bottom of the image, however, if the height of the
539
+ vessels is considered, we can see that this parameter was not considered when
540
+ clustering the vessels. Parametric space is based on each parameter independently,
541
+ and not on the relationship among them. Therefore, we observe that parametric
542
+ design space insufficiently expresses the final form characteristics of the vessels
543
+ by the combinations of the parameters. On the contrary, in Figure 8., the feature
544
+ space, a gradual change in the shape or concavity as well as height or width is
545
+ observed.
546
+
547
+ To further examine and compare the characteristics of both design spaces, we used
548
+ a clustering, algorithm: a Density-Based Spatial Clustering of Applications with
549
+ Noise (DBSCAN) (Ester M et al., 1996). It is one of the most common clustering
550
+ algorithms that finds core samples of high density and expands clusters with them.
551
+ Figure 9. shows the results of this clustering.
552
+
553
+ The parametric design space has a total of seven clusters: three of them large, and
554
+ four of them small. It shows how the parametric design space doesn’t provide
555
+ enough information to intuitively compare the design variants locally, this space
556
+ shows extreme changes in vessel forms even in the same cluster.
557
+
558
+ "FEATURE SPACE EXPLORATION AS AN ALTERNATIVE FOR DESIGN
559
+ SPACE EXPLORATION BEYOND THE PARAMETRIC SPACE
560
+ The feature design space, on the contrary, has a total of nine clusters: six main big
561
+ clusters, and three smaller ones. In the feature design space, we can trace smooth
562
+ changes in the forms as we move through the different clusters (local changes)
563
+ and along the whole image (global changes). Shorter vessels are located on the
564
+ top, while taller ones are on the bottom. If we move on the horizontal axis, the
565
+ curve that generates the vessels goes from a concave shape on the right to a convex
566
+ shape on the left. This gives the designer the ability to locally compare similar
567
+ design alternatives.
568
+
569
+ Parametric Design Space: Feature Design Space:
570
+
571
+
572
+ Figure 9. Final visualization and clusters of the parametric and feature design spaces with
573
+ representative vessels of each group.
574
+ 5. Conclusion and Future work
575
+
576
+ We constructed the parametric and the feature design spaces using a custom
577
+ synthetic dataset and a VAE model. By comparing the parametric and feature
578
+ design spaces, we observed improved distributions of design alternatives in the
579
+ later. When the multi-dimensional parametric design space is projected into a 2D
580
+ space (Figures 4. and 9. left), the clusters are insufficiently relevant to the
581
+ morphological characteristics. On the other hand, when the multi-dimensional
582
+ feature space is projected into a 2D space (Figures 8. and 9. right), the clusters
583
+ show sufficient relevance to the features of the data they represent.
584
+
585
+ Based on this comparison, we conclude that combination of individual parameters
586
+ in the parametric design space is limited in representing the morphological
587
+ characteristics of the shapes. However, we showed that DL models can be used to
588
+ extract design features from 3D models and that the extracted features are more
589
+ complex than the combinations of individual parameters. Hence, we conclude that
590
+ the extracted features, that include information of the relationships between the
591
+ parameters, can construct a well-distributed design space. For that reason, we
592
+ propose feature design space as a tool for design space exploration that creative
593
+ practitioners can use as a new way for looking at objects beyond the parametric
594
+ design space.
595
+
596
+ T. CABEZON PEDROSO, J. RHEE AND D. BYRNE
597
+
598
+
599
+ Our results and implications are limited to a single dataset and DL model, however
600
+ the results seem promising. Future work will expand on this study with more
601
+ diverse datasets generated by more complex parametric algorithms. Accordingly,
602
+ to perform the feature extraction, we would like to train other types of DL models
603
+ to investigate different potentials of DL in design.
604
+ 6. References
605
+
606
+ Achlioptas, P. et al. (2018) ‘Learning Representations and Generative Models for 3D Point
607
+ Clouds’, In International conference on machine learning (pp. 40-49). PMLR.
608
+ Bradner, E., Iorio, F. and Davis, M. (2014) ‘Parameters Tell the Design Story: Ideation and
609
+ Abstraction in Design Optimization’, In Proceedings of the symposium on simulation for
610
+ architecture & urban design (Vol. 26)
611
+ Ester M et al. (1996) ‘A Density-Based Algorithm for Discovering Clusters in Large Spatial
612
+ Databases with Noise.’, KDD’96 Proceedings of the Second International Conference on
613
+ Knowledge Discovery and Data Mining, 96, pp. 226–231.
614
+ Fuchkina, E. et al. (2018) ‘Design Space Exploration Framework’, p. 10.
615
+ Kingma, D.P. and Ba, J.L. (2015) ‘Adam: A method for stochastic optimization’, in 3rd
616
+ International Conference on Learning Representations, ICLR 2015 - Conference Track
617
+ Proceedings. International Conference on Learning Representations, ICLR. Available at:
618
+ https://arxiv.org/abs/1412.6980v9 (Accessed: 30 May 2021).
619
+ Kingma, D.P. and Welling, M. (2013) ‘Auto-Encoding Variational Bayes’. Available at:
620
+ https://doi.org/10.48550/arXiv.1312.6114.
621
+ Kleineberg, M., Fey, M. and Weichert, F. (2020) ‘Adversarial Generation of Continuous
622
+ Implicit Shape Representations’. arXiv. Available at:
623
+ https://doi.org/10.48550/arXiv.2002.00349.
624
+ Kullback, S. and Leibler, R.A. (1951) ‘On Information and Sufficiency’, The Annals of
625
+ Mathematical Statistics, 22(1), pp. 79–86. Available at:
626
+ https://doi.org/10.1214/aoms/1177729694.
627
+ van der Maaten, L. and Hinton, G. (2008) ‘Viualizing data using t-SNE’, Journal of Machine
628
+ Learning Research, 9, pp. 2579–2605.
629
+ Ranjan, A. et al. (2018) ‘Generating 3D Faces using Convolutional Mesh Autoencoders’, in.
630
+ Proceedings of the European Conference on Computer Vision (ECCV), pp. 704–720.
631
+ Available at:
632
+ https://openaccess.thecvf.com/content_ECCV_2018/html/Anurag_Ranjan_Generating_3
633
+ D_Faces_ECCV_2018_paper.html (Accessed: 7 December 2022).
634
+ Sammut, C. and Webb, G.I. (eds) (2010) ‘Mean Squared Error’, in Encyclopedia of Machine
635
+ Learning. Boston, MA: Springer US, pp. 653–653. Available at:
636
+ https://doi.org/10.1007/978-0-387-30164-8_528.
637
+ Toulkeridou, V. (2019) ‘Steps towards AI augmented parametric modeling systems for
638
+ supporting design exploration’, in Blucher Design Proceedings. 37 Education and
639
+ Research in Computer Aided Architectural Design in Europe and XXIII Iberoamerican
640
+ Society of Digital Graphics, Joint Conference (N. 1), Porto, Portugal: Editora Blucher, pp.
641
+ 81–92. Available at: https://doi.org/10.5151/proceedings-ecaadesigradi2019_602.
642
+ Wu, J. et al. (2017) ‘Learning a Probabilistic Latent Space of Object Shapes via 3D
643
+ Generative-Adversarial Modeling’. arXiv. Available at: http://arxiv.org/abs/1610.07584
644
+ (Accessed: 7 December 2022).
645
+ Yamamoto, Y. and Nakakoji, K. (2005) ‘Interaction design of tools for fostering creativity in
646
+ the early stages of information design’, International Journal of Human-Computer
647
+ Studies, 63(4–5), pp. 513–535. Available at: https://doi.org/10.1016/j.ijhcs.2005.04.023.
648
+
BtAzT4oBgHgl3EQfTfyw/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2296265f9b6852e7eafa3737377713fe143b28bc862a78af7a54a0c2a651ce6
3
+ size 127593
D9A0T4oBgHgl3EQfAv_u/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a21a4f130c563ce971019f5025261f2dab38828bfd5ab8342aaa34cd5c10fe
3
+ size 156203
DtE5T4oBgHgl3EQfUQ_q/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15e106d31bfd1c67826684765d77073a2b2f3a8fa27bec1d4cff48556b526900
3
+ size 1048621
G9AzT4oBgHgl3EQfUvyD/content/tmp_files/2301.01272v1.pdf.txt ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A gallery of diagonal stability conditions with
2
+ structured matrices (and review papers)
3
+ Zhiyong Sun
4
+ Control Systems Group, Department of EE, TU Eindhoven, the Netherlands
5
+ Abstract
6
+ This note presents a summary and review of various conditions and characterizations
7
+ for matrix stability (in particular diagonal matrix stability) and matrix stabilizability.
8
+ Keywords:
9
+ Matrix stability, matrix stabilizability, diagonal stability.
10
+ 1. Definitions and notations
11
+ • A square real matrix is a Z-matrix if it has nonpositive off-diagonal elements.
12
+ • A Metzler matrix is a real matrix in which all the off-diagonal components are
13
+ nonnegative (equal to or greater than zero).
14
+ • A Z-matrix with positive principal minors is an M-matrix.
15
+ – Note: There are numerous equivalent characterizations for M-matrix (Fiedler
16
+ and Ptak, 1962; Plemmons, 1977). A more commonly-used condition is the
17
+ following: A matrix A ∈ Rn×n is called an M-matrix, if its non-diagonal
18
+ entries are non-positive and its eigenvalues have positive real parts.
19
+ • A square matrix A is (positive) stable if all its eigenvalues have positive parts.
20
+ Equivalently, a square matrix A is (positive) stable iff there exists a positive
21
+ definite matrix D such that AD + DAT is positive definite.
22
+ – Note: in control system theory we often define stable matrix as the set of
23
+ square matrices whose eigenvalues have negative real parts (a.k.a. Hurwitz
24
+ matrix). The two definitions of stable matrices will be distinguished in the
25
+ context.
26
+ • A square complex matrix is a P-matrix if it has positive principal minors.
27
+ • A square complex matrix is a P +
28
+ 0 -matrix if it has nonnegative principal minors
29
+ and at least one principal minor of each order is positive.
30
+ • A real square matrix A is multiplicative D-stable (in short, D-stable) if DA is
31
+ stable for every positive diagonal matrix D.
32
+ Preprint submitted to Nowhere
33
+ January 4, 2023
34
+ arXiv:2301.01272v1 [eess.SY] 1 Jan 2023
35
+
36
+ • A square matrix A is called totally stable if any principal submatrix of A is
37
+ D-stable.
38
+ • A real square matrix A is said to be additive D-stable if A + D is stable for
39
+ every nonnegative diagonal matrix D.
40
+ • A real square matrix A is said to be Lyapunov diagonally stable if there exists
41
+ a positive diagonal matrix D such that AD + DAT is positive definite.
42
+ – Note: Lyapunov diagonally stable matrices are often referred to as just di-
43
+ agonally stable matrices or as Volterra–Lyapunov stable, or as Volterra
44
+ dissipative in the literature (see e.g., (Logofet, 2005)).
45
+ • A matrix A = {aij} ∈ Rn×n is generalized row-diagonally dominant, if there
46
+ exists x = (x1, x2, · · · , xn) ∈ Rn with xi > 0, ∀i, such that
47
+ |aii|xi >
48
+ n
49
+
50
+ j=1,j̸=i
51
+ |aij|xj, ∀i = 1, 2, · · · , n.
52
+ (1)
53
+ • A matrix A = {aij} ∈ Rn×n is generalized column-diagonally dominant, if
54
+ there exists x = (x1, x2, · · · , xn) ∈ Rn with xi > 0, ∀i, such that
55
+ |ajj|xj >
56
+ n
57
+
58
+ i=1,i̸=j
59
+ |aij|xi, ∀j = 1, 2, · · · , n.
60
+ (2)
61
+ – Note: the set of generalized column-diagonally dominant matrices is equiv-
62
+ alent to the set of generalized row-diagonally dominant matrices (Varga,
63
+ 1976; Sun et al., 2021). They are also often referred to as quasi-diagonally
64
+ dominant matrices (Kaszkurewicz and Bhaya, 2012).
65
+ • For a real matrix A = {aij} ∈ Rn×n, we associate it with a comparison matrix
66
+ MA = {mij} ∈ Rn×n, defined by
67
+ mij =
68
+
69
+ |aij|,
70
+ if
71
+ j = i;
72
+ −|aij|,
73
+ if
74
+ j ̸= i.
75
+ A given matrix A is called an H-matrix if its comparison matrix MA is an M-
76
+ matrix.
77
+ – The set of H-matrix is equivalent to the set of quasi-diagonally dominant
78
+ matrices (Kaszkurewicz and Bhaya, 2012; Sun et al., 2021).
79
+ • A square matrix A is diagonally stabilizable if there exists a diagonal matrix D
80
+ such that DA is stable.
81
+ Note: Many definitions above for real matrices also carry over to complex matrices;
82
+ the distinction between real and complex matrices will be made clear in the context.
83
+ 2
84
+
85
+ 2. Conditions for diagonally stabilizable matrices
86
+ A key motivating question: Given a square matrix A, can we find a diagonal ma-
87
+ trix D such that the matrix DA is stable?
88
+ Fisher and Fuller (Fisher and Fuller, 1958) proved the following result:
89
+ Theorem 1. (Fisher and Fuller, 1958) If P is a real n × n matrix fulfilling the condi-
90
+ tion:
91
+ • (A): P has at least one sequence of non-zero principal minors Mk of every order
92
+ k = 1, 2, · · · , n, such that Mk−1 is one of the k first principal minors of Mk;
93
+ then there exists a real diagonal matrix D such that the characteristic equation of DP
94
+ is stable.
95
+ The Fisher-Fuller theorem is also formulated as the following alternative version:
96
+ Theorem 2. Let P be an n × n real matrix all of whose leading principal minors are
97
+ positive. Then there is an n × n positive diagonal matrix D such that all the roots of
98
+ DP are positive and simple.
99
+ Fisher later gave a simple proof for a similar yet stronger result (Fisher, 1972).
100
+ Theorem 3. (Fisher, 1972) If P is an n × n real matrix that has at least one nested
101
+ set of principal minors, Mk, such that (−1)kMk > 0, ∀k = 1 · · · , n, then there exists
102
+ a real diagonal matrix D with positive diagonal elements such that the characteristic
103
+ roots of DP are all real, negative, and distinct.
104
+ Remark 1. Some remarks on the conditions of diagonally stabilizable matrices are in
105
+ order.
106
+ • The above theorems involve determining the sign of (at least) one nested set
107
+ of principal minors. In (Johnson et al., 1997), sufficient conditions are deter-
108
+ mined for an n-by-n zero-nonzero pattern to allow a nested sequence of nonzero
109
+ principal minors. In particular, a method is given to sign such a pattern so
110
+ that it allows a nested sequence of k-by-k principal minors with sign(−1)k for
111
+ k = 1, · · · , n.
112
+ • The condition in the Fisher-Fuller theorem appears as a sufficient condition for
113
+ matrix diagonal stabilizability. A necessary condition for matrix diagonal stabi-
114
+ lizability is: for each order k = 1 · · · , n, at least one k ×k principal minor of P
115
+ is non-zero. It is unclear what would be the necessary and sufficient condition.
116
+ Ballantine (Ballantine, 1970) extended the above Fisher-Fuller theorem to the com-
117
+ plex matrix case.
118
+ Theorem 4. (Ballantine, 1970) Let A be an n×n complex matrix all of whose leading
119
+ principal minors are nonzero. Then there is an n × n complex diagonal matrix D such
120
+ that all the roots of DA are positive and simple.
121
+ 3
122
+
123
+ Remark 2. It is shown in (Hershkowitz, 1992) the above Ballantine theorem cannot be
124
+ strengthened by replacing “complex diagonal matrix D” by “positive diagonal matrix
125
+ D”. A counterexample is shown in (Hershkowitz, 1992) involving a 2 × 2 complex
126
+ matrix A with positive leading principal minors that there exists no positive diagonal
127
+ matrix D such that the eigenvalues of DA are positive.
128
+ A related problem to characterize diagonal stabilizable matrix is the Inverse Eigen-
129
+ value Problem (IEP), and Friedland (Friedland, 1977) proved the following theorem.
130
+ Theorem 5. (Friedland, 1977) Let A be a given n×n complex valued matrix. Assume
131
+ that all the principal minors of A are different from zero. Then for any specified set
132
+ λ = {λ, · · · , λn} ∈ Cn there exists a diagonal complex valued matrix D such that the
133
+ spectrum of AD is the set λ. The number of such D is finite and does not exceed n!.
134
+ Moreover, for almost all λ the number of the diagonal matrices D is exactly n!.
135
+ Remark 3. The Friedland theorem of the IEP problem in the complex matrix case
136
+ cannot be directly carried over to the real case. Further, it is easy to show with a
137
+ counterexample of a 2×2 matrix that eigenvalue positionability in the real case cannot
138
+ always be guaranteed, even with nonzero principal minors.
139
+ In (Hershkowitz, 1992) the following two theorems are proved.
140
+ Theorem 6. (Hershkowitz, 1992) Let A be a complex square matrix with positive
141
+ leading principal minors, and let ϵ be any positive number. Then there exists a positive
142
+ diagonal matrix D such that the eigenvalues of DA are simple, and the argument of
143
+ every such eigenvalue is less in absolute value than ϵ.
144
+ Theorem 7. (Hershkowitz, 1992) Let A be a complex square matrix with real principal
145
+ minors and positive leading principal minors. Then there exists a positive diagonal
146
+ matrix D such that DA has simple positive eigenvalues.
147
+ Remark 4. The above theorems all present certain sufficient conditions to characterize
148
+ diagonally stabilizable matrix and the IEP problem, and they are not necessary. A
149
+ necessary condition for the diagonal matrix D to exist is that for each order i, at
150
+ least one i × i principal minor of A is nonzero. However, a full characterization (with
151
+ necessary and sufficient condition) for diagonally stabilizable matrix still remains an
152
+ open problem.
153
+ A variation of the diagonal matrix stabilization problem is the following:
154
+ • Problem (*): Given a real square matrix G, find a real diagonal matrix D such
155
+ that the product GD is Hurwitz together with all its principal submatrices.
156
+ Surprisingly, a necessary and sufficient condition exists for solving the above problem
157
+ as shown in (Locatelli and Schiavoni, 2012). Let M := {1, 2, · · · , m} and F :=
158
+ {f|f ⊂ M}. Further, for any m×m matrix ∆, denote by ∆(f) the principal submatrix
159
+ obtained from it after removing the rows and columns with indexes in f, f ∈ F. The
160
+ main result of (Locatelli and Schiavoni, 2012) proves the following:
161
+ 4
162
+
163
+ Theorem 8. (Locatelli and Schiavoni, 2012) Problem (*) admits a solution if and only
164
+ if
165
+ det(G(f))det(GD(f)) > 0, ∀f ∈ F
166
+ (3)
167
+ where GD = diag{gii}. Moreover, if the above condition is satisfied, then there exists
168
+ ¯ϵ > 0 such that, for any given ϵ ∈ (0, ¯ϵ), the matrix
169
+ D := GDZ(ϵ), Z(ϵ) := −diag{ϵi}
170
+ (4)
171
+ solves the stabilization problem (*).
172
+ 5
173
+
174
+ 3. Conditions for diagonally stable matrices
175
+ We give a short summary of available conditions for diagonally stable matrices
176
+ (excerpts from (Barker et al., 1978), (Cross, 1978) and (Hershkowitz, 2006)).
177
+ • (Barker et al., 1978) Lyapunov diagonally stable matrices are P-matrices.
178
+ • (Barker et al., 1978) A matrix A being Lyapunov diagonally stable is equivalent
179
+ to that there exists a positive diagonal matrix D such that xT DAx > 0 for all
180
+ nonzero vectors x.
181
+ • (Barker et al., 1978) A 2 × 2 real matrix is Lyapunov diagonally stable if and
182
+ only if it is a P-matrix.
183
+ • (Cross, 1978) For a given Lyapunov diagonally stable matrix P, all principal
184
+ submatrices of P are Lyapunov diagonally stable.
185
+ • (Barker et al., 1978) A real square matrix A is Lyapunov diagonally stable if
186
+ and only if for every nonzero real symmetric positive semidefinite matrix H the
187
+ matrix HA has at least one positive diagonal element.
188
+ – Note: this result is termed the BBP theorem, and is proved again in (Shorten
189
+ et al., 2009) with a simpler proof.
190
+ • (Cross, 1978) The set of Lyapunov diagonally stable matrices is a strict subset of
191
+ multiplicative D-stable matrices.
192
+ • (Cross, 1978) The set of Lyapunov diagonally stable matrices is a strict subset of
193
+ additive D-stable matrices.
194
+ – Note: Multiplicative D-stable and additive D-stable matrices are not neces-
195
+ sarily diagonally stable.
196
+ • A Z-matrix is Lyapunov diagonally stable if and only if it is a P -matrix (that is,
197
+ it is an M-matrix).
198
+ • A non-singular H-matrix with nonnegative diagonal parts is Lyapunov diago-
199
+ nally stable.
200
+ • A quasi-diagonal dominant matrix with nonnegative diagonal parts is Lyapunov
201
+ diagonally stable. Note the equivalence of Hurwitz H-matrix and quasi-diagonal
202
+ dominant matrix (Sun et al., 2021).
203
+ The following facts are shown in (Cross, 1978) and (Kaszkurewicz and Bhaya, 2012):
204
+ • For normal matrices and within the set Z, D-stability, additive D-stability, and
205
+ diagonal stability are all equivalent to matrix stability.
206
+ • If a matrix A is Hurwitz stable, D-stable, or diagonally stable, then the matrices
207
+ AT and A−1 also have the corresponding properties.
208
+ 6
209
+
210
+ In (Shorten and Narendra, 2009) Shorten and Narendra showed the following nec-
211
+ essary and sufficient condition for matrix diagonal stability (an alternative proof of the
212
+ theorem of Redheffer via the KYP lemma):
213
+ Theorem 9. (Shorten and Narendra, 2009) and (Redheffer, 1985) Let A ∈ Rn×n be a
214
+ Hurwitz matrix with negative diagonal entries. Let An−1 denote the [n − 1 × n − 1]
215
+ leading sub-matrix of A, and Bn−1 denote the corresponding block of A−1. Then,
216
+ the matrix A is diagonally stable, if and only if there is a common diagonal Lyapunov
217
+ function for the LTI systems ΣAn−1 and ΣBn−1.
218
+ The above theorem involves finding a common diagonal Lyapunov function for a
219
+ set of LTI systems, which may be restrictive and computationally demanding in practi-
220
+ cal applications especially when the dimension of the matrix A is large.
221
+ 7
222
+
223
+ Figure 1: Relations of matrix stability under different matrix types: the main theorem in (Berman and
224
+ Hershkowitz, 1983)
225
+ 4. Relations of matrix stability and diagonal stability
226
+ The paper (Berman and Hershkowitz, 1983) characterizes the relations of certain
227
+ special matrices for matrix diagonal stability. They define
228
+ • A = {A : there exists a positive definite diagonal matrix D such that AD +
229
+ DAT is positive definite};
230
+ i.e., A denotes the set of diagonally stable matrices;
231
+ • L = {A : there exists a positive definite matrix D such that AD+DAT is positive definite};
232
+ i.e., L denotes the set of (positive) stable matrices;
233
+ • P = {A : the principle minors of A are positive};
234
+ i.e., P denotes the set of P-matrices;
235
+ • S = {A : there exists a positive vector x such that Ax is positive};
236
+ i.e., S denotes the set of semipositive matrices.
237
+ The main result of (Berman and Hershkowitz, 1983) is cited and shown in Fig. 1.
238
+ In general, these different sets of structured matrices are not equivalent, and the set A
239
+ is a subset of the other sets. However, for Z-matrices, these sets are equivalent. In
240
+ particular, for the case of Z-matrices, the characterizations of these sets give equiva-
241
+ lent conditions for M-matrices (upon a sign change). Note there are yet many more
242
+ conditions to characterize M-matrices; see e.g., (Plemmons, 1977).
243
+ The review paper (Hershkowitz, 1992) presents the implication relations between
244
+ matrix stability conditions, and the equivalent relations of matrix stabilities for Z-
245
+ matrices, as cited in Figs. 2 and 3. Again, as shown in Figs. 3, for Z-matrices, all
246
+ the stability types are equivalent.
247
+ 8
248
+
249
+ THEOREM 1.
250
+ a. In general
251
+ b. For Z-matrices, i.e., matrices with nonpositive off-diagonal entries,
252
+ c. For symmetric matrices
253
+ d. For triangular matrices
254
+ e. for normal matrices
255
+ The absence of an implication in the above relations means that a counterexample exists.Figure 2: The implication relations between matrix stability conditions, cited from (Hershkowitz, 1992)
256
+ .
257
+ Figure 3: For Z-matrices, all the stability types are equivalent. Cited from (Hershkowitz, 1992)
258
+ .
259
+ 9
260
+
261
+ A is Lyapunov diagonally stable
262
+ A is a P-matrix
263
+ A is D-stable
264
+ A is additive D-stable
265
+ A is stable
266
+ A is a Pt -matrixA is Lyapunov diagonally stable
267
+ A is a P-matrix
268
+ A is D-stable
269
+ A is additive D-stable
270
+ A is a nonsingular M-matrix
271
+ A is stableFigure 4: Relations among matrix stabilities. Cited from (Logofet, 2005, Fig.2)
272
+ .
273
+ The survey paper (Logofet, 2005) presents some beautiful flower-shaped character-
274
+ izations of the relations among matrix stabilities, as cited in Figs. 4 and 5.
275
+ 10
276
+
277
+ STABLE
278
+ D-STABLE
279
+ TOTALLYSTABLE
280
+ DISSIPATIVE
281
+ QUASI-
282
+ DOMINANT
283
+ M-MATRICES
284
+ ?NORMAL
285
+ D-STABLE
286
+ STABLE
287
+ STABLEFigure 5: Petals of sign-stable matrices within the Flower. Cited from (Logofet, 2005, Fig.4)
288
+ .
289
+ 5. Stability conditions with submatrices and Schur complement
290
+ Stability conditions of ‘structured’ matrices often involve stability properties of
291
+ submatrices, which employ block submatrices and their Schur complements to deter-
292
+ mine stability.
293
+ In (Narendra and Shorten, 2010), Narendra and Shorten presented necessary and
294
+ sufficient conditions to characterize if a given Metzler matrix is Hurwitz, based on the
295
+ fact that a Hurwitz Metzler matrix is diagonally stable. These conditions are general-
296
+ ized in (Souza et al., 2017). We recall some main stability criteria from (Souza et al.,
297
+ 2017).
298
+ Lemma 1. Let A ∈ Rn×n be a Metzler matrix partitioned in blocks of compatible
299
+ dimensions as A = [A11, A12; A21, A22] with A11 and A22 being square matrices.
300
+ Then the following statements are equivalent.
301
+ • A is Hurwitz stable.
302
+ • A11 and its Schur complement A/A11 := A22 −A21A−1
303
+ 11 A12 are Hurwitz stable
304
+ Metzler matrices.
305
+ • A22 and its Schur complement A/A22 := A11 −A12A−1
306
+ 22 A21 are Hurwitz stable
307
+ Metzler matrices
308
+ Remark 5. Some remarks are in order.
309
+ 11
310
+
311
+ STABLE
312
+ D-STABLE
313
+ TOTALLYSTABLE
314
+ DISSIPA-
315
+ QUAS
316
+ TIVE
317
+ DOMINANT
318
+ M-
319
+ SIGN
320
+ NORMAL
321
+ STABLE
322
+ D-STABLE
323
+ QUASI-RECESSIVE
324
+ STABLE
325
+ OUAST-RECESSIVE
326
+ STABLE• For a structured matrix, the property that its Schur complements also preserve
327
+ the same stability and structure properties is termed Schur complement stabil-
328
+ ity property. Other types of structured matrices that have Schur complement
329
+ stability property include symmetric matrices, triangular matrices, and Schwarz
330
+ matrices. See (Souza et al., 2017).
331
+ • The result on M-matrix in Lemma 1 can be generalized to H-matrix: Let A be a
332
+ H-matrix partitioned in blocks of compatible dimensions as A = [A11, A12; A21, A22]
333
+ with A11 and A22 being square matrices. If A is Hurwitz stable, then A11 and
334
+ its Schur complement A/A11 := A22 −A21A−1
335
+ 11 A12 are Hurwitz stable H matri-
336
+ ces, or A22 and its Schur complement A/A22 := A11−A12A−1
337
+ 22 A21 are Hurwitz
338
+ stable H matrices.
339
+ • Schur complement and its closure property for several structured matrices (in-
340
+ cluding diagonal matrices, triangular matrices, symmetric matrices, P-matrices,
341
+ diagonal dominant matrices, M-matrices etc.) are discussed in (Zhang, 2006,
342
+ Chap. 4).
343
+ 12
344
+
345
+ 6. Application examples of matrix diagonal stability conditions
346
+ The Fisher-Fuller theorem on diagonal matrix stabilizability (Theorem 1 and its
347
+ variations) has been rediscovered several times by the control system community, and
348
+ has been applied in solving distributed stabilization and decentralized control problems
349
+ in practice. This section reviews two application examples.
350
+ 6.1. Conditions for decentralized stabilization
351
+ In (Corfmat and Morse, 1973) Corfmat and Morse solved the following problem:
352
+ • For given and fixed real matrices A and P, find (if possible) a non-singular di-
353
+ agonal matrix D such that I + ADP is Schur stable (i.e., all eigenvalues of
354
+ I + ADP are located within the unit circle in the complex plane.
355
+ To solve the above problem they proved the following:
356
+ Theorem 10. If A is an n × n strongly non-singular matrix, then there exists a diag-
357
+ onal matrix D such that (I + DA) is Schur stable.
358
+ Note: in (Corfmat and Morse, 1973) a matrix is termed strongly non-singular, if
359
+ its all n leading principal minors are nonzero.
360
+ Theorem 11. If A is a fixed non-singular matrix, then there exists a permutation matrix
361
+ P such that PA is strongly non-singular.
362
+ Solution to decentralized stabilization: the non-singularity of A is a necessary and
363
+ sufficient condition for the existence of a permutation matrix P and a non-singular
364
+ diagonal matrix D such that (I + ADP) is Schur stable.
365
+ 6.2. Distributed stabilization of persistent formations
366
+ In (Yu et al., 2009), the problem on persistent formation stabilization involves
367
+ studying the stabilizability of the following differential equation
368
+ ˙z = ∆Az
369
+ where ∆ is a diagonal or possibly block diagonal matrix, and A is a rigidity-like matrix
370
+ on formation shapes. To solve the formation stabilization problem in (Yu et al., 2009)
371
+ the following result is employed ((Yu et al., 2009, Theorem 3.2)):
372
+ Theorem 12. Suppose A is an m × m non-singular matrix with every leading prin-
373
+ cipal minor nonzero. Then there exists a diagonal D such that the real parts of the
374
+ eigenvalues of DA are all negative.
375
+ We remark that this is a reformulation of the Fisher-Fuller theorem.
376
+ 13
377
+
378
+ 7. A selection of key review papers and books on matrix stability and diagonal
379
+ stability conditions
380
+ • The survey paper (Hershkowitz, 1992) that presents a summary of relevant ma-
381
+ trix stability results and the developments, up until 1992.
382
+ • The paper (Bhaya et al., 2003) that presents comprehensive discussions and char-
383
+ acterizations for various classes of matrix stability conditions.
384
+ • The paper (Hershkowitz and Keller, 2003) that studies the relations between pos-
385
+ itivity of principal minors, sign symmetry and stability of matrices.
386
+ • The review paper (Hershkowitz, 2006) that presents an concise overview on ma-
387
+ trix stability and inertia.
388
+ • The book (Kaszkurewicz and Bhaya, 2012) on matrix diagonal stability in sys-
389
+ tems and computation.
390
+ • The summary paper (Logofet, 2005) that presents a review and some beautiful
391
+ connections/relations on different matrix stabilities.
392
+ • The very long survey paper (Kushel, 2019) that provides a unifying viewpoint
393
+ on matrix stability, and its historical development.
394
+ • The recent book (Johnson et al., 2020) on positive matrix, P-matrix and inverse
395
+ M-matrix.
396
+ References
397
+ Ballantine, C., 1970. Stabilization by a diagonal matrix. Proceedings of the American
398
+ Mathematical Society 25, 728–734.
399
+ Barker, G., Berman, A., Plemmons, R.J., 1978.
400
+ Positive diagonal solutions to the
401
+ Lyapunov equations. Linear and Multilinear Algebra 5, 249–256.
402
+ Berman, A., Hershkowitz, D., 1983. Matrix diagonal stability and its implications.
403
+ SIAM Journal on Algebraic Discrete Methods 4, 377–382.
404
+ Bhaya, A., Kaszkurewicz, E., Santos, R., 2003. Characterizations of classes of stable
405
+ matrices. Linear algebra and its applications 374, 159–174.
406
+ Corfmat, J., Morse, A., 1973. Stabilization with decentralized feedback control. IEEE
407
+ Transactions on Automatic Control 18, 679–682.
408
+ Cross, G., 1978. Three types of matrix stability. Linear algebra and its applications 20,
409
+ 253–263.
410
+ Fiedler, M., Ptak, V., 1962. On matrices with non-positive off-diagonal elements and
411
+ positive principal minors. Czechoslovak Mathematical Journal 12, 382–400.
412
+ 14
413
+
414
+ Fisher, F.M., 1972. A simple proof of the Fisher–Fuller theorem, in: Mathematical
415
+ Proceedings of the Cambridge Philosophical Society, Cambridge University Press.
416
+ pp. 523–525.
417
+ Fisher, M.E., Fuller, A., 1958. On the stabilization of matrices and the convergence
418
+ of linear iterative processes, in: Mathematical Proceedings of the Cambridge Philo-
419
+ sophical Society, Cambridge University Press. pp. 417–425.
420
+ Friedland, S., 1977. Inverse eigenvalue problems. Linear Algebra and Its Applications
421
+ 17, 15–51.
422
+ Hershkowitz, D., 1992. Recent directions in matrix stability. Linear Algebra and its
423
+ Applications 171, 161–186.
424
+ Hershkowitz, D., 2006. Matrix stability and inertia, in: Handbook of Linear Algebra.
425
+ Chapman and Hall/CRC, pp. 19–1.
426
+ Hershkowitz, D., Keller, N., 2003. Positivity of principal minors, sign symmetry and
427
+ stability. Linear algebra and its applications 364, 105–124.
428
+ Johnson, C.R., Maybee, J.S., Olesky, D., Van den Driessche, P., 1997. Nested se-
429
+ quences of principal minors and potential stability. Linear Algebra and its Applica-
430
+ tions 262, 243–257.
431
+ Johnson, C.R., Smith, R.L., Tsatsomeros, M.J., 2020. Matrix positivity. volume 221.
432
+ Cambridge University Press.
433
+ Kaszkurewicz, E., Bhaya, A., 2012. Matrix diagonal stability in systems and compu-
434
+ tation. Springer Science & Business Media.
435
+ Kushel, O.Y., 2019. Unifying matrix stability concepts with a view to applications.
436
+ SIAM Review 61, 643–729.
437
+ Locatelli, A., Schiavoni, N., 2012. A necessary and sufficient condition for the stabil-
438
+ isation of a matrix and its principal submatrices. Linear algebra and its applications
439
+ 436, 2311–2314.
440
+ Logofet, D.O., 2005. Stronger-than-Lyapunov notions of matrix stability, or how “flow-
441
+ ers” help solve problems in mathematical ecology. Linear Algebra and its Applica-
442
+ tions 398, 75–100.
443
+ Narendra, K.S., Shorten, R., 2010. Hurwitz stability of metzler matrices. IEEE Trans-
444
+ actions on Automatic Control 55, 1484–1487.
445
+ Plemmons, R.J., 1977. M-matrix characterizations. I–nonsingular M-matrices. Linear
446
+ Algebra and its Applications 18, 175–188.
447
+ Redheffer, R., 1985. Volterra multipliers ii. SIAM Journal on Algebraic and Discrete
448
+ Methods 6, 612–623.
449
+ 15
450
+
451
+ Shorten, R., Mason, O., King, C., 2009. An alternative proof of the Barker, Berman,
452
+ Plemmons (BBP) result on diagonal stability and extensions. Linear Algebra and its
453
+ Applications 430, 34–40.
454
+ Shorten, R., Narendra, K.S., 2009. On a theorem of Redheffer concerning diagonal
455
+ stability. Linear algebra and its applications 431, 2317–2329.
456
+ Souza, M., Wirth, F.R., Shorten, R.N., 2017. A note on recursive schur complements,
457
+ block hurwitz stability of metzler matrices, and related results. IEEE Transactions
458
+ on Automatic Control 62, 4167–4172.
459
+ Sun, Z., Rantzer, A., Li, Z., Robertsson, A., 2021. Distributed adaptive stabilization.
460
+ Automatica 129, 109616.
461
+ Varga, R.S., 1976. On recurring theorems on diagonal dominance. Linear Algebra and
462
+ its Applications 13, 1–9.
463
+ Yu, C., Anderson, B.D.O., Dasgupta, S., Fidan, B., 2009. Control of minimally per-
464
+ sistent formations in the plane.
465
+ SIAM Journal on Control and Optimization 48,
466
+ 206–233.
467
+ Zhang, F., 2006. The Schur complement and its applications. volume 4. Springer
468
+ Science & Business Media.
469
+ 16
470
+
G9AzT4oBgHgl3EQfUvyD/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf,len=408
2
+ page_content='A gallery of diagonal stability conditions with structured matrices (and review papers) Zhiyong Sun Control Systems Group, Department of EE, TU Eindhoven, the Netherlands Abstract This note presents a summary and review of various conditions and characterizations for matrix stability (in particular diagonal matrix stability) and matrix stabilizability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
3
+ page_content=' Keywords: Matrix stability, matrix stabilizability, diagonal stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
4
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
5
+ page_content=' Definitions and notations A square real matrix is a Z-matrix if it has nonpositive off-diagonal elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
6
+ page_content=' A Metzler matrix is a real matrix in which all the off-diagonal components are nonnegative (equal to or greater than zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
7
+ page_content=' A Z-matrix with positive principal minors is an M-matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
8
+ page_content=' – Note: There are numerous equivalent characterizations for M-matrix (Fiedler and Ptak, 1962;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
9
+ page_content=' Plemmons, 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
10
+ page_content=' A more commonly-used condition is the following: A matrix A ∈ Rn×n is called an M-matrix, if its non-diagonal entries are non-positive and its eigenvalues have positive real parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
11
+ page_content=' A square matrix A is (positive) stable if all its eigenvalues have positive parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
12
+ page_content=' Equivalently, a square matrix A is (positive) stable iff there exists a positive definite matrix D such that AD + DAT is positive definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
13
+ page_content=' – Note: in control system theory we often define stable matrix as the set of square matrices whose eigenvalues have negative real parts (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
14
+ page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
15
+ page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
16
+ page_content=' Hurwitz matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
17
+ page_content=' The two definitions of stable matrices will be distinguished in the context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
18
+ page_content=' A square complex matrix is a P-matrix if it has positive principal minors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
19
+ page_content=' A square complex matrix is a P + 0 -matrix if it has nonnegative principal minors and at least one principal minor of each order is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
20
+ page_content=' A real square matrix A is multiplicative D-stable (in short, D-stable) if DA is stable for every positive diagonal matrix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
21
+ page_content=' Preprint submitted to Nowhere January 4, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
22
+ page_content='01272v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
23
+ page_content='SY] 1 Jan 2023 A square matrix A is called totally stable if any principal submatrix of A is D-stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
24
+ page_content=' A real square matrix A is said to be additive D-stable if A + D is stable for every nonnegative diagonal matrix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
25
+ page_content=' A real square matrix A is said to be Lyapunov diagonally stable if there exists a positive diagonal matrix D such that AD + DAT is positive definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
26
+ page_content=' – Note: Lyapunov diagonally stable matrices are often referred to as just di- agonally stable matrices or as Volterra–Lyapunov stable, or as Volterra dissipative in the literature (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
27
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
28
+ page_content=', (Logofet, 2005)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
29
+ page_content=' A matrix A = {aij} ∈ Rn×n is generalized row-diagonally dominant, if there exists x = (x1, x2, · · · , xn) ∈ Rn with xi > 0, ∀i, such that |aii|xi > n � j=1,j̸=i |aij|xj, ∀i = 1, 2, · · · , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
30
+ page_content=' (1) A matrix A = {aij} ∈ Rn×n is generalized column-diagonally dominant, if there exists x = (x1, x2, · · · , xn) ∈ Rn with xi > 0, ∀i, such that |ajj|xj > n � i=1,i̸=j |aij|xi, ∀j = 1, 2, · · · , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
31
+ page_content=' (2) – Note: the set of generalized column-diagonally dominant matrices is equiv- alent to the set of generalized row-diagonally dominant matrices (Varga, 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
32
+ page_content=' Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
33
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
34
+ page_content=' They are also often referred to as quasi-diagonally dominant matrices (Kaszkurewicz and Bhaya, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
35
+ page_content=' For a real matrix A = {aij} ∈ Rn×n, we associate it with a comparison matrix MA = {mij} ∈ Rn×n, defined by mij = � |aij|, if j = i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
36
+ page_content=' −|aij|, if j ̸= i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
37
+ page_content=' A given matrix A is called an H-matrix if its comparison matrix MA is an M- matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
38
+ page_content=' – The set of H-matrix is equivalent to the set of quasi-diagonally dominant matrices (Kaszkurewicz and Bhaya, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
39
+ page_content=' Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
40
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
41
+ page_content=' A square matrix A is diagonally stabilizable if there exists a diagonal matrix D such that DA is stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
42
+ page_content=' Note: Many definitions above for real matrices also carry over to complex matrices;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
43
+ page_content=' the distinction between real and complex matrices will be made clear in the context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
44
+ page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
45
+ page_content=' Conditions for diagonally stabilizable matrices A key motivating question: Given a square matrix A, can we find a diagonal ma- trix D such that the matrix DA is stable?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
46
+ page_content=' Fisher and Fuller (Fisher and Fuller, 1958) proved the following result: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
47
+ page_content=' (Fisher and Fuller, 1958) If P is a real n × n matrix fulfilling the condi- tion: (A): P has at least one sequence of non-zero principal minors Mk of every order k = 1, 2, · · · , n, such that Mk−1 is one of the k first principal minors of Mk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
48
+ page_content=' then there exists a real diagonal matrix D such that the characteristic equation of DP is stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
49
+ page_content=' The Fisher-Fuller theorem is also formulated as the following alternative version: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
50
+ page_content=' Let P be an n × n real matrix all of whose leading principal minors are positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
51
+ page_content=' Then there is an n × n positive diagonal matrix D such that all the roots of DP are positive and simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
52
+ page_content=' Fisher later gave a simple proof for a similar yet stronger result (Fisher, 1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
53
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
54
+ page_content=' (Fisher, 1972) If P is an n × n real matrix that has at least one nested set of principal minors, Mk, such that (−1)kMk > 0, ∀k = 1 · · · , n, then there exists a real diagonal matrix D with positive diagonal elements such that the characteristic roots of DP are all real, negative, and distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
55
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
56
+ page_content=' Some remarks on the conditions of diagonally stabilizable matrices are in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
57
+ page_content=' The above theorems involve determining the sign of (at least) one nested set of principal minors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
58
+ page_content=' In (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
59
+ page_content=', 1997), sufficient conditions are deter- mined for an n-by-n zero-nonzero pattern to allow a nested sequence of nonzero principal minors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
60
+ page_content=' In particular, a method is given to sign such a pattern so that it allows a nested sequence of k-by-k principal minors with sign(−1)k for k = 1, · · · , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
61
+ page_content=' The condition in the Fisher-Fuller theorem appears as a sufficient condition for matrix diagonal stabilizability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
62
+ page_content=' A necessary condition for matrix diagonal stabi- lizability is: for each order k = 1 · · · , n, at least one k ×k principal minor of P is non-zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
63
+ page_content=' It is unclear what would be the necessary and sufficient condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
64
+ page_content=' Ballantine (Ballantine, 1970) extended the above Fisher-Fuller theorem to the com- plex matrix case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
65
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
66
+ page_content=' (Ballantine, 1970) Let A be an n×n complex matrix all of whose leading principal minors are nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
67
+ page_content=' Then there is an n × n complex diagonal matrix D such that all the roots of DA are positive and simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
68
+ page_content=' 3 Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
69
+ page_content=' It is shown in (Hershkowitz, 1992) the above Ballantine theorem cannot be strengthened by replacing “complex diagonal matrix D” by “positive diagonal matrix D”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
70
+ page_content=' A counterexample is shown in (Hershkowitz, 1992) involving a 2 × 2 complex matrix A with positive leading principal minors that there exists no positive diagonal matrix D such that the eigenvalues of DA are positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
71
+ page_content=' A related problem to characterize diagonal stabilizable matrix is the Inverse Eigen- value Problem (IEP), and Friedland (Friedland, 1977) proved the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
72
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
73
+ page_content=' (Friedland, 1977) Let A be a given n×n complex valued matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
74
+ page_content=' Assume that all the principal minors of A are different from zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
75
+ page_content=' Then for any specified set λ = {λ, · · · , λn} ∈ Cn there exists a diagonal complex valued matrix D such that the spectrum of AD is the set λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
76
+ page_content=' The number of such D is finite and does not exceed n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
77
+ page_content='. Moreover, for almost all λ the number of the diagonal matrices D is exactly n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
78
+ page_content='. Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
79
+ page_content=' The Friedland theorem of the IEP problem in the complex matrix case cannot be directly carried over to the real case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
80
+ page_content=' Further, it is easy to show with a counterexample of a 2×2 matrix that eigenvalue positionability in the real case cannot always be guaranteed, even with nonzero principal minors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
81
+ page_content=' In (Hershkowitz, 1992) the following two theorems are proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
82
+ page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
83
+ page_content=' (Hershkowitz, 1992) Let A be a complex square matrix with positive leading principal minors, and let ϵ be any positive number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
84
+ page_content=' Then there exists a positive diagonal matrix D such that the eigenvalues of DA are simple, and the argument of every such eigenvalue is less in absolute value than ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
85
+ page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
86
+ page_content=' (Hershkowitz, 1992) Let A be a complex square matrix with real principal minors and positive leading principal minors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
87
+ page_content=' Then there exists a positive diagonal matrix D such that DA has simple positive eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
88
+ page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
89
+ page_content=' The above theorems all present certain sufficient conditions to characterize diagonally stabilizable matrix and the IEP problem, and they are not necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
90
+ page_content=' A necessary condition for the diagonal matrix D to exist is that for each order i, at least one i × i principal minor of A is nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
91
+ page_content=' However, a full characterization (with necessary and sufficient condition) for diagonally stabilizable matrix still remains an open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
92
+ page_content=' A variation of the diagonal matrix stabilization problem is the following: Problem (*): Given a real square matrix G, find a real diagonal matrix D such that the product GD is Hurwitz together with all its principal submatrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
93
+ page_content=' Surprisingly, a necessary and sufficient condition exists for solving the above problem as shown in (Locatelli and Schiavoni, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
94
+ page_content=' Let M := {1, 2, · · · , m} and F := {f|f ⊂ M}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
95
+ page_content=' Further, for any m×m matrix ∆, denote by ∆(f) the principal submatrix obtained from it after removing the rows and columns with indexes in f, f ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
96
+ page_content=' The main result of (Locatelli and Schiavoni, 2012) proves the following: 4 Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
97
+ page_content=' (Locatelli and Schiavoni, 2012) Problem (*) admits a solution if and only if det(G(f))det(GD(f)) > 0, ∀f ∈ F (3) where GD = diag{gii}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
98
+ page_content=' Moreover, if the above condition is satisfied, then there exists ¯ϵ > 0 such that, for any given ϵ ∈ (0, ¯ϵ), the matrix D := GDZ(ϵ), Z(ϵ) := −diag{ϵi} (4) solves the stabilization problem (*).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
99
+ page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
100
+ page_content=' Conditions for diagonally stable matrices We give a short summary of available conditions for diagonally stable matrices (excerpts from (Barker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
101
+ page_content=', 1978), (Cross, 1978) and (Hershkowitz, 2006)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
102
+ page_content=' (Barker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
103
+ page_content=', 1978) Lyapunov diagonally stable matrices are P-matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
104
+ page_content=' (Barker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
105
+ page_content=', 1978) A matrix A being Lyapunov diagonally stable is equivalent to that there exists a positive diagonal matrix D such that xT DAx > 0 for all nonzero vectors x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
106
+ page_content=' (Barker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
107
+ page_content=', 1978) A 2 × 2 real matrix is Lyapunov diagonally stable if and only if it is a P-matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
108
+ page_content=' (Cross, 1978) For a given Lyapunov diagonally stable matrix P, all principal submatrices of P are Lyapunov diagonally stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
109
+ page_content=' (Barker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
110
+ page_content=', 1978) A real square matrix A is Lyapunov diagonally stable if and only if for every nonzero real symmetric positive semidefinite matrix H the matrix HA has at least one positive diagonal element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
111
+ page_content=' – Note: this result is termed the BBP theorem, and is proved again in (Shorten et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
112
+ page_content=', 2009) with a simpler proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
113
+ page_content=' (Cross, 1978) The set of Lyapunov diagonally stable matrices is a strict subset of multiplicative D-stable matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
114
+ page_content=' (Cross, 1978) The set of Lyapunov diagonally stable matrices is a strict subset of additive D-stable matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
115
+ page_content=' – Note: Multiplicative D-stable and additive D-stable matrices are not neces- sarily diagonally stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
116
+ page_content=' A Z-matrix is Lyapunov diagonally stable if and only if it is a P -matrix (that is, it is an M-matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
117
+ page_content=' A non-singular H-matrix with nonnegative diagonal parts is Lyapunov diago- nally stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
118
+ page_content=' A quasi-diagonal dominant matrix with nonnegative diagonal parts is Lyapunov diagonally stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
119
+ page_content=' Note the equivalence of Hurwitz H-matrix and quasi-diagonal dominant matrix (Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
120
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
121
+ page_content=' The following facts are shown in (Cross, 1978) and (Kaszkurewicz and Bhaya, 2012): For normal matrices and within the set Z, D-stability, additive D-stability, and diagonal stability are all equivalent to matrix stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
122
+ page_content=' If a matrix A is Hurwitz stable, D-stable, or diagonally stable, then the matrices AT and A−1 also have the corresponding properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
123
+ page_content=' 6 In (Shorten and Narendra, 2009) Shorten and Narendra showed the following nec- essary and sufficient condition for matrix diagonal stability (an alternative proof of the theorem of Redheffer via the KYP lemma): Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
124
+ page_content=' (Shorten and Narendra, 2009) and (Redheffer, 1985) Let A ∈ Rn×n be a Hurwitz matrix with negative diagonal entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
125
+ page_content=' Let An−1 denote the [n − 1 × n − 1] leading sub-matrix of A, and Bn−1 denote the corresponding block of A−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
126
+ page_content=' Then, the matrix A is diagonally stable, if and only if there is a common diagonal Lyapunov function for the LTI systems ΣAn−1 and ΣBn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
127
+ page_content=' The above theorem involves finding a common diagonal Lyapunov function for a set of LTI systems, which may be restrictive and computationally demanding in practi- cal applications especially when the dimension of the matrix A is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
128
+ page_content=' 7 Figure 1: Relations of matrix stability under different matrix types: the main theorem in (Berman and Hershkowitz, 1983) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
129
+ page_content=' Relations of matrix stability and diagonal stability The paper (Berman and Hershkowitz, 1983) characterizes the relations of certain special matrices for matrix diagonal stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
130
+ page_content=' They define A = {A : there exists a positive definite diagonal matrix D such that AD + DAT is positive definite};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
131
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
132
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
133
+ page_content=', A denotes the set of diagonally stable matrices;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
134
+ page_content=' L = {A : there exists a positive definite matrix D such that AD+DAT is positive definite};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
135
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
136
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
137
+ page_content=', L denotes the set of (positive) stable matrices;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
138
+ page_content=' P = {A : the principle minors of A are positive};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
139
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
140
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
141
+ page_content=', P denotes the set of P-matrices;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
142
+ page_content=' S = {A : there exists a positive vector x such that Ax is positive};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
143
+ page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
144
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
145
+ page_content=', S denotes the set of semipositive matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
146
+ page_content=' The main result of (Berman and Hershkowitz, 1983) is cited and shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
147
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
148
+ page_content=' In general, these different sets of structured matrices are not equivalent, and the set A is a subset of the other sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
149
+ page_content=' However, for Z-matrices, these sets are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
150
+ page_content=' In particular, for the case of Z-matrices, the characterizations of these sets give equiva- lent conditions for M-matrices (upon a sign change).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
151
+ page_content=' Note there are yet many more conditions to characterize M-matrices;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
152
+ page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
153
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
154
+ page_content=', (Plemmons, 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
155
+ page_content=' The review paper (Hershkowitz, 1992) presents the implication relations between matrix stability conditions, and the equivalent relations of matrix stabilities for Z- matrices, as cited in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
156
+ page_content=' 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
157
+ page_content=' Again, as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
158
+ page_content=' 3, for Z-matrices, all the stability types are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
159
+ page_content=' 8 THEOREM 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
160
+ page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
161
+ page_content=' In general b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
162
+ page_content=' For Z-matrices, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
163
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
164
+ page_content=', matrices with nonpositive off-diagonal entries, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
165
+ page_content=' For symmetric matrices d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
166
+ page_content=' For triangular matrices e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
167
+ page_content=' for normal matrices The absence of an implication in the above relations means that a counterexample exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
168
+ page_content='Figure 2: The implication relations between matrix stability conditions, cited from (Hershkowitz, 1992) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
169
+ page_content=' Figure 3: For Z-matrices, all the stability types are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
170
+ page_content=' Cited from (Hershkowitz, 1992) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
171
+ page_content=' 9 A is Lyapunov diagonally stable A is a P-matrix A is D-stable A is additive D-stable A is stable A is a Pt -matrixA is Lyapunov diagonally stable A is a P-matrix A is D-stable A is additive D-stable A is a nonsingular M-matrix A is stableFigure 4: Relations among matrix stabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
172
+ page_content=' Cited from (Logofet, 2005, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
173
+ page_content='2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
174
+ page_content=' The survey paper (Logofet, 2005) presents some beautiful flower-shaped character- izations of the relations among matrix stabilities, as cited in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
175
+ page_content=' 4 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
176
+ page_content=' 10 STABLE D-STABLE TOTALLYSTABLE DISSIPATIVE QUASI- DOMINANT M-MATRICES ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
177
+ page_content='NORMAL D-STABLE STABLE STABLEFigure 5: Petals of sign-stable matrices within the Flower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
178
+ page_content=' Cited from (Logofet, 2005, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
179
+ page_content='4) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
180
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
181
+ page_content=' Stability conditions with submatrices and Schur complement Stability conditions of ‘structured’ matrices often involve stability properties of submatrices, which employ block submatrices and their Schur complements to deter- mine stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
182
+ page_content=' In (Narendra and Shorten, 2010), Narendra and Shorten presented necessary and sufficient conditions to characterize if a given Metzler matrix is Hurwitz, based on the fact that a Hurwitz Metzler matrix is diagonally stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
183
+ page_content=' These conditions are general- ized in (Souza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
184
+ page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
185
+ page_content=' We recall some main stability criteria from (Souza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
186
+ page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
187
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
188
+ page_content=' Let A ∈ Rn×n be a Metzler matrix partitioned in blocks of compatible dimensions as A = [A11, A12;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
189
+ page_content=' A21, A22] with A11 and A22 being square matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
190
+ page_content=' Then the following statements are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
191
+ page_content=' A is Hurwitz stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
192
+ page_content=' A11 and its Schur complement A/A11 := A22 −A21A−1 11 A12 are Hurwitz stable Metzler matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
193
+ page_content=' A22 and its Schur complement A/A22 := A11 −A12A−1 22 A21 are Hurwitz stable Metzler matrices Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
194
+ page_content=' Some remarks are in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
195
+ page_content=' 11 STABLE D-STABLE TOTALLYSTABLE DISSIPA- QUAS TIVE DOMINANT M- SIGN NORMAL STABLE D-STABLE QUASI-RECESSIVE STABLE OUAST-RECESSIVE STABLE• For a structured matrix, the property that its Schur complements also preserve the same stability and structure properties is termed Schur complement stabil- ity property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
196
+ page_content=' Other types of structured matrices that have Schur complement stability property include symmetric matrices, triangular matrices, and Schwarz matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
197
+ page_content=' See (Souza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
198
+ page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
199
+ page_content=' The result on M-matrix in Lemma 1 can be generalized to H-matrix: Let A be a H-matrix partitioned in blocks of compatible dimensions as A = [A11, A12;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
200
+ page_content=' A21, A22] with A11 and A22 being square matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
201
+ page_content=' If A is Hurwitz stable, then A11 and its Schur complement A/A11 := A22 −A21A−1 11 A12 are Hurwitz stable H matri- ces, or A22 and its Schur complement A/A22 := A11−A12A−1 22 A21 are Hurwitz stable H matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
202
+ page_content=' Schur complement and its closure property for several structured matrices (in- cluding diagonal matrices, triangular matrices, symmetric matrices, P-matrices, diagonal dominant matrices, M-matrices etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
203
+ page_content=') are discussed in (Zhang, 2006, Chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
204
+ page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
205
+ page_content=' 12 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
206
+ page_content=' Application examples of matrix diagonal stability conditions The Fisher-Fuller theorem on diagonal matrix stabilizability (Theorem 1 and its variations) has been rediscovered several times by the control system community, and has been applied in solving distributed stabilization and decentralized control problems in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
207
+ page_content=' This section reviews two application examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
208
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
209
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
210
+ page_content=' Conditions for decentralized stabilization In (Corfmat and Morse, 1973) Corfmat and Morse solved the following problem: For given and fixed real matrices A and P, find (if possible) a non-singular di- agonal matrix D such that I + ADP is Schur stable (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
211
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
212
+ page_content=', all eigenvalues of I + ADP are located within the unit circle in the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
213
+ page_content=' To solve the above problem they proved the following: Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
214
+ page_content=' If A is an n × n strongly non-singular matrix, then there exists a diag- onal matrix D such that (I + DA) is Schur stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
215
+ page_content=' Note: in (Corfmat and Morse, 1973) a matrix is termed strongly non-singular, if its all n leading principal minors are nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
216
+ page_content=' Theorem 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
217
+ page_content=' If A is a fixed non-singular matrix, then there exists a permutation matrix P such that PA is strongly non-singular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
218
+ page_content=' Solution to decentralized stabilization: the non-singularity of A is a necessary and sufficient condition for the existence of a permutation matrix P and a non-singular diagonal matrix D such that (I + ADP) is Schur stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
219
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
220
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
221
+ page_content=' Distributed stabilization of persistent formations In (Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
222
+ page_content=', 2009), the problem on persistent formation stabilization involves studying the stabilizability of the following differential equation ˙z = ∆Az where ∆ is a diagonal or possibly block diagonal matrix, and A is a rigidity-like matrix on formation shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
223
+ page_content=' To solve the formation stabilization problem in (Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
224
+ page_content=', 2009) the following result is employed ((Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
225
+ page_content=', 2009, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
226
+ page_content='2)): Theorem 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
227
+ page_content=' Suppose A is an m × m non-singular matrix with every leading prin- cipal minor nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
228
+ page_content=' Then there exists a diagonal D such that the real parts of the eigenvalues of DA are all negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
229
+ page_content=' We remark that this is a reformulation of the Fisher-Fuller theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
230
+ page_content=' 13 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
231
+ page_content=' A selection of key review papers and books on matrix stability and diagonal stability conditions The survey paper (Hershkowitz, 1992) that presents a summary of relevant ma- trix stability results and the developments, up until 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
232
+ page_content=' The paper (Bhaya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
233
+ page_content=', 2003) that presents comprehensive discussions and char- acterizations for various classes of matrix stability conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
234
+ page_content=' The paper (Hershkowitz and Keller, 2003) that studies the relations between pos- itivity of principal minors, sign symmetry and stability of matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
235
+ page_content=' The review paper (Hershkowitz, 2006) that presents an concise overview on ma- trix stability and inertia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
236
+ page_content=' The book (Kaszkurewicz and Bhaya, 2012) on matrix diagonal stability in sys- tems and computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
237
+ page_content=' The summary paper (Logofet, 2005) that presents a review and some beautiful connections/relations on different matrix stabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
238
+ page_content=' The very long survey paper (Kushel, 2019) that provides a unifying viewpoint on matrix stability, and its historical development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
239
+ page_content=' The recent book (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
240
+ page_content=', 2020) on positive matrix, P-matrix and inverse M-matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
241
+ page_content=' References Ballantine, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
242
+ page_content=', 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
243
+ page_content=' Stabilization by a diagonal matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
244
+ page_content=' Proceedings of the American Mathematical Society 25, 728–734.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
245
+ page_content=' Barker, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
246
+ page_content=', Berman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
247
+ page_content=', Plemmons, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
248
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
249
+ page_content=', 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
250
+ page_content=' Positive diagonal solutions to the Lyapunov equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
251
+ page_content=' Linear and Multilinear Algebra 5, 249–256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
252
+ page_content=' Berman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
253
+ page_content=', Hershkowitz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
254
+ page_content=', 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
255
+ page_content=' Matrix diagonal stability and its implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
256
+ page_content=' SIAM Journal on Algebraic Discrete Methods 4, 377–382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
257
+ page_content=' Bhaya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
258
+ page_content=', Kaszkurewicz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
259
+ page_content=', Santos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
260
+ page_content=', 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
261
+ page_content=' Characterizations of classes of stable matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
262
+ page_content=' Linear algebra and its applications 374, 159–174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
263
+ page_content=' Corfmat, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
264
+ page_content=', Morse, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
265
+ page_content=', 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
266
+ page_content=' Stabilization with decentralized feedback control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
267
+ page_content=' IEEE Transactions on Automatic Control 18, 679–682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
268
+ page_content=' Cross, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
269
+ page_content=', 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
270
+ page_content=' Three types of matrix stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
271
+ page_content=' Linear algebra and its applications 20, 253–263.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
272
+ page_content=' Fiedler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
273
+ page_content=', Ptak, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
274
+ page_content=', 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
275
+ page_content=' On matrices with non-positive off-diagonal elements and positive principal minors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
276
+ page_content=' Czechoslovak Mathematical Journal 12, 382–400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
277
+ page_content=' 14 Fisher, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
278
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
279
+ page_content=', 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
280
+ page_content=' A simple proof of the Fisher–Fuller theorem, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
281
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
282
+ page_content=' 523–525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
283
+ page_content=' Fisher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
284
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
285
+ page_content=', Fuller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
286
+ page_content=', 1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
287
+ page_content=' On the stabilization of matrices and the convergence of linear iterative processes, in: Mathematical Proceedings of the Cambridge Philo- sophical Society, Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
288
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
289
+ page_content=' 417–425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
290
+ page_content=' Friedland, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
291
+ page_content=', 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
292
+ page_content=' Inverse eigenvalue problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
293
+ page_content=' Linear Algebra and Its Applications 17, 15–51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
294
+ page_content=' Hershkowitz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
295
+ page_content=', 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
296
+ page_content=' Recent directions in matrix stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
297
+ page_content=' Linear Algebra and its Applications 171, 161–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
298
+ page_content=' Hershkowitz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
299
+ page_content=', 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
300
+ page_content=' Matrix stability and inertia, in: Handbook of Linear Algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
301
+ page_content=' Chapman and Hall/CRC, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
302
+ page_content=' 19–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
303
+ page_content=' Hershkowitz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
304
+ page_content=', Keller, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
305
+ page_content=', 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
306
+ page_content=' Positivity of principal minors, sign symmetry and stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
307
+ page_content=' Linear algebra and its applications 364, 105–124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
308
+ page_content=' Johnson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
309
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
310
+ page_content=', Maybee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
311
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
312
+ page_content=', Olesky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
313
+ page_content=', Van den Driessche, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
314
+ page_content=', 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
315
+ page_content=' Nested se- quences of principal minors and potential stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
316
+ page_content=' Linear Algebra and its Applica- tions 262, 243–257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
317
+ page_content=' Johnson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
318
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
319
+ page_content=', Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
320
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
321
+ page_content=', Tsatsomeros, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
322
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
323
+ page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
324
+ page_content=' Matrix positivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
325
+ page_content=' volume 221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
326
+ page_content=' Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
327
+ page_content=' Kaszkurewicz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
328
+ page_content=', Bhaya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
329
+ page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
330
+ page_content=' Matrix diagonal stability in systems and compu- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
331
+ page_content=' Springer Science & Business Media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
332
+ page_content=' Kushel, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
333
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
334
+ page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
335
+ page_content=' Unifying matrix stability concepts with a view to applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
336
+ page_content=' SIAM Review 61, 643–729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
337
+ page_content=' Locatelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
338
+ page_content=', Schiavoni, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
339
+ page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
340
+ page_content=' A necessary and sufficient condition for the stabil- isation of a matrix and its principal submatrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
341
+ page_content=' Linear algebra and its applications 436, 2311–2314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
342
+ page_content=' Logofet, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
343
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
344
+ page_content=', 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
345
+ page_content=' Stronger-than-Lyapunov notions of matrix stability, or how “flow- ers” help solve problems in mathematical ecology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
346
+ page_content=' Linear Algebra and its Applica- tions 398, 75–100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
347
+ page_content=' Narendra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
348
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
349
+ page_content=', Shorten, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
350
+ page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
351
+ page_content=' Hurwitz stability of metzler matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
352
+ page_content=' IEEE Trans- actions on Automatic Control 55, 1484–1487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
353
+ page_content=' Plemmons, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
354
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
355
+ page_content=', 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
356
+ page_content=' M-matrix characterizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
357
+ page_content=' I–nonsingular M-matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
358
+ page_content=' Linear Algebra and its Applications 18, 175–188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
359
+ page_content=' Redheffer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
360
+ page_content=', 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
361
+ page_content=' Volterra multipliers ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
362
+ page_content=' SIAM Journal on Algebraic and Discrete Methods 6, 612–623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
363
+ page_content=' 15 Shorten, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
364
+ page_content=', Mason, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
365
+ page_content=', King, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
366
+ page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
367
+ page_content=' An alternative proof of the Barker, Berman, Plemmons (BBP) result on diagonal stability and extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
368
+ page_content=' Linear Algebra and its Applications 430, 34–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
369
+ page_content=' Shorten, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
370
+ page_content=', Narendra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
371
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
372
+ page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
373
+ page_content=' On a theorem of Redheffer concerning diagonal stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
374
+ page_content=' Linear algebra and its applications 431, 2317–2329.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
375
+ page_content=' Souza, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
376
+ page_content=', Wirth, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
377
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
378
+ page_content=', Shorten, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
379
+ page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
380
+ page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
381
+ page_content=' A note on recursive schur complements, block hurwitz stability of metzler matrices, and related results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
382
+ page_content=' IEEE Transactions on Automatic Control 62, 4167–4172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
383
+ page_content=' Sun, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
384
+ page_content=', Rantzer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
385
+ page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
386
+ page_content=', Robertsson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
387
+ page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
388
+ page_content=' Distributed adaptive stabilization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
389
+ page_content=' Automatica 129, 109616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
390
+ page_content=' Varga, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
391
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
392
+ page_content=', 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
393
+ page_content=' On recurring theorems on diagonal dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
394
+ page_content=' Linear Algebra and its Applications 13, 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
395
+ page_content=' Yu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
396
+ page_content=', Anderson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
397
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
398
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
399
+ page_content=', Dasgupta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
400
+ page_content=', Fidan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
401
+ page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
402
+ page_content=' Control of minimally per- sistent formations in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
403
+ page_content=' SIAM Journal on Control and Optimization 48, 206–233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
404
+ page_content=' Zhang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
405
+ page_content=', 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
406
+ page_content=' The Schur complement and its applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
407
+ page_content=' volume 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
408
+ page_content=' Springer Science & Business Media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
409
+ page_content=' 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/G9AzT4oBgHgl3EQfUvyD/content/2301.01272v1.pdf'}
HdE2T4oBgHgl3EQfTwd_/content/tmp_files/2301.03806v1.pdf.txt ADDED
@@ -0,0 +1,974 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Impurity induced Modulational instability in Bose-Einstein condensates
2
+ Ishfaq Ahmad Bhat, Bishwajyoti Dey
3
+ Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
4
+ Abstract
5
+ By means of linear stability analysis (LSA) and direct numerical simulations of the coupled Gross-Pitaevskii (GP)
6
+ equations, we address the impurity induced modulational instability (MI) and the associated nonlinear dynamics
7
+ in Bose-Einstein condensates (BECs). We explore the dual role played by the impurities within the BECs —the
8
+ instigation of MI and the dissipation of the initially generated solitary waves. Because of the impurities, the repulsive
9
+ BECs are even modulationally unstable and this tendency towards MI increases with increasing impurity fraction and
10
+ superfluid-impurity coupling strength. However, the tendency of a given BEC towards the MI decreases with the
11
+ decreasing mass of the impurity atoms while the sign of the superfluid-impurity interaction plays no role. The above
12
+ results are true even for attractive BECs except for a weak superfluid-impurity coupling, where the MI phenomenon
13
+ is marginally suppressed by the presence of impurities. The dissipation of the solitons reduce their lifetime and is
14
+ eminent for a larger impurity fraction and strong superfluid-impurity strength respectively.
15
+ Keywords: Modulational Instability, solitons, Bose-Einstein Condensates, coupled Gross-Pitaevskii Equation
16
+ 1. Introduction
17
+ Modulational instability (MI) is the most prevalent phenomenon in nonlinear systems [1] wherein a continuous
18
+ wave background becomes unstable against the growth of weak perturbations. As a result, localized solitary waves
19
+ are formed due to the interplay between the intrinsic nonlinearity and dispersion. Although MI has been studied in
20
+ nonlinear fibre optics [2], fluid dynamics [3], and plasma [4], the MI in BECs has recently received great attention
21
+ both theoretically [5, 6, 7, 8, 9] and experimentally [10, 11]. A variety of BEC applications, such as quantum phase
22
+ transitions [12], matter-wave amplification [13], atom interferometry [14] and atom lasers [15] result from the efficient
23
+ manipulation of the matter wave dynamics of an ultracold BEC by external fields. The MI in BECs and its associated
24
+ dynamics is well described by the mean-field Gross-Pitaevskii (GP) equation which is nonlinear in nature. Scalar
25
+ BECs are governed by the single component GP equations while the multicomponent BECs are described by coupled
26
+ GP equations. The nonlinearity in a BEC is introduced via the s-wave interactions that are manipulated precisely in
27
+ experiments by the optical [16, 17] and magnetic [18, 19] Feshbach resonances. In addition to accounting for the
28
+ MI in BECs, the GP equation exhibits different types of nonlinear structures, including solitons [20, 21] and vortices
29
+ [22, 23].
30
+ The presence of impurities in BECs offer a platform to investigate mass-imbalanced multicomponent systems
31
+ [24, 25, 26, 27]. The impurity-superfluid interactions in these imbalanced BEC systems realize Bose polarons which
32
+ under strong interactions result into impurity-solitons [28]. The impurity-superfluid systems are also central towards
33
+ the understanding of Kondo effect [29], spin transport [30], spin-charge separation [31] and synthetic superfluid
34
+ chemistry [32]. While the number of impurities in a BEC can be fixed either by the controlled doping [33] or by
35
+ transferring coherently a fraction of the condensate atoms from one hyperfine level to another by means of a radio-
36
+ frequency (rf) pulse [34].
37
+ The earlier works addressing MI in single component BECs [6, 35, 36] dictate that MI is a natural precursor to the
38
+ formation of bright solitons. In a single component BEC, MI is possible only for a focusing (attractive) nonlinearity
39
+ [37, 38]. By tuning the atomic interactions in a BEC from repulsive to attractive, MI results in the formation of bright
40
+ matter-wave solitons [20, 10, 39]. In a binary BEC, MI is possible even for repulsive interactions whereby dark-bright
41
+ solitary wave complexes are formed if the self-repulsion of each component is outbalanced by the cross-repulsion
42
+ Preprint submitted to Physics Letters A
43
+ January 11, 2023
44
+ arXiv:2301.03806v1 [cond-mat.quant-gas] 10 Jan 2023
45
+
46
+ between the two components [40, 7, 9]. The dark-bright soliton complexes are coherent structures consisting of a
47
+ bright soliton in one component effectively trapped by a dark soliton in the second component. This results in the
48
+ formation of domain walls which realize the phase separation in the immiscible binary BEC [7, 9, 41, 42]. The MI
49
+ phenomenon has also been studied extensively in BECs with synthetic gauge potentials [43, 44]. In presence of gauge
50
+ potentials, MI occurs even in the miscible binary BECs. Recently, the MI analysis has been extended to dipolar
51
+ [45, 46] and density-dependent BECs [47]. In dipolar BECs, the MI results in the formation of quantum droplets
52
+ while in density-dependent BECs unidirectionally moving chiral solitons are obtained.
53
+ In the framework of the mean-field approach, this paper addresses the MI and the associated nonlinear dynamics
54
+ of solitary wave formation in an effectively one-dimensional superfluid-impurity system. We consider a binary BEC
55
+ system in which the condensate (superfluid) interacts with a dilute fraction (0-6%) of impurity atoms. When the
56
+ impurity fraction in a BEC exceeds 0.2%, the impurity atoms are also Bose-condensed [34]. The MI analysis in
57
+ a binary BEC has usually been carried out for an equal distribution of atoms in the two components [7, 12, 43].
58
+ However, by varying the impurity fraction and their interaction with the superfluid, we study the effect of mass
59
+ imbalance on the MI phenomena in the BECs. Moreover, the impurity atoms can be either heavier or lighter or of
60
+ the same mass as the superfluid atoms. A unit mass ratio can be achieved by transferring coherently a small fraction
61
+ of superfluid atoms into another hyperfine state. Such a situation is neatly modelled by the experiments of Aycock
62
+ [34] and Jørgensen [25]. By considering different superfluid-to-impurity atomic mass ratios, we additionally study its
63
+ effect on the impurity-induced MI in BECs.
64
+ The subsequent material is structured as follows. Section 2 introduces the model and the corresponding coupled
65
+ GP equations. The dispersion relation produced by the linear stability analysis (LSA) is derived and discussed. Section
66
+ 3 reports the results of numerical simulations of the system under consideration. The paper is concluded by Sec. 4.
67
+ 2. Model and MI Analysis
68
+ We consider a one-dimensional (1D) BEC with atomic mass m1 and consisting of N1 atoms in a state ψ1 colli-
69
+ sionally coupled to N2 Bose-condensed impurity atoms of mass m2 in the state ψ2. Such a projected BEC system is
70
+ described by the following coupled GP equations [32, 34]:
71
+ iℏ∂ψ1
72
+ ∂t =
73
+
74
+ − ℏ2
75
+ 2m1
76
+ ∂2
77
+ ∂x2 + u1|ψ1|2 + u12|ψ2|2�
78
+ ψ1
79
+ (1a)
80
+ iℏ∂ψ2
81
+ ∂t =
82
+
83
+ − ℏ2
84
+ 2m2
85
+ ∂2
86
+ ∂x2 + u12|ψ1|2�
87
+ ψ2
88
+ (1b)
89
+ The nonlinear coefficient u1 = 2ℏ2a1/(m1a2
90
+ ⊥) specifies the interaction between the superfluid atoms in state ψ1 and
91
+ u12 = 2ℏ2a12/m12(a2
92
+ ⊥ + b2
93
+ ⊥) with m−1
94
+ 12 = m−1
95
+ 1 + m−1
96
+ 2 , determines the coupling between the superfluid and impurity
97
+ atoms. Here a1 and a12 are the characteristic scattering lengths while a⊥ = √ℏ/m1ω⊥ and b⊥ = √ℏ/m2ω⊥ are the
98
+ harmonic oscillator lengths such that ω⊥ is the transverse trapping frequency. The number of atoms in each state
99
+ is conserved by the normalization,
100
+
101
+ dx|ψi(x)|2 = Ni and N = N1 + N2 is the total number of atoms. Further, the
102
+ impurity fraction N2/N1 is kept vey low (within a few percent) in experiments and is varied by tuning the rf-amplitude
103
+ [34]. Accordingly, we neglect the interactions between the impurity atoms. By means of spatiotemporal scaling [48],
104
+ t = ω−1
105
+ ⊥ t′, x = a⊥x′, and ψi = ψ′
106
+ i/ √|a⊥|, Eqs. (1a) and (1b) can be recast in the following form:
107
+ i∂ψ1
108
+ ∂t =
109
+
110
+ − 1
111
+ 2
112
+ ∂2
113
+ ∂x2 + g1|ψ1|2 + g12|ψ2|2�
114
+ ψ1
115
+ (2a)
116
+ i∂ψ2
117
+ ∂t =
118
+
119
+ − ρ
120
+ 2
121
+ ∂2
122
+ ∂x2 + g12|ψ1|2�
123
+ ψ2
124
+ (2b)
125
+ where ρ = m1/m2 denotes the mass ratio. In this study, we consider the mass ratios, ρ = {1/2, 1, 2}. These correspond
126
+ to the experimentally relevant cases of 14K−87Rb, 87Rb−87Rb and 87Rb−14K superfluid-impurity systems respectively.
127
+ The higher mass ratios of ρ = 3 and 4 apply respectively to the 133Cs −41 K and 87Rb −23 Li mixtures. In the resulting
128
+ dimensionless GP equations the primes have been omitted and have the same structure as above, but with ℏ = m = 1.
129
+ The scaled coupling coefficients are now defined by, g1 = 2a1/a⊥ and g12 = 4a12/a⊥.
130
+ 2
131
+
132
+ In the context of LSA of Eqs. (2a) and (2b), we examine the MI in a BEC system with n10 and n20 as uniform
133
+ densities of the superfluid and impurity atoms i.e., ψ j = √nj0e−iµjt for j = 1, 2. In terms of the equilibrium densities,
134
+ chemical potentials, µ1 = g1n10 + g12n20 and µ2 = g12n20. For the perturbed wave functions of the form, ψ j =
135
+ ( √nj0 + δψj)e−iµ jt, the linearized equations for the perturbations are:
136
+ i∂δψ1
137
+ ∂t
138
+ = −1
139
+ 2
140
+ ∂2δψ1
141
+ ∂x2
142
+ + g1n10(δψ1 + δψ∗
143
+ 1) + g12
144
+ √n10n20(δψ2 + δψ∗
145
+ 2)
146
+ (3a)
147
+ i∂δψ2
148
+ ∂t
149
+ = −ρ
150
+ 2
151
+ ∂2δψ2
152
+ ∂x2
153
+ + g12
154
+ √n10n20(δψ1 + δψ∗
155
+ 1)
156
+ (3b)
157
+ where “∗” denotes the complex conjugate. We consider the perturbations in the form of plane waves, δψ j = ajCos(kx−
158
+ Ωt) + bjSin(kx − Ωt) with real wavenumber k, complex eigenfrequency Ω and j = 1, 2. Substituting this in Eqs. (3a)
159
+ and (3b) results in the following dispersion relation for eigenfrequency, Ω:
160
+ Ω4 − Ω2k2
161
+ �k2
162
+ 4
163
+
164
+ ρ2 + 1
165
+
166
+ + g1n10
167
+
168
+ + k4ρ
169
+ 4
170
+ �k4ρ
171
+ 4 + g1n10ρ − 4n10n20g2
172
+ 12
173
+
174
+ = 0
175
+ (4)
176
+ Quartic Eq. (4) for the eigenfrequency, Ω can be solved for its roots and results in:
177
+ Ω2
178
+ ± = k2
179
+ 2
180
+ ��������
181
+ k2 �
182
+ ρ2 + 1
183
+
184
+ 4
185
+ + g1n10
186
+ ��������1 ±
187
+
188
+ 1 + 4δg2δn −
189
+ k2∆
190
+ 2g1n10
191
+ +
192
+ k4∆2
193
+ 16g2
194
+ 1n2
195
+ 10
196
+ ��������
197
+ ����������
198
+ (5)
199
+ where δg = g12/g1 is the interaction ratio, δn = n20/n10 represents the mass imbalance and ∆ = ρ2 − 1. Eq. (5)
200
+ which governs the propagation of perturbations on the top of continuous wave solutions may be positive or negative
201
+ depending on the nature of interactions and mass imbalance. The continuous wave solutions are stable if Ω2
202
+ ± > 0 for
203
+ all real k. On the other hand, the instability gain is defined as ξ = |Im(Ω±)|. In case of scalar BECs without an impurity
204
+ (δg = δn = ∆ = 0), Eq. (5) reproduces the well-known results of MI in dilute BECs where it occurs for an attractive
205
+ interaction (g1 < 0) in the wavenumber range 0 < k < 2
206
+
207
+ |g1|n10 [2, 6, 35]. The maximum MI gain, ξmax = n10|g1| is
208
+ attained for kmax =
209
+
210
+ 2n10|g1|.
211
+ The effect of the impurities on the MI in BECs can be analyzed in the framework of Eq. (5) whereby it is evident
212
+ that the BEC is modulationally unstable even for g1 > 0. This situation is of peculiar importance since the scalar
213
+ (δg = 0) [6] and miscible binary BECs (δg < 1) [9] with repulsive g1 interactions are modulationally stable. A plot
214
+ of Eq. (5) shown in Figs. 1 (a)-(c) display the variation of the MI gain with the nature and concentration of the
215
+ impurities in a repulsive BEC with weak superfluid-impurity coupling (δg < 1). Here the instability is accounted for
216
+ by Ω− perturbations only and occurs in the wavenumber range 0 < k <
217
+
218
+ 2g1n10
219
+
220
+ −1 +
221
+
222
+ 1 + 4δg2δn/ρ
223
+
224
+ . It is evident
225
+ from Fig. 1(a)-(c) that for a fixed interaction, δg and atomic mass, ρ ratios, the MI gain and bandwidth increases with
226
+ the fraction of impurities in the BEC. In the simplest case of ρ = 1, the largest MI gain,
227
+ ξmax = Im
228
+ ��������
229
+
230
+ g2
231
+ 1n2
232
+ 10(−1 − 2δg2δn +
233
+
234
+ 1 + 4δg2δn)/2
235
+ ��������
236
+ (6)
237
+ is attained at,
238
+ kmax =
239
+
240
+ −g1n10 + g1n10
241
+
242
+ 1 + 4δg2δn.
243
+ (7)
244
+ Moreover, the MI gain and the instability bandwidth decreases with the mass ratio, ρ as shown in Fig 2. Consequently,
245
+ the values of kmax also decrease with ρ. It is worth mentioning that the MI in such BEC systems are also independent
246
+ of the sign of g12, though the the tendency of the system against the growth of the perturbations increase together with
247
+ the ratio δg. By comparing Figs. 1(a,b,c) and 1 (d,e,f) respectively, it is evident that the MI gain for a given fraction
248
+ of impurities are considerably larger for a stronger superfluid-impurity coupling ( δg > 1).
249
+ In an attractive BEC with g1 < 0, the modulational instability is accounted for by Ω+ perturbations and occurs in
250
+ the wavenumber range 0 < k <
251
+
252
+ 2g1n10
253
+
254
+ −1 −
255
+
256
+ 1 + 4δg2δn/ρ
257
+
258
+ as shown in Fig. 3. It is evident from Fig. 3(a)-(c)
259
+ 3
260
+
261
+ a) ρ=1/2
262
+ n20
263
+ 0
264
+ 0.02
265
+ 0.04
266
+ 0.06
267
+ 0
268
+ 2
269
+ 4
270
+ 6
271
+ 0
272
+ 1
273
+ 2
274
+ 3
275
+ 4
276
+ k
277
+ ξ=|Im(Ω-)|
278
+ b) ρ=1
279
+ n20
280
+ 0
281
+ 0.02
282
+ 0.04
283
+ 0.06
284
+ 0
285
+ 2
286
+ 4
287
+ 6
288
+ 0
289
+ 1
290
+ 2
291
+ 3
292
+ 4
293
+ k
294
+ ξ=|Im(Ω-)|
295
+ c) ρ=2
296
+ n20
297
+ 0
298
+ 0.02
299
+ 0.04
300
+ 0.06
301
+ 0
302
+ 2
303
+ 4
304
+ 6
305
+ 0
306
+ 1
307
+ 2
308
+ 3
309
+ 4
310
+ k
311
+ ξ=|Im(Ω-)|
312
+ d) ρ=1/2
313
+ n20
314
+ 0
315
+ 0.02
316
+ 0.04
317
+ 0.06
318
+ 0
319
+ 2
320
+ 4
321
+ 6
322
+ 0
323
+ 1
324
+ 2
325
+ 3
326
+ 4
327
+ k
328
+ ξ=|Im(Ω-)|
329
+ e) ρ=1
330
+ n20
331
+ 0
332
+ 0.02
333
+ 0.04
334
+ 0.06
335
+ 0
336
+ 2
337
+ 4
338
+ 6
339
+ 0
340
+ 1
341
+ 2
342
+ 3
343
+ 4
344
+ k
345
+ ξ=|Im(Ω-)|
346
+ f) ρ=2
347
+ n20
348
+ 0
349
+ 0.02
350
+ 0.04
351
+ 0.06
352
+ 0
353
+ 2
354
+ 4
355
+ 6
356
+ 0
357
+ 1
358
+ 2
359
+ 3
360
+ 4
361
+ k
362
+ ξ=|Im(Ω-)|
363
+ Figure 1: The MI gain corresponding to the Ω− perturbation branch for g1 = 50 and different impurity concentrations, n20. The superfluid-impurity
364
+ coupling is fixed at δg = 0.95 in (a)-(c) and δg = 1.2 in (d)-(f) respectively, while n10 + n20 = 1. Note that the repulsive scalar BECs with n20 = 0
365
+ are always modulationally stable.
366
+ a) δg= 0.95
367
+ ρ
368
+ 1.0
369
+ 2.0
370
+ 3.0
371
+ 4.0
372
+ 0
373
+ 1
374
+ 2
375
+ 3
376
+ 4
377
+ 5
378
+ 0
379
+ 1
380
+ 2
381
+ 3
382
+ 4
383
+ k
384
+ ξ=|Im(Ω-)|
385
+ b) δg= 1.2
386
+ ρ
387
+ 1.0
388
+ 2.0
389
+ 3.0
390
+ 4.0
391
+ 0
392
+ 1
393
+ 2
394
+ 3
395
+ 4
396
+ 5
397
+ 0
398
+ 1
399
+ 2
400
+ 3
401
+ 4
402
+ k
403
+ ξ=|Im(Ω-)|
404
+ Figure 2: Variation of the MI gain with atomic mass ratio, ρ in a BEC with a) weak (δg < 1) and b) strong (δg > 1) superfluid-impurity interactions,
405
+ The impurity fraction, n20 = 0.06 in each case.
406
+ that the MI gain is marginally suppressed with the impurity concentration if δg < 1 while for δg > 1, the largest
407
+ MI gain and the instability bandwidth increases with increasing impurity fraction in the attractive BECs as shown in
408
+ Fig. 3(d)-(f). These modifications to the already existing MI in an attractive BEC due to the impurity fraction can be
409
+ further understood by considering ρ = 1. In such a case, the largest MI gain,
410
+ ξmax = Im
411
+ ��������
412
+
413
+ −g2
414
+ 1n2
415
+ 10(1 + 2δg2δn +
416
+
417
+ 1 + 4δg2δn)/2
418
+ ��������
419
+ (8)
420
+ is attained at,
421
+ kmax =
422
+
423
+ −g1n10 − g1n10
424
+
425
+ 1 + 4δg2δn.
426
+ (9)
427
+ A plot of Eq. (9) in Fig. 4(a) shows the variation of kmax with the impurity fraction, n20 for both δg < 1 and δg > 1.
428
+ Notice that kmax and hence ξmax (not shown in Fig. 4) decreases linearly together with n20 in case δg < 1 while it
429
+ 4
430
+
431
+ a) ρ=1/2
432
+ n20
433
+ 0
434
+ 0.02
435
+ 0.04
436
+ 0.06
437
+ 0.0
438
+ 0.2
439
+ 0.4
440
+ 0.6
441
+ 0.8
442
+ 1.0
443
+ 1.2
444
+ 0.00
445
+ 0.05
446
+ 0.10
447
+ 0.15
448
+ k
449
+ ξ=|Im(Ω+)|
450
+ b) ρ=1
451
+ n20
452
+ 0
453
+ 0.02
454
+ 0.04
455
+ 0.06
456
+ 0.0
457
+ 0.2
458
+ 0.4
459
+ 0.6
460
+ 0.8
461
+ 1.0
462
+ 1.2
463
+ 0.00
464
+ 0.05
465
+ 0.10
466
+ 0.15
467
+ k
468
+ ξ=|Im(Ω+)|
469
+ c) ρ=2
470
+ n20
471
+ 0
472
+ 0.02
473
+ 0.04
474
+ 0.06
475
+ 0.0
476
+ 0.2
477
+ 0.4
478
+ 0.6
479
+ 0.8
480
+ 1.0
481
+ 1.2
482
+ 0.00
483
+ 0.05
484
+ 0.10
485
+ 0.15
486
+ k
487
+ ξ=|Im(Ω+)|
488
+ d) ρ=1/2
489
+ n20
490
+ 0
491
+ 0.02
492
+ 0.04
493
+ 0.06
494
+ 0.0
495
+ 0.2
496
+ 0.4
497
+ 0.6
498
+ 0.8
499
+ 1.0
500
+ 1.2
501
+ 0.00
502
+ 0.05
503
+ 0.10
504
+ 0.15
505
+ k
506
+ ξ=|Im(Ω+)|
507
+ e) ρ=1
508
+ n20
509
+ 0
510
+ 0.02
511
+ 0.04
512
+ 0.06
513
+ 0.0
514
+ 0.2
515
+ 0.4
516
+ 0.6
517
+ 0.8
518
+ 1.0
519
+ 1.2
520
+ 0.00
521
+ 0.05
522
+ 0.10
523
+ 0.15
524
+ k
525
+ ξ=|Im(Ω+)|
526
+ f) ρ=2
527
+ n20
528
+ 0
529
+ 0.02
530
+ 0.04
531
+ 0.06
532
+ 0.0
533
+ 0.2
534
+ 0.4
535
+ 0.6
536
+ 0.8
537
+ 1.0
538
+ 1.2
539
+ 0.00
540
+ 0.05
541
+ 0.10
542
+ 0.15
543
+ k
544
+ ξ=|Im(Ω+)|
545
+ Figure 3:
546
+ The MI gain corresponding to the Ω+ perturbation branch for g1 = −0.1 and different impurity concentrations, n20. The superfluid-
547
+ impurity coupling is fixed at δg = 0.05 in (a)-(c) and δg = 4.0 in (d)-(f) respectively, while n10 + n20 = 1. Note that scalar BECs with attractive
548
+ interactions and n20 = 0 are always modulationally unstable.
549
+ increases non-linearly when δg > 1. The same is true for higher values of ρ as shown in Fig. 4(b), except that the kmax
550
+ values are lower for the corresponding values of impurity fraction. Like in case of BECs with repulsive interactions,
551
+ the MI gain and instability bandwidth decrease with ρ for a fixed impurity fraction.
552
+ a) ρ=1
553
+ δg
554
+ 0.05
555
+ 4.0
556
+ 0.00 0.01 0.02 0.03 0.04 0.05 0.06
557
+ 0.44
558
+ 0.46
559
+ 0.48
560
+ 0.50
561
+ 0.52
562
+ 0.54
563
+ 0.56
564
+ n20
565
+ kmax
566
+ b) ρ=2
567
+ δg
568
+ 0.05
569
+ 4.0
570
+ 0.00 0.01 0.02 0.03 0.04 0.05 0.06
571
+ 0.44
572
+ 0.46
573
+ 0.48
574
+ 0.50
575
+ 0.52
576
+ 0.54
577
+ 0.56
578
+ n20
579
+ kmax
580
+ Figure 4: Variation of kmax with the concentration of impurities, n20 for g1 = −0.1, (a) ρ = 1 and (b) ρ = 2 .
581
+ 3. Numerics
582
+ In this section, we discuss the nonlinear dynamics caused by impurity-induced MI in the BECs. We Solve Eqs.
583
+ (2a) and (2b) numerically by employing FFTW [49] mediated split-step fast-Fourier method [50]. Throughout the
584
+ simulations, we set the time step ∆t = 0.001 and the spatial grid size ∆x = L/Ns with Ns = 2048. The domain size,
585
+ L = 200 and 100 is respectively chosen for repulsive (g1 > 0) and attractive (g1 < 0) BECs. Initial continuous wave
586
+ background with impurity fraction ranging from 0-6% is studied for its MI by seeding weak and random perturbations
587
+ for different strengths of g1 and δg in the following subsections.
588
+ 5
589
+
590
+ 3.1. g1 > 0 and δg < 1
591
+ The MI analysis discussed in the previous section shows that impurities within a BEC make it vulnerable towards
592
+ the growth of perturbations (MI) even for repulsive g1 interactions and δg < 1. In this regard, Fig. 5(a)-(c) shows the
593
+ time development of the initially perturbed ρ = 1 continuous wave density for 2%, 4% and 6% impurity concentrations
594
+ respectively. For a given value of g1 = 50 and δg = 0.95, it is evident that the BEC realizes phase separation through
595
+ the formation of dark solitary waves. This is because of the repulsive superfluid-impurity coupling and the density
596
+ modulation grows out of phase between the two components. This density disturbance in the superfluid increases
597
+ with the increasing concentration of the impurities. Consequently, the number of phase-separated domains or solitary
598
+ waves increases proportionately with the concentration of the impurities such that for a 2% impurity, a pair of parallel
599
+ dark-solitons appear at tMI > 900. The critical time at which MI-induced solitary waves start appearing decreases
600
+ with the increasing concentration of impurities. Though the impurities felicitate the MI phenomena in BECs, these
601
+ are also responsible for the dissipation and Brownian motion of the generated solitary waves [34]. Fig. 5(c) shows that
602
+ one of the several generated solitary waves in the superfluid executes zig-zag motion during its evolution and finally
603
+ disappears due to the dissipation by impurities. Since, δg < 1, the dissipation and the Brownian motion of the solitary
604
+ waves due to the impurities is not prominent, though it increases with the concentration of the impurities. Similar
605
+ outcomes are observed in the lower panel (Fig. 5(d)-(f)) where ρ = 2. However, in accordance with the analytical
606
+ results, the number of initially generated dark solitons is less than those produced in the corresponding simulations
607
+ with ρ = 1.
608
+ Figure 5: The evolution of the condensate density |ψ1|2 due to the development of the MI by a) 2%, b) 4%, and c) 6% impurities respectively in the
609
+ coordinate space. The upper panel (a)-(c) corresponds to ρ = 1 while the lower panel (d)-(f) represent the corresponding densities with ρ = 2. The
610
+ superfluid-impurity coupling is maintained at δg = 0.05. The number of solitons increases together with the impurity fraction and decreases with
611
+ the mass ratio, ρ. The dissipation of the generated solitons is negligible for a weaker superfluid-impurity coupling.
612
+ 3.2. g1 > 0 and δg > 1
613
+ The condition δg > 1 refers when superfluid-impurity coupling outbalances the interaction between the superfluid
614
+ atoms. From Eq. (5) it is clear that the MI gain increases with the increase in δg for a fixed value of ρ and impurity
615
+ concentration. By comparing the corresponding plots in Fig. 5 and Fig. 6, it is clear that the number of generated
616
+ 6
617
+
618
+ a)
619
+ b)
620
+ c)
621
+ 1:2
622
+ 1100
623
+ 0.8
624
+ 0.6
625
+ 550
626
+ 0.4
627
+ 0.2
628
+ 0
629
+ 0
630
+ d)
631
+ e)
632
+ f)
633
+ 1100
634
+ t
635
+ 550
636
+ 0
637
+ -50 0 50
638
+ -50 0 50
639
+ -50 0 50
640
+ x
641
+ x
642
+ xsolitary waves is more for a larger superfluid-impurity coupling (δg). Moreover, when the superfluid-impurity inter-
643
+ action is large, the dissipation due to the impurity atoms within the BEC is also large. Fig. 6 shows that dark solitons
644
+ within the superfluid component dissipate after executing the zig-zag motion. As the number of impurities in a BEC
645
+ increases, more solitons in the superfluid dissipate during their time evolution. This consequently reduces the lifetime
646
+ of the generated solitons. Further, by comparing the corresponding plots in the upper (a-c) and lower (d-f) panels of
647
+ Fig. 6, it is evident that the number of generated solitons decrease with increasing values of mass ratio, ρ.
648
+ Figure 6: The evolution of the condensate density |ψ1|2 due to the development of the MI by a) 2%, b) 4%, and c) 6% impurities respectively in the
649
+ coordinate space. The upper panel (a)-(c) corresponds to ρ = 1 while the lower panel (d)-(f) represent the corresponding densities with ρ = 2. The
650
+ superfluid-impurity coupling is maintained at δg = 4. Both the number of solitons and their dissipation are large for a larger superfluid-impurity
651
+ coupling.
652
+ 3.3. g1 < 0 and δg < 1
653
+ It is well known that MI in BECs with attractive self-interactions lead to the formation of bright matter-wave
654
+ solitons. Eq. (5) and Fig. 3 shows that the BEC is modulationally unstable for g1 = −0.1. However, the presence
655
+ of impurities changes the MI in the system only slightly if δg < 1. Fig. 7 shows the spatiotemporal evolution of the
656
+ initially perturbed continuous wave density for different impurity concentrations and parameters, g = −0.1, δg = 0.05
657
+ and ρ = 1. It shows the generation of a train of solitons at tMI ≥ 205 in the absence of impurities. In accordance
658
+ with Eq. (9), the wavenumber corresponding to the initially excited mode is kmax ≈ 0.45 as shown in 7(d). This
659
+ corresponds to λmax = 2π/kmax ≈ 14.19 and hence, ns = L/λmax ≈ 7 solitons. As the concentration of impurities is
660
+ increased, it is evident that the critical time, tMI at which MI-induced bright solitons start appearing increases slightly
661
+ due to the slight decrease in the largest MI gain, ξmax. With an impurity concentration of 2% and 6% respectively, the
662
+ largest wavenumber, kmax ≈ 0.44 and 0.43 correspond to the initially excited modes as shown in Figs. 7(e) and 7(f)
663
+ respectively. However, due to the slight changes in the MI parameters, kmax and ξmax, the number of initially generated
664
+ solitons remains the same in all cases. Moreover, due to the weak superfluid-impurity coupling the dissipation is even
665
+ negligible.
666
+ 7
667
+
668
+ a)
669
+ b)
670
+ c)
671
+ 1:2
672
+ 1100
673
+ 1
674
+ 0.8
675
+ 0.6
676
+ 550
677
+ 0.4
678
+ 0.2
679
+ 0
680
+ 0
681
+ (p
682
+ e)
683
+ f)
684
+ 1100
685
+ t
686
+ 550
687
+ 0
688
+ -50 0 50
689
+ -50 0 50
690
+ -50 0 50
691
+ x
692
+ x
693
+ xFigure 7: The evolution of the condensate density |ψ1|2 due to the development of the MI by a) 0%, b) 2%, and c) 6% impurities respectively in
694
+ the coordinate space. The lower panel (d)- (f) represent the corresponding densities in k- space. The superfluid-impurity coupling is maintained at
695
+ δg = 0.95. For δg < 1, the critical time for the generation of bright solitons increases with the impurity fraction.
696
+ 3.4. g1 < 0 and δg > 1
697
+ In the previous subsection 3.3, we showed that the impurities do not play a significant role in the MI-associated
698
+ nonlinear dynamics in attractive BECs for a weak superfluid-impurity coupling (δg < 1). The same is true for a larger
699
+ range of δg > 1. In order to explain the effects on the MI due to the impurities, we have here chosen a much stronger
700
+ superfluid-impurity coupling, δg = 4. Fig. 8 shows the spatiotemporal evolution of the initially perturbed continuous
701
+ wave density with 0%, 2% and 6% impurity concentrations respectively. The critical time tMI decreases with the
702
+ concentration of impurities. This is due to the increase in the largest MI gain, ξmax given by Eq. (8). With an impurity
703
+ concentration of 0%, 2% and 6% respectively, the largest wavenumber, kmax ≈ 0.45, 0.49 and 0.55 correspond to
704
+ the initially excited modes as shown in Fig. 8(d)-(f) respectively. Consequently, the number of initially generated
705
+ 8
706
+
707
+ 8
708
+ 360
709
+ 7
710
+ 6
711
+ 240
712
+ 5
713
+ 4
714
+ 3
715
+ 120
716
+ 2
717
+ 1
718
+ 0
719
+ 0
720
+ -30 0 30 -30 0 30 -30 0 30
721
+ x
722
+ x
723
+ x
724
+ 10
725
+ 360
726
+ 9
727
+ 8
728
+ 7
729
+ 240
730
+ 6
731
+ 5 104
732
+ 4
733
+ 120
734
+ 3
735
+ 2
736
+ 1
737
+ 0
738
+ 0
739
+ 0
740
+ 0
741
+ 1
742
+ k
743
+ k
744
+ kFigure 8: The evolution of the condensate density |ψ1|2 due to the development of the MI by a) 0%, b) 2%, and c) 6% impurities respectively in
745
+ the coordinate space. The lower panel (d)- (f) represent the corresponding densities in k- space. The superfluid-impurity coupling is maintained at
746
+ δg = 1.2. For δg > 1, the critical time for the generation of bright solitons decreases with the impurity fraction and there is significant dissipation.
747
+ solitons, ns = 7, 8 and 9 respectively. Moreover, due to the strong superfluid-impurity coupling, the dissipation of the
748
+ generated solitons is prominent. This reduces the lifetime of the solitons and hence the number of solitons decreases
749
+ with time evolution. The number of initially generated solitons and the critical time for MI development as a function
750
+ of impurity concentration and the interaction parameters in the numerical simulations for ρ = 1 is summarized in Fig.
751
+ 9. The MI time always decreases with the impurity concentration and the strength of superfluid-impurity coupling
752
+ in BECs with repulsive g1 nonlinearity while in attractive BECs, the MI time either decreases or increases with the
753
+ impurity fraction, depending on the strength of the superfluid-impurity coupling. In the latter case with δg < 1, the
754
+ MI time increases while if δg > 1 MI time decreases.
755
+ 9
756
+
757
+ 8
758
+ 360
759
+ 7
760
+ 6
761
+ 240
762
+ 5
763
+ 4
764
+ 3
765
+ 120
766
+ 2
767
+ 1
768
+ 0
769
+ 0
770
+ -30 0 30 -30 0 30 -30 0 30
771
+ x
772
+ x
773
+ x
774
+ 10
775
+ 360
776
+ 9
777
+ 8
778
+ 7
779
+ 240
780
+ 6
781
+ 5 104
782
+ 4
783
+ 120
784
+ 3
785
+ 2
786
+ 1
787
+ 0
788
+ 0
789
+ 0
790
+ 0
791
+ 1
792
+ k
793
+ k
794
+ k 0
795
+ 500
796
+ 1000
797
+ 1500
798
+ 2
799
+ 5
800
+ 8
801
+ 11
802
+ tMI
803
+ a) g1 = 50
804
+ ns
805
+ δg = 0.95
806
+ δg = 1.2
807
+ 0
808
+ 500
809
+ 1000
810
+ 1500
811
+ 2
812
+ 5
813
+ 8
814
+ 11
815
+ 150
816
+ 175
817
+ 200
818
+ 225
819
+ 250
820
+ 0
821
+ 1
822
+ 2
823
+ 3
824
+ 4
825
+ 5
826
+ 6
827
+ 6
828
+ 8
829
+ 10
830
+ tMI
831
+ b) g1 = -0.1
832
+ ns
833
+ n20%
834
+ δg = 0.05
835
+ δg = 4.0
836
+ 150
837
+ 175
838
+ 200
839
+ 225
840
+ 250
841
+ 0
842
+ 1
843
+ 2
844
+ 3
845
+ 4
846
+ 5
847
+ 6
848
+ 6
849
+ 8
850
+ 10
851
+ Figure 9: Variation of the MI time, tMI (plot-markers with solid lines) and the number of initially generated solitons, ns (plot-markers with dashed
852
+ lines) with impurity concentration, n20 in BECs with ρ = 1.
853
+ 4. Conclusion
854
+ In summary, we investigated the MI by employing linear stability analysis and direct numerical simulations in
855
+ a BEC coupled with a dilute fraction of Bose-condensed impurities. Being dilute, the coupling among the impurity
856
+ atoms is neglected. It is well established that single-component BECs with repulsive interactions are always mod-
857
+ ulationally stable. Moreover, the binary BECs with an equal proportion of the two components are modulationally
858
+ unstable iff the cross-phase mediated repulsion between the components outbalances their self-repulsion. However,
859
+ in the presence of dilute impurities, BECs are always modulationally unstable and is independent of the sign of the
860
+ superfluid-impurity interaction. The MI induces spatial pattern formation in a repulsive BEC and the generated do-
861
+ mains have a solitary wave structure. The tendency of the BEC towards MI increases with the increasing impurity
862
+ fraction for a fixed superfluid-impurity coupling strength. Consequently, the number of domains increases together
863
+ with the fraction of impurities in the BEC. Moreover, the MI gain in a given BEC, the instability bandwidth, the
864
+ number of solitons as well as kmax, the value of the wave vector k at which the MI gain attains maximum, decreases
865
+ with the decreasing mass of the impurity atoms. Despite increasing the tendency of a repulsive BEC towards MI, the
866
+ impurities are also responsible for the Brownian motion of the solitons and their dissipation. This reduces the lifetime
867
+ of the solitary wave structures. Naturally, the dissipation is prominent for a greater impurity fraction and increasing
868
+ superfluid-impurity coupling strength.
869
+ As concerns the presence of impurities in attractive BECs slightly affect the preexisting MI phenomena for a weak
870
+ superfluid-impurity coupling (δg < 1). The modulational instability time only slightly increases with the impurity
871
+ fraction. However, for a strong superfluid-impurity coupling (δg > 1) the modulational instability time decreases and
872
+ the number of generated solitons increases with the impurity fraction.
873
+ 5. Acknowledgements
874
+ I A Bhat acknowledges CSIR, Government of India, for funding via CSIR Research Associateship (09/137(0627)/2020
875
+ EMR-I). BD thanks Science and Engineering Research Board, Government of India for funding through research
876
+ 10
877
+
878
+ project CRG/2020/003787.
879
+ References
880
+ [1] V. E. Zakharov, L. A. Ostrovsky, Modulation instability: the beginning, Physica D: Nonlinear Phenomena 238 (5) (2009) 540–548.
881
+ [2] G. Agrawal (Ed.), Nonlinear Fiber Optics, 5th Edition, Academic Press, Boston, 2013.
882
+ [3] M. Brunetti, J. Kasparian, Modulational instability in wind-forced waves, Physics Letters A 378 (48) (2014) 3626–3630.
883
+ [4] T. Taniuti, H. Washimi, Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma, Physical review
884
+ letters 21 (4) (1968) 209.
885
+ [5] V. V. Konotop, M. Salerno, Modulational instability in bose-einstein condensates in optical lattices, Phys. Rev. A 65 (2002) 021602.
886
+ [6] G. Theocharis, Z. Rapti, P. Kevrekidis, D. Frantzeskakis, V. Konotop, Modulational instability of gross-pitaevskii-type equations in 1+ 1
887
+ dimensions, Physical Review A 67 (6) (2003) 063610.
888
+ [7] K. Kasamatsu, M. Tsubota, Multiple domain formation induced by modulation instability in two-component bose-einstein condensates,
889
+ Physical review letters 93 (10) (2004) 100402.
890
+ [8] L. Li, Z. Li, B. A. Malomed, D. Mihalache, W. Liu, Exact soliton solutions and nonlinear modulation instability in spinor bose-einstein
891
+ condensates, Physical Review A 72 (3) (2005) 033611.
892
+ [9] K. Kasamatsu, M. Tsubota, Modulation instability and solitary-wave formation in two-component bose-einstein condensates, Physical Review
893
+ A 74 (1) (2006) 013617.
894
+ [10] P. Everitt, M. Sooriyabandara, M. Guasoni, P. Wigley, C. Wei, G. McDonald, K. Hardman, P. Manju, J. Close, C. Kuhn, et al., Observation of
895
+ a modulational instability in bose-einstein condensates, Physical Review A 96 (4) (2017) 041601.
896
+ [11] I. Ferrier-Barbut, M. Wenzel, M. Schmitt, F. B¨ottcher, T. Pfau, Onset of a modulational instability in trapped dipolar bose-einstein condensates,
897
+ Physical Review A 97 (1) (2018) 011604.
898
+ [12] R. Kanamoto, H. Saito, M. Ueda, Quantum phase transition in one-dimensional bose-einstein condensates with attractive interactions, Phys-
899
+ ical Review A 67 (1) (2003) 013608.
900
+ [13] S. Inouye, T. Pfau, S. Gupta, A. Chikkatur, A. G¨orlitz, D. Pritchard, W. Ketterle, Phase-coherent amplification of atomic matter waves, Nature
901
+ 402 (6762) (1999) 641–644.
902
+ [14] B. Anderson, K. Dholakia, E. Wright, Atomic-phase interference devices based on ring-shaped bose-einstein condensates: Two-ring case,
903
+ Physical Review A 67 (3) (2003) 033601.
904
+ [15] E. W. Hagley, L. Deng, M. Kozuma, J. Wen, K. Helmerson, S. Rolston, , W. D. Phillips, A well-collimated quasi-continuous atom laser,
905
+ Science 283 (5408) (1999) 1706–1709.
906
+ [16] F. Fatemi, K. Jones, P. D. Lett, Observation of optically induced feshbach resonances in collisions of cold atoms, Physical Review Letters
907
+ 85 (21) (2000) 4462.
908
+ [17] S. Blatt, T. Nicholson, B. Bloom, J. Williams, J. Thomsen, P. Julienne, J. Ye, Measurement of optical feshbach resonances in an ideal gas,
909
+ Physical Review Letters 107 (7) (2011) 073202.
910
+ [18] S. Inouye, M. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, W. Ketterle, Observation of feshbach resonances in a bose–einstein
911
+ condensate, Nature 392 (6672) (1998) 151–154.
912
+ [19] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, C. E. Wieman, Stable 85 rb bose-einstein condensates with widely tunable
913
+ interactions, Physical Review Letters 85 (9) (2000) 1795.
914
+ [20] K. E. Strecker, G. B. Partridge, A. G. Truscott, R. G. Hulet, Formation and propagation of matter-wave soliton trains, Nature 417 (6885)
915
+ (2002) 150–153.
916
+ [21] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, M. Lewenstein, Dark solitons in bose-einstein
917
+ condensates, Physical Review Letters 83 (25) (1999) 5198.
918
+ [22] M. R. Matthews, B. P. Anderson, P. Haljan, D. Hall, C. Wieman, E. A. Cornell, Vortices in a bose-einstein condensate, Physical Review
919
+ Letters 83 (13) (1999) 2498.
920
+ [23] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle, Observation of vortex lattices in bose-einstein condensates, Science 292 (5516) (2001)
921
+ 476–479.
922
+ [24] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian, T. Giamarchi, Quantum dynamics of impurities in a
923
+ one-dimensional bose gas, Physical Review A 85 (2) (2012) 023623.
924
+ [25] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J. Levinsen, R. S. Christensen, G. M. Bruun, J. J. Arlt, Observation of attractive
925
+ and repulsive polarons in a bose-einstein condensate, Physical review letters 117 (5) (2016) 055302.
926
+ [26] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A. Cornell, D. S. Jin, Bose polarons in the strongly interacting regime, Physical
927
+ review letters 117 (5) (2016) 055301.
928
+ [27] J. Akram, A. Pelster, Numerical study of localized impurity in a bose-einstein condensate, Physical Review A 93 (3) (2016) 033610.
929
+ [28] S. Shadkhoo, R. Bruinsma, Impurities in bose-einstein condensates: From polaron to soliton, Physical review letters 115 (13) (2015) 135305.
930
+ [29] A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, 1993. doi:10.
931
+ 1017/CBO9780511470752.
932
+ [30] M. Zvonarev, V. V. Cheianov, T. Giamarchi, Spin dynamics in a one-dimensional ferromagnetic bose gas, Physical review letters 99 (24)
933
+ (2007) 240404.
934
+ [31] A. Kleine, C. Kollath, I. McCulloch, T. Giamarchi, U. Schollw¨ock, Spin-charge separation in two-component bose gases, Physical Review A
935
+ 77 (1) (2008) 013607.
936
+ [32] M. Edmonds, M. Eto, M. Nitta, Synthetic superfluid chemistry with vortex-trapped quantum impurities, Physical Review Research 3 (2)
937
+ (2021) 023085.
938
+ [33] N. Spethmann, F. Kindermann, S. John, C. Weber, D. Meschede, A. Widera, Dynamics of single neutral impurity atoms immersed in an
939
+ ultracold gas, Physical review letters 109 (23) (2012) 235301.
940
+ 11
941
+
942
+ [34] L. M. Aycock, H. M. Hurst, D. K. Efimkin, D. Genkina, H.-I. Lu, V. M. Galitski, I. Spielman, Brownian motion of solitons in a bose–einstein
943
+ condensate, Proceedings of the National Academy of Sciences 114 (10) (2017) 2503–2508.
944
+ [35] L. Salasnich, A. Parola, L. Reatto, Modulational instability and complex dynamics of confined matter-wave solitons, Physical review letters
945
+ 91 (8) (2003) 080405.
946
+ [36] L. Carr, J. Brand, Spontaneous soliton formation and modulational instability in bose-einstein condensates, Physical review letters 92 (4)
947
+ (2004) 040401.
948
+ [37] J. Higbie, D. Stamper-Kurn, Periodically dressed bose-einstein condensate: A superfluid with an anisotropic and variable critical velocity,
949
+ Physical review letters 88 (9) (2002) 090401.
950
+ [38] U. Al Khawaja, H. Stoof, R. Hulet, K. Strecker, G. Partridge, Bright soliton trains of trapped bose-einstein condensates, Physical review
951
+ letters 89 (20) (2002) 200404.
952
+ [39] J. H. Nguyen, D. Luo, R. G. Hulet, Formation of matter-wave soliton trains by modulational instability, Science 356 (6336) (2017) 422–426.
953
+ [40] E. V. Goldstein, P. Meystre, Quasiparticle instabilities in multicomponent atomic condensates, Physical Review A 55 (4) (1997) 2935.
954
+ [41] L. Wen, W.-M. Liu, Y. Cai, J. Zhang, J. Hu, Controlling phase separation of a two-component bose-einstein condensate by confinement,
955
+ Physical Review A 85 (4) (2012) 043602.
956
+ [42] I. Vidanovi´c, N. Van Druten, M. Haque, Spin modulation instabilities and phase separation dynamics in trapped two-component bose con-
957
+ densates, New Journal of Physics 15 (3) (2013) 035008.
958
+ [43] I. A. Bhat, T. Mithun, B. Malomed, K. Porsezian, Modulational instability in binary spin-orbit-coupled bose-einstein condensates, Physical
959
+ Review A 92 (6) (2015) 063606.
960
+ [44] P. Otlaadisa, C. B. Tabi, T. C. Kofan´e, Modulation instability in helicoidal spin-orbit coupled open bose-einstein condensates, Physical Review
961
+ E 103 (5) (2021) 052206.
962
+ [45] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Observation of quantum droplets in a strongly dipolar bose gas, Physical review
963
+ letters 116 (21) (2016) 215301.
964
+ [46] M. Schmitt, M. Wenzel, F. B¨ottcher, I. Ferrier-Barbut, T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539 (7628)
965
+ (2016) 259–262.
966
+ [47] I. A. Bhat, S. Sivaprakasam, B. A. Malomed, Modulational instability and soliton generation in chiral bose-einstein condensates with zero-
967
+ energy nonlinearity, Physical Review E 103 (3) (2021) 032206.
968
+ [48] L. Devassy, C. P. Jisha, A. Alberucci, V. Kuriakose, Parity-time-symmetric solitons in trapped bose-einstein condensates and the influence of
969
+ varying complex potentials: a variational approach, Physical Review E 92 (2) (2015) 022914.
970
+ [49] http://www.fftw.org/.
971
+ [50] P. Kaur, A. Roy, S. Gautam, Fortress: Fortran programs for solving coupled gross–pitaevskii equations for spin–orbit coupled spin-1 bose–
972
+ einstein condensate, Computer Physics Communications 259 (2021) 107671.
973
+ 12
974
+
HdE2T4oBgHgl3EQfTwd_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
INAyT4oBgHgl3EQf5vp6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f2d3ab4068ef7c2bfe350f94f67e03838bc489ddc9728e516123bf2cdec966a
3
+ size 3866669
INAyT4oBgHgl3EQf5vp6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5c853cb8f8b9ad85a3c565cc47f5f8f91b11715f4b9d909fb04601fbe5e3dc7
3
+ size 156268
INE5T4oBgHgl3EQfWw9u/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c1b6c574a54d3b136b024bd6c5e8c466163ec4ec09a2f18e56fc69b146daa58
3
+ size 12386349
JNFOT4oBgHgl3EQfxjTe/content/2301.12925v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b5f94a6dadc0828922c22535a60052fa8672c9d57fe52a9fe5bf36f511d4802
3
+ size 257676
JNFOT4oBgHgl3EQfxjTe/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c76569579cf97a833b63fed3c7aae92dab32a66273fddfcc8fe8d4bc07eaaf2
3
+ size 2359341
JNFOT4oBgHgl3EQfxjTe/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2d2ceea954b3f40918a6006e8fdb5edd20afe31675e6c8a30a7b52d57d676c0
3
+ size 100816
JdFRT4oBgHgl3EQfzjg4/content/tmp_files/2301.13650v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
JdFRT4oBgHgl3EQfzjg4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LdE2T4oBgHgl3EQfAwbl/content/tmp_files/2301.03596v1.pdf.txt ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Memership Inference Attacks Against Latent Factor
2
+ Model
3
+ Dazhi Hu
4
+ College of Information Science and Technology, Donghua University, Shanghai China
5
6
+ Abstract.
7
+ The advent of the information age has led to the problems of information over-
8
+ load and unclear demands. As an information filtering system, personalized
9
+ recommendation systems predict users' behavior and preference for items and
10
+ improves users' information acquisition efficiency. However, recommendation
11
+ systems usually use highly sensitive user data for training. In this paper, we use
12
+ the latent factor model as the recommender to get the list of recommended
13
+ items, and we representing users from relevant items Compared with the tradi-
14
+ tional member inference against machine learning classifiers. We construct a
15
+ multilayer perceptron model with two hidden layers as the attack model to
16
+ complete the member inference. Moreover,a shadow recommender is estab-
17
+ lished to derive the labeled training data for the attack model. The attack model
18
+ is trained on the dataset generated by the shadow recommender and tested on
19
+ the dataset generated by the target recommender. The experimental data show
20
+ that the AUC index of our attack model can reach 0.857 on the real dataset
21
+ MovieLens, which shows that the attack model has good performance.
22
+ Keywords: membership inference, recommender systems, collaborative filter-
23
+ ing, LFM.
24
+ 1
25
+ Introduction
26
+ A recommender system is an information screening system that can predict a user's
27
+ evaluation or preference for an item. With the advent of the Internet age, human be-
28
+ ings have moved from "information shortage" to "information power". Consumers
29
+ hope to find content they are interested in in the massive information, and it is diffi-
30
+ cult for information producers to differentiate their products and attract people's atten-
31
+ tion, which leads to the problem of "information overload". As a tool to link users
32
+ with information, recommender systems can better deal with the problems of "infor-
33
+ mation overload" and "long tail", so as to provide users with personalized services.
34
+ There are three common recommendation methods: 1) Content-based recommenda-
35
+ tion algorithms. 2) Collaborative filtering recommendation algorithm. 3) Hybrid rec-
36
+ ommendation algorithm.
37
+ However, the success of recommender systems is based on large-scale user data,
38
+ which is very likely to leak users' privacy, such as users' facial information, social
39
+
40
+ 2
41
+ information, location information, medical information, etc. For example, as one of
42
+ the biological features of the human body, face information, like fingerprints and iris,
43
+ has become a means of proving one's identity. Face recognition technology, which
44
+ performs identity verification based on human facial features, has been widely used,
45
+ such as mobile phone unlocking, registration verification of various APPs, lending
46
+ and so on. According to security industry sources, using tools such as PS, you can
47
+ create a face image with a background, and then through dynamic video software, the
48
+ face photo can realize actions such as blinking, nodding, etc., combined with the now
49
+ very mature AI face changing Technology, with some audio simulation technology
50
+ and personal privacy information, will be used by criminals for video chat fraud. This
51
+ very confusing fraud method is not easy for ordinary people to identify, so it brings
52
+ serious information security risks. It is true that the wide application of machine
53
+ learning has brought people a lot of convenience, but it has also brought about the
54
+ problem of user privacy protection [1,44].
55
+ Therefore, this paper attempts to study the member speculation attack mecha-
56
+ nism in the implicit semantic recommendation system. The attacker's goal [20]is to
57
+ determine whether the target recommender uses the user's data for training, and to
58
+ evaluate the performance of the attack model through indicators such as AUC, so as
59
+ to gain a more comprehensive understanding of the recommendation system. There-
60
+ fore, defense measures such as popular randomization are proposed to achieve the
61
+ goal of privacy protection.
62
+ In this paper, a latent semantic recommendation system based on matrix decom-
63
+ position is used to generate a user-item matrix, and a stochastic gradient descent algo-
64
+ rithm is used to minimize the loss function and improve the recommendation perfor-
65
+ mance. In the past, most of the member speculation attacks of machine learning clas-
66
+ sifiers [30]were at the sample level, while this paper focuses on the user-level mem-
67
+ ber speculation attacks, that is, to determine whether the target recommender uses the
68
+ user's data for training, based on the user's interaction with the item and the recom-
69
+ mendation system. For user's recommendation, we extract the user's feature vector as
70
+ the input of the attack model. Compared with the previous work of most members
71
+ speculating on the attack, the attacker can only observe the recommended items from
72
+ the recommender system, not as the posterior probability. Recommended results.
73
+ User-level member speculation attack has wider application fields, and it can also
74
+ make us better understand the mechanism of member speculation attack.
75
+ 2
76
+ Recommender system related background knowledge
77
+ 2.1
78
+ Recommendation system definition and value
79
+ People are looking for what they need in the massive information, and at the same
80
+ time, the massive information is also looking for the right person. Two important
81
+ preconditions for the emergence of the system arise, namely information overload and
82
+ unclear requirements. Recommendation systems are widely used now. The most
83
+ common example is Taobao's recommendation algorithm, which can recommend
84
+
85
+ 3
86
+ things that you may be interested in based on your basic information, such as gender,
87
+ region, browsing. The recommender system essentially solves the problem of match-
88
+ ing users, items and environments, and helps to establish connections between users
89
+ and items. The recommendation system is a branch application of machine learning.
90
+ The recommendation system uses a lot of machine learning technology, and uses
91
+ various algorithms to build recommendation models to improve the accuracy, sur-
92
+ prise, coverage, etc. of recommendations, and even try to feedback changes in users'
93
+ interests, such as Today’s Toutiao APP pulls down to display new news, and feedback
94
+ changes in users’ interests in real time. The recommender system well meets the
95
+ needs of the "target" provider, the platform, and the user. Taking Taobao shopping as
96
+ an example, the provider of the "subject matter" is Taobao's thousands of store own-
97
+ ers, the platform is Taobao, and the user is the natural person or enterprise shopping
98
+ on Taobao. Through the recommendation system, products can be better exposed to
99
+ users who need to buy, and the allocation efficiency of social resources can be im-
100
+ proved.
101
+ 2.2
102
+ Existing Recommender System Algorithms
103
+ The recommendation algorithm is the core of the recommendation system. With the
104
+ continuous development of the recommendation system, the types of recommendation
105
+ algorithms are also increasing, and more and more attention has been paid by the
106
+ academic and industrial circles. Existing recommendation algorithms [21]can be di-
107
+ vided into content-based recommendation, collaborative filtering recommendation
108
+ and hybrid recommendation. Collaborative filtering recommendation can be divided
109
+ into neighborhood-based recommendation and model-based recommendation. In
110
+ neighborhood-based recommendation, user-based recommendation and item-based
111
+ recommendation are its two categories, and in model-based recommendation, latent
112
+ semantics, latent semantic model and graph model are the main research hotspot
113
+ models [16,40-43].
114
+ 2.3
115
+ Latent Semantic Model Recommendation System Algorithm
116
+ The recommendation algorithm adopted in this work is the implicit semantic model
117
+ algorithm. The latent semantic model algorithm was first proposed in the text field to
118
+ find the hidden semantics of the text. In 2006, it was used for recommendation. Its
119
+ core idea is to link user interests and items through implicit features, find potential
120
+ topics and categories based on user behavior, and then automatically cluster items into
121
+ different categories or theme.
122
+
123
+ 4
124
+ 3
125
+ Member Speculation Attack Design in Recommender Systems
126
+ 3.1
127
+ Member Speculation Attack Definition
128
+ At present, most machine learning systems are designed with only a weak threat mod-
129
+ el in mind. When faced with natural input, the system performance can be better re-
130
+ flected, but when encountering malicious users, the performance of these systems
131
+ may be greatly threatened.
132
+ A common definition of a membership inference attack is that, given access to a
133
+ data record and a target model, an attacker needs to determine whether that record is
134
+ in the model's training dataset. Specifically, it will directly reveal their private infor-
135
+ mation if it is known that the user's data is part of the recommender system's training
136
+ data. The essence of the member speculation attack is a binary classifier. The perfor-
137
+ mance of machine learning models on their training data and the test set data they
138
+ encounter for the first time is often different. The attacker's goal is to build an attack
139
+ model that can distinguish the behavioral differences of the target model, and use this
140
+ attack model to identify the target model. members and non-members.
141
+ After synthesizing the shadow dataset 𝐷′, the attacker starts to simulate the tar-
142
+ get model. If the target model is trained on a machine learning service platform, the
143
+ attacker can use the same service to train a simulated model. The purpose of this step
144
+ is to train a simulated model with the same or similar predictive ability as the target
145
+ model. In this way, the attacker can clearly grasp the information of the training data
146
+ and test data of the simulated model, thereby providing training data for the attacking
147
+ model. Based on the obtained attack model data, the attacker uses machine learning
148
+ models such as Naive Bayes, decision tree, and neural network to train the attack
149
+ model
150
+ 3.2
151
+ Member speculates attacking adversary information
152
+ enemy attack target
153
+ The adversary target means the degree of damage caused by the attacker's target,
154
+ which can be divided into: (1) Confidentiality attacks. Attackers try to steal structural
155
+ parameters about the target model, as well as confidential information such as training
156
+ data that contains sensitive information. (2) Integrity attack. Attackers try to induce
157
+ model output, affect the integrity of the training process, or affect the output of the
158
+ model's prediction phase. (3) Availability attacks. Attackers attempt to affect model
159
+ performance or quality of service, hinder or interrupt normal user requests for the
160
+ model, and make it untrustworthy in the target environment.
161
+ Adversary Background Information
162
+ The knowledge of the adversary inferred by the members of the attack is divided
163
+ into three categories: black-box knowledge, gray-box knowledge, and white-box
164
+ knowledge. Black-box knowledge: When the attacker does not have any expertise
165
+
166
+ 5
167
+ about the training data, the attacker has black-box knowledge at this time. Grey-box
168
+ knowledge: When the attacker knows part of the expertise about the training data, the
169
+ attacker has grey-box knowledge. White-box knowledge: An attacker with white-box
170
+ knowledge can obtain a certain version of the real data of the training data, and can
171
+ train the corresponding mirror model according to this version, or can use all the
172
+ knowledge of the network structure and parameters to attack the model.
173
+ 4
174
+ Evaluation of Member Speculation Attack Performance in
175
+ Recommender Systems
176
+ 4.1
177
+ Experimental setup
178
+ data set
179
+ The data used in this experiment is the MovieLens dataset provided by
180
+ GroupLens, which is a public dataset. The MovieLens dataset has been widely used as
181
+ an effective dataset that can be widely used and validated for algorithms. This dataset
182
+ provides a good source for recommender system scientists and researchers, and many
183
+ recommendation algorithms have been developed and validated with this dataset. The
184
+ dataset has been denoised and necessary processing and can be used directly. The
185
+ dataset used in this paper contains 100,836 ratings data for 9,742 movies by 610 users
186
+ during the period from 1996.3.29 to 2018.9.24. Users are randomly selected. All se-
187
+ lected users have rated at least 20 movies. Demographics are not included, each user
188
+ is represented by an id, and no other information is provided. Rating scores ranging
189
+ from 1 to 5 indicate how much the user likes the movie. The dataset is randomly di-
190
+ vided into two disjoint subsets, namely the shadow dataset and the target dataset.
191
+ Recommended method
192
+ Recommendation algorithms output recommended items based on the infor-
193
+ mation learned from the input. In this paper, the latent semantic algorithm is adopted,
194
+ the stochastic gradient descent algorithm is used to update the parameters with a
195
+ learning rate of 0.01, and the model is constructed with a regularization coefficient of
196
+ 0.01 to enhance the generalization ability of the model. The adversary can observe the
197
+ list of recommended items from the recommender system and employ a matrix factor-
198
+ ization method to project user movies into a shared latent space.
199
+ 4.2
200
+ Experimental results
201
+ To evaluate the attack performance, it is assumed that the adversary has a shadow
202
+ dataset from the same distribution as the target recommender's training data and
203
+ knows the target recommender's algorithm, for this paper, both the target recommend-
204
+ er and the shadow recommender are Use latent semantic models. Experimental results
205
+
206
+ 6
207
+ show that our attack model has good performance. Plotting the ROC curve, we get the
208
+ following image:
209
+
210
+ Fig.1. MLP model experiment ROC curve
211
+ Next, we try to explore the influence of the length k of the vector on the attack per-
212
+ formance. We evaluate the attack model performance from 10 to 100 different values,
213
+ as shown in Figure 4-2, the abscissa is the vector length, and the ordinate is the value
214
+ of AUC. According to the experimental results, we get the following conclusions:
215
+ when the vector length is less than 50, the attack performance improves with the in-
216
+ crease of k. When the value of k exceeds 50, the attack performance will theoretically
217
+ be improved, because a larger length vector can provide more dimensional perspec-
218
+ tives, however, when the vector length is large enough, the performance of the attack
219
+ model tends to be stable.
220
+
221
+ ROC
222
+ 10
223
+ 0.8
224
+ 0.2
225
+ Val AUC = 0.857
226
+ 0.0
227
+ 0.0
228
+ 0.2
229
+ 0.4
230
+ 0.6
231
+ 80
232
+ 1.0
233
+ False Positive Rate7
234
+
235
+ Fig. 2. Influence curve of vector length on attack performance
236
+
237
+ Fig. 3. Model attack performance under different learning rates
238
+ 5
239
+ Conclusion and Outlook
240
+ 5.1
241
+ Conclusion of the work of this paper
242
+ Personalized recommender systems have received more and more attention with the
243
+ deepening of research and the emergence of the needs of the Internet industry. Not
244
+ only traditional electronic websites need the functions and services of recommender
245
+ systems, but some emerging fields also introduce recommender systems. Music, mov-
246
+ ies, news are all recommended objects. This paper introduces several widely used
247
+ recommendation algorithms and the related work of member speculation attack, in-
248
+ troduces its basic principles, and proposes the recommendation algorithm and mem-
249
+ ber speculation attack model used in this experiment. In this paper, a personalized
250
+ 0.5
251
+ 0.55
252
+ 0.6
253
+ 0.65
254
+ 0.7
255
+ 0.75
256
+ 0.8
257
+ 0.85
258
+ 0.9
259
+ k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100
260
+ AUC
261
+ vector length
262
+ 0.3
263
+ 0.4
264
+ 0.5
265
+ 0.6
266
+ 0.7
267
+ 0.8
268
+ 0.9
269
+ 1E-5
270
+ 1E-4
271
+ 1E-3
272
+ 1E-2
273
+ 1E-1
274
+ AUC
275
+ learning rate
276
+
277
+ 8
278
+ recommendation implicit semantic model is used to generate a recommendation list,
279
+ and then the adversary extracts the user's feature vector, that is, the difference be-
280
+ tween the interaction and the center vector of the recommendation set, as the user's
281
+ feature vector. The user feature vector and labels are then used as input to the attack
282
+ model, which is trained on the shadow dataset and tested on the target dataset.
283
+ The disadvantage of this paper is that the recommendation algorithm is relatively
284
+ single, and the latent semantic model is used for both the shadow recommender and
285
+ the target recommender. The attack performance of the attack model when the shad-
286
+ ow data user and the target recommender use different recommendation algorithms
287
+ has not been verified. Therefore, the attack model lacks certain generalization ability.
288
+ In addition, due to the time relationship, this paper does not test defenses against
289
+ member speculation attacks, such as defense strategies such as reducing the number
290
+ of categories, publishing data using differential privacy protection, popular random-
291
+ ized recommendation algorithms, etc., which have been obtained in previous work.
292
+ Effective tests [19][20].
293
+ 5.2
294
+ Outlook for future work
295
+ This paper studies the member speculation attack of recommendation system based on
296
+ latent semantic model. Due to factors such as time and energy, the shadow recom-
297
+ mender and target recommender in this paper are the same recommendation algo-
298
+ rithm. In future research, the attack performance of different recommendation algo-
299
+ rithms can be tested. , such as item-based recommendation, neural network collabora-
300
+ tive filtering recommendation algorithm. For example, the shadow recommender uses
301
+ a neural network collaborative filtering algorithm, while the target recommender uses
302
+ a latent semantic recommendation algorithm to test the generalization ability of the
303
+ attack model based on different collocations. Furthermore, the impact of hyperparam-
304
+ eters on attack performance can be analyzed. Testing the attack performance from
305
+ different aspects can effectively improve the attack generalization ability of the mod-
306
+ el, and also help us to fully understand the attack mechanism of the members to pro-
307
+ pose a better defense mechanism.
308
+ References
309
+ [1]
310
+ Carlini N, Tramer F, Wallace E, et al. Extracting Training Data from Large Language
311
+ Models[J]. arXiv e-prints, 2020: arXiv: 2012.07805.
312
+ [2]
313
+ Homer N, Szelinger S, Redman M, et al. Resolving individuals contributing trace
314
+ amounts of DNA to highly complex mixtures using high-density SNP genotyping micro-
315
+ arrays[J]. PLoS genetics, 2008, 4(8): e1000167.
316
+ [3]
317
+ Wang R, Li Y F, Wang X F, et al. Learning your identity and disease from research pa-
318
+ pers: information leaks in genome wide association study[C]//Proceedings of the 16th
319
+ ACM conference on Computer and communications security. 2009: 534-544.
320
+ [4]
321
+ Backes M, Berrang P, Humbert M, et al. Membership privacy in MicroRNA-based stud-
322
+ ies[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
323
+ cations Security. 2016: 319-330.
324
+
325
+ 9
326
+ [5]
327
+ Pyrgelis A, Troncoso C, De Cristofaro E. Knock knock, who's there? Membership infer-
328
+ ence on aggregate location data[J]. arXiv preprint arXiv:1708.06145, 2017.
329
+ [6]
330
+ Xu F, Tu Z, Li Y, et al. Trajectory recovery from ash: User privacy is not preserved in
331
+ aggregated mobility data[C]//Proceedings of the 26th international conference on world
332
+ wide web. 2017: 1241-1250.
333
+ [7]
334
+ Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learn-
335
+ ing models[C]//2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 3-18.
336
+ [8]
337
+ Salem A, Zhang Y, Humbert M, et al. Ml-leaks: Model and data independent member-
338
+ ship inference attacks and defenses on machine learning models[J]. arXiv preprint
339
+ arXiv:1806.01246, 2018.
340
+ [9]
341
+ Truex S, Liu L, Gursoy M E, et al. Towards demystifying membership inference at-
342
+ tacks[J]. arXiv preprint arXiv:1807.09173, 2018.
343
+ [10] Melis L, Song C, De Cristofaro E, et al. Exploiting unintended feature leakage in collab-
344
+ orative learning[C]//2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019:
345
+ 691-706.
346
+ [11] Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning:
347
+ Passive and active white-box inference attacks against centralized and federated learn-
348
+ ing[C]//2019 IEEE symposium on security and privacy (SP). IEEE, 2019: 739-753.
349
+ [12] Hayes J, Melis L, Danezis G, et al. LOGAN: Membership inference attacks against gen-
350
+ erative models[C]// Proceedings on Privacy Enhancing Technologies, 2019, 1: 133-152.
351
+ [13] Long Y, Bindschaedler V, Wang L, et al. Understanding membership inferences on well-
352
+ generalized learning models[J]. arXiv preprint arXiv:1802.04889, 2018.
353
+ [14] Liu G, Wang C, Peng K, et al. Socinf: Membership inference attacks on social media
354
+ health data with machine learning[J]. IEEE Transactions on Computational Social Sys-
355
+ tems, 2019, 6(5): 907-921.
356
+ [15] Song C, Ristenpart T, Shmatikov V. Machine learning models that remember too
357
+ much[C]//Proceedings of the 2017 ACM SIGSAC Conference on computer and commu-
358
+ nications security. 2017: 587-601.
359
+ [16] Akermi I, Boughanem M, Faiz R. Just-in-time recommendation approach within a mo-
360
+ bile context[C]//2016 IEEE/WIC/ACM International Conference on Web Intelligence
361
+ (WI). IEEE, 2016: 636-639.
362
+ [17] Li Z, Hu C, Zhang Y, et al. How to prove your model belongs to you: Ablind-watermark
363
+ based framework to protect intellectual property of DNN[C]//Proceedings of the 35th
364
+ Annual Computer Security Applications Conference. 2019: 126-137.
365
+ [18] Biggio B, Fumera G, Roli F. Security evaluation of pattern classifiers under attack[J].
366
+ IEEE transactions on knowledge and data engineering, 2013, 26(4): 984-996.
367
+ [19] Draaijer S, Jordan S, Ogden H. Calculating the random guess score of multiple-response
368
+ and matching test items[C]//International Conference on Technology Enhanced Assess-
369
+ ment. Springer, Cham, 2017: 210-222.
370
+ [20] Zhang M,Ren Z,Wang Z,et al.Membership Inference Attacks Against Recommender
371
+ Systems[J].2021.
372
+ [21] Ping Zhao, Hongbo Jiang, John C. S. Lui, Chen Wang, Fanzi Zeng, Fu Xiao, and Zhetao
373
+ Li. P3-LOC: A Privacy-Preserving Paradigm-Driven Framework for Indoor Localization.
374
+ IEEE/ACM Transactions on Networking (ToN), vol. 26, no. 6, pp. 2856-2869, 2018.
375
+ [22] Hongbo Jiang, Yuanmeng Wang, Ping Zhao, Zhu Xiao. A Utility-Aware General
376
+ Framework with Quantifiable Privacy Preservation for Destination Prediction in LBSs.
377
+ IEEE/ACM Transactions on Networking (ToN), vol. 29, no. 5, pp. 2228-2241, 2021.
378
+
379
+ 10
380
+ [23] Ping Zhao, Jiaxin Sun, and Guanglin Zhang. DAML: Practical Secure Protocol for Data
381
+ Aggregation based on Machine Learning. ACM Transactions on Sensor Networks, vol.
382
+ 16, no. 4, pp. 1-18, 2020.
383
+ [24] Ping Zhao, Wuwu Liu, Guanglin Zhang, Zongpeng Li, and Lin Wang. Preserving Priva-
384
+ cy in WiFi Localization with Plausible Dummy Locations. IEEE Transactions on Ve-
385
+ hicular Technology, vol. 69, no. 10, pp. 11909-11925, 2020.
386
+ [25] Guanglin Zhang, Anqi Zhang, Ping Zhao, and Jiaxin Sun. Lightweight Privacy-
387
+ Preserving Scheme in WiFi Fingerprint-Based Indoor Localization. IEEE Systems Jour-
388
+ nal, vol. 14, no. 3, pp. 4638-4647, 2020.
389
+ [26] Ping Zhao, Jie Li, Fanzi Zeng, Fu Xiao, Chen Wang, Hongbo Jiang. ILLIA: Enabling k-
390
+ Anonymity-based Privacy Preserving against Location Injection Attacks in continuous
391
+ LBS Query. IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1033–1042, 2018.
392
+ [27] Ping Zhao, Hongbo Jiang, Jie Li, Fanzi Zeng, Xiao Zhu, Kun Xie, and Guanglin Zhang.
393
+ Synthesizing Privacy Preserving Traces: Enhancing Plausibility with Social Networks.
394
+ IEEE/ACM Transactions on Networking (ToN), vol. 27, no. 6, pp. 2391 – 2404, 2019.
395
+ [28] Ping Zhao, Jiawei Tao, Guanglin Zhang. Deep Reinforcement Learning-based Joint
396
+ Optimization of Delay and Privacy in Multiple-User MEC Systems. IEEE Transactions
397
+ on Cloud Computing, DOI: 10.1109/TCC.2022.3140231, 2022.
398
+ [29] Ping Zhao, Hongbo Jiang, Jie Li, Zhu Xiao, Daibo Liu, Ju Ren, Deke Guo. Garbage in,
399
+ Garbage out: Poisoning Attacks Disguised with Plausible Mobility in Data Aggregation.
400
+ IEEE Transactions on Network Science and Engineering (TNSE), vol. 8, no. 3, pp. 2679-
401
+ 2693, 2021.
402
+ [30] Ping Zhao, Xiaohui Zhao, Daiyu Huang, H. Huang. Privacy-Preserving Scheme against
403
+ Location Data Poisoning Attacks in Mobile-Edge Computing. IEEE Transactions on
404
+ Computational Social Systems, vol. 7, no. 3, pp. 818-826, 2020.
405
+ [31] Ping Zhao, Chen Wang, and Hongbo Jiang. On the Performance of k -Anonymity against
406
+ Inference Attacks with Background Information. IEEE Internet of Things Journal, vol. 6,
407
+ no. 1, pp. 808–819, 2018.
408
+ [32] Guanglin Zhang, Sifan Ni, and Ping Zhao. Enhancing Privacy Preservation in Speech
409
+ Data Publishing. IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7357-7367, 2020.
410
+ [33] Guanglin Zhang, Anqi Zhang, Ping Zhao. LocMIA: Membership Inference Attacks
411
+ against Aggregated Location Data. IEEE Internet of Things Journal, vol. 7, no. 12, pp.
412
+ 11778-11788, 2020.
413
+ [34] Guanglin Zhang, Sifan Ni and Ping Zhao. Learning-based Joint Optimization of Energy-
414
+ Delay and Privacy in Multiple-User Edge-Cloud Collaboration MEC Systems. IEEE In-
415
+ ternet of Things Journal, doi: 10.1109/JIOT.2021.3088607, 2021.
416
+ [35] P. Zhao, Z. Cao, J. Jiang and F. Gao, "Practical Private Aggregation in Federated Learn-
417
+ ing Against Inference Attack," in IEEE Internet of Things Journal, 2022, doi:
418
+ 10.1109/JIOT.2022.3201231.
419
+ [36] Hongbo Jiang, Yu Zhang, Zhu Xiao, Ping Zhao and Arun Iyengar. An Empirical Study
420
+ of Travel Behavior Using Private Car Trajectory Data. IEEE Transactions on Network
421
+ Science and Engineering, vol. 8, no. 1, pp. 53-64, 2021.
422
+ [37] H Jiang, P Zhao, C Wang. RobLoP: Towards robust privacy preserving against location
423
+ dependent attacks in continuous LBS queries[J]. IEEE/ACM Transactions on Network-
424
+ ing, 2018, 26(2): 1018-1032.
425
+ [38] H Jiang, J Cheng, D Wang, C Wang, G Tan. Continuous multi-dimensional top-k query
426
+ processing in sensor networks[C]//2011 Proceedings IEEE INFOCOM. IEEE, 2011: 793-
427
+ 801.
428
+
429
+ 11
430
+ [39] X Ma, H Wang, H Li, J Liu, H Jiang. Exploring sharing patterns for video recommenda-
431
+ tion on YouTube-like social media[J]. Multimedia Systems, 2014, 20(6): 675-691.
432
+ [40] H Jiang, W Liu, D Wang, C Tian, X Bai, X Liu, Y Wu, W Liu. CASE: Connectivity-
433
+ based skeleton extraction in wireless sensor networks[C]//IEEE INFOCOM 2009. IEEE,
434
+ 2009: 2916-2920.
435
+ [41] D Wang, J Fan, Z Xiao, H Jiang, H Chen, F Zeng, K Li. Stop-and-wait: Discover aggre-
436
+ gation effect based on private car trajectory data[J]. IEEE transactions on intelligent
437
+ transportation systems, 2018, 20(10): 3623-3633.
438
+ [42] T Liu, JCS Lui, X Ma, H Jiang. Enabling relay-assisted D2D communication for cellular
439
+ networks: Algorithm and protocols[J]. IEEE Internet of Things Journal, 2018, 5(4):
440
+ 3136-3150.
441
+ [43] Jie Li, Fanzi Zeng, Zhu Xiao, Hongbo Jiang, Zhirun Zheng, Wenping Liu, Ju Ren.
442
+ Drive2friends: Inferring social relationships from individual vehicle mobility data[J].
443
+ IEEE Internet of Things Journal, 2020, 7(6): 5116-5127.
444
+ [44] Z Xiao, D Xiao, V Havyarimana, H Jiang, D Liu, D Wang, F Zeng. Toward accurate
445
+ vehicle state estimation under non-Gaussian noises[J]. IEEE Internet of Things Journal,
446
+ 2019, 6(6): 10652-10664.
447
+ [45] P Zhang, X Chen, X Ma, Y Wu, H Jiang, D Fang, Z Tang, Y Ma. SmartMTra: Robust
448
+ indoor trajectory tracing using smartphones[J]. IEEE Sensors Journal, 2017, 17(12):
449
+ 3613-3624.
450
+
LdE2T4oBgHgl3EQfAwbl/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf,len=356
2
+ page_content='Memership Inference Attacks Against Latent Factor Model Dazhi Hu College of Information Science and Technology, Donghua University, Shanghai China 2222053@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
3
+ page_content='dhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
4
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
5
+ page_content='cn Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
6
+ page_content=' The advent of the information age has led to the problems of information over- load and unclear demands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
7
+ page_content=" As an information filtering system, personalized recommendation systems predict users' behavior and preference for items and improves users' information acquisition efficiency." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
8
+ page_content=' However, recommendation systems usually use highly sensitive user data for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
9
+ page_content=' In this paper, we use the latent factor model as the recommender to get the list of recommended items, and we representing users from relevant items Compared with the tradi- tional member inference against machine learning classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
10
+ page_content=' We construct a multilayer perceptron model with two hidden layers as the attack model to complete the member inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
11
+ page_content=' Moreover,a shadow recommender is estab- lished to derive the labeled training data for the attack model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
12
+ page_content=' The attack model is trained on the dataset generated by the shadow recommender and tested on the dataset generated by the target recommender.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
13
+ page_content=' The experimental data show that the AUC index of our attack model can reach 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
14
+ page_content='857 on the real dataset MovieLens, which shows that the attack model has good performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
15
+ page_content=' Keywords: membership inference, recommender systems, collaborative filter- ing, LFM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
16
+ page_content=" 1 Introduction A recommender system is an information screening system that can predict a user's evaluation or preference for an item." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
17
+ page_content=' With the advent of the Internet age, human be- ings have moved from "information shortage" to "information power".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
18
+ page_content=' Consumers hope to find content they are interested in in the massive information, and it is diffi- cult for information producers to differentiate their products and attract people\'s atten- tion, which leads to the problem of "information overload".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
19
+ page_content=' As a tool to link users with information, recommender systems can better deal with the problems of "infor- mation overload" and "long tail", so as to provide users with personalized services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
20
+ page_content=' There are three common recommendation methods: 1) Content-based recommenda- tion algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
21
+ page_content=' 2) Collaborative filtering recommendation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
22
+ page_content=' 3) Hybrid rec- ommendation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
23
+ page_content=" However, the success of recommender systems is based on large-scale user data, which is very likely to leak users' privacy, such as users' facial information, social 2 information, location information, medical information, etc." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
24
+ page_content=" For example, as one of the biological features of the human body, face information, like fingerprints and iris, has become a means of proving one's identity." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
25
+ page_content=' Face recognition technology, which performs identity verification based on human facial features, has been widely used, such as mobile phone unlocking, registration verification of various APPs, lending and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
26
+ page_content=' According to security industry sources, using tools such as PS, you can create a face image with a background, and then through dynamic video software, the face photo can realize actions such as blinking, nodding, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
27
+ page_content=', combined with the now very mature AI face changing Technology, with some audio simulation technology and personal privacy information, will be used by criminals for video chat fraud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
28
+ page_content=' This very confusing fraud method is not easy for ordinary people to identify, so it brings serious information security risks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
29
+ page_content=' It is true that the wide application of machine learning has brought people a lot of convenience, but it has also brought about the problem of user privacy protection [1,44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
30
+ page_content=' Therefore, this paper attempts to study the member speculation attack mecha- nism in the implicit semantic recommendation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
31
+ page_content=" The attacker's goal [20]is to determine whether the target recommender uses the user's data for training, and to evaluate the performance of the attack model through indicators such as AUC, so as to gain a more comprehensive understanding of the recommendation system." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
32
+ page_content=' There- fore, defense measures such as popular randomization are proposed to achieve the goal of privacy protection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
33
+ page_content=' In this paper, a latent semantic recommendation system based on matrix decom- position is used to generate a user-item matrix, and a stochastic gradient descent algo- rithm is used to minimize the loss function and improve the recommendation perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
34
+ page_content=" In the past, most of the member speculation attacks of machine learning clas- sifiers [30]were at the sample level, while this paper focuses on the user-level mem- ber speculation attacks, that is, to determine whether the target recommender uses the user's data for training, based on the user's interaction with the item and the recom- mendation system." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
35
+ page_content=" For user's recommendation, we extract the user's feature vector as the input of the attack model." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
36
+ page_content=' Compared with the previous work of most members speculating on the attack, the attacker can only observe the recommended items from the recommender system, not as the posterior probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
37
+ page_content=' Recommended results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
38
+ page_content=' User-level member speculation attack has wider application fields, and it can also make us better understand the mechanism of member speculation attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
39
+ page_content=' 2 Recommender system related background knowledge 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
40
+ page_content='1 Recommendation system definition and value People are looking for what they need in the massive information, and at the same time, the massive information is also looking for the right person.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
41
+ page_content=' Two important preconditions for the emergence of the system arise, namely information overload and unclear requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
42
+ page_content=' Recommendation systems are widely used now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
43
+ page_content=" The most common example is Taobao's recommendation algorithm, which can recommend 3 things that you may be interested in based on your basic information, such as gender, region, browsing." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
44
+ page_content=' The recommender system essentially solves the problem of match- ing users, items and environments, and helps to establish connections between users and items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
45
+ page_content=' The recommendation system is a branch application of machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
46
+ page_content=' The recommendation system uses a lot of machine learning technology, and uses various algorithms to build recommendation models to improve the accuracy, sur- prise, coverage, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
47
+ page_content=" of recommendations, and even try to feedback changes in users' interests, such as Today’s Toutiao APP pulls down to display new news, and feedback changes in users’ interests in real time." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
48
+ page_content=' The recommender system well meets the needs of the "target" provider, the platform, and the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
49
+ page_content=' Taking Taobao shopping as an example, the provider of the "subject matter" is Taobao\'s thousands of store own- ers, the platform is Taobao, and the user is the natural person or enterprise shopping on Taobao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
50
+ page_content=' Through the recommendation system, products can be better exposed to users who need to buy, and the allocation efficiency of social resources can be im- proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
51
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
52
+ page_content='2 Existing Recommender System Algorithms The recommendation algorithm is the core of the recommendation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
53
+ page_content=' With the continuous development of the recommendation system, the types of recommendation algorithms are also increasing, and more and more attention has been paid by the academic and industrial circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
54
+ page_content=' Existing recommendation algorithms [21]can be di- vided into content-based recommendation, collaborative filtering recommendation and hybrid recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
55
+ page_content=' Collaborative filtering recommendation can be divided into neighborhood-based recommendation and model-based recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
56
+ page_content=' In neighborhood-based recommendation, user-based recommendation and item-based recommendation are its two categories, and in model-based recommendation, latent semantics, latent semantic model and graph model are the main research hotspot models [16,40-43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
57
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
58
+ page_content='3 Latent Semantic Model Recommendation System Algorithm The recommendation algorithm adopted in this work is the implicit semantic model algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
59
+ page_content=' The latent semantic model algorithm was first proposed in the text field to find the hidden semantics of the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
60
+ page_content=' In 2006, it was used for recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
61
+ page_content=' Its core idea is to link user interests and items through implicit features, find potential topics and categories based on user behavior, and then automatically cluster items into different categories or theme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
62
+ page_content=' 4 3 Member Speculation Attack Design in Recommender Systems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
63
+ page_content='1 Member Speculation Attack Definition At present, most machine learning systems are designed with only a weak threat mod- el in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
64
+ page_content=' When faced with natural input, the system performance can be better re- flected, but when encountering malicious users, the performance of these systems may be greatly threatened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
65
+ page_content=" A common definition of a membership inference attack is that, given access to a data record and a target model, an attacker needs to determine whether that record is in the model's training dataset." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
66
+ page_content=" Specifically, it will directly reveal their private infor- mation if it is known that the user's data is part of the recommender system's training data." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
67
+ page_content=' The essence of the member speculation attack is a binary classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
68
+ page_content=' The perfor- mance of machine learning models on their training data and the test set data they encounter for the first time is often different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
69
+ page_content=" The attacker's goal is to build an attack model that can distinguish the behavioral differences of the target model, and use this attack model to identify the target model." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
70
+ page_content=' members and non-members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
71
+ page_content=' After synthesizing the shadow dataset 𝐷′, the attacker starts to simulate the tar- get model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
72
+ page_content=' If the target model is trained on a machine learning service platform, the attacker can use the same service to train a simulated model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
73
+ page_content=' The purpose of this step is to train a simulated model with the same or similar predictive ability as the target model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
74
+ page_content=' In this way, the attacker can clearly grasp the information of the training data and test data of the simulated model, thereby providing training data for the attacking model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
75
+ page_content=' Based on the obtained attack model data, the attacker uses machine learning models such as Naive Bayes, decision tree, and neural network to train the attack model 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
76
+ page_content="2 Member speculates attacking adversary information enemy attack target The adversary target means the degree of damage caused by the attacker's target, which can be divided into: (1) Confidentiality attacks." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
77
+ page_content=' Attackers try to steal structural parameters about the target model, as well as confidential information such as training data that contains sensitive information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
78
+ page_content=' (2) Integrity attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
79
+ page_content=" Attackers try to induce model output, affect the integrity of the training process, or affect the output of the model's prediction phase." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
80
+ page_content=' (3) Availability attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
81
+ page_content=' Attackers attempt to affect model performance or quality of service, hinder or interrupt normal user requests for the model, and make it untrustworthy in the target environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
82
+ page_content=' Adversary Background Information The knowledge of the adversary inferred by the members of the attack is divided into three categories: black-box knowledge, gray-box knowledge, and white-box knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
83
+ page_content=' Black-box knowledge: When the attacker does not have any expertise 5 about the training data, the attacker has black-box knowledge at this time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
84
+ page_content=' Grey-box knowledge: When the attacker knows part of the expertise about the training data, the attacker has grey-box knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
85
+ page_content=' White-box knowledge: An attacker with white-box knowledge can obtain a certain version of the real data of the training data, and can train the corresponding mirror model according to this version, or can use all the knowledge of the network structure and parameters to attack the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
86
+ page_content=' 4 Evaluation of Member Speculation Attack Performance in Recommender Systems 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
87
+ page_content='1 Experimental setup data set The data used in this experiment is the MovieLens dataset provided by GroupLens, which is a public dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
88
+ page_content=' The MovieLens dataset has been widely used as an effective dataset that can be widely used and validated for algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
89
+ page_content=' This dataset provides a good source for recommender system scientists and researchers, and many recommendation algorithms have been developed and validated with this dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
90
+ page_content=' The dataset has been denoised and necessary processing and can be used directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
91
+ page_content=' The dataset used in this paper contains 100,836 ratings data for 9,742 movies by 610 users during the period from 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
92
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
93
+ page_content='29 to 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
94
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
95
+ page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
96
+ page_content=' Users are randomly selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
97
+ page_content=' All se- lected users have rated at least 20 movies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
98
+ page_content=' Demographics are not included, each user is represented by an id, and no other information is provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
99
+ page_content=' Rating scores ranging from 1 to 5 indicate how much the user likes the movie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
100
+ page_content=' The dataset is randomly di- vided into two disjoint subsets, namely the shadow dataset and the target dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
101
+ page_content=' Recommended method Recommendation algorithms output recommended items based on the infor- mation learned from the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
102
+ page_content=' In this paper, the latent semantic algorithm is adopted, the stochastic gradient descent algorithm is used to update the parameters with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
103
+ page_content='01, and the model is constructed with a regularization coefficient of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
104
+ page_content='01 to enhance the generalization ability of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
105
+ page_content=' The adversary can observe the list of recommended items from the recommender system and employ a matrix factor- ization method to project user movies into a shared latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
106
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
107
+ page_content="2 Experimental results To evaluate the attack performance, it is assumed that the adversary has a shadow dataset from the same distribution as the target recommender's training data and knows the target recommender's algorithm, for this paper, both the target recommend- er and the shadow recommender are Use latent semantic models." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
108
+ page_content=' Experimental results 6 show that our attack model has good performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
109
+ page_content=' Plotting the ROC curve, we get the following image: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
110
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
111
+ page_content=' MLP model experiment ROC curve Next, we try to explore the influence of the length k of the vector on the attack per- formance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
112
+ page_content=' We evaluate the attack model performance from 10 to 100 different values, as shown in Figure 4-2, the abscissa is the vector length, and the ordinate is the value of AUC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
113
+ page_content=' According to the experimental results, we get the following conclusions: when the vector length is less than 50, the attack performance improves with the in- crease of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
114
+ page_content=' When the value of k exceeds 50, the attack performance will theoretically be improved, because a larger length vector can provide more dimensional perspec- tives, however, when the vector length is large enough, the performance of the attack model tends to be stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
115
+ page_content=' ROC 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
116
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
117
+ page_content='2 Val AUC = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
118
+ page_content='857 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
119
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
120
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
121
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
122
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
123
+ page_content='6 80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
124
+ page_content='0 False Positive Rate7 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
125
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
126
+ page_content=' Influence curve of vector length on attack performance Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
127
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
128
+ page_content=' Model attack performance under different learning rates 5 Conclusion and Outlook 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
129
+ page_content='1 Conclusion of the work of this paper Personalized recommender systems have received more and more attention with the deepening of research and the emergence of the needs of the Internet industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
130
+ page_content=' Not only traditional electronic websites need the functions and services of recommender systems, but some emerging fields also introduce recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
131
+ page_content=' Music, mov- ies, news are all recommended objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
132
+ page_content=' This paper introduces several widely used recommendation algorithms and the related work of member speculation attack, in- troduces its basic principles, and proposes the recommendation algorithm and mem- ber speculation attack model used in this experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
133
+ page_content=' In this paper, a personalized 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
134
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
135
+ page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
136
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
137
+ page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
138
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
139
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
140
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
141
+ page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
142
+ page_content='9 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 AUC vector length 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
143
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
144
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
145
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
146
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
147
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
148
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
149
+ page_content="9 1E-5 1E-4 1E-3 1E-2 1E-1 AUC learning rate 8 recommendation implicit semantic model is used to generate a recommendation list, and then the adversary extracts the user's feature vector, that is, the difference be- tween the interaction and the center vector of the recommendation set, as the user's feature vector." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
150
+ page_content=' The user feature vector and labels are then used as input to the attack model, which is trained on the shadow dataset and tested on the target dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
151
+ page_content=' The disadvantage of this paper is that the recommendation algorithm is relatively single, and the latent semantic model is used for both the shadow recommender and the target recommender.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
152
+ page_content=' The attack performance of the attack model when the shad- ow data user and the target recommender use different recommendation algorithms has not been verified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
153
+ page_content=' Therefore, the attack model lacks certain generalization ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
154
+ page_content=' In addition, due to the time relationship, this paper does not test defenses against member speculation attacks, such as defense strategies such as reducing the number of categories, publishing data using differential privacy protection, popular random- ized recommendation algorithms, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
155
+ page_content=', which have been obtained in previous work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
156
+ page_content=' Effective tests [19][20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
157
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
158
+ page_content='2 Outlook for future work This paper studies the member speculation attack of recommendation system based on latent semantic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
159
+ page_content=' Due to factors such as time and energy, the shadow recom- mender and target recommender in this paper are the same recommendation algo- rithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
160
+ page_content=' In future research, the attack performance of different recommendation algo- rithms can be tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
161
+ page_content=' , such as item-based recommendation, neural network collabora- tive filtering recommendation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
162
+ page_content=' For example, the shadow recommender uses a neural network collaborative filtering algorithm, while the target recommender uses a latent semantic recommendation algorithm to test the generalization ability of the attack model based on different collocations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
163
+ page_content=' Furthermore, the impact of hyperparam- eters on attack performance can be analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
164
+ page_content=' Testing the attack performance from different aspects can effectively improve the attack generalization ability of the mod- el, and also help us to fully understand the attack mechanism of the members to pro- pose a better defense mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
165
+ page_content=' References [1] Carlini N, Tramer F, Wallace E, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
166
+ page_content=' Extracting Training Data from Large Language Models[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
167
+ page_content=' arXiv e-prints, 2020: arXiv: 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
168
+ page_content='07805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
169
+ page_content=' [2] Homer N, Szelinger S, Redman M, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
170
+ page_content=' Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping micro- arrays[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
171
+ page_content=' PLoS genetics, 2008, 4(8): e1000167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
172
+ page_content=' [3] Wang R, Li Y F, Wang X F, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
173
+ page_content=' Learning your identity and disease from research pa- pers: information leaks in genome wide association study[C]//Proceedings of the 16th ACM conference on Computer and communications security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
174
+ page_content=' 2009: 534-544.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
175
+ page_content=' [4] Backes M, Berrang P, Humbert M, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
176
+ page_content=' Membership privacy in MicroRNA-based stud- ies[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi- cations Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
177
+ page_content=' 2016: 319-330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
178
+ page_content=' 9 [5] Pyrgelis A, Troncoso C, De Cristofaro E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
179
+ page_content=" Knock knock, who's there?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
180
+ page_content=' Membership infer- ence on aggregate location data[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
181
+ page_content=' arXiv preprint arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
182
+ page_content='06145, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
183
+ page_content=' [6] Xu F, Tu Z, Li Y, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
184
+ page_content=' Trajectory recovery from ash: User privacy is not preserved in aggregated mobility data[C]//Proceedings of the 26th international conference on world wide web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
185
+ page_content=' 2017: 1241-1250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
186
+ page_content=' [7] Shokri R, Stronati M, Song C, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
187
+ page_content=' Membership inference attacks against machine learn- ing models[C]//2017 IEEE symposium on security and privacy (SP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
188
+ page_content=' IEEE, 2017: 3-18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
189
+ page_content=' [8] Salem A, Zhang Y, Humbert M, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
190
+ page_content=' Ml-leaks: Model and data independent member- ship inference attacks and defenses on machine learning models[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
191
+ page_content=' arXiv preprint arXiv:1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
192
+ page_content='01246, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
193
+ page_content=' [9] Truex S, Liu L, Gursoy M E, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
194
+ page_content=' Towards demystifying membership inference at- tacks[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
195
+ page_content=' arXiv preprint arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
196
+ page_content='09173, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
197
+ page_content=' [10] Melis L, Song C, De Cristofaro E, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
198
+ page_content=' Exploiting unintended feature leakage in collab- orative learning[C]//2019 IEEE Symposium on Security and Privacy (SP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
199
+ page_content=' IEEE, 2019: 691-706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
200
+ page_content=' [11] Nasr M, Shokri R, Houmansadr A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
201
+ page_content=' Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learn- ing[C]//2019 IEEE symposium on security and privacy (SP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
202
+ page_content=' IEEE, 2019: 739-753.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
203
+ page_content=' [12] Hayes J, Melis L, Danezis G, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
204
+ page_content=' LOGAN: Membership inference attacks against gen- erative models[C]// Proceedings on Privacy Enhancing Technologies, 2019, 1: 133-152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
205
+ page_content=' [13] Long Y, Bindschaedler V, Wang L, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
206
+ page_content=' Understanding membership inferences on well- generalized learning models[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
207
+ page_content=' arXiv preprint arXiv:1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
208
+ page_content='04889, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
209
+ page_content=' [14] Liu G, Wang C, Peng K, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
210
+ page_content=' Socinf: Membership inference attacks on social media health data with machine learning[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
211
+ page_content=' IEEE Transactions on Computational Social Sys- tems, 2019, 6(5): 907-921.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
212
+ page_content=' [15] Song C, Ristenpart T, Shmatikov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
213
+ page_content=' Machine learning models that remember too much[C]//Proceedings of the 2017 ACM SIGSAC Conference on computer and commu- nications security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
214
+ page_content=' 2017: 587-601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
215
+ page_content=' [16] Akermi I, Boughanem M, Faiz R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
216
+ page_content=' Just-in-time recommendation approach within a mo- bile context[C]//2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
217
+ page_content=' IEEE, 2016: 636-639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
218
+ page_content=' [17] Li Z, Hu C, Zhang Y, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
219
+ page_content=' How to prove your model belongs to you: Ablind-watermark based framework to protect intellectual property of DNN[C]//Proceedings of the 35th Annual Computer Security Applications Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
220
+ page_content=' 2019: 126-137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
221
+ page_content=' [18] Biggio B, Fumera G, Roli F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
222
+ page_content=' Security evaluation of pattern classifiers under attack[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
223
+ page_content=' IEEE transactions on knowledge and data engineering, 2013, 26(4): 984-996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
224
+ page_content=' [19] Draaijer S, Jordan S, Ogden H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
225
+ page_content=' Calculating the random guess score of multiple-response and matching test items[C]//International Conference on Technology Enhanced Assess- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
226
+ page_content=' Springer, Cham, 2017: 210-222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
227
+ page_content=' [20] Zhang M,Ren Z,Wang Z,et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
228
+ page_content='Membership Inference Attacks Against Recommender Systems[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
229
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
230
+ page_content=' [21] Ping Zhao, Hongbo Jiang, John C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
231
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
232
+ page_content=' Lui, Chen Wang, Fanzi Zeng, Fu Xiao, and Zhetao Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
233
+ page_content=' P3-LOC: A Privacy-Preserving Paradigm-Driven Framework for Indoor Localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
234
+ page_content=' IEEE/ACM Transactions on Networking (ToN), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
235
+ page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
236
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
237
+ page_content=' 2856-2869, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
238
+ page_content=' [22] Hongbo Jiang, Yuanmeng Wang, Ping Zhao, Zhu Xiao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
239
+ page_content=' A Utility-Aware General Framework with Quantifiable Privacy Preservation for Destination Prediction in LBSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
240
+ page_content=' IEEE/ACM Transactions on Networking (ToN), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
241
+ page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
242
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
243
+ page_content=' 2228-2241, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
244
+ page_content=' 10 [23] Ping Zhao, Jiaxin Sun, and Guanglin Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
245
+ page_content=' DAML: Practical Secure Protocol for Data Aggregation based on Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
246
+ page_content=' ACM Transactions on Sensor Networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
247
+ page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
248
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
249
+ page_content=' 1-18, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
250
+ page_content=' [24] Ping Zhao, Wuwu Liu, Guanglin Zhang, Zongpeng Li, and Lin Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
251
+ page_content=' Preserving Priva- cy in WiFi Localization with Plausible Dummy Locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
252
+ page_content=' IEEE Transactions on Ve- hicular Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
253
+ page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
254
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
255
+ page_content=' 11909-11925, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
256
+ page_content=' [25] Guanglin Zhang, Anqi Zhang, Ping Zhao, and Jiaxin Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
257
+ page_content=' Lightweight Privacy- Preserving Scheme in WiFi Fingerprint-Based Indoor Localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
258
+ page_content=' IEEE Systems Jour- nal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
259
+ page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
260
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
261
+ page_content=' 4638-4647, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
262
+ page_content=' [26] Ping Zhao, Jie Li, Fanzi Zeng, Fu Xiao, Chen Wang, Hongbo Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
263
+ page_content=' ILLIA: Enabling k- Anonymity-based Privacy Preserving against Location Injection Attacks in continuous LBS Query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
264
+ page_content=' IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
265
+ page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
266
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
267
+ page_content=' 1033–1042, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
268
+ page_content=' [27] Ping Zhao, Hongbo Jiang, Jie Li, Fanzi Zeng, Xiao Zhu, Kun Xie, and Guanglin Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
269
+ page_content=' Synthesizing Privacy Preserving Traces: Enhancing Plausibility with Social Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
270
+ page_content=' IEEE/ACM Transactions on Networking (ToN), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
271
+ page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
272
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
273
+ page_content=' 2391 – 2404, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
274
+ page_content=' [28] Ping Zhao, Jiawei Tao, Guanglin Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
275
+ page_content=' Deep Reinforcement Learning-based Joint Optimization of Delay and Privacy in Multiple-User MEC Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
276
+ page_content=' IEEE Transactions on Cloud Computing, DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
277
+ page_content='1109/TCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
278
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
279
+ page_content='3140231, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
280
+ page_content=' [29] Ping Zhao, Hongbo Jiang, Jie Li, Zhu Xiao, Daibo Liu, Ju Ren, Deke Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
281
+ page_content=' Garbage in, Garbage out: Poisoning Attacks Disguised with Plausible Mobility in Data Aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
282
+ page_content=' IEEE Transactions on Network Science and Engineering (TNSE), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
283
+ page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
284
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
285
+ page_content=' 2679- 2693, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
286
+ page_content=' [30] Ping Zhao, Xiaohui Zhao, Daiyu Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
287
+ page_content=' Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
288
+ page_content=' Privacy-Preserving Scheme against Location Data Poisoning Attacks in Mobile-Edge Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
289
+ page_content=' IEEE Transactions on Computational Social Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
290
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
291
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
292
+ page_content=' 818-826, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
293
+ page_content=' [31] Ping Zhao, Chen Wang, and Hongbo Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
294
+ page_content=' On the Performance of k -Anonymity against Inference Attacks with Background Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
295
+ page_content=' IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
296
+ page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
297
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
298
+ page_content=' 808–819, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
299
+ page_content=' [32] Guanglin Zhang, Sifan Ni, and Ping Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
300
+ page_content=' Enhancing Privacy Preservation in Speech Data Publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
301
+ page_content=' IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
302
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
303
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
304
+ page_content=' 7357-7367, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
305
+ page_content=' [33] Guanglin Zhang, Anqi Zhang, Ping Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
306
+ page_content=' LocMIA: Membership Inference Attacks against Aggregated Location Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
307
+ page_content=' IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
308
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
309
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
310
+ page_content=' 11778-11788, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
311
+ page_content=' [34] Guanglin Zhang, Sifan Ni and Ping Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
312
+ page_content=' Learning-based Joint Optimization of Energy- Delay and Privacy in Multiple-User Edge-Cloud Collaboration MEC Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
313
+ page_content=' IEEE In- ternet of Things Journal, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
314
+ page_content='1109/JIOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
315
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
316
+ page_content='3088607, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
317
+ page_content=' [35] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
318
+ page_content=' Zhao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
319
+ page_content=' Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
320
+ page_content=' Jiang and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
321
+ page_content=' Gao, "Practical Private Aggregation in Federated Learn- ing Against Inference Attack," in IEEE Internet of Things Journal, 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
322
+ page_content='1109/JIOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
323
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
324
+ page_content='3201231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
325
+ page_content=' [36] Hongbo Jiang, Yu Zhang, Zhu Xiao, Ping Zhao and Arun Iyengar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
326
+ page_content=' An Empirical Study of Travel Behavior Using Private Car Trajectory Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
327
+ page_content=' IEEE Transactions on Network Science and Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
328
+ page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
329
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
330
+ page_content=' 53-64, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
331
+ page_content=' [37] H Jiang, P Zhao, C Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
332
+ page_content=' RobLoP: Towards robust privacy preserving against location dependent attacks in continuous LBS queries[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
333
+ page_content=' IEEE/ACM Transactions on Network- ing, 2018, 26(2): 1018-1032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
334
+ page_content=' [38] H Jiang, J Cheng, D Wang, C Wang, G Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
335
+ page_content=' Continuous multi-dimensional top-k query processing in sensor networks[C]//2011 Proceedings IEEE INFOCOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
336
+ page_content=' IEEE, 2011: 793- 801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
337
+ page_content=' 11 [39] X Ma, H Wang, H Li, J Liu, H Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
338
+ page_content=' Exploring sharing patterns for video recommenda- tion on YouTube-like social media[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
339
+ page_content=' Multimedia Systems, 2014, 20(6): 675-691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
340
+ page_content=' [40] H Jiang, W Liu, D Wang, C Tian, X Bai, X Liu, Y Wu, W Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
341
+ page_content=' CASE: Connectivity- based skeleton extraction in wireless sensor networks[C]//IEEE INFOCOM 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
342
+ page_content=' IEEE, 2009: 2916-2920.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
343
+ page_content=' [41] D Wang, J Fan, Z Xiao, H Jiang, H Chen, F Zeng, K Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
344
+ page_content=' Stop-and-wait: Discover aggre- gation effect based on private car trajectory data[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
345
+ page_content=' IEEE transactions on intelligent transportation systems, 2018, 20(10): 3623-3633.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
346
+ page_content=' [42] T Liu, JCS Lui, X Ma, H Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
347
+ page_content=' Enabling relay-assisted D2D communication for cellular networks: Algorithm and protocols[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
348
+ page_content=' IEEE Internet of Things Journal, 2018, 5(4): 3136-3150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
349
+ page_content=' [43] Jie Li, Fanzi Zeng, Zhu Xiao, Hongbo Jiang, Zhirun Zheng, Wenping Liu, Ju Ren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
350
+ page_content=' Drive2friends: Inferring social relationships from individual vehicle mobility data[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
351
+ page_content=' IEEE Internet of Things Journal, 2020, 7(6): 5116-5127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
352
+ page_content=' [44] Z Xiao, D Xiao, V Havyarimana, H Jiang, D Liu, D Wang, F Zeng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
353
+ page_content=' Toward accurate vehicle state estimation under non-Gaussian noises[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
354
+ page_content=' IEEE Internet of Things Journal, 2019, 6(6): 10652-10664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
355
+ page_content=' [45] P Zhang, X Chen, X Ma, Y Wu, H Jiang, D Fang, Z Tang, Y Ma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
356
+ page_content=' SmartMTra: Robust indoor trajectory tracing using smartphones[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
357
+ page_content=' IEEE Sensors Journal, 2017, 17(12): 3613-3624.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LdE2T4oBgHgl3EQfAwbl/content/2301.03596v1.pdf'}
M9FOT4oBgHgl3EQf1zQJ/content/2301.12940v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12567653fda7540ae92f46eed0c91a9ccfa44356b960d75bdd121f765b203382
3
+ size 10016399
MNFOT4oBgHgl3EQf0zS8/content/tmp_files/2301.12937v1.pdf.txt ADDED
@@ -0,0 +1,1514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Incorporating prior information into distributed
2
+ lag nonlinear models with zero-inflated
3
+ monotone regression trees
4
+ Daniel Mork∗ and Ander Wilson†
5
+ Abstract.
6
+ In environmental health research there is often interest in the effect of an expo-
7
+ sure on a health outcome assessed on the same day and several subsequent days or
8
+ lags. Distributed lag nonlinear models (DLNM) are a well-established statistical
9
+ framework for estimating an exposure-lag-response function. We propose methods
10
+ to allow for prior information to be incorporated into DLNMs. First, we impose
11
+ a monotonicity constraint in the exposure-response at lagged time periods which
12
+ matches with knowledge on how biological mechanisms respond to increased levels
13
+ of exposures. Second, we introduce variable selection into the DLNM to identify
14
+ lagged periods of susceptibility with respect to the outcome of interest. The vari-
15
+ able selection approach allows for direct application of informative priors on which
16
+ lags have nonzero association with the outcome. We propose a tree-of-trees model
17
+ that uses two layers of trees: one for splitting the exposure time frame and one
18
+ for fitting exposure-response functions over different time periods. We introduce a
19
+ zero-inflated alternative to the tree splitting prior in Bayesian additive regression
20
+ trees to allow for lag selection and the addition of informative priors. We develop
21
+ a computational approach for efficient posterior sampling and perform a compre-
22
+ hensive simulation study to compare our method to existing DLNM approaches.
23
+ We apply our method to estimate time-lagged extreme temperature relationships
24
+ with mortality during summer or winter in Chicago, IL.
25
+ MSC2020 subject classifications: .
26
+ Keywords: Bayesian additive regression trees, monotone, distributed lag, variable
27
+ selection, nonparametric estimation.
28
+ 1
29
+ Introduction
30
+ In many applications, there is interest in estimating the relationship between a predictor
31
+ and an outcome when there is substantial prior information about the exposure-response
32
+ relationship. Including prior information into a statistical analysis can increase the pre-
33
+ cision of an estimator. In this paper, we consider estimation of the relationship between
34
+ temperature exposure and mortality due to exposure on the same day and 20 subse-
35
+ quent days. In the environmental epidemiology literature this is commonly referred to
36
+ as lagged effects. There is substantial prior research that confirms high summer temper-
37
+ atures and low winter temperatures are both associated with increased risk of mortality,
38
+ ∗Harvard T.H. Chan School of Public Health [email protected]
39
+ †Colorado State University [email protected]
40
+ arXiv:2301.12937v1 [stat.ME] 30 Jan 2023
41
+
42
+ 2
43
+ Monotone exposure-lag-response function
44
+ the relationship between high or low temperatures, and mortality are each monotonic
45
+ and exposures with the largest impact on mortality occur on the same day and the pre-
46
+ vious 3 to 10 days (Baccini et al., 2008; Yu et al., 2012; Guo et al., 2014; Ragettli et al.,
47
+ 2017). However, there is a lack of appropriate methods to estimate lagged health effects
48
+ with shape constraints or informative priors on the length of the lagged association.
49
+ When estimating the association between an exposure and an outcome on each of
50
+ the days following exposure, henceforth lags, the most common statistical approach is
51
+ a distributed lag model (DLM). DLMs are commonly used in time-series studies to es-
52
+ timate the lagged relationships between an exposure and a health outcome (Schwartz,
53
+ 2000) and in the analysis of perinatal cohort studies to identify time periods during
54
+ pregnancy when exposures are related to changes in birth or children’s health outcomes
55
+ (Hsu et al., 2015). In a DLM, an outcome yt at time t is regressed on repeated mea-
56
+ surements of past exposures, xt−l, for lagged times l = 0, . . . , L. Such models assume
57
+ a linear exposure-response relationship at each lag with lag-specific slope. Exposures
58
+ measured at fine temporal resolution tend to be highly correlated. To reduce the effect
59
+ of multicolinearity, DLMs are typically constrained so that the lagged relationships vary
60
+ smoothly in time. Methods to constrain DLMs include splines (Zanobetti et al., 2000),
61
+ principal components (Wilson et al., 2017a), Gaussian processes (Warren et al., 2012),
62
+ and regression trees (Mork and Wilson, 2022a). To allow for nonlinear associations be-
63
+ tween a lagged predictor and an outcome, Gasparrini et al. (2010) proposed distributed
64
+ lag nonlinear models (DLNMs) that allow for a smooth, nonlinear exposure-lag-response
65
+ function at each time point using a bi-dimensional spline basis. Gasparrini et al. (2017)
66
+ later extended DLNM to penalized regression splines that reduce sensitivity of model
67
+ selection. Mork and Wilson (2022b) proposed a regression tree DLNM (TDLNM) ap-
68
+ proach as an equally powered and more precise alternative. Both DLM and DLNM are
69
+ now standard tools in the environmental epidemiology literature.
70
+ Imposing monotonicity in a distributed lag nonlinear model is appealing because it
71
+ forces the resulting estimate to correspond with the underlying biological belief that an
72
+ increase in exposure will not result in an improved health outcome. Yet, there are no ex-
73
+ isting methods to estimate an exposure-lag-response function subject to a monotonicity
74
+ constraint. Some previous work has estimated monotone exposure-response functions
75
+ for exposure to air pollution or weather and a health outcome assessed on the same
76
+ day (Powell et al., 2012; Wilson et al., 2014), and there is a rich statistical literature
77
+ on shape constrained regression for a general regression function. Approaches for shape
78
+ constrained regression in a general regression setting include piecewise linear functions
79
+ (Hildreth, 1954; Brunk, 1955), kernel smoothers Mammen (1991), a large number of
80
+ spine based approaches (Ramsay, 1988; Neelon and Dunson, 2004; Meyer, 2008; Wang
81
+ and Li, 2008; Meyer et al., 2011; Meyer, 2012; Powell et al., 2012) and Bernstein poly-
82
+ nomial methods (Chang et al., 2005, 2007; Curtis and Ghosh, 2011; Wilson et al., 2014;
83
+ Ding and Zhang, 2016; Wilson et al., 2020). Chipman et al. (2021) proposed a mono-
84
+ tone regression model based on the popular nonparametric Bayesian additive regression
85
+ trees (BART) framework (Chipman et al., 2010) that constrains a general regression
86
+ function to be monotone with respect to some or all predictors. None of these methods
87
+ are applicable to repeated measures of exposure.
88
+
89
+ D. Mork, A. Wilson
90
+ 3
91
+ A second appealing area to apply prior information is on which lags have a nonzero
92
+ exposure effect. Incorporating prior information on lag selection can improve precision
93
+ in the identified lags during which exposure is associated with an outcome, which are
94
+ critical to targeting public health interventions. These time periods are of particular
95
+ interest when estimating the association between maternal exposure to air pollution
96
+ during pregnancy and birth outcomes where time periods of interest are referred to as
97
+ critical windows of susceptibility and hypothesized to correspond to sensitive stages of
98
+ fetal development (Wright, 2017). There is limited work on including prior information
99
+ on which lags represent susceptible periods. To incorporate biological information into
100
+ the analysis of maternal exposure to air pollution and childhood asthma, Hazlehurst
101
+ et al. (2021) used average exposure over clinically defined developmental periods and
102
+ assessed which periods demonstrated the greatest association between exposure and
103
+ asthma risk. Using average exposure over predefined windows can cause bias (Wilson
104
+ et al., 2017b) and there are no existing methods to add prior information on which
105
+ lags have nonzero association with the outcome in the distributed lag framework. For
106
+ linear DLMs, previous work focuses on adding prior knowledge about the smoothness of
107
+ lag-to-lag variation in the magnitude of the effect in linear DLMs. This can be achieve
108
+ through Bayesian priors (Heaton and Peng, 2012) or a priori knot selection in spline
109
+ models (Gasparrini, 2016). In a time series study it is typically to allow more flexibility
110
+ on the shape of the distributed lag function for short lags during which the majority of
111
+ the exposure effect is posited to occur (Gasparrini, 2016). Yet, these previous methods
112
+ do not specify a prior on whether there is an effect at specific lags or not, with the
113
+ exception of smoothly going to zero as the lag increases in some cases (Heaton and
114
+ Peng, 2012).
115
+ Adding prior information on which lags are associated with the outcome is difficult
116
+ with most existing models because the probability of a nonzero effect at each lag is
117
+ not directly parameterized in most distributed-lag-type models. This not only hinders
118
+ assigning prior probability of a nonzero effect but also reduces interpretability and
119
+ inference on lag selection. Warren et al. (2020) proposed a Bayesian variable selection
120
+ approach to identify time periods where there is a nonzero linear relationship. This
121
+ approach directly parameterizes inclusion or exclusion of time periods, but does not
122
+ apply prior information to the inclusion probabilities. For a nonlinear DLNM, time
123
+ periods are typically identified using confidence or credible intervals to compare expected
124
+ outcomes compared to a reference outcome, such as zero or median exposure. This
125
+ both results in a multiple testing issue and is unsatisfying because comparing to a
126
+ single reference exposure value may miss associations that are only present over certain
127
+ exposure ranges such as very high exposures. Hence, there is a need for DLNM models
128
+ that can allow for both assigning prior information to which lags have nonzero effect
129
+ and for direct inference on time periods when there is a true exposure-response function.
130
+ In this paper, we propose a monotone model using BART-style models that is specif-
131
+ ically tailored to repeated measures of exposure using the DLNM framework. Our ap-
132
+ proach, which we call monotone-TDLNM throughout this paper, utilizes a nested tree
133
+ BART framework (Chipman et al., 2010; Mork et al., 2022). Specifically, we employ an
134
+ ensemble of regression trees that subdivide the lagged time periods of exposure. Within
135
+ a single time-tree, each terminal node corresponds to a mutually exclusive time period
136
+
137
+ 4
138
+ Monotone exposure-lag-response function
139
+ of exposure which is affiliated with a nested regression tree that specifies a monotone
140
+ exposure-response function for the exposure observed in the given time period. Hence,
141
+ the exposure-trees are nested in the time-tree to make a tree of trees. To ensure mono-
142
+ tonicity we implement a constraint on terminal node parameters of the exposure-trees
143
+ using a transformation that allows for Gibbs sampling in a hybrid Markov chain Monte
144
+ Carlo (MCMC) approach to posterior sampling. We introduce variable selection into the
145
+ DLNM through a zero-inflated alternative to the standard BART tree splitting prior.
146
+ By combining the zero-inflated splitting prior in an ensemble regression trees setting
147
+ we are able assign prior probabilities of a nonzero effect at each lag and to make direct
148
+ inference on the time periods of susceptibility to exposure in our monotone model. The
149
+ elegance of the nested tree approach is that the exposure-response relationship at each
150
+ time point is specified by an ensemble of univariate regression trees–nested trees that
151
+ only splits on exposure concentration. By using univariate trees we can efficiently add
152
+ monotonicity constraints and selection at each time point.
153
+ We demonstrate the advantage of our monotone-TDLNM compared to unconstrained
154
+ TDLNM and penalized spline DLNMs through a simulation study. Specifically, we show
155
+ the monotonicity constraint results in more precise estimates of both the exposure-lag-
156
+ response function and of time periods when there is a nonzero association. We apply
157
+ monotone-TDLNMs to a reanalysis of temperature exposure and mortality in a time-
158
+ series study from Chicago, Illinois, USA. Previous analyses of these data have looked
159
+ broadly at temperature, which tends to have an “inverted-J” shape with both high sum-
160
+ mer temperatures and low winter temperatures being associated with increased mortal-
161
+ ity. We consider separate analysis of summer and winter temperatures. We separately
162
+ estimate the monotonic relationship between high summer temperatures and mortality
163
+ and between low winter temperatures and mortality. Software is made available in the R
164
+ package dlmtree (github.com/danielmork/dlmtree). Code to replicate our simulation
165
+ and data analysis are available at https://github.com/danielmork/monotone_dlnm.
166
+ 2
167
+ Distributed lag nonlinear models
168
+ We begin by introducing the DLNM in the context of a time-series study on tempera-
169
+ ture related mortality. Let yt represent the observed mortality count at time t. We are
170
+ interested in how extreme temperature during preceding days is related to changes in
171
+ yt. Denote xt, xt−1, . . . , xt−L to be the temperatures during the same day as the out-
172
+ come and the previous L days. The time-lagged relationship between temperature and
173
+ mortality is described through the equation
174
+ g [E(yt)] =
175
+ L
176
+
177
+ l=0
178
+ w(xt−l, l) + h(t; ζ)
179
+ (1)
180
+ where g(·) is a link function; h(t; ζ) is a function of time parameterized by ζ and
181
+ w(xt−l, l) is a nonlinear exposure-lag-response function for characterizing the effect of
182
+ temperature xt−l on mortality l days after exposure. We assume h(t; ζ) contains an
183
+ intercept and in some cases may contain other covariates such as day of week.
184
+
185
+ D. Mork, A. Wilson
186
+ 5
187
+ Two assumptions are often imposed when estimating w. First, it is assumed that
188
+ w varies smoothly across the range of xt−l at each lag time l. This assumption follows
189
+ from biological plausibility, that an exposure-response will exhibit a smooth trend across
190
+ the range of exposure concentration. The second assumption is that w(·, l) is similar for
191
+ proximal lags. This assumption is both biologically motivated and statistically practical.
192
+ From a biological perspective it is assumed that exposure on proximal days will have
193
+ a similar effect on the outcome. Statistically, there typically exists high autocorrelation
194
+ between exposure measurements taken close in time and some form of regularization is
195
+ needed to reduce the effects of multicolinearity in the predictors and ensure biologically
196
+ plausible estimates of the exposure-lag-response function. Regularization in the lag di-
197
+ mension can take the form of a smoothness constraint or piecewise smooth or constant
198
+ parameters over a small number of time segments. Combined, these assumptions result
199
+ in a smoothly or piecewise smoothly varying exposure-lag-response function.
200
+ 3
201
+ Nested tree framework for DLNM
202
+ Our approach to estimating a DLNM with monotone exposure-response and variable
203
+ selection uses a nested regression tree framework (Mork et al., 2022). Figure 1 visualizes
204
+ the nested tree framework. Like most tree methods, we us an ensemble approach. In our
205
+ case, we use an ensemble of A nested tree units indexed by a. Let Ta denote a binary tree
206
+ with dichotomous splits on the lagged time periods of exposure l = 0, . . . , L into one
207
+ or more mutually exclusive segments. The regression tree Ta consists of internal nodes
208
+ with splits on the available times and terminal nodes denoted {ηab}Ba
209
+ b=1 that identify the
210
+ tree endpoints. In contrast to the previously proposed, unconstrained TDLNM, internal
211
+ nodes of Ta split only on time and do not split on values of exposure concentration.
212
+ Instead, for each terminal node {ηab}Ba
213
+ b=1 in tree Ta, we define a binary nested tree
214
+ Eab. The internal nodes of each Eab split on values of exposure concentration and the
215
+ terminal nodes are denoted by {λabc}Cab
216
+ c=1. To complete the nested tree model we define a
217
+ scalar parameter δabc corresponding to each λabc. Each δabc characterizes the exposure-
218
+ response for a given exposure-concentration and time combination defined by Ta and
219
+ Eab.
220
+ From the nested tree model, the exposure-lag-response function, w, is calculated
221
+ w(xt−l, l) =
222
+ A
223
+
224
+ a=1
225
+ Ba
226
+
227
+ b=1
228
+ Cab
229
+
230
+ c=1
231
+ δabcψ(xt−l, l; ηab, λabc, σx).
232
+ (2)
233
+ Here, the sums are over, from left to right: a) nested tree unit in the ensemble, b)
234
+ terminal node of the time tree Ta, and c) terminal nodes of the nested exposure-splitting
235
+ tree Eab. The summand contains both the terminal node parameter δabc and an exposure-
236
+ specific weight function denoted by ψ that depends on exposure timing, the terminal
237
+ nodes and a hyperparameter σx. The weight function ψ can take many forms, two
238
+ explored by Mork and Wilson (2022b) include a step function and a smooth weight
239
+ function to incorporate smoothness in the exposure-concentration dimension. As most
240
+ biological applications assume a smooth effect of exposure, we follow the latter approach
241
+
242
+ 6
243
+ Monotone exposure-lag-response function
244
+ 𝑙 < 𝑙!
245
+ 𝑙 > 𝑙!
246
+ 𝑙 < 𝑙"
247
+ 𝑙 > 𝑙"
248
+ 𝜂#!
249
+ 𝜂#"
250
+ Lag
251
+ Exposure-concentration
252
+ 𝑙!
253
+ 𝑙"
254
+ 𝑥"
255
+ 𝑥!
256
+ 𝛿!""
257
+ 𝛿!#"
258
+ 𝛿!##
259
+ 𝛿!$"
260
+ 𝑥$
261
+ 𝛿!"$
262
+ 𝛿!"#
263
+ 𝜂#$
264
+ ℰ!"
265
+ 𝑥 < 𝑥!
266
+ 𝑥 > 𝑥!
267
+ 𝑥 < 𝑥"
268
+ 𝑥 > 𝑥"
269
+ 𝜆!""
270
+ 𝜆!"#
271
+ 𝜆!"$
272
+ ℰ!#
273
+ 𝑥 < 𝑥#
274
+ 𝑥 > 𝑥#
275
+ 𝜆!##
276
+ 𝜆!#"
277
+ ℰ!$
278
+ 𝜆!$"
279
+ 𝒯#
280
+ Figure 1: Diagram of the nested tree DLNM framework. On the left is a single binary
281
+ tree Ta from the ensemble of trees, a = 1, . . . , A. Tree Ta partitions the lag dimension via
282
+ terminal nodes ηab, b = 1, 2, 3, that partition the time dimension. The nested trees, Eab,
283
+ and corresponding terminal nodes, λabc, partition the exposure-concentration dimension
284
+ within each time period. For each λabc there is a corresponding scalar parameter, δabc,
285
+ shown in the resulting exposure-lag-response surface at right. To impose monotonicity
286
+ we require δabc ≤ δabc′ for c < c′. For identifiability and variable selection we set δab1 = 0.
287
+ and define
288
+ ψ(xt−l, l; ηab, λabc, σx) =
289
+
290
+ Φ
291
+ �⌈xabc⌉ − xt−l
292
+ σx
293
+
294
+ − Φ
295
+ �⌊xabc⌋ − xt−l
296
+ σx
297
+ ��
298
+ · I(l ∈ ηab),
299
+ (3)
300
+ where ⌈xabc⌉ and ⌊xabc⌋ are the upper and lower exposure-concentration limits of node
301
+ λabc, respectively, Φ is the normal cumulative density function, I(l ∈ ηab) is an indicator
302
+ function that equals 1 when lag time l is in node ηab and 0 otherwise, and σx is a tuning
303
+ parameter that is fixed for all exposure-time-response functions. Larger σx will increase
304
+ the smoothness of the exposure-response curves while smaller σx allows for sharper
305
+ changes in the exposure-response relationship. As σx → 0 we arrive at the step weight.
306
+ We treat σx as fixed due to the computational expense required to estimate it in our
307
+ model and follow Mork and Wilson (2022b) by setting σx equal to half the standard
308
+ deviation of the exposure data.
309
+ 4
310
+ Monotone treed exposure-lag-response function
311
+ The exposure-response relationship is monotone if w(xt−l, l) ≤ w(x∗
312
+ t−l, l) for any two
313
+ exposures such that xt−l < x∗
314
+ t−l at the same time t − l. We do not assume strict mono-
315
+ tonicity as we wish to allow for a null exposure-response relationship. The monotonicity
316
+ constraint in the exposure-response at each lag time l is satisfied if the terminal node
317
+ parameters {δabc}Cab
318
+ c=1 are non-decreasing in the exposure-concentrations spanned by
319
+ terminal nodes {λabc}Cab
320
+ c=1 for each nested tree Eab. Without loss of generality, we order
321
+ the terminal nodes on each nested tree according to their exposure ranges such that
322
+
323
+ D. Mork, A. Wilson
324
+ 7
325
+ ⌊xab1⌋ < · · · < ⌊xabCab⌋, where ⌊xabc⌋ is the minimum exposure concentration value in
326
+ terminal node λabc. We then constrain the terminal node parameters δab1 ≤ · · · ≤ δabCab.
327
+ We set δab1 = 0, which allows for identifiability of the exposure-lag-response function.
328
+ We implement the constraint on the δ’s through a reparameterization of the node-
329
+ specific parameters for each nested tree following the approach used by (Wang and Li,
330
+ 2008) for monotone regression with Bernstein polynomials. Let θab = (θab1, . . . , θabCab)′
331
+ and δab = (δab1, . . . , δabCab)′. We consider first-order difference transformation matrix
332
+ Dab such that Dabδab = θab. Specifically, we define the transformation δabc −δab(c−1) =
333
+ θabc for c ≥ 2 and θab1 = δab1 = 0. Using this transformation, the parameter space for
334
+ each θabc is fixed to be θabc ≥ 0. This facilitates more efficient sampling via MCMC. In
335
+ contrast, the parameter space of each δabc is constrained such that δabc−1 ≤ δabc ≤ δabc+1
336
+ and is challenging to estimate with MCMC. The matrix Dab follows a block style with
337
+ adjacent 1 and −1 entries at a unique location in each row and zeros elsewhere. For
338
+ example, with Cab = 4, the transformation matrix is
339
+ Dab =
340
+
341
+ ���
342
+ 1
343
+ 0
344
+ 0
345
+ 0
346
+ −1
347
+ 1
348
+ 0
349
+ 0
350
+ 0
351
+ −1
352
+ 1
353
+ 0
354
+ 0
355
+ 0
356
+ −1
357
+ 1
358
+
359
+ ��� .
360
+ (4)
361
+ A block-style transformation can be extended to the entire nested tree, such that
362
+ Daδa = θa where δa = (δ′
363
+ a1, . . . , δ′
364
+ aBa)′, θa = (θ′
365
+ a1, . . . , θ′
366
+ aBa)′, and
367
+ Da =
368
+
369
+ ������
370
+ Da1
371
+ 0
372
+ · · ·
373
+ 0
374
+ 0
375
+ 0
376
+ Da2
377
+ · · ·
378
+ 0
379
+ 0
380
+ ...
381
+ ...
382
+ ...
383
+ ...
384
+ ...
385
+ 0
386
+ 0
387
+ · · ·
388
+ Da(Ba−1)
389
+ 0
390
+ 0
391
+ 0
392
+ · · ·
393
+ 0
394
+ DaBa
395
+
396
+ ������
397
+ (5)
398
+ where Dab make up the diagonal block matrices with zeros elsewhere. We assign inde-
399
+ pendent priors to θabc, where each follows a truncated normal distribution with range
400
+ [0, ∞), mean 0, and variance σ2ν2. In the variance, σ2 is the residual variance from a
401
+ Gaussian model and is fixed to a value of 1 for binomial models. This transformation
402
+ and prior specification allows us to implement efficient multivariate truncated normal
403
+ sampling procedures.
404
+ 5
405
+ Zero-inflated regression trees for lag selection
406
+ The standard BART model uses a splitting probability that decays quickly as the depth
407
+ of the split increases but assigns a large probability of splitting to the initial node
408
+ (Chipman et al., 2010). Specifically, BART defines the probability of a split at node
409
+ λ by psplit(λ) = α(1 + dλ)−β, α ∈ (0, 1), β > 0, where dλ is the depth of the node
410
+ beginning at zero. In addition, a probability on the dichotomous splitting rule (i.e.,
411
+ variable and location) is defined, most commonly by a uniform probability across vari-
412
+ ables and locations. In our situation, we have two sets of trees, the time trees Ta’s and
413
+ the exposure-response trees Eab’s, that both have different purposes and require separate
414
+ consideration for an appropriate prior structure.
415
+
416
+ 8
417
+ Monotone exposure-lag-response function
418
+ 5.1
419
+ Prior on time-splitting trees Ta
420
+ We retain the original BART splitting prior for trees Ta. Imposing default hyperpriors
421
+ αT = 0.95 and βT = 2, results in a prior distribution for the number of terminal
422
+ nodes in the time dimension with P(Ba > 1) = 0.95 with E(Ba) = 2.51. Having a
423
+ high prior probability of multiple terminal nodes in the time dimension allows us to
424
+ identify critical windows and have flexibility across lags. A high prior probability on Ba
425
+ being relatively small helps to regularize the model by retaining the assumption that
426
+ the lagged exposure-response functions are similar across nearby times.
427
+ For a model with l = 0, . . . , L lags there are L possible splitting points. To determine
428
+ the time splitting points, we incorporate work by Linero (2018) where the probability
429
+ of a rule splitting between lags l and l + 1 is equal to Pl/l+1 with P0/1, . . . , PL−1/L ∼
430
+ Dirichlet{κL−1, . . . , κL−1} and κ(κ + L)−1 ∼ β(1, 1). This allows for a data-informed
431
+ approach to identifying change points in the exposure-lag-response function by sharing
432
+ information about split points across trees in the ensemble.
433
+ 5.2
434
+ Prior on exposure-response trees Eab
435
+ For the nested trees, Eab, the default BART splitting prior is less desirable because at
436
+ least two terminal nodes in exposure concentration implies a nonzero effect of exposure.
437
+ The prior probability of no splits across an ensemble of A trees is (1 − α)A. Changing α
438
+ to reflect prior belief that there is a non-zero effect requires an extremely low α value for
439
+ even a moderate ensemble size A. A negative consequence of setting α to be low is that
440
+ it will also decrease the probability of splits at all subsequent levels of the nested tree.
441
+ This is undesirable as it is likely to induce strong shrinkage on the exposure-response
442
+ relationship. Our objective is, therefore, to allow user-specification of the probability of
443
+ the first split without impacting the prior probability of subsequent splits conditional
444
+ on there being a first split.
445
+ We enlist two strategies to help accomplish variable selection in our model. First we
446
+ define nested trees without splits (i.e. Cab = 1) to be zero effect (as described by setting
447
+ δab1 = 0 in Section 4), ensuring that specific time periods will be excluded from the
448
+ exposure-lag-response function (e.g., these times are not selected). Second, we propose
449
+ an alternative splitting probability on trees that allows for the time periods with or
450
+ without effects to also be learned from the data.
451
+ For nested tree Eab we define the zero-inflated tree splitting prior as
452
+ psplitZI(λ|ηab, γ, α, β) = π0(γ, ηab)I(dλ = 0) + αE(1 + dλ)−βEI(dλ > 0)
453
+ (6)
454
+ where γ = [γ0, . . . , γL] is a vector of parameters corresponding to each lag time point;
455
+ αE = 0.95 and βE = 2 are the standard BART parameters set to typical default values;
456
+ dλ is the depth of node λ; and
457
+ logit{π0(γ, ηab)} =
458
+
459
+ l∈ηab
460
+ γl.
461
+ (7)
462
+
463
+ D. Mork, A. Wilson
464
+ 9
465
+ By defining π0 with the logistic function, we allow for continuous parameters γl ∈ R and
466
+ the probability of a split to be based on the time periods in a given terminal node, ηab.
467
+ If ηab contains many time points with higher valued γl there will be a high probability
468
+ of an effect within Eab. If ηab instead contains times with many lower valued γl, nested
469
+ tree Eab will have a much lower probability of splitting and therefore no effect.
470
+ For the zero-inflated splitting parameters, γl, we define prior γ ∼ MVN(γ0, Σρ),
471
+ where γ0 = (γ01, . . . , γ0L)′ is a prior mean and Σρ is a covariance matrix with parameter
472
+ ρ. We specify an exponential covariance matrix, Σρ(l, l′) = exp{−(l−l′)/ρ}. It is natural
473
+ to set γ0l = 0 for all l = 0, . . . , L implying a prior probability of effect at time l equal to
474
+ 0.5. However, prior information on which weeks have a nonzero association can be easily
475
+ incorporated by assigning lag-specific values to each γ0l. We assign a discrete uniform
476
+ prior probability to the candidate values of ρ with possible values corresponding to the
477
+ lag-1 covariance (i.e. when |l − l′| = 1) of 0.05, 0.1, 0.15, . . . , 0.95. We scale Σρ such that
478
+ 95% of the time, π0(γ0l) falls between 0.05 and 0.95 for each l. For the splitting rules on
479
+ specific exposure concentration values, we define a discrete uniform prior distribution.
480
+ 5.3
481
+ Variable-selection based inference on lags
482
+ In the spline-based DLNM or TDLNM, periods of susceptibility (i.e., lags with nonzero
483
+ exposure-response relationships) are not well defined. They are typically identified as lag
484
+ times that have credible intervals not containing zero for some user-specified exposure
485
+ contrast of interest. In the proposed method, we can directly infer the probability of a
486
+ lag-specific susceptibility through a posterior analysis of terminal nodes at a given lag
487
+ time. Specifically, for posterior samples r = 1, . . . , R define E(r)
488
+ l
489
+ = 1 if any nested tree
490
+ Eab with l ∈ ηab has 2 or more terminal nodes, otherwise E(r)
491
+ l
492
+ = 0. Then,
493
+ ˆP(susceptibility at lag l) = R−1
494
+ R
495
+
496
+ r=1
497
+ E(r)
498
+ l
499
+ .
500
+ (8)
501
+ By specifying a reasonable level of confidence (e.g., probability ≥ 0.95) we can make a
502
+ conclusion about which lag times show susceptibility to the exposure. It is noted that at
503
+ ˆP(susceptibility at lag l) = 0.95, the corresponding central credible interval will equal
504
+ zero as the lower bound is at the 2.5 percentile. If this result is not desired, alternative
505
+ solutions are to use an upper 95% credible interval or a 90% credible interval alongside
506
+ the probability of effect.
507
+ 6
508
+ Prior specification and posterior computation
509
+ 6.1
510
+ Prior specification
511
+ For simplicity, we focus on a Gaussian model in this section. The model is
512
+ yt =
513
+ L
514
+
515
+ l=0
516
+ w(xt−l, l) + h(t; ζ) + εt,
517
+ (9)
518
+
519
+ 10
520
+ Monotone exposure-lag-response function
521
+ where εt ∼ N(0, σ2) and assumed independent. We discuss binomial outcomes in Sec-
522
+ tion 6.3.
523
+ We complete the Bayesian specification of the model by assigning priors to the
524
+ remaining parameters. We specify half-Cauchy priors for the variance parameters, with
525
+ σ, ν ∼ C+(0, 1). Because σ2 is the variance parameter for the residuals in the fixed
526
+ effect model, it can be interpreted as a scaling factor on residual variance in the tree
527
+ ensemble, ν2, and is equivalent to scaled BART variance prior described by Linero and
528
+ Yang (2018). We specify a non-informative prior on the regression parameters for the
529
+ time trend and covariate model, ζ ∼ MVN(0, cσ2I), where c is fixed to a large value.
530
+ 6.2
531
+ MCMC approach for Gaussian model
532
+ We estimate the model parameters using MCMC with a hybrid Gibbs-Metropolis-
533
+ Hastings algorithm. Specifically, the terminal node parameters can be efficiently sampled
534
+ via a Gibbs sampler as can the variance components and regression parameters for the
535
+ covariates. The tree structures are updated with the Metropolis-Hastings (MH) algo-
536
+ rithm using the grow, prune, and change proposals steps. When updating the exposure-
537
+ splitting trees we also consider the zero-inflation probability and update that probability.
538
+ Updating terminal node parameters: θa
539
+ Define the total exposure effect as f(xt) = �L
540
+ l=0 w(xt−l, l). Let utabc = �L
541
+ l=0 I(xt−l ∈
542
+ λabc, l ∈ ηab) be the count of lagged exposure measurements prior to t within the
543
+ exposure concentration range of terminal node λabc and the time range of terminal
544
+ node ηab. Define uta = (uta11, . . . , uta1Ca1, uta21, . . . , utaBaCaBa )′ and Ua be the matrix
545
+ containing rows u′
546
+ ta. Applying the transformation from Section 4, u′
547
+ taδa = u′
548
+ taD−1
549
+ a θa
550
+ and the total exposure effect is f(xt) = �A
551
+ a=1 u′
552
+ taD−1
553
+ a θa.
554
+ To estimate the exposure-lag-response function we integrate out ζ from the full
555
+ likelihood. Let y = (y1, . . . , yn)′ and f = [f(x1), . . . , f(xn)]′ be vectors of length n.
556
+ Then,
557
+ y|σ2 ∼ MVN(f, σ2VZ)
558
+ VZ = (I − Z′VζZ)−1
559
+ Vζ = (Z′Z + c−1I)−1,
560
+ where Z is a matrix with rows z′
561
+ t that are vector functions of the covariates or spline
562
+ basis expansion for time. Using a Bayesian backfitting approach (Hastie and Tib-
563
+ shirani, 2000) we consider the partial residuals Ra = [R1a, . . . , Rna]′ where Rta =
564
+ yt − �
565
+ a′̸=a uta′D−1
566
+ a′ θa′ resulting in
567
+ Ra|Ta, Ea1, . . . , EaBa, θa, σ2 ∼ MVN(UaD−1
568
+ a θa, σ2VZ).
569
+ The transformed terminal node parameters θa for tree Ta and nested trees {Eab}Ba
570
+ b=1 are
571
+ simulated as a block from their full conditional
572
+ θa|− ∼ T N [0,∞)[Vθa(UaD−1
573
+ a )′V−1
574
+ Z Ra, σ2Vθa]
575
+
576
+ D. Mork, A. Wilson
577
+ 11
578
+ Vθa =
579
+
580
+ (UaD−1
581
+ a )′V−1
582
+ Z UaD−1
583
+ a
584
+ + ν−2I
585
+ �−1 .
586
+ Draws for θa are done via efficient sampling methods proposed by Li and Ghosh (2015).
587
+ Updating Eab
588
+ When updating the nested tree, Eab we must consider the additional zero-inflated split-
589
+ ting probability. For alterations to the tree involving more than two terminal nodes, the
590
+ acceptance ratio is identical to previous BART implementations. However, the accep-
591
+ tance ratio is different when moving Eab between 1 and 2 terminal nodes. The probability
592
+ of a nested tree Eab is written
593
+ p(Eab) =
594
+
595
+ λ internal
596
+ psplitZI(λ|ηab, γ, α, β)prule(λ)
597
+
598
+ λ terminal
599
+ [1 − psplitZI(λ|ηab, γ, α, β)] .
600
+ The MH algorithm acceptance probability for growing tree Eab with 1 terminal node to
601
+ proposed tree E∗
602
+ ab with 2 terminal nodes equals
603
+ r
604
+ =
605
+ min
606
+ �p(Ra|Ta, {Eab}∗, ν, σ2)p(E∗
607
+ ab)p(Eab|E∗
608
+ ab)
609
+ p(Ra|Ta, {Eab}, ν, σ2)p(Eab)p(E∗
610
+ ab|Eab) , 1
611
+
612
+ =
613
+ min
614
+
615
+ p(Ra|Ta, {Eab}∗, ν, σ2)π0(γ, ηab)
616
+
617
+ 1 − α · 2−β�2
618
+ p(Ra|Ta, {Eab}, ν, σ2)[1 − π0(γ, ηab)]
619
+ , 1
620
+
621
+ ,
622
+ where {Eab} = Ea1, . . . , EaBa is the set of nested trees; {Eab}∗ = Ea1, . . . , E∗
623
+ ab, . . . , EaBa is
624
+ the set of nested trees with a tree proposal; and p(Ra|Ta, {Eab}, ν, σ2) is the likelihood
625
+ for the partial residuals integrated over the terminal node parameters, θa, to account
626
+ for the changing dimensionality of the parameter space. We calculate
627
+ p(Ra|Ta, {Eab}, ν, σ2) =
628
+
629
+ p(Ra|Ta, {Eab}, θa, σ2)p(θa|σ, ν)dθa
630
+ = (2πσ2)−n/2(22σ2ν2)−p/2|VZ|−1/2|Vθa|1/2
631
+ × exp
632
+
633
+ −R′
634
+ aV−1
635
+ Z Ra
636
+ 2σ2
637
+ + R′
638
+ aV−1
639
+ Z UaD−1
640
+ a Vθa(UaD−1
641
+ a )′V−1
642
+ Z Ra
643
+ 2σ2
644
+
645
+ ×
646
+ ��
647
+ [0,∞)
648
+ p(θa|Ra, −)dθa
649
+
650
+ ,
651
+ where the last integral is the normalizing constant for the full conditional distribution
652
+ of θa, which can be numerically approximated through algorithms described by Genz
653
+ and Bretz (2012). The acceptance probability for pruning from 2 to 1 terminal nodes
654
+ is the multiplicative inverse of grow; a change proposal reduces to the quotient of the
655
+ integrated likelihoods.
656
+ Updating Ta
657
+ In our nested tree framework an additional consideration must be made when updating
658
+ tree Ta. When we grow Ta we must replace a nested tree, Eab with two new nested trees,
659
+
660
+ 12
661
+ Monotone exposure-lag-response function
662
+ E∗
663
+ ab1 and E∗
664
+ ab2. Therefore, proposed tree T ∗
665
+ a has a different number of terminal nodes,
666
+ B∗
667
+ a, each with a corresponding nested tree. When we apply a grow proposal T ∗
668
+ a , we draw
669
+ each new E∗
670
+ abi, i ∈ {1, 2}, using the zero-inflated tree prior described in Section 5. The
671
+ other nested trees remain the same. To calculate the MH acceptance ratio for proposal
672
+ Ta we follow similar steps to updating Eab by first calculating p(Ra|T ∗
673
+ a , {Eab}∗, ν, σ2)
674
+ and p(Ra|Ta, {Eab}, ν, σ2). The resulting acceptance ratio equals
675
+ r = min
676
+ �p(Ra|T ∗
677
+ a , {Eab}∗, ν, σ2)p(T ∗
678
+ a )p(Ta|T ∗
679
+ a )
680
+ p(Ra|Ta, {Eab}, ν, σ2)p(Ta)p(T ∗
681
+ a |Ta) , 1
682
+
683
+ .
684
+ (10)
685
+ A prune proposal for Ta replaces two nested trees corresponding to the pruned nodes
686
+ with a new nested tree while a change proposal is the same as changing an internal node
687
+ in standard BART. In a change proposal for Ta we retain the structure of all nested
688
+ trees.
689
+ Updating remaining parameters: γl, ζ, σ, and ν
690
+ Each terminal node ηab contributes one binary ‘observation’ (effect or no effect) to a
691
+ logistic model relating the probability of an effect at lag time l and parameters γl. We
692
+ employ a Poly´a-gamma augmentation approach to updating γl (Polson et al., 2013).
693
+ The remaining parameters are updated with Gibbs steps using standard full condi-
694
+ tionals. The variance components σ and ν are updated using the approach of Makalic
695
+ and Schmidt (2016). The parameters for the time trend and covariate model, γ and ζ,
696
+ have multivariate normal full conditionals.
697
+ 6.3
698
+ Implementation for binomial response
699
+ For a binomial response, yt, we define the logistic model,
700
+ yt|xt, t ∼ Binomial{nt, 1/(1 + e−ψt)}
701
+ (11)
702
+ where ψt = �L
703
+ l=0 w(xt−l, l) + h(t; ζ). To estimate the exposure-lag-response function,
704
+ w(xt−l, l), we follow a Poly´a-gamma augmented variable approach. Briefly, for Poly´a-
705
+ gamma random variable, ωt ∼ PG(nt, ψt), the data-likelihood is proportional to exp{(yt−
706
+ nt/2)ψt}E{exp(−ωtψ2
707
+ t /2)}, where the expectation is with respect to a PG(nt, 0) ran-
708
+ dom variable (see e.g. Polson et al. (2013)). The inclusion of ωt creates a conditionally
709
+ Gaussian likelihood and allows for Gibbs updates of θa and ζ parameters.
710
+ 6.4
711
+ Strategies for incorporating additional prior information
712
+ Two goals that often exist simultaneously in estimating exposure-lag-response functions
713
+ are identifying periods of susceptibility or nonzero effects in the exposure response and
714
+ change points in the lag response dimension. The specification of monotone-TDLNM
715
+ allows for the inclusion of prior information in each dimension.
716
+
717
+ D. Mork, A. Wilson
718
+ 13
719
+ To increase or decrease the prior probability of a nonzero exposure relationship
720
+ we can alter the priors in the zero-inflated regression tree for specific time periods,
721
+ specifically γ0 and Σp. For example, we can define γ0l and Σp(l, l) such that 1/{1+e−γ0l}
722
+ falls within a given range 95% of the time. In practice, high probability of effect in some
723
+ lags should be balanced by lower probability of effect in other lags to maintain roughly
724
+ zero mean across γ0 to prevent false positives when many lag periods are included in
725
+ the same terminal node.
726
+ Informative priors for lag change points are easily introduced via two alternate
727
+ approaches. First, we can fix the time split probability rules, Pl/l+1, to increase the
728
+ probability of a tree splitting at a given lag and increasing the likelihood that differ-
729
+ ent exposure-response relationships will exist before or after the split. In some anal-
730
+ yses where there is a well-defined change point in the exposure time-series, this ap-
731
+ proach makes the most sense. For example, air pollution exposures during fetal devel-
732
+ opment and early childhood may assume a change in the exposure-lag-response at the
733
+ time of birth–here it makes sense to apply a large fixed probability of split at that
734
+ time point. The second strategy to incorporating prior information into the time split
735
+ probabilities is through a modification to the Dirichlet prior. Here, we introduce prior
736
+ P0/1, . . . , PL−1/L ∼ Dirichlet(d0/1κ, . . . , dL−1/Lκ) where � dl/l+1 = 1, and dl/l+1 > 0
737
+ is the prior probability of a split point between lag l and l + 1 in a given tree. The
738
+ hyper parameter κ may be set for a specific variance in the probabilities or assigned
739
+ a prior distribution as in Section 5.1. Using a fixed κ in the Dirichlet prior can allow
740
+ for additional posterior inference on the change points through Bayes Factors or similar
741
+ methods.
742
+ An alternative method to introduce prior information into the regression tree model
743
+ is using fixed time trees corresponding to previously estimated periods of susceptibility.
744
+ For example, if two other studies identify periods of susceptibility during specific lag
745
+ periods, we may fix two trees in our model with change points corresponding to these
746
+ past studies. The model and data will determine whether the exposure-lag-response
747
+ function in the nested trees is nonzero; however, we remove the need to select splitting
748
+ times in these trees. Other trees in the model can continue to explore other splitting
749
+ times in case the relationships in the data do not agree with previously estimated
750
+ lag periods of susceptibility. Furthermore, the idea of fixed time trees could allow for
751
+ information transfer from larger studies, where the time periods can be more effectively
752
+ estimated, to small studies. The idea of using one sample to estimate the periods of
753
+ susceptibility and another sample to estimate the exposure response is closely tied to
754
+ the idea of honest inference (Wager and Athey, 2018; Athey and Imbens, 2016).
755
+ 7
756
+ Simulation study
757
+ We developed a simulation study based on our data analysis to compare our proposed
758
+ method alongside existing methods TDLNM (Mork and Wilson, 2022b) and the penal-
759
+ ized spline DLNM (GAM) (Gasparrini et al., 2017). The goals of our simulation study
760
+ were to first, show that the monotonicity assumptions in monotone-TDLNM improve
761
+ estimation of the exposure-lag-response function while providing valid inference in terms
762
+
763
+ 14
764
+ Monotone exposure-lag-response function
765
+ of confidence intervals and high precision for identifying periods of susceptibility and
766
+ second, that the inclusion of informative priors can additionally supplement ability of
767
+ DLNM methods to estimate exposure-lag-response functions.
768
+ For each simulation replicate we sampled n = 1000 days from the summer tempera-
769
+ ture time series in our data analysis and used L = 20 days of lagged temperature expo-
770
+ sures. We created 9 simulation scenarios based on combinations of 3 exposure-response
771
+ relationships given by
772
+ fx(x) = I(x > 25)
773
+
774
+
775
+
776
+
777
+
778
+ 0.1 · (x − 25)
779
+ linear
780
+ 0.2 · log(x − 25)
781
+ sublinear
782
+ 0.2 · [exp{0.25 · (x − 25)} − 1]
783
+ exponential
784
+ (12)
785
+ and 3 lag-response relationships,
786
+ fl(l) =
787
+
788
+ ��
789
+
790
+
791
+
792
+ 20 · I(l < 4)
793
+ piecewise
794
+ max{0, 6 · (6 − l)}
795
+ linear
796
+ max{0, 0.2 · (l + 1) · (l − 8)2}
797
+ quadratic
798
+ (13)
799
+ where the exposure-lag-response function is calculated as w(xt−l, l) = fx(xt−l) · fl(l).
800
+ Figure 2 shows plots of fx and fl. The outcome was sampled by yt = �20
801
+ l=0 w(xt−l, l)+εt
802
+ where εt was drawn independently from a normal distribution with mean zero and
803
+ standard deviation 2, 4, and 8 times the standard deviation of the exposure-lag-response.
804
+ We repeated each combination of exposure-response, lag-response, and error for 50
805
+ simulation replicates.
806
+ Figure 2: The exposure-lag-response function in our simulations is defined by
807
+ w(xt−l, l) = fx(xt−l) · fl(l), based on combinations of fx and fl.
808
+ For each simulation scenario, we compare three models: GAM, TDLNM, and monotone-
809
+ TDLNM. We also compare with the same models using informative priors. For GAM,
810
+ we use a penalized B-spline crossbasis with 10 degrees of freedom in both exposure and
811
+ lag dimensions. To incorporate informative priors, we add varying ridge penalization to
812
+ the latter 6 lag degrees of freedom which will increase the shrinkage of estimates in later
813
+
814
+ 0.5
815
+ 0.4 -
816
+ 0.3 -
817
+ fX
818
+ 0.2
819
+ 0.1 -
820
+ 0.0 -
821
+ 15
822
+ 20
823
+ 25
824
+ 30
825
+ X30 -
826
+ 20
827
+ 10
828
+ 0
829
+ 0
830
+ 5
831
+ 10
832
+ 15
833
+ 20
834
+ LagD. Mork, A. Wilson
835
+ 15
836
+ lag periods toward zero (see e.g., Gasparrini et al. (2017) for more details). We apply
837
+ TDLNM and monotone-TDLNM with default priors as describe in Mork and Wilson
838
+ (2022b) and this paper. To add informative prior information to TDLNM we define
839
+ the probability of a split in time to be 10 times higher during the lag periods of true
840
+ effect compared to other lag periods. For monotone-TDLNM, we add informative priors
841
+ in two places as described in Section 6.4: first we set mean and variance of the prior
842
+ normal distribution for γl such that there is a 95% probability π0(γl) is between 0.8
843
+ and 0.99 during lag periods of effect and between 0.01 and 0.8 during other lag periods;
844
+ second we set splitting probabilities such that Pl/l+1 divided by Pl′/l′+1 is equal to
845
+ 10 for l and l′ being periods of effect or no effect, respectively, and we fix κ = 2. For
846
+ monotone-TDLNM we fix the smoothing parameter σx equal to half the standard de-
847
+ viation of the temperature data. Because a smooth exposure-response function at each
848
+ lag enforces strict monotonicity, we add a small quantity of 0.05 to each side of the
849
+ estimated credible intervals to capture places where the exposure-lag-response function
850
+ remains at zero across a range of exposure-concentration values (e.g., less than 25 for
851
+ periods of nonzero effect). For the tree models, we run each model for 2,000 iterations
852
+ thinned by 10 following 2,000 burn-in iterations; we restart the MCMC procedure 5
853
+ times and combine all results.
854
+ For each simulation scenario, we estimate the exposure-lag-response function across a
855
+ grid of values spanning the temperature and lag data: x = 3, 4, 5 . . . , 30 and l = 0, . . . , 20.
856
+ We calculate the root mean square error (RMSE), first averaged at each point on the
857
+ grid then averaged across the entire exposure-lag-response function. We determine the
858
+ average coverage based on how often 95% credible intervals cover the true exposure-lag-
859
+ response value at each point on the grid. We also calculate the average credible interval
860
+ width by taking the average difference between the upper and lower interval limits.
861
+ Finally, we calculate precision as the proportion of correctly identified time periods of
862
+ nonzero effect (true positive) relative to the total identified time periods of nonzero
863
+ effect (true positive plus false positive). In TDLNM and GAM we use credible intervals
864
+ to determine precision, in monotone-TDLNM we consider ˆP(susceptibility at time l) ≥
865
+ 0.95 as the criteria for a nonzero effect.
866
+ Simulation results are presented in Figure 3. Monotone-TDLNM and TDLNM con-
867
+ sistently have the lowest RMSE across all simulation scenario and error combinations.
868
+ Informative priors further decrease the RMSE of monotone-TDLNM in the largest er-
869
+ ror setting. Targeted penalization also decreases the RMSE for the GAM approach,
870
+ but this method consistently has the highest RMSE. Both TDLNM and monotone-
871
+ TDLNM are able to shrink estimates towards zero in places of no effect while GAM
872
+ often overgeneralizes periods of effect and retains additional wiggliness across the es-
873
+ timated exposure-lag-response function. Additionally, the spline based GAM displays
874
+ more extreme behavior at the boundaries, a characteristic not shared by the tree-based
875
+ methods.
876
+ Monotone-TDLNM generally maintains nominal coverage of the true exposure-lag-
877
+ response function by 95% credible intervals and has the smallest credible interval width
878
+ across the range of simulation scenarios and error settings. Adding informative prior in-
879
+ formation further decreases the credible interval width in the highest error setting. We
880
+
881
+ 16
882
+ Monotone exposure-lag-response function
883
+ Figure 3: Simulation results (row panels, y-axis) comparing all scenarios (x-axis: fx/fl
884
+ combination) and error combinations (column panels). Each model is represented by a
885
+ different shape and color, models with informative priors are filled shapes.
886
+
887
+ Error = 2
888
+ 4
889
+ 8
890
+ 1.5
891
+
892
+ RMSE
893
+ 1.0
894
+
895
+
896
+
897
+ 0.5
898
+
899
+ 6
900
+ 0
901
+ CI Width
902
+ 4 -
903
+
904
+ 2
905
+ 1.00
906
+ L
907
+ L
908
+ 4
909
+ 4
910
+ 4
911
+ 4
912
+ 0.75
913
+ Coverage
914
+ 0.50
915
+ 0.25
916
+ 0.00
917
+ 1.00
918
+ (
919
+ 6
920
+ 6
921
+ 4
922
+ 2
923
+
924
+ 0.75
925
+ Precision
926
+ 0.50
927
+ 0.25
928
+ 0.00
929
+ 1.00
930
+ 0.75
931
+ True Positive
932
+ 0
933
+ 0.50
934
+ 0.25
935
+ 0.00
936
+ 4
937
+ 1.00
938
+ 0.75
939
+ False Positive
940
+ 0.50
941
+ 0.25
942
+ 0.00
943
+
944
+ GAM
945
+ TDLNM
946
+ Monotone-TDLNM
947
+ GAM IP
948
+ TDLNM IP
949
+ Monotone-TDLNM IPD. Mork, A. Wilson
950
+ 17
951
+ note that the strict monotonicity in monotone-TDLNM, due to the smoothing weight,
952
+ makes exact coverage of a flat exposure-response impossible (e.g., below 25C during
953
+ periods of nonzero effect) resulting in non-coverage at lower exposure-concentrations
954
+ despite a roughly flat exposure response curve. TDLNM also maintains nominal cover-
955
+ age of the true effects but the credible interval width is generally larger than monotone-
956
+ TDLNM. GAM models have adaquate coverage by 95% confidence intervals, but the
957
+ largest interval width. The wiggliness of splines in GAM contributes to additional un-
958
+ certainty across the exposure-lag-response function, especially near boundaries where
959
+ spline-based methods have the largest uncertainty. Addition targeted penalization to
960
+ GAM decreases average width substantially, making it similar to TDLNM.
961
+ Our proposed method has the highest precision compared to TDLNM and GAM
962
+ across all scenarios and error settings. We note that in the highest error setting with
963
+ quadratic lag-response, monotone-TDLNM has slightly increase false positives, decreas-
964
+ ing the precision metric. Compared to GAM, TDLNM also has higher precision on
965
+ average. The inclusion of targeting shrinkage in GAM increases precision slightly.
966
+ With respect to true positives, or the probability of detecting a correct period of
967
+ nonzero effect, GAM consistently outperforms the other methods with the trade off of
968
+ the largest false positive rate (probability of identifying an effect where non exists). The
969
+ addition of informative prior information improves the true positive rate for monotone-
970
+ TDLNM with the biggest difference occurring the highest error setting. Changing the
971
+ splitting probabilities for TDLNM does not have a large effect on the model outcomes.
972
+ 8
973
+ Temperature related mortality
974
+ We illustrate our method by analyzing the association between extreme heat or cold and
975
+ daily mortality. Let dt represent the number of deaths on day t while temperature during
976
+ the past 20 days is given by xt, xt−1, . . . , xt−20. We use mortality and temperature data
977
+ from the National Morbidity, Mortality and Air Pollution Study, in the city of Chicago
978
+ between 1987 to 2000 (Samet et al., 2000). The data is publicly available in the R
979
+ package dlnm. Because extreme hot and cold temperatures may each increase mortality
980
+ and break the monotonicity assumption in our model, we separately analyze summer
981
+ (May-September) and winter (October-April) time periods. Days were removed from
982
+ the analysis if lagged temperature was missing, resulting in 2,142 summer days and
983
+ 2,952 winter days. Separately for summer and winter, we fit the model
984
+ E[log(dt)] = γmy(t) + δdow(t) +
985
+ 20
986
+
987
+ l=0
988
+ w(xt−l, l)
989
+ (14)
990
+ where γmy(t) is an intercept for month and year at time t, δdow(t) is an intercept for
991
+ the day of the week. We assume a constant variance for the log-rate death outcome
992
+ conditional on the time and temperature, i.e., Var[log(dt)|t, xt] = σ2. We reversed the
993
+ sign of temperature in the winter model so that w(xt−l, l) is monotone increasing for
994
+ monotone-TDLNM.
995
+
996
+ 18
997
+ Monotone exposure-lag-response function
998
+ For the summer analyses we applied informative priors reflecting the stronger body
999
+ of evidence relating lagged relationships with heat-related mortality. Specifically, in
1000
+ monotone-TDLNM we set a normally distributed prior on γl for l = 0, . . . , 6 such
1001
+ that π0(γl) had a 95% prior probability between 0.8 and 0.99, greatly increasing the
1002
+ probability of a split in the nested tree during these lags. We also set the corresponding
1003
+ time splitting probabilities so they were ten times large during the first six lags than
1004
+ later time lags and we fix κ = 2. For the winter temperature and mortality analysis we
1005
+ retained default vague priors to reflect the added uncertainty around cold-temperature
1006
+ related mortality.
1007
+ We compare results to TDLNM (no monotonicity assumption) and penalized spline
1008
+ DLNM (GAM) (Mork and Wilson, 2022b; Gasparrini et al., 2017). The treed mod-
1009
+ els were run for 5,000 MCMC iterations thinned by 10 after 2,000 burn-in iterations.
1010
+ We combined posterior samples from 10 independent Markov chains. For GAM, we
1011
+ specify third degree B-splines with 10 degrees of freedom in both lag and temperature
1012
+ dimensions and second order difference penalties. In the GAM summer model we added
1013
+ varying ridge penalization to the last seven degrees of freedom in the lag dimension as an
1014
+ informative prior (see e.g., Gasparrini et al. (2017) for more details). In both summer
1015
+ and winter mortality data, we estimate temperature-mortality relationships from the
1016
+ DLNM relative to 20 degrees Celsius and back transform results to estimated percent
1017
+ change in mortality at a given lag-temperature combination.
1018
+ Monotone-TDLNM allows us to compute a posterior probability of non-zero temper-
1019
+ ature related mortality during a given lag period. The posterior probabilities of effect are
1020
+ shown in Figure 4. We use posterior probability above 0.95 to indicate a nonzero effect.
1021
+ The results from monotone-TDLNM indicate a relationship for heat-related (summer)
1022
+ mortality during lags 0 − 3 days prior and cold-related (winter) mortality during lags
1023
+ 1 − 9 days prior. Due to the monotonicity assumption in monotone-TDLNM we can
1024
+ specifically say these relationships are due to heat or cold. TDLNM and GAM do not
1025
+ share a similar variable selection method and we identify possible periods of suscep-
1026
+ tibility by identifying where 95% credible intervals do not contain zero. Because the
1027
+ exposure-response functions in TDLNM and GAM are not monotone, the identified pe-
1028
+ riods of susceptibility may be due to increased or decreased temperatures and requires
1029
+ inspection of the posterior distribution of the exposure-time-response surface. Based on
1030
+ the credible intervals, TDLNM indicates nonzero relationships between mortality and
1031
+ temperature in summer at lags 0 − 11 days prior and for winter temperatures at lags
1032
+ 0−10 days prior; GAM finds nonzero relationships between mortality and summer tem-
1033
+ peratures during lags 0 − 6, 8 − 11 and 13 days prior, and due to winter temperatures
1034
+ 0 − 5 and 7 − 9 days prior.
1035
+ Figure 5a shows slices of the estimated DLNM at three different temperatures (25,
1036
+ 28, and 32 degrees C). This is the estimated percent difference in mean mortality for
1037
+ each temperature value compared to 20 degrees C by lag. Figure 5b shows slices at three
1038
+ different lag periods (1, 2, and 5 days prior) for each of the three compared methods.
1039
+ This is the exposure-response function between temperature and mortality on 1, 2,
1040
+ and 5 days post exposure. Only monotone-TDLNM shows longer lagged effects at lower
1041
+ temperatures (28 degrees C from 0−3 days prior), the other methods show an immediate
1042
+
1043
+ D. Mork, A. Wilson
1044
+ 19
1045
+ Figure 4: Posterior probability of susceptibility at a given lag, for summer (solid line)
1046
+ and winter (dashed line) models.
1047
+ effect (same day of exposure) as well as intermittent nonzero relationships at longer lags
1048
+ (e.g., GAM shows increased mortality for temperatures below 20C during lags 8−11 as
1049
+ well as decreased mortality above 20C at lag 13). For higher temperatures (32 degrees
1050
+ C), GAM shows effects extending back 6 days while the lagged relationships for TDLNM
1051
+ and monotone-TDLNM are similar but only extend to 4 and 3 days prior, respectively.
1052
+ When looking at slices in the lag dimension, all models indicate an exponential-like
1053
+ relationship between temperature and mortality. At 2 days prior, monotone-TDLNM
1054
+ indicates the relationship to increased mortality extends to lower temperatures than
1055
+ the other models. We also note that the credible interval widths for monotone-TDLNM
1056
+ are similar or smaller than the competing methods, especially at low temperatures and
1057
+ later lags where the effects are shrunk towards zero.
1058
+ Figure 6a shows the lagged relationship to mortality at temperatures -15, 0, and
1059
+ 10 degrees C. TDLNM and GAM indicate decreased mortality at lag 0 followed by in-
1060
+ creased mortality related to low temperatures during previous days. Monotone-TDLNM
1061
+ and TDLNM show potentially longer lagged relationships between lower temperatures
1062
+ and mortality compared to GAM. The wiggliness of GAM also indicates a no relation-
1063
+ ship between mortality at cold temperatures at 6 days prior which is likely a spline-
1064
+ induced artifact. Figure 6b shows the exposure-response relationship between mortality
1065
+ and temperature (degrees below zero) at 1, 2, and 5 days prior. We see a more linear
1066
+ relationship between lower temperatures and mortality in all models where GAM ex-
1067
+ tends up to temperatures near 20C while the tree-based methods only indicate increased
1068
+ mortality at lower temperatures.
1069
+
1070
+ 1.00
1071
+ 0.75
1072
+ P(susceptibility at lag
1073
+ 0.50
1074
+ 0.25
1075
+ 0.00-
1076
+ 0
1077
+ 5
1078
+ 10
1079
+ 15
1080
+ 20
1081
+ Lag (days)
1082
+ Summer
1083
+ Winter20
1084
+ Monotone exposure-lag-response function
1085
+ 9
1086
+ Discussion
1087
+ DLNMs have become a standard tool in environmental epidemiology. Most commonly
1088
+ researchers use spline-based DLNMs to estimate the association between an exposure
1089
+ and a lagged health outcome, such a temperature and mortality on the same day and
1090
+ following 20 days as we consider in this paper. In such analyses, it is rare to consider
1091
+ prior information on the shape of the exposure-lag-response function. This is despite
1092
+ ample prior research that shows that the exposure-response function is monotone for
1093
+ many exposure-response pairs or sheds light on which lags are likely to be associated
1094
+ with the outcome. The decision to not include information on monotonicity is in large
1095
+ part due to a lack of available statistical methods to estimate monotone DLNMs.
1096
+ We propose a regression tree based DLNM that is constrained to have a monotone
1097
+ exposure-response relationship at each lag time. Our work builds of the popular spline-
1098
+ based DLNM (Gasparrini et al., 2017) and existing tree-based TDLNM (Mork and
1099
+ Wilson, 2022b), both of which impose no constraints on the shape of the exposure-
1100
+ response relationship. We propose a nested-tree approach that uses one tree to partition
1101
+ of lag period into discrete time segments and a set of nested trees that capture the
1102
+ exposure-response relationship during each time segment. The approach can be thought
1103
+ of as a Bayesian tree analog to the crossbasis DLNM that uses two basis expansion, one
1104
+ in the lag direction and a second in the exposure-concentrations direction, to estimate
1105
+ a DLNM (Gasparrini et al., 2010).
1106
+ Our proposed monotone-TDLNM allows for easy inclusion of prior information and
1107
+ inference on lags for which there there is a nonzero exposure-response relationship
1108
+ through Bayesian variable selection methods incorporated into a regression tree set-
1109
+ ting. Identifying lags with nonzero exposure-response relationships is challenging with
1110
+ previous implementations of DLNM. Similar time selection methods have been proposed
1111
+ for linear DLMs (Warren et al., 2020), but no such methods are available for nonlinear
1112
+ DLNMs. No previous methods have considered inclusion of prior information on which
1113
+ lags are associated with an outcome.
1114
+ Through simulation, we show that the monotone-TDLNM resulted in more precise
1115
+ estimation of the exposure-lag-response function and lag selection compared to a pe-
1116
+ nalized spline DLNM and unconstrained TDLNM. The monotone-TDLNM resulted in
1117
+ smaller credible intervals that still maintained the nominal coverage level. In an analysis
1118
+ of summer heat exposure and winter cold exposure and mortality in a Chicago, Illinois,
1119
+ USA time-series study we found that both summer heat and winter cold were associated
1120
+ with increased mortality. Importantly, the unconstrained models were consistent with
1121
+ a monotone relationship and such a relationship has been found in other analyses of
1122
+ temperature and mortality. However, the constrained model that includes prior informa-
1123
+ tion on monotonicity resulted in more precise estimates the the exposure-lag-response
1124
+ function. This highlights one of the advantages of the proposed model. In addition, the
1125
+ easy inference on the lags with nonzero effect highlights a second major advantage over
1126
+ previous methods.
1127
+ A clear limitation of the proposed approach, or any constrained regression method,
1128
+ is that violation of the monotonicity assumption would be a major misapplication and
1129
+
1130
+ D. Mork, A. Wilson
1131
+ 21
1132
+ result in bias and incorrect inference. In the case of temperature and mortality this
1133
+ monotonicity by season is well established. However, in other situations it is impor-
1134
+ tant to check these assumptions. For example, a researcher may consider also fitting
1135
+ unconstrained models and looking for evidence of departures from monotonicity as we
1136
+ demonstrated in our data application.
1137
+ Our work adds to a recent literature on incorporating prior information in environ-
1138
+ mental epidemiology analyses. Thomas et al. (2007) provides a compelling argument
1139
+ for incorporating biological prior information in Bayesian analyses of the health effects
1140
+ of environmental exposures. Recent work has promoted the use of informative priors in
1141
+ several model types (Reich et al., 2020; McGee et al., 2022), including previous models
1142
+ that impose monotonicity in the exposure-response relationship (Powell et al., 2012;
1143
+ Wilson et al., 2014). As was so well stated by (Thomas et al., 2007), “by directly in-
1144
+ corporating into our analyses information from other studies or allied fields—we can
1145
+ improve our ability to distinguish true causes of disease from noise and bias.”
1146
+
1147
+ 22
1148
+ Monotone exposure-lag-response function
1149
+ (a) Lagged effects of heat-related mortality at three different temperature
1150
+ levels (rows) as estimated by three DLNM methods (columns). The x-axis
1151
+ indicates the lag time in days while the y-axis is unique to each row and
1152
+ describes the estimated percent change in mortality. The dark black lines
1153
+ show the estimated mean relationship while the gray area describes the 95%
1154
+ credible interval.
1155
+ (b) Temperature-specific effects of heat-related mortality at three different
1156
+ lag times (rows) as estimated by three DLNM methods (columns). The x-
1157
+ axis indicates the temperature in degrees Celsius while the y-axis is unique
1158
+ to each row and describes the estimated percent change in mortality. The
1159
+ dark black lines show the estimated mean relationship while the gray area
1160
+ describes the 95% credible interval.
1161
+ Figure 5
1162
+
1163
+ GAM
1164
+ TDLNM
1165
+ Monotone-TDLNM
1166
+ 30
1167
+ 20
1168
+ 25 deg C
1169
+ 10
1170
+ Difference in Mortality
1171
+ 0
1172
+ 30
1173
+ 20
1174
+ 28 deg C
1175
+ 10
1176
+ 0
1177
+ %
1178
+ 30
1179
+ 20
1180
+ 32 deg
1181
+ 10
1182
+ c
1183
+ 0
1184
+ 0
1185
+ 5
1186
+ 10
1187
+ 15
1188
+ 200
1189
+ 5
1190
+ 10
1191
+ 15
1192
+ 200
1193
+ 5
1194
+ 10
1195
+ 15
1196
+ 20
1197
+ Lag (days)GAM
1198
+ TDLNM
1199
+ Monotone-TDLNM
1200
+ 30
1201
+ 1 day prior
1202
+ 20
1203
+ 10
1204
+ 0
1205
+ 30
1206
+ days prior
1207
+ 2
1208
+ 20
1209
+ 10
1210
+ 0
1211
+ %
1212
+ 30
1213
+ 5 days prior
1214
+ 20
1215
+ 10
1216
+ 0
1217
+ 10
1218
+ 15
1219
+ 20
1220
+ 25
1221
+ 30
1222
+ 10
1223
+ 15
1224
+ 20
1225
+ 25
1226
+ 30
1227
+ 010
1228
+ 15
1229
+ 20
1230
+ 25
1231
+ 30
1232
+ TemperatureD. Mork, A. Wilson
1233
+ 23
1234
+ (a) Lagged effects of cold-related mortality at three different temperature
1235
+ levels (rows) as estimated by three DLNM methods (columns). The x-axis
1236
+ indicates the lag time in days while the y-axis is unique to each row and
1237
+ describes the estimated percent change in mortality. The dark black lines
1238
+ show the estimated mean relationship while the gray area describes the 95%
1239
+ credible interval.
1240
+ (b) Temperature-specific effects of cold-related mortality at three different
1241
+ lag times (rows) as estimated by three DLNM methods (columns). The
1242
+ x-axis indicates the temperature in degrees Celsius below zero while the
1243
+ y-axis is unique to each row and describes the estimated percent change in
1244
+ mortality. The dark black lines show the estimated mean relationship while
1245
+ the gray area describes the 95% credible interval.
1246
+ Figure 6
1247
+
1248
+ GAM
1249
+ TDLNM
1250
+ Monotone-TDLNM
1251
+ 5
1252
+ -15 deg C
1253
+ 0
1254
+ -5
1255
+ % Difference in Mortality
1256
+ O deg C
1257
+ 0
1258
+ 5
1259
+ 5
1260
+ 10 deg C
1261
+ 5
1262
+ 0
1263
+ 5
1264
+ 10
1265
+ 15
1266
+ 200
1267
+ 5
1268
+ 10
1269
+ 15
1270
+ 20
1271
+ 5
1272
+ 10
1273
+ 15
1274
+ 20
1275
+ Lag (days)GAM
1276
+ TDLNM
1277
+ Monotone-TDLNM
1278
+ 8 -
1279
+ -9
1280
+ 1 day prior
1281
+ 4 -
1282
+ e in Mortality
1283
+ 0
1284
+ 8
1285
+ 6
1286
+ 2 days prior
1287
+ Difference
1288
+ 4
1289
+ 2
1290
+ 0
1291
+ %
1292
+ 8
1293
+ 6 -
1294
+ 5 days prior
1295
+ 4 -
1296
+ 2 -
1297
+ 0
1298
+ -10
1299
+ T
1300
+ T
1301
+ 0
1302
+ 10
1303
+ 20
1304
+ -10
1305
+ 0
1306
+ 10
1307
+ 20
1308
+ -10
1309
+ 0
1310
+ 10
1311
+ 20
1312
+ Degreesbelowzero24
1313
+ Monotone exposure-lag-response function
1314
+ References
1315
+ Athey, S. and Imbens, G. (2016).
1316
+ “Recursive partitioning for heterogeneous causal
1317
+ effects.” Proceedings of the National Academy of Sciences, 113(27): 7353–7360. 13
1318
+ Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., An-
1319
+ derson, H. R., Bisanti, L., D’Ippoliti, D., Danova, J., et al. (2008). “Heat effects on
1320
+ mortality in 15 European cities.” Epidemiology, 711–719. 2
1321
+ Brunk, H. D. (1955). “Maximum Likelihood Estimates of Monotone Parameters.” The
1322
+ Annals of Mathematical Statistics, 26(4): 607–616.
1323
+ URL https://www.jstor.org/stable/2236374 2
1324
+ Chang, I.-S., Chien, L.-C., Hsiung, C. A., Wen, C.-C., and Wu, Y.-J. (2007). “Shape
1325
+ restricted regression with random Bernstein polynomials.” In Complex Datasets and
1326
+ Inverse Problems, volume 54 of Institute of Mathematical Statistics Lecture Notes
1327
+ - Monograph Series, 187–202. Beachwood, Ohio, USA: Institute of Mathematical
1328
+ Statistics.
1329
+ URL http://projecteuclid.org/euclid.lnms/1196794953 2
1330
+ Chang, I.-S., Hsiung, C. A., Wu, Y.-J., and Yang, C.-C. (2005). “Bayesian Survival
1331
+ Analysis Using Bernstein Polynomials.” Scandinavian Journal of Statistics, 32(3):
1332
+ 447–466.
1333
+ URL http://doi.wiley.com/10.1111/j.1467-9469.2005.00451.x 2
1334
+ Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). “BART: Bayesian additive
1335
+ regression trees.” Annals of Applied Statistics, 4(1): 266–298. 2, 3, 7
1336
+ Chipman, H. A., George, E. I., McCulloch, R. E., and Shively, T. S. (2021). “mBART:
1337
+ Multidimensional Monotone BART.” Bayesian Analysis, 17(2): 515–544. 2
1338
+ Curtis, S. M. and Ghosh, S. K. (2011). “A variable selection approach to monotonic
1339
+ regression with Bernstein polynomials.” Journal of Applied Statistics, 38(5): 961–976.
1340
+ URL http://www.tandfonline.com/doi/abs/10.1080/02664761003692423 2
1341
+ Ding, J. and Zhang, Z. (2016). “Bayesian regression on non-parametric mixed-effect
1342
+ models with shape-restricted Bernstein polynomials.” Journal of Applied Statistics,
1343
+ 43(14): 2524–2537.
1344
+ URL https://doi.org/10.1080/02664763.2016.1142940 2
1345
+ Gasparrini, A. (2016). “Modelling Lagged Associations in Environmental Time Series
1346
+ Data.” Epidemiology, 27(6): 835–842.
1347
+ URL https://doi.org/10.1097/EDE.0000000000000533 3
1348
+ Gasparrini, A., Armstrong, B., and Kenward, M. G. (2010). “Distributed lag non-linear
1349
+ models.” Statistics in Medicine, 29(21): 2224–2234. 2, 20
1350
+ Gasparrini, A., Scheipl, F., Armstrong, B., and Kenward, M. G. (2017). “A penalized
1351
+ framework for distributed lag non-linear models.” Biometrics.
1352
+ URL http://doi.wiley.com/10.1111/biom.12645 2, 13, 15, 18, 20
1353
+ Genz, A. and Bretz, F. (2012). “Comparison of Methods for the Computation of Mul-
1354
+
1355
+ D. Mork, A. Wilson
1356
+ 25
1357
+ tivariate t Probabilities.” https://doi.org/10.1198/106186002394, 11(4): 950–971.
1358
+ URL https://www.tandfonline.com/doi/abs/10.1198/106186002394 11
1359
+ Guo, Y., Gasparrini, A., Armstrong, B., Li, S., Tawatsupa, B., Tobias, A., Lavigne, E.,
1360
+ Coelho, M. d. S. Z. S., Leone, M., Pan, X., et al. (2014). “Global variation in the
1361
+ effects of ambient temperature on mortality: a systematic evaluation.” Epidemiology,
1362
+ 25(6): 781. 2
1363
+ Hastie, T. and Tibshirani, R. (2000). “Bayesian backfitting.” Statistical Science, 15(3):
1364
+ 196–223. 10
1365
+ Hazlehurst, M. F., Carroll, K. N., Loftus, C. T., Szpiro, A. A., Moore, P. E., Kaufman,
1366
+ J. D., Kirwa, K., LeWinn, K. Z., Bush, N. R., Sathyanarayana, S., Tylavsky, F. A.,
1367
+ Barrett, E. S., Nguyen, R. H. N., and Karr, C. J. (2021). “Maternal exposure to PM2.5
1368
+ during pregnancy and asthma risk in early childhood.” Environmental Epidemiology,
1369
+ 5(2): e130.
1370
+ URL https://journals.lww.com/10.1097/EE9.0000000000000130 3
1371
+ Heaton, M. J. and Peng, R. D. (2012). “Flexible Distributed Lag Models Using Ran-
1372
+ dom Functions With Application to Estimating Mortality Displacement From Heat-
1373
+ Related Deaths.” Journal of Agricultural, Biological, and Environmental Statistics,
1374
+ 17(3): 313–331.
1375
+ URL https://doi.org/10.1007/s13253-012-0097-7 3
1376
+ Hildreth, C. (1954). “Point Estimates of Ordinates of Concave Functions.” Journal of
1377
+ the American Statistical Association, 49(267): 598–619.
1378
+ URL
1379
+ www.jstor.org/stable/2281132http://www.tandfonline.com/doi/abs/
1380
+ 10.1080/01621459.1954.10483523 2
1381
+ Hsu, H.-H. L., Chiu, Y.-H. M., Coull, B. A., Kloog, I., Schwartz, J., Lee, A., Wright,
1382
+ R. O., and Wright, R. J. (2015). “Prenatal Particulate Air Pollution and Asthma
1383
+ Onset in Urban Children. Identifying Sensitive Windows and Sex Differences.” Amer-
1384
+ ican Journal of Respiratory and Critical Care Medicine, 192(9): 1052–1059.
1385
+ URL http://www.atsjournals.org/doi/10.1164/rccm.201504-0658OC 2
1386
+ Li, Y. and Ghosh, S. K. (2015). “Efficient sampling methods for truncated multivariate
1387
+ normal and student-t distributions subject to linear inequality constraints.” Journal
1388
+ of Statistical Theory and Practice 2015 9:4, 9(4): 712–732.
1389
+ URL https://link.springer.com/article/10.1080/15598608.2014.996690 11
1390
+ Linero, A. R. (2018). “Bayesian regression trees for high-dimensional prediction and
1391
+ variable selection.” Journal of the American Statistical Association, 113(522): 626–
1392
+ 636.
1393
+ URL https://doi.org/10.1080/01621459.2016.1264957 8
1394
+ Linero, A. R. and Yang, Y. (2018). “Bayesian regression tree ensembles that adapt to
1395
+ smoothness and sparsity.” Journal of the Royal Statistical Society. Series B: Statis-
1396
+ tical Methodology, 80(5): 1087–1110. 10
1397
+ Makalic, E. and Schmidt, D. F. (2016). “A simple sampler for the horseshoe estimator.”
1398
+ IEEE Signal Processing Letters, 23(1): 179–182. 12
1399
+
1400
+ 26
1401
+ Monotone exposure-lag-response function
1402
+ Mammen, E. (1991).
1403
+ “Estimating a Smooth Monotone Regression Function.”
1404
+ The
1405
+ Annals of Statistics, 19(2): 724–740. 2
1406
+ McGee, G., Wilson, A., Coull, B. A., and Webster, T. F. (2022). “Integrating Biological
1407
+ Knowledge in Kernel-Based Analyses of Environmental Mixtures and Health.”
1408
+ URL https://arxiv.org/abs/2204.00040 21
1409
+ Meyer, M. C. (2008). “Inference using shape-restricted regression splines.” The Annals
1410
+ of Applied Statistics, 2(3): 1013–1033.
1411
+ URL http://projecteuclid.org/euclid.aoas/1223908050 2
1412
+ — (2012). “Constrained penalized splines.” Canadian Journal of Statistics, 40(1): 190–
1413
+ 206.
1414
+ URL http://doi.wiley.com/10.1002/cjs.10137 2
1415
+ Meyer, M. C., Hackstadt, A. J., and Hoeting, J. A. (2011). “Bayesian estimation and
1416
+ inference for generalised partial linear models using shape-restricted splines.” Journal
1417
+ of Nonparametric Statistics, 23(4): 867–884.
1418
+ URL https://doi.org/10.1080/10485252.2011.597852 2
1419
+ Mork, D., Kioumourtzoglou, M.-A., Weisskopf, M., Coull, B. A., and Wilson, A. (2022).
1420
+ “Heterogeneous Distributed Lag Models to Estimate Personalized Effects of Maternal
1421
+ Exposures to Air Pollution.”
1422
+ URL https://arxiv.org/abs/2109.13763v2 3, 5
1423
+ Mork, D. and Wilson, A. (2022a). “Estimating perinatal critical windows of suscepti-
1424
+ bility to environmental mixtures via structured Bayesian regression tree pairs.” Bio-
1425
+ metrics.
1426
+ URL https://doi.org/10.1111/biom.13568 2
1427
+ — (2022b). “Treed distributed lag nonlinear models.” Biostatistics, 23(3): 754––771.
1428
+ URL https://doi.org/10.1093/biostatistics/kxaa051 2, 5, 6, 13, 15, 18, 20
1429
+ Neelon, B. and Dunson, D. B. (2004). “Bayesian isotonic regression and trend analysis.”
1430
+ Biometrics, 60(2): 398–406.
1431
+ URL https://doi.org/10.1111/j.0006-341X.2004.00184.x 2
1432
+ Polson, N. G., Scott, J. G., and Windle, J. (2013).
1433
+ “Bayesian inference for logistic
1434
+ models using P´olya-Gamma latent variables.” Journal of the American Statistical
1435
+ Association, 108(504): 1339–1349.
1436
+ URL
1437
+ https://www.tandfonline.com/doi/abs/10.1080/01621459.2013.829001
1438
+ 12
1439
+ Powell, H., Lee, D., and Bowman, A. (2012). “Estimating constrained concentration-
1440
+ response functions between air pollution and health.” Environmetrics, 23(3): 228–237.
1441
+ URL http://doi.wiley.com/10.1002/env.1150 2, 21
1442
+ Ragettli, M. S., Vicedo-Cabrera, A. M., Schindler, C., and R¨o¨osli, M. (2017). “Exploring
1443
+ the association between heat and mortality in Switzerland between 1995 and 2013.”
1444
+ Environmental research, 158: 703–709. 2
1445
+ Ramsay, J. O. (1988). “Monotone Regression Splines in Action.” Statistical Science,
1446
+
1447
+ D. Mork, A. Wilson
1448
+ 27
1449
+ 3(4): 425–441.
1450
+ URL http://projecteuclid.org/euclid.ss/1177012761 2
1451
+ Reich, B. J., Guan, Y., Fourches, D., Warren, J. L., Sarnat, S. E., and Chang, H. H.
1452
+ (2020).
1453
+ “Integrative statistical methods for exposure mixtures and health.”
1454
+ The
1455
+ annals of applied statistics, 14(4): 1945. 21
1456
+ Samet, J. M., Dominici, F., Zeger, S. L., Schwartz, J., and Dockery, D. W. (2000).
1457
+ “The National Morbidity, Mortality, and Air Pollution Study. Part I: Methods and
1458
+ methodologic issues.” Research Report (Health Effects Institute), (94 Pt 1): 5–14.
1459
+ URL https://europepmc.org/article/med/11098531 17
1460
+ Schwartz, J. (2000). “The Distributed Lag between Air Pollution and Daily Deaths.”
1461
+ Epidemiology, 11(3): 320–326.
1462
+ URL https://doi.org/10.1097/00001648-200005000-00016 2
1463
+ Thomas, D. C., Witte, J. S., and Greenland, S. (2007). “Dissecting Effects of Complex
1464
+ Mixtures: Who’s Afraid of Informative Priors?” Epidemiology, 18(2): 186–190.
1465
+ URL
1466
+ http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:
1467
+ landingpage&an=00001648-200703000-00002 21
1468
+ Wager, S. and Athey, S. (2018).
1469
+ “Estimation and inference of heterogeneous treat-
1470
+ ment effects using random forests.” Journal of the American Statistical Association,
1471
+ 113(523): 1228–1242. 13
1472
+ Wang, X. and Li, F. (2008). “Isotonic smoothing spline regression.” Journal of Com-
1473
+ putational and Graphical Statistics, 17(1): 21–37. 2, 7
1474
+ Warren, J., Fuentes, M., Herring, A., and Langlois, P. (2012).
1475
+ “Bayesian spatial-
1476
+ temporal model for cardiac congenital anomalies and ambient air pollution risk as-
1477
+ sessment.” Environmetrics, 23(8): 673–684.
1478
+ URL https://doi.org/10.1002/env.2174 2
1479
+ Warren, J. L., Kong, W., Luben, T. J., and Chang, H. H. (2020). “Critical window
1480
+ variable selection: Estimating the impact of air pollution on very preterm birth.”
1481
+ Biostatistics, 21(4): 790–806. 3, 20
1482
+ Wilson, A., Chiu, Y.-H. M., Hsu, H.-H. L., Wright, R. O., Wright, R. J., and Coull, B. A.
1483
+ (2017a). “Bayesian distributed lag interaction models to identify perinatal windows
1484
+ of vulnerability in children’s health.” Biostatistics, 18(3): 537–552.
1485
+ URL https://doi.org/10.1093/biostatistics/kxx002 2
1486
+ Wilson, A., Chiu, Y.-h. M., Hsu, H.-h. L., Wright, R. O., Wright, R. J., and Coull,
1487
+ B. A. (2017b). “Potential for bias when estimating critical windows for air pollution
1488
+ in children’s health.” American Journal of Epidemiology, 186(11): 1281–1289. 3
1489
+ Wilson, A., Rappold, A. G., Neas, L. M., and Reich, B. J. (2014). “Modeling the effect
1490
+ of temperature on ozone-related mortality.” The Annals of Applied Statistics, 8(3):
1491
+ 1728–1749.
1492
+ URL https://www.jstor.org/stable/24522282 2, 21
1493
+ Wilson, A., Tryner, J., L’Orange, C., and Volckens, J. (2020). “Bayesian nonparametric
1494
+
1495
+ 28
1496
+ Monotone exposure-lag-response function
1497
+ monotone regression.” Environmetrics, 31(8): 1–35.
1498
+ URL https://onlinelibrary.wiley.com/doi/10.1002/env.2642 2
1499
+ Wright, R. O. (2017). “Environment, susceptibility windows, development, and child
1500
+ health.” Current Opinion in Pediatrics, 29(2): 211–217.
1501
+ URL https://journals.lww.com/00008480-201704000-00014 3
1502
+ Yu, W., Mengersen, K., Wang, X., Ye, X., Guo, Y., Pan, X., and Tong, S. (2012). “Daily
1503
+ average temperature and mortality among the elderly: a meta-analysis and systematic
1504
+ review of epidemiological evidence.” International journal of biometeorology, 56(4):
1505
+ 569–581. 2
1506
+ Zanobetti, A., Wand, M. P., Schwartz, J., and Ryan, L. M. (2000). “Generalized additive
1507
+ distributed lag models: quantifying mortality displacement.” Biostatistics, 1(3): 279–
1508
+ 292. 2
1509
+ Acknowledgments
1510
+ Research reported in this publication was supported by National Institute of Environmen-
1511
+ tal Health Sciences of the National Institutes of Health under award number R01ES029943
1512
+ and National Institute of Aging of the National Institutes of Health under award number
1513
+ R01AG066793.
1514
+
MNFOT4oBgHgl3EQf0zS8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
OtFAT4oBgHgl3EQfyx73/content/2301.08695v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d06cbf164349db56a564c4c3771bb193c2ef88a3b3bc56366bdf1de26ce9479
3
+ size 1646796