jackkuo commited on
Commit
12e89b8
·
verified ·
1 Parent(s): f99d39d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +38 -0
  2. 0NFRT4oBgHgl3EQfkTex/content/tmp_files/2301.13595v1.pdf.txt +1055 -0
  3. 0NFRT4oBgHgl3EQfkTex/content/tmp_files/load_file.txt +519 -0
  4. 29FQT4oBgHgl3EQfGTVE/content/2301.13244v1.pdf +3 -0
  5. 2dAzT4oBgHgl3EQfuP2J/content/tmp_files/2301.01688v1.pdf.txt +1641 -0
  6. 2dAzT4oBgHgl3EQfuP2J/content/tmp_files/load_file.txt +0 -0
  7. 3NE1T4oBgHgl3EQflwRz/content/tmp_files/2301.03289v1.pdf.txt +2578 -0
  8. 3NE1T4oBgHgl3EQflwRz/content/tmp_files/load_file.txt +0 -0
  9. 3tFKT4oBgHgl3EQfRC0N/content/tmp_files/2301.11769v1.pdf.txt +1394 -0
  10. 3tFKT4oBgHgl3EQfRC0N/content/tmp_files/load_file.txt +0 -0
  11. 49E1T4oBgHgl3EQfAwK8/content/tmp_files/2301.02844v1.pdf.txt +1215 -0
  12. 49E1T4oBgHgl3EQfAwK8/content/tmp_files/load_file.txt +0 -0
  13. 4dE1T4oBgHgl3EQfAwIb/vector_store/index.pkl +3 -0
  14. 6dE1T4oBgHgl3EQfBQKx/content/tmp_files/2301.02850v1.pdf.txt +1565 -0
  15. 6dE1T4oBgHgl3EQfBQKx/content/tmp_files/load_file.txt +0 -0
  16. 89FRT4oBgHgl3EQfqDcj/content/tmp_files/2301.13615v1.pdf.txt +1550 -0
  17. 89FRT4oBgHgl3EQfqDcj/content/tmp_files/load_file.txt +0 -0
  18. 9tAzT4oBgHgl3EQfFPrO/content/tmp_files/2301.01009v1.pdf.txt +790 -0
  19. 9tAzT4oBgHgl3EQfFPrO/content/tmp_files/load_file.txt +481 -0
  20. A9AzT4oBgHgl3EQfF_vM/content/tmp_files/2301.01022v1.pdf.txt +3817 -0
  21. A9AzT4oBgHgl3EQfF_vM/content/tmp_files/load_file.txt +0 -0
  22. A9E1T4oBgHgl3EQfVgQy/content/tmp_files/2301.03102v1.pdf.txt +985 -0
  23. A9E1T4oBgHgl3EQfVgQy/content/tmp_files/load_file.txt +0 -0
  24. CdE3T4oBgHgl3EQfUQrt/content/2301.04450v1.pdf +3 -0
  25. CdE3T4oBgHgl3EQfUQrt/vector_store/index.faiss +3 -0
  26. CdE3T4oBgHgl3EQfUQrt/vector_store/index.pkl +3 -0
  27. DdE2T4oBgHgl3EQfSQc5/content/2301.03790v1.pdf +3 -0
  28. DdE2T4oBgHgl3EQfSQc5/vector_store/index.faiss +3 -0
  29. DdE2T4oBgHgl3EQfSQc5/vector_store/index.pkl +3 -0
  30. DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf +3 -0
  31. DtE5T4oBgHgl3EQfUQ_q/vector_store/index.pkl +3 -0
  32. ENE1T4oBgHgl3EQfEQP0/content/tmp_files/2301.02889v1.pdf.txt +0 -0
  33. ENE1T4oBgHgl3EQfEQP0/content/tmp_files/load_file.txt +0 -0
  34. EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf +3 -0
  35. EtAzT4oBgHgl3EQfG_tj/vector_store/index.faiss +3 -0
  36. EtAzT4oBgHgl3EQfG_tj/vector_store/index.pkl +3 -0
  37. F9E1T4oBgHgl3EQfFAMn/content/2301.02896v1.pdf +3 -0
  38. KtAyT4oBgHgl3EQff_jL/vector_store/index.faiss +3 -0
  39. N9E3T4oBgHgl3EQfZQq9/content/tmp_files/2301.04496v1.pdf.txt +508 -0
  40. N9E3T4oBgHgl3EQfZQq9/content/tmp_files/load_file.txt +324 -0
  41. OtFAT4oBgHgl3EQfyx73/content/tmp_files/2301.08695v1.pdf.txt +0 -0
  42. OtFAT4oBgHgl3EQfyx73/content/tmp_files/load_file.txt +0 -0
  43. P9E3T4oBgHgl3EQfyAsA/vector_store/index.faiss +3 -0
  44. PtE4T4oBgHgl3EQfkg1D/content/tmp_files/2301.05151v1.pdf.txt +1842 -0
  45. PtE4T4oBgHgl3EQfkg1D/content/tmp_files/load_file.txt +0 -0
  46. RdE3T4oBgHgl3EQfDQlE/content/2301.04284v1.pdf +3 -0
  47. RdE3T4oBgHgl3EQfDQlE/vector_store/index.faiss +3 -0
  48. RdE3T4oBgHgl3EQfDQlE/vector_store/index.pkl +3 -0
  49. SNA0T4oBgHgl3EQfD_8a/content/tmp_files/2301.02010v1.pdf.txt +770 -0
  50. SNA0T4oBgHgl3EQfD_8a/content/tmp_files/load_file.txt +442 -0
.gitattributes CHANGED
@@ -3568,3 +3568,41 @@ htFAT4oBgHgl3EQf9h4V/content/2301.08756v1.pdf filter=lfs diff=lfs merge=lfs -tex
3568
  cNAyT4oBgHgl3EQfXPfd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3569
  rtA0T4oBgHgl3EQfK_-E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3570
  P9E3T4oBgHgl3EQfyAsA/content/2301.04715v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3568
  cNAyT4oBgHgl3EQfXPfd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3569
  rtA0T4oBgHgl3EQfK_-E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3570
  P9E3T4oBgHgl3EQfyAsA/content/2301.04715v1.pdf filter=lfs diff=lfs merge=lfs -text
3571
+ F9E1T4oBgHgl3EQfFAMn/content/2301.02896v1.pdf filter=lfs diff=lfs merge=lfs -text
3572
+ X9AzT4oBgHgl3EQfKfvG/content/2301.01099v1.pdf filter=lfs diff=lfs merge=lfs -text
3573
+ KtAyT4oBgHgl3EQff_jL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3574
+ cNAyT4oBgHgl3EQfXPfd/content/2301.00181v1.pdf filter=lfs diff=lfs merge=lfs -text
3575
+ nNFKT4oBgHgl3EQfFC0t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3576
+ DdE2T4oBgHgl3EQfSQc5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3577
+ jdFPT4oBgHgl3EQf1DUt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3578
+ DdE2T4oBgHgl3EQfSQc5/content/2301.03790v1.pdf filter=lfs diff=lfs merge=lfs -text
3579
+ jdFPT4oBgHgl3EQf1DUt/content/2301.13181v1.pdf filter=lfs diff=lfs merge=lfs -text
3580
+ e9AyT4oBgHgl3EQfw_mi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3581
+ kb_44/content/kb_44.pdf filter=lfs diff=lfs merge=lfs -text
3582
+ pNE1T4oBgHgl3EQfPAOE/content/2301.03022v1.pdf filter=lfs diff=lfs merge=lfs -text
3583
+ CdE3T4oBgHgl3EQfUQrt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3584
+ xdE2T4oBgHgl3EQfLwbX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3585
+ 29FQT4oBgHgl3EQfGTVE/content/2301.13244v1.pdf filter=lfs diff=lfs merge=lfs -text
3586
+ W9E3T4oBgHgl3EQf1AvA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3587
+ P9E3T4oBgHgl3EQfyAsA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3588
+ cNFLT4oBgHgl3EQfYi_0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3589
+ pNE1T4oBgHgl3EQfPAOE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3590
+ kb_44/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3591
+ jNFIT4oBgHgl3EQfqCsi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3592
+ WNFLT4oBgHgl3EQfSy8N/content/2301.12042v1.pdf filter=lfs diff=lfs merge=lfs -text
3593
+ CdE3T4oBgHgl3EQfUQrt/content/2301.04450v1.pdf filter=lfs diff=lfs merge=lfs -text
3594
+ VtE3T4oBgHgl3EQfbAqu/content/2301.04512v1.pdf filter=lfs diff=lfs merge=lfs -text
3595
+ rtFKT4oBgHgl3EQf0y6v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3596
+ EtAzT4oBgHgl3EQfG_tj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3597
+ fNA0T4oBgHgl3EQfHf-p/content/2301.02062v1.pdf filter=lfs diff=lfs merge=lfs -text
3598
+ X9AzT4oBgHgl3EQfKfvG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3599
+ g9E_T4oBgHgl3EQf3Rw9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3600
+ WNFLT4oBgHgl3EQfSy8N/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3601
+ xdE2T4oBgHgl3EQfLwbX/content/2301.03718v1.pdf filter=lfs diff=lfs merge=lfs -text
3602
+ DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf filter=lfs diff=lfs merge=lfs -text
3603
+ RdE3T4oBgHgl3EQfDQlE/content/2301.04284v1.pdf filter=lfs diff=lfs merge=lfs -text
3604
+ i9FRT4oBgHgl3EQfVze1/content/2301.13541v1.pdf filter=lfs diff=lfs merge=lfs -text
3605
+ fNA0T4oBgHgl3EQfHf-p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3606
+ RdE3T4oBgHgl3EQfDQlE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3607
+ g9E_T4oBgHgl3EQf3Rw9/content/2301.08345v1.pdf filter=lfs diff=lfs merge=lfs -text
3608
+ EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf filter=lfs diff=lfs merge=lfs -text
0NFRT4oBgHgl3EQfkTex/content/tmp_files/2301.13595v1.pdf.txt ADDED
@@ -0,0 +1,1055 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Local Volatility in Interest Rate Models.
2
+ V.M. Belyaev
3
+ U.S. Bank, Minneapolis, MN, USA
4
+ February 1, 2023
5
+ Abstract
6
+ A new approach to Local Volatility implementation in the interest
7
+ rate model is presented. The major tool of this approach is a small
8
+ volatility approximation. This approximation works very well and it
9
+ can be used to calibrate all ATM swaptions. It works fast and accu-
10
+ rate. In order to reproduce all available swaption prices we need to
11
+ take into account the dependence of forward volatility on the current
12
+ swap rate. Here we assume that forward volatility is a deterministic
13
+ function on strike, tenor, and expiration at every point on the grid.
14
+ We determine these functions and apply them in Monte-Carlo calcu-
15
+ lations.
16
+ It was demonstrated that this approach works well. However, in
17
+ the case of short term and low tenor swaptions we observed errors in
18
+ swaption pricing. To fix this problem we need to modify the scenario
19
+ generation process.
20
+ 1
21
+ Introduction
22
+ Local Volatility Model was presented by Dupire [1] in 1994. According to this
23
+ model forward volatility is a deterministic function of a current underlying
24
+ S(t) price and time. Model dynamics in this case has the following form:
25
+ dS(t) = µ(t)S(t)dt + σL(S(t), t)S(t)dW(t);
26
+ (1)
27
+ where µ(T) = r(t)−y(t) is a arbitrage free drift; r(t) and y(t) are risk free rate
28
+ and dividend yield; dW(t) is Brownian motion; σL(S(t), t) is a deterministic
29
+ Local Volatility.
30
+ 1
31
+ arXiv:2301.13595v1 [q-fin.PR] 31 Jan 2023
32
+
33
+ Representing the option price as a function of forward one C(F(T), X, T)
34
+ where F(T) = S(0)e
35
+ � T
36
+ 0 (r(t)−y(t))dt we have
37
+ σ2
38
+ L(X, t) =
39
+ ∂C
40
+ ∂T
41
+ 1
42
+ 2X2 ∂2C
43
+ ∂X2
44
+ .
45
+ (2)
46
+ where C(F(T), X, T) is a call option price; X is a strike.
47
+ Having arbitrage-free interpolated/extrapolated volatility surface we can
48
+ calculate local volatility by eq.(2) and generate scenarios which are perfectly
49
+ calibrated to all available option prices. This procedure is deterministic and
50
+ fast.
51
+ Later Gatheral [2] derived the following formula for local volatility which
52
+ is expressed in terms of implied volatility itself:
53
+ σ2
54
+ L(X, t) =
55
+ ∂w
56
+ ∂T
57
+ 1 − y
58
+ w
59
+ ∂w
60
+ ∂y + 1
61
+ 4
62
+
63
+ − 1
64
+ 4 − 1
65
+ w + y2
66
+ w2
67
+ � �
68
+ ∂w
69
+ ∂y
70
+ �2 + 1
71
+ 2
72
+ ∂2w
73
+ ∂y2
74
+ ;
75
+ (3)
76
+ where w(y, T) is an implied variance of the option with strike X and time
77
+ to expiration T; y = ln(X/F(T)). The formula makes it easier to calculate
78
+ Local Volatility.
79
+ In the case of normal volatilities models where
80
+ dS(t) = µ(t)dt + σ(S(t), t)dW(t);
81
+ (4)
82
+ µ(T) = ∂F(T)
83
+ ∂T , formula for Local Volatility is also known [3]:
84
+ σ2
85
+ L(X, t) =
86
+ dw
87
+ dT
88
+ 1 − y
89
+ w
90
+ ∂w
91
+ ∂y + 1
92
+ 4
93
+
94
+ − 1
95
+ w + y2
96
+ w2
97
+ � �
98
+ ∂w
99
+ ∂y
100
+ �2 + 1
101
+ 2
102
+ ∂2w
103
+ ∂y2
104
+ .
105
+ (5)
106
+ Here we use the following notation: y = X − F(T).
107
+ To calibrate interest rate model we will use small volatility approximation
108
+ [4]. This approximation works very well and it means that bond price dy-
109
+ namic approximately is a normal one. So, Local Volatility can be calculated
110
+ according to eq.(5).
111
+ In Section 2 we describe a Small Volatility approximation and demon-
112
+ strate its accuracy. This approximation can be used to calibrate the model
113
+ for selected OTM strikes as well. In Section 3 we apply this approximation in
114
+ order to to calculate deterministic sensitivities to strikes at every point of the
115
+ 2
116
+
117
+ grid. In Section 4 fixed tenor dynamics and forward volatility calculation are
118
+ discussed. In Section 5 we use these sensitivities to calculate current forward
119
+ volatilities according to eq.(5) to generate interest rate scenarios.
120
+ All calculations are completed for March 29, 2022 SOFR rate and swap-
121
+ tions market data. Even though the fact that the approach works well we
122
+ observe relatively big errors in case of short-term and low-tenor swaptions.
123
+ 2
124
+ Small Volatility Approximation
125
+ Here we consider HJM interest rate model. HJM model [5] has the following
126
+ dynamics:
127
+ df(t, T) = α(t, T)dt + σ(t, T)dW(t);
128
+ (6)
129
+ where f(t, T) is a forward rate:
130
+ B(t, T) = e−� T
131
+ t f(t,τ)dτ;
132
+ (7)
133
+ B(t, T) is a zero coupon risk-free bond; σ(t, T) is a normal volatility; dW(t, T)
134
+ is a Brownian motion; and
135
+ α(t, T) = σ(t, T)
136
+ � T
137
+ t
138
+ σ(t, τ)dτ
139
+ (8)
140
+ is a drift.
141
+ The drift is chosen to satisfy martingale condition on bond prices
142
+ B(0, T) =
143
+
144
+ e−� t
145
+ 0 r(τ)dτB(t, T)
146
+
147
+ ; ∀t ∈ [0, T].
148
+ (9)
149
+ Distribution of discounted bond prices at time T can be presented in the
150
+ following form:
151
+ e−� T
152
+ 0 r(τ)dτB(T, T1) =
153
+ = B(0, T1)e−� T
154
+ 0 dτ � T1
155
+ τ
156
+ α(τ,t)dt−� T
157
+ 0 dW(τ)� T1
158
+ τ
159
+ σ(τ,t)dt =
160
+ = B(0, T1)
161
+
162
+ 1 −
163
+ � T
164
+ 0 dW(τ)
165
+ � T1
166
+ τ
167
+ σ(τ, t)dt + o(σ)
168
+
169
+ .
170
+ (10)
171
+ 3
172
+
173
+ It means that the distribution of SOFR swap present value is:
174
+ PV (T) = e−� T
175
+ 0 r(t)dt
176
+ N
177
+
178
+ n=1
179
+ B(T, Tn)
180
+
181
+ rs + 1 − B(T, Tn−1)
182
+ B(T, Tn)
183
+
184
+ =
185
+ = e−� T
186
+ 0 r(t)dt
187
+
188
+ rs
189
+ N
190
+
191
+ n=1
192
+ B(T, Tn) − B(T, T) + B(T, TN)
193
+
194
+
195
+ ≃ (rs − rATM)
196
+ N
197
+
198
+ n=1
199
+ B(0, Tn) + Σ(T, N)ξ
200
+
201
+ T;
202
+ (11)
203
+ where Tn are times of payments; rs and rATM = B(0,T)−B(0,TN)
204
+
205
+ n=1NB(0,Tn) are swap rate
206
+ and ATM rate; T0 = T.
207
+ Volatility Σ(T, N) is calculated according to the following formulas:
208
+ Σ2(T, N)T =
209
+ � T
210
+ 0 v2(t, Ndt)dt;
211
+ v(t, N) = rs
212
+ N
213
+
214
+ n=1
215
+ B(0, Tn)
216
+ � Tn
217
+ t
218
+ σ(t, τ)dτ −
219
+ −B(0.T)
220
+ � T
221
+ t
222
+ σ(t, τ)dτ + B(0, TN)
223
+ � TN
224
+ t
225
+ σ(t, τ)dτ.
226
+ (12)
227
+ In order to calibrate the interest rate model we can use interpolated
228
+ volatilities or to assume that all unknown volatilities are equal to each other.
229
+ Here we use the first approach.
230
+ In the case of the grid with 3 month time step the first swaption is a tenor
231
+ 1 expired in 3 months. According to (12) we have:
232
+ v(dt, 1) = rsB(0, 5dt)
233
+ 4
234
+
235
+ k=0
236
+ (k + 1)σ(0, k)dt −
237
+ −B(0, dt)σ(0, 0)dt +
238
+ +B(0, 5dt)
239
+ 4
240
+
241
+ k=0
242
+ (k + 1)σ(0, k)dt;
243
+ (13)
244
+ where dt = 0.25.
245
+ Assuming that all unknown volatilities are equal in (13)
246
+ σ(0, k) = σ(0, 0); ∀k < 5;
247
+ (14)
248
+ we can calculate volatilities in (13).
249
+ 4
250
+
251
+ We can apply this procedure to other expirations and tenors, taking into
252
+ account already defined volatility values. For every available next tenor and
253
+ time to expiration we obtain the following equation:
254
+ Σ2(i, j) = Aσ2 + Bσ + C;
255
+ (15)
256
+ where A, B, C are factors that can be determined by using bond prices and
257
+ already calculated volatilities; σ is an unknown forward volatility.
258
+ Schematically calibration process can be represented in the following way:
259
+ 0
260
+ 0.25
261
+ 0.5
262
+ 0.75
263
+ 1.0
264
+ 0
265
+ 0.25
266
+ 0.5
267
+ 0.75
268
+ -
269
+ Te + Tenor
270
+ 6
271
+ Te
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+ ��
286
+ f
287
+ f
288
+ f
289
+ f
290
+ f
291
+ f
292
+ f
293
+ f
294
+ f
295
+ f
296
+ f
297
+ v
298
+ f
299
+ f
300
+ f
301
+ f
302
+ f
303
+ f
304
+ v
305
+ f
306
+ f
307
+ f
308
+ Σ(1, 5)
309
+ Σ(2, 6)
310
+ σ(0, 0) σ(0, 0) σ(0, 0) σ(0, 0) σ(0, 0) σ(0, 5) σ(0, 5)
311
+ σ(1, 1) σ(1, 1) σ(1, 1) σ(1, 1) σ(1, 1)
312
+ where Σ(1, 5) and Σ(2, 6) are input volatilities of 1-year swaptions with
313
+ 3- and 6-months to expiration.
314
+ This procedure leads to a good calibrated prices for all ATM swaptions,
315
+ see Fig.1 where we compare input ATM volatilities with volatilities calculated
316
+ from Monte-Carlo prices.
317
+ Forward volatility surface is shown on Fig.2.
318
+ 3
319
+ Sensitivity Calculation.
320
+ In the previous section we describe how to calibrate forward volatilities to
321
+ reproduce all available ATM swaptions prices. This procedure can be applied
322
+ to find forward volatilities calibrated to all swaption prices with shifted strikes
323
+ from their ATM values.
324
+ 5
325
+
326
+ Sswaption quotes are available within ±2% shifts. The calibration process
327
+ is similar to the ATM swaption calibration. The only difference is a change of
328
+ ATM volatility to the shifted one for selected strike. The calibration quality
329
+ is good (see Fig.3).
330
+ In the selected data set for SOFR swaption volatility smile, we have
331
+ strikes up to ±2% rate shift from ATM rate. This smile can be fitted by
332
+ quadratic polynomial as it is demonstrated in Fig.4. Splines can also be used
333
+ but obtained results are very similar. It means that we can use quadratic
334
+ interpolation.
335
+ However, we need to take care of extrapolation, due to the swap rates can
336
+ go out of [−2%, 2%] range rate shifts. This extrapolation need to be contin-
337
+ uously differentiable and it would be very helpful if we can use extrapolation
338
+ with limited volatility, in order to to use small volatility approximation.
339
+ We choose the following quadratic extrapolation:
340
+ v(x) = αu + βu(x − x0) + γu(x − x0)2;
341
+ x0 < x < xu;
342
+ (16)
343
+ v(x) = αd + βd(x − (−x0)) + γd(x − (−x0))2;
344
+ xd < x < −x0;
345
+ where x0 = 2% is the current maximal available rate shift in input data; final
346
+ points of extrapolation are chosen as xd = −10% and xu = 10%.
347
+ To obtain continuously differentiable function, we need to have
348
+ αu = v(x0);
349
+ αd = v(−x0);
350
+ βu = dv(x)
351
+ dx
352
+ |x=x0
353
+ ;
354
+ βd = dv(x)
355
+ dx
356
+ |x=−x0
357
+ .
358
+ (17)
359
+ To get zero slope at the end points xu,d we have
360
+ γu(xu − x0) = −1
361
+ 2βu;
362
+ γd(xd − (−x0)) = −1
363
+ 2βd;
364
+ (18)
365
+ Above end points we assume that
366
+ v(x) =
367
+
368
+ v(xd);
369
+ if x < xd;
370
+ v(xu);
371
+ if x > xu;
372
+ (19)
373
+ It leads to the smooth volatility curve depicted in Fig.5.
374
+ 6
375
+
376
+ 4
377
+ Fixed Tenor Dynamics
378
+ Before going to Scenario Generation Process let us consider fixed tenor dy-
379
+ namics.
380
+ In the case of selected tenor N we consider the following ATM
381
+ swaption values distribution which present value is:
382
+ PV (S(T, N)) = e−� T
383
+ 0 r(τ)dτ
384
+
385
+ rATM(T, N)
386
+ N
387
+
388
+ n=1
389
+ B(T, Tn) − 1 + B(T, TN)
390
+
391
+ =
392
+ = e−� T
393
+ 0 r(τ)dτ
394
+ �B(0.T) − B(0, TN)
395
+ �N
396
+ n=1 B(0, Tn)
397
+ N
398
+
399
+ n=1
400
+ B(T, Tn) − 1 + B(T, TN)
401
+
402
+ .(20)
403
+ In small volatility approximation Eq.(20) has the following form:
404
+ PV (S(T, N)) = Σ(T, N)ξ
405
+
406
+ T.
407
+ (21)
408
+ In the case of non-zero constant difference between current swaption rate and
409
+ ATM rate
410
+ δ = r(T, N) − rATM(T, N);
411
+ (22)
412
+ swap present value distribution is
413
+ PV (S(T, N, δ)) = δ
414
+ N
415
+
416
+ n=1
417
+ B(0, Tn) + Σ(T, N, δ)ξ
418
+
419
+ T =
420
+ = A(T, N)
421
+
422
+ δ + Σ(T, N, δ)
423
+ A(T, N) ξ
424
+
425
+ ;
426
+ (23)
427
+ where Σ(T, N, δ) is implied volatility of fixed tenor underlying for selected
428
+ rate shift;
429
+ A(T, N) =
430
+ N
431
+
432
+ n=1
433
+ B(0, tn).
434
+ (24)
435
+ As we can see from (23) we can use (5) to determine forward volatility
436
+ assuming deterministic dependence of local forward volatility for selected
437
+ point on the grid.
438
+ 7
439
+
440
+ 5
441
+ Local Volatility Scenarios
442
+ In the scenario generation process we can use formula for Local Volatility
443
+ of normal volatility model. Here we assume that local forward volatility on
444
+ every point on the grid can be defined deterministically from eq.(5). Below
445
+ we describe this approach.
446
+ In addition to forward volatility, the formula depends on total variance
447
+ w.
448
+ Deterministic variance can be calculated in the following form:
449
+ w(−2%, n, k) = v2
450
+ f(−2%, n − 1, k)dt + w(−2%, n − 1, k);
451
+ w(ATM, n, k) = v2
452
+ f(ATM, n − 1, k)dt + w(ATM, n − 1, k);
453
+ w(2%, n, k) = v2
454
+ f(2%, n − 1, k)dt + w(2%, n − 1, k);
455
+ (25)
456
+ where vf(shift, n, k) is a forward volatility for selected time step n and point
457
+ on the grid k.
458
+ Then we use interpolation-extrapolation formulas to get function w(x, n, k)
459
+ for every point on the grid.
460
+ This procedure gives us all deterministic functions needed to calculate
461
+ forward volatility according to equation (5).
462
+ To generate scenarios we need to calculate current swap rate which is a
463
+ difference between current and initial ATM swap rates.
464
+ Initial ATM swap rate is:
465
+ rS(0, ti, tenor) = B(0, ti) − B(0, ti + tenor)
466
+ �tenor
467
+ n=1 B(0, ti + n)
468
+ .
469
+ (26)
470
+ Observed swap rate at time ti is:
471
+ rS(ti, ti, tenor) = 1 − B(ti, ti + tenor)
472
+ �tenor
473
+ n=1 B(ti + n)
474
+ .
475
+ (27)
476
+ So, the current rate strike is
477
+ X(ti, ti, tenor) = rS(ti, ti, tenor) − rS(0, ti, tenor).
478
+ (28)
479
+ In the case of tenor = 1 we assume that this strike is the same for all
480
+ time steps between 0 and tenor = 1. For tenor = 2 we use strike for all
481
+ times between tenor = 1 and tenor = 2 only etc.. As was mentioned in the
482
+ 8
483
+
484
+ previous section this procedure works. We use it because we already have
485
+ calculated volatility sensitivities on swap rates.
486
+ In calculations we apply
487
+ calculated variance for selected strike and point on the grid (25).
488
+ We apply this procedure and generated 100,000 scenarios. ATM swaption
489
+ prices for tenors 1, 5, 10 and 30 are shown in Fig.6.
490
+ 1 Year Tenor 1 smile looks good (see Fig.7). All Tenor 1 expirations also
491
+ in a good agreement with maximal errors for 5-year expiration, see Fig.8.
492
+ All other expirations of Tenor 1 swaptions are in better agreement with the
493
+ input prices, Fig.9.
494
+ Errors in higher tenors swaptions are smaller. You can see it in case of 5
495
+ Year Tenor 2 swaption, Fig.10.
496
+ Note, that using 1 month time step improve the quality of calibrated
497
+ scenario set, see Fig.11.
498
+ 6
499
+ Conclusion
500
+ Implementation of Local Volatility Model in interest rate model is presented.
501
+ Calibration is deterministic, it works fast and is accurate. Observed short
502
+ term and low tenor swaption errors can be improved by modifying scenario
503
+ generation process.
504
+ Approach and results were presented on QuantMinds International Con-
505
+ ference 2022, Barcelona, Spain [6].
506
+ 9
507
+
508
+ References
509
+ [1] Dupire, B. (1994). ”Pricing With a Smile.” Risk 7, pp. 18-20.
510
+ [2] Gatheral, J. (2006). ”The Volatility Surface: A Practitioner´ıs Guide.”
511
+ New York, NY: John Wiley & Sons.
512
+ [3] Costeanu, V. & Pirjol D. ”Asymptotic expansion for the normal im-
513
+ plied volatility in local volatility models” , arXiv:1105.3359v1, q-fin.CP,
514
+ (2011);
515
+ [4] V.M. Belyaev : “Swaption Prices in HJM Model. Nonparametric Fit”,
516
+ arXiv:1697.01619, [ q-fin.PR], (2016); QuantMinds International Con-
517
+ ferences (2017-2021);
518
+ [5] Heath, D., R. Jarrow, and A. Morton (1990):
519
+ ”Bond Pricing and
520
+ the Term Structure of Interest Rates: A Discrete Time Approxima-
521
+ tion”.Journal of Financial and Quantitative Analysis, 25: 419−440.
522
+ [6] V.M. Belyaev : “Local Volatility in Interest Rate Models”, QuantMinds
523
+ International Conference 2022, Barcelona, Spain.
524
+ 10
525
+
526
+ FIGURES
527
+ Figure 1: ATM Swaption Normal Volatilities.
528
+ 11
529
+
530
+ Tenor 1
531
+ 1.6%
532
+ 1.4%
533
+ 1.2%
534
+ 1.0%
535
+ 0.8%
536
+ ●Vol
537
+ 0.6%
538
+ OMC
539
+ 0.4%
540
+ 0.2%
541
+ 0.0%
542
+ 0
543
+ 5
544
+ 10
545
+ 15
546
+ 20
547
+ 25
548
+ 30
549
+ Time to ExpirationTenor 5
550
+ 1.4%
551
+ 1.2%
552
+ 1.0%
553
+ 0.8%
554
+ 0.6%
555
+ ●Vol
556
+ 0.4%
557
+ OMC
558
+ 0.2%
559
+ 0.0%
560
+ 0
561
+ 5
562
+ 10
563
+ 15
564
+ 20
565
+ 25
566
+ 30
567
+ Time to ExpirationTenor10
568
+ 1.2%
569
+ 1.0%
570
+ 0.8%
571
+ 0.6%
572
+ .Vol
573
+ 0.4%
574
+ OMC
575
+ 0.2%
576
+ 0.0%
577
+ 0
578
+ 5
579
+ 10
580
+ 15
581
+ 20
582
+ 25
583
+ 30
584
+ Time to ExpirationTenor30
585
+ 1.2%
586
+ 1.0%
587
+ 0.8%
588
+ 0.6%
589
+ .Vol
590
+ 0.4%
591
+ OMC
592
+ 0.2%
593
+ 0.0%
594
+ 0
595
+ 5
596
+ 10
597
+ 15
598
+ 20
599
+ 25
600
+ 30
601
+ Time to ExpirationFigure 2: ATM Forward Volatility Surface.
602
+ 12
603
+
604
+ 0.01
605
+ 0.008
606
+ Forward Volatility
607
+ 0.006
608
+ 0.004
609
+ 0.002
610
+ 30
611
+ 07
612
+ 25
613
+ 30
614
+ 20
615
+ 25
616
+ 20
617
+ 15
618
+ 15
619
+ 10
620
+ 10
621
+ 5
622
+ 5
623
+ Timeto Exp
624
+ Tenor
625
+ 0
626
+ 0Figure 3: OTM Swaption Normal Volatilities.
627
+ 13
628
+
629
+ Tenor 10, strike shift-2%
630
+ 1.6%
631
+ 1.4%
632
+ 1.2%
633
+ 1.0%
634
+ 0.8%
635
+ ●Vol
636
+ 0.6%
637
+ 0.4%
638
+ ●MC
639
+ 0.2%
640
+ 0.0%
641
+ 0
642
+ 5
643
+ 10
644
+ 15
645
+ 20
646
+ 25
647
+ 30
648
+ Timeto ExpirationTenor 10, strike shift 2%
649
+ 1.80%
650
+ 1.60%
651
+ 1.40%
652
+ 1.20%
653
+ 1.00%
654
+ 0.80%
655
+ Vol
656
+ 0.60%
657
+ OMC
658
+ 0.40%
659
+ 0.20%
660
+ 0.00%
661
+ 0
662
+ 5
663
+ 10
664
+ 15
665
+ 20
666
+ 25
667
+ 30
668
+ 35
669
+ Time to ExpirationTenor 30, strike shift-2%
670
+ 1.6%
671
+ 1.4%
672
+ 1.2%
673
+ 1.0%
674
+ 0.8%
675
+ ●Vol
676
+ 0.6%
677
+ 0.4%
678
+ ●MC
679
+ 0.2%
680
+ 0.0%
681
+ 0
682
+ 5
683
+ 10
684
+ 15
685
+ 20
686
+ 25
687
+ 30
688
+ Timeto ExpirationTenor30,strike shift 2%
689
+ 1.60%
690
+ 1.40%
691
+ 1.20%
692
+ 1.00%
693
+ 0.80%
694
+ Vol
695
+ 0.60%
696
+ 0.40%
697
+ OMC
698
+ 0.20%
699
+ 0.00%
700
+ 0
701
+ 5
702
+ 10
703
+ 15
704
+ 20
705
+ 25
706
+ 30
707
+ 35
708
+ Time to ExpirationTenor 1, strike shift-2%
709
+ 1.8%
710
+ 1.6%
711
+ 1.4%
712
+ 1.2%
713
+ 1.0%
714
+ 0.8%
715
+ .Vol
716
+ 0.6%
717
+ ●MC
718
+ 0.4%
719
+ 0.2%
720
+ 0.0%
721
+ 0
722
+ 5
723
+ 10
724
+ 15
725
+ 20
726
+ 25
727
+ 30
728
+ Timeto ExpirationTenor 1, strike shift 2%
729
+ 2.00%
730
+ 1.80%
731
+ 1.60%
732
+ 1.40%
733
+ 1.20%
734
+ 1.00%
735
+ 0.80%
736
+ .Vol
737
+ 0.60%
738
+ OMC
739
+ 0.40%
740
+ 0.20%
741
+ 0.00%
742
+ 0
743
+ 5
744
+ 10
745
+ 15
746
+ 20
747
+ 25
748
+ 30
749
+ 35
750
+ Time to ExpirationTenor 5, strike shift -2%
751
+ 1.6%
752
+ 1.4%
753
+ 1.2%
754
+ 1.0%
755
+ 0.8%
756
+ 0.6%
757
+ ·Vol
758
+ 0.4%
759
+ ●MC
760
+ 0.2%
761
+ 0.0%
762
+ 0
763
+ 5
764
+ 10
765
+ 15
766
+ 20
767
+ 25
768
+ 30
769
+ Timeto ExpirationTenor 5, strike shift 2%
770
+ 2.00%
771
+ 1.80%
772
+ 1.60%
773
+ 1.40%
774
+ 1.20%
775
+ 1.00%
776
+ 0.80%
777
+ .Vol
778
+ 0.60%
779
+ OMC
780
+ 0.40%
781
+ 0.20%
782
+ 0.00%
783
+ 0
784
+ 5
785
+ 10
786
+ 15
787
+ 20
788
+ 25
789
+ 30
790
+ 35
791
+ Time to ExpirationFigure 4: 1 Year Tenor 1. Swaption volatility smile.
792
+ 14
793
+
794
+ 2.0%
795
+ 1.9%
796
+ y= 5.668x*+ 0.0831x + 0.0148
797
+ R²=0.9971
798
+ 1.8%
799
+ 1.7%
800
+ 1.6%
801
+ Input
802
+ ....... Inter polation.
803
+ 1.5%
804
+ 1.4%
805
+ 1.3%
806
+ 1.2%
807
+ -2.5%
808
+ -2.0%
809
+ -1.5%
810
+ 1.0%
811
+ 0.5%
812
+ 0.0%
813
+ 0.5%
814
+ 1.0%
815
+ 1.5%
816
+ 2.0%
817
+ 2.5%Figure 5: 1 Year Tenor 1 Volatility Extrapolation.
818
+ Figure 6: ATM Swaption Normal Volatilities with smile.
819
+ 15
820
+
821
+ 3.5%
822
+ 3.0%
823
+ 2.5%
824
+ 2.0%
825
+ Input
826
+ Model
827
+ 1.0%
828
+ 0.5%
829
+ 0.0%
830
+ -10%
831
+ -5%
832
+ %0
833
+ 5%
834
+ 10%Tenor 1
835
+ 1.8%
836
+ 1.6%
837
+ 1.4%
838
+ 1.2%
839
+ 1.0%
840
+ oInput
841
+ 0.8%
842
+ eMcVol
843
+ 0.6%
844
+ 0.4%
845
+ 0.2%
846
+ 0.0%
847
+ 0
848
+ 5
849
+ 10
850
+ 15
851
+ 20
852
+ 25
853
+ 30Tenor 5
854
+ 1.4%
855
+ 1.2%
856
+ 1.0%
857
+ 0.8%
858
+ oInput
859
+ 0.6%
860
+ eMcVol
861
+ 0.4%
862
+ 0.2%
863
+ 0.0%
864
+ 0
865
+ 5
866
+ 10
867
+ 15
868
+ 20
869
+ 25
870
+ 30Tenor 10
871
+ 1.2%
872
+ 1.0%
873
+ 0.8%
874
+ 0.6%
875
+ oInput
876
+ o McVol
877
+ 0.4%
878
+ 0.2%
879
+ 0.0%
880
+ 0
881
+ 5
882
+ 10
883
+ 15
884
+ 20
885
+ 25
886
+ 30Tenor 30
887
+ 1.2%
888
+ 1.0%
889
+ 0.8%
890
+ 0.6%
891
+ oInput
892
+ o McVol
893
+ 0.4%
894
+ 0.2%
895
+ 0.0%
896
+ 0
897
+ 5
898
+ 10
899
+ 15
900
+ 20
901
+ 25
902
+ 30Figure 7:
903
+ Swaption volatility smile.
904
+ 16
905
+
906
+ 1 Year, Tenor 1
907
+ 2.0%
908
+ 1.8%
909
+ 1.6%
910
+ .
911
+ 1.2%
912
+ 1.0%
913
+ oInput
914
+ 0.8%
915
+ .McVol
916
+ 0.6%
917
+ 0.4%
918
+ 0.2%
919
+ 0.0%
920
+ -2.5%
921
+ 1.5%
922
+ -0.5%
923
+ 0.5%
924
+ 1.5%
925
+ 2.5%Figure 8:
926
+ Swaption volatility smile.
927
+ 17
928
+
929
+ 5 Years, Tenor 1
930
+ 1.4%
931
+ .
932
+ 1.2%
933
+ :
934
+ 1.0%
935
+ 0.8%
936
+ .Vol
937
+ 0.6%
938
+ OMC
939
+ 0.4%
940
+ 0.2%
941
+ 0.0%
942
+ -0.03
943
+ -0.02
944
+ -0.01
945
+ 0
946
+ 0.01
947
+ 0.02
948
+ 0.03Figure 9:
949
+ Swaption volatility smile.
950
+ 18
951
+
952
+ 10Years,Tenor1
953
+ 1.2%
954
+ 1.0%
955
+ . 8.8%
956
+ 0.6%
957
+ .Vol
958
+ OMC
959
+ 0.4%
960
+ 0.2%
961
+ 0.0%
962
+ -0.03
963
+ -0.02
964
+ -0.01
965
+ 0
966
+ 0.01
967
+ 0.02
968
+ 0.03Figure 10:
969
+ Swaption volatility smile.
970
+ Figure 11: Swaption volatility smiles. 1 month time steps.
971
+ 19
972
+
973
+ 5 Years, Tenor 2
974
+ 1.4%
975
+ 1.2%
976
+ 0.8%
977
+ .Vol
978
+ 0.6%
979
+ OMC
980
+ 0.4%
981
+ 0.2%
982
+ 0.0%
983
+ -0.03
984
+ 0.02
985
+ -0.01
986
+ 0
987
+ 0.01
988
+ 0.02
989
+ 0.033 Years, Tenor 1
990
+ 1.8%
991
+ 1.6%
992
+ 1.4%
993
+ .
994
+ 1.2%
995
+ 1.0%
996
+ eInput
997
+ 0.8%
998
+ ●MC
999
+ 0.6%
1000
+ 0.4%
1001
+ 0.2%
1002
+ 0.0%
1003
+ -2.5%
1004
+ 1.5%
1005
+ %5'0-
1006
+ 0.5%
1007
+ 1.5%
1008
+ 2.5%5 Years, Tenor 1
1009
+ 1.4%
1010
+ 1.2%
1011
+ 1.0%
1012
+ 0.8%
1013
+ Input
1014
+ 0.6%
1015
+ ●MC
1016
+ 0.4%
1017
+ 0.2%
1018
+ 0.0%
1019
+ -2.5%
1020
+ -1.5%
1021
+ %5'0-
1022
+ 0.5%
1023
+ 1.5%
1024
+ 2.5%10 Years, Tenor 1
1025
+ 1.2%
1026
+ 1.0%
1027
+ 0.6%
1028
+ oInput
1029
+ ●MC
1030
+ 0.4%
1031
+ 0.2%
1032
+ 0.0%
1033
+ -2.5%
1034
+ 1.5%
1035
+ -0.5%
1036
+ 0.5%
1037
+ 1.5%
1038
+ 2.5%30 Years, Tenor 1
1039
+ 0.8%
1040
+ 0.7%
1041
+ 0.6%
1042
+ 0.5%
1043
+ 0.4%
1044
+ oInput
1045
+ 0.3%
1046
+ ●MC
1047
+ 0.2%
1048
+ 0.1%
1049
+ 0.0%
1050
+ -2.5%
1051
+ 1.5%
1052
+ %5'0-
1053
+ 0.5%
1054
+ 1.5%
1055
+ 2.5%
0NFRT4oBgHgl3EQfkTex/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf,len=518
2
+ page_content='Local Volatility in Interest Rate Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
3
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
4
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
5
+ page_content=' Belyaev U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
6
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
7
+ page_content=' Bank, Minneapolis, MN, USA February 1, 2023 Abstract A new approach to Local Volatility implementation in the interest rate model is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
8
+ page_content=' The major tool of this approach is a small volatility approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
9
+ page_content=' This approximation works very well and it can be used to calibrate all ATM swaptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
10
+ page_content=' It works fast and accu- rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
11
+ page_content=' In order to reproduce all available swaption prices we need to take into account the dependence of forward volatility on the current swap rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
12
+ page_content=' Here we assume that forward volatility is a deterministic function on strike, tenor, and expiration at every point on the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
13
+ page_content=' We determine these functions and apply them in Monte-Carlo calcu- lations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
14
+ page_content=' It was demonstrated that this approach works well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
15
+ page_content=' However, in the case of short term and low tenor swaptions we observed errors in swaption pricing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
16
+ page_content=' To fix this problem we need to modify the scenario generation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
17
+ page_content=' 1 Introduction Local Volatility Model was presented by Dupire [1] in 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
18
+ page_content=' According to this model forward volatility is a deterministic function of a current underlying S(t) price and time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
19
+ page_content=' Model dynamics in this case has the following form: dS(t) = µ(t)S(t)dt + σL(S(t), t)S(t)dW(t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
20
+ page_content=' (1) where µ(T) = r(t)−y(t) is a arbitrage free drift;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
21
+ page_content=' r(t) and y(t) are risk free rate and dividend yield;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
22
+ page_content=' dW(t) is Brownian motion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
23
+ page_content=' σL(S(t), t) is a deterministic Local Volatility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
24
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
25
+ page_content='13595v1 [q-fin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
26
+ page_content='PR] 31 Jan 2023 Representing the option price as a function of forward one C(F(T), X, T) where F(T) = S(0)e � T 0 (r(t)−y(t))dt we have σ2 L(X, t) = ∂C ∂T 1 2X2 ∂2C ∂X2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
27
+ page_content=' (2) where C(F(T), X, T) is a call option price;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
28
+ page_content=' X is a strike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
29
+ page_content=' Having arbitrage-free interpolated/extrapolated volatility surface we can calculate local volatility by eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
30
+ page_content=' (2) and generate scenarios which are perfectly calibrated to all available option prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
31
+ page_content=' This procedure is deterministic and fast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
32
+ page_content=' Later Gatheral [2] derived the following formula for local volatility which is expressed in terms of implied volatility itself: σ2 L(X, t) = ∂w ∂T 1 − y w ∂w ∂y + 1 4 � − 1 4 − 1 w + y2 w2 � � ∂w ∂y �2 + 1 2 ∂2w ∂y2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
33
+ page_content=' (3) where w(y, T) is an implied variance of the option with strike X and time to expiration T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
34
+ page_content=' y = ln(X/F(T)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
35
+ page_content=' The formula makes it easier to calculate Local Volatility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
36
+ page_content=' In the case of normal volatilities models where dS(t) = µ(t)dt + σ(S(t), t)dW(t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
37
+ page_content=' (4) µ(T) = ∂F(T) ∂T , formula for Local Volatility is also known [3]: σ2 L(X, t) = dw dT 1 − y w ∂w ∂y + 1 4 � − 1 w + y2 w2 � � ∂w ∂y �2 + 1 2 ∂2w ∂y2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
38
+ page_content=' (5) Here we use the following notation: y = X − F(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
39
+ page_content=' To calibrate interest rate model we will use small volatility approximation [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
40
+ page_content=' This approximation works very well and it means that bond price dy- namic approximately is a normal one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
41
+ page_content=' So, Local Volatility can be calculated according to eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
42
+ page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
43
+ page_content=' In Section 2 we describe a Small Volatility approximation and demon- strate its accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
44
+ page_content=' This approximation can be used to calibrate the model for selected OTM strikes as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
45
+ page_content=' In Section 3 we apply this approximation in order to to calculate deterministic sensitivities to strikes at every point of the 2 grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
46
+ page_content=' In Section 4 fixed tenor dynamics and forward volatility calculation are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
47
+ page_content=' In Section 5 we use these sensitivities to calculate current forward volatilities according to eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
48
+ page_content=' (5) to generate interest rate scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
49
+ page_content=' All calculations are completed for March 29, 2022 SOFR rate and swap- tions market data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
50
+ page_content=' Even though the fact that the approach works well we observe relatively big errors in case of short-term and low-tenor swaptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
51
+ page_content=' 2 Small Volatility Approximation Here we consider HJM interest rate model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
52
+ page_content=' HJM model [5] has the following dynamics: df(t, T) = α(t, T)dt + σ(t, T)dW(t);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
53
+ page_content=' (6) where f(t, T) is a forward rate: B(t, T) = e−� T t f(t,τ)dτ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
54
+ page_content=' (7) B(t, T) is a zero coupon risk-free bond;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
55
+ page_content=' σ(t, T) is a normal volatility;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
56
+ page_content=' dW(t, T) is a Brownian motion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
57
+ page_content=' and α(t, T) = σ(t, T) � T t σ(t, τ)dτ (8) is a drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
58
+ page_content=' The drift is chosen to satisfy martingale condition on bond prices B(0, T) = � e−� t 0 r(τ)dτB(t, T) � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
59
+ page_content=' ∀t ∈ [0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
60
+ page_content=' (9) Distribution of discounted bond prices at time T can be presented in the following form: e−� T 0 r(τ)dτB(T, T1) = = B(0, T1)e−� T 0 dτ � T1 τ α(τ,t)dt−� T 0 dW(τ)� T1 τ σ(τ,t)dt = = B(0, T1) � 1 − � T 0 dW(τ) � T1 τ σ(τ, t)dt + o(σ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
61
+ page_content=' (10) 3 It means that the distribution of SOFR swap present value is: PV (T) = e−� T 0 r(t)dt N � n=1 B(T, Tn) � rs + 1 − B(T, Tn−1) B(T, Tn) � = = e−� T 0 r(t)dt � rs N � n=1 B(T, Tn) − B(T, T) + B(T, TN) � ≃ ≃ (rs − rATM) N � n=1 B(0, Tn) + Σ(T, N)ξ √ T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
62
+ page_content=' (11) where Tn are times of payments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
63
+ page_content=' rs and rATM = B(0,T)−B(0,TN) � n=1NB(0,Tn) are swap rate and ATM rate;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
64
+ page_content=' T0 = T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
65
+ page_content=' Volatility Σ(T, N) is calculated according to the following formulas: Σ2(T, N)T = � T 0 v2(t, Ndt)dt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
66
+ page_content=' v(t, N) = rs N � n=1 B(0, Tn) � Tn t σ(t, τ)dτ − −B(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
67
+ page_content='T) � T t σ(t, τ)dτ + B(0, TN) � TN t σ(t, τ)dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
68
+ page_content=' (12) In order to calibrate the interest rate model we can use interpolated volatilities or to assume that all unknown volatilities are equal to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
69
+ page_content=' Here we use the first approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
70
+ page_content=' In the case of the grid with 3 month time step the first swaption is a tenor 1 expired in 3 months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
71
+ page_content=' According to (12) we have: v(dt, 1) = rsB(0, 5dt) 4 � k=0 (k + 1)σ(0, k)dt − −B(0, dt)σ(0, 0)dt + +B(0, 5dt) 4 � k=0 (k + 1)σ(0, k)dt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
72
+ page_content=' (13) where dt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
73
+ page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
74
+ page_content=' Assuming that all unknown volatilities are equal in (13) σ(0, k) = σ(0, 0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
75
+ page_content=' ∀k < 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
76
+ page_content=' (14) we can calculate volatilities in (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
77
+ page_content=' 4 We can apply this procedure to other expirations and tenors, taking into account already defined volatility values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
78
+ page_content=' For every available next tenor and time to expiration we obtain the following equation: Σ2(i, j) = Aσ2 + Bσ + C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
79
+ page_content=' (15) where A, B, C are factors that can be determined by using bond prices and already calculated volatilities;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
80
+ page_content=' σ is an unknown forward volatility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
81
+ page_content=' Schematically calibration process can be represented in the following way: 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
82
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
83
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
84
+ page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
85
+ page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
86
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
87
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
88
+ page_content='75 Te + Tenor 6 Te � � � � � � � � � � � � � �� f f f f f f f f f f f v f f f f f f v f f f Σ(1, 5) Σ(2, 6) σ(0, 0) σ(0, 0) σ(0, 0) σ(0, 0) σ(0, 0) σ(0, 5) σ(0, 5) σ(1, 1) σ(1, 1) σ(1, 1) σ(1, 1) σ(1, 1) where Σ(1, 5) and Σ(2, 6) are input volatilities of 1-year swaptions with 3- and 6-months to expiration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
89
+ page_content=' This procedure leads to a good calibrated prices for all ATM swaptions, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
90
+ page_content='1 where we compare input ATM volatilities with volatilities calculated from Monte-Carlo prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
91
+ page_content=' Forward volatility surface is shown on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
92
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
93
+ page_content=' 3 Sensitivity Calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
94
+ page_content=' In the previous section we describe how to calibrate forward volatilities to reproduce all available ATM swaptions prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
95
+ page_content=' This procedure can be applied to find forward volatilities calibrated to all swaption prices with shifted strikes from their ATM values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
96
+ page_content=' 5 Sswaption quotes are available within ±2% shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
97
+ page_content=' The calibration process is similar to the ATM swaption calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
98
+ page_content=' The only difference is a change of ATM volatility to the shifted one for selected strike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
99
+ page_content=' The calibration quality is good (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
100
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
101
+ page_content=' In the selected data set for SOFR swaption volatility smile, we have strikes up to ±2% rate shift from ATM rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
102
+ page_content=' This smile can be fitted by quadratic polynomial as it is demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
103
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
104
+ page_content=' Splines can also be used but obtained results are very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
105
+ page_content=' It means that we can use quadratic interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
106
+ page_content=' However, we need to take care of extrapolation, due to the swap rates can go out of [−2%, 2%] range rate shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
107
+ page_content=' This extrapolation need to be contin- uously differentiable and it would be very helpful if we can use extrapolation with limited volatility, in order to to use small volatility approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
108
+ page_content=' We choose the following quadratic extrapolation: v(x) = αu + βu(x − x0) + γu(x − x0)2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
109
+ page_content=' x0 < x < xu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
110
+ page_content=' (16) v(x) = αd + βd(x − (−x0)) + γd(x − (−x0))2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
111
+ page_content=' xd < x < −x0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
112
+ page_content=' where x0 = 2% is the current maximal available rate shift in input data;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
113
+ page_content=' final points of extrapolation are chosen as xd = −10% and xu = 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
114
+ page_content=' To obtain continuously differentiable function, we need to have αu = v(x0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
115
+ page_content=' αd = v(−x0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
116
+ page_content=' βu = dv(x) dx |x=x0 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
117
+ page_content=' βd = dv(x) dx |x=−x0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
118
+ page_content=' (17) To get zero slope at the end points xu,d we have γu(xu − x0) = −1 2βu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
119
+ page_content=' γd(xd − (−x0)) = −1 2βd;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
120
+ page_content=' (18) Above end points we assume that v(x) = � v(xd);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
121
+ page_content=' if x < xd;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
122
+ page_content=' v(xu);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
123
+ page_content=' if x > xu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
124
+ page_content=' (19) It leads to the smooth volatility curve depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
125
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
126
+ page_content=' 6 4 Fixed Tenor Dynamics Before going to Scenario Generation Process let us consider fixed tenor dy- namics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
127
+ page_content=' In the case of selected tenor N we consider the following ATM swaption values distribution which present value is: PV (S(T, N)) = e−� T 0 r(τ)dτ � rATM(T, N) N � n=1 B(T, Tn) − 1 + B(T, TN) � = = e−� T 0 r(τ)dτ �B(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
128
+ page_content='T) − B(0, TN) �N n=1 B(0, Tn) N � n=1 B(T, Tn) − 1 + B(T, TN) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
129
+ page_content=' (20) In small volatility approximation Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
130
+ page_content=' (20) has the following form: PV (S(T, N)) = Σ(T, N)ξ √ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
131
+ page_content=' (21) In the case of non-zero constant difference between current swaption rate and ATM rate δ = r(T, N) − rATM(T, N);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
132
+ page_content=' (22) swap present value distribution is PV (S(T, N, δ)) = δ N � n=1 B(0, Tn) + Σ(T, N, δ)ξ √ T = = A(T, N) � δ + Σ(T, N, δ) A(T, N) ξ � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
133
+ page_content=' (23) where Σ(T, N, δ) is implied volatility of fixed tenor underlying for selected rate shift;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
134
+ page_content=' A(T, N) = N � n=1 B(0, tn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
135
+ page_content=' (24) As we can see from (23) we can use (5) to determine forward volatility assuming deterministic dependence of local forward volatility for selected point on the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
136
+ page_content=' 7 5 Local Volatility Scenarios In the scenario generation process we can use formula for Local Volatility of normal volatility model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
137
+ page_content=' Here we assume that local forward volatility on every point on the grid can be defined deterministically from eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
138
+ page_content='(5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
139
+ page_content=' Below we describe this approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
140
+ page_content=' In addition to forward volatility, the formula depends on total variance w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
141
+ page_content=' Deterministic variance can be calculated in the following form: w(−2%, n, k) = v2 f(−2%, n − 1, k)dt + w(−2%, n − 1, k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
142
+ page_content=' w(ATM, n, k) = v2 f(ATM, n − 1, k)dt + w(ATM, n − 1, k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
143
+ page_content=' w(2%, n, k) = v2 f(2%, n − 1, k)dt + w(2%, n − 1, k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
144
+ page_content=' (25) where vf(shift, n, k) is a forward volatility for selected time step n and point on the grid k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
145
+ page_content=' Then we use interpolation-extrapolation formulas to get function w(x, n, k) for every point on the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
146
+ page_content=' This procedure gives us all deterministic functions needed to calculate forward volatility according to equation (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
147
+ page_content=' To generate scenarios we need to calculate current swap rate which is a difference between current and initial ATM swap rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
148
+ page_content=' Initial ATM swap rate is: rS(0, ti, tenor) = B(0, ti) − B(0, ti + tenor) �tenor n=1 B(0, ti + n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
149
+ page_content=' (26) Observed swap rate at time ti is: rS(ti, ti, tenor) = 1 − B(ti, ti + tenor) �tenor n=1 B(ti + n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
150
+ page_content=' (27) So, the current rate strike is X(ti, ti, tenor) = rS(ti, ti, tenor) − rS(0, ti, tenor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
151
+ page_content=' (28) In the case of tenor = 1 we assume that this strike is the same for all time steps between 0 and tenor = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
152
+ page_content=' For tenor = 2 we use strike for all times between tenor = 1 and tenor = 2 only etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
153
+ page_content='. As was mentioned in the 8 previous section this procedure works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
154
+ page_content=' We use it because we already have calculated volatility sensitivities on swap rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
155
+ page_content=' In calculations we apply calculated variance for selected strike and point on the grid (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
156
+ page_content=' We apply this procedure and generated 100,000 scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
157
+ page_content=' ATM swaption prices for tenors 1, 5, 10 and 30 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
158
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
159
+ page_content=' 1 Year Tenor 1 smile looks good (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
160
+ page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
161
+ page_content=' All Tenor 1 expirations also in a good agreement with maximal errors for 5-year expiration, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
162
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
163
+ page_content=' All other expirations of Tenor 1 swaptions are in better agreement with the input prices, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
164
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
165
+ page_content=' Errors in higher tenors swaptions are smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
166
+ page_content=' You can see it in case of 5 Year Tenor 2 swaption, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
167
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
168
+ page_content=' Note, that using 1 month time step improve the quality of calibrated scenario set, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
169
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
170
+ page_content=' 6 Conclusion Implementation of Local Volatility Model in interest rate model is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
171
+ page_content=' Calibration is deterministic, it works fast and is accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
172
+ page_content=' Observed short term and low tenor swaption errors can be improved by modifying scenario generation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
173
+ page_content=' Approach and results were presented on QuantMinds International Con- ference 2022, Barcelona, Spain [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
174
+ page_content=' 9 References [1] Dupire, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
175
+ page_content=' (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
176
+ page_content=' ”Pricing With a Smile.” Risk 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
177
+ page_content=' 18-20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
178
+ page_content=' [2] Gatheral, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
179
+ page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
180
+ page_content=' ”The Volatility Surface: A Practitioner´ıs Guide.” New York, NY: John Wiley & Sons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
181
+ page_content=' [3] Costeanu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
182
+ page_content=' & Pirjol D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
183
+ page_content=' ”Asymptotic expansion for the normal im- plied volatility in local volatility models” , arXiv:1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
184
+ page_content='3359v1, q-fin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
185
+ page_content='CP, (2011);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
186
+ page_content=' [4] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
187
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
188
+ page_content=' Belyaev : “Swaption Prices in HJM Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
189
+ page_content=' Nonparametric Fit”, arXiv:1697.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
190
+ page_content='01619, [ q-fin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
191
+ page_content='PR], (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
192
+ page_content=' QuantMinds International Con- ferences (2017-2021);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
193
+ page_content=' [5] Heath, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
194
+ page_content=', R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
195
+ page_content=' Jarrow, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
196
+ page_content=' Morton (1990): ”Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approxima- tion”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
197
+ page_content='Journal of Financial and Quantitative Analysis, 25: 419−440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
198
+ page_content=' [6] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
199
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
200
+ page_content=' Belyaev : “Local Volatility in Interest Rate Models”, QuantMinds International Conference 2022, Barcelona, Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
201
+ page_content=' 10 FIGURES Figure 1: ATM Swaption Normal Volatilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
202
+ page_content=' 11 Tenor 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
203
+ page_content='6% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
204
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
205
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
206
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
207
+ page_content='8% Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
208
+ page_content='6% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
209
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
210
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
211
+ page_content='0% 0 5 10 15 20 25 30 Time to ExpirationTenor 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
212
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
213
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
214
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
215
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
216
+ page_content='6% Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
217
+ page_content='4% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
218
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
219
+ page_content='0% 0 5 10 15 20 25 30 Time to ExpirationTenor10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
220
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
221
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
222
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
223
+ page_content='6% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
224
+ page_content='Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
225
+ page_content='4% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
226
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
227
+ page_content='0% 0 5 10 15 20 25 30 Time to ExpirationTenor30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
228
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
229
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
230
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
231
+ page_content='6% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
232
+ page_content='Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
233
+ page_content='4% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
234
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
235
+ page_content='0% 0 5 10 15 20 25 30 Time to ExpirationFigure 2: ATM Forward Volatility Surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
236
+ page_content=' 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
237
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
238
+ page_content='008 Forward Volatility 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
239
+ page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
240
+ page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
241
+ page_content='002 30 07 25 30 20 25 20 15 15 10 10 5 5 Timeto Exp Tenor 0 0Figure 3: OTM Swaption Normal Volatilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
242
+ page_content=' 13 Tenor 10, strike shift-2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
243
+ page_content='6% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
244
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
245
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
246
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
247
+ page_content='8% Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
248
+ page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
249
+ page_content='4% MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
250
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
251
+ page_content='0% 0 5 10 15 20 25 30 Timeto ExpirationTenor 10, strike shift 2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
252
+ page_content='80% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
253
+ page_content='60% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
254
+ page_content='40% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
255
+ page_content='20% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
256
+ page_content='00% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
257
+ page_content='80% Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
258
+ page_content='60% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
259
+ page_content='40% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
260
+ page_content='20% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
261
+ page_content='00% 0 5 10 15 20 25 30 35 Time to ExpirationTenor 30, strike shift-2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
262
+ page_content='6% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
263
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
264
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
265
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
266
+ page_content='8% Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
267
+ page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
268
+ page_content='4% MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
269
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
270
+ page_content='0% 0 5 10 15 20 25 30 Timeto ExpirationTenor30,strike shift 2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
271
+ page_content='60% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
272
+ page_content='40% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
273
+ page_content='20% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
274
+ page_content='00% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
275
+ page_content='80% Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
276
+ page_content='60% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
277
+ page_content='40% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
278
+ page_content='20% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
279
+ page_content='00% 0 5 10 15 20 25 30 35 Time to ExpirationTenor 1, strike shift-2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
280
+ page_content='8% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
281
+ page_content='6% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
282
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
283
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
284
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
285
+ page_content='8% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
286
+ page_content='Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
287
+ page_content='6% MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
288
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
289
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
290
+ page_content='0% 0 5 10 15 20 25 30 Timeto ExpirationTenor 1, strike shift 2% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
291
+ page_content='00% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
292
+ page_content='80% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
293
+ page_content='60% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
294
+ page_content='40% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
295
+ page_content='20% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
296
+ page_content='00% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
297
+ page_content='80% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
298
+ page_content='Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
299
+ page_content='60% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
300
+ page_content='40% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
301
+ page_content='20% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
302
+ page_content='00% 0 5 10 15 20 25 30 35 Time to ExpirationTenor 5, strike shift -2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
303
+ page_content='6% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
304
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
305
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
306
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
307
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
308
+ page_content='6% Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
309
+ page_content='4% MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
310
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
311
+ page_content='0% 0 5 10 15 20 25 30 Timeto ExpirationTenor 5, strike shift 2% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
312
+ page_content='00% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
313
+ page_content='80% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
314
+ page_content='60% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
315
+ page_content='40% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
316
+ page_content='20% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
317
+ page_content='00% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
318
+ page_content='80% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
319
+ page_content='Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
320
+ page_content='60% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
321
+ page_content='40% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
322
+ page_content='20% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
323
+ page_content='00% 0 5 10 15 20 25 30 35 Time to ExpirationFigure 4: 1 Year Tenor 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
324
+ page_content=' Swaption volatility smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
325
+ page_content=' 14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
326
+ page_content='0% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
327
+ page_content='9% y= 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
328
+ page_content='668x*+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
329
+ page_content='0831x + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
330
+ page_content='0148 R²=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
331
+ page_content='9971 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
332
+ page_content='8% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
333
+ page_content='7% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
334
+ page_content='6% Input .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
335
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
336
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
337
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
338
+ page_content=' Inter polation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
339
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
340
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
341
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
342
+ page_content='3% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
343
+ page_content='2% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
344
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
345
+ page_content='0% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
346
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
347
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
348
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
349
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
350
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
351
+ page_content='0% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
352
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
353
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
354
+ page_content='5%Figure 5: 1 Year Tenor 1 Volatility Extrapolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
355
+ page_content=' Figure 6: ATM Swaption Normal Volatilities with smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
356
+ page_content=' 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
357
+ page_content='5% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
358
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
359
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
360
+ page_content='0% Input Model 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
361
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
362
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
363
+ page_content='0% 10% 5% %0 5% 10%Tenor 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
364
+ page_content='8% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
365
+ page_content='6% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
366
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
367
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
368
+ page_content='0% oInput 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
369
+ page_content='8% eMcVol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
370
+ page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
371
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
372
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
373
+ page_content='0% 0 5 10 15 20 25 30Tenor 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
374
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
375
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
376
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
377
+ page_content='8% oInput 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
378
+ page_content='6% eMcVol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
379
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
380
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
381
+ page_content='0% 0 5 10 15 20 25 30Tenor 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
382
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
383
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
384
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
385
+ page_content='6% oInput o McVol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
386
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
387
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
388
+ page_content='0% 0 5 10 15 20 25 30Tenor 30 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
389
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
390
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
391
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
392
+ page_content='6% oInput o McVol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
393
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
394
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
395
+ page_content='0% 0 5 10 15 20 25 30Figure 7: Swaption volatility smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
396
+ page_content=' 16 1 Year, Tenor 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
397
+ page_content='0% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
398
+ page_content='8% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
399
+ page_content='6% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
400
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
401
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
402
+ page_content='0% oInput 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
403
+ page_content='8% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
404
+ page_content='McVol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
405
+ page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
406
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
407
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
408
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
409
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
410
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
411
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
412
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
413
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
414
+ page_content='5%Figure 8: Swaption volatility smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
415
+ page_content=' 17 5 Years, Tenor 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
416
+ page_content='4% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
417
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
418
+ page_content='2% : 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
419
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
420
+ page_content='8% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
421
+ page_content='Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
422
+ page_content='6% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
423
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
424
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
425
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
426
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
427
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
428
+ page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
429
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
430
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
431
+ page_content='03Figure 9: Swaption volatility smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
432
+ page_content=' 18 10Years,Tenor1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
433
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
434
+ page_content='0% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
435
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
436
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
437
+ page_content='6% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
438
+ page_content='Vol OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
439
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
440
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
441
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
442
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
443
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
444
+ page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
445
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
446
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
447
+ page_content='03Figure 10: Swaption volatility smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
448
+ page_content=' Figure 11: Swaption volatility smiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
449
+ page_content=' 1 month time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
450
+ page_content=' 19 5 Years, Tenor 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
451
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
452
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
453
+ page_content='8% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
454
+ page_content='Vol 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
455
+ page_content='6% OMC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
456
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
457
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
458
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
459
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
460
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
461
+ page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
462
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
463
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
464
+ page_content='033 Years, Tenor 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
465
+ page_content='8% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
466
+ page_content='6% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
467
+ page_content='4% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
468
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
469
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
470
+ page_content='0% eInput 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
471
+ page_content='8% MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
472
+ page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
473
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
474
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
475
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
476
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
477
+ page_content="5% %5'0- 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
478
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
479
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
480
+ page_content='5%5 Years, Tenor 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
481
+ page_content='4% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
482
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
483
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
484
+ page_content='8% Input 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
485
+ page_content='6% MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
486
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
487
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
488
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
489
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
490
+ page_content="5% %5'0- 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
491
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
492
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
493
+ page_content='5%10 Years, Tenor 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
494
+ page_content='2% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
495
+ page_content='0% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
496
+ page_content='6% oInput MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
497
+ page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
498
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
499
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
500
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
501
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
502
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
503
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
504
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
505
+ page_content='5%30 Years, Tenor 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
506
+ page_content='8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
507
+ page_content='7% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
508
+ page_content='6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
509
+ page_content='5% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
510
+ page_content='4% oInput 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
511
+ page_content='3% MC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
512
+ page_content='2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
513
+ page_content='1% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
514
+ page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
515
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
516
+ page_content="5% %5'0- 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
517
+ page_content='5% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
518
+ page_content='5% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
519
+ page_content='5%' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFRT4oBgHgl3EQfkTex/content/2301.13595v1.pdf'}
29FQT4oBgHgl3EQfGTVE/content/2301.13244v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3fb24ca2d61541b1d945f030fb9f15a6ab2b045ddb122d59915df4e9beed81
3
+ size 5140466
2dAzT4oBgHgl3EQfuP2J/content/tmp_files/2301.01688v1.pdf.txt ADDED
@@ -0,0 +1,1641 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01688v1 [math.OC] 4 Jan 2023
2
+ Feedback Stabilization of Tank-Liquid
3
+ System with Robustness to Surface Tension
4
+ Iasson Karafyllis, Filippos Vokos
5
+ Department of Mathematics,
6
+ National Technical University of Athens,
7
+ Zografou Campus, 15780, Athens, Greece,
8
9
+ Miroslav Krstic
10
+ Department of Mechanical and Aerospace Eng.,
11
+ University of California, La Jolla, San Diego,
12
+ CA 92093-0411, USA email: [email protected]
13
+ January 5, 2023
14
+ Abstract
15
+ We construct a robust stabilizing feedback law for the viscous Saint-
16
+ Venant system of Partial Differential Equations (PDEs) with surface tension
17
+ and without wall friction. The Saint-Venant system describes the move-
18
+ ment of a tank which contains a viscous liquid. We assume constant con-
19
+ tact angles between the liquid and the walls of the tank and we achieve
20
+ a spill-free exponential stabilization with robustness to surface tension by
21
+ using a Control Lyapunov Functional (CLF). The proposed CLF provides a
22
+ parameterized family of sets which approximate the state space from the
23
+ interior. Based on the CLF, we construct a nonlinear stabilizing feedback
24
+ law which ensures that the closed-loop system converges exponentially to
25
+ the desired equilibrium point in the sense of an appropriate norm.
26
+ 1
27
+ Introduction
28
+ The Saint-Venant model, which was derived in [2], constitutes a significant and
29
+ very influential mathematical model in fluid mechanics. It is also referred in
30
+ literature as the shallow water model. Recent extensions of the Saint-Venant
31
+ model take into account various types of forces such as viscous stresses, surface
32
+ tension and friction forces (see [10,19,29,33,41,43]).
33
+ The feedback stabilization problem of the Saint-Venant model is a challeng-
34
+ ing problem. The dominant cases studied in the litterature include the inviscid
35
+ model - which ignores forces such as viscous stresses and surface tension - and
36
+ 1
37
+
38
+ the linearized model (see [1,3–5,11–14,16–18,30,35,36]). In [11,12,14,35,36]
39
+ the problem of the movement of an 1-D tank which contains a fluid is stud-
40
+ ied. More specifically, [11,12,14] provide controllability results for the Saint-
41
+ Venant model without viscosity, without friction and without surface tension,
42
+ while [35] suggests a new variational formulation of Saint-Venant equations
43
+ and proves the steady-state controllability of the linear approximations of sev-
44
+ eral control configurations. In [36] the inviscid Saint-Venant model is studied
45
+ and appropriate stabilizing full-state feedback and output feedback control
46
+ laws are constructed. In [3–5, 12, 13, 16–18, 30] the movement of a fluid in an
47
+ open channel is studied. Stabilization results are provided in [1,3,4,13,17,18].
48
+ In [3, 4, 17, 18, 30] the linearized Saint-Venant model is being used while [1]
49
+ deals with a general linear hyperbolic system which appears in Saint-Venant
50
+ equations among other linear hyperbolic laws. The works [5, 12, 13, 16] study
51
+ the nonlinear Saint-Venant model. In [5] the feedforward control problem of
52
+ general nonlinear hyperbolic systems is studied and an application using the
53
+ Saint-Venant model with friction is provided. In [12, 13] local convergence of
54
+ the state of hyperbolic systems of conservation laws is guaranteed using a strict
55
+ Lypaunov function which exploits Riemann invariants. An application to the
56
+ inviscid, frictonless Saint-Venant model is provided as well. The paper [16]
57
+ achieves regulation of the water flow and level in water-ways using the invis-
58
+ cid Saint-Venant model without friction and without surface tension.
59
+ Very few studies in the literature deal with the nonlinear viscous Saint-
60
+ Venant model that is used for the description of the movement of a tank which
61
+ contains an incompressible, Newtonian fluid. The first work that studied the
62
+ nonlinear viscous Saint-Venant model without wall friction and without sur-
63
+ face tension was [23]. In [23] an appropriate nonlinear feedback law is con-
64
+ structed which provides semiglobal stabilization results by following a CLF
65
+ methodology. The work [25] extends the results obtained in [23] in the case
66
+ where wall friction forces are taken into account. In [25] both the case of a
67
+ velocity independent friction coefficient and the general case of friction co-
68
+ efficient are studied. A robust with respect to wall friction stabilizing feed-
69
+ back law is constructed. Another study which deals with the nonlinear viscous
70
+ Saint-Venant model is [24]. In [24] a stabilizing output-feedback control law for
71
+ the viscous Saint-Venant PDE system without wall friction and without surface
72
+ tension is constructed. The output-feedback control law is utilized through a
73
+ functional-observer methodology and a CLF methodology.
74
+ The study of the movement of a fluid which interacts with a gas bound-
75
+ ary and a solid boundary is inevitably intertwined with the notion of the sur-
76
+ face tension and the notions of contact angle and wettability (see [27, 34]).
77
+ Surface tension is crucial as it acts in the interface between liquid and gas.
78
+ From a mathematical point of view surface tension is very important because
79
+ it changes the order of the PDEs (it is expressed by a third order term). Con-
80
+ tact angle is the angle at which the fluid surface intersects with a solid bound-
81
+ ary as stated in [34], and it is a measure of wettability of the solid surface.
82
+ There is a wide literature concerning the topic of contact angles (see for in-
83
+ stance [20,21,27,28,37,38,42,43]). The concept of contact angle is significant
84
+ 2
85
+
86
+ in our study because it provides an additional boundary condition.
87
+ In this paper we solve the feedback stabilization problem for a tank con-
88
+ taining a liquid modeled by the viscous Saint-Venant system of PDEs with sur-
89
+ face tension and without wall friction. We consider the case of constant contact
90
+ angles between the liquid and the walls of the tank, as in [37,38]. We utilize a
91
+ specific form of the feedback law initially presented in [25], which constitutes
92
+ a more general form of the feedback law in [23] with robustness to surface
93
+ tension. Indeed, we saw that the proposed feedback law guarantees stabiliza-
94
+ tion no matter what the value of the surface tension coefficient is. Therefore, the
95
+ knowledge of the surface tension coefficient is not necessary and the feedback
96
+ law is independent of the surface tension coefficient. We achieve a spill-free
97
+ exponential stabilization, with robustness to surface tension. As in [23–25] we
98
+ follow a CLF methodology and we design the feedback law based on an appro-
99
+ priate functional, which is the CLF. The CLF determines a specific parameter-
100
+ ized set which approximates the state space of the control problem from the
101
+ interior.
102
+ Although this work presents enough technical similarities with [25], there
103
+ are some crucial differences. Firstly, in contrast with [25], the system of PDEs
104
+ contains an extra term due to surface tension and does not contain a friction
105
+ term. Moreover, in order for the model to be complete and for the problem
106
+ to be well-posed, an additional boundary condition is used. The additional
107
+ boundary condition is provided by the assumption of a constant contact angle.
108
+ Here we use only one CLF while in [25] two different functionals are proposed.
109
+ As a consequence this work does not provide a bound for the sup-norm of
110
+ the fluid velocity, as in [25], due to the absence of an appropriate functional.
111
+ Here the CLF is different from the corresponding one in [25], as it contains an
112
+ additional potential energy term due to the effect of the surface tension.
113
+ This paper is organized as follows. In Section 2 the control problem is
114
+ described as well as its main objective. In Section 3 we provide the intuitive
115
+ ideas and the statements of the results of this work along with some auxiliary
116
+ lemmas. Section 4 includes all the proofs of the results presented in Section 3.
117
+ Finally, Section 5 points out the conclusions of this work and suggests topics
118
+ for future research.
119
+ Notation
120
+ ∗ R+ = [0,+∞) is the set of non-negative real numbers.
121
+ ∗ Let S ⊆ Rn be an open set and let A ⊆ Rn be a set such that S ⊆ A ⊆ cl(S).
122
+ By C0(A;Ω), we denote the class of continuous functions on A, which
123
+ take values in Ω ⊆ Rm. By Ck(A;Ω), where k ≥ 1 is an integer, we denote
124
+ the class of functions on A ⊆ Rn, which takes values in Ω ⊆ Rm and has
125
+ continuous derivatives of order k. In other words, the functions of class
126
+ Ck(A;Ω) are the functions which have continuous derivatives of order k
127
+ in S = int(A) that can be continued continuously to all points in ∂S ∩ A.
128
+ When Ω = R then we write C0(A) or Ck(A). When I ⊆ R is an interval and
129
+ 3
130
+
131
+ G ∈ C1(I) is a function of a single variable, G′(h) denotes the derivative
132
+ with respect to h ∈ I.
133
+ ∗ Let I ⊆ R be an interval, let a < b be given constants and let u : I ×[a,b] →
134
+ R be a given function. We utilize the notation u[t] to denote the profile
135
+ at certain t ∈ I, i.e., (u[t])(x) = u(t,x) for all x ∈ [a,b]. When u(t,x) is three
136
+ times differentiable with respect to x ∈ [a,b], we use the notation ux(t,x),
137
+ uxx(t,x) and uxxx(t,x) for the first, second and third derivative of u with
138
+ respect to x ∈ [a,b] respectively, i.e.,
139
+ ux(t,x) = ∂u
140
+ ∂x (t,x),uxx(t,x) = ∂2 u
141
+ ∂x2 (t,x) and uxxx(t,x) = ∂3 u
142
+ ∂x3 (t,x)
143
+ When u(t,x) is differentiable with respect to t, we use the notation ut(t,x)
144
+ for the derivative of u with respect to t, i.e.,
145
+ ut(t,x)= ∂u
146
+ ∂t (t,x)
147
+ ∗ Given a set U ⊆ Rn, χU denotes the characteristic function of U defined
148
+ by
149
+ χU(x) :=
150
+
151
+ 1
152
+ for all x ∈ U
153
+ 0
154
+ for all x � U
155
+ The sign function sgn : R → R is the function defined by
156
+ sgn(x) :=
157
+ 
158
+ 1
159
+ for x > 0
160
+ 0
161
+ for x = 0
162
+ −1
163
+ for x < 0
164
+ ∗ Consider given constants a,b such that a < b . For p ∈ [1,+∞), Lp(a,b)
165
+ denotes the set of equivalence classes of Lebesgue measurable functions
166
+ u : (a,b) → R with
167
+ ∥u∥p :=
168
+ �� b
169
+ a
170
+ |u(x)|p dx
171
+ �1/p
172
+ < +∞.
173
+ L∞(a,b) denotes the set of equivalence classes of Lebesgue measurable
174
+ functions u : (a,b) → R with
175
+ ∥u∥∞ := esssup
176
+ x��(a,b)
177
+ (|u(x)|) < +∞.
178
+ For an integer k ≥ 1, Hk(a,b) denotes the Sobolev space of functions in
179
+ L2(a,b) with all its weak derivatives up to order k ≥ 1 in L2(a,b).
180
+ 4
181
+
182
+ 2
183
+ The Control Problem
184
+ We want to manipulate the motion of a tank which contains a viscous, Newto-
185
+ nian, incompressible liquid. Viscosity is utilized as a gain in the controller on
186
+ the difference between the boundary liquid levels and to settle a region of at-
187
+ traction. The tank is subject to an acceleration which we consider as the control
188
+ input and obeys Newton’s second law. The problem is described by the viscous
189
+ Saint-Venant equations. We restrict our study to the one-dimensional (1-D)
190
+ case of the model. Moreover, contrary to prior works, in this work we do not
191
+ neglect the surface tension that acts on the free surface (liquid-gas interface)
192
+ but we neglect friction with the tank walls.
193
+ We intend to drive asymptotically the tank to a specified position. The
194
+ aforementioned goal must be achieved without liquid spillage and by having
195
+ both the tank and the liquid within the tank at rest. The equations describ-
196
+ ing the motion of the liquid in the tank can be derived by performing mass
197
+ and momentum balances (from first principles assuming that the liquid pres-
198
+ sure is the combination of hydrostatic pressure and capillary pressure given
199
+ by the Young-Laplace equation (see [15]) and by ignoring friction with the
200
+ tank walls). The equations can also be derived by using approximations of the
201
+ Navier-Stokes equations for the incompressible fluid (see [6–8, 28, 32, 37, 38];
202
+ but see also [21,29] for fluid equations involving capillary phenomena).
203
+ We denote by a(t) the position of the left side of the tank at time t ≥ 0 and
204
+ we consider the length of the tank to be L > 0 (a constant). The evolution of the
205
+ liquid level and of the liquid velocity is described by the following equations
206
+ Ht + (Hu)z = 0, for t > 0, z ∈ [a(t),a(t) + L]
207
+ (1)
208
+ (Hu)t +
209
+
210
+ Hu2 + 1
211
+ 2gH2�
212
+ z
213
+ − σH
214
+
215
+ 
216
+ Hzz
217
+
218
+ 1 + H2z
219
+ �3/2
220
+
221
+ 
222
+ z
223
+ = µ(Huz)z
224
+ for t > 0, z ∈ (a(t),a(t) + L)
225
+ (2)
226
+ where H(t,z) > 0, u(t,z) ∈ R are the liquid level and the liquid velocity, respec-
227
+ tively, at time t ≥ 0 and position z ∈ [a(t),a(t) + L], while g,µ,σ > 0 (constants)
228
+ are the acceleration of gravity, the kinematic viscosity of the liquid and the ra-
229
+ tio of the surface tension and liquid density, respectively. In some papers the
230
+ term
231
+
232
+ 
233
+ Hzz
234
+
235
+ 1 + H2z
236
+ �3/2
237
+
238
+ 
239
+ z
240
+ is replaced by Hzzz (see [6–8,32], but here we prefer a more
241
+ accurate description of the surface tension.
242
+ The liquid velocities at the walls of the tank are equal with the tank velocity.
243
+ Consequently:
244
+ u(t,a(t)) = u(t,a(t) + L) = w(t), for t ≥ 0
245
+ (3)
246
+ where w(t) = ˙a(t) is the velocity of the tank at time t ≥ 0. Moreover, we get for
247
+ the tank
248
+ ¨a(t) = −f (t), for t > 0
249
+ (4)
250
+ 5
251
+
252
+ where −f (t), the control input to the problem, is the tank acceleration. Defin-
253
+ ing the quantities
254
+ v(t,x) := u(t,a(t) + x) − w(t)
255
+ (5)
256
+ h(t,x) := H(t,a(t) + x)
257
+ (6)
258
+ ξ(t) := a(t) − a∗
259
+ (7)
260
+ where a∗ ∈ R is the position (a constant) which we want the left side of the tank
261
+ to reach, we get the model:
262
+ ˙ξ = w, for t ≥ 0
263
+ (8)
264
+ ˙w = −f , for t ≥ 0
265
+ (9)
266
+ ht + (hv)x = 0, for t > 0, x ∈ [0,L]
267
+ (10)
268
+ (hv)t +
269
+
270
+ hv2 + 1
271
+ 2gh2�
272
+ x
273
+ − σh
274
+
275
+ 
276
+ hxx
277
+
278
+ 1 + h2x
279
+ �3/2
280
+
281
+ 
282
+ x
283
+ = µ(hvx)x + hf ,
284
+ for t > 0, x ∈ (0,L)
285
+ (11)
286
+ v(t,0) = v(t,L) = 0, for t ≥ 0
287
+ (12)
288
+ Equations (10) and (12) imply that every classical solution of (8)-(12) satisfies
289
+ the following
290
+ d
291
+ d t
292
+ �� L
293
+ 0
294
+ h(t,x)dx
295
+
296
+ = 0 for all t > 0
297
+ (13)
298
+ Consequently, the total mass of the liquid m > 0 is constant, and without loss of
299
+ generality we can assume that every solution of (8)-(12) satisfies the equation
300
+ � L
301
+ 0
302
+ h(t,x)dx ≡ m
303
+ (14)
304
+ Due to the nature of our problem it is important to mention that the liquid
305
+ level h(t,x) must be positive for all times, i.e., we must have:
306
+ min
307
+ x∈[0,L](h(t,x)) > 0, for t ≥ 0
308
+ (15)
309
+ Contrary to prior works, model (8)-(12), (14) is not a complete mathematical
310
+ description of the system. This can be seen directly by studying the lineariza-
311
+ tion of model (8)-(12), (14) but also can be seen by studying the literature
312
+ (see [27, 37, 38, 42, 43] and references therein). For a complete mathematical
313
+ model of the system we need two additional boundary conditions that describe
314
+ the interaction between the liquid and the solid walls of the tank. There are
315
+ many ways to describe the evolution of the angle of contact of a liquid with a
316
+ solid boundary (see the detailed presentation in [27]). In [37, 38], Schweizer
317
+ suggested (based on energy arguments and the fact that there might be a dis-
318
+ crepancy between the actual microscopic and the apparent macroscopic con-
319
+ tact angle) the use of a constant contact angle. Moreover, the assumption of
320
+ 6
321
+
322
+ a constant contact angle allows the well-posedness of the overall problem (at
323
+ least for small data; see [37,38,42]). The constant contact angle approach has
324
+ been used extensively in the literature (see for instance [20,42,43]).
325
+ In this work, we adopt the constant contact angle approach by imposing a
326
+ contact angle equal to π/2. Therefore, the model (8)-(12), (14) is accompanied
327
+ by the following boundary conditions:
328
+ hx(t,0) = hx(t,L) = 0, for t ≥ 0
329
+ (16)
330
+ In order to avoid liquid spillage the following condition must be satisfied:
331
+ max
332
+ x∈[0,L](h(t,x)) < Hmax, for t ≥ 0
333
+ (17)
334
+ where Hmax > 0 is the height of the tank walls. We consider classical solutions
335
+ for the system (8)-(12), (14), (16), i.e., we consider
336
+ ξ ∈ C2 (R+), w ∈ C1 (R+), h ∈ C1 ([0,+∞) × [0,L]; (0,+∞)) ∩C3 ((0,+∞) ×(0,L)),
337
+ v ∈ C0([0,+∞) × [0,L]) ∩C1 ((0,+∞) ×[0,L]) with v[t] ∈ C2 ((0,L)) for each t > 0
338
+ that satisfy equations (8)-(12), (14), (16) for a given input f ∈ C0 (R+).
339
+ For the system (8)-(12), (14), (16) with f (t) ≡ 0 (which is the open loop
340
+ system), there exists a continuum of equilibrium points, i.e., the points
341
+ h(x) ≡ h∗,v(x) ≡ 0, for x ∈ [0,L]
342
+ (18)
343
+ ξ ∈ R,w = 0
344
+ (19)
345
+ where h∗ = m/L. We assume that the equilibrium points satisfy the condition
346
+ (17), i.e., h∗ < Hmax.
347
+ We intend to construct a robust with respect to surface tension control law
348
+ of the form
349
+ f (t) = F (h[t],v[t],ξ(t),w(t)), for t > 0,
350
+ (20)
351
+ which stabilizes the equilibrium point with ξ = 0. In addition to that we im-
352
+ pose the condition (17).
353
+ It follows from (18), (19) that the desired equilibrium point is not asymp-
354
+ totically stable for the open-loop system. Consequently the described control
355
+ problem is not at all trivial.
356
+ 3
357
+ The feedback law
358
+ 3.1
359
+ The Control Lyapunov Functional (CLF)
360
+ We define the set S ⊂ R2 ×
361
+
362
+ C0 ([0,L])
363
+ �2 as follows:
364
+ (ξ,w,h,v) ∈ S ⇔
365
+ 
366
+ h ∈ C0 ([0,L];(0,+∞)) ∩ H1(0,L)
367
+ v ∈ C0 ([0,L])
368
+ � L
369
+ 0
370
+ h(x)dx = m
371
+ (ξ,w) ∈ R2,v(0) = v(L) = 0
372
+ (21)
373
+ 7
374
+
375
+ The above definition guarantees that every (ξ,w,h,v) ∈ S satisfies (12) and (14).
376
+ In addition to that, we define the following functionals for all (ξ,w,h,v) ∈ S:
377
+ V (ξ,w,h,v) := δE(h,v) + W(h,v) + qk2
378
+ 2 ξ2 + q
379
+ 2 (w + kξ)2
380
+ (22)
381
+ E(h,v) := 1
382
+ 2
383
+ � L
384
+ 0
385
+ h(x)v2(x)dx + g
386
+ 2
387
+ ���h − h∗χ[0,L]
388
+ ���2
389
+ 2
390
+
391
+ � L
392
+ 0
393
+ � �
394
+ 1 + (h′(x))2 − 1
395
+
396
+ dx
397
+ (23)
398
+ W(h,v) := 1
399
+ 2
400
+ � L
401
+ 0
402
+ h−1(x)(h(x)v(x) + µh′(x))2 dx + g
403
+ 2
404
+ ���h − h∗χ[0,L]
405
+ ���2
406
+ 2
407
+
408
+ � L
409
+ 0
410
+
411
+ 
412
+
413
+ 1 + (h′(x))2 − 1
414
+
415
+ dx
416
+ (24)
417
+ where k,q > 0 are position error and velocity gains (to be selected) respectively,
418
+ δ > 0 and h∗ = m/L. In particular:
419
+ • the functional E is the mechanical energy of the liquid within the tank as
420
+ it is the sum of the potential energy
421
+ g
422
+ 2
423
+ ���h − h∗χ[0,L]
424
+ ���2
425
+ 2 + σ
426
+ � L
427
+ 0
428
+ � �
429
+ 1 + (h′(x))2 − 1
430
+
431
+ dx
432
+ and the kinetic energy
433
+ 1
434
+ 2
435
+ � L
436
+ 0
437
+ h(x)v2(x)dx
438
+ of the liquid. It should be noticed that there is no contribution to the
439
+ mechanical energy of the tank-liquid interface which allows to give the
440
+ interpretation that the boundary condition (16) (a constant contact angle)
441
+ is a result of the absence of interaction between liquid and solid.
442
+ • the functional W is a kind of mechanical energy of the liquid within
443
+ the tank and has been used extensively in the literature of isentropic,
444
+ compressible liquid flow (see [22,31,39,40]) as well as in [23–25].
445
+ The functional V (ξ,w,h,v) defined by (22) will be utilized as a CLF for the
446
+ system, and for the derivation of useful bounds for the function h as guaran-
447
+ teed by the following lemma.
448
+ 8
449
+
450
+ Lemma 1. Let constants q,k,δ > 0 be given, and define the increasing function
451
+ G ∈ C0(R) ∩ C1((−∞,0) ∪ (0,+∞)) as follows
452
+ G(h) :=
453
+ 
454
+ sgn(h − h∗)
455
+ �2
456
+ 3h
457
+
458
+ h − 2h∗ √
459
+ h + 4
460
+ 3h∗ √
461
+ h∗
462
+
463
+ for h > 0
464
+ −4
465
+ 3h∗ √
466
+ h∗ + h
467
+ for h ≤ 0
468
+ (25)
469
+ Denote by G−1 : R → R the inverse function of G and define the constant
470
+ c :=
471
+ 1
472
+ µ
473
+
474
+ δg
475
+ (26)
476
+ Then for every (ξ,w,h,v) ∈ S, the following inequality holds:
477
+ Q1 (V (ξ,w,h,v)) ≤ h(x) ≤ Q2 (V (ξ,w,h,v)), for all x ∈ [0,L],
478
+ (27)
479
+ where the functions Qi : R+ → R (i = 1,2) are defined as follows for all s ≥ 0:
480
+ Q1(s) := max
481
+
482
+ G−1 (−cs),N1(s),N2(s)
483
+
484
+ (28)
485
+ Q2(s) := min
486
+
487
+ G−1 (cs),P1(s),P2(s)
488
+
489
+ (29)
490
+ with the functions Ni : R+ → R (i = 1,2) and Pi : R+ → R (i = 1,2) defined by the
491
+ following expressions for all s ≥ 0:
492
+ N1(s) := h∗ −
493
+
494
+ 2m(1 + δ)s
495
+ δµ2
496
+ ,
497
+ (30)
498
+ N2(s) := h∗ −
499
+ ��
500
+ s
501
+ σ(δ + 1) + L
502
+ �2
503
+ − L2,
504
+ (31)
505
+ P1(s) := h∗ +
506
+
507
+ 2m(1 + δ)s
508
+ δµ2
509
+ ,
510
+ (32)
511
+ P2(s) := h∗ +
512
+ ��
513
+ s
514
+ σ(δ + 1) + L
515
+ �2
516
+ − L2
517
+ (33)
518
+ Remark 1. It follows from (25), (26), (28) and the fact that h∗ = m/L that
519
+ Q1 (V (ξ,w,h,v)) > 0 when
520
+ V (ξ,w,h,v) < max(θ1,θ2,θ3)
521
+ (34)
522
+ with
523
+ θ1 := 4
524
+ 3µh∗ �
525
+ δgh∗, θ2 :=
526
+ µ2h∗δ
527
+ 2L(1 + δ)
528
+ and
529
+ θ3 := σ (δ + 1)
530
+ � �
531
+ (h∗)2 + L2 − L
532
+
533
+ 9
534
+
535
+ Definitions (28) and (29) imply that Q2 : R+ → R is an increasing function
536
+ while Q1 : R+ → R is a decreasing function.
537
+ It is important to mention that Lemma 1 is more general than Lemma 1
538
+ in [23] and Lemma 1 in [25]. Lemma 1 in [23] can be applied only for the case
539
+ δ = 1 and σ = 0, while Lemma 1 in [25] can be applied only for the case σ = 0.
540
+ Here Lemma 1 can be applied for all δ > 0 and σ ≥ 0.
541
+ 3.2
542
+ The state space
543
+ As in [23–25] the state space will be appropriately defined in order to exclude
544
+ states of the set S defined by (21) that violate the condition (17), i.e, the states
545
+ that cause liquid spillage. We define the following
546
+ X :=
547
+
548
+ (ξ,w,h,v) ∈ S : max
549
+ x∈[0,L](h(x)) < Hmax
550
+
551
+ (35)
552
+ R := 2µ
553
+
554
+ δgh∗
555
+ 3
556
+ (Hmax − h∗)min(ζ1,ζ2)
557
+ (36)
558
+ where
559
+ ζ1 := max(Γ1,Γ2,Γ3) and
560
+ (37)
561
+ ζ2 :=
562
+ h∗
563
+ Hmax − h∗ max(2,∆1,∆2)
564
+ (38)
565
+ with Γ1,Γ2,Γ3,∆1 and ∆2 defined as follows:
566
+ Γ1 :=
567
+
568
+ Hmax
569
+ h∗
570
+
571
+ 2
572
+
573
+ h∗
574
+ √Hmax +
575
+
576
+ h∗ ,
577
+ (39)
578
+ Γ2 := 3µ
579
+
580
+ δ(Hmax − h∗)
581
+ 4m(1 + δ)
582
+
583
+ gh∗ ,
584
+ (40)
585
+ Γ3 :=
586
+ 3σ(δ + 1)
587
+ � �
588
+ L2 + (Hmax − h∗)2 − L
589
+
590
+
591
+
592
+ δgh∗ (Hmax − h∗)
593
+ ,
594
+ (41)
595
+ ∆1 :=
596
+
597
+
598
+ δ
599
+ 4L
600
+
601
+ gh∗ (1 + δ)
602
+ ,
603
+ (42)
604
+ ∆2 :=
605
+ 3σ(δ + 1)
606
+
607
+ h∗
608
+
609
+
610
+ δg
611
+ � �
612
+ (h∗)2 + L2 + L
613
+
614
+ (43)
615
+ The aforementioned definition (36), the fact that h∗ < Hmax and Lemma 1
616
+ imply for all (ξ,w,h,v) ∈ S with V (ξ,w,h,v) < R the following
617
+ 0 < Q1 (V (ξ,w,h,v)) ≤ h(x) ≤ Q2 (V (ξ,w,h,v)) < Hmax, for all x ∈ [0,L]
618
+ (44)
619
+ 10
620
+
621
+ Consequently, the conditions (17) for avoiding liquid spillage are satisfied when
622
+ (ξ,w,h,v) ∈ S with V (ξ,w,h,v) < R.
623
+ The set X defined by (35) is the state space of system (8)-(12), (14), (16).
624
+ In particular, we consider as state space the metric space X ⊂ R2 × H1 (0,L) ×
625
+ L2 (0,L) with metric induced by the norm of the underlying normed linear
626
+ space R2 × H1 (0,L) × L2 (0,L), i.e.,
627
+ ∥(ξ,w,h,v)∥X =
628
+
629
+ ξ2 + w2 + ∥h∥2
630
+ 2 +
631
+ ���h′���2
632
+ 2 + ∥v∥2
633
+ 2
634
+ �1/2
635
+ (45)
636
+ However, we need to approximate the state space from its interior by using
637
+ certain parameterized sets that allow us to obtain useful estimates. We define
638
+ XV (r) := {(ξ,w,h,v) ∈ S : V (ξ,w,h,v) ≤ r }, for r ≥ 0
639
+ (46)
640
+ Inequalities (44) imply that
641
+ XV (r) ⊆ X, for all r ∈ [0,R)
642
+ (47)
643
+ As indicated by the following proposition the set XV (r) for r > 0 contains a
644
+ neighborhood of
645
+
646
+ 0,0,h∗χ[0,L],0
647
+
648
+ (in the topology of X with metric induced by
649
+ the norm ∥ ∥X defined by (45)).
650
+ Proposition 1. Let constants q,k,δ > 0 be given. Then for every (ξ,w,h,v) ∈ S
651
+ satisfying the inequality
652
+ ���(0,w,h − h∗χ[0,L],v)
653
+ ���X ≤ ε
654
+ (48)
655
+ for some ε > 0 with
656
+ ε < min(h∗,Hmax − h∗)/
657
+
658
+ L,
659
+ (49)
660
+ the following inequality holds:
661
+ V (ξ,w,h,v) ≤ C1
662
+ ���(ξ,w,h − h∗χ[0,L],v)
663
+ ���2
664
+ X + C2
665
+ ���(ξ,w,h − h∗χ[0,L],v)
666
+ ���X
667
+ (50)
668
+ where
669
+ C1 := max
670
+
671
+ 
672
+ µ2
673
+ h∗ − ε
674
+
675
+ L
676
+ , δ + 1
677
+ 2
678
+ g, (δ + 2)Hmax
679
+ 2
680
+ ,q, 3qk2
681
+ 2
682
+
683
+ ,
684
+ (51)
685
+ C2 := σ(δ + 1)
686
+
687
+ L
688
+ (52)
689
+ and ∥·∥X is defined by (45).
690
+ 3.3
691
+ Stabilization results
692
+ The following theorem guarantees exponential stabilization of the state of the
693
+ system (8)-(12), (14), (16) by means of the nonlinear feedback law (55).
694
+ 11
695
+
696
+ Theorem 1 (Stabilization of the Tank-Liquid System).
697
+ Let arbitrary constants ω,k,q,δ > 0 be given and define R by means of (36). Let
698
+ arbitrary r ∈ [0,R) be given and assume that
699
+ k < qθ(r)
700
+ (53)
701
+ where
702
+ θ(r) :=
703
+ ωgµδπ2Q1(r)
704
+ gµδπ2Q1(r) + 2ωL(mgLHmax(δ + 1)2 + 2µ2δπ2Q1(r))
705
+ (54)
706
+ where Q1 is defined by (28). Then there exist constants M,λ > 0 with the following
707
+ property:
708
+ (P) Every classical solution of the system (8)-(12), (14), (16) and
709
+ f (t) = −ω
710
+
711
+ (δ + 1)
712
+ � L
713
+ 0
714
+ h(t,x)v(t,x)dx + µ(h(t,L) − h(t,0)) − q(w(t) + kξ(t))
715
+
716
+ ,
717
+ for t > 0
718
+ (55)
719
+ with (ξ(0),w(0),h[0],v[0]) ∈ XV (r), satisfies (ξ(t),w(t),h[t], v[t]) ∈ XV (r) and the
720
+ following estimate for t ≥ 0:
721
+ ����
722
+
723
+ ξ(t),w(t),h[t] − h∗χ[0,L],v[t]
724
+ �����X
725
+ ≤ M exp(−λt)
726
+ ����
727
+
728
+ ξ(0),w(0),h[0] − h∗χ[0,1],v[0]
729
+ �����X
730
+ (56)
731
+ Remarks on Theorem 1.
732
+ 1) The arbitrary quantities ω,k,q,δ > 0 are the control parameters. We should
733
+ point out that the ratio k/q must be sufficiently small due to (53), and this is
734
+ the only restriction for the control parameters.
735
+ 2) The set XV (r) is the set for which exponential stabilization is achieved. As
736
+ indicated by Proposition 1, the set XV (r) for r > 0 contains a neighborhood
737
+ of
738
+
739
+ 0,0,h∗χ[0,L],0
740
+
741
+ (in the topology of X with metric induced by the norm ∥ ∥X
742
+ defined by (45)). The size of the set XV (r) depends on r ∈ [0,R) and on δ,q,k
743
+ (recall (36) and (22)). It is straightforward to see that the larger the parameter
744
+ q (or k) the smaller the set XV (r). However, the dependence of XV (r) on δ
745
+ (through the dependence of R on δ) is not clear. On the contrary it is a very
746
+ complicated, non-monotonic dependence.
747
+ 3) The feedback law (55) only requires the measurement of the four following
748
+ quantities:
749
+ • the position of the tank denoted by ξ(t), and the velocity of the tank
750
+ denoted by w(t),
751
+ • the total momentum of the liquid, i.e., the quantity
752
+ � L
753
+ 0
754
+ h(t,x)v(t,x)dx,
755
+ and
756
+ 12
757
+
758
+ • the difference the liquid level at the tank walls, i.e., the quantity h(t,L) −
759
+ h(t,0).
760
+ It should be emphasized that the feedback law (55) does not require the mea-
761
+ surement of the whole liquid level and liquid velocity profile whereas it is
762
+ completely independent of the surface tension coefficient.
763
+ 4) The feedback law (55) is the same feedback law that was used in [23, 25].
764
+ When the results in [23,25] and Theorem 1 are taken into account then it fol-
765
+ lows that the feedback law (55) guarantees robustness with respect to surface
766
+ tension as well as robustness with respect to wall friction forces. From a con-
767
+ trol point of view, this is an ideal situation: the feedback law (55) is robust
768
+ with respect to all possible perturbations of the basic model, its measurement
769
+ requirements are minimal and guarantees exponential stabilization of the cor-
770
+ responding closed-loop (nonlinear; not the linearized) system.
771
+ 5) In contrast with [25], Theorem 1 does not provide an estimate for the norm
772
+ ∥vx[t]∥2, and consequently an estimate for the sup-norm of the fluid velocity.
773
+ A topic for future research is the contruction of an appropriate CLF based on
774
+ which an estimate for the norm ∥vx[t]∥2 can be obtained.
775
+ 4
776
+ Proofs
777
+ Proof of Lemma 1. The proof is exactly the same with the proof of Lemma 1
778
+ in [25]. The only difference is that here we can obtain an additional estimate for
779
+ ���h − h∗χ[0,L]
780
+ ���∞. Indeed, due to the fact that the function ϕ : R+ → R+defined
781
+ by
782
+ ϕ(s) =
783
+
784
+ s2 + 1 − 1, for s ≥ 0
785
+ (57)
786
+ is increasing and convex, we can use Jensen’s inequality (see page 120 in [9])
787
+ and get for all h ∈ C0 ([0,L];(0,+∞)) ∩ H1(0,L) with
788
+ � L
789
+ 0
790
+ h(x)dx = m:
791
+ ϕ
792
+ �1
793
+ L
794
+ ���h′���1
795
+
796
+ = ϕ
797
+ �1
798
+ L
799
+ � L
800
+ 0
801
+ ���h′(x)
802
+ ���dx
803
+
804
+ ≤ 1
805
+ L
806
+ � L
807
+ 0
808
+ ϕ
809
+ ����h′(x)
810
+ ���
811
+
812
+ dx = 1
813
+ L
814
+ � L
815
+ 0
816
+ � �
817
+ (h′(x))2 + 1 − 1
818
+
819
+ dx
820
+ (58)
821
+ Using (58), the inequality
822
+ ���h − h∗χ[0,L]
823
+ ���∞ ≤ ∥h′∥1 (which is a direct consequence
824
+ of the fact that there exists x∗ ∈ [0,L] such that h(x∗) = h∗; a consequence of
825
+ continuity of h, the mean value theorem and the facts that
826
+ � L
827
+ 0
828
+ h(x)dx = m, h∗ =
829
+ m/L), the fact that the function ϕ−1 : R+ → R+ (the inverse function of ϕ) is
830
+ increasing with ϕ−1(s) =
831
+
832
+ (s + 1)2 − 1 for s ≥ 0 and the inequality
833
+ � L
834
+ 0
835
+ � �
836
+ (h′(x))2 + 1 − 1
837
+
838
+ dx ≤ V (ξ,w,h,v)
839
+ σ(δ + 1)
840
+ (59)
841
+ 13
842
+
843
+ which is a direct consequence of definitions (22), (23), (24), we get for all
844
+ (ξ,w,h,v) ∈ S:
845
+ ���h − h∗χ[0,L]
846
+ ���∞ ≤
847
+ ��
848
+ L + V (ξ,w,h,v)
849
+ σ(δ + 1)
850
+ �2
851
+ − L2
852
+ (60)
853
+ Using the additional estimate (60) in conjunction with the estimates shown in
854
+ the proof of Lemma 1 in [25] and definitions (26), (28) and (29) we get (27) .
855
+ The proof is complete.
856
+
857
+ Proof of Proposition 1. Consider arbitrary (ξ, w,h,v) ∈ S satisfying (48) and (49).
858
+ Definitions (22), (23), (24) and the inequalities
859
+ (h(x)v(x) + µh′(x))2 ≤ 2h2(x)v2(x) + 2µ2 (h′(x))2 ,
860
+ (61)
861
+ (w + kξ)2 ≤ 2w2 + 2k2ξ2,
862
+ (62)
863
+
864
+ 1 + (h′(x))2 − 1 ≤
865
+ ���h′(x)
866
+ ���
867
+ (63)
868
+ imply:
869
+ V (ξ,w,h,v) ≤ δ + 2
870
+ 2
871
+ � L
872
+ 0
873
+ h(x)v2(x)dx + µ2
874
+ � L
875
+ 0
876
+ h−1(x)(h′(x))2 dx
877
+ +δ + 1
878
+ 2
879
+ g
880
+ ���h − h∗χ[0,L]
881
+ ���2
882
+ 2 + 3qk2
883
+ 2
884
+ ξ2 + qw2 + σ(δ + 1)
885
+ ���h′���1
886
+ (64)
887
+ Following the arguments of the proof of Proposition 2.5 in [25] we obtain from
888
+ (64) the following:
889
+ V (ξ,w,h,v) ≤ δ + 2
890
+ 2
891
+ Hmax ∥v∥2
892
+ 2 + qw2 + 3qk2
893
+ 2
894
+ ξ2
895
+ +µ2 �
896
+ h∗ − ε
897
+
898
+ L
899
+ �−1 ���h′���2
900
+ 2 + δ + 1
901
+ 2
902
+ g
903
+ ���h − h∗χ[0,L]
904
+ ���2
905
+ 2 + σ(δ + 1)
906
+
907
+ L
908
+ ���h′���2
909
+ (65)
910
+ Inequality (50) is a direct consequence of (65) and definition (45). The proof is
911
+ complete.
912
+
913
+ In order to give the proof of the main result of this study, we need to provide
914
+ some preliminary lemmas along with their proofs.
915
+ Lemma 2. Every classical solution of the system (8)-(12), (14), (16) satisfies the
916
+ following equations for all t > 0:
917
+ d
918
+ dt E(h[t],v[t]) = −µ
919
+ � L
920
+ 0
921
+ h(t,x)v2
922
+ x(t,x)dx + f (t)
923
+ � L
924
+ 0
925
+ h(t,x)v(t,x)dx
926
+ (66)
927
+ 14
928
+
929
+ d
930
+ dt W(h[t],v[t]) = −µg ∥hx[t]∥2
931
+ 2 − µσ
932
+ � L
933
+ 0
934
+ h2xx(t,x)dx
935
+
936
+ 1 + h2x(t,x)
937
+ �3/2
938
+ +f (t)
939
+ � L
940
+ 0
941
+ (h(t,x)v(t,x) + µhx(t,x))dx
942
+ (67)
943
+ where E,W are defined by (23), (24), respectively.
944
+ Proof. Due to (10) and (11) we get for t > 0, x ∈ (0,L):
945
+ vt(t,x) + v(t,x)vx(t,x) + ghx(t,x)
946
+ = σh−1(t,x)
947
+
948
+ 
949
+ 1 + h2x(t,x) + h(t,x)hxx(t,x)
950
+
951
+ 1 + h2x(t,x)
952
+ �3/2
953
+
954
+ 
955
+ x
956
+ +µh−1(t,x)(h(t,x)vx(t,x))x + f (t)
957
+ (68)
958
+ Combining definition (23), (10) and (68) we get for all t > 0 the following ex-
959
+ pression for the time derivative of the functional (23) :
960
+ d
961
+ dt E(h[t],v[t]) = −1
962
+ 2
963
+ � L
964
+ 0
965
+ (h(t,x)v(t,x))xv2(t,x)dx
966
+
967
+ � L
968
+ 0
969
+ h(t,x)v2(t,x)vx(t,x)dx − g
970
+ � L
971
+ 0
972
+ h(t,x)v(t,x)hx(t,x)dx
973
+
974
+ � L
975
+ 0
976
+ v(t,x)
977
+
978
+ 
979
+ 1 + h2
980
+ x(t,x) + h(t,x)hxx(t,x)
981
+
982
+ 1 + h2x(t,x)
983
+ �3/2
984
+
985
+ 
986
+ x
987
+ dx
988
+
989
+ � L
990
+ 0
991
+ v(t,x)(h(t,x)vx(t,x))x dx + f (t)
992
+ � L
993
+ 0
994
+ h(t,x)v(t,x)dx
995
+ −g
996
+ � L
997
+ 0
998
+ (h(t,x)v(t,x))x(h(t,x) − h∗)dx
999
+ −σ
1000
+ � L
1001
+ 0
1002
+ hx(t,x)
1003
+
1004
+ 1 + h2x(t,x)
1005
+ (h(t,x)v(t,x))xxdx
1006
+ (69)
1007
+ Using (69), integration by parts as in the proof of Lemma 2.11 in [25], (12),
1008
+ 15
1009
+
1010
+ (16) and the fact that for all t > 0
1011
+ σ
1012
+ � L
1013
+ 0
1014
+ v(t,x)
1015
+
1016
+ 
1017
+ 1 + h2x(t,x) + h(t,x)hxx(t,x)
1018
+
1019
+ 1 + h2x(t,x)
1020
+ �3/2
1021
+
1022
+ 
1023
+ x
1024
+ dx
1025
+ = −σ
1026
+ � L
1027
+ 0
1028
+ vx(t,x)1 + h2
1029
+ x(t,x) + h(t,x)hxx(t,x)
1030
+
1031
+ 1 + h2x(t,x)
1032
+ �3/2
1033
+ dx
1034
+ (70)
1035
+ − σ
1036
+ � L
1037
+ 0
1038
+ hx(t,x)
1039
+
1040
+ 1 + h2x(t,x)
1041
+ (h(t,x)v(t,x))xxdx
1042
+ = σ
1043
+ � L
1044
+ 0
1045
+ vx(t,x)1 + h2x(t,x) + hxx(t,x)h(t,x)
1046
+
1047
+ 1 + h2x(t,x)
1048
+ �3/2
1049
+ dx
1050
+ (71)
1051
+ as a consequence of integration by parts as well, we obtain equation (66).
1052
+ Next we define for all t ≥ 0 and x ∈ [0,L]:
1053
+ ϕ(t,x) := h(t,x)v(t,x) + µhx(t,x)
1054
+ (72)
1055
+ Definition (72), (10) and (11) imply for all t > 0 and x ∈ (0,L):
1056
+ ϕt(t,x) = −
1057
+
1058
+ v(t,x)ϕ(t,x) + 1
1059
+ 2gh2(t,x) − σ 1 + h2
1060
+ x(t,x) + h(t,x)hxx(t,x)
1061
+
1062
+ 1 + h2x(t,x)
1063
+ �3/2
1064
+
1065
+ 
1066
+ x
1067
+ +h(t,x)f (t)
1068
+ (73)
1069
+ Using definition (24) along with (73) and (10), we get for all t > 0 :
1070
+ d
1071
+ dt W(h[t],v[t]) = 1
1072
+ 2
1073
+ � L
1074
+ 0
1075
+ h−2(t,x)ϕ2(t,x)(h(t,x)v(t,x))xdx
1076
+
1077
+ � L
1078
+ 0
1079
+ h−1(t,x)ϕ(t,x)
1080
+
1081
+ ϕ(t,x)v(t,x) + 1
1082
+ 2gh2(t,x)
1083
+
1084
+ x
1085
+ dx
1086
+
1087
+ � L
1088
+ 0
1089
+ h−1(t,x)ϕ(t,x)
1090
+
1091
+ 
1092
+ 1 + h2x(t,x) + h(t,x)hxx(t,x)
1093
+
1094
+ 1 + h2x(t,x)
1095
+ �3/2
1096
+
1097
+ 
1098
+ x
1099
+ dx
1100
+ +f (t)
1101
+ � L
1102
+ 0
1103
+ ϕ(t,x)dx − g
1104
+ � L
1105
+ 0
1106
+ (h(t,x) − h∗)(h(t,x)v(t,x))xdx
1107
+ −σ
1108
+ � L
1109
+ 0
1110
+ hx(t,x)(h(t,x)v(t,x))xx
1111
+
1112
+ 1 + h2x(t,x)
1113
+ dx
1114
+ (74)
1115
+ Using (12) and integration by parts as in proof of Lemma 2.11 in [25], we obtain
1116
+ 16
1117
+
1118
+ from (74) and definition (72) for all t > 0:
1119
+ d
1120
+ dt W(h[t],v[t]) = −µg ∥hx[t]∥2
1121
+ 2 + f (t)
1122
+ � L
1123
+ 0
1124
+ (h(t,x)v(t,x) + µhx(t,x))dx
1125
+
1126
+ � L
1127
+ 0
1128
+ v(t,x)
1129
+
1130
+ 
1131
+ 1 + h2x(t,x) + h(t,x)hxx(t,x)
1132
+
1133
+ 1 + h2x(t,x)
1134
+ �3/2
1135
+
1136
+ 
1137
+ x
1138
+ dx
1139
+ +µσ
1140
+ � L
1141
+ 0
1142
+ h−1(t,x)hx(t,x)
1143
+
1144
+ 
1145
+ 1 + h2x(t,x) + h(t,x)hxx(t,x)
1146
+
1147
+ 1 + h2x(t,x)
1148
+ �3/2
1149
+
1150
+ 
1151
+ x
1152
+ dx
1153
+ −σ
1154
+ � L
1155
+ 0
1156
+ hx(t,x)(h(t,x)v(t,x))xx
1157
+
1158
+ 1 + h2x(t,x)
1159
+ dx
1160
+ (75)
1161
+ Using (16), (70), (71) and the fact that
1162
+ h(t,x)
1163
+
1164
+ 
1165
+ hxx(t,x)
1166
+
1167
+ 1 + h2x(t,x)
1168
+ �3/2
1169
+
1170
+ 
1171
+ x
1172
+ =
1173
+
1174
+ 
1175
+ 1 + h2
1176
+ x(t,x) + h(t,x)hxx(t,x)
1177
+
1178
+ 1 + h2x(t,x)
1179
+ �3/2
1180
+
1181
+ 
1182
+ x
1183
+ (76)
1184
+ we obtain from (75) equation (67) for all t > 0. The proof is complete.
1185
+
1186
+ Lemma 3. Let constants q,k,δ > 0 be given. Then there exists a non-decreasing
1187
+ function Λ : [0,R) → (0,+∞), where R > 0 is defined by (36) such that for every
1188
+ (ξ,w,h,v) ∈ X with v ∈ H1(0,L), h ∈ H2(0,L) and V (ξ,w,h,v) < R, the following
1189
+ inequality holds:
1190
+ V (ξ,w,h,v)
1191
+ Λ(V (ξ,w,h,v)) ≤
1192
+ ���h′���2
1193
+ 2 +
1194
+ � L
1195
+ 0
1196
+ (h′′(x))2
1197
+
1198
+ 1 + (h′(x))2�3/2 dx
1199
+ +
1200
+ � L
1201
+ 0
1202
+ h(x)(v′(x))2 dx + ξ2 + (w + kξ)2
1203
+ (77)
1204
+ Proof. Let arbitrary (ξ,w,h,v) ∈ X with v ∈ H1(0,L), h ∈ H2(0,L) and V (ξ,w,h,v) <
1205
+ R be given. Using the same arguments as in the proof of Lemma 2.12 in [25]
1206
+ and the fact that
1207
+ � L
1208
+ 0
1209
+ � �
1210
+ 1 + (h′(x))2 − 1
1211
+
1212
+ dx ≤
1213
+ ���h′���2
1214
+ 2
1215
+ (78)
1216
+ 17
1217
+
1218
+ we obtain the following estimate:
1219
+ V (ξ,w,h,v) ≤ L2 (δ + 2)Q2(V (ξ,w,h,v))
1220
+ 2π2Q1(V (ξ,w,h,v))
1221
+ � L
1222
+ 0
1223
+ h(x)(v′(x))2 dx
1224
+ +
1225
+
1226
+ 
1227
+ (δ + 1)
1228
+
1229
+ gL2 + 2σ
1230
+
1231
+ 2
1232
+ +
1233
+ µ2
1234
+ Q1 (V (ξ,w,h,v))
1235
+
1236
+ 
1237
+ ���h′���2
1238
+ 2 + qk2
1239
+ 2 ξ2 + q
1240
+ 2 (w + kξ)2
1241
+ ≤ Λ(V (ξ,w,h,v))
1242
+ ×
1243
+ ����h′���2
1244
+ 2 +
1245
+ � L
1246
+ 0
1247
+ (h′′(x))2
1248
+
1249
+ 1 + (h′(x))2�3/2 dx +
1250
+ � L
1251
+ 0
1252
+ h(x)(v′(x))2 dx + ξ2 + (w + kξ)2
1253
+
1254
+ (79)
1255
+ where
1256
+ Λ(s) := 1
1257
+ 2 max
1258
+
1259
+ κ1 + 2µ2
1260
+ Q1 (s), κ2Q2(s)
1261
+ Q1(s) ,κ3
1262
+
1263
+ , for s ∈ [0,R)
1264
+ (80)
1265
+ with κ1 := (δ + 1)
1266
+
1267
+ gL2 + 2σ
1268
+
1269
+ , κ2 := L2 (δ + 2)/π2 and κ3 := qmax(1,k2). Defini-
1270
+ tion (80) and the fact that Q2 : R+ → R is an increasing function and Q1 : R+ →
1271
+ R is a decreasing function imply that Λ : [0,R) → (0,+∞) is a non-decreasing
1272
+ function. Inequality (77) holds as a direct consequence of (79). The proof is
1273
+ complete.
1274
+
1275
+ Lemma 4. Let constants q,k,δ > 0 be given. Then there exist non-decreasing func-
1276
+ tions Gi : [0,R) → (0,+∞), i = 1,2, where R > 0 is defined by (36), such that for
1277
+ every (ξ,w,h,v) ∈ X with V (ξ,w,h,v) < R, the following inequalities hold:
1278
+ ���(ξ,w,h − h∗χ[0,L],v)
1279
+ ���2
1280
+ X ≤ V (ξ,w,h,v)G1 (V (ξ,w,h,v))
1281
+ (81)
1282
+ V (ξ,w,h,v)
1283
+ G2 (V (ξ,w,h,v)) ≤
1284
+ ���(ξ,w,h �� h∗χ[0,L],v)
1285
+ ���2
1286
+ X
1287
+ (82)
1288
+ where ∥·∥X is defined by (45).
1289
+ Proof. Let arbitrary (ξ,w,h,v) ∈ X with V (ξ,w,h,v) < R be given. Using defini-
1290
+ tions (22), (23), (24), inequalities (61), (62), the inequality
1291
+
1292
+ 1 + (h′(x))2 ≤ 1 + (h′(x))2
1293
+ (83)
1294
+ and (44) we obtain
1295
+ V (ξ,w,h,v) ≤ δ + 2
1296
+ 2
1297
+ Hmax ∥v∥2
1298
+ 2 + δ + 1
1299
+ 2
1300
+ g
1301
+ ���h − h∗χ[0,L]
1302
+ ���2
1303
+ 2
1304
+ +
1305
+
1306
+ µ2
1307
+ Q1 (V (ξ,w,h,v)) + σ (δ + 1)
1308
+ ����h′���2
1309
+ 2 + 3qk2
1310
+ 2
1311
+ ξ2 + qw2
1312
+ (84)
1313
+ 18
1314
+
1315
+ Inequality (84) implies inequality (82) with
1316
+ G2 (s) := max
1317
+ �δ + 2
1318
+ 2
1319
+ Hmax, δ + 1
1320
+ 2
1321
+ g,
1322
+ µ2
1323
+ Q1 (s) + σ (δ + 1), 3qk2
1324
+ 2
1325
+ ,q
1326
+
1327
+ ,
1328
+ for s ∈ [0,R)
1329
+ (85)
1330
+ The fact that Q1 : R+ → R is a decreasing function and the above definition
1331
+ imply that G2 : [0,R) → (0,+∞) is a non-decreasing function.
1332
+ The proof of inequality (81) is exactly the same with the proof of Lemma 4
1333
+ in [25]. The proof is complete.
1334
+
1335
+ Lemma 5. Let constants ω,k,q,δ > 0 and r ∈ [0,R) be given, where R > 0 is defined
1336
+ by (36). Then every classical solution of the system (8)-(12), (14), (16) and (55)
1337
+ satisfies the following inequality for all t > 0 for which V (ξ(t),w(t),h[t],v[t]) < R:
1338
+ d
1339
+ dt V (ξ(t),w(t),h[t],v[t]) ≤ −3µg
1340
+ 4 ∥hx[t]∥2
1341
+ 2 − qk3ξ2(t)
1342
+
1343
+ µδ
1344
+ 2Hmax
1345
+
1346
+ 2Hmax − Q1(r)Q2 (V (t))
1347
+ Q1 (V (t))
1348
+ �� L
1349
+ 0
1350
+ h(t,x)v2
1351
+ x(t,x)dx
1352
+ −µσ
1353
+ � L
1354
+ 0
1355
+ h2xx(t,x)
1356
+
1357
+ 1 + h2x(t,x)
1358
+ �3/2 dx − q(qθ(r) − k)(w(t) + kξ(t))2
1359
+ (86)
1360
+ where V (t) = V (ξ(t),w(t),h[t],v[t]), θ(r) is defined by (54) and Qi : R+ → R (i =
1361
+ 1,2) are the functions defined by (28) and (29).
1362
+ Proof. Let ω,k,q,δ > 0 be given constants and let r ∈ [0,R) be a constant, where
1363
+ R > 0 is defined by (36). In addition to that we consider a classical solution of
1364
+ the system (8)-(12), (14), (16) and (55) at a time t > 0 for which V (ξ(t),w(t),h[t],v[t]) <
1365
+ R. Using Lemma 2, (66), (67) and definition (22) and by following the same
1366
+ procedure as in the proof of Lemma 2.14 in [25] by assuming zero friction
1367
+ coefficient, we establish the following inequality:
1368
+ d
1369
+ dt V (ξ(t),w(t),h[t],v[t]) ≤ −3µg
1370
+ 4
1371
+ ∥hx[t]∥2
1372
+ 2 − µδ
1373
+ � L
1374
+ 0
1375
+ h(t,x)v2
1376
+ x(t,x)dx
1377
+ −µσ
1378
+ � L
1379
+ 0
1380
+ h2xx(t,x)
1381
+
1382
+ 1 + h2x(t,x)
1383
+ �3/2 dx − q(qθ(r) − k)(w(t) + kξ(t))2 − qk3ξ2(t)
1384
+ +µδπ2Q1(r)
1385
+ 2L2Hmax
1386
+ � L
1387
+ 0
1388
+ h(t,x)v2(t,x)dx
1389
+ (87)
1390
+ Since v(t,0) = v(t,L) = 0 (recall (12)), by virtue of Wirtinger’s inequality and
1391
+ (44), we get:
1392
+ ∥v[t]∥2
1393
+ 2 ≤ L2
1394
+ π2 ∥vx[t]∥2
1395
+ 2 ≤
1396
+ L2
1397
+ π2Q1 (V (t))
1398
+ � L
1399
+ 0
1400
+ h(t,x)v2
1401
+ x(t,x)dx
1402
+ (88)
1403
+ Combining (44), (87) and (88), we obtain (86). The proof is complete.
1404
+
1405
+ 19
1406
+
1407
+ We can now present the proof of Theorem 1.
1408
+ Proof of Theorem 1. Let constants ω,q,k,δ > 0 satisfying (53). Let constant r ∈
1409
+ [0,R) be given. Consider a classical solution of the system (8)-(12), (14), (16)
1410
+ with (55) that satisfies V (ξ(0),w(0),h[0],v[0]) ≤ r. Let r ∈ (r,R) be a constant
1411
+ that satisfies:
1412
+ Q2 (r)
1413
+ Q1 (r) < 2Hmax
1414
+ Q1(r)
1415
+ (89)
1416
+ The existence of ¯r ∈ (r,R) is a direct consequence of the continuity of the func-
1417
+ tions involved in (89).
1418
+ Due to (53), Lemma 5, (86) and (89) the following implication is true:
1419
+ If t > 0 and V (ξ(t),w(t),h[t],v[t]) ≤ r then d
1420
+ d t V (ξ(t),w(t),h[t],v[t]) ≤ 0
1421
+ (90)
1422
+ A contradiction argument as in the proof of Theorem 2.6 in [25] implies that
1423
+ V (ξ(t),w(t), h[t],v[t]) ≤ r for all t ≥ 0.
1424
+ Implication (90) and the fact V (ξ(t),w(t),h[t],v[t]) ≤ r for all t ≥ 0 imply
1425
+ that
1426
+ d
1427
+ d t V (ξ(t),w(t),h[t],v[t]) ≤ 0 for all t > 0
1428
+ (91)
1429
+ Due to the above and the continuity of the mapping t → V (ξ(t),w(t),h[t], v[t]),
1430
+ we get that
1431
+ V (ξ(t),w(t),h[t],v[t]) ≤ V (ξ(0),w(0),h[0],v[0]) ≤ r < R,for all t ≥ 0
1432
+ (92)
1433
+ Consequently, (ξ(t),w(t),h[t],v[t]) ∈ XV (r) for all t ≥ 0 (recall (46)). Using (92)
1434
+ and Lemma 5, we conclude that (86) holds for all t > 0. Using (92), (86) and
1435
+ the fact that Q2 : R+ → R is an increasing function while Q1 : R+ → R is a
1436
+ decreasing function, we obtain the following estimate for t > 0
1437
+ d
1438
+ dt V (ξ(t),w(t),h[t],v[t])
1439
+ ≤ −β(r)
1440
+
1441
+ ∥hx[t]∥2
1442
+ 2 +
1443
+ � L
1444
+ 0
1445
+ h(t,x)v2
1446
+ x(t,x)dx +
1447
+ � L
1448
+ 0
1449
+ h2xx(t,x)
1450
+
1451
+ 1 + h2x(t,x)
1452
+ �3/2 dx
1453
+ +ξ2(t) + (w(t) + kξ(t))2
1454
+
1455
+ (93)
1456
+ where
1457
+ β(r) := min
1458
+ �3µg
1459
+ 4 , µδ(2Hmax − Q2 (r))
1460
+ 2Hmax
1461
+ ,qk3,q(qθ(r) − k),µσ
1462
+
1463
+ (94)
1464
+ Notice that (53) and the fact that r ∈ [0,R) in conjunction with definitions (29),
1465
+ (36), (93) imply that β(r) > 0. It follows from Lemma 3, (77), the continuity
1466
+ of the mapping t → V (ξ(t),w(t),h[t],v[t]), (recall that v ∈ C0 (R+ ;H1 (0,L)
1467
+
1468
+ ,
1469
+ 20
1470
+
1471
+ h ∈ C1 (R+ × [0,L];(0,+∞)) and v ∈ C0 (R+ × [0,L])), estimates (92), (93), Lemma
1472
+ 4, (81) and (82) that the following estimate holds for all t ≥ 0:
1473
+ ���(ξ(t),w(t),h[t] − h∗χ[0,L],v[t])
1474
+ ���2
1475
+ X
1476
+ ≤ Ω(r)exp
1477
+
1478
+ −β(r)t
1479
+ Λ(r)
1480
+ ����(ξ(0),w(0),h[0] − h∗χ[0,L],v[0])
1481
+ ���2
1482
+ X
1483
+ (95)
1484
+ with
1485
+ Ω(r) := G1 (r)G2 (r)
1486
+ (96)
1487
+ where Λ is the non-decreasing function involved in (77) and Gi : [0,R) →
1488
+ (0,+∞) (i = 1,2) are the non-decreasing functions involved in (81), (82). Es-
1489
+ timate (56) with M =
1490
+
1491
+ Ω(r) and λ = β(r)
1492
+ 2Λ(r) is a consequence of estimate (95).
1493
+ The proof is complete.
1494
+
1495
+ 5
1496
+ Concluding Remarks
1497
+ In this work we managed to show that the robust with respect to wall friction
1498
+ nonlinear feedback law proposed in [25] provides also robust stabilization re-
1499
+ sults with respect to surface tension. This shows even more the significance of
1500
+ the CLFs as stabilizing tools for the infinite-dimensional case of systems de-
1501
+ scribed by PDEs and illustrates the fact that robustness is inherent in the CLF
1502
+ methodology.
1503
+ The present study deals with the case of viscous Saint-Venant system with
1504
+ surface tension and without wall friction. It is of interest to study the more
1505
+ challenging problem of the viscous Saint-Venant system with surface tension
1506
+ and with wall friction as well as the construction of an additional functional
1507
+ which provides a bound for the sup-norm of the fluid velocity. In addition to
1508
+ that, other topics for future research are the study of existence and unique-
1509
+ ness of the solutions for the closed-loop system, the study of the problem with
1510
+ non constant (dynamic) contact angles, the study of the output feedback stabi-
1511
+ lization problem, the construction of appropriate numerical schemes and the
1512
+ derivation of stability estimates in stronger spatial norms. Concerning the out-
1513
+ put feedback stabilization problem there are many interesting studies in the
1514
+ literature that may contribute, such as [26] which suggests a finite-dimensional
1515
+ observer control of the (1-D) heat equation under Neumann actuation.
1516
+ References
1517
+ [1] J. Auriol, F. Di Meglio, Minimum time control of heterodirectional linear
1518
+ coupled hyperbolic PDEs, Automatica, 71 (2016), pp. 300-307.
1519
+ [2] A. J. C. Barr´e de Saint-Venant, Th´eorie du Mouvement non Permanent des
1520
+ Eaux, avec Application aux Crues des Rivi`eres et a l’Introduction de Mar´ees
1521
+ 21
1522
+
1523
+ dans Leurs Lits, Comptes Rendus de l’Acad´emie des Sciences, 73 (1871),
1524
+ pp. 147-154 and 237-240 .
1525
+ [3] G. Bastin, J.-M. Coron and B. d’Andr´ea Novel, On Lyapunov Stability of
1526
+ Linearised Saint-Venant Equations for a Sloping Channel, Networks and Het-
1527
+ erogeneous Media, 4 (2019), pp. 177-187.
1528
+ [4] G. Bastin, and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hy-
1529
+ perbolic Systems, Birkh¨auser, 2016.
1530
+ [5] G. Bastin, J.-M. Coron and A. Hayat, Feedforward Boundary Control of 2x2
1531
+ Nonlinear Hyperbolic Systems with Application to Saint-Venant Equations,
1532
+ European Journal of Control, 57 (2021), pp. 41-53.
1533
+ [6] D. Bresch and B. Desjardins, Existence of Global Weak Solutions for 2D
1534
+ Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic
1535
+ Model, Communications in Mathematical Physics, 238 (2003), pp. 211-
1536
+ 223.
1537
+ [7] D. Bresch and B. Desjardins, On the Construction of Approximate Solutions
1538
+ for the 2D Viscous Shallow Water Model and for Compressible Navier-Stokes
1539
+ Models, Journal de Math´ematiques Pures et Appliqu´ees, 86 (2006), pp.
1540
+ 362-368.
1541
+ [8] D. Bresch and P. Noble, Mathematical Justification of a Shallow Water Model,
1542
+ Methods and Applications of Analysis, 14 (2007), pp. 87-118.
1543
+ [9] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equa-
1544
+ tions, Springer, 2011.
1545
+ [10] S. A. Chin-Bing, P. M. Jordan and A. Warn-Varnas, A Note on the Viscous,
1546
+ 1D Shallow Water Equations: Traveling Wave Phenomena, Mechanics Re-
1547
+ search Communications, 38 (2011), pp. 382-387.
1548
+ [11] J.-M. Coron, Local Controllability of a 1-D Tank Containing a Fluid Modeled
1549
+ by the Shallow Water Equations, ESAIM: Control Optimisation and Calcu-
1550
+ lus of Variations, 8 (2002), pp. 513-554.
1551
+ [12] J.-M. Coron, Control and Nonlinearity, AMS, 2007.
1552
+ [13] J.-M. Coron, B. d’Andr´ea Novel and G. Bastin, A Strict Lyapunov Func-
1553
+ tion for Boundary Control of Hyperbolic Systems of Conservation Laws, IEEE
1554
+ Transactions on Automatic Control, 52 (2007), pp. 2-11.
1555
+ [14] J.-M. Coron, A. Hayat, S. Xiang and C. Zhang, Stabilization of the Lin-
1556
+ earized Water Tank System, Archive for Rational Mechanics and Analysis,
1557
+ 244 (2022), pp. 1019–1097.
1558
+ [15] R. Defay, I. Prigogine and A. Bellemans, Surface Tension and Adsorption,
1559
+ Longmans, London, 1966.
1560
+ 22
1561
+
1562
+ [16] J. de Halleux and G. Bastin, Stabilization of Saint-Venant Equations Using
1563
+ Riemann Invariants: Application to Waterways with Mobile Spillways, IFAC
1564
+ Proceedings, 35 (2002), pp. 131-136.
1565
+ [17] A. Diagne, M. Diagne, S. Tang and M. Krstic, Backstepping Stabilization of
1566
+ the Linearized Saint-Venant-Exner Model, Automatica, 76 (2017), pp. 345-
1567
+ 354.
1568
+ [18] M. Diagne, S.-X. Tang, A. Diagne and M. Krstic, Control of Shallow Waves
1569
+ of two Unmixed Fluids by Backstepping, Annual Reviews in Control, 44
1570
+ (2017), pp. 211-225.
1571
+ [19] J.-F. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System
1572
+ for Laminar Shallow-Water: Numerical Validation, Discrete and Continuous
1573
+ Dynamical Systems, Series B, 1 (2001), pp. 89-102.
1574
+ [20] S. Hensel and A. Marveggio, Weak-strong Uniqueness for the Navier-Stokes
1575
+ Equation for Two Fluids with Ninety Degree Contact Angle and Same Viscosi-
1576
+ ties, J. Math. Fluid Mech. 24, 93 (2022).
1577
+ [21] A. D. Ionescu and F. Pusateri, Global Regularity for 2D Water Waves with
1578
+ Surface Tension, arXiv:1408.4428 [math.AP].
1579
+ [22] I. Karafyllis and M. Krstic, Global Stabilization of Compressible Flow Be-
1580
+ tween Two Moving Pistons, SIAM Journal on Control and Optimization,
1581
+ 60 (2022), pp. 1117-1142.
1582
+ [23] I. Karafyllis and M. Krstic, Spill-Free Transfer and Stabilization of Viscous
1583
+ Liquid, IEEE Transactions on Automatic Control, 67 (2022), pp. 4585-
1584
+ 4597.
1585
+ [24] I. Karafyllis, F. Vokos and M. Krstic, Output-Feedback Control of Viscous
1586
+ Liquid-Tank System and its Numerical Approximation, Automatica, 149
1587
+ (2023), 110827.
1588
+ [25] I. Karafyllis, F. Vokos and M. Krstic, Feedback Stabilization of Tank-Liquid
1589
+ System with Robustness to Wall Friction, ESAIM Control, Optimisation and
1590
+ Calculus of Variations, 28 (2022), 81.
1591
+ [26] R. Katz and E. Fridman, Delayed finite-dimensional observer-based control
1592
+ of 1D parabolic PDEs via reduced-order LMIs, Automatica, 142 (2022),
1593
+ 110341.
1594
+ [27] M. Klitz, Numerical Simulation of Droplets with Dynamic Contact Angles,
1595
+ Ph.D. Thesis, Universit¨at Bonn, Bonn, 2014.
1596
+ [28] J. Lallement, P. Villedieu, P. Trontin and C. Laurent, A Shallow Water Type
1597
+ Model to Describe the Dynamic of Thin Partially Wetting Films, Proceedings
1598
+ of the CFM 2017 - 23`eme Congr`es Franc¸ais de M´ecanique, Lille, France,
1599
+ 2017.
1600
+ 23
1601
+
1602
+ [29] D. Lannes, The Water Waves Problem. Mathematical Analysis and Asymp-
1603
+ totics, American Mathematical Society, 2013.
1604
+ [30] X. Litrico and V. Fromion, Boundary Control of Linearized Saint-Venant
1605
+ Equations Oscillating Modes, Automatica, 42 (2006), pp. 967-972.
1606
+ [31] D. Maity, T. Takahashi and M. Tucsnak, Analysis of a System Modelling the
1607
+ Motion of a Piston in a Viscous Gas, Journal of Mathematical Fluid Me-
1608
+ chanics, 19 (2017), pp. 551-579.
1609
+ [32] F. Marche, Derivation of a New Two-Dimensional Viscous Shallow Water
1610
+ Model with Varying Topography, Bottom Friction and Capillary Effects, Eu-
1611
+ ropean Journal of Mechanics B/Fluids, 26 (2007), pp. 49-63.
1612
+ [33] C. Mascia and F. Rousset, Asymptotic Stability of Steady-States for Saint-
1613
+ Venant Equations with Real Viscosity, in Analysis and Simulation of Fluid
1614
+ Dynamics, 2006, pp. 155-162.
1615
+ [34] G. J. Merchant J. B. Keller, Contact Angles, Phys. Fluids A 4, 477 (1992),
1616
+ pp. 477-485.
1617
+ [35] N. Petit and P. Rouchon, Dynamics and Solutions to Some Control Prob-
1618
+ lems for Water-Tank Systems, IEEE Transactions on Automatic Control, 47
1619
+ (2002), pp. 594-609.
1620
+ [36] C. Prieur and J. de Halleux, Stabilization of a 1-D Tank Containing a Fluid
1621
+ Modeled by the Shallow Water Equations, Systems & Control Letters, 52
1622
+ (2004), pp. 167-178.
1623
+ [37] B. Schweizer, A Well-Posed Model for Dynamic Contact Angles, Nonlinear
1624
+ Analysis, 43 (2001), pp. 109-125.
1625
+ [38] B. Schweizer, Modeling the Dynamic Contact Angle, in Partial Differential
1626
+ Equations: Theory and Numerical Solution, W. Jager, J. Necas, O. John, K.
1627
+ Najzar and J. Stara (Eds), CRC Press, 2000, pp. 309-311.
1628
+ [39] V. Shelukhin, The Unique Solvability of the Problem of Motion of a Piston in
1629
+ a Viscous Gas, Dinamika Sploshnoi Sredy, 31 (1977), pp. 132-150.
1630
+ [40] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd Edition,
1631
+ Springer-Verlag, New York, 1994.
1632
+ [41] L. Sundbye, Global Existence for the Dirichlet Problem for the Viscous Shal-
1633
+ low Water Equations, Journal of Mathematical Analysis and Applications,
1634
+ 202 (1996), pp. 236-258.
1635
+ [42] K. Watanabe, Local Well-Posedness of Incompressible Viscous Fluids in
1636
+ Bounded Cylinders with 90◦-Contact Angle, arXiv:2008.05617 [math.AP].
1637
+ [43] J. Yang and F. Stern, A Sharp Interface Method for Two-Phase Flows Inter-
1638
+ acting with Moving Bodies, Proceedings of the 18th AIAA Computational
1639
+ Fluid Dynamics Conference, Miami, FL, 2007.
1640
+ 24
1641
+
2dAzT4oBgHgl3EQfuP2J/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NE1T4oBgHgl3EQflwRz/content/tmp_files/2301.03289v1.pdf.txt ADDED
@@ -0,0 +1,2578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mon. Not. R. Astron. Soc. 000, 000–000 (0000)
2
+ Printed 10 January 2023
3
+ (MN LATEX style file v2.2)
4
+ Thermal hysteresis and front propagation in dense
5
+ planetary rings
6
+ R´emy Larue1,2,3, Henrik Latter1⋆, Hanno Rein4,5
7
+ 1DAMTP, University of Cambridge, CMS, Wilberforce Road, Cambridge CB3 0WA, UK
8
+ 2ENS Paris-Saclay, 4 avenue des Sciences 91190 Gif-sur-Yvette, France
9
+ 3Laboratoire de Physique Subatomique et de Cosmologie, Universit´e Grenoble-Alpes, CNRS/IN2P3, Grenoble INP, 38000 Grenoble, France
10
+ 4Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, Ontario M1C 1A4, Canada
11
+ 5David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, M5S 3H4, Canada
12
+ ABSTRACT
13
+ Saturn’s rings are composed of icy grains, most in the mm to m size ranges, under-
14
+ going several collisions per orbit. Their collective behaviour generates a remarkable
15
+ array of structure over many orders of magnitude, much of it not well understood.
16
+ On the other hand, the collisional properties and parameters of individual ring par-
17
+ ticles are poorly constrained; usually N-body simulations and kinetic theory employ
18
+ hard-sphere models with a coefficient of restitution ϵ that is constant or a decreasing
19
+ function of impact speed. Due to plastic deformation of surface regolith, however, it
20
+ is likely that ϵ will be more complicated, at the very least a non-monotonic function.
21
+ We undertake N-body simulations with the REBOUND code with non-monotonic ϵ
22
+ laws to approximate surfaces that are friable but not sticking. Our simulations reveal
23
+ that such ring models can support two thermally stable steady states for the same
24
+ (dynamical) optical depth: a cold and a warm state. If the ring breaks up into radial
25
+ bands of one or the other state, we find that warmer states tend to migrate into the
26
+ colder states via a coherent travelling front. We also find stationary ‘viscous’ fronts,
27
+ which connect states of different optical depth, but the same angular momentum flux.
28
+ We discuss these preliminary results and speculate on their implications for structure
29
+ formation in Saturn’s B and C-rings, especially with respect to structures that appear
30
+ in Cassini images but not in occultations.
31
+ Key words: instabilities – waves – planets and satellites: rings
32
+ 1
33
+ INTRODUCTION
34
+ Saturn’s rings flaunt an extraordinary array of axisymmetric
35
+ structure, both quasi-regular and chaotic, ranging over some
36
+ four orders of magnitude in length - from 10 m to 100 km
37
+ (Colwell et al. 2009, Cuzzi et al. 2018). Yet despite several
38
+ decades of theoretical effort, their origins are only partially
39
+ understood (Schmidt et al. 2009, Estrada et al. 2018, Salo et
40
+ al. 2018). In particular, the disjunct bands of high and low
41
+ optical depth in the B-ring (Horn and Cuzzi 1996, Colwell et
42
+ al. 2007), the plateaus in the C-ring (Tiscareno et al. 2019),
43
+ and the irregular intermediate scale striations in the A and
44
+ B-rings (Porco et al. 2005) are presently without plausible
45
+ explanations. Simply put, there is too much observed struc-
46
+ ture and too few suitable instabilities (or related processes)
47
+ in our theoretical models. Perhaps it is time to re-assess
48
+ ⋆ E-mail: [email protected]
49
+ some of our fundamental assumptions and explore a wider
50
+ range of alternative scenarios.
51
+ It is probable, though not assured, that much of the
52
+ ring’s unexplained structure arises spontaneously due to
53
+ its peculiar granular flow. Since the 1980s researchers have
54
+ turned to kinetic theory or N-body simulations to model
55
+ this flow, initially calculating the thermal balances under-
56
+ lying ring equilibria, and then the (viscous) instabilities
57
+ that might generate structure (e.g., H¨ameen-Anttila 1982,
58
+ Araki & Tremaine 1986, Wisdom & Tremaine 1988, Salo
59
+ 1991, H¨ameen-Anttila & Salo 1993, Salo et al. 2001, Lat-
60
+ ter & Ogilve 2006, 2008). These studies have made several
61
+ strong assumptions, especially regarding the nature of the
62
+ ring particles and their collisional behaviour, for instance
63
+ rarely deviating from a hard-sphere model with either a con-
64
+ stant coefficient of restitution ϵ or a ‘Bridges law’ (Bridges
65
+ et al. 1984), whereby collisions below some critical impact
66
+ speed are perfectly elastic. In reality, ring particles are likely
67
+ to be irregularly shaped and coated in a regolith of small par-
68
+ © 0000 RAS
69
+ arXiv:2301.03289v1 [astro-ph.EP] 9 Jan 2023
70
+
71
+ 2
72
+ Larue, Latter, Rein
73
+ ticles ≲ 1 cm (e.g. Doyle et al.1989, Nicholson et al. 2008,
74
+ Morishima et al. 2012; Deau 2015) and, being irregular and
75
+ fluffy, their surfaces should produce an enhanced inelasticity
76
+ at low impact speeds, and indeed possible particle adhesion.
77
+ In light of this, the adoption of a constant ϵ, or a Bridges law,
78
+ may significantly misrepresent some of the ring’s collective
79
+ collisional dynamics. Our paper tests this idea by exploring
80
+ other, physically motivated, prescriptions for ϵ. We find, in
81
+ fact, that even very simple changes to the collision law can
82
+ give remarkably different outcomes.
83
+ Continuum mechanical models of viscoelastic collisions
84
+ that account for fluffy and/or sticky surfaces demonstrate
85
+ that ϵ is a non-monotonic function of impact speed vcoll.
86
+ Beneath some critical speed we have ϵ = 0, but on in-
87
+ creasing vcoll, ϵ rises, plateaus, and then decreases again
88
+ (Gorkavyi 1985, Hertzsch 2002, Albers & Spahn 2006, Bril-
89
+ liantov et al. 2007). Laboratory experiments appear to con-
90
+ firm this picture (Gorkavyi 1989, Hatzes et al. 1991, Bridges
91
+ et al. 1996). We implement collision laws of this basic form
92
+ in our paper and term them ‘regolith laws’. In addition,
93
+ at or below the critical speed colliding particles may stick,
94
+ but we neglect this important effect in order to avoid the
95
+ vexed and complicated issue of size-distribution dynamics
96
+ (e.g. Brilliantov et al. 2015). Our approach is mainly nu-
97
+ merical, via N-body simulations of monodisperse, spherical,
98
+ indestructible particles with the code REBOUND; but we
99
+ also employ a dense gas kinetic theory, where appropriate.
100
+ Note that we do not include self-gravity and thus our sim-
101
+ ulations fail to exhibit wakes, nor do they support viscous
102
+ overstability, both important phenomena we hope to test
103
+ in the future. Our study is distinct but complementary to
104
+ recent N-body simulations that explicitly test the role of
105
+ adhesion, especially on instabilities (Ballouz et al. 2017, Lu
106
+ et al. 2018; see also Section 16.7.1.7 in Salo et al. 2018). Our
107
+ main focus, in contrast, will be on disk thermodynamics.
108
+ Our first main result is that regolith laws permit a dense
109
+ ring to fall into one of two thermally stable states at the
110
+ same optical depth: (a) a very dense state with filling fac-
111
+ tors ∼ 0.3 and low temperatures, c ≲ aΩ (where c is velocity
112
+ dispersion, a is particle radius, and Ω is orbital frequency)
113
+ and (b) a moderately dense state with lower filling factors
114
+ (≲ 0.1) and a slightly warmer temperature, c ≳ 4aΩ. This
115
+ bistability generally favours optical depths less than 1, but
116
+ can be pushed up to higher values if we broaden our parame-
117
+ ter range. We also find in certain circumstance that the cold
118
+ state at low optical depth is metastable: shot noise permits
119
+ the ring to spontaneously jump into the hot state.
120
+ Our second set of results explores what happens when
121
+ different thermal states spatially adjoin. If two states of
122
+ the same optical depth but different temperature connect, a
123
+ travelling ‘thermal front’ develops that can reach speeds of
124
+ ≲ aΩ, while maintaining a steady spatial structure. If the
125
+ front is too slow, the disparity in the angular momentum
126
+ flux between the two states reorganises the front profile so
127
+ that the flux is uniform but the optical depth undergoes a
128
+ jump, what we term a static ‘viscous front’. Some of the
129
+ latter behavior mirrors that witnessed by Salo and Schmidt
130
+ (2010) in their simulations of viscous instability.
131
+ The plan of the paper is as follows. The next section
132
+ begins with a review of the extant literature on low-impact
133
+ collisions between regolith covered and/or sticky particles,
134
+ moving on to a presentation of the model collision laws we
135
+ use, and then our numerical methods. Subsequently, we de-
136
+ tail out results: the calculation of thermal equilibria and hys-
137
+ teresis in smallish boxes (Section 3), potential metastability
138
+ (Section 4), and finally results on spatially adjoining states,
139
+ i.e. thermal and viscous front (Section 5). We conclude in
140
+ Section 6.
141
+ 2
142
+ BACKGROUND AND METHODS
143
+ This section presents the physical set-up and numerical
144
+ model by which we attack the thermal equilibria of rings
145
+ composed of regolith-coated particles. We first devote some
146
+ space to set the scene, by reviewing the theoretical and ex-
147
+ perimental literature and explaining the key ideas and pa-
148
+ rameters that underlie work in this area. The model collision
149
+ laws we adopt are then exhibited, followed by the details of
150
+ the N-body simulations with REBOUND we conduct.
151
+ 2.1
152
+ Collisional physics and the coefficient of
153
+ restitution
154
+ We aim to describe the collisional dynamics of many ring
155
+ particles in a local patch of a planetary ring. From the outset
156
+ we make several strong assumptions that we concede may
157
+ distort our results: the particles are taken to be identical,
158
+ spherical, and frictionless. Most of the ring mass is in metre-
159
+ sized particles, and thus it is that population that we track.
160
+ Only binary collisions are considered, and these are deemed
161
+ inelastic, so that g′ · k = −ϵ(g · k), where g is the relative
162
+ velocity of two colliding particles before the collision and g′
163
+ afterwards, k is the unit vector pointing between the two
164
+ particles centres at the moment of collision, and ϵ is the
165
+ coefficient of restitution. This coefficient lies between 0 and
166
+ 1 and is usually a function of the impact speed vcoll = |g ·
167
+ k|. We neglect the possibility of two particles sticking and
168
+ assume that all the specifics of the particle surfaces can be
169
+ encapsulated in the functional behaviour of ϵ. Because we
170
+ find the ring dynamics are so sensitive to ϵ, we now spend
171
+ some time discussing this important physical input.
172
+ 2.1.1
173
+ Theoretical and experimental background
174
+ Research exploring the collisional behaviour of regolith-
175
+ covered particles can be separated into analytical calcula-
176
+ tions, drawing on continuum mechanics, and laboratory ex-
177
+ periments, approximating Saturnian conditions. We attempt
178
+ to review and synthesise this body of work.
179
+ The seminal experiments in this area were described
180
+ in Bridges et al. (1984) and collided smooth ice spheres
181
+ with an ice block at temperatures ∼ 170K. This work pro-
182
+ duced the collision law ϵ = min
183
+
184
+ 1, (vcoll/vcrit)−0.234�
185
+ , for
186
+ vcrit = 0.008 cm s−1, a defining feature of which is perfect
187
+ elasticity at sufficiently low collision speeds (vcoll < vcrit).
188
+ This collision law became the standard for subsequent N-
189
+ body simulations and other theoretical work. Subsequently,
190
+ broken power laws of this type were shown to arise naturally
191
+ in generalisations of the Hertz theory to viscoelastic solids
192
+ (Dilley 1993, Hertzsch et al. 1995, Brilliantov et al. 1996,
193
+ Thornton 1997). However, such theoretical work must posit
194
+ that the surfaces of the colliding spheres are smooth and
195
+ © 0000 RAS, MNRAS 000, 000–000
196
+
197
+ Thermal hysteresis in rings
198
+ 3
199
+ that irreversible energy losses arise solely from viscoelastic
200
+ deformations inside the spheres.
201
+ Shortly after the Bridges experiments, two neglected
202
+ but insightful papers by Gorkavyi (1985, 1989) highlighted
203
+ the importance of regolith and argued against perfectly elas-
204
+ tic restitution at low impact speed. Gorkavyi emphasised
205
+ that ϵ can be dramatically altered at small vcoll because (a)
206
+ impact energy can be used up when reshaping a soft fri-
207
+ able surface (leaving nothing left over for elastic rebound)
208
+ and/or (b) rebounding motion can be countered by surface
209
+ stickiness. Using energy arguments, the 1985 paper sketches
210
+ out three regimes: (a) at sufficiently low vcoll, there is total
211
+ energy loss and thus ϵ = 0 (sticking/adhesion is not consid-
212
+ ered); (b) at slightly larger vcoll, ϵ increases with vcoll; and
213
+ then (c) after a turning point, ϵ decreases with vcoll (tradi-
214
+ tional restitution). The collision law is hence non-monotonic.
215
+ Gorkavyi (1989) followed this up with simple experiments
216
+ using powders, metals, and marble at room temperature and
217
+ pressure, which agree with earlier lab work by Hartmann
218
+ (1978, 1985), in a different context, using rocks.
219
+ Subsequent papers from the Bridges research group ex-
220
+ amined how the state of the particle surface influenced colli-
221
+ sions, with a particular focus on the adhesive effect of frost,
222
+ a thin layer of microscopic structure that might behave simi-
223
+ larly to the thicker regolith layer expected on larger ring par-
224
+ ticles. Hatzes et al. (1991) showed frosty particles can stick
225
+ at impact speeds below some critical level (a few mm s−1),
226
+ but did not examine explicitly how it changed the form of
227
+ ϵ. Bridges et al. (1996) conducted a large set of experiments
228
+ for different kinds of ices and vcoll at relevant temperatures,
229
+ which further strengthened the case for sticking, and also
230
+ showed that ϵ exhibited the three main features predicted
231
+ by Gorkavyi.
232
+ On the theoretical side, the 2000s witnessed various ex-
233
+ tensions of Hertz contact mechanics, accounting for both
234
+ viscoelasticity and particle adhesion via JRK theory (Albers
235
+ and Spahn 2006, Brilliantov et al. 2007; see also Thornton
236
+ and Ning 1998, and Chokshi et al. 1993, the latter in the
237
+ context of ISM grains). Notable is the work by Hertzsch
238
+ (2002) who modelled the two effects of sticking and of pas-
239
+ sive regolith deformation, as discussed by Gorkavyi, treating
240
+ the passive regolith as a deformable viscous non-sticky ‘soft
241
+ layer’. Both physical effects appear to influence the form of
242
+ ϵ similarly. In all cases, non-monotonic ϵ laws were mathe-
243
+ matically derived.
244
+ Brilliantov et al. (2007) provides estimates for solid
245
+ water-ice particles of various sizes that, despite several
246
+ strong assumptions, help with Saturnian applications. For
247
+ metre-sized water-ice impactors, the theory predicts that the
248
+ maximum value ϵ takes is relatively large, potentially above
249
+ 0.7. For cm sized particles, it drops to ≈ 0.3. On the other
250
+ hand, the critical vcoll for sticking is roughly 10−2 cm s−1 for
251
+ metre-sized ice impactors, and this rises to greater than 0.1
252
+ cm s−1 for cm-sized particles. Because of the model assump-
253
+ tions care must be taken, however, when applying these es-
254
+ timates, and in fact the quoted critical collision speeds are
255
+ probably gross lower limits. The theory omits the energy
256
+ dissipation channel associated with irreversible regolith de-
257
+ formation (as well as internal fracture) by treating the par-
258
+ ticles as solid-ice non-spinning viscoelastic spheres. It also
259
+ sets the unknown dissipative constant A by fitting a (non-
260
+ sticking) viscoelastic model (Brilliantov et al. 1996) to the
261
+ (non-sticking) experimental data of Bridges et al. Nonethe-
262
+ less, the Brilliantov results provide a useful starting point
263
+ for our study.
264
+ Before moving on, we flag additional physics not yet
265
+ discussed. In applying the above ideas and prescriptions to
266
+ an ensemble of colliding particles, one must acknowledge
267
+ that, by virtue of the collisions themselves, particles’ surface
268
+ properties will evolve. Repeated collisions will presumably
269
+ ‘compactify’ particle regolith and hence reduce the mean
270
+ critical sticking speed. On the other hand, bombardment by
271
+ micrometeoroids will disturb the surfaces and there will be
272
+ accretion of very small floating particles, processes that will
273
+ rejuvenate regolith. It follows that, in addition to the size
274
+ distribution dynamics (e.g. Longaretti 1989, Bodrova et al.
275
+ 2012, Brilliantov et al. 2015), there will take place related
276
+ dynamics controlling the mean surface properties. We do
277
+ not attempt to construct a model for this interesting process
278
+ here.
279
+ 2.1.2
280
+ Important scales
281
+ This subsection briefly outlines the key velocity scales rel-
282
+ evant for our problem. We assume that there is a single
283
+ critical sticking speed vstick below which two impactors will
284
+ adhere. We also assume a second critical impact speed vcrit
285
+ below which ϵ = 0. It may be that these two speeds are the
286
+ same, though in general we expect vstick < vcrit, i.e. it is
287
+ possible for all the energy of the impact to be used up re-
288
+ shaping the surface and resisting the adhesive attraction of
289
+ the regolith, thereby allowing the impactors to roll clear of
290
+ each other. Particle spin and tidal shear may facilitate such
291
+ non-sticking ϵ = 0 encounters.
292
+ A third key speed is the velocity dispersion c, as impact
293
+ speeds will be distributed around it. Thus the relative size
294
+ of c relative to vcrit will determine which collisional regime
295
+ (sticking, non-sticking, etc.) the particles are in. Partly con-
296
+ trolling c is the orbital shear speed across a particle, aΩ
297
+ (recall a is particle radius and Ω the orbital frequency). The
298
+ importance of this scale issues from the fact that dense cold
299
+ rings adopt a velocity dispersion c ∼ aΩ, in the absence of
300
+ gravity wakes, and c ≲ 5aΩ, when gravity wakes are present
301
+ (e.g., Araki & Tremaine 1986, Salo et al. 2018)1. It follows
302
+ that if c ∼ aΩ ≫ vcrit then the regolith is not going to fea-
303
+ ture much in the mean thermal dynamics, and hence the
304
+ determination of c. On the other hand, if c ∼ aΩ ≪ vcrit
305
+ then the surface properties are going to be important. Com-
306
+ plicating this picture, of course, is the size dependence of
307
+ both aΩ and vcrit. In a polydisperse ring, however, the ve-
308
+ locity dispersion of smaller particles will be similar to the
309
+ metre-sized particles (Salo et al. 2018). We now obtain some
310
+ bounds on the important parameter vcrit/(aΩ).
311
+ First we situate ourselves at a representative location
312
+ in the C-ring, in which gravity wakes are likely absent, and
313
+ set Ω ≈ 10−4 s−1. If a = 1 m, the most dynamically im-
314
+ portant size, aΩ is roughly 0.01 cm/s. Next, applying the
315
+ estimates from Brilliantov et al. (2007) (cf. Section 2.1.1)
316
+ 1 The second estimate can be obtained by assuming a gravita-
317
+ tionally unstable ring settles into a state where the Toomre Q is
318
+ ∼ 1, and then taking typical values for the surface density (e.g.
319
+ Hedman & Nicholson 2013, 2016)
320
+ © 0000 RAS, MNRAS 000, 000–000
321
+
322
+ 4
323
+ Larue, Latter, Rein
324
+ and setting vcrit = vstick, we obtain vcrit/(aΩ) ∼ 1. For cm
325
+ sizes, vcrit/(aΩ) ≳ 10 (noting that the velocity dispersion of
326
+ this population is set by the metre sizes). As argued earlier,
327
+ the Brilliantov estimates for vcrit only provide lower bounds,
328
+ and hence we conclude that it is likely that the C-ring is in
329
+ a regime where surface regolith properties will matter.
330
+ At a representative location in the A or B-ring, we must
331
+ take into account gravity wakes. Thus we find ourselves in
332
+ a more ambiguous situation: the Brilliantov estimates yield
333
+ vcrit/c ≳ 0.1 for metre-sized particles, and vcrit/c ≳ 1 for
334
+ cm-sized particles. Depending on how badly the Brilliantov
335
+ results underestimate vcrit, we could be in a marginal regime
336
+ or in a regolith-dominated regime. Certainly, further work
337
+ on the collisional dynamics of ice would help decide on this
338
+ point. As we do not simulate self-gravity, for now we just
339
+ assume that aΩ < vcrit, and leave open its importance to
340
+ future work.
341
+ 2.1.3
342
+ Model coefficients of restitution
343
+ This section presents the two classes of non-monotonic ‘re-
344
+ golith’ ϵ-law we use in this paper. We have attempted to
345
+ paramaterise these laws in two readily understandable quan-
346
+ tities: vcrit, the impact speed at which collisions are perfectly
347
+ inelastic (cf. Section 2.1.2); and ϵmax, the turning point value
348
+ of ϵ (i.e., its maximum).
349
+ A broken power law (BPL) for ϵ, though somewhat
350
+ crude has the benefits that it has few input parameters and
351
+ some headway can be made with it using kinetic theory. We
352
+ define the law in the following way:
353
+ ϵ(vcoll) =
354
+
355
+ ϵ0,
356
+ if vcoll < vcrit.
357
+ ϵmax (vcoll/vcrit)−p ,
358
+ if vcoll ⩾ vcrit.
359
+ (1)
360
+ We set the exponent p
361
+ =
362
+ 0.234, following Bridges et
363
+ al. (1984), though it could take other values. The quantity
364
+ ϵ0 we set equal to either 1, to obtain the Bridges et al. law
365
+ itself, or equal to 0, to get the opposite perfectly inelastic
366
+ law. The Bridges BPL is plotted in Fig. 1 in blue.
367
+ A more realistic non-monotonic ϵ law that is smoother
368
+ and exhibits something of a plateau near its maximum can
369
+ be defined in several ways. We choose the following:
370
+ ϵ(vcoll) =
371
+
372
+ 0,
373
+ if vcoll < vcrit
374
+ 1.625 ϵmax ζ/(1 + ζ1.234),
375
+ vcoll ⩾ vcrit,
376
+ (2)
377
+ where ζ = (vcoll−vcrit)/b and b is the plateau ‘width’, usually
378
+ set to aΩ. Constants have been chosen so that ϵ approaches
379
+ the Bridges law for large vcoll. To facilitate the discussion
380
+ later, when we compare the different models, we refer to
381
+ Eq. (2) as a ‘realistic’ law (though it is yet to be determined
382
+ how realistic it is). We plot it in Fig. 1 in red.
383
+ 2.2
384
+ The potential for bistability
385
+ Before presenting our numerical methods and the results
386
+ that ensue, we briefly explain why a non-monotonic colli-
387
+ sion law, such as given in Eq. (2) and displayed in Fig. 1,
388
+ potentially yields two stable states for the same parameters.
389
+ At lower optical depths, N-body simulations and ki-
390
+ netic theory show that the Bridges law yields equilibria with
391
+ c > aΩ, and thus most collisions sample the power-law de-
392
+ creasing segment of the ϵ curve (Salo 1991, Latter & Ogilvie
393
+ 0
394
+ 1
395
+ 2
396
+ 3
397
+ 4
398
+ 5
399
+ 6
400
+ vcoll / vcrit
401
+ 0
402
+ 0.2
403
+ 0.4
404
+ 0.6
405
+ 0.8
406
+ 1
407
+ Figure 1. Two forms of the coefficient of restitution ϵ as a func-
408
+ tion of impact speed vcoll. The solid blue curve is the Bridges
409
+ law, see Eq. (1), with ϵ0 = 1. The red solid curve is the ‘regolith’
410
+ law, Eq. (2), with b = (1/4)vcrit and ϵmax = 0.75. In addition,
411
+ we have sketched two velocity distribution functions with black
412
+ dotted curves; see discussion in Section 2.2.
413
+ 2008). As mentioned above, the realistic regolith law we
414
+ adopt approaches the Bridges law for impact speeds larger
415
+ than the turning point in ϵ, and is a reasonable approxi-
416
+ mation near the turning point. One might then expect that
417
+ collisions employing the regolith law would sample similar
418
+ values of ϵ and the resulting thermal equilibria will resemble
419
+ the Bridges equilibria, giving us a ‘warm’ ring. In Fig. 1 we
420
+ superimpose a mock impact velocity distribution at larger
421
+ vcoll to indicate such a state.
422
+ On the other hand, when ϵ is a constant and taken to
423
+ be equal to zero the thermal equilibria are especially cold,
424
+ with c ∼ aΩ (e.g. Araki & Tremaine 1986). It follows that
425
+ our regolith law might be capable of supporting these very
426
+ cold equilibria as well. This should certainly be the case
427
+ if vcrit is much larger than aΩ. In this circumstance, most
428
+ impact speeds will fall below vcrit and thus yield perfectly
429
+ inelastic collisions with ϵ = 0, never sampling the non-zero
430
+ segment of the ϵ curve. Fig. 1 indicates a schematic velocity
431
+ distribution for this state, centred on a value less than vcrit.
432
+ Both the warm state and the cold state are thermally
433
+ stable, as has been shown separately in N-body simulations.
434
+ And thus a non-monotonic law may yield bistability. The
435
+ disk may fall into either the cold or the warm homogeneous
436
+ state for exactly the same parameters (most notably optical
437
+ depth τ)2. Which is chosen depends on the initial conditions.
438
+ Moreover, it follows there must also be an intermediate ther-
439
+ mally unstable state separating the two stable states, though
440
+ this will not normally be observed. The argument for bista-
441
+ bility is strongest in a regime where vcrit ≫ aΩ. A question
442
+ then is: what is the minimum value of vcrit that yields bista-
443
+ 2 This bistability is different to the ‘phase transitions’ associ-
444
+ ated with viscous instability, which drives the system to a non-
445
+ homogeneous state characterised by abutting radial regions of
446
+ high and low optical depth (e.g., Lukkari 1981, H¨ameen-Anttila
447
+ 1982, Salo & Schmidt 2010).
448
+ © 0000 RAS, MNRAS 000, 000–000
449
+
450
+ Thermal hysteresis in rings
451
+ 5
452
+ bility? Our simulations results in Section 3 aim to answer
453
+ this and other questions.
454
+ 2.3
455
+ N-body simulations
456
+ In this subsection we further outline the physical model we
457
+ adopt and the numerical methods used to calculate its non-
458
+ trivial thermal dynamics. We seek to determine the evolu-
459
+ tion of a large number of inelastically colliding particles, and
460
+ thus our main tool will be local N-body simulations.
461
+ 2.3.1
462
+ Equations of motion
463
+ We solve the equations of motion in the Hill approximation
464
+ (Hill 1878), a local coordinate system that is co-rotating
465
+ with a particle on a circular orbit. The gravity from the cen-
466
+ tral object is linearized in local coordinates and the orbital
467
+ frequency is a constant. This allows, but does not restrict,
468
+ us to use shear-periodic boundary conditions. In that case,
469
+ the Hill approximation is also referred to as the shearing
470
+ sheet. In our notation, the x, y, and z coordinates point in
471
+ the radial, azimuthal and vertical direction, respectively.
472
+ Treating the central object, Saturn, as a point source,
473
+ the equations of motion for a test particle can be written as
474
+ ¨x = 2Ω ˙y + 3Ω2x + F coll
475
+ x
476
+ ,
477
+ (3)
478
+ ¨y = −2Ω ˙x + F coll
479
+ y
480
+ ,
481
+ (4)
482
+ ¨z = Ω2z + F coll
483
+ z
484
+ ,
485
+ (5)
486
+ where Fcoll is the (intermittent) acceleration exerted on a
487
+ particle during a collision. In the absence of collisions, the
488
+ solution to these equations can be written as epicycles (e.g.
489
+ Rein & Tremaine 2011).
490
+ The particles move within a finite-size numerical do-
491
+ main/box. We denote the radial length of the box by Lx
492
+ and the azimuthal length by Ly. In all our experiments, the
493
+ vertical length of the box Lz has been chosen to be large
494
+ enough so that no particle ever crosses the vertical bound-
495
+ aries. Otherwise, the box is periodic in y and shear-periodic
496
+ in x.
497
+ The only further ingredients needed are the finite par-
498
+ ticle radius a and a collision model. We treat particles as
499
+ hard spheres (they are not permitted to overlap) and the
500
+ outcome of a collision is described using a normal coefficient
501
+ of restitution, as described in Section 2.1.3. The particles
502
+ have no spin.
503
+ 2.3.2
504
+ Numerical method
505
+ We use the freely available N-body code REBOUND (Rein
506
+ & Liu 2012) to perform all of the simulations presented in
507
+ the paper. To evolve the equations of motion forward in
508
+ time, we use the Symplectic Epicycle Integrator (SEI, Rein
509
+ & Tremaine 2011) which is well suited for simulations of
510
+ particle motion within the Hill approximation.
511
+ Collisions are detected using a nearest neighbour tree
512
+ search. We randomize the order in which collisions are re-
513
+ solved after each timestep. We found that this removes spu-
514
+ rious correlations which might otherwise be introduced when
515
+ choosing a specific order in which collisions are resolved (i.e.
516
+ resolving them from left to right, by a numerical particle
517
+ identifier, or by the position in memory).
518
+ 2.3.3
519
+ Diagnostics
520
+ In order to probe the collective behaviour of the granular
521
+ flow, we require a number of averaged quantities. We define
522
+ the mean normal geometrical optical depth τ as the total
523
+ projected area of the particles on the (x, y) plane divided by
524
+ the total area of the (x, y) plane. In other words,
525
+ τ = Nπa2/(LxLy),
526
+ (6)
527
+ where N is the number of particles. Thus, τ is stipulated
528
+ at the beginning of each run and does not change. We also
529
+ define the radially and temporally varying optical depths,
530
+ by subdividing the radial domain into thin strips of radial
531
+ length LS:
532
+ τ(xi, t) = Ni(t)πa2/(LSLy),
533
+ (7)
534
+ where xi is the radial location of, and Ni(t) is the number
535
+ of particles in, the i’th strip at time t.
536
+ The filling factor is defined as the proportion of volume
537
+ taken up by the particles. For spherical particles it can be
538
+ defined as FF = (4π/3)na3, where n is volumetric number
539
+ density. Particularly useful is the filling factor at the mid-
540
+ plane FF0, which requires the calculation of the number
541
+ density at z = 0.
542
+ The mean velocity dispersion tensor is computed via
543
+ Wij = ⟨ ˙xi ˙xj⟩
544
+ (8)
545
+ where ( ˙x1, ˙x2, ˙x3) = ( ˙x, ˙y + 3
546
+ 2Ωx, ˙z) is the velocity relative
547
+ to the shear and the angle brackets indicate a suitable aver-
548
+ age over the particles and possibly over time. The velocity
549
+ dispersion c2 is then Wii/3. Note that this definition is only
550
+ correct if there are no mean flows additional to the Keple-
551
+ rian shear. If such flows are slow (as in viscous instability),
552
+ the error will be small, however.
553
+ The translational (local) component of the kinematic
554
+ viscosity is
555
+ νtrans = (2/3)Wxy/Ω.
556
+ (9)
557
+ The collisional (non-local) component of the viscosity is
558
+ νcoll =
559
+ 2
560
+ 3ΩNδt
561
+
562
+ (x⟩ − x⟨)∆py
563
+ (10)
564
+ where the sum is taken over all binary collisions that occur
565
+ in a time interval δt. Here M is the total mass of all ring
566
+ particles, ∆py is the transfer of specific y momentum from
567
+ the inner to the outer particle in each collision, and x⟩ and
568
+ x⟨ are the radial locations of the two impacting particles
569
+ (Wisdom & Tremaine 1988; Daisaka, Tanaka & Ida 2001).
570
+ As we neglect self-gravity, there is no gravitational or wake
571
+ contribution to the overall momentum transport. The total
572
+ viscosity is hence νtot = νtrans + νcoll.
573
+ To determine the thermal conductivity of a given equi-
574
+ librium state, we follow the method of Salo et al. (2001) and
575
+ create a steady non-uniform temperature T profile in the
576
+ radial (x) direction, where T = c2. In our cold-state simula-
577
+ tions, we achieve this by making vcrit radially dependent in
578
+ the collision law. In our hot-state simulations, we vary ϵmax
579
+ by a small amount in the radial direction. In either case,
580
+ we end up with a steady-state sinusoidal radial temperature
581
+ profile, though some experimentation is required to find the
582
+ right amplitude for the variations in vcrit and ϵmax. The goal
583
+ is to keep the perturbations in the temperature ∆T small,
584
+ but not too small so that they are dominated by shot noise.
585
+ © 0000 RAS, MNRAS 000, 000–000
586
+
587
+ 6
588
+ Larue, Latter, Rein
589
+ We typically use a simulation with Lx = Ly = 200a and run
590
+ it for at least 1000 orbits.
591
+ After setting up the nonuniform temperature profiles,
592
+ we then measure specific translational (local) and collisional
593
+ (non-local) heat fluxes,
594
+ qtrans
595
+ i
596
+ = 1
597
+ 2σ⟨c2ci⟩
598
+ (11)
599
+ qcoll
600
+ i
601
+ = σ � ∆xiδEs
602
+ Nδt
603
+ (12)
604
+ where σ = N/(LxLy) is the number surface density, δxi is
605
+ the absolute difference of the i-coordinates of the two parti-
606
+ cles involved in a collisions, and δEs is the change in trans-
607
+ ported energy (as opposed to dissipated energy) during the
608
+ collision for the particle with the larger xi coordinate. Fi-
609
+ nally, we assume the heat flux is linearly dependent on the
610
+ temperature gradient,
611
+ q = −κ∇T.
612
+ (13)
613
+ We can then correlate the measured qx and ∂xT and retrieve
614
+ the conductivity κ using a least squares fit. Finally, to verify
615
+ our set up was working properly, we successfully reproduced
616
+ Fig. 8 in Salo et al. (2001), though omit these results for the
617
+ sake of space.
618
+ 2.3.4
619
+ Parameters and initial conditions
620
+ In all our N-body simulations, we adopt units so that a = 1
621
+ and Ω = 1, though in what follows a and Ω reappear oc-
622
+ casionally in order to make a point. As a consequence, the
623
+ main physically relevant input is the collision law. Specifi-
624
+ cally, we have some combination of vcrit/(aΩ), b, and ϵmax
625
+ for non-constant collision laws. We also have the sizes of the
626
+ numerical domain Lx and Ly and a constant dimensionless
627
+ time-step Ωdt.
628
+ We use initial conditions where particles are arranged
629
+ uniformly in the plane with a uniform optical depth τ.
630
+ Therefore an important initial input is particle number N
631
+ while keeping the computational domain fixed. Particles are
632
+ normally distributed in the z-direction. The initial velocities
633
+ are also normally distributed with an initial velocity disper-
634
+ sion c0. In most cases we initialize the particles close to the
635
+ thermal equilibrium we believe to be present.
636
+ We present convergence tests in Appendix A. These
637
+ tests shows that our simulations are converged as we vary
638
+ numerical parameters for both extremely high and low opti-
639
+ cal depth, as well as hot and cold equilibria. For the regimes
640
+ that we are interested in, we found that a dimensionless
641
+ timestep of 10−3 and a box size of 10s to 100s particle radii
642
+ are sufficient. The large box sizes are needed only for very
643
+ hot and dilute rings.
644
+ 2.4
645
+ Kinetic theory
646
+ Though not the focus of this paper, it is useful to have some
647
+ kinetic theoretical results, especially as they reveal the exis-
648
+ tence of the additional (thermally unstable) middle branch
649
+ of equilibrium solutions. The formalism adopted is Latter
650
+ and Ogilvie’s (2008) reformulation of Araki and Tremaine
651
+ (1986), which does not attempt to solve the Boltzmann-
652
+ Enskog equation but rather a truncated moment hierarchy
653
+ of continuum equations.
654
+ 0
655
+ 0.2
656
+ 0.4
657
+ 0.6
658
+ 0.8
659
+ 1
660
+ 1.2
661
+ 1.4
662
+ 1.6
663
+ 1.8
664
+ 2
665
+ 100
666
+ 101
667
+ C
668
+ 0
669
+ 0.2
670
+ 0.4
671
+ 0.6
672
+ 0.8
673
+ 1
674
+ 1.2
675
+ 1.4
676
+ 1.6
677
+ 1.8
678
+ 2
679
+ 10-2
680
+ 100
681
+ total
682
+ 1
683
+ 10
684
+ 5
685
+ 20
686
+ 0
687
+ Figure 2. Velocity dispersion and total angular momentum flux
688
+ τνtot versus optical depth τ for various hard-sphere ϵ laws, cal-
689
+ culated from N-body simulations. In the top panel the appended
690
+ numbers ‘1-20’ describe the values of vcrit/(aΩ) when using the
691
+ standard Bridges law, whereas ‘0’ indicates runs with a constant
692
+ ϵ = 0. In the bottom panel, the ordering of the curves is retained.
693
+ The green symbols indicate that the viscous flux is decreasing and
694
+ the disk viscously unstable.
695
+ In previous deployments of this approach, the depen-
696
+ dence of ϵ on the impact speed was only approximately in-
697
+ corporated via a ‘pre-averaging’ procedure (see Section 2.2.7
698
+ in Latter and Ogilvie 2008). Though convenient, this in-
699
+ troduces unacceptable errors when using complicated non-
700
+ monotonic laws as in Section 2.1.3. Thus the complete for-
701
+ malism is adopted. This does require completing three (in-
702
+ stead of two) integrations in the collision term. The other
703
+ main approximations adopted are ‘vertical locality’ and a
704
+ triaxial Gaussian for the velocity ellipsoid (see Araki and
705
+ Tremaine 1986 and Latter and Ogilvie 2008 for more de-
706
+ tails).
707
+ 3
708
+ HOMOGENEOUS STEADY STATES
709
+ In this section we simulate various thermodynamic equilibria
710
+ and demonstrate that a non-monotonic epsilon law supports
711
+ up to two equilibria for a given optical depth. We charac-
712
+ terise these several states with respect to not only their ve-
713
+ locity dispersion, but also their packing fraction FF0 and
714
+ transport properties, especially with respect to angular mo-
715
+ mentum and heat.
716
+ We begin by reproducing previous results in the litera-
717
+ ture with both a constant and monotonic epsilon law so as
718
+ to verify that our code is working properly. Moreover, as ar-
719
+ gued in Section 2.2, some of the equilibria obtained are lim-
720
+ iting cases of those appearing in the bistable circumstances
721
+ explored later and are thus useful in setting the scene.
722
+ © 0000 RAS, MNRAS 000, 000–000
723
+
724
+ Thermal hysteresis in rings
725
+ 7
726
+ 0
727
+ 1
728
+ 2
729
+ 3
730
+ 0
731
+ 5
732
+ 10
733
+ 15
734
+ 0
735
+ 1
736
+ 2
737
+ 3
738
+ 0
739
+ 5
740
+ 10
741
+ 0
742
+ 1
743
+ 2
744
+ 3
745
+ 0
746
+ 0.2
747
+ 0.4
748
+ 0.6
749
+ 0
750
+ 0.2
751
+ 0.4
752
+ 0.6
753
+ 0.8
754
+ 1
755
+ 0
756
+ 5
757
+ 10
758
+ 0
759
+ 0.2
760
+ 0.4
761
+ 0.6
762
+ 0.8
763
+ 1
764
+ 0
765
+ 0.5
766
+ 1
767
+ 1.5
768
+ 2
769
+ 0
770
+ 0.2
771
+ 0.4
772
+ 0.6
773
+ 0.8
774
+ 1
775
+ 0
776
+ 0.1
777
+ 0.2
778
+ 0.3
779
+ 0.4
780
+ 0
781
+ 0.2
782
+ 0.4
783
+ 0.6
784
+ 0.8
785
+ 1
786
+ 0
787
+ 5
788
+ 10
789
+ C
790
+ 0
791
+ 0.2
792
+ 0.4
793
+ 0.6
794
+ 0.8
795
+ 1
796
+ 0
797
+ 0.1
798
+ 0.2
799
+ 0.3
800
+ 0.4
801
+ FF0
802
+ 0
803
+ 0.2
804
+ 0.4
805
+ 0.6
806
+ 0.8
807
+ 1
808
+ 0
809
+ 0.5
810
+ 1
811
+ 1.5
812
+ 2
813
+ tot
814
+ Realistic
815
+ max=0.75
816
+ Realistic
817
+ max=0.923
818
+ BPL
819
+ max=0.8
820
+ Figure 3. Selected equilibrium properties as functions of τ for three regolith ϵ-laws (the three columns). The leftmost column shows
821
+ equilibria computed with the broken-power law model (BPL) with ϵ0 = 0 and ϵmax = 0.8, whereas the other two columns show the
822
+ realistic model with ϵmax = 0.75 and 0.923. In all cases vcrit = 5. In the top row the joined circles denote the velocity dispersion calculated
823
+ by N-body simulations, with the colours indicating hot (red) or cold (blue) branches. The second and third rows show the filling factor
824
+ and total angular momentum flux respectively. The dashed curve indicates equivalent solutions obtained from the kinetic theory (in the
825
+ BPL case only). In the bottom row, a green symbol indicates expected viscous instability.
826
+ Figure 4. The distribution of impact velocities in simulations
827
+ using the ‘realistic’ law at τ = 1 with parameters vcrit = 5, b = 1,
828
+ and ϵmax = 0.923. The left panel shows the system in the cold
829
+ state. The right panel shows the system in the hot state. The red
830
+ line corresponds to the ϵ law adopted.
831
+ 3.1
832
+ Comparison with previous calculations
833
+ Our reference cases include the simulations of Salo (1991),
834
+ who employed a Bridges law but with a variable scale ve-
835
+ locity, i.e. Eq.(1) with ϵ0 = 1 and vcrit = 1, 5, 10, 20 (see
836
+ Section 2.1), and also simulations with a constant ϵ = 0,
837
+ which brings about a very cold state. The results of our cal-
838
+ culations are plotted in Fig. 2, in which we show the velocity
839
+ dispersion c and angular momentum flux τνtot versus optical
840
+ depth τ. The simulations were run until they were collision-
841
+ ally relaxed, and then continued for the same length of time
842
+ to obtain averaged quantities. When τ was low, and colli-
843
+ sions relatively infrequent, the total run time was > 1000
844
+ Ω−1; but at higher τ (∼ 2) runs could be as a short as 50-80
845
+ Ω−1.
846
+ Direct comparison of Fig. 2 with the numerical results
847
+ of Salo (1991; cf. his Figs 3-5) shows good agreement, and
848
+ also consistency with the kinetic theory of Latter & Ogilvie
849
+ (2008) (note that both these works denote vcrit by vb). An
850
+ interesting feature of the ‘warmer’ solution branches is the
851
+ decreasing viscosity with τ. In fact, the hottest case, vcrit =
852
+ 20, is viscously unstable because the gradient of the angular
853
+ momentum flux τν is negative in an interval of τ (green
854
+ markers).
855
+ By inflating vcrit in the Bridges law the velocity disper-
856
+ sion of the system can be controlled and, in particular, set
857
+ to ‘warm’ values greater than aΩ and, consequently, greater
858
+ than the temperature of the very cold ϵ = 0 states. These
859
+ warm and cold states help illustrate the arguments presented
860
+ in Section 2.2. If we take one of the two non-monotonic col-
861
+ lision laws and set vcrit ten or more times aΩ, then start
862
+ the simulation with a hot initial condition, we might expect
863
+ the subsequent spread of impact speeds to be sufficiently
864
+ far from ϵ’s turning point (cf. Fig. 1) so that the system
865
+ settles into a warm ‘Bridges equilibrium’, similar to those
866
+ plotted in Fig. 2. On the other hand, if we begin the same
867
+ simulation but with very cold initial velocities (≪ vcrit), the
868
+ subsequent spread of impact speeds will remain less than
869
+ vcrit and ϵ will almost always take the value of 0; the system
870
+ © 0000 RAS, MNRAS 000, 000–000
871
+
872
+ LD
873
+ LD
874
+ 0.B
875
+ 0.B
876
+ 0.6
877
+ 0.6
878
+ 0.4
879
+ t0
880
+ 0.2
881
+ 0.2
882
+ 20
883
+ 0.0
884
+ -0.0
885
+ 0
886
+ 0
887
+ 24
888
+ mpact velociby y8
889
+ Larue, Latter, Rein
890
+ will then converge to the appropriate constant ϵ = 0 state in
891
+ Fig. 2. Note that the Bridges law produces a velocity disper-
892
+ sion c that decreases with τ and we may then expect that
893
+ for sufficiently large τ the upper ‘hot state’ will be too close
894
+ to the ‘cold state’ and bistability may disappear.
895
+ 3.2
896
+ Non-monotonic collision laws
897
+ In this section we calculate equilibria for ‘regolith’ epsilon
898
+ laws that are non-monotonic: either the broken power law
899
+ (BPL) with ϵ0 = 0 or the realistic law (2). The parameters
900
+ are ϵmax = 0.75, 0.8 or 0.923, vcrit = 5aΩ, and b = 1, though
901
+ we examine a broader spread of values in Section 3.2.2. We
902
+ first examine in some detail the thermal properties of the
903
+ states, then their transport of angular momentum and heat.
904
+ 3.2.1
905
+ Thermal hysteresis
906
+ Figure 3 constitutes the first main results of the paper. Here
907
+ we plot the equilibrium velocity dispersions (top row), filling
908
+ factors (middle row), and total radial angular momentum
909
+ fluxes (τνtot; bottom row) obtained in a sequence of simu-
910
+ lations at different optical depths and for different ϵ mod-
911
+ els and parameters. Each circular marker corresponds to a
912
+ different simulation. These values are obtained by time av-
913
+ eraging a quantity once the system has become collisionally
914
+ mature, as earlier. For example, τ = 0.1 runs were run for
915
+ 1600Ω−1 and averaged for the last 800Ω−1, while at τ = 2
916
+ the total run length was 80Ω−1, with the averaging taking
917
+ place over the last 40Ω−1.
918
+ As is clear, in the three models presented, two steady
919
+ state branches (distinguished by red and blue) are possi-
920
+ ble within a certain range of optical depth. Which of the
921
+ two the system selects depends on the initial condition: a
922
+ ‘cold start’ (low initial c) usually (but not always) takes the
923
+ system to the nearby cold state, whereas a ‘hot start’ (ini-
924
+ tial c sufficiently high) settles on the hot state. Typically,
925
+ runs starting with c = 0.5aΩ converged to the nearby cold
926
+ state, while runs beginning with c = 10aΩ migrated to the
927
+ hot state, if one was available, even if that state’s veloc-
928
+ ity dispersion was significantly larger than the initial c. The
929
+ direction of migration is discussed further in Section 4.
930
+ The apparent bistability extends over a range of small
931
+ to intermediate optical depths. Beyond a special τ the hot
932
+ state disappears, and all hot start simulations landed on the
933
+ cold branch. At small τ we never found that the cold state
934
+ disappeared, except in the case of the realistic model with
935
+ ϵmax = 0.923 and τ = 0.1; this equilibrium was metastable
936
+ (explored in more detail in Section 4). The bistable regime’s
937
+ width (in τ) depends on the parameters. From Fig. 3, in-
938
+ creasing the ϵmax in the realistic model from 0.75 to 0.923
939
+ moved the special τ from roughly 0.5 to 1.6 (cf. middle and
940
+ right columns).
941
+ The cold equilibria take c values very much in agree-
942
+ ment with the constant ϵ = 0 states simulated in the previ-
943
+ ous subsection, while the hot state resembles a Bridges law,
944
+ with c decreasing with τ. In fact, the hot simulations of the
945
+ realistic model with ϵmax = 0.923 take a similar c as the
946
+ Bridges vcrit = 10 runs, while those with ϵmax = 0.75 resem-
947
+ ble a Bridges law with (roughly) vcrit = 5. These similarities
948
+ bolster our interpretation of the two states as ‘separated’ by
949
+ Figure 5. Grids of simulations undertaken with different vcrit
950
+ and ϵmax using the realistic regolith law with widths b = 1 (top)
951
+ and b = 2 (bottom). Colours correspond to values of |chot −ccold|
952
+ (see text). The contour is a conservative boundary between cases
953
+ that support bistability (to the right and above) and those that
954
+ do not.
955
+ the turning point of the ϵ curve: only a minority of collisions
956
+ in the hot state occur with the low impact speeds that would
957
+ trigger ϵ = 0, while collisions in the cold state rarely occur
958
+ with impact speeds sufficiently large to trigger larger ϵ. To
959
+ flesh out this point further we plot in Fig. 4 the distribution
960
+ function of impact speed for a hot state (right panel) and
961
+ a cold state (left panel) for the same τ = 1 (and other pa-
962
+ rameters). Superimposed in red is the ϵ law used. As the left
963
+ panel indicates, cold state collisions are almost completely
964
+ inelastic; the narrow spread in impact speeds barely overlaps
965
+ the portion of the curve for which ϵ ̸= 0. In contrast, the hot
966
+ state (shown in the right panel) is much broader and thus
967
+ samples a wide range of ϵ, but importantly peaks at speeds
968
+ which yield collisions with a small dissipation of energy.
969
+ The filling factors in the middle row of Fig. 3 reveal that
970
+ the hot branches are far less dense than the cold branches.
971
+ For example, in the realistic model with ϵ = 0.923, at τ = 1
972
+ the hot state possesses a filling factor of 0.08, while the cold
973
+ state has 0.35. The difference, of course, is not due to the
974
+ surface number density (which is the same) but because the
975
+ disk semi-thickness is so different between these two states:
976
+ in the hot state it is ≈ 6a, compared to ∼ a in the cold state.
977
+ The ratio of the two filling factors should scale roughly with
978
+ the ratio of semi-thicknesses and that is indeed what we see.
979
+ The hot state branch terminates when its velocity dis-
980
+ persion approaches a critical value ∼ 3. In reality the sys-
981
+ tem here encounters a saddle-node bifurcation and the solu-
982
+ tion curve bends ‘backwards’ thus forming an intermediate
983
+ branch of thermally unstable solutions. Because these solu-
984
+ tions are unstable they cannot manifest in N-body simula-
985
+ tions3, but they can be calculated by kinetic theory. Kinetic
986
+ 3 See Salo et al. (1988) for a numerical exploration of a thermally
987
+ unstable state.
988
+ © 0000 RAS, MNRAS 000, 000–000
989
+
990
+ b=1
991
+ 30
992
+ 0.9
993
+ 25
994
+ 0.8
995
+ 20
996
+ max
997
+ 15
998
+ 0.7
999
+ 10
1000
+ 0.6
1001
+ 5
1002
+ 0.5
1003
+ 0
1004
+ 0
1005
+ 1
1006
+ 2
1007
+ 3
1008
+ 4
1009
+ 5
1010
+ 9
1011
+ 7
1012
+ 8
1013
+ 9
1014
+ b=2
1015
+ 50
1016
+ 0.9
1017
+ 40
1018
+ 0.8
1019
+ max
1020
+ 30
1021
+ 0.7
1022
+ 20
1023
+ 0.6
1024
+ 10
1025
+ 0.5
1026
+ 0
1027
+ 0
1028
+ 1
1029
+ 2
1030
+ 3
1031
+ 4
1032
+ 5
1033
+ 9
1034
+ 7
1035
+ 8
1036
+ 9
1037
+ critThermal hysteresis in rings
1038
+ 9
1039
+ theoretical equilibria are plotted in the leftmost column with
1040
+ a dashed black curve; the top and middle panels show clearly
1041
+ an intermediate cool, semi-dense branch. The agreement be-
1042
+ tween theory and simulations is qualitative good, with the
1043
+ biggest deviation in the translational viscosity in the hot
1044
+ state, a discrepancy that has been noted in previous com-
1045
+ parisons (Latter and Ogilvie 2008, Rein and Latter 2013).4
1046
+ 3.2.2
1047
+ Parameter survey
1048
+ In the preceding subsection we examined only three param-
1049
+ eter sets/models; in this subsection we adopt the realistic ϵ
1050
+ law and scan through vcrit and ϵmax for two different widths
1051
+ b. Our aim is to determine how representative the thermal
1052
+ hysteresis explored in the previous subsection really is. Of
1053
+ particular interest are the lowest values of vcrit and ϵmax that
1054
+ yield bistability.
1055
+ In Fig. 5 we present ‘bistability plots’ for b = 1 and
1056
+ 2. Each square in the grid corresponds to a parameter pair
1057
+ (vcrit, ϵmax), and for each square we conduct two simulations
1058
+ with τ = 0.1, one with a hot initial condition and the other
1059
+ with a cold initial condition. Each simulation has been run
1060
+ until thermal equilibrium has been obtained, and the dif-
1061
+ ference in final velocity dispersion calculated, |chot − ccold|.
1062
+ Finally, the square is coloured accordingly (cf. the colour
1063
+ bar). If the difference in final c is between 0 and 5, we in-
1064
+ terpret that the two simulations are converging on to the
1065
+ same (cold) equilibrium. Values larger than 5 (admittedly, a
1066
+ rather large value, given Fig. 3) we assume correspond to a
1067
+ bistable situation: the two simulations are settling on differ-
1068
+ ent thermal states. In both panels we have superimposed the
1069
+ contour of |chot − ccold| = 5. The reader should then assign
1070
+ bistability to regions of the parameter plane above and/or
1071
+ to the right of this curve.
1072
+ The plots indicate, as expected, that bistability is
1073
+ favoured by larger values of vcrit and ϵmax. Increasing both
1074
+ parameters helps to separate the typical impact speeds of
1075
+ the hot state from those of the cold state. Interestingly,
1076
+ the bistable region is quite rectangular. Thus when b = 1,
1077
+ bistability is guaranteed (roughly) if both vcrit > 4 and
1078
+ ϵmax > 0.7. We expect that these parameter restrictions
1079
+ should hold roughly for other non-monotonic laws. Finally,
1080
+ the range of bistability is also sensitive to the width of the
1081
+ epsilon law, as the b = 2 plot demonstrates. Increasing the
1082
+ width also helps separate out the two states. In the b = 2
1083
+ case bistability occurs when vcrit > 3 and ϵmax > 0.65.
1084
+ 3.2.3
1085
+ Viscous properties
1086
+ The equilibrium states discussed in the previous subsection
1087
+ support a viscous stress that, by acting on the background
1088
+ orbital shear, transports angular momentum radially across
1089
+ the numerical domain. The viscous properties of the flow are
1090
+ important thermodynamically because the stress extracts
1091
+ free energy from the shear, thus providing the heating source
1092
+ in the thermal balances undergirding these states. But the
1093
+ viscous stress is also important dynamically because it can
1094
+ 4 Unfortunately, numerical difficulties prevented us calculating
1095
+ kinetic solutions for the realistic model.
1096
+ τ
1097
+ κL (C)
1098
+ κNL (C)
1099
+ κL (H)
1100
+ κNL (H)
1101
+ 0.1
1102
+ 4.75
1103
+ 0.42
1104
+ 77.94
1105
+ 0.72
1106
+ 0.2
1107
+ 5.92
1108
+ 0.62
1109
+ 119.26
1110
+ 2.01
1111
+ 0.3
1112
+ 7.42
1113
+ 1.15
1114
+ 111.88
1115
+ 3.39
1116
+ 0.4
1117
+ 6.83
1118
+ 1.61
1119
+ 89.95
1120
+ 3.59
1121
+ Table 1. Calculated translational (local) thermal conductivities
1122
+ κL and collisional (non-local) thermal conductivities κNL in cold
1123
+ (C) and hot (H) equilibria at various optical depths τ. A realistic
1124
+ collision law is adopted with ϵmax = 0.75, vcrit = 5, and b = 1.
1125
+ beget instabilities, such as the viscous overstability and in-
1126
+ stability (Schmidt et al. 2009). In particular, if d(τνtot)/dτ
1127
+ is negative then viscous instability occurs (Lin and Boden-
1128
+ heimer 1981, Lukkari 1981, Ward 1981).
1129
+ The angular momentum flux is plotted in the bottom
1130
+ row of Fig. 3. Note that a subset of hot states possess a
1131
+ decreasing flux and are thus viscously unstable; these are
1132
+ marked in green. In the BPL model, the unstable interval
1133
+ encompasses τ of 0.4 and 0.5, whereas in the realistic model
1134
+ only the ϵmax = 0.923 case yields instability and then for
1135
+ τ between approximately 0.8 and 1.6. Instability here is as-
1136
+ sociated with a dominant translational viscosity, which can
1137
+ decline at sufficiently large τ. Growing modes do not appear
1138
+ in these simulations, however, because the numerical do-
1139
+ main size is smaller than the shortest unstable wavelength;
1140
+ in Section 5.2.2 we simulate larger domains and recover the
1141
+ instability.
1142
+ 3.2.4
1143
+ Thermal conductivity
1144
+ Anticipating later sections which explore different thermal
1145
+ states that spatially adjoin, we compute the radial flux of
1146
+ thermal energy. In the absence of any mean spatial gradients,
1147
+ such as in the homogeneous equilibria calculated, the flux
1148
+ must be zero. But if two states connect in radius the flux
1149
+ must control, in part, how their interface evolves.
1150
+ As explained in Section 2.3.3, we adopt the approach of
1151
+ Salo et al (2001) and impose a radial sinusoidal temperature
1152
+ structure upon the box, through the parameters vcrit and
1153
+ ϵmax. In Fig. 7 we show calculations of the radial thermal
1154
+ flux qx and the thermal conductivity κ for a fixed set of
1155
+ parameters (ϵmax = 0.75, vcrit = 5, b = 1) and for the same
1156
+ optical depth τ = 0.2. The left four panels correspond to the
1157
+ cold state (c ≈ 1), and the right to the hot state (c ≈ 6).
1158
+ The top left panel in each case describes the temperature
1159
+ profile across the box, while the top right panel shows the
1160
+ temperature gradient (solid blue), the translational (local,
1161
+ ‘L’) heat flux (dashed gold), and the collisional (nonlocal,
1162
+ ‘NL’) heat flux (dotted green). The latter two are plotted
1163
+ separately as functions of the temperature gradient in the
1164
+ bottom panels; a best-fit line extracts the conductivities.
1165
+ In both the hot and cold cases, the translational heat
1166
+ flux dominates the collisional flux. This means that the heat
1167
+ flux in the two states differs significantly, despite possessing
1168
+ the same τ. In Table I we list κ for a range of τ and otherwise
1169
+ with the same parameters as in Fig. 6.
1170
+ © 0000 RAS, MNRAS 000, 000–000
1171
+
1172
+ 10
1173
+ Larue, Latter, Rein
1174
+ 100
1175
+ 0
1176
+ 100
1177
+ x
1178
+ 0.75
1179
+ 0.80
1180
+ 0.85
1181
+ 0.90
1182
+ 0.95
1183
+ T
1184
+ 100
1185
+ 0
1186
+ 100
1187
+ x
1188
+ 0.02
1189
+ 0.00
1190
+ 0.02
1191
+ dT/dx
1192
+ qx (L)
1193
+ qx (NL)
1194
+ 100
1195
+ 0
1196
+ 100
1197
+ x
1198
+ 40
1199
+ 45
1200
+ 50
1201
+ T
1202
+ 100
1203
+ 0
1204
+ 100
1205
+ x
1206
+ 20
1207
+ 10
1208
+ 0
1209
+ 10
1210
+ 20
1211
+ 0.003
1212
+ 0.000
1213
+ 0.003
1214
+ - dT/dx
1215
+ 0.02
1216
+ 0.00
1217
+ 0.02
1218
+ qx (L)
1219
+ L=5.92
1220
+ 0.003
1221
+ 0.000
1222
+ 0.003
1223
+ - dT/dx
1224
+ 0.004
1225
+ 0.002
1226
+ 0.000
1227
+ 0.002
1228
+ 0.004
1229
+ qx (NL)
1230
+ NL=0.62
1231
+ 0.2
1232
+ 0.0
1233
+ 0.2
1234
+ - dT/dx
1235
+ 20
1236
+ 10
1237
+ 0
1238
+ 10
1239
+ 20
1240
+ 30
1241
+ qx (L)
1242
+ L=119.26
1243
+ 0.2
1244
+ 0.0
1245
+ 0.2
1246
+ - dT/dx
1247
+ 0.4
1248
+ 0.2
1249
+ 0.0
1250
+ 0.2
1251
+ 0.4
1252
+ qx (NL)
1253
+ NL=2.01
1254
+ COLD, max = 0.75, vc = 5, b = 1,
1255
+ = 0.2
1256
+ HOT, max = 0.75, vc = 5, b = 1,
1257
+ = 0.2
1258
+ Figure 6. Thermal diffusivity measurements for τ = 0.2 in the cold state (left panels) and hot state (right panels) for the realistic model
1259
+ with ϵmax = 0.75, vcrit = 5, and b = 1.
1260
+ Figure 7. Velocity dispersion as a function of time for runs with τ = 0.1 (top panel) and τ = 0.2 (bottom panel). The realistic model is
1261
+ adopted with ϵmax = 0.923, vcrit = 5, and b = 1.
1262
+ 4
1263
+ METASTABILITY
1264
+ In the last section we calculated steady states that appear to
1265
+ be thermally stable, at least linearly according to a contin-
1266
+ uum interpretation. However, N-body systems are replete
1267
+ with small but finite amplitude shot noise that continually
1268
+ tests the nonlinear stability of any steady state. If the basin
1269
+ of attraction of a linearly stable state is small relative to the
1270
+ amplitude of these fluctuations, the system can potentially
1271
+ jump out of the state and migrate elsewhere. Many phys-
1272
+ ical and biological systems offer similar examples of noise
1273
+ destabilising what should be linearly stable fixed points (e.g.
1274
+ Mel’nikov 1991, May 1973, De Swart and Grasman 1987,
1275
+ Majda, Timofeyev and Vanden-Eijinden 1999, 2003). In this
1276
+ section we investigate this possibility.
1277
+ Our focus will be on cold states of low-optical depth
1278
+ and on the hot states near the saddle node bifurcation. The
1279
+ reason is that these states are close to the unstable mid-
1280
+ dle branch which can serve as the boundary of the basin
1281
+ of attraction in each case. We find that, for the parameters
1282
+ and models we employ, metastability is relatively uncom-
1283
+ mon, only occurring in certain dilute and cold states. In
1284
+ particular, states near the saddle node are generally stable
1285
+ to shot noise perturbations.
1286
+ Before presenting our results we emphasise that we
1287
+ only explore the effect of intrinsic shot noise, but in real
1288
+ rings there are several other sources of finite amplitude
1289
+ disturbances that may work similarly, e.g. meteoroid bom-
1290
+ bardment, embedded moonlets, density waves, and gravity
1291
+ wakes.
1292
+ © 0000 RAS, MNRAS 000, 000–000
1293
+
1294
+ 20
1295
+ 15
1296
+ 10
1297
+ 5
1298
+ 0
1299
+ 0
1300
+ 100
1301
+ 200
1302
+ 300
1303
+ 400
1304
+ 500
1305
+ time [orbits]1.1
1306
+ 1.0
1307
+ 0.9
1308
+ 0.8
1309
+ 0
1310
+ 25
1311
+ 50
1312
+ 75
1313
+ 100
1314
+ 125
1315
+ 150
1316
+ 175
1317
+ 200
1318
+ time [orbits]Thermal hysteresis in rings
1319
+ 11
1320
+ Figure 8. Velocity dispersion as a function of time for runs of different initial conditions with τ = 1.61 (top panel) and τ = 1.64 (bottom
1321
+ panel). The realistic model is adopted with ϵmax = 0.923, vcrit = 5, and b = 1.
1322
+ 4.1
1323
+ Cold to hot transitions
1324
+ We find spontaneous transitions from the cold lower branch
1325
+ to the hot upper branch in only a few low τ cases when
1326
+ adopting a realistic collision law and ϵmax = 0.923. Specif-
1327
+ ically, when τ = 0.1 the system can hover about the cold
1328
+ steady state for several hundred orbits before jumping to
1329
+ the hot state.
1330
+ To probe this behaviour we ran 24 runs with slightly
1331
+ different initial conditions (varying both particles’ locations
1332
+ and velocities) but all starting with the same low c. To make
1333
+ doubly certain that the system is as close to the cold equi-
1334
+ librium as possible, and that any future transition is not
1335
+ the result of a wayward initial condition, we force ϵ = 0 (a
1336
+ constant) for several orbits at the start.
1337
+ The evolution of these runs are plotted in the top panel
1338
+ of Fig. 7, with the shaded region indicating when ϵ = 0.
1339
+ As is clear from the figure, all but three runs jumped to
1340
+ the hot state by 500 orbits (roughly > 25 collision times),
1341
+ though there was a wide spread of transition times, indica-
1342
+ tive that the process is stochastic and issues from the noise:
1343
+ ultimately, after some period, an overenthusiastic collision,
1344
+ dissipating insufficient velocity dispersion, seeds a patch of
1345
+ more energetic particles, which then spreads spatially and
1346
+ takes over the system.
1347
+ Of course, this is only part of the story, because en-
1348
+ ergetic events must happen at slightly larger τ but do not
1349
+ appear to instigate runaway heating. Indeed, we undertake
1350
+ a similar experiment at τ = 0.2, plotted in the lower panel
1351
+ of Fig. 7, and witness no transitions at all. What is key is
1352
+ the overall basin of attraction of the cold state; as shown by
1353
+ the kinetic curves in the top left panel of Fig. 3, the middle
1354
+ unstable branch and the cold lower branch become closest
1355
+ at low τ. The middle branch acts as the boundary of the
1356
+ lower state’s basin of attraction (at least in this simple phase
1357
+ space projection); thus at low τ it becomes more likely that
1358
+ a finite amplitude perturbation can tip the system over this
1359
+ boundary. That said, it is not straightforward to firmly con-
1360
+ nect microphysical fluctuations (shot noise) to such a mean
1361
+ finite-amplitude perturbation in this phase space.
1362
+ 4.2
1363
+ Hot to cold transitions
1364
+ We now check if it is possible to obtain spontaneous hot to
1365
+ cold transitions. We focus on states near the tip of the saddle
1366
+ node, i.e. the termination of the hot branch (see top row in
1367
+ Fig. 3), and examine a range of τ between 1.61 to 1.65 in
1368
+ the realistic model with ϵmax = 0.923. We simulate several
1369
+ runs with slightly different initial conditions, as before, and
1370
+ plot the results in Fig. 8, top and bottom panels. As in the
1371
+ previous subsection, to ensure that we start the simulations
1372
+ in a hot state we set vcrit to a very small value initially. Over
1373
+ several orbits (indicated by the shaded area in the figures),
1374
+ we slowly increase vcrit to the nominal value.
1375
+ Unlike cold to hot transitions, the systems either imme-
1376
+ diately drop to the cold state or relax into the hot state on
1377
+ a timescale of 10 orbits or so (a handful of collision times).
1378
+ At τ = 1.65 all the simulations ended up in the cold state,
1379
+ while at 1.64, some stayed in the hot state, while at lower
1380
+ tau again (1.61) most stay in the hot state. Putting aside
1381
+ the percentages in one or the other, the system transitions
1382
+ promptly or not at all. We attribute this more to the initial
1383
+ condition at the end of the blue phase, rather than having
1384
+ to wait for a more sluggish group of collisions that lead to a
1385
+ ‘chain reaction’ and a switching of states.
1386
+ The difference with the low τ runs explored earlier may
1387
+ partially be explained by the separation between the middle
1388
+ and hot branches, which is relatively large, even near the
1389
+ tip of the saddle node (see kinetic theory curves in top left
1390
+ panel of Fig. 3). Once a system settles on to the hot state,
1391
+ and its initial conditions mostly forgotten, its intrinsic shot
1392
+ noise is insufficient to tip it out of its basin of attraction and
1393
+ into the cold state.
1394
+ © 0000 RAS, MNRAS 000, 000–000
1395
+
1396
+ 5
1397
+ 4
1398
+ 3
1399
+ 2
1400
+ 1
1401
+ 0
1402
+ 50
1403
+ 100
1404
+ 0
1405
+ 150
1406
+ 200
1407
+ 250
1408
+ time [orbits]5
1409
+ 4
1410
+ 3
1411
+ 2
1412
+ 1
1413
+ 0
1414
+ 100
1415
+ 0
1416
+ 50
1417
+ 150
1418
+ 200
1419
+ 250
1420
+ time [orbits]12
1421
+ Larue, Latter, Rein
1422
+ 600
1423
+ 400
1424
+ 200
1425
+ 0
1426
+ 200
1427
+ 400
1428
+ 600
1429
+ x
1430
+ 20
1431
+ 10
1432
+ 0
1433
+ 10
1434
+ 20
1435
+ z
1436
+ t=0 orbits
1437
+ Figure 9. Initial condition for the fiducial thermal-front simula-
1438
+ tion described in Section 5.1.1 in the form of an (x, z) projection
1439
+ of the particle positions.
1440
+ 5
1441
+ THERMAL AND VISCOUS FRONTS
1442
+ Having computed several homogeneous states, we now ex-
1443
+ plore the dynamics when different states spatially adjoin. If
1444
+ a ring region is bistable, then it is likely that such situa-
1445
+ tions occur, given the varying dynamical histories at differ-
1446
+ ent radii. Our main focus is on the structure and evolution
1447
+ of the transition (or front) between two states. We will con-
1448
+ sider two cases: (a) thermal fronts, which join two states
1449
+ of the same τ but different c, and (b) viscous fronts, which
1450
+ connect two states of the same angular momentum flux τν,
1451
+ but different τ and c
1452
+ Thermal fronts involve a hot and a cold state, with the
1453
+ pair joined by a vertical line in the top panels of Fig. 3.
1454
+ Though sharing the same optical depth, they possess dis-
1455
+ tinct vertical thicknesses that may produce a photometric
1456
+ variation, and thus observable structure (e.g. Salo and Kar-
1457
+ jalainen 2003). However, the two states will support different
1458
+ angular momentum fluxes τν, and thus mass may pile up or
1459
+ evacuate near the thermal front, potentially leading to non-
1460
+ steadiness and a complete break down of the structure. We
1461
+ find that this is avoided if the front itself moves sufficiently
1462
+ fast.
1463
+ One might expect radial mass redistribution is negated
1464
+ if two adjoining states possess the same angular momentum
1465
+ flux, with the pair joined by a horizontal line in the bot-
1466
+ tom panels of Fig. 3. In fact, similar structures have already
1467
+ been witnessed in simulations of the viscous instability with
1468
+ monotonic ϵ laws (Salo and Schmidt 2010). We find, how-
1469
+ ever, that the finite width of the front itself spoils the ex-
1470
+ act matching of fluxes and makes the establishment of such
1471
+ fronts more complicated.
1472
+ 5.1
1473
+ Thermal fronts
1474
+ In order to explore the structure and dynamics of fronts
1475
+ connecting equilibria of different temperatures but the same
1476
+ surface density, we concentrate on a single parameter set.
1477
+ The behaviour obtained is then interpreted using a simple
1478
+ continuum model, before other parameters are trialled.
1479
+ 5.1.1
1480
+ Fiducial case
1481
+ Our fiducial run employs a realistic ϵ law with the following
1482
+ parameters: ϵmax = 0.75, vcrit = 5, and b = 1. We examine
1483
+ a hot and cold state of the same τ = 0.2, with the former
1484
+ possessing c = 6.7 and the latter c = 0.87. We adopt a wide
1485
+ box of radial size 1000a and insert a strip of particles from
1486
+ the (previously computed) hot state in the centre (with ra-
1487
+ dial extent 100a), while distributing particles from the cold
1488
+ state throughout the rest of the numerical domain. Figure
1489
+ 9 plots this initial condition as a projection of the particle
1490
+ locations in the (x, z) plane. Away from the borders of the
1491
+ hot/cold zones, the ring is in thermal equilibrium.
1492
+ The subsequent evolution of the ring is shown in Fig. 10,
1493
+ which presents four snapshots at different times on each row.
1494
+ The left panels describe the (x, z) projections of the parti-
1495
+ cles, while the right panels plot the radial variation of τ
1496
+ (blue) and c (red). As is clear, the two fronts move radially
1497
+ into the cold state, until the hot state takes over the box
1498
+ entirely. Meanwhile, τ remain roughly constant throughout,
1499
+ except for some minor deviations around the front itself.
1500
+ The front speed is constant until the moment that the
1501
+ cold state evaporates. This is demonstrated in Figure 11,
1502
+ which plots the location of the rightmost front as a func-
1503
+ tion of time. A c intermediate between the c in the hot and
1504
+ cold states was selected (here c = 4) and its x location was
1505
+ determined at each time-step, which provided a means to
1506
+ capture the movement of the front as a whole. The front
1507
+ speed is 0.685aΩ, thus slightly less than c in the cold state.
1508
+ Generally, in bistable systems, the conductivity controls
1509
+ the structure of fronts; a small conductivity yields a narrow
1510
+ transition, while a large conductivity gives a more diffuse
1511
+ transition (e.g. Latter and Balbus 2012). In our granular gas,
1512
+ the thermal conductivity κ depends on c, and thus jumps
1513
+ by at least an order of magnitude as we go from the cold
1514
+ to the hot state (see Table I). This explains why the front
1515
+ structure is sharp near the cold state (though always longer
1516
+ than the ‘granularity scale’, a), while broader and smoother
1517
+ near the hot state. The overall width of the front (≳ 100a)
1518
+ is hence determined approximately by κ in the hot phase.
1519
+ 5.1.2
1520
+ Physics of front motion; a simple continuum model
1521
+ The basic mechanism driving the movement of a thermal
1522
+ front relies on the finite-amplitude perturbations arising
1523
+ from the proximity of the different states. These perturba-
1524
+ tions can only be communicated via thermal diffusion. For
1525
+ example, near a front, the cold state will receive thermal en-
1526
+ ergy (via diffusion) from the adjacent hot state. If the energy
1527
+ received is sufficient to push the cold ring material out of the
1528
+ cold state’s basin of attraction, then one might expect it to
1529
+ heat up and settle on the hot state; as a consequence, the
1530
+ front advances into the cold phase. But, by the same token,
1531
+ on the other side of the front, material in the hot state will
1532
+ also be perturbed by the heat flux and will cool down. If this
1533
+ cooled material is pushed beyond the hot state’s basin of at-
1534
+ traction, then it will undergo a runaway cooling and then
1535
+ we might expect the front to advance into the hot state.
1536
+ © 0000 RAS, MNRAS 000, 000–000
1537
+
1538
+ Thermal hysteresis in rings
1539
+ 13
1540
+ 600
1541
+ 400
1542
+ 200
1543
+ 0
1544
+ 200
1545
+ 400
1546
+ 600
1547
+ x
1548
+ 20
1549
+ 10
1550
+ 0
1551
+ 10
1552
+ 20
1553
+ z
1554
+ t=0.8 orbits
1555
+ 500
1556
+ 250
1557
+ 0
1558
+ 250
1559
+ 500
1560
+ x
1561
+ 0
1562
+ 2
1563
+ 4
1564
+ 6
1565
+ 8
1566
+ c
1567
+ 0.0
1568
+ 0.1
1569
+ 0.2
1570
+ 0.3
1571
+ 0.4
1572
+ t=0.80 orbits
1573
+ 600
1574
+ 400
1575
+ 200
1576
+ 0
1577
+ 200
1578
+ 400
1579
+ 600
1580
+ x
1581
+ 20
1582
+ 10
1583
+ 0
1584
+ 10
1585
+ 20
1586
+ z
1587
+ t=8 orbits
1588
+ 500
1589
+ 250
1590
+ 0
1591
+ 250
1592
+ 500
1593
+ x
1594
+ 0
1595
+ 2
1596
+ 4
1597
+ 6
1598
+ 8
1599
+ c
1600
+ 0.0
1601
+ 0.1
1602
+ 0.2
1603
+ 0.3
1604
+ 0.4
1605
+ t=8 orbits
1606
+ 600
1607
+ 400
1608
+ 200
1609
+ 0
1610
+ 200
1611
+ 400
1612
+ 600
1613
+ x
1614
+ 20
1615
+ 10
1616
+ 0
1617
+ 10
1618
+ 20
1619
+ z
1620
+ t=80 orbits
1621
+ 500
1622
+ 250
1623
+ 0
1624
+ 250
1625
+ 500
1626
+ x
1627
+ 0
1628
+ 2
1629
+ 4
1630
+ 6
1631
+ 8
1632
+ c
1633
+ 0.0
1634
+ 0.1
1635
+ 0.2
1636
+ 0.3
1637
+ 0.4
1638
+ t=80 orbits
1639
+ 600
1640
+ 400
1641
+ 200
1642
+ 0
1643
+ 200
1644
+ 400
1645
+ 600
1646
+ x
1647
+ 20
1648
+ 10
1649
+ 0
1650
+ 10
1651
+ 20
1652
+ z
1653
+ t=191 orbits
1654
+ 500
1655
+ 250
1656
+ 0
1657
+ 250
1658
+ 500
1659
+ x
1660
+ 0
1661
+ 2
1662
+ 4
1663
+ 6
1664
+ 8
1665
+ c
1666
+ 0.0
1667
+ 0.1
1668
+ 0.2
1669
+ 0.3
1670
+ 0.4
1671
+ t=191 orbits
1672
+ Figure 10. Snapshots of a thermal front at t = 0.8, 8, 80 and 191 orbits. Panels on the left describe a projection of ring particles on to
1673
+ the (x, z) plane. Panels on the right depict the x-dependent velocity dispersion c (red) and optical depth τ (blue).
1674
+ © 0000 RAS, MNRAS 000, 000–000
1675
+
1676
+ 14
1677
+ Larue, Latter, Rein
1678
+ 0
1679
+ 200
1680
+ 400
1681
+ 600
1682
+ 800
1683
+ 1000
1684
+ t
1685
+ 0
1686
+ 100
1687
+ 200
1688
+ 300
1689
+ 400
1690
+ 500
1691
+ 600
1692
+ 700
1693
+ x-coordinate of front
1694
+ Figure 11. Outer front radial location as a function of time in
1695
+ the simulation shown in Fig. 10.
1696
+ Which thermal runaway is favoured on average depends on
1697
+ the relative sizes of the hot and cold state’s basins of attrac-
1698
+ tion, which can be approximated (roughly) by how close the
1699
+ intermediate unstable state is to either state (see discussion
1700
+ in the section on metastability, and also Latter and Balbus
1701
+ 2012).
1702
+ These ideas can be illustrated by a continuum model.
1703
+ The energy equation of the gas may be written as
1704
+ ∂tE = Λ(E) + ∂x(k∂xE),
1705
+ where E = (3/2)c2, Λ combines viscous heating and col-
1706
+ lisional cooling, and k is thermal diffusivity (= 2κ/(3σ)).
1707
+ Thus Λ = 0 when E is equal to the stable hot, cold, and
1708
+ unstable intermediate steady states, EH, EC, and EI, re-
1709
+ spectively. Moreover, dΛ/dE < 0 when E = EH or EC. We
1710
+ assume a steady front, moving at speed vf, with the hot
1711
+ state to the right and the cold state to the left, and thus
1712
+ introduce the comoving variable ξ = x − vft, which trans-
1713
+ forms the energy equation into a type of Stefan problem for
1714
+ the front shape E(ξ) and speed vf,
1715
+ ∂ξ(k∂ξE) + vf∂ξE + Λ(E) = 0.
1716
+ (14)
1717
+ The boundary conditions are E → EH as ξ → ∞ and
1718
+ E → EC as ξ → −∞ (hot to the right and cold to the left).
1719
+ This is a nonlinear eigenvalue problem that, after specify-
1720
+ ing the functional forms of Λ(E) and k(E), would normally
1721
+ require a numerical solution. In Appendix B we adopt sim-
1722
+ ple prescriptions for these functions and solve the equation,
1723
+ thereby illustrating some of the main features discussed be-
1724
+ low and qualitatively reproducing our N-body results.
1725
+ An illuminating expression for the speed vf can be ob-
1726
+ tained by multiplying Eq. (14) by dE/dξ and integrating
1727
+ between −∞ and ∞. After some manipulation, one gets
1728
+ vf = −
1729
+ � EH
1730
+ EC Λ dE
1731
+ � ∞
1732
+ −∞(dE/dξ)2dξ −
1733
+ � ∞
1734
+ −∞(dk/dE)(dE/dξ)3dξ
1735
+ 2
1736
+ � ∞
1737
+ −∞(dE/dξ)2dξ
1738
+ . (15)
1739
+ If the thermal diffusivity is a constant, the second term is
1740
+ zero. In this case, the sign of vf is determined solely by the
1741
+ integral of the heating/cooling term Λ. Because Λ(EH) =
1742
+ Λ(EI) = Λ(EC) = 0, the integral can be subdivided into (a)
1743
+ a positive part (between EC and EI) that measures the ‘size’
1744
+ of the cold state’s basin of attraction, and (b) a negative
1745
+ part (between EI and EH) that measures the hot state’s
1746
+ basin of attraction. The proximity of EI to either EC or
1747
+ EH indicates the basins’ relative sizes. If EI is closer to EC,
1748
+ then the integral is dominated by the positive area, vf < 0,
1749
+ and the front moves into the cold state. Physically, cold ring
1750
+ material near a front finds it easier to undergo a heating
1751
+ runaway, when perturbed by the front, than hot material
1752
+ finds a cooling runaway; thus, the front advances into the
1753
+ cold material. If EI is closer to EH, then the converse holds
1754
+ and the front moves into the hot state. Turning now to the
1755
+ top row of Fig. 3 (first panel especially), one naively expects
1756
+ that at low τ fronts initially move into the cold state, but at
1757
+ higher τ fronts are slower and then at some critical τ may
1758
+ reverse direction.
1759
+ If k depends on E then things are more complicated.
1760
+ The second term in Eq. (15) is a weighted average of dk/dE,
1761
+ and shows that a non-uniformity in the transport of heat
1762
+ moderates the effect discussed above. If the front shape is
1763
+ monotonic in ξ, then dE/dξ > 0 throughout and the sign of
1764
+ the second term is determined by dk/dE. As demonstrated
1765
+ in Section 3.2.3 and Table I, dk/dE > 0, and so the second
1766
+ term in Eq. (15) is always positive, thus biasing the front’s
1767
+ movement into the cold state. The underlying mechanism
1768
+ here rests not on the system’s bistability but on exacerbating
1769
+ the imbalance in the heat flux throughout the front struc-
1770
+ ture: at any given point more heat is arriving from the hot
1771
+ state than is being evacuated.
1772
+ The discussion above suggests that the sharp region at
1773
+ the foot of the front controls the front speed. Taking an
1774
+ order of magnitude approach and equating the three terms
1775
+ in Eq. (14) yields the estimate vf ∼
1776
+
1777
+ kC/tth, where the
1778
+ thermal timescale is defined as tth = E/Λ ∼ c2/(νΩ2), and
1779
+ kC is the diffusivity evaluated in the cold state. Putting in
1780
+ values for the cold state gives us vf ∼ aΩ, which is consistent
1781
+ with the value calculated numerically. The width λ of the
1782
+ front extending through the hot phase can then be estimated
1783
+ by balancing the first two terms in Eq. (14); we find λ ∼
1784
+ kH/vf ≳ 500a, which is also consistent with the simulation.
1785
+ 5.1.3
1786
+ Front stability
1787
+ We conducted a short survey of fronts at different τ and
1788
+ calculated their speeds. When τ = 0.1 we found vf = 0.518,
1789
+ and when τ = 0.3, vf = 0.591. While no clear trend could be
1790
+ observed between τ = 0.1 − 0.3, we expected at larger τ, as
1791
+ we approached the saddle node, that the front speed should
1792
+ decrease. In fact, what we found for τ = 0.4 or larger is that
1793
+ the front would slow to a halt and then viscously reshape;
1794
+ i.e. τ would evolve away from a uniform profile. Ultimately,
1795
+ the system moves to a state of constant angular momentum
1796
+ flux τν, and the thermal front dissolves.
1797
+ As mentioned earlier, the issue here is that across a
1798
+ thermal front τ is constant, but τν is not. As a consequence,
1799
+ mass can potentially build-up/evacuate. If the front moves
1800
+ faster than τ can be viscously redistributed, then we expect
1801
+ the front to remain coherent and to travel unimpeded. If the
1802
+ front speed is too slow, then it will be viscously reshaped and
1803
+ will collapse. For the model chosen, τ ⩽ 0.3 corresponds to
1804
+ the first case, and τ > 0.3 to the latter.
1805
+ A rough criterion for the ‘stability’ of the front to vis-
1806
+ © 0000 RAS, MNRAS 000, 000–000
1807
+
1808
+ Thermal hysteresis in rings
1809
+ 15
1810
+ cous redistribution would tension the relative sizes of the
1811
+ front speed vf and the viscous diffusion speed. To deter-
1812
+ mine an estimate on the latter, we employ the lengthscale
1813
+ of the abrupt transition at the foot of the structure and
1814
+ thus estimate the diffusion speed as ∼ (νC/κC)vf. A sim-
1815
+ ple criterion for front dissolution requires that this speed
1816
+ is greater than vf, and hence depends solely on the size of
1817
+ the Prandtl number Pr = ν/κ in the cold state: when Pr is
1818
+ greater than a critical value Prc, we expect the front to dis-
1819
+ solve. Indeed, Pr increases monotonically between τ = 0.1
1820
+ and 0.4, though takes relatively small values. At τ = 0.4, we
1821
+ find that Pr ∼ 0.04, which must be near Prc.
1822
+ 5.2
1823
+ Viscous fronts and viscous instability
1824
+ Given the issue of the unbalanced angular momentum in
1825
+ thermal fronts, it is natural to explore fronts that join states
1826
+ with the same viscous transport properties, specifically ντ.
1827
+ We present simulations of such joined states in this subsec-
1828
+ tion, in addition to a short treatment of viscous instability.
1829
+ A simple continuum model can guide our expectations.
1830
+ In the shearing sheet, the one-dimensional diffusion equation
1831
+ for viscous Keplerian disks is
1832
+ ∂tτ = 3∂2
1833
+ x(ντ)
1834
+ (e.g. Lynden-Bell and Pringle 1973). Suppose a viscous front
1835
+ moves with speed vf with τ → τA as x → −∞ and τ → τB as
1836
+ x → ∞. As earlier, we adopt a comoving variable ξ = x−vft,
1837
+ which permits the complete integration of the problem. We
1838
+ find that vf = 0 (the structure must be stationary) and
1839
+ ντ (= νAτA = νBτB) is a constant throughout the entirety
1840
+ of the front. The last constraint is a potential difficulty: while
1841
+ it is possible to find two homogeneous steady states of the
1842
+ same ντ (cf. panels in the bottom row of Fig. 3), a realis-
1843
+ tic front will have a finite width in which τ will vary and
1844
+ thus ντ will deviate from the required constant value. Our
1845
+ simulations show, in fact, that the system can overcome this
1846
+ problem by settling on a front structure in which the average
1847
+ ντ equals νAτA = νBτB.
1848
+ 5.2.1
1849
+ Fronts
1850
+ We present a fiducial simulation with the realistic law, and
1851
+ parameters b = 1, ϵmax = 0.923, and vcrit = 5. To construct a
1852
+ suitable initial condition that might produce a viscous front,
1853
+ we select two thermally and viscously stable states with the
1854
+ same ντ from the bottom right panel of Fig. 3. Such pairs
1855
+ are joined by horizontal lines. We select two states of the
1856
+ same angular momentum flux ντ ≈ 2, with optical depths
1857
+ τ = 1.5 and τ = 0.16. The numerical domain is chosen to
1858
+ be sufficiently large (L = 800) to accommodate relatively
1859
+ undisturbed expanses of the two states, in addition to the
1860
+ front itself; the low τ state is placed between x = −100 and
1861
+ 100, with the high τ state taking up the remainder of the
1862
+ box.
1863
+ Figure 12 shows eight snapshots of the resulting simu-
1864
+ lation at different times. In each panel we plot τ (red) and
1865
+ τν (blue). At t = 0, the angular momentum flux τν is a
1866
+ constant, but τ undergoes two jumps (at x = ±100a). As
1867
+ the system evolves, the two jumps/fronts relax and exhibit a
1868
+ characteristic width, with τ taking values between those of
1869
+ the two steady states. An immediate consequence is that the
1870
+ angular momentum flux within the fronts begins to deviate
1871
+ from the fixed value ≈ 2. In fact, the first four panels show
1872
+ that it takes significantly larger values than 2, in agreement
1873
+ with the bottom right panel of Fig. 3, which shows that
1874
+ states with τ between 0.16 and 1.5 exhibit ντ > 2. Because
1875
+ of the enhanced flux in the fronts, mass is being transported
1876
+ out of the fronts, which then appear to move as the system
1877
+ evolves far way from the initial condition.
1878
+ Ultimately, we find that the system redistributes the
1879
+ mass throughout the numerical domain so that τν is roughly
1880
+ constant (≈ 7), but still allows for strong variations in τ.
1881
+ This outcome is not a constant τ state, but consists of
1882
+ two static viscous fronts joining two homogeneous states
1883
+ of τ ≈ 0.4 and 2.7, which according to Fig. 3 possess the
1884
+ same angular momentum flux (∼ 7). Evidently, the front
1885
+ that joins the two states also possesses a similar approxi-
1886
+ mate flux, though this is difficult to determine from Fig. 3.
1887
+ A similar final state was found by Salo and Schmidt (2010)
1888
+ when simulating the viscous instability directly (see next
1889
+ subsection).
1890
+ This static structure is an interesting outcome for the
1891
+ system, but we stress that it is possible only because of
1892
+ the periodicity of the numerical domain. Owing to those
1893
+ boundary conditions, mass in the whole domain can be re-
1894
+ distributed until the desired constant ντ state can be found.
1895
+ In a more realistic setting, the system is unlikely to come
1896
+ to steady state and the front will continue to move until it
1897
+ encounters large-scale variations in background disk proper-
1898
+ ties, etc.
1899
+ 5.2.2
1900
+ Viscous instability
1901
+ In the previous subsection we explored two adjoined vis-
1902
+ cously stable states, but the lower right panel of Fig. 3 in-
1903
+ dicates that there is a branch of viscously unstable states
1904
+ of intermediate τ between roughly 0.8 and 1.6. An obvious
1905
+ question is: to where does the system evolve if started from
1906
+ one of these states? We thus present a simulation with the
1907
+ same collisional parameters as earlier, but with a homoge-
1908
+ neous τ of 1.4. According to Fig. 3, this state is viscously
1909
+ unstable. Figure 13 shows 5 snapshots of the system’s evo-
1910
+ lution.
1911
+ Despite possessing a constant τν, the system moves
1912
+ slowly away from this state and begins to develop grow-
1913
+ ing patches of high and low τ. Unlike the previous subsec-
1914
+ tion, where the evolution is being driven by large-scale flux
1915
+ imbalances, here there is an instability mechanism, in which
1916
+ small-scale fluctuations in the flux self-reinforce (Lin and Bo-
1917
+ denheimer 1981, Lukkari 1981, Ward 1981). Ultimately, the
1918
+ system settles on a sequence of distinct high-τ islands sur-
1919
+ rounded by relatively dilute regions, but both with roughly
1920
+ the same flux (≈ 6, in this case), as is necessary for a steady
1921
+ state.
1922
+ These results are very similar to those predicted by
1923
+ H¨ameen-Anttila (1982) and witnessed in Lukkari (1981) and
1924
+ Salo and Schmidt (2010), though they use a monotonic col-
1925
+ lision law. A key difference is that in the monotonic ϵ simu-
1926
+ lations, the final outcome joins states from the same branch,
1927
+ while in our non-monotonic simulations states from different
1928
+ branches adjoin. An interesting consequence of this is that it
1929
+ is still possible for the system to separate into a sequence of
1930
+ © 0000 RAS, MNRAS 000, 000–000
1931
+
1932
+ 16
1933
+ Larue, Latter, Rein
1934
+ 400
1935
+ 200
1936
+ 0
1937
+ 200
1938
+ 400
1939
+ x
1940
+ 0.0
1941
+ 0.5
1942
+ 1.0
1943
+ 1.5
1944
+ 2.0
1945
+ 2.5
1946
+ 3.0
1947
+ 0
1948
+ 2
1949
+ 4
1950
+ 6
1951
+ 8
1952
+ 10
1953
+ 12
1954
+ t=5 orbits
1955
+ 400
1956
+ 300
1957
+ 200
1958
+ 100
1959
+ 0
1960
+ 100
1961
+ 200
1962
+ 300
1963
+ 400
1964
+ x
1965
+ 0.0
1966
+ 0.5
1967
+ 1.0
1968
+ 1.5
1969
+ 2.0
1970
+ 2.5
1971
+ 3.0
1972
+ 0
1973
+ 2
1974
+ 4
1975
+ 6
1976
+ 8
1977
+ 10
1978
+ 12
1979
+ t=20 orbits
1980
+ 400
1981
+ 200
1982
+ 0
1983
+ 200
1984
+ 400
1985
+ x
1986
+ 0.0
1987
+ 0.5
1988
+ 1.0
1989
+ 1.5
1990
+ 2.0
1991
+ 2.5
1992
+ 3.0
1993
+ 0
1994
+ 2
1995
+ 4
1996
+ 6
1997
+ 8
1998
+ 10
1999
+ 12
2000
+ t=30 orbits
2001
+ 400
2002
+ 200
2003
+ 0
2004
+ 200
2005
+ 400
2006
+ x
2007
+ 0.0
2008
+ 0.5
2009
+ 1.0
2010
+ 1.5
2011
+ 2.0
2012
+ 2.5
2013
+ 3.0
2014
+ 0
2015
+ 2
2016
+ 4
2017
+ 6
2018
+ 8
2019
+ 10
2020
+ 12
2021
+ t=50 orbits
2022
+ 400
2023
+ 300
2024
+ 200
2025
+ 100
2026
+ 0
2027
+ 100
2028
+ 200
2029
+ 300
2030
+ 400
2031
+ x
2032
+ 0.0
2033
+ 0.5
2034
+ 1.0
2035
+ 1.5
2036
+ 2.0
2037
+ 2.5
2038
+ 3.0
2039
+ 0
2040
+ 2
2041
+ 4
2042
+ 6
2043
+ 8
2044
+ 10
2045
+ 12
2046
+ t=100 orbits
2047
+ 400
2048
+ 300
2049
+ 200
2050
+ 100
2051
+ 0
2052
+ 100
2053
+ 200
2054
+ 300
2055
+ 400
2056
+ x
2057
+ 0.0
2058
+ 0.5
2059
+ 1.0
2060
+ 1.5
2061
+ 2.0
2062
+ 2.5
2063
+ 3.0
2064
+ 0
2065
+ 2
2066
+ 4
2067
+ 6
2068
+ 8
2069
+ 10
2070
+ 12
2071
+ t=500 orbits
2072
+ 400
2073
+ 200
2074
+ 0
2075
+ 200
2076
+ 400
2077
+ x
2078
+ 0.0
2079
+ 0.5
2080
+ 1.0
2081
+ 1.5
2082
+ 2.0
2083
+ 2.5
2084
+ 3.0
2085
+ 0
2086
+ 2
2087
+ 4
2088
+ 6
2089
+ 8
2090
+ 10
2091
+ 12
2092
+ t=1000 orbits
2093
+ 400
2094
+ 300
2095
+ 200
2096
+ 100
2097
+ 0
2098
+ 100
2099
+ 200
2100
+ 300
2101
+ 400
2102
+ x
2103
+ 0.0
2104
+ 0.5
2105
+ 1.0
2106
+ 1.5
2107
+ 2.0
2108
+ 2.5
2109
+ 3.0
2110
+ 0
2111
+ 2
2112
+ 4
2113
+ 6
2114
+ 8
2115
+ 10
2116
+ 12
2117
+ t=2000 orbits
2118
+ Figure 12. Snapshots of an example viscous front, showing optical depth and angular momentum flux as a function of x. The initial
2119
+ condition connects two states of different τ but the same angular momentum flux τν. Despite this balance, the system evolves, redis-
2120
+ tributing mass and angular momentum until a steady state is achieved characterised by a different constant τν. The collision law employs
2121
+ the realistic model with vcrit = 5, ϵmax = 0.923, b = 1. Snapshots are at t = 5, 20, 30, 50, 100, 500, 1000, and 2000 orbits.
2122
+ high and low τ states (of the same ντ), even when there is no
2123
+ intermediate viscously unstable state. In particular, this ap-
2124
+ pears achievable for the parameters of the middle column in
2125
+ Fig. 3. More generally, systems with non-monotonic collision
2126
+ laws have more freedom to exhibit viscous phase-separation
2127
+ in radius.
2128
+ 6
2129
+ DISCUSSION AND CONCLUSION
2130
+ Most previous work describing the local collisional dynam-
2131
+ ics of Saturn’s rings uses relatively simple collision models.
2132
+ Given the poorly constrained nature of the collisions, and
2133
+ the numerical challenges involved, this is understandable,
2134
+ and indeed some success has been achieved in certain appli-
2135
+ cations (e.g. self-gravity wakes, viscous overstability). How-
2136
+ ever, current models still fail to describe much (if not most)
2137
+ of the irregular axisymmetric structure exhibited in Saturn’s
2138
+ B and C rings. This invites us to experiment with other more
2139
+ complicated collision laws, in particular those that account
2140
+ (in a basic way) for surface regolith on ring particles, which
2141
+ is deemed to be present and important (e.g. Nicholson et
2142
+ al. 2008, Morishima et al. 2012, Deau 2015).
2143
+ We conduct N-body simulations with the REBOUND
2144
+ © 0000 RAS, MNRAS 000, 000–000
2145
+
2146
+ Thermal hysteresis in rings
2147
+ 17
2148
+ 400
2149
+ 200
2150
+ 0
2151
+ 200
2152
+ 400
2153
+ x
2154
+ 0.0
2155
+ 0.5
2156
+ 1.0
2157
+ 1.5
2158
+ 2.0
2159
+ 2.5
2160
+ 3.0
2161
+ 0
2162
+ 2
2163
+ 4
2164
+ 6
2165
+ 8
2166
+ 10
2167
+ 12
2168
+ t=50 orbits
2169
+ 400
2170
+ 200
2171
+ 0
2172
+ 200
2173
+ 400
2174
+ x
2175
+ 0.0
2176
+ 0.5
2177
+ 1.0
2178
+ 1.5
2179
+ 2.0
2180
+ 2.5
2181
+ 3.0
2182
+ 0
2183
+ 2
2184
+ 4
2185
+ 6
2186
+ 8
2187
+ 10
2188
+ 12
2189
+ t=750 orbits
2190
+ 400
2191
+ 200
2192
+ 0
2193
+ 200
2194
+ 400
2195
+ x
2196
+ 0.0
2197
+ 0.5
2198
+ 1.0
2199
+ 1.5
2200
+ 2.0
2201
+ 2.5
2202
+ 3.0
2203
+ 0
2204
+ 2
2205
+ 4
2206
+ 6
2207
+ 8
2208
+ 10
2209
+ 12
2210
+ t=1000 orbits
2211
+ 400
2212
+ 200
2213
+ 0
2214
+ 200
2215
+ 400
2216
+ x
2217
+ 0.0
2218
+ 0.5
2219
+ 1.0
2220
+ 1.5
2221
+ 2.0
2222
+ 2.5
2223
+ 3.0
2224
+ 0
2225
+ 2
2226
+ 4
2227
+ 6
2228
+ 8
2229
+ 10
2230
+ 12
2231
+ t=1050 orbits
2232
+ 400
2233
+ 200
2234
+ 0
2235
+ 200
2236
+ 400
2237
+ x
2238
+ 0.0
2239
+ 0.5
2240
+ 1.0
2241
+ 1.5
2242
+ 2.0
2243
+ 2.5
2244
+ 3.0
2245
+ 0
2246
+ 2
2247
+ 4
2248
+ 6
2249
+ 8
2250
+ 10
2251
+ 12
2252
+ t=2000 orbits
2253
+ Figure 13. Snapshots showing the progress of viscous instability starting from an unstable state of τ = 1.4. The collisional parameters
2254
+ are vcrit = 5, ϵmax = 0.923, b = 1. The panels describe the x dependent optical depth τ (red) and the angular momentum flux τν (blue).
2255
+ Snapshots are at 50, 750, 1000, 1050, and 2000 orbits.
2256
+ code of a local patch of Saturn’s rings in which particles un-
2257
+ dergo collisions with a prescribed coefficient of restitution
2258
+ ϵ depending on impact speed. The main novelty of our ap-
2259
+ proach is to employ an ϵ that is a non-monotonic function
2260
+ of impact speed, as is suggested by theoretical and experi-
2261
+ mental studies of regolith-coated particles (cf. Section 2.1).
2262
+ Below a critical impact speed we set ϵ = 0, though neglect
2263
+ particle sticking. This relatively minor change in the phys-
2264
+ ical set-up immediately introduces major thermodynamical
2265
+ changes. For the same optical depth, the rings yield two
2266
+ thermally stable steady states, a hot c ≳ 4aΩ and a cold
2267
+ c < aΩ state. Which is selected depends on the local ther-
2268
+ mal and/or dynamical history, and thus different ring radii
2269
+ might fall into one or the other.
2270
+ An obvious follow up question is to ask what happens
2271
+ at the boundaries of two adjoining different states? We run
2272
+ additional simulations in larger domains and find that in
2273
+ general the hot state will engulf the cold state, with the
2274
+ transition front moving at a speed ≈ 0.5aΩ. Slower mov-
2275
+ ing fronts break down because of the imbalance in angular
2276
+ momentum flux across the transition. Stationary ‘viscous
2277
+ fronts’ are also simulated which join states of different opti-
2278
+ cal depth and c but the same angular momentum flux. Note
2279
+ that it need not necessarily be the case that hot states always
2280
+ take over: smooth variations in the ring’s background prop-
2281
+ erties may change propagation, and large amplitude pertur-
2282
+ bations (meteoroids, density waves, gravity wakes, etc.) will
2283
+ also complicate the picture.
2284
+ Our simulation results are exploratory, and should be
2285
+ taken as a demonstration of what happens when one relaxes
2286
+ the strong modelling assumptions of previous work. They are
2287
+ perhaps not yet ready for direct application to structure for-
2288
+ mation in Saturn’s rings, not least because of the parameters
2289
+ in our regolith laws are poorly constrained. Nonetheless, it is
2290
+ irresistible to speculate. We anticipate that a thermal front,
2291
+ connecting a warm and cold state of the same dynamical
2292
+ optical depth, gives rise to photometric variation (which the
2293
+ Cassini cameras may have picked up) but no variation de-
2294
+ tectable by occultation experiments. This is precisely the sit-
2295
+ uation in the C-ring plateaus (Hedman and Nicholson 2013),
2296
+ and indeed, there is evidence of size segregation across these
2297
+ structures which may tie in to the greater chance of sticking
2298
+ in the colder phase (Marouf et al. 2013, Colwell et al. 2018).
2299
+ It may also be relevant for the 10km striations shown by
2300
+ Cassini’s cameras in the A and B-rings (cf. Figs 5A and 5B
2301
+ in Porco et al. 2005). On the other hand, the steady viscous
2302
+ fronts our simulations support, which connect states of high
2303
+ and moderate optical depth, bear some resemblance to the
2304
+ disjunct bands in the middle B-ring (Colwell et al. 2009).
2305
+ A great deal more theoretical work and modelling is needed
2306
+ before these associations can be made secure. In particu-
2307
+ lar, applications to ring regions exhibiting self-gravity wakes
2308
+ must remain tentative until we produce better constrained
2309
+ estimates on typical sticking speeds.
2310
+ Other areas of future work could explore the interplay
2311
+ between the hysteresis and self-gravity wakes, on one hand,
2312
+ and viscous overstability, on the other. For example, we
2313
+ might anticipate wakes appear only in the cold state, chang-
2314
+ ing its viscous properties, and providing energy to jump into
2315
+ the hot state. More generally wake activity will produce en-
2316
+ hanced heating and thus a change in the thermodynamic
2317
+ balances calculated in this paper. Viscous overstability gen-
2318
+ erates nonlinear travelling wavetrains which may also favour
2319
+ the cold phase; these waves will reflect off the boundaries be-
2320
+ tween states, hence complicating the nonlinear saturation of
2321
+ the wave turbulence. Simulations including realistic photom-
2322
+ etry of thermal fronts might help establish if they might cor-
2323
+ respond to any observable structure (Salo and Karjalainen
2324
+ 2003). Finally, the robustness of bistability must be estab-
2325
+ lished when particle sticking is permitted, as in recent sim-
2326
+ ulations by Ballouz et al. (2017) and Lu et al. (2018).
2327
+ © 0000 RAS, MNRAS 000, 000–000
2328
+
2329
+ 18
2330
+ Larue, Latter, Rein
2331
+ ACKNOWLEDGMENTS
2332
+ The authors thank the reviewer Heikki Salo and Juergen
2333
+ Schmidt, who generously provided a set of helpful and thor-
2334
+ ough comments that markedly improved the paper.
2335
+ DATA AVAILABILITY
2336
+ The data underlying this article will be shared on reasonable
2337
+ request to the corresponding author.
2338
+ REFERENCES
2339
+ Albers, N., Spahn, F., 2006. Icarus, 181, 292.
2340
+ Araki, S., Tremaine, S., 1986. Icarus, 65, 83.
2341
+ Ballouz, R.-L., Richardson, D. C., Morishima, R., 2017. ApJ, 153,
2342
+ 146.
2343
+ Bodrova, A., Schmidt, J., Spahn, F., Brilliantov, N., 2012. Icarus,
2344
+ 218, 60.
2345
+ Bridges, F. G., Hatzes, A., Lin, D. N. C., 1984. Nature, 309, 333.
2346
+ Bridges, F. G., Supulver, K. D., Lin, D. N. C., Knight, R., Zafra,
2347
+ M., 1996. Icarus, 123, 422.
2348
+ Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., P¨oschel, T., 1996.
2349
+ Phy. Rev. E, 53, 5382.
2350
+ Brilliantov, N. V., Albers, N., Spahn, F., P¨oschel, T., 2007. Phys.
2351
+ Rev. E, 76, id. 051302
2352
+ Brilliantov, N., Krapivsky, P. L., Bodrova, A., Spahn, F.,
2353
+ Hayakawa, H., Stadnichuk, V., Schmidt, J., 2015. PNAS, 112,
2354
+ 9536.
2355
+ Chokshi, A., Tielens, A. G. G. M., Hollenbach, D., 1993. ApJ,
2356
+ 407, 806.
2357
+ Colwell, J. E., Esposito, L. W., Sremvcevi´c, M., Stewart, G. R.,
2358
+ McClintock, W. E., 2007. Icarus, 190, 127.
2359
+ Colwell, J. E., Nicholson, P. D., Tiscareno M. S., Murray, C. D.,
2360
+ French, R. G., Marouf, E. A., 2009. In: Dougherty, M. K.,
2361
+ Esposito, L. W., Krimigis, S. M. (eds.), Saturn from Cassini-
2362
+ Huygens, Springer, Dordrecht Netherlands, p375.
2363
+ Colwell, J. E., Esposito, L. W., Cooney, J. H., 2018. Icarus, 300,
2364
+ 150.
2365
+ Cuzzi, J. N., Filacchione, G., Marouf, E. A., 2018. Planetary Ring
2366
+ Systems. Properties, Structure, and Evolution, Tiscareno, M.
2367
+ S. and Murray, C. D. Editors. Cambridge University Press,
2368
+ pp.51-92
2369
+ Daisaka, H., Tanaka, H., Ida, S., 2001. Icarus, 154, 296.
2370
+ De Swart H. E., Grasman J., 1987. Tellus A, 39, 10.
2371
+ Deau, E., 2015. Icarus, 253, 311.
2372
+ Dilley, J. P., 1993. Icarus, 105, 225.
2373
+ Doyle, L. R., Dones, L., Cuzzi, J. N., 1989. Icarus, 80, 104.
2374
+ Estrada, P. R., Durisen, R. H., Latter, H. N., 2018. Planetary
2375
+ Ring Systems. Properties, Structure, and Evolution, Edited
2376
+ by M.S. Tiscareno and C.D. Murray. Cambridge University
2377
+ Press, p. 198-224
2378
+ Gorkavyi, N.N., 1985. Soviet Astronomy Letters, 11, 28.
2379
+ Gorkavyi, N.N., 1989. Soviet Astronomy Letters, 15, 370.
2380
+ H¨ameen-Anttila, K. A., 1982. EMP, 26, 171.
2381
+ H¨ameen-Anttila, K. A., Salo, H., 1993. EMP, 62, 47.
2382
+ Hartmann, W. K., 1978. Icarus, 33, 50.
2383
+ Hartmann, W. K., 1985. Icarus, 63, 69.
2384
+ Hatzes, A. P., Bridges, F., Lin, D. N. C., Sachtjen, S, 1991. Icarus,
2385
+ 89, 113.
2386
+ Hedman, M. M., and Nicholson, P. D. 2013. AJ., 146, 12.
2387
+ Hedman, M. M., and Nicholson, P. D. 2016. Icarus, 279, 109
2388
+ Hertzsch, J.-M., 2002. PSS, 50, 745.
2389
+ Hertzsch, J.-M., Spahn, F., Brilliantov, N. V., 1995. Journal de
2390
+ Physique II, 5, 1725.
2391
+ Horn, L. J., Cuzzi, J. N., 1996. Icarus, 118, 285.
2392
+ Latter, H. N., Ogilvie, G. I., 2006. Icarus, 184, 498.
2393
+ Latter, H. N., Ogilvie, G. I., 2008. Icarus, 195, 725.
2394
+ Latter, H. N., Balbus, S., 2012. MNRAS, 424, 1977.
2395
+ Lin, D. N. C. ; Bodenheimer, P., 1981. ApJ, 248, L83.
2396
+ Longaretti, P.-Y., 1989. Icarus, 81, 51.
2397
+ Lu, Y., Ballouz, R.-L., Richardson, D. C., 2018. ApJ, 56, 129.
2398
+ Lukkari, J., 1981. Nature, 292, 433.
2399
+ Lynden-Bell, D., Pringle, J. E., 1974. MNRAS, 168, 603.
2400
+ Majda A. J., Timofeyev I., Vanden-Eijinden E., 1999. PNAS, 96,
2401
+ 14687.
2402
+ Majda A. J., Timofeyev I., Vanden-Eijinden E., 2003. J. Atmos.
2403
+ Sci., 60, 1705.
2404
+ Marouf, E. A., Wong, K. K., French, R. G., and Rappaport, N.
2405
+ J. 2013. Particle Sizes in Saturn’s Rings from Cassini Radio
2406
+ Occultations. AGU Fall Meeting Abstracts, Dec
2407
+ May, R. M., 1973. Ecology, 54, 638.
2408
+ Melnikov, V. I., 1991. Physics Reports, 209, 1.
2409
+ Morishima, R., Edgington, S. G., Spilker, L., 2012. Icarus, 221,
2410
+ 888.
2411
+ Nicholson, P. D., and 15 coauthors, 2008. Icarus, 193, 182.
2412
+ Porco, C. C. and 34 colleagues, 2005. Science, 307, 1226
2413
+ Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T.,
2414
+ 1986. Numerical Recipes: the art of scientific computing.
2415
+ Cambridge Uni. Press, New York.
2416
+ Rein, H., Tremaine, S., 2011. MNRAS, 415, 3168.
2417
+ Rein, H., Liu, S.-F., 2012. A&A, 537, A128.
2418
+ Rein, H., Latter, H. N., 2013. MNRAS, 431, 145.
2419
+ Salo, H., 1991. Icarus, 90, 254.
2420
+ Salo, H., Lukkari, J., H¨anninen, J., 1988. EMP, 43, 33.
2421
+ Salo, H., Schmidt, J., Spahn, F., 2001. Icarus, 153, 295.
2422
+ Salo, H., Karjalainen, R., 2003. Icarus, 164, 428.
2423
+ Salo, H., Schmidt, J., 2010. Icarus, 206, 390.
2424
+ Salo, H., Ohtsuki, K., Lewis, M. C., 2018. Planetary Ring Sys-
2425
+ tems. Properties, Structure, and Evolution, Edited by M.S.
2426
+ Tiscareno and C.D. Murray. Cambridge University Press, p.
2427
+ 434-493
2428
+ Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., Spahn, F.,
2429
+ 2009. In: Dougherty, M. K., Esposito, L. W., Krimigis, S. M.
2430
+ (eds.), Saturn from Cassini-Huygens, Springer, Dordrecht
2431
+ Netherlands, p413.
2432
+ Thornton, C., 1997. Journal of Applied Mechanics, 64, 383.
2433
+ Thornton, C., Ning, Z., 1998. Powder Technology, 99, 154.
2434
+ Tiscareno, M.S., and 24 coauthors, 2019. Science, 364, 6445, id.
2435
+ aau1017.
2436
+ Ward, W.R., 1981. GRL, 8, 641.
2437
+ Wisdom, J., Tremaine, S., 1988. The Astronomical Journal, 95,
2438
+ 925.
2439
+ APPENDIX A: CONVERGENCE TESTS
2440
+ We present some results showing the behaviour of a subset
2441
+ of our equilibrium solutions as the numerical parameters are
2442
+ varied. In particular, we explore their dependence on the size
2443
+ of the time-step dt and the numerical domain, showing that
2444
+ convergence is achieved when the former is sufficiently small
2445
+ and the latter sufficiently large. To simplify the study, we
2446
+ adopt a standard Bridges law for two different vcrit (yielding
2447
+ hot and warm equilibria) and also a constant ϵ = 0 (yielding
2448
+ cold equilibria. We examine very dilute cases τ = 0.1 and
2449
+ very dense cases τ = 2.5, thereby determining the numerical
2450
+ requirements at the physical ‘boundaries’ of our main set of
2451
+ results, and thus for the main results themselves.
2452
+ Our convergence results are plotted in Figs A1 and A2,
2453
+ the former showing the velocity dispersion c as a function of
2454
+ dt, the latter c as a function of box size. Time steps of 10−2
2455
+ © 0000 RAS, MNRAS 000, 000–000
2456
+
2457
+ Thermal hysteresis in rings
2458
+ 19
2459
+ 10-3
2460
+ 10-2
2461
+ 10-1
2462
+ dt
2463
+ 100
2464
+ 101
2465
+ 102
2466
+ C
2467
+ Bridges laws
2468
+ vcrit=20, = 0.1
2469
+ vcrit=20, = 2.5
2470
+ vcrit=1, = 0.1
2471
+ vcrit=1, = 2.5
2472
+ 10-4
2473
+ 10-3
2474
+ 10-2
2475
+ 10-1
2476
+ dt
2477
+ 0.4
2478
+ 0.5
2479
+ 0.6
2480
+ 0.7
2481
+ 0.8
2482
+ 0.9
2483
+ 1
2484
+ C
2485
+ = 0
2486
+ = 0.1
2487
+ = 2.5
2488
+ Figure A1. Convergence tests in time step for several set-ups
2489
+ spanning dilute and cold, dense and hot, etc.
2490
+ or less and a box size of 30 or greater appear to be sufficient
2491
+ in most cases. In our main equilibrium runs in Section 3, we
2492
+ use dt = 10−3 and a box size of 100.
2493
+ APPENDIX B: ILLUSTRATIVE TOY FRONTS
2494
+ In this appendix we calculate thermal fronts using the simple
2495
+ continuum model of Section 5.1.2 with prescribed functions
2496
+ for Λ and k. Noting the bistability at low τ, we adopt a lo-
2497
+ gistic reaction term and a linear diffusivity, which in suitable
2498
+ units take the form
2499
+ Λ = (E − EC)(E − EI)(E − EH),
2500
+ k = αE,
2501
+ where EC < EI < EH are constant parameters denoting the
2502
+ cold, intermediate, and hot states (respectively), and α is an
2503
+ additional constant. Both EC and EH are thermally stable,
2504
+ but EI is unstable. The basins of attraction of EC and EH,
2505
+ however, are controlled by their proximity to EI.
2506
+ These functional choices simplify the integrals in the nu-
2507
+ merator of (15). The integral of Λ becomes simply −(EC −
2508
+ EH)3(EC −2EI +EH)/12, and is negative when the interme-
2509
+ diate state is less than the arithmetic mean of the hot and
2510
+ cold states, EI < (EC + EH)/2, and positive otherwise. In
2511
+ other words, the front will tend to move into the cold state
2512
+ when the intermediate state is closer to the cold state, i.e.
2513
+ when its basin of attraction is smaller. Similarly, the front
2514
+ will tend to move into the hot state when EI is closer to
2515
+ EH. If the three thermal states are equidistant and k is a
2516
+ 101
2517
+ 102
2518
+ Box size
2519
+ 100
2520
+ 101
2521
+ C
2522
+ Bridges laws
2523
+ vcrit=20, = 0.1
2524
+ vcrit=20, = 2.5
2525
+ vcrit=1, = 0.1
2526
+ vcrit=1, = 2.5
2527
+ 101
2528
+ 102
2529
+ Box size
2530
+ 0.5
2531
+ 1
2532
+ 1.5
2533
+ 2
2534
+ C
2535
+ = 0
2536
+ = 0.1
2537
+ = 2.5
2538
+ Figure A2. Convergence tests in box size for several set-ups
2539
+ spanning dilute and cold, dense and hot, etc.
2540
+ constant, then c = 0 and the front profile can be expressed
2541
+ in terms of elliptic integrals.
2542
+ The second term in (15) cannot be evaluated without
2543
+ knowledge of the front profile. It nonetheless simplifies to
2544
+ −α
2545
+ � ∞
2546
+ −∞(dE/dξ)3dξ, which is clearly negative for monotonic
2547
+ front profiles. Thus the linear k law favours the front’s move-
2548
+ ment into the cold state, as discussed in Section 5.1.2.
2549
+ Finally, we numerically solved (14) using a relaxation
2550
+ method (Press et al. 1986), due to the problem’s charac-
2551
+ teristic stiffness. We plot a representative front solution in
2552
+ Fig. B1. As in Fig. 10, the front is sharp at the cold tran-
2553
+ sition, where k is small, and diffuse at the hot transition,
2554
+ where it is an order of magnitude larger.
2555
+ © 0000 RAS, MNRAS 000, 000–000
2556
+
2557
+ 20
2558
+ Larue, Latter, Rein
2559
+ -2
2560
+ -1
2561
+ 0
2562
+ 1
2563
+ 2
2564
+ 3
2565
+ 4
2566
+ 0
2567
+ 2
2568
+ 4
2569
+ 6
2570
+ 8
2571
+ 10
2572
+ 12
2573
+ E
2574
+ Figure B1. Illustrative front calculated numerically, with pa-
2575
+ rameters EC = 1, EI = 1.5, EH = 12, and α = 0.5. The front
2576
+ moves to the left into the cold state with a speed c = −12.3728.
2577
+ © 0000 RAS, MNRAS 000, 000–000
2578
+
3NE1T4oBgHgl3EQflwRz/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tFKT4oBgHgl3EQfRC0N/content/tmp_files/2301.11769v1.pdf.txt ADDED
@@ -0,0 +1,1394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11769v1 [astro-ph.EP] 27 Jan 2023
2
+ MNRAS 000, 1–13 (2023)
3
+ Preprint 30 January 2023
4
+ Compiled using MNRAS LATEX style file v3.0
5
+ Formation of polar circumstellar discs in binary star systems
6
+ Jeremy L. Smallwood,1,2★ Rebecca G. Martin2 and Stephen H. Lubow3
7
+ 1Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan
8
+ 2Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154, USA
9
+ 3Space Telescope Science Institute, Baltimore, MD 21218, USA
10
+ Accepted XXX. Received YYY; in original form ZZZ
11
+ ABSTRACT
12
+ We investigate the flow of material from highly misaligned and polar circumbinary discs that feed the formation of circumstellar
13
+ discs around each binary component. With three-dimensional hydrodynamic simulations we consider equal mass binaries with
14
+ low eccentricity. We also simulate inclined test particles and highly-misaligned circumstellar discs around one binary component
15
+ for comparison.During Kozai-Lidov (KL) cycles, the circumstellar disc structure is altered through exchangesof disc eccentricity
16
+ with disc tilt. Highly inclined circumstellar discs and test particles around individual binary components can experience very
17
+ strong KL oscillations. The continuous accretion of highly misaligned material from the circumbinary disc allows the KL
18
+ oscillations of circumstellar discs to be long-lived. In this process, the circumbinary material is continuously delivered with a
19
+ high inclination to the lower inclination circumstellar discs. We find that the simulation resolution is important for modeling
20
+ the longevity of the KL oscillations. An initially polar circumbinary disc forms nearly polar, circumstellar discs that undergo
21
+ KL cycles. The gas steams accreting onto the polar circumstellar discs vary in tilt during each binary orbital period, which
22
+ determines how much material is accreted onto the discs. The long-lived KL cycles in polar circumstellar discs may lead to the
23
+ formation of polar S-type planets in binary star systems.
24
+ Key words: binaries: general – circumstellar matter– accretion, accretion discs
25
+ 1 INTRODUCTION
26
+ The majority of stars born in dense stellar clusters are part
27
+ of binary star systems (Duquennoy & Mayor 1991; Ghez et al.
28
+ 1993; Duchêne & Kraus 2013). The observed orbital eccentrici-
29
+ ties of binaries vary with orbital separation (Raghavan et al. 2010;
30
+ Tokovinin & Kiyaeva 2016). For tight binaries, the eccentricities are
31
+ small, which implies that there has been circularization of the bi-
32
+ nary orbit caused by stellar tidal dissipation (Zahn 1977). More
33
+ widely-separated binaries have observed eccentricities ranging from
34
+ 푒b = 0.39 to 0.59, with a considerable number of highly eccentric
35
+ systems with 푒b > 0.8. The interactions of the binary with sur-
36
+ rounding gas may be responsible for the present-day observed binary
37
+ eccentricities (Goldreich & Tremaine 1980; Artymowicz et al. 1991;
38
+ Artymowicz 1992; Armitage & Natarajan 2005; Cuadra et al. 2009;
39
+ Roedig et al. 2011; Muñoz et al. 2019; Zrake et al. 2021). Circumbi-
40
+ nary discs of gas and dust are sometimes observed to be responsible
41
+ to be providing accreting material onto the binary (e.g., Alves et al.
42
+ 2019). The gas flow dynamics from the circumbinary disc onto the
43
+ binary components has significant implications for planet formation
44
+ scenarios in binary systems.
45
+ Circumbinary discs are commonly observed to be moderately to
46
+ highly misaligned to the binary orbital plane. For example, the pre-
47
+ main sequence binary KH 15D has a circumbinary disc inclined
48
+ by 5 − 16◦ (Chiang & Murray-Clay 2004; Smallwood et al. 2019;
49
+ Poon et al. 2021). The radial extent of the disc is narrow and pre-
50
+ ★ E-mail: [email protected]
51
+ sumed to be rigidly precessing to explain the unique periodic light
52
+ curve. A ∼ 60◦ inclined circumbinary disc is found around the
53
+ main-sequence binary IRS 43 (Brinch et al. 2016), along with mis-
54
+ aligned circumstellar discs around each binary component. There is
55
+ an observed misalignment of about 70◦ between the circumbinary
56
+ disc and the circumprimary disc in HD 142527 (Marino et al. 2015;
57
+ Owen & Lai 2017). Another young binary, HD 98800 BaBb, has the
58
+ only observed polar (inclined by ∼ 90◦) gaseous circumbinary disc
59
+ (Kennedy et al. 2019). The 6–10 Gyr old binary system, 99 Herculis,
60
+ has a nearly polar (about 87◦) debris ring (Kennedy et al. 2012;
61
+ Smallwood et al. 2020). Apart from binaries, stars may also form
62
+ in higher-order systems (Tokovinin 2014a,b). The circumtriple disc
63
+ around the hierarchical triple star system, GW Ori, is tilted by about
64
+ 38◦ (Bi et al. 2020; Kraus et al. 2020; Smallwood et al. 2021a).
65
+ The observations of inclined circumbinary discs have implications
66
+ on planet formation models. Observations from space and ground-
67
+ based telescopes reveal that ∼ 50 per cent of the confirmed exoplan-
68
+ ets reside in binary systems (Horch et al. 2014; Deacon et al. 2016;
69
+ Ziegler et al. 2018). For example, the binary system 훾 Cep AB hosts a
70
+ giant planet around the primary star, 훾 Cep Ab (Hatzes et al. 2003). It
71
+ is crucial to study the structure and evolution of protoplanetary discs
72
+ since these are the sites for planet formation (D’Angelo & Lissauer
73
+ 2018). A forming planet’s orbital properties are directly related to
74
+ the orientation of the protoplanetary disc. For example, the observed
75
+ young binary system XZ Tau shows both the circumprimary and
76
+ circumsecondary discs are misaligned to the binary orbital plane
77
+ (Ichikawa et al. 2021). The binary system HD 142527 shows the
78
+ presence of a misaligned inner disc around one of the stellar com-
79
+ © 2023 The Authors
80
+
81
+ 2
82
+ Smallwood et al.
83
+ ponents, presumably fed from the circumbinary disc (Price et al.
84
+ 2018b). Furthermore, IRAS 04158+2805 is a binary system where
85
+ the two circumstellar discs and the circumbinary discs have been
86
+ observed to be misaligned (Ragusa et al. 2021). Therefore, highly-
87
+ inclined circumstellar discs may give birth to planets on highly-tilted
88
+ orbits.
89
+ Due to viscous dissipation, a misaligned circumbinary disc un-
90
+ dergoes nodal precession and evolves towards either a coplanar or
91
+ polar alignment. For an initially low-inclination circumbinary disc,
92
+ the disc precesses about the angular momentum vector of the bi-
93
+ nary and eventually evolves to be coplanar to the binary orbital
94
+ plane (Facchini et al. 2013; Foucart & Lai 2014). Slightly misaligned
95
+ discs around an eccentric binary undergo tilt oscillations as they
96
+ align, due to the nonaxisymmetric potential produced by the ec-
97
+ centric binary (Smallwood et al. 2019, 2020). For highly inclined
98
+ discs around eccentric orbit binaries, the angular momentum vec-
99
+ tor of the disc precesses about the eccentricity vector of the bi-
100
+ nary (e.g. Aly et al. 2015), which leads the disc to align perpen-
101
+ dicular (i.e., polar) to the binary orbital plane (Martin & Lubow
102
+ 2017; Lubow & Martin 2018; Zanazzi & Lai 2018; Martin & Lubow
103
+ 2018; Cuello & Giuppone 2019). A massive circumbinary disc that
104
+ is undergoing polar alignment aligns to a generalized polar state
105
+ which is less than 90◦ (Zanazzi & Lai 2018; Martin & Lubow 2019;
106
+ Chen et al. 2019).
107
+ Circumbinary gas discs contain a central cavity around the bi-
108
+ nary where little material is present. The cavity size is determined
109
+ by where the tidal torque is balanced with the viscous torque
110
+ (Artymowicz & Lubow 1994; Lubow et al. 2015; Miranda & Lai
111
+ 2015; Franchini et al. 2019b; Hirsh et al. 2020; Ragusa et al. 2020).
112
+ The strength of the binary torque on the disc is dependent on
113
+ the tilt of the circumbinary disc and binary eccentricity. The
114
+ tidal torque at a given radius is zero when the circumbinary
115
+ disc is polar and the binary eccentricity approaches 푒b
116
+ = 1
117
+ (Lubow & Martin 2018) or if the disc is retrograde (e.g., Nixon et al.
118
+ 2013). In the simplest models, the production of an outward
119
+ forcing torque by the binary can prevent circumbinary material
120
+ from flowing through the cavity (Lynden-Bell & Pringle 1974;
121
+ Pringle 1991). However, material from the circumbinary disc flows
122
+ through the binary cavity in the form of gaseous streams (e.g.
123
+ Artymowicz & Lubow 1996; Günther & Kley 2002; Nixon & King
124
+ 2012; Shi et al. 2012; D’Orazio et al. 2013; Farris et al. 2014;
125
+ Muñoz et al. 2019; Alves et al. 2019). These streams are respon-
126
+ sible for forming and replenishing circumstellar discs around each
127
+ binary component. The accretion of material onto the circumstellar
128
+ discs may aid in the formation of 푆–type planets, those that orbit one
129
+ component of a binary. Accretion of material onto the central binary
130
+ may be suppressed for small disc aspect ratios.
131
+ The structure of a circumstellar disc around one star is
132
+ strongly affected by the tidal field of the binary compan-
133
+ ion
134
+ (Papaloizou & Pringle
135
+ 1977;
136
+ Artymowicz & Lubow
137
+ 1994;
138
+ Pichardo et al. 2005; Jang-Condell 2015). Circumstellar discs around
139
+ each binary component undergo tidal truncation. A circumstellar disc
140
+ in a circular orbit binary is typically truncated to about one-third to
141
+ one-half of the binary orbital separation The tidal truncation radius
142
+ is expected to decrease with increasing binary eccentricity.
143
+ Kozai-Lidov (KL) oscillations (Kozai 1962; Lidov 1962) have
144
+ been studied extensively to analyze several astronomical pro-
145
+ cesses involving bodies that orbit a member of a binary sys-
146
+ tem that begin on highly misaligned orbits. During KL os-
147
+ cillations, the object’s inclination is exchanged for eccentricity,
148
+ and vice versa. These processes include asteroids and irregular
149
+ satellites (Kozai 1962; Nesvorný et al. 2003), artificial satellites
150
+ (Lidov 1962), tidal disruption events (Chen et al. 2011), forma-
151
+ tion of Type Ia supernovae (Kushnir et al. 2013), triple star systems
152
+ (Eggleton & Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007),
153
+ planet formation with inclined stellar companions (Wu & Murray
154
+ 2003; Takeda & Rasio 2005), giant outbursts in Be/X-ray bi-
155
+ naries (Martin et al. 2014a; Martin & Franchini 2019), inclined
156
+ planetary companions (Nagasawa et al. 2008), mergers of bina-
157
+ ries in galactic nuclei (Blaes et al. 2002; Antonini & Perets 2012;
158
+ Hamers et al. 2018; Hoang et al. 2018; Fragione et al. 2019a,b), stel-
159
+ lar compact objects (Thompson 2011), and blue straggler stars
160
+ (Perets & Fabrycky 2009).
161
+ A highly misaligned initially circular disc around one compo-
162
+ nent of a binary undergoes KL cycles in which its inclination is
163
+ exchanged for eccentricity, and vice versa (Martin et al. 2014a). Due
164
+ to disc dissipation by viscosity and shocks, these oscillations are
165
+ typically significantly damped after a few oscillations. KL oscilla-
166
+ tions can occur in a fluid disc with a wide variety of disc and binary
167
+ parameters (Fu et al. 2015a). When the disc becomes eccentric, it
168
+ overflows its Roche lobe and transfers material to the companion
169
+ star (Franchini et al. 2019a). Self-gravity of a disc can suppress disc
170
+ KL oscillations if the disc is close to being gravitationally unstable
171
+ (Fu et al. 2015b). KL oscillations in a circumstellar disc may have
172
+ significant consequences for planet formation since strong shocks in
173
+ the gas are produced during high eccentricity phases (Fu et al. 2017).
174
+ A misaligned circumbinary disc may form misaligned circumstel-
175
+ lar discs around the individual binary components (e.g., Nixon et al.
176
+ 2013; Smallwood et al. 2021b). A highly misaligned disc around
177
+ one component of a binary may be unstable to the Kozai-Lidov (KL)
178
+ mechanism (Martin et al. 2014a). Smallwood et al. (2021b) simu-
179
+ lated the flow of gas originating from an initially misaligned cir-
180
+ cumbinary disc by 60◦. The misaligned gas streams that flow into the
181
+ binary cavity result in formation of highly tilted circumstellar discs
182
+ around each binary component. The inclined circumstellar discs in
183
+ turn undergo KL oscillations. However, the KL oscillations are long-
184
+ lived, due to the continuous accretion of inclined material from the
185
+ circumbinary disc. Long-lived KL cycles have important implica-
186
+ tions for planet formation in binary systems.
187
+ In this work, we extend the previous study Smallwood et al.
188
+ (2021b) and consider more highly inclined circumbinary discs. We
189
+ first revisit the dynamics of highly inclined test particle orbits around
190
+ one component of a binary in Section 2. In Section 3, we describe
191
+ the setup for our hydrodynamical simulations. In Section 4, we dis-
192
+ cuss the results of our circumprimary disc simulations. We simulate
193
+ a highly inclined circumprimary disc in a binary to explore the dy-
194
+ namics of the KL cycles. Previous studies have only dealt with cir-
195
+ cumprimary disc inclinations ≲ 60◦, while we consider higher tilts,
196
+ including a polar circumprimary disc. In Section 5, we show the re-
197
+ sults of our hydrodynamical simulations with an initial circumbinary
198
+ disc, where we consider the flow of material from discs with various
199
+ initial misalignments, including a polar circumbinary disc. Finally, a
200
+ summary is given in Section 6.
201
+ 2 KOZAI-LIDOV OSCILLATIONS OF TEST PARTICLES
202
+ Before considering discs, we consider the properties of test parti-
203
+ cle orbits that undergo KL oscillations. As a consequence of the
204
+ conservation of the component of the angular momentum that is
205
+ perpendicular to the binary orbital plane, the test particle’s inclina-
206
+ tion is recurrently exchanged for eccentricity. This conservation is
207
+ MNRAS 000, 1–13 (2023)
208
+
209
+ Formation of polar circumstellar discs
210
+ 3
211
+ Figure 1. Eccentricity (upper panel) and inclination (lower panel) evolution
212
+ of circumprimary test particles under the influence of a circular binary for
213
+ initially circular orbit particles. We vary the initial particle orbital tilt, 푖0,
214
+ beginning with 30◦ (black), 45◦ (blue), 60◦ (red), 75◦ (green), 80◦ (yellow),
215
+ 85◦ (purple), and 90◦ (pink). The initial orbital radius of the particle is set at
216
+ 푟0 = 0.06푎, where 푎 is the separation of the binary. The time is in units of
217
+ binary orbital period 푃orb.
218
+ expressed as
219
+
220
+ 1 − 푒2p cos 푖p ≈ const,
221
+ (1)
222
+ where 푖p is the particle inclination with respect to the binary orbital
223
+ plane and 푒p is the eccentricity of the test particle. A initially circular
224
+ orbit particle initially gains eccentricity while reducing its orbital tilt
225
+ (i.e. going towards alignment which means higher values of | cos 푖p|)
226
+ and then circularizes while gaining orbital tilt back to its original
227
+ inclination. For an initially circular orbit particle, KL oscillations
228
+ only occur if the initial tilt of the test particle 푖p0 satisfies cos2 푖p0 <
229
+ cos2 푖cr = 3/5 (Innanen et al. 1997), which requires that 39◦ ≲ 푖p0 ≲
230
+ 141◦. From Eq. (1), an initially circular particle orbit can achieve a
231
+ maximum eccentricity given by
232
+ 푒max =
233
+
234
+ 1 − 5
235
+ 3 cos2 푖p0.
236
+ (2)
237
+ The increase in a circular particle’s eccentricity can be quite signif-
238
+ icant. For example, if the particle’s initial orbit is tilted by 60◦, the
239
+ maximum eccentricity reached during a KL cycle is about 0.75.
240
+ For eccentric binaries, stronger effects from KL oscillations
241
+ have been found to exist (Ford et al. 2000; Lithwick & Naoz 2011;
242
+ Naoz et al. 2011, 2013a,b; Teyssandier et al. 2013; Li et al. 2014;
243
+ Liu et al. 2015). The KL oscillation period for a particle in the po-
244
+ tential of an eccentric binary is approximately given by
245
+ 휏KL
246
+ 푃b
247
+ ≈ 푀1 + 푀2
248
+ 푀2
249
+ 푃b
250
+ 푃 (1 − 푒2
251
+ b)3/2
252
+ (3)
253
+ (Holman et al. 1997; Innanen et al. 1997; Kiseleva et al. 1998),
254
+ where 푀1 and 푀2 are the masses of the primary and secondary
255
+ components of the binary, respectively, 푃 = 2휋/
256
+
257
+ 퐺푀1/푎3p is the
258
+ orbital period of the particle with semimajor axis 푎p, 푃b = 2휋/Ωb
259
+ is the orbital period of the binary, 푒b is the binary eccentricity, and
260
+ Ωb =
261
+
262
+ 퐺(푀1 + 푀2)/푎3
263
+ b is the binary orbital frequency for binary
264
+ semimajor axis 푎b.
265
+ To simulate an inclined circumprimary test particle in a binary,
266
+ we use the 푁–body integrator, MERCURY (Chambers 1999). The
267
+ test particle is orbiting the primary companion with an initial tilt
268
+ 푖0 relative to the binary orbital plane. The binary components have
269
+ equal mass so that 푀1 = 푀2 = 푀/2, where 푀 is the total mass
270
+ of the binary. Fu et al. (2015b) ran numerous test particle orbits
271
+ showing the effects the particle and binary parameters have on the
272
+ induced KL oscillations. Following their work, we model an eccentric
273
+ inclined particle around one component of an eccentric binary, more
274
+ applicable to binary systems.
275
+ We first simulate an inclined particle in a circular binary to match
276
+ previous results. Fig. 1 shows the eccentricity and inclination of a
277
+ circumprimary particle as a function of time that begins on a cir-
278
+ cular orbit. The analytic solution for these test particle orbits in the
279
+ quadrupole approximation is given in Lubow (2021). We consider
280
+ various initial tilts of the test particle orbit. The critical inclination
281
+ that the test particle orbit must have to induce KL cycles is ∼ 39◦.
282
+ Thus, a particle tilt of 30◦ (black line) does not undergo KL oscil-
283
+ lations. As the initial inclination of the particle increases, the KL
284
+ oscillations become more frequent, and the growth in the eccentric-
285
+ ity becomes more prominent (in agreement with Fig. 1 in Fu et al.
286
+ (2015b)). The trough in the inclination profile of a test particle be-
287
+ comes narrower with initial inclination. An initial particle orbit tilt
288
+ of 90◦ becomes unstable and collides with the primary star during
289
+ the first KL oscillation because the particles eccentricity exceeds
290
+ 1.0. The eccentricity of the polar particle increases almost up to its
291
+ maximum eccentricity before the tilt begins to change.
292
+ Next, we set the initial particle tilt to 60◦ around a slightly eccen-
293
+ tric binary with 푒b = 0.1, as we will consider in the disc simulations.
294
+ We model various initial test particle eccentricities ranging from 0.0
295
+ to 0.5. Figure 2 shows the eccentricity and inclination of eccentric
296
+ circumprimary particles as a function of time in binary orbital pe-
297
+ riods. An inclined circular test particle within an eccentric binary
298
+ has an increased frequency in KL oscillations when compared to a
299
+ particle orbiting one component of a circular binary, as expected by
300
+ equation (3). From Figure 2, when the particle eccentricity is in-
301
+ creased, the maximum eccentricity reached during a KL oscillation
302
+ also increases. However, the difference between the initial eccentric-
303
+ ity to the maximum eccentricity of the particle decreases as the initial
304
+ particle eccentricity increases.
305
+ Lastly, we examine the KL mechanism for a nearly polar particle.
306
+ From Fig. 1, an initially circular orbit particle with an initial orbital
307
+ tilt of 85◦ is unstable to KL oscillations but is otherwise stable.
308
+ We consider a nearly polar orbit particle with an initial orbital tilt
309
+ 푖0 = 85◦ around a binary with eccentricity 푒b = 0.1. In Fig. 3 we
310
+ show the particle eccentricity and inclination as a function of time
311
+ in binary orbital periods. The various lines correspond to different
312
+ initial particle eccentricities ranging from 0.0 to 0.5. For all values
313
+ of the initial particle eccentricity we consider, the particle proceeds
314
+ through KL cycles in a periodic fashion. Unlike the particle beginning
315
+ at a tilt of 60◦, a nearly polar particle exhibits similar maximum
316
+ eccentricity close to unity during a KL oscillation regardless of initial
317
+ particle eccentricity. The minimum inclination reached during each
318
+ KL oscillation is roughly independent of particle initial eccentricity.
319
+ MNRAS 000, 1–13 (2023)
320
+
321
+ 100.8
322
+ 0.6
323
+ 0.4
324
+ 0.2
325
+ 0
326
+ 80
327
+ 60
328
+ 40
329
+ 0
330
+ 100
331
+ 200
332
+ 300
333
+ 400
334
+ 50
335
+ t/Porb4
336
+ Smallwood et al.
337
+ Figure 2. Eccentricity (upper panel) and inclination (lower panel) evolution
338
+ of circumprimary test particles under the influence of binary with eccentricity
339
+ 푒b = 0.1. The initial tilt of the particle orbit is set to 60◦. We vary the initial
340
+ particle eccentricity 푒0 beginning with 푒0 = 0 (black), 0.1 (blue), 0.2 (red),
341
+ 0.3 (green), 0.4 (yellow), 0.5 (purple). The initial orbital radius of the particle
342
+ is set at 푟0 = 0.06푎, where 푎 is the separation of the binary. The time is in
343
+ units of binary orbital period 푃orb.
344
+ 3 HYDRODYNAMICAL-SIMULATION SETUP
345
+ We use the smoothed particle hydrodynamics (SPH) code phantom
346
+ (Price et al. 2018a) to model gaseous circumbinary and circumstellar
347
+ discs. phantom has been tested extensively for modeling misaligned
348
+ circumbinary discs (Nixon 2012; Nixon et al. 2013; Nixon & Lubow
349
+ 2015; Facchini et al. 2018; Smallwood et al. 2019; Poblete et al.
350
+ 2019; Smallwood et al. 2020; Aly & Lodato 2020; Hirsh et al. 2020;
351
+ Smallwood et al. 2021b), as well as misaligned circumstellar discs
352
+ around individual binary components (e.g. Martin et al. 2014b;
353
+ Doğan et al. 2015; Franchini et al. 2020). The suite of simulations
354
+ is summarised in Table 1. In this section we describe the setup for
355
+ the binary star, circumprimary disc, and circumbinary disc in further
356
+ detail.
357
+ 3.1 Binary star setup
358
+ We model the binary star system as a pair of sink particles, with an
359
+ initial binary separation 푎. The binary is not static but rather evolves
360
+ freely in time. Each sink particle is given an initial mass with 푀1
361
+ being the primary mass and 푀2 being the secondary mass. The total
362
+ binary mass is thereby 푀 = 푀1 + 푀2. All of our simulations assume
363
+ an equal-mass binary (푀1 = 푀2). In Cartesian coordinates, the orbit
364
+ of the binary lies in the 푥-푦 plane initially. The binary begins ini-
365
+ tially at apastron along the 푥-axis. The massive sink particles have
366
+ a hard accretion boundary, meaning that when particles penetrate
367
+ the sink accretion radius, the particle’s mass and angular momentum
368
+ are deposited onto the star (e.g., Bate et al. 1995). A large accretion
369
+ radius is often used to reduce the computation time significantly by
370
+ neglecting to resolve close-in particle orbits. In this work, however,
371
+ we are interested in resolving the formation and evolution of the cir-
372
+ Figure 3. Same as Fig. 2 but for nearly polar test particles with an initial
373
+ orbital tilt 푖0 = 85◦.
374
+ cumstellar material. Therefore, we adopt a relatively small accretion
375
+ radius of 0.05푎 for simulations that begin with a circumbinary disc
376
+ and an accretion radius of 0.025푎 for simulations that begin with
377
+ a circumprimary disc. Using a smaller accretion radius for the cir-
378
+ cumprimary disc simulations ensures that the disc lifetime is longer,
379
+ along with higher disc resolution. The more eccentric the binary,
380
+ the smaller the outer truncation radius for the circumstellar discs
381
+ (Artymowicz & Lubow 1994). Having a small binary eccentricity
382
+ helps with the resolution of the circumstellar discs. On the other
383
+ hand, to have a stable polar circumbinary disc, the binary eccentric-
384
+ ity needs to be a non-zero value. The initial binary eccentricity is set
385
+ to 푒b = 0.1, with the binary eccentricity vector along the positive
386
+ 푥–axis. With this value of binary eccentricity, the critical tilt of the
387
+ circumbinary disc to remain nearly polar is ∼ 77◦ (see eq. 33 in
388
+ Martin & Lubow 2019).
389
+ 3.2 Circumprimary disc setup
390
+ To model a circumprimary disc, we follow the methods of
391
+ Martin et al. (2014b). Runs 1-5 in Table 1 simulate initially a circum-
392
+ primary disc. The inner and outer disc radii are set at 푟in = 0.025푎
393
+ and 푟out = 0.25푎, respectively, with a initial total disc mass
394
+ 푀CPD = 10−3푀. The circumprimary disc consists of 750, 000 equal-
395
+ mass Lagrangian particles. We neglect any effects of self-gravity. The
396
+ disc surface density profile is initially a power law distribution given
397
+ by
398
+ Σ(푟) = Σ0
399
+ � 푟
400
+ 푟in
401
+ �−푝
402
+ ,
403
+ (4)
404
+ where we set 푝 = 3/2. We adopt a locally isothermal disc with
405
+ sound speed 푐s ∝ 푅−3/4, 퐻/푟 = 0.035 at 푟 = 푟in, and 퐻/푟 = 0.02
406
+ at 푟 = 푟out. With this prescription, the viscosity parameter 훼 and
407
+ ⟨ℎ⟩/퐻 are effectively constant over the radial extend of the disc
408
+ (Lodato & Pringle 2007). For the circumprimary disc simulations,
409
+ we take the Shakura & Sunyaev (1973) 훼 parameter to be 0.01. To
410
+ MNRAS 000, 1–13 (2023)
411
+
412
+ 0.8
413
+ 0.6
414
+ 0.4
415
+ 0.2
416
+ 0
417
+ 90
418
+ 80
419
+ 70
420
+ 60
421
+ 50
422
+ 40
423
+ 30
424
+ 0
425
+ 20
426
+ 40
427
+ 60
428
+ 80
429
+ 10
430
+ t/Porb10.8
431
+ 0.6
432
+ 0.4
433
+ 0.2
434
+ 0
435
+ 60
436
+ 50
437
+ 40
438
+ 30
439
+ 0
440
+ 20
441
+ 40
442
+ 60
443
+ 80
444
+ 10
445
+ t/Porb0Formation of polar circumstellar discs
446
+ 5
447
+ Table 1. The setup of the SPH simulations that includes an initial circumprimary disc (CPD) or circumbinary disc (CBD). The table lists the initial parameters
448
+ beginning with the disc tilt 푖0, inner disc radius 푟in, outer disc radius 푟out, 훼 viscosity parameter, disc aspect ratio at inner disc radius 퐻/푟in, disc aspect ratio at
449
+ outer disc radius 퐻/푟out, the number of particles, and whether or not the circumstellar discs undergo the Kozai-Lidov (KL) instability.
450
+ Model
451
+ Disc Setup
452
+ 푖0/◦
453
+ 푟in/푎
454
+ 푟out/푎
455
+
456
+ 퐻/푟in
457
+ 퐻/푟out
458
+ # Particles
459
+ KL unstable?
460
+ run1
461
+ CPD
462
+ 60
463
+ 0.025
464
+ 0.25
465
+ 0.01
466
+ 0.035
467
+ 0.02
468
+ 750, 000
469
+ Yes
470
+ run2
471
+ CPD
472
+ 70
473
+ 0.025
474
+ 0.25
475
+ 0.01
476
+ 0.035
477
+ 0.02
478
+ 750, 000
479
+ Yes
480
+ run3
481
+ CPD
482
+ 80
483
+ 0.025
484
+ 0.25
485
+ 0.01
486
+ 0.035
487
+ 0.02
488
+ 750, 000
489
+ Yes
490
+ run4
491
+ CPD
492
+ 90
493
+ 0.025
494
+ 0.25
495
+ 0.01
496
+ 0.035
497
+ 0.02
498
+ 750, 000
499
+ Yes
500
+ run5
501
+ CPD
502
+ 100
503
+ 0.025
504
+ 0.25
505
+ 0.01
506
+ 0.035
507
+ 0.02
508
+ 750, 000
509
+ Yes
510
+ run6∗
511
+ CBD
512
+ 60
513
+ 1.6
514
+ 2.6
515
+ 0.1
516
+ 0.1
517
+ 0.088
518
+ 1.5 × 106
519
+ Yes
520
+ run7
521
+ CBD
522
+ 60
523
+ 1.6
524
+ 2.6
525
+ 0.1
526
+ 0.1
527
+ 0.088
528
+ 750, 000
529
+ Yes
530
+ run8
531
+ CBD
532
+ 90
533
+ 1.6
534
+ 2.6
535
+ 0.1
536
+ 0.1
537
+ 0.088
538
+ 1.5 × 106
539
+ Yes
540
+ ∗ Simulation from Smallwood et al. (2021b)
541
+ accomplish this, the SPH artificial viscosity coefficients are set as
542
+ 훼AV = 0.18 and 훽AV = 2.0. The disc is resolved with shell-averaged
543
+ smoothing length per scale height ⟨ℎ⟩/퐻 ≈ 0.55.
544
+ 3.3 Circumbinary disc setup
545
+ To model an initially flat but tilted gaseous circumbinary disc, we
546
+ follow the methods of Smallwood et al. (2021b). Runs 6, 7, and 8
547
+ in Table 1 describe the simulations of a circumbinary disc. The disc
548
+ initially consists of 1.5 × 106 equal-mass Lagrangian SPH particles.
549
+ We also model a 750, 000 particle simulation for a resolution study.
550
+ The simulations run for 45 푃orb, where 푃orb is the orbital period of
551
+ the binary. This is sufficient time for the forming circumstellar discs
552
+ to reach a quasi-steady state. We simulate initially highly misaligned
553
+ disc inclinations of 푖0 = 60◦, 90◦. A disc with 푖0 = 90◦ is in a polar
554
+ configuration, where the angular momentum vector of the disc is
555
+ aligned to the eccentricity vector of the binary. At the beginning
556
+ of our simulations, we select an initial inner disc radius, 푟in, and
557
+ outer disc radius, 푟out, where the initial total disc mass, 푀CBD, is
558
+ confined. All of the simulations model a low-mass circumbinary disc
559
+ such that 푀CBD = 10−3푀. We choose the circumbinary disc to be
560
+ radially very narrow and close to the binary orbit. This is done to
561
+ maximise the accretion rate onto the binary and hence the resolution
562
+ of the circumstellar discs (e.g., Smallwood et al. 2021b). For our
563
+ simulations, we take 푟in = 1.6푎 and 푟out = 2.6푎. The tidal torque
564
+ is weaker at a given radius for a more highly misaligned disc which
565
+ allows the inner disc radius to lie closer to the binary than a coplanar
566
+ disc (e.g., Lubow et al. 2015; Miranda & Lai 2015; Lubow & Martin
567
+ 2018). The inner truncation radius of a polar circumbinary disc is
568
+ around 1.6 푎 (Franchini et al. 2019b), much smaller than the 2 − 3 푎
569
+ expected for coplanar discs (Artymowicz & Lubow 1994).
570
+ The disc surface density profile follows from Equation (4). The
571
+ physical disc viscosity is incorporated by using artificial viscosity
572
+ 훼av, which is detailed in Lodato & Price (2010). By using our sur-
573
+ face density profile and a disc aspect ratio 퐻/푟 = 0.1 at 푟in, the
574
+ shell-averaged smoothing length per scale height ⟨ℎ⟩/퐻 and the disc
575
+ viscosity parameter 훼 are constant over the radial extent of the disc
576
+ (Lodato & Pringle 2007). The circumbinary disc is initially resolved
577
+ with ⟨ℎ⟩/퐻 ≈ 0.11. The parameters for the simulations require a
578
+ high viscosity in order to maximize the accretion rate on to the
579
+ circumstellar discs and provide better resolution. We consider a
580
+ relatively high value for the Shakura & Sunyaev (1973) 훼SS of 0.1.
581
+ In a more realistic system, the disc viscosity may be lower.
582
+ In order to more accurately simulate the formation and develop-
583
+ ment of circumstellar discs, we adopt the locally isothermal equation
584
+ of state of Farris et al. (2014) and set the sound speed 푐s to be
585
+ 푐s = F 푐s0
586
+
587
+
588
+ 푀1 + 푀2
589
+ �푞 � 푀1
590
+ 푟1
591
+ + 푀2
592
+ 푟2
593
+ �푞
594
+ ,
595
+ (5)
596
+ where 푟1 and 푟2 are the radial distances from the primary and sec-
597
+ ondary stars, respectively, and 푐s0 is a constant with dimensions of
598
+ velocity. 푞 is set to 3/4. F is a dimensionless function of position
599
+ that we define below. This sound speed prescription guarantees that
600
+ the temperature profiles in the circumprimary and circumsecondary
601
+ discs are set by the primary and secondary stars, respectively. For
602
+ 푟1, 푟2 ≫ 푎, 푐s is set by the distance from the binary centre of mass.
603
+ To increase the resolution of the circumstellar discs, we include a
604
+ function F in Equation (5) as detailed in Smallwood et al. (2021b).
605
+ The purpose of F is to modify the sound speed around each binary
606
+ component so that the viscous timescale is longer. This increases
607
+ the mass (and hence the resolution) in the steady-state circumstellar
608
+ discs. We take
609
+ F =
610
+ �√
611
+ 0.001,
612
+ if 푟1 or 푟2 < 푟c,
613
+ 1,
614
+ otherwise,
615
+ (6)
616
+ where 푟c is the cutoff radius. We set a cutoff radius of 푟c = 0.35푎
617
+ from each binary component (e.g., Smallwood et al. 2021b). Using
618
+ the prescription mentioned above ensures that the disc aspect ratio
619
+ of the circumstellar discs at radius 푟 = 0.1푎 is 퐻/푟 ∼ 0.01, which
620
+ is one-tenth of the disc aspect ratio at the initial inner circumbinary
621
+ disc radius.
622
+ 3.4 Analysis routine
623
+ We analyse the disc and binary parameters as a function of time. The
624
+ parameters include tilt, eccentricity, the longitude of the ascending
625
+ node, mass, and mass accretion rate. To probe the circumprimary
626
+ disc simulations, we average over particles in the radial range from
627
+ 0.025푎 to a distance of 0.30푎. For the circumbinary disc simulations,
628
+ we average over particles in the radial range from 1.4푎 to a distance
629
+ of 10푎. For the forming circumstellar discs, we average over all
630
+ particles bound to each binary component (i.e., the specific energies,
631
+ kinetic plus potential, of the particles are negative, neglecting the
632
+ thermal energy). The tilt, 푖, is defined as the angle between the initial
633
+ angular momentum vector of the binary (the 푧-axis) and the angular
634
+ momentum vector of the disc. The longitude of the ascending node,
635
+ 휙, is measured relative to the 푥-axis (the initial binary eccentricity
636
+ vector).
637
+ MNRAS 000, 1–13 (2023)
638
+
639
+ 6
640
+ Smallwood et al.
641
+ 20
642
+ 40
643
+ 60
644
+ 80
645
+ 100
646
+ 120
647
+ 0
648
+ 0.5
649
+ 1
650
+ -100
651
+ 0
652
+ 100
653
+ 0
654
+ 0.5
655
+ 1
656
+ 0
657
+ 5
658
+ 10
659
+ 15
660
+ 10-5
661
+ 2
662
+ 3
663
+ 4
664
+ 5
665
+ Panel 1
666
+ Figure 4. Evolution of a KL unstable circumprimary disc as a function of time
667
+ in units of the binary orbital period 푃orb. We simulate five different initial disc
668
+ inclinations, which are 60◦ (run1 from Table 1, black), 70◦ (run2, blue), 80◦
669
+ (run3, red), 90◦ (run4, green), and 100◦ (run5, yellow). The disc parameters
670
+ are tilt 푖 (panel 1), eccentricity 푒 (panel 2), longitude of the ascending node
671
+ 휙 (panel 3), and disc mass 푀d (panel 4). The mass accretion rate �푀 onto the
672
+ primary star is shown in panel 5.
673
+ 4 HYDRODYNAMICAL RESULTS WITH A
674
+ CIRCUMPRIMARY DISC
675
+ This section considers the evolution of a circumprimary disc in the
676
+ absence of accretion from a circumbinary disc. This enables us to
677
+ disentangle the effect of accretion onto the circumstellar discs. We
678
+ focus on large circumprimary disc misalignments in an eccentric
679
+ binary star system. We consider five different initial disc tilts, 60◦
680
+ (run1 from Table 1), 70◦ (run2), 80◦ (run3), 90◦ (run4), and 100◦
681
+ (run5). Figure 4 shows the disc tilt, eccentricity, the longitude of
682
+ the ascending node, the mass of the circumprimary disc, and the
683
+ accretion rate onto the primary star as a function of time in binary
684
+ orbital periods. The disc exhibits KL cycles for each initial tilt, where
685
+ the disc eccentricity and inclination are exchanged. For a disc with
686
+ an initial tilt of 60◦, Martin et al. (2014a) found that the first KL
687
+ oscillation occurred around 10 Porb for a circular binary. In our case,
688
+ the disc with the same initial tilt undergoes the first KL oscillation
689
+ much sooner due to the binary having a slightly eccentric orbit (see
690
+ Fig.12 in Fu et al. 2015a). Due to viscous dissipation and the lack
691
+ of circumbinary material, the KL oscillations damp quickly in time.
692
+ For higher initial inclinations, 70◦, 88◦, 90◦ and 100◦, the discs do
693
+ not survive after one KL oscillation for our given sink size. The
694
+ x-z plane t = 0 Porb
695
+ 0.2a
696
+ y-z plane t = 0 Porb
697
+ 0.2a
698
+ x-z plane t = 10 Porb
699
+ 0.2a
700
+ y-z plane t = 10 Porb
701
+ 0.2a
702
+ x-z plane t = 15 Porb
703
+ 0.2a
704
+ y-z plane t = 15 Porb
705
+ 0.2a
706
+ Figure 5. The evolution of polar circumprimary disc (run4 from Table 1).
707
+ The white circles denote the eccentric orbit binary components with an initial
708
+ binary separation of 푎. The top row shows the initial disc setup. The middle
709
+ and bottom rows show the disc evolution at 푡 = 10 푃orb and 푡 = 15 푃orb,
710
+ respectively, where 푃orb is the binary orbital period. The color denotes the
711
+ gas surface density, with the orange regions being about three orders of mag-
712
+ nitude larger than the purple regions. The left column shows the 푥–푧 plane,
713
+ and the right column shows the 푦–푧 plane. At 푡 = 10 푃orb, the circumpri-
714
+ mary disc is highly eccentric due to the Kozai-Lidov instability. Also, at this
715
+ time, a circumsecondary disc is being formed from material flowing close to
716
+ the secondary binary component from the eccentric circumprimary disc. At
717
+ 푡 = 15 푃orb, the circumprimary disc has completely dissipated from being
718
+ accreted onto the primary star and transferring material to the secondary star.
719
+ At this time, there is more material in the newly formed circumsecondary
720
+ disc.
721
+ discs become very eccentric, which leads to the majority of the disc
722
+ material being accreted by the primary star. Increasing the resolution
723
+ of these simulations does not lengthen the disc lifetime. However,
724
+ if we were to use a smaller sink size, then the disc could survive
725
+ through the KL oscillations. A smaller sink size would ensure that
726
+ a larger portion of the disc could survive. An accretion radius of
727
+ ∼ 0.01 au is comparable to the size of the star, but we simulate
728
+ a larger sink size for computational reasons and to compare with
729
+ the circumbinary disc simulations detailed in the next Section. The
730
+ initially polar disc’s tilt does not change much from polar before the
731
+ majority of the disc is accreted. This is likely a consequence of the
732
+ high disc eccentricities that are developed which is consistent with
733
+ the results for test particle orbits (see Fig. 1). In the retrograde case,
734
+ MNRAS 000, 1–13 (2023)
735
+
736
+ Formation of polar circumstellar discs
737
+ 7
738
+ 60
739
+ 70
740
+ 80
741
+ 0
742
+ 0.2
743
+ 0.4
744
+ 0.6
745
+ -100
746
+ 0
747
+ 100
748
+ 10-6
749
+ 10-4
750
+ 10
751
+ 20
752
+ 30
753
+ 40
754
+ 10-6
755
+ 10-4
756
+ 2
757
+ 3
758
+ 4
759
+ 5
760
+ Panel 1
761
+ Figure 6. Resolution study for a circumbinary disc that is initially misaligned
762
+ by 60◦. The blue curves represent the simulation with initially 1.5 × 106
763
+ particles in the circumbinary disc, while the red curves denotes the simulation
764
+ with initially 750, 000 particles. The first four panels show the disc parameters
765
+ for the newly forming circumprimary disc as a function of time in units of the
766
+ binary orbital period, 푃orb. The disc parameters are tilt 푖 (panel 1), eccentricity
767
+ 푒 (panel 2), longitude of the ascending node 휙 (panel 3), and disc mass 푀d
768
+ (panel 4). The black dotted curve in the third panel denotes the circumbinary
769
+ disc. The lower panel shows the mass accretion rate onto the primary star
770
+ �푀pri (panel 5).
771
+ 푖0 = 100◦, as the disc eccentricity increases, the inclination also
772
+ increases, opposite to the prograde cases.
773
+ Highly inclined particle orbits experience a large (nearly 180◦)
774
+ shift in 휙 within a small time interval centered about the eccentricity
775
+ maximum (see the plot for Ω(푡) in Figure 1 of Lubow (2021)). This
776
+ large shift does not appear in Figure 4 or in any of our other phase
777
+ results. We are not sure why this is the case. Perhaps the disc is
778
+ unable to respond to such a large shift within a short time.
779
+ We further examine the evolution of the polar (푖0 = 90◦) circumpri-
780
+ mary disc. In Fig. 5, we show the polar circumprimary disc structure
781
+ at three different times, 푡 = 0 푃orb, 10 푃orb, and 15 푃orb. Initially, the
782
+ polar disc around the primary star (left white dot) is edge-on in the
783
+ 푥-푧 plane and face-on 푦-푧 plane. At 푡 = 10 푃orb, the disc is at peak ec-
784
+ centricity growth from the KL instability. Also, at this time, streams
785
+ of material from the circumprimary disc flow around the secondary
786
+ star (right white dot) and begin forming a circumsecondary disc. At
787
+ 푡 = 15 푃orb, the circumprimary disc has dissipated due to accretion
788
+ onto the primary star and transporting material to the circumsec-
789
+ ondary disc. The newly formed circumsecondary disc is at a lower
790
+ tilt, below the threshold, to induce the KL cycles.
791
+ 5 HYDRODYNAMICAL RESULTS WITH A
792
+ CIRCUMBINARY DISC
793
+ In this section we examine how misaligned and polar circumbinary
794
+ material flows through the binary cavity and forms circumstellar
795
+ discs around each binary component. We first conduct a resolution
796
+ study of our earlier work from Smallwood et al. (2021b), modeling
797
+ an initially 60◦ misaligned circumbinary disc. We then focus on the
798
+ polar circumbinary disc case.
799
+ 5.1 Resolution Study
800
+ We examine a circumbinary disc with an initial misalignment of
801
+ 푖0 = 60◦ with two different initial numbers of particles, 1.5 × 106
802
+ (run6) and 750, 000 (run7). The upper four panels in Figure 6 show
803
+ the circumprimary disc parameters as a function of time. The bot-
804
+ tom panel shows the mass accretion rate onto the primary star. The
805
+ blue curves represent the 1.5 × 106 particle simulation, while the red
806
+ curves represent the 750, 000 particle simulation. Panels 1 and 2 show
807
+ the evolution of disc eccentricity and inclination where the forming
808
+ circumprimary disc undergoes KL oscillations from the continuous
809
+ accretion of material from the circumbinary disc. The oscillations
810
+ damp in time at both resolutions, with the lower resolution simu-
811
+ lation damping more quickly. Therefore, the oscillations are likely
812
+ limited by resolution. If the accretion timescale is long compared
813
+ to the KL timescale, we expect the KL oscillations to damp over
814
+ time, similar to the circumprimary disc simulations without accre-
815
+ tion shown in the previous Section. If the accretion timescale is short
816
+ compared to the KL timescale, there should be no KL oscillations
817
+ present. In this case, the material moves through the disc faster than
818
+ it becomes unstable to KL oscillations. We expect the optimal oscil-
819
+ lations when the timescales are comparable because the disc refills
820
+ mass on the timescale that the oscillations take place. For the simula-
821
+ tion with a 60◦ tilted circumbinary disc, the accretion timescales for
822
+ the primary and secondary are ∼ 1.5 Porb, whereas the KL timescale
823
+ for this simulation is ∼ 5 Porb. The simulation is in the regime where
824
+ the accretion timescale is shorter than the KL oscillation timescale
825
+ because when the disc becomes eccentric during the KL oscillations,
826
+ a large amount of disc material is accreted, reducing the accretion
827
+ timescale. However, the accretion timescale is dependent on the disc
828
+ viscosity. In our hydrodynamical simulations, we use an artificial
829
+ viscosity to model an expected Shakura & Sunyaev (1973) viscos-
830
+ ity coefficient. The number of Lagrangian particles determines how
831
+ close the artificial viscosity is to the actual value. Thus, the 훼 is
832
+ artificially higher at lower resolutions, leading to a shorter accre-
833
+ tion timescale. For our higher-resolution simulation, the 훼 is lower,
834
+ leading to a longer accretion timescale.
835
+ Panel 3 in Fig. 6 shows the longitude of the ascending node as
836
+ a function of time. The precession rate of the circumprimary disc
837
+ is only slightly faster than the circumbinary disc on average. In the
838
+ absence of the effects of KL oscillations, the nodal precession rate
839
+ of the primary disc, assuming constant surface density Σ out to disc
840
+ radius 푟 from the primary, is given by
841
+ 휔pr = − 15푀2푟3
842
+ 32푀1푎3
843
+ b
844
+ cos (푖) Ω(푟),
845
+ (7)
846
+ where 푖 is inclination angle of the primary disc relative to the binary
847
+ orbital plane and Ω =
848
+
849
+ 퐺푀1/푟3 is the angular velocity in the disc
850
+ MNRAS 000, 1–13 (2023)
851
+
852
+ 8
853
+ Smallwood et al.
854
+ x-z plane t = 0 Porb
855
+ a
856
+ y-z plane t = 0 Porb
857
+ a
858
+ x-z plane t = 25 Porb
859
+ a
860
+ y-z plane t = 25 Porb
861
+ a
862
+ Figure 7. The formation of polar circumstellar discs from an initially low-
863
+ mass polar circumbinary disc (run8). The white circles denote the eccentric
864
+ orbit binary components with an initial binary separation of 푎. The upper
865
+ panels denote the initial disc setup, while the bottom panels show the disc
866
+ evolution at 푡 = 25 푃orb, where 푃orb is the binary orbital period. At this time,
867
+ nearly polar circumstellar discs are forming around each binary component.
868
+ The color denotes the gas density using a weighted density interpolation,
869
+ which gives a mass-weighted line of sight average. The yellow regions are
870
+ about three orders of magnitude larger than the purple. The left column shows
871
+ the 푥–푧 plane, and the right column shows the 푦–푧 plane.
872
+ (Larwood et al. 1996). With 푟 = 0.35 푎b, we find 휔pr = 6◦/푃orb
873
+ with a revolution period of ∼ 56 Porb. Therefore, the circumstellar
874
+ discs should have nodally precessed 75 per cent of a revolution in
875
+ 45 Porb. In panel 3 we see that the circumstellar discs have only
876
+ completed roughly 30 per cent of a nodal revolution. It is possible
877
+ that the circumprimary phase is affected by the phase of accreted
878
+ gas from the circumbinary disc that undergoes relatively slow nodal
879
+ precession. As discussed in Section 4, KL oscillations modify the
880
+ nodal precession rate of a test particle in a way that we do not
881
+ see in the disc simulations. Lastly, the mass in the circumprimary
882
+ discs oscillates in time, with the troughs corresponding with each
883
+ high eccentricity period. During each high eccentricity phase, the
884
+ accretion rate peaks as seen in panel 5.
885
+ 5.2 Polar discs
886
+ In this section, we present a hydrodynamical simulation of the flow of
887
+ material from a polar circumbinary disc onto the binary components
888
+ (run8). The top row of Fig. 7 shows the initial configuration of
889
+ the polar circumbinary disc around an eccentric binary. The bottom
890
+ row shows the disc structure at 푡 = 25 푃orb. The circumbinary disc
891
+ remains nearly polar (∼ 90◦) as shown in the 푥-푧 plane. Material flows
892
+ from the polar circumbinary disc and forms nearly polar circumstellar
893
+ discs around each binary component. The cavity size is smaller in
894
+ the polar disc compared to a coplanar disc simulation as expected
895
+ (Lubow et al. 2015; Miranda & Lai 2015).
896
+ The upper four panels in Fig. 8 show the inclination, eccentricity,
897
+ the longitude of the ascending node, and disc mass for the three
898
+ 60
899
+ 80
900
+ 100
901
+ 120
902
+ 0
903
+ 0.2
904
+ 0.4
905
+ 0.6
906
+ -100
907
+ 0
908
+ 100
909
+ 10-6
910
+ 10-4
911
+ 10-2
912
+ 10
913
+ 20
914
+ 30
915
+ 40
916
+ 10-4
917
+ 2
918
+ 3
919
+ 4
920
+ 5
921
+ Panel 1
922
+ Figure 8. Simulation results for run8 for an initially polar circumbinary disc.
923
+ The disc parameters are shown for the circumprimary, circumsecondary, and
924
+ circumbinary discs as a function of time in units of the binary orbital period,
925
+ 푃orb. The upper four panels show the disc tilt 푖 (panel 1), eccentricity 푒 (panel
926
+ 2), longitude of the ascending node 휙 (panel 3), and disc mass 푀d (panel 4)
927
+ for the three discs. The lower panel shows the mass accretion rate onto the
928
+ sinks �푀 (panel 5).
929
+ discs as a function of time in binary orbital periods. The lower panel
930
+ shows the mass accretion rate onto the sinks. The circumstellar discs
931
+ form at a time of ∼ 10 Porb, later than in the simulation with a lower
932
+ level of circumbinary disc misalignment. The circumbinary disc tilt
933
+ evolves in time. Since we model a disc with a non-zero mass, it
934
+ will align to a generalised polar state with an inclination that is <
935
+ 90◦ (e.g., Martin & Lubow 2019; Chen et al. 2019). In this case, the
936
+ circumstellar discs form slightly retrograde, with a tilt just above 90◦.
937
+ The primary and secondary discs form with an eccentricity of ∼ 0.25.
938
+ However, the polar circumstellar discs undergo the KL instability,
939
+ which forces the disc eccentricity and tilt to oscillate in time. Looking
940
+ at panels 1 and 2, we see that as the disc eccentricity increases, the
941
+ disc tilt also increases, the opposite of the conventional KL case
942
+ involving prograde orbits. However, this result is consistent with the
943
+ KL mechanism for retrograde orbits. Panel 3 shows the evolution of
944
+ the longitude of the ascending node in time. Since the circumprimary
945
+ and circumsecondary discs are nearly polar, they exhibit very little
946
+ precession (see equation 7 and discussion below it). The mass of the
947
+ polar circumstellar discs oscillates in time (panel 4), likely due to
948
+ the oscillating disc eccentricity. The polar circumbinary disc has lost
949
+ ∼ 25 per cent of its initial mass.
950
+ MNRAS 000, 1–13 (2023)
951
+
952
+ 0Formation of polar circumstellar discs
953
+ 9
954
+ a
955
+ Figure 9. Edge-on view (푥–푧 plane) of a polar circumbinary disc (run8) at
956
+ a time 푡 = 5 푃orb. We ignore the main portions of the disc confined within
957
+ 푟 < 0.45푎b, where 푎b is the separation of the binary. The binary components
958
+ are shown as the green dots. The colours denote the disc surface density,
959
+ with the orange regions being about three orders of magnitude larger than the
960
+ purple regions. We overlay the velocity vectors shown by the black arrows.
961
+ The length of the arrow is proportional to the velocities of the particles. We
962
+ see two asymmetric lobes of material that are produced by the binary. Several
963
+ of the velocity vectors are directed away from the plane of the circumbinary
964
+ disc; however, the material then falls back onto the disc gap.
965
+ The KL oscillations from Fig. 8 damp in time. However, from our
966
+ resolution study, the damping is primarily due to the initial number of
967
+ particles. The accretion timescale for this simulation is ∼ 15 Porb, and
968
+ the KL timescale in this case is ∼ 10 Porb. The accretion timescale
969
+ is longer in the polar simulation than in the 60◦ simulation because
970
+ the polar circumstellar discs become less eccentric during each KL
971
+ cycle, accreting less disc material. For a higher resolution, we expect
972
+ the KL oscillations to be long-lived even for polar circumstellar discs.
973
+ On the bottom-left panel in Fig. 7, we see that some material is
974
+ flung out of the disc plane on both sides of the polar circumbinary
975
+ disc. This material forms two lobes on both sides of the disc. Figure 9
976
+ shows the edge-on view of the disc surface density, along with the
977
+ velocity vectors. The material is being flung outwards but remains
978
+ bound to the binary. Therefore, the material then falls back into the
979
+ gap region of the circumbinary disc. Throughout the simulation, the
980
+ material is periodically flung out every 0.5 푃orb when the binary
981
+ components pass through the polar circumbinary disc plane.
982
+ We further examine the flow of polar circumbinary material onto
983
+ the forming circumstellar discs. First, we investigate the tilt of the
984
+ gaseous streams that accrete onto the circumstellar discs as a function
985
+ of time. Figure 10 shows the circumbinary disc tilt as a function of
986
+ disc radius. The inner edge of the disc lies roughly at 1.6푎. The
987
+ curves that are shown at radii < 1.6푎 map the tilt of the streams.
988
+ We show the disc tilt for a full binary orbital period from 20 Porb
989
+ to 21 Porb in increments of 0.1 Porb. At every 0.5 Porb, the tilt of the
990
+ streams are low at ∼ 80◦. When the binary orbital period is not at
991
+ half increments, the tilt of the streams increases beyond 90◦. For
992
+ example, at times 20.2 − 20.3 Porb and 20.6 − 20.7 Porb, the streams
993
+ are highly tilted. Recall that the forming circumstellar discs initially
994
+ 1
995
+ 1.5
996
+ 2
997
+ 2.5
998
+ 75
999
+ 80
1000
+ 85
1001
+ 90
1002
+ 95
1003
+ 100
1004
+ 20.0
1005
+ 20.1
1006
+ 20.2
1007
+ 20.3
1008
+ 20.4
1009
+ 20.5
1010
+ 20.6
1011
+ 20.7
1012
+ 20.8
1013
+ 20.9
1014
+ 21.0
1015
+ Figure 10. Circumbinary disc tilt, 푖, as a function of radius, 푟, for the polar
1016
+ circumbinary disc. The color corresponds to the time in binary orbital periods,
1017
+ Porb.
1018
+ form at a high disc tilt, > 90◦. Therefore, whenever the gaseous
1019
+ streams are highly tilted, there is an increased accretion of material
1020
+ onto the circumstellar discs from the circumbinary disc. When the
1021
+ streams are less inclined, every 0.5 Porb, there will be less material
1022
+ accreted onto the polar circumstellar discs. This phenomenon is also
1023
+ consistent with Fig. 9, where material is flung out of the plane of the
1024
+ circumbinary disc every 0.5 Porb. We test this by further visualizing
1025
+ the inflow of material. Figure 11 shows snapshots of zoomed-in views
1026
+ in the 푥–푧 and 푦–푧 planes of the disc surface density, showing the
1027
+ gaseous streams accreting onto the nearly polar circumstellar discs.
1028
+ The snapshots show the flow of material over 20 Porb to 20.9 Porb
1029
+ in increments of 0.1 Porb. Higher density streams occur at times
1030
+ 20.3 Porb and 20.7 Porb. The flow of material decreases every 0.5 Porb
1031
+ during the orbit. At these times, the steams are less dense, leading to
1032
+ less material accreting onto the circumstellar discs.
1033
+ We relate the flow of material from Fig. 11 to the mass of the
1034
+ circumstellar discs. Figure 12 shows the mass of the circumprimary
1035
+ disc from 20 Porb to 25 Porb folded on top of one another for each
1036
+ orbital period. The vertical dashed-lines denote the times when the
1037
+ binary is aligned with the circumbinary disc plane, which is assumed
1038
+ when the stars are both aligned with 푥–푧 plane. Each time the binary
1039
+ aligns to the plane of the disc, the masses of the circumstellar discs
1040
+ increase. The mass of the disc decreases every 0.5 Porb. This be-
1041
+ haviour repeats every orbital period. Overall, the disc mass deceases
1042
+ in time due to the KL mechanism.
1043
+ 6 SUMMARY
1044
+ In this work, we investigated the flow of material from a circumbi-
1045
+ nary disc that results in the formation circumstellar discs around each
1046
+ binary component. We simulated an initially highly misaligned and
1047
+ polar circumbinary disc using three-dimensional SPH. We consid-
1048
+ ered cases of low initial binary eccentricity (typically 푒b = 0.1) and
1049
+ binary mass ratio of unity. We also simulated cases of test particles
1050
+ MNRAS 000, 1–13 (2023)
1051
+
1052
+ 10
1053
+ Smallwood et al.
1054
+ x-z plane t = 20.0 Porb
1055
+ 0.25a
1056
+ y-z plane t = 20.0 Porb
1057
+ 0.25a
1058
+ x-z plane t = 20.5 Porb
1059
+ 0.25a
1060
+ y-z plane t = 20.5 Porb
1061
+ 0.25a
1062
+ x-z plane t = 20.1 Porb
1063
+ 0.25a
1064
+ y-z plane t = 20.1 Porb
1065
+ 0.25a
1066
+ x-z plane t = 20.6 Porb
1067
+ 0.25a
1068
+ y-z plane t = 20.6 Porb
1069
+ 0.25a
1070
+ x-z plane t = 20.2 Porb
1071
+ 0.25a
1072
+ y-z plane t = 20.2 Porb
1073
+ 0.25a
1074
+ x-z plane t = 20.7 Porb
1075
+ 0.25a
1076
+ y-z plane t = 20.7 Porb
1077
+ 0.25a
1078
+ x-z plane t = 20.3 Porb
1079
+ 0.25a
1080
+ y-z plane t = 20.3 Porb
1081
+ 0.25a
1082
+ x-z plane t = 20.8 Porb
1083
+ 0.25a
1084
+ y-z plane t = 20.8 Porb
1085
+ 0.25a
1086
+ x-z plane t = 20.4 Porb
1087
+ 0.25a
1088
+ y-z plane t = 20.4 Porb
1089
+ 0.25a
1090
+ x-z plane t = 20.9 Porb
1091
+ 0.25a
1092
+ y-z plane t = 20.9 Porb
1093
+ 0.25a
1094
+ Figure 11. Zoomed-in snapshots of the disc surface density showing the flow of material from a polar circumbinary disc onto the nearly polar circumstellar
1095
+ discs. The white circles denote the eccentric orbit binary components with an initial binary separation of 푎. The color denotes the gas density using a weighted
1096
+ density interpolation, which gives a mass-weighted line of sight average. The yellow regions are about three orders of magnitude larger than the purple. We view
1097
+ the orbit of the binary in the 푥–푧 and 푦–푧 planes. The snapshots show a period from 20 Porb to 20.9 Porb in increments of 0.1 Porb, where 푃orb is time in binary
1098
+ orbital periods.
1099
+ MNRAS 000, 1–13 (2023)
1100
+
1101
+ 00001100Formation of polar circumstellar discs
1102
+ 11
1103
+ 0.2
1104
+ 0.4
1105
+ 0.6
1106
+ 0.8
1107
+ 2.5
1108
+ 3
1109
+ 3.5
1110
+ 4
1111
+ 4.5
1112
+ 5
1113
+ 10-6
1114
+ 20-21 Porb
1115
+ 21-22 Porb
1116
+ 22-23 Porb
1117
+ 23-24 Porb
1118
+ 24-25 Porb
1119
+ Figure 12. The circumprimary disc mass evolution during one binary orbital
1120
+ period, Porb, at times 20 − 21 Porb (blue), 21 − 22 Porb (red), 22 − 23 Porb
1121
+ (yellow), 23−24 Porb (purple), and 24−25 Porb (green). The mass of the disc
1122
+ decreases every 0.5 Porb. The vertical dashed-lines denote the times when
1123
+ the binary is aligned with the circumbinary disc plane during 20 − 21 Porb.
1124
+ An increased flow of material onto the circumstellar discs occurs when the
1125
+ binary is aligned with the circumbinary disc plane.
1126
+ around the primary star and cases of circumprimary discs only (i.e.,
1127
+ no circumbinary or circumsecondary discs) for comparison.
1128
+ In order to carry out these simulations in a reasonable amount of
1129
+ time, we made some compromises on our choice of parameters. In
1130
+ particular, we introduced a higher viscosity parameter for the cir-
1131
+ cumbinary disc than is likely to occur and a lower temperature of
1132
+ the gas in the gap region. These choices were made to improve the
1133
+ resolution of the simulations. Even with these parameters, the reso-
1134
+ lution is still playing a role in our results (see Fig. 6). While we have
1135
+ chosen the disc parameters (훼 and 퐻/푅) in our simulations to max-
1136
+ imise the accretion rate on to the binary components and therefore
1137
+ the simulation resolution, we expect the general behaviour to persist
1138
+ for more realistic parameters applicable to protoplanetary discs. The
1139
+ mass of the circumstellar disc scales with the infall accretion rate.
1140
+ If the resolution of the circumstellar disc is too poor, then the disc
1141
+ artificially accretes rapidly due to the artificially enhanced effects of
1142
+ viscosity at low density in the SPH code.
1143
+ We first examined the behavior of initially highly inclined circum-
1144
+ stellar discs that are not supplied with material from a circumbinary
1145
+ disc. A polar test particle in orbit around a primary star reaches an
1146
+ eccentricity of nearly unity during the first KL cycle, forcing the
1147
+ particle to become unbound or hit the central star. Similarly, initially
1148
+ highly inclined circumstellar discs around individual binary compo-
1149
+ nents can experience very strong KL oscillations. For an equal mass
1150
+ binary containing only a single circumstellar disc at high inclina-
1151
+ tion between 70◦ and 100◦, the disc undergoes only a single KL
1152
+ oscillation before losing nearly all its mass for our given sink size.
1153
+ Some of the disc mass is transferred to the companion star to form
1154
+ a low inclination disc that does not undergo KL oscillations. These
1155
+ results suggests that such high inclinations of discs are short-lived
1156
+ due to enhanced dissipation from shocks that leads to tilt evolution
1157
+ on short timescales. In contrast, discs that are highly inclined but are
1158
+ not subject to KL oscillations would undergo much slower evolution.
1159
+ In particular, a polar disc would not precess (see e.g., equation (7))
1160
+ and therefore not warp. The disc would then not be subject to torques
1161
+ that act to change its inclination.
1162
+ In this work, and from Smallwood et al. (2021b), we showed that
1163
+ the continuous accretion of material from the circumbinary disc
1164
+ allows the effects of KL oscillations on circumstellar discs to be
1165
+ much longer-lived. In this process, the circumbinary material is con-
1166
+ tinuously delivered with a high inclination to the lower inclination
1167
+ circumstellar discs. We found that the simulation resolution is impor-
1168
+ tant for modeling the longevity of the KL oscillations. We find longer
1169
+ lived KL oscillations that show signs of mild weakening in time, pos-
1170
+ sibly due to the resolution (e.g., Figure 6). The balance between the
1171
+ accretion timescale and the KL timescale determines whether the
1172
+ oscillations are sustained or damp in time. If the circumstellar disc
1173
+ material were to accrete on a much shorter timescale than the KL os-
1174
+ cillation period, we would not expect the KL oscillations to operate.
1175
+ We found that with increasing resolution, the accretion timescale
1176
+ becomes comparable to the KL timescale, favoring sustained KL
1177
+ oscillations.
1178
+ Planet formation is thought to still occur in non-zero eccentric-
1179
+ ity discs (Silsbee & Rafikov 2021). In the case of S-type planets
1180
+ (planets orbiting one of the stellar companions in a binary), gravita-
1181
+ tional perturbations from an eccentric orbit stellar companion and an
1182
+ eccentric disc increase planetesimal eccentricities, leading to colli-
1183
+ sional fragmentation, rather than growth, of planetesimals. However,
1184
+ Rafikov & Silsbee (2015) analyzed the planetesimal motion in ec-
1185
+ centric protoplanetary discs when the planetesimals were affected by
1186
+ gas drag and disc gravity. They found that the planetesimals could
1187
+ withstand collisional fragmentation and erosion, thereby providing
1188
+ a pathway to forming planetary cores by coagulation in a binary. It
1189
+ is not clear how those results carry over to the case of highly ec-
1190
+ centric discs undergoing KL oscillations. However, the formation of
1191
+ nearly polar circumstellar discs from this work may give rise to the
1192
+ formation of nearly polar planets that become Kozai-unstable. Planet
1193
+ formation in a polar circumstellar disc requires the disc to last for a
1194
+ sufficiently long time. We speculate that this is possible provided that
1195
+ the disc is continuously accreting material in a polar configuration.
1196
+ Observations of misaligned planetary systems show a prefer-
1197
+ ence for nearly polar orbits with true obliquities 휓 in the range
1198
+ 휓 = 80◦ − 125◦ (Albrecht et al. 2021; Dawson & Albrecht 2021).
1199
+ For example, two observed ultra-short-period hot Jupiters in po-
1200
+ lar orbits around an A-type star are Kelt-9b (Ahlers et al. 2020a)
1201
+ and MASCARA-4b (Ahlers et al. 2020b). The majority of planets
1202
+ studied by Albrecht et al. (2021) were hot Jupiters, since the mea-
1203
+ surements for these types of planets are more precise. However,
1204
+ a few warm-Neptunes with polar orbits were observed, including
1205
+ HAT-P-11b (Sanchis-Ojeda & Winn 2011), GJ 436b (Bourrier et al.
1206
+ 2018, 2022), HD 3167c (Dalal et al. 2019; Bourrier et al. 2021), and
1207
+ WASP-107b (Dai & Winn 2017; Rubenzahl et al. 2021). A more re-
1208
+ cent warm Neptune, GJ 3470b, is also observed to be on a polar orbit
1209
+ (Stefànsson et al. 2022).
1210
+ ACKNOWLEDGEMENTS
1211
+ We thank the anonymous reviewer for helpful suggestions that pos-
1212
+ itively impacted the work. We thank Daniel Price for providing the
1213
+ phantom code for SPH simulations and acknowledge the use of
1214
+ SPLASH (Price 2007) for the rendering of the figures. Computer
1215
+ support was provided by UNLV’s National Supercomputing Center.
1216
+ MNRAS 000, 1–13 (2023)
1217
+
1218
+ 12
1219
+ Smallwood et al.
1220
+ We acknowledge support from NASA XRP grants 80NSSC19K0443
1221
+ and 80NSSC21K0395. This research was supported in part by the
1222
+ National Science Foundation under Grant No. NSF PHY-1748958.
1223
+ SHL thanks the Simons Foundation for support during a visit to the
1224
+ Flatiron Institute.
1225
+ DATA AVAILABILITY
1226
+ The data supporting the plots within this article are available
1227
+ on reasonable request to the corresponding author. A pub-
1228
+ lic version of the phantom, splash, and mercury codes are
1229
+ available
1230
+ at
1231
+ https://github.com/danieljprice/phantom,
1232
+ http://users.monash.edu.au/~dprice/splash/download.html,
1233
+ and https://github.com/4xxi/mercury, respectively.
1234
+ REFERENCES
1235
+ Ahlers J. P., et al., 2020a, AJ, 160, 4
1236
+ Ahlers J. P., et al., 2020b, ApJ, 888, 63
1237
+ Albrecht S. H., Marcussen M. L., Winn J. N., Dawson R. I., Knudstrup E.,
1238
+ 2021, ApJ, 916, L1
1239
+ Alves F. O., Caselli P., Girart J. M., Segura-Cox D., Franco G. A. P.,
1240
+ Schmiedeke A., Zhao B., 2019, Science, 366, 90
1241
+ Aly H., Lodato G., 2020, MNRAS, 492, 3306
1242
+ Aly H., Dehnen W., Nixon C., King A., 2015, MNRAS, 449, 65
1243
+ Antonini F., Perets H. B., 2012, ApJ, 757, 27
1244
+ Armitage P. J., Natarajan P., 2005, ApJ, 634, 921
1245
+ Artymowicz P., 1992, PASP, 104, 769
1246
+ Artymowicz P., Lubow S. H., 1994, ApJ, 421, 651
1247
+ Artymowicz P., Lubow S. H., 1996, ApJl, 467, L77
1248
+ Artymowicz P., Clarke C. J., Lubow S. H., Pringle J. E., 1991, ApJL, 370, L35
1249
+ Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277, 362
1250
+ Bi J., et al., 2020, ApJ, 895, L18
1251
+ Blaes O., Lee M. H., Socrates A., 2002, ApJ, 578, 775
1252
+ Bourrier V., et al., 2018, Nature, 553, 477
1253
+ Bourrier V., et al., 2021, A&A, 654, A152
1254
+ Bourrier V., et al., 2022, arXiv e-prints, p. arXiv:2203.06109
1255
+ Brinch C., Jørgensen J. K., Hogerheijde M. R., Nelson R. P., Gressel O., 2016,
1256
+ ApJ, 830, L16
1257
+ Chambers J. E., 1999, MNRAS, 304, 793
1258
+ Chen X., Sesana A., Madau P., Liu F. K., 2011, ApJ, 729, 13
1259
+ Chen C., Franchini A., Lubow S. H., Martin R. G., 2019, MNRAS, 490, 5634
1260
+ Chiang E. I., Murray-Clay R. A., 2004, ApJ, 607, 913
1261
+ Cuadra J., Armitage P. J., Alexander R. D., Begelman M. C., 2009, MNRAS,
1262
+ 393, 1423
1263
+ Cuello N., Giuppone C. A., 2019, A&A, 628, A119
1264
+ D’Angelo G., Lissauer J. J., 2018, Formation of Giant Planets. p. 140,
1265
+ doi:10.1007/978-3-319-55333-7_140
1266
+ D’Orazio D. J., Haiman Z., MacFadyen A., 2013, MNRAS, 436, 2997
1267
+ Dai F., Winn J. N., 2017, AJ, 153, 205
1268
+ Dalal S., Hébrard G., Lecavelier des Étangs A., Petit A. C., Bourrier V.,
1269
+ Laskar J., König P. C., Correia A. C. M., 2019, A&A, 631, A28
1270
+ Dawson R. I., Albrecht S. H., 2021, arXiv e-prints, p. arXiv:2108.09325
1271
+ Deacon N. R., et al., 2016, MNRAS, 455, 4212
1272
+ Doğan S., Nixon C., King A., Price D. J., 2015, MNRAS, 449, 1251
1273
+ Duchêne G., Kraus A., 2013, ARA&A, 51, 269
1274
+ Duquennoy A., Mayor M., 1991, A&A, 248, 485
1275
+ Eggleton P. P., Kiseleva-Eggleton L., 2001, ApJ, 562, 1012
1276
+ Fabrycky D., Tremaine S., 2007, ApJ, 669, 1298
1277
+ Facchini S., Lodato G., Price D. J., 2013, MNRAS, 433, 2142
1278
+ Facchini S., Juhász A., Lodato G., 2018, MNRAS, 473, 4459
1279
+ Farris B. D., Duffell P., MacFadyen A. I., Haiman Z., 2014, ApJ, 783, 134
1280
+ Ford E. B., Kozinsky B., Rasio F. A., 2000, ApJ, 535, 385
1281
+ Foucart F., Lai D., 2014, MNRAS, 445, 1731
1282
+ Fragione G., Grishin E., Leigh N. W. C., Perets H. B., Perna R., 2019a,
1283
+ MNRAS, 488, 47
1284
+ Fragione G., Leigh N. W. C., Perna R., 2019b, MNRAS, 488, 2825
1285
+ Franchini A., Martin R. G., Lubow S. H., 2019a, MNRAS, 485, 315
1286
+ Franchini A., Lubow S. H., Martin R. G., 2019b, ApJ, 880, L18
1287
+ Franchini A., Martin R. G., Lubow S. H., 2020, MNRAS, 491, 5351
1288
+ Fu W., Lubow S. H., Martin R. G., 2015a, ApJ, 807, 75
1289
+ Fu W., Lubow S. H., Martin R. G., 2015b, ApJ, 813, 105
1290
+ Fu W., Lubow S. H., Martin R. G., 2017, ApJ, 835, L29
1291
+ Ghez A. M., Neugebauer G., Matthews K., 1993, AJ, 106, 2005
1292
+ Goldreich P., Tremaine S., 1980, ApJ, 241, 425
1293
+ Günther R., Kley W., 2002, A&A, 387, 550
1294
+ Hamers A. S., Bar-Or B., Petrovich C., Antonini F., 2018, ApJ, 865, 2
1295
+ Hatzes A. P., Cochran W. D., Endl M., McArthur B., Paulson D. B., Walker
1296
+ G. A. H., Campbell B., Yang S., 2003, ApJ, 599, 1383
1297
+ Hirsh K., Price D. J., Gonzalez J.-F., Ubeira-Gabellini M. G., Ragusa E.,
1298
+ 2020, MNRAS, 498, 2936
1299
+ Hoang B.-M., Naoz S., Kocsis B., Rasio F. A., Dosopoulou F., 2018, ApJ,
1300
+ 856, 140
1301
+ Holman M., Touma J., Tremaine S., 1997, Nat, 386, 254
1302
+ Horch E. P., Howell S. B., Everett M. E., Ciardi D. R., 2014, ApJ, 795, 60
1303
+ Ichikawa T., Kido M., Takaishi D., Shimajiri Y., Tsukamoto Y., Takakuwa S.,
1304
+ 2021, arXiv e-prints, p. arXiv:2106.11924
1305
+ Innanen K. A., Zheng J. Q., Mikkola S., Valtonen M. J., 1997, AJ, 113, 1915
1306
+ Jang-Condell H., 2015, ApJ, 799, 147
1307
+ Kennedy G. M., et al., 2012, MNRAS, 421, 2264
1308
+ Kennedy G. M., et al., 2019, Nature Astronomy, 3, 230
1309
+ Kiseleva L. G., Eggleton P. P., Mikkola S., 1998, MNRAS, 300, 292
1310
+ Kozai Y., 1962, AJ, 67, 591
1311
+ Kraus S., et al., 2020, Science, 369, 1233
1312
+ Kushnir D., Katz B., Dong S., Livne E., Fernández R., 2013, ApJ, 778, L37
1313
+ Larwood J. D., Nelson R. P., Papaloizou J. C. B., Terquem C., 1996, MNRAS,
1314
+ 282, 597
1315
+ Li G., Naoz S., Holman M., Loeb A., 2014, ApJ, 791, 86
1316
+ Lidov M. L., 1962, Planet. Space Sci., 9, 719
1317
+ Lithwick Y., Naoz S., 2011, ApJ, 742, 94
1318
+ Liu B., Muñoz D. J., Lai D., 2015, MNRAS, 447, 747
1319
+ Lodato G., Price D. J., 2010, MNRAS, 405, 1212
1320
+ Lodato G., Pringle J. E., 2007, MNRAS, 381, 1287
1321
+ Lubow S. H., 2021, MNRAS, 507, 367
1322
+ Lubow S. H., Martin R. G., 2018, MNRAS, 473, 3733
1323
+ Lubow S. H., Martin R. G., Nixon C., 2015, ApJ, 800, 96
1324
+ Lynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603
1325
+ Marino S., Perez S., Casassus S., 2015, ApJ, 798, L44
1326
+ Martin R. G., Franchini A., 2019, MNRAS, 489, 1797
1327
+ Martin R. G., Lubow S. H., 2017, ApJ, 835, L28
1328
+ Martin R. G., Lubow S. H., 2018, MNRAS, 479, 1297
1329
+ Martin R. G., Lubow S. H., 2019, MNRAS, 490, 1332
1330
+ Martin R. G., Nixon C., Armitage P. J., Lubow S. H., Price D. J., 2014a,
1331
+ ApJL, 790, L34
1332
+ Martin R. G., Nixon C., Lubow S. H., Armitage P. J., Price D. J., Doğan S.,
1333
+ King A., 2014b, ApJL, 792, L33
1334
+ Miranda R., Lai D., 2015, MNRAS, 452, 2396
1335
+ Muñoz D. J., Miranda R., Lai D., 2019, ApJ, 871, 84
1336
+ Nagasawa M., Ida S., Bessho T., 2008, ApJ, 678, 498
1337
+ Naoz S., Farr W. M., Lithwick Y., Rasio F. A., Teyssandier J., 2011, Nature,
1338
+ 473, 187
1339
+ Naoz S., Farr W. M., Lithwick Y., Rasio F. A., Teyssandier J., 2013a, MNRAS,
1340
+ 431, 2155
1341
+ Naoz S., Kocsis B., Loeb A., Yunes N., 2013b, ApJ, 773, 187
1342
+ Nesvorný D., Alvarellos J. L. A., Dones L., Levison H. F., 2003, AJ, 126, 398
1343
+ Nixon C. J., 2012, MNRAS, 423, 2597
1344
+ Nixon C. J., King A. R., 2012, MNRAS, 421, 1201
1345
+ Nixon C., Lubow S. H., 2015, MNRAS, 448, 3472
1346
+ Nixon C., King A., Price D., 2013, MNRAS, 434, 1946
1347
+ Owen J. E., Lai D., 2017, MNRAS, 469, 2834
1348
+ Papaloizou J., Pringle J. E., 1977, MNRAS, 181, 441
1349
+ Perets H. B., Fabrycky D. C., 2009, ApJ, 697, 1048
1350
+ MNRAS 000, 1–13 (2023)
1351
+
1352
+ Formation of polar circumstellar discs
1353
+ 13
1354
+ Pichardo B., Sparke L. S., Aguilar L. A., 2005, MNRAS, 359, 521
1355
+ Poblete P. P., Cuello N., Cuadra J., 2019, MNRAS, 489, 2204
1356
+ Poon M., Zanazzi J. J., Zhu W., 2021, MNRAS, 503, 1599
1357
+ Price D. J., 2007, Pasa, 24, 159
1358
+ Price D. J., et al., 2018a, Publ. Astron. Soc. Australia, 35, e031
1359
+ Price D. J., et al., 2018b, MNRAS, 477, 1270
1360
+ Pringle J. E., 1991, MNRAS, 248, 754
1361
+ Rafikov R. R., Silsbee K., 2015, ApJ, 798, 69
1362
+ Raghavan D., et al., 2010, ApJS, 190, 1
1363
+ Ragusa E., Alexander R., Calcino J., Hirsh K., Price D. J., 2020, MNRAS,
1364
+ 499, 3362
1365
+ Ragusa E., et al., 2021, MNRAS, 507, 1157
1366
+ Roedig C., Dotti M., Sesana A., Cuadra J., Colpi M., 2011, MNRAS,
1367
+ 415, 3033
1368
+ Rubenzahl R. A., et al., 2021, AJ, 161, 119
1369
+ Sanchis-Ojeda R., Winn J. N., 2011, ApJ, 743, 61
1370
+ Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
1371
+ Shi J.-M., Krolik J. H., Lubow S. H., Hawley J. F., 2012, ApJ, 749, 118
1372
+ Silsbee K., Rafikov R. R., 2021, A&A, 652, A104
1373
+ Smallwood J. L., Lubow S. H., Franchini A., Martin R. G., 2019, MNRAS,
1374
+ 486, 2919
1375
+ Smallwood J. L., Franchini A., Chen C., Becerril E., Lubow S. H., Yang
1376
+ C.-C., Martin R. G., 2020, MNRAS, 494, 487
1377
+ Smallwood J. L., Nealon R., Chen C., Martin R. G., Bi J., Dong R., Pinte C.,
1378
+ 2021a, MNRAS, 508, 392
1379
+ Smallwood J. L., Martin R. G., Lubow S. H., 2021b, ApJ, 907, L14
1380
+ Stefànsson G., et al., 2022, ApJ, 931, L15
1381
+ Takeda G., Rasio F. A., 2005, ApJ, 627, 1001
1382
+ Teyssandier J., Terquem C., Papaloizou J. C. B., 2013, MNRAS, 428, 658
1383
+ Thompson T. A., 2011, ApJ, 741, 82
1384
+ Tokovinin A., 2014a, AJ, 147, 86
1385
+ Tokovinin A., 2014b, AJ, 147, 87
1386
+ Tokovinin A., Kiyaeva O., 2016, MNRAS, 456, 2070
1387
+ Wu Y., Murray N., 2003, ApJ, 589, 605
1388
+ Zahn J.-P., 1977, A&A, 57, 383
1389
+ Zanazzi J. J., Lai D., 2018, MNRAS, 473, 603
1390
+ Ziegler C., et al., 2018, AJ, 155, 161
1391
+ Zrake J., Tiede C., MacFadyen A., Haiman Z., 2021, ApJ, 909, L13
1392
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
1393
+ MNRAS 000, 1–13 (2023)
1394
+
3tFKT4oBgHgl3EQfRC0N/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
49E1T4oBgHgl3EQfAwK8/content/tmp_files/2301.02844v1.pdf.txt ADDED
@@ -0,0 +1,1215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Topological superconductor candidates PdBi2Te4 and PdBi2Te5 from a generic ab
2
+ initio strategy
3
+ Aiyun Luo,1, ∗ Ying Li,1, ∗ Yi Qin,1, ∗ Jingnan Hu,1 Biao Lian,2 and Gang Xu1, 3, 4, †
4
+ 1Wuhan National High Magnetic Field Center & School of Physics,
5
+ Huazhong University of Science and Technology, Wuhan 430074, China
6
+ 2Department of Physics, Princeton University, Princeton, NJ 08544, United States of America
7
+ 3Institute for Quantum Science and Engineering,
8
+ Huazhong University of Science and Technology, Wuhan 430074, China
9
+ 4Wuhan Institute of Quantum Technology, Wuhan 430074, China
10
+ Superconducting topological metals (SCTMs) have recently emerged as a promising platform of
11
+ topological superconductivity (TSC) and Majorana zero modes(MZMs) for quantum computation.
12
+ Despite their importance in both fundamental research and applications, SCTMs are very rare in
13
+ nature. In addition, some superconductors with topological electronic structures have been reported
14
+ recently, but a feasible program to determine their TSC properties is still lacking. Here, we propose
15
+ a new strategy to design SCTMs by intercalating the superconducting units into the topological
16
+ insulators.
17
+ A program that characterizes the superconducting BdG Chern number of 2D BdG
18
+ Hamiltonian from ab initio calculations is also developed. Following this strategy, PdBi2Te5 and
19
+ PdBi2Te4 are found to be experimentally synthesizable and ideal SCTMs. Chiral TSC could be
20
+ realized in such SCTMs by incorporating topological surface states with Zeeman effect, which can
21
+ be realized by an external magnetic field or in proximity to ferromagnetic (FM) insulator. Our
22
+ strategy provides a new method for identifying the SCTMs and TSC candidates, and the program
23
+ makes it possible to design and modulate the TSC candidates from ab initio calculations.
24
+ MAIN
25
+ As one of the most important systems in both fundamental physics and topological quantum computation, topo-
26
+ logical superconductors (TSCs) have attracted increasing interest for their ability to support Majorana fermions
27
+ and anyons with non-Abelian statistics [1–17]. Currently, the search for TSCs candidates has been focused on two
28
+ ∗ These authors made equal contributions to this work.
29
+ † e-mail address: [email protected]
30
+ arXiv:2301.02844v1 [cond-mat.mtrl-sci] 7 Jan 2023
31
+
32
+ 2
33
+ experimental schemes. One is the architectures by the combination of conventional superconductors with topological
34
+ insulators (TIs) [18–20] or 1D nanowires [21, 22], but this approach brings high requirements for sample fabrication
35
+ and interface engineering. The other route is to achieve TSCs in superconducting topological metals (SCTMs) that
36
+ host both topological electronic structures at the Fermi level and superconductivity in one compound [23–36], in which
37
+ the topological surface states are gapped by the “self-proximity effect” of bulk superconductivity, thus avoiding the
38
+ complications of interface engineering. This approach has successfully predicted the SCTM FeTe0.55Se0.45 [24–26] and
39
+ similar compounds of iron-based superconductors [27–30], owing to the favorable SC gap and non-trivial band topology.
40
+ Beside the MZMs, 1D helical/chiral Majorana states have also been reported in domain walls of FeTe0.55Se0.45 [37]
41
+ and the magnetism-superconductor heterostructures [38–45]. It is also proposed that the propagating chiral Majorana
42
+ states can be applied to realize non-Abelian quantum gate operations, which could be 103 faster than the currently
43
+ existing quantum computation schemes [46].
44
+ Encouraged by the success of Fe(Se,Te) [24–26], many topological materials that host both superconductivity and
45
+ topological electronic structures are proposed [47–52]. However, very rare experimental progress of TSC has been
46
+ made in such SCTMs. This is because, on the one hand, all of them are not the ideal SCTMs, whose band structures
47
+ are too complicated, the topological surface states are usually buried in the bulk states and difficult to form the
48
+ pairing required by TSC. On the other hand, lacking a direct characterization of the TSC properties from ab initio
49
+ calculations also hinders the effective experimental search in such materials. Therefore, a general program that could
50
+ calculate the TSC invariant from first-principles calculations is highly desirable.
51
+ In this work, we develop a program to characterize the superconducting topological invariant of 2D system from ab
52
+ initio calculations. Besides, we also propose a new strategy to design ideal SCTMs by intercalating superconducting
53
+ units into topological insulators.
54
+ Following this strategy, PdBi2Te5 and PdBi2Te4 are found to be ideal SCTMs
55
+ that host topological surface states at the Fermi level and superconductivity at 0.57 K and 3.11 K respectively. By
56
+ performing the superconducting energy spectrum and topological invariant calculations, we identify that chiral TSC
57
+ could be realized in the slab of such SCTMs by introducing considerable Zeeman splitting on the topological surface
58
+ states, which can be realized by an external magnetic field or in proximity to FM insulators. Our strategy provides
59
+ a new framework to enrich SCTMs and TSC candidates, and the program makes it possible to design and modulate
60
+ the TSC system from ab initio calculations, which can also be extended to study the TSC properties in other system,
61
+ such as magnetic TI/SC heterostructure, SC/FM heterostructure and SC/TI/SC heterostructure.
62
+ Inspired by the construction of magnetic TI MnBi2Te4 [53, 54], we propose that the SCTMs can be designed by
63
+
64
+ 3
65
+ intercalating the SC units into the TIs, as illustrated by the schematic of Fig. 1(a). As an ideal SCTM, the target
66
+ crystal should be relatively stable in both energy and structure. More importantly, it must inherit the topological
67
+ electronic structures of the parent TI near the Fermi level, and also the superconductivity of the parent SC as shown in
68
+ Fig. 1(b). However, the combination of topological electronic structures and SC does not result in TSC eventually. The
69
+ realization of TSC generally requires a delicate modulation of many parameters, such as SC pairing, Zeeman splitting
70
+ and chemical potential, et al [18–26, 38–45]. Thus, the ability to characterize the TSC invariant and determine the
71
+ required parameters in real materials from the ab initio calculations is not only of theoretical significance, but also
72
+ highly desirable in experiment.
73
+ Here we develop a program to simulate the superconducting properties and characterize its topological invariant in
74
+ 2D slab system from ab initio calculations, in which the necessary ingredients to realize chiral TSC based on SCTM
75
+ are included, such as bulk band structures, SC pairing, Zeeman splitting, Rashba spin-orbit coupling and chemical
76
+ potential. The workflow of this program is shown in Fig. 2. First, one should calculate the electronic structures of
77
+ SCTM materials, and construct the localized Wannier functions that capture all electronic features from the first-
78
+ principles calculations, referred as ˆHbulk. The next step is to construct the slab Hamiltonian ˆHslab with open boundary
79
+ condition along a certain direction [55]. In general, the spin-orbit coupling (SOC) and surface effect can be included
80
+ automatically in ˆHslab through the first-principles calculations with SOC. So that the topological properties, such as
81
+ the surface states and spin-texture, can be directly studied by using ˆHslab. On the other hand, one can also construct
82
+ a slab Hamiltonian ˆHnsoc
83
+ slab that excluded SOC from the non-SOC first-principles calculations, and add ˆHSOC and ˆHsurf
84
+ manually to simulate the variable SOC and surface effect in the topological electronic states and TSC. In this work,
85
+ we will adopt the former type of ˆHslab, in which only the intrinsic SOC of the real material is included. With adopting
86
+ particle-hole transformation, the ˆHslab can be extended to BdG Hamiltonian ˆHBdG
87
+ slab by adding SC pairing ˆHsc and
88
+ Zeeman splitting ˆHz. In the Nambu basis Φk = (ck,j,α,↑, ck,j,α,↓, c†
89
+ −k,j,α,↑, c†
90
+ −k,j,α,↓), where the cj,α,σ is the fermion
91
+ operator denotes an electron at j layer with orbital α and spin σ(↑, ↓), the BdG Hamiltonian is formulated as:
92
+ HBdG
93
+ slab (k) =
94
+
95
+
96
+
97
+ Hslab(k) − µ
98
+ ∆(k)
99
+ Ơ(k)
100
+ −H∗
101
+ slab(−k) + µ
102
+
103
+
104
+ � + Mzτz.
105
+ (1)
106
+ In Eq. 1, µ is the chemical potential, which can be used to simulate the carriers doping. ∆(k) denotes the SC pairing
107
+ matrices, which could be both singlet and triplet pairing form. For the conventional s-wave SC, ∆(k) is expressed as:
108
+ ∆(k) = ∆s × Islab ⊗ (iσy ⊗ Iorb),
109
+ (2)
110
+
111
+ 4
112
+ where ∆s is the magnitude of intrinsic bulk s-wave pairing, σy is the Pauli matrix in spin space, Islab (Iorb) is an
113
+ Nslab × Nslab (Norb × Norb) identity matrix that represents the number of slab layers (Wannier orbitals). τz is the
114
+ Pauli matrix in particle-hole space, Mz is the Zeeman splitting energy, and Hz = Mzτz is used to simulate the
115
+ influence of the external magnetic field or the proximity effect of the FM insulator. Thus, Hz can be chosen to be
116
+ applied for the whole slab or just few surface layers, depending on the slab thickness, strength of magnetic field, the
117
+ type of the SC et al. In principle, chiral TSC can be achieved by modulating the SC pairing, Zeeman splitting and
118
+ chemical potential [38–45], which can be further revealed by calculating the superconducting energy spectrum and
119
+ the superconducting topological invariant.
120
+ In the gaped 2D superconducting system, the topological superconductors are classified by BdG Chern number in
121
+ the absence of time-reversal symmetry [3]. Such superconducting topological invariants can be characterized by the
122
+ evolution of Wilson loop [56–58]. For the occupied quasiparticle states |uBdG
123
+ n,k1,k2⟩, where k1 and k2 are momenta along
124
+ two primitive vectors of the Brillouin zone (BZ), the Berry phase of the Wilson loop along k2 at a fixed k1 can be
125
+ expressed as:
126
+ W(k1) = −Im ln
127
+
128
+ i
129
+ det M (i)
130
+ k1 ,
131
+ (3)
132
+ with the overlap matrix M (i)
133
+ k1,mn = ⟨uBdG
134
+ m,k1,k(i)
135
+ 2 |uBdG
136
+ n,k1,k(i+1)
137
+ 2
138
+ ��, where k(i)
139
+ 2
140
+ is the i-th discretized momenta along k2 direction.
141
+ The winding number of W(k1) with respect to k1 is equal to the superconducting BdG Chern number CBdG.
142
+ Next, we take TI Bi2Te3 [59, 60], SC PdTe [61, 62] and SC PdTe2 [50–52] as parent compounds to demonstrate that
143
+ our SCTMs strategy is feasible. Experimentally, Bi2Te3 (space group R¯3m, a = 4.35 ˚A, c = 30.36 ˚A), PdTe (space
144
+ group space group P63/mmc, a = 4.152 ˚A, c = 5.671 ˚A, Tc = 2.3 K) and PdTe2 (space group P¯3m1, a = 4.03 ˚A,
145
+ c = 5.12 ˚A, Tc = 1.64 K) all adopt the triangle lattice and have very similar in-plane lattice constants, which makes
146
+ it much easier to integrate them together to form a new compound. According to our calculations, the stable unit of
147
+ PdBi2Te5 and PdBi2Te4 adopt octuple-layer (OL) structure and septuple-layer (SL) structure respectively, as shown
148
+ in Fig. 3(a)(also Fig. S1) and Fig. S2 of Supplementary Material(SM) [63]. They both favor the ABC stacking along
149
+ c-direction, and form the rhombohedral unit cell as shown in Fig. 3(a), which is 73 meV/f.u.
150
+ (73 meV/f.u.
151
+ for
152
+ PdBi2Te4) and 46 meV/f.u. (12 meV/f.u. PdBi2Te4) lower than the AA and AB stacking structures. The detailed
153
+ crystal parameters and total energy of different stacking PbBi2Te5 and PbBi2Te4 are tabulated in the Table. S1 and
154
+ Table. S2, respectively [63].
155
+ The formation energy of PdBi2Te5 and PdBi2Te4 are calculated to study their thermodynamic stability by using
156
+ EPdmBinTel
157
+ f
158
+ = EPdmBinTel − mEPd − nEBi − lETe, with Ei(i=PdmBinTel, Pd, Bi and Te) means the calculated
159
+
160
+ 5
161
+ total energy per formula in the ground state. The calculated EP dBi2T e5
162
+ f
163
+ and EP dBi2T e4
164
+ f
165
+ are −3.184 eV/f.u. and
166
+ −2.476 eV/f.u., which means that 3.184 eV and 2.476 eV can be released during their synthesis processes from the
167
+ constituent elements. To further manifest their thermodynamic stability, we construct the convex hull diagram in
168
+ Fig. 3(b) with all of the synthesized Pd-Bi-Te compounds, whose crystal parameters and the calculated formation
169
+ energy have been tabulated in Table. S3 and Table. S4, respectively [63]. Fig. 3(b) shows that PdBi2Te5 and PdBi2Te4
170
+ are 13 meV/atom and 61 meV/atom above the convex hull respectively.
171
+ Moreover, considering that metastable
172
+ PdBi2Te3, 52 meV and 3 meV higher than PdBi2Te5 and PdBi2Te4 as shown in Fig. 3(b), has been synthesized
173
+ in experiments [64, 65], we thus conclude that PdBi2Te5 and PdBi2Te4 could be synthesized in experiments. For
174
+ PdBi2Te5, we propose a synthetic route through the growth of Bi2Te3 and PdTe2 layer by layer. Our calculated
175
+ results reveal that bulk PdBi2Te5 is 59 meV/f.u. lower than the total energy of free standing Bi2Te3 and PdTe2 layers,
176
+ which strongly suggest that PdTe2 layer tends to deposit on Bi2Te3 to form new PdBi2Te5 crystal. To investigate
177
+ their dynamical stability, we calculate the phonon dispersion of PdBi2Te5 and PdBi2Te4, and plot them in Fig. 3(c)
178
+ and Fig. S3(a) [63]. There are 24 (21) phonon modes with fully real positive frequencies for PdBi2Te5 (PdBi2Te4),
179
+ which indicates that the rhombohedral unit cells are dynamically stable. Based on these results, we conclude that
180
+ PdBi2Te5 and PdBi2Te4 are relatively thermodynamically and dynamically stability in the rhombohedral structure,
181
+ and further experimental investigation is called for.
182
+ Then we study the electronic structures and topological properties of PdBi2Te5 and PdBi2Te4. Since PdBi2Te5
183
+ and PbBi2Te4 exhibit similar electronic structures and non-trivial band topology, we only show the detailed density
184
+ of states (DOS), band structures, and topological surface states of PdBi2Te5 as an example in the main text, one
185
+ can check the results of PdBi2Te4 in Section III and Figs. S3 of the SM [63]. In Fig. 3(d), we plot the total and
186
+ projected DOS of PdBi2Te5, which gives rise to DOS(0 eV) = 1.91 states/eV at Fermi level, indicating its metallic
187
+ nature and the possibility of superconductivity. The projected DOS demonstrates that the states between −1 eV
188
+ and 1 eV are dominated by the p-orbitals of Te hybridized with d-orbitals from Pd and p-orbitals from Bi. The
189
+ hybridization is also manifested by the projected band structures shown in Fig. 3(e), which shows that two bands
190
+ with p-orbital components from Te or Bi cross the Fermi level and form several Fermi surfaces. Further detailed
191
+ orbital components analysis demonstrates that a continuous band gap (yellow region in Fig. 3(e)) and band inversion
192
+ exists between the nominal valence band and conduction band around the Fermi level, which implies that PdBi2Te5
193
+ inherits the topological electronic nature of Bi2Te3 successfully. The nontrivial band topology can be confirmed by
194
+ calculating the Z2 topological invariant of time-reversal invariant insulators [66]. Given that rhombohedral PdBi2Te5
195
+
196
+ 6
197
+ possesses inversion symmetry and a continuous band gap, the Z2 topological invariant νTI = (1 − P)/2 is determined
198
+ by the product P of the parity of the wave function at the TRIM points [66]. Our calculated results give Z2 index
199
+ νTI = 1, confirming PdBi2Te5 is a Z2 topological metal. To visualize the bulk–boundary correspondence, we calculate
200
+ and plot the topological surface states on the (001) surface in Fig. 3(f). The surface states are similar to that of
201
+ Bi2Te3 [59, 60], the Dirac cone at the Γ point manifest approximately −6.3 meV below the Fermi level (the dashed
202
+ line in Fig. 3(f)).
203
+ To investigate the superconducting property of PdBi2Te5, we perform the electron-phonon calculations based on
204
+ density functional perturbation theory [67]. The calculated electron-phonon coupling constant λ = 0.43 and loga-
205
+ rithmic average phonon frequency ωlog = 97 cm−1, as tabulated in Table. S5 [63]. Furthermore, the superconducting
206
+ transition temperature (Tc) is estimated by using the reduced Allen-Dynes formula [68, 69]:
207
+ Tc = ωlog
208
+ 1.20 exp
209
+
210
+
211
+ 1.04(1 + λ)
212
+ λ − µ∗(1 + 0.62λ)
213
+
214
+ ,
215
+ (4)
216
+ where µ∗ is the effective Coulomb potential. By adopting a typical µ∗ = 0.1, the Tc of PdBi2Te5 is estimated as
217
+ 0.57 K. As comparison, the calculated λ and ωlog in PdTe2 is 0.52 and 112 cm−1, respectively. Accordingly, the
218
+ estimated Tc in PdTe2 is 1.59 K, which agrees well with the experimental Tc of 1.64 K [50–52]. These results clearly
219
+ demonstrate that the SC in PdTe2 is well inherited into the PdBi2Te5.
220
+ We now study the TSC property of the PdBi2Te5 slab by introducing the SC pairing and Zeeman splitting into the
221
+ topological surface states. Usually, the Zeeman splitting is applied by external magnetic field or in proximity to a FM
222
+ insulator, as illustrated in Fig. 4(a). As a concrete example, we use a 2D slab consisting of 10-OL PdBi2Te5, which is
223
+ thick enough to avoid the hybridization between top layer and bottom layer (Fig. 3(f)). Since PdBi2Te5 is an intrinsic
224
+ SC, the estimated s-wave superconducting gap ∆s = 1.0 meV is introduced globally for all 10-OLs. The out-of-plane
225
+ Zeeman splitting is applied only in the bottom layer consisting of one Bi2Te3 and one PdTe2, by assuming PdBi2Te5
226
+ is the conventional SC from the parent type-I SC PdTe2 [50]. The chemical potential µ is set at the energy of surface
227
+ Dirac cone at the Γ point (about −6.3 meV below the Fermi level). In Fig. 4(b), we show the low energy spectrum
228
+ of HBdG at Γ point as a function of Zeeman splitting energy Mz, which manifest that the superconducting spectrum
229
+ is fully gaped with an energy gap of ∆ at Mz = 0. As Mz increases, the superconducting gap at the Γ point closes
230
+ and reopens. This behavior indicates that a topological phase transition happens at critical point Mz/∆ = 3.1, and
231
+ this 2D slab enters chiral TSC phase characterized by a nonzero BdG Chern number and chiral Majorana edge states
232
+ according to previous model simulations [38–40].
233
+ To firmly verify its topological property and visualize the low energy physics in the TSC phase, we calculate the
234
+
235
+ 7
236
+ superconducting energy spectrum at Mz=5 meV and ∆=1 meV in Fig. 4(c). The corresponding Wilson loop evolutions
237
+ for the occupied states are ploted in Fig. 4(d). The zoom-in image of Fig. 4(c) reveals that a full superconducting gap
238
+ is opened in the whole BZ, indicating that the system is a well defined chiral TSC. The Wilson loop evolution exhibits
239
+ a nontrivial chiral winding number 1, which directly confirms the superconducting BdG Chern number CBdG = 1.
240
+ Given that the experimental accessible magnetization energy usually reaches a few tens of meV, our results provide
241
+ a feasible guideline for discovery the chiral TSC phase in PdBi2Te5.
242
+ Finally, we would like to point out that the chiral TSC phase could also be realized in PdBi2Te4 as shown in
243
+ Fig. S4 [63], which exhibits a similar superconducting spectrum gap closing behavior with respect to Mz/∆ as in
244
+ PdBi2Te5.
245
+ In addition, we emphasize that our material design strategy can also be applied to search for other
246
+ SCTM candidates. For example, our calculated results demonstrate that AuBi2Te5 formed by SC AuTe2 interacting
247
+ into Bi2Te3 is also an ideal SCTM, whose detailed crystal structures, dynamic stability, electronic structures, and
248
+ topological surface states are discussed in Section V and Fig. S5 of SM [63].
249
+ Therefore, we expect that SCTM
250
+ AuBi2Te5 could also be a TSC candidate. Last, we would like to point out that the program can be extended to study
251
+ many 2D topological superconducting heterostructure systems, such as magnetic TI/SC heterostructure, SC/FM
252
+ heterostructure and SC/TI/SC heterostructure. This will make it possible to determine the accurate parameters of
253
+ the TSC phase and simulate their TSC property in such systems from first-principles calculations. We expect our
254
+ program to be also useful for optimizing the experimental setup, stimulating the field of TSC study.
255
+ ACKNOWLEDGMENTS
256
+ This work is supported by the National Key Research and Development Program of China (2018YFA0307000),
257
+ and the National Natural Science Foundation of China (12274154, 11874022). B.L. is supported by the Alfred P.
258
+ Sloan Foundation, the National Science Foundation through Princeton University’s Materials Research Science and
259
+ Engineering Center DMR-2011750, and the National Science Foundation under award DMR-2141966.
260
+ METHOD
261
+ The first-principles calculations based on density functional theory are performed by the Vienna ab initio simulation
262
+ package [70, 71] with treating Perdew–Burke–Ernzerhof type of generalized gradient approximation as the exchange-
263
+ correlation potential [72]. The cutoff energy for wave function expansion is set as 450 eV, k-points grid 13×13×13
264
+
265
+ 8
266
+ is used for sampling the first BZ. All crystal structures are fully optimized until the force on each atom is less than
267
+ 0.01 eV/˚A, and the SOC is included self-consistently. The electron-phonon coupling calculations with van der Waals
268
+ correction [73] are carried out in Quantum Espresso [74] based on the perturbation theory. A Hermite-Gaussian
269
+ smearing of 0.0025 Ryd is used for the electronic integration. The 8×8×8 k-mesh is used for the electron-phonon
270
+ coupling strength λ calculations, and the dynamical matrices are calculated on a 4×4×4 phonon-momentum grid.
271
+ Besides, a 2×2×2 supercell is built to calculate the phonon dispersion by using PHONOPY [75]. For the surface
272
+ calculation, the Wannier functions of Pd-d, Bi-p and Te-p orbitals are constructed by using WANNIER90 [76]. A
273
+ slab consisting of 10-OL PdBi2Te5 layers with a bottom surface terminated as the Bi2Te3 layer is implemented in
274
+ WannierTools [55], which is further used to calculate the electronic surface states, the superconducting spectrum, and
275
+ the superconducting BdG Chern number.
276
+ [1] Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S.
277
+ Non-abelian anyons and topological quantum
278
+ computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
279
+ [2] Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum
280
+ Information 1, 1–13 (2015).
281
+ [3] Sato, M. & Ando, Y. Topological superconductors: a review. Reports on Progress in Physics 80, 076501 (2017).
282
+ [4] Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68
283
+ (2018).
284
+ [5] Liu, C.-X. & Trauzettel, B. Helical Dirac-Majorana interferometer in a superconductor/topological insulator sandwich
285
+ structure. Phys. Rev. B 83, 220510 (2011).
286
+ [6] Zhang, F., Kane, C. L. & Mele, E. J. Time-reversal-invariant topological superconductivity and Majorana Kramers pairs.
287
+ Phys. Rev. Lett. 111, 056402 (2013).
288
+ [7] Yang, S. A., Pan, H. & Zhang, F. Dirac and Weyl superconductors in three dimensions. Phys. Rev. Lett. 113, 046401
289
+ (2014).
290
+ [8] Wang, Q.-Z. & Liu, C.-X. Topological nonsymmorphic crystalline superconductors. Phys. Rev. B 93, 020505 (2016).
291
+ [9] Wang, Q., Liu, C.-C., Lu, Y.-M. & Zhang, F. High-temperature Majorana corner states. Phys. Rev. Lett. 121, 186801
292
+ (2018).
293
+ [10] Hao, N. & Hu, J. Topological quantum states of matter in iron-based superconductors: from concept to material realization.
294
+ National Science Review 6, 213–226 (2019).
295
+
296
+ 9
297
+ [11] Zhang, R.-X., Cole, W. S. & Das Sarma, S. Helical hinge Majorana modes in iron-based superconductors. Phys. Rev. Lett.
298
+ 122, 187001 (2019).
299
+ [12] Zhang, R.-X., Cole, W. S., Wu, X. & Das Sarma, S. Higher-order topology and nodal topological superconductivity in
300
+ Fe(Se,Te) heterostructures. Phys. Rev. Lett. 123, 167001 (2019).
301
+ [13] Zhang, R.-X. & Das Sarma, S. Intrinsic time-reversal-invariant topological superconductivity in thin films of iron-based
302
+ superconductors. Phys. Rev. Lett. 126, 137001 (2021).
303
+ [14] Wu, X. et al. Boundary-obstructed topological high-Tc superconductivity in iron pnictides. Phys. Rev. X 10, 041014
304
+ (2020).
305
+ [15] Giwa, R. & Hosur, P. Fermi arc criterion for surface Majorana modes in superconducting time-reversal symmetric Weyl
306
+ semimetals. Phys. Rev. Lett. 127, 187002 (2021).
307
+ [16] Nayak, A. K. et al.
308
+ Evidence of topological boundary modes with topological nodal-point superconductivity.
309
+ Nature
310
+ Physics 17, 1413–1419 (2021).
311
+ [17] Margalit, G., Yan, B., Franz, M. & Oreg, Y. Chiral Majorana modes via proximity to a twisted cuprate bilayer. Phys.
312
+ Rev. B 106, 205424 (2022).
313
+ [18] Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator.
314
+ Phys. Rev. Lett. 100, 096407 (2008).
315
+ [19] Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-
316
+ superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).
317
+ [20] Sun, H.-H. et al.
318
+ Majorana zero mode detected with spin selective andreev reflection in the vortex of a topological
319
+ superconductor. Phys. Rev. Lett. 116, 257003 (2016).
320
+ [21] Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science
321
+ 336, 1003–1007 (2012).
322
+ [22] Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346,
323
+ 602–607 (2014).
324
+ [23] Hosur, P., Ghaemi, P., Mong, R. S. K. & Vishwanath, A. Majorana modes at the ends of superconductor vortices in doped
325
+ topological insulators. Phys. Rev. Lett. 107, 097001 (2011).
326
+ [24] Xu, G., Lian, B., Tang, P., Qi, X.-L. & Zhang, S.-C.
327
+ Topological superconductivity on the surface of Fe-based
328
+ superconductors. Phys. Rev. Lett. 117, 047001 (2016).
329
+ [25] Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360,
330
+ 182–186 (2018).
331
+ [26] Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).
332
+
333
+ 10
334
+ [27] Liu, Q. et al.
335
+ Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor
336
+ (Li0.84Fe0.16)OHFeSe. Physical Review X 8, 041056 (2018).
337
+ [28] Liu, W. et al. A new majorana platform in an Fe-As bilayer superconductor. Nature Communications 11, 1–7 (2020).
338
+ [29] Kong, L. et al. Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nature Communications 12,
339
+ 1–11 (2021).
340
+ [30] Li, M. et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs. Nature 1–6 (2022).
341
+ [31] Yuan, Y. et al. Evidence of anisotropic Majorana bound states in 2M-WS2. Nature Physics 15, 1046–1051 (2019).
342
+ [32] Fang, Y. et al. Discovery of superconductivity in 2M WS2 with possible topological surface states. Advanced Materials
343
+ 31, 1901942 (2019).
344
+ [33] Li, Y. et al. Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2.
345
+ Nature communications 12, 1–7 (2021).
346
+ [34] Lv, Y.-F. et al. Experimental signature of topological superconductivity and Majorana zero modes on β-Bi2Pd thin films.
347
+ Science bulletin 62, 852–856 (2017).
348
+ [35] Guan, J.-Y. et al. Experimental evidence of anomalously large superconducting gap on topological surface state of β-Bi2Pd
349
+ film. Science Bulletin 64, 1215–1221 (2019).
350
+ [36] Li, Y., Xu, X., Lee, M.-H., Chu, M.-W. & Chien, C. Observation of half-quantum flux in the unconventional superconductor
351
+ β-Bi2Pd. Science 366, 238–241 (2019).
352
+ [37] Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108
353
+ (2020).
354
+ [38] Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B
355
+ 82, 184516 (2010).
356
+ [39] Wang, J., Zhou, Q., Lian, B. & Zhang, S.-C. Chiral topological superconductor and half-integer conductance plateau from
357
+ quantum anomalous Hall plateau transition. Phys. Rev. B 92, 064520 (2015).
358
+ [40] He, J. J., Liang, T., Tanaka, Y. & Nagaosa, N. Platform of chiral Majorana edge modes and its quantum transport
359
+ phenomena. Communications Physics 2, 1–7 (2019).
360
+ [41] Zhang, X. & Liu, F. Prediction of Majorana edge states from magnetized topological surface states. Phys. Rev. B 103,
361
+ 024405 (2021).
362
+ [42] Zhang, X. et al. Prediction of intrinsic topological superconductivity in Mn-doped GeTe monolayer from first-principles.
363
+ npj Computational Materials 7, 1–8 (2021).
364
+ [43] M´enard, G. C. et al. Two-dimensional topological superconductivity in Pb/Co/Si(111). Nature Communications 8, 1–7
365
+ (2017).
366
+
367
+ 11
368
+ [44] Palacio-Morales, A. et al. Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor
369
+ hybrid system. Science Advances 5, eaav6600 (2019).
370
+ [45] Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).
371
+ [46] Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana
372
+ fermions. Proceedings of the National Academy of Sciences 115, 10938–10942 (2018).
373
+ [47] Huang, K. et al. Observation of topological Dirac fermions and surface states in superconducting BaSn3. Phys. Rev. B
374
+ 103, 155148 (2021).
375
+ [48] Chen, C. et al. Observation of topological electronic structure in quasi-1D superconductor TaSe3. Matter 3, 2055–2065
376
+ (2020).
377
+ [49] Ortiz, B. R. et al. CsV3Sb5: A Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125,
378
+ 247002 (2020).
379
+ [50] Leng, H., Paulsen, C., Huang, Y. K. & de Visser, A. Type-I superconductivity in the Dirac semimetal PdTe2. Phys. Rev.
380
+ B 96, 220506 (2017).
381
+ [51] Das, S. et al. Conventional superconductivity in the type-II Dirac semimetal PdTe2. Phys. Rev. B 97, 014523 (2018).
382
+ [52] Kudo, K., Ishii, H. & Nohara, M. Composition-induced structural instability and strong-coupling superconductivity in
383
+ Au1−xPdxTe2. Phys. Rev. B 93, 140505 (2016).
384
+ [53] Lee, D. S. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4.
385
+ CrystEngComm 15, 5532–5538 (2013).
386
+ [54] Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect.
387
+ Phys. Rev. Lett. 122, 206401 (2019).
388
+ [55] Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. Wanniertools: An open-source software package for novel
389
+ topological materials. Computer Physics Communications 224, 405–416 (2018).
390
+ [56] Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of Z2 topological invariant for band insulators
391
+ using the non-abelian berry connection. Phys. Rev. B 84, 075119 (2011).
392
+ [57] Soluyanov, A. A. & Vanderbilt, D. Computing topological invariants without inversion symmetry. Phys. Rev. B 83, 235401
393
+ (2011).
394
+ [58] Gresch, D. et al. Z2pack: Numerical implementation of hybrid wannier centers for identifying topological materials. Phys.
395
+ Rev. B 95, 075146 (2017).
396
+ [59] Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature
397
+ Physics 5, 438–442 (2009).
398
+ [60] Chen, Y. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).
399
+ [61] Matthias, B. T. Superconducting compounds of nonsuperconducting elements. Phys. Rev. 90, 487–487 (1953).
400
+
401
+ 12
402
+ [62] Karki, A. B., Browne, D. A., Stadler, S., Li, J. & Jin, R. PdTe: a strongly coupled superconductor. Journal of Physics:
403
+ Condensed Matter 24, 055701 (2012).
404
+ [63] See Supplemental Materials for more details.
405
+ [64] Sharma, M., Sang, L., Rani, P., Wang, X. & Awana, V. Bulk superconductivity below 6 K in PdBi2Te3 topological single
406
+ crystal. Journal of Superconductivity and Novel Magnetism 33, 1243–1247 (2020).
407
+ [65] Wang, X. et al. Identify the nematic superconductivity of topological superconductor PdxBi2Te3 by angle-dependent upper
408
+ critical field measurement. Journal of Superconductivity and Novel Magnetism 34, 3045–3052 (2021).
409
+ [66] Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
410
+ [67] Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional
411
+ perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
412
+ [68] McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).
413
+ [69] Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12,
414
+ 905–922 (1975).
415
+ [70] Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B 48, 13115
416
+ (1993).
417
+ [71] Kresse, G. & Furthm¨uller, J.
418
+ Efficiency of ab-initio total energy calculations for metals and semiconductors using a
419
+ plane-wave basis set. Computational Materials Science 6, 15–50 (1996).
420
+ [72] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868
421
+ (1996).
422
+ [73] Klimeˇs, J. c. v., Bowler, D. R. & Michaelides, A. Van der waals density functionals applied to solids. Phys. Rev. B 83,
423
+ 195131 (2011).
424
+ [74] Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials.
425
+ Journal of physics: Condensed Matter 21, 395502 (2009).
426
+ [75] Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
427
+ [76] Mostofi, A. A. et al.
428
+ wannier90:
429
+ A tool for obtaining maximally-localised wannier functions.
430
+ Computer Physics
431
+ Communications 178, 685–699 (2008).
432
+
433
+ 13
434
+ FIG. 1. The strategy to design idea SCTMs by intercalating the SC units into the TI.
435
+ FIG. 2. The generic flow chart to characterize the TSC properties from ab initio calculations.
436
+
437
+ (a)
438
+ TI
439
+ SC
440
+ SCTM
441
+ (b)SCTM structure
442
+ Stability
443
+ Band Topology
444
+ Superconductivity
445
+ DFT + Wannier90 Hbulk
446
+ V
447
+ Slab Hamiltonian Hslab
448
+ Zeeman coupling H
449
+ SC pairing Hsc
450
+ BdG Hamiltonian HBdG
451
+ Energy dispersion
452
+ Wilson loop
453
+ TSC candidate14
454
+ FIG. 3. (a) The side view of the crystal structures of PdBi2Te5, in which the octuple-layer (OL) unit of PdBi2Te5 formed by
455
+ the Bi2Te3 quintuple-layer and PdTe2 triple-layer is marked by a grey dashed rectangle. (b) Convex hull diagram for Pd-Bi-Te
456
+ system, the energy above convex hull is displayed by color-bar. (c) The phonon dispersion of PdBi2Te5. (d) The total DOS
457
+ and projected DOS of the Pd, Te, Bi atoms in PdBi2Te5, the zoom-in image shows the projected DOS near the Fermi level.
458
+ (e) The orbital-projected band structures of PdBi2Te5, where a continuous band gap around the Fermi level is marked by the
459
+ yellow shade. (f) The topological surface states on (001) surface of PdBi2Te5.
460
+
461
+ (a)
462
+ b
463
+ (e)
464
+ Bi
465
+ Pd
466
+ (meV/atom)
467
+ Bi-p
468
+ Pd
469
+ 60
470
+ .
471
+ Te
472
+ e
473
+ 0.5
474
+ Bi
475
+ 40
476
+ PdBi2
477
+ RdBi
478
+ Bi4Te3
479
+ PdBi2Te3
480
+ Energy
481
+ 20
482
+ e
483
+ Te
484
+ BiTe
485
+ Energy
486
+ PdBi2Te4
487
+ BizTe3
488
+ PdBi2Tes
489
+ OL
490
+ PdTe2 PdTe
491
+ c
492
+ -0.5
493
+ F
494
+ 04
495
+ IZ
496
+ F
497
+ d)
498
+ 20
499
+ 0.2
500
+ Total
501
+ 4
502
+ - Pd d
503
+ 5
504
+ Te_p
505
+ 0
506
+ Bi p
507
+ 0.0
508
+ 5
509
+ -0.18
510
+ 4
511
+ 2
512
+ 0
513
+ 2
514
+ 4
515
+ k
516
+ Energy (eV)
517
+ M15
518
+ FIG. 4. (a) The schematic to realize chiral TSC in PdBi2T5 slab. (b) The low energy spectrum at the Γ point as the function of
519
+ Zeeman splitting energy Mz. (c) The superconducting spectrum along high symmetry paths with Mz = 5 meV and ∆ = 1 meV,
520
+ the zoom-in image shows the full gap in the whole BZ. (d) The Wilson loop spectrum for all occupied states of 4(c), which
521
+ manifest the superconducting BdG Chern number CBdG = 1 clearly.
522
+
523
+ (b) 3
524
+ (a)
525
+ CBdG=0
526
+ CBdG=1
527
+ 2
528
+ chiral Majorana states
529
+ (n-OL PdBizTes)
530
+ V
531
+ SCTM
532
+ 0
533
+ M
534
+ -1
535
+ FM insulator
536
+ -2
537
+ -3
538
+ 0
539
+ 2
540
+ M/△
541
+ 8
542
+ 10
543
+ (c)
544
+ (d)
545
+ 40
546
+ 0.5
547
+ 20
548
+ (meV)
549
+ 0
550
+ 0(2元)
551
+ 20
552
+ Energy
553
+ 40
554
+ V
555
+ 0
556
+ -0.5
557
+ K
558
+ M
559
+ -元
560
+ 元Supplementary Material: Topological superconductor candidates PdBi2Te4 and
561
+ PdBi2Te5 from a generic ab initio strategy
562
+ Aiyun Luo,1, ∗ Ying Li,1, ∗ Yi Qin,1, ∗ Jingnan Hu,1 Biao Lian,2 and Gang Xu1, 3, 4, †
563
+ 1Wuhan National High Magnetic Field Center & School of Physics,
564
+ Huazhong University of Science and Technology, Wuhan 430074, China
565
+ 2Department of Physics, Princeton University, Princeton, NJ 08544, United States of America
566
+ 3Institute for Quantum Science and Engineering,
567
+ Huazhong University of Science and Technology, Wuhan 430074, China
568
+ 4Wuhan Institute of Quantum Technology, Wuhan 430074, China
569
+ I.
570
+ The crystal structures of PdBi2Te5 and PdBi2Te4
571
+ The crystal structures of PdBi2Te5 are shown in Fig. S1. Since both Bi2Te3(Fig. S1(a)) and PdTe2(Fig. S1(b))
572
+ are Van der Waals materials, a naturally stable unit of PdBi2Te5 would be an octuple-layer (OL) block as shown in
573
+ Fig. S1(e). With different stacking sequences along c-direction, the crystal structures of AA-stacking, AB-stacking
574
+ and ABC-stacking are shown in Fig. S1(c), (d) and (e), respectively. As a result, the relaxed lattice parameters and
575
+ total energies of these structures are tabulated in Table. S1. Our calculated results demonstrate that the most stable
576
+ structure of PdBi2Te5 is the ABC-stacking rhombohedral unit cell as shown in Fig. S1(e), which is 73 meV/f.u. and
577
+ 46 meV/f.u. lower than the AA and AB stacking structures.
578
+ The crystal structures of PdBi2Te4 are shown in Fig. S2, which is formed by the integration of Bi2Te3(Fig. S2(a))
579
+ and PdTe(Fig. S2(b)). Like the construction of MnBi2Te4 [1, 2], a naturally stable unit of PdBi2Te4 would be a
580
+ septuple-layer (SL) block as shown by the grey dash rectangle in Fig. S2(c)-(e). Similar to the case of PdBi2Te5, the
581
+ relaxed lattice parameters and total energies of AA-stacking, AB-stacking, and ABC-stacking sequences of PdBi2Te4
582
+ are tabulated in Table. S2. Our calculations demonstrate that SL-PdBi2Te4 favor the ABC stacking rhombohedral unit
583
+ cell as shown in Fig. S2(e), which is 73 meV/f.u. and 12 meV/f.u. lower than the AA(Fig. S2(c)) and AB(Fig. S2(d))
584
+ stacking structures.
585
+ ∗ These authors made equal contributions to this work.
586
+ † e-mail address: [email protected]
587
+ arXiv:2301.02844v1 [cond-mat.mtrl-sci] 7 Jan 2023
588
+
589
+ 2
590
+ FIG. S1. The crystal structures of different stacking sequences of PdBi2Te5. (a) A side view of the crystal structures of Bi2Te3,
591
+ the quintuple-layer block is marked by the green dashed rectangle. (b) PdTe2, the triple-layer block is marked by the purple
592
+ dashed rectangle. PdBi2Te5 for (c) AA stacking, (d) AB stacking, and (e) ABC stacking, respectively. A octuple-layer(OL)
593
+ block of PdBi2Te5 is marked by the grey dashed rectangle.
594
+
595
+ (c)
596
+ (e)
597
+ a
598
+ OL
599
+ (d)
600
+ (b)
601
+ Te
602
+ Bi
603
+ Pd3
604
+ FIG. S2. The crystal structures of different stacking sequences of PdBi2Te4. (a) Bi2Te3. (b) PdTe. PdBi2Te4 for (c) AA
605
+ stacking, (d) AB stacking, and (e) ABC stacking, respectively. A SL block of PdBi2Te4 is marked by the grey dashed rectangle.
606
+
607
+ (c)
608
+ a
609
+ (e)
610
+ SL
611
+ (d)
612
+ (b)
613
+ Te
614
+ Bi
615
+ Pd4
616
+ TABLE S1. The crystal parameters and total energies of different stacking sequences of PdBi2Te5 from our relaxed results.
617
+ Compound
618
+ Stacking
619
+ Space group
620
+ Lattice (˚A)
621
+ Atom
622
+ Wyckoff
623
+ Coordinate
624
+ Energy(eV/f.u.)
625
+ PdBi2Te5
626
+ AA
627
+ P3m1
628
+ a = b = 4.287
629
+ Pd
630
+ 1c
631
+ (0.667, 0.333, 0.013)
632
+ -30.385
633
+ c = 16.325
634
+ Bi1
635
+ 1a
636
+ 0, 0, 0.363
637
+ Bi2
638
+ 1a
639
+ 0, 0, 0.623
640
+ Te1
641
+ 1b
642
+ (0.333, 0.667, 0.090)
643
+ Te2
644
+ 1b
645
+ (0.333, 0.667, 0.492)
646
+ Te3
647
+ 1c
648
+ (0.667, 0.333, 0.251)
649
+ Te4
650
+ 1c
651
+ (0.667, 0.333, 0.936)
652
+ Te5
653
+ 1a
654
+ (0, 0, 0.733)
655
+ PdBi2Te5
656
+ AB
657
+ P3m1
658
+ a = b = 4.315
659
+ Pd1
660
+ 1c
661
+ (0.667, 0.333, 0.483)
662
+ -30.412
663
+ c = 30.987
664
+ Pd2
665
+ 1a
666
+ (0, 0, 0)
667
+ Bi1
668
+ 1b
669
+ (0.333, 0.667, 0.792)
670
+ Bi2
671
+ 1c
672
+ (0.667, 0.333, 0.658)
673
+ Bi3
674
+ 1c
675
+ (0.667, 0.333, 0.308)
676
+ Bi4
677
+ 1a
678
+ (0, 0, 0.175)
679
+ Te1
680
+ 1b
681
+ (0.333, 0.667, 0.046)
682
+ Te2
683
+ 1b
684
+ (0.333, 0.667, 0.437)
685
+ Te3
686
+ 1b
687
+ (0.333, 0.667, 0.600)
688
+ Te4
689
+ 1b
690
+ (0.333, 0.667, 0.241)
691
+ Te5
692
+ 1c
693
+ (0.667, 0.333, 0.956)
694
+ Te6
695
+ 1c
696
+ (0.667, 0.333, 0.115)
697
+ Te7
698
+ 1c
699
+ (0.667, 0.333, 0.851)
700
+ Te8
701
+ 1a
702
+ (0, 0, 0.528)
703
+ Te9
704
+ 1a
705
+ (0, 0, 0.726)
706
+ Te10
707
+ 1a
708
+ (0, 0, 0.367)
709
+ PdBi2Te5
710
+ ABC
711
+ R¯3m
712
+ a = b = 4.304
713
+ Pd
714
+ 3b
715
+ (0, 0, 0.5)
716
+ -30.458
717
+ c = 46.391
718
+ Bi
719
+ 6c
720
+ (0, 0, 0.3788)
721
+ Te1
722
+ 3a
723
+ (0, 0, 0)
724
+ Te2
725
+ 6c
726
+ (0, 0, 0.1396)
727
+ Te3
728
+ 6c
729
+ (0, 0, 0.2488)
730
+
731
+ 5
732
+ TABLE S2. The crystal parameters and total energies of different stacking sequences of PdBi2Te4 from our relaxed results.
733
+ Compound
734
+ Stacking
735
+ Space group
736
+ Lattice (˚A)
737
+ Atom
738
+ Wyckoff
739
+ Coordinate
740
+ Energy(eV/f.u.)
741
+ PdBi2Te4
742
+ AA
743
+ P¯3m1
744
+ a = b = 4.275
745
+ Pd
746
+ 1b
747
+ (0, 0, 0.5)
748
+ -26.776
749
+ c = 13.035
750
+ Bi
751
+ 2d
752
+ (0.667, 0.333, 0.2325)
753
+ Te1
754
+ 2d
755
+ (0.333, 0.667, 0.397)
756
+ Te2
757
+ 2c
758
+ (0, 0, 0.09)
759
+ PdBi2Te4
760
+ AB
761
+ P¯3m1
762
+ a = b = 4.275
763
+ Pd
764
+ 2d
765
+ (0.333, 0.667, 0.75025)
766
+ -26.837
767
+ c = 26.070
768
+ Bi1
769
+ 2c
770
+ (0, 0, 0.61675)
771
+ Bi2
772
+ 2d
773
+ (0.667, 0.333, 0.88375)
774
+ Te1
775
+ 2d
776
+ (0.333, 0.667, 0.95375)
777
+ Te2
778
+ 2d
779
+ (0.333, 0.667, 0.54675)
780
+ Te3
781
+ 2c
782
+ (0, 0, 0.80175)
783
+ Te4
784
+ 2d
785
+ (0.667, 0.333, 0.88375)
786
+ PdBi2Te4
787
+ ABC
788
+ R¯3m
789
+ a = b =4.296
790
+ Pd
791
+ 3a
792
+ (0, 0, 0)
793
+ -26.849
794
+ c = 40.546
795
+ Bi
796
+ 6c
797
+ (0, 0, 0.4215)
798
+ Te1
799
+ 6c
800
+ (0, 0, 0.3000)
801
+ Te2
802
+ 6c
803
+ (0, 0, 0.8668)
804
+
805
+ 6
806
+ II.
807
+ The detailed crystal parameters and formation energies of Pd-Bi-Te compounds for convex hull
808
+ The fundamental thermodynamic nature of Pd-Bi-Te compounds can be fully characterized in terms of the convex
809
+ hull diagram [3, 4], which is defined as formation energy versus composition diagram with the ground state at special
810
+ compositions. For all of the known Pd-Bi-Te compounds as tabulated in Table. S3, we calculate their formation
811
+ energy and tabular the results in Table. S4. Based on these results, we construct the convex hull diagram of Pd-Bi-Te
812
+ compounds in Fig.3(b) of the main text. The ternary compounds PdBi2Te3, PdBi2Te4 and Pd2Te5 are 65 meV/atom,
813
+ 59 meV/atom and 13 meV/atom above the convex hull respectively, indicating that they are metastable phases with
814
+ respect to decomposition into the energetically favorable binary phases. Significantly, PdBi2Te3 above the convex
815
+ hull has already been synthesized in experiments, which is higher 52 meV/atom and 7 meV/atom than PdBi2Te5 and
816
+ PdBi2Te4. Therefore, we expect that PdBi2Te5 and PdBi2Te4 could be synthesized in the future.
817
+
818
+ 7
819
+ TABLE S3. The space group, lattice constants and atomic coordinates of Pd-Bi-Te compounds used in the convex hull.
820
+ Compound
821
+ Space group
822
+ Lattice (˚A)
823
+ Atom
824
+ Wyckoff
825
+ Coordinate
826
+ Pd
827
+ Fm¯3m
828
+ a = b = c = 3.889
829
+ Pd
830
+ 4a
831
+ (0, 0, 0)
832
+ Bi
833
+ R¯3m
834
+ a = 4.523, c = 11.800
835
+ Bi
836
+ 3b
837
+ (0, 0, 0.227)
838
+ Te
839
+ P3121
840
+ a = 4.445, c = 5.91
841
+ Te
842
+ 3a
843
+ (0.225, 0.0, 0.0)
844
+ PdBi
845
+ Cmc21
846
+ a = 8.707
847
+ Pd1
848
+ 8b
849
+ (0.274, 0.125, 0.053)
850
+ b = 7.203
851
+ Pd2
852
+ 4a
853
+ (0, 0.108, 0.225)
854
+ c = 10.662
855
+ Pd3
856
+ 4a
857
+ (0, 0.65, 0.225)
858
+ Bi1
859
+ 8b
860
+ (0.226, 0.375, 0.278)
861
+ Bi2
862
+ 4a
863
+ (0, 0.108, 0.5)
864
+ Bi3
865
+ 4a
866
+ (0, 0.35, 0)
867
+ PdBi2
868
+ I4/mmm
869
+ a = b = 3.362
870
+ Pd
871
+ 2a
872
+ (0, 0, 0)
873
+ c = 12.983
874
+ Bi
875
+ 4e
876
+ (0, 0, 0.363)
877
+ PdTe
878
+ P63/mmc
879
+ a = b = 4.152
880
+ Pd
881
+ 2a
882
+ (0, 0, 0)
883
+ c = 5.671
884
+ Te
885
+ 2c
886
+ (0.333, 0.667, 0.25)
887
+ PdTe2
888
+ P¯3m1
889
+ a = b = 4.028
890
+ Pd
891
+ 1a
892
+ (0, 0, 0)
893
+ c = 5.118
894
+ Te
895
+ 2d
896
+ (0.333, 0.667, 0.25)
897
+ BiTe
898
+ P¯3m1
899
+ a = b = 4.400
900
+ Bi1
901
+ 2d
902
+ (0.333, 0.667, 0.291)
903
+ c = 24.000
904
+ Bi2
905
+ 2d
906
+ (0.333, 0.667, 0.541)
907
+ Bi3
908
+ 2c
909
+ (0, 0, 0.126)
910
+ Te1
911
+ 2d
912
+ (0.333, 0.667, 0.056)
913
+ Te2
914
+ 2d
915
+ (0.333, 0.667, 0.789)
916
+ Te3
917
+ 2c
918
+ (0, 0, 0.362)
919
+ Bi2Te3
920
+ R¯3m
921
+ a = b = 4.35
922
+ Bi
923
+ 6c
924
+ (0, 0, 0.600)
925
+ c = 30.36
926
+ Te1
927
+ 6c
928
+ (0, 0, 0.790)
929
+ Te2
930
+ 3a
931
+ (0, 0, 0)
932
+ Bi4Te3
933
+ R¯3m
934
+ a = b = 4.451
935
+ Bi1
936
+ 6c
937
+ (0, 0, 0.146)
938
+ c = 41.888
939
+ Bi2
940
+ 6c
941
+ (0, 0, 0.283)
942
+ Te1
943
+ 6c
944
+ (0, 0, 0.426)
945
+ Te2
946
+ 3a
947
+ (0, 0, 0)
948
+ PdBi2Te3
949
+ R¯3m
950
+ a = b = 4.421
951
+ Pd
952
+ 3b
953
+ (0, 0, 0.5)
954
+ c = 30.337
955
+ Bi
956
+ 6c
957
+ (0, 0, 0.561)
958
+ Te1
959
+ 3a
960
+ (0, 0, 0)
961
+ Te2
962
+ 6c
963
+ (0, 0, 0.796)
964
+
965
+ 8
966
+ TABLE S4. The total energy and formation energy of Pd-Bi-Te compounds used in the convex hull.
967
+ Compound
968
+ Energy(eV/f.u.)
969
+ Formation energy(eV/atom)
970
+ Pd
971
+ -5.161
972
+
973
+ Bi
974
+ -3.804
975
+
976
+ Te
977
+ -2.901
978
+
979
+ PdTe
980
+ -9.022
981
+ -0.480
982
+ PdTe2
983
+ -1.349
984
+ -0.450
985
+ PdBi
986
+ -9.565
987
+ -0.3
988
+ PdBi2
989
+ -13.568
990
+ -0.266
991
+ BiTe
992
+ -7.346
993
+ -0.320
994
+ Bi2Te3
995
+ -18.258
996
+ -0.389
997
+ Bi4Te3
998
+ -25.979
999
+ -0.294
1000
+ PdBi2Te3
1001
+ -23.038
1002
+ -0.261
1003
+ PdBi2Te4
1004
+ -26.849
1005
+ -0.354
1006
+ PdBi2Te5
1007
+ -30.458
1008
+ -0.398
1009
+
1010
+ 9
1011
+ III.
1012
+ The phonon spectrum, electronic structures and superconducting properties of PdBi2Te4
1013
+ In Fig. S3(a), we calculate and plot the phonon dispersion of PdBi2Te4. It clearly shows that there are 21 phonon
1014
+ modes with fully real positive frequencies, indicating that the rhombohedral PdBi2Te4 are dynamically stable. Based
1015
+ on the stable rhombohedral structure, we carry out the calculations with SOC of electronic properties of PdBi2Te4.
1016
+ The total and projected density of states (DOS) are shown in Fig. S3(b), which shows that the total DOS at the Fermi
1017
+ level is about of 3.95 states/eV, indicating its metallic nature and the probability of superconductivity. Fig. S3(c)
1018
+ shows the projected band structures of PdBi2Te4, from which we can see that two bands with p-orbital components
1019
+ from Te or Bi cross the Fermi level and a continuous direct gap (the yellow region in Fig. S3(c)) exists around the
1020
+ Fermi level. Further detailed orbital components analysis demonstrates that band inversion is present between the
1021
+ nominal valence band and conduction band, indicating the non-trivial band topology of bulk PdBi2Te4. In Fig. S3(d),
1022
+ we calculate and plot the topological surface states on the (001) surface of PdBi2Te4, in which the Dirac surface states
1023
+ at the Γ point manifest approximately −62 meV below the Fermi level, confirming PdBi2Te4 is a Z2 topological metal.
1024
+ To investigate the superconducting properties of PdBi2Te4 and PdBi2Te5, we calculate their electron-phonon
1025
+ coupling constant λ and logarithmic average phonon frequency ωlog as tabulated in Table. S5. As a comparison, the
1026
+ λ and ωlog of parent SC PdTe and PdTe2 are also calculated. Moreover, the superconducting transition temperature
1027
+ (Tc) is estimated by using the reduced Allen-Dynes formula as Eq.(4) in the main text. By adopting a typical µ∗ =
1028
+ 0.1, the Tc of PdBi2Te4 and PdBi2Te5 is estimated as 3.11 K and 0.57 K, respectively. Furthermore, the Tc of PdTe
1029
+ and PdTe2 is estimated as 2.55 K and 1.59 K, which are consistent with the experimental results very well [5–9].
1030
+ These results clearly demonstrate that the SC in PdTe and PdTe2 is well inherited into the bulk of PdBi2Te4 and
1031
+ PdBi2Te5.
1032
+ TABLE S5. The calculated electron-phonon coupling strength λ, logarithmic average phonon frequency ωlog and the estimated
1033
+ Tc (µ∗ = 0.1) of PdTe, PdTe2, PdBi2Te4 and PdBi2Te5.
1034
+ Compound
1035
+ λ
1036
+ ωlog(cm−1)
1037
+ Tc(K)
1038
+ Texp
1039
+ c
1040
+ (K)
1041
+ PdTe
1042
+ 0.61
1043
+ 106
1044
+ 2.55
1045
+ 2.3 [5], 4.5 [6]
1046
+ PdTe2
1047
+ 0.52
1048
+ 112
1049
+ 1.59
1050
+ 1.64 [7–9]
1051
+ PdBi2Te4
1052
+ 0.70
1053
+ 89
1054
+ 3.11
1055
+
1056
+ PdBi2Te5
1057
+ 0.43
1058
+ 97
1059
+ 0.57
1060
+
1061
+
1062
+ 10
1063
+ FIG. S3. The phonon dispersion and electronic properties of PdBi2Te4. (a) The phonon dispersion of PdBi2Te4. (b) The total
1064
+ DOS and projected DOS of the Pd, Te, Bi atoms in PdBi2Te4, the zoom-in image shows the projected DOS near the Fermi
1065
+ level. (c) The orbital-projected band structures of PdBi2Te4, a continuous band gap around the Fermi level is marked by the
1066
+ yellow shade. (d) The topological surface states on (001) surface of PdBi2Te4.
1067
+ IV.
1068
+ The chiral TSC phase in PdBi2Te4
1069
+ In this section, we study the chiral TSC phase in 20-SL PdBi2Te4 by incorporating its topological and supercon-
1070
+ ducting properties with Zeeman splitting. In this case, the chemical potential µ is set at the energy of surface Dirac
1071
+ cone at the Γ point (about −62 meV below the Fermi level), the estimated s-wave superconducting gap ∆s = 1.0 meV
1072
+ is introduced globally for all 20-SLs, and the out-of-plane Zeeman splitting is applied only in the bottom layer. In
1073
+ Fig. S4(a), we show the low energy spectrum of HBdG at Γ point as a function of Zeeman splitting energy Mz, which
1074
+ manifests that two superconducting bands cross each other at critical point Mz/∆ = 5. This behavior indicates that
1075
+
1076
+ a
1077
+ b
1078
+ 20
1079
+ Total
1080
+ 4
1081
+ (states/eV
1082
+ -Pd d
1083
+ Frequency (THz)
1084
+ 15
1085
+ -Te p
1086
+ -Bi p
1087
+ 10
1088
+ Density
1089
+ 0
1090
+ F
1091
+ -2
1092
+ 0
1093
+ 2
1094
+ 4
1095
+ Energy (eV)
1096
+ C
1097
+ Bi-p
1098
+ Te-p
1099
+ 0.5
1100
+ 0.0
1101
+ Energy (eV)
1102
+ -0.1
1103
+ -0.5
1104
+ -0.2
1105
+ F
1106
+ M11
1107
+ a topological phase transition happens at the critical point. Fig. S4(b) shows the superconducting energy dispersion
1108
+ with Mz=10 meV and ∆=1 meV. Its zoomed-in image, calculated in the whole BZ, directly reveals the full gap
1109
+ characters of superconducting spectrum, indicating that the system is a well defined chiral TSC. To further verify
1110
+ its nontrivial topological properties, the superconducting BdG Chern number for all occupied states is calculated by
1111
+ the Wilson loop method as shown in Fig. S4(c). The spectrum of Wilson loop exhibits a non-trivial chiral winding
1112
+ number 1, which directly confirms the superconducting BdG Chern number CBdG = 1.
1113
+ FIG. S4. The chiral TSC phase in slab PdBi2T4. (a) The low energy spectrum at the Γ point as the function of Zeeman
1114
+ splitting energy Mz, where ∆ = 1 meV. (b) The superconducting spectrum along high symmetry paths with Mz = 10 meV
1115
+ and ∆ = 1 meV, the zoom-in image shows the full gap in the whole BZ. (c) The Wilson loop spectrum of all occupied states
1116
+ in (b), which manifest the superconducting BdG Chern number CBdG = 1 clearly.
1117
+ V.
1118
+ The electronic structures and topological properties of AuBi2Te5
1119
+ The crystal structure of rhombohedral AuBi2Te5 is shown in Fig. S5(a), which is formed by the layered intercalation
1120
+ of Bi2Te3 and AuTe2. In Fig. S5(b), we show the calculated phonon dispersion along the high symmetry lines of
1121
+ AuBi2Te5, in which the most important observation is that all phonon modes have positive frequency throughout the
1122
+ BZ, indicating the dynamical stability of the rhombohedral structure. In Fig. S5(c), we calculate and plot the total
1123
+ and projected DOS of AuBi2Te5, which gives rise to DOS(0 eV)=5.41 states/eV at Fermi level, indicating its metallic
1124
+ nature and the possibility of superconductivity. Fig. S5(d) shows the orbital-projected band structures of AuBi2Te5,
1125
+ in which a continuous band gap around the Fermi level is marked by the yellow shades. Further detailed orbital
1126
+ components analysis demonstrates that a band inversion exists between the nominal valence band and conduction
1127
+
1128
+ (a)
1129
+ (b)
1130
+ (c)
1131
+ 40
1132
+ 0.5
1133
+ CBdG=0
1134
+ CBdG=1
1135
+ 2
1136
+ 20
1137
+ (meV)
1138
+ 2元)
1139
+ 0
1140
+ A
1141
+ -1
1142
+ -2
1143
+ 0
1144
+ -3
1145
+
1146
+ V
1147
+ -0.5
1148
+ 0
1149
+ 5 Mz/△ 10
1150
+ 15
1151
+ K
1152
+ M
1153
+ Ky
1154
+ -元
1155
+ 元12
1156
+ band, which implies that AuBi2Te5 is a topological metal that inherits from parent Bi2Te3. In Fig. S5(e), we show
1157
+ the calculated surface states of AuBi2Te5 in the (001) surface. It clearly shows that the topological surface states are
1158
+ presented in the bulk gap, confirming AuBi2Te5 is a Z2 topological metal.
1159
+ FIG. S5. The crystal structure, phonon dispersion, and electronic properties of AuBi2Te5. (a) The side view of the crystal
1160
+ structure. (b) The phonon dispersion along high symmetry path. (d) The total DOS and projected DOS of the Au, Te, Bi
1161
+ atoms. (e) The orbital-projected band structures, a continuous band gap around the Fermi level is marked by the yellow shade.
1162
+ (f) The topological surface states on (001) surface.
1163
+ [1] Lee, D. S. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4.
1164
+ CrystEngComm 15, 5532–5538 (2013).
1165
+ [2] Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect.
1166
+ Phys. Rev. Lett. 122, 206401 (2019).
1167
+
1168
+ (a)
1169
+ (b)
1170
+ (c)
1171
+ 10
1172
+ - Total
1173
+ Au
1174
+ Density (states/eV)
1175
+ Au d
1176
+ 8
1177
+ Te p
1178
+ Bi
1179
+ Bi p
1180
+ 6
1181
+ Te
1182
+ OL
1183
+ F
1184
+ 0
1185
+ (e)
1186
+ Energy (ev)
1187
+ (p)
1188
+ 0.2
1189
+ Bi-p
1190
+ te
1191
+ 0.1
1192
+ (eV)
1193
+ 0.0
1194
+ Energy (
1195
+ Energy
1196
+ 0.1
1197
+ -0.2
1198
+ -0.3
1199
+ F
1200
+ 7
1201
+ K
1202
+ M13
1203
+ [3] Sun, Y., Lv, J., Xie, Y., Liu, H. & Ma, Y. Route to a superconducting phase above room temperature in electron-doped
1204
+ hydride compounds under high pressure. Phys. Rev. Lett. 123, 097001 (2019).
1205
+ [4] Sharan, A. & Lany, S. Computational discovery of stable and metastable ternary oxynitrides. The Journal of Chemical
1206
+ Physics 154, 234706 (2021).
1207
+ [5] Matthias, B. T. Superconducting compounds of nonsuperconducting elements. Phys. Rev. 90, 487–487 (1953).
1208
+ [6] Karki, A. B., Browne, D. A., Stadler, S., Li, J. & Jin, R. PdTe: a strongly coupled superconductor. Journal of Physics:
1209
+ Condensed Matter 24, 055701 (2012).
1210
+ [7] Kudo, K., Ishii, H. & Nohara, M. Composition-induced structural instability and strong-coupling superconductivity in
1211
+ Au1−xPdxTe2. Phys. Rev. B 93, 140505 (2016).
1212
+ [8] Leng, H., Paulsen, C., Huang, Y. K. & de Visser, A. Type-I superconductivity in the Dirac semimetal PdTe2. Phys. Rev.
1213
+ B 96, 220506 (2017).
1214
+ [9] Das, S. et al. Conventional superconductivity in the type-II Dirac semimetal PdTe2. Phys. Rev. B 97, 014523 (2018).
1215
+
49E1T4oBgHgl3EQfAwK8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4dE1T4oBgHgl3EQfAwIb/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2dee8b78416ec9151257cc89a7348d9525523ffa032967542217d8f56469695
3
+ size 75773
6dE1T4oBgHgl3EQfBQKx/content/tmp_files/2301.02850v1.pdf.txt ADDED
@@ -0,0 +1,1565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Programmable wave-based analog computing
2
+ machine: a metastructure that designs metastructures
3
+ Dimitrios C. Tzarouchis,1†‡ Brian Edwards,1† Nader Engheta1∗
4
+ 1Department of Electrical and Systems Engineering,
5
+ School of Engineering and Applied Sciences,
6
+ University of Pennsylvania, Philadelphia, 19104, U.S.A.
7
+ †These authors contributed equally to this work.
8
+ ‡Present address: Meta Materials Inc. (Europe),
9
+ Ap. Pavlou 10A, Marousi, 15123, Greece.
10
+ ∗To whom correspondence should be addressed; e-mail: [email protected]
11
+ January 10, 2023
12
+ Abstract: The ability to perform mathematical computations using metastruc-
13
+ tures is an emergent paradigm that carries the potential of wave-based analog
14
+ computing to the realm of near-speed-of-light, low-loss, compact devices. We
15
+ theoretically introduce and experimentally verify the concept of a reconfig-
16
+ urable metastructure that performs analog complex mathematical computa-
17
+ tions using electromagnetic waves. Reconfigurable, RF-based components en-
18
+ dow our device with the ability to perform stationary and non-stationary iter-
19
+ ative algorithms. After demonstrating matrix inversion (stationary problem),
20
+ we use the machine to tackle two major non-stationary problems: root finding
21
+ with Newton’s method and inverse design (constrained optimization) via the
22
+ Lagrange multiplier method. The platform enables possible avenues for wave-
23
+ 1
24
+ arXiv:2301.02850v1 [physics.app-ph] 22 Dec 2022
25
+
26
+ based, analog computations for general linear algebraic problems and beyond
27
+ in compact, ultrafast, and parallelized ways.
28
+ One-Sentence Summary:
29
+ A reconfigurable wave-based analog computing metastructure that
30
+ can inverse-design a metastructure.
31
+ Calculators of various kinds have emerged by forging numerical algorithms with corre-
32
+ sponding technological platforms. While the algorithms describe the mathematical paths on
33
+ how solutions to problems can be found, the platforms are responsible for the transliteration of
34
+ this abstract path into measurable quantities. The algorithms, the platforms, and their fusion
35
+ define such systems’ features and limitations. Following the ever-growing demand for ultrafast,
36
+ compact, low/near-zero-power, and integrable cyber-physical devices for mathematical compu-
37
+ tations, it is organic that significant research efforts focus on making these numerical systems
38
+ as optimal and efficient as possible.
39
+ This quest led to the exploration and development of unconventional analog computing sys-
40
+ tems that exploit electromagnetic waves to deliver parallelized, ultrafast, compact, low-power
41
+ computations (1–4). The two main categories in this domain involve systems that utilize free-
42
+ space (scattering) elements (e.g. lenses (3)), and waveguides (e.g. photonic systems (5, 6)
43
+ and phased arrays (7)). Sufficient free space propagation can act as dense matrix multiplica-
44
+ tion (8). Realized with traditional optics, this results in bulky devices (3,9), while metasurfaces
45
+ can be more compact (10–12). However, in both there can be major bottlenecks regarding
46
+ photonic and electronic integration.
47
+ Waveguiding systems offer more mature solutions for
48
+ integrable and reconfigurable devices, at the expense of much larger footprints compared to
49
+ their free-space counterparts. In all cases, their main challenge is reconfigurability since its
50
+ implementation requires some form of a-priori mathematical calculations. For instance, meta-
51
+ surfaces/complex media (13, 14) requires optimization, and photonic meshes require operator
52
+ 2
53
+
54
+ decomposition (15–18).
55
+ In terms of their mathematical abilities, the above examples demonstrate wave-based analog
56
+ computing with functionalities such as integration/differentiation in space (19–22) and time
57
+ (23), matrix-vector multiplication (24), emulating equations through physical phenomena (25,
58
+ 26), or acting as platforms for neural network functionalities (3,6,27,28). The intersection with
59
+ the metamaterial paradigm delivered a series of remarkable analog computing devices with
60
+ matrix multiplication (4,19,29) and ultimately equation solving (matrix inversion) capabilities
61
+ (30). In most of the cases the matrix computations (especially the matrix inversion (30)) were
62
+ performed through stationary algorithms (31), such as the Jacobi method, where the matrix
63
+ (operator/kernel) does not change with the iteration count.
64
+ The fundamental and far-reaching question we address here is whether a wave-based analog
65
+ metastructure can be reconfigurable simply and intuitively, without needing a-priori calcula-
66
+ tions. Most importantly, the resolution to this question endows one with the ability to implement
67
+ stationary and non-stationary algorithms. We propose a device based on an RF waveguide archi-
68
+ tecture with reconfigurable components. Regarding stationary problems, we use this device to
69
+ perform matrix inversion of a statistically large number of matrices. As for non-stationary prob-
70
+ lems, we demonstrate both root finding using Newton’s method and Inverse Design. All three
71
+ examples are only possible due to the reconfigurability of the device and hint at the possibility
72
+ of deeper explorations into the realm of advanced numerical algebra methods.
73
+ A conceptual representation of the main idea is pictorially summarized in Fig. 1 (A). The
74
+ main property of our proof-of-concept system distinctively different from all previous metas-
75
+ tructure approaches (i.e. (30)) is its reconfigurability; the metastructure has the ability to rapidly
76
+ take on different matrices (operators or kernels) K. To facilitate this, we employ a wave-based
77
+ direct complex matrix (DCM) architecture, which offers an intuitive and simple implementation
78
+ of any desired matrix (32). Using waves instead of currents and voltages, it is analogous to the
79
+ 3
80
+
81
+ crossbar architecture used in electronic analog computing systems (33–35), and it can be seen as
82
+ a generalized phased array feed (7). In this device, a collection of n × n tunable phase shifting
83
+ and amplifying elements (which can also act as attenuating element) connect an input vector
84
+ of n complex amplitudes on an array of transmission lines to a similar output vector through
85
+ combiners. This architecture can be seen schematically in Fig. 1 (B) and its corresponding
86
+ experimental implementation in Fig. 1 (C).
87
+ The key component of the metadevice is the multiplier module (Fig. 1 (D)) so named be-
88
+ cause given an input signal characterized by its complex amplitude at 45MHz, Vin, it will render
89
+ a similar output Vout = zVin, where z is a complex multiplication factor. This module consists of
90
+ two basic components: (a) a voltage-controlled phase shifter with over 360 degrees of potential
91
+ phase rotation, and (b) a voltage-controlled amplifier with ≈47dB of dynamic range (-30dB to
92
+ +17dB). Through the use of an embedded microcontroller unit (MCU) in each multiplier, each
93
+ device can be controlled externally through a suitable communication network and a computer
94
+ (see supplementary material). While the design frequency is 45MHz, the module could be im-
95
+ plemented at RF (GHz) and photonic (THz) platforms platforms, following the same principle
96
+ of operation. The experimental DCM implementation consists of 25 multipliers to yield 5 × 5
97
+ complex matrices. The ingress and egress stages (32) are implemented with five 1-to-5 power
98
+ splitters (ingress stage) and five 5-to-1 signal combiners (egress stage). The multipliers are
99
+ clustered into five groups, one for each matrix row. In Fig. 1(B) we depict the planar schematic
100
+ of the DCM suitable for photonic implementation. However, for the RF implementation we
101
+ stacked and routed the components vertically (Fig. 1 (C)), making the device compact for our
102
+ particular wavelength and platform choice. Different stacking or integrated circuitry approaches
103
+ can potentially be used to further reduce its overall footprint.
104
+ The metadevice can be operated in one of two configurations with dramatically different
105
+ results. When the DCM is set in an open-loop configuration (Fig 1 (E) inset), it can be used
106
+ 4
107
+
108
+ for rapidly calculating parallelized matrix-vector multiplication. However, a closed-loop con-
109
+ figuration can be created by connecting the outputs and the inputs with a feedback loop using
110
+ properly designed couplers (Fig 1 (F) inset). When the DCM is in a closed-loop configuration,
111
+ the metadevice can rapidly calculate parallelized matrix inversion (equation solving). This is a
112
+ unique feature of metadevices/metastructures (30,32) that incorporate feedback loops.
113
+ First we investigate the stationary analysis capabilities of our metadevice. For the assess-
114
+ ment of the open and closed loop operation, we performed a series of randomized trials, one
115
+ instance of which is presented in Fig. 1 (E) and (F). For each trial, a random passive matrix
116
+ A ∈ C5×5 was chosen and applied to the metadevice in both its configurations. Each mea-
117
+ surement was performed by exciting each input port in turn with all other inputs appropriately
118
+ terminated and then observing the complex amplitudes on each of the output ports. For the
119
+ open-loop configuration, this corresponds to performing five matrix-vector multiplications, or
120
+ as A · I where each column of I is progressively applied (one column at a time) as separate
121
+ vectors. The closed-loop configuration was measured similarly, but in this case we are prob-
122
+ ing the steady-state of the metadevice which corresponds to (I − K)−1 · I = A−1 · I. While
123
+ this measurement technique fully characterizes both configurations, in practice dense complex
124
+ vectors will be input and read to achieve parallelized results.
125
+ The estimated relative error ||Aexact − Ameas||2/||Aexact||2 for both cases (Fig. 1 (E) and (F))
126
+ revealed an error about 0.001 and 0.005, respectively. Despite the component imperfections,
127
+ misalignments, measurement noise, and other stochastic errors, the measured results are in
128
+ excellent agreement with the theoretical values. The calibration procedure of the metadevice
129
+ and the statistical analysis of the full trial set (100 values) are presented in the Supplementary
130
+ Material.
131
+ A single multiplier module has a rise time of approximately 80 ns to achieve its desired com-
132
+ plex value. This value is approximately 4T assuming one-period duration of T = 1/45MHz ≈
133
+ 5
134
+
135
+ 22.2 ns. In the open loop configuration, the total response requires approximately 5T, including
136
+ signal delays in connections and splitters. The duration of the closed-loop case is affected by
137
+ the platform and the condition number of the inverted matrix (32), but in principle is in the
138
+ same order of magnitude. Possible photonic implementations may further reduce this time to
139
+ the picosecond range (28) and below (36).
140
+ We now apply the implemented metadevice to two characteristic non-stationary problems
141
+ that highlight its mathematical abilities: (i) root finding of a system of five equations with five
142
+ unknowns using Newton’s iterative technique and (ii) implementing an inverse-design problem
143
+ using the Lagrangian multiplier formalism for constrained optimization. Both cases require
144
+ that the kernel be reprogrammed in each iteration step. Note that our approach is not restricted
145
+ to these two problems; instead, we choose these to highlight the potential of the introduced
146
+ metadevice.
147
+ For the first case we construct a simple nonlinear toy problem and we apply Newton’s algo-
148
+ rithm (37) (Fig. 2 (A)) for finding one possible root. The vector problem statement reads
149
+ f(z) = [f1(z), f2(z), f3(z), f4(z), f5(z)]T = 0
150
+ (1)
151
+ where f ∈ C5×1, z = [z1, z2, z3, z4, z5]T ∈ C5×1, and 0 is the zero vector. We construct the
152
+ vector function to have the following polynomial form
153
+ f1(z) = (z1 − r1)(z2 − 4.2i)(z3 + 2)(z4 − 5i)(z5 − 3.5)
154
+ (2)
155
+ f2(z) = (z1 − 3.9)(z2 − r2)(z3 + 2.5i)(z4 − 3.2i)(z5 − 4.2)
156
+ (3)
157
+ f3(z) = (z1 + 5.2i)(z2 − 4)(z3 − r3)(z4 − 4i)(z5 − 7.1)
158
+ (4)
159
+ f4(z) = (z1 − 3)(z2 − 7i)(z3 + 4)(z4 − r4)(z5 − 5i)
160
+ (5)
161
+ f5(z) = (z1 − 5.2i)(z2 − 4)(z3 + 4.75i)(z4 − 8)(z5 − r5)
162
+ (6)
163
+ where r = [r1, r2, r3, r4, r5]T are the vertices of a regular pentagon with 1/4 radius (see Fig.
164
+ 2(B)) and the other factors represent additional extraneous roots far from the starting point.
165
+ 6
166
+
167
+ For the evaluation of Newton’s method we need to calculate the Jacobian matrix, i.e., Jij =
168
+ ∂fi
169
+ ∂zj or
170
+ Jf(z) =
171
+
172
+
173
+
174
+
175
+
176
+ ∂f1
177
+ ∂z1
178
+ ∂f1
179
+ ∂z2
180
+ · · ·
181
+ ∂f1
182
+ ∂z5
183
+ ∂f2
184
+ ∂z1
185
+ ∂f2
186
+ ∂z2
187
+ · · ·
188
+ ∂f2
189
+ ∂z5
190
+ ...
191
+ ...
192
+ ...
193
+ ...
194
+ ∂f5
195
+ ∂z1
196
+ ∂f5
197
+ ∂z2
198
+ · · ·
199
+ ∂f5
200
+ ∂z5
201
+
202
+
203
+
204
+
205
+
206
+ (7)
207
+ therefore the root can be estimated by the following iterative process
208
+ zn+1 = zn − αJ−1
209
+ f (zn)f(zn)
210
+ (8)
211
+ where α = 0.2 is a relaxation constant (32).
212
+ In Fig. 2 (A), we can see the required algorithm steps that implement the iterative scheme
213
+ described by Eq. (8). Note that the Jacobian changes value in each iteration and it is required
214
+ that its inverse is calculated anew. This is traditionally a computationally expensive operation
215
+ which is accelerated through the use of our metadevice. The results are then used to update the
216
+ z. The method converges successfully after a few iterations.
217
+ A numerical version (using MATLAB) is compared with the experimental results illustrated
218
+ in Fig. 2 (B). We observe that for both MATLAB and the experiment, the estimation vector
219
+ converges close to the exact roots. Moreover, the estimated vector reaches a stationary point as
220
+ the iteration count increases. After 15 iterations the relative error is ||z − r||2/||r||2 ≈ 0.0023.
221
+ This is similar to the accuracy achieved for the stationary trials, thus representing the accuracy
222
+ floor of our system. A similar picture is also visible by comparing three specific iterations, as
223
+ illustrated in Fig. 2 (C), where a comparison of the full Jacobian is presented.
224
+ The experimental results do not precisely follow the paths indicated by the numerical im-
225
+ plementation realized using MATLAB. This can be explained by adding random noise to the
226
+ Jacobian on each iteration step. The added noise N ∈ C5×5 is a random complex matrix that fol-
227
+ lows a normal distribution inside a disk with radius rN = 0.01λmax, where λmax is the maximum
228
+ eigenvalue of the Jacobian. The noise creates many possible paths, all of which successfully
229
+ 7
230
+
231
+ converge and we observe that our measured results comfortably lie within these families of
232
+ curves. Note that some solution branches are more susceptible to this noise than others (e.g. r1
233
+ (blue) and r3 (red) curves in Fig. 2(B)) and this is due to the details of the toy problem solved.
234
+ Generally, the numerical accuracy of the device has a threshold that depends on both the
235
+ implementation and the measuring apparatus (vector network analyzer (VNA)). When higher
236
+ precision computations are required, this device can be a part of a mixed-precision computing
237
+ system. In these systems, part of the calculations are done in a fast, low-precision estimation
238
+ stage and then fed and further refined at a higher precision stage, similar to the in-memory
239
+ mixed-precision approaches in electronic platforms (38).
240
+ For the second example, we chose the case of an inverse design problem (Fig. 3 (A)). We
241
+ assume that our design consists of a collection of m = 5 two-dimensional (2D) scatterers with
242
+ circular cross section at fixed known locations r = [r1, ..., r5], each with an unknown bounded
243
+ permittivity ε = [ε1, ..., ε5] ∈ C5×1. The goal is to achieve a specific user-defined scattered field
244
+ measured at a series of n = 4 detection (objective) points, o = [o1, ..., o4]. Note that in our case
245
+ we assume a collection of cylindrical circular scatterers (2D) excited with a monochromatic
246
+ incident field of λw wavelength. The x-propagating incident field (kx) is a polarized in the
247
+ z-direction (TE wave - Ez) with the ejωt convention.
248
+ The scatterers are coupled, making this a nonlinear problem modeled using the Lippmann–
249
+ Schwinger (39) scheme, solved with a standard discrete dipole approximation (DDA) method-
250
+ ology (40). Each scatterer will respond to the local (self-excluded) electric field, which consists
251
+ of the known incident electric field, einc ∈ C5×1, and the scattered field from all other scatterers,
252
+ esca ∈ C5×1. The scatterers exhibits a complex polarization vector p = A(einc + esca) ∈ C5×1
253
+ where A is the normalized polarizabilitiy diagonal matrix, i.e., A = diag(ε − εbackground).
254
+ The field interaction between the scatterers are expressed via the Greens matrix G ∈
255
+ C5×5
256
+ (hollow symmetric matrix) such that esca = Gp.
257
+ We may express the polarization vector
258
+ 8
259
+
260
+ p = A(einc + Gp), which indicates the mutual dependence of p. Therefore, the polarization
261
+ vector can be calculated as p = (A−1 − G)−1einc. Finally, we use the four objective points o to
262
+ measure the scattered field vector emeas = Gprp ∈ C4×1 where Gpr ∈ C4×5 is the propagator
263
+ Greens function. The measured field is then compared to a (user-defined) objective eobj ∈ C4×1.
264
+ A typical constrained minimization problem (primal) can be written as (37)
265
+ min
266
+ x,y
267
+ f(x, y)
268
+ s.t.
269
+ g(x, y) ≤ 0
270
+ (9)
271
+ where f(x, y) are the objectives and g(x, y) are the constraints. For such problems the La-
272
+ grangian (dual) problem is expressed as
273
+ max
274
+ λ
275
+ min
276
+ x,y
277
+ L(x, y, λ) = f(x, y) + λg(x, y)
278
+ (10)
279
+ Note that x and y may be subject to further requirements such as domains and bounds.
280
+ For our particular example we have that x = p, y = ε, and f(p, ε) = 1/2||Gprp − eobj||2 and
281
+ g(p, ε) = 1/2||(A(ε)−1 − G)p − einc||2. In our formulation, the objective is the scattered field at
282
+ the observation points. The constraints comprise the self-consistency of the polarization vector
283
+ (physics). Also, the permittivity vector is subject to specific bounds, i.e., ε ∈ R and ε ∈ [1, 5].
284
+ Note that g(p, ε) is nonlinear with respect to p and ε and therefore requires a non-stationary
285
+ approach.
286
+ Following an initialization, our numerical evaluation of the above is implemented by a non-
287
+ stationary algorithm that requires repeated application of the following three steps. First, we
288
+ minimize with respect to ε by examining ∇εL(p, ε, λ) = 0. At this step we project the resulting
289
+ permittivity vector to the desired domain and bounds. Second, we minimize with respect to p by
290
+ examining ∇pL(p, ε, λ) = 0. At this stage the required stationary matrix inversion is performed
291
+ with our metadevice. Finally we maximize for λ by using ∇λL(p, ε, λ) = 0. These steps are
292
+ repeated until convergence is achieved, i.e.,
293
+ E = ||eobj − emeas||2/||eobj||2 < δ
294
+ (11)
295
+ 9
296
+
297
+ (for more information see SM).
298
+ As a numerical test case, the scatterers are assumed to be lossless with permittivity of ε =
299
+ [ε1, ε2, ε3, ε4, ε5] = [3.5, 1.5, 1.5, 3.5, 1.5]. The objective scattered field at the detection points
300
+ o, as depicted in (Fig. 3(A)), is eobj = [−0.0086 − 0.0078j, 0.0089 − 0.0132j, −0.0066 −
301
+ 0.0120j, 0.0043 − 0.0004j]. The values were extracted from the DDA method and verified with
302
+ a full-wave COMSOL simulation. Note that the Fig 3(A) depicts the complex (hue/saturation)
303
+ of the electric scattered field (Ez), i.e. the difference between the total field and the incident
304
+ excitation.
305
+ Figure 3 (B) depicts a set of four cases for the same algorithm. In the first case (black
306
+ line), the idealized (noiseless, no filtering) computer evaluation of the algorithm is given - we
307
+ observe that after only 20 iterations the error drops below 10−3. The experimental results are
308
+ presented in Fig. 3(B) as red dots. The measured results exhibit an optimal point (minimum
309
+ error) after 87 iterations, with an error of 0.00172. As an analog device, there is an additional
310
+ systematic/stochastic/experimental noise to the system which affects the fidelity of the matrix
311
+ inversion. We apply a simple averaging filtering scheme on the polarization estimation, i.e.,
312
+ pnew = (1 − αF)p + αFpprevious, with αF = 0.25, as a way to partially mitigate this noise.
313
+ The filter affects the convergence speed by increasing the iteration count but also significantly
314
+ improves the accuracy/fidelity of the matrix inversion, hence the metadevice’s performance.
315
+ This feature is illustrated in Fig. 3 (B), where the retrieved experimental results are compared
316
+ to the idealized computer evaluation with the applied filter (blue line). We also performed a
317
+ series of 100 randomized cases of the idealized filtered computer evaluation with added noise
318
+ to the estimated/measured polarization vector (faint blue lines in Fig. 3(B)). The noise profile
319
+ is similar to the one used in the first example (Newton’s method). The measured results are
320
+ well contained within these error bounds. Note that iteration count is not equivalent of time.
321
+ For a traditional computer evaluation, each iteration (with its required matrix-inversion) could
322
+ 10
323
+
324
+ ultimately be slower than the convergence time of an optimized hardware implementation of
325
+ the metadevice.
326
+ Due to systematic/measurement noise, the error begins to grow after the experimental accu-
327
+ racy floor is obtained - an indication that a termination criterion could be applied at this point.
328
+ This result also agrees with the maximum accuracy we obtained in the previous non-stationary
329
+ example. More sophisticated error-correcting and filtering schemes can possibly push the accu-
330
+ racy below this threshold. For instance, αF could be adaptively tuned during the non-stationary
331
+ evaluation to realize a mixed-precision computing system.
332
+ At the minimum error point (iteration 87), the extracted permittivity estimation is illustrated
333
+ in (Fig. 3(C)). Notice that the values are very close to the numerical test case objectives and
334
+ permittivities. Finally, Fig. 3 (D) illustrates the path of the scattering vector, emeas, for these 87
335
+ iterations. Similar to the above example, the faint paths represent the added noise effects to the
336
+ numerical evaluation.
337
+ For both presented non-stationary examples, it is evident that our metadevice can act ei-
338
+ ther as an ultrafast analog computing machine and mathematics calculator with waves, or in
339
+ a broader sense as an electromagnetic emulator for inverse design (41). It can be used for a
340
+ plethora of realistic problems where the linear response of a system (i.e. matrix-vector mul-
341
+ tiplication) or the solution of a system of equations (stationary problems, matrix inversion)
342
+ is required. Moreover, the intuitive reconfigurability of this metadevice also enables the per-
343
+ formance of constrained optimization tasks, like the ones required in non-stationary problems
344
+ such as inverse design, where the desired response of complex media requires intensive opti-
345
+ mization (42). In short, this metastructure can design metastructures. Finally, an adaptation
346
+ of the above proof-of-concept metadevice in RF-IC, photonic, or hybrid platforms can make it
347
+ an excellent candidate for on-the-fly or computation-through-propagation ultrafast, parallelized
348
+ calculations.
349
+ 11
350
+
351
+ References
352
+ 1. H. J. Caulfield, S. Dolev, Nat. Photonics 4, 261 (2010).
353
+ 2. D. R. Solli, B. Jalali, Nat. Photonics 9, 704 (2015).
354
+ 3. G. Wetzstein, et al., Nature 588, 39 (2020).
355
+ 4. F. Zangeneh-Nejad, D. L. Sounas, A. Al`u, R. Fleury, Nat. Rev. Mater. 6, 207 (2021).
356
+ 5. J. Feldmann, et al., Nature 589, 52 (2021).
357
+ 6. U. Te˘gin, M. Yıldırım, I. O˘guz, C. Moser, D. Psaltis, Nat. Comput. Sci. 1, 542 (2021).
358
+ 7. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, Nature 493, 195 (2013).
359
+ 8. J. W. Goodman, Introduction to Fourier optics (Roberts & Co.,, Englewood, Colorado,
360
+ 2005), third edition edn.
361
+ 9. I. M. Vellekoop, A. P. Mosk, Opt. Lett. 32, 2309 (2007).
362
+ 10. A. M. Shaltout, V. M. Shalaev, M. L. Brongersma, Science 364 (2019).
363
+ 11. M. F. Imani, et al., IEEE Trans. Antennas Propag. 68, 1860 (2020).
364
+ 12. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, D. R. Smith, Nature 560, 565 (2018).
365
+ 13. M. W. Matth`es, P. del Hougne, J. de Rosny, G. Lerosey, S. M. Popoff, Optica 6, 465 (2019).
366
+ 14. S. Venkatesh, X. Lu, H. Saeidi, K. Sengupta, IEEE Antennas Propag. Mag. pp. 2–15 (2022).
367
+ 15. M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani, Phys. Rev. Lett. 73, 58 (1994).
368
+ 16. D. A. B. Miller, Photonics Res. 1, 1 (2013).
369
+ 12
370
+
371
+ 17. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A. Walmsley, Optica
372
+ 3, 1460 (2016).
373
+ 18. D. Marpaung, J. Yao, J. Capmany, Nat. Photonics 13, 80 (2019).
374
+ 19. A. Pors, M. G. Nielsen, S. I. Bozhevolnyi, Nano Lett. 15, 791 (2015).
375
+ 20. T. Zhu, et al., Nat. Commun. 8, 1 (2017).
376
+ 21. A. Cordaro, et al., Nano Lett. 19, 8418 (2019).
377
+ 22. Y. Zhou, H. Zheng, I. I. Kravchenko, J. Valentine, Nat. Photonics 14, 316 (2020).
378
+ 23. F. Zangeneh-Nejad, R. Fleury, Nat. Commun. 10, 2058 (2019).
379
+ 24. A. Macho-Ortiz, D. P´erez-L´opez, J. Capmany, Laser Photon. Rev. n/a, 2000473 (2021).
380
+ 25. T. W. Hughes, I. A. D. Williamson, M. Minkov, S. Fan, Sci. Adv. 5, eaay6946 (2019).
381
+ 26. S. K. Vadlamani, T. P. Xiao, E. Yablonovitch, Proc. Natl. Acad. Sci. U. S. A. 117, 26639
382
+ (2020).
383
+ 27. X. Lin, et al., Science 361, 1004 (2018).
384
+ 28. F. Ashtiani, A. J. Geers, F. Aflatouni, Nature 606 (2022).
385
+ 29. A. Silva, et al., Science 343, 160 LP (2014).
386
+ 30. N. Mohammadi Estakhri, B. Edwards, N. Engheta, Science 363, 1333 LP (2019).
387
+ 31. R. Barrett, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative
388
+ Methods (Society for Industrial and Applied Mathematics, 1994).
389
+ 32. D. C. Tzarouchis, M. J. Mencagli, B. Edwards, N. Engheta, Light Sci. Appl. 11, 263 (2022).
390
+ 13
391
+
392
+ 33. D. Ielmini, H.-S. P. Wong, Nat. Electron. 1, 333 (2018).
393
+ 34. M. A. Zidan, et al., Nat. Electron. 1, 411 (2018).
394
+ 35. Z. Sun, et al., Proc. Natl. Acad. Sci. 116, 4123 LP (2019).
395
+ 36. Q. Guo, et al., Nat. Photonics 16, 625 (2022).
396
+ 37. D. P. Bertsekas, Nonlinear programming (Athena Scientific,, Belmont, Mass. :, 1995).
397
+ 38. M. Le Gallo, et al., Nat. Electron. 1, 246 (2018).
398
+ 39. T.-A. Pham, et al., IEEE Trans. Comput. Imaging 6, 727 (2020).
399
+ 40. M. A. Yurkin, A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transf. 106, 558 (2007).
400
+ 41. S. Molesky, et al., Nat. Photonics 12, 659 (2018).
401
+ 42. M. Horodynski, M. K¨uhmayer, C. Ferise, S. Rotter, M. Davy, Nature 607, 281 (2022).
402
+ Acknowledgments
403
+ The authors would like to thank Mario Junior Mencagli for useful discussions and preliminary
404
+ experimental survey on the subject. D.C.T acknowledges Luiz F. O. Chamon and Juan Cervi˜no
405
+ for the useful inputs and discussions regarding the constrained optimization algorithm.
406
+ Funding
407
+ : This work is supported in part by the Air Force Office of Scientific Research
408
+ (AFOSR) Multidisciplinary University Research Initiative (MURI) grant numbers FA9550-17-
409
+ 1-0002 and FA9550-21-1-0312.
410
+ Competing Interests
411
+ : N.E. is a strategic scientific advisor/consultant to Meta Materials Inc.
412
+ The authors have no competing interest.
413
+ 14
414
+
415
+ Authors Contributions:
416
+ N.E. conceived the idea for the reconfigurable device that solve
417
+ equations, acquired the funds, and supervised the project. D.C.T developed further the rele-
418
+ vant theories and analyses of the project. B.E. designed and programmed the device and the
419
+ device’s calibration routine. D.C.T. and B.E. assembled, built, tested the components, and per-
420
+ formed simulations and experimental measurements. D.C.T and B.E. developed the numerical
421
+ examples. All the authors discussed the results. D.C.T wrote the first draft of the manuscript
422
+ and D.C.T, B.E. and N.E. discussed, developed, and edited the final version of the manuscript.
423
+ Data and materials availability:
424
+ All data needed to evaluate the conclusions in the paper are
425
+ present in the main text and the supplementary materials.
426
+ Supplementary Materials
427
+ Materials and Methods
428
+ Supplementary Text
429
+ Figs. S1 to S9
430
+ References (1-15)
431
+ 15
432
+
433
+ Figure 1: A reconfigurable wave-based analog computing metastructure: (A) A conceptual
434
+ representation that describes the main objective, i.e., a reconfigurable device that can provide
435
+ us with repeated matrix inversions of arbitrary matrices in order to achieve stationary and non-
436
+ stationary algorithms. The device can implement any given kernel K = I − A and give the
437
+ (I − K)−1 = A−1. (B) The central component of the design consists of a direct complex
438
+ matrix (DCM) (32) architecture of 5x5 elements. (C) The experimental realization of this design
439
+ for the 45 MHz operating frequency. (D) The essential element of the DCM is the multiplier
440
+ module, consisting of both a phase-shifting and an amplification part (which can also function
441
+ as attenuation part); controlled with an onboard microntroller unit. Finally, (E) and (F) depict
442
+ the performance of the DCM machine in the open-loop (matrix-vector multiplication) and the
443
+ closed-loop (matrix inversion) setups. In both we compare the experimentally obtained matrix
444
+ to one computed conventionally to see good agreement.
445
+ 16
446
+
447
+ (A)
448
+ x = (I-K)"b
449
+ (C)
450
+ (E)
451
+ (out)
452
+ b (in)
453
+ K
454
+ =A
455
+ 90
456
+ K
457
+ n
458
+ 0.25
459
+ in
460
+ ino
461
+ w
462
+ 180
463
+ 0
464
+ -
465
+ K
466
+ n-2
467
+ C
468
+ o exact
469
+ exp
470
+ 270
471
+ a,
472
+ (F)
473
+ (B)
474
+ a.
475
+ 12
476
+ couplers
477
+ 2
478
+ a.
479
+ ino
480
+ kernel
481
+ (D)
482
+ K=I-A
483
+ 90
484
+ 41
485
+ control
486
+ in
487
+ out
488
+ ?2
489
+ multiplier
490
+ phase shift
491
+ 0.5
492
+ 52
493
+ amp
494
+ in.
495
+ ino
496
+ 180
497
+ in.
498
+ in
499
+ kernel
500
+ exact
501
+ in
502
+ out
503
+ phase shift
504
+ amp
505
+ exp
506
+ K
507
+ multiplier mod
508
+ 270Figure 2: Experimental verification of Newton’s root finding method with the proposed
509
+ metadevice: (A) The algorithmic steps implemented in Newton’s root finding method. A fixed
510
+ kernel is programmed into the DCM machine in each iteration. The measured results are used
511
+ for calculating the next steps of the algorithm. (B) A comparison between the experimental
512
+ results and a numerical implementation of the algorithm. The faint solid lines are cases where
513
+ additional stochastic noise has been added to the system. We observe that the experimental
514
+ trajectory is well contained within these simulated noisy paths. (C) A comparison between
515
+ the numerical (left column) and measured (right column) evaluation of the inverse Jacobian at
516
+ different iterations.
517
+ 17
518
+
519
+ J-1(zn)
520
+ (A)
521
+ (C)
522
+ 4×103
523
+ Algorithm 1: Newton's Method
524
+ 1: Initialize z, =[0,0,0,0,0]
525
+ numerical
526
+ experiment
527
+ 2: for n = 1, ... , m do
528
+ 3:
529
+ J(z), f(zn), α
530
+ > Jacobian, function, scaling
531
+ 4:
532
+ K, = I - α,J(zh)
533
+ > kernel for DCM
534
+ n= 1
535
+ 5:
536
+ J-1(z.) = DCMnx(K.)
537
+ > matrix inverse with DCM
538
+ 7:
539
+ d,= J-1(z.)f(zn)
540
+ 8:
541
+ Zn+1 = Zn- αd.
542
+ 9: end for
543
+ (B)
544
+ iterations
545
+ numerical
546
+ num + noise
547
+ ?n=15
548
+ n= 5
549
+ experiment
550
+ 0.2
551
+ exact
552
+ @n=5
553
+ imag
554
+ n= 1
555
+ 0
556
+ n=15
557
+ -0.2
558
+ -0.2
559
+ 0
560
+ 0.2
561
+ realFigure 3: A metastructure that designs a metastructure: Numerical and experimental
562
+ results: (A) Schematic of the numerical test case. A set of five two-dimensional (2D) scatterers
563
+ with unknown permittivities, to be determined via our analog metadevice, ε = [ε1, ..., ε5] subject
564
+ to a plane wave excitation. Pictured is the complex-valued scattered field. The scattered fields
565
+ at the observations points [o1, ..., o4] are used as the benchmark values of this problem in which
566
+ the objective fields are shown as the color in each torus. The algorithm tunes each permittivity
567
+ in order to match the scattered field (center of each torus) to the objective fields. (B) The relative
568
+ error E for the algorithm computed both numerically, and experimentally using the metadevice,
569
+ under various noise and filtering scenarios. The experimental device gives a minimum relative
570
+ error of 0.00172 at 87 iterations. (C) Objective permittivities (black rings) compared to those
571
+ computed numerically (blue cross) and experimentally via the metadevice (yellow rhombus)
572
+ using the described algorithm at iteration 87. (D) Evolution of scattered field vector up to
573
+ iteration 87 in comparison to objective fields for experiment and simulation under various noise
574
+ and filtering scenarios.
575
+ 18
576
+
577
+ 100
578
+ (A)
579
+ (B)
580
+ experiment
581
+ num
582
+ num+filter
583
+ >X
584
+ 2入
585
+ num+noise+filter
586
+ W
587
+ min (87,0.0017)
588
+ scatterers 入w/25
589
+ OP
590
+ 10-1
591
+ error
592
+ 3
593
+ 102
594
+ 0.025
595
+ 025
596
+ objectivepoints
597
+ 103
598
+ re
599
+ 0
600
+ 20
601
+ 40
602
+ 60
603
+ 80
604
+ 100
605
+ 120
606
+ iterations
607
+ (C)
608
+ (D)
609
+ X10-3
610
+ numerical
611
+ 04
612
+ 0
613
+ experiment
614
+ exact
615
+ permittivity
616
+ 3
617
+ imag
618
+ -5
619
+ O
620
+ 2
621
+ U
622
+ -10
623
+ 1
624
+ sca:numerical
625
+ esca:experiment
626
+ -15
627
+ 2
628
+ 3
629
+ 4
630
+ 5
631
+ numberof scaterer
632
+ -0.01
633
+ -0.005
634
+ 0
635
+ 0.005
636
+ 0.01
637
+ realSupporting Material
638
+ Dimitrios C. Tzarouchis,1†‡ Brian Edwards,1† Nader Engheta1∗
639
+ 1Department of Electrical and Systems Engineering,
640
+ School of Engineering and Applied Sciences,
641
+ University of Pennsylvania, Philadelphia, 19104, U.S.A.
642
+ †These authors contributed equally to this work.
643
+ ‡Present address: Meta Materials Inc. (Europe),
644
+ Ap. Pavlou 10A, Marousi, 15123, Greece.
645
+ ∗To whom correspondence should be addressed; e-mail: [email protected]
646
+ January 10, 2023
647
+ 1
648
+ Details for the root finding algorithm
649
+ In the following the lowercase quantities are vectors, the capitalized ones are matrices while Greek
650
+ letters denote scalars - the subscripts follow a logical notation. The problem statement for the root
651
+ finding procedure is
652
+ f(z) = 0
653
+ (1)
654
+ find z ∈ Cm×1 that satisfies the above equation (roots) of f ∈ Cm×1. The above problem is solved
655
+ using Newton’s method for finding the root of a vector polynomial function [1]. For example we have
656
+ f(z) =
657
+
658
+
659
+
660
+
661
+
662
+
663
+ f1(z1, z2, z3, z4, z5)
664
+ f2(z1, z2, z3, z4, z5)
665
+ f3(z1, z2, z3, z4, z5)
666
+ f4(z1, z2, z3, z4, z5)
667
+ f5(z1, z2, z3, z4, z5)
668
+
669
+
670
+
671
+
672
+
673
+
674
+ (2)
675
+ with z1·5 ∈ C or (equivalently)
676
+ f1(z) = (z1 − r1)(z2 − 4.2i)(z3 + 2)(z4 − 5i)(z5 − 3.5)
677
+ (3)
678
+ f2(z) = (z1 − 3.9)(z2 − r2)(z3 + 2.5i)(z4 − 3.2i)(z5 − 4.2)
679
+ (4)
680
+ f3(z) = (z1 + 5.2i)(z2 − 4)(z3 − r3)(z4 − 4i)(z5 − 7.1)
681
+ (5)
682
+ f4(z) = (z1 − 3)(z2 − 7i)(z3 + 4)(z4 − r4)(z5 − 5i)
683
+ (6)
684
+ f5(z) = (z1 − 5.2i)(z2 − 4)(z3 + 4.75i)(z4 − 8)(z5 − r4)
685
+ (7)
686
+ where
687
+ r = 1
688
+ 4 (s1 + c1i, −s1 + c1i, −s2 − c2i, s2 − c2i, 1i)T
689
+ (8)
690
+ with c1 = cos(2π/5), c2 = cos(π/5), s1 = sin(2π/5), and s2 = sin(4π/5). The point corresponds to
691
+ the vertices of a regular pentagon. For the evaluation of Newton’s method we need to calculate the
692
+ Jacobian matrix, i.e., Jij = ∂fi
693
+ ∂xj (here i and j are indexes) or
694
+ Jf(z) =
695
+
696
+
697
+
698
+
699
+
700
+
701
+ ∂f1
702
+ ∂z1
703
+ ∂f1
704
+ ∂z2
705
+ · · ·
706
+ ∂f1
707
+ ∂z5
708
+ ∂f2
709
+ ∂z1
710
+ ∂f2
711
+ ∂z2
712
+ · · ·
713
+ ∂f2
714
+ ∂z5
715
+ ...
716
+ ...
717
+ ...
718
+ ...
719
+ ∂f5
720
+ ∂z1
721
+ ∂f5
722
+ ∂z2
723
+ · · ·
724
+ ∂f5
725
+ ∂z5
726
+
727
+
728
+
729
+
730
+
731
+
732
+ (9)
733
+ 1
734
+ arXiv:2301.02850v1 [physics.app-ph] 22 Dec 2022
735
+
736
+ therefore the root can be found as
737
+ zn+1 = zn − αJ−1
738
+ f (zn)f(zn)
739
+ (10)
740
+ where α is a relaxation constant. Here we used α = 0.2. In terms of an algorithm, we have the
741
+ following routine
742
+ Algorithm 1 Root finding with Newton’s method
743
+ 1: Initial guess for z1
744
+ 2: for n = 1, . . . , m do
745
+ 3:
746
+ Jf(zn)
747
+ 4:
748
+ αλ =
749
+ 2
750
+ λmin+λmax
751
+ ▷ Scaling factor: λmim/max are the min/max eigenvalues of Jf(zn)
752
+ 5:
753
+ Kn = I − αλJf(zn)
754
+ ▷ Kernel that is fed to DCM machine
755
+ 6:
756
+ dn = J−1
757
+ f (zn)f(zn)
758
+ ▷ Compute matrix inverse with the DCM machine
759
+ 7:
760
+ zn+1 = zn − αdn
761
+ 8: end for
762
+ 2
763
+ Details on the inverse design algorithm
764
+ In this section we present the details for the inverse design algorithm implemented in text. The al-
765
+ gorithm consist of a part of the DDA methodology for the quantification of the problem and an its
766
+ adaptation to a Lagrange formalism for solving the require inverse scattering problem, the determina-
767
+ tion of the permittivity of the scatterers. Note that both methods are arguably the simplest methods to
768
+ follow, since they offer an intuitive understanding on the formulated problem and the coorresponding
769
+ inverse-design (constraints optimization) problem.
770
+ 2.1
771
+ Notes on the DDA method
772
+ In this section we present a few details regarding the DDA method used in the main text. The details
773
+ can be found also in [2, 3, 4, 5]. A similar methodological approach was also used in [6].
774
+ We start by assuming that each 2D scatterer (assuming a point in the x-y plane) acquires its
775
+ z-oriented dipole moment due to the local electric field, i.e.,
776
+ p = αeloc
777
+ (11)
778
+ where the eloc is the vector of local z-polarized electric fields at the center of each point and α is the
779
+ polarizability that depends on the shape and the material composition of each 2D scatterer. The local
780
+ field is the sum of the incident field and the secondary fields generated from all the other dipoles such
781
+ that:
782
+ eloc = einc + Gp
783
+ (12)
784
+ where einc is the incident field vector, p is the induced polarization vector and G is the 2D Green’s
785
+ function. In our case we consider a two-dimensional (2D) problem with a transverse electric (TE)
786
+ excitation (the field is normal (z-direction) to the x-y plane). Therefore the corresponding Green’s
787
+ function reads
788
+ G = G(ri − rk) = −j k2
789
+ 0
790
+ 4πε0
791
+ H(2)
792
+ 0 (k0|ri − rk|)
793
+ (13)
794
+ where H(2)
795
+ 0 (k0|ri − rk|) is the Hankel function of the second type (with the time harmonic convention
796
+ e+jωt) and 0-th order and k0 = ω0√µ0ε0 is the free-space wavenumber [7]. The G is a CN×N Toeplitz
797
+ matrix with zero diagonal entries since the |ri − rk| is treated as in (assuming a uniformly spaced
798
+ discrete grid) [2, 3, 4, 5].
799
+ By combining Eqs. (11) and (12) we obtain the following expression, arranged using the matrix
800
+ formulation as follows
801
+ p =
802
+
803
+ A−1 − G
804
+ �−1 einc
805
+ (14)
806
+ 2
807
+
808
+ where the lowercase quantities p = [p1, p2, ..., pN]T , A = diag(α), α = Acellε0[ε1 − 1, ε2 − 1, ..., εN − 1]
809
+ (Acell is the cross-sectional area of a cylinders) and einc = [einc
810
+ 1 , einc
811
+ 2 , ..., einc
812
+ N ]T are CN×1 vectors, diag(·)
813
+ is the diagonal matrix operator.
814
+ Finally, the scattered field observed at M specified discrete detection points (in general M ̸= N)
815
+ is given by:
816
+ esca = Gpr p = Gpr
817
+
818
+ diag(α−1) − G
819
+ �−1 einc
820
+ (15)
821
+ where Gpr ∈ CM×N is the “propagator" Green’s function matrix. This propagator function connects
822
+ the induced dipole polarization vectors of the scatterers with the desired detection (or objective) points.
823
+ The above matrix representation of the scattering problem allow us to have a clear inspection of the
824
+ unknown quantities. These quantities are the ones that will be formulated as a Lagrange multiplier
825
+ algorithm for the solution of the desired constrained optimization problem. We note here that, as seen
826
+ in Eq. (15), the forward scattering problem requires a matrix inversion to evaluate the polarization
827
+ density vectors induced in each scattering cell, as we have discussed in our previous work [6] in which
828
+ we utilized the same DDA approach for the evaluation Eq. (14) and the matrix-vector operation of
829
+ Eq. (15) for different excitation and for different scattering scenarios.
830
+ 2.2
831
+ Notes on the Lagrange multiplier algorithm
832
+ For this, we utilize the DDA algorithm (where we closely follow the contrast source inversion method![8])
833
+ and the Lagrange multiplier method for applying the constraints and finding the optimal solution.
834
+ First, in terms of the defined problem, we have that the polarization is connected with the following
835
+ expressions
836
+ p = A(einc + Gp)
837
+ (16)
838
+ and
839
+ esca = Gprp
840
+ (17)
841
+ A typical constrained minimization problem (primal) can be written as [9, 1, 10]
842
+ min
843
+ x,y
844
+ y∈R
845
+ 0≤y≤1
846
+ f(x, y)
847
+ s.t.
848
+ g(x, y) ≤ 0
849
+ (18)
850
+ where f(x, y) is the objective and g(x, y) are the constraints also subject to further requirements of
851
+ the problem such as y ∈ R and 0 ≥ y ≥ 1 For such problems the dual Lagrangian problem is expressed
852
+ as
853
+ max
854
+ λ
855
+ min
856
+ x,y
857
+ y∈R
858
+ 0≤y≤1
859
+ L(x, y, λ) = f(x, y) + λg(x, y)
860
+ (19)
861
+ which is essentially a dual unconstrained problem (since all the constraints are encapsulated to the λ
862
+ term). It is worth noting that the Lagrange multiplier should be positive real, λ ∈ R+. Finding an
863
+ approximate solution to the primal inverse scattering problem is therefore reduced to finding a solution
864
+ to the above dual problem. Notice that the Lagrange multiplier can be applied to either f(x, y) or
865
+ g(x, y) without affecting the outcome of the overall process.
866
+ The algorithm for solving the above dual problem is the following:
867
+ • Step 0: initial x0 and λ0
868
+ • Step 1: minimize yn, i.e., via ∇yL(xn−1, yn, λn−1) = 0
869
+ • Step 2: project yn into y ∈ R and 0 ≤ y ≤ 1
870
+ • Step 3: minimize xn, i.e., ∇xL(x, yn, λn−1) = 0
871
+ • Step 4: maximize λn, i.e., ∇λL(xn, yn, λ) = 0
872
+ • Step 5: Repeat steps 1-4 until the error is minimized
873
+ 3
874
+
875
+ For our particular example we have that x = p, y = A = diag(ε − 1), and f(p, A) = 1/2||(A−1 −
876
+ G)p − einc||2 and g(p) = 1/2||Gprp − eobj||2, and Lagrange function reads
877
+ L(p, A, λ) = ||(A−1 − G)p − Aeinc||2 + λ||Gpp − eobj||2
878
+ (20)
879
+ The corresponding algorithmic steps are:
880
+ • Step 0: initial p0 and λ0
881
+ • Step 1: minimize An via ∇AL(pn−1, A, λn−1) = 0
882
+ – We have that ∇AL(pn−1, A, λn−1) = ∇f(p, A)∗||(A−1−G)p−einc|| (∗ is complex conjugate).
883
+ This expression lead to An = p/(Gp − einc). In practice this is a simple calculation since A
884
+ is a diagonal matrix, i.e., A = diag(ε − 1).
885
+ • Step 2: project An into An ∈ R and 0 ≤ A ≤ 4 (for the range ε ∈ [1, 5])
886
+ – this is the point where essentially the required properties and bound of the permittivity can
887
+ be implemented. These bounds or constrains can be general
888
+ – the above projection is rather a simple projection that does not guarantee always the min-
889
+ imum within the projection domain.
890
+ A more accurate projection would be of the form
891
+ An = proj[An−1 − η∇A||(A−1
892
+ n−1 − G)pn−1 − einc||2].
893
+ • Step 3: minimize pn, i.e., ∇pL(p, An, λn−1) = 0 (DCM metadevice).
894
+ – pn = K−1
895
+ n en
896
+ L
897
+ – Kn = (A−1
898
+ n
899
+ − G)∗(A−1
900
+ n
901
+ − G) + λn−1G∗
902
+ prGpr
903
+ – eL
904
+ n = λn−1G∗
905
+ preobj + (A−1
906
+ n
907
+ − G)∗einc
908
+ – The matrix inversion pn is performed with our DCM metadevice
909
+ – Due to noise error a simple weighted average filtering is applied, i.e., pn = (1 − αF )pn−1 +
910
+ αF pn with αF = 0.25
911
+ • Step 4: maximize λn, i.e., ∇λL(An, pn, λ) = 0
912
+ – This maximization can be calculated by a simple gradient descent, i.e., λn = λn−1 +
913
+ η (∇λL(pn, An, λ) − δ) or λn = λn−1 + η
914
+
915
+ ||Gppn − eobj||2 − δ
916
+
917
+ – Notice that this is an gradient ascent since we assume η > 0, therefore we maximize the
918
+ problem.
919
+ • Step 5: Repeat steps 1-4 until the error is minimized. In our case we used the following error
920
+ – ||esca − eobj||2/||eobj||2
921
+ Note that the quantities η and δ are the step and minimal error quantities that are user determined.
922
+ The whole process stop either when λ reaches a plateau, or when the required error criterion is met.
923
+ The optimization goal was set as ||esca−eobj||2
924
+ ||eobj||2
925
+ < δ, where esca = Gppm with pm = (A−1
926
+ m − G)−1einc
927
+ being the final m-th evaluation of the iteration.
928
+ Notice that our approach has several similarities with the contrast source inversion method and
929
+ other similar inverse scattering methods [11, 8, 12, 13].
930
+ Undoubtedly this approach is only one of the available methods for approximating the inverse design
931
+ problem. This is rather an attempt to showcase the ability of our device for performing inverse design
932
+ with desired objectives and constraints by exposing the crucial parts of the algorithm, such as the
933
+ matrix inversions. This part is usually implicit within commercially available FDTD or FEM software.
934
+ Hence here we developed our own methodology so we can have deeper inspection to quantities. As
935
+ a remark, the field of inverse design and inverse scattering is a very rich field with a plethora of
936
+ methodologies that try to address similar problems [14].
937
+ 4
938
+
939
+ Figure S1: Photograph of the experimental setup with the corresponding components.
940
+ 3
941
+ RF Design, PCB, Device Implementation
942
+ A photograph of the experimental setup is shown in Fig S1, where all parts are designated accordingly.
943
+ 3.1
944
+ Measurement
945
+ Measurements were performed using an ENA-5071C two port VNA. In order to avoid the saturation
946
+ of the amplifiers (multiplier module) the VNA power level was set to be −20dBm for the open loop
947
+ configuration and −10dBm for the closed loop configuration. The VNA was set to have an IF band-
948
+ width of 10 kHz. The single frequency measurements (1601 point) at 45MHz with averaging applied
949
+ after obtaining the measured signal from VNA.
950
+ 3.2
951
+ Multiplier
952
+ The schematic of the multiplier is depicted in Fig. S2. The multiplier was designed to perform multi-
953
+ plication on the incoming complex amplitude such that a new complex amplitude is rendered at the
954
+ output. In other words, the output is Vout = zVin. This involves changing both the amplitude and
955
+ phase of the incoming signal. Phase change was performed using a pair of serially connected Minicir-
956
+ cuit JSPHS-51+ Phase Shifters (PS). Each phase shifter provides slightly over 180 degrees of rotation.
957
+ The amplitude change was performed using the Analog Devices AD603ARZ Variable Gain Amplifier
958
+ (VGA). The Multiplier design contain the appropriate loads such that both the input and output of
959
+ the device externally appears as 50 Ohm.
960
+ Both of these devices are controlled using analog voltages with ranges of [−0.5V, +0.5V] and
961
+ [0V, 12V] for the VGA and PS, respectively. In order to create a common control mechanism, op-
962
+ amp level shifting circuits were used to put these on a common [0V, 5V] interface. The Multiplier
963
+ 5
964
+
965
+ couplers
966
+ system in (trigger)
967
+ system out (read
968
+ DCMcontrol
969
+ kernel out
970
+ kernel.in
971
+ kernel(DCM
972
+ VNA port 2
973
+ VNAport
974
+ 1-6.switch
975
+ 1-5 switch
976
+ DCMpower sourceFigure S2: Schematics for the multiplier: The PCB layout design (top figure), and the corresponding
977
+ subcircuit (pictures from Altium®). Bottom figure represent the AWR Microwave Office® schematic
978
+ with the realistic data
979
+ board has a connection that allows for a daughter board. The daughter board is supplied with 0V and
980
+ +5V and is responsible for returning two control voltages in the range of [0V, 5V].
981
+ This simple interface allows for a number of possible control schematics. At its most simple scenario,
982
+ the control board can consist of a pair of potentiometers. However, we will present another control
983
+ board which utilizes a microcontroller to receive UART input and render the two analog voltages.
984
+ The VGA’s dynamic range could be shifted using an external resistor. This was set so that the
985
+ Multipliers’s range (including load elements, PS losses, etc) was [-30dB – +17dB]. The multiplier
986
+ effectively saturates if the input is greater than -10dBm. Therefore for all measurements the reference
987
+ input signal that was used was -30dBm for avoiding any saturation effects.
988
+ It should be stated that the VGA imparts a varying phase change and the PS pair imparts an
989
+ amplitude change. This will be addressed later.
990
+ 3.3
991
+ 1-5 splitter (5-1 combiner)
992
+ The schematic of the 1-5 splitter is depicted in Fig. S3. An ideal passive n-way splitter is comprised of
993
+ a summation port and n feed ports. The scattering parameters are expected to be reciprocal such that
994
+ for the ith feed port |SSi|2 = |SiS|2 = 1/n and all other elements within the matrix are zero. Due to
995
+ losses, a real splitter will fall short of this precise definition. Our splitter was based on the Minicircuits
996
+ AD5PS-1+, which yielded good performance at 45MHz with approximately -7.2dB split ratio for all
997
+ outputs.Note that 1/5 ≈ −7.0dB.
998
+ 6
999
+
1000
+ : +15
1001
+ GND 15
1002
+ 5
1003
+ C8
1004
+ GND
1005
+ GND
1006
+ JGA
1007
+ RF
1008
+ GND
1009
+ NetU1_7
1010
+ NetU1_7
1011
+ GNDGND
1012
+ R8
1013
+ 2 : GND
1014
+ 5 : GND
1015
+ 000
1016
+ R6
1017
+ 00
1018
+ _2 : GND
1019
+ 1 : NetJ1_-1
1020
+ 5
1021
+ R7
1022
+ 1 : NetC2_2
1023
+ 000
1024
+ 000
1025
+ 5 : GND
1026
+ 2 : GND
1027
+ C2
1028
+ +15
1029
+ R1
1030
+ 3
1031
+ R2
1032
+ GND
1033
+ 61300211121
1034
+ U2
1035
+ VGASub
1036
+ VGASub SchDoo
1037
+ RF_In RF_Out
1038
+ > Cont_ In
1039
+ CONMCX003.031
1040
+ CON ACX003.031
1041
+ PSInput
1042
+ JSPHS-51+
1043
+ JSPHS-51+
1044
+ 613b041142
1045
+ C6
1046
+ CNT O
1047
+ 10uF
1048
+ +5
1049
+ ContProc
1050
+ C7
1051
+ ContProcessor. SchDoc
1052
+ 10uF
1053
+ J3
1054
+ [0.5]
1055
+ > PS_In
1056
+ PS_Out
1057
+ [0.15]
1058
+ +15
1059
+ 4
1060
+ 10uF
1061
+ [0.5]
1062
+ VGA_In VGA_Out
1063
+ [-0.5, 0.51]
1064
+ 951103-8622-AR
1065
+ P3
1066
+ 61300411021
1067
+ CNT
1068
+ RFIn
1069
+ RFOut
1070
+ 100R1%
1071
+ .7nF5%
1072
+ >100R 1%
1073
+ 100R1%
1074
+ LM6172IMX
1075
+ 1k 1%
1076
+ [0.15]
1077
+ PS Out
1078
+ PS Im
1079
+ [0,5]
1080
+ VINP
1081
+ VOUT7
1082
+ +5H
1083
+ VPOS
1084
+ O v[so's0-]
1085
+ 0.1uF 5%
1086
+ GRES
1087
+ DINOO
1088
+ R7
1089
+ FDBK
1090
+ 4
1091
+ 3.5k 1%
1092
+ 7.15k 1%
1093
+ AD603ARZ
1094
+ 0.1uF 5%
1095
+ VGAIn
1096
+ [0.5]
1097
+ 1k 1%
1098
+ Cont InSUBCKT
1099
+ TLIN
1100
+ ID=S2
1101
+ TLIN
1102
+ SUBCKT
1103
+ TLIN
1104
+ PORT1
1105
+ ID=TL1
1106
+ NET='phase BLK"
1107
+ ID=TL2
1108
+ ID=S1
1109
+ ID=TL3
1110
+ P=1
1111
+ Z0=50 Ohm
1112
+ Vph1=V/ph
1113
+ Z0=50 Ohm
1114
+ NET="AD_603"
1115
+ Z0=50 Ohm
1116
+ Z=50 Ohm
1117
+ EL=el Deg
1118
+ Vph2=Vph
1119
+ EL=el Deg
1120
+ VG=Vg_test
1121
+ EL=el Deg
1122
+ Pwr=[-30] dBm
1123
+ F0=45 MHz
1124
+ F0=45 MHz
1125
+ F0=45 MHz
1126
+ PORT
1127
+ P=2
1128
+ Z=50 OhmFigure S3: Schematic and layout for 1-5 splitter based on the Minicircuits AD5PS-1+ (pictures from
1129
+ Altium®)
1130
+ 3.4
1131
+ Feedback coupler
1132
+ Figure S4: Schematic and layout for the feedback coupler (pictures from Altium®)).
1133
+ The schematic of the feedback coupler is depicted in Fig. S4 The Feedback coupler must perform
1134
+ several tasks.
1135
+ • Provide near unity feedback
1136
+ • Introduce the input signal
1137
+ • Sample the output signal
1138
+ Therefore, the feedback coupler is a four-port device wherein the primary path has near unity trans-
1139
+ mission such that the feedback is strong.
1140
+ 3.5
1141
+ Switches
1142
+ In order to replicate having a 10 port VNA, we utilized two demo boards (EV1HMC253AQS24), which
1143
+ acted as RF SP8T RF switches, i.e., an analog multiplexer. For one SP8T, we utilized five of these
1144
+ ports for illuminating the bank of five couplers. The other SP8T was used to receive signals from the
1145
+ couplers. The remaining three ports on each were used for system sanity checks. Note that the stock
1146
+ high-pass 100pF capacitors on these boards were switched to 470pF for better transmission at 45MHz.
1147
+ 7
1148
+
1149
+ CONMCX003.031
1150
+ P1
1151
+ CONMCX003.031
1152
+ U1
1153
+ NelJi_
1154
+ 5 : GND
1155
+ P3
1156
+ PS
1157
+ : Net/3
1158
+ GND
1159
+ :NeJ4.1
1160
+ 5 : GND
1161
+ CONMCX003.031
1162
+ 2 : GND
1163
+ CONMCX003.031
1164
+ AD5PsJi+
1165
+ 139-AD5PS-1
1166
+ CONMCX003.031
1167
+ 2lst
1168
+ CONMCX003.031J1
1169
+ J2
1170
+ OO
1171
+ OO
1172
+ 1 : NetJ1_
1173
+ 1 : NetJ1_1
1174
+ OGO
1175
+ R3
1176
+ R1
1177
+ OGO
1178
+ Nei1.1
1179
+ Nei.1
1180
+ Neia.1
1181
+ NeiJ4.1
1182
+ R4
1183
+ 82
1184
+ J3
1185
+ J4
1186
+ 2
1187
+ OGO
1188
+ OGO
1189
+ 1 : NetJ3_1
1190
+ 1 : NetJ4_1
1191
+ OO
1192
+ OO
1193
+ >R3
1194
+ >R1
1195
+ 1k
1196
+ 1k
1197
+ GND
1198
+ GND
1199
+ GND
1200
+ R4
1201
+ R2
1202
+ GND
1203
+ 50R
1204
+ 50R
1205
+ GNDWhile the off ports were nominally matched to 50 Ohm from DC-2.5GHz, there was significant
1206
+ reflections.
1207
+ Deeper inspection of the datasheet indicated that the "off" ports were only matched
1208
+ above 500MHz. Measurements indicated that the off ports were approximately "open" at the design
1209
+ frequency and therefore reflections from the off ports could be significantly reduced with parallel 50Ohm
1210
+ terminations. However, this was not done as this it would have reduced power within the system on
1211
+ the "on" port. Rather, we note that any polluting signal from these "open" off ports will have crossed
1212
+ through the coupler twice. Due to the small coupling coefficient of the feedback coupler, these values
1213
+ will have become very small.
1214
+ The VNA was calibrated to the end of the switch ports. Measurements indicated that transmission
1215
+ through each of the switch ports was similar enough as to not warrant individual calibrations on each.
1216
+ Each of the switches was actuated by three digital inputs to address the 23 = 8 ports on each
1217
+ switch. These digital signals were created by a micro-controller which was programmed to respond to
1218
+ UART commands from an attached computer. Code is available at github.com/brianedw/RFMath/
1219
+ Arduino/mcu_control_V2/mcu_control_V2.ino.
1220
+ 3.6
1221
+ Micro Controller Unit (MCU)
1222
+ The two analog input control voltages for each Multiplier was created by an MCU Control Board,
1223
+ which attached directly to the Multiplier. The heart of this board is a Metro-Mini MCU.
1224
+ Each control line was connected to both an 8-bit PWM DAC pin (labeled “fast”) and a 10-bit
1225
+ PWM DAC pin (labeled “slow”). While both pins connected to the control line through a high-pass
1226
+ filter, the fast DAC utilized a lower capacitance and resistance than that of the slow DAC. During a
1227
+ set operation, both pins would drive to their appropriate values, during this time, the behavior of the
1228
+ collective output would be dominated by the fast DAC and rapidly converge, but exhibit large ripples.
1229
+ After 20ms, the fast PWM DAC pin would switch to a high-impedance state, leaving the voltage to
1230
+ settle in the remaining difference utilizing the slow DAC alone. The high-pass filter was designed to
1231
+ maintain accuracy of 10bit. Since the Metro-Mini is a 5V compliant device, the generated voltages
1232
+ nicely matched to the expected inputs of the Multiplier.
1233
+ Each MCU board had two 3-pin UART input connectors. These were shorted such that one could
1234
+ be used to receive a command from "upstream" while the other would effectively passively repeat the
1235
+ signal. Additionally, each MCU board had two 3-pin UART output connector which were similarly
1236
+ shorted together, allowing it to transmit the same message to two devices. Each MCU was programmed
1237
+ with a unique identification number. Upon receiving a UART command, it would either act on that
1238
+ command or repeat the command on its output UART pins for downstream devices. This input/output
1239
+ configuration created a lot of possibilities for control topologies. However, in practice we found that
1240
+ we could use a single MCU board (no multiplier attached), as a bridge between the computer and the
1241
+ array of MCU Boards and that this array could all be connected in parallel such that the output of
1242
+ the bridge was effectively driving 25 inputs. Note that the required time complexity is of the order
1243
+ of O(n2).
1244
+ Possibly this complexity can be further reduced by implementing different connectivity
1245
+ schemes than the simple serial one that we used. Code is available at github.com/brianedw/RFMath/
1246
+ Arduino/mcu_control_V2/mcu_control_V2.ino.
1247
+ 4
1248
+ Tuning/Calibration
1249
+ As stated in 3.2, the VGA has a minor effect on the phase and the PS has a minor effect on the
1250
+ amplitude.
1251
+ In other words, the phase and amplitude responses are coupled.
1252
+ Additionally, other
1253
+ systematic errors are present such as nonidealities in the level shifting circuits due to resistor tolerances.
1254
+ When connected in a network that includes RF jumper cables of varying length, there will also be phase
1255
+ shifts that naturally arise. In short, the relationship between the control voltages and the response
1256
+ of the Multiplier in situ, are repeatable, but difficult to predict without developing a more complex
1257
+ model.
1258
+ We found that an effective strategy to capture, model, and invert the relationship between control
1259
+ voltages and system response goes as follows.
1260
+ 1. A collection of Multipliers are swept across their input values to map the relationship between
1261
+ control voltage and complex multiplier response.
1262
+ 8
1263
+
1264
+ 2. These responses were analyzed using Principle Component Analysis (PCA) [15].
1265
+ 3. The multipliers were assembled into the open-loop configuration and the response of the entire
1266
+ open-loop network was measured under many sets of input control voltages.
1267
+ 4. These results were compared to a theoretical model of the network wherein the weights of the
1268
+ components could be adjusted until the theoretical results matched the experimental results.
1269
+ 5. With accurate PCA weights in hand, the Multipliers can be immediately adjusted to achieve a
1270
+ desired multiplication factor by inverting the model to achieve any open-loop kernel.
1271
+ 6. Additional refinement can be obtained by changing the device configuration into the closed loop,
1272
+ which now includes the feedback couplers. Again, we measure the response of the closed-loop
1273
+ network under many input conditions.
1274
+ 7. We further refine the PCA weights of each multiplier to match this more demanding data set.
1275
+ This becomes our final device model for both the open- and closed-loop configurations.
1276
+ We will go into detail on each one of these items in the following sections.
1277
+ 4.1
1278
+ Multiplier PCA
1279
+ A collection of 35 multipliers were each mapped using the MCU control boards, capable of 10-bit
1280
+ resolution on both control voltages. The mapping occurred with a grid of values based on [0, 11, ...,
1281
+ 1012, 1023] on both controls. Ideally, the mapping of two Multipliers would yield identical responses.
1282
+ However, for all the reasons stated above, they do not. All of the mappings were compared using a
1283
+ complex domain PCA analysis. Typically, in PCA, one would examine deviations from the mean, but
1284
+ here we take another approach. Rather, the collection of mappings were analyzed directly to yield a
1285
+ set of 4 PCA components. The response of any individual Multiplier could then be found as the linear
1286
+ superposition of these components given by:
1287
+ m(dvga, dPS) =
1288
+ 3
1289
+
1290
+ i=0
1291
+ wici(dvga, dPS)
1292
+ The term c0(dvga, dPS) is effectively the “average” response scaled by a complex factor, while the next
1293
+ several components represent likely deviations due to the systematic errors described above. Within a
1294
+ PCA analysis the final PCA components (i.e. c34(dvga, dPS), not shown) should be nearly pure noise.
1295
+ We found that only the first four terms were needed to effectively model any given Multiplier.
1296
+ Given any randomly chosen multiplier, we can find the complex valued PCA weights wi through a
1297
+ least-squares analysis. As opposed to the "deviation from the mean" approach, the above formulation
1298
+ is particularly useful for RF engineering. While the Multipliers were measured directly at their input
1299
+ and output ports and analyzed as such, the model can easily account for the addition of RF cables
1300
+ which would provide attenuation and phase rotation. These will appear as a complex scaling of all
1301
+ of the components weights and the Multiplier’s behavior (RF jumpers cables included) can still be
1302
+ captured as the simple linear superposition of the PCA components.
1303
+ In fact, any losses or phase
1304
+ rotations along the Multipliers flow path can be incorporated into these weights. Therefore, we do
1305
+ not characterize the individual multipliers, but delay this until the architecture is fully assembled, as
1306
+ described in the next section.
1307
+ Regardless, we will use least-squares to find the set of wi which characterizes the average multiplier
1308
+ response. We call these the “base weights”.
1309
+ 4.2
1310
+ Open-Loop Device Fitting
1311
+ The goal of the this section is to determine the PCA weights that characterize each Multiplier in
1312
+ situ, so that the system errors can be captured and modeled. The open-loop DCM system was fully
1313
+ assembled including jumper cables, splitters, and couplers. All multipliers within the array were set
1314
+ to the same input value (dvga, dPS) pair. The transmission matrix of the system was then measured.
1315
+ This was repeated for all possible combinations of 10 evenly spaced values in the range [0, 1023] to
1316
+ 9
1317
+
1318
+ Figure S5:
1319
+ PCA Components and Average Multiplier Response.
1320
+ The first four panels represent
1321
+ c0(dvga, dPS), c1(dvga, dPS), c2(dvga, dPS), and c3(dvga, dPS) and have a maximum saturation of 0.05.
1322
+ The final image shows the response of the “average” Multiplier with a maximum saturation at 7.5
1323
+ yield 100 measured transmission matrices, Tmeas. Note that not all of these 100 transmission matrices
1324
+ represent "passive" operators.
1325
+ The same system was modeled using Scikit-RF, wherein the following assumptions were made:
1326
+ • The 5-1 splitters were ideal such that power was evenly split with no phase
1327
+ • All jumpers were zero-length
1328
+ • The coupler feedback path was ideal with no power removed
1329
+ • The multipliers were all assumed to be “average” and the their responses were assumed to be
1330
+ given by the “base weights”.
1331
+ The system was simulated using SciKit-RF for each input pair (dvga, dPS) to yield 100 measured
1332
+ transmission matrices Tsim(w), which are naturally a function of each Multipliers PCA weight. We
1333
+ can then define an error error(w) = |Tsim(w) − Tmeas|2 and optimize w until that error is minimized.
1334
+ It should be noted, that with only four PCA weights per Multiplier, in theory, only 4 transmission
1335
+ matrices are required to fully define the system. Using 100 helps guarantee that normal measurement
1336
+ noise does not unduly influence the fitting. Additionally, if a low error can be achieved across 100
1337
+ measurements using only 4 weights, then we can be confident that the model was sufficient to capture
1338
+ the entire open loop system response, K.
1339
+ 4.3
1340
+ Setting the Open Loop System Response
1341
+ Given a desired open-loop system response, K, we need to calculate the necessary multiplier values for
1342
+ the DCM architecture, mi,j, gathered to form M. In this case, the simplicity of the DCM architecture
1343
+ makes this trivial. If we assume an idealized passive five port splitters such that given an input of 1W
1344
+ at the summation port, s, we will observe 1/5W on each branch port, i. Put in terms of Scattering
1345
+ Parameters, Ss,i = 1/
1346
+
1347
+ 5 and via reciprocity Si,s = 1/
1348
+
1349
+ 5. Since we have such splitters at the input
1350
+ and output of the Multiplier array, K = (1/
1351
+
1352
+ 5)M(1/
1353
+
1354
+ 5) and therefore M = 5K. Note that since we
1355
+ fitted the PCA weights of the Multipliers under the assumption of ideal components, it is appropriate
1356
+ to assume ideal components here.
1357
+ With each of the desired mi,j in hand to achieve a given K, the next step is to determine the
1358
+ required (dvga, dPS). This can be done using a number of function inversion schemes such a gradient
1359
+ descent. In practice, this could be very fast as it is likely that in many applications, each new M will
1360
+ be a small step from the previous M and therefore each multiplier will change only slightly.
1361
+ 4.4
1362
+ Closed-Loop Device Fitting
1363
+ Due to the recursive nature of the closed-loop configuration (Matrix Inversion), the accuracy require-
1364
+ ments are more stringent than for the open-loop configuration. Moreover, additional degrees of freedom
1365
+ are introduced in the form of coupler coefficients. These can be considered part of w. In short, the
1366
+ devices must be fitted again.
1367
+ We will employ a similar strategy as was used in the Open-Loop Device Fitting. Using the open-
1368
+ loop calibrated device models, a sequence of randomly generated passive transmission matrices, K,
1369
+ 10
1370
+
1371
+ co(dvga, dps)
1372
+ Ci(dvga, dps)
1373
+ C2(dvga, dps)
1374
+ C3(dvga, dps)
1375
+ mave(dvga, dps)
1376
+ imag
1377
+ imag
1378
+ ima
1379
+ imag
1380
+ dps
1381
+ real
1382
+ real
1383
+ real
1384
+ real
1385
+ realare shown to the system. Note, unlike the open-loop matrices, in order to guarantee convergence,
1386
+ these matrices must be passive. We model the closed-loop system using Scikit-RF. Using the open-
1387
+ loop weights as a starting point, we optimize the multiplier weights and coupling coefficients until the
1388
+ simulated Tsim(w) matches the measured Tmeas. This represents a small, but necessary, refinement
1389
+ from the open-loop device model and can be used for both open- and closed-loop applications.
1390
+ 4.5
1391
+ Setting the Closed Loop System Response
1392
+ Setting the closed-loop system response, K is identical to setting the open-loop response. In both
1393
+ cases, each desired mi,j is used to find the required (dvga, dPS) using a function inversion scheme.
1394
+ 5
1395
+ System Accuracy
1396
+ We performed an open loop measurement on 100 complex-valued random matrices with (eigenvalues)
1397
+ values within the unit circle. For these, we configured the open-loop with the target (or ideal kernel)
1398
+ Ae and retrieved the measured results Am. We define as error the quantity
1399
+ ||Am − Ae||2
1400
+ ||Ae||2
1401
+ 100%
1402
+ (21)
1403
+ In Fig. S6, we can see the difference between the two matrices for 100 random cases. We observe
1404
+ that all the results are within a 0.05 − 0.3% percent error. Similarly, we performed the same error
1405
+ analysis for the same 100 random matrices, only this time on a closed-loop setup (matrix-inversion).
1406
+ The results (Fig. S7) reveal that the error can climb up to 20%, but for most of the results, we get a
1407
+ matrix inversion with less than 2% error. Finally, we assess the matrix inversion fidelity by evaluating
1408
+ the trace of the A−1
1409
+ m Ae product. Ideally the trace of the product tr(A−1
1410
+ m Ae)/5 = 1. In Fig. S8, we
1411
+ observe that this product spans between 0.5 − 1.5. However, for the particular examples we used in
1412
+ the manuscript, this accuracy can be maintained at reasonably high levels once error-correcting and
1413
+ filtering techniques are applied. Note that for the closed-loop case, the level of the measured voltage
1414
+ is in the order of µV, very close to the noise floor of the VNA device we used. For the open loop
1415
+ operation, the measured voltage was hundreds of mV.
1416
+ 0
1417
+ 50
1418
+ 100
1419
+ 0
1420
+ 0.1
1421
+ 0.2
1422
+ 0.3
1423
+ Figure S6: The error between the exact and the measured matrices, open loop configuration, for 100
1424
+ random complex matrices.
1425
+ 11
1426
+
1427
+ 0
1428
+ 50
1429
+ 100
1430
+ 0
1431
+ 5
1432
+ 10
1433
+ 15
1434
+ 20
1435
+ Figure S7: The error between the exact and the measured matrices, closed loop configuration (matrix
1436
+ inversion), for 100 random complex matrices.
1437
+ 6
1438
+ System Transient Analysis
1439
+ 6.1
1440
+ Single Multiplier
1441
+ In terms of the time response of the multiplier module the transient analysis reveal (Fig. S9) that
1442
+ the module obtained the desired value approximately within 3-4 signal periods, i.e., T = 22.2ns. The
1443
+ measurements were performed using the RIGOL DG4062 pulse generator (15 sinusoidal pulses at
1444
+ 45MHz), and the measured response extracted with the RIGOL DS1104 oscilloscope.
1445
+ The open loop response is therefore assumed to be very close to the single multipliers response
1446
+ since both splitters and connecting cables introduce a small phase shift to the signal. The closed loop
1447
+ transient response is affected by both the multiplier timing and the condition number of the input
1448
+ matrix (kernel) as shown in [16].
1449
+ 12
1450
+
1451
+ 0
1452
+ 50
1453
+ 100
1454
+ 0
1455
+ 0.5
1456
+ 1
1457
+ 1.5
1458
+ 2
1459
+ Figure S8: The fidelity of the matrix inversion expressed in terms of the normalized trace of the A−1
1460
+ m Ae
1461
+ product for 100 random complex matrices.
1462
+ measurements
1463
+ in
1464
+ out
1465
+ 0
1466
+ 50
1467
+ 100
1468
+ 150
1469
+ 200
1470
+ ns
1471
+ simulations
1472
+ in
1473
+ out
1474
+ Figure S9: The transient response of a single multiplier module.
1475
+ The blue curves correspond to
1476
+ the input signal, while the red curves are the measured (top) and simulated (bottom) using AWR
1477
+ Microwave Office® results. The agreement is excellent. It is evident that it takes approximately 3 to
1478
+ 4 signal periods for the multiplier to obtain the desired output signal. Here we assumed small signal
1479
+ amplification (VGA voltage is +.05) and the phase shift voltage is 0V.
1480
+ 13
1481
+
1482
+ 7
1483
+ De-embedding the solution
1484
+ 7.1
1485
+ Open Loop
1486
+ Let us define the open-loop response as
1487
+ Vout = KVin
1488
+ Note that this includes not only the DCM architecture (multipliers, splitters, jumpers), but also the
1489
+ through channel of the input/output coupler. In other words, the open-loop is defined using all of
1490
+ the components of the closed-loop. However, the loop has been broken "open" just after the coupler
1491
+ array and measured at this point. Since in the closed configuration, these measurement planes were
1492
+ coincident, upon "closing" the loop, these measurement will then represent the complete response of
1493
+ the loop. While a minor perturbation to the results, this definition assumes that the weakly coupled
1494
+ additional ports on the coupler are properly terminated.
1495
+ Let us further define response of only the DCM architecture as K′. When the system is in a closed
1496
+ loop configuration, this relates the vector exiting the coupler array (V4) to the vector incident on the
1497
+ coupler array (V2).
1498
+ V2 = K′V4
1499
+ The coupler array introduces a small loss as the input is introduced and the output is measured. The
1500
+ near unity transmission is named α1. It is clear then that K = α1K′.
1501
+ 7.2
1502
+ Closed Loop
1503
+ The closed loop response is fully defined by the open-loop response and the definition of the scattering
1504
+ parameters of the coupler.
1505
+ V2 = K′V4
1506
+ (22)
1507
+ V3 = α2V1 + βV2
1508
+ (23)
1509
+ V4 = βV1 + α1V2
1510
+ (24)
1511
+ Our goal is to solve the equations for V4, which represents the vectorial solution of the problem in
1512
+ question. For the expected solution, this should be done such that the solution depends only on the
1513
+ kernel K and the input vector (V1). For the measured solution, this should be only in terms of the
1514
+ measured results (V3) and the known input (V1).
1515
+ 7.3
1516
+ Expected Solution
1517
+ We begin by applying the definitions above
1518
+ V4 = βV1 + α1V2
1519
+ V4 = βV1 + α1K′V4
1520
+ V4 = βV1 + KV4
1521
+ and then solve the final equation for the V4.
1522
+ V4 = (I − K)−1βV1
1523
+ 7.4
1524
+ Measured Solution
1525
+ We begin with Eq 23:
1526
+ V3 = α2V1 + βV2
1527
+ and then solve it for V2
1528
+ V2 = 1
1529
+ β V3 − α2
1530
+ β V1
1531
+ 14
1532
+
1533
+ and then substitute the above into 24
1534
+ V4 = βV1 + α1( 1
1535
+ β V3 − α2
1536
+ β V1)
1537
+ and then simplify
1538
+ V4 = (β − α1α2
1539
+ β
1540
+ )V1 + α1
1541
+ β V3
1542
+ Note that in many real world cases, the coupler will be defined such that we can assume α2 → 0
1543
+ V4 = βV1 + α1
1544
+ β V3
1545
+ References
1546
+ [1] D. P. Bertsekas, Nonlinear programming (Athena Scientific„ Belmont, Mass. :, 1995).
1547
+ [2] E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
1548
+ [3] B. T. Draine, P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).
1549
+ [4] M. A. Yurkin, A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transf. 106, 558 (2007).
1550
+ [5] S. P. Groth, A. G. Polimeridis, J. K. White, J. Quant. Spectrosc. Radiat. Transf. 240, 106689
1551
+ (2020).
1552
+ [6] V. Nikkhah, D. C. Tzarouchis, A. Hoorfar, N. Engheta, ACS Photonics (2022).
1553
+ [7] C. A. Balanis, Advanced engineering electromagnetics (John Wiley & Sons, 1999).
1554
+ [8] P. M. van den Berg, R. E. Kleinman, Inverse Probl. 13, 1607 (1997).
1555
+ [9] D. Bertsekas, Convex optimization theory, vol. 1 (Athena Scientific, 2009).
1556
+ [10] S. Boyd, S. P. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, 2004).
1557
+ [11] R. E. Kleinman, P. den Berg, J. Comput. Appl. Math. 42, 17 (1992).
1558
+ [12] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied
1559
+ Mathematical Sciences (Springer New York, New York, NY, 2013).
1560
+ [13] S. Boutami, S. Fan, Journal of the Optical Society of America B 36, 2378 (2019).
1561
+ [14] Z. Li, R. Pestourie, Z. Lin, S. G. Johnson, F. Capasso, ACS Photonics 9, 2178 (2022).
1562
+ [15] I. T. Jolliffe, Principal component analysis for special types of data (Springer, 2002).
1563
+ [16] D. C. Tzarouchis, M. J. Mencagli, B. Edwards, N. Engheta, Light Sci. Appl. 11, 263 (2022).
1564
+ 15
1565
+
6dE1T4oBgHgl3EQfBQKx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89FRT4oBgHgl3EQfqDcj/content/tmp_files/2301.13615v1.pdf.txt ADDED
@@ -0,0 +1,1550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Property-Based Mutation Testing
2
+ Ezio Bartocci
3
+ TU Wien
4
+ Vienna, Austria
5
6
+ Leonardo Mariani
7
+ University of Milano-Bicocca
8
+ Milan, Italy
9
10
+ Dejan Niˇckovi´c
11
+ Austrian Institute of Technology
12
+ Vienna, Austria
13
14
+ Drishti Yadav
15
+ TU Wien
16
+ Vienna, Austria
17
18
+ ©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
19
+ reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
20
+ reuse of any copyrighted component of this work in other works.
21
+ Abstract—Mutation testing is an established software quality
22
+ assurance technique for the assessment of test suites. While it is
23
+ well-suited to estimate the general fault-revealing capability of a
24
+ test suite, it is not practical and informative when the software
25
+ under test must be validated against specific requirements. This
26
+ is often the case for embedded software, where the software is
27
+ typically validated against rigorously-specified safety properties.
28
+ In such a scenario (i) a mutant is relevant only if it can impact
29
+ the satisfaction of the tested properties, and (ii) a mutant is
30
+ meaningfully-killed with respect to a property only if it causes
31
+ the violation of that property. To address these limitations of
32
+ mutation testing, we introduce property-based mutation testing, a
33
+ method for assessing the capability of a test suite to exercise
34
+ the software with respect to a given property. We evaluate
35
+ our property-based mutation testing framework on Simulink
36
+ models of safety-critical Cyber-Physical Systems (CPS) from the
37
+ automotive and avionic domains and demonstrate how property-
38
+ based mutation testing is more informative than regular mutation
39
+ testing. These results open new perspectives in both mutation
40
+ testing and test case generation of CPS.
41
+ Index Terms—Cyber-Physical Systems, Mutation Testing, Sig-
42
+ nal Temporal Logic (STL), Simulink Models, Software Testing
43
+ I. INTRODUCTION
44
+ Software has a pivotal role in safety-critical applications,
45
+ from autonomous vehicles to medical devices. Inadequate soft-
46
+ ware quality assurance may result in potentially catastrophic
47
+ system failures. It is thus important to thoroughly test software,
48
+ checking that it does not violate its critical properties.
49
+ Mutation testing (MT) is a well-established technique to
50
+ measure the adequacy of a test suite w.r.t. a fault model [1]–
51
+ [4]: MT first injects some artificial defects in the software-
52
+ under-test, and then measures the thoroughness of the test suite
53
+ as the percentage of injected faults that the test suite can reveal.
54
+ The injection is performed through mutation operators that
55
+ modify the software according to well-defined patterns. The
56
+ resulting modified program is called a mutant. A test case kills
57
+ a mutant if its execution causes observable differences in the
58
+ behavior of the original and mutated programs. The ratio of
59
+ killed mutants w.r.t. the mutants that are not equivalent to the
60
+ original program is known as the mutation score. Ideally, a
61
+ test suite should reach a mutation score equal to one.
62
+ While MT is effective when the test suite has to be assessed
63
+ against a wide set of faults spread in the software, it loses its
64
+ effectiveness when the purpose of a test suite is to validate
65
+ the software against specific requirements. This is particularly
66
+ true in the embedded software domain, where software must
67
+ be often validated against rigorously-defined safety properties.
68
+ For example, the ATCS (Automatic Transmission Controller
69
+ System) we used in the experimental evaluation is annotated
70
+ with several safety properties expressed with Signal Temporal
71
+ Logic (STL) [5], and test cases are designed to validate the
72
+ software against these properties.
73
+ When applying mutation testing to assess the capability of a
74
+ test suite to thoroughly exercise a software w.r.t. a given prop-
75
+ erty, there are two challenges to take into consideration: the
76
+ relevance of the mutants and the relevance of the executions
77
+ that kill the mutants.
78
+ Relevance of the mutants w.r.t. a tested property. Not all
79
+ the mutants are relevant to assess the thoroughness of a test
80
+ suite against a property. In fact, only the mutants whose
81
+ effects propagate in a way that ultimately causes the property
82
+ violation are relevant. A mutant that does not impact a property
83
+ shall also not contribute to measuring the adequacy of a test
84
+ suite against that property. Regular MT does not distinguish
85
+ between these mutants, and hence does not consider the
86
+ difference between them when computing the mutation score.
87
+ Relevance of the execution that kills a mutant. Producing
88
+ different outputs for the original and the mutated programs is
89
+ insufficient to kill a mutant when a test suite is assessed against
90
+ a property. In fact, a test is thoroughly exercising the software
91
+ w.r.t. a property only if the difference in the two outputs
92
+ is severe and relevant enough to cause a violation of the
93
+ property under consideration. Otherwise, the test is generating
94
+ differences that are marginal w.r.t. the testing objective. For
95
+ instance, in our evaluation, we assessed the test cases for the
96
+ ATCS against the property that requires the engine speed and
97
+ the vehicle speed to remain below certain thresholds. Several
98
+ tests succeeded in exercising a mutant in the Transmission
99
+ component, causing differences in the outputs, but failed to
100
+ produce outputs that violate these properties, which is a clear
101
+ inadequacy of the test suite. This situation is visually illus-
102
+ trated in Fig. 1 (top), where the test is generating differences in
103
+ the engine and vehicle speeds without exceeding the threshold.
104
+ The mutant would be counted as killed according to regular
105
+ mutation testing, although the test does not make the software
106
+ to violate the property. In practice, if the fault would be present
107
+ in the original model, the test would not reveal it. This also
108
+ exemplifies how mutations could be easily killed according to
109
+ regular mutation testing in data-flow models, where most of
110
+ the components are activated in every computation and values
111
+ easily propagate through the blocks in the model. However, the
112
+ arXiv:2301.13615v1 [cs.SE] 31 Jan 2023
113
+
114
+ propagated values often result in minor and non-significant
115
+ output differences. Killing mutants while taking the tested
116
+ properties under consideration is a definitely harder challenge.
117
+ For instance, Fig. 1 (bottom) shows the case of a test that
118
+ reveal the mutant by violating the tested properties, obtained
119
+ in our experiments.
120
+ 0
121
+ 10
122
+ 20
123
+ 30
124
+ Time (seconds)
125
+ 0
126
+ 20
127
+ 40
128
+ 60
129
+ 80
130
+ 100
131
+ 120
132
+ Vehicle Speed (mph)
133
+ Output (Vehicle Speed)
134
+ 0
135
+ 10
136
+ 20
137
+ 30
138
+ Time (seconds)
139
+ 0
140
+ 1000
141
+ 2000
142
+ 3000
143
+ 4000
144
+ Engine Speed (RPM)
145
+ Output (Engine Speed)
146
+ Original model
147
+ Mutant
148
+ Threshold
149
+ 0
150
+ 10
151
+ 20
152
+ 30
153
+ Time (seconds)
154
+ 0
155
+ 20
156
+ 40
157
+ 60
158
+ 80
159
+ 100
160
+ 120
161
+ Vehicle Speed (mph)
162
+ Output (Vehicle Speed)
163
+ 0
164
+ 10
165
+ 20
166
+ 30
167
+ Time (seconds)
168
+ 0
169
+ 1000
170
+ 2000
171
+ 3000
172
+ 4000
173
+ Engine Speed (RPM)
174
+ Output (Engine Speed)
175
+ 26
176
+ 28
177
+ 30
178
+ 116
179
+ 118
180
+ 120
181
+ 122
182
+ Fig. 1. Output plots for the original and mutated models of ATCS: (top) for
183
+ a test case satisfying the property on the mutant, (bottom) for a test case
184
+ violating the property on the mutant. The portion of the output trace (vehicle
185
+ speed) responsible for property violation is highlighted.
186
+ In this paper, we address these challenges by defining the
187
+ notion of Property-Based Mutation Testing (PBMT) to assess
188
+ test suites against properties or specifications. To this end,
189
+ we revise the key notions of mutation testing to measure the
190
+ effectiveness of the test suites as their capability to exercise
191
+ the software against a property. We also define a search-based
192
+ test generation strategy for Simulink models to effectively and
193
+ automatically identify the relevant mutants that could be killed
194
+ with meaningful executions, from a set of injected mutants. We
195
+ provide empirical evidence that PBMT is more informative
196
+ than MT to assess the thoroughness of test suites, considering
197
+ two benchmarks in the domain of safety-critical CPS with
198
+ requirements expressed in STL formalism.
199
+ In summary, this paper makes the following contributions:
200
+ 1) We introduce the novel notion of Property-Based Muta-
201
+ tion Testing for testing software against properties.
202
+ 2) We define a search-based strategy to automatically iden-
203
+ tify the mutants that contribute to PBMT experiments.
204
+ 3) We report empirical results for Simulink models, demon-
205
+ strating that PBMT is more informative than regular MT
206
+ when software is tested against properties.
207
+ 4) We make tools and experimental data publicly available
208
+ for reproduction and to ease follow-up research1.
209
+ 1https://gitlab.com/DrishtiYadav/mt
210
+ Paper Organization. Section II presents the overview of
211
+ regular mutation testing. Section III presents property-based
212
+ mutation testing, our proposed approach. Section IV describes
213
+ testing CPS Simulink models against STL specifications. Sec-
214
+ tion V presents our evaluation of two safety-critical industrial
215
+ benchmarks. Section VI discusses threats to validity. Sec-
216
+ tion VII describes the lessons learned. Section VIII presents
217
+ related work. Section IX concludes the paper.
218
+ II. MUTATION TESTING
219
+ In this section, we present the background and fundamental
220
+ concepts of regular mutation testing.
221
+ Mutation testing relies on two fundamental assumptions [1],
222
+ [2]: (1) the Competent Programmer Hypothesis that states
223
+ that programmers create programs that differ from the correct
224
+ one mostly by small syntactic errors, and (2) the Coupling
225
+ Effect that asserts that “complex faults are coupled to simple
226
+ faults in such a way that a test data set that detects all
227
+ simple faults in a program will detect a high percentage
228
+ of the complex faults” [6]. Several studies investigate these
229
+ hypotheses demonstrating that results obtained with mutation
230
+ testing can reliably predict the results obtained for the vast
231
+ majority of high-priority real bugs [7]–[10]. Although not
232
+ every bug couples with mutants, mutation testing can still be
233
+ considered a good tool to measure test suite quality.
234
+ We now introduce the key concepts of mutation testing.
235
+ Definition II.1 (Mutation operator). A mutation operator is
236
+ a source-code transformation that introduces a modification in
237
+ the program-under-test. More rigorously, given a program P,
238
+ a mutation operator op is a function that takes as inputs P and
239
+ a location k inside P and creates a syntactic alteration of P
240
+ at location k, if the location can be mutated with op.
241
+ Definition II.2 (Mutant). For a given program P and a set of
242
+ mutation operators O = {op1, op2, ..., opn}, a mutant p is the
243
+ result of the application of a mutation operator op ∈ O to P
244
+ at a specified location k. A mutant created by the application
245
+ of only one mutation operator to P is known as First Order
246
+ Mutant (FOM). The application of multiple mutation operators
247
+ to P results in a Higher Order Mutant (HOM) [11].
248
+ Given a test suite T , and a test t ∈ T , we write t |= p when
249
+ the test passes on p and t ̸|= p when the test fails on p. We
250
+ denote with O(t, p) the output generated by p with t and with
251
+ T p
252
+ U the (universal) set of every possible valid test case for p.
253
+ Definition II.3 (Killed Mutant). A mutant p is said to be killed
254
+ by T if at least one test case t in T fails when exercising p,
255
+ i.e., ∃t ∈ T : t ̸|= p.
256
+ Definition II.4 (Live Mutant). Mutants that do not lead to the
257
+ failure of any test case t ∈ T are said to be live or survived.
258
+ Formally, p is said to be live if ∀t ∈ T , t |= p.
259
+ Definition II.5 (Equivalent Mutant). A mutant p is equivalent
260
+ to the original program P if they both generate the same
261
+ output for any possible input. Formally, p is equivalent to
262
+ P if ∀t ∈ T P
263
+ U , O(t, p) = O(t, P). In other words, no test
264
+
265
+ case can distinguish an equivalent mutant from the original
266
+ program [12]. Note that the detection of equivalent mutants is
267
+ undecidable.
268
+ Definition II.6 (Invalid Mutant). A mutant p is considered
269
+ invalid if it cannot be compiled [13]. Such a mutant is not
270
+ included in the mutation coverage.
271
+ Definition II.7 (Mutation coverage). The adequacy of a
272
+ test suite T can be measured using the mutation coverage
273
+ (hereafter, mutation score MS): the ratio of mutants killed
274
+ w.r.t. the total number of non-equivalent and valid mutants:
275
+ Mutation coverage =
276
+ #killed mutants
277
+ #valid mutants − #equivalent mutants
278
+ T is said to achieve 100% mutation test adequacy if it kills all
279
+ non-equivalent valid mutants. Full mutation coverage ensures
280
+ that T is (i) robust against the modeled mutation types, and
281
+ (ii) sensitive to small changes in the program-under-test (P).
282
+ Definition II.8 (Redundant Mutant). Redundant mutants are
283
+ not beneficial as they consume resources without contributing
284
+ to the test process as they are killed whenever other mutants
285
+ are killed. This redundancy can be expressed by duplicate
286
+ and subsumed mutants [14]. Duplicate mutants are equivalent
287
+ with each other but not equivalent to the original program [3].
288
+ Subsumed mutants are not equivalent with each other but are
289
+ killed by the same test cases. The subsumption relation is
290
+ defined as follows [15]: We say that pi subsumes pj, denoted
291
+ pi → pj, iff the following two properties hold:
292
+ 1) ∃t ∈ T P
293
+ U : t ̸|= pi. In other words, there exists some test
294
+ case t s.t. pi and P yield different outputs on t, i.e., pi
295
+ is not equivalent to P.
296
+ 2) ∀t ∈ T P
297
+ U , if t ̸|= pi, then t ̸|= pj. In other words, for
298
+ every possible test case t on P, if pi yields a different
299
+ output than P on t, then so does pj.
300
+ With Regular MT, for a test case t ∈ T to kill a mutant p,
301
+ the following three conditions must be satisfied [16], [17]:
302
+ 1) Reachability: t must reach the mutated statement in p.
303
+ 2) Necessity: t must infect the program state by causing
304
+ different program states for p and P.
305
+ 3) Sufficiency: the incorrect program state must propagate to
306
+ the output of p and be checked by t, i.e., there is an
307
+ observable difference in the outputs of p and P for t.
308
+ The above three conditions are known as the RIP model.
309
+ The capability of a test case t ∈ T to kill a mutant p is
310
+ governed by the observability of the program state, leading to
311
+ following two common types of mutation testing:
312
+ 1) Weak mutation testing: A mutant p is killed by a test suite
313
+ T if only the first two conditions of the RIP model are
314
+ satisfied.
315
+ 2) Strong mutation testing: For a test case t ∈ T to kill a
316
+ mutant p, all three conditions of the RIP model must be
317
+ met.
318
+ Tests, in particular automated tests, usually include an
319
+ explicit comparison of the observed program behavior to the
320
+ expected behavior using an oracle. Thus, automated tests
321
+ usually examine specific portions of the output state. However,
322
+ the oracle will fail to identify the failure if it does not check the
323
+ specific part of the output state which contains the erroneous
324
+ value. Therefore, the oracle should also reveal the failure [18],
325
+ as proposed in the RIPR model. This paper further elaborates
326
+ this concept defining how mutation testing can be designed
327
+ to validate and measure the quality of a test suite w.r.t. a
328
+ requirement, in our case taking the form of a rigorously
329
+ defined STL property for a MathWorks® Simulink model.
330
+ III. PROPERTY-BASED MUTATION TESTING
331
+ In this section, we present PBMT, a mutation testing ap-
332
+ proach designed to validate test suites against programs and
333
+ properties. We assume that we have a program P expressed in
334
+ a language L as the software-under-test (SUT), a property φ
335
+ of the SUT, a test suite T and a set of mutation operators O.
336
+ PBMT measures how thoroughly the test suite T validates P
337
+ against the property φ, studying the capability of T to reveal
338
+ faults —of type defined in O—that may impact φ.
339
+ Definition III.1 (φ-killed mutant). A mutant p is said to be
340
+ φ-killed by a test suite T ⊂ T P
341
+ U iff ∃ a test case t ∈ T such
342
+ that the following conditions hold:
343
+ 1) O(t, P) |= φ, i.e., t satisfies φ when executed on the
344
+ original program P, and
345
+ 2) O(t, p) ̸|= φ, i.e., t violates φ when executed on the
346
+ mutant p. It follows that t exercises the mutation/fault
347
+ in p in such a way that its effect is propagated to the
348
+ output up to the violation of the property φ.
349
+ The above two conditions collectively guarantee that the
350
+ execution of p against t yields an output strong enough to
351
+ violate φ (i.e., O(t, p) ̸|= φ), while still passing in the original
352
+ program (i.e., O(t, P) |= φ). This implies that the test is
353
+ specifically good in exercising the software so that the fault,
354
+ if present, is propagated to the output, producing significant
355
+ behavioral differences up to the point of violating φ.
356
+ Similar to the concept of equivalent mutants in regular MT,
357
+ we introduce a refined version of equivalent mutants which
358
+ we call: φ-trivially different mutants. The intuition is that in
359
+ this context, a mutant is irrelevant not only if it is equivalent
360
+ (i.e., it shows no behavioral differences w.r.t. the original
361
+ program), but also if the introduced behavioral differences are
362
+ not relevant w.r.t. the property φ, that is, no test case t ∈ T P
363
+ U
364
+ can distinguish between p and P.
365
+ Definition III.2 (φ-trivially different mutant). A mutant p is
366
+ φ-trivially different from P iff ∄t ∈ T P
367
+ U
368
+ : O(t, P) |= φ ∧
369
+ O(t, p) ̸|= φ.
370
+ The set of the φ-trivially different mutants include equiva-
371
+ lent mutants. The identification of φ-trivially different mutants
372
+ is undecidable.
373
+ Definition III.3 (φ-adequate test suite). A test suite T is φ-
374
+ adequate w.r.t. a set of mutation operators O if it kills all the
375
+ non φ-trivially different mutants that can be generated by O.
376
+
377
+ Definition III.4 (Mutation score). If KDφ denotes the φ-
378
+ killed mutants and NTDφ denotes the non φ-trivially different
379
+ mutants, the mutation score assigned with a test suite T for a
380
+ program P and a set of mutation operators O is
381
+ MSφ = |KDφ|
382
+ |NTDφ|
383
+ (1)
384
+ The objective of implementing test suites that are adequate
385
+ according to PBMT results in the Mutant killing problem. That
386
+ is, given a program P, a mutant of P denoted by p and a
387
+ property φ, the mutant killing problem is the problem of
388
+ finding a test case t such that O(t, P) |= φ, and O(t, p) ̸|= φ.
389
+ PBMT is usually more challenging than regular MT since:
390
+ • Higher risks of introducing φ-trivially different mutants:
391
+ PBMT can potentially generate more irrelevant mutations
392
+ than mutation testing since, in addition to equivalent
393
+ mutants, there might be mutants that are not equivalent
394
+ but introduce irrelevant differences w.r.t. a property φ.
395
+ • Harder to kill mutants: The faults must be exercised in
396
+ such a way that it does not only propagate to the output
397
+ but also leads to the violation of φ.
398
+ IV. MUTATION TESTING OF SIMULINK CPS PROGRAMS
399
+ We instantiate PBMT in the context of safety-critical CPS
400
+ Simulink (data-flow) models where the system safety prop-
401
+ erties are expressed using STL. While extensive details of
402
+ Simulink models [19]–[21] and STL [5], [22], [23] are avail-
403
+ able elsewhere, we introduce below the key concepts to make
404
+ the paper self-contained. We conclude by presenting a novel
405
+ technique to automatically determine the mutants that could
406
+ be φ-killed by test suites.
407
+ A. Simulink models
408
+ The MathWorks® Simulink environment is widely used for
409
+ CPS model-based development [24], [25]. Simulink allows
410
+ non-software engineers to design complex systems, compile
411
+ them to low-level code, and simulate the designed models to
412
+ observe their behavior against some test inputs. In general,
413
+ a Simulink model is the block diagram representation of a
414
+ system using blocks and lines (aka connections) as in Fig. 2.
415
+ A block receives data via its input ports and performs a defined
416
+ operation on its input data depending on its functionality. After
417
+ processing the input data, a block transmits the output data
418
+ via its output ports, along (directed) lines. Each line in the
419
+ model can be uniquely identified using (1) the source block
420
+ and its associated output port, and (2) the target block and its
421
+ associated input port. The model receives its inputs from a set
422
+ of input blocks and emits the output through a set of output
423
+ blocks. Usually, a block can be either atomic (i.e., it does
424
+ not include any other block within it) or hierarchical (i.e., it
425
+ includes other blocks within it).
426
+ When creating a model, a tester can either use standard
427
+ blocks from built-in libraries or create new custom blocks
428
+ from scratch. After designing the model, a tester compiles and
429
+ simulates the model using a suitable solver and simulation
430
+ Fig. 2. A Simulink model with hierarchical blocks (b4, b8) and atomic blocks
431
+ (remaining), input ports (black nodes), output ports (white nodes), inputs (In1
432
+ and In2) and outputs (Out1, Out2 and Out3).
433
+ mode. Simulink allows to execute the model using user-
434
+ specified sample times (either fixed-length or variable-length).
435
+ A Simulink model M when simulated against a test case t
436
+ yields the model simulation output as the set of traces of all
437
+ input-internal-output signals. We denote the model simulation
438
+ output with O(t, M). A Simulink model can have multiple
439
+ outputs (such as Fig. 2’s Out1, Out2 and Out3).
440
+ B. Signal Temporal Logic (STL)
441
+ In recent years, for the verification of safety-critical CPS,
442
+ researchers have used temporal logic formalisms to express
443
+ safety properties. Signal Temporal Logic (STL) [5] is a well-
444
+ known specification formalism used to express temporal prop-
445
+ erties of dense-time real-valued behaviors of hybrid (i.e., both
446
+ continuous and discrete dynamic) systems, including safety-
447
+ critical CPS. The syntax of STL is formally defined as follows:
448
+ Φ := f(x(j)) > 0 | ¬Φ | Φ1 ∧ Φ2 | □IΦ | ♦IΦ | Φ1UIΦ2
449
+ Here, the formula of the form f(x(j)) > 0 represents a signal
450
+ predicate, where x(j) is the value of a signal x at time instant
451
+ j, and f is a function from signal domain D to R. I ⊆ R≥0 is
452
+ an arbitrary time-interval. The propositional logic operators ¬
453
+ and ∧ follow the obvious logical semantics, i.e., ¬ indicates
454
+ logical negation and ∧ indicates logical conjunction. Other
455
+ temporal operators are as follows:
456
+ • □IΦ (always operator) indicates that Φ must be true for
457
+ all samples in I.
458
+ • ♦IΦ (eventually operator) indicates that Φ must be true
459
+ at least once for samples in I.
460
+ • Φ1UIΦ2 means that Φ1 must be true in I until Φ2
461
+ becomes true. UI refers to as until operator.
462
+ The Boolean satisfaction semantics aka qualitative seman-
463
+ tics of STL offers a boolean witness of the property Φ. The
464
+ Boolean satisfaction of the signal predicate is simply ⊤ if it
465
+ is satisfied; otherwise ⊥. We use the operators U, ♦, and □
466
+ to denote UI, ♦I, and □I with I = [0, ∞).
467
+ Besides the qualitative semantics, STL also offers quanti-
468
+ tative semantics [23] that allows to compute the degree of
469
+ satisfaction of Φ by the traces generated by a system after
470
+ executing it against a test input. The degree of satisfaction of
471
+
472
+ b1
473
+ In1
474
+ I1nO
475
+ Dut2
476
+ In2
477
+ Out3Φ for a trace q is measured using a robust satisfaction function
478
+ ρ(q, Φ) that computes a real value that indicates the distance
479
+ of the trace q from satisfying (|=s) the property Φ. Formally,
480
+ ρ(q, Φ) > 0 ⇒ q |=s Φ, and ρ(q, Φ) < 0 ⇒ q ̸|=s Φ.
481
+ C. Mutations in Simulink
482
+ From a conceptual perspective, mutations are simply mod-
483
+ ifications to the behavior of the Simulink model. Usually,
484
+ alterations can be made in a Simulink model in two ways:
485
+ 1) Line mutations: changing the behavior of the signals that
486
+ propagate through lines from one block to another block
487
+ (see ‘Fault in line’ in Fig. 3), or
488
+ 2) Block mutations: changing the behavior of a block (see
489
+ ‘Fault in block’ in Fig. 3), for instance, by making changes
490
+ in its functionality.
491
+ Fig. 3. Mutations in a SUT (the seeded fault blocks F are highlighted in red).
492
+ A, B and C are blocks of original SUT. Internal signals s and s′ provide
493
+ knowledge of the fault location.
494
+ D. Robustness Measure
495
+ The notion of robustness function ρ becomes useful when
496
+ we need to search for a test t that passes the execution of the
497
+ model M w.r.t. an STL requirement φ. We use the following
498
+ notations [23]:
499
+ 1) ρ(O(t, M), φ) < ϵ ⇒ O(t, M) ̸|= φ, i.e., t fails on M
500
+ with respect to the specification φ
501
+ 2) ρ(O(t, M), φ) > ϵ ⇒ O(t, M) |= φ, i.e., t passes on M
502
+ with respect to the specification φ.
503
+ Here, the parameter ϵ represents the degree of violation of
504
+ the property as assessed by the robustness function ρ. The
505
+ standard choice is ϵ = 0 which implies that the identification
506
+ of passing or failing test case i.e., satisfaction or violation is
507
+ based on even a small (non-zero) deviation in the observed
508
+ behavior of M from the expected behavior w.r.t. φ.
509
+ E. Search-based generation of mutation adequate test cases
510
+ A key challenge in mutation testing, including PBMT, is
511
+ accurately computing the mutation score, due to the undecid-
512
+ able problem of identifying the equivalent mutants. In PBMT,
513
+ this problem is even harder due to the need of identifying
514
+ the φ-trivially different mutants, which include but are not
515
+ limited to the equivalent mutants. To address this challenge,
516
+ we defined a search-based test generation strategy that exploits
517
+ the knowledge of the mutants and their locations to generate
518
+ targeted executions that demonstrate if a mutant can be φ-
519
+ killed. Although nothing could be said about the mutants not
520
+ killed according to this procedure, the experimental results
521
+ show that assuming this procedure can identify every φ-
522
+ killable mutant may give an accurate approximation of the
523
+ mutation score.
524
+ Note that the proposed test strategy cannot be used to gen-
525
+ erate tests in a real situation, since it exploits the knowledge of
526
+ the fault location that is normally unknown when a software is
527
+ tested. However, the proposed test generation strategy is useful
528
+ in the context of PBMT to collect accurate empirical data.
529
+ In particular, we formulate the ‘Property-based test search
530
+ problem’, an optimization problem of finding a φ-adequate
531
+ test case as:
532
+ Property-based test search problem
533
+ INPUT: a Simulink model M, a first-order mutant M′
534
+ (with signal s changed into signal s′ or a block b with
535
+ output s changed into a block b′ with output s′), and
536
+ a property φ.
537
+ PROBLEM:
538
+ Find
539
+ t
540
+ s.t.
541
+ ρ(O(t, M), φ)
542
+ >
543
+ 0,
544
+ ρ(O(t, M′), φ) < 0 and D(s, s′) is maximum.
545
+ The proposed ‘Property-based test search problem’ com-
546
+ bines three key features, two deriving from the definition of
547
+ φ-killed mutant and one guiding the search toward the mutant,
548
+ and toward producing an execution that exploits the mutant to
549
+ significantly alter the state of the system:
550
+ • ρ(O(t, M), φ) > 0 requires finding a test that passes on
551
+ the original program,
552
+ • ρ(O(t, M′), φ) < 0 requires finding a test that violates
553
+ φ in the modified program, and
554
+ • D(s, s′) is maximum requires the mutation to impact on
555
+ the internal signal as much as possible.
556
+ We choose the Euclidean distance (aka L2 norm) as the
557
+ metric to compute the distance between s and s′. Since CPS
558
+ models involve continuous real-valued variables, Euclidean
559
+ distance, a prominent metric for real vector spaces, is a
560
+ good candidate for computing the distance. More rigorously,
561
+ given two finite-length signals s = (s1, · · · , sk) and s′ =
562
+ (s′
563
+ 1, · · · , s′
564
+ k), each with k samples, the Euclidean distance
565
+ between s and s′ is mathematically expressed as:
566
+ D(s, s′) = ||s − s′||2 =
567
+
568
+
569
+
570
+
571
+ k
572
+
573
+ i=1
574
+ (si − s′
575
+ i)2
576
+ The optimization task is to maximize D(s, s′) subject to
577
+ the constraints ρ(O(t, M), φ) > 0 and ρ(O(t, M′), φ) < 0.
578
+ To solve the formulated test search problem, we exploit
579
+ BCA [26], a recently developed global optimizer as outlined
580
+ in Algorithm 1. We chose BCA over other available optimizers
581
+ on account of its superior convergence and speed. While being
582
+ a global search with BCA in essence, Algorithm 1 introduces
583
+ two differences w.r.t. standard BCA: (1) The initial population
584
+ (Line 2) is a set of test cases randomly generated in their
585
+ valid numerical input domain. (2) Fitness (Line 3) corresponds
586
+ to the value of the test objective function for the given
587
+ population of test cases. The test objective function is obtained
588
+
589
+ Original SUT
590
+ Mutated
591
+ (Faulty)
592
+ SUT
593
+ B
594
+ Fault in line
595
+ B
596
+ Faults in block
597
+ (block mutation)by converting the constrained optimization problem into an
598
+ unconstrained problem using the scalar penalty constraint
599
+ handling method [27]. The algorithm updates the test cases
600
+ (Line 6-8) and finds the best solution for the new population
601
+ depending on their fitness values (Lines 9-10). The candidate
602
+ fittest amongst all others in the population is accepted as the
603
+ new global best solution (Lines 11-14). The algorithm returns
604
+ the best solution if all the constraints are satisfied. Algorithm 1
605
+ terminates (loop at Line 5) if either a test case satisfying the
606
+ optimization constraints is found, or the budget is exhausted
607
+ (time budget or the maximum number of iterations).
608
+ Algorithm 1: Search-based test generation.
609
+ Input : M : A Simulink model.
610
+ M′ : A mutant of M.
611
+ φ : An STL specification.
612
+ Output: tbest : A test case that φ-kills M′.
613
+ 1 Initialize optimizer parameters
614
+ 2 IP ← GENERATEINITIALPOPULATION()
615
+ 3 FP ← Fitness(IP, M, M′, φ)
616
+ 4 tbest, Fbest ← BestFound(FP)
617
+ 5 while TimeOut() do
618
+ 6
619
+ for each candidate k ∈ IP do
620
+ 7
621
+ knew ← Update(k)
622
+ 8
623
+ end for
624
+ 9
625
+ FP ← Fitness(IP, M, M′, φ)
626
+ 10
627
+ tnew, F ← BestFound(FP)
628
+ 11
629
+ if F > Fbest then
630
+ 12
631
+ Fbest ← F ;
632
+ // update best fitness
633
+ 13
634
+ tbest ← tnew ;
635
+ // update best test
636
+ 14
637
+ end if
638
+ 15 end while
639
+ 16 return tbest
640
+ For each mutant, we solve the formulated ‘Property-based
641
+ test search problem’ to find a test case that φ-kills it. The
642
+ resulting test suite is a fault-directed test suite that is likely to
643
+ reveal all the non φ-trivially different mutants.
644
+ F. Test suite reduction
645
+ To maintain a small and practical fault-directed test suite,
646
+ we reduce its size automatically. We consider a test case tr
647
+ φ-redundant w.r.t. a fault-directed test suite T if the set of
648
+ φ-killed mutants by T remains unchanged after the inclusion
649
+ of tr in T , i.e., |KDφ|T = |KDφ|T ∪ tr.
650
+ A φ-non-redundant test suite does not contain φ-redundant
651
+ test cases. Usually, a test suite can contain redundant test cases
652
+ while retaining the same testing power in the sense that they
653
+ are capable of killing the same mutants w.r.t. φ. In other words,
654
+ a single test case can cover more than one mutation.
655
+ In our experiments, we use the greedy algorithm similar
656
+ to the one proposed in [28] for test suite reduction. In the
657
+ worst-case scenario, p test cases are required to cover all p
658
+ non φ-trivially different mutations. In practice, fewer tests are
659
+ usually necessary.
660
+ V. EVALUATION
661
+ Our evaluation aims to study Property-Based Mutation
662
+ Testing (PBMT) for testing CPS Simulink models against STL
663
+ properties, also w.r.t. regular Mutation Testing (MT).
664
+ A. Research Questions
665
+ Our experiments address the following research questions:
666
+ RQ1. Does PBMT measure the adequacy of a test suite
667
+ better than MT when a safety property is targeted? To answer
668
+ this research question, we assess the adequacy of multiple
669
+ test suites using both PBMT and MT, and discuss how the
670
+ resulting scores reflect the intrinsic capability of the test cases
671
+ to exercise the software based on the target property.
672
+ RQ2. Are mutation operators equally contributing in
673
+ PBMT? To answer this research question, we study the impact
674
+ of different mutation operators on the mutation score, aiming
675
+ at discovering operators that tend to generate mutants that are
676
+ either trivial or particularly hard to detect.
677
+ B. Experimental Setup
678
+ We performed our experiments on a MacBook Pro with
679
+ Apple M1 chip, 16 GB RAM, macOS Monterey with MAT-
680
+ LAB™ R2018b. For our evaluation, we developed a prototype
681
+ implementation of both PBMT and MT with CPS Simulink
682
+ models in MATLAB. We used the RTAMT library [29] for
683
+ offline evaluation of STL properties.
684
+ We limit the scope of the evaluation to FOMs. Moreover, we
685
+ use a fixed-length sampling when running Simulink models
686
+ with faults active from the beginning to the end of the
687
+ simulation. In the following, we describe our experimental
688
+ subjects, mutants and test suites.
689
+ 1) Experimental subjects: We evaluate PBMT on Simulink
690
+ models of two industrial benchmarks across the safety-critical
691
+ domain, each one publicly available in the Simulink/Stateflow
692
+ online documentation of MathWorks® [30], [31]: ATCS, an
693
+ Automatic Transmission Controller System, and AECS, an
694
+ Aircraft Elevator Control System.
695
+ ATCS is a typical automotive drivetrain with the two inputs
696
+ throttle and brake governing the vehicle speed v (mph) and
697
+ the engine speed ω (RPM). Both user inputs are in the range
698
+ [0, 100] for all time instants. As one of the safety properties,
699
+ ATCS requires that v and ω must always remain below their
700
+ thresholds ¯v and ¯ω, respectively. This is represented in STL
701
+ in Table I where ¯v = 120 mph and ¯ω = 4500 RPM.
702
+ AECS from the avionics-aerospace domain controls the
703
+ positions of the left and right elevators of an aircraft using
704
+ the pilot command. In general, the elevator position should
705
+ maintain a constant value if the aircraft is flying at the desired
706
+ level. Among the safety requirements, the AECS requires that
707
+ whenever the Pilot Command cmd goes beyond a threshold
708
+ m, the measured elevator position pos must stabilize (should
709
+ not exceed cmd by more than n units) within T + a time
710
+ units. This is formally expressed with the STL specification
711
+ in Table I where m = 0.09, T = 2, a = 1 and n = 0.02.
712
+
713
+ TABLE I
714
+ DETAILS OF SIMULINK MODELS OF OUR CASE STUDIES.
715
+ Model
716
+ Ref.
717
+ #Blocks
718
+ #Lines
719
+ φ (STL specification)
720
+ qT
721
+ Sample time
722
+ #Samples
723
+ ATCS
724
+ [32]
725
+ 65
726
+ 92
727
+ □((v ≤ ¯v) ∧ (ω ≤ ¯ω))
728
+ 30
729
+ 0.04
730
+ 751
731
+ AECS
732
+ [33]
733
+ 825
734
+ 577
735
+ □(↑ (cmd ≥ m) → ♦[0,T ]□[0,a](|cmd − pos| ≤ n))
736
+ 10
737
+ 0.01
738
+ 1001
739
+ 2) Fault seeding and mutant generation: For each experi-
740
+ mental subject, we generated mutants using the FIM prototype
741
+ tool [34] that supports the following mutation operators for
742
+ Simulink models: Negate, Stuck-at, Absolute, Noise,
743
+ Bias/Offset, Time Delay, Package Drop, ROR (Re-
744
+ lational Operator Replacement), LOR (Logical Operator Re-
745
+ placement), S2P (Sum to Product mutation), P2S (Product to
746
+ Sum mutation) and ASR (Arithmetic Sign Replacement). The
747
+ detailed description of these operators can be found in [34].
748
+ Since FIM does not support the injection of faults in look-
749
+ up tables (LUTs), we extended the tool implementing two
750
+ additional operators: (1) Stuck-at 0 fault in any one entry, and
751
+ (2) swapped entries (from two randomly chosen neighbors).
752
+ Table II reports, for each subject, the number of mutants
753
+ generated for the specific mutation operator. Table III indicates
754
+ the total number of mutants generated for every subject and
755
+ their generation time. Mutant generation is fast: On an average
756
+ (across ATCS and AECS), the generation of a mutant takes
757
+ 1.74 seconds.
758
+ TABLE II
759
+ NUMBER OF MUTANTS OF OUR EXPERIMENTAL SUBJECTS.
760
+ Type
761
+ # Mutants
762
+ ATCS
763
+ AECS
764
+ Noise
765
+ 13
766
+ 17
767
+ Bias/Offset
768
+ 13
769
+ 17
770
+ Negate
771
+ 13
772
+ 17
773
+ Absolute
774
+ 13
775
+ 17
776
+ ROR
777
+ 0
778
+ 10
779
+ S2P
780
+ 1
781
+ 3
782
+ P2S
783
+ 2
784
+ 6
785
+ ASR
786
+ 3
787
+ 8
788
+ LUT
789
+ 2
790
+ 5
791
+ TABLE III
792
+ INFORMATION OF GENERATED MUTANTS.
793
+ Subject
794
+ Mutants generated
795
+ Mutant generation time (seconds)
796
+ ATCS
797
+ 60
798
+ 68.76
799
+ AECS
800
+ 100
801
+ 261.64
802
+ 3) Test Suite: To compare PBMT to MT, we assess test
803
+ suites generated according to two different strategies: Adap-
804
+ tive Random Testing (ART) [35] and Falsification Testing
805
+ (FT) [36], [37]. ART is a baseline strategy that generates
806
+ evenly distributed test cases (within valid input ranges),
807
+ thereby ensuring adequate diversity in the test inputs. On the
808
+ other hand, FT generates counterexamples i.e., test cases that
809
+ violate a property for a given model [38], [39]. Note that ART
810
+ and FT work in radically complementary ways. ART quickly
811
+ generates many test inputs, considering diversity, but ignoring
812
+ the property under test. On the contrary, FT specifically targets
813
+ the generation of a test that violates the property under test.
814
+ In particular, for each mutant M′, FT attempts to generate a
815
+ test case t such that O(t, M′) ̸|= φ. The hypothesis is that
816
+ ART could obtain higher MS, but smaller MSφ since the
817
+ generated tests do not depend on φ. On the contrary, FT should
818
+ kill fewer mutants in general, but more mutants relevant to φ,
819
+ and thus obtain higher MSφ.
820
+ In our evaluation, we generated 30 and 50 test cases
821
+ with ART for ATCS and AECS, respectively. FT generates
822
+ a property-violating test per mutant, if successful.
823
+ For collecting data to address our research questions, we
824
+ have executed all the test cases in the test suite for every
825
+ subject and every generated mutant. To perform our exper-
826
+ iments, we executed multiple simulations in parallel using
827
+ the Parallel Computing Toolbox™ in the MATLAB/Simulink®
828
+ environment. Table IV provides, for each subject, the total
829
+ number of test cases executed (including both test suites) and
830
+ the total execution time.
831
+ TABLE IV
832
+ SCALE OF EXPERIMENTS.
833
+ Subject
834
+ Total test cases executed
835
+ Total execution time (seconds)
836
+ ATCS
837
+ 90
838
+ 2,490
839
+ AECS
840
+ 150
841
+ 25,912
842
+ C. Results
843
+ RQ1 studies the extent to which PBMT-based testing can
844
+ better capture the thoroughness of a test suite w.r.t. a safety
845
+ property that the software-under-test must fulfil. To this end,
846
+ we apply both MT and PBMT to our experimental subjects
847
+ and compute the mutation scores MS and MSφ. Note that we
848
+ use exactly the same mutants to compute both scores. Table V
849
+ reports the results.
850
+ We report the results for regular mutation testing (MT)
851
+ and Property-Based Mutation Testing (PBMT) in two different
852
+ rows, while columns ATCS and AECS correspond to the two
853
+ subject systems. For each subject system, we indicate the
854
+ scores achieved by the test suites generated with Adaptive
855
+ Random Testing (TART ) and Falsification Testing (TF T ). In
856
+ details, we report the number of mutants that have been
857
+ generated, the number of killable and φ-killable mutants, the
858
+ number of mutants killed by each test suite according to MT
859
+ and PBMT, and finally the mutation scores MS and MSφ.
860
+
861
+ TABLE V
862
+ RESULTS OF MUTATION TESTING.
863
+ Approach
864
+ ATCS
865
+ AECS
866
+ TART
867
+ TF T
868
+ TART
869
+ TF T
870
+ MT
871
+ # Mutants
872
+ 60
873
+ 60
874
+ 100
875
+ 100
876
+ # Killable mutants
877
+ 47
878
+ 47
879
+ 83
880
+ 83
881
+ # Killed mutants
882
+ 47
883
+ 46
884
+ 74
885
+ 70
886
+ Mutation Score MS (in %)
887
+ 100%
888
+ 97.87%
889
+ 89.15%
890
+ 84.33%
891
+ PBMT
892
+ # Mutants
893
+ 60
894
+ 60
895
+ 100
896
+ 100
897
+ # φ-killable mutants
898
+ 47
899
+ 47
900
+ 83
901
+ 83
902
+ # φ-killed mutants
903
+ 25
904
+ 27
905
+ 39
906
+ 35
907
+ MSφ (in %)
908
+ 53.19%
909
+ 57.44%
910
+ 46.98%
911
+ 42.16%
912
+ To identify the killable mutants, we had to identify the
913
+ equivalent ones. To this end, we inspected the non-killed
914
+ mutants to determine if a mutation generated a variant that
915
+ cannot be distinguished from the original program. We could
916
+ identify every equivalent mutant with high-confidence. In fact,
917
+ the 13 equivalent mutants in the ATCS model all belong
918
+ to the Absolute fault type injected in the ‘Transmission’
919
+ component and all try to change into positive values some
920
+ signals that could not be negative. The exact same situation
921
+ happened for the 17 equivalent mutants found in the AECS
922
+ model. To determine the φ-killable mutants, we used the
923
+ Search-based test generation (SBTG) technique presented in
924
+ Algorithm 1. Note that the SBTG strategy is more computa-
925
+ tionally expensive than ART and FT due to the optimization
926
+ constraints. Our procedure automatically identified every φ-
927
+ killable mutant with thirty independent runs of our search
928
+ algorithm and a maximum number of iterations (set to 1000)
929
+ as the stopping criterion. The remaining φ-trivially different
930
+ mutants are all equivalent mutants that cannot be killed. This
931
+ result provides confidence on the capability of our approach
932
+ to support fully automated experiments with Simulink models
933
+ by assuming that the mutants not killed with our strategy are
934
+ φ-trivially different mutants that do not need to be killed, and
935
+ thus can be excluded from the computation of MSφ.
936
+ By comparing the results obtained for MT to the results
937
+ obtained with PBMT, we can notice the mutation score ob-
938
+ tained with MT is significantly higher than the mutation score
939
+ obtained with PBMT. In fact, the value of MS ranges between
940
+ 84.33% and 100% for the four test suites and the two subject
941
+ systems. On the other hand, the value of MSφ ranges between
942
+ 42.16% and 57.44%. This is also due to the intrinsic nature of
943
+ both Simulink models and data-flow computations, where it is
944
+ generally easy to activate every component (i.e., to generate a
945
+ sequence of inputs that exercise every element in a program),
946
+ but it is definitely harder to activate these components while
947
+ guaranteeing they contribute to the computation propagating
948
+ the fault to the output, finally causing observable issues. That
949
+ is, it is relatively easy to reach faults, but it is still hard
950
+ to meaningfully propagate and detect faults. This result is
951
+ confirmed across the test suites generated with two alternative
952
+ strategies.
953
+ These results demonstrate that MT may mislead testers
954
+ when there are important properties to be validated. For in-
955
+ stance, referring to Fig. 1 (top), the test case can kill the mutant
956
+ but cannot φ-kill it. In fact, the test suites generated with ART
957
+ and FT achieve high mutation score (MS), possibly inducing
958
+ testers to believe the test suites are thoroughly exercising
959
+ software. On the contrary, it turns out that the test cases are not
960
+ good enough to guarantee that even the simple faults (e.g., like
961
+ the ones we injected) that may affect the property are actually
962
+ detected.
963
+ It is also interesting that FT, which targets the falsification of
964
+ the property, in comparison to ART, which addresses diversity
965
+ neglecting the existence of the property, does not kill more
966
+ mutants. Combined with the evidence that almost half of the
967
+ killable mutants have not been φ-killed, this suggests that more
968
+ research is needed to exercise software thoroughly w.r.t. a
969
+ target property, at least for Simulink programs.
970
+ We finally checked for the capability of the generated
971
+ tests to kill and φ-kill mutants. Interestingly, there is often
972
+ high redundancy across tests, that is, each test can kill many
973
+ mutants. For instance, all the mutants that have been killed
974
+ with ART could be killed by a single test. This reinforces the
975
+ idea that there are some surface faults that are easy to reveal,
976
+ but at the same time there are other faults that, even if simple
977
+ in structure, require more sophisticated tests to be revealed.
978
+ On the other hand, we found that four test cases, derived
979
+ with our SBTG technique are needed to reveal all 47 φ-killable
980
+ mutations of ATCS. Likewise, all 83 φ-killable mutations of
981
+ AECS could be revealed with 12 test cases. This suggests
982
+ that compact but effective test suites could be designed to
983
+ reveal faults according to PBMT. Yet, PBMT requires a higher
984
+ number of tests than regular MT to φ-kill and kill mutants,
985
+ respectively.
986
+ RQ2 assesses the contribution of individual mutation oper-
987
+ ators in PBMT. The goal is to identify the operators that tend
988
+ to generate easy-to-kill mutants (simple mutants), which do
989
+ not contribute much to measuring the adequacy of a test suite,
990
+ and the operators that tend to generate hard-to-kill mutants
991
+ (stubborn mutants), which can contribute more in measuring
992
+ the thoroughness of a test suite.
993
+ Table VI reports the following results for each mutation
994
+ operator: (1) the number of mutants generated, (2) the number
995
+ (and percentage) of φ-trivially different mutants, (3) the num-
996
+
997
+ ber (and percentage) of NTDφ (i.e., non φ-trivially different
998
+ mutants), (4) mutation score achieved by ART, (5) mutation
999
+ score achieved by FT, and (6) number (and percentage) of
1000
+ NTDφ mutants not killed by any test generation technique
1001
+ (neither ART nor FT). Note that Table VI reports the combined
1002
+ results for our two experimental subjects (ATCS and AECS).
1003
+ At least half of the mutations generated by the Negate,
1004
+ ROR, S2P and ASR operators have been killed neither by
1005
+ ART nor by FT. This may suggest that these operators might
1006
+ be more useful than others for PBMT because they tend to
1007
+ generate faults that are not easy to propagate to the output.
1008
+ For instance, all the mutants of AECS with the Negate
1009
+ operator were generated by alterations in the Right Outer
1010
+ Hydraulic Actuator component. The available test cases can
1011
+ easily infect the execution (e.g., they change the output of the
1012
+ ‘Line resistance’ block), but fail to propagate the infection due
1013
+ to the presence of an intermediate signal (e.g., ‘Piston Force’)
1014
+ that masks changes if differences are not large enough.
1015
+ None of the mutants generated by ROR has been detected
1016
+ by TART and TF T . In particular, we observe that for all
1017
+ available test cases t ∈ TART ∪ TF T , with the execution of
1018
+ the ROR mutations, the robustness value evaluated for the STL
1019
+ property for every mutant is the same as that obtained for the
1020
+ original model. However, there exist test cases that produce
1021
+ visible differences in the outputs and φ-kill the mutants as
1022
+ demonstrated by the tests obtained with our SBTG technique.
1023
+ Mutations generated by S2P have been also hard to φ-
1024
+ kill. Besides, some mutations with ASR operator could not be
1025
+ detected by test cases in TART and TF T . Though these mu-
1026
+ tants alter the internal signal, the data-flow computations and
1027
+ propagation of signals do not affect the property. For instance,
1028
+ the ASR mutation in the ‘Hydraulic Actuator’ component of
1029
+ Right Inner Hydraulic Actuator unit of AECS (−+ replaced
1030
+ by +−) creates significant variations in the local signal but is
1031
+ not strong enough to φ-kill the mutant.
1032
+ On the other hand, two operators have not been particularly
1033
+ useful. The Absolute operator only generated equivalent
1034
+ mutants. This suggests that this operator must be used care-
1035
+ fully, only with systems known to process negative values, and
1036
+ possibly controlling the locations where the fault is injected.
1037
+ This case is quite infrequent in CPS. In fact, we have not
1038
+ observed any useful mutation in our two subjects. All the
1039
+ mutations generated by LUT were easy to φ-kill, with only
1040
+ one exception, which generates values hard to propagate to the
1041
+ output (but still feasible to propagate as demonstrated by the
1042
+ test suites generated with our SBTG approach). Although this
1043
+ operator is the only one targeting look-up tables, testers might
1044
+ consider skipping it when there are strong time constraints on
1045
+ the testing process.
1046
+ VI. THREATS TO VALIDITY
1047
+ We now discuss the threats to validity centered around the
1048
+ following perspectives of validity and threats:
1049
+ External validity. The main threat to external validity
1050
+ concerns with the generalization of our results. Indeed, the
1051
+ reported evidence may not generalize to every software
1052
+ system. In fact, we experimented in the domain of data-
1053
+ flow oriented computations (i.e., Simulink models), and our
1054
+ observations may not hold in other contexts (e.g., object-
1055
+ oriented programs). However, results are already quite clear
1056
+ and explainable in the domain of safety-critical CPS Simulink
1057
+ programs, where testing software against safety properties is
1058
+ particularly relevant. Moreover, the size of the experiment
1059
+ made affordable the manual analysis of mutations to identify
1060
+ equivalent mutants.
1061
+ Another threat to validity is the representativeness of the
1062
+ injected faults. The results reported in this study are based on
1063
+ typical mutation operators for Simulink models. In particular,
1064
+ we used the FIM tool [34] and its mutation operators, extended
1065
+ with additional mutation operator to address lookup tables.
1066
+ Internal
1067
+ validity. In our experiments, we considered
1068
+ only FOMs, i.e., faulty Simulink models with only one
1069
+ fault/mutation. Models can have multiple faults/mutations that
1070
+ may influence each other. Hence, the results might differ when
1071
+ tested with multi-fault Simulink models. Nevertheless, since
1072
+ most of the existing research on mutation testing focuses
1073
+ on FOMs of software artifacts [40], [41], we assessed our
1074
+ technique with single-fault models, leaving the study of HOMs
1075
+ for future work.
1076
+ Conclusion validity. Random variations is the main threat
1077
+ to conclusion validity. We mitigate this threat by making thirty
1078
+ independent runs of the test generation algorithms.
1079
+ VII. LESSONS LEARNED
1080
+ We now discuss the lessons learned from our experiments.
1081
+ Lesson 1 - It is challenging to generate PBMT-adequate
1082
+ test suites. Our study shows how none of the two state-of-
1083
+ the-art test generation strategies for Simulink programs we
1084
+ experimented with achieved high mutation score with PBMT.
1085
+ Indeed, PBMT is more laborious than regular MT: a test
1086
+ case that can kill a mutant might not φ-kill the same mutant.
1087
+ The embedded software industry heavily relies on properties
1088
+ for verification and validation activities, and it is important
1089
+ to design testing tools that thoroughly exercise the software.
1090
+ The definition of PBMT is a relevant advance to the state-of-
1091
+ the-practice that may influence and guide the design of more
1092
+ sophisticated and effective test generation strategies.
1093
+ Lesson 2 - MT does not capture well the thoroughness
1094
+ of a test suite. MT can still be applied to Simulink programs.
1095
+ However, test generation techniques could easily kill mutants
1096
+ as long as properties are not considered. This reveals that it is
1097
+ important to not only design executions that cover mutants, but
1098
+ that also propagate the errors produced by mutants, amplifying
1099
+ its visibility on the outputs. These characteristics of a test are
1100
+ not well assessed with MT.
1101
+ Lesson 3 - PBMT-driven test case generation can result
1102
+ in effective test cases. We defined a SBTG technique to find
1103
+ test cases that demonstrate that mutants could be φ-killed.
1104
+ Such a strategy has been highly effective in φ-killing mutants
1105
+ and could be the basis for the design of a mutation-based test
1106
+ case generation strategy.
1107
+
1108
+ TABLE VI
1109
+ SUMMARY OF RESULTS OF PBMT FOR INDIVIDUAL OPERATORS.
1110
+ Noise
1111
+ Negate
1112
+ Bias
1113
+ Absolute
1114
+ ROR
1115
+ S2P
1116
+ P2S
1117
+ ASR
1118
+ LUT
1119
+ # Mutants generated
1120
+ 30
1121
+ 30
1122
+ 30
1123
+ 30
1124
+ 10
1125
+ 4
1126
+ 8
1127
+ 11
1128
+ 7
1129
+ # (%) of φ-trivially different mutants
1130
+ 0 (0%)
1131
+ 0 (0%)
1132
+ 0 (0%)
1133
+ 30 (100%)
1134
+ 0 (0%)
1135
+ 0 (0%)
1136
+ 0 (0%)
1137
+ 0 (0%)
1138
+ 0 (0%)
1139
+ # (%) NTDφ
1140
+ 30 (100%)
1141
+ 30 (100%)
1142
+ 30 (100%)
1143
+ 0 (0%)
1144
+ 10 (100%)
1145
+ 4 (100%)
1146
+ 8 (100%)
1147
+ 11 (100%)
1148
+ 7 (100%)
1149
+ MSφART (in %)
1150
+ 66.67%
1151
+ 43.33%
1152
+ 46.66%
1153
+ 0%
1154
+ 0%
1155
+ 25%
1156
+ 62.5%
1157
+ 45.45%
1158
+ 85.71%
1159
+ MSφF T (in %)
1160
+ 70%
1161
+ 43.33%
1162
+ 50%
1163
+ 0%
1164
+ 0%
1165
+ 25%
1166
+ 62.5%
1167
+ 45.45%
1168
+ 28.57%
1169
+ # (%) NTDφ not killed by ART+FT
1170
+ 9 (30%)
1171
+ 17 (56.66%)
1172
+ 15 (50%)
1173
+ 0 (0%)
1174
+ 10 (100%)
1175
+ 3 (75%)
1176
+ 3 (37.5%)
1177
+ 6 (54.54%)
1178
+ 1 (14.28%)
1179
+ Lesson 4 - Not all mutations are equally useful to
1180
+ test CPS Simulink models. Based on our results, we might
1181
+ deduce that some operators are more likely to generate φ-
1182
+ trivially different mutants. For instance, the Absolute oper-
1183
+ ator always generated equivalent mutants. On the other hand,
1184
+ some operators (e.g., Negate, ROR, and ASR) generated
1185
+ mutants that were hard to φ-kill, calling for test case generation
1186
+ techniques that exercise the software in non-trivial ways.
1187
+ VIII. RELATED WORK
1188
+ Mutation Testing. From the software engineering perspec-
1189
+ tive, mutation analysis is one of the powerful software testing
1190
+ techniques that can evaluate the test suite quality [1], [2]. The
1191
+ mutation testing and analysis literature includes a large number
1192
+ of theoretical studies and empirical investigations of various
1193
+ kinds of software artifacts [42], [43].
1194
+ The work in [44] combines symbolic execution, concolic
1195
+ execution, and evolutionary testing to automate the test gener-
1196
+ ation for weak mutation testing of programs. Along a similar
1197
+ line of research, the work in [45] proposes a path selection
1198
+ strategy to pick up test cases capable of killing the mutants.
1199
+ Related research on test suite minimization include techniques
1200
+ based on Integer Linear Programming (ILP) [46], Greedy
1201
+ algorithms [28], [47], formal concept analysis [48], etc.
1202
+ The most prominent works concerning the applicability of
1203
+ mutation testing to safety-critical industrial systems include
1204
+ the empirical investigations reported in [3], [49]–[51]. Al-
1205
+ though the work in [3] proposes a well-defined mutation
1206
+ analysis pipeline for test suite quality assessment of embedded
1207
+ software, it misses to address the importance of properties
1208
+ associated with the software and the ways to handle them
1209
+ during mutation testing. Contrary to the existing research on
1210
+ regular MT, we use properties—which allow us to express
1211
+ software requirements and specifications—to formalize the
1212
+ notion of killing the mutants.
1213
+ Mutations with Simulink models. Mutation mainly relies
1214
+ on alterations in the Simulink model by seeding defects using
1215
+ mutation operators [52]. Researchers have proposed several
1216
+ tools for creating mutants: SIMULTATE [53], MODIFI [54],
1217
+ ErrorSim [55], FIBlock [56], and FIM [34]. We also mention
1218
+ SLforge [19], a tool for automatically generating random valid
1219
+ Simulink models for differential testing. In our experiments,
1220
+ we used FIM since it provides a higher degree of automation
1221
+ compared to the other tools.
1222
+ Mutation-based test case generation. With regular MT,
1223
+ the mutation-based test case generation approaches exploit the
1224
+ mutants to generate test cases that can pick up the errors and
1225
+ discover the mutants. Some approaches considered generating
1226
+ tests that can reveal mutations introduced in the specification
1227
+ (e.g., in UML models) [57]–[62]. PBMT is different in many
1228
+ ways: it does not target mutations in the specification and it
1229
+ introduces a novel notion of mutation testing.
1230
+ The approaches designed to address Simulink models focus
1231
+ on targeted test-data generation either using search-based test-
1232
+ ing [63], [64] or behavioral analysis approaches (for instance,
1233
+ bounded reachability) [65], [66]. In essence, the main objective
1234
+ of these techniques is to generate a mutation-adequate test
1235
+ suite that achieves full mutation coverage based on the RIP
1236
+ model. Inspired by these techniques, we designed our search
1237
+ strategy to automatically φ-kill mutants. Further, PBMT intro-
1238
+ duces a novel instance of mutation testing that assesses the
1239
+ mutation adequacy of test suites w.r.t. properties, which has
1240
+ not been considered in mutation-based testing so far.
1241
+ IX. CONCLUSION
1242
+ We presented Property-based Mutation Testing (PBMT),
1243
+ a novel approach to mutation testing that promises efficient
1244
+ evaluation of test suites concerning software properties. Our
1245
+ formalization of mutant killability concerns with the satisfac-
1246
+ tion (and violation) of a property for the original program (and
1247
+ its mutated version). We provide rigorous semantics for PBMT
1248
+ and its associated mutant killing problem, enabling search-
1249
+ based generation of test cases using a global optimizer. We
1250
+ used different test generation strategies for creating test suites
1251
+ and observed their impact on mutant killability.
1252
+ We studied PBMT on two Simulink models across the
1253
+ safety-critical CPS domain, providing evidence that testing
1254
+ software against properties is more challenging and relevant
1255
+ than opting for regular MT, in which mutants can be easily
1256
+ killed. Finally, our evaluation shows that state-of-the-art Adap-
1257
+ tive Random Testing and Falsification Testing techniques are
1258
+ still weak in terms of their capability of generating test suites
1259
+ that can effectively kill mutants when tested against properties.
1260
+ Future work concerns adapting PBMT to closely related
1261
+ CPS modeling languages, including Simulink models inte-
1262
+ grated with Stateflow Charts. We further plan to conduct
1263
+ additional investigations with HOMs.
1264
+ ACKNOWLEDGMENT
1265
+ This work has been supported by the Doctoral College
1266
+ Resilient Embedded Systems, which is run jointly by the TU
1267
+ Wien’s Faculty of Informatics and the UAS Technikum Wien.
1268
+
1269
+ REFERENCES
1270
+ [1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
1271
+ selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
1272
+ pp. 34–41, April 1978.
1273
+ [2] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
1274
+ “Mutation analysis,” Georgia Institute of Technology, Atlanta, Georgia,
1275
+ techreport GIT-ICS-79/08, 1979.
1276
+ [3] O. E. C. Olivares, F. Pastore, and L. Briand, “Mutation analysis for
1277
+ cyber-physical systems: Scalable solutions and results in the space
1278
+ domain,” IEEE Transactions on Software Engineering, 2021.
1279
+ [4] D. Fortunato, J. Campos, and R. Abreu, “Mutation testing of quantum
1280
+ programs: A case study with qiskit,” IEEE Transactions on Quantum
1281
+ Engineering, vol. 3, pp. 1–17, 2022.
1282
+ [5] O. Maler and D. Niˇckovi´c, “Monitoring properties of analog and mixed-
1283
+ signal circuits,” International Journal on Software Tools for Technology
1284
+ Transfer, vol. 15, no. 3, pp. 247–268, 2013.
1285
+ [6] R. Gopinath, C. Jensen, and A. Groce, “The theory of composite faults,”
1286
+ in 2017 IEEE International Conference on Software Testing, Verification
1287
+ and Validation (ICST), 2017, pp. 47–57.
1288
+ [7] G. Petrovic, M. Ivankovic, G. Fraser, and R. Just, “Does mutation
1289
+ testing improve testing practices?” in Proceedings of the International
1290
+ Conference on Software Engineering (ICSE), 2021.
1291
+ [8] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
1292
+ “Are mutants a valid substitute for real faults in software testing?”
1293
+ in Proceedings of the Symposium on the Foundations of Software
1294
+ Engineering (FSE), 2014.
1295
+ [9] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
1296
+ mutation analysis for assessing and comparing testing coverage criteria,”
1297
+ IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624,
1298
+ 2006.
1299
+ [10] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
1300
+ tool for testing experiments?” in Proceedings of the International
1301
+ Conference on Software Engineering (ICSE), 2015.
1302
+ [11] Y. Jia and M. Harman, “Higher order mutation testing,” Information and
1303
+ Software Technology, vol. 51, no. 10, pp. 1379–1393, 2009.
1304
+ [12] S. Demeyer, A. Parsai, S. Vercammen, B. v. Bladel, and M. Abdi,
1305
+ “Formal verification of developer tests: a research agenda inspired by
1306
+ mutation testing,” in International Symposium on Leveraging Applica-
1307
+ tions of Formal Methods.
1308
+ Springer, 2020, pp. 9–24.
1309
+ [13] S. Vercammen, S. Demeyer, M. Borg, N. Pettersson, and G. Hedin, “Mu-
1310
+ tation testing optimisations using the clang front-end,” arXiv preprint
1311
+ arXiv:2210.17215, 2022.
1312
+ [14] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
1313
+ “Mutation testing advances: an analysis and survey,” in Advances in
1314
+ Computers.
1315
+ Elsevier, 2019, vol. 112, pp. 275–378.
1316
+ [15] B. Kurtz, P. Ammann, and J. Offutt, “Static analysis of mutant sub-
1317
+ sumption,” in 2015 IEEE Eighth International Conference on Software
1318
+ Testing, Verification and Validation Workshops (ICSTW).
1319
+ IEEE, 2015,
1320
+ pp. 1–10.
1321
+ [16] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and
1322
+ infeasible paths,” Software testing, verification and reliability, vol. 7,
1323
+ no. 3, pp. 165–192, 1997.
1324
+ [17] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,”
1325
+ Mutation testing for the new century, pp. 34–44, 2001.
1326
+ [18] N. Li and J. Offutt, “Test oracle strategies for model-based testing,”
1327
+ IEEE Transactions on Software Engineering, vol. 43, no. 4, pp. 372–
1328
+ 395, 2016.
1329
+ [19] S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson, and
1330
+ C. Csallner, “Automatically finding bugs in a commercial cyber-physical
1331
+ system development tool chain with slforge,” in Proceedings of the 40th
1332
+ International Conference on Software Engineering, 2018, pp. 981–992.
1333
+ [20] S. A. Chowdhury, L. S. Varghese, S. Mohian, T. T. Johnson, and
1334
+ C. Csallner, “A curated corpus of simulink models for model-based
1335
+ empirical studies,” in 2018 IEEE/ACM 4th International Workshop
1336
+ on Software Engineering for Smart Cyber-Physical Systems (SEsCPS).
1337
+ IEEE, 2018, pp. 45–48.
1338
+ [21] A. Rajhans, S. Avadhanula, A. Chutinan, P. J. Mosterman, and F. Zhang,
1339
+ “Graphical modeling of hybrid dynamics with simulink and stateflow,”
1340
+ in Proceedings of the 21st International Conference on Hybrid Systems:
1341
+ Computation and Control (part of CPS Week), 2018, pp. 247–252.
1342
+ [22] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
1343
+ uous signals,” in Formal Techniques, Modelling and Analysis of Timed
1344
+ and Fault-Tolerant Systems.
1345
+ Springer, 2004, pp. 152–166.
1346
+ [23] A. Donz´e and O. Maler, “Robust satisfaction of temporal logic over
1347
+ real-valued signals,” in International Conference on Formal Modeling
1348
+ and Analysis of Timed Systems.
1349
+ Springer, 2010, pp. 92–106.
1350
+ [24] Mathworks. (2022) Simulink — simulation and model-based design.
1351
+ [Online]. Available: https://in.mathworks.com/products/simulink.html
1352
+ [25] Mathworks.
1353
+ (2022)
1354
+ Model-based
1355
+ systems
1356
+ engineering
1357
+ (mbse).
1358
+ [Online].
1359
+ Available:
1360
+ https://in.mathworks.com/solutions/
1361
+ model-based-systems-engineering.html
1362
+ [26] D. Yadav, “Blood coagulation algorithm: A novel bio-inspired meta-
1363
+ heuristic algorithm for global optimization,” Mathematics, vol. 9, no. 23,
1364
+ p. 3011, 2021.
1365
+ [27] C. A. C. Coello, “Theoretical and numerical constraint-handling tech-
1366
+ niques used with evolutionary algorithms: a survey of the state of the
1367
+ art,” Computer methods in applied mechanics and engineering, vol. 191,
1368
+ no. 11-12, pp. 1245–1287, 2002.
1369
+ [28] M. Polo Usaola, P. Reales Mateo, and B. P´erez Lamancha, “Reduction of
1370
+ test suites using mutation,” in International Conference on Fundamental
1371
+ Approaches to Software Engineering.
1372
+ Springer, 2012, pp. 425–438.
1373
+ [29] D. Nickovic and T. Yamaguchi, “RTAMT: online robustness monitors
1374
+ from STL,” in Automated Technology for Verification and Analysis - 18th
1375
+ International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23,
1376
+ 2020, Proceedings, 2020, pp. 564–571.
1377
+ [30] Mathworks.
1378
+ (2022)
1379
+ Modeling
1380
+ an
1381
+ automatic
1382
+ transmission
1383
+ con-
1384
+ troller.
1385
+ [Online].
1386
+ Available:
1387
+ https://in.mathworks.com/help/simulink/
1388
+ slref/modeling-an-automatic-transmission-controller.html
1389
+ [31] Mathworks.
1390
+ (2022)
1391
+ Detect
1392
+ faults
1393
+ in
1394
+ aircraft
1395
+ elevator
1396
+ control
1397
+ system. [Online]. Available: https://in.mathworks.com/help/stateflow/
1398
+ ug/fault-detection-control-logic-in-an-aircraft-elevator-control-system.
1399
+ html
1400
+ [32] A. Donz´e, “Breach, a toolbox for verification and parameter synthesis
1401
+ of hybrid systems,” in International Conference on Computer Aided
1402
+ Verification.
1403
+ Springer, 2010, pp. 167–170.
1404
+ [33] E. Bartocci, N. Manjunath, L. Mariani, C. Mateis, and D. Niˇckovi´c,
1405
+ “CPSdebug: Automatic failure explanation in CPS models,” Interna-
1406
+ tional Journal on Software Tools for Technology Transfer, vol. 23, no. 5,
1407
+ pp. 783–796, 2021.
1408
+ [34] E. Bartocci, L. Mariani, D. Niˇckovi´c, and D. Yadav, “FIM: Fault
1409
+ Injection and Mutation for Simulink,” in Proceedings of the 30th ACM
1410
+ Joint European Software Engineering Conference and Symposium on
1411
+ the Foundations of Software Engineering (ESEC/FSE), 2022, pp. 1716–
1412
+ 1720.
1413
+ [35] B. Liu, S. Nejati, L. C. Briand et al., “Effective fault localization of
1414
+ automotive simulink models: achieving the trade-off between test oracle
1415
+ effort and fault localization accuracy,” Empirical Software Engineering,
1416
+ vol. 24, no. 1, pp. 444–490, 2019.
1417
+ [36] A. S. Adimoolam, T. Dang, A. Donz´e, J. Kapinski, and X. Jin, “Classifi-
1418
+ cation and coverage-based falsification for embedded control systems,”
1419
+ in Computer Aided Verification - 29th International Conference, CAV
1420
+ 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, ser.
1421
+ Lecture Notes in Computer Science, R. Majumdar and V. Kuncak, Eds.,
1422
+ vol. 10426.
1423
+ Cham: Springer, 2017, pp. 483–503.
1424
+ [37] T. Akazaki and I. Hasuo, “Time robustness in MTL and expressivity
1425
+ in hybrid system falsification,” in Computer Aided Verification - 27th
1426
+ International Conference, CAV 2015, San Francisco, CA, USA, July 18-
1427
+ 24, 2015, Proceedings, Part II, ser. Lecture Notes in Computer Science,
1428
+ D. Kroening and C. S. Pasareanu, Eds., vol. 9207.
1429
+ Cham: Springer,
1430
+ 2015, pp. 356–374.
1431
+ [38] Z. Zhang, I. Hasuo, and P. Arcaini, “Multi-armed bandits for boolean
1432
+ connectives in hybrid system falsification,” in Computer Aided Verifica-
1433
+ tion - 31st International Conference, CAV 2019, New York City, NY, USA,
1434
+ July 15-18, 2019, Proceedings, Part I, ser. Lecture Notes in Computer
1435
+ Science, I. Dillig and S. Tasiran, Eds., vol. 11561.
1436
+ Cham: Springer,
1437
+ 2019, pp. 401–420.
1438
+ [39] Z. Zhang, D. Lyu, P. Arcaini, L. Ma, I. Hasuo, and J. Zhao, “Effective
1439
+ hybrid system falsification using monte carlo tree search guided by
1440
+ qb-robustness,” in Computer Aided Verification - 33rd International
1441
+ Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
1442
+ Part I, ser. Lecture Notes in Computer Science, A. Silva and K. R. M.
1443
+ Leino, Eds., vol. 12759.
1444
+ Cham: Springer, 2021, pp. 595–618.
1445
+ [40] B. K. Aichernig, F. Lorber, and D. Niˇckovi´c, “Time for mutants—model-
1446
+ based mutation testing with timed automata,” in International Confer-
1447
+ ence on Tests and Proofs.
1448
+ Springer, 2013, pp. 20–38.
1449
+
1450
+ [41] T. Titcheu Chekam, M. Papadakis, T. F. Bissyand´e, Y. Le Traon,
1451
+ and K. Sen, “Selecting fault revealing mutants,” Empirical Software
1452
+ Engineering, vol. 25, no. 1, pp. 434–487, 2020.
1453
+ [42] Y. Jia and M. Harman, “An analysis and survey of the development of
1454
+ mutation testing,” IEEE transactions on software engineering, vol. 37,
1455
+ no. 5, pp. 649–678, 2010.
1456
+ [43] R. A. Silva, S. d. R. S. de Souza, and P. S. L. de Souza, “A systematic
1457
+ review on search based mutation testing,” Information and Software
1458
+ Technology, vol. 81, pp. 19–35, 2017.
1459
+ [44] M. Papadakis and N. Malevris, “Automatically performing weak mu-
1460
+ tation with the aid of symbolic execution, concolic testing and search-
1461
+ based testing,” Software Quality Journal, vol. 19, no. 4, pp. 691–723,
1462
+ 2011.
1463
+ [45] M. Papadakis and N. Malevris, “Mutation based test case generation via
1464
+ a path selection strategy,” Information and Software Technology, vol. 54,
1465
+ no. 9, pp. 915–932, 2012.
1466
+ [46] F. Palomo-Lozano, A. Estero-Botaro, I. Medina-Bulo, and M. N´u˜nez,
1467
+ “Test suite minimization for mutation testing of ws-bpel compositions,”
1468
+ in Proceedings of the Genetic and Evolutionary Computation Confer-
1469
+ ence, 2018, pp. 1427–1434.
1470
+ [47] N. Jatana, B. Suri, P. Kumar, and B. Wadhwa, “Test suite reduction by
1471
+ mutation testing mapped to set cover problem,” in Proceedings of the
1472
+ Second International Conference on Information and Communication
1473
+ Technology for Competitive Strategies, 2016, pp. 1–6.
1474
+ [48] L. Li and H. Gao, “Test suite reduction for mutation testing based
1475
+ on formal concept analysis,” in 2015 IEEE/ACIS 16th International
1476
+ Conference on Software Engineering, Artificial Intelligence, Networking
1477
+ and Parallel/Distributed Computing (SNPD).
1478
+ IEEE, 2015, pp. 1–5.
1479
+ [49] R. Baker and I. Habli, “An empirical evaluation of mutation testing for
1480
+ improving the test quality of safety-critical software,” IEEE Transactions
1481
+ on Software Engineering, vol. 39, no. 6, pp. 787–805, 2012.
1482
+ [50] R. Ramler, T. Wetzlmaier, and C. Klammer, “An empirical study on the
1483
+ application of mutation testing for a safety-critical industrial software
1484
+ system,” in Proceedings of the Symposium on Applied Computing, 2017,
1485
+ pp. 1401–1408.
1486
+ [51] P. Delgado-P´erez, I. Habli, S. Gregory, R. Alexander, J. Clark, and
1487
+ I. Medina-Bulo, “Evaluation of mutation testing in a nuclear industry
1488
+ case study,” IEEE Transactions on Reliability, vol. 67, no. 4, pp. 1406–
1489
+ 1419, 2018.
1490
+ [52] N. T. Binh et al., “Mutation operators for simulink models,” in 2012
1491
+ Fourth International Conference on Knowledge and Systems Engineer-
1492
+ ing.
1493
+ IEEE, 2012, pp. 54–59.
1494
+ [53] I. Pill, I. Rubil, F. Wotawa, and M. Nica, “Simultate: A toolset for
1495
+ fault injection and mutation testing of simulink models,” in 2016 IEEE
1496
+ Ninth International Conference on Software Testing, Verification and
1497
+ Validation Workshops (ICSTW).
1498
+ IEEE, 2016, pp. 168–173.
1499
+ [54] R. Svenningsson, J. Vinter, H. Eriksson, and M. T¨orngren, “Modifi: a
1500
+ model-implemented fault injection tool,” in International Conference on
1501
+ Computer Safety, Reliability, and Security, E. Schoitsch, Ed.
1502
+ Berlin,
1503
+ Heidelberg: Springer, 2010, pp. 210–222.
1504
+ [55] M. Sarao˘glu, A. Morozov, M. T. S¨oylemez, and K. Janschek, “Er-
1505
+ rorsim: A tool for error propagation analysis of simulink models,” in
1506
+ International Conference on Computer Safety, Reliability, and Security.
1507
+ Springer, 2017, pp. 245–254.
1508
+ [56] T. Fabarisov, I. Mamaev, A. Morozov, and K. Janschek, “Model-based
1509
+ fault injection experiments for the safety analysis of exoskeleton
1510
+ system,” arXiv preprint arXiv:2101.01283, 2021. [Online]. Available:
1511
+ https://arxiv.org/abs/2101.01283
1512
+ [57] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jobstl, and H. Brandl,
1513
+ “Momut:: Uml model-based mutation testing for uml,” in 2015 IEEE
1514
+ 8th International Conference on Software Testing, Verification and
1515
+ Validation (ICST).
1516
+ IEEE, 2015, pp. 1–8.
1517
+ [58] B. K. Aichernig, J. Auer, E. J¨obstl, R. Koroˇsec, W. Krenn, R. Schlick,
1518
+ and B. V. Schmidt, “Model-based mutation testing of an industrial
1519
+ measurement device,” in International Conference on Tests and Proofs.
1520
+ Springer, 2014, pp. 1–19.
1521
+ [59] B. K. Aichernig, H. Brandl, E. J¨obstl, W. Krenn, R. Schlick, and S. Tiran,
1522
+ “Killing strategies for model-based mutation testing,” Software Testing,
1523
+ Verification and Reliability, vol. 25, no. 8, pp. 716–748, 2015.
1524
+ [60] B. K. Aichernig, H. Brandl, E. J¨obstl, and W. Krenn, “Efficient mutation
1525
+ killers in action,” in 2011 Fourth IEEE International Conference on
1526
+ Software Testing, Verification and Validation.
1527
+ IEEE, 2011, pp. 120–
1528
+ 129.
1529
+ [61] W. Krenn and R. Schlick, “Mutation-driven test case generation
1530
+ using short-lived concurrent mutants–first results,” arXiv preprint
1531
+ arXiv:1601.06974, 2016.
1532
+ [62] A. Fellner, W. Krenn, R. Schlick, T. Tarrach, and G. Weissenbacher,
1533
+ “Model-based, mutation-driven test-case generation via heuristic-guided
1534
+ branching search,” ACM Transactions on Embedded Computing Systems
1535
+ (TECS), vol. 18, no. 1, pp. 1–28, 2019.
1536
+ [63] Y. Zhan and J. A. Clark, “Search-based mutation testing for simulink
1537
+ models,” in Proceedings of the 7th annual conference on Genetic and
1538
+ evolutionary computation, 2005, pp. 1061–1068.
1539
+ [64] Y. Zhan and J. A. Clark, “A search-based framework for automatic
1540
+ testing of matlab/simulink models,” Journal of Systems and Software,
1541
+ vol. 81, no. 2, pp. 262–285, 2008.
1542
+ [65] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare,
1543
+ P. R¨ummer, and G. Weissenbacher, “Mutation-based test case generation
1544
+ for simulink models,” in International Symposium on Formal Methods
1545
+ for Components and Objects.
1546
+ Springer, 2009, pp. 208–227.
1547
+ [66] N. He, P. R¨ummer, and D. Kroening, “Test-case generation for embedded
1548
+ simulink via formal concept analysis,” in Proceedings of the 48th Design
1549
+ Automation Conference, 2011, pp. 224–229.
1550
+
89FRT4oBgHgl3EQfqDcj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tAzT4oBgHgl3EQfFPrO/content/tmp_files/2301.01009v1.pdf.txt ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Reduced Reference Quality Assessment for Point
2
+ Cloud Compression
3
+ Yipeng Liu
4
+ Cooperative MediaNet Innovation Center
5
+ Shanghai Jiao Tong University
6
+ Shanghai, China
7
8
+ Qi Yang
9
+ Cooperative MediaNet Innovation Center
10
+ Shanghai Jiao Tong University
11
+ Shanghai, China
12
13
+ Yiling Xu
14
+ Cooperative MediaNet Innovation Center
15
+ Shanghai Jiao Tong University
16
+ Shanghai, China
17
18
+ Abstract—In this paper, we propose a reduced reference (RR)
19
+ point cloud quality assessment (PCQA) model named R-PCQA
20
+ to quantify the distortions introduced by the lossy compression.
21
+ Specifically, we use the attribute and geometry quantization
22
+ steps of different compression methods (i.e., V-PCC, G-PCC and
23
+ AVS) to infer the point cloud quality, assuming that the point
24
+ clouds have no other distortions before compression. First, we
25
+ analyze the compression distortion of point clouds under separate
26
+ attribute compression and geometry compression to avoid their
27
+ mutual masking, for which we consider 5 point clouds as
28
+ references to generate a compression dataset (PCCQA) containing
29
+ independent attribute compression and geometry compression
30
+ samples. Then, we develop the proposed R-PCQA via fitting the
31
+ relationship between the quantization steps and the perceptual
32
+ quality. We evaluate the performance of R-PCQA on both the
33
+ established dataset and another independent dataset. The results
34
+ demonstrate that the proposed R-PCQA can exhibit reliable
35
+ performance and high generalization ability.
36
+ I.
37
+ INTRODUCTION
38
+ Recently, point cloud has emerged as a promising represen-
39
+ tation format in prevalent 3D applications (e.g., autonomous
40
+ driving [1] and augmented reality [2]), for which the point
41
+ cloud compression (PCC) is of great interest for providing
42
+ efficient service in practices. Currently, the Moving Picture
43
+ Experts Group (MPEG) has applied the separable measure-
44
+ ments of geometry and attribute distortion in the course of
45
+ lossy PCC. For the geometry distortion, MPEG proposes to use
46
+ the point-to-point (p2point) [3], or point-to-plane (p2plane) [4]
47
+ to quantify the spatial perturbation; while for the attribute
48
+ part, the PSNRyuv is proposed to measure the differences
49
+ between corresponding color channels. Besides these metrics
50
+ which have already been applied in MPEG PCC standardiza-
51
+ tion, some other metrics which consider more human visual
52
+ characteristics and present better performance on public PCQA
53
+ databases are also developed, such as [5]–[15]. However, they
54
+ are full reference (FR) metrics which require both the reference
55
+ and distorted samples and have high computational complexity
56
+ for real-time quality prediction.
57
+ In many practical cases, e.g., transmission, the timely
58
+ feedback is expected, and only the compressed samples and
59
+ the meta data are available, in which the reduced reference
60
+ (RR) PCQA metrics are indispensable. Only a few researches
61
+ explore the RR methods for PCQA. [16] uses the statistical in-
62
+ formation (e.g., the luminance histogram) as the substitute for
63
+ the complete samples, but still requires the backend processing.
64
+ [17] applies the quantization parameters in V-PCC to estimate
65
+ the quality of compressed samples and guide rate control,
66
+ but other prevalent compression strategies (e.g., G-PCC) are
67
+ ignored. Therefore, in this paper, we propose a general RR
68
+ PCQA model for compression distortions named R-PCQA
69
+ which only takes the attribute and geometry quantization steps
70
+ of compression schemes (including V-PCC [18], G-PCC [19]
71
+ and AVS [20], V-PCC and G-PCC are provided by MPEG
72
+ while AVS is recommended by China Audio-Video Coding
73
+ Standard) as variables, since the quality of compressed point
74
+ clouds is highly related to the compression parameters. To fully
75
+ study the relationship between the compression parameters
76
+ and perceptual quality, we first establish a complete subjective
77
+ database for PCC, named PCC quality assessment (PCCQA)
78
+ database.
79
+ The reason why we establish PCCQA while many PCQA
80
+ datasets [7], [21]–[24] have been proposed is that current
81
+ databases only consider the superimposed compression distor-
82
+ tion, i.e. lossy-geometry (G)-lossy-attribute (A) compression,
83
+ which is recommended in the Common Test Conditions (CTC)
84
+ [25]–[27]. The separate compression strategies, i.e. lossless-
85
+ G-lossy-A and lossy-G-lossless-A compression, which are
86
+ not included in the CTC are often ignored. Considering the
87
+ mutual masking between geometry and attribute distortions
88
+ [28], they are useful for exploring the relationship between the
89
+ perceptual quality and compression parameters. In PCCQA,
90
+ the reference point clouds are compressed by V-PCC, G-PCC
91
+ and AVS under lossless-G-lossy-A condition, lossy-G-lossless-
92
+ A condition, and lossy-G-lossy-A condition respectively.
93
+ To model the relationship between the perceptual quality
94
+ and the compression parameters, we first convert all the
95
+ compression parameters to the quantization steps. Then, we
96
+ model the relationship between the perceptual quality and the
97
+ attribute/geometry quantization steps respectively via using the
98
+ least square fitting. Finally, the proposed R-PCQA combines
99
+ the attribute compression model and geometry compression
100
+ model to predict the final quality scores.
101
+ The rest of this paper is organized as follows: section II
102
+ introduces the established PCCQA dataset; section III presents
103
+ the proposed R-PCQA; section IV illustrates the experiment
104
+ results; the conclusion is summarized in section V.
105
+ 978-1-6654-7592-1/22/$31.00 © 2022 IEEE
106
+ arXiv:2301.01009v1 [eess.IV] 3 Jan 2023
107
+
108
+ II.
109
+ PCCQA DATABASE
110
+ To better explore the relationship between the perceptual
111
+ quality and the attribute/geometry compression parameters,
112
+ we first establish a database called PCCQA under several
113
+ compression conditions.
114
+ Five reference point clouds are selected from MPEG and
115
+ AVS point cloud datasets. These reference point clouds are
116
+ ensured to have no holes and other distortions under 1080P
117
+ presentation with size-2 primitives. The reference point clouds
118
+ are then distorted with 3 compression algorithms, i.e. V-
119
+ PCC [18], G-PCC [19] and AVS [20]. Each compression is
120
+ conducted under 3 conditions, i.e. lossless-G-lossy-A, lossy-G-
121
+ lossless-A, and lossy-G-lossy-A. The compression parameters
122
+ are shown in Table I. In total, 225 compressed point clouds
123
+ are generated.
124
+ TABLE I: Compression parameters used for distorted point
125
+ cloud generation.
126
+ Conditions
127
+ Parameters
128
+ GPCC lossy-G-lossless-A
129
+ VPCC lossy-G-lossless-A
130
+ AVS lossy-G-lossless-A
131
+ (positionQuantizationScale)
132
+ 0.75 0.5 0.25 0.125 0.0625
133
+ (geomQP)
134
+ 22 32 37 42 51
135
+ (geom quant step)
136
+ 2 4 8 12 16
137
+ GPCC lossless-G-lossy-A
138
+ VPCC lossless-G-lossy-A
139
+ AVS lossless-G-lossy-A
140
+ (qp)
141
+ 35 39 43 47 51
142
+ (textureQP)
143
+ 32 37 42 47 51
144
+ (attr quant param)
145
+ 24 32 40 44 48
146
+ GPCC lossy-G-lossy-A
147
+ VPCC lossy-G-lossy-A
148
+ AVS lossy-G-lossy-A
149
+ (positionQuantizationScale, qp)
150
+ 0.75,35 0.5,39 0.25,43 0.125,47 0.0625,51
151
+ (geomQP, textureQP)
152
+ 24,32 28,37 32,42 36,47 40,51
153
+ (geom quant step, attr quant param)
154
+ 2,24 4,32 8,40 12,44 16,48
155
+ To annotate the compressed point clouds, a subjective
156
+ experiment is organized to collect the Mean Opinion Scores
157
+ (MOS). We adopt the double stimulus method since it can
158
+ obtain more stable results for minor impairments. The ex-
159
+ periment process and environment setting strictly follow the
160
+ ITU-R Recommendation BT. 500 [29]. Such a method for
161
+ collecting subjective MOS is also adopted in other researches,
162
+ such as [23], [30]–[32].
163
+ III.
164
+ PROPOSED QUALITY ASSESSMENT MODEL R-PCQA
165
+ A. Unifying the Compression Parameters
166
+ The compression parameters with different meanings are
167
+ used in V-PCC, G-PCC and AVS, but the used compression
168
+ parameters can all be converted to the quantization steps.
169
+ Thus, to better explore the relationship between the perceptual
170
+ quality and the quantization, we first convert these compres-
171
+ sion parameters to quantization steps, denoted as Qs, before
172
+ proposing the R-PCQA.
173
+ In V-PCC, the parameters textureQP and geomQP, de-
174
+ noted as QP, are used to control the attribute compression
175
+ and geometry compression respectively, which apply
176
+ Qs = round(2
177
+ QP −4
178
+ 6
179
+ ),
180
+ (1)
181
+ where round(·) means converting a number to the nearest
182
+ integer.
183
+ In attribute compression of G-PCC, the compression pa-
184
+ rameter qp has the same meaning as QP in V-PCC, following
185
+ (a)
186
+ (b)
187
+ Fig. 1: Variation of Qs as function of MOS for different
188
+ samples. (a) under V-PCC lossless-G-lossy-A condition; (b)
189
+ under V-PCC lossy-G-lossless-A condition.
190
+ the same conversion formula in Eq. (1). The parameter posi-
191
+ tionQuantizationScale, denoted as S, is used to control the
192
+ geometry quantization, which can be converted to Qs by
193
+ Qs = 1
194
+ S .
195
+ (2)
196
+ In AVS, the parameter attr quant param, denoted as
197
+ QPa, is used to control the attribute quantization, which can
198
+ use the following formulation to convert it to Qs
199
+ Qs = 2
200
+ QPa
201
+ 8 .
202
+ (3)
203
+ For the geometry compression of AVS, the parameter
204
+ geom quant step shares the same meaning with the quan-
205
+ tization step Qs.
206
+ B. Overall Quality Model
207
+ We use the average MOS in PCCQA to fit the mathematical
208
+ model for quality prediction. The relationships between MOS
209
+ and Qs under V-PCC lossless-G-lossy-A condition and V-PCC
210
+ lossy-G-lossless-A condition are shown in Fig. 1. We can see
211
+ that under the same compression condition, different samples
212
+ share the fitting model with basically the same shape but
213
+ are added to different additive factors. Therefore, we assume
214
+ MOS and Qs satisfy the following relationship under a certain
215
+ compression condition:
216
+ MOS = F(Qs) + c(pc),
217
+ (4)
218
+
219
+ 5
220
+ 4.5
221
+ 4
222
+ 3.5
223
+ SO
224
+ 3
225
+ 2.5
226
+ 2
227
+ → Sample 1 Sample 2 ^ Sample 3
228
+ 1.5
229
+ Sample 4 X Sample 5
230
+ 1
231
+ 50
232
+ 100
233
+ 150
234
+ 200
235
+ 250
236
+ 05
237
+ 4.5
238
+ 4
239
+ 3.5
240
+ OS
241
+ 3
242
+ 2.5
243
+ 2
244
+ 1.5
245
+ ← Sample 1
246
+ Sample 2 ^ Sample 3
247
+ Sample 4 × Sample 5
248
+ 1
249
+ 50
250
+ 100
251
+ 150
252
+ 200
253
+ 250
254
+ 0
255
+ Oswhere F denotes the fitting function which is related to the
256
+ quantization step Qs. c denotes the additive factor which is
257
+ related to the intrinsic characteristics of the point cloud pc.
258
+ On the whole, different samples share the same relationship
259
+ model under a certain compression condition, but they are
260
+ added to an additive sample factor. To deal with the addi-
261
+ tive sample factor, we use Qs and average MOS which is
262
+ denoted as MOS to build up the relationship model for each
263
+ compression condition:
264
+ MOSf = MOS = F(Qs) + c(pc),
265
+ (5)
266
+ where MOSf is the final predicted quality score and c denotes
267
+ the average value of additive factors.
268
+ C. Modeling the Attribute Compression
269
+ The relationships between MOS and Qs are illustrated in
270
+ Fig. 2. For the attribute compression of all V-PCC, G-PCC and
271
+ AVS compression algorithms, the relationship between MOS
272
+ and Qs follows the linear model, i.e.,
273
+ MOSa = c1,a ∗ Qsa + c2,a,
274
+ (6)
275
+ where Qsa denotes the quantization steps for attribute com-
276
+ pression. c1,a and c2,a are the model parameters, whose fitting
277
+ values are shown in Table II.
278
+ TABLE II: Fitting parameters in the attribute compression
279
+ model.
280
+ V-PCC
281
+ G-PCC
282
+ AVS
283
+ c1,a
284
+ -0.0089
285
+ -0.01
286
+ -0.0519
287
+ c2,a
288
+ 4.4862
289
+ 5.3515
290
+ 5.1337
291
+ D. Modeling the Geometry Compression
292
+ For geometry compression of V-PCC, the relationship
293
+ between MOS and Qs follows the natural logarithm function,
294
+ i.e.,
295
+ MOSg,V −P CC = c1,g ∗ lnQsg + c2,g,
296
+ (7)
297
+ where Qsg denotes the quantization steps for geometry com-
298
+ pression. c1,g and c2,g denote the model parameters.
299
+ For geometry compression of G-PCC and AVS compres-
300
+ sion algorithms, the relationship between MOS and Qs fol-
301
+ lows the linear model, i.e.,
302
+ MOSg,G−P CC,AV S = c1,g ∗ Qsg + c2,g.
303
+ (8)
304
+ The fitted parameters in the geometry compression models
305
+ are shown in Table III:
306
+ TABLE III: Fitting parameters in the geometry compression
307
+ model.
308
+ V-PCC
309
+ G-PCC
310
+ AVS
311
+ c1,g
312
+ -0.559
313
+ -0.2381
314
+ -0.273
315
+ c2,g
316
+ 5.4165
317
+ 5.3818
318
+ 5.5034
319
+ E. Combining the Attribute Model and Geometry Model
320
+ The point clouds are often compressed in both attribute
321
+ and geometry, and the attribute degradation and geometry
322
+ degradation are superimposed on the point clouds at the same
323
+ time. As explored in Section IV-B, the linear combination
324
+ of the attribute model and geometry model can accurately
325
+ estimate the quality. We take the weighted summation of
326
+ MOSa and MOSg to predict the final quality scores.
327
+ For V-PCC, the established model is
328
+ MOSf = p1,a ∗ Qsa + p1,g ∗ lnQsg + P.
329
+ (9)
330
+ For G-PCC and AVS, the established model is
331
+ MOSf = p1,a ∗ Qsa + p1,g ∗ Qsg + P,
332
+ (10)
333
+ where MOSf is the predicted quality scores, Qsa is the
334
+ quantization steps for attribute compression, and Qsg is the
335
+ quantization steps for geometry compression. p1,a = 1
336
+ 2 ∗ c1,a,
337
+ p1,g = 1
338
+ 2 ∗ c1,g, and P = 1
339
+ 2 ∗ (c2,a + c2,g) to cast the predicted
340
+ quality scores under the same range of subjective scores.
341
+ F. Analysis
342
+ Some findings can be made in the experiment: i) Eq. 6
343
+ and Eq. 7 demonstrate that for the V-PCC distortion, the
344
+ geometry distortion is more annoying compared with the
345
+ attribute distortion, but the human eyes are more sensitive to
346
+ the quantization change in the attribute compression; ii) for
347
+ the geometry compression, the fitting curves of V-PCC and G-
348
+ PCC are different, which derives from that the quantization of
349
+ V-PCC is conducted on the projection while the quantization
350
+ of G-PCC and AVS is conducted on octree; iii) for the attribute
351
+ compression, all the three compression algorithms follow the
352
+ linear model, since their quantization is all conducted on RGB,
353
+ resulting in the similar perceptual pattern.
354
+ A potential concern is whether the obtained relation func-
355
+ tion is generic for different datasets. As discussed in Section
356
+ III-B, the difference of reference samples will only affect
357
+ the additive factors, as P in Eq. 9 and Eq. 10 which is a
358
+ predefined constant. Thus, the obtained relation function can
359
+ still accurately predict the quality rank of samples in other
360
+ datasets, which is demonstrated by the cross-dataset evaluation
361
+ in Section IV-C.
362
+ IV.
363
+ EXPERIMENTS
364
+ In this section, we evaluate the performance of the pro-
365
+ posed R-PCQA on the established PCCQA and WPC [24]
366
+ dataset. Specifically, we use PCCQA to fit the model parame-
367
+ ters and evaluate the fitting errors. Then, we evaluate on WPC
368
+ dataset as cross check to verify the performance of R-PCQA
369
+ and its generalization ability.
370
+ A. Error Analysis
371
+ The proposed PCCQA consists of three parts, part 1:
372
+ lossless-G-lossy-A, part 2: lossy-G-lossless-A and part 3:
373
+ lossy-G-lossy-A. The proposed R-PCQA is fitted on the
374
+ lossless-G-lossy-A and lossy-G-lossless-A parts, and we use
375
+ the remaining lossy-G-lossy-A part to evaluate the perfor-
376
+ mance. Especially, we note the former two parts as the training
377
+
378
+ (a)
379
+ (b)
380
+ (c)
381
+ (d)
382
+ (e)
383
+ (f)
384
+ Fig. 2: Variation of Qs as function of average MOS for each compression condition. The top row is under lossless-G-lossy-A,
385
+ and the bottom row is under lossy-G-lossless-A. (a) (d) is for V-PCC, (b) (e) is for G-PCC, and (c) (f) is for AVS.
386
+ set and the latter part as the testing set. The mean, standard
387
+ deviation and 95% quantile of fitting errors MOS − MOSf
388
+ on the testing set are shown in Table IV. The correlation
389
+ performance on the testing set is shown in Table V.
390
+ TABLE IV: Mean, standard deviation and 95% quantile of the
391
+ fitting errors on the testing set.
392
+ Mean
393
+ Standard deviation
394
+ 95% quantile
395
+ V-PCC
396
+ 0.0378
397
+ 0.5885
398
+ 0.7561
399
+ G-PCC
400
+ -0.5794
401
+ 0.5113
402
+ 0.0969
403
+ AVS
404
+ -0.1356
405
+ 0.2845
406
+ 0.2531
407
+ We can see from Table IV and Table V that the proposed
408
+ model can not only fit the dataset accurately, but also conforms
409
+ to the characteristics of human visual system.
410
+ B. Combination Analysis
411
+ The correlation performance of four combination schemes
412
+ of the attribute model and geometry model on the testing set
413
+ is shown in Table V.
414
+ TABLE V: Correlation performance of four combination
415
+ schemes on the testing set.
416
+ PLCC
417
+ SROCC
418
+ RMSE
419
+ PLCC
420
+ SROCC
421
+ RMSE
422
+ Linear Combination
423
+ Multiplicative Combination
424
+ V-PCC
425
+ 0.8360
426
+ 0.8554
427
+ 0.5070
428
+ 0.8360
429
+ 0.8554
430
+ 0.5070
431
+ G-PCC
432
+ 0.9854
433
+ 0.9582
434
+ 0.2098
435
+ 0.9853
436
+ 0.9582
437
+ 0.2100
438
+ AVS
439
+ 0.9917
440
+ 0.9854
441
+ 0.1650
442
+ 0.9913
443
+ 0.9854
444
+ 0.1691
445
+ GA Combination
446
+ AG Combination
447
+ V-PCC
448
+ 0.8351
449
+ 0.8554
450
+ 0.5082
451
+ 0.8356
452
+ 0.8554
453
+ 0.5075
454
+ G-PCC
455
+ 0.9444
456
+ 0.9582
457
+ 0.4046
458
+ 0.9767
459
+ 0.9582
460
+ 0.2644
461
+ AVS
462
+ 0.9881
463
+ 0.9854
464
+ 0.1978
465
+ 0.9862
466
+ 0.9854
467
+ 0.2127
468
+ We can see from Table V that: i) the linear combination
469
+ is determined due to its slightly better performance and sim-
470
+ pler calculation for two relationship model mixing; ii) the
471
+ combination schemes hardly affect the performance, which
472
+ indicates that the obtained relationship models for attribute
473
+ and geometry are independent. Due to the removal of mutual
474
+ masking, it is not necessary to consider the interaction of
475
+ attribute and geometry components in the mixing.
476
+ C. Cross-dataset Evaluation
477
+ After the model is established on the proposed dataset, we
478
+ evaluate its generalization performance on another independent
479
+ dataset, the V-PCC part of WPC [24], which contains 400
480
+ distorted samples derived from 16 reference point clouds with
481
+ 25 different quantization parameters. The results are shown in
482
+ Table VI.
483
+ TABLE VI: Cross-dataset performance on WPC dataset.
484
+ PLCC
485
+ SROCC
486
+ PLCC
487
+ SROCC
488
+ M-p2po (FR) [3]
489
+ 0.61
490
+ 0.58
491
+ H-PSNRyuv (FR) [33]
492
+ 0.29
493
+ 0.23
494
+ M-p2pl (FR) [34]
495
+ 0.63
496
+ 0.59
497
+ PCQM (FR) [12]
498
+ 0.74
499
+ 0.75
500
+ H-p2po (FR) [3]
501
+ 0.51
502
+ 0.46
503
+ GraphSIM (FR) [13]
504
+ 0.74
505
+ 0.75
506
+ H-p2pl (FR) [34]
507
+ 0.55
508
+ 0.48
509
+ MPED (FR) [35]
510
+ 0.60
511
+ 0.59
512
+ PSNRyuv (FR) [33]
513
+ 0.46
514
+ 0.47
515
+ PCM RR (RR) [16]
516
+ 0.42
517
+ 0.38
518
+ R-PCQA (RR)
519
+ 0.88
520
+ 0.88
521
+ We can see from Table VI that: i) for the compression
522
+ distortions, the proposed R-PCQA exhibits the state-of-the-
523
+ art performance which only needs the assistance of two
524
+ compression parameters, even compared with the existing FR
525
+ metrics; ii) the model parameters derived from PCCQA still
526
+ exhibit robust performance on another independent dataset,
527
+ which demonstrates the generalization ability of the proposed
528
+ RR metric R-PCQA; iii) the massive increase in points after
529
+ reconstruction may interfere with the measurement of point-
530
+ wise FR metrics, resulting in the poor performance of some
531
+ FR metrics.
532
+ V.
533
+ CONCLUSION
534
+ In this paper, we analyze the compression distortions of
535
+ point clouds under separate attribute compression and geom-
536
+ etry compression to avoid their mutual masking. Then by
537
+ fitting the relationship between the quantization steps and the
538
+
539
+ 5
540
+ 4.5
541
+ SO
542
+ 4
543
+ 3.5
544
+ 3
545
+ 2.5
546
+ 2
547
+ 1.5
548
+ 1
549
+ 0
550
+ 100
551
+ 200
552
+ 300
553
+ s5
554
+ 4.5
555
+ SO)
556
+ 4
557
+ 3.5
558
+ 3
559
+ 2.5
560
+ 2
561
+ 1.5
562
+ 1
563
+ 0
564
+ 100
565
+ 200
566
+ 300
567
+ Os5
568
+ 4.5
569
+ SOI
570
+ 4
571
+ 3.5
572
+ Average
573
+ 3
574
+ 2.5
575
+ 2
576
+ 1.5
577
+ 1
578
+ 0
579
+ 20
580
+ 40
581
+ 60
582
+ 80
583
+ Qs5
584
+ 4.5
585
+ so
586
+ 4
587
+ 7
588
+ 3.5
589
+ 3
590
+ 2.5
591
+ 2
592
+ 1.5
593
+ 1
594
+ 0
595
+ 100
596
+ 200
597
+ 300
598
+ Os5
599
+ 4.5
600
+ SOI
601
+ 4
602
+ M
603
+ 3.5
604
+ Average
605
+ 3
606
+ 2.5
607
+ 2
608
+ 1.5
609
+ 1
610
+ 0
611
+ 5
612
+ 10
613
+ 15
614
+ 20
615
+ Qs5
616
+ 4.5
617
+ SOI
618
+ 4
619
+ 3.5
620
+ Average
621
+ 3
622
+ 2.5
623
+ 2
624
+ 1.5
625
+ 1
626
+ 0
627
+ 5
628
+ 10
629
+ 15
630
+ 20
631
+ Qsperceptual quality, we propose a RR PCQA model, called R-
632
+ PCQA, for evaluating V-PCC, G-PCC and AVS distortions.
633
+ The experiment results have demonstrated that the proposed
634
+ R-PCQA exhibits reliable and robust performance.
635
+ VI.
636
+ ACKNOWLEDGEMENT
637
+ This paper is supported in part by National Key R&D
638
+ Program of China (2018YFE0206700), National Natural Sci-
639
+ ence Foundation of China (61971282, U20A20185). The cor-
640
+ responding author is Yiling Xu (e-mail: [email protected]).
641
+ REFERENCES
642
+ [1]
643
+ Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li,
644
+ “Deep learning for lidar point clouds in autonomous driving: A review,”
645
+ IEEE Transactions on Neural Networks and Learning Systems, vol. 32,
646
+ no. 8, pp. 3412–3432, 2021.
647
+ [2]
648
+ S. Lim, M. Shin, and J. Paik, “Point cloud generation using deep
649
+ local features for augmented and mixed reality contents,” in IEEE
650
+ International Conference on Consumer Electronics, 2020, pp. 1–3.
651
+ [3]
652
+ P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: measuring error
653
+ on simplified surfaces,” in Computer Graphics Forum, vol. 17, no. 2.
654
+ Wiley Online Library, 1998, pp. 167–174.
655
+ [4]
656
+ D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Evaluation
657
+ metrics for point cloud compression,” ISO/IEC JTC m74008, Geneva,
658
+ Switzerland, Jan, 2017.
659
+ [5]
660
+ E. M. Torlig, E. Alexiou, T. A. Fonseca et al., “A novel methodology for
661
+ quality assessment of voxelized point clouds,” Applications of Digital
662
+ Image Processing XLI, vol. 10752, pp. 174–190, 2018.
663
+ [6]
664
+ E. Alexiou and T. Ebrahimi, “Point cloud quality assessment metric
665
+ based on angular similarity,” in IEEE International Conference on
666
+ Multimedia and Expo, 2018, pp. 1–6.
667
+ [7]
668
+ Q. Yang, H. Chen, Z. Ma et al., “Predicting the perceptual quality of
669
+ point cloud: A 3d-to-2d projection-based exploration,” IEEE Transac-
670
+ tions on Multimedia, vol. 23, pp. 3877–3891, 2021.
671
+ [8]
672
+ A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Joint geometry
673
+ and color projection-based point cloud quality metric,” arXiv preprint
674
+ arXiv:2108.02481, 2021.
675
+ [9]
676
+ G. Meynet, J. Digne, and G. Lavoue, “PC-MSDM: A quality metric for
677
+ 3D point clouds,” in International Conference on Quality of Multimedia
678
+ Experience, 2019, pp. 1–3.
679
+ [10]
680
+ I. Viola, S. Subramanyam, and P. Cesar, “A color-based objective quality
681
+ metric for point cloud contents,” in International Conference on Quality
682
+ of Multimedia Experience, 2020, pp. 1–6.
683
+ [11]
684
+ E. Alexiou and T. Ebrahimi, “Towards a point cloud structural similarity
685
+ metric,” in IEEE International Conference on Multimedia and Expo,
686
+ 2020, pp. 1–3.
687
+ [12]
688
+ G. Meynet, Y. Nehme, and G. Lavoue, “PCQM: A full-reference quality
689
+ metric for colored 3D point clouds,” in International Conference on
690
+ Quality of Multimedia Experience, 2020, pp. 1–6.
691
+ [13]
692
+ Q. Yang, Z. Ma, Y. Xu, Z. Li, and J. Sun, “Inferring point cloud
693
+ quality via graph similarity,” IEEE Transactions on Pattern Analysis
694
+ and Machine Intelligence, pp. 1–1, 2020.
695
+ [14]
696
+ Y. Zhang, Q. Yang, and Y. Xu, “MS-GraphSIM: Inferring point cloud
697
+ quality via multiscale graph similarity,” in ACM International Confer-
698
+ ence on Multimedia, 2021, p. 1230–1238.
699
+ [15]
700
+ A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “A point-to-
701
+ distribution joint geometry and color metric for point cloud quality
702
+ assessment,” in IEEE International Workshop on Multimedia Signal
703
+ Processing, 2021, pp. 1–6.
704
+ [16]
705
+ I. Viola and P. Cesar, “A reduced reference metric for visual quality
706
+ evaluation of point cloud contents,” IEEE Signal Processing Letters,
707
+ vol. 27, pp. 1660–1664, 2020.
708
+ [17]
709
+ Q. Liu, H. Yuan, R. Hamzaoui et al., “Reduced reference perceptual
710
+ quality model with application to rate control for video-based point
711
+ cloud compression,” IEEE Transactions on Image Processing, vol. 30,
712
+ pp. 6623–6636, 2021.
713
+ [18]
714
+ MPEG 3DG Subgroup, “Text of iso/iec cd 23090-5: Video-based point
715
+ cloud compression,” Doc. ISO/IEC JTC1/SC29/WG11/N18030, Macau,
716
+ China, Oct, 2018.
717
+ [19]
718
+ ——, “Text of iso/iec cd 23090-9 geometry-based point cloud compres-
719
+ sion,” Doc. ISO/IEC JTC1/SC29/WG11/N18478, Geneve, Switzerland,
720
+ Mar, 2019.
721
+ [20]
722
+ AVS, “Avs codec description,” Doc. AVS N3246, Feb, 2021.
723
+ [21]
724
+ E. Alexiou, N. Yang, and T. Ebrahimi, “PointXR: A toolbox for
725
+ visualization and subjective evaluation of point clouds in virtual reality,”
726
+ in International Conference on Quality of Multimedia Experience, 2020,
727
+ pp. 1–6.
728
+ [22]
729
+ A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Point cloud ren-
730
+ dering after coding: Impacts on subjective and objective quality,” IEEE
731
+ Transactions on Multimedia, vol. 23, pp. 4049–4064, 2021.
732
+ [23]
733
+ Y. Liu, Q. Yang, Y. Xu, and L. Yang, “Point cloud quality assessment:
734
+ Dataset construction and learning-based no-reference metric,” ACM
735
+ Transactions on Multimedia Computing Communications and Applica-
736
+ tions, pp. 1–1, 2022.
737
+ [24]
738
+ H. Su, Z. Duanmu, W. Liu, Q. Liu, and Z. Wang, “Perceptual quality
739
+ assessment of 3d point clouds,” in IEEE International Conference on
740
+ Image Processing, 2019, pp. 3182–3186.
741
+ [25]
742
+ MPEG 3DG Subgroup, “Common test conditions for V3C and V-PCC,”
743
+ Doc. ISO/IEC JTC1/SC29/WG7/N00038, Oct, 2020.
744
+ [26]
745
+ ——,
746
+ “Common
747
+ test
748
+ conditions
749
+ for
750
+ G-PCC,”
751
+ Doc.
752
+ ISO/IEC
753
+ JTC1/SC29/WG7/N00106, Apr, 2021.
754
+ [27]
755
+ AVS, “Common test conditions for avs,” Doc. AVS N3114, July, 2021.
756
+ [28]
757
+ A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Point cloud ren-
758
+ dering after coding: Impacts on subjective and objective quality,” IEEE
759
+ Transactions on Multimedia, vol. 23, pp. 4049–4064, 2021.
760
+ [29]
761
+ “Methodology for the subjective assessment of the quality of television
762
+ pictures,” Recommendation BT.500-13, ITU-R, Jan. 2012.
763
+ [30]
764
+ X. Wu, Y. Zhang, C. Fan, J. Hou, and S. Kwong, “Subjective quality
765
+ database and objective study of compressed point clouds with 6DoF
766
+ head-mounted display,” IEEE Transactions on Circuits and Systems for
767
+ Video Technology, vol. 31, no. 12, pp. 4630–4644, 2021.
768
+ [31]
769
+ H. Su, Z. Duanmu, W. Liu, Q. Liu, and Z. Wang, “Perceptual quality
770
+ assessment of 3D point clouds,” in IEEE International Conference on
771
+ Image Processing, 2019, pp. 3182–3186.
772
+ [32]
773
+ Q. Yang, Y. Liu, S. Chen et al., “No-reference point cloud quality
774
+ assessment via domain adaptation,” in IEEE Conference on Computer
775
+ Vision and Pattern Recognition, 2022, pp. 1–1.
776
+ [33]
777
+ MPEG
778
+ reference
779
+ software.
780
+ http://mpegx.int-
781
+ evry.fr/software/MPEG/PCC/TM/mpeg-pcc-dmetric.
782
+ [34]
783
+ R. Mekuria, Z. Li, C. Tulvan, and P. Chou, “Evaluation criteria for point
784
+ cloud compression,” ISO/IEC MPEG w16332, Geneva, Switzerland,
785
+ Feb, 2016.
786
+ [35]
787
+ Q. Yang, Y. Zhang, S. Chen et al., “MPED: Quantifying point cloud
788
+ distortion based on multiscale potential energy discrepancy,” arXiv
789
+ preprint arXiv:2103.02850, 2021.
790
+
9tAzT4oBgHgl3EQfFPrO/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf,len=480
2
+ page_content='Reduced Reference Quality Assessment for Point Cloud Compression Yipeng Liu Cooperative MediaNet Innovation Center Shanghai Jiao Tong University Shanghai, China liuyipeng@sjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
3
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
4
+ page_content='cn Qi Yang Cooperative MediaNet Innovation Center Shanghai Jiao Tong University Shanghai, China yang littleqi@sjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
5
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
6
+ page_content='cn Yiling Xu Cooperative MediaNet Innovation Center Shanghai Jiao Tong University Shanghai, China yl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
7
+ page_content='xu@sjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
8
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
9
+ page_content='cn Abstract—In this paper, we propose a reduced reference (RR) point cloud quality assessment (PCQA) model named R-PCQA to quantify the distortions introduced by the lossy compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
10
+ page_content=' Specifically, we use the attribute and geometry quantization steps of different compression methods (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
11
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
12
+ page_content=', V-PCC, G-PCC and AVS) to infer the point cloud quality, assuming that the point clouds have no other distortions before compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
13
+ page_content=' First, we analyze the compression distortion of point clouds under separate attribute compression and geometry compression to avoid their mutual masking, for which we consider 5 point clouds as references to generate a compression dataset (PCCQA) containing independent attribute compression and geometry compression samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
14
+ page_content=' Then, we develop the proposed R-PCQA via fitting the relationship between the quantization steps and the perceptual quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
15
+ page_content=' We evaluate the performance of R-PCQA on both the established dataset and another independent dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
16
+ page_content=' The results demonstrate that the proposed R-PCQA can exhibit reliable performance and high generalization ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
17
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
18
+ page_content=' INTRODUCTION Recently, point cloud has emerged as a promising represen- tation format in prevalent 3D applications (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
19
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
20
+ page_content=', autonomous driving [1] and augmented reality [2]), for which the point cloud compression (PCC) is of great interest for providing efficient service in practices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
21
+ page_content=' Currently, the Moving Picture Experts Group (MPEG) has applied the separable measure- ments of geometry and attribute distortion in the course of lossy PCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
22
+ page_content=' For the geometry distortion, MPEG proposes to use the point-to-point (p2point) [3], or point-to-plane (p2plane) [4] to quantify the spatial perturbation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
23
+ page_content=' while for the attribute part, the PSNRyuv is proposed to measure the differences between corresponding color channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
24
+ page_content=' Besides these metrics which have already been applied in MPEG PCC standardiza- tion, some other metrics which consider more human visual characteristics and present better performance on public PCQA databases are also developed, such as [5]–[15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
25
+ page_content=' However, they are full reference (FR) metrics which require both the reference and distorted samples and have high computational complexity for real-time quality prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
26
+ page_content=' In many practical cases, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
27
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
28
+ page_content=', transmission, the timely feedback is expected, and only the compressed samples and the meta data are available, in which the reduced reference (RR) PCQA metrics are indispensable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
29
+ page_content=' Only a few researches explore the RR methods for PCQA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
30
+ page_content=' [16] uses the statistical in- formation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
31
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
32
+ page_content=', the luminance histogram) as the substitute for the complete samples, but still requires the backend processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
33
+ page_content=' [17] applies the quantization parameters in V-PCC to estimate the quality of compressed samples and guide rate control, but other prevalent compression strategies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
34
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
35
+ page_content=', G-PCC) are ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
36
+ page_content=' Therefore, in this paper, we propose a general RR PCQA model for compression distortions named R-PCQA which only takes the attribute and geometry quantization steps of compression schemes (including V-PCC [18], G-PCC [19] and AVS [20], V-PCC and G-PCC are provided by MPEG while AVS is recommended by China Audio-Video Coding Standard) as variables, since the quality of compressed point clouds is highly related to the compression parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
37
+ page_content=' To fully study the relationship between the compression parameters and perceptual quality, we first establish a complete subjective database for PCC, named PCC quality assessment (PCCQA) database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
38
+ page_content=' The reason why we establish PCCQA while many PCQA datasets [7], [21]–[24] have been proposed is that current databases only consider the superimposed compression distor- tion, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
39
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
40
+ page_content=' lossy-geometry (G)-lossy-attribute (A) compression, which is recommended in the Common Test Conditions (CTC) [25]–[27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
41
+ page_content=' The separate compression strategies, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
42
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
43
+ page_content=' lossless- G-lossy-A and lossy-G-lossless-A compression, which are not included in the CTC are often ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
44
+ page_content=' Considering the mutual masking between geometry and attribute distortions [28], they are useful for exploring the relationship between the perceptual quality and compression parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
45
+ page_content=' In PCCQA, the reference point clouds are compressed by V-PCC, G-PCC and AVS under lossless-G-lossy-A condition, lossy-G-lossless- A condition, and lossy-G-lossy-A condition respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
46
+ page_content=' To model the relationship between the perceptual quality and the compression parameters, we first convert all the compression parameters to the quantization steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
47
+ page_content=' Then, we model the relationship between the perceptual quality and the attribute/geometry quantization steps respectively via using the least square fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
48
+ page_content=' Finally, the proposed R-PCQA combines the attribute compression model and geometry compression model to predict the final quality scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
49
+ page_content=' The rest of this paper is organized as follows: section II introduces the established PCCQA dataset;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
50
+ page_content=' section III presents the proposed R-PCQA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
51
+ page_content=' section IV illustrates the experiment results;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
52
+ page_content=' the conclusion is summarized in section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
53
+ page_content=' 978-1-6654-7592-1/22/$31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
54
+ page_content='00 © 2022 IEEE arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
55
+ page_content='01009v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
56
+ page_content='IV] 3 Jan 2023 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
57
+ page_content=' PCCQA DATABASE To better explore the relationship between the perceptual quality and the attribute/geometry compression parameters, we first establish a database called PCCQA under several compression conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
58
+ page_content=' Five reference point clouds are selected from MPEG and AVS point cloud datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
59
+ page_content=' These reference point clouds are ensured to have no holes and other distortions under 1080P presentation with size-2 primitives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
60
+ page_content=' The reference point clouds are then distorted with 3 compression algorithms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
61
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
62
+ page_content=' V- PCC [18], G-PCC [19] and AVS [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
63
+ page_content=' Each compression is conducted under 3 conditions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
64
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
65
+ page_content=' lossless-G-lossy-A, lossy-G- lossless-A, and lossy-G-lossy-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
66
+ page_content=' The compression parameters are shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
67
+ page_content=' In total, 225 compressed point clouds are generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
68
+ page_content=' TABLE I: Compression parameters used for distorted point cloud generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
69
+ page_content=' Conditions Parameters GPCC lossy-G-lossless-A VPCC lossy-G-lossless-A AVS lossy-G-lossless-A (positionQuantizationScale) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
70
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
71
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
72
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
73
+ page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
74
+ page_content='0625 (geomQP) 22 32 37 42 51 (geom quant step) 2 4 8 12 16 GPCC lossless-G-lossy-A VPCC lossless-G-lossy-A AVS lossless-G-lossy-A (qp) 35 39 43 47 51 (textureQP) 32 37 42 47 51 (attr quant param) 24 32 40 44 48 GPCC lossy-G-lossy-A VPCC lossy-G-lossy-A AVS lossy-G-lossy-A (positionQuantizationScale, qp) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
75
+ page_content='75,35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
76
+ page_content='5,39 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
77
+ page_content='25,43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
78
+ page_content='125,47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
79
+ page_content='0625,51 (geomQP, textureQP) 24,32 28,37 32,42 36,47 40,51 (geom quant step, attr quant param) 2,24 4,32 8,40 12,44 16,48 To annotate the compressed point clouds, a subjective experiment is organized to collect the Mean Opinion Scores (MOS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
80
+ page_content=' We adopt the double stimulus method since it can obtain more stable results for minor impairments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
81
+ page_content=' The ex- periment process and environment setting strictly follow the ITU-R Recommendation BT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
82
+ page_content=' 500 [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
83
+ page_content=' Such a method for collecting subjective MOS is also adopted in other researches, such as [23], [30]–[32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
84
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
85
+ page_content=' PROPOSED QUALITY ASSESSMENT MODEL R-PCQA A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
86
+ page_content=' Unifying the Compression Parameters The compression parameters with different meanings are used in V-PCC, G-PCC and AVS, but the used compression parameters can all be converted to the quantization steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
87
+ page_content=' Thus, to better explore the relationship between the perceptual quality and the quantization, we first convert these compres- sion parameters to quantization steps, denoted as Qs, before proposing the R-PCQA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
88
+ page_content=' In V-PCC, the parameters textureQP and geomQP, de- noted as QP, are used to control the attribute compression and geometry compression respectively, which apply Qs = round(2 QP −4 6 ), (1) where round(·) means converting a number to the nearest integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
89
+ page_content=' In attribute compression of G-PCC, the compression pa- rameter qp has the same meaning as QP in V-PCC, following (a) (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
90
+ page_content=' 1: Variation of Qs as function of MOS for different samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
91
+ page_content=' (a) under V-PCC lossless-G-lossy-A condition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
92
+ page_content=' (b) under V-PCC lossy-G-lossless-A condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
93
+ page_content=' the same conversion formula in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
94
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
95
+ page_content=' The parameter posi- tionQuantizationScale, denoted as S, is used to control the geometry quantization, which can be converted to Qs by Qs = 1 S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
96
+ page_content=' (2) In AVS, the parameter attr quant param, denoted as QPa, is used to control the attribute quantization, which can use the following formulation to convert it to Qs Qs = 2 QPa 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
97
+ page_content=' (3) For the geometry compression of AVS, the parameter geom quant step shares the same meaning with the quan- tization step Qs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
98
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
99
+ page_content=' Overall Quality Model We use the average MOS in PCCQA to fit the mathematical model for quality prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
100
+ page_content=' The relationships between MOS and Qs under V-PCC lossless-G-lossy-A condition and V-PCC lossy-G-lossless-A condition are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
101
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
102
+ page_content=' We can see that under the same compression condition, different samples share the fitting model with basically the same shape but are added to different additive factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
103
+ page_content=' Therefore, we assume MOS and Qs satisfy the following relationship under a certain compression condition: MOS = F(Qs) + c(pc), (4) 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
104
+ page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
105
+ page_content='5 SO 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
106
+ page_content='5 2 → Sample 1 Sample 2 ^ Sample 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
107
+ page_content='5 Sample 4 X Sample 5 1 50 100 150 200 250 05 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
108
+ page_content='5 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
109
+ page_content='5 OS 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
110
+ page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
111
+ page_content='5 ← Sample 1 Sample 2 ^ Sample 3 Sample 4 × Sample 5 1 50 100 150 200 250 0 Oswhere F denotes the fitting function which is related to the quantization step Qs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
112
+ page_content=' c denotes the additive factor which is related to the intrinsic characteristics of the point cloud pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
113
+ page_content=' On the whole, different samples share the same relationship model under a certain compression condition, but they are added to an additive sample factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
114
+ page_content=' To deal with the addi- tive sample factor, we use Qs and average MOS which is denoted as MOS to build up the relationship model for each compression condition: MOSf = MOS = F(Qs) + c(pc), (5) where MOSf is the final predicted quality score and c denotes the average value of additive factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
115
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
116
+ page_content=' Modeling the Attribute Compression The relationships between MOS and Qs are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
117
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
118
+ page_content=' For the attribute compression of all V-PCC, G-PCC and AVS compression algorithms, the relationship between MOS and Qs follows the linear model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
119
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
120
+ page_content=', MOSa = c1,a ∗ Qsa + c2,a, (6) where Qsa denotes the quantization steps for attribute com- pression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
121
+ page_content=' c1,a and c2,a are the model parameters, whose fitting values are shown in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
122
+ page_content=' TABLE II: Fitting parameters in the attribute compression model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
123
+ page_content=' V-PCC G-PCC AVS c1,a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
124
+ page_content='0089 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
125
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
126
+ page_content='0519 c2,a 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
127
+ page_content='4862 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
128
+ page_content='3515 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
129
+ page_content='1337 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
130
+ page_content=' Modeling the Geometry Compression For geometry compression of V-PCC, the relationship between MOS and Qs follows the natural logarithm function, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
131
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
132
+ page_content=', MOSg,V −P CC = c1,g ∗ lnQsg + c2,g, (7) where Qsg denotes the quantization steps for geometry com- pression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
133
+ page_content=' c1,g and c2,g denote the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
134
+ page_content=' For geometry compression of G-PCC and AVS compres- sion algorithms, the relationship between MOS and Qs fol- lows the linear model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
135
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
136
+ page_content=', MOSg,G−P CC,AV S = c1,g ∗ Qsg + c2,g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
137
+ page_content=' (8) The fitted parameters in the geometry compression models are shown in Table III: TABLE III: Fitting parameters in the geometry compression model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
138
+ page_content=' V-PCC G-PCC AVS c1,g 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
139
+ page_content='559 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
140
+ page_content='2381 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
141
+ page_content='273 c2,g 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
142
+ page_content='4165 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
143
+ page_content='3818 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
144
+ page_content='5034 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
145
+ page_content=' Combining the Attribute Model and Geometry Model The point clouds are often compressed in both attribute and geometry, and the attribute degradation and geometry degradation are superimposed on the point clouds at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
146
+ page_content=' As explored in Section IV-B, the linear combination of the attribute model and geometry model can accurately estimate the quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
147
+ page_content=' We take the weighted summation of MOSa and MOSg to predict the final quality scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
148
+ page_content=' For V-PCC, the established model is MOSf = p1,a ∗ Qsa + p1,g ∗ lnQsg + P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
149
+ page_content=' (9) For G-PCC and AVS, the established model is MOSf = p1,a ∗ Qsa + p1,g ∗ Qsg + P, (10) where MOSf is the predicted quality scores, Qsa is the quantization steps for attribute compression, and Qsg is the quantization steps for geometry compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
150
+ page_content=' p1,a = 1 2 ∗ c1,a, p1,g = 1 2 ∗ c1,g, and P = 1 2 ∗ (c2,a + c2,g) to cast the predicted quality scores under the same range of subjective scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
151
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
152
+ page_content=' Analysis Some findings can be made in the experiment: i) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
153
+ page_content=' 6 and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
154
+ page_content=' 7 demonstrate that for the V-PCC distortion, the geometry distortion is more annoying compared with the attribute distortion, but the human eyes are more sensitive to the quantization change in the attribute compression;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
155
+ page_content=' ii) for the geometry compression, the fitting curves of V-PCC and G- PCC are different, which derives from that the quantization of V-PCC is conducted on the projection while the quantization of G-PCC and AVS is conducted on octree;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
156
+ page_content=' iii) for the attribute compression, all the three compression algorithms follow the linear model, since their quantization is all conducted on RGB, resulting in the similar perceptual pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
157
+ page_content=' A potential concern is whether the obtained relation func- tion is generic for different datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
158
+ page_content=' As discussed in Section III-B, the difference of reference samples will only affect the additive factors, as P in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
159
+ page_content=' 9 and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
160
+ page_content=' 10 which is a predefined constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
161
+ page_content=' Thus, the obtained relation function can still accurately predict the quality rank of samples in other datasets, which is demonstrated by the cross-dataset evaluation in Section IV-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
162
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
163
+ page_content=' EXPERIMENTS In this section, we evaluate the performance of the pro- posed R-PCQA on the established PCCQA and WPC [24] dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
164
+ page_content=' Specifically, we use PCCQA to fit the model parame- ters and evaluate the fitting errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
165
+ page_content=' Then, we evaluate on WPC dataset as cross check to verify the performance of R-PCQA and its generalization ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
166
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
167
+ page_content=' Error Analysis The proposed PCCQA consists of three parts, part 1: lossless-G-lossy-A, part 2: lossy-G-lossless-A and part 3: lossy-G-lossy-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
168
+ page_content=' The proposed R-PCQA is fitted on the lossless-G-lossy-A and lossy-G-lossless-A parts, and we use the remaining lossy-G-lossy-A part to evaluate the perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
169
+ page_content=' Especially, we note the former two parts as the training (a) (b) (c) (d) (e) (f) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
170
+ page_content=' 2: Variation of Qs as function of average MOS for each compression condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
171
+ page_content=' The top row is under lossless-G-lossy-A, and the bottom row is under lossy-G-lossless-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
172
+ page_content=' (a) (d) is for V-PCC, (b) (e) is for G-PCC, and (c) (f) is for AVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
173
+ page_content=' set and the latter part as the testing set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
174
+ page_content=' The mean, standard deviation and 95% quantile of fitting errors MOS − MOSf on the testing set are shown in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
175
+ page_content=' The correlation performance on the testing set is shown in Table V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
176
+ page_content=' TABLE IV: Mean, standard deviation and 95% quantile of the fitting errors on the testing set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
177
+ page_content=' Mean Standard deviation 95% quantile V-PCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
178
+ page_content='0378 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
179
+ page_content='5885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
180
+ page_content='7561 G-PCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
181
+ page_content='5794 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
182
+ page_content='5113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
183
+ page_content='0969 AVS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
184
+ page_content='1356 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
185
+ page_content='2845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
186
+ page_content='2531 We can see from Table IV and Table V that the proposed model can not only fit the dataset accurately, but also conforms to the characteristics of human visual system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
187
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
188
+ page_content=' Combination Analysis The correlation performance of four combination schemes of the attribute model and geometry model on the testing set is shown in Table V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
189
+ page_content=' TABLE V: Correlation performance of four combination schemes on the testing set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
190
+ page_content=' PLCC SROCC RMSE PLCC SROCC RMSE Linear Combination Multiplicative Combination V-PCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
191
+ page_content='8360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
192
+ page_content='8554 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
193
+ page_content='5070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
194
+ page_content='8360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
195
+ page_content='8554 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
196
+ page_content='5070 G-PCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
197
+ page_content='9854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
198
+ page_content='9582 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
199
+ page_content='2098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
200
+ page_content='9853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
201
+ page_content='9582 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
202
+ page_content='2100 AVS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
203
+ page_content='9917 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
204
+ page_content='9854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
205
+ page_content='1650 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
206
+ page_content='9913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
207
+ page_content='9854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
208
+ page_content='1691 GA Combination AG Combination V-PCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
209
+ page_content='8351 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
210
+ page_content='8554 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
211
+ page_content='5082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
212
+ page_content='8356 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
213
+ page_content='8554 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
214
+ page_content='5075 G-PCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
215
+ page_content='9444 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
216
+ page_content='9582 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
217
+ page_content='4046 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
218
+ page_content='9767 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
219
+ page_content='9582 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
220
+ page_content='2644 AVS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
221
+ page_content='9881 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
222
+ page_content='9854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
223
+ page_content='1978 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
224
+ page_content='9862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
225
+ page_content='9854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
226
+ page_content='2127 We can see from Table V that: i) the linear combination is determined due to its slightly better performance and sim- pler calculation for two relationship model mixing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
227
+ page_content=' ii) the combination schemes hardly affect the performance, which indicates that the obtained relationship models for attribute and geometry are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
228
+ page_content=' Due to the removal of mutual masking, it is not necessary to consider the interaction of attribute and geometry components in the mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
229
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
230
+ page_content=' Cross-dataset Evaluation After the model is established on the proposed dataset, we evaluate its generalization performance on another independent dataset, the V-PCC part of WPC [24], which contains 400 distorted samples derived from 16 reference point clouds with 25 different quantization parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
231
+ page_content=' The results are shown in Table VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
232
+ page_content=' TABLE VI: Cross-dataset performance on WPC dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
233
+ page_content=' PLCC SROCC PLCC SROCC M-p2po (FR) [3] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
234
+ page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
235
+ page_content='58 H-PSNRyuv (FR) [33] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
236
+ page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
237
+ page_content='23 M-p2pl (FR) [34] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
238
+ page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
239
+ page_content='59 PCQM (FR) [12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
240
+ page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
241
+ page_content='75 H-p2po (FR) [3] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
242
+ page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
243
+ page_content='46 GraphSIM (FR) [13] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
244
+ page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
245
+ page_content='75 H-p2pl (FR) [34] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
246
+ page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
247
+ page_content='48 MPED (FR) [35] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
248
+ page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
249
+ page_content='59 PSNRyuv (FR) [33] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
250
+ page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
251
+ page_content='47 PCM RR (RR) [16] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
252
+ page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
253
+ page_content='38 R-PCQA (RR) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
254
+ page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
255
+ page_content='88 We can see from Table VI that: i) for the compression distortions, the proposed R-PCQA exhibits the state-of-the- art performance which only needs the assistance of two compression parameters, even compared with the existing FR metrics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
256
+ page_content=' ii) the model parameters derived from PCCQA still exhibit robust performance on another independent dataset, which demonstrates the generalization ability of the proposed RR metric R-PCQA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
257
+ page_content=' iii) the massive increase in points after reconstruction may interfere with the measurement of point- wise FR metrics, resulting in the poor performance of some FR metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
258
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
259
+ page_content=' CONCLUSION In this paper, we analyze the compression distortions of point clouds under separate attribute compression and geom- etry compression to avoid their mutual masking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
260
+ page_content=' Then by fitting the relationship between the quantization steps and the 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
261
+ page_content='5 SO 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
262
+ page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
263
+ page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
264
+ page_content='5 1 0 100 200 300 s5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
265
+ page_content='5 SO) 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
266
+ page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
267
+ page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
268
+ page_content='5 1 0 100 200 300 Os5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
269
+ page_content='5 SOI 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
270
+ page_content='5 Average 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
271
+ page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
272
+ page_content='5 1 0 20 40 60 80 Qs5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
273
+ page_content='5 so 4 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
274
+ page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
275
+ page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
276
+ page_content='5 1 0 100 200 300 Os5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
277
+ page_content='5 SOI 4 M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
278
+ page_content='5 Average 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
279
+ page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
280
+ page_content='5 1 0 5 10 15 20 Qs5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
281
+ page_content='5 SOI 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
282
+ page_content='5 Average 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
283
+ page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
284
+ page_content='5 1 0 5 10 15 20 Qsperceptual quality, we propose a RR PCQA model, called R- PCQA, for evaluating V-PCC, G-PCC and AVS distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
285
+ page_content=' The experiment results have demonstrated that the proposed R-PCQA exhibits reliable and robust performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
286
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
287
+ page_content=' ACKNOWLEDGEMENT This paper is supported in part by National Key R&D Program of China (2018YFE0206700), National Natural Sci- ence Foundation of China (61971282, U20A20185).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
288
+ page_content=' The cor- responding author is Yiling Xu (e-mail: yl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
289
+ page_content='xu@sjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
290
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
291
+ page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
292
+ page_content=' REFERENCES [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
293
+ page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
294
+ page_content=' Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
295
+ page_content=' Zhong, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
296
+ page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
297
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
298
+ page_content=' Chapman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
299
+ page_content=' Cao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
300
+ page_content=' Li, “Deep learning for lidar point clouds in autonomous driving: A review,” IEEE Transactions on Neural Networks and Learning Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
301
+ page_content=' 32, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
302
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
303
+ page_content=' 3412–3432, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
304
+ page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
305
+ page_content=' Lim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
306
+ page_content=' Shin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
307
+ page_content=' Paik, “Point cloud generation using deep local features for augmented and mixed reality contents,” in IEEE International Conference on Consumer Electronics, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
308
+ page_content=' 1–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
309
+ page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
310
+ page_content=' Cignoni, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
311
+ page_content=' Rocchini, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
312
+ page_content=' Scopigno, “Metro: measuring error on simplified surfaces,” in Computer Graphics Forum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
313
+ page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
314
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
315
+ page_content=' Wiley Online Library, 1998, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
316
+ page_content=' 167–174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
317
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
318
+ page_content=' Tian, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
319
+ page_content=' Ochimizu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
320
+ page_content=' Feng, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
321
+ page_content=' Cohen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
322
+ page_content=' Vetro, “Evaluation metrics for point cloud compression,” ISO/IEC JTC m74008, Geneva, Switzerland, Jan, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
323
+ page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
324
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
325
+ page_content=' Torlig, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
326
+ page_content=' Alexiou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
327
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
328
+ page_content=' Fonseca et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
329
+ page_content=', “A novel methodology for quality assessment of voxelized point clouds,” Applications of Digital Image Processing XLI, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
330
+ page_content=' 10752, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
331
+ page_content=' 174–190, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
332
+ page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
333
+ page_content=' Alexiou and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
334
+ page_content=' Ebrahimi, “Point cloud quality assessment metric based on angular similarity,” in IEEE International Conference on Multimedia and Expo, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
335
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
336
+ page_content=' [7] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
337
+ page_content=' Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
338
+ page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
339
+ page_content=' Ma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
340
+ page_content=', “Predicting the perceptual quality of point cloud: A 3d-to-2d projection-based exploration,” IEEE Transac- tions on Multimedia, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
341
+ page_content=' 23, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
342
+ page_content=' 3877–3891, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
343
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
344
+ page_content=' Javaheri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
345
+ page_content=' Brites, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
346
+ page_content=' Pereira, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
347
+ page_content=' Ascenso, “Joint geometry and color projection-based point cloud quality metric,” arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
348
+ page_content='02481, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
349
+ page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
350
+ page_content=' Meynet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
351
+ page_content=' Digne, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
352
+ page_content=' Lavoue, “PC-MSDM: A quality metric for 3D point clouds,” in International Conference on Quality of Multimedia Experience, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
353
+ page_content=' 1–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
354
+ page_content=' [10] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
355
+ page_content=' Viola, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
356
+ page_content=' Subramanyam, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
357
+ page_content=' Cesar, “A color-based objective quality metric for point cloud contents,” in International Conference on Quality of Multimedia Experience, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
358
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
359
+ page_content=' [11] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
360
+ page_content=' Alexiou and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
361
+ page_content=' Ebrahimi, “Towards a point cloud structural similarity metric,” in IEEE International Conference on Multimedia and Expo, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
362
+ page_content=' 1–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
363
+ page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
364
+ page_content=' Meynet, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
365
+ page_content=' Nehme, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
366
+ page_content=' Lavoue, “PCQM: A full-reference quality metric for colored 3D point clouds,” in International Conference on Quality of Multimedia Experience, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
367
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
368
+ page_content=' [13] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
369
+ page_content=' Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
370
+ page_content=' Ma, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
371
+ page_content=' Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
372
+ page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
373
+ page_content=' Sun, “Inferring point cloud quality via graph similarity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
374
+ page_content=' 1–1, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
375
+ page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
376
+ page_content=' Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
377
+ page_content=' Yang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
378
+ page_content=' Xu, “MS-GraphSIM: Inferring point cloud quality via multiscale graph similarity,” in ACM International Confer- ence on Multimedia, 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
379
+ page_content=' 1230–1238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
380
+ page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
381
+ page_content=' Javaheri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
382
+ page_content=' Brites, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
383
+ page_content=' Pereira, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
384
+ page_content=' Ascenso, “A point-to- distribution joint geometry and color metric for point cloud quality assessment,” in IEEE International Workshop on Multimedia Signal Processing, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
385
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
386
+ page_content=' [16] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
387
+ page_content=' Viola and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
388
+ page_content=' Cesar, “A reduced reference metric for visual quality evaluation of point cloud contents,” IEEE Signal Processing Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
389
+ page_content=' 27, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
390
+ page_content=' 1660–1664, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
391
+ page_content=' [17] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
392
+ page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
393
+ page_content=' Yuan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
394
+ page_content=' Hamzaoui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
395
+ page_content=', “Reduced reference perceptual quality model with application to rate control for video-based point cloud compression,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
396
+ page_content=' 30, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
397
+ page_content=' 6623–6636, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
398
+ page_content=' [18] MPEG 3DG Subgroup, “Text of iso/iec cd 23090-5: Video-based point cloud compression,” Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
399
+ page_content=' ISO/IEC JTC1/SC29/WG11/N18030, Macau, China, Oct, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
400
+ page_content=' [19] ——, “Text of iso/iec cd 23090-9 geometry-based point cloud compres- sion,” Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
401
+ page_content=' ISO/IEC JTC1/SC29/WG11/N18478, Geneve, Switzerland, Mar, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
402
+ page_content=' [20] AVS, “Avs codec description,” Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
403
+ page_content=' AVS N3246, Feb, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
404
+ page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
405
+ page_content=' Alexiou, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
406
+ page_content=' Yang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
407
+ page_content=' Ebrahimi, “PointXR: A toolbox for visualization and subjective evaluation of point clouds in virtual reality,” in International Conference on Quality of Multimedia Experience, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
408
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
409
+ page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
410
+ page_content=' Javaheri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
411
+ page_content=' Brites, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
412
+ page_content=' Pereira, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
413
+ page_content=' Ascenso, “Point cloud ren- dering after coding: Impacts on subjective and objective quality,” IEEE Transactions on Multimedia, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
414
+ page_content=' 23, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
415
+ page_content=' 4049–4064, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
416
+ page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
417
+ page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
418
+ page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
419
+ page_content=' Xu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
420
+ page_content=' Yang, “Point cloud quality assessment: Dataset construction and learning-based no-reference metric,” ACM Transactions on Multimedia Computing Communications and Applica- tions, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
421
+ page_content=' 1–1, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
422
+ page_content=' [24] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
423
+ page_content=' Su, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
424
+ page_content=' Duanmu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
425
+ page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
426
+ page_content=' Liu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
427
+ page_content=' Wang, “Perceptual quality assessment of 3d point clouds,” in IEEE International Conference on Image Processing, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
428
+ page_content=' 3182–3186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
429
+ page_content=' [25] MPEG 3DG Subgroup, “Common test conditions for V3C and V-PCC,” Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
430
+ page_content=' ISO/IEC JTC1/SC29/WG7/N00038, Oct, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
431
+ page_content=' [26] ——, “Common test conditions for G-PCC,” Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
432
+ page_content=' ISO/IEC JTC1/SC29/WG7/N00106, Apr, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
433
+ page_content=' [27] AVS, “Common test conditions for avs,” Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
434
+ page_content=' AVS N3114, July, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
435
+ page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
436
+ page_content=' Javaheri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
437
+ page_content=' Brites, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
438
+ page_content=' Pereira, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
439
+ page_content=' Ascenso, “Point cloud ren- dering after coding: Impacts on subjective and objective quality,” IEEE Transactions on Multimedia, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
440
+ page_content=' 23, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
441
+ page_content=' 4049–4064, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
442
+ page_content=' [29] “Methodology for the subjective assessment of the quality of television pictures,” Recommendation BT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
443
+ page_content='500-13, ITU-R, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
444
+ page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
445
+ page_content=' [30] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
446
+ page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
447
+ page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
448
+ page_content=' Fan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
449
+ page_content=' Hou, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
450
+ page_content=' Kwong, “Subjective quality database and objective study of compressed point clouds with 6DoF head-mounted display,” IEEE Transactions on Circuits and Systems for Video Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
451
+ page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
452
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
453
+ page_content=' 4630–4644, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
454
+ page_content=' [31] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
455
+ page_content=' Su, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
456
+ page_content=' Duanmu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
457
+ page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
458
+ page_content=' Liu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
459
+ page_content=' Wang, “Perceptual quality assessment of 3D point clouds,” in IEEE International Conference on Image Processing, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
460
+ page_content=' 3182–3186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
461
+ page_content=' [32] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
462
+ page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
463
+ page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
464
+ page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
465
+ page_content=', “No-reference point cloud quality assessment via domain adaptation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
466
+ page_content=' 1–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
467
+ page_content=' [33] MPEG reference software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
468
+ page_content=' http://mpegx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
469
+ page_content='int- evry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
470
+ page_content='fr/software/MPEG/PCC/TM/mpeg-pcc-dmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
471
+ page_content=' [34] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
472
+ page_content=' Mekuria, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
473
+ page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
474
+ page_content=' Tulvan, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
475
+ page_content=' Chou, “Evaluation criteria for point cloud compression,” ISO/IEC MPEG w16332, Geneva, Switzerland, Feb, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
476
+ page_content=' [35] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
477
+ page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
478
+ page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
479
+ page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
480
+ page_content=', “MPED: Quantifying point cloud distortion based on multiscale potential energy discrepancy,” arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
481
+ page_content='02850, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tAzT4oBgHgl3EQfFPrO/content/2301.01009v1.pdf'}
A9AzT4oBgHgl3EQfF_vM/content/tmp_files/2301.01022v1.pdf.txt ADDED
@@ -0,0 +1,3817 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01022v1 [math.AP] 3 Jan 2023
2
+ DECAY OF SOLUTIONS OF ISENTROPIC GAS DYNAMICS
3
+ FOR LARGE DATA
4
+ NAOKI TSUGE
5
+ Abstract. In this paper, we are concerned with the Cauchy problem for
6
+ isentropic gas dynamics. Through the contribution of many researchers such
7
+ as Lax, P. D., Glimm, J., DiPerna, R. J. and Liu, T. P., the decay of solutions
8
+ was established. They treated with initial data with the small total variation.
9
+ On the other hand, the decay for large initial data has been open for half a
10
+ century. Our goal is to provide a new method to analyze this problem. We
11
+ prove the existence of a global attractor, which yields a decay of solutions
12
+ for large data. To construct approximate solutions, we introduce a modified
13
+ Godunov scheme.
14
+ 1. Introduction
15
+ The present paper is concerned with isentropic gas dynamics
16
+
17
+
18
+
19
+ ρt + mx = 0,
20
+ mt +
21
+ �m2
22
+ ρ + p(ρ)
23
+
24
+ x
25
+ = 0,
26
+ x ∈ R,
27
+ t ∈ R+,
28
+ (1.1)
29
+ where ρ, m and p are the density, the momentum and the pressure of the gas,
30
+ respectively. If ρ > 0, v = m/ρ represents the velocity of the gas. For a barotropic
31
+ gas, p(ρ) = ργ/γ, where γ ∈ (1, 5/3] is the adiabatic exponent for usual gases.
32
+ We consider the initial value problem (1.1) with the initial data
33
+ (ρ, m)|t=0 = (ρ0(x), m0(x)),
34
+ (1.2)
35
+ where
36
+ (ρ0(x), m0(x)) = (¯ρ, 0) outside a finite interval
37
+ (1.3)
38
+ and ¯ρ is a positive constant. The above problem (1.1)–(1.2) can be written in the
39
+ following form
40
+
41
+ ut + f(u)x = 0,
42
+ x ∈ R,
43
+ t ∈ R+,
44
+ u|t=0 = u0(x),
45
+ (1.4)
46
+ by using u = t(ρ, m), f(u) = t
47
+
48
+ m, m2
49
+ ρ + p(ρ)
50
+
51
+ .
52
+ We recollect the known results of the above problem. DiPerna [5] proved the
53
+ global existence of solutions to (1.1)–(1.2) by the vanishing viscosity method and
54
+ 2020 Mathematics Subject Classification. Primary 35L03, 35L65, 35Q31, 76N10, 76N15; Sec-
55
+ ondary 35A01, 35B35, 35B50, 35L60, 76H05, 76M20.
56
+ Key words and phrases. The Compressible Euler Equation, isentropic gas dyanmics, the com-
57
+ pensated compactness, the Godunov scheme, global attractor, decay estimates.
58
+ N. Tsuge’s research is partially supported by Grant-in-Aid for Scientific Research (C)
59
+ 17K05315, Japan.
60
+ 1
61
+
62
+ 2
63
+ NAOKI TSUGE
64
+ a compensated compactness argument. DiPerna first applied the method to (1.1)
65
+ for the special case where γ = 1 + 2/n and n is an odd integer. We notice that this
66
+ result can treat with the arbitrary L∞ data. Subsequently, Ding, Chen and Luo [6]
67
+ and Chen [1] and [2] extended his analysis to any γ in (1, 5/3].
68
+ On the other hand, the existence of solutions to conservation laws including
69
+ (1.1) was established by Glimm [8]. Glimm treatd the Cauchy problem with initial
70
+ data having small total variation.
71
+ The theory of decay for genuinely nonlinear
72
+ 2×2 systems of conservation laws was constructed by Glimm-Lax [9]. Glimm-Lax
73
+ showed that if initial data are constant outside a finite interval and have locally
74
+ bounded total variation and small oscillation, then the tonal variation of the solution
75
+ of [8] decays to zero at the rate t−1/2. The Glimm-Lax theory had been further
76
+ developed by DiPerna and Liu: general conservation laws with a convex entropy
77
+ function [4], general conservation laws with small initial data in total variation [10].
78
+ However, the decay for large initial data has been open for half a century. Our
79
+ goal in the present paper is to provide a new method to analyze this problem and
80
+ investigate the decay structure of (1.1). We first introduce a modified Godunov
81
+ scheme to construct approximate solutions. We next prove the existence of a global
82
+ attractor, which yields decay estimates of solutions for large initial data.
83
+ To state our main theorem, we define the Riemann invariants w, z, which play
84
+ important roles in this paper, as
85
+ Definition 1.1.
86
+ w(u) := m
87
+ ρ + ρθ
88
+ θ = v + ρθ
89
+ θ ,
90
+ z(u) := m
91
+ ρ − ρθ
92
+ θ = v − ρθ
93
+ θ
94
+
95
+ θ = γ − 1
96
+ 2
97
+
98
+ .
99
+ These Riemann invariants satisfy the following.
100
+ Remark 1.1.
101
+ |w| ≥ |z|, w ≥ 0, when v ≥ 0.
102
+ |w| ≤ |z|, z ≤ 0, when v ≤ 0.
103
+ v = w + z
104
+ 2
105
+ , ρ =
106
+ �θ(w − z)
107
+ 2
108
+ �1/θ
109
+ , m = ρv.
110
+ (1.5)
111
+ From the above, the lower bound of z and the upper bound of w yield the bound of
112
+ ρ and |v|.
113
+ We next introduce the mechanical energy as η∗(u) = 1
114
+ 2
115
+ m2
116
+ ρ +
117
+ 1
118
+ γ(γ − 1)ργ and set
119
+ J(u) = η∗(u) − (¯ρ)γ−1
120
+ γ − 1 ρ + (¯ρ)γ
121
+ γ .
122
+ (1.6)
123
+ Remark 1.2. From the convexity of η∗, we have
124
+ J(u) = η∗(u) − η∗(¯ρ, 0) − ∂η∗
125
+ ∂ρ (¯ρ, 0)(ρ − ¯ρ) − ∂η∗
126
+ ∂m (¯ρ, 0)m ≥ 0.
127
+ (1.7)
128
+ From the conservation of mass and the energy inequality, we have
129
+ 0 ≤
130
+ � x
131
+ −∞
132
+ J(u(y, t))dy ≤
133
+ � ∞
134
+ −∞
135
+ J(u(x, t))dx ≤
136
+ � ∞
137
+ −∞
138
+ J(u0(x))dx.
139
+ (1.8)
140
+ Moreover, we define the entropy weak solution.
141
+
142
+ THE COMPRESSIBLE EULER EQUATIONS
143
+ 3
144
+ Definition 1.2. A measurable function u(x, t) is called a global entropy weak so-
145
+ lution of the Cauchy problems (1.4) if
146
+ � ∞
147
+ −∞
148
+ � ∞
149
+ 0
150
+ uφt + f(u)φxdxdt +
151
+ � ∞
152
+ −∞
153
+ u0(x)φ(x, 0)dx = 0
154
+ holds for any test function φ ∈ C1
155
+ 0(R × R+) and
156
+ � ∞
157
+ −∞
158
+ � ∞
159
+ 0
160
+ η(u)ψt + q(u)ψx +
161
+ � ∞
162
+ −∞
163
+ η(u0(x))ψ(x, 0)dx ≥ 0
164
+ holds for any non-negative test function ψ ∈ C1
165
+ 0(R × R+), where (η, q) is a pair of
166
+ convex entropy–entropy flux of (1.1).
167
+ Finally, we define ˜z, ˜w by
168
+ ˜z(x, t) = z(x, t) −
169
+ � x
170
+ −∞
171
+ J(u(y, t))dy,
172
+ ˜w(x, t) = w(x, t) −
173
+ � x
174
+ −∞
175
+ J(u(y, t))dy.
176
+ (1.9)
177
+ Then, our main theorem is as follows.
178
+ Theorem 1.1. We assume that
179
+ ρ0(x) ≥ 0
180
+ a.e. x ∈ R,
181
+ ρ0 ∈ L∞(R),
182
+ m0
183
+ ρ0
184
+ ∈ L∞(R).
185
+ (1.10)
186
+ Then, there exists a global entropy weak solution of the Cauchy problems (1.4).
187
+ Moreover, for any positive constant ε, there exist positive constants t0 such that the
188
+ solution satisfies
189
+ − (¯ρ)θ
190
+ θ
191
+ − E0 − ε ≤ ˜z(x, t),
192
+ ˜w(x, t) ≤ (¯ρ)θ
193
+ θ
194
+ + ε,
195
+ ρ(x, t) ≥ 0,
196
+ a.e. (x, t) ∈ R × [t0, ∞),
197
+ (1.11)
198
+ where
199
+ E0 =
200
+ � ∞
201
+ −∞
202
+ J(u0(x))dx.
203
+ (1.12)
204
+ Remark 1.3. We remark some points for the above theorem.
205
+ In view of (1.3), we find that −(¯ρ)θ
206
+ θ −E0 ≥ ess infx (˜z(x, 0)) , ess supx ( ˜w(x, 0)) ≥
207
+ (¯ρ)θ
208
+ θ . Therefore, (1.11) means the decay estimate of ess infx (˜z(x, t)) and ess infx ( ˜w(x, t)).
209
+ We similarly obtain −(¯ρ)θ
210
+ θ
211
+ ≥ ess infx (z(x, 0)) , ess supx (w(x, 0)) ≥ (¯ρ)θ
212
+ θ .
213
+ If
214
+ −(¯ρ)θ
215
+ θ
216
+ − E0 − ε > ess infx (z(x, 0)) and ess supx (w(x, 0)) > (¯ρ)θ
217
+ θ
218
+ + E0 + ε, (1.11)
219
+ yields the decay estimate of ess infx (z(x, t)) and ess supx (w(x, t)). In fact, we find
220
+
221
+ 4
222
+ NAOKI TSUGE
223
+ that
224
+ ess inf
225
+ x (z(x, t0)) − ess inf
226
+ x (z(x, 0))
227
+ = ess inf
228
+ x
229
+
230
+ ˜z(x, t0) +
231
+ � x
232
+ −∞
233
+ J(u(y, t))dy
234
+
235
+ − ess inf
236
+ x (z(x, 0))
237
+ ≥ −(¯ρ)θ
238
+ θ
239
+ − E0 − ε − ess inf
240
+ x (z(x, 0)) > 0,
241
+ ess sup
242
+ x (w(x, t0)) − ess sup
243
+ x (w(x, 0))
244
+ = ess sup
245
+ x
246
+
247
+ ˜w(x, t0) +
248
+ � x
249
+ −∞
250
+ J(u(y, t))dy
251
+
252
+ − ess sup
253
+ x (w(x, 0))
254
+ ≤ (¯ρ)θ
255
+ θ
256
+ + ε + E0 − ess sup
257
+ x (w(x, 0)) < 0.
258
+ 1.1. Outline of the proof (formal argument). The proof of main theorem is
259
+ a little complicated. Therefore, before proceeding to the subject, let us grasp the
260
+ point of the main estimate by a formal argument. Although (1.1) has a discontin-
261
+ uous solution in general, we assume that solutions are smooth and the density is
262
+ nonnegative in this section.
263
+ We consider the physical region ρ ≥ 0 (i.e., w ≥ z.). Recalling Remark 1.1, it
264
+ suffices to derive the lower bound of z(u) and the upper bound of w(u) to obtain
265
+ the bound of u. To do this, we diagonalize (1.1). If solutions are smooth, we deduce
266
+ from (1.1)
267
+ zt + λ1zx = 0,
268
+ wt + λ2wx = 0,
269
+ (1.13)
270
+ where λ1 and λ2 are the characteristic speeds defined as follows
271
+ λ1 = v − ρθ,
272
+ λ2 = v + ρθ.
273
+ (1.14)
274
+ From the conservation of mass (1.1)1 and the conservation of energy (η∗)t +
275
+ (q∗)x = 0, we obtain
276
+ ˜zt + λ1˜zx = g1(u),
277
+ ˜wt + λ2 ˜wx = g2(u),
278
+ (1.15)
279
+ where
280
+ q∗(u) = m
281
+ �1
282
+ 2
283
+ m2
284
+ ρ2 + ργ−1
285
+ γ − 1
286
+
287
+ and
288
+ g1(u) = − (¯ρ)γ
289
+ γ λ1 +
290
+ 1
291
+ γ(γ − 1)ργ+θ + 1
292
+ γ ργv + 1
293
+ 2ρθ+1v2 − (¯ρ)γ−1
294
+ γ − 1 ρθ+1,
295
+ g2(u) = − (¯ρ)γ
296
+ γ λ2 −
297
+ 1
298
+ γ(γ − 1)ργ+θ + 1
299
+ γ ργv − 1
300
+ 2ρθ+1v2 + (¯ρ)γ−1
301
+ γ − 1 ρθ+1.
302
+ (1.16)
303
+ To prove Theorem 1.1, we prepare the following proposition.
304
+
305
+ THE COMPRESSIBLE EULER EQUATIONS
306
+ 5
307
+ Proposition 1.2.
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+ g1(u(x, t)) > 0, when ˜z(x, t) < −(¯ρ)θ
321
+ θ
322
+ − E0,
323
+
324
+ g1(u(x, t)) = 0, when ˜z(x, t) = −(¯ρ)θ
325
+ θ
326
+ − E0,
327
+ � x
328
+ −∞ J(u(y, t))dy = E0
329
+ and ρ(x, t) = ¯ρ,
330
+ (1.17)
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+ g2(u(x, t)) < 0, when ˜w(x, t) > (¯ρ)θ
344
+ θ ,
345
+
346
+ g2(u(x, t)) = 0, when ˜w(x, t) = (¯ρ)θ
347
+ θ ,
348
+ � x
349
+ −∞ J(u(y, t))dy = 0
350
+ and ρ(x, t) = ¯ρ.
351
+ (1.18)
352
+ Proof. We first investigate (1.17).
353
+ When ˜z(x, t) ≤ −(¯ρ)θ
354
+ θ
355
+ − E0, from (1.8), we
356
+ observe that
357
+ z(x, t) = ˜z(x, t) +
358
+ � x
359
+ −∞
360
+ J(u(y, t))dy ≤ −(¯ρ)θ
361
+ θ .
362
+ (1.19)
363
+ Then, we deduce that
364
+ g1(u)=
365
+ 1
366
+ γ(γ − 1)ργ+θ + 1
367
+ γ ργv + 1
368
+ 2ρθ+1v2 − (¯ρ)γ
369
+ γ λ1 − (¯ρ)γ−1
370
+ γ − 1 ρθ+1
371
+ =
372
+ 1
373
+ γ(γ − 1)ργ+θ + 1
374
+ γ ργv + 1
375
+ 2ρθ+1v2 − (¯ρ)γ
376
+ γ
377
+
378
+ z + 3 − γ
379
+ γ − 1ρθ
380
+
381
+ − (¯ρ)γ−1
382
+ γ − 1 ρθ+1
383
+ =
384
+ 1
385
+ γ(γ − 1)ργ+θ + 1
386
+ γ ργv + 1
387
+ 2ρθ+1v2 − (¯ρ)γ
388
+ γ
389
+
390
+ z + 3 − γ
391
+ γ − 1ρθ
392
+
393
+ − (¯ρ)γ−1
394
+ γ − 1 ρθ+1
395
+ =
396
+ 1
397
+ γ(γ − 1)ργ+θ + 1
398
+ γ ργ
399
+
400
+ z + ρθ
401
+ θ
402
+
403
+ + 1
404
+ 2ρθ+1
405
+
406
+ z + ρθ
407
+ θ
408
+ �2
409
+ − (¯ρ)γ
410
+ γ
411
+
412
+ z + 3 − γ
413
+ γ − 1ρθ
414
+
415
+ − (¯ρ)γ−1
416
+ γ − 1 ρθ+1
417
+ =ρθ+1
418
+ 2
419
+
420
+ z − 1
421
+ γ
422
+ (¯ρ)γ
423
+ ρθ+1 + 3γ − 1
424
+ γ(γ − 1)ρθ
425
+ �2
426
+ +
427
+ γ + 1
428
+ 2γ2(γ − 1)ργ+θ
429
+
430
+ 1
431
+ γ − 1 (¯ρ)γ−1 ρθ+1 + γ + 1
432
+ γ2
433
+ (¯ρ)γ ρθ −
434
+ 1
435
+ 2γ2 (¯ρ)2γ
436
+ 1
437
+ ρθ+1 .
438
+ (1.20)
439
+ When ρ ≤ ¯ρ, since (1.20) attains the minimum at z = −(¯ρ)θ
440
+ θ , we deduce from
441
+ Appendix A
442
+ g1(u) ≥ 5γ − 3
443
+ γ(γ − 1)2 ργ+θ − 2(3γ − 1)
444
+ γ(γ − 1)2 (¯ρ)θ ργ +
445
+ 3 − γ
446
+ (γ − 1)2 (¯ρ)γ−1 ρθ+1 −
447
+ 3 − γ
448
+ γ(γ − 1) (¯ρ)γ ρθ
449
+ +
450
+ 2
451
+ γ(γ − 1) (¯ρ)��+θ
452
+ ≥0,
453
+ (1.21)
454
+ where the equal sign of the second inequality can be used only when ρ = ¯ρ.
455
+
456
+ 6
457
+ NAOKI TSUGE
458
+ When ρ > ¯ρ, since (1.20) attains the minimum at z = 1
459
+ γ
460
+ (¯ρ)γ
461
+ ρθ+1 − 3γ − 1
462
+ γ(γ − 1)ρθ, we
463
+ deduce from Appendix A
464
+ g1(u) ≥
465
+ γ + 1
466
+ 2γ2(γ − 1)ργ+θ −
467
+ 1
468
+ γ − 1 (¯ρ)γ−1 ρθ+1 + γ + 1
469
+ γ2
470
+ (¯ρ)γ ρθ −
471
+ 1
472
+ 2γ2 (¯ρ)2γ
473
+ 1
474
+ ρθ+1
475
+ ≥0,
476
+ (1.22)
477
+ where the equal sign of the second inequality can be used only when ρ = ¯ρ.
478
+ We next investigate (1.18). When ˜w(x, t) ≥ (¯ρ)θ
479
+ θ , from (1.8), we observe that
480
+ w(x, t) = ˜w(x, t) +
481
+ � x
482
+ −∞
483
+ J(u(y, t))dy ≥ (¯ρ)θ
484
+ θ .
485
+ (1.23)
486
+ Then, we deduce that
487
+ g2(u) = − (¯ρ)γ
488
+ γ λ2 −
489
+ 1
490
+ γ(γ − 1)ργ+θ + 1
491
+ γ ργv − 1
492
+ 2ρθ+1v2 + (¯ρ)γ−1
493
+ γ − 1 ρθ+1
494
+ = − (¯ρ)γ
495
+ γ
496
+
497
+ w − 3 − γ
498
+ γ − 1ρθ
499
+
500
+
501
+ 1
502
+ γ(γ − 1)ργ+θ + 1
503
+ γ ργv − 1
504
+ 2ρθ+1v2 + (¯ρ)γ−1
505
+ γ − 1 ρθ+1
506
+ = − (¯ρ)γ
507
+ γ
508
+
509
+ w − 3 − γ
510
+ γ − 1ρθ
511
+
512
+
513
+ 1
514
+ γ(γ − 1)ργ+θ + 1
515
+ γ ργ
516
+
517
+ w − ρθ
518
+ θ
519
+
520
+ − 1
521
+ 2ρθ+1
522
+
523
+ w − ρθ
524
+ θ
525
+ �2
526
+ + (¯ρ)γ−1
527
+ γ − 1 ρθ+1
528
+ = − ρθ+1
529
+ 2
530
+
531
+ w + 1
532
+ γ
533
+ (¯ρ)γ
534
+ ρθ+1 − 3γ − 1
535
+ γ(γ − 1)ρθ
536
+ �2
537
+
538
+ γ + 1
539
+ 2γ2(γ − 1)ργ+θ
540
+ +
541
+ 1
542
+ γ − 1 (¯ρ)γ−1 ρθ+1 − γ + 1
543
+ γ2
544
+ (¯ρ)γ ρθ +
545
+ 1
546
+ 2γ2 (¯ρ)2γ
547
+ 1
548
+ ρθ+1 .
549
+ From (1.21)–(1.22), we conclude that
550
+ g2(u) ≤ 0,
551
+ (1.24)
552
+ where the equal sign can be used only when ρ = ¯ρ.
553
+
554
+ Proof of Theorem (1.11)
555
+ From (1.17)–(1.18), for any positive constant ε, there exists a positive constant
556
+ δ such that
557
+ g1(u) > 2δ, when ˜z ≤ −(¯ρ)θ
558
+ θ
559
+ − E0 − ε
560
+ 2 and 0 ≤ ρ,
561
+ g2(u) < −2δ, when (¯ρ)θ
562
+ θ
563
+ + ε
564
+ 2 ≤ ˜w and 0 ≤ ρ.
565
+ (1.25)
566
+ We introduce ˆz, ˆw as follows.
567
+ ˆz(x, t) = ˜z(x, t) − δt,
568
+ ˆw(x, t) = ˜w(x, t) + δt.
569
+ (1.26)
570
+ We deduce from (1.15) that
571
+ ˆzt + λ1ˆzx = g1(u) − δ,
572
+ ˆwt + λ2 ˆwx = g2(u) + δ.
573
+ (1.27)
574
+
575
+ THE COMPRESSIBLE EULER EQUATIONS
576
+ 7
577
+ We set
578
+ M0 = max
579
+
580
+ (¯ρ)θ
581
+ θ , −ess inf
582
+ x (˜z(x, 0)) + E0, ess inf
583
+ x ( ˜w(x, 0))
584
+
585
+ .
586
+ (1.28)
587
+ Then, we notice that
588
+ −M0 − E0 ≤ ˆz(x, 0),
589
+ ˆw(x, 0) ≤ M0.
590
+ Let us prove that
591
+ ˆSinv = {(ˆz, ˆw) ∈ R2; ρ ≥ 0, ˆz ≥ −M0 − E0, ˆw ≤ M0}
592
+ is an invariant region for the Cauchy problem of (1.27) on
593
+ 0 ≤ t ≤ max
594
+
595
+ 0, M0 − (¯ρ)θ
596
+ θ
597
+ − ε
598
+ δ
599
+
600
+ =: t0.
601
+ We notice that this yields (1.11) on 0 ≤ t ≤ t0.
602
+ To achieve this, assuming
603
+ −M0 − E0 < ˆz(x, 0),
604
+ ˆw(x, 0) < M0
605
+ and there exist x∗ ∈ R, 0 < t∗ ≤ t0 such that the following (1.29) or (1.30) holds,
606
+ − M0 − E0 < ˆz(x, t), ˆw(x, t) < M0,
607
+ x ∈ R, 0 ≤ t < t∗
608
+ and
609
+ ˆz(x∗, t∗) = −M0 − E0, ˆw(x∗, t∗) ≤ M0,
610
+ (1.29)
611
+ − M0 − E0 < ˆz(x, t), ˆw(x, t) < M0,
612
+ x ∈ R, 0 ≤ t < t∗
613
+ and
614
+ ˆz(x∗, t∗) ≥ −M0 − E0, ˆw(x∗, t∗) = M0,
615
+ (1.30)
616
+ we will deduce a contradiction.
617
+ To do this, we prove
618
+ g1(u(x∗, t∗)) − δ > 0, when (1.29) holds,
619
+ (1.31)
620
+ g2(u(x∗, t∗)) + δ < 0, when (1.30) holds.
621
+ (1.32)
622
+ Let us consider (1.31). When (1.29) and 0 ≤ t∗ ≤ t0, we notice that
623
+ ˜z(x∗, t∗) ≤ −(¯ρ)θ
624
+ θ
625
+ − E0 − ε.
626
+ Therefore, from (1.25), we prove (1.31). Since ˆz attains the minimum at (x∗, t∗),
627
+ we can deduce from (1.27)1 a contradiction. We can similarly prove (1.32).
628
+ We notice that (˜z(x, t0), ˜w(x, t0)) is contained in
629
+ ˜Sinv =
630
+
631
+ (˜z, ˜w) ∈ R2; ρ ≥ 0, ˜z ≥ −(¯ρ)θ
632
+ θ
633
+ − ε − E0, ˜w ≤ (¯ρ)θ
634
+ θ
635
+ + ε
636
+
637
+ .
638
+ Then, we can similarly prove that ˜Sinv is an invariant region for the Cauchy problem
639
+ of (1.15). Therefore, we conclude (1.11).
640
+ Although the above argument is formal, it is essential. In fact, we shall implicitly
641
+ use this argument in the proof of Theorem 3.1. We must next justify the above
642
+ argument.
643
+ To do this, we introduce a modified Godunov scheme in Section 2.
644
+ Recently, the various difference schemes are developed in [11]–[18], which consist
645
+ of known functions. On the other hand, the present approximate solutions include
646
+ unknown functions in the form of (1.9) with constants ˜z, ˜w (see (2.15)).
647
+
648
+ 8
649
+ NAOKI TSUGE
650
+ 2. Construction of Approximate Solutions
651
+ In this section, we construct approximate solutions. Let T be any fixed positive
652
+ constant. In the strip 0 ≤ t ≤ T , we denote the approximate solutions by u∆(x, t) =
653
+ (ρ∆(x, t), m∆(x, t)). We denote the space mesh lengths by ∆x. Using E0 in (1.12)
654
+ and M0 in (1.28), we take time mesh length ∆t such that
655
+ ∆x
656
+ ∆t = 2(M0 + E0).
657
+ (2.1)
658
+ In addition, we set
659
+ (j, n) ∈ 2Z × Z≥0,
660
+ where Z≥0 = {0, 1, 2, 3, . . .}. For simplicity, we use the following terminology
661
+ xj = j∆x, tn = n∆t, tn.5 =
662
+
663
+ n + 1
664
+ 2
665
+
666
+ ∆t, tn− = n∆t − 0, tn+ = n∆t + 0. (2.2)
667
+ First we set u∆(x, t0−) = u0(x).
668
+ Then, for j ∈ 2Z, we define E0
669
+ j (u) by
670
+ E0
671
+ j (u) =
672
+ 1
673
+ 2∆x
674
+ � xj+1
675
+ xj−1
676
+ u∆(x, t0−)dx.
677
+ Next, we assume that u∆(x, t) is defined for t < tn.
678
+ Then, for j ∈ 2Z, we define En
679
+ j (u) by
680
+ En
681
+ j (u) =
682
+ 1
683
+ 2∆x
684
+ � xj+1
685
+ xj−1
686
+ u∆(x, tn−)dx.
687
+ To determine un
688
+ j = (ρn
689
+ j , mn
690
+ j ) for j ∈ 2Z, we define symbols In
691
+ j and Ln. Let the
692
+ approximation of
693
+ � x
694
+ −∞ J(u(y, t))dy be
695
+ In
696
+ j :=
697
+ � xj
698
+ −∞
699
+ J(En(x; u))dx,
700
+ where
701
+ En(x; u) = En
702
+ j (u)
703
+ x ∈ [xj−1, xj+1)
704
+ (2.3)
705
+ and J is defined in (1.6).
706
+ Let D = (x(t), t) denote a discontinuity in u∆(x, t), [η∗] and [q∗] denote the
707
+ jump of η∗(u∆(x, t)) and q∗(u∆(x, t)) across D from left to right, respectively,
708
+ [η∗] = η∗(u∆(x(t) + 0, t)) − η∗(u∆(x(t) − 0, t)),
709
+ [q∗] = q∗(u∆(x(t) + 0, t)) − q∗(u∆(x(t) − 0, t)),
710
+ where q∗(u) is the flux of η∗(u) defined by
711
+ q∗(u) = m
712
+ �1
713
+ 2
714
+ m2
715
+ ρ2 + ργ−1
716
+ γ − 1
717
+
718
+ .
719
+ Next, to measure the error in the entropy condition and the gap of the energy at
720
+ tn±, we introduce a functional. To do this, we deduce from the Taylor expansion
721
+
722
+ THE COMPRESSIBLE EULER EQUATIONS
723
+ 9
724
+ that
725
+ η∗
726
+
727
+ u∆(x, tn−)
728
+
729
+ − η∗
730
+
731
+ En
732
+ j (u)
733
+
734
+ =∇η∗(En
735
+ j (u))
736
+
737
+ u∆(x, tn−) − En
738
+ j (u)
739
+
740
+ +
741
+ � 1
742
+ 0
743
+ (1 − τ) · t �
744
+ u∆(x, tn−) − En
745
+ j (u)
746
+
747
+ × ∇2η∗
748
+
749
+ En
750
+ j (u) + τ
751
+
752
+ u∆(x, tn−) − En
753
+ j (u)
754
+ ��
755
+
756
+ ×
757
+
758
+ u∆(x, tn−) − En
759
+ j (u)
760
+
761
+ =∇η∗(En
762
+ j (u))
763
+
764
+ u∆(x, tn−) − En
765
+ j (u)
766
+
767
+ + Rn
768
+ j (x),
769
+ (2.4)
770
+ where
771
+ Rn
772
+ j (x) =
773
+ � 1
774
+ 0
775
+ (1 − τ) · t �
776
+ u∆(x, tn−) − En
777
+ j (u)
778
+
779
+ ∇2η∗
780
+
781
+ En
782
+ j (u) + τ
783
+
784
+ u∆(x, tn−) − En
785
+ j (u)
786
+ ��
787
+ ×
788
+
789
+ u∆(x, tn−) − En
790
+ j (u)
791
+
792
+ dτ.
793
+ Then, we define a functional Ln as
794
+ Ln =
795
+ � tn
796
+ 0
797
+
798
+ x∈R
799
+ σ[η∗] − [q∗]dt +
800
+ n
801
+
802
+ k=0
803
+ � ∞
804
+ −∞
805
+
806
+ η∗(u∆(x, tk−0)) − η∗(Ek(x; u))
807
+
808
+ dx
809
+ +
810
+ n
811
+
812
+ k=0
813
+
814
+ j∈2Z
815
+ 1
816
+ 2∆x
817
+ � xj+1
818
+ xj−1
819
+ � x
820
+ xj−1
821
+ Rk
822
+ j (y)dydx,
823
+ (2.5)
824
+ where the summention in �
825
+ x∈R is taken over all discontinuities in u∆(x, t) at a
826
+ fixed time t over x ∈ R, σ is the propagating speed of the discontinuities.
827
+ Moreover, we set
828
+ M1 = M0 − δ∆t,
829
+ Mn+1 =
830
+
831
+
832
+
833
+
834
+
835
+
836
+
837
+ Mn − δ∆t,
838
+ when Mn + Ln ≥ (¯ρ)θ
839
+ θ
840
+ + ε,
841
+ Mn,
842
+ when Mn + Ln < (¯ρ)θ
843
+ θ
844
+ + ε,
845
+ (2.6)
846
+ where δ is defined in (1.25). We notice that Mn ≥ (¯ρ)θ
847
+ θ
848
+ + ε − δ∆t.
849
+ Using In
850
+ j , Ln and Mn, we define un
851
+ j as follows.
852
+ We choose µ such that 1 < µ < 1/(2θ). If
853
+ En
854
+ j (ρ) :=
855
+ 1
856
+ 2∆x
857
+ � xj+1
858
+ xj−1
859
+ ρ∆(x, tn−)dx < (∆x)µ,
860
+ (2.7)
861
+ we define un
862
+ j by un
863
+ j = (0, 0); otherwise, setting
864
+ zn
865
+ j := max
866
+
867
+ z(En
868
+ j (u)), −Mn − E0 − Ln + In
869
+ j
870
+
871
+ ,
872
+ wn
873
+ j := min
874
+
875
+ w(En
876
+ j (u)), Mn + Ln + In
877
+ j
878
+
879
+ ,
880
+ (2.8)
881
+ we define un
882
+ j by
883
+ un
884
+ j := (ρn
885
+ j , mn
886
+ j ) := (ρn
887
+ j , ρn
888
+ j vn
889
+ j ) :=
890
+ ��θ(wn
891
+ j − zn
892
+ j )
893
+ 2
894
+ �1/θ
895
+ ,
896
+ �θ(wn
897
+ j − zn
898
+ j )
899
+ 2
900
+ �1/θ wn
901
+ j + zn
902
+ j
903
+ 2
904
+
905
+ .
906
+ Remark 2.1. We find
907
+ −Mn − E0 − Ln + In
908
+ j ≤ z(un
909
+ j ),
910
+ w(un
911
+ j ) ≤ Mn + Ln + In
912
+ j .
913
+ (2.9)
914
+
915
+ 10
916
+ NAOKI TSUGE
917
+ This implies that we cut off the parts where z(En
918
+ j (u)) < −Mn − E0 − Ln + In
919
+ j
920
+ and w(En
921
+ j (u)) > Mn + Ln + In
922
+ j in defining z(un
923
+ j ) and w(un
924
+ j ). Observing (3.2), the
925
+ order of these cut parts is o(∆x). The order is so small that we can deduce the
926
+ compactness and convergence of our approximate solutions.
927
+ 2.1. Construction of Approximate Solutions in the Cell. We then assume
928
+ that approximate solutions u∆(x, t) are defined in domains D1 : t < tn
929
+ (n ∈ N)
930
+ and D2 : x < xj−1
931
+ (j ∈ 2Z), tn ≤ t < tn+1.
932
+ By using un
933
+ j defined in D1
934
+ and u∆(x, t) defined in D2, we construct the approximate solutions in the cell
935
+ tn ≤ t < tn+1
936
+ (n ∈ N),
937
+ xj−1 ≤ x < xj+1
938
+ (j ∈ 2Z).
939
+ We first solve a Riemann problem with initial data (un
940
+ j−1, un
941
+ j+1). Call constants
942
+ uL(= un
943
+ j−1), uM, uR(= un
944
+ j+1) the left, middle and right states, respectively. Then
945
+ the following four cases occur.
946
+ • Case 1 A 1-rarefaction wave and a 2-shock arise.
947
+ • Case 2 A 1-shock and a 2-rarefaction wave arise.
948
+ • Case 3 A 1-rarefaction wave and a 2-rarefaction arise.
949
+ • Case 4 A 1-shock and a 2-shock arise.
950
+ We then construct approximate solutions u∆(x, t) by perturbing the above Riemann
951
+ solutions.
952
+ Let α be a constant satisfying 1/2 < α < 1. We choose a positive value β small
953
+ enough.
954
+ In this step, we consider Case 1 in particular. The constructions of Cases 2–4
955
+ are similar to that of Case 1. We consider only the case in which uM is away from
956
+ the vacuum. The other case (i.e., the case where uM is near the vacuum) is a little
957
+ technical. Therefore, we postpone this case to Appendix C.
958
+ Consider the case where a 1-rarefaction wave and a 2-shock arise as a Riemann
959
+ solution with initial data (un
960
+ j , un
961
+ j+1). Assume that uL, uM and uM, uR are connected
962
+ by a 1-rarefaction and a 2-shock curve, respectively.
963
+ Step 1.
964
+ In order to approximate a 1-rarefaction wave by a piecewise constant rarefaction
965
+ fan, we introduce the integer
966
+ p := max {[[(zM − zL)/(∆x)α]] + 1, 2} ,
967
+ where zL = z(uL), zM = z(uM) and [[x]] is the greatest integer not greater than x.
968
+ Notice that
969
+ p = O((∆x)−α).
970
+ (2.10)
971
+ Define
972
+ z∗
973
+ 1 := zL, z∗
974
+ p := zM, w∗
975
+ i := wL (i = 1, . . . , p),
976
+ and
977
+ z∗
978
+ i := zL + (i − 1)(∆x)α (i = 1, . . . , p − 1).
979
+ We next introduce the rays x = (j + 1/2)∆x + λ1(z∗
980
+ i , z∗
981
+ i+1, wL)(t − n∆t) separating
982
+ finite constant states (z∗
983
+ i , w∗
984
+ i ) (i = 1, . . . , p), where
985
+ λ1(z∗
986
+ i , z∗
987
+ i+1, wL) := v(z∗
988
+ i , wL) − S(ρ(z∗
989
+ i+1, wL), ρ(z∗
990
+ i , wL)),
991
+
992
+ THE COMPRESSIBLE EULER EQUATIONS
993
+ 11
994
+ ρ∗
995
+ i := ρ(z∗
996
+ i , wL) :=
997
+ �θ(wL − z∗
998
+ i )
999
+ 2
1000
+ �1/θ
1001
+ ,
1002
+ v∗
1003
+ i := v(z∗
1004
+ i , wL) := wL + z∗
1005
+ i
1006
+ 2
1007
+ and
1008
+ S(ρ, ρ0) :=
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+
1015
+ ρ(p(ρ) − p(ρ0))
1016
+ ρ0(ρ − ρ0)
1017
+ ,
1018
+ if ρ ̸= ρ0,
1019
+
1020
+ p′(ρ0),
1021
+ if ρ = ρ0.
1022
+ (2.11)
1023
+ We call this approximated 1-rarefaction wave a 1-rarefaction fan.
1024
+ Step 2.
1025
+ In this step, we replace the above constant states with functions of x and t as
1026
+ follows:
1027
+ In view of (1.9), we construct u∆
1028
+ 1 (x, t).
1029
+ We first determine the approximation of ˜z, ˜w in (1.9) as follows.
1030
+ ˜z∆
1031
+ 1 =zL −
1032
+ � xj−1
1033
+ −∞
1034
+ J(u∆
1035
+ n,0(x))dx, ˜w∆
1036
+ 1 = wL −
1037
+ � xj−1
1038
+ −∞
1039
+ J(u∆
1040
+ n,0(x))dx,
1041
+ where u∆
1042
+ n,0(x) is a piecewise constant function defined by
1043
+ u∆
1044
+ n,0(x) = un
1045
+ j ,
1046
+ x ∈ [xj−1, xj+1)
1047
+ (j ∈ 2Z).
1048
+ (2.12)
1049
+ We set
1050
+ ˇz∆
1051
+ 1 (x, t) = ˜z∆
1052
+ 1 +
1053
+ � xj−1
1054
+ −∞
1055
+ J(u∆
1056
+ n,0(x))dx +
1057
+ � x
1058
+ x∆
1059
+ 1
1060
+ J(uL)dy
1061
+ + {g1(x, t; uL) + V (uL)} (t − tn),
1062
+ ˇw∆
1063
+ 1 (x, t) = ˜w∆
1064
+ 1 +
1065
+ � xj−1
1066
+ −∞
1067
+ J(u∆
1068
+ n,0(x))dx +
1069
+ � x
1070
+ x∆
1071
+ 1
1072
+ J(uL)dy
1073
+ + {g2(x, t; uL) + V (uL)} (t − tn),
1074
+ (2.13)
1075
+ where g1 and g2 are defined in (1.16), x∆
1076
+ 1 = xj−1 and
1077
+ V (u) = q∗(u) − (¯ρ)γ−1
1078
+ γ − 1 m.
1079
+ (2.14)
1080
+ From (2.13), we determine ˇu∆
1081
+ 1 (x, t) by the relation (1.5), that is,
1082
+ ˇu∆
1083
+ 1 (x, t) = (ˇρ∆
1084
+ 1 (x, t), ˇm∆
1085
+ 1 (x, t)) = (ˇρ∆
1086
+ 1 (x, t), ˇρ∆
1087
+ 1 (x, t)ˇv∆
1088
+ 1 (x, t)),
1089
+ where
1090
+ ˇρ∆
1091
+ 1 (x, t) =
1092
+
1093
+ θ
1094
+
1095
+ ˇw∆
1096
+ 1 (x, t) − ˇz∆
1097
+ 1 (x, t)
1098
+
1099
+ 2
1100
+ � 1
1101
+ θ
1102
+ ,
1103
+ ˇv∆
1104
+ 1 (x, t) = ˇw∆
1105
+ 1 (x, t) + ˇz∆
1106
+ 1 (x, t)
1107
+ 2
1108
+ .
1109
+
1110
+ 12
1111
+ NAOKI TSUGE
1112
+ Using ˇu∆
1113
+ 1 (x, t), we next define u∆
1114
+ 1 (x, t) as follows.
1115
+ z∆
1116
+ 1 (x, t) = ˜z∆
1117
+ 1 +
1118
+ � xj−1
1119
+ −∞
1120
+ J(u∆
1121
+ n,0(x))dx +
1122
+ � x
1123
+ x∆
1124
+ 1
1125
+ J(ˇu∆
1126
+ 1 (y, t))dy
1127
+ +
1128
+
1129
+ g1(x, t; ˇu∆
1130
+ 1 ) + V (uL)
1131
+
1132
+ (t − tn),
1133
+ w∆
1134
+ 1 (x, t) = ˜w∆
1135
+ 1 +
1136
+ � xj−1
1137
+ −∞
1138
+ J(u∆
1139
+ n,0(x))dx +
1140
+ � x
1141
+ x∆
1142
+ 1
1143
+ J(ˇu∆
1144
+ 1 (y, t))dy
1145
+ +
1146
+
1147
+ g2(x, t; ˇu∆
1148
+ 1 ) + V (uL)
1149
+
1150
+ (t − tn).
1151
+ (2.15)
1152
+ From (2.15), we determine u∆
1153
+ 1 (x, t) by the relation (1.5).
1154
+ Remark 2.2.
1155
+ (i) We notice that approximate solutions z∆
1156
+ 1 , w∆
1157
+ 1 and ˜z∆
1158
+ 1 , ˜w∆
1159
+ 1 correspond to
1160
+ z, w and ˜z, ˜w in (1.9), respectively.
1161
+ (ii) For tn < t < tn+1, our approximate solutions will satisfy
1162
+ � xj−1
1163
+ −∞
1164
+ J(u∆(x, tn+1−))dx +
1165
+ � tn+1
1166
+ tn
1167
+
1168
+ x≤xj−1
1169
+ (σ[η∗] − [q∗])dt
1170
+ =
1171
+ � xj−1
1172
+ −∞
1173
+ J(u∆
1174
+ n,0(x))dx + V (uL)∆t + o(∆x).
1175
+ (2.16)
1176
+ In (2.15), we thus employ the right hand side of (2.16) instead of the left
1177
+ hand side.
1178
+ (iii) Our construction of approximate solutions uses the iteration method twice
1179
+ (see (2.13) and (2.15)) to deduce (3.12).
1180
+ First, by the implicit function theorem, we determine a propagation speed σ2
1181
+ and u2 = (ρ2, m2) such that
1182
+ (1.a) z2 := z(u2) = z∗
1183
+ 2
1184
+ (1.b) the speed σ2, the left state u∆
1185
+ 1 (x2, tn.5) and the right state u2 satisfy the
1186
+ Rankine–Hugoniot conditions, i.e.,
1187
+ f(u2) − f(u∆
1188
+ 1 (x∆
1189
+ 2 (tn.5), tn.5)) = σ2(u2 − u∆
1190
+ 1 (x∆
1191
+ 2 (tn.5), tn.5)),
1192
+ where x∆
1193
+ 2 (t) = xj + σ2(t − tn). Then we fill up by u∆
1194
+ 1 (x) the sector where tn ≤ t <
1195
+ tn+1, xj−1 ≤ x < x∆
1196
+ 2 (t) (see Figure 1).
1197
+ Assume that uk, u∆
1198
+ k (x, t), a propagation speed σk and x∆
1199
+ k (t) are defined. Then
1200
+ we similarly determine σk+1 and uk+1 = (ρk+1, mk+1) such that
1201
+ (k.a) zk+1 := z(uk+1) = z∗
1202
+ k+1,
1203
+ (k.b) σk < σk+1,
1204
+ (k.c) the speed σk+1, the left state u∆
1205
+ k (x∆
1206
+ k+1(tn.5), tn.5) and the right state uk+1
1207
+ satisfy the Rankine–Hugoniot conditions,
1208
+ where x∆
1209
+ k+1(t) = xj + σk+1(t − tn). Then we fill up by u∆
1210
+ k (x, t) the sector where
1211
+ tn ≤ t < tn+1, x∆
1212
+ k (t) ≤ x < x∆
1213
+ k+1(t) (see Figure 1).
1214
+ We construct u∆
1215
+ k+1(x, t) as follows.
1216
+
1217
+ THE COMPRESSIBLE EULER EQUATIONS
1218
+ 13
1219
+ Figure 1. The approximate solution in the case where a 1-
1220
+ rarefaction and a 2-shock arise in the cell.
1221
+ We first determine
1222
+ ˜z∆
1223
+ k+1 =zk+1 −
1224
+ � xj−1
1225
+ −∞
1226
+ J(u∆
1227
+ n,0(x))dx − V (uL)∆t
1228
+ 2 −
1229
+ k
1230
+
1231
+ l=1
1232
+ � x∆
1233
+ l+1(tn.5)
1234
+ x∆
1235
+ l (tn.5)
1236
+ J(u∆
1237
+ l (x, tn.5))dx,
1238
+ ˜w∆
1239
+ k+1 =wk+1 −
1240
+ � xj−1
1241
+ −∞
1242
+ J(u∆
1243
+ n,0(x))dx − V (uL)∆t
1244
+ 2 −
1245
+ k
1246
+
1247
+ l=1
1248
+ � x∆
1249
+ l+1(tn.5)
1250
+ x∆
1251
+ l (tn.5)
1252
+ J(u∆
1253
+ l (x, tn.5))dx,
1254
+ where x∆
1255
+ 1 (t) = xj−1, x∆
1256
+ l (t) = xj +σl(t−tn)
1257
+ (l = 2, 3, . . . , k+1) and tn.5 is defined
1258
+ in (2.2).
1259
+ We next define ˇu∆
1260
+ k+1 as follows.
1261
+ ˇz∆
1262
+ k+1(x, t) =˜z∆
1263
+ k+1 +
1264
+ � xj−1
1265
+ −∞
1266
+ J(u∆
1267
+ n,0(x))dx + V (uL)(t − tn) +
1268
+ k
1269
+
1270
+ l=1
1271
+ � x∆
1272
+ l+1(t)
1273
+ x∆
1274
+ l (t)
1275
+ J(u∆
1276
+ l (x, t))dx
1277
+ +
1278
+ � x
1279
+ x∆
1280
+ k+1(t)
1281
+ J(uk+1)dy + g1(x, t; uk+1)(t − tn.5) +
1282
+ � t
1283
+ tn.5
1284
+
1285
+ xj−1≤y≤x
1286
+ (σ[η∗] − [q∗])ds,
1287
+ ˇw∆
1288
+ k+1(x, t) = ˜w∆
1289
+ k+1 +
1290
+ � xj−1
1291
+ −∞
1292
+ J(u∆
1293
+ n,0(x))dx + V (uL)(t − tn) +
1294
+ k
1295
+
1296
+ l=1
1297
+ � x∆
1298
+ l+1(t)
1299
+ x∆
1300
+ l (t)
1301
+ J(u∆
1302
+ l (x, t))dx
1303
+ +
1304
+ � x
1305
+ x∆
1306
+ k+1(t)
1307
+ J(uk+1)dy + g2(x, t; uk+1)(t − tn.5) +
1308
+ � t
1309
+ tn.5
1310
+
1311
+ xj−1≤y≤x
1312
+ (σ[η∗] − [q∗])ds.
1313
+ From the above, we determine ˇu∆
1314
+ k+1(x, t) by the relation (1.5).
1315
+ Finally, using ˇu∆
1316
+ k+1(x, t), we define u∆
1317
+ k+1(x, t) as follows.
1318
+
1319
+ ()m(cf)mg(f)()(°)(°)十-JQSQ3b
1320
+ QQ
1321
+ G14
1322
+ NAOKI TSUGE
1323
+ z∆
1324
+ k+1(x, t) =˜z∆
1325
+ k+1 +
1326
+ � xj−1
1327
+ −∞
1328
+ J(u∆
1329
+ n,0(x))dx + V (uL)(t − tn) +
1330
+ k
1331
+
1332
+ l=1
1333
+ � x∆
1334
+ l+1(t)
1335
+ x∆
1336
+ l (t)
1337
+ J(u∆
1338
+ l (x, t))dx
1339
+ +
1340
+ � x
1341
+ x∆
1342
+ k+1(t)
1343
+ J(ˇu∆
1344
+ k+1(y, t))dy + g1(x, t; ˇu∆
1345
+ k+1)(t − tn.5)
1346
+ +
1347
+ � t
1348
+ tn.5
1349
+
1350
+ xj−1≤y≤x
1351
+ (σ[η∗] − [q∗])ds,
1352
+ w∆
1353
+ k+1(x, t)= ˜w∆
1354
+ k+1 +
1355
+ � xj−1
1356
+ −∞
1357
+ J(u∆
1358
+ n,0(x))dx + V (uL)(t − tn) +
1359
+ k
1360
+
1361
+ l=1
1362
+ � x∆
1363
+ l+1(t)
1364
+ x∆
1365
+ l (t)
1366
+ J(u∆
1367
+ l (x, t))dx
1368
+ +
1369
+ � x
1370
+ x∆
1371
+ k+1(t)
1372
+ J(ˇu∆
1373
+ k+1(y, t))dy + g2(x, t; ˇu∆
1374
+ k+1)(t − tn.5)
1375
+ +
1376
+ � t
1377
+ tn.5
1378
+
1379
+ xj−1≤y≤x
1380
+ (σ[η∗] − [q∗])ds.
1381
+ (2.17)
1382
+ From (2.17), we determine u∆
1383
+ k+1(x, t) by the relation (1.5).
1384
+ By induction, we define ui, u∆
1385
+ i (x, t) and σi (i = 1, . . . , p − 1).
1386
+ Finally, we
1387
+ determine a propagation speed σp and up = (ρp, mp) such that
1388
+ (p.a) zp := z(up) = z∗
1389
+ p,
1390
+ (p.b) the speed σp, and the left state u∆
1391
+ p−1(x∆
1392
+ p (tn.5), tn.5) and the right state up
1393
+ satisfy the Rankine–Hugoniot conditions,
1394
+ where x∆
1395
+ p (t) = xj + σp(t − tn). We then fill up by u∆
1396
+ p−1(x, t) and up the sector
1397
+ where tn ≤ t < tn+1, x∆
1398
+ p−1(t) ≤ x < x∆
1399
+ p (t) and the line tn ≤ t < tn+1, x = x∆
1400
+ p (t),
1401
+ respectively.
1402
+ Given uL and zM with zL ≤ zM, we denote this piecewise functions of x and t
1403
+ 1-rarefaction wave by R∆
1404
+ 1 (uL, zM, x, t).
1405
+ On the other hand, we construct u∆
1406
+ R(x, t) as follows.
1407
+ We first set
1408
+ ˜z∆
1409
+ R = zR −
1410
+ � xj+1
1411
+ −∞
1412
+ J(u∆
1413
+ n,0(x))dx, ˜w∆
1414
+ R = wR −
1415
+ � xj+1
1416
+ −∞
1417
+ J(u∆
1418
+ n,0(x))dx.
1419
+ We next construct ˇu∆
1420
+ R
1421
+ ˇz∆
1422
+ R (x, t)=˜z∆
1423
+ R +
1424
+ � xj+1
1425
+ −∞
1426
+ J(u∆
1427
+ n,0(x))dx + V (uR)(t − tn)
1428
+ +
1429
+ � x
1430
+ xj+1
1431
+ J(uR)dy + g1(x, t; uR)(t − tn),
1432
+ ˇw∆
1433
+ R (x, t)= ˜w∆
1434
+ R +
1435
+ � xj+1
1436
+ −∞
1437
+ J(u∆
1438
+ n,0(x))dx + V (uR)(t − tn)
1439
+ +
1440
+ � x
1441
+ xj+1
1442
+ J(uR)dy + g2(x, t; uR)(t − tn).
1443
+ From the above, we determine ˇu∆
1444
+ R(x, t) by the relation (1.5).
1445
+
1446
+ THE COMPRESSIBLE EULER EQUATIONS
1447
+ 15
1448
+ Using ˇu∆
1449
+ R(x, t), we define u∆
1450
+ R(x, t) as follows.
1451
+ z∆
1452
+ R (x, t) =˜z∆
1453
+ R +
1454
+ � xj+1
1455
+ −∞
1456
+ J(u∆
1457
+ n,0(x))dx + V (uR)(t − tn)
1458
+ +
1459
+ � x
1460
+ xj+1
1461
+ J(ˇuR(y, t))dy + g1(x, t; ˇuR)(t − tn),
1462
+ w∆
1463
+ R (x, t) = ˜w∆
1464
+ R +
1465
+ � xj+1
1466
+ −∞
1467
+ J(u∆
1468
+ n,0(x))dx + V (uR)(t − tn)
1469
+ +
1470
+ � x
1471
+ xj+1
1472
+ J(ˇuR(y, t))dy + g2(x, t; ˇuR)(t − tn).
1473
+ (2.18)
1474
+ From (2.18), we determine u∆
1475
+ R(x, t) by the relation (1.5).
1476
+ Now we fix u∆
1477
+ R(x, t) and u∆
1478
+ p−1(x, t). Let σs be the propagation speed of the 2-
1479
+ shock connecting uM and uR. Choosing σ⋄
1480
+ p near to σp, σ⋄
1481
+ s near to σs and u⋄
1482
+ M near to
1483
+ uM, we fill up by u∆
1484
+ M(x, t) the gap between x = xj+σ⋄
1485
+ p(t−tn) and x = xj+σ⋄
1486
+ s(t−tn),
1487
+ such that
1488
+ (M.a) σp−1 < σ⋄
1489
+ p < σ⋄
1490
+ s,
1491
+ (M.b) the speed σ⋄
1492
+ p, the left and right states u∆
1493
+ p−1(x⋄
1494
+ p, tn.5), u∆
1495
+ M(x⋄
1496
+ p, tn.5) satisfy
1497
+ the Rankine–Hugoniot conditions,
1498
+ (M.c) the speed σ⋄
1499
+ s, the left and right states u∆
1500
+ M(x⋄
1501
+ s, tn.5), u∆
1502
+ R(x⋄
1503
+ s, tn.5) satisfy the
1504
+ Rankine–Hugoniot conditions,
1505
+ where x⋄
1506
+ p := xj + σ⋄
1507
+ p∆/2, x⋄
1508
+ s := xj + σ⋄
1509
+ s∆/2 and u∆
1510
+ M(x, t) defined as follows.
1511
+ We first set
1512
+ ˜z∆
1513
+ M =z⋄
1514
+ M −
1515
+ � xj+1
1516
+ −∞
1517
+ J(u∆
1518
+ n,0 (x))dx − V (uR)∆t
1519
+ 2 −
1520
+ � x∆
1521
+ R (tn.5)
1522
+ xj+1
1523
+ J(u∆
1524
+ R(x, tn.5))dx,
1525
+ ˜w∆
1526
+ M =w⋄
1527
+ M −
1528
+ � xj+1
1529
+ −∞
1530
+ J(u∆
1531
+ n,0 (x))dx − V (uR)∆t
1532
+ 2 −
1533
+ � x∆
1534
+ R (tn.5)
1535
+ xj+1
1536
+ J(u∆
1537
+ R(x, tn.5))dx,
1538
+ where x∆
1539
+ R(t) = xj + σ⋄
1540
+ s(t − tn).
1541
+ We construct ˇu∆
1542
+ M
1543
+ ˇz∆
1544
+ M(x, t) =˜z∆
1545
+ M +
1546
+ � xj+1
1547
+ −∞
1548
+ J(u∆
1549
+ n,0(x))dx + V (uR)(t − tn) +
1550
+ � x∆
1551
+ R (t)
1552
+ xj+1
1553
+ J(u∆
1554
+ R(x, t))dy
1555
+ +
1556
+ � x
1557
+ x∆
1558
+ R (t)
1559
+ J(uM)dy + g1(x, t; uM)(t − tn.5)
1560
+
1561
+ � t
1562
+ tn.5
1563
+
1564
+ x≤y≤xj+1
1565
+ (σ[η∗] − [q∗])ds,
1566
+ ˇw∆
1567
+ M(x, t) = ˜w∆
1568
+ M +
1569
+ � xj+1
1570
+ −∞
1571
+ J(u∆
1572
+ n,0(x))dx + V (uR)(t − tn) +
1573
+ � x∆
1574
+ R (t)
1575
+ xj+1
1576
+ J(u∆
1577
+ R(x, t))dy
1578
+ +
1579
+ � x
1580
+ x∆
1581
+ R (t)
1582
+ J(uM)dy + g2(x, t; uM)(t − tn.5)
1583
+
1584
+ � t
1585
+ tn.5
1586
+
1587
+ x≤y≤xj+1
1588
+ (σ[η∗] − [q∗])ds.
1589
+
1590
+ 16
1591
+ NAOKI TSUGE
1592
+ From the above, we determine ˇu∆
1593
+ M(x, t) by the relation (1.5).
1594
+ Using ˇu∆
1595
+ M(x, t), we next define u∆
1596
+ M(x, t) as follows.
1597
+ z∆
1598
+ M(x, t) =˜z∆
1599
+ M +
1600
+ � xj+1
1601
+ −∞
1602
+ J(u∆
1603
+ n,0(x))dx + V (uR)(t − tn) +
1604
+ � x∆
1605
+ R (t)
1606
+ xj+1
1607
+ J(u∆
1608
+ R(x, t))dy
1609
+ +
1610
+ � x
1611
+ x∆
1612
+ R (t)
1613
+ J(ˇu∆
1614
+ M(y, t))dy + g1(x, t; ˇu∆
1615
+ M)(t − tn.5)
1616
+
1617
+ � t
1618
+ tn.5
1619
+
1620
+ x≤y≤xj+1
1621
+ (σ[η∗] − [q∗])ds,
1622
+ w∆
1623
+ M(x, t) = ˜w∆
1624
+ M +
1625
+ � xj+1
1626
+ −∞
1627
+ J(u∆
1628
+ n,0(x))dx + V (uR)(t − tn) +
1629
+ � x∆
1630
+ R (t)
1631
+ xj+1
1632
+ J(u∆
1633
+ R(x, t))dy
1634
+ +
1635
+ � x
1636
+ x∆
1637
+ R (t)
1638
+ J(ˇu∆
1639
+ M(y, t))dy + g2(x, t; ˇu∆
1640
+ M)(t − tn.5)
1641
+
1642
+ � t
1643
+ tn.5
1644
+
1645
+ x≤y≤xj+1
1646
+ (σ[η∗] − [q∗])ds.
1647
+ (2.19)
1648
+ From (2.19), we determine u∆
1649
+ M(x, t) by the relation (1.5).
1650
+ We denote this approximate Riemann solution, which consists of (2.17), (2.18),
1651
+ (2.18) , by u∆(x, t). The validity of the above construction is demonstrated in [11,
1652
+ Appendix A].
1653
+ Remark 2.3. u∆(x, t) satisfies the Rankine–Hugoniot conditions at the middle
1654
+ time of the cell, t = tn.5.
1655
+ Remark 2.4. The approximate solution u∆(x, t) is piecewise smooth in each of the
1656
+ divided parts of the cell. Then, in the divided part, u∆(x, t) satisfies
1657
+ (u∆)t + f(u∆)x − g(x, u∆) = o(1).
1658
+ To deduce that Ln is uniformly bounded, we prove the following lemma.
1659
+ Lemma 2.1.
1660
+ 0 ≤
1661
+ n
1662
+
1663
+ k=0
1664
+ � ∞
1665
+ −∞
1666
+
1667
+ η∗(u∆(x, tk−0)) − η∗(Ek(x; u))
1668
+
1669
+ dx +
1670
+ � tn
1671
+ 0
1672
+
1673
+ x∈R
1674
+ (σ[η∗] − [q∗])dt
1675
+ (2.20)
1676
+ =
1677
+ n
1678
+
1679
+ k=0
1680
+
1681
+ j∈2Z
1682
+ � xj+1
1683
+ xj−1
1684
+ Rn
1685
+ j (x)dx +
1686
+ � tn
1687
+ 0
1688
+
1689
+ x∈R
1690
+ (σ[η∗] − [q∗])dt + o(∆x)
1691
+ (2.21)
1692
+ =
1693
+ � ∞
1694
+ −∞
1695
+
1696
+ J
1697
+
1698
+ u∆(x, t0−)
1699
+
1700
+ − J
1701
+
1702
+ u∆(x, tn+)
1703
+ ��
1704
+ dx + o(∆x)
1705
+ (2.22)
1706
+
1707
+ � ∞
1708
+ −∞
1709
+ J(u0(x))dx + o(∆x).
1710
+ (2.23)
1711
+ where o(∆x) depends only on M0, E0 and T .
1712
+ Ln ≤ C,
1713
+ (2.24)
1714
+ where C depends only on initial data.
1715
+
1716
+ THE COMPRESSIBLE EULER EQUATIONS
1717
+ 17
1718
+ Proof. We recall that our approximate solutions are constructed in [0, T ] for any
1719
+ fixed positive constant T . From (1.3) and the finite propagation, we find that our
1720
+ approximate solutions are (¯ρ, 0) outside a finite interval.
1721
+ First, from the Jensen inequality and the entropy condition, we obtain (2.20).
1722
+ Second, from (2.4), we have (2.21).
1723
+ Finally, we consider (2.22). From the similar argument to [11, (6.10)], taking
1724
+ J(u) as η in [11], we have
1725
+ n
1726
+
1727
+ k=0
1728
+ � ∞
1729
+ −∞
1730
+
1731
+ η∗(u∆(x, tk−0)) − η∗(u∆
1732
+ n,0(x))
1733
+
1734
+ dx +
1735
+ � tn
1736
+ 0
1737
+
1738
+ x∈R
1739
+ (σ[η∗] − [q∗])dt
1740
+ =
1741
+ � ∞
1742
+ −∞
1743
+
1744
+ J
1745
+
1746
+ u∆(x, t0−)
1747
+
1748
+ − J
1749
+
1750
+ u∆(x, tn+)
1751
+ ��
1752
+ dx + o(∆x).
1753
+ On the other hand, (2.9) and Theorem 3.2, we find that un
1754
+ j = En
1755
+ j (u) + o(∆x).
1756
+ Recalling (2.3) and (2.12), we have
1757
+ n
1758
+
1759
+ k=0
1760
+ � ∞
1761
+ −∞
1762
+
1763
+ η∗(u∆(x, tk−0)) − η∗(u∆
1764
+ n,0(x))
1765
+
1766
+ dx
1767
+ =
1768
+ n
1769
+
1770
+ k=0
1771
+ � ∞
1772
+ −∞
1773
+
1774
+ η∗(u∆(x, tk−0)) − η∗(Ek(x; u))
1775
+
1776
+ dx + o(∆x).
1777
+ Finally, observing Rn
1778
+ j (x) ≥ 0, from (2.5) and (2.23), we have (2.24).
1779
+
1780
+ 3. The L∞ estimate of the approximate solutions
1781
+ The aim in this section is to deduce from (2.9) the following theorem:
1782
+ Theorem 3.1. For j ∈ 2Z≥0, n ∈ Z≥0 and xj−1 ≤ x < xj+1,
1783
+ z∆(x, tn+1−) ≥ − Mn+1 − E0 − Ln +
1784
+ � x
1785
+ −∞
1786
+ J(u∆(y, tn+1−))dy − o(∆x),
1787
+ w∆(x, tn+1−)≤Mn+1 + Ln +
1788
+ � x
1789
+ −∞
1790
+ J(u∆(y, tn+1−))dy
1791
+ +
1792
+ � tn+1
1793
+ tn
1794
+
1795
+ x<xj+1
1796
+ (σ[η∗] − [q∗])dt + o(∆x),
1797
+ (3.1)
1798
+ where tn− = n∆t − 0, Mn+1 is defined in (2.6), o(∆x) depends only on M0 and
1799
+ E0, ε and δ are found in (1.25).
1800
+ Theorem 3.2. We assume that u∆(x, t) satisfies (1.10) and (3.1).
1801
+ Then, if
1802
+ En
1803
+ j (ρ) ≥ (∆x)µ, it holds that
1804
+ − Mn − E0 − Ln + In
1805
+ j − o(∆x) ≤ z(En
1806
+ j (u)),
1807
+ w(En
1808
+ j (u)) ≤ Mn + Ln + In
1809
+ j + o(∆x),
1810
+ (3.2)
1811
+ where j ∈ 2Z and o(∆x) depends only on M0.
1812
+ (3.2) is needed to ensures (2.9).
1813
+ Throughout this paper, by the Landau symbols such as O(∆x), O((∆x)2) and
1814
+ o(∆x), we denote quantities whose moduli satisfy a uniform bound depending only
1815
+ on M0 and E0 unless we specify them.
1816
+
1817
+ 18
1818
+ NAOKI TSUGE
1819
+ Now, in the previous section, we have constructed u∆(x, t) in Case 1. When
1820
+ we consider L∞ estimates in this case, main difficulty is to obtain (3.1)2 along R∆
1821
+ 1 .
1822
+ Therefore, we are concerned with (3.1)2 along R∆
1823
+ 1 .
1824
+ 3.1. Proof of Theorem 3.2. We first observe Theorem 3.2. For x ∈ [xj−1, xj+1],
1825
+ we set
1826
+ z∆
1827
+ † (x, tn−) =z∆(x, tn−) −
1828
+ � x
1829
+ −∞
1830
+ J
1831
+
1832
+ u∆(y, tn−)
1833
+
1834
+ dy +
1835
+ � x
1836
+ xj−1
1837
+ η∗
1838
+
1839
+ u∆(y, tn−)
1840
+
1841
+ dy
1842
+
1843
+ � x
1844
+ xj−1
1845
+ an
1846
+ j ρ∆(y, tn−)dy +
1847
+ � x
1848
+ xj−1
1849
+ (¯ρ)γ
1850
+ γ dy,
1851
+ w∆
1852
+ † (x, tn−) =w∆(x, tn−) −
1853
+ � x
1854
+ −∞
1855
+ J
1856
+
1857
+ u∆(y, tn−)
1858
+
1859
+ dy +
1860
+ � x
1861
+ xj−1
1862
+ η∗
1863
+
1864
+ u∆(y, tn−)
1865
+
1866
+ dy
1867
+
1868
+ � x
1869
+ xj−1
1870
+ an
1871
+ j ρ∆(y, tn−)dy +
1872
+ � x
1873
+ xj−1
1874
+ (¯ρ)γ
1875
+ γ dy,
1876
+ where
1877
+ an
1878
+ j = ∂η∗
1879
+ ∂ρ (En
1880
+ j (u)) + ∂η∗
1881
+ ∂m (En
1882
+ j (u))
1883
+
1884
+ En
1885
+ j (v) −
1886
+
1887
+ En
1888
+ j (ρ)
1889
+ �θ�
1890
+ ,
1891
+ En
1892
+ j (v) := En
1893
+ j (m)
1894
+ En
1895
+ j (ρ) . (3.3)
1896
+ Then, by the relation (1.5), we define ρ∆
1897
+ † (x, tn−) and v∆
1898
+ † (x, tn−). We notice that
1899
+ ρ∆
1900
+ † (x, tn−) =ρ∆(x, tn−),
1901
+ v∆
1902
+ † (x, tn−) =v∆(x, tn−) −
1903
+ � x
1904
+ −∞
1905
+ J
1906
+
1907
+ u∆(y, tn−)
1908
+
1909
+ dy +
1910
+ � x
1911
+ xj−1
1912
+ η∗
1913
+
1914
+ u∆(y, tn−)
1915
+
1916
+ dy
1917
+
1918
+ � x
1919
+ xj−1
1920
+ an
1921
+ j ρ∆(y, tn−)dy +
1922
+ � x
1923
+ xj−1
1924
+ (¯ρ)γ
1925
+ γ dy.
1926
+ Since Ln is positive, (3.2)2 is more difficult than (3.2)1. We thus treat with only
1927
+ (3.2)2 in this proof.
1928
+ w(En
1929
+ j (u)) =
1930
+ 1
1931
+ 2∆x
1932
+ � xj+1
1933
+ xj−1
1934
+ m∆(x, tn−)dx +
1935
+
1936
+ 1
1937
+ 2∆x
1938
+ � xj+1
1939
+ xj−1
1940
+ ρ∆(x, tn−)dx
1941
+ �θ
1942
+
1943
+ 1
1944
+ 2∆x
1945
+ � xj+1
1946
+ xj−1
1947
+ ρ∆(x, tn−)dx
1948
+ =
1949
+ 1
1950
+ 2∆x
1951
+ � xj+1
1952
+ xj−1
1953
+ m∆
1954
+ † (x, tn−)dx +
1955
+
1956
+ 1
1957
+ 2∆x
1958
+ � xj+1
1959
+ xj−1
1960
+ ρ∆
1961
+ † (x, tn−)dx
1962
+ �θ
1963
+
1964
+ 1
1965
+ 2∆x
1966
+ � xj+1
1967
+ xj−1
1968
+ ρ∆
1969
+ † (x, tn−)dx
1970
+ +
1971
+ 1
1972
+ 2∆x
1973
+ � xj+1
1974
+ xj−1
1975
+ ρ∆(x, tn−)
1976
+ �� xj−1
1977
+ −∞
1978
+ η∗
1979
+
1980
+ u∆(y, tn−)
1981
+
1982
+ dy
1983
+
1984
+ dx
1985
+ 1
1986
+ 2∆x
1987
+ � xj+1
1988
+ xj−1
1989
+ ρ∆(x, tn−)dx
1990
+
1991
+ THE COMPRESSIBLE EULER EQUATIONS
1992
+ 19
1993
+
1994
+ 1
1995
+ 2∆x
1996
+ � xj+1
1997
+ xj−1
1998
+ ρ∆(x, tn−)
1999
+ ��
2000
+ (¯ρ)γ−1
2001
+ γ − 1 − an
2002
+ j
2003
+ � � x
2004
+ xj−1
2005
+ ρ∆(y, tn−)dy
2006
+
2007
+ dx
2008
+ 1
2009
+ 2∆x
2010
+ � xj+1
2011
+ xj−1
2012
+ ρ∆(x, tn−)dx
2013
+ − (¯ρ)γ−1
2014
+ γ − 1
2015
+ � xj−1
2016
+ −∞
2017
+ ρ∆(x, tn−)dx +
2018
+ 1
2019
+ 2∆x
2020
+ � xj+1
2021
+ xj−1
2022
+ ρ∆(x, tn−)
2023
+ �� xj−1
2024
+ −∞
2025
+ (¯ρ)γ
2026
+ γ dy
2027
+
2028
+ dx
2029
+ 1
2030
+ 2∆x
2031
+ � xj+1
2032
+ xj−1
2033
+ ρ∆(x, tn−)dx
2034
+ =A1 + A2 − A3 + A4.
2035
+ We denote the numerator of A3 by A31. From the integration by parts, we have
2036
+ A31=
2037
+ 1
2038
+ 2∆x
2039
+ � xj+1
2040
+ xj−1
2041
+ ρ∆(x, tn−)dx ×
2042
+
2043
+ (¯ρ)γ−1
2044
+ γ − 1 ρ − an
2045
+ j
2046
+ � � xj+1
2047
+ xj−1
2048
+ ρ∆(y, tn−)dx
2049
+
2050
+ 1
2051
+ 2∆x
2052
+ � xj+1
2053
+ xj−1
2054
+ �� x
2055
+ xj−1
2056
+ ρ∆(y, tn−)dy
2057
+ � �
2058
+ (¯ρ)γ−1
2059
+ γ − 1 ρ − an
2060
+ j
2061
+
2062
+ ρ∆(x, tn−)dx
2063
+ =
2064
+ 1
2065
+ 2∆x
2066
+ � xj+1
2067
+ xj−1
2068
+ ρ∆(x, tn−)dx ×
2069
+
2070
+ (¯ρ)γ−1
2071
+ γ − 1 ρ − an
2072
+ j
2073
+ � � xj+1
2074
+ xj−1
2075
+ ρ∆(x, tn−)dx − A31.
2076
+ We thus obtain
2077
+ A31 =1
2078
+ 2 ×
2079
+ 1
2080
+ 2∆x
2081
+ � xj+1
2082
+ xj−1
2083
+ ρ∆(x, tn−)dx ×
2084
+
2085
+ (¯ρ)γ−1
2086
+ γ − 1 ρ − an
2087
+ j
2088
+ � � xj+1
2089
+ xj−1
2090
+ ρ∆(y, tn−)dx.
2091
+ Therefore, we obtain
2092
+ w(En
2093
+ j (u)) =
2094
+ 1
2095
+ 2∆x
2096
+ � xj+1
2097
+ xj−1
2098
+ m∆
2099
+ † (x, tn−) +
2100
+
2101
+ 1
2102
+ 2∆x
2103
+ � xj+1
2104
+ xj−1
2105
+ ρ∆
2106
+ † (x, tn−)dx
2107
+ �θ
2108
+
2109
+ 1
2110
+ 2∆x
2111
+ � xj+1
2112
+ xj−1
2113
+ ρ∆
2114
+ † (x, tn−)dx
2115
+ +
2116
+ � xj−1
2117
+ −∞
2118
+ J
2119
+
2120
+ u∆(x, tn−)
2121
+
2122
+ dx −
2123
+ (¯ρ)γ−1
2124
+ γ−1 − an
2125
+ j
2126
+ 2
2127
+ � xj+1
2128
+ xj−1
2129
+ ρ∆(x, tn−)dx.
2130
+ (3.4)
2131
+ Here we introduce the following lemma. The proof is postponed to Appendix A.
2132
+ Lemma 3.3. If
2133
+ 1
2134
+ 2∆x
2135
+ � xj+1
2136
+ xj−1
2137
+ ρ∆
2138
+ † (x, tn−)dx ≥ (∆x)µ
2139
+ (3.5)
2140
+ and
2141
+ w∆
2142
+ † (x, tn−) ≤Mn + Ln−1 +
2143
+ � x
2144
+ xj−1
2145
+ η∗
2146
+
2147
+ u∆(y, tn−)
2148
+
2149
+ dy −
2150
+ � x
2151
+ xj−1
2152
+ an
2153
+ j ρ∆(y, tn−)dy
2154
+ +
2155
+ � x
2156
+ xj−1
2157
+ (¯ρ)γ
2158
+ γ dy +
2159
+ � tn
2160
+ tn−1
2161
+
2162
+ x<xj−1
2163
+ (σ[η∗] − [q∗])dt + o(∆x)
2164
+ = : A(x, tn−) + o(∆x)
2165
+ (x ∈ [xj−1, xj+1]),
2166
+ (3.6)
2167
+
2168
+ 20
2169
+ NAOKI TSUGE
2170
+ the following holds
2171
+ w(En
2172
+ j (u∆
2173
+ † )) ≤ ¯Aj(tn−) + o(∆x),
2174
+ where En
2175
+ j (u∆
2176
+ † ) =
2177
+ 1
2178
+ 2∆x
2179
+ � xj+1
2180
+ xj−1
2181
+ u∆
2182
+ † (x, tn−)dx,
2183
+ ¯Aj(tn−) =
2184
+ 1
2185
+ 2∆x
2186
+ � xj+1
2187
+ xj−1
2188
+ A(x, tn−)dx,
2189
+ the definition of µ is found in (2.7).
2190
+ It follows from (3.1) and this lemma that
2191
+ w(En
2192
+ j (u)) ≤Mn + Ln−1 + In
2193
+ j +
2194
+ � tn
2195
+ tn
2196
+
2197
+ y<xj−1
2198
+ (σ[η∗] − [q∗])dt
2199
+ +
2200
+ � xj−1
2201
+ −∞
2202
+
2203
+ η∗
2204
+
2205
+ u∆(x, tn−)
2206
+
2207
+ − η∗
2208
+
2209
+ u∆
2210
+ n,0(x)
2211
+ ��
2212
+ dx
2213
+ +
2214
+ 1
2215
+ 2∆x
2216
+ � xj+1
2217
+ xj−1
2218
+ � x
2219
+ xj−1
2220
+
2221
+ η∗
2222
+
2223
+ u∆(y, tn−)
2224
+
2225
+ − η∗
2226
+
2227
+ En
2228
+ j (u)
2229
+ ��
2230
+ dydx
2231
+
2232
+ 1
2233
+ 2∆x
2234
+ � xj+1
2235
+ xj−1
2236
+ � x
2237
+ xj−1
2238
+ an
2239
+ j
2240
+
2241
+ ρ∆(y, tn−) − En
2242
+ j (ρ)
2243
+
2244
+ dydx + o(∆x).
2245
+ (3.7)
2246
+ To complete the proof of Theorem (3.2), we must investigate
2247
+ Γn
2248
+ j (y) =η∗(u∆(y, tn−)) − η∗(En
2249
+ j (u)) − an
2250
+ j
2251
+
2252
+ ρ∆(y, tn−) − En
2253
+ j (ρ)
2254
+
2255
+ in (3.7), where an
2256
+ j is defined in (3.3).
2257
+ We then deduce from (2.4) that
2258
+ Γn
2259
+ j (y) =∂η∗
2260
+ ∂m (En
2261
+ j (u))ρ∆(y, tn−)
2262
+
2263
+ w(y, tn−) − w(En
2264
+ j (u))
2265
+
2266
+ − ∂η∗
2267
+ ∂m (En
2268
+ j (u))
2269
+ � 1
2270
+ 0
2271
+ (1 − τ)(θ + 1)
2272
+
2273
+ En
2274
+ j (ρ) + τ
2275
+
2276
+ ρ∆(y, tn−) − En
2277
+ j (ρ)
2278
+ ��θ−1 dτ
2279
+ ×
2280
+
2281
+ ρ∆(y, tn−) − En
2282
+ j (ρ)
2283
+ �2 + Rn
2284
+ j (y)
2285
+ =En
2286
+ j (v)ρ∆(y, tn−)
2287
+
2288
+ w(y, tn−) − w(En
2289
+ j (u)
2290
+
2291
+ − En
2292
+ j (v)
2293
+ 2
2294
+ � 1
2295
+ 0
2296
+ (1 − τ)(θ + 1)
2297
+
2298
+ En
2299
+ j (ρ) + τ
2300
+
2301
+ ρ∆(y, tn−) − En
2302
+ j (ρ)
2303
+ ��θ−1 dτ
2304
+ ×
2305
+
2306
+ ρ∆(y, tn−) − En
2307
+ j (ρ)
2308
+ �2 + Rn
2309
+ j (y).
2310
+ We thus obtain
2311
+ 1
2312
+ 2∆x
2313
+ � xj+1
2314
+ xj−1
2315
+ � x
2316
+ xj−1
2317
+ Γn
2318
+ j (y)dydx
2319
+ =
2320
+ 1
2321
+ 2∆x
2322
+ � xj+1
2323
+ xj−1
2324
+ � x
2325
+ xj−1
2326
+ En
2327
+ j (v)ρ∆(y, tn−)
2328
+
2329
+ w(y, tn−) − w(En
2330
+ j (u))
2331
+
2332
+ dydx
2333
+
2334
+ 1
2335
+ 2∆x
2336
+ � xj+1
2337
+ xj−1
2338
+ � x
2339
+ xj−1
2340
+ En
2341
+ j (v)
2342
+ 2
2343
+ � 1
2344
+ 0
2345
+ (1 − τ)(θ + 1)
2346
+
2347
+ En
2348
+ j (ρ) + τ
2349
+
2350
+ ρ∆(y, tn−) − En
2351
+ j (ρ)
2352
+ ��θ−1 dτ
2353
+ ×
2354
+
2355
+ ρ∆(y, tn−) − En
2356
+ j (ρ)
2357
+ �2 dydx +
2358
+ 1
2359
+ 2∆x
2360
+ � xj+1
2361
+ xj−1
2362
+ � x
2363
+ xj−1
2364
+ Rn
2365
+ j (y)dydx
2366
+ = : B1 + B2 + B3.
2367
+ (3.8)
2368
+
2369
+ THE COMPRESSIBLE EULER EQUATIONS
2370
+ 21
2371
+ If En
2372
+ j (ρ) < (∆x)µ, we find B1 = o(∆x) and B2 = o(∆x). Therefore, we devote
2373
+ to investigating the case where En
2374
+ j (ρ) ≥ (∆x)µ.
2375
+ If w(En
2376
+ j (u)) ≤ Mn + Ln + In
2377
+ j , (3.2) clearly holds.
2378
+ Otherwise, we consider the following lemma.
2379
+ Lemma 3.4. If
2380
+ w(En
2381
+ j (u)) > Mn + Ln + In
2382
+ j ,
2383
+ (3.9)
2384
+ the following holds.
2385
+ 1
2386
+ 2∆x
2387
+ � xj+1
2388
+ xj−1
2389
+ � x
2390
+ xj−1
2391
+ Γn
2392
+ j (y)dydx ≤
2393
+ � xj+1
2394
+ xj−1
2395
+ Rn
2396
+ j (x)dx + o(∆x).
2397
+ Proof. From Theorem 3.1, we have z(En
2398
+ j (u)) ≥ −Mn − Ln + In
2399
+ j − O(∆x). From
2400
+ (3.9), we find En
2401
+ j (v) ≥ In
2402
+ j − O (∆x) (recall the definition of En
2403
+ j (v) in (3.3) ). If
2404
+ En
2405
+ j (v) < 0, since In
2406
+ j − O (∆x) ≤ En
2407
+ j (v) ≤ 0, we have
2408
+ −En
2409
+ j (v) ≤ O (∆x) .
2410
+ (3.10)
2411
+ We first treat with B1 in (3.8). If En
2412
+ j (v) ≥ 0, we deduce from Theorem 3.1 and
2413
+ (3.9) that
2414
+ B1 ≤
2415
+ � xj+1
2416
+ xj−1
2417
+ En
2418
+ j (v)ρ∆(x, tn−)
2419
+
2420
+ w(x, tn−) − wn
2421
+ j
2422
+
2423
+ dx = o(∆x).
2424
+ If En
2425
+ j (v) < 0, from (3.10), we have B1 = o(∆x).
2426
+ We next consider B2. If En
2427
+ j (v) ≥ 0, we find that B2 ≤ 0. If En
2428
+ j (v) < 0, from
2429
+ (3.10), we have B2 = o(∆x).
2430
+
2431
+ From Lemma 3.4, we can complete the proof of (3.2).
2432
+ 3.2. Proof of Theorem 3.1. We next prove Theorem 3.1.
2433
+ Estimates of w∆(x, t) along R∆
2434
+ 1 in Case 1 In this step, we estimate w∆(x, t)
2435
+ along R∆
2436
+ 1 in Case 1 of Section 2. We recall that u∆ along R∆
2437
+ 1 consists of u∆
2438
+ k
2439
+ (k =
2440
+ 1, 2, 3, . . ., p−1). In this case, w∆(x, t) has the following properties, which is proved
2441
+ in [11, Appendix A]:
2442
+ w∆
2443
+ k+1(x∆
2444
+ k+1(tn.5), tn.5) =wk+1 = w∆
2445
+ k (x∆
2446
+ k+1(tn.5), tn.5) + O((∆x)3α−(γ−1)β)
2447
+ (k = 1, . . . , p − 2),
2448
+ (3.11)
2449
+ where tn.5 is defined in (2.2).
2450
+ We first consider ˜w∆
2451
+ 1 . We recall that
2452
+ ˜w∆
2453
+ 1 = wL −
2454
+ � xj−1
2455
+ −∞
2456
+ J(u∆
2457
+ n,0(x))dx.
2458
+ From (2.9), we have ˜w∆
2459
+ 1 ≤ Mn + Ln.
2460
+ Since
2461
+ ˇu∆
2462
+ 1 (x, t) = u∆
2463
+ 1 (x, t) + O((∆x)2),
2464
+ (3.12)
2465
+
2466
+ 22
2467
+ NAOKI TSUGE
2468
+ we have
2469
+ w∆
2470
+ 1 (x, t)= ˜w∆
2471
+ 1 +
2472
+ � xj−1
2473
+ −∞
2474
+ J(u∆
2475
+ n,0(x))dx + V (uL)(t − tn) +
2476
+ � x
2477
+ x∆
2478
+ 1
2479
+ J(ˇu∆
2480
+ 1 (y, t))dy
2481
+ + g2(x, t; ˇu∆)(t − tn)
2482
+ ≤Mn + Ln +
2483
+ � xj−1
2484
+ −∞
2485
+ J(u∆
2486
+ n,0(x))dx + V (uL)(t − tn) +
2487
+ � x
2488
+ x∆
2489
+ 1
2490
+ J(u∆
2491
+ 1 (y, t))dy
2492
+ + g2(x, t; u∆)(t − tn) + o(∆x).
2493
+ On the other hand, from the construction of our approximate solutions, we ob-
2494
+ serve that w∆
2495
+ 1 (x, t) = w∆
2496
+ 1 (x, tn−) + O(∆x)
2497
+ (xj−1 ≤ x < xj+1, tn ≤ t < tn+1).
2498
+ Separating three cases, we prove (3.1)2.
2499
+ (i) If w∆
2500
+ 1 (x, tn−) < Mn + Ln + In
2501
+ j −
2502
+
2503
+ ∆x, we obtain (3.1)2.
2504
+ (ii) If w∆
2505
+ 1 (x, tn−) ≥ Mn + Ln + In
2506
+ j −
2507
+
2508
+ ∆x and Mn + Ln ≥ (¯ρ)θ
2509
+ θ
2510
+ + ε, we
2511
+ observe that w∆
2512
+ 1 (x, t) ≥ w∆
2513
+ 1 (x, tn−) − O(
2514
+
2515
+ ∆x) ≥ Mn + Ln − O(
2516
+
2517
+ ∆x) ≥
2518
+ (¯ρ)θ
2519
+ θ
2520
+ + ε − O(
2521
+
2522
+ ∆x) ≥ (¯ρ)θ
2523
+ θ
2524
+ + ε/2, by choosing ∆x small enough. From
2525
+ (1.25), we obtain g2(x, t; u∆
2526
+ 1 ) < −2δ. From (2.16), we obtain (3.1)2.
2527
+ (iii) If w∆
2528
+ 1 (x, tn−) ≥ Mn +Ln +In
2529
+ j −
2530
+
2531
+ ∆x and Mn +Ln < (¯ρ)θ
2532
+ θ
2533
+ +ε, from (2.6),
2534
+ we find that (¯ρ)θ
2535
+ θ
2536
+ + ε − δ∆t ≤ Mn + Ln. Therefore, we have w∆
2537
+ 1 (x, t) ≥
2538
+ w∆
2539
+ 1 (x, tn−)−O(
2540
+
2541
+ ∆x) ≥ Mn+Ln−O(
2542
+
2543
+ ∆x) ≥ (¯ρ)θ
2544
+ θ +ε−O(
2545
+
2546
+ ∆x) ≥ (¯ρ)θ
2547
+ θ +
2548
+ ε/2, by choosing ∆x small enough. From (1.25), we obtain g2(x, t; u∆
2549
+ 1 ) <
2550
+ −2δ < 0. Recalling (2.6), from (2.16), we obtain (3.1)2.
2551
+ Next, we assume that
2552
+ w∆
2553
+ k (x, t)≤Mn + Ln +
2554
+ � xj−1
2555
+ −∞
2556
+ J(u∆
2557
+ n,0(x))dx + V (uL)(t − tn)
2558
+ +
2559
+ � x
2560
+ xj−1
2561
+ J(u∆(y, t))dy +
2562
+ � t
2563
+ tn.5
2564
+
2565
+ xj−1≤y<x
2566
+ (σ[η∗] − [q∗])dt
2567
+ + (k − 1) · O((∆x)3α−(γ−1)β) + o(∆x)
2568
+ (3.13)
2569
+ for (x, t) ∈ [xj−1, x∆
2570
+ k+1(t)) × [tn, tn+1).
2571
+ We recall that
2572
+ ˜w∆
2573
+ k+1 =wk+1 −
2574
+ � xj−1
2575
+ −∞
2576
+ J(u∆
2577
+ n,0(x))dx − V (uL)∆t
2578
+ 2 −
2579
+ k
2580
+
2581
+ l=1
2582
+ � x∆
2583
+ l+1(tn.5)
2584
+ x∆
2585
+ l (tn.5)
2586
+ J(u∆
2587
+ l (x, tn.5))dx
2588
+ and u∆(x, t) consists u∆
2589
+ l (x, t) in x∆
2590
+ l (t) ≤ x < x∆
2591
+ l+1(t), tn ≤ t < tn+1
2592
+ (l =
2593
+ 1, 2, 3, . . ., k + 1).
2594
+ From (3.11) and (3.13), we have
2595
+ ˜w∆
2596
+ k+1 ≤Mn + Ln + k · O((∆x)3α−(γ−1)β) + o(∆x).
2597
+
2598
+ THE COMPRESSIBLE EULER EQUATIONS
2599
+ 23
2600
+ From a similar argument to w∆
2601
+ 1 , we have
2602
+ w∆
2603
+ k+1(x, t)= ˜w∆
2604
+ k+1 +
2605
+ � xj−1
2606
+ −∞
2607
+ J(u∆
2608
+ n,0(x))dx + V (uL)(t − tn) +
2609
+ k
2610
+
2611
+ l=1
2612
+ � x∆
2613
+ l+1(t)
2614
+ x∆
2615
+ l (t)
2616
+ J(u∆
2617
+ l (x, t))dx
2618
+ +
2619
+ � x
2620
+ x∆
2621
+ k+1(t)
2622
+ J(ˇu∆
2623
+ k+1(y, t))dy + g2(x, t; ˇu∆
2624
+ k+1)(t − tn.5)
2625
+ +
2626
+ � t
2627
+ tn.5
2628
+
2629
+ xj−1≤y≤x
2630
+ (σ[η∗] − [q∗])ds
2631
+ ≤Mn + Ln +
2632
+ � xj−1
2633
+ −∞
2634
+ J(u∆
2635
+ n,0(x))dx + V (uL)(t − tn) +
2636
+ � x
2637
+ xj−1
2638
+ J(u∆(y, t))dy
2639
+ + g2(x, t; ˇu∆
2640
+ k+1)(t − tn.5) +
2641
+ � t
2642
+ tn.5
2643
+
2644
+ xj−1≤y≤x
2645
+ (σ[η∗] − [q∗])ds
2646
+ + k · O((∆x)3α−(γ−1)β) + o(∆x)
2647
+ (k = 1, 2, 3, . . ., p − 1).
2648
+ From (2.10) and (2.16), since {3α − (γ − 1)β} p > 1, we conclude (3.1)2.
2649
+ 4. Proof of Theorem 1.1
2650
+ Our approximate solutions satisfy the following propositions holds (these proofs
2651
+ are similar to [11]–[13].).
2652
+ Proposition 4.1. The measure sequence
2653
+ η∗(u∆)t + q(u∆)x
2654
+ lies in a compact subset of H−1
2655
+ loc (Ω) for all weak entropy pair (η∗, q), where Ω ⊂
2656
+ [0, 1] × [0, 1] is any bounded and open set.
2657
+ Proposition 4.2. Assume that the approximate solutions u∆ are bounded and
2658
+ satisfy Proposition 4.1. Then there is a convergent subsequence u∆n(x, t) in the
2659
+ approximate solutions u∆(x, t) such that
2660
+ u∆n(x, t) → u(x, t)
2661
+ a.e.,
2662
+ as n → ∞.
2663
+ The function u(x, t) is a global entropy solution of the Cauchy problem (1.4).
2664
+ Moreover, from Theorem 3.1, the above solution satisfies (1.11). Therefore, we
2665
+ can prove Theorem 1.1.
2666
+ Appendix A. Proof of (1.21) and (1.22)
2667
+ A.1. Proof of (1.21). First, when 0 ≤ ρ ≤ ¯ρ, we will prove
2668
+ 5γ − 3
2669
+ γ(γ − 1)2 ργ+θ − 2(3γ − 1)
2670
+ γ(γ − 1)2 (¯ρ)θ ργ +
2671
+ 3 − γ
2672
+ (γ − 1)2 (¯ρ)γ−1 ρθ+1 −
2673
+ 3 − γ
2674
+ γ(γ − 1) (¯ρ)γ ρθ
2675
+ +
2676
+ 2
2677
+ γ(γ − 1) (¯ρ)γ+θ ≥ 0.
2678
+ To this, setting t = ρ/¯ρ, we consider
2679
+ f(t) =(5γ − 3)t3θ+1 − 2(3γ − 1)t2θ+1 + γ(3 − γ)tθ+1 − (3 − γ)(γ − 1)tθ
2680
+ + 2(γ − 1),
2681
+ 0 ≤ t ≤ 1.
2682
+
2683
+ 24
2684
+ NAOKI TSUGE
2685
+ Separating 3 steps, we will deduce that f(t) ≥ 0,
2686
+ 0 ≤ t ≤ 1.
2687
+ Step 1
2688
+ First, we consider the neighborhood of t = 0. We set X = tθ. Solving two
2689
+ inequalities
2690
+ (5γ − 3)t3θ+1 − 2(3γ − 1)t2θ+1 + γ(3 − γ)tθ+1
2691
+ = tθ+1 �
2692
+ (5γ − 3)X2 − 2(3γ − 1)X + γ(3 − γ)
2693
+
2694
+ ≥ 0
2695
+ and
2696
+ −(3 − γ)(γ − 1)tθ + 2γ(γ − 1) = −(3 − γ)(γ − 1)X + 2(γ − 1) ≥ 0,
2697
+ we have 0 ≤ X ≤ ξ, where ξ is the smaller solution of (5γ − 3)X2 − 2(3γ − 1)X +
2698
+ γ(3 − γ) = 0. We notice that f(t) ≥ 0 in the interval 0 ≤ X ≤ ξ.
2699
+ Step 2
2700
+ Next, we consider the neighborhood of t = 1. We find that f(1) = f ′(1) = 0.
2701
+ On the other hand, from 0 ≤ t ≤ 1, γ > 1, we have
2702
+ 4f ′′(t) =3(5γ − 3)(3γ − 1)(γ − 1)t3θ−1 − 8γ(γ − 1)(3γ − 1)t2θ−1
2703
+ + γ(γ − 1)(γ + 1)(3 − γ)tθ−1 + (γ − 1)2(3 − γ)2tθ−2
2704
+ ≥3(5γ − 3)(3γ − 1)(γ − 1)t3θ−1 − 8γ(γ − 1)(3γ − 1)t2θ−1
2705
+ + (5γ − 3)(γ − 1)(3 − γ)tθ−1
2706
+ ≥3(5γ − 3)(3γ − 1)(γ − 1)t3θ−1 − 8γ(γ − 1)(3γ − 1)t2θ−1
2707
+ + (3γ − 1)(γ − 1)(3 − γ)tθ−1
2708
+ =(3γ − 1)(γ − 1)tθ−1 �
2709
+ 3(5γ − 3)X2 − 8γX + 3 − γ
2710
+
2711
+ .
2712
+ We thus find that f(t) ≥ 0 in the interval η ≤ X ≤ 1, where η is the larger solution
2713
+ of 3(5γ − 3)X2 − 8γX + 3 − γ = 0.
2714
+ Step 3
2715
+ Since ξ < η, from Step 1,2, it suffices to prove f(t) ≥ 0 in the interval ξ ≤ X ≤ η.
2716
+ Observing that (5γ − 3)X2 − 2(3γ − 1)X + γ(3 − γ) ≤ 0 in this interval, we have
2717
+ f(t) =tθ+1 �
2718
+ (5γ − 3)X2 − 2(3γ − 1)X + γ(3 − γ)
2719
+
2720
+ − (3 − γ)(γ − 1)X + 2(γ − 1)
2721
+ ≥X
2722
+
2723
+ (5γ − 3)X2 − 2(3γ − 1)X + γ(3 − γ)
2724
+
2725
+ − (3 − γ)(γ − 1)X + 2(γ − 1)
2726
+ =(5γ − 3)X3 − 2(3γ − 1)X2 + (3 − γ)X + 2(γ − 1) =: g(X).
2727
+ Let α, β (α < β) be tow solutions of g′(X) = 0. Then, we find that 0 < α < ξ <
2728
+ η < β < 1. Moreover, we deduce that g(η) > 0. Therefore, we can complete the
2729
+ proof.
2730
+ A.2. Proof of (1.22). Our goal in this appendix is to prove
2731
+ γ + 1
2732
+ 2γ2(γ − 1)ργ+θ −
2733
+ 1
2734
+ γ − 1 (¯ρ)γ−1 ρθ+1 + γ + 1
2735
+ γ2
2736
+ (¯ρ)γ ρθ −
2737
+ 1
2738
+ 2γ2 (¯ρ)2γ
2739
+ 1
2740
+ ρθ+1 ≥ 0,
2741
+ where ρ ≥ ¯ρ. To do this, setting t = ρ/¯ρ, we prove
2742
+ g(t) =
2743
+ γ + 1
2744
+ 2γ2(γ − 1)t2γ −
2745
+ 1
2746
+ γ − 1tγ+1 + γ + 1
2747
+ γ2 tγ −
2748
+ 1
2749
+ 2γ2 ≥ 0,
2750
+ t ≥ 1.
2751
+ First, we observe that g(1) = g′(1) = g′′(1) = 0. In addition, we find that g′′′(t) ≥
2752
+ 0,
2753
+ t ≥ 1. We thus conclude that g(t) ≥ 0.
2754
+
2755
+ THE COMPRESSIBLE EULER EQUATIONS
2756
+ 25
2757
+ Appendix B. Proof of Lemma 3.3
2758
+ Proof. Due to space limitations, we denote tn− by T in this section.
2759
+ Set
2760
+ ρ∆
2761
+ † (x, T ) := ˆρ(x, T ) {A(x, T )}
2762
+ 2
2763
+ γ−1 ,
2764
+ m∆
2765
+ † (x, T ) := ˆm(x, T ) {A(x, T )}
2766
+ γ+1
2767
+ γ−1 ,
2768
+ En+1
2769
+ j
2770
+ (ρ∆
2771
+ † ) :=
2772
+ 1
2773
+ 2∆x
2774
+ � xj+1
2775
+ xj−1
2776
+ ˆρ(x, T ) {A(x, T )}
2777
+ 2
2778
+ γ−1 dx,
2779
+ En+1
2780
+ j
2781
+ (m∆
2782
+ † ) :=
2783
+ 1
2784
+ 2∆x
2785
+ � xj+1
2786
+ xj−1
2787
+ ˆm(x, T ) {A(x, T )}
2788
+ γ+1
2789
+ γ−1 dx.
2790
+ Then, we find that
2791
+ w(ˆu(x, T )) ≤ 1 + o(∆x).
2792
+ (B.1)
2793
+ Let us prove
2794
+ w(En+1
2795
+ j
2796
+ (ρ∆
2797
+ † ), En+1
2798
+ j
2799
+ (m∆
2800
+ † )) ≤ ¯Aj(T ) + o(∆x),
2801
+ where
2802
+ ¯Aj(T ) =
2803
+ 1
2804
+ 2∆x
2805
+ � xj+1
2806
+ xj−1
2807
+ A(x, T )dx
2808
+ and
2809
+ w(En+1
2810
+ j
2811
+ (ρ∆
2812
+ † ), En+1
2813
+ j
2814
+ (m∆
2815
+ † ))
2816
+ = En+1
2817
+ j
2818
+ (m∆
2819
+ † )/En+1
2820
+ j
2821
+ (ρ∆
2822
+ † ) + {En+1
2823
+ j
2824
+ (ρ∆
2825
+ † )}θ/θ
2826
+ =
2827
+ 1
2828
+ 2∆x
2829
+ � xj+1
2830
+ xj−1
2831
+ ˆm(x, T ) {A(x, T )}
2832
+ γ+1
2833
+ γ−1 dx +
2834
+
2835
+ 1
2836
+ 2∆x
2837
+ � xj+1
2838
+ xj−1
2839
+ ˆρ(x, T ) {A(x, T )}
2840
+ 2
2841
+ γ−1 dx
2842
+ �θ+1
2843
+
2844
+ 1
2845
+ 2∆x
2846
+ � xj+1
2847
+ xj−1
2848
+ ˆρ(x, T ) {A(x, T )}
2849
+ 2
2850
+ γ−1 dx
2851
+ .
2852
+ (B.2)
2853
+ Step 1.
2854
+ We find
2855
+ En+1
2856
+ j
2857
+ (ρ∆
2858
+ † ) =
2859
+ 1
2860
+ 2∆x
2861
+ � xj+1
2862
+ xj−1
2863
+ ˆρ(x, T ) {A(x, T )}
2864
+ γ+1
2865
+ γ−1 {A(x, T )}−1 dx
2866
+ =
2867
+ � ¯Aj(T )
2868
+ �−1
2869
+ 1
2870
+ 2∆x
2871
+ � xj+1
2872
+ xj−1
2873
+ ˆρ(x, T ) {A(x, T )}
2874
+ γ+1
2875
+ γ−1 dx
2876
+ +
2877
+ 1
2878
+ 2∆x
2879
+ � xj+1
2880
+ xj−1
2881
+ ˆρ(x, T ) {A(x, T )}
2882
+ γ+1
2883
+ γ−1 ×
2884
+
2885
+ {A(x, T )}−1 −
2886
+ � ¯Aj(T )
2887
+ �−1�
2888
+ dx
2889
+ =
2890
+ � ¯Aj(T )
2891
+ �−1
2892
+ 1
2893
+ 2∆x
2894
+ � xj+1
2895
+ xj−1
2896
+ ˆρ(x, T ) {A(x, T )}
2897
+ γ+1
2898
+ γ−1 dx
2899
+
2900
+ � ¯Aj(T )
2901
+ �−1
2902
+ 1
2903
+ 2∆x
2904
+ � xj+1
2905
+ xj−1
2906
+ ˆρ(x, T ) {A(x, T )}
2907
+ 2
2908
+ γ−1 r(x, T )dx + o(∆x),
2909
+ where r(x, T ) = A(x, T ) − ¯Aj(T ). Recalling (3.6), we notice that r(x, T ) = O(∆x).
2910
+
2911
+ 26
2912
+ NAOKI TSUGE
2913
+ Substituting the above equation for (B.2), we obtain
2914
+ w(En+1
2915
+ j
2916
+ (ρ∆
2917
+ † ), En+1
2918
+ j
2919
+ (m∆
2920
+ † ))
2921
+ =
2922
+ 1
2923
+ 2∆x
2924
+ � xj+1
2925
+ xj−1
2926
+ ˆm(x, T ) {A(x, T )}
2927
+ γ+1
2928
+ γ−1 dx +
2929
+
2930
+ 1
2931
+ 2∆x
2932
+ � xj+1
2933
+ xj−1
2934
+ ˆρ(x, T ) {A(x, T )}
2935
+ 2
2936
+ γ−1 dx
2937
+ �θ+1
2938
+
2939
+ � ¯Aj(T )
2940
+ �−1
2941
+ 1
2942
+ 2∆x
2943
+ � xj+1
2944
+ xj−1
2945
+ ˆρ(x, T ) {A(x, T )}
2946
+ γ+1
2947
+ γ−1 dx
2948
+ +
2949
+ 1
2950
+ 2∆x
2951
+ � xj+1
2952
+ xj−1
2953
+ ˆm(x, T ) {A(x, T )}
2954
+ γ+1
2955
+ γ−1 dx +
2956
+
2957
+ 1
2958
+ 2∆x
2959
+ � xj+1
2960
+ xj−1
2961
+ ˆρ(x, T ) {A(x, T )}
2962
+ 2
2963
+ γ−1 dx
2964
+ �θ+1
2965
+
2966
+
2967
+ 1
2968
+ 2∆x
2969
+ � xj+1
2970
+ xj−1
2971
+ ˆρ(x, T ) {A(x, T )}
2972
+ 2
2973
+ γ−1 dx
2974
+ �2
2975
+ ×
2976
+ � ¯Aj(T )
2977
+ �−1
2978
+ 1
2979
+ 2∆x
2980
+ � xj+1
2981
+ xj−1
2982
+ ˆρ(x, T ) {A(x, T )}
2983
+ 2
2984
+ γ−1 r(x, T )dx + o(∆x).
2985
+ (B.3)
2986
+ Set
2987
+ ω :=
2988
+ 2
2989
+ γ + 1
2990
+ 1
2991
+
2992
+ 1
2993
+ 2∆x
2994
+ � xj+1
2995
+ xj−1
2996
+ ˆρ(x, T ) {A(x, T )}
2997
+ 2
2998
+ γ−1 dx
2999
+ �θ
3000
+ ×
3001
+ 1
3002
+ 2∆x
3003
+ � xj+1
3004
+ xj−1
3005
+ ˆm(x, T ) {A(x, T )}
3006
+ γ+1
3007
+ γ−1 dx +
3008
+
3009
+ 1
3010
+ 2∆x
3011
+ � xj+1
3012
+ xj−1
3013
+ ˆρ(x, T ) {A(x, T )}
3014
+ 2
3015
+ γ−1 dx
3016
+ �θ+1
3017
+
3018
+ 1
3019
+ 2∆x
3020
+ � xj+1
3021
+ xj−1
3022
+ ˆρ(x, T ) {A(x, T )}
3023
+ 2
3024
+ γ−1 dx
3025
+ .
3026
+ (B.4)
3027
+ Then assume that the following holds.
3028
+ (En+1
3029
+ j
3030
+ (ρ∆
3031
+ † ))θ+1 ≤
3032
+ 1
3033
+ 2∆x
3034
+ � xj+1
3035
+ xj−1
3036
+ (ˆρ(x, T ))θ+1 {A(x, T )}
3037
+ γ+1
3038
+ γ−1 dx
3039
+ − γ + 1
3040
+ 2
3041
+ ω
3042
+ � ¯Aj(T )
3043
+ �−1
3044
+
3045
+ 1
3046
+ 2∆x
3047
+ � xj+1
3048
+ xj−1
3049
+ ˆρ(x, T ) {A(x, T )}
3050
+ 2
3051
+ γ−1 dx
3052
+ �θ
3053
+ ×
3054
+
3055
+ 1
3056
+ 2∆x
3057
+ � xj+1
3058
+ xj−1
3059
+ ˆρ(x, T ) {A(x, T )}
3060
+ 2
3061
+ γ−1 r(x, T )dx
3062
+
3063
+ 1
3064
+ 2∆x
3065
+ � xj+1
3066
+ xj−1
3067
+ ˆρ(x, T ) {A(x, T )}
3068
+ 2
3069
+ γ−1 dx
3070
+ 1
3071
+ 2∆x
3072
+ � xj+1
3073
+ xj−1
3074
+ r(x, T )dx
3075
+
3076
+ + o(∆x)
3077
+ 1
3078
+ 2∆x
3079
+ � xj+1
3080
+ xj−1
3081
+ ˆρ(x, T ) {A(x, T )}
3082
+ 2
3083
+ γ−1 dx.
3084
+ (B.5)
3085
+
3086
+ THE COMPRESSIBLE EULER EQUATIONS
3087
+ 27
3088
+ This estimate shall be proved in step 2–4. Then, substituting (B.5) for (B.3),
3089
+ we deduce from (B.1) that
3090
+ w(En+1
3091
+ j
3092
+ (¯ρ), En+1
3093
+ j
3094
+ (m∆
3095
+ † )) ≤
3096
+ 1
3097
+ 2∆x
3098
+ � xj+1
3099
+ xj−1
3100
+ ˆρ(x, T ) {A(x, T )}
3101
+ γ+1
3102
+ γ−1
3103
+
3104
+ ˆv(x, T ) + {ˆρ(x, T )}θ
3105
+ θ
3106
+
3107
+ dx
3108
+ � ¯Aj(T )
3109
+ �−1
3110
+ 1
3111
+ 2∆x
3112
+ � xj+1
3113
+ xj−1
3114
+ ˆρ(x, T ) {A(x, T )}
3115
+ γ+1
3116
+ γ−1 dx
3117
+ + o(∆x)
3118
+ ≤ ¯Aj(T ) + o(∆x).
3119
+ Therefore we must prove (B.5). Separating three steps, we derive this estimate.
3120
+ Step 2.
3121
+ From (3.5), we notice that
3122
+ |ω| ≤ C(∆x)−θδ−ε,
3123
+ where C depends only on M.
3124
+ In this step, we consider the first equation of (B.3):
3125
+
3126
+ 1
3127
+ 2∆x
3128
+ � xj+1
3129
+ xj−1
3130
+ ˆρ(x, T ) {A(x, T )}
3131
+ 2
3132
+ γ−1 dx
3133
+ �θ+1
3134
+ .
3135
+ Since θδ < 1/2, we first find
3136
+ En+1
3137
+ j
3138
+ (ρ∆
3139
+ † ) =
3140
+ 1
3141
+ 2∆x
3142
+ � xj+1
3143
+ xj−1
3144
+ ˆρ(x, T ) {A(x, T )}ω+
3145
+ 2
3146
+ γ−1 {A(x, T )}−ω dx
3147
+ =
3148
+ � ¯Aj(T )
3149
+ �−ω
3150
+ 1
3151
+ 2∆x
3152
+ � xj+1
3153
+ xj−1
3154
+ ˆρ(x, T ) {A(x, T )}ω+
3155
+ 2
3156
+ γ−1 dx
3157
+ − ω
3158
+ � ¯Aj(T )
3159
+ �−ω−1
3160
+ 1
3161
+ 2∆x
3162
+ � xj+1
3163
+ xj−1
3164
+ ˆρ(x, T ) {A(x, T )}ω+
3165
+ 2
3166
+ γ−1 r(x, T )dx
3167
+ + o(∆x)
3168
+ 1
3169
+ 2∆x
3170
+ � xj+1
3171
+ xj−1
3172
+ ˆρ(x, T ) {A(x, T )}
3173
+ 2
3174
+ γ−1 dx
3175
+ :=I0 − I1 + I2.
3176
+ We next estimate I1 as follows:
3177
+ I1 = ω
3178
+ � ¯Aj(T )
3179
+ �−1
3180
+ 1
3181
+ 2∆x
3182
+ � xj+1
3183
+ xj−1
3184
+ ˆρ(x, T ) {A(x, T )}
3185
+ 2
3186
+ γ−1 r(x, T )dx
3187
+ + o(∆x)
3188
+ 1
3189
+ 2∆x
3190
+ � xj+1
3191
+ xj−1
3192
+ ˆρ(x, T ) {A(x, T )}
3193
+ 2
3194
+ γ−1 dx.
3195
+
3196
+ 28
3197
+ NAOKI TSUGE
3198
+ Therefore, we have
3199
+ En+1
3200
+ j
3201
+ (ρ∆
3202
+ † ) =
3203
+ 1
3204
+ 2∆x
3205
+ � xj+1
3206
+ xj−1
3207
+ ˆρ(x, T ) {A(x, T )}ω+
3208
+ 2
3209
+ γ−1 {A(x, T )}−ω dx
3210
+ =
3211
+ � ¯Aj(T )
3212
+ �−ω
3213
+ 1
3214
+ 2∆x
3215
+ � xj+1
3216
+ xj−1
3217
+ ˆρ(x, T ) {A(x, T )}ω+
3218
+ 2
3219
+ γ−1 dx
3220
+ − ω
3221
+ � ¯Aj(T )
3222
+ �−1
3223
+ 1
3224
+ 2∆x
3225
+ � xj+1
3226
+ xj−1
3227
+ ˆρ(x, T ) {A(x, T )}
3228
+ 2
3229
+ γ−1 r(x, T )dx
3230
+ + o(∆x)
3231
+ 1
3232
+ 2∆x
3233
+ � xj+1
3234
+ xj−1
3235
+ ˆρ(x, T ) {A(x, T )}
3236
+ 2
3237
+ γ−1 dx.
3238
+ From the above, we deduce that
3239
+ (En+1
3240
+ j
3241
+ (ρ∆
3242
+ † ))θ+1 =
3243
+
3244
+ � ¯Aj(T )
3245
+ �−ω
3246
+ 1
3247
+ 2∆x
3248
+ � xj+1
3249
+ xj−1
3250
+ ˆρ(x, T ) {A(x, T )}ω+
3251
+ 2
3252
+ γ−1 dx
3253
+ −ω
3254
+ � ¯Aj(T )
3255
+ �−1
3256
+ 1
3257
+ 2∆x
3258
+ � xj+1
3259
+ xj−1
3260
+ ˆρ(x, T ) {A(x, T )}
3261
+ 2
3262
+ γ−1 r(x, T )dx
3263
+ �θ+1
3264
+ + o(∆x)
3265
+ 1
3266
+ 2∆x
3267
+ � xj+1
3268
+ xj−1
3269
+ ˆρ(x, T ) {A(x, T )}
3270
+ 2
3271
+ γ−1 dx
3272
+ =
3273
+
3274
+ � ¯Aj(T )
3275
+ �−ω
3276
+ 1
3277
+ 2∆x
3278
+ � xj+1
3279
+ xj−1
3280
+ ˆρ(x, T ) {A(x, T )}ω+
3281
+ 2
3282
+ γ−1 dx
3283
+ �θ+1
3284
+ + (θ + 1)
3285
+
3286
+ � ¯Aj(T )
3287
+ �−ω
3288
+ 1
3289
+ 2∆x
3290
+ � xj+1
3291
+ xj−1
3292
+ ˆρ(x, T ) {A(x, T )}ω+
3293
+ 2
3294
+ γ−1 dx
3295
+ �θ
3296
+ × −ω
3297
+ � ¯Aj(T )
3298
+ �−1
3299
+ 1
3300
+ 2∆x
3301
+ � xj+1
3302
+ xj−1
3303
+ ˆρ(x, T ) {A(x, T )}
3304
+ 2
3305
+ γ−1 r(x, T )dx
3306
+ + o(∆x)
3307
+ 1
3308
+ 2∆x
3309
+ � xj+1
3310
+ xj−1
3311
+ ˆρ(x, T ) {A(x, T )}
3312
+ 2
3313
+ γ−1 dx
3314
+ =
3315
+
3316
+ � ¯Aj(T )
3317
+ �−ω
3318
+ 1
3319
+ 2∆x
3320
+ � xj+1
3321
+ xj−1
3322
+ ˆρ(x, T ) {A(x, T )}ω+
3323
+ 2
3324
+ γ−1 dx
3325
+ �θ+1
3326
+ − γ + 1
3327
+ 2
3328
+ ω
3329
+ � ¯Aj(T )
3330
+ �−1
3331
+
3332
+ 1
3333
+ 2∆x
3334
+ � xj+1
3335
+ xj−1
3336
+ ˆρ(x, T ) {A(x, T )}
3337
+ 2
3338
+ γ−1 dx
3339
+ �θ
3340
+ ×
3341
+ 1
3342
+ 2∆x
3343
+ � xj+1
3344
+ xj−1
3345
+ ˆρ(x, T ) {A(x, T )}
3346
+ 2
3347
+ γ−1 r(x, T )dx
3348
+ + o(∆x)
3349
+ 1
3350
+ 2∆x
3351
+ � xj+1
3352
+ xj−1
3353
+ ˆρ(x, T ) {A(x, T )}
3354
+ 2
3355
+ γ−1 dx.
3356
+ (B.6)
3357
+
3358
+ THE COMPRESSIBLE EULER EQUATIONS
3359
+ 29
3360
+ Step 3
3361
+ Applying the Jensen inequality to the first term of the right-hand of (B.6), we have
3362
+
3363
+ � ¯Aj(T )
3364
+ �−ω
3365
+ 1
3366
+ 2∆x
3367
+ � xj+1
3368
+ xj−1
3369
+ ˆρ(x, T ) {A(x, T )}ω+
3370
+ 2
3371
+ γ−1 dx
3372
+ �θ+1
3373
+ =
3374
+
3375
+
3376
+
3377
+
3378
+
3379
+ � ¯Aj(T )
3380
+ �−ω
3381
+ 1
3382
+ 2∆x
3383
+ � xj+1
3384
+ xj−1
3385
+ ˆρ(x, T ) {A(x, T )}ω+
3386
+ 2
3387
+ γ−1 dx
3388
+ 1
3389
+ 2∆x
3390
+ � xj+1
3391
+ xj−1
3392
+ {A(x, T )}
3393
+ γ+1
3394
+ γ−1 ω dx
3395
+
3396
+
3397
+
3398
+
3399
+
3400
+ θ+1
3401
+ ×
3402
+
3403
+ 1
3404
+ 2∆x
3405
+ � xj+1
3406
+ xj−1
3407
+ {A(x, T )}
3408
+ γ+1
3409
+ γ−1 ω dx
3410
+ �θ+1
3411
+ =
3412
+
3413
+
3414
+
3415
+
3416
+
3417
+ � ¯Aj(T )
3418
+ �−ω
3419
+ 1
3420
+ 2∆x
3421
+ � xj+1
3422
+ xj−1
3423
+ ˆρ(x, T ) {A(x, T )}ω+
3424
+ 2
3425
+ γ−1 dx
3426
+ 1
3427
+ 2∆x
3428
+ � xj+1
3429
+ xj−1
3430
+ {A(x, T )}
3431
+ γ+1
3432
+ γ−1 ω dx
3433
+
3434
+
3435
+
3436
+
3437
+
3438
+ θ+1
3439
+ ×
3440
+
3441
+ 1
3442
+ 2∆x
3443
+ � xj+1
3444
+ xj−1
3445
+ {A(x, T )}
3446
+ γ+1
3447
+ γ−1 ω dx
3448
+
3449
+ ×
3450
+
3451
+ � ¯Aj(T )
3452
+ � γ+1
3453
+ 2
3454
+ ω + γ + 1
3455
+ 2
3456
+ ω
3457
+ � ¯Aj(T )
3458
+ � γ+1
3459
+ 2
3460
+ ω−1
3461
+ 1
3462
+ 2∆x
3463
+ � xj+1
3464
+ xj−1
3465
+ r(x, T )dx + o(∆x)
3466
+
3467
+ =
3468
+
3469
+
3470
+
3471
+
3472
+
3473
+ � ¯Aj(T )
3474
+ �−ω
3475
+ 1
3476
+ 2∆x
3477
+ � xj+1
3478
+ xj−1
3479
+ ˆρ(x, T ) {A(x, T )}ω− γ+1
3480
+ γ−1 ω+
3481
+ 2
3482
+ γ−1 {A(x, T )}
3483
+ γ+1
3484
+ γ−1 ω dx
3485
+ 1
3486
+ 2∆x
3487
+ � xj+1
3488
+ xj−1
3489
+ {A(x, T )}
3490
+ ��+1
3491
+ γ−1 ω dx
3492
+
3493
+
3494
+
3495
+
3496
+
3497
+ θ+1
3498
+ ×
3499
+
3500
+ 1
3501
+ 2∆x
3502
+ � xj+1
3503
+ xj−1
3504
+ {A(x, T )}
3505
+ γ+1
3506
+ γ−1 ω dx
3507
+
3508
+ � ¯Aj(T )
3509
+ � γ+1
3510
+ 2
3511
+ ω
3512
+ + o(∆x)
3513
+ 1
3514
+ 2∆x
3515
+ � xj+1
3516
+ xj−1
3517
+ ˆρ(x, T ) {A(x, T )}
3518
+ 2
3519
+ γ−1 dx
3520
+
3521
+ 1
3522
+ 2∆x
3523
+ � xj+1
3524
+ xj−1
3525
+ (ˆρ(x, T ))θ+1 {A(x, T )}
3526
+ γ+1
3527
+ γ−1 dx
3528
+ + o(∆x)
3529
+ 1
3530
+ 2∆x
3531
+ � xj+1
3532
+ xj−1
3533
+ ˆρ(x, T ) {A(x, T )}
3534
+ 2
3535
+ γ−1 dx.
3536
+ (B.7)
3537
+ From (B.6) and (B.7), we obtain (B.5) and complete the proof of lemma 3.3.
3538
+
3539
+ Appendix C. Construction and L∞ estimates of approximate
3540
+ solutions near the vacuum in Case 1
3541
+ In this step, we consider the case where ρM ≤ (∆x)β, which means that uM
3542
+ is near the vacuum. Since we cannot use the implicit function theorem, we must
3543
+ construct u∆(x, t) in a different way.
3544
+ Case 1 A 1-rarefaction wave and a 2-shock arise.
3545
+
3546
+ 30
3547
+ NAOKI TSUGE
3548
+ In this case, we notice that ρR ≤ (∆x)β, zR ≥ −Mn − Ln + In
3549
+ j and wR ≤
3550
+ Mn + Ln + In
3551
+ j .
3552
+ Case 1.1 ρL > (∆x)β
3553
+ We denote u(1)
3554
+ L
3555
+ a state satisfying w(u(1)
3556
+ L ) = w(uL) and ρ(1)
3557
+ L
3558
+ = (∆x)β. Let u(2)
3559
+ L
3560
+ be a state connected to u∆
3561
+ 1 (xj−1, tn+1−) on the right by R∆
3562
+ 1 (uL, z(1)
3563
+ L , x, tn+1−). We
3564
+ set
3565
+ (z(3)
3566
+ L , w(3)
3567
+ L ) =
3568
+
3569
+ (z(2)
3570
+ L , w(2)
3571
+ L ),
3572
+ if z(2)
3573
+ L
3574
+ ≥ Dn
3575
+ j ,
3576
+ (Dn
3577
+ j , w(2)
3578
+ L ),
3579
+ if z(2)
3580
+ L
3581
+ < Dn
3582
+ j ,
3583
+ where
3584
+ Dn
3585
+ j = − Mn+1 − Ln +
3586
+ � xj−1
3587
+ −∞
3588
+ J(u∆
3589
+ n,0(x))dx + V (uL)∆t +
3590
+ � xj+1
3591
+ xj−1
3592
+ (¯ρ)γ
3593
+ γ dx
3594
+ +
3595
+ � xj+λ1(u(2)
3596
+ L )∆t
3597
+ xj−1
3598
+ η(R∆
3599
+ 1 (uL, z(1)
3600
+ L , x, tn+1−))dx.
3601
+ Then, we define u∆(x, t) as follows.
3602
+ u∆(x, t) =
3603
+
3604
+
3605
+
3606
+
3607
+
3608
+
3609
+
3610
+
3611
+
3612
+
3613
+
3614
+
3615
+
3616
+
3617
+
3618
+
3619
+
3620
+
3621
+
3622
+
3623
+
3624
+
3625
+
3626
+ R∆
3627
+ 1 (uL, z(1)
3628
+ L , x, t),
3629
+ if xj−1 ≤ x ≤ xj + λ1(u(2)
3630
+ L )(t − tn)
3631
+ and tn ≤ t < tn+1,
3632
+ uRw(x, t),
3633
+ if xj + λ1(u(2)
3634
+ L )(t − tn)< x ≤ xj + λ2(uM, uR)(t − tn)
3635
+ and tn ≤ t < tn+1,
3636
+ u∆
3637
+ R(x, t) defined in (2.18),
3638
+ if xj + λ2(uM, uR)(t − tn)< x ≤ xj+1
3639
+ and tn ≤ t < tn+1,
3640
+ where (a) λ2(uM, uR) is a propagation speed of 2-shock wave; (b) uRw(x, t) is a
3641
+ rarefaction wave connecting u(3)
3642
+ L and u(4)
3643
+ L ; (c) u(4)
3644
+ L is defined by z(4)
3645
+ L
3646
+ = max{z(3)
3647
+ L , zM},
3648
+ w(4)
3649
+ L
3650
+ = w(3)
3651
+ L .
3652
+ Rarefaction wave
3653
+ Figure 2. Case 1.1: The approximate solution u∆ in the cell.
3654
+
3655
+ ()m(cf)mg(f)(°)(°)十-JQSQ3THE COMPRESSIBLE EULER EQUATIONS
3656
+ 31
3657
+ Case 1.2 ρL ≤ (∆x)β
3658
+ We set (z(5)
3659
+ L , w(5)
3660
+ L ) = (max{zL, Dn
3661
+ j }, min{wL, U n
3662
+ j }), where
3663
+ U n
3664
+ j =Mn+1 + Ln +
3665
+ � xj−1
3666
+ −∞
3667
+ J(u∆
3668
+ n,0(x))dx + V (uL)∆t.
3669
+ Then, we define u∆(x, t) as follows.
3670
+ u∆(x, t) =
3671
+
3672
+
3673
+
3674
+
3675
+
3676
+
3677
+
3678
+
3679
+
3680
+
3681
+
3682
+
3683
+
3684
+
3685
+
3686
+
3687
+
3688
+
3689
+
3690
+
3691
+
3692
+
3693
+
3694
+ u∆
3695
+ 1 (x, t) defined in (2.15),
3696
+ if xj−1 ≤ x ≤ xj + λ1(uL)(t − tn)
3697
+ and tn ≤ t < tn+1,
3698
+ uRw(x, t),
3699
+ if xj + λ1(uL)(t − tn)< x ≤ xj + λ2(uM, uR)(t − tn)
3700
+ and tn ≤ t < tn+1,
3701
+ u∆
3702
+ R(x, t) defined in (2.18),
3703
+ if xj + λ2(uM, uR)(t − tn)< x ≤ xj+1
3704
+ and tn ≤ t < tn+1,
3705
+ where (a) uRw(x, t) is a rarefaction wave connecting u(5)
3706
+ L
3707
+ and u(6)
3708
+ L ; (b) u(6)
3709
+ L
3710
+ is defined
3711
+ by z(6)
3712
+ L
3713
+ = max{z(5)
3714
+ L , zM}, w(6)
3715
+ L
3716
+ = w(5)
3717
+ L .
3718
+ Remark C.1. We notice that ρ∆(x, t) = O((∆x)β) in (1.ii), (1.iii) and (2.i)–
3719
+ (2.iii). Therefore, the followings hold in these areas.
3720
+ Although (1.ii) and (2.ii) are solutions of homogeneous isentropic gas dynamics
3721
+ (i.e., g(x, t, u)) = 0), they is also a solution of (1.4) approximately
3722
+ (u∆)t + f(u∆)x − g(x, u∆) = −g(x, u∆) = O((∆x)β).
3723
+ In addition, discontinuities separating (1.i)–(1.iii) and (2.i)–(2.iii) satisfy [11,
3724
+ Lemma 5.3].
3725
+ C.1. L∞ estimates of approximate solutions. We consider Case 1.1 in partic-
3726
+ ular. It suffices to treat with uRw(x, t) in the region where xj + λ1(u(2)
3727
+ L )(t − tn) <
3728
+ x ≤ xj + λ2(uM, uR)(t − tn) and tn ≤ t < tn+1. The other cases are similar to
3729
+ Theorem 3.1.
3730
+ In this case, since ρ∆(x, t) = O((∆x)β), we have
3731
+ η∗(u∆(x, t)) = O((∆x)β).
3732
+ (C.1)
3733
+ Moreover, we notice that
3734
+ w∆(x, tn+1−) = w(2)
3735
+ L
3736
+ = w(R∆
3737
+ 1 (uL, z(1)
3738
+ L , xj + λ1(u(2)
3739
+ L )∆t, tn+1−)).
3740
+ Applying Theorem 3.1 to R∆
3741
+ 1 (uL, z(1)
3742
+ L , x, tn+1−), we drive
3743
+ w∆(x, tn+1−)≤Mn+1 + Ln +
3744
+ � xj+λ1(u(2)
3745
+ L )∆t
3746
+ −∞
3747
+ J(u∆(y, tn+1−))dy
3748
+ +
3749
+ � tn+1
3750
+ tn
3751
+
3752
+ y<xj−1
3753
+ (σ[η∗] − [q∗])dt + o(∆x)
3754
+ ≤Mn+1 + Ln +
3755
+ � x
3756
+ −∞
3757
+ J(u∆(y, tn+1−))dy +
3758
+ � tn+1
3759
+ tn
3760
+
3761
+ y<xj−1
3762
+ (σ[η∗] − [q∗])dt
3763
+ + o(∆x),
3764
+
3765
+ 32
3766
+ NAOKI TSUGE
3767
+ which means (3.1)2.
3768
+ Next, we notice that z∆(x, t) ≥ Dn
3769
+ j . In view of (2.16) and (C.1), we obtain
3770
+ (3.1)1.
3771
+ Acknowledgements.
3772
+ N. Tsuge’s research is partially supported by Grant-in-Aid for Scientific Research
3773
+ (C) 17K05315, Japan.
3774
+ References
3775
+ [1] Chen, G.-Q.: Convergence of the Lax–Friedrichs scheme for isentropic gas dynamics (III).
3776
+ Acta Mathematica Scientia 6, 75–120 (1986)
3777
+ [2] Chen, G.-Q.: The compensated compactness method and the system of isentropic gas dy-
3778
+ namics. MSRI preprint 00527-91, Berkeley, 1990
3779
+ [3] Chueh, K. N., Conley, C. C. and Smoller, J. A.: Positively invariant regions for systems of
3780
+ nonlinear diffusion equations. Indiana Univ. Math. J. 26, 373–392 (1977)
3781
+ [4] DiPerna, R. J., Decay of solutions of hyperbolic systems of conservation laws with a convex
3782
+ extensions, Arch. Ration. Mech. Anal. 64, 1–46 (1977)
3783
+ [5] DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun.
3784
+ Math. Phys. 91, 1–30 (1983)
3785
+ [6] Ding, X., Chen, G.-Q., Luo, P.: Convergence of the Lax–Friedrichs scheme for isentropic gas
3786
+ dynamics (I)–(II). Acta Mathematica Scientia 5, 415–432, 433–472 (1985)
3787
+ [7] Ding, X., Chen, G.-Q., Luo, P.: Convergence of the fractional step Lax–Friedrichs scheme
3788
+ and Godunov scheme for the isentropic system of gas dynamics. Commun. Math. Phys. 121,
3789
+ 63—84 (1989)
3790
+ [8] Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure
3791
+ Appl. Math. 18, 697—715 (1965)
3792
+ [9] Glimm, J., Lax, P. D., Decay of solutions of systems of nonlinear hyperbolic conservation
3793
+ laws, Amer. Math. Soc. 101 (1970)
3794
+ [10] Liu, T. P., Lax, P. D., Large time behavior of initial and initial-boundary-value problems of
3795
+ general systems of hyperbolic conservation laws, Comm. Math. Phys. 55, 163–177 (1977)
3796
+ [11] Tsuge, N.: Global L∞ solutions of the compressible Euler equations with spherical symmetry.
3797
+ J. Math. Kyoto Univ. 46, 457–524 (2006)
3798
+ [12] N. Tsuge: Existence of global solutions for unsteady isentropic gas flow in a Laval nozzle.
3799
+ Arch. Ration. Mech. Anal. 205, 151–193 (2012)
3800
+ [13] N. Tsuge: Isentropic gas flow for the compressible Euler equation in a nozzle, Arch. Ration.
3801
+ Mech. Anal. 209, 365–400 (2013)
3802
+ [14] N. Tsuge: Existence and stability of solutions to the compressible Euler equations with an
3803
+ outer force. Nonlinear Anal. Real World Appl. 27, 203–220 (2016)
3804
+ [15] N. Tsuge: Global entropy solutions to the compressible Euler equations in the isentropic
3805
+ nozzle flow for large data: Application of the generalized invariant regions and the modified
3806
+ Godunov scheme. Nonlinear Anal. Real World Appl. 37, 217–238 (2017)
3807
+ [16] Tsuge, N.: Global entropy solutions to the compressible Euler equations in the isentropic noz-
3808
+ zle flow, Hyperbolic Problems: Theory, Numerics, Applications By Alberto Bressan, Marta
3809
+ Lewicka, Dehua Wang, Yuxi Zheng (Eds.), AIMS on Applied Mathematics 10, 666–673 (2020)
3810
+ [17] Tsuge, N.: Existence of a time periodic solution for the compressible Euler equation with a
3811
+ time periodic outer force. Nonlinear Anal. Real World Appl. 53, 103080 (2020)
3812
+ [18] N. Tsuge: Remarks on the energy inequality of a global L∞ solution to the compressible
3813
+ Euler equations for the isentropic nozzle flow. Commun. Math. Sci. to appear.
3814
+ Department of Mathematics Education, Faculty of Education, Gifu University, 1-1
3815
+ Yanagido, Gifu Gifu 501-1193 Japan.
3816
+ Email address: [email protected]
3817
+
A9AzT4oBgHgl3EQfF_vM/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9E1T4oBgHgl3EQfVgQy/content/tmp_files/2301.03102v1.pdf.txt ADDED
@@ -0,0 +1,985 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Towards Open World NeRF-Based SLAM
2
+ Daniil Lisus1 and Connor Holmes1
3
+ Abstract— Neural Radiance Fields (NeRFs) have taken the
4
+ machine vision and robotics perception communities by storm
5
+ and are starting to be applied in robotics applications. NeRFs
6
+ offer versatility and robustness in map representations for
7
+ Simultaneous Localization and Mapping. However, computa-
8
+ tional difficulties of multilayer perceptrons (MLP) have lead to
9
+ reductions in robustness in the state-of-the-art of NeRF-based
10
+ SLAM algorithms in order to meet real-time requirements.
11
+ In this report, we seek to improve accuracy and robustness
12
+ of NICE-SLAM, a recent NeRF-based SLAM algorithm, by
13
+ accounting for depth measurement uncertainty and using IMU
14
+ measurements. Additionally, extend this algorithm by providing
15
+ a model that can represent backgrounds that are too distant to
16
+ be modeled by NeRF.
17
+ I. INTRODUCTION
18
+ Starting with the landmark paper by Mildenhall et al. just
19
+ over two years ago [1], Neural Radiance Fields (NeRFs)
20
+ have taken the machine vision and robotics perception
21
+ communities by storm. The central idea behind NeRF is
22
+ to combine classical graphics rendering techniques with a
23
+ multilayer perceptron (MLP) trained on image data to learn
24
+ an implicit representation of a given scene. The scene can
25
+ then be rendered from novel viewpoints (i.e., view synthesis).
26
+ Within the context of robotics, this approach holds promise to
27
+ address shortcomings of classical dense SLAM algorithms.
28
+ In particular, a NeRF is well suited to estimate portions of
29
+ the map for unobserved regions [2]. Additionally, they can
30
+ be leveraged to view maps from perspectives that may be
31
+ interesting to users, but which have not been directly visited
32
+ by the robot. Since they are fundamentally based on MLPs,
33
+ NeRF maps can also be trained to be robust to changes in
34
+ map environment conditions such as lighting [3] or time of
35
+ the year.
36
+ The original formulation of NeRF, which used one large
37
+ MLP, required hours of training, was slow to render, and
38
+ required exact knowledge of input camera poses. However, a
39
+ flurry of advancements since have considerably improved on
40
+ all of these issues. Several authors have shown that encoding
41
+ the NeRF in a spatial data structure leads to considerable
42
+ improvements in speed and accuracy, often using smaller
43
+ MLPs to decoding spatial features during view synthesis [4]–
44
+ [6]. In particular, NGLOD [4] proposed the use of small
45
+ MLPs in a volumetric grid while Plenoxels [5] used a spatial
46
+ octree and bypassed MLP use altogether. These ideas were
47
+ further improved upon in [6] by using spatial hash tables
48
+ to attain NeRFs that can be trained in real-time. BARF [7]
49
+ and NeRF- - [8] have also shown that a priori exact pose
50
+ 1Authors are associated with the University of Toronto Robotics Institute,
51
+ University of Toronto, Canada. Authors contributed equally to this work.
52
+ [FIRSTNAME].[LASTNAME]@mail.utoronto.ca
53
+ knowledge is unnecessary to reproduce both accurate pose
54
+ estimates and NeRFs.
55
+ These advancements have opened the door for the use of
56
+ NeRFs to represent maps for Simultaneous Localization and
57
+ Mapping (SLAM) in robotics applications. One of the first
58
+ papers in this area was iMAP [9], which builds an MLP-
59
+ based NeRF in real-time using RGB-D data by cleverly
60
+ downsampling the number of pixels used to generate the
61
+ NeRF. NICE-SLAM improved significantly on this frame-
62
+ work by leveraging the key insight that the entire NeRF map
63
+ need not be updated at every iteration. By introducing a spa-
64
+ tial, voxel-based NeRF, NICE-SLAM only updates parts of
65
+ the NeRF that are specially relevent to a given camera view.
66
+ At the start of this project, NICE-SLAM represented the
67
+ current state-of-the-art in the field of NeRF-based SLAM1.
68
+ Although NICE-SLAM produces moderately robust and
69
+ complete dense maps of the environment, it fails to perform
70
+ competitively in the generated pose estimates compared
71
+ to classical SLAM approaches. Additionally, the produced
72
+ volumetric grid can become very expensive to maintain if the
73
+ algorithm aims to function in a large environment. Looking
74
+ forward to potential open world deployment of NeRF-based
75
+ SLAM, all current approaches make use of a predefined,
76
+ finite volumetric grid, without a clear way to handle visual
77
+ information contained far from the camera or to dynamically
78
+ expand the area of operation.
79
+ This project begins to tackle these problems in order
80
+ to leverage the special mapping approach of NeRF-based
81
+ SLAM without sacrificing the quality of the state estimates
82
+ or requiring excessive computational resources. More specif-
83
+ ically, this project improves on the robustness of NICE-
84
+ SLAM by considering depth uncertainty from RGB-D im-
85
+ ages and by including IMU information to constrain the
86
+ camera pose estimates. Additionally, the project begins to
87
+ expand the capabilities of NICE-SLAM towards the open
88
+ world by splitting visual information into a foreground and
89
+ background. The background, modelled as a sphere infinitely
90
+ far away from the foreground, is then able to contribute to the
91
+ colour information of the map without requiring an explicit
92
+ grid to be generated all the way to the visual range of the
93
+ image.
94
+ II. BASELINE ALGORITHM
95
+ Similar to its predecessor, iMAP, and other modern SLAM
96
+ algorithms [11], NICE-SLAM separates the phases of SLAM
97
+ into to two parallel threads: a tracking thread to localize the
98
+ 1NeRFs and NeRF-based SLAM are currently rapidly evolving fields.
99
+ NeRF-SLAM [10] has further developed the concepts presented in NICE-
100
+ SLAM and extended them to monocular SLAM
101
+ arXiv:2301.03102v1 [cs.RO] 8 Jan 2023
102
+
103
+ current camera frame against the current map and a mapping
104
+ thread which jointly optimizes the parameters of the NeRF
105
+ map and a set of stored keyframes.
106
+ NICE-SLAM uses a series of 3 fixed-size, voxel grids of
107
+ encoded features with different grid resolutions to represent
108
+ the map. When evaluating pixels for a given RGB-D image,
109
+ NICE-SLAM uses the same ray-casting technique as [1], but
110
+ evaluates the rays by interpolating sample points the voxel
111
+ grid (similar to [5]), decoding each sample feature with a
112
+ (smaller) MLP and aggregating the result into an estimated
113
+ pixel color and depth. Additional detail on mapping and
114
+ tracking threads is given in the subsections below.
115
+ A. Mapping
116
+ The mapping thread is responsible for updating the voxel-
117
+ grid NeRF representation of the map. It does this by con-
118
+ tinually optimizing the voxel-grid features and the stored
119
+ poses of relevant subset of keyframes. Similar to ORB-
120
+ SLAM, keyframes are selected on the basis of the level of
121
+ information gain that they provide and consist of an RGB-D
122
+ image as well as the corresponding estimate of camera pose.
123
+ For each map update, a set of keyframes is selected based
124
+ on predicted overlap with the current frame and are used,
125
+ along with the current frame, to construct a loss function.
126
+ The loss function has both depth-based and colour-based
127
+ components. The depth-based loss for each grid resolution
128
+ in the mapping thread based on N pixels is given by
129
+ Lmap
130
+ depth =
131
+
132
+ r=f,c
133
+ 1
134
+ N
135
+ N
136
+
137
+ n=1
138
+ ���dn − ˆdr,n
139
+ ���
140
+ 1 ,
141
+ (1)
142
+ where dn is the measured pixel depth and ˆdr,n is the NeRF-
143
+ predicted pixel depth for the fine (f) and coarse (c) grid
144
+ resolutions.
145
+ The color-based loss is only generated at the fine grid
146
+ resolution and is given by
147
+ Lmap
148
+ colour = 1
149
+ N
150
+ N
151
+
152
+ n=1
153
+ ���In − ˆIn
154
+ ���
155
+ 1 ,
156
+ (2)
157
+ where In is the measured pixel colour and ˆIn is the NeRF-
158
+ predicted pixel colour.
159
+ The overall optimization for the mapping portion is given
160
+ by:
161
+ min
162
+ Ci,ri,Θ
163
+ �M
164
+ i=1 Lmap,i
165
+ depth + λmLmap,i
166
+ colour,
167
+ (3)
168
+ where i represents the ith keyframe of M frames, Θ repre-
169
+ sents the voxel grid features, and λm is a tuning parameter.
170
+ B. Tracking
171
+ The tracking thread performs a similar optimization to the
172
+ mapping thread, but only optimizes the pose of the current
173
+ frame (i.e. does not modify the map).
174
+ The colour component of the loss, Ltrack
175
+ colour is computed in
176
+ the same way as for the mapping, but is only for the current
177
+ frame. On the other hand, the depth-based loss in the tracking
178
+ thread is weighted based on depth uncertainty in the network.
179
+ For each grid resolution, the loss is computed for N pixels
180
+ as follows:
181
+ Ltrack
182
+ depth =
183
+
184
+ r=f,c
185
+ 1
186
+ N
187
+ N
188
+
189
+ n=1
190
+ ���dn − ˆdr,n
191
+ ���
192
+ ˆσdr,n
193
+ ,
194
+ (4)
195
+ where variables are defined in the same way as for (1) with
196
+ ˆσd
197
+ r,n corresponding to the standard deviation on ˆdn. This
198
+ standard deviation is extracted from the NeRF voxel grid by
199
+ computing the variance from all points that contribute to the
200
+ final ˆdn value along a pixel ray.
201
+ The overall tracking optimization is given by:
202
+ min
203
+ C,r
204
+ Ltrack
205
+ depth + λtLtrack
206
+ colour,
207
+ (5)
208
+ where C and r are the pose parameters for the current frame
209
+ and λt is a tuning parameter.
210
+ III. IMPROVEMENTS
211
+ A. Depth Uncertainty
212
+ The standard NICE-SLAM algorithm does not consider
213
+ depth uncertainty from the measured RGB-D depth. As a
214
+ result, when considering N pixels, each pixel contributed
215
+ equally to the computed depth loss in (1) and (4). While
216
+ (4) does down-weight the contributions according to a proxy
217
+ measure of the uncertainty on the NeRF-generated depth
218
+ value, it still treats the RGB-D depth values as equally valid.
219
+ This equal valuation is contrary to not only potential sensor-
220
+ specific uncertainty fluctuations or biases, for example due
221
+ to artifacts such as vignetting, but also to the fact that most
222
+ depth sensors measurements increase in uncertainty as a
223
+ function of the depth. Although this uncertainty negligable
224
+ in relatively small and constant depth environments, it can
225
+ become considerable in a large environment.
226
+ In order to account for this potentially varying uncertainty,
227
+ a modification to the depth loss in (1) and (4) is proposed
228
+ as follows:
229
+ Lmap
230
+ depth = 1
231
+ N
232
+ N
233
+
234
+ n=1
235
+ ���dn − ˆdn
236
+ ���
237
+ 1
238
+ σdn
239
+ ,
240
+ (6)
241
+ Ltrack
242
+ depth = 1
243
+ N
244
+ N
245
+
246
+ n=1
247
+ ���dn − ˆdn
248
+ ���
249
+ 1
250
+
251
+ σdn + ˆσdn
252
+ ,
253
+ (7)
254
+ where σd
255
+ n is the standard deviation of dn, the depth measured
256
+ in pixel n.
257
+ B. Including IMU Data
258
+ Motion data can serve as a valuable source of information
259
+ for state estimation. In this report, we include this data in
260
+ both the tracking and mapping optimization to make use of
261
+ temporal relationship between camera poses.
262
+
263
+ 1) SO(3) Preliminaries: The camera orientation in this
264
+ report is represented by the SO(3) matrix Lie group (MLG).
265
+ For brevity, overall MLG theory is not covered in this report,
266
+ with a general reference to everything found in [12]. How-
267
+ ever, this section deals with various SO(3) operators, which
268
+ need to be defined. The log(·) and exp(·) logarithmic and
269
+ exponential operators respectively convert SO(3) element to
270
+ and from the Lie algebra. The (·)∨ and (·)∧ vee and wedge
271
+ operators convert elements of the Lie algebra respectively
272
+ to and from the R3 representation, for the 3 degrees of
273
+ freedom of SO(3). As a shorthand, the capital logarithmic
274
+ and exponential operators are defined as
275
+ C = exp(ξ∧) ≜ Exp(ξ) ∈ SO(3),
276
+ (8)
277
+ ξ = log(C)∨ ≜ Log(C) ∈ R3.
278
+ (9)
279
+ Additionally, the right-invariant error definition for SO(3) is
280
+ adopted here arbitrarily. With this definition, the difference
281
+ between a nominal ¯C and C is computed as δC = ¯CCT.
282
+ 2) IMU Modelling: Since IMU data is not considered in
283
+ NICE-SLAM, it is not included with any of the provided
284
+ datasets. Therefore, we generate IMU measurements from
285
+ the provided ground truth poses. Specifically, linear and
286
+ angular velocities are generated based on a fixed timestamp
287
+ and corrupted with white Gaussian noise. In this project,
288
+ “IMU” measurements refer to linear and angular velocity
289
+ measurements. This is done in order to simplify derivations,
290
+ since camera velocity estimates are not included, while still
291
+ evaluating the benefit of motion data.
292
+ A linear velocity measurements vk at time tk is generated
293
+ from ground truth camera poses according to
294
+ vk = ¯vk + wv
295
+ k = CT
296
+ k
297
+ �rk+1 − rk
298
+ Tk
299
+
300
+ + wv
301
+ k,
302
+ (10)
303
+ where ¯vk is the true linear velocity, Ck ∈ SO(3) is the
304
+ camera orientation at tk, rı ∈ R3 is the camera position at
305
+ tı, ı ∈ [k, k + 1], Tk = tk+1 − tk is the time increment, and
306
+ wv
307
+ k ∼ N(0, Σv
308
+ k) is the measurement noise with covariance
309
+ Σv
310
+ k. Note, this model assumes that the velocity measurement
311
+ is constant over Tk.
312
+ An angular velocity measurement uk at time tk is gener-
313
+ ated from ground truth camera poses according to
314
+ uk = ¯uk + wu
315
+ k = Log(CT
316
+ kCk+1)
317
+ Tk
318
+ + wu
319
+ k,
320
+ (11)
321
+ where ¯uk is the true angular velocity, wu
322
+ k ∼ N(0, Σu
323
+ k) is the
324
+ measurement noise with covariance Σu
325
+ k, and the assumption
326
+ that the measurement is constant over Tk is again made.
327
+ 3) Tracking with IMU: We add IMU-based loss to the
328
+ tracking optimization that provides a motion prior for the
329
+ current camera pose based on its immediate predecessor.
330
+ Since there is no uncertainty quantification in NICE-SLAM,
331
+ the previous camera pose is treated as fixed, with the IMU-
332
+ based loss being weighted by a factor corresponding to the
333
+ IMU noise.
334
+ Consider the current camera pose Xk = (Ck, rk) as
335
+ being at time tk and the previous camera pose Xk−1 =
336
+ (Ck−1, rk−1) as being at time tk−1. The IMU loss is
337
+ composed of an orientation and position component.
338
+ The orientation component is computed as
339
+ eC
340
+ IMU = Log
341
+
342
+ Exp(uk−1Tk−1)CT
343
+ kCk−1
344
+
345
+ .
346
+ (12)
347
+ For the final loss, this loss is weighted by the uncertainty
348
+ from uk−1. This weight is computed by linearizing eC
349
+ IMU
350
+ with respect to uk−1 and propagating Σu
351
+ k−1 through the
352
+ linearization as
353
+ ΣC
354
+ IMU =
355
+ � ∂eC
356
+ IMU
357
+ ∂wu
358
+ k−1
359
+
360
+ Σu
361
+ k−1
362
+ � ∂eC
363
+ IMU
364
+ ∂wu
365
+ k−1
366
+ �T
367
+ ,
368
+ (13)
369
+ where wu
370
+ k−1 enters eC
371
+ IMU through (11). The final Jacobian,
372
+ with the error u = ¯u−δu and the full derivation omitted for
373
+ brevity, is
374
+ ∂eC
375
+ IMU
376
+ ∂uk−1
377
+ = −J−1
378
+
379
+
380
+ eC
381
+ IMU
382
+
383
+ Jℓ(wu
384
+ k−1Tk−1)Tk−1,
385
+ (14)
386
+ where Jℓ is the left group Jacobian of SO(3).
387
+ The position component is computed as
388
+ er
389
+ IMU = vk−1 − CT
390
+ k−1
391
+ �rk − rk−1
392
+ Tk−1
393
+
394
+ ,
395
+ (15)
396
+ with a weighting resulting from vk−1 being Σr
397
+ IMU = Σv
398
+ k−1.
399
+ The final IMU tracking loss is then
400
+ Ltrack
401
+ IMU = eCT
402
+ IMUΣC−1
403
+ IMUeC
404
+ IMU + erT
405
+ IMUΣr−1
406
+ IMUer
407
+ IMU.
408
+ (16)
409
+ 4) Mapping with IMU: In order to make use of IMU
410
+ data in the mapping optimization, IMU preintegration is
411
+ used. Introduced in [13], IMU preintegration allows to group
412
+ multiple IMU measurements into a relative motion increment
413
+ (RMI). The RMI then functions as a single “measurement”,
414
+ defining a probabilistic motion constraint between two poses
415
+ separated by any number of IMU measurements. Since the
416
+ keyframe used for each mapping step are not predetermined
417
+ a potentially different number of IMU measurements can be
418
+ connected to each consecutive keyframe. IMU preintegration
419
+ allows to greatly simplify the computation the corresponding
420
+ motion constraints between these keyframes, preventing the
421
+ need to keep track of every IMU measurement received.
422
+ The RMIs are computed incrementally between keyframes
423
+ and are saved whenever a new keyframe is added. Consider
424
+ the current camera pose Xk = (Ck, rk) as being at time
425
+ tk, the previous keyframe camera pose Xi = (Ci, ri) as
426
+ being at time ti, and the RMI ∆Xik
427
+ = (∆Cik, ∆rik)
428
+ connecting the two. The orientation component ∆Cik and
429
+ position component ∆rik are incrementally updated with the
430
+ IMU measurement that arrived at tk−1 according to
431
+ ∆Cik = ∆Cik−1 Exp(uk−1Tk−1),
432
+ (17)
433
+ ∆rik = ∆rik−1 + ∆Cik−1(vk−1Tk−1),
434
+ (18)
435
+ with full derivation omitted for brevity. Note, when a new
436
+ keyframe is created, the RMI is reset to ∆Xik = (1, 0). The
437
+
438
+ uncertainty on the RMI can also be updated incrementally
439
+ according to
440
+ ΣRMI
441
+ ik
442
+ =
443
+ � ∂∆Xik
444
+ ∂∆Xik−1
445
+
446
+ ΣRMI
447
+ ik−1
448
+ � ∂∆Xik
449
+ ∂∆Xik−1
450
+ �T
451
+ +
452
+ �∂∆Xik
453
+ ∂wk−1
454
+
455
+ Σw
456
+ k−1
457
+ �∂∆Xik
458
+ ∂wk−1
459
+ �T
460
+ , (19)
461
+ where wk−1 =
462
+
463
+ wu
464
+ k−1
465
+ T
466
+ wv
467
+ k−1
468
+ T�T enters ∆Xik through
469
+ (11) and (10), and Σw
470
+ k−1
471
+ = diag(Σu
472
+ k−1, Σv
473
+ k−1). These
474
+ Jacobians are derived, however, as discussed in Section IV-
475
+ A, are not used in the end. For brevity, their explicit form is
476
+ thus omitted.
477
+ The
478
+ final
479
+ computed
480
+ RMI
481
+ is
482
+ defined
483
+ between
484
+ two
485
+ keyframes. In the case that, during optimization, involved
486
+ keyframes are separated by one or more other not involved
487
+ keyframes, the total RMI can be computed by multiplying
488
+ the individual RMIs through. For example, if keyframes 2
489
+ and 4 are involved in the optimization but 3 is not, the
490
+ RMI between the involved keyframes can be computed as
491
+ X24 = X23X34. Typically, the uncertainty on the RMIs also
492
+ need to be combined, but this was not considered for this
493
+ project.
494
+ The RMI loss between keyframe i and j is
495
+ e∆C
496
+ ij
497
+ = Log
498
+
499
+ ∆CijCT
500
+ j Ci
501
+
502
+ ,
503
+ (20)
504
+ e∆r
505
+ ij = ∆vij − CT
506
+ i (rj − ri) ,
507
+ (21)
508
+ eRMI
509
+ ij
510
+ =
511
+
512
+ e∆CT
513
+ ij
514
+ e∆rT
515
+ ij
516
+ �T
517
+ ,
518
+ (22)
519
+ with a corresponding weight ΣRMI
520
+ ij
521
+ .
522
+ The total final RMI loss for some subset of keyframes z,
523
+ for example z ∈ [2, 4] in the example above, is written
524
+ Lmap
525
+ RMI =
526
+ len(z)
527
+
528
+ q=2
529
+ eRMIT
530
+ z[q−1]z[q]ΣRMI
531
+ z[q−1]z[q]eRMI
532
+ z[q−1]z[q].
533
+ (23)
534
+ C. Background Model
535
+ In order to extend NICE-SLAM to unbounded environ-
536
+ ments without required infinite memory resources, we en-
537
+ code the background of given scene using a spherical grid.
538
+ This representation is similar to the Multi-Sphere Images
539
+ (MSI) proposed in [14] and used in [5].
540
+ 1) Modeling A Sphere at Infinity: In order to preserve
541
+ real-time capability by keeping the representation computa-
542
+ tionally light, we have opted to model the background with
543
+ only one background sphere. This sphere is modeled as if it
544
+ is infinitely far away from the central world frame and, by
545
+ extension, any given camera frame. This allows to represent
546
+ distant objects on the horizon, which can be very helpful for
547
+ camera/robot orientation localization.
548
+ This representation simplifies some of our computations,
549
+ since the only the direction of the pixel ray is required to
550
+ evaluate the contribution of the background model. To see
551
+ why this is true, consider a point on the background sphere
552
+ along a given pixel ray in the camera frame, xc = β ˆxc,
553
+ where ˆxc is the normalized direction of the ray and β
554
+ represents the magnitude or the ray. The normalized ray in
555
+ the world frame can be expressed as
556
+ ˆxw =
557
+ xw
558
+ ∥xw∥2
559
+ = Cwcxc + rcw
560
+ w
561
+ ∥xc + rcw
562
+ w ∥2
563
+ =
564
+ Cwcβ ˆxc + rcw
565
+ w
566
+ β ∥ˆxc + rcw
567
+ w /β∥2
568
+ .
569
+ (24)
570
+ Now, as β → ∞, it is clear that ˆxw ≃ Cwc ˆxc, that is, we
571
+ only need to evaluate the sphere along the rotated camera
572
+ frame ray.
573
+ 2) Background NeRF Model: Consider the formula for a
574
+ pixel colour corresponding to a given ray, r(t) = o + td, as
575
+ given in the original NeRF paper [1]:
576
+ ˆIn =
577
+ � tf
578
+ tn
579
+ T(t)σ(r(t))c(r(t))dt,
580
+ (25)
581
+ where T(t) = Exp
582
+
583
+
584
+ � tf
585
+ tn
586
+ σ(r(s))ds
587
+
588
+ (26)
589
+ where σ(x) represents the scene volume density, T(t) rep-
590
+ resents the accumulated transmittance (probability that a ray
591
+ travels from t to tn), c(r(t)) represents the colour at a given
592
+ point and tn, tf, represent the near and far limits of the
593
+ depth parameter, t, respectively. Now, suppose we allow the
594
+ far limit to extend to infinity, tf → ∞. We can rewrite the
595
+ integral as follows:
596
+ ˆIn,∞ =
597
+ � ∞
598
+ tn
599
+ T(t)σ(r(t))c(r(t))dt
600
+ =
601
+ � tf
602
+ tn
603
+ T(t)σ(r(t))c(r(t))dt +
604
+ � ∞
605
+ tf
606
+ T(t)σ(r(t))c(r(t))dt
607
+ = ˆIn + T(tf)c∞(r(t)).
608
+ where ˆIn is the original NICE-SLAM foreground NeRF and
609
+ c∞(r(t)) =
610
+ � ∞
611
+ tf T(t)σ(r(t))c(r(t)) represents the evalua-
612
+ tion from tf to ∞ of a separate background NeRF. We have
613
+ made use of the fact that
614
+ T(c) = Exp(−
615
+ � c
616
+ a
617
+ σ(r(s))ds)
618
+ = Exp(−
619
+ � b
620
+ a
621
+ σ(r(s))ds) Exp(−
622
+ � c
623
+ b
624
+ σ(r(s))ds)
625
+ = T(b)T(b, c).
626
+ We see that we can represent the background of the scene
627
+ by simply adding a defined background colour, c∞(r(t)),
628
+ multiplied by the final transmittance value at the boundary
629
+ foreground NeRF, T(tf).
630
+ We assume that the background is mostly empty except
631
+ for some points that are very far away. By the arguments
632
+ presented in Section III-C.1, this allows us to represent
633
+ the background colour only in terms of the ray direction:
634
+ c∞(r(t)) ≃ c∞(d) = cbg(d).
635
+ Similar to the encoded color grid for NeRF-SLAM, we
636
+ generate a 2D grid of background features that are warped
637
+ onto a sphere. At render time, we use the grid and a pixel
638
+ ray, d, to interpolate a feature, then decode the feature and
639
+ scale by the boundary transmittance of the foreground NeRF,
640
+ T(tf)2.
641
+ 2Note that NICE-SLAM already computes the rotated rays, d, and
642
+ boundary transmittances, T(tf), so we incur no additional cost to use them
643
+
644
+ IV. RESULTS
645
+ A. Implementation Details
646
+ We implemented the changes outlined in this paper using
647
+ the existing NICE-SLAM codebase [2], making modifica-
648
+ tions to the rendering and loss functions as appropriate. To
649
+ test our changes, we initially tested on the “Demo” dataset
650
+ provided in [2], but used scenes from the Replica dataset
651
+ [15] for depth uncertainty and IMU testing and TUM RGB-
652
+ D dataset [16] for final testing for background sphere testing.
653
+ In order to test the impact of the listed changes on
654
+ robustness, the algorithm is tested with the full, default
655
+ number of iterations suggested by the authors of NICE-
656
+ SLAM and with a heavily reduced number of iterations to
657
+ approach real-time performance. Specifically, for the Replica
658
+ datasets the “full number of iterations” corresponds to 10 and
659
+ 60 iterations for tracking and mapping respectively, whereas
660
+ the ”low number of iterations” corresponds to 5 and 10
661
+ iterations for tracking and mapping respectively. In some
662
+ circumstances, reducing the number of iterations is required
663
+ to ensure real-time capability. Indeed, we found that this
664
+ reduction in number of iterations reduced the overall runtime
665
+ of the NICE-SLAM from 48 minutes to 10 minutes.
666
+ In practice, because the tracking and mapping threads are
667
+ run in parallel, it was found to be challenging to compute
668
+ RMIs at non-keyframe frequency. As a result, an RMI
669
+ connection to the most recent state, which is involved in
670
+ mapping but not guaranteed to be a keyframe, is not included.
671
+ B. Depth Uncertainty and IMU Results
672
+ The main results for experiments with depth uncertainty
673
+ and IMU data are shown in Table I and Figure 1.
674
+ Depth uncertainty parameters were set based on the spec-
675
+ ified depth uncertainty values given for the cameras used
676
+ in each dataset. Typically, this uncertainty increases linearly
677
+ with the depth measurement and depends on the stereo
678
+ baseline.
679
+ It was initially found that the depth uncertainty was less
680
+ impactful on the results of NICE-SLAM. However, it turns
681
+ out that this was only true in smaller environments for which
682
+ the depth uncertainty does not vary greatly (“Demo” dataset
683
+ from [2]). When larger environments were considered (i.e.,
684
+ from Replica dataset [15]), it was found that depth uncer-
685
+ tainty moderately improved most metrics and considerably
686
+ improved metrics for both rooms when used in combination
687
+ with IMU data.
688
+ Across all experiments, the standard deviation of the
689
+ additive noise was 0.01 rad/s and 0.01 m/s for rotation and
690
+ translation measurements, respectively. In general, integra-
691
+ tion of IMU data lead to drastic improvement in both tracking
692
+ error and map reconstruction error. Most notably, for the
693
+ Room 1 test with reduced number of iterations, an order of
694
+ magnitude improvement can be seen in Table I for the RMSE
695
+ and worst case error for tracking as well as the average
696
+ accuracy (Acc.) of the reconstructed map.
697
+ The improvement at low iterations can also be seen in
698
+ Figure 1 (b) and (d). Note that in (b) the localization and
699
+ room reconstruction approaches catastrophic failure when
700
+ the number of iterations is reduced to improve computation
701
+ time. In contrast, even with reduced number of iterations, (d)
702
+ shows that the IMU and depth uncertainty measurements lead
703
+ to a consistent representation. This highlights an important
704
+ conclusion: addition of depth uncertainty and IMU data can
705
+ reduce the number of iterations required for convergence,
706
+ thereby increasing the runtime frequency of NICE-SLAM.
707
+ C. Background Representation
708
+ The background NeRF representation outlined in Section
709
+ III-C was implemented and tested on a subset of images from
710
+ the Freiburg2 RPY scene from the TUM RGB-D dataset.
711
+ This scene was selected because it involved mostly only
712
+ rotations of the camera and because the scene itself consisted
713
+ of distinct foreground and background elements.
714
+ To simplify this experiment, the tracking part of NICE-
715
+ SLAM was disabled and the ground truth camera posi-
716
+ tions were used. Additionally, the IMU measurements and
717
+ depth uncertainty measurements were not included in this
718
+ experiment. The bounding box of the foreground NeRF was
719
+ intentionally set to a small value (1.5 m) to observe the
720
+ effect of the including the background. Figure 2 shows the
721
+ background model and resulting image reconstruction (with
722
+ and without background) for three scenes in the dataset. By
723
+ comparing columns c) and d) with a) it is clear that the
724
+ background model allows the details in the background to be
725
+ represented more accurately. For this experiment, the average
726
+ colour loss was decreased by 18.32% when the background
727
+ model was included.
728
+ V. CONCLUSIONS
729
+ We have shown how the addition of depth uncertainty
730
+ and IMU data can improve the accuracy of NICE-SLAM,
731
+ especially when reducing the number of allowed iterations
732
+ for each timestep. Additionally, we have demonstrated that
733
+ spherical background model can improve the image recon-
734
+ struction of NICE-SLAM when the scene is too large to be
735
+ modeled by the foreground NeRF.
736
+ In the future, the goal would be to test the implemented
737
+ changes in a large environment where background visual in-
738
+ formation is significantly far away from the robot. Addition-
739
+ ally, in order to make NeRF-based SLAM truly open world,
740
+ it is required to remove the dependency on a predefined
741
+ grid. Potential work in this area would involve switching to
742
+ a dynamically expanding octree. This would allow a robot
743
+ to explore new environments while maintaining reasonable
744
+ memory requirements by only forming finer grid resolutions
745
+ around objects.
746
+ ACKNOWLEDGMENT
747
+ Thank you Alec Krawciw for taking the time out of your
748
+ weekend to go to UTIAS and turn on the lab computer so
749
+ that we could continue running tests for this project.
750
+
751
+ (a) NICE-SLAM: Full number of iterations Default
752
+ (b) NICE-SLAM: Low number of iterations Default
753
+ (c) Ours: Full number of iterations IMU + Dep.
754
+ (d) Ours: Low number of iterations IMU + Dep.
755
+ Fig. 1: Reconstruction results for NICE-SLAM and our proposed modifications run at a full and low number of iterations.
756
+ Fig. 2: Experiment demonstrating the effect of the background sphere across different frames in the Freiburg2 RPY scene
757
+ from the TUM RGB-D dataset. a) Input image; b) Background sphere only; c) NICE-SLAM with background active; d)
758
+ Original NICE-SLAM (no background model).
759
+ REFERENCES
760
+ [1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
761
+ thi, and R. Ng, “NeRF: Representing Scenes as Neural Radiance Fields
762
+ for View Synthesis,” Aug. 2020, arXiv:2003.08934 [cs].
763
+
764
+ Set Up
765
+ Room 0
766
+ Room 1
767
+ Tracking
768
+ Mapping
769
+ Tracking
770
+ Mapping
771
+ RMSE
772
+ Max.
773
+ Acc.
774
+ Comp.
775
+ C.R.
776
+ Dep. L1
777
+ RMSE
778
+ Max.
779
+ Acc.
780
+ Comp.
781
+ C.R.
782
+ Dep. L1
783
+ [cm] ↓
784
+ [cm] ↓
785
+ [cm] ↓
786
+ [cm] ↓
787
+ [%] ↑
788
+ [cm] ↓
789
+ [cm] ↓
790
+ [cm] ↓
791
+ [cm] ↓
792
+ [cm] ↓
793
+ [%] ↑
794
+ [cm] ↓
795
+ Full Iter.
796
+ Default
797
+ 0.020
798
+ 0.072
799
+ 2.744
800
+ 3.000
801
+ 91.03
802
+ 1.922
803
+ 0.026
804
+ 0.103
805
+ 2.796
806
+ 2.376
807
+ 92.43
808
+ 1.732
809
+ Depth
810
+ 0.018
811
+ 0.074
812
+ 2.646
813
+ 2.840
814
+ 91.25
815
+ 1.763
816
+ 0.018
817
+ 0.048
818
+ 2.430
819
+ 2.257
820
+ 93.54
821
+ 1.488
822
+ IMU
823
+ 0.019
824
+ 0.053
825
+ 2.442
826
+ 2.756
827
+ 91.10
828
+ 1.752
829
+ 0.019
830
+ 0.061
831
+ 2.300
832
+ 2.298
833
+ 93.12
834
+ 1.493
835
+ IMU + Dep.
836
+ 0.019
837
+ 0.057
838
+ 2.796
839
+ 2.855
840
+ 90.71
841
+ 1.700
842
+ 0.020
843
+ 0.057
844
+ 2.671
845
+ 2.293
846
+ 93.22
847
+ 1.378
848
+ Low Iter.
849
+ Default
850
+ 0.156
851
+ 0.627
852
+ 5.083
853
+ 5.030
854
+ 67.29
855
+ 5.677
856
+ 0.531
857
+ 1.148
858
+ 15.55
859
+ 16.67
860
+ 35.68
861
+ 24.98
862
+ Depth
863
+ 0.211
864
+ 0.539
865
+ 5.641
866
+ 6.330
867
+ 66.13
868
+ 7.937
869
+ 0.3429
870
+ 0.8199
871
+ 18.17
872
+ 18.57
873
+ 28.79
874
+ 25.89
875
+ IMU
876
+ 0.029
877
+ 0.079
878
+ 3.357
879
+ 3.646
880
+ 84.61
881
+ 3.258
882
+ 0.031
883
+ 0.104
884
+ 3.116
885
+ 3.360
886
+ 84.51
887
+ 3.189
888
+ IMU + Dep.
889
+ 0.029
890
+ 0.085
891
+ 3.217
892
+ 3.595
893
+ 84.98
894
+ 3.293
895
+ 0.030
896
+ 0.089
897
+ 2.635
898
+ 2.968
899
+ 88.35
900
+ 2.373
901
+ TABLE I: Results from two trials on “Replica” dataset. Best results (within 5% of pre-rounded values) are in bold. RMSE
902
+ refers to Root Mean Squared Error; Max. refers to worst cases error; Comp. refers to the average distance to the nearest
903
+ reconstructed mesh from ground truth mesh; C.R. refers to the completion ratio, or percentage of points with completion
904
+ under 5 cm; Dep. L1 refers to sum of absolute depth errors.
905
+ [2] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald,
906
+ and M. Pollefeys, “NICE-SLAM: Neural Implicit Scalable Encoding
907
+ for SLAM,” Apr. 2022, arXiv:2112.12130 [cs].
908
+ [3] V. Rudnev, M. Elgharib, W. Smith, L. Liu, V. Golyanik, and
909
+ C. Theobalt, “NeRF for Outdoor Scene Relighting,” Jul. 2022,
910
+ arXiv:2112.05140 [cs].
911
+ [4] T.
912
+ Takikawa,
913
+ J.
914
+ Litalien,
915
+ K.
916
+ Yin,
917
+ K.
918
+ Kreis,
919
+ C.
920
+ Loop,
921
+ D. Nowrouzezahrai, A. Jacobson, M. McGuire, and S. Fidler,
922
+ “Neural Geometric Level of Detail: Real-time Rendering with
923
+ Implicit 3D Shapes,” in 2021 IEEE/CVF Conference on Computer
924
+ Vision and Pattern Recognition (CVPR).
925
+ Nashville, TN, USA: IEEE,
926
+ Jun. 2021, pp. 11 353–11 362.
927
+ [5] A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, B. Recht, and
928
+ A. Kanazawa, “Plenoxels: Radiance Fields without Neural Networks,”
929
+ Dec. 2021, arXiv:2112.05131 [cs].
930
+ [6] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
931
+ primitives with a multiresolution hash encoding,” ACM Transactions
932
+ on Graphics, vol. 41, no. 4, pp. 1–15, Jul. 2022.
933
+ [7] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey, “BARF: Bundle-
934
+ Adjusting Neural Radiance Fields,” Aug. 2021, arXiv:2104.06405 [cs].
935
+ [8] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF–
936
+ : Neural Radiance Fields Without Known Camera Parameters,” Apr.
937
+ 2022, arXiv:2102.07064 [cs].
938
+ [9] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “iMAP: Implicit Mapping
939
+ and Positioning in Real-Time,” in 2021 IEEE/CVF International
940
+ Conference on Computer Vision (ICCV).
941
+ Montreal, QC, Canada:
942
+ IEEE, Oct. 2021, pp. 6209–6218.
943
+ [10] A. Rosinol, J. J. Leonard, and L. Carlone, “NeRF-SLAM: Real-Time
944
+ Dense Monocular SLAM with Neural Radiance Fields,” Oct. 2022,
945
+ arXiv:2210.13641 [cs].
946
+ [11] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
947
+ Versatile and Accurate Monocular SLAM System,” IEEE Transactions
948
+ on Robotics, vol. 31, no. 5, pp. 1147–1163, Oct. 2015. [Online].
949
+ Available: https://ieeexplore.ieee.org/document/7219438/
950
+ [12] J. Solà, J. Deray, and D. Atchuthan, “A Micro Lie Theory for State
951
+ Estimation in Robotics,” arXiv:1812.01537v8, 2018.
952
+ [13] T. Lupton and S. Sukkarieh, “Visual-Inertial-Aided Navigation for
953
+ High-Dynamic Motion in Built Environments without Initial Condi-
954
+ tions,” IEEE Trans. Robot., vol. 28, no. 1, pp. 61–76, 2012.
955
+ [14] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++: Analyzing
956
+ and Improving Neural Radiance Fields,” Oct. 2020, arXiv:2010.07492
957
+ [cs]. [Online]. Available: http://arxiv.org/abs/2010.07492
958
+ [15] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green,
959
+ J. J. Engel, R. Mur-Artal, C. Ren, S. Verma, A. Clarkson, M. Yan,
960
+ B. Budge, Y. Yan, X. Pan, J. Yon, Y. Zou, K. Leon, N. Carter,
961
+ J. Briales, T. Gillingham, E. Mueggler, L. Pesqueira, M. Savva,
962
+ D. Batra, H. M. Strasdat, R. De Nardi, M. Goesele, S. Lovegrove,
963
+ and R. Newcombe, “The replica dataset: A digital replica of indoor
964
+ spaces,” no. arXiv:1906.05797, Jun 2019, arXiv:1906.05797 [cs, eess].
965
+ [16] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
966
+ benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
967
+ International Conference on Intelligent Robot Systems (IROS), Oct.
968
+ 2012.
969
+ VI. SUPPLEMENTARY MATERIAL
970
+ An example of a simplified (black and white) background
971
+ rendering can be seen in Figure 3. This was used initially to
972
+ debug the background model, but has been included in this
973
+ section since it is instructive.
974
+ Fig. 3: Interpolated rendering at different angles of checker-
975
+ board background grid for angle divisions of 0.02 (rad). Zero
976
+ (deg) camera angle corresponds to z axis in world frame.
977
+
978
+ Camera Angle:
979
+ Camera Angle:
980
+ 0.0 deg
981
+ 90.0 deg
982
+ Camera Angle:
983
+ Camera Angle:
984
+ 45.0 deg
985
+ 135.0 deg
A9E1T4oBgHgl3EQfVgQy/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdE3T4oBgHgl3EQfUQrt/content/2301.04450v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82593c43cd0ae116cfd2185644067f9547c59e0f833d62f1464ee5175854863e
3
+ size 559661
CdE3T4oBgHgl3EQfUQrt/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7995997b307c99e42182c836192dd25a86990ab8c7d6ef0e3d1c60c5ec061a92
3
+ size 2228269
CdE3T4oBgHgl3EQfUQrt/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecc6c5bdebe414e1bce65ae7ec8594a3c412058626a4922038fc1a138a4ca099
3
+ size 76770
DdE2T4oBgHgl3EQfSQc5/content/2301.03790v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d92319b9f08978a39d79cc02b07be86b05e937d019e68ea12cf38bb7f3e13c9
3
+ size 933177
DdE2T4oBgHgl3EQfSQc5/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3eba14e7ae57075a9047b120b8386b051e0e323600a0b4816ec4a4405a9288
3
+ size 2228269
DdE2T4oBgHgl3EQfSQc5/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca1e1fcfa76cbba2b33d75249b03534ba31310bf079a553cda6f4b3676f8dfe9
3
+ size 103227
DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181d87dd7833941b383a9195ba1f8a9a13ad519d79beabfb89e0394864f851fb
3
+ size 761627
DtE5T4oBgHgl3EQfUQ_q/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d67b69f8a8b6522b9fa33d7de76f36796a9b2e62886e3815617f99e2423cc54b
3
+ size 42892
ENE1T4oBgHgl3EQfEQP0/content/tmp_files/2301.02889v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENE1T4oBgHgl3EQfEQP0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f615023a06e3f3e9ffc84b1811be49cbc895535f2f576f0ec7be2d13624d499
3
+ size 408379
EtAzT4oBgHgl3EQfG_tj/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:669327f8b883186671a746dcf2e4cb91176c2d7bd9e124cad36feafc261655a4
3
+ size 1441837
EtAzT4oBgHgl3EQfG_tj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0872e2b0b094193a591da36cb7d0c2bc790e8856ded240936398819554414e64
3
+ size 49909
F9E1T4oBgHgl3EQfFAMn/content/2301.02896v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:985212cbad91b2c73c4126ae8293aedca6b8cece435e95b33b907bec6c05c4b6
3
+ size 1143182
KtAyT4oBgHgl3EQff_jL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db0f6202ec0c589e54d1e4731501ee96717e30b73b5073ada6c6cf981b4735cd
3
+ size 3342381
N9E3T4oBgHgl3EQfZQq9/content/tmp_files/2301.04496v1.pdf.txt ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CONTENTS
2
+ CONTENTS
3
+ Photoinduced pairing in Mott insulators
4
+ Satoshi Ejima1,2⋆ and Holger Fehske1,3
5
+ 1 Institut für Physik, Universität Greifswald, 17489 Greifswald, Germany
6
+ 2 Institut für Softwaretechnologie, Abteilung High-Performance Computing, Deutsches Zentrum
7
+ für Luft- und Raumfahrt (DLR), 22529 Hamburg, Germany
8
+ 3 Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität
9
+ Erlangen-Nürnberg, 91058 Erlangen, Germany
10
11
+ January 12, 2023
12
+ International Conference on Strongly Correlated Electron Systems
13
+ (SCES 2022)
14
+ Amsterdam, 24-29 July 2022
15
+ doi:10.21468/SciPostPhysProc.?
16
+ Abstract
17
+ Utilizing time-evolution techniques in (infinite) matrix-product-state representation, we study
18
+ the non-equilibrium dynamics of driven Mott insulators and demonstrate photoinduced η
19
+ pairing directly in the thermodynamic limit. Analyzing the time evolution of the correspond-
20
+ ing pairing correlations, we determine the optimal laser pump parameters for which long-
21
+ range η-pairing becomes dominant after pulse irradiation. The time-dependent photoemis-
22
+ sion spectra for this optimal pump parameter set show clear signatures of the photoinduced
23
+ insulator-to-metal phase transition related to the formation of η pairs.
24
+ Contents
25
+ 1
26
+ Introduction
27
+ 2
28
+ 2
29
+ Model
30
+ 2
31
+ 3
32
+ Pairing correlations
33
+ 3
34
+ 4
35
+ Non-equilibrium dynamics
36
+ 5
37
+ 5
38
+ Conclusions
39
+ 6
40
+ References
41
+ 7
42
+ 1
43
+ arXiv:2301.04496v1 [cond-mat.str-el] 11 Jan 2023
44
+
45
+ SCES
46
+ Amsterdam
47
+ 2022
48
+ 金2
49
+ MODEL
50
+ 1
51
+ Introduction
52
+ η pairing, proposed first by C. N. Yang in 1989 [1], gives rise to a pairing-density-wave-like off-
53
+ diagonal long-range order in the Hubbard model. While it can be used to construct exact eigen-
54
+ states of this model, η pairing is absent in the Hubbard model’s ground state, and therefore has
55
+ attracted only specific attention, mostly from mathematical point of view. Recently, however, it
56
+ was pointed out that the η-pairing state will be enforced by pulse irradiation [2]. The respective
57
+ enhancement of pairing correlations emerged in time-dependent exact diagonalisations: Calcu-
58
+ lating all eigenstates as well as pairing correlations for a small cluster and taking the selection
59
+ rule of η pairs into account, Kaneko et al. showed that this photoinduced state is related to the
60
+ η-pairing state [2].
61
+ Meanwhile, as a result of on-going developments in (time-depenent) density-matrix renormal-
62
+ isation group [(t-)DMRG] technique [3,4], optically driven systems in (quasi-)one-dimension can
63
+ be simulated directly in the thermodynamic limit. In doing so, static correlation functions such
64
+ as η-pair correlations can be computed by means of the infinite time-evolving block decimation
65
+ (iTEBD) technique [5], taking advantage of translational invariance in the infinite matrix-product-
66
+ state (iMPS) representation. Building window sites with so-called infinite boundary conditions
67
+ (IBC) in the uniform update scheme [6] enables us to simulate non-equilibrium dynamics of ex-
68
+ cited (quasi-)one-dimensional (1D) systems by a laser electric field [7].
69
+ On this basis, in this study, we reexamine the time-evolution of photoinduced η-pairing, mainly
70
+ to confirm or put in question previous small cluster results. Thereby we emphasize the impor-
71
+ tance of using optimal pump pulse parameters. Furthermore, we reconsider the relation between
72
+ the η-pairing correlations and the optical spectrum in the small-amplitude regime after pulse ir-
73
+ radiation. Finally we prove the photoinduced insulator-to-metal phase transition by simulating
74
+ time-dependent photoemission spectra of driven Mott insulators.
75
+ 2
76
+ Model
77
+ Let us consider the 1D half-filled Hubbard model,
78
+ ˆH = −th
79
+
80
+ j,σ
81
+
82
+ ˆc†
83
+ j,σˆcj+1,σ + H.c.
84
+
85
+ + U
86
+
87
+ j
88
+
89
+ ˆnj,↑ − 1/2
90
+ ��
91
+ ˆnj,↓ − 1/2
92
+
93
+ ,
94
+ (1)
95
+ where th is the nearest-neighbor transfer amplitude and U gives the on-site part of the Coulomb
96
+ interaction. In Eq. (1), ˆc†
97
+ j,σ (ˆcj,σ) creates (annihilates) a spin-σ (=↑,↓) electron at Wannier lattice
98
+ site j, and ˆnj,σ = ˆc†
99
+ j,σˆcj,σ. In the repulsive case (U > 0) the model realizes a Mott insulating
100
+ ground state with a finite charge gap ∆.
101
+ Exact eigenstates of the Hubbard model can be constructed by means of the operators ˆη+ =
102
+
103
+ j(−1)j ˆ∆†
104
+ j,
105
+ ˆη− = ( ˆη+)†, and ˆηz = 1
106
+ 2
107
+
108
+ j(ˆnj,↑ + ˆnj,↓ − 1), where ˆ∆†
109
+ j = ˆc†
110
+ j,↓ˆc†
111
+ j,↑ denotes the singlet pair-creation
112
+ operator [1]. These so-called η operators fulfill SU(2) commutation relations [ ˆη+, ˆη−] = 2 ˆηz and
113
+ [ ˆηz, ˆη±] = ± ˆη±. Apparently, the Hubbard Hamiltonian (1) commutes with ˆη2 = 1
114
+ 2( ˆη+ ˆη−+ ˆη− ˆη+)+( ˆηz)2,
115
+ i.e., 〈η2〉 is a conserved quantity. Long-ranged pairing correlations 〈 ˆη+
116
+ j ˆη−
117
+ ℓ 〉 develop when the ex-
118
+ pectation value 〈 ˆη2〉 becomes finite, but such η-pairing states cannot be the ground state of the
119
+ Hubbard model [1]. Pulse irradiation can establish η-paired states in Mott insulators however [2].
120
+ To address this issue, we apply a pump pulse with amplitude A0, frequency ωp and width σp,
121
+ 2
122
+
123
+ 3
124
+ PAIRING CORRELATIONS
125
+ 0
126
+ 5
127
+ 10
128
+ 15
129
+ 20
130
+ 0
131
+ 0.5
132
+ 1.0
133
+ 1.5
134
+ t · th
135
+ ˜P(q = π, t)
136
+ 2nd(t)
137
+ U/th = 8
138
+ Figure 1: Typical time-evolution process of ˜P(q = π, t) and 2nd(t) for the photoin-
139
+ duced η-pairing states in the strong-coupling regime of the driven Hubbard model with
140
+ U/th = 8 and pump parameters A0=0.4, ωp/th = 7.0, σp = 2t−1
141
+ h
142
+ and t0 = 10t−1
143
+ h .
144
+ The iTEBD data are obtained for bond dimension χ = 1200, ensuring a truncation error
145
+ smaller than 10−5. For the iTEBD calculations, we employ a second-order Suzuki-Trotter
146
+ decomposition with time step 0.1t−1
147
+ h
148
+ (0.01t−1
149
+ h ).
150
+ centered at time t0(> 0):
151
+ A(t) = A0e−(t−t0)2/(2σ2
152
+ p) cos
153
+
154
+ ωp(t − t0)
155
+
156
+ .
157
+ (2)
158
+ The external time-dependent electric field A(t) changes the hopping amplitude by a Peierls phase [8]:
159
+ thˆc†
160
+ j,σˆcj+1,σ → theiA(t)ˆc†
161
+ j,σˆcj+1,σ, i.e., ˆH → ˆH(t). As a result, the system being initially in the ground
162
+ state, is driven out of equilibrium, |ψ(0)〉 → |ψ(t)〉.
163
+ 3
164
+ Pairing correlations
165
+ The η-pairing state can be detected evaluating the time evolution of the pair-correlation function
166
+ P(r, t) = 1
167
+ L
168
+
169
+ j
170
+ 〈ψ(t)| ˆ∆†
171
+ j+r ˆ∆j + H.c.)|ψ(t)〉
172
+ (3)
173
+ and its Fourier transform ˜P(q, t) =
174
+
175
+ r eiqr P(r, t). As found in Refs. [2,9] for small clusters, ˜P(π, t)
176
+ is enhanced after pulse irradiation, indicating the formation of an η-pairing state. By means of
177
+ iTEBD this is confirmed directly in the thermodynamic limit which is demonstrated in Fig. 1 for
178
+ a pump with A0 = 0.4, ωp/th = 7.0 and σp = 2t−1
179
+ h
180
+ centered at t0 = 10t−1
181
+ h .
182
+ ˜P(π, t) shows
183
+ a clear response to pulse irradiation and is strengthened as the system progresses in time until
184
+ saturation is reached. Obviously, the nonlocal contributions have a stronger impact on ˜P(π, t)
185
+ than the double occupancy nd(t) = (1/L)
186
+
187
+ j〈ψ(t)|ˆnj,↑ˆnj,↓|ψ(t)〉 [note that P(r = 0, t) = 2nd(t),
188
+ where nd(0) > 0 for the finite U values considered].
189
+ The enhancement process of η-pairing can be described as follows [2]: The initial state before
190
+ pulse irradiation is the ground state of the Hubbard chain with |η = 0,ηz = 0〉, which is consis-
191
+ tent with the numerical finding: ˜P(0, t = 0) ≃ 0 (see Fig. 1). Turning on the pump pulse, the
192
+ 3
193
+
194
+ 3
195
+ PAIRING CORRELATIONS
196
+ 0
197
+ 0.4
198
+ 0.8
199
+ 1.2
200
+ 4
201
+ 6
202
+ 8
203
+ 10
204
+ 12
205
+ A0
206
+ ωp/th
207
+ 0
208
+ 0.4
209
+ 0.8
210
+ 1.2
211
+ 2
212
+ 4
213
+ 6
214
+ 8
215
+ 10
216
+ 12
217
+ 0
218
+ 0.4
219
+ 0.8
220
+ 1.2
221
+ ω/th,
222
+ ωp/th
223
+ Im χJJ(ω)
224
+ 0
225
+ 2
226
+ 4
227
+ 6
228
+ 8
229
+ 10
230
+
231
+ P(π, t)/A2
232
+ 0
233
+ A0 = 0.04
234
+ A0 = 0.06
235
+ A0 = 0.08
236
+ A0 = 0.10
237
+ Figure 2: (a): Contour plots of ˜P(q = π, t) in the ωp-A0 plane at t = 15t−1
238
+ h . Again
239
+ U/th = 8, and the pump is parametrized by σp = 2t−1
240
+ h
241
+ at t0 = 10t−1
242
+ h . (b): ˜P(π, t) at
243
+ t = 15t−1
244
+ h
245
+ in the small-A0 area enclosed by the dashed square in panel (a). Dividing by
246
+ A2
247
+ 0, data can be rescaled to Imχ(ω) (black line), where Imχ(ω) is the imaginary part of
248
+ the optical spectrum χJJ(ω).
249
+ Hamiltonian does not commute with the η-operators anymore,
250
+ [ ˆH(t),η+] = [ ˆH,η+]cos[A(t)] +
251
+
252
+ k
253
+ F(k, t)ˆc†
254
+ π−k,↓ˆc†
255
+ k,↑ ,
256
+ (4)
257
+ where F(k, t) = 4th sin[A(t)]sin k. This alters the initial state to a state with a finite expectation
258
+ value 〈 ˆη2〉. Even though the commutation relation is recovered for t ≫ t0, i.e., [ ˆH(t), ˆη+] → [ ˆH, ˆη+]
259
+ [since A(t) → 0], |ψ(t)〉 now includes components of |η > 0,ηz = 0〉 leading to the enhancement
260
+ of ˜P(π, t), see Fig. 1 for t > t0.
261
+ Note that the enhancement of η pairing after pulse irradiation depends, however, strongly
262
+ on the pump pulse parameters. The optimal parameter set for inducing η-pairing states can be
263
+ determined examining the A0 and ωp dependences of ˜P(π, t) by iTEBD. Figure 2(a) shows the
264
+ contour plot of ˜P(π, t) after pulse irradiation (t = 15t−1
265
+ h ). We find a single maximum around
266
+ A0 ≈ 0.4 and ωp/th ≈ 7.0 (marked by the “×" symbol), instead of the stripe structure observed in
267
+ the finite-system (L = 14) exact diagonalisation (ED) simulations [2].
268
+ Another notable results of previous ED calculations [2] was that the peak structure of ˜P(π, t) as
269
+ a function of ωp for small A0 is essentially the same as those of the ground-state optical spectrum,
270
+ χJJ(ω > 0) = − 1
271
+ L 〈ψ0|ˆJ
272
+ 1
273
+ E0 − ˆH + ħhω + iηL
274
+ ˆJ|ψ0〉,
275
+ (5)
276
+ where |ψ0〉 is the ground state having energy E0 and Lorentzian width ηL. In (5), the Hubbard-
277
+ model charge-current operator is ˆJ = ith
278
+
279
+ j,σ(ˆc†
280
+ j,σˆcj+1,σ − ˆc†
281
+ j+1,σˆcj,σ).
282
+ Figure 2(b) compares the iTEBD data, obtained for ˜P(π, t) at various small A0 and t = 15t−1
283
+ h ,
284
+ with the t-DMRG results for χJJ(ω) (using ηL/th = 0.2), in dependence on ωp respectively ω.
285
+ Most notably, ˜P(π, t) divided by A2
286
+ 0 scales to the imaginary part of the optical spectrum Imχ(ω).
287
+ This can be understood as follows: The hopping term including the Peierls phase can be divided
288
+ 4
289
+
290
+ 4
291
+ NON-EQUILIBRIUM DYNAMICS
292
+ −π
293
+ π −π
294
+ π −π
295
+ π
296
+ 0
297
+ 0.2
298
+ A(ω; t)
299
+ t = 5t−1
300
+ h
301
+ t = 10t−1
302
+ h
303
+ t = 15t−1
304
+ h
305
+ 8
306
+ −8
307
+ −4
308
+ 0
309
+ 4
310
+ 0
311
+ ω/th
312
+ k
313
+ (a) t = 5t−1
314
+ h
315
+ 0
316
+ k
317
+ (b) t = 10t−1
318
+ h
319
+ 0
320
+ k
321
+ (c) t = 15t−1
322
+ h
323
+ 0.1
324
+ (d)
325
+ Figure 3: Snapshots of the photoemission spectra A(k,ω; t) indicating photoinduced η-
326
+ pairing during the pump at times t = 5t−1
327
+ h
328
+ (a), 10t−1
329
+ h
330
+ (b) and 15t−1
331
+ h
332
+ (c). The pump is
333
+ parametrized by A0 = 0.4, ωp/th = 7.0 [see ‘×’-symbol in Fig. 2(a)], and σp = 2t−1
334
+ h
335
+ at
336
+ t0 = 10t−1
337
+ h . The transient integrated density of states A(ω; t) obtained from the data of
338
+ panels (a)-(c) is depicted in panel (d). All data are obtained by the (i)TEBD technique
339
+ with IBC for the 1D half-filled Hubbard model with U/th = 8. Note that the time cutoff in
340
+ the simulation of time-dependent correlation functions is T = 5t−1
341
+ h , i.e., the integration
342
+ in Eq. 7 extends only over the interval −T ≤ τ1,τ2 ≤ T. As a compromise between time
343
+ and frequency resolutions we have chosen a probe pulse width σpr = 2t−1
344
+ h .
345
+ into kinetic and current operators as
346
+ −th
347
+
348
+ j,σ
349
+
350
+ eiA(t)ˆc†
351
+ j,σˆcj+1,σ + H.c.
352
+
353
+ = ˆK cos[A(t)] + ˆJ sin[A(t)],
354
+ (6)
355
+ where ˆK = −th
356
+
357
+ j,σ(ˆc†
358
+ j,σˆcj+1,σ +H.c.). For small A0 and large t, the second term in Eq. (6) can be
359
+ approximated by ˆJA0, yielding a significant contribution of A2
360
+ 0 to the pair correlations. Needless
361
+ to say that the finite-size effects are eliminated by simulating the pair correlations directly in
362
+ thermodynamic limit by iTEBD, leading to the single-peak structure in Fig. 2(b), in strong contrast
363
+ to the multiple-peak structure observed in the ED calculations [2].
364
+ 4
365
+ Non-equilibrium dynamics
366
+ We now analyze the non-equilibrium photoemission spectra A(k,ω; t) =
367
+
368
+ σ=↑,↓ Aσ(k,ω; t) for
369
+ the optimal pump parameter set marked by the “×"-symbol in Fig. 2(a). To explore the system
370
+ dynamics in a non-equilibrium situation, time-dependent spectral functions of the form [10]
371
+ Aσ(k,ω; t) =
372
+
373
+ r
374
+ e−ikr
375
+ � ∞
376
+ −∞
377
+ � ∞
378
+ −∞
379
+ dτ1dτ2 f (τ1,τ2;ω) · Cσ(r,τ1,τ2; t)
380
+ (7)
381
+ are of interest. Here, the non-equilibrium two-point correlator
382
+ Cσ(r,τ1,τ2; t) = 〈φ(t)|ˆc†
383
+ j+r,σ(τ1; t)ˆcj,σ(τ2; t)|φ(t)〉
384
+ (8)
385
+ 5
386
+
387
+ 5
388
+ CONCLUSIONS
389
+ is defined relative to t, and
390
+ f (τ1,τ2;ω) = eiω(τ1−τ2)g(τ1)g(τ2), g(τ) = exp[−τ2/2σ2
391
+ pr]/
392
+
393
+ 2πσpr
394
+ (9)
395
+ specify the shape of the probe pulse, e.g., in a time-dependent photoemission spectroscopy exper-
396
+ iment. How numerically simulate two-time-dependent quantities such as Cσ(r,τ1,τ2; t) has been
397
+ explained in detail in Ref. [7] [see paragraphs below Eq. (1)].
398
+ Figure 3 displays our (i)TEBD results for the 1D half-filled Hubbard model in the strong-
399
+ coupling regime (U/th = 8). Before pump irradiation the state is a Mott insulator with a noticable
400
+ single-particle gap, see Fig. 3(a) for t = 5t−1
401
+ h . In the midst of the pump (t = 10t−1
402
+ h ), an extra
403
+ dispersion above Fermi energy (ω > EF) appears and persists afterwards [Fig. 3(c)].
404
+ Evaluating the integrated density of states
405
+ A(ω; t) = 1
406
+ L
407
+
408
+ k
409
+ A(k,ω; t),
410
+ (10)
411
+ we see more clearly how the spectral weight is shifted from ω < EF to ω > EF due to the photoin-
412
+ duced η-pairing. Figure 3(d) gives A(ω; t) for the photoinduced η-pairing state. Obviously, the
413
+ spectral weight for ω > EF increases distinctly over time, indicating a photoinduced phase tran-
414
+ sition from a Mott insulator to a metallic η-pairing state. This photoinduced insulator-to-metal
415
+ transition should be observed in time- and angle-resolved photoemission spectroscopy, when the
416
+ pure Hubbard model is realized experimentally, e.g., in optical lattices. We note that the pho-
417
+ toinduced phase transition cannot be observed by simulating the time-dependent photoemission
418
+ spectra with not-optimized pump-pulse parameters, see Ref. [7].
419
+ 5
420
+ Conclusions
421
+ To summarize, combining tensor-network algorithms with infinite time-evolving block decimation
422
+ techniques, we revisited the problem of photoinducing η-pairing states in the one-dimensional
423
+ Hubbard model at half band filling. This allowed us to prove the enhancement of the pairing
424
+ correlations directly in the thermodynamic limit. We also determined the optimal pump-pulse
425
+ parameter set that maximizes the η-pairing tendency. An η-pairing related Mott insulator to metal
426
+ transition could be extracted from the time-dependent photoemission spectrum.
427
+ We wish to stress that the numerical approach presented here can be applied to simulate the
428
+ non-equilibrium dynamics of any (quasi-)one-dimensional translational-invariant system in entire
429
+ ranges of interacting and driving parameters. For example, the photoinduced metallization of
430
+ excitonic insulators was demonstrated quite recently in accordance with time- and angle-resolved
431
+ photoemission spectroscopy experiments on Ta2NiSe5 [14,15].
432
+ Acknowledgements
433
+ The iTEBD simulations were performed using the ITensor library [16].
434
+ Funding information
435
+ S.E. was supported by Deutsche Forschungsgemeinschaft through project
436
+ EJ 7/2-1.
437
+ 6
438
+
439
+ REFERENCES
440
+ REFERENCES
441
+ References
442
+ [1] C. N. Yang, η pairing and off-diagonal long-range order in a Hubbard model, Phys. Rev. Lett.
443
+ 63, 2144 (1989), doi:10.1103/PhysRevLett.63.2144.
444
+ [2] T. Kaneko, T. Shirakawa, S. Sorella and S. Yunoki, Photoinduced η pairing in the Hubbard
445
+ model, Phys. Rev. Lett. 122, 077002 (2019), doi:10.1103/PhysRevLett.122.077002.
446
+ [3] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett.
447
+ 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.
448
+ [4] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states,
449
+ Ann. Phys. 326(1), 96 (2011), doi:10.1016/j.aop.2010.09.012.
450
+ [5] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimension,
451
+ Phys. Rev. Lett. 98, 070201 (2007), doi:10.1103/PhysRevLett.98.070201.
452
+ [6] V. Zauner, M. Ganahl, H. G. Evertz and T. Nishino,
453
+ Time evolution within a comoving
454
+ window: scaling of signal fronts and magnetization plateaus after a local quench in quan-
455
+ tum spin chains, J. Phys.: Condens. Matter 27(42), 425602 (2015), doi:10.1088/0953-
456
+ 8984/27/42/425602.
457
+ [7] S. Ejima, F. Lange and H. Fehske, Nonequilibrium dynamics in pumped mott insulators, Phys.
458
+ Rev. Research 4, L012012 (2022), doi:10.1103/PhysRevResearch.4.L012012.
459
+ [8] R. Peierls, Zur Theorie des Diamagnetismus von Leitungselektronen, Z. Phys. 80(11), 763
460
+ (1933), doi:10.1007/BF01342591.
461
+ [9] S.
462
+ Ejima,
463
+ T.
464
+ Kaneko,
465
+ F.
466
+ Lange,
467
+ S.
468
+ Yunoki
469
+ and
470
+ H.
471
+ Fehske,
472
+ Photoinduced
473
+ η-
474
+ pairing in one-dimensional Mott insulators,
475
+ JPS Conf. Proc. 30,
476
+ 011184 (2020),
477
+ doi:10.7566/JPSCP.30.011184.
478
+ [10] J. K. Freericks, H. R. Krishnamurthy and T. Pruschke, Theoretical description of time-resolved
479
+ photoemission spectroscopy: Application to pump-probe experiments,
480
+ Phys. Rev. Lett. 102,
481
+ 136401 (2009), doi:10.1103/PhysRevLett.102.136401.
482
+ [11] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev.
483
+ Lett. 91, 147902 (2003), doi:10.1103/PhysRevLett.91.147902.
484
+ [12] F. Lange, S. Ejima and H. Fehske,
485
+ Finite-temperature dynamic structure factor of
486
+ the spin-1 XXZ chain with single-ion anisotropy,
487
+ Phys. Rev. B 97, 060403 (2018),
488
+ doi:10.1103/PhysRevB.97.060403.
489
+ [13] S. Ejima, F. Lange and H. Fehske,
490
+ Finite-temperature photoemission in the extended
491
+ Falicov-Kimball model:
492
+ a case study for Ta2NiSe5,
493
+ SciPost Phys. 10(3), 077 (2021),
494
+ doi:10.21468/scipostphys.10.3.077.
495
+ [14] S. Ejima, F. Lange and H. Fehske, Photoinduced metallization of excitonic insulators, Phys.
496
+ Rev. B 105, 245126 (2022), doi:10.1103/PhysRevB.105.245126.
497
+ 7
498
+
499
+ REFERENCES
500
+ REFERENCES
501
+ [15] K. Okazaki, Y. Ogawa, T. Suzuki, T. Yamamoto, T. Someya, S. Michimae, M. Watanabe, Y. Lu,
502
+ M. Nohara, H. Takagi, N. Katayama, H. Sawa et al., Photo-induced semimetallic states realised
503
+ in electron–hole coupled insulators, Nat. Commun. 9(1), 4322 (2018), doi:10.1038/s41467-
504
+ 018-06801-1.
505
+ [16] M. Fishman, S. R. White and E. M. Stoudenmire, The ITensor software library for tensor
506
+ network calculations, 2007.14822.
507
+ 8
508
+
N9E3T4oBgHgl3EQfZQq9/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf,len=323
2
+ page_content='CONTENTS CONTENTS Photoinduced pairing in Mott insulators Satoshi Ejima1,2⋆ and Holger Fehske1,3 1 Institut für Physik, Universität Greifswald, 17489 Greifswald, Germany 2 Institut für Softwaretechnologie, Abteilung High-Performance Computing, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 22529 Hamburg, Germany 3 Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany satoshi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
3
+ page_content='ejima@dlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
4
+ page_content='de January 12, 2023 International Conference on Strongly Correlated Electron Systems (SCES 2022) Amsterdam, 24-29 July 2022 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
5
+ page_content='21468/SciPostPhysProc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
6
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
7
+ page_content=' Abstract Utilizing time-evolution techniques in (infinite) matrix-product-state representation, we study the non-equilibrium dynamics of driven Mott insulators and demonstrate photoinduced η pairing directly in the thermodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
8
+ page_content=' Analyzing the time evolution of the correspond- ing pairing correlations, we determine the optimal laser pump parameters for which long- range η-pairing becomes dominant after pulse irradiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
9
+ page_content=' The time-dependent photoemis- sion spectra for this optimal pump parameter set show clear signatures of the photoinduced insulator-to-metal phase transition related to the formation of η pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
10
+ page_content=' Contents 1 Introduction 2 2 Model 2 3 Pairing correlations 3 4 Non-equilibrium dynamics 5 5 Conclusions 6 References 7 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
11
+ page_content='04496v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
12
+ page_content='str-el] 11 Jan 2023 SCES Amsterdam 2022 金2 MODEL 1 Introduction η pairing, proposed first by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
13
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
14
+ page_content=' Yang in 1989 [1], gives rise to a pairing-density-wave-like off- diagonal long-range order in the Hubbard model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
15
+ page_content=' While it can be used to construct exact eigen- states of this model, η pairing is absent in the Hubbard model’s ground state, and therefore has attracted only specific attention, mostly from mathematical point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
16
+ page_content=' Recently, however, it was pointed out that the η-pairing state will be enforced by pulse irradiation [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
17
+ page_content=' The respective enhancement of pairing correlations emerged in time-dependent exact diagonalisations: Calcu- lating all eigenstates as well as pairing correlations for a small cluster and taking the selection rule of η pairs into account, Kaneko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
18
+ page_content=' showed that this photoinduced state is related to the η-pairing state [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
19
+ page_content=' Meanwhile, as a result of on-going developments in (time-depenent) density-matrix renormal- isation group [(t-)DMRG] technique [3,4], optically driven systems in (quasi-)one-dimension can be simulated directly in the thermodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
20
+ page_content=' In doing so, static correlation functions such as η-pair correlations can be computed by means of the infinite time-evolving block decimation (iTEBD) technique [5], taking advantage of translational invariance in the infinite matrix-product- state (iMPS) representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
21
+ page_content=' Building window sites with so-called infinite boundary conditions (IBC) in the uniform update scheme [6] enables us to simulate non-equilibrium dynamics of ex- cited (quasi-)one-dimensional (1D) systems by a laser electric field [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
22
+ page_content=' On this basis, in this study, we reexamine the time-evolution of photoinduced η-pairing, mainly to confirm or put in question previous small cluster results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
23
+ page_content=' Thereby we emphasize the impor- tance of using optimal pump pulse parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
24
+ page_content=' Furthermore, we reconsider the relation between the η-pairing correlations and the optical spectrum in the small-amplitude regime after pulse ir- radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
25
+ page_content=' Finally we prove the photoinduced insulator-to-metal phase transition by simulating time-dependent photoemission spectra of driven Mott insulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
26
+ page_content=' 2 Model Let us consider the 1D half-filled Hubbard model, ˆH = −th � j,σ � ˆc† j,σˆcj+1,σ + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
27
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
28
+ page_content=' � + U � j � ˆnj,↑ − 1/2 �� ˆnj,↓ − 1/2 � , (1) where th is the nearest-neighbor transfer amplitude and U gives the on-site part of the Coulomb interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
29
+ page_content=' In Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
30
+ page_content=' (1), ˆc† j,σ (ˆcj,σ) creates (annihilates) a spin-σ (=↑,↓) electron at Wannier lattice site j, and ˆnj,σ = ˆc† j,σˆcj,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
31
+ page_content=' In the repulsive case (U > 0) the model realizes a Mott insulating ground state with a finite charge gap ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
32
+ page_content=' Exact eigenstates of the Hubbard model can be constructed by means of the operators ˆη+ = � j(−1)j ˆ∆† j, ˆη− = ( ˆη+)†, and ˆηz = 1 2 � j(ˆnj,↑ + ˆnj,↓ − 1), where ˆ∆† j = ˆc† j,↓ˆc† j,↑ denotes the singlet pair-creation operator [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
33
+ page_content=' These so-called η operators fulfill SU(2) commutation relations [ ˆη+, ˆη−] = 2 ˆηz and [ ˆηz, ˆη±] = ± ˆη±.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
34
+ page_content=' Apparently, the Hubbard Hamiltonian (1) commutes with ˆη2 = 1 2( ˆη+ ˆη−+ ˆη− ˆη+)+( ˆηz)2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
35
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
36
+ page_content=', 〈η2〉 is a conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
37
+ page_content=' Long-ranged pairing correlations 〈 ˆη+ j ˆη− ℓ 〉 develop when the ex- pectation value 〈 ˆη2〉 becomes finite, but such η-pairing states cannot be the ground state of the Hubbard model [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
38
+ page_content=' Pulse irradiation can establish η-paired states in Mott insulators however [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
39
+ page_content=' To address this issue, we apply a pump pulse with amplitude A0, frequency ωp and width σp, 2 3 PAIRING CORRELATIONS 0 5 10 15 20 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
40
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
41
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
42
+ page_content='5 t · th ˜P(q = π, t) 2nd(t) U/th = 8 Figure 1: Typical time-evolution process of ˜P(q = π, t) and 2nd(t) for the photoin- duced η-pairing states in the strong-coupling regime of the driven Hubbard model with U/th = 8 and pump parameters A0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
43
+ page_content='4, ωp/th = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
44
+ page_content='0, σp = 2t−1 h and t0 = 10t−1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
45
+ page_content=' The iTEBD data are obtained for bond dimension χ = 1200, ensuring a truncation error smaller than 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
46
+ page_content=' For the iTEBD calculations, we employ a second-order Suzuki-Trotter decomposition with time step 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
47
+ page_content='1t−1 h (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
48
+ page_content='01t−1 h ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
49
+ page_content=' centered at time t0(> 0): A(t) = A0e−(t−t0)2/(2σ2 p) cos � ωp(t − t0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
50
+ page_content=' (2) The external time-dependent electric field A(t) changes the hopping amplitude by a Peierls phase [8]: thˆc† j,σˆcj+1,σ → theiA(t)ˆc† j,σˆcj+1,σ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
51
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
52
+ page_content=', ˆH → ˆH(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
53
+ page_content=' As a result, the system being initially in the ground state, is driven out of equilibrium, |ψ(0)〉 → |ψ(t)〉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
54
+ page_content=' 3 Pairing correlations The η-pairing state can be detected evaluating the time evolution of the pair-correlation function P(r, t) = 1 L � j 〈ψ(t)| ˆ∆† j+r ˆ∆j + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
55
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
56
+ page_content=')|ψ(t)〉 (3) and its Fourier transform ˜P(q, t) = � r eiqr P(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
57
+ page_content=' As found in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
58
+ page_content=' [2,9] for small clusters, ˜P(π, t) is enhanced after pulse irradiation, indicating the formation of an η-pairing state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
59
+ page_content=' By means of iTEBD this is confirmed directly in the thermodynamic limit which is demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
60
+ page_content=' 1 for a pump with A0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
61
+ page_content='4, ωp/th = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
62
+ page_content='0 and σp = 2t−1 h centered at t0 = 10t−1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
63
+ page_content=' ˜P(π, t) shows a clear response to pulse irradiation and is strengthened as the system progresses in time until saturation is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
64
+ page_content=' Obviously, the nonlocal contributions have a stronger impact on ˜P(π, t) than the double occupancy nd(t) = (1/L) � j〈ψ(t)|ˆnj,↑ˆnj,↓|ψ(t)〉 [note that P(r = 0, t) = 2nd(t), where nd(0) > 0 for the finite U values considered].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
65
+ page_content=' The enhancement process of η-pairing can be described as follows [2]: The initial state before pulse irradiation is the ground state of the Hubbard chain with |η = 0,ηz = 0〉, which is consis- tent with the numerical finding: ˜P(0, t = 0) ≃ 0 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
66
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
67
+ page_content=' Turning on the pump pulse, the 3 3 PAIRING CORRELATIONS 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
68
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
69
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
70
+ page_content='2 4 6 8 10 12 A0 ωp/th 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
71
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
72
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
73
+ page_content='2 2 4 6 8 10 12 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
74
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
75
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
76
+ page_content='2 ω/th, ωp/th Im χJJ(ω) 0 2 4 6 8 10 � P(π, t)/A2 0 A0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
77
+ page_content='04 A0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
78
+ page_content='06 A0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
79
+ page_content='08 A0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
80
+ page_content='10 Figure 2: (a): Contour plots of ˜P(q = π, t) in the ωp-A0 plane at t = 15t−1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
81
+ page_content=' Again U/th = 8, and the pump is parametrized by σp = 2t−1 h at t0 = 10t−1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
82
+ page_content=' (b): ˜P(π, t) at t = 15t−1 h in the small-A0 area enclosed by the dashed square in panel (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
83
+ page_content=' Dividing by A2 0, data can be rescaled to Imχ(ω) (black line), where Imχ(ω) is the imaginary part of the optical spectrum χJJ(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
84
+ page_content=' Hamiltonian does not commute with the η-operators anymore, [ ˆH(t),η+] = [ ˆH,η+]cos[A(t)] + � k F(k, t)ˆc† π−k,↓ˆc† k,↑ , (4) where F(k, t) = 4th sin[A(t)]sin k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
85
+ page_content=' This alters the initial state to a state with a finite expectation value 〈 ˆη2〉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
86
+ page_content=' Even though the commutation relation is recovered for t ≫ t0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
87
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
88
+ page_content=', [ ˆH(t), ˆη+] → [ ˆH, ˆη+] [since A(t) → 0], |ψ(t)〉 now includes components of |η > 0,ηz = 0〉 leading to the enhancement of ˜P(π, t), see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
89
+ page_content=' 1 for t > t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
90
+ page_content=' Note that the enhancement of η pairing after pulse irradiation depends, however, strongly on the pump pulse parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
91
+ page_content=' The optimal parameter set for inducing η-pairing states can be determined examining the A0 and ωp dependences of ˜P(π, t) by iTEBD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
92
+ page_content=' Figure 2(a) shows the contour plot of ˜P(π, t) after pulse irradiation (t = 15t−1 h ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
93
+ page_content=' We find a single maximum around A0 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
94
+ page_content='4 and ωp/th ≈ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
95
+ page_content='0 (marked by the “×" symbol), instead of the stripe structure observed in the finite-system (L = 14) exact diagonalisation (ED) simulations [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
96
+ page_content=' Another notable results of previous ED calculations [2] was that the peak structure of ˜P(π, t) as a function of ωp for small A0 is essentially the same as those of the ground-state optical spectrum, χJJ(ω > 0) = − 1 L 〈ψ0|ˆJ 1 E0 − ˆH + ħhω + iηL ˆJ|ψ0〉, (5) where |ψ0〉 is the ground state having energy E0 and Lorentzian width ηL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
97
+ page_content=' In (5), the Hubbard- model charge-current operator is ˆJ = ith � j,σ(ˆc† j,σˆcj+1,σ − ˆc† j+1,σˆcj,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
98
+ page_content=' Figure 2(b) compares the iTEBD data, obtained for ˜P(π, t) at various small A0 and t = 15t−1 h , with the t-DMRG results for χJJ(ω) (using ηL/th = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
99
+ page_content='2), in dependence on ωp respectively ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
100
+ page_content=' Most notably, ˜P(π, t) divided by A2 0 scales to the imaginary part of the optical spectrum Imχ(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
101
+ page_content=' This can be understood as follows: The hopping term including the Peierls phase can be divided 4 4 NON-EQUILIBRIUM DYNAMICS −π π −π π −π π 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
102
+ page_content='2 A(ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
103
+ page_content=' t) t = 5t−1 h t = 10t−1 h t = 15t−1 h 8 −8 −4 0 4 0 ω/th k (a) t = 5t−1 h 0 k (b) t = 10t−1 h 0 k (c) t = 15t−1 h 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
104
+ page_content='1 (d) Figure 3: Snapshots of the photoemission spectra A(k,ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
105
+ page_content=' t) indicating photoinduced η- pairing during the pump at times t = 5t−1 h (a), 10t−1 h (b) and 15t−1 h (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
106
+ page_content=' The pump is parametrized by A0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
107
+ page_content='4, ωp/th = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
108
+ page_content='0 [see ‘×’-symbol in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
109
+ page_content=' 2(a)], and σp = 2t−1 h at t0 = 10t−1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
110
+ page_content=' The transient integrated density of states A(ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
111
+ page_content=' t) obtained from the data of panels (a)-(c) is depicted in panel (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
112
+ page_content=' All data are obtained by the (i)TEBD technique with IBC for the 1D half-filled Hubbard model with U/th = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
113
+ page_content=' Note that the time cutoff in the simulation of time-dependent correlation functions is T = 5t−1 h , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
114
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
115
+ page_content=', the integration in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
116
+ page_content=' 7 extends only over the interval −T ≤ τ1,τ2 ≤ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
117
+ page_content=' As a compromise between time and frequency resolutions we have chosen a probe pulse width σpr = 2t−1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
118
+ page_content=' into kinetic and current operators as −th � j,σ � eiA(t)ˆc† j,σˆcj+1,σ + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
119
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
120
+ page_content=' � = ˆK cos[A(t)] + ˆJ sin[A(t)], (6) where ˆK = −th � j,σ(ˆc† j,σˆcj+1,σ +H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
121
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
122
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
123
+ page_content=' For small A0 and large t, the second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
124
+ page_content=' (6) can be approximated by ˆJA0, yielding a significant contribution of A2 0 to the pair correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
125
+ page_content=' Needless to say that the finite-size effects are eliminated by simulating the pair correlations directly in thermodynamic limit by iTEBD, leading to the single-peak structure in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
126
+ page_content=' 2(b), in strong contrast to the multiple-peak structure observed in the ED calculations [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
127
+ page_content=' 4 Non-equilibrium dynamics We now analyze the non-equilibrium photoemission spectra A(k,ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
128
+ page_content=' t) = � σ=↑,↓ Aσ(k,ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
129
+ page_content=' t) for the optimal pump parameter set marked by the “×"-symbol in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
130
+ page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
131
+ page_content=' To explore the system dynamics in a non-equilibrium situation, time-dependent spectral functions of the form [10] Aσ(k,ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
132
+ page_content=' t) = � r e−ikr � ∞ −∞ � ∞ −∞ dτ1dτ2 f (τ1,τ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
133
+ page_content='ω) · Cσ(r,τ1,τ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
134
+ page_content=' t) (7) are of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
135
+ page_content=' Here, the non-equilibrium two-point correlator Cσ(r,τ1,τ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
136
+ page_content=' t) = 〈φ(t)|ˆc† j+r,σ(τ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
137
+ page_content=' t)ˆcj,σ(τ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
138
+ page_content=' t)|φ(t)〉 (8) 5 5 CONCLUSIONS is defined relative to t, and f (τ1,τ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
139
+ page_content='ω) = eiω(τ1−τ2)g(τ1)g(τ2), g(τ) = exp[−τ2/2σ2 pr]/ � 2πσpr (9) specify the shape of the probe pulse, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
140
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
141
+ page_content=', in a time-dependent photoemission spectroscopy exper- iment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
142
+ page_content=' How numerically simulate two-time-dependent quantities such as Cσ(r,τ1,τ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
143
+ page_content=' t) has been explained in detail in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
144
+ page_content=' [7] [see paragraphs below Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
145
+ page_content=' (1)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
146
+ page_content=' Figure 3 displays our (i)TEBD results for the 1D half-filled Hubbard model in the strong- coupling regime (U/th = 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
147
+ page_content=' Before pump irradiation the state is a Mott insulator with a noticable single-particle gap, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
148
+ page_content=' 3(a) for t = 5t−1 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
149
+ page_content=' In the midst of the pump (t = 10t−1 h ), an extra dispersion above Fermi energy (ω > EF) appears and persists afterwards [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
150
+ page_content=' 3(c)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
151
+ page_content=' Evaluating the integrated density of states A(ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
152
+ page_content=' t) = 1 L � k A(k,ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
153
+ page_content=' t), (10) we see more clearly how the spectral weight is shifted from ω < EF to ω > EF due to the photoin- duced η-pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
154
+ page_content=' Figure 3(d) gives A(ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
155
+ page_content=' t) for the photoinduced η-pairing state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
156
+ page_content=' Obviously, the spectral weight for ω > EF increases distinctly over time, indicating a photoinduced phase tran- sition from a Mott insulator to a metallic η-pairing state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
157
+ page_content=' This photoinduced insulator-to-metal transition should be observed in time- and angle-resolved photoemission spectroscopy, when the pure Hubbard model is realized experimentally, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
158
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
159
+ page_content=', in optical lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
160
+ page_content=' We note that the pho- toinduced phase transition cannot be observed by simulating the time-dependent photoemission spectra with not-optimized pump-pulse parameters, see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
161
+ page_content=' [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
162
+ page_content=' 5 Conclusions To summarize, combining tensor-network algorithms with infinite time-evolving block decimation techniques, we revisited the problem of photoinducing η-pairing states in the one-dimensional Hubbard model at half band filling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
163
+ page_content=' This allowed us to prove the enhancement of the pairing correlations directly in the thermodynamic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
164
+ page_content=' We also determined the optimal pump-pulse parameter set that maximizes the η-pairing tendency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
165
+ page_content=' An η-pairing related Mott insulator to metal transition could be extracted from the time-dependent photoemission spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
166
+ page_content=' We wish to stress that the numerical approach presented here can be applied to simulate the non-equilibrium dynamics of any (quasi-)one-dimensional translational-invariant system in entire ranges of interacting and driving parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
167
+ page_content=' For example, the photoinduced metallization of excitonic insulators was demonstrated quite recently in accordance with time- and angle-resolved photoemission spectroscopy experiments on Ta2NiSe5 [14,15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
168
+ page_content=' Acknowledgements The iTEBD simulations were performed using the ITensor library [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
169
+ page_content=' Funding information S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
170
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
171
+ page_content=' was supported by Deutsche Forschungsgemeinschaft through project EJ 7/2-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
172
+ page_content=' 6 REFERENCES REFERENCES References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
173
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
174
+ page_content=' Yang, η pairing and off-diagonal long-range order in a Hubbard model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
175
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
176
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
177
+ page_content=' 63, 2144 (1989), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
178
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
179
+ page_content='63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
180
+ page_content='2144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
181
+ page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
182
+ page_content=' Kaneko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
183
+ page_content=' Shirakawa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
184
+ page_content=' Sorella and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
185
+ page_content=' Yunoki, Photoinduced η pairing in the Hubbard model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
186
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
187
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
188
+ page_content=' 122, 077002 (2019), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
189
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
190
+ page_content='122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
191
+ page_content='077002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
192
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
193
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
194
+ page_content=' White, Density matrix formulation for quantum renormalization groups, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
195
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
196
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
197
+ page_content=' 69, 2863 (1992), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
198
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
199
+ page_content='69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
200
+ page_content='2863.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
201
+ page_content=' [4] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
202
+ page_content=' Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
203
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
204
+ page_content=' 326(1), 96 (2011), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
205
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
206
+ page_content='aop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
207
+ page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
208
+ page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
209
+ page_content='012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
210
+ page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
211
+ page_content=' Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimension, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
212
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
213
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
214
+ page_content=' 98, 070201 (2007), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
215
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
216
+ page_content='98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
217
+ page_content='070201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
218
+ page_content=' [6] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
219
+ page_content=' Zauner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
220
+ page_content=' Ganahl, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
221
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
222
+ page_content=' Evertz and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
223
+ page_content=' Nishino, Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quan- tum spin chains, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
224
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
225
+ page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
226
+ page_content=' Matter 27(42), 425602 (2015), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
227
+ page_content='1088/0953- 8984/27/42/425602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
228
+ page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
229
+ page_content=' Ejima, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
230
+ page_content=' Lange and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
231
+ page_content=' Fehske, Nonequilibrium dynamics in pumped mott insulators, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
232
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
233
+ page_content=' Research 4, L012012 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
234
+ page_content='1103/PhysRevResearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
235
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
236
+ page_content='L012012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
237
+ page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
238
+ page_content=' Peierls, Zur Theorie des Diamagnetismus von Leitungselektronen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
239
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
240
+ page_content=' 80(11), 763 (1933), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
241
+ page_content='1007/BF01342591.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
242
+ page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
243
+ page_content=' Ejima, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
244
+ page_content=' Kaneko, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
245
+ page_content=' Lange, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
246
+ page_content=' Yunoki and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
247
+ page_content=' Fehske, Photoinduced η- pairing in one-dimensional Mott insulators, JPS Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
248
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
249
+ page_content=' 30, 011184 (2020), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
250
+ page_content='7566/JPSCP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
251
+ page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
252
+ page_content='011184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
253
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
254
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
255
+ page_content=' Freericks, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
256
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
257
+ page_content=' Krishnamurthy and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
258
+ page_content=' Pruschke, Theoretical description of time-resolved photoemission spectroscopy: Application to pump-probe experiments, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
259
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
260
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
261
+ page_content=' 102, 136401 (2009), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
262
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
263
+ page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
264
+ page_content='136401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
265
+ page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
266
+ page_content=' Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
267
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
268
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
269
+ page_content=' 91, 147902 (2003), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
270
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
271
+ page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
272
+ page_content='147902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
273
+ page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
274
+ page_content=' Lange, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
275
+ page_content=' Ejima and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
276
+ page_content=' Fehske, Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
277
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
278
+ page_content=' B 97, 060403 (2018), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
279
+ page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
280
+ page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
281
+ page_content='060403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
282
+ page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
283
+ page_content=' Ejima, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
284
+ page_content=' Lange and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
285
+ page_content=' Fehske, Finite-temperature photoemission in the extended Falicov-Kimball model: a case study for Ta2NiSe5, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
286
+ page_content=' 10(3), 077 (2021), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
287
+ page_content='21468/scipostphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
288
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
289
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
290
+ page_content='077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
291
+ page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
292
+ page_content=' Ejima, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
293
+ page_content=' Lange and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
294
+ page_content=' Fehske, Photoinduced metallization of excitonic insulators, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
295
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
296
+ page_content=' B 105, 245126 (2022), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
297
+ page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
298
+ page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
299
+ page_content='245126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
300
+ page_content=' 7 REFERENCES REFERENCES [15] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
301
+ page_content=' Okazaki, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
302
+ page_content=' Ogawa, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
303
+ page_content=' Suzuki, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
304
+ page_content=' Yamamoto, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
305
+ page_content=' Someya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
306
+ page_content=' Michimae, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
307
+ page_content=' Watanabe, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
308
+ page_content=' Lu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
309
+ page_content=' Nohara, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
310
+ page_content=' Takagi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
311
+ page_content=' Katayama, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
312
+ page_content=' Sawa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
313
+ page_content=', Photo-induced semimetallic states realised in electron–hole coupled insulators, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
314
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
315
+ page_content=' 9(1), 4322 (2018), doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
316
+ page_content='1038/s41467- 018-06801-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
317
+ page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
318
+ page_content=' Fishman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
319
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
320
+ page_content=' White and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
321
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
322
+ page_content=' Stoudenmire, The ITensor software library for tensor network calculations, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
323
+ page_content='14822.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
324
+ page_content=' 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/N9E3T4oBgHgl3EQfZQq9/content/2301.04496v1.pdf'}
OtFAT4oBgHgl3EQfyx73/content/tmp_files/2301.08695v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
OtFAT4oBgHgl3EQfyx73/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
P9E3T4oBgHgl3EQfyAsA/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2cf24b4be588e2d66034f3b04bdd870846eb2c4dcf7634277231bdf760fdc0a
3
+ size 2555949
PtE4T4oBgHgl3EQfkg1D/content/tmp_files/2301.05151v1.pdf.txt ADDED
@@ -0,0 +1,1842 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05151v1 [math.RT] 12 Jan 2023
2
+ A local-global principle for unipotent
3
+ characters
4
+ Damiano Rossi
5
+ Abstract
6
+ We obtain an adaptation of Dade’s Conjecture and Späth’s Character Triple Conjecture to
7
+ unipotent characters of simple, simply connected finite reductive groups of type A, B and C.
8
+ In particular, this gives a precise formula for counting the number of unipotent characters of
9
+ each defect d in any Brauer ℓ-block B in terms of local invariants associated to e-local struc-
10
+ tures. This provides a geometric version of the local-global principle in representation theory
11
+ of finite groups. A key ingredient in our proof is the construction of certain parametrisations of
12
+ unipotent generalised Harish-Chandra series that are compatible with isomorphisms of charac-
13
+ ter triples.
14
+ Contents
15
+ 1
16
+ Introduction
17
+ 2
18
+ 1.1
19
+ Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
+ 5
21
+ 2
22
+ Notation and background material
23
+ 5
24
+ 2.1
25
+ Characters and blocks of finite groups
26
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
+ 5
28
+ 2.2
29
+ Finite reductive groups and unipotent characters . . . . . . . . . . . . . . . . . . . . . .
30
+ 7
31
+ 2.3
32
+ e-Harish-Chandra theory for unipotent characters . . . . . . . . . . . . . . . . . . . . .
33
+ 7
34
+ 2.4
35
+ Pseudo-unipotent characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
+ 9
37
+ 3
38
+ Compatibility with isomorphisms of character triples
39
+ 10
40
+ 3.1
41
+ Equivariance and maximal extendibility . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
+ 10
43
+ 3.2
44
+ Construction of GF -block isomorphisms of character triples . . . . . . . . . . . . . . .
45
+ 14
46
+ 3.3
47
+ Proof of Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
+ 18
49
+ 4
50
+ Consequences of Theorem C
51
+ 18
52
+ 4.1
53
+ Parametrisation of pseudo-unipotent characters of Levi subgroups . . . . . . . . . . .
54
+ 19
55
+ 4.2
56
+ Above e-Harish-Chandra series
57
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
+ 21
59
+ 2010 Mathematical Subject Classification: 20C20, 20C33.
60
+ Key words and phrases: Dade’s Conjecture, Character Triple Conjecture, finite reductive groups, unipotent characters.
61
+ This work is partially supportedby the EPSRC grant EP/T004592/1 and was written during a research visit of the author at
62
+ the Universitá degli Studi di Firenze. The author would like to thank Silvio Dolfi and all the members of the algebra group
63
+ in the Department of Mathematics for their hospitality and, in particular, Carolina Vallejo for some comments concerning
64
+ the local-global principle. Moreover, the author would like to thank Lucas Ruhstorfer for some helpful conversation on
65
+ the paper [Bro-Ruh].
66
+ 1
67
+
68
+ 5
69
+ Towards Theorem A and Theorem B
70
+ 22
71
+ 5.1
72
+ Preliminaries on e-chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
+ 23
74
+ 5.2
75
+ Proof of Theorem A
76
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
+ 27
78
+ 5.3
79
+ Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
+ 29
81
+ 1
82
+ Introduction
83
+ The local-global conjectures are currently some of the most interesting and challenging problems in
84
+ representation theory of finite groups. Among others, these include the McKay Conjecture [McK72],
85
+ the Alperin—McKay Conjecture [Alp76] and Alperin’s Weight Conjecture [Alp87] all of which can
86
+ be deduced by a deeper statement known as Dade’s Conjecture [Dad92], [Dad94], [Dad97]. The
87
+ latter also implies the celebrated Brauer’s Height Zero Conjecture introduced in [Bra56] and whose
88
+ proof has recently been completed in [MNSFT22] and [Ruh22a] while relying on a combined effort
89
+ of many other authors.
90
+ In this paper, we are particularly interested in Dade’s Conjecture which, for every prime number
91
+ ℓ, suggests a precise formula for counting the number of irreducible characters of a finite group,
92
+ with a given ℓ-defect and belonging to a given Brauer ℓ-block, in terms of the ℓ-local structure of
93
+ the group itself. This conjecture has been further extended in [Spä17] where the Character Triple
94
+ Conjecture was formulated by introducing a compatibility with N-block isomorphisms of character
95
+ triples, hereinafter denoted by ∼N, as defined in [Spä17, Definition 3.6]. This notion plays a funda-
96
+ mental role in many aspects of group representation theory and, as we will see later, gives us a way
97
+ to control the representation theory of local subgroups. Furthermore, it was exploited to reduce
98
+ Dade’s Conjecture to finite quasi-simple groups as explained in [Spä17, Theorem 1.3].
99
+ Our aim is to adapt and prove the two conjectures described in the previous paragraph to the case of
100
+ unipotent characters of finite reductive groups. The approach considered here is inspired by ideas
101
+ introduced by the author in [Ros22c] and provides further evidence for the conjectures formulated in
102
+ that paper [Ros22c, Conjecture C and Conjecture D]. In particular, the ℓ-local structures considered
103
+ above are replaced by more suitable e-local structures arising from the geometry of the underlying
104
+ algebraic group that are compatible with the framework of Deligne–Lusztig theory. Therefore, our
105
+ results also suggest the existence of an e-local-global principle for the representation theory of finite
106
+ reductive groups.
107
+ More precisely, let G be a simple, simply connected group of type A, B or C which is defined
108
+ over an algebraically closed field of positive characteristic p and let F ∶ G → G be a Frobenius
109
+ endomorphism endowing G, as a variety, with an Fq-structure for some power q of p. We denote by
110
+ GF the finite reductive group consisting of the Fq-rational points on G. Furthermore, we fix an odd
111
+ prime ℓ different from p and denote by e the multiplicative order of q modulo ℓ. We let Le(G,F)
112
+ denote the set of e-chains of (G,F) of the form σ = {G = L0 > L1 > ⋅⋅⋅ > Ln} where each Li
113
+ is an e-split Levi subgroup of (G,F). The final term of the e-chain σ is denoted by L(σ) = Ln,
114
+ while ∣σ∣ ∶= n is the length of σ. Observe that the latter induces a partition of the set Le(G,F) into
115
+ the sets Le(G,F)± consisting of those e-chains σ that satisfy (−1)∣σ∣ = ±1. Furthermore, notice
116
+ that GF acts by conjugation on the set Le(G,F) and indicate by GF
117
+ σ the stabiliser of the e-chain
118
+ σ. It follows directly from the definition that this action preserves the length of e-chains and, in
119
+ particular, it restricts to an action of GF on the set Le(G,F)>0 of e-chains of positive length.
120
+ 2
121
+
122
+ Now, to each non-negative integer d and Brauer ℓ-block B of the finite group GF , we associate a
123
+ set Ld
124
+ u(B)± consisting of quadruples (σ,M,µ,ϑ) where σ is an e-chain belonging to Le(G,F)±,
125
+ (M,µ) is a unipotent e-cuspidal pair of (L(σ),F) such that M does not coincide with G, and ϑ is an
126
+ irreducible character of the e-chain stabiliser GF
127
+ σ belonging to the character set Uchd(Bσ,(M,µ))
128
+ defined by the choice of d, B, σ and (M,µ) as described in Definition 5.5. Once again, the group GF
129
+ acts by conjugation on Ld
130
+ u(B)± and we indicate the corresponding set of GF -orbits by Ld
131
+ u(B)±/GF .
132
+ Moreover, for every such orbit ω, we denote by ω● the corresponding GF -orbit of pairs (σ,ϑ) such
133
+ that (σ,M,µ,ϑ) ∈ ω for some unipotent e-cuspidal pair (M,µ).
134
+ With the above notation, we are now able to state our first main result. For simplicity, in the next
135
+ theorem we assume that the prime ℓ does not divide the greatest common divisor (q ± 1,n + 1)
136
+ whenever (G,F) is of type An(±q) and where An(−q) denotes 2An(q) as usual. Observe however
137
+ that this assumption can be removed as explained in Remark 5.7 (see Theorem 5.9 for the more
138
+ general statement).
139
+ Theorem A. For every Brauer ℓ-block B of GF and every non-negative integer d, there exists an
140
+ AutF(GF )B-equivariant bijection
141
+ Λ ∶ Ld
142
+ u(B)+/GF → Ld
143
+ u(B)−/GF
144
+ such that
145
+ (Xσ,ϑ,GF
146
+ σ ,ϑ) ∼GF (Xρ,χ,GF
147
+ ρ ,χ)
148
+ for every ω ∈ Ld
149
+ u(B)+/GF, any (σ,ϑ) ∈ ω●, any (ρ,χ) ∈ Λ(ω)● and where X ∶= GF ⋊ AutF(GF )
150
+ and AutF(GF ) is the group of automorphisms described in Section 3.1.
151
+ The above theorem provides an adaptation of Späth’s Character Triple Conjecture to the framework
152
+ of Deligne–Lusztig theory for the unipotent characters of finite reductive groups. Theorem A also
153
+ offers further evidence for the validity of [Ros22c, Conjecture D], in fact the set Ld
154
+ u(B)± introduced
155
+ above is a subset of the set of quadruples Ld(B)± considered in [Ros22c, Conjecture D] which
156
+ is identified by only selecting unipotent e-cuspidal pairs (M,µ) among those appearing in such
157
+ quadruples.
158
+ Next, we obtain a formula for counting the number of unipotent characters of ℓ-defect d in the
159
+ Brauer ℓ-block B in terms of local invariants associated to e-local structures. For each e-chain σ of
160
+ (G,F) with positive length, we define kd
161
+ u(Bσ) to be the number of characters belonging to one of
162
+ the character sets Uchd(Bσ,(M,µ)) for some unipotent e-cuspidal pair (M,µ) of (L(σ),F) up to
163
+ GF
164
+ σ -conjugation (see also (5.10)). Furthermore, let kd
165
+ u(B) and kd
166
+ c,u(B) be the number of irreducible
167
+ characters with ℓ-defect d and belonging to the Brauer ℓ-block B that are unipotent and unipotent
168
+ e-cuspidal respectively. Then, by using the bijection given by Theorem A we can determine the
169
+ difference kd
170
+ u(B) − kd
171
+ c,u(B) in terms of an alternating sum involving the terms kd
172
+ u(Bσ) arising
173
+ from the e-local structure GF
174
+ σ .
175
+ 3
176
+
177
+ Theorem B. For every Brauer ℓ-block B of GF and every non-negative integer d, we have
178
+ kd
179
+ u(B) − kd
180
+ c,u(B) = ∑
181
+ σ
182
+ (−1)∣σ∣+1kd
183
+ u(Bσ)
184
+ where σ runs over a set of representatives for the action of GF on Le(G,F)>0.
185
+ We point out that the restriction on the prime ℓ made for simplification before Theorem A only
186
+ concerns the condition on isomorphisms of character triples and hence does not affect Theorem B.
187
+ As before, this result provides an adaptation of Dade’s Conjecture to the framework of Deligne–
188
+ Lusztig theory for the unipotent characters of finite reductive groups and gives new evidence in
189
+ favour of [Ros22c, Conjecture C]. The necessity for the introduction of the corrective term kd
190
+ c,u(B)
191
+ in the equality of Theorem B can be understood as an analogue to the exclusion of the case of blocks
192
+ with central defect in the statement of Dade’s Conjecture or, depending on the formulation under
193
+ consideration, of the case where d = 0. We refer the reader to the more detailed discussion given in
194
+ the paragraph following Definition 5.2. Finally, we mention that Theorem B also provides evidence
195
+ for a positive answer to a question recently posed by Broué [Bro22a].
196
+ It is particularly interesting to notice that, to the author’s knowledge, Theorem B cannot be obtained
197
+ directly using techniques available at the present time, but only as a consequence of the existence
198
+ of GF -block isomorphisms of character triples as those considered in Theorem A. In fact, while
199
+ Deligne–Lusztig theory allows us to control the representation theory of finite reductive groups, it
200
+ is not sufficient to control the representation theory of e-chain stabilisersGF
201
+ σ . However, observe that
202
+ the stabiliser GF
203
+ σ contains the finite reductive group L(σ)F as a normal subgroup. Therefore, we
204
+ can first use Deligne–Lusztig theory to study the characters of L(σ)F and then apply Clifford theory
205
+ via GF -block isomorphisms of character triples to control the characters of GF
206
+ σ (see Proposition 4.5
207
+ and Proposition 5.6 for further details).
208
+ In order to achieve the latter step, we need to make Deligne–Lusztig theory and, more precisely, e-
209
+ Harish-Chandra theory for unipotent characters compatible with GF -block isomorphisms of char-
210
+ acter triples. This ideas was first suggested by the author in [Ros22c, Parametrisation B] and further
211
+ studied in [Ros22d]. Our next result, which is a key ingredient in the proofs of Theorem A and
212
+ Theorem B, establishes this conjectured parametrisation in the unipotent case under the assump-
213
+ tion specified above. This can also be seen as an extension of the parametrisation introduced by
214
+ Broué, Malle and Michel in [BMM93, Theorem 3.2 (2)] to the language of GF-block isomorphisms
215
+ of character triples.
216
+ Theorem C. For every unipotent e-cuspidal pair (L,λ) of (G,F) there exists an AutF(GF )(L,λ)-
217
+ equivariant bijection
218
+ ΩG
219
+ (L,λ) ∶ E (GF ,(L,λ)) → Irr(NG(L)F ∣ λ)
220
+ that preserves the ℓ-defect of characters and such that
221
+ (Xχ,GF ,χ) ∼GF (NXχ(L),NG(L)F ,ΩG
222
+ (L,λ)(χ))
223
+ for every χ ∈ E(GF ,(L,λ)) and where X ∶= GF ⋊ AutF(GF ).
224
+ The proof of Theorem C, and therefore of Theorem A and Theorem B, partially relies on certain
225
+ 4
226
+
227
+ conditions on the extendibility of characters of e-split Levi subgroups that were first introduced to
228
+ settle the inductive conditions for the McKay Conjecture and the Alperin–McKay Conjecture, and
229
+ then further studied in the context of Parametrisation B of [Ros22c] (see the exact statement given
230
+ in [Ros22d, Definition 5.2]). These conditions were obtain, under certain assumptions, for groups
231
+ of type A, B and C in the papers [BS20], [Bro22b] and [Bro-Ruh] respectively. Nonetheless, a
232
+ version of these results is expected to hold in general and hence we believe that the above theorems,
233
+ obtained here for types A, B and C with respect to an odd prime ℓ, will extend to the general case
234
+ as well.
235
+ 1.1
236
+ Structure of the paper
237
+ The paper is organised as follows. In Section 2 we introduce the necessary notation and recall the
238
+ main definitions and results used throughout the paper. Furthermore, in Section 2.4 we introduce
239
+ the notion of pseudo-unipotent character (see Definition 2.2) and prove a result on the regularity
240
+ of blocks covering those containing such characters. Next, in Section 3 we start working towards
241
+ a proof of Theorem C. First, in Section 3.1 we consider certain equivariance properties that can
242
+ be established in the presence of extendibility conditions for characters of e-split Levi subgroups.
243
+ Here, we also present a candidate for the bijection ΩG
244
+ (L,λ) required by Theorem C. Next, in Sec-
245
+ tion 3.2 we construct the required GF-block isomorphisms of character triples. Using these results,
246
+ we can then prove Theorem C in Section 3.3. The following step is to extend the parametrisation
247
+ of unipotent e-Harish-Chandra series in the group G, as given by Theorem C, to a parametrisa-
248
+ tion of pseudo-unipotent e-Harish-Chandra series in F-stable Levi subgroups K of (G,F). This
249
+ is done in Theorem 4.4. Once this is established, in Section 4.2 we exploit the theory of GF -block
250
+ isomorphisms to obtain bijections above e-Harish-Chandra series that are required to control the
251
+ representation theory of the e-chain stabilisers GF
252
+ σ . A more detailed analysis of the characters of
253
+ GF
254
+ σ is carried out in Section 5.1. In particular, we obtain a parametrisation of the character sets
255
+ Uchd(Bσ,(M,µ)) in Proposition 5.6. Finally, in Section 5.2 and Section 5.3 we apply these results
256
+ to prove Theorem A and Theorem B respectively.
257
+ 2
258
+ Notation and background material
259
+ 2.1
260
+ Characters and blocks of finite groups
261
+ We recall some standard notation from representation theory of finite groups as can be found in
262
+ [Isa76] and [Nav98], for instance. Let Irr(G) the set of ordinary irreducible characters. If N ⊴ G
263
+ and ϑ ∈ Irr(N), then we denote by Irr(G ∣ ϑ) the set of irreducible characters of G that lie above
264
+ ϑ. More generally, if S is a subset of irreducible characters of N, then we denote by Irr(G ∣ S) the
265
+ union of the sets Irr(G ∣ ϑ) for ϑ ∈ S, that is, the set of irreducible characters of G that lie above
266
+ some character in the set S.
267
+ Next, we denote by Gϑ the stabiliser of the irreducible character ϑ ∈ Irr(N) under the conjugacy
268
+ action of G and say that ϑ is G-invariant if G = Gϑ. In this case, we say that (G,N,ϑ) is a character
269
+ triple. These objects provide important information in the study of Clifford theory and play a crucial
270
+ role in many aspects of the local-global conjectures. Of paramount importance is the introduction of
271
+ certain binary relations on the set of character triples. We refer the reader to [Nav18, Chapter 5 and
272
+ 10] and [Spä18] for a more detailed introduction to these ideas and for the necessary background on
273
+ 5
274
+
275
+ projective representations. The binary relation considered here was introduced in [Spä17, Definition
276
+ 3.6] and is known as N-block isomorphism of character triples, denoted by ∼N. This equivalence
277
+ relation has further been studied in [Ros22a].
278
+ In order to construct N-block isomorphisms of character triples, it is often useful to prove certain
279
+ results on the extendibility of characters. Here, we introduce the notion of maximal extendibility (see
280
+ [MS16, Definition 3.5]) that will be considered in the following sections. Let N ⊴ G be finite groups
281
+ and consider S a subset of irreducible characters of N. Then, we say that maximal extendibility
282
+ holds for the set S with respect to the inclusion N ⊴ G if every character ϑ ∈ S extends to its
283
+ stabiliser Gϑ. More precisely, we can specify an extension map
284
+ Λ ∶ S →
285
+
286
+ N≤H≤G
287
+ Irr(H)
288
+ (2.1)
289
+ that sends each character ϑ ∈ S to an extension Λ(ϑ) of ϑ to the stabiliser Gϑ.
290
+ Next, we consider modular representation theory with respect to a fixed prime number ℓ. For χ ∈
291
+ Irr(G), there exist unique non-negative integers d(χ), called the ℓ-defect of χ, such that ℓd(χ) =
292
+ ∣G∣ℓ/χ(1)ℓ and where for an integer n we denote by nℓ the largest power of ℓ that divides n. For
293
+ any d ≥ 0, let Irrd(G) be the set of irreducible characters χ of G that satisfy d(χ) = d and denote by
294
+ kd(G) its cardinality. Associated to the prime ℓ, we also have the set of Brauer ℓ-blocks of G. Each
295
+ block is uniquely determined by the central functions λB (see [Nav98, p. 49]). For every χ ∈ Irr(G),
296
+ we denote by bl(χ) the unique block that satisfies χ ∈ Irr(bl(χ)). Furthermore, if H ≤ G and b is
297
+ a block of H, then bG denotes the block of G obtained via Brauer’s induction (when it is defined).
298
+ If B is a block of G and d ≥ 0, then let Irrd(B) be the set of irreducible characters belonging to the
299
+ block B and having defect d. The cardinality of Irrd(B) is denoted by kd(B).
300
+ We conclude this introductory section with an analogue of [Isa76, Problem 5.3] for blocks that will
301
+ be used in the sequel.
302
+ Lemma 2.1. Let H ≤ G be finite groups and consider blocks b of H and B of G. If ζ is a linear
303
+ character of G, then:
304
+ (i) there are blocks b ⋅ ζH of H and B ⋅ ζ of G satisfying
305
+ Irr(b ⋅ ζH) = {ψζH ∣ ψ ∈ Irr(b)}
306
+ and
307
+ Irr(B ⋅ ζ) = {χζ ∣ χ ∈ Irr(B)};
308
+ (ii) If bG = B, then (b ⋅ ζH)G = B ⋅ ζ.
309
+ Proof. The first point is [Riz18, Lemma 2.1]. Next, let g ∈ G and denote by ClG(g) the G-conjugacy
310
+ class of g and by ClG(g)+ the corresponding conjugacy class sum in the group algebra. Since the
311
+ intersection ClG(g) ∩ H is a union of H-conjugacy classes, we can find h1,... ,hn ∈ ClG(g) ∩ H
312
+ such that
313
+ ClG(g) ∩ H =
314
+ n
315
+
316
+ i=1
317
+ ClH(hi)
318
+ and where n is zero if ClG(g) ∩ H is empty. In particular, observe that ζ(hi) = ζ(g) since λ is a
319
+ 6
320
+
321
+ class function of G. Now, using the notation of [Nav98, p.87] we obtain
322
+ λB⋅ζ (ClG(g)+) = λB (ClG(g)+)ζ(g)
323
+ = λG
324
+ b (ClG(g)+)ζ(g)
325
+ =
326
+ n
327
+
328
+ i=1
329
+ λb (ClH(hi)+)ζ(g)
330
+ =
331
+ n
332
+
333
+ i=1
334
+ λb (ClH(hi)+)ζH(hi)
335
+ =
336
+ n
337
+
338
+ i=1
339
+ λb⋅ζH (ClH(hi)+) = λG
340
+ b⋅ζH (ClG(g))
341
+ where for every algebraic integer α of C we denote by α its reduction modulo a maximal ideal
342
+ containing the prime ℓ (see [Nav98, Chapter 2]). This shows that B ⋅ ζ = (b ⋅ ζH)G and we are
343
+ done.
344
+ 2.2
345
+ Finite reductive groups and unipotent characters
346
+ Let G be a connected reductive group defined over an algebraic closure of a field of positive char-
347
+ acteristic p different from ℓ and consider a Frobenius endomorphism F ∶ G → G associated with
348
+ an Fq-structure for a power q of p. The set of Fq-rational points on the variety G is denoted by GF
349
+ and is called a finite reductive group. By abuse of notation we also refer to the pair (G,F) as a finite
350
+ reductive group.
351
+ Let L be a Levi subgroup of a parabolic subgroup P of G and assume that L (but not necessarily
352
+ P) is F-stable. Using ℓ-adic cohomology, Deligne–Lusztig [DL76] and Lusztig [Lus76] defined a
353
+ Z-linear map
354
+ RG
355
+ L≤P ∶ ZIrr(LF) → ZIrr(GF )
356
+ with adjoint
357
+ ∗RG
358
+ L≤P ∶ ZIrr(GF ) → ZIrr(LF) .
359
+ The exact definition can be found in [CE04, Section 8.3]. These maps are known to be independent
360
+ of the choice of the parabolic subgroup P in almost all cases (see [BM11] and [Tay18]) and, in
361
+ particular, in those considered in this paper. Therefore, we will always omit P and denote RG
362
+ L≤P
363
+ simply by RG
364
+ L . Next, using Deligne–Lusztig induction we define the unipotent characters of GF .
365
+ These are the irreducible characters χ of GF that appear as an irreducible constituent of the virtual
366
+ character RG
367
+ T(1T) for some F-stable maximal torus T of G. The set of unipotent characters of GF
368
+ is denoted by Uch(GF ) and its cardinality by ku(GF ). Similarly, if B is a block of GF and d a
369
+ non-negative integer, then kd
370
+ u(B) denotes the cardinality of the intersection Uch(GF ) ∩ Irrd(B).
371
+ 2.3
372
+ e-Harish-Chandra theory for unipotent characters
373
+ Denote by e the multiplicative order of q modulo ℓ, if ℓ is odd, or modulo 4, if ℓ = 2. In this section,
374
+ we collect the main results of e-Harish-Chandra theory for unipotent characters. This was first in-
375
+ troduced by Fong and Srinivasan [FS86] for classical groups and then further developed by Broué,
376
+ Malle and Michel [BMM93] for unipotent characters. The compatibility of this theory with Brauer
377
+ ℓ-blocks was described by Cabanes and Enguehard in [CE94] for good primes and completed by
378
+ 7
379
+
380
+ Enguehard [Eng00] for bad primes. These results also provide a description of the characters be-
381
+ longing to unipotent blocks (see [CE94, Theorem (iii)]). Another description of these characters was
382
+ provided by the author in [Ros22c] under certain resctrictions on the prime ℓ (see also [Ros22c, Re-
383
+ mark 4.14] for a comparison between the two descriptions). We refer the reader to the monographs
384
+ [CE04] and [GM20] for a more complete account of this beautiful theory.
385
+ The theory of Φe-subgroups that constitutes the foundation of e-Harish-Chandra theory was intro-
386
+ duced in [BM92]. Following their terminology, we say that an F-stable torus S of G is a Φe-torus if
387
+ its order polynomial is a power of the e-th cyclotomic polynomial, that is, if P(S,F ) = Φn
388
+ e for some
389
+ integer n and where Φe denotes the e-th cyclotomic polynomial (see [CE04, Definition 13.3]). Then,
390
+ we say that a Levi subgroup L of G is an e-split Levi subgroup if there exists a Φe-torus S such
391
+ that L = CG(S). More precisely, we say that L is an e-split Levi subgroup of (G,F) to emphasise
392
+ the role of the Frobenius endomorphism F. Observe that, for any torus T, there exists a unique
393
+ maximal Φe-torus of T denoted by TΦe (see [CE04, Proposition 13.5 3.4]). Then, it can be shown
394
+ that an F-stable Levi subgroup L of G is e-split if and only if L = CG(Z○(L)Φe) (see, for instance,
395
+ [GM20, Proposition 3.5.5]).
396
+ Next, recall that (L,λ) is a unipotent e-cuspidal pair of (G,F) if L is an e-split Levi subgroup
397
+ of (G,F) and λ ∈ Irr(LF ) satisfies ∗RL
398
+ M(λ) = 0 for every e-split Levi subgroup M < L. A
399
+ character λ with the property above is said to be a unipotent e-cuspidal character of LF . We denote
400
+ by CPu(G,F) the set of unipotent e-cuspidal pairs of (G,F) and by kc,u(GF ) the number of
401
+ unipotent e-cuspidal characters of GF . Moreover, we define the e-Harish-Chandra series associate
402
+ to the e-cuspidal pair (L,λ) to be the set of irreducible constituents of the virtual character RG
403
+ L (λ),
404
+ denoted by E(GF ,(L,λ)).
405
+ Unipotent characters where parametrised by Broué, Malle and Michel [BMM93, Theorem 3.2] by us-
406
+ ing e-Harish-Chandra theory. Their description can be divided into two parts. First, each unipotent
407
+ character lies in a unique e-Harish-Chandra series, that is,
408
+ Uch (GF ) = ∐
409
+ (L,λ)
410
+ E (GF ,(L,λ))
411
+ where (L,λ) runs over a set of representatives for the action of GF on the set of unipotent e-
412
+ cuspidal pairs of (G,F) as explained in [BMM93, Theorem 3.2 (1)]. This is a well known fact
413
+ and will be used throughout the paper without further reference. As a consequence of the partition
414
+ above, it now remains to parametrise the unipotent e-Harish-Chandra series. If (L,λ) is a unipotent
415
+ e-cuspidal pair, we denote by WG(L,λ)F ∶= NG(L)F
416
+ λ /LF the corresponding relative Weyl group.
417
+ Then, [BMM93, Theorem 3.2 (2)] parametrises the characters in an e-Harish-Chandra series in terms
418
+ of the characters in the relative Weyl group by showing the existence of a bijection
419
+ Irr(WG(L,λ)F ) → E(GF ,(L,λ)).
420
+ (2.2)
421
+ In Section 3 we reformulate (2.2) in order to obtain Theorem C.
422
+ Unipotent e-Harish-Chandra series are also used to parametrise the so-called unipotent blocks, that
423
+ is, those blocks that contain unipotent characters. This is the main result of [CE94]. More precisely,
424
+ if ℓ is odd and good for G, with ℓ ≠ 3 if 3D4 is an irreducible rational component of (G,F), then
425
+ for every ℓ-block B of GF there exists a unipotent e-cuspidal pair (L,λ), with (L,λ) unique up to
426
+ 8
427
+
428
+ GF -conjugation, such that all the irreducible constituents of RG
429
+ L (λ) belongs to the block B. In this
430
+ case, we write B = bGF (L,λ) and we also have
431
+ Uch(GF ) ∩ Irr(bGF (L,λ)) = E(GF ,(L,λ)).
432
+ Moreover, [CE94, Proposition 3.3 (ii) and Proposition 4.2] imply that bl(λ)GF = B.
433
+ 2.4
434
+ Pseudo-unipotent characters
435
+ We denote by (G∗,F ∗) a group in duality with (G,F) with respect to a choice of an F-stable
436
+ maximal torus T of G and an F ∗-stable maximal torus T∗ of G∗. If τ ∶ Gsc → [G,G] is a simply
437
+ connected covering (see [GM20, Remark 1.5.13]), then there exists an isomorphisms between the
438
+ abelian groups
439
+ Z(G∗)F ∗ → Irr(GF /τ(Gsc))
440
+ z ↦ ˆzG
441
+ according to [CE04, (8.19)]. Notice that, if L is an F-stable Levi subgroup of G, then its dual L∗ is
442
+ an F ∗-stable Levi subgroup of G∗ and we have Z(G∗)F ∗ ≤ Z(L∗)F ∗. In particular, every element
443
+ z ∈ Z(G∗)F ∗ defines a linear characters of ˆzL and restriction of characters yields the equality
444
+ (ˆzG)LF = ˆzL.
445
+ In the next definition, we consider charactersthat are obtained by multiplying these linear characters
446
+ with unipotent characters.
447
+ Definition 2.2. Let (K,F) be a finite reductive group and consider a Levi subgroup of L ≤ K
448
+ and an irreducible character θ ∈ Irr(LF). We say that θ is (K,F)-pseudo-unipotent if there exists
449
+ an element z ∈ Z(K∗)F ∗ such that θˆzL is unipotent. Moreover, for every unipotent character
450
+ λ ∈ Uch(LF ), we denote by psK(λ) the set of (K,F)-pseudo-unipotent characters of LF of the
451
+ form λˆzL for some z ∈ Z(K∗)F ∗. Moreover, we denote by psK(LF ) the set of all (K,F)-pseudo
452
+ unipotent characters of LF. When the group K coincides with L, we denote the set of characters
453
+ psL(LF ) simply by ps(LF ).
454
+ In accordance with the terminology introduced above, we say that an e-Harish-Chandra series of
455
+ (K,F) is pseudo-unipotent if it is of the form E(KF ,(L,ν)) for some ν ∈ psK(λ) and where
456
+ (L,λ) is a unipotent e-cuspidal pair of (K,F). In this case, we also say that (L,ν) is a pseudo-
457
+ unipotent e-cuspidal pair. We define the union of all the series associated to characters in psK(λ)
458
+ by E(KF ,(L,psK(λ))). Since
459
+ RK
460
+ L (λˆzL) = RK
461
+ L (λ)ˆzK
462
+ for every z ∈ Z(K∗)F ∗ by [CE04, (8.20)], we deduce that the elements of the pseudo-unipotent
463
+ e-Harish-Chandra series E(KF ,(L,λˆz)) are exactly the irreducible characters of the form ϕˆzK
464
+ for some unipotent character ϕ ∈ E(KF ,(L,λ)). Moreover, we point out that λ is the unique
465
+ unipotent character in the set psK(λ) according to [CE04, Proposition 8.26]. Similarly, the unipotent
466
+ characters in the set E(KF ,(L,psK(λ))) are those in the series E(KF ,(L,λ)).
467
+ Our next lemma, shows that blocks covering pseudo-unipotent characters are regular as defined in
468
+ [Nav98, p.210].
469
+ 9
470
+
471
+ Lemma 2.3. Let L be an F-stable Levi subgroup of G and suppose that ℓ is odd and good for G.
472
+ For every LF ≤ H ≤ NG(L)F and every character ϑ ∈ Irr(H) lying above some pseudo-unipotent
473
+ character in ps(LF ), the block bl(ϑ) is LF-regular. In particular, the Brauer induced block bl(ϑ)H is
474
+ defined and is the unique block of H covering bl(ϑ).
475
+ Proof. Let ϕ ∈ Uch(LF ) and z ∈ Z(L∗)F ∗ such that ϕˆzL lies below the character ϑ and chose
476
+ a unipotent e-cuspidal pair (M,µ) of L such that ϕ ∈ E(LF ,(M,µ)). In particular, bl(ϕ) =
477
+ bLF (M,µ) according to [CE94]. If Q ∶= Z(M)F
478
+ ℓ , then MF = CGF (Q) according to [CE94, Propo-
479
+ sition 3.3 (ii)]. Moreover, observe that [CE94, Proposition 4.2] implies that bl(ϕ) = bLF (M,µ) =
480
+ bl(µ)LF while [Riz18, Lemma 2.1] implies that bl(ϕ) and bl(ϕˆzL) have the same defect groups.
481
+ Now, applying [Nav98, Lemma 4.13 and Theorem 9.26], we can find defect groups Dϑ, Dϕ and Dµ
482
+ of bl(ϑ), bl(ϕ) and bl(µ) respectively with the property that Dµ ≤ Dϕ ≤ Dϑ. Since Q ≤ Oℓ(MF ) ≤
483
+ Dµ by [Nav98, Theorem 4.8], we deduce that Q ≤ Dϑ and hence CH(Dϑ) ≤ CH(Q) = MF ≤ LF.
484
+ By [Nav98, Lemma 9.20] we conclude that the block bl(ϑ) is LF -regular. The second part of the
485
+ lemma now follows from [Nav98, Theorem 9.19].
486
+ 3
487
+ Compatibility with isomorphisms of character triples
488
+ The aim of this section is to show how the bijection (2.2) can be made compatible with isomorphisms
489
+ of character triples and with the action of automorphisms. This property was first suggested by the
490
+ author in [Ros22c, Parametrisation B] and further studied in [Ros22d]. Our Theorem C gives a
491
+ solution of this conjectured result for unipotent e-Harish-Chandra series and groups of type A, B
492
+ and C. Before proceeding further, we show how the parametrisation (2.2) can be reformulated in
493
+ a more convenient form. For this, let (L,λ) be a unipotent e-cuspidal pair of (G,F) and assume
494
+ that ̂λ is an extension of λ to the stabiliser NG(L)F
495
+ λ . Then, by applying Gallagher’s theorem [Isa76,
496
+ Corollary 6.17] and the Clifford correspondence [Isa76, Theorem 6.11] we obtain a bijection
497
+ Irr(WG(L,λ)F ) → Irr(NG(L)F ∣ λ)
498
+ η ↦ (̂λη)
499
+ NG(L)F
500
+ and therefore (2.2) holds if an only if there exists a bijection
501
+ E(GF ,(L,λ)) → Irr(NG(L)F ∣ λ) .
502
+ (3.1)
503
+ This new reformulation will allow us to introduce the aforementioned compatibility with isomor-
504
+ phisms of character triple isomorphisms.
505
+ 3.1
506
+ Equivariance and maximal extendibility
507
+ In this section, we consider some equivariance properties for the parametrisation (3.1) which are
508
+ related to maximal extendibility (see (2.1)) of unipotent characters.
509
+ As in the previous sections, consider a connected reductive group G with a Frobenius endomor-
510
+ phism F ∶ G → G defining an Fq-structure on G. We denote by AutF(GF ) the set of those auto-
511
+ morphisms of GF obtained by restricting some bijective morphism of algebraic groups σ ∶ G → G
512
+ that commutes with F to the set of Fq-rational points GF . Notice that the restriction of such a
513
+ 10
514
+
515
+ morphism σ to GF , which by abuse of notation we denote again by σ, is an automorphism of the
516
+ finite group GF . We refer the reader to [CS13, Section 2.4] for further details. In particular, observe
517
+ that any morphism σ with the properties above is determined by its restriction to GF up to a power
518
+ of F and hence it follows that AutF(GF ) acts on the set of F-stable closed connected subgroups of
519
+ G. Then, given an F-stable closed connected subgroup H of G, we can define the set AutF(GF )H
520
+ consisting of those automorphisms σ as above that stabilise the algebraic group H.
521
+ Now, let ℓ be a prime number not dividing q and denote by e the order of q modulo ℓ or q modulo 4
522
+ if ℓ = 2. In order to control the action of automorphism on unipotent e-Harish-Chandra series, we
523
+ exploit a result of Cabanes and Späth. More precisely, in [CS13, Theorem 3.4] it was shown that the
524
+ parametrisation given by Broué, Malle and Michel in [BMM93, Theorem 3.2 (2)] commutes with the
525
+ action of those automorphisms in the set AutF(GF ). Notice that the statement of [CS13, Theorem
526
+ 3.4] only considers unipotent e-cuspidal pairs (L,λ) where L is a minimal e-split Levi subgroups
527
+ (which is enough for the purpose of dealing with the McKay Conjecture). However, their proof
528
+ works for the general case as well.
529
+ Proposition 3.1. For every unipotent e-cuspidal pair (L,λ) of (G,F) there exists an AutF(GF )(L,λ)-
530
+ equivariant bijection
531
+ IG
532
+ (L,λ) ∶ Irr(WG(L,λ)F ) → E (GF ,(L,λ))
533
+ such that
534
+ IG
535
+ (L,λ)(η)(1)ℓ = ∣GF ∶ NG(L,λ)F ∣ℓ ⋅ λ(1)ℓ ⋅ η(1)ℓ
536
+ for every η ∈ Irr(WG(L,λ)F ).
537
+ Proof. This follows from the proof of [CS13, Theorem 3.4]. See also [Ros22d, Theorem 3.4].
538
+ As explained at the beginning of this section, if the character λ extends to the stabiliser NG(L)F
539
+ λ ,
540
+ then we can use the bijection (2.2) to obtain (3.1). A similar argument can be used to include the
541
+ equivariance property described above and obtain an equivariant version of (3.1). Observe that, by
542
+ the discussion on automorphisms above, it follows that the group AutF(GF ) acts on the set of e-
543
+ cuspidal pairs (L,λ) and therefore we can define the stabiliser AutF(GF )(L,λ). Furthermore, recall
544
+ that we denote by d(χ) the ℓ-defect of an irreducible character χ.
545
+ Corollary 3.2. Let (L,λ) be a unipotent e-cuspidal pair of (G,F) and suppose that λ has an ex-
546
+ tension λ◇ ∈ Irr(NG(L)F
547
+ λ ) which is additionally AutF(GF )(L,λ)-invariant. Then there exists an
548
+ AutF(GF )(L,λ)-equivariant bijection
549
+ ΩG
550
+ (L,λ) ∶ E (GF ,(L,λ)) → Irr(NG(L)F ∣ λ)
551
+ such that
552
+ d(χ) = d(ΩG
553
+ (L,λ)(χ))
554
+ for every χ ∈ E(GF ,(L,λ)).
555
+ 11
556
+
557
+ Proof. Consider the bijection IG
558
+ (L,λ) given by Proposition 3.1 and define the map
559
+ ΩG
560
+ (L,λ) ∶ E (GF ,(L,λ)) → Irr(NG(L)F ∣ λ)
561
+ IG
562
+ (L,λ)(η) ↦ (λ◇η)NG(L)F
563
+ for every η ∈ Irr(WG(L,λ)F ) and where λ◇ is the extension of λ to NG(L)F
564
+ λ given in the statement.
565
+ This is a well defined bijection by the Clifford correspondence [Isa76, Theorem 6.11] and Gallagher’s
566
+ theorem [Isa76, Corollary 6.17]. Moreover, for every α ∈ AutF(GF ) such that (L,λ)α = (L,λ) and
567
+ every η ∈ Irr(WG(L,λ)F ) we have
568
+ ((λ◇η)NG(L)F )
569
+ α
570
+ = ((λ◇η)α)
571
+ NG(L)F
572
+ = (λ◇ηα)NG(L)F
573
+ because α stabilises λ◇. On the other hand
574
+ IG
575
+ (L,λ)(η)α = IG
576
+ (L,λ) (ηα)
577
+ by the properties of IG
578
+ (L,λ) and hence we conclude that ΩG
579
+ (L,λ) is AutF(GF )(L,λ)-equivariant. Fur-
580
+ thermore, if we consider η ∈ Irr(WG(L,λ)F ) and define the characters χ ∶= IG
581
+ (L,λ)(η) and ψ ∶=
582
+ (λ◇η)NG(L)F , then the degree formula from Proposition 3.1 implies that
583
+ ℓd(χ) =
584
+ ∣GF ∣ℓ
585
+ χ(1)ℓ
586
+ =
587
+ ∣NG(L,λ)F ∣ℓ
588
+ λ(1)ℓ ⋅ η(1)ℓ
589
+ =
590
+ ∣NG(L)F ∣ℓ
591
+ ψ(1)ℓ
592
+ = ℓd(ψ)
593
+ and hence we deduce that d(χ) = d(ψ) as required.
594
+ Next, we consider a regular embedding G ≤ ̃G as defined in [CE04, (15.1)]. Then, ̃G is a connected
595
+ reductive group with connected centre and whose derived subgroup coincides with that of G, that
596
+ is, [̃G, ̃G] = [G,G]. In particular, observe that ̃G = Z(̃G)G, that G is normal in ̃G and that
597
+ the quotient ̃G/G is an abelian group. Moreover, for every Levi subgroup L of G, we deduce
598
+ that ̃L ∶= Z(̃G)L is a Levi subgroup of ̃G and that L ≤ ̃L is again a regular embedding. These
599
+ observations will be used throughout this paper without further reference.
600
+ We also recall that, according to [DM91, Proposition 13.20], restriction of characters yields a bi-
601
+ jection between the unipotent characters of ̃GF and those of GF . In particular, every unipotent
602
+ character of GF is ̃GF -invariant. Using this observation, we can compare the relative Weyl groups
603
+ in ̃GF with those in GF .
604
+ Lemma 3.3. Let (L,λ)be a unipotent e-cuspidal pair of (G,F), set ̃L = LZ(̃G) and consider a unipo-
605
+ tent extension ̃λ of λ to ̃LF. Then, N ̃
606
+ G(L)F
607
+ λ = N ̃
608
+ G(L)F
609
+ ̃λ and we have W ̃
610
+ G(̃L,̃λ)F ≃ WG(L,λ)F .
611
+ Proof. Since ̃λ extends λ, it is clear that the stabiliser N ̃
612
+ G(L)F
613
+ ̃λ is contained in N ̃
614
+ G(L)F
615
+ λ . On the
616
+ other hand, let x ∈ N ̃
617
+ G(L)F
618
+ λ and observe that ̃λx is a unipotent character of ̃LF that restricts to
619
+ λx = λ. Then, [DM91, Proposition 13.20] implies that ̃λx = ̃λ and therefore x ∈ N ̃
620
+ G(L)F
621
+ ̃λ . From this,
622
+ we also conclude that N ̃
623
+ G(L)F
624
+ ̃λ = ̃LFNG(L)F
625
+ λ and therefore that W ̃
626
+ G(̃L,̃λ)F ≃ WG(L,λ)F .
627
+ 12
628
+
629
+ As a consequence of the lemma above, we show that when λ extends to its stabiliser NG(L)F
630
+ λ ,
631
+ then every irreducible character of NG(L) that lies above λ is N ̃
632
+ G(L)F -invariant and extends to
633
+ N ̃
634
+ G(L)F .
635
+ Corollary 3.4. Let (L,λ) be a unipotent e-cuspidal pair of (G,F) and suppose that λ has an extension
636
+ λ◇ ∈ Irr(NG(L)F
637
+ λ ). Then every character of NG(L)F lying above λ extends to N ̃
638
+ G(L)F .
639
+ Proof. To start, we fix a unipotent extension ̃λ of λ to ̃LF and recall that N ̃
640
+ G(L)F
641
+ λ = N ̃
642
+ G(L)F
643
+ ̃λ
644
+ according to Lemma 3.3. Then, applying [Spä10, Lemma 4.1 (a)] we deduce that there exists an
645
+ extension ̃λ◇ of λ◇ to N ̃
646
+ G(L)F
647
+ λ that also extends ̃λ. Consider now an irreducible character ψ of
648
+ NG(L)F lying above λ. By Gallagher’s theorem [Isa76, Corollary 6.17] and the Clifford correspon-
649
+ dence [Isa76, Theorem 6.11], it follows that there exists an irreducible character η of the relative
650
+ Weyl group WG(L,λ)F such that ψ is induced from the irreducible character ψ0 ∶= ηλ◇. More-
651
+ over, by using Lemma 3.3, we have W ̃
652
+ G(̃L,̃λ)F ≃ WG(L,λ)F . Then, η, viewed as a character of
653
+ NG(L)F
654
+ λ , admits an extension, say ̃η, to N ̃
655
+ G(L)F
656
+ λ . Now, define ̃ψ0 ∶= ̃η̃λ◇ and observe that ̃ψ0 lies
657
+ above ̃λ. By the Clifford correspondence, it follows that the character ̃ψ of N ̃
658
+ G(L)F induced from
659
+ ̃ψ0 is irreducible and therefore, applying [Isa76, Problem 5.2], we conclude that ̃ψ extends ψ. The
660
+ proof is now complete.
661
+ We can now construct a parametrisation of unipotent e-Harish-Chandra series in the group ̃GF
662
+ which agrees with the bijection ΩG
663
+ (L,λ) from Corollary 3.2 via restriction of characters.
664
+ Proposition 3.5. Let (L,λ) be a unipotent e-cuspidal pair of (G,F) and suppose that λ has an
665
+ extension λ◇ ∈ Irr(NG(L)F
666
+ λ ) which is additionally AutF(GF )(L,λ)-invariant. If ̃λ is a unipotent
667
+ extension of λ to ̃LF , then there exists a bijection ̃Ω ̃
668
+ G
669
+ (̃L,̃λ) making the following diagram commute
670
+ E (̃GF ,(̃L,̃λ))
671
+ Irr(N ̃
672
+ G(L)F ∣ ̃λ)
673
+ E (GF ,(L,λ))
674
+ Irr(NG(L)F ∣ λ)
675
+ ̃Ω ̃
676
+ G
677
+ (̃L,̃λ)
678
+ Res
679
+ ̃
680
+ GF
681
+ GF
682
+ Res
683
+ N ̃
684
+ G(L)F
685
+ NG(L)F
686
+ ΩG
687
+ (L,λ)
688
+ and where ΩG
689
+ (L,λ) is the bijection given by Corollary 3.2.
690
+ Proof. First, observe that λ has an extension ̃λ to ̃LF according to [DM91, Proposition 13.20]. More-
691
+ over, restrictions from ̃GF to GF induces a bijection from the set E(̃GF ,(̃L,̃λ)) to E(GF ,(L,λ))
692
+ according to [CE94, Proposition 3.1]. Next, consider a character ψ ∈ Irr(NG(L)F ) lying above λ
693
+ and observe that ψ admits an extension ̃ψ0 ∈ Irr(N ̃
694
+ G(L)F ) by Corollary 3.4. Let ̃λ0 be an irre-
695
+ ducible constituent of the restriction ̃ψ0,̃LF and notice that ̃
696
+ λ0 is an extension of λ since ̃LF /LF
697
+ is abelian. Now, Gallagher’s theorem [Isa76, Corollary 6.17] implies that there exists a linear char-
698
+ acter ν ∈ Irr(̃LF /LF) such that ̃λ0ν = ̃λ. Since N ̃
699
+ G(L)F /NG(L)F ≃ ̃LF/LF we can identify ν
700
+ with its extension to N ̃
701
+ G(L)F . Then, it follows that the character ̃ψ ∶= ̃ψ0ν is an extension of ψ to
702
+ N ̃
703
+ G(L)F lying above ̃λ. Then the assignment ψ ↦ ̃ψ defines a bijection between Irr(NG(L)F ∣ λ)
704
+ 13
705
+
706
+ and Irr(N ̃
707
+ G(L)F ∣ ̃λ) whose inverse is given by restriction of characters. We can now define
708
+ ̃Ω
709
+ ̃
710
+ G
711
+ (̃L,̃λ) (̃χ) ∶= ̃ψ
712
+ for every ̃χ ∈ E(̃GF ,(̃L,̃λ)) and ̃ψ ∈ Irr(N ̃
713
+ G(L)F ∣ ̃λ) whenever ΩG
714
+ (L,λ)(̃χGF ) = ̃ψNG(L)F .
715
+ 3.2
716
+ Construction of GF-block isomorphisms of character triples
717
+ From now on, we assume that G is simple, simply connected and of type A, B or C. Furthermore,
718
+ we suppose that ℓ is odd and denote by e the order of q modulo ℓ.
719
+ We now give a more explicit construction of the group of automorphism AutF(GF ). Fix a max-
720
+ imally split torus T0 contained in an F-stable Borel subgroup B0 of G. This choice corresponds
721
+ to a set of graph automorphisms γ ∶ G → G and a field endomorphism F0 ∶ G → G. More pre-
722
+ cisely, if we consider the set of simple roots ∆ ⊆ Φ(G,T0) corresponding to the choice T0 ⊆ B0,
723
+ then we have an automorphism γ ∶ G → G given by γ(xα(t)) ∶= xγ(α)(t) for every t ∈ Ga and
724
+ α ∈ ±∆ and where γ is a symmetry of the Dynkin diagram of ∆, while F0(xα(t)) ∶= xα(tp) for
725
+ every t ∈ Ga and α ∈ Φ(G,T0). Here, we denote by xα ∶ Ga → G a one-parameter subgroup
726
+ corresponding to α ∈ Φ(G,T0). We define the subgroup A of AutF(GF ) generated by the graph
727
+ and field automorphisms described above.
728
+ In addition, we choose our regular embedding G ≤ ̃G to be defined in such a way that the graph and
729
+ field automorphisms extends to ̃G (see, for instance, [MS16, Section 2B]). In particular, the group
730
+ A acts via automorphisms on ̃GF and we can form the external semidirect product ̃GF ⋊ A which
731
+ acts on GF . It turns out that ̃GF ⋊A and AutF(GF ) induce the same set of automorphisms on the
732
+ finite group GF (see, for instance, [GLS98, Section 2.5]).
733
+ Throughout this section, we consider a fixed unipotent e-cuspidal pair (L,λ) of (G,F) and a unipo-
734
+ tent extension ̃λ of λ to ̃LF (whose existence is ensured by [DM91, Proposition 13.20]) where, as
735
+ always, we define ̃L ∶= LZ(̃G). In the next lemma, we show that the hypothesis of Corollary 3.2 is
736
+ satisfied under our assumptions.
737
+ Lemma 3.6. There exists an extension λ◇ of λ to NG(L)F
738
+ λ that is (̃GF A)(L,λ)-invariant.
739
+ Proof. Using [BS20, Theorem 4.3 (i)], [Bro22b, Theorem 1.2 (a)] and the results of [Bro-Ruh], we
740
+ obtain an extension λ◇ of λ to NG(L)F
741
+ λ which is (GF A)(L,λ)-invariant. Since (̃GF A)(L,λ) =
742
+ ̃L(GF A)(L,λ) it suffices to show that λ◇ is ̃LF-invariant. However, the latter assertion follows
743
+ immediately from the fact that λ◇ extends to N ̃
744
+ G(L)F
745
+ λ according to Lemma 3.3 and [Spä10, Lemma
746
+ 4.1 (a)].
747
+ As an immediate consequence of the lemma above, we deduce that every character of NG(L)F
748
+ lying above λ extends to N ̃
749
+ G(L)F . This can be considered as a local analogue of [DM91, Proposition
750
+ 13.20].
751
+ Lemma 3.7. Every irreducible character of NG(L)F lying above λ extends to N ̃
752
+ G(L)F .
753
+ Proof. This follows from Corollary 3.4 whose hypothesis is satisfied by Lemma 3.6.
754
+ 14
755
+
756
+ We point out that, under our assumptions, every irreducible character of NG(L)F lying above λ
757
+ extends to its stabiliser in N ̃
758
+ G(L)F because the quotient N ̃
759
+ G(L)F /NG(L)F is cyclic according to
760
+ [GM20, Proposition 1.7.5]. However, in the lemma above we are also showing, using independent
761
+ methods, that each such character is N ̃
762
+ G(L)F -invariant.
763
+ Using Lemma 3.6, we can now define bijections Ω ∶= ΩG
764
+ (L,λ) and ̃Ω ̃
765
+ G
766
+ (̃L,̃λ) as described in Corol-
767
+ lary 3.2 and Proposition 3.5 respectively. In what follows, we consider the sets of characters G ∶=
768
+ E(GF ,(L,λ)), L ∶= Irr(NG(L)F ∣ λ), ̃G ∶= E(̃GF ,(̃L,̃λ)) and ̃L ∶= Irr(N ̃
769
+ G(L)F ∣ ̃λ). Our next
770
+ aim is to show that the parametrisation Ω is compatible with GF -block isomorphisms of charac-
771
+ ter triples. We start by checking the group theoretic properties required for the existence of such
772
+ isomorphisms (see [Spä17, Remark 3.7 (i)]).
773
+ Lemma 3.8. For every χ ∈ G and ψ ∶= Ω(χ) ∈ L we have (̃GF A)L,χ = (̃GF A)L,ψ and ̃GFAχ =
774
+ GF (̃GF A)L,ψ.
775
+ Proof. We argue as in the proof of [Ros22c, Lemma 4.2]. To start, we observe that (̃GF A)(L,λ),χ =
776
+ (̃GF A)(L,λ),ψ since the map Ω is (̃GF A)(L,λ)-equivariant. Set U(χ) ∶= (̃GF A)L,χ and U(ψ) ∶=
777
+ (̃GF A)L,ψ. First, consider x ∈ U(χ) and observe that according to [BMM93, Theorem 3.2 (1)] there
778
+ exists y ∈ NG(L)F such that (L,λ)xy = (L,λ). In particular, xy ∈ (̃GF A)(L,λ),χ = (̃GF A)(L,λ),ψ
779
+ and hence x ∈ U(ψ) since ψy = ψ. This shows that U(χ) ≤ U(ψ). On the other hand, suppose
780
+ that x ∈ U(ψ). By Clifford’s theorem there exists y ∈ NG(L)F such that λxy = λ and so xy ∈
781
+ (̃GF A)L,ψ = (̃GF A)L,χ. Since χy = χ we deduce that x ∈ U(χ) and hence U(χ) = U(ψ). To
782
+ conclude, it is enough to show that ̃GFAχ = GF U(χ). First, notice that GF U(χ) ≤ ̃GF Aχ since
783
+ χ is ̃GF -invariant. On the other hand, for x ∈ ̃GF Aχ we know that (L,λ)x is GF -conjugate to
784
+ (L,λ) thanks to [BMM93, Theorem 3.2 (1)]. Therefore, we obtain x ∈ GF U(χ) and as explained
785
+ above this concludes the proof.
786
+ We now apply Lemma 3.8 to show that the map ̃Ω satisfies some useful equivariance properties.
787
+ Before doing so, we need to introduce some notation. For this purpose, consider a pair (G∗,F ∗)
788
+ dual to (G,F) and a pair (̃G∗,F ∗) dual to (̃G,F). Let i∗ ∶ ̃G∗ → G∗ be the surjection induced by
789
+ duality from the inclusion G ≤ ̃G and observe that Ker(i∗) = Z(̃G∗) since G is simply connected
790
+ (see [CE04, Section 15.1]). As shown in [CE04, (15.2)], there exists an isomorphism
791
+ Ker(i∗)F → Irr(̃GF /GF)
792
+ (3.2)
793
+ z ↦ ̂z̃
794
+ G
795
+ Furthermore, if L is an F-stable Levi subgroup of G and z ∈ Ker(i∗), then we define ̂z̃L to be the
796
+ restriction of ̂z̃
797
+ G to ̃LF and ̂zN ̃
798
+ G(L) to be the restriction of ̂z̃
799
+ G to N ̃
800
+ G(L)F . We set K ∶= Ker(i∗) and
801
+ obtain an action of the group K on the characters of ̃GF , ̃LF and N ̃
802
+ G(L)F as defined in [Ros22d,
803
+ Definition 2.1]. Moreover, we consider the external semidirect product (̃GF A)⋉K given by defining
804
+ zx as the unique element of K corresponding to the character (̂z̃
805
+ G)x of the quotient ̃GF /GF via
806
+ the isomorphism specified in (3.2), whenever x ∈ ̃GF A and z ∈ K. Then, for every F-stable Levi
807
+ subgroup L of G, we obtain an action of (̃GF A)L ⋉ K on the irreducible characters of ̃LF and
808
+ N ̃
809
+ G(L)F . We denote by ((̃GF A)L ⋉ K)̃λ the stabiliser of ̃λ ∈ Irr(̃LF ). In particular, it follows
810
+ that ((̃GF A)L ⋉ K)̃λ acts on the sets of characters ̃G and ̃L. Next, we show that the bijection ̃Ω is
811
+ compatible with this action.
812
+ 15
813
+
814
+ Lemma 3.9. The bijection ̃Ω is (N ̃
815
+ G(L)F (̃GF A)(L,λ) ⋊ K)̃λ-equivariant.
816
+ Proof. Let ̃χ ∈ ̃G and ̃ψ ∈ ̃L. By the definition of ̃Ω, we have ̃Ω(̃χ) = ̃ψ if and only if Ω(χ) = ψ where
817
+ χ ∶= ̃χGF and ψ ∶= ̃ψNG(L)F . Now, if we consider g ∈ N ̃
818
+ G(L)F , x ∈ (̃GF A)(L,λ) and z ∈ K such
819
+ that (gx,z) stabilises ̃λ, then we obtain
820
+ ̃Ω(̃χ(gx,z)) = ̃ψ(gx,z)
821
+ if and only if
822
+ Ω((̃χ(gx,z))
823
+ GF ) = (̃ψ(gx,z))
824
+ NG(L)F .
825
+ (3.3)
826
+ However, since the restriction of ̃χ(gx,z) to GF coincides with χx and the restriction of ̃ψ(gx,z) to
827
+ NG(L)F coincides with ψx, we deduce that the equality in (3.3) holds by the equivariant properties
828
+ of Ω as described in Corollary 3.2.
829
+ One of the main ingredients for the construction of the projective representations needed to obtain
830
+ GF -block isomorphisms of character triples is given by the following two lemmas on maximal
831
+ extendibility.
832
+ Lemma 3.10. Maximal extendibility holds for G with respect to the inclusion GF ⊴ GF A, that is,
833
+ every character χ ∈ G extends to GF Aχ.
834
+ Proof. If G is of type B or C then the result follows from [Isa76, Corollary 11.22] since A is cyclic.
835
+ Then, we can assume that G is of type A in which case the result follows from [CS17, Theorem 4.1]
836
+ (see also [Mal08, Theorem 2.4]).
837
+ The local version of the lemma above is a consequence of the results obtained in [BS20].
838
+ Lemma 3.11. Maximal extendibility holds for L with respect to the inclusion NG(L)F ⊴ (GF A)L,
839
+ that is, every character ψ ∈ L extends to (GF A)L,ψ.
840
+ Proof. As in the proof of Lemma 3.10, it is enough to prove the result in the case where G is of type
841
+ A. In fact, if G is of type B or C, then the quotient (GF A)(L,ψ)/NG(L)F is cyclic because it it a
842
+ subquotient of A. Now, if G is of type A the result follows from [BS20, Theorem 1.2].
843
+ Finally, we can start constructing isomorphisms of character triples for the bijection Ω. As a first
844
+ step, we obtain a weaker isomorphism, know as GF -central isomorphism of character triples and
845
+ denoted by ∼c
846
+ GF , whose requirements are given by [Spä17, Remark 3.7 (i)-(iii)] and replacing the
847
+ condition on defect groups by imposing that CG(N) ≤ H1 ∩ H2 with the notations used there. We
848
+ refer the reader to [Ros22b, Definition 3.3.4] for a precise definition.
849
+ Proposition 3.12. For every χ ∈ G and ψ ∶= Ω(χ) ∈ we have
850
+ (̃GFAχ,GF ,χ) ∼c
851
+ GF ((̃GF A)L,ψ,NG(L)F ,ψ) .
852
+ 16
853
+
854
+ Proof. We start by constructing projective representations associated with χ and ψ. According to
855
+ Proposition 3.5 we can find a unipotent extension ̃χ ∈ ̃G of χ to ̃GF . Furthermore, by Lemma 3.10
856
+ there exists an extension χ′ of χ to GF Aχ. Let ̃Dglo be a representation of ̃GF affording ̃χ and D′
857
+ glo
858
+ a representation of GF Aχ affording χ′. Now, [Spä12, Lemma 2.11] implies that
859
+ Pglo ∶ (̃GF A)χ → GLχ(1)(C)
860
+ defined by Pglo(x1x2) ∶= ̃
861
+ Dglo(x1)D′
862
+ glo(x2) for every x1 ∈ ̃GF and x2 ∈ GF Aχ is a projective
863
+ representation associated with χ. Next, observe that ̃ψ ∶= ̃Ω(̃χ) ∈ ̃L is an extension of ψ to N ̃
864
+ G(L)F
865
+ and consider an extension ψ′ of ψ to (GF A)L,ψ given by Lemma 3.11. Let ̃Dloc be a representation
866
+ of N ̃
867
+ G(L)F affording ̃ψ and D′
868
+ loc a representation of (GF A)L,ψ affording ψ′. Once again, [Spä12,
869
+ Lemma 2.11] shows that the map
870
+ Ploc ∶ (̃GF A)L,ψ → GLψ(1)(C)
871
+ given by Ploc(x1x2) ∶= ̃Dloc(x1)D′
872
+ loc(x2) for every x1 ∈ N ̃
873
+ G(L)F and x2 ∈ (GF A)L,ψ is a pro-
874
+ jective representation associated with ψ. We denote by αglo and αloc the factor set of Pglo and
875
+ Ploc respectively. As explained in the proof of [Ros22d, Theorem 4.3], in order to prove that αglo
876
+ coincides with αloc via the isomorphism ̃GF Aχ/GF ≃ (̃GF A)L,ψ/NG(L)F , it suffices to show
877
+ that
878
+ (µglo
879
+ x )N ̃
880
+ G(L)F = µloc
881
+ x
882
+ (3.4)
883
+ for every x ∈ (GF A)L,χ and where µglo
884
+ x
885
+ ∈ Irr(̃GF /GF ) and µloc
886
+ x
887
+ ∈ Irr(N ̃
888
+ G(L)F /NG(L)F ) are
889
+ determined by Gallagher’s theorem (see [Isa76, Corollary 6.17]) via the equalities ̃χ = µglo
890
+ x ̃χx and ̃ψ =
891
+ µloc
892
+ x ̃ψx respectively. Because (GF A)L,χ = NG(L)F (GF A)(L,λ),χ, we may assume that x stabilises
893
+ λ. Let z ∈ K such that µglo
894
+ x
895
+ = ˆz̃
896
+ G and observe that (x,z) is an element of (GF A)(L,λ),χ ⋊ K that
897
+ stabilises ̃χ. Then, applying [BMM93, Theorem 3.2 (1)], we deduce that ̃λ and ̃λ(x,z) are N ̃
898
+ G(L)F -
899
+ conjugate and we may choose g ∈ N ̃
900
+ G(L)F such that ̃λ = (̃λ(x,z))g = ̃λ(xg,z). In other words
901
+ (xg,z) ∈ (N ̃
902
+ G(L)F (̃GF A)(L,λ) ⋊ K)̃λ
903
+ and thus Lemma 3.9 implies that the equality ̃χ = ̃χ(xg,z) holds if and only if ̃ψ = ̃ψ(xg,z). From this,
904
+ we immediately deduce the equality required in (3.4).
905
+ Next, denote by ζglo and ζloc the scalar functions associated to Pglo and Ploc respectively. To con-
906
+ clude the proof, it remains to show that ζglo and ζloc coincide on C(̃
907
+ GF A)χ(GF ) = Z(̃GF ). As in the
908
+ proof of [Ros22d, Theorem 4.3], it is enough to show that the restrictions of ̃χ and ̃ψ to Z(̃GF ) are
909
+ multiples of a common irreducible constituent. This follows from the fact that unipotent characters
910
+ contain the center in their kernel. In fact, on one hand, 1Z(̃
911
+ GF ) is the unique irreducible constituent
912
+ of ̃χZ(̃
913
+ GF ) because ̃χ is unipotent. On the other hand, ̃ψ lies above ̃λ and, since Z(̃GF ) ≤ Z(̃LF )
914
+ and ̃λ is unipotent, we deduce that 1Z(̃
915
+ GF ) is the unique irreducible constituent of ̃ψZ(̃
916
+ GF ). This
917
+ completes the proof.
918
+ We conclude this section by verifying the remaining condition [Spä17, Remark 3.7 (iv)] and obtain
919
+ the required GF -block isomorphisms of character triples for the map Ω.
920
+ 17
921
+
922
+ Proposition 3.13. For every χ ∈ G and ψ ∶= Ω(χ) ∈ we have
923
+ (̃GFAχ,GF ,χ) ∼GF ((̃GF A)L,ψ,NG(L)F ,ψ) .
924
+ Proof. By Proposition 3.12 it is enough to check the block theoretic requirement given by [Spä17,
925
+ Remark 3.7 (ii) and (iv)]. First, observe that under our assumption [CE94, Proposition 3.3 (ii)] shows
926
+ that LF = CGF (E) where E ∶= Z(L)F
927
+ ℓ . In particular, NJ(L) = NJ(E) for every GF ≤ J ≤
928
+ ̃GF . Furthermore, for every block C0 of NJ(L) and every defect group D of C0 we have E ≤
929
+ Oℓ(NJ(L)) ≤ D and hence C ̃
930
+ GF (D) ≤ N ̃
931
+ G(L)F . Now, [KS15, Theorem B] implies that for every
932
+ block C of N ̃
933
+ G(L)F covering C0, the induced blocks B ∶= C ̃GF and B0 ∶= CJ
934
+ 0 are well-defined and
935
+ B covers B0.
936
+ Let ̃χ ∈ ̃G be an extension of χ and set ̃ψ ∶= ̃Ω(̃χ). By Lemma 2.3 the block of ̃C of ̃ψ coincides
937
+ with the induced block bl(̃λ)N ̃
938
+ G(L)F . Furthermore, by [CE94, Proposition 4.2] we know that the
939
+ block ̃B of ̃χ coincides with b ̃
940
+ GF (̃L,̃λ) = bl(̃λ)̃
941
+ GF . Then, by the transitivity of block induction we
942
+ get ̃
943
+ B = ̃C ̃
944
+ GF . Consider now GF ≤ J ≤ ̃GF as in the previous paragraph and notice that bl(̃χJ)
945
+ is the unique block of J covered by ̃B. Now, since bl(̃ψNJ (L)) is covered by ̃C, we deduce that
946
+ bl(̃ψNJ (L))J is covered by ̃B and therefore
947
+ bl(̃χJ) = bl( ̃ψNJ (L))
948
+ J .
949
+ (3.5)
950
+ As explained in the proof of [Ros22d, Theorem 4.8] we can now use (3.5) together with Proposition
951
+ 3.12 to conclude the proof via an application of [Spä17, Theorem 4.1 (i)].
952
+ 3.3
953
+ Proof of Theorem C
954
+ Proof of Theorem C. The hypothesis of Corollary 3.2 is satisfied under our restrictions on G accord-
955
+ ing to Lemma 3.6 and therefore we obtain an AutF(GF )(L,λ)-equivariant bijection
956
+ ΩG
957
+ (L,λ) ∶ E (GF ,(L,λ)) → Irr(NG(L)F ∣ λ)
958
+ that preserves the ℓ-defect of characters. Next, observe that the groups ̃GF A and X ∶= GF ⋊
959
+ AutF(GF ) induce the same automorphisms on GF according to the description given in [GLS98,
960
+ Section 2.5]. Then, by applying [Spä17, Theorem 5.3] and Proposition 3.13, we conclude that
961
+ (Xχ,GF ,χ) ∼GF (NX(L)ψ,NG(L)F ,ψ)
962
+ for every χ ∈ E(GF ,(L,λ)) and where ψ ∶= ΩG
963
+ (L,λ)(χ) and the proof is now complete.
964
+ 4
965
+ Consequences of Theorem C
966
+ In this section, we collect some consequences of Theorem C. First, we extend the parametrisation
967
+ obtained in Theorem C from unipotent e-Harish-Chandra series of the simple group G to pseudo-
968
+ unipotent (see Definition 2.2) e-Harish-Chandra series of the Levi subgroups of G. More precisely,
969
+ for every F-stable Levi subgroup K of G, we construct a parametrisation of the e-Harish-Chandra
970
+ series associated to e-cuspidal pairs of the form (L,λ) for some (K,F)-pseudo-unipotent character
971
+ λ ∈ psK(LF ). In a second step, we construct character bijections above this parametrisation by ex-
972
+ ploiting results on isomorphisms of character triples (see Corollary 4.6). This will allow us to control
973
+ the characters of e-chain stabilisers lying above pseudo-unipotent characters (see Proposition 5.6).
974
+ 18
975
+
976
+ 4.1
977
+ Parametrisation of pseudo-unipotent characters of Levi subgroups
978
+ Let K be an F-stable Levi subgroup of G and set K0 ∶= [K,K]. Observe that since the group G
979
+ is simply connected, the subgroup K0 is also simply connected according to [MT11, Proposition
980
+ 12.14]. In addition, under our assumption on the type of G, we deduce that the simple components
981
+ of K0 can only be of some of the types A, B or C.
982
+ Proposition 4.1. For every unipotent e-cuspidal pair (L0,λ0) of (K0,F) there exists a defect pre-
983
+ serving AutF(KF
984
+ 0 )(L0,λ0)-equivariant bijection
985
+ ΩK0
986
+ (L0,λ0) ∶ E (KF
987
+ 0 ,(L0,λ0)) → Irr(NK0(L0)F ∣λ0)
988
+ such that
989
+ (Yϑ,KF
990
+ 0 ,ϑ) ∼KF
991
+ 0 (NYϑ(L0),NK0(L0)F ,ΩK0
992
+ (L0,λ0)(ϑ))
993
+ for every ϑ ∈ E(KF
994
+ 0 ,(L0,λ0)) and where Y ∶= KF
995
+ 0 ⋊ AutF(KF
996
+ 0 ).
997
+ Proof. Notice that K0 is the direct product of simple algebraic groups K1,... ,Kn and that the action
998
+ of F permutes the simple components Ki. Denote the direct product of the simple components in
999
+ each F-orbit by Hj for j = 1,... ,t. The (Hj,F) are the irreducible rational components of (K,F)
1000
+ and we have KF
1001
+ 0 = HF
1002
+ 1 × ⋯ × HF
1003
+ t . Similarly, if we define the intersections Mj ∶= L0 ∩ Hj, then
1004
+ we have a decomposition LF
1005
+ 0 = MF
1006
+ 1 × ⋯ × MF
1007
+ t . In particular, we can write λ0 = µ1 × ⋯ × µt
1008
+ with µj ∈ Irr(MF
1009
+ j ). In this case, notice that (Mj,µj) is a unipotent e-cuspidal pair of (Hj,F).
1010
+ Next, suppose that Hj = Hj,1 × ⋅⋅⋅ × Hj,mj and observe that HF
1011
+ j ≃ HF mj
1012
+ j,1 . By the discussion at the
1013
+ beginning of this section we know that Hj,1 is a simple, simply connected group of type A, B or C
1014
+ and hence it satisfies the assumptions of Theorem C. Then, via the isomorphism HF
1015
+ j ≃ HF mj
1016
+ j,1 , we
1017
+ obtain an AutF(HF
1018
+ j )(Mj,µj)-equivarint bijection
1019
+ ΩHj
1020
+ (Mj,µj) ∶ E (HF
1021
+ j ,(Mj,µj)) → Irr(NHj(Mj)F ∣µj)
1022
+ that preserves the defect of characters and such that
1023
+ (Yj,ϑ,HF
1024
+ j ,ϑ) ∼HF
1025
+ j (NYj,ϑ(Mj),NHj(Mj)F ,ΩHj
1026
+ (Mj,µj)(ϑ))
1027
+ (4.1)
1028
+ for every ϑ ∈ E(HF
1029
+ j ,(Mj,µj)) and where Yj ∶= HF
1030
+ j ⋊ AutF(HF
1031
+ j ). Since the characters in the sets
1032
+ E(KF
1033
+ 0 ,(L0,λ0)) and Irr(NK0(L0)F ∣ λ0) are direct products of characters belonging to the sets
1034
+ E(HF
1035
+ j ,(Mj,µj)) and Irr(NHj(Mj)F ∣ µj) respectively, we obtain a bijection
1036
+ ΩK0
1037
+ (L0,λ0) ∶ E (KF
1038
+ 0 ,(L0,λ0)) → Irr(NK0(L0)F ∣λ0)
1039
+ by setting
1040
+ ΩK0
1041
+ (L0,λ0) (ϑ1 × ⋅⋅⋅ × ϑt) ∶= ΩH1
1042
+ (M1,µ1)(ϑ1) × ⋅⋅⋅ × ΩHt
1043
+ (Mt,µt)(ϑt)
1044
+ for every ϑj ∈ E(HF
1045
+ j ,(Mj,µj)). Finally, arguing as in the proof of [Ros22c, Proposition 6.5], we de-
1046
+ duce that the bijection ΩK0
1047
+ (L0,λ0) preserves the defect of characters, is AutF(KF
1048
+ 0 )(L0,λ0)-equivariant,
1049
+ and, using (4.1), it induces the KF
1050
+ 0 -block isomorphisms of character triples required in the state-
1051
+ ment.
1052
+ 19
1053
+
1054
+ In our next result, we replace the automorphism group Y ∶= KF
1055
+ 0 ⋊ AutF(KF
1056
+ 0 ) with the group of
1057
+ automorphisms of GF stabilising K, that is, X ∶= (GF ⋊ AutF(GF ))K. To do so, we apply the
1058
+ so-called Butterfly theorem [Spä17, Theorem 5.3] which basically states that, for any finite group G,
1059
+ the notion of G-block isomorphism of character triples only depends on the automorphisms induced
1060
+ on G.
1061
+ Corollary 4.2. Let (L0,λ0) be a unipotent e-cuspidal pair of (K0,F). The map ΩK0
1062
+ (L0,λ0) given by
1063
+ Proposition 4.1 is AutF(GF )K,(L0,λ0)-equivariant and satisfies
1064
+ (Xϑ,KF
1065
+ 0 ,ϑ) ∼KF
1066
+ 0 (NXϑ(L0),NK0(L0)F ,ΩK0
1067
+ (L0,λ0)(ϑ))
1068
+ (4.2)
1069
+ for every ϑ ∈ E(KF
1070
+ 0 ,(L0,λ0)) and where X ∶= (GF ⋊ AutF(GF ))K.
1071
+ Proof. First, observe that AutF(GF )K is contained in AutF(KF
1072
+ 0 ) because K0 is an F-stable char-
1073
+ acteristic subgroup of K. In particular, we deduce that the map ΩK0
1074
+ (L0,λ0) is AutF(GF )K,(L0,λ0)-
1075
+ equivariant. Next, to obtain (4.2), we apply [Spä17, Lemma 3.8 and Theorem 5.3] to the isomorphism
1076
+ of character triples given by Proposition 4.1 as explained in the proof of [Ros22c, Corollary 6.8].
1077
+ Isomorphisms of character triples play a fundamental role in representation theory of finite groups
1078
+ and in the study of the local-global conjectures. One of the most important consequences of the
1079
+ existence of isomorphisms of character triples is the possibility to lift character bijections. For in-
1080
+ stance, the main result of [NS14], shows how to apply this technique to construct bijections above
1081
+ characters of height zero in the context of the Alperin–McKay Conjecture [NS14, Theorem B]. The
1082
+ main consequence of this result, which follows from an argument introduced by Murai [Mur12], is
1083
+ a reduction theorem for the celebrated Brauer’s Height Zero Conjecture [NS14, Theorem A]. This
1084
+ strategy ultimately lead to the solution of Brauer’s conjecture [Ruh22a] and [MNSFT22]. For other
1085
+ applications of isomorphisms of character triples see [Tur17], [NSV20], [Ros22a], [Ruh22b] [Ros23]
1086
+ and [MR22, Proposition 1.1].
1087
+ In our next result, we exploit this idea in order to lift the bijections given by Proposition 4.1 to
1088
+ the Levi subgroup K. Consequently, we extend the parametrisation of unipotent e-Harish-Chandra
1089
+ series given by Theorem C for the simple group G to a parametrisation of e-Harish-Chandra series
1090
+ associated to (K,F)-pseudo-unipotent characters for every F-stable Levi subgroup K of G. First,
1091
+ we need a preliminary lemma.
1092
+ Lemma 4.3. Let (L,λ) be a unipotent e-cuspidal pair of (K,F) and define X ∶= (GF ⋊AutF(GF ))K.
1093
+ If KF ≤ H ≤ NG(L)F and Q is an ℓ-radical subgroup of NH(L), then CX(Q) ≤ NX(L).
1094
+ Proof. Let E ∶= Z(L)F
1095
+ ℓ and observe that L = C○
1096
+ G(E) according to [CE94, Proposition 3.3 (ii)]. Now,
1097
+ since Oℓ(NH(L)) is the smallest ℓ-radical subgroup of NH(L) [Dad92, Proposition 1.4], we deduce
1098
+ that E ≤ Oℓ(NH(L)) ≤ Q and it follows that CX(Q) ≤ CX(E) ≤ NX(L) as wanted.
1099
+ 20
1100
+
1101
+ Theorem 4.4. For every unipotent e-cuspidal pair (L,λ) of (K,F) there exists a defect preserving
1102
+ AutF(GF )K,(L,λ)-equivariant bijection
1103
+ ΩK
1104
+ (L,λ) ∶ E (KF ,(L,psK(λ))) → Irr(NK(L)F ∣ psK(λ))
1105
+ such that
1106
+ (Xχ,KF ,χ) ∼KF (NXχ(L),NK(L)F ,ΩK
1107
+ (L,λ)(χ))
1108
+ for every χ ∈ E(KF ,(L,psK(λ))) and where X ∶= (GF ⋊ AutF(GF ))K.
1109
+ Proof. Recall that K0 = [K,K] and define L0 ∶= L ∩ K0 and λ0 the restriction of λ to LF
1110
+ 0 . Observe
1111
+ that (L0,λ0) is a unipotent e-cuspidal pair of (K0,F). Let z ∈ Z(K∗)F ∗ and consider a character
1112
+ χ belonging to E(KF ,(L,λˆzL)). Since the restriction of λˆzL to LF
1113
+ 0 coincides with λ0, [GM20,
1114
+ Corollary 3.3.25] implies that χ lies above some character in E(KF
1115
+ 0 (L0,λ0)). On the other hand,
1116
+ suppose that χ ∈ Irr(KF ) lies above some χ0 ∈ E(KF
1117
+ 0 ,(L0,λ0)). By [CE94, Proposition 3.1] the
1118
+ character χ0 has an extension χ′ ∈ E(KF ,(L,λ)) and hence, using Gallagher’s theorem [Isa76,
1119
+ Corollary 6.17] and [CE04, (8.19)], we can find z ∈ Z(K∗)F ∗ such that χ = χ′ˆzK. Since χ′ˆzK is a
1120
+ character of E(KF ,(L,λˆzL)) according to [CE04, (8.20)], we conclude that
1121
+ E (KF,(L,psK(λ))) = Irr(KF ∣ E (KF
1122
+ 0 ,(L0,λ0))) .
1123
+ (4.3)
1124
+ Next, suppose that ψ ∈ Irr(NK(L)F ∣ λˆzL). In this case, ψ lies above the restriction of λˆzL to LF
1125
+ 0
1126
+ which coincides with λ0. In particular, there exists some ϕ ∈ Irr(NK0(L0)F ∣ λ0) such that ψ lies
1127
+ above ϕ. On the other, if χ lies above such a character ϕ ∈ Irr(NK0(L0)F ∣ λ0), then it lies above
1128
+ λ0 and therefore we can find z ∈ Z(K∗)F ∗ such that ψ ∈ Irr(NK(L)F ∣ λˆzL). This shows that
1129
+ Irr(NK(L)F ∣ psK(λ)) = Irr(NK(L)F ∣ Irr(NK0(L0)F ∣ λ0)).
1130
+ (4.4)
1131
+ Finally, consider the map ΩK0
1132
+ (L0,λ0) given by Proposition 4.1. Then, the result follows from (4.3)
1133
+ and (4.4) by applying [Ros22c, Proposition 6.1 and Remark 6.2] as explained in the proof of [Ros22c,
1134
+ Corollary 6.10] and using the KF -block isomorphisms of character triples obtained in Corollary 4.2.
1135
+ Here, we consider A ∶= GF ⋊ AutF(GF ), A0 ∶= NA(L), K ∶= KF
1136
+ 0 , K0 = NK0(L)F = NK0(L0)F ,
1137
+ G ∶= GF , X ∶= (GF ⋊ AutF(GF ))K, S ∶= E(KF
1138
+ 0 ,(L0,λ0)), S0 ∶= Irr(NK0(L0)F ∣ λ0), V ∶=
1139
+ (GF ⋊ AutF(GF ))K,S and U ∶= (GF ⋊ AutF(GF ))K,L,Y0. Observe that the condition on defect
1140
+ groups required by [Ros22c, Proposition 6.1] is satisfied by Lemma 4.3.
1141
+ 4.2
1142
+ Above e-Harish-Chandra series
1143
+ We now further extend Theorem C by lifting the character bijections from Theorem 4.4 with respect
1144
+ to normal inclusions.
1145
+ Proposition 4.5. Consider the setup of Theorem 4.4 and let KF ≤ H ≤ NG(K)F . Then, there exists
1146
+ a defect preserving AutF(GF )H,K,(L,λ)-equivariant bijection
1147
+ ΩK,H
1148
+ (L,λ) ∶ Irr(H ∣E (KF,(L,psK(λ)))) → Irr(NH(L)∣psK(λ))
1149
+ such that
1150
+ (NX(H)χ,H,χ) ∼H (NX(H,L)χ,NH(L),ψ)
1151
+ for every χ ∈ Irr(H ∣ E(KF ,(L,psK(λ)))) and where X ∶= (GF ⋊ AutF(GF ))K.
1152
+ 21
1153
+
1154
+ Proof. We apply [Ros22c, Proposition 6.1] to the bijection given by Theorem 4.4. We consider A ∶=
1155
+ GF ⋊ AutF(GF ), G ∶= GF, K ∶= KF , A0 ∶= NA(L), X ∶= NA(K), S ∶= E(KF ,(L,psK(λ))),
1156
+ S0 ∶= Irr(NK(L)F ∣ psK(λ)), U ∶= X0,λ, V ∶= XS and J ∶= H. Notice that the conditions (i)-(iii) of
1157
+ [Ros22c, Proposition 6.1] are satisfied by [BMM93, Theorem 3.2 (1)]. Furthermore, the requirements
1158
+ about defect groups are satisfied by Lemma 4.3. Therefore, as explained in [Ros22c, Proposition
1159
+ 6.11], we obtain the claimed result by applying [Ros22c, Proposition 6.1 and Remark 6.2].
1160
+ Before proceeding further, we point out an interesting analogy with another important character
1161
+ correspondence. The Glauberman correspondence plays a fundamental role in the study of the local-
1162
+ global counting conjectures and lies at the heart of most reduction theorems. In its most basic form,
1163
+ it states that for every finite ℓ-group L acting on a finite ℓ′-group K, there exists a bijection
1164
+ fL ∶ IrrL(K) → Irr(NK(L))
1165
+ between the set of L-invariant characters of K and the characters of the normaliser NK(L) (see,
1166
+ for instance, [Nav18, Section 2.3]). A very deep result due to Dade [Dad80] and recently reproved by
1167
+ Turull [Tur08], shows that, if K and L are subgroups of a finite group G and KP ≤ H ≤ KNG(L),
1168
+ then the Glauberman correspondence fL can be lifted to a character correspondence for H, that is,
1169
+ there exists a bijection
1170
+ f H
1171
+ L ∶ Irr(H ∣ χ) → Irr(NH(L) ∣ fL(χ))
1172
+ (4.5)
1173
+ for every χ ∈ IrrL(K). On the other hand, the parametrisation of unipotent e-Harish-Chandra
1174
+ series obtained by Broué, Malle and Michel [BMM93, Theorem 3.2] lies at the centre of the proofs
1175
+ of the local-global counting conjectures for finite reductive groups. It is interesting to note that our
1176
+ methods yield a character bijection above e-Harish-Chandra series which is analogous to (4.5) in
1177
+ the context of the Glauberman correspondence. This is an immediate consequence of Proposition
1178
+ 4.5.
1179
+ Corollary 4.6. Consider the setup of Theorem 4.4 and let KF ≤ H ≤ NG(K)F . Then, there exists a
1180
+ bijection
1181
+ ΨH
1182
+ χ ∶ Irr(H ∣ χ) → Irr(NH(L) ∣ ΩK
1183
+ (L,λ)(χ))
1184
+ for every χ ∈ E(KF ,(L,psK(λ))).
1185
+ Proof. This follows immediately from the proof of Proposition 4.5 by following the construction
1186
+ made in [Ros22c, Proposition 6.1].
1187
+ 5
1188
+ Towards Theorem A and Theorem B
1189
+ Finally, we apply the results obtained in the previous sections to prove Theorem A which is our
1190
+ main result. Then, we obtain Theorem B as a corollary by applying the e-Harish-Chandra theory
1191
+ for unipotent characters developed by Broué, Malle and Michel [BMM93] and by Cabanes and En-
1192
+ guehard [CE94]. Before doing so, we introduce the relevant notation and prove some preliminary
1193
+ results.
1194
+ 22
1195
+
1196
+ 5.1
1197
+ Preliminaries on e-chains
1198
+ Our first aim is to define e-local structures for finite reductive groups that play a role analogue to that
1199
+ of ℓ-chains in the context of Dade’s Conjecture and the Character Triple Conjecture. The connection
1200
+ between the set of e-chains and that of ℓ-chains has already been studied in [Ros22c, Section 7.2].
1201
+ These results provide a way to obtain Dade’s Conjecture and the Character Triple Conjecture as a
1202
+ consequence of [Ros22c, Conjecture C and Conjecture D]. The possibility to use different types of
1203
+ chains is crucial in the study of Dade’s Conjecture and has been introduced by Knörr and Robinson
1204
+ [KR89]. Their results were insipred by previous studies conducted by many authors including Brown
1205
+ [Bro75] and Quillen [Qui78] who analised the homotopy theory of associated simplicial complexes.
1206
+ Definition 5.1. We denote by Le(G,F) the set of e-chains of the finite reductive group (G,F),
1207
+ that is, chains of the form
1208
+ σ = {G = L0 > L1 > ⋅⋅⋅ > Ln}
1209
+ where n is a non-negative integer and each Li is an e-split Levi subgroup of (G,F). We denote by
1210
+ ∣σ∣ ∶= n the length of the e-chain σ and by L(σ) its last term. Furthermore, we define Le(G,F)>0
1211
+ to be the set of e-chains having length strictly larger than 0.
1212
+ Observe that the notion of length defined above, induces a partition of the set Le(G,F) into e-
1213
+ chains of even and odd length. More precisely, we denote by Le(G,F)± the subset of those e-chains
1214
+ σ ∈ Le(G,F) that satisfy (−1)∣σ∣ = ±1.
1215
+ In what follows, given an e-chain σ and an e-split Levi subgroup M of (L(σ),F), we denote by
1216
+ σ+M the e-chain obtainedby adding M at the end of σ. We also allow the possibility that M = L(σ),
1217
+ in which case we have σ + L(σ) = σ. Vice versa, we denote by σ − L(σ) the e-chain obtained by
1218
+ removing the last term L(σ) from σ. In this way we obtain (σ + M) − L(σ + M) = σ where as
1219
+ usual L(σ + M) denotes the final term of the e-chain σ + M. Here, we use the convention that
1220
+ σ0 − L(σ0) = σ0 = σ0 + G where σ0 = {G} is the trivial e-chain.
1221
+ Next, consider the action of GF on the set of e-chains Le(G,F) induced by conjugation: for every
1222
+ g ∈ GF and σ = {Li}i, we define
1223
+ σg ∶= {G = L0 > Lg
1224
+ 1 > ⋅⋅⋅ > Lg
1225
+ n}.
1226
+ It follows from this definition that the stabiliser GF
1227
+ σ coincides with the intersection of the normalis-
1228
+ ers NG(Li)F for i = 1,... ,n. Similarly, we can define an action of AutF(GF ) on Le(G,F) and
1229
+ give an analogous description of the chains stabilisers AutF(GF )σ. In particular, notice that the last
1230
+ term of the chain satisfies L(σ)F ⊴ GF
1231
+ σ . Using this observation, we can use the results of Section
1232
+ 4.2 to control the characters of GF
1233
+ σ that lie above pseudo-unipotent series of L(σ).
1234
+ Definition 5.2. For every e-chain σ ∈ Le(G,F) we denote by CPu(σ) the set of unipotent e-
1235
+ cuspidal pairs (M,µ) ∈ CPu(L(σ),F) that satisfy M < G. Furthermore, for any such pair (M,µ) ∈
1236
+ CPu(σ), we define the character set
1237
+ Uch(GF
1238
+ σ ,(M,µ)) ∶=
1239
+ ⎧⎪⎪⎨⎪⎪⎩
1240
+ Irr(GF
1241
+ σ ∣ E (L(σ)F ,(M,psL(σ)(µ))))
1242
+ L(σ) > M
1243
+ (5.1)
1244
+ Irr(GF
1245
+ σ ∣ E (L(σ)F ,(M,psL(σ−L(σ))(µ))))
1246
+ L(σ) = M
1247
+ (5.2)
1248
+ 23
1249
+
1250
+ The need to distinguish the cases (5.1) and (5.2) will become apparent in the proofs of Proposition
1251
+ 5.6 and Theorem 5.9 below. Observe that in the definition above, we are excluding the degenerate
1252
+ case where G = L(σ) = M and therefore the chain σ − L(σ) in the case (5.2) is always defined. To
1253
+ understand the reason why we are excluding this case, we can consider an analogy with Dade’s Con-
1254
+ jecture. For every finite group G, recall that k(G) denotes the number of its irreducible characters
1255
+ and that, for any non-negative integer d, the symbol kd(G) denotes the number of those irreducible
1256
+ characters of ℓ-defect d. The local-global counting conjectures provide a way to determine the global
1257
+ invariants kd(G) in terms of ℓ-local structures. This idea was made precise by Isaacs and Navarro
1258
+ [IN20]. According to their definitions, the block-free version of Dade’s Conjecture can be stated by
1259
+ saying that the functions kd are chain local for every d > 0. Consequently, and because a sum of
1260
+ chain local functions is chain local, we deduce that the difference k − k0 = ∑d>0 kd is a chain local
1261
+ function. On the other hand, using the fact that groups admitting a character of ℓ-defect zero have
1262
+ trivial ℓ-core, it is easy to see that k0 is not chain local. The exclusion of the case G = L(σ) = M can
1263
+ be explained by interpreting these observations in the context of unipotent characters. Recall that
1264
+ ku(GF ) and kc,u(GF ) denote the number of unipotent characters of GF and unipotent e-cuspidal
1265
+ characters of GF respectively. If ℓ does not divide the order of Z(GF ), then [CE94] implies that the
1266
+ unipotent e-cuspidal characters of GF have defect zero. Therefore, as in the case of Dade’s Con-
1267
+ jecture, the global invariant we want to determine e-locally is the difference ku(GF ) − kc,u(GF ).
1268
+ Finally, notice that kc,u(GF ) is exactly the number of unipotent e-cuspidal pairs (M,µ) of L(σ)
1269
+ satisfying G = L(σ) = M.
1270
+ In the following lemma, we show that if the set Uch(GF
1271
+ σ ,(M,µ)) is non-empty then (M,µ) is
1272
+ uniquely defined up to GF
1273
+ σ -conjugation.
1274
+ Lemma 5.3. Let σ ∈ Le(G,F) and consider two unipotent e-cuspidal pairs (M,µ) and (K,κ)
1275
+ in CPu(σ). If the sets Uch(GF
1276
+ σ ,(M,µ)) and Uch(GF
1277
+ σ ,(K,κ)) have non-trivial intersection, then
1278
+ (M,µ) and (K,κ) are GF
1279
+ σ -conjugate.
1280
+ Proof. Suppose that ϑ is a character belonging to Uch(GF
1281
+ σ ,(M,µ)) and Uch(GF
1282
+ σ ,(K,κ)). If we
1283
+ set L ∶= L(σ), then we can find elements s,t ∈ Z(L∗)F ∗ and characters ϕ ∈ E(LF ,(M,µ)) and
1284
+ ψ ∈ E(LF ,(K,κ)) such that ϑ lies above ϕˆsL and ψˆtL. By Clifford’s theorem, we deduce that
1285
+ ϕˆsL = (ψˆtL)g for some g ∈ GF
1286
+ σ . Furthermore, since ˆs is a linear character, we obtain that ϕ =
1287
+ ψg(ˆtL)g(ˆsL)−1. Since both ϕ and ψg are unipotent characters of LF , using [CE04, Proposition
1288
+ 8.26] we deduce that (ˆtL)g(ˆsL)−1 = 1L and therefore ϕ = ψg. But then, [BMM93, Theorem 3.2(1)]
1289
+ shows that (M,µ) and (K,κ)g are LF-conjugate and the result follows.
1290
+ Next, we describe the block theory associated to characters in the sets introduced in Definition 5.2.
1291
+ Lemma 5.4. Let σ ∈ Le(G,F) and consider a unipotent e-cuspidal pair (M,µ) ∈ CPu(σ) and a
1292
+ character ϑ ∈ Uch(GF
1293
+ σ ,(M,µ)). Then:
1294
+ (i) the block bl(ϑ) is L(σ)F -regular;
1295
+ (ii) if the character ϑ lies above a given ϕˆzL(σ) ∈ E(L(σ)F ,(M,µˆzM)) for some z ∈ Z(L(σ)∗)F ∗,
1296
+ then we have
1297
+ bl(ϕˆzL(σ)) = bl(µˆzM)L(σ)F
1298
+ and
1299
+ bl(ϑ) = bl(ϕˆzL(σ))GF
1300
+ σ = bl(µˆzM)GF
1301
+ σ
1302
+ 24
1303
+
1304
+ (iii) the induced block bl(ϑ)GF is defined.
1305
+ Proof. The first point follows from Lemma 2.3 by choosing L = L(σ) and H = GF
1306
+ σ . Furthermore,
1307
+ in the case of (5.2) observe that L(σ) ≤ L(σ − L(σ)) and hence Z(L(σ − L(σ))∗) ≤ Z(L(σ)∗).
1308
+ Therefore, we can always find ϕ and z as in the statement of (ii). Since ϕ is an irreducible constituent
1309
+ of the virtual character RL(σ)
1310
+ M
1311
+ (µ), it follows from [CE94, Proposition 4.2] (whose assumptions are
1312
+ satisfied by [CE94, Proposition 3.3 (ii)]) that bl(ϕ) = bL(σ)F (M,µ) = bl(µ)L(σ)F . Then, since ˆzM
1313
+ is the restriction of the linear character ˆzL(σ) to MF , we deduce from Lemma 2.1 that
1314
+ bl(ϕˆzL(σ)) = bl(µˆzM)L(σ)F .
1315
+ Now, [Nav98, Theorem 9.19] implies that
1316
+ bl(ϑ) = bl(ϕˆzL(σ))
1317
+ GF
1318
+ σ
1319
+ and the second point follows by the transitivity of block induction. Finally, set Q ∶= Z(M)F
1320
+ ℓ and
1321
+ observe that QCGF (Q) = MF ≤ NGF (Q) by [CE94, Proposition 3.3(ii)]. Then, [Nav98, Theorem
1322
+ 4.14] implies that bl(µˆzM)GF is well defined and so is bl(ϑ)GF by (ii) and transitivity of block
1323
+ induction. This concludes the proof.
1324
+ Using the lemma above, we can now define the following character set. This yields the e-local object
1325
+ through which we can determine the number of unipotent characters in a given block of B of GF
1326
+ and with a given defect d ≥ 0 (see Section 5.3).
1327
+ Definition 5.5. Let B be a block of GF and d a non-negative integer. For every e-chain σ ∈
1328
+ Le(G,F) and unipotent e-cuspidal pair (L,λ) ∈ CPu(σ) we define the character set
1329
+ Uchd (Bσ,(M,µ)) ∶= {ϑ ∈ Uch (GF
1330
+ σ ,(M,µ)) ∣ d(ϑ) = d,bl(ϑ)GF = B}.
1331
+ where bl(ϑ)GF is defined according to Lemma 5.4 (iii). Furthermore, we denote the cardinality of
1332
+ this set by
1333
+ kd
1334
+ u (Bσ,(M,µ)) ∶= ∣Uchd (Bσ,(M,µ))∣.
1335
+ To conclude this section, we show that Proposition 4.5 can be used to parametrise the character sets
1336
+ from Definition 5.5.
1337
+ Proposition 5.6. Let B be a block of G and d a non-negative integer. If σ ∈ Le(G,F) and (M,µ) is
1338
+ a unipotent e-cuspidal pair in CPu(σ) then there exists an AutF(GF )B,σ,(M,µ)-equivariant bijection
1339
+ ΩB,d
1340
+ σ,(M,µ) ∶ Uchd (Bσ,(M,µ)) → Uchd (Bσ+M,(M,µ))
1341
+ such that
1342
+ (Xσ,ϑ,GF
1343
+ σ ,ϑ) ∼GFσ (Xσ+M,ϑ,GF
1344
+ σ+M,ΩB,d
1345
+ σ,(M,µ)(ϑ))
1346
+ for every ϑ ∈ Uchd(Bσ,(M,µ)) and where X ∶= GF ⋊ AutF(GF ).
1347
+ 25
1348
+
1349
+ Proof. First, observe that if M coincides with the last term L(σ) of the chain σ, then we have
1350
+ σ + M = σ which implies Uchd(Bσ,(M,µ)) = Uchd(Bσ+M,(M,µ)). In this case the result holds
1351
+ by defining ΩB,d
1352
+ σ,(M,µ) as the identity. Therefore, we can assume that M < L(σ) and define ρ ∶= σ+M.
1353
+ Now, according to (5.1) we have
1354
+ Uch (GF
1355
+ σ ,(M,µ)) = Irr(GF
1356
+ σ ∣ E (L(σ)F ,(M,psL(σ)(µ)))) .
1357
+ (5.3)
1358
+ On the other hand, noticing that M coincides with the last term L(ρ) of the chain ρ and that
1359
+ ρ−L(ρ) = σ, we obtain the equality E(L(ρ)F ,(M,psL(ρ−L(ρ))(µ))) = psL(σ)(µ). Then, observing
1360
+ that GF
1361
+ ρ = NGFσ (M), we can apply (5.2) to obtain the equality
1362
+ Uch (GF
1363
+ ρ ,(M,µ)) = Irr(NGFσ (M) ∣ psL(σ)(µ))) .
1364
+ (5.4)
1365
+ Next, we apply Proposition 4.5 by choosing the groups in that statement to be H = GF
1366
+ σ , K =
1367
+ L(σ) and (L,λ) = (M,µ). By (5.3) and (5.4), we deduce that there exists an AutF(GF )σ,(M,µ)-
1368
+ equivariant bijection
1369
+ ΩL(σ),GF
1370
+ σ
1371
+ (M,µ)
1372
+ ∶ Uch(GF
1373
+ σ ,(M,µ)) → Uch(GF
1374
+ ρ ,(M,µ)).
1375
+ (5.5)
1376
+ Moreover, using the H-block isomorphisms given by Proposition 4.5 together with [Spä17, Lemma
1377
+ 3.8 (b)], we deduce that
1378
+ (Xσ,ϑ,GF
1379
+ σ ,ϑ) ∼GFσ (Xρ,ϑ,GF
1380
+ ρ ,ΩL(σ),GF
1381
+ σ
1382
+ (M,µ)
1383
+ (ϑ))
1384
+ (5.6)
1385
+ for every ϑ ∈ Uchd(GF
1386
+ σ ,(M,µ)). To conclude, observe first that ΩL(σ),GF
1387
+ σ
1388
+ (M,µ)
1389
+ sends characters of
1390
+ defect d to characters of defect d. Moreover, by the transitivity of block induction and using (5.6),
1391
+ we deduce that
1392
+ bl(ϑ)GF = bl(ΩL(σ),GF
1393
+ σ
1394
+ (M,µ)
1395
+ (ϑ))
1396
+ GF
1397
+ .
1398
+ This shows that the bijection from (5.5) sends characters in the set Uchd(Bσ,(M,µ)) to charac-
1399
+ ters in the set Uchd(Bσ+M,(M,µ)) and therefore it restricts to a bijection, denoted by ΩB,d
1400
+ σ,(M,µ),
1401
+ satisfying the properties required in the statement. This completes the proof.
1402
+ We conclude this section with a remark on the isomorphisms of character triples obtained in Propo-
1403
+ sition 5.6.
1404
+ Remark 5.7. Suppose that ℓ does not divide q ± 1 if G is of type A(±q). In this case, every e-split
1405
+ Levi subgroup L of G satisfies L = C○
1406
+ G(Z(L)F
1407
+ ℓ ) according to [CE04, Proposition 13.19]. This fact
1408
+ can be used to show that the GF
1409
+ σ -block isomorphisms of character triples given by Proposition 5.6
1410
+ can be extended to GF -block isomorphisms of character triples. First, we claim that
1411
+ CGF Xσ,ϑ(D) ≤ Xσ,ϑ
1412
+ (5.7)
1413
+ for every irreducible character ϑ of GF
1414
+ σ and every ℓ-radical subgroup D of GF
1415
+ σ+M. Define Qi ∶=
1416
+ Z○(Li)F
1417
+ ℓ for every e-split Levi subgroup Li appearing in the chain σ. Then, using the fact that D is
1418
+ 26
1419
+
1420
+ ℓ-radical, we obtain the inclusions Qi ≤ Oℓ(GF
1421
+ σ ) ≤ D. Therefore, every element x ∈ GF Xσ,ϑ that
1422
+ centralises D centralises also each Qi and hence normalises each Li. It follows that
1423
+ CGF Xσ,ϑ(D) ≤ (GF Xσ,ϑ)σ = Xσ,ϑ
1424
+ as required by (5.7). We can now apply [Ros22a, Lemma 2.11] to the GF
1425
+ σ -block isomorphisms given
1426
+ by Proposition 5.6 to show that
1427
+ (Xσ,ϑ,GF
1428
+ σ ,ϑ) ∼GF (Xσ+M,ϑ,GF
1429
+ σ+M,ΩB,d
1430
+ σ,(M,µ)(ϑ))
1431
+ for every ϑ ∈ Uchd(Bσ,(M,µ)).
1432
+ 5.2
1433
+ Proof of Theorem A
1434
+ We are finally ready to prove our main theorem which provides a bijection for unipotent characters
1435
+ in the spirit of the Character Triple Conjecture [Spä17, Conjecture 6.3]. In this section, we prove a
1436
+ slightly stronger result that provides further information on the type of e-chains and isomorphisms
1437
+ of character triples. In the following definition we introduce the analogue of the set Cd(B)± con-
1438
+ sidered in the Character Triple Conjecture as defined in [Spä17, p. 1097].
1439
+ Definition 5.8. Let B be a block of GF and consider a non-negative integer d. We define the set
1440
+ Ld
1441
+ u(B)± = {(σ,M,µ,ϑ) ∣ σ ∈ Le(G,F)±,(M,µ) ∈ CPu(σ),ϑ ∈ Uchd (Bσ,(M,µ))} .
1442
+ The conjugacy action of GF induces an action of GF on Ld
1443
+ u(B)± defined by (σ,M,µ,ϑ)g ∶=
1444
+ (σg,Mg,µg,ϑg) for every element g ∈ GF and (σ,M,µ,ϑ) ∈ Ld
1445
+ u(B)±. We denote by Ld
1446
+ u(B)±/GF
1447
+ the corresponding set of GF -orbits of tuples. Moreover, for every such orbit ω, we denote by ω● the
1448
+ corresponding GF -orbit of pairs (σ,ϑ) such that (σ,M,µ,ϑ) ∈ ω for some (M,µ) ∈ CPu(σ). In
1449
+ other words, if we indicate by (σ,M,µ,ϑ) the GF-orbit of (σ,M,µ,ϑ), then (σ,M,µ,ϑ)
1450
+ ● is the
1451
+ GF -orbit of the pairs (σg,ϑg).
1452
+ In a similar way, if AutF(GF )B denotes the set of those automorphisms α ∈ AutF(GF ) that sta-
1453
+ bilise B, then we can define (σ,M,µ,ϑ)α ∶= (σα,Mα,µα,ϑα) for every α ∈ AutF(GF )B and
1454
+ (σ,M,µ,ϑ) ∈ Ld
1455
+ u(B). In this way, we obtain an action of the group AutF(GF )B on the set Ld
1456
+ u(B)±
1457
+ and on the corresponding set of orbits Ld
1458
+ u(B)±/GF .
1459
+ Theorem 5.9. For every block B of GF and every non-negative integer d, there exists an AutF(GF )B-
1460
+ equivariant bijection
1461
+ Λ ∶ Ld
1462
+ u(B)+/GF → Ld
1463
+ u(B)−/GF .
1464
+ Moreover, for every ω ∈ Ld
1465
+ u(B)+/GF, any (σ,ϑ) ∈ ω● and any (ρ,χ) ∈ Λ(ω)● we have
1466
+ ∣σ∣ = ∣ρ∣ ± 1
1467
+ and
1468
+ (Xσ,ϑ,GF
1469
+ σ ,ϑ) ∼J (Xρ,χ,GF
1470
+ ρ ,χ)
1471
+ with J = GF
1472
+ σ , if ∣σ∣ = ∣ρ∣ − 1, or J = GF
1473
+ ρ , if ∣σ∣ = ∣ρ∣ + 1, and where X ∶= GF ⋊ AutF(GF ).
1474
+ 27
1475
+
1476
+ Proof. Define A ∶= AutF(GF ) and observe that X = GF ⋊ A. In a first step, we construct an
1477
+ equivariant bijection between triples of the form (��,M,µ). More precisely, let S denote the set of
1478
+ such triples (σ,M,µ) with σ ∈ Le(G,F) and (M,µ) ∈ CPu(σ). We define a map
1479
+ ∆ ∶ S → S
1480
+ by setting
1481
+ ∆((σ,M,µ)) ∶=
1482
+ ⎧⎪⎪⎨⎪⎪⎩
1483
+ (σ + M,M,µ) ,
1484
+ L(σ) > M
1485
+ (σ − M,M,µ) ,
1486
+ L(σ) = M.
1487
+ Observe that the chain σ−M is always defined since M < G by the definition of CPu(σ). Moreover,
1488
+ it is clear from the definition above that the map ∆ is A-equivariant and satisfies ∆2 = Id. Therefore,
1489
+ observing that ∣σ ± M∣ = ∣σ∣ ± 1, we conclude that ∆ restricts to an A-equivariant bijection
1490
+ ∆ ∶ S+ → S−
1491
+ where S± denotes the set of those triples (σ,M,µ) of S that satisfy σ ∈ Le(G,F)±. Furthermore,
1492
+ notice once again that if ∆((σ,M,µ)) = (ρ,K,κ), then
1493
+ ∣σ∣ = ∣ρ∣ ± 1.
1494
+ (5.8)
1495
+ Now, fix an AB-transversal T+ in S+ and observe that the image of T+ under the map ∆, denoted by
1496
+ T−, is an AB-transversal in S because of the equivariance property of ∆. Consider (σ,M,µ) ∈ T+
1497
+ and write ∆((σ,M,µ)) = (ρ,M,µ). In what follows, we may assume without loss of generality
1498
+ that L(σ) > M and that ρ = σ + M, otherwise we repeat the arguments verbatim by replacing
1499
+ (σ,M,µ) with (ρ,M,µ). By Proposition 5.6 we obtain an AB,σ,(M,µ)-equivariant bijection
1500
+ ΩB,d
1501
+ σ,(M,µ) ∶ Uchd (Bσ,(M,µ)) → Uchd (Bρ,(M,µ))
1502
+ such that
1503
+ (Xσ,ϑ,GF
1504
+ σ ,ϑ) ∼GFσ (Xρ,χ,GF
1505
+ ρ ,χ)
1506
+ (5.9)
1507
+ for every ϑ ∈ Uchd(Bσ,(M,µ)) and where χ is the image of ϑ. Consequently, if U(σ,M,µ)
1508
+ +
1509
+ is an
1510
+ AB,(σ,M,µ)-transversal in the character set Uchd(Bσ,(M,µ)), then its image, denoted by U(ρ,M,µ)
1511
+
1512
+ ,
1513
+ under the bijection above is an AB,(ρ,M,µ)-transversal in the character set Uchd(Bρ,(M,µ)) be-
1514
+ cause AB,(σ,M,µ) = AB,(ρ,M,µ).
1515
+ Now, by the discussion in the previous paragraph and using Lemma 5.3, we conclude that the sets
1516
+ of GF -orbits
1517
+ L+ ∶= {(σ,M,µ,ϑ) ∣ (σ,M,µ) ∈ T+,ϑ ∈ U(σ,M,µ)
1518
+ +
1519
+ }
1520
+ and
1521
+ L− ∶= {(ρ,M,µ,χ) ∣ (ρ,M,µ) ∈ T−,χ ∈ U(ρ,M,µ)
1522
+
1523
+ }
1524
+ are AB-transversals in the sets Ld
1525
+ u(B)+/GF and Ld
1526
+ u(B)−/GF respectively. Finally, we can define
1527
+ the bijection Λ by setting
1528
+ Λ((σ,M,µ,ϑ)
1529
+ x) ∶= (ρ,M,µ,χ)x
1530
+ 28
1531
+
1532
+ for every x ∈ AB and every (σ,M,µ,ϑ) ∈ L+ and (ρ,M,µ,χ) ∈ L− satisfying ∆(σ,M,µ) =
1533
+ (ρ,M,µ) and such that
1534
+ χ =
1535
+ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1536
+ ΩB,d
1537
+ σ,(M,µ)(ϑ),
1538
+ ρ = σ + M
1539
+ (ΩB,d
1540
+ ρ,(M,µ))
1541
+ −1
1542
+ (ϑ),
1543
+ ρ = σ − M.
1544
+ Using (5.8) and (5.9) together with the definition of Λ, we conclude that the properties required in
1545
+ the statement are satisfied and the proof is now complete.
1546
+ Now, as a consequence of Theorem 5.9 and Remark 5.7, we can finally prove Theorem A.
1547
+ Proof of Theorem A. Assume that ℓ does not divide q ± 1 whenever (G,F) is of type A(±q). Con-
1548
+ sider the bijection Λ from Theorem 5.9 and chose ω ∈ Ld
1549
+ u(B)+/GF, (σ,ϑ) ∈ ω● and (ρ,χ) ∈ Λ(ω)●.
1550
+ Then, we have
1551
+ (Xσ,ϑ,GF
1552
+ σ ,ϑ) ∼J (Xρ,χ,GF
1553
+ ρ ,χ)
1554
+ with J = GF
1555
+ σ , if ∣σ∣ = ∣ρ∣ − 1, or J = GF
1556
+ ρ , if ∣σ∣ = ∣ρ∣ + 1. In either cases, applying Remark 5.7, we
1557
+ deduce that
1558
+ (Xσ,ϑ,GF
1559
+ σ ,ϑ) ∼GF (Xρ,χ,GF
1560
+ ρ ,χ)
1561
+ as required by Theorem A.
1562
+ 5.3
1563
+ Proof of Theorem B
1564
+ Our final goal is to obtain a counting argument for unipotent characters as a consequence of The-
1565
+ orem 5.9. Recall that Dade’s Conjecture provides a way to determine the number of characters in
1566
+ a given ℓ-block B and with a given defect d in terms of ℓ-local structures. Theorem B provides an
1567
+ adaptation of this idea to the unipotent characters of finite reductive groups by means of e-local
1568
+ structures compatible with e-Harish-Chandra theory (see Definition 5.5). For every σ ∈ Le(G,F)
1569
+ we define
1570
+ kd
1571
+ u(Bσ) ∶=
1572
+
1573
+ (M,µ)
1574
+ kd
1575
+ u(Bσ,(M,µ))
1576
+ (5.10)
1577
+ where (M,µ) runs over a set of representatives for the action of GF
1578
+ σ on CPu(σ). Moreover, recall
1579
+ that kd
1580
+ u(B) and kd
1581
+ c,u(B) denote the number of irreducible characters belonging to the block B and
1582
+ with defect d that are unipotent and unipotent e-cuspidal respectively.
1583
+ Proof of Theorem B. To start, we determine the cardinality of the sets of GF-orbits Ld
1584
+ u(B)±/GF .
1585
+ By applying Lemma 5.3, we obtain
1586
+ ∣Ld
1587
+ u(B)±/GF ∣ =
1588
+
1589
+ σ,(M,µ)
1590
+ kd
1591
+ u(Bσ,(M,µ)) = ∑
1592
+ σ
1593
+ kd
1594
+ u(Bσ)
1595
+ (5.11)
1596
+ where σ runs over a set of representatives, say L±, for the action of GF on Le(G,F)± and (M,µ)
1597
+ runs over a set of representatives for the action of GF
1598
+ σ on CPu(σ). Next, we isolate the contribution
1599
+ given by the trivial chain σ0 ∶= {G} ∈ Le(G,F)+ to the sum in (5.11). In this case, we have
1600
+ L(σ0) = G and hence psL(σ)(µ) = {µ} for every (M,µ) ∈ CPu(σ0) because the center Z(G∗)F ∗
1601
+ 29
1602
+
1603
+ is trivial under our assumptions. Consequently, using Definition 5.2 and Definition 5.5, we deduce
1604
+ that
1605
+ kd
1606
+ u(Bσ0) =
1607
+
1608
+ (M,µ)
1609
+ kd
1610
+ u(Bσ0,(M,µ))
1611
+ (5.12)
1612
+ =
1613
+
1614
+ (M,µ)
1615
+ ∣Irrd(B) ∩ E(GF ,(M,µ))∣
1616
+ = kd
1617
+ u(B) − kd
1618
+ c,u(B)
1619
+ where the last equality holds by [BMM93, Theorem 3.2 (1)] and recalling that every pair (M,µ) ∈
1620
+ CPu(σ0) satisfies M < G = L(σ0). Next, Theorem 5.9 implies that the sets Ld
1621
+ u(B)+/GF and
1622
+ Ld
1623
+ u(B)−/GF have the same cardinality and therefore we conclude from (5.11) and (5.12) that
1624
+ kd
1625
+ u(B) − kd
1626
+ c,u(B) + ∑
1627
+ σ∈L+
1628
+ σ≠σ0
1629
+ kd
1630
+ u(Bσ) = ∑
1631
+ σ∈L+
1632
+ kd
1633
+ u(Bσ) = ∑
1634
+ σ∈L−
1635
+ kd
1636
+ u(Bσ).
1637
+ (5.13)
1638
+ Finally, noticing that (−1)∣σ∣+1 = ∓1 for every σ ∈ L±, we can rewrite (5.13) as
1639
+ kd
1640
+ u(B) − kd
1641
+ c,u(B) =
1642
+
1643
+ σ∈L−∪L+
1644
+ (−1)∣σ∣+1kd
1645
+ u(Bσ)
1646
+ which is exactly the equality in the statement of Theorem B.
1647
+ References
1648
+ [Alp76]
1649
+ J. L. Alperin. The main problem of block theory. In Proceedings of the Conference on
1650
+ Finite Groups (Univ. Utah, Park City, Utah, 1975), pages 341–356. Academic Press, New
1651
+ York, 1976.
1652
+ [Alp87]
1653
+ J. L. Alperin. Weights for finite groups. In The Arcata Conference on Representations
1654
+ of Finite Groups (Arcata, Calif., 1986), volume 47 of Proc. Sympos. Pure Math., pages
1655
+ 369–379. Amer. Math. Soc., Providence, RI, 1987.
1656
+ [BM11]
1657
+ C. Bonnafé and J. Michel. Computational proof of the Mackey formula for q > 2. J.
1658
+ Algebra, 327:506–526, 2011.
1659
+ [Bra56]
1660
+ R. Brauer. Number theoretical investigations on groups of finite order. In Proceedings of
1661
+ the international symposium on algebraic number theory, Tokyo and Nikko, 1955, pages
1662
+ 55–62. Science Council of Japan, Tokyo, 1956.
1663
+ [Bro22a]
1664
+ M. Broué. Gunter is sixty something. 2022.
1665
+ Presented at the workshop Counting
1666
+ conjectures and beyond of the Isaac Newton Institute, Cambridge, UK.
1667
+ [BM92]
1668
+ M. Broué and G. Malle. Théorèmes de Sylow génériques pour les groupes réductifs sur
1669
+ les corps finis. Math. Ann., 292(2):241–262, 1992.
1670
+ [BMM93]
1671
+ M. Broué, G. Malle, and J. Michel. Generic blocks of finite reductive groups. Astérisque,
1672
+ (212):7–92, 1993.
1673
+ [Bro22b]
1674
+ J. Brough.
1675
+ Characters of normalisers of d-split Levi subgroups in Sp2n(q).
1676
+ arXiv:2203.06072, 2022.
1677
+ 30
1678
+
1679
+ [Bro-Ruh]
1680
+ J. Brough and L. Ruhstorfer.
1681
+ Equivariant character bijections and the inductive
1682
+ Alperin–McKay condition. in preparation.
1683
+ [BS20]
1684
+ J. Brough and B. Späth. On the Alperin-McKay conjecture for simple groups of type A.
1685
+ J. Algebra, 558:221–259, 2020.
1686
+ [Bro75]
1687
+ K. S. Brown.
1688
+ Euler characteristics of groups: the p-fractional part.
1689
+ Invent. Math.,
1690
+ 29(1):1–5, 1975.
1691
+ [CE94]
1692
+ M. Cabanes and M. Enguehard. On unipotent blocks and their ordinary characters.
1693
+ Invent. Math., 117(1):149–164, 1994.
1694
+ [CE04]
1695
+ M. Cabanes and M. Enguehard. Representation theory of finite reductive groups, volume 1
1696
+ of New Mathematical Monographs. Cambridge University Press, Cambridge, 2004.
1697
+ [CS13]
1698
+ M. Cabanes and B. Späth. Equivariance and extendibility in finite reductive groups
1699
+ with connected center. Math. Z., 275(3-4):689–713, 2013.
1700
+ [CS17]
1701
+ M. Cabanes and B. Späth. Equivariant character correspondences and inductive McKay
1702
+ condition for type A. J. Reine Angew. Math., 728:153–194, 2017.
1703
+ [Dad80]
1704
+ E. C. Dade. A correspondence of characters. In The Santa Cruz Conference on Finite
1705
+ Groups (Univ. California, Santa Cruz, Calif., 1979), volume 37 of Proc. Sympos. Pure
1706
+ Math., pages 401–403. Amer. Math. Soc., Providence, R.I., 1980.
1707
+ [Dad92]
1708
+ E. C. Dade. Counting characters in blocks. I. Invent. Math., 109(1):187–210, 1992.
1709
+ [Dad94]
1710
+ E. C. Dade. Counting characters in blocks. II. J. Reine Angew. Math., 448:97–190, 1994.
1711
+ [Dad97]
1712
+ E. C. Dade. Counting characters in blocks. II.9. In Representation theory of finite groups
1713
+ (Columbus, OH, 1995), volume 6 of Ohio State Univ. Math. Res. Inst. Publ., pages 45–59.
1714
+ de Gruyter, Berlin, 1997.
1715
+ [DL76]
1716
+ P. Deligne and G. Lusztig. Representations of reductive groups over finite fields. Ann.
1717
+ of Math. (2), 103(1):103–161, 1976.
1718
+ [DM91]
1719
+ F. Digne and J. Michel. Representations of finite groups of Lie type, volume 21 of London
1720
+ Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.
1721
+ [Eng00]
1722
+ M. Enguehard. Sur les l-blocs unipotents des groupes réductifs finis quand l est mau-
1723
+ vais. J. Algebra, 230(2):334–377, 2000.
1724
+ [FS86]
1725
+ P. Fong and B. Srinivasan. GeneralizedHarish-Chandra theory for unipotent characters
1726
+ of finite classical groups. J. Algebra, 104(2):301–309, 1986.
1727
+ [GM20]
1728
+ M. Geck and G. Malle. The character theory of finite groups of Lie type: A guided tour, vol-
1729
+ ume 187 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
1730
+ 2020.
1731
+ [GLS98]
1732
+ D. Gorenstein, R. Lyons, and R. Solomon. The classification of the finite simple groups.
1733
+ Number 3. Part I. Chapter A, volume 40 of Mathematical Surveys and Monographs. Amer-
1734
+ ican Mathematical Society, Providence, RI, 1998.
1735
+ 31
1736
+
1737
+ [IN20]
1738
+ I. M. Isaacs and G. Navarro. Local functions on finite groups. Represent. Theory, 24:1–37,
1739
+ 2020.
1740
+ [Isa76]
1741
+ I. M. Isaacs. Character theory of finite groups. Academic Press [Harcourt Brace Jo-
1742
+ vanovich, Publishers], New York-London, 1976.
1743
+ [KR89]
1744
+ R. Knörr and G. R. Robinson. Some remarks on a conjecture of Alperin. J. London Math.
1745
+ Soc. (2), 39(1):48–60, 1989.
1746
+ [KS15]
1747
+ S. Koshitani and B. Späth. Clifford theory of characters in induced blocks. Proc. Amer.
1748
+ Math. Soc., 143(9):3687–3702, 2015.
1749
+ [Lus76]
1750
+ G. Lusztig.
1751
+ On the finiteness of the number of unipotent classes.
1752
+ Invent. Math.,
1753
+ 34(3):201–213, 1976.
1754
+ [Mal08]
1755
+ G. Malle. Extensions of unipotent characters and the inductive McKay condition. J.
1756
+ Algebra, 320(7):2963–2980, 2008.
1757
+ [MNSFT22] G. Malle, G. Navarro, M. Schaffer Fry, and H. T. Tiep. Brauer’s height zero conjecture.
1758
+ arXiv:2209.04736, 2022.
1759
+ [MS16]
1760
+ G. Malle and B. Späth. Characters of odd degree. Ann. of Math. (2), 184(3):869–908,
1761
+ 2016.
1762
+ [MT11]
1763
+ G. Malle and D. Testerman. Linear algebraic groups and finite groups of Lie type, vol-
1764
+ ume 133 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
1765
+ Cambridge, 2011.
1766
+ [MR22]
1767
+ J. M. Martínez and D. Rossi. Degree divisibility in Alperin–McKay correspondences.
1768
+ arXiv:2204.10124, 2022.
1769
+ [McK72]
1770
+ J. McKay. Irreducible representations of odd degree. J. Algebra, 20:416–418, 1972.
1771
+ [Mur12]
1772
+ M. Murai. On Brauer’s height zero conjecture. Proc. Japan Acad. Ser. A Math. Sci.,
1773
+ 88(3):38–40, 2012.
1774
+ [Nav98]
1775
+ G. Navarro. Characters and blocks of finite groups, volume 250 of London Mathematical
1776
+ Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.
1777
+ [Nav18]
1778
+ G. Navarro. Character theory and the McKay conjecture, volume 175 of Cambridge Stud-
1779
+ ies in Advanced Mathematics. Cambridge University Press, Cambridge, 2018.
1780
+ [NS14]
1781
+ G. Navarro and B. Späth. On Brauer’s height zero conjecture. J. Eur. Math. Soc. (JEMS),
1782
+ 16(4):695–747, 2014.
1783
+ [NSV20]
1784
+ G. Navarro, B. Späth, and C. Vallejo. A reduction theorem for the Galois–McKay con-
1785
+ jecture. Trans. Amer. Math. Soc., 373(9):6157–6183, 2020.
1786
+ [Qui78]
1787
+ D. Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group.
1788
+ Adv. in Math., 28(2):101–128, 1978.
1789
+ [Riz18]
1790
+ N. Rizo. p-blocks relative to a character of a normal subgroup. J. Algebra, 514:254–272,
1791
+ 2018.
1792
+ 32
1793
+
1794
+ [Ros22a]
1795
+ D. Rossi. Character Triple Conjecture for p-solvable groups. J. Algebra, 595:165–193,
1796
+ 2022.
1797
+ [Ros22b]
1798
+ D. Rossi. Character Triple Conjecture, towards the inductive condition for Dade’s Conjec-
1799
+ ture for groups of Lie type. PhD thesis, Bergische Universität Wuppertal, 2022.
1800
+ [Ros22c]
1801
+ D. Rossi.
1802
+ Counting conjectures and e-local structures in finite reductive groups.
1803
+ arXiv:2204.00428, 2022.
1804
+ [Ros22d]
1805
+ D. Rossi. Inductive local-global conditions and generalized Harish-Chandra theory.
1806
+ arXiv:2204.10301, 2022.
1807
+ [Ros23]
1808
+ D. Rossi. The McKay Conjecture and central isomorphic character triples. J. Algebra,
1809
+ 618:42–55, 2023.
1810
+ [Ruh22a]
1811
+ L. Ruhstorfer. The Alperin–McKay conjecture for the prime 2. arXiv:2204.06373, 2022.
1812
+ [Ruh22b]
1813
+ L. Ruhstorfer. Jordan decomposition for the Alperin-McKay conjecture. Adv. Math.,
1814
+ 394:Paper No. 108031, 2022.
1815
+ [Spä10]
1816
+ B. Späth. Sylow d-tori of classical groups and the McKay conjecture. II. J. Algebra,
1817
+ 323(9):2494–2509, 2010.
1818
+ [Spä12]
1819
+ B. Späth. Inductive McKay condition in defining characteristic. Bull. Lond. Math. Soc.,
1820
+ 44(3):426–438, 2012.
1821
+ [Spä17]
1822
+ B. Späth. A reduction theorem for Dade’s projective conjecture. J. Eur. Math. Soc.
1823
+ (JEMS), 19(4):1071–1126, 2017.
1824
+ [Spä18]
1825
+ B. Späth. Reduction theorems for some global-local conjectures. In Local representation
1826
+ theory and simple groups, EMS Ser. Lect. Math., pages 23–61. Eur. Math. Soc., Zürich,
1827
+ 2018.
1828
+ [Tay18]
1829
+ J. Taylor.
1830
+ On the Mackey formula for connected centre groups.
1831
+ J. Group Theory,
1832
+ 21(3):439–448, 2018.
1833
+ [Tur08]
1834
+ A. Turull. Above the Glauberman correspondence. Adv. Math., 217(5):2170–2205, 2008.
1835
+ [Tur17]
1836
+ A. Turull. Refinements of Dade’s projective conjecture for p-solvable groups. J. Algebra,
1837
+ 474:424–465, 2017.
1838
+ DIPARTIMENTO DI MATEMATICA E INFORMATICA U. DINI, VIALE MORGAGNI 67/A, FIRENZE,
1839
+ ITALY
1840
+ Email address: [email protected]
1841
+ 33
1842
+
PtE4T4oBgHgl3EQfkg1D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
RdE3T4oBgHgl3EQfDQlE/content/2301.04284v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8194f83189d65f444e70fa0f9e1960a074686d40879f102beaebd38b375d9f0
3
+ size 3116306
RdE3T4oBgHgl3EQfDQlE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d117241e5bdcc46c5d7bac6d484d8626d0a073eabc0941439a95461c8821a2cf
3
+ size 8781869
RdE3T4oBgHgl3EQfDQlE/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a94ad8454dd70c0bd085e1cb1865672b9bc26045f911c25fbdb3fc00f6cebc23
3
+ size 327493
SNA0T4oBgHgl3EQfD_8a/content/tmp_files/2301.02010v1.pdf.txt ADDED
@@ -0,0 +1,770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ HIT-SCIR at MMNLU-22: Consistency Regularization for Multilingual
2
+ Spoken Language Understanding
3
+ Bo Zheng, Zhouyang Li, Fuxuan Wei, Qiguang Chen, Libo Qin, Wanxiang Che∗
4
+ Harbin Institute of Technology
5
+ {bzheng,zhouyangli,fxwei,qgchen,lbqin,car}@ir.hit.edu.cn
6
+ Abstract
7
+ Multilingual spoken language understanding
8
+ (SLU) consists of two sub-tasks, namely intent
9
+ detection and slot filling. To improve the per-
10
+ formance of these two sub-tasks, we propose
11
+ to use consistency regularization based on a
12
+ hybrid data augmentation strategy. The consis-
13
+ tency regularization enforces the predicted dis-
14
+ tributions for an example and its semantically
15
+ equivalent augmentation to be consistent. We
16
+ conduct experiments on the MASSIVE dataset
17
+ under both full-dataset and zero-shot settings.
18
+ Experimental results demonstrate that our pro-
19
+ posed method improves the performance on
20
+ both intent detection and slot filling tasks. Our
21
+ system1 ranked 1st in the MMNLU-22 compe-
22
+ tition under the full-dataset setting.
23
+ 1
24
+ Introduction
25
+ The MMNLU-22 evaluation focuses on the prob-
26
+ lem of multilingual natural language understanding.
27
+ It is based on the MASSIVE dataset (FitzGerald
28
+ et al., 2022), a multilingual spoken language under-
29
+ standing (SLU) dataset with two sub-tasks, includ-
30
+ ing intent detection and slot filling. Specifically,
31
+ given a virtual assistant utterance in an arbitrary
32
+ language, the model is designed to predict the cor-
33
+ responding intent label and extract the slot results.
34
+ An English example is illustrated in Figure 1.
35
+ Fine-tuning pre-trained cross-lingual language
36
+ models allows task-specific supervision to be
37
+ shared and transferred across languages (Conneau
38
+ and Lample, 2019; Conneau et al., 2020; Xue et al.,
39
+ 2021).
40
+ This motivates the two setting for the
41
+ MMNLU-22 evaluation, namely the full-dataset
42
+ setting and the zero-shot setting. Participants are
43
+ allowed to use training data in all languages under
44
+ the full-dataset setting, while they can only access
45
+ the English training data under the zero-shot setting.
46
+ ∗Email corresponding.
47
+ 1The code will be available at https://github.com/
48
+ bozheng-hit/MMNLU-22-HIT-SCIR.
49
+ Utterance
50
+ Slot
51
+ Intent
52
+ Wake me
53
+ up
54
+ at
55
+ five
56
+ am
57
+ Friday
58
+ this week
59
+ O
60
+ O
61
+ O
62
+ O
63
+ time time
64
+ date
65
+ date
66
+ date
67
+ set alarm
68
+ Figure 1: An English example from the MASSIVE
69
+ dataset. The slot label ‘O’ stands for the ‘Other’ label.
70
+ The latter is also called zero-shot cross-lingual SLU
71
+ in previous work (Qin et al., 2020, 2022).
72
+ Cross-lingual data augmentation methods have
73
+ been proven effective to improve cross-lingual
74
+ transferability, e.g., code-switch substitution (Qin
75
+ et al., 2020) and machine translation (Conneau and
76
+ Lample, 2019; Singh et al., 2019). Most previ-
77
+ ous work directly utilizes the data augmentations
78
+ as additional training data for fine-tuning. How-
79
+ ever, they ignore the inherent correlation between
80
+ the original example and its semantically equiva-
81
+ lent augmentation, which can be fully exploited
82
+ with the consistency regularization (Zheng et al.,
83
+ 2021b). The consistency regularization enforces
84
+ the model predictions to be more consistent for
85
+ semantic-preserving augmentations.
86
+ Motivated by this, we propose to apply consis-
87
+ tency regularization based on a hybrid data aug-
88
+ mentation strategy, including data augmentation of
89
+ machine translation and subword sampling (Kudo,
90
+ 2018). We use machine translation augmentation
91
+ to align the model predictions of the intent detec-
92
+ tion task. Meanwhile, subword sampling augmen-
93
+ tation is used to align the model predictions of
94
+ both intent detection and slot filling tasks. The
95
+ proposed method consistently improves the SLU
96
+ performance on the MASSIVE dataset under both
97
+ full-dataset and zero-shot settings. It is worth men-
98
+ tioning that our system ranked 1st in the MMNLU-
99
+ 22 competition under the full-dataset setting. We
100
+ achieved an exact match accuracy of 49.65 points,
101
+ outperforming the 2nd system by 1.02 points.
102
+ arXiv:2301.02010v1 [cs.CL] 5 Jan 2023
103
+
104
+ 2
105
+ Background
106
+ 2.1
107
+ Task Description
108
+ The task of SLU is that given an utterance with
109
+ a word sequence x = (x1, ..., xn) with length n.
110
+ The model is required to solve two sub-tasks. The
111
+ intent detection task can be seen as an utterance
112
+ classification task to decide the intent label oI, and
113
+ the slot filling task is a sequence labeling task that
114
+ generates a slot label for each word in the utterance
115
+ to obtain the slot sequence oS = (oS
116
+ 1 , ..., oS
117
+ n).
118
+ 2.2
119
+ Dataset Description
120
+ The MASSIVE dataset is composed of realistic,
121
+ human-created virtual assistant utterance text span-
122
+ ning 51 languages, 60 intents, 55 slot types, and
123
+ 18 domains (FitzGerald et al., 2022). There are
124
+ 11,514 training utterances for each language. For
125
+ the full-dataset setting, all training data can be used.
126
+ For the zero-shot setting, only English training data
127
+ can be used, yet we can translate them into other
128
+ languages using commercial translators. There are
129
+ 2,033, 2,974, and 3,000 utterances for each lan-
130
+ guage in the development, test, and evaluation set,
131
+ respectively. The average performance in all lan-
132
+ guages should be reported under the full-dataset
133
+ setting. Meanwhile, the average performance in all
134
+ languages except English should be reported under
135
+ the zero-shot setting.
136
+ 2.3
137
+ Related Work
138
+ Pre-trained cross-lingual language models (Con-
139
+ neau and Lample, 2019; Conneau et al., 2020; Chi
140
+ et al., 2021a,b, 2022; Xue et al., 2021) encode dif-
141
+ ferent languages into universal representations and
142
+ significantly improve cross-lingual transferability.
143
+ These models usually consist of a multilingual vo-
144
+ cabulary (Conneau and Lample, 2019; Conneau
145
+ et al., 2020; Xue et al., 2021; Zheng et al., 2021a)
146
+ and a Transformer model (Vaswani et al., 2017).
147
+ A simple yet effective way to improve cross-
148
+ lingual fine-tuning is to populate the training data
149
+ with cross-lingual data augmentation (Conneau
150
+ et al., 2020). Singh et al. (2019) replace a segment
151
+ of source language input text with its translation
152
+ in another language as data augmentation. Qin
153
+ et al. (2020) randomly replace words in the source-
154
+ language training example with target-language
155
+ words using the bilingual dictionaries. Then the
156
+ model is fine-tuned on the generated code-switched
157
+ data. Instead of directly treating cross-lingual data
158
+ augmentation as extra training data, Zheng et al.
159
+ (2021b) proposed to better use data augmentations
160
+ based on consistency regularization.
161
+ 3
162
+ Method
163
+ Given the input utterance x = (x1, ..., xn) with
164
+ length n and the corresponding intent label oI and
165
+ slot labels oS = (oS
166
+ 1 , ..., ...oS
167
+ n) from training cor-
168
+ pus D, we define the loss for the two sub-tasks of
169
+ SLU in our fine-tuning process as:
170
+ LI =
171
+
172
+ (x,oI)∈D
173
+ CE(fI(x), oI),
174
+ LS =
175
+
176
+ (x,oS)∈D
177
+ CE(fS(x), oS),
178
+ where LI and LS stand for the intent detection task
179
+ and the slot filling task, fI(·) and fS(·) denote the
180
+ model which predicts task-specific probability dis-
181
+ tributions for the input example x, CE(·, ·) denotes
182
+ cross-entropy loss.
183
+ 3.1
184
+ Consistency Regularization
185
+ In order to make better use of data augmentations,
186
+ we introduce the consistency regularization used
187
+ in Zheng et al. (2021b), which encourages consis-
188
+ tent predictions for an example and its semantically
189
+ equivalent augmentation. We apply consistency
190
+ regularization on intent detection and slot filling
191
+ tasks, which is defined as follows:
192
+ RI =
193
+
194
+ x∈D
195
+ KLS(fI(x)∥fI(A(x, z))),
196
+ RS =
197
+
198
+ x∈D
199
+ KLS(fS(x)∥fS(A(x, z))),
200
+ KLS(P∥Q) = KL(stopgrad(P)∥Q)+
201
+ KL(stopgrad(Q)∥P)
202
+ where KLS(·∥·) is the symmertrical Kullback-
203
+ Leibler divergence, A(x, z) denotes the augmented
204
+ version of input utterance x with data augmenta-
205
+ tion strategy z. The regularizer encourages the
206
+ predicted distributions of the original training ex-
207
+ ample and its augmented version to agree with
208
+ each other. The stopgrad(·) operation2 is used to
209
+ stop back-propagating gradients, which is also em-
210
+ ployed in (Jiang et al., 2020; Liu et al., 2020; Zheng
211
+ et al., 2021b).
212
+ 3.2
213
+ Data Augmentations
214
+ We consider two types of data augmentation strate-
215
+ gies for our consistency regularization method, in-
216
+ cluding subword sampling and machine translation.
217
+ 2Implemented by .detach() in PyTorch.
218
+
219
+ Subword
220
+ Sampling
221
+ Machine
222
+ Translation
223
+ 𝑥
224
+ Pretrained Language Model
225
+ Slot Classifier
226
+ Intent Classifier
227
+ Intent
228
+ Task
229
+ Loss
230
+ Intent
231
+ Consistency
232
+ Regularization
233
+ Slot
234
+ Consistency
235
+ Regularization
236
+ Slot
237
+ Task
238
+ Loss
239
+ Hybrid Data Augmentation
240
+ Wake me up at five am
241
+ _Wa/ke/_me/_up/_at/_five/_am
242
+ _Wake/_me/_up/_at/_f/ive/_am
243
+ _Wa/ke/_me/_up/_at/_fiv/e/_am
244
+ 早上五点叫醒我
245
+ 朝5時に起こして
246
+ Maak me om vijf uur wakker
247
+ Subword
248
+ Sampling
249
+ Machine
250
+ Translation
251
+ Input Utterance
252
+ Figure 2: Illustration of our fine-tuning framework. ‘MT’ denotes machine translation augmentation and ‘SS’
253
+ denotes subword sampling augmentation.
254
+ 3.2.1
255
+ Subword Sampling
256
+ Subword sampling is to generate multiple subword
257
+ sequences from the original text as data augmen-
258
+ tation. We apply the on-the-fly subword sampling
259
+ algorithm from the unigram language model (Kudo,
260
+ 2018) in SentencePiece (Kudo and Richardson,
261
+ 2018). The output distributions of slot labels are
262
+ generated on the first subword of each word in the
263
+ input utterance. Therefore, the subword sampling
264
+ augmentation can be used to align the output dis-
265
+ tribution of both intent detection and slot filling
266
+ tasks.
267
+ 3.2.2
268
+ Machine Translation
269
+ Machine translation is a common and effective
270
+ data augmentation strategy in the cross-lingual sce-
271
+ nario (Conneau and Lample, 2019; Singh et al.,
272
+ 2019). Due to the difficulty of accessing ground-
273
+ truth labels in translation examples, machine trans-
274
+ lation can not be an available data augmentation
275
+ strategy in the slot filling task. To improve the
276
+ quality of our translations, we employ a variety
277
+ of approaches (See Section 4.2). Unlike subword
278
+ sampling, the output distributions of slot labels be-
279
+ tween the translation pairs can not be aligned. Thus,
280
+ we only use machine translation to align the output
281
+ distributions of the intent detection task.
282
+ 3.3
283
+ Consistency Regularization based on
284
+ Hybrid Data Augmentations
285
+ We illustrate our fine-tuning framework in Figure 2.
286
+ We propose to use consistency regularization based
287
+ on a hybrid data augmentation strategy, which in-
288
+ cludes data augmentation of machine translation
289
+ and subword sampling. During the training pro-
290
+ cess, we perform task fine-tuning and consistency
291
+ regularization for an input example simultaneously.
292
+ Then the final training loss is defined as follows:
293
+ L = LI + λ1LS + λ2RI + λ3RS
294
+ where λ1 is the slot loss coefficient, λ2 and λ3
295
+ are the corresponding weights of the consistency
296
+ regularization for two tasks. We sample different
297
+ data augmentation for the input example with the
298
+ pre-defined distribution.
299
+ 4
300
+ Experiments
301
+ 4.1
302
+ Experimental Setup
303
+ We consider two types of pre-trained cross-lingual
304
+ language models, which are encoder-only models
305
+ and Text-to-Text models.
306
+ We use XLM-Align Base (Chi et al., 2021b) for
307
+ the encoder-only model setting. We use a two-layer
308
+ feed-forward network with a 3,072 hidden size. We
309
+ use the first representation of sentences “<s>” for
310
+ the intent detection task and the first subword of
311
+ each word for the slot filling task.
312
+ We use mT5 Base (Xue et al., 2021) for the Text-
313
+ to-Text model setting. We follow FitzGerald et al.
314
+ (2022) to concatenate “Annotate: ” and the unla-
315
+ beled input utterance as the input of the encoder,
316
+ and generate the text concatenation of the intent
317
+ label and the slot labels as the decoder output. The
318
+ labels are separated with white spaces and then
319
+ tokenized into subwords.
320
+ We select the model that performs the best on
321
+ the development dataset to run prediction on the
322
+ test and evaluation dataset. We mainly select the
323
+ batch size in [32, 64, 128, 256], dropout rate in
324
+
325
+ Text Type
326
+ Text Content
327
+ Slot Translation
328
+ Text Translation
329
+ Aligned or Not
330
+ Plain Text
331
+ Wake me up at five am Friday this week
332
+ five am: 凌晨五点
333
+ Friday this week: 本周周五
334
+ 本周周五凌晨五点叫我起床
335
+ Yes
336
+ Text with Slots in Brackets
337
+ Wake me up at [five am] [Friday this week]
338
+ 在[凌晨五点][本周星期五]叫醒我
339
+ No
340
+ Plain Text
341
+ set an alarm for two hours from now
342
+ two hours from now:
343
+ 从现在起两小时后
344
+ 从现在开始设置两个小时的闹钟
345
+ No
346
+ Text with Slots in Brackets
347
+ set an alarm for [two hours from now]
348
+ 设置[从现在起两小时后]的闹钟
349
+ Yes
350
+ Table 1: Examples of aligning slots into machine translations.
351
+ Model
352
+ Test Set
353
+ Evaluation Set
354
+ Intent Acc
355
+ Slot F1
356
+ EMA
357
+ Intent Acc
358
+ Slot F1
359
+ EMA
360
+ XLM-R Base
361
+ 85.10
362
+ 73.60
363
+ 63.69
364
+ -
365
+ -
366
+ -
367
+ XLM-Align Base
368
+ 86.16
369
+ 76.36
370
+ 66.42
371
+ -
372
+ -
373
+ -
374
+ mT5 Base Text-to-Text
375
+ 85.33
376
+ 76.77
377
+ 66.64
378
+ -
379
+ -
380
+ -
381
+ XLM-Align Base + Ours
382
+ 87.12
383
+ 77.99
384
+ 68.76
385
+ 85.00
386
+ 68.45
387
+ 48.64
388
+ mT5 Base Text-to-Text + Ours
389
+ 87.60
390
+ 78.22
391
+ 69.60
392
+ 85.10
393
+ 69.08
394
+ 49.65
395
+ Table 2: Test and evaluation results on the MASSIVE dataset under the full-dataset setting. Results of XLM-R
396
+ Base and mT5 Base Text-to-Text are taken from FitzGerald et al. (2022).
397
+ [0.05, 0.1, 0.15], and the hyper-parameters used in
398
+ our proposed method, including slot loss coeffi-
399
+ cient λ1 in [1, 2, 4], weights of consistency regu-
400
+ larization λ2 and λ3 in [2, 3, 5, 10]. We select the
401
+ learning rate in [5e−5, 8e−5, 1e−4] for Text-to-Text
402
+ models. As for encoder-only models, we select the
403
+ learning rate in [4e−6, 6e−6, 8e−6].
404
+ 4.2
405
+ Data Processing
406
+ For the full-dataset setting, we use examples with
407
+ the same id in different languages as machine trans-
408
+ lation augmentation in our fine-tuning framework.
409
+ For the zero-shot setting, we translated the entire
410
+ English training set into 50 languages using com-
411
+ mercial translation APIs, such as DeepL translator
412
+ and Google translator. These translations refer to
413
+ plain text translations and can be used for intent
414
+ detection training and consistency regularization.
415
+ We used two methods to obtain a translated ex-
416
+ ample that aligned at the slot level. One is based
417
+ on the plain text translation. Each slot value in an
418
+ English training example is translated into a target
419
+ language. If the translation results of each slot can
420
+ be found in the plain text translation, a slot-aligned
421
+ translation is obtained. The other is based on the
422
+ annotated English training examples. We translated
423
+ the annotated English training example with brack-
424
+ ets for slot values (without slot type in brackets).
425
+ Using brackets explicitly allows the translator to
426
+ align slots to consecutive spans. And we also trans-
427
+ lated each slot value into the target language. If
428
+ the translation result of each slot can be found in
429
+ the annotated utterance translation, we obtain a slot
430
+ alignment example after removing the brackets.
431
+ In practice, slot-aligned examples based on plain
432
+ text translations are preferred as the final result of
433
+ the slot alignment. If no such example is avail-
434
+ able, we use the slot-aligned results from annotated
435
+ translations. Examples of slot alignment are shown
436
+ in Table 1. For those plain text translations where
437
+ we can not align the slot labels, we only use them
438
+ for the training of the intent detection task.
439
+ 4.3
440
+ Evaluation Metrics
441
+ The evaluation in competition is mainly conducted
442
+ using three metrics:
443
+ • Exact Match Accuracy (EMA): The percent-
444
+ age of utterance-level predictions where the
445
+ intent and all slots are exactly correct.
446
+ • Intent Accuracy (Intent Acc): The percentage
447
+ of predictions in which the intent is correct.
448
+ • Slot Micro F1 (Slot F1): The micro-averaged
449
+ F1 score is calculated over all slots.
450
+ 4.4
451
+ Results
452
+ Table 2 shows our results on the MASSIVE dataset
453
+ under the full-set setting. We tried different cross-
454
+ lingual pre-trained language models under the base-
455
+ line setting. Among them, XLM-Align Base per-
456
+ forms the best on the intent detection task, while
457
+ the mT5 Base Text-to-Text model performs the
458
+ best on the slot filling task and exact match ac-
459
+ curacy. When applying our consistency regular-
460
+ ization method, the mT5 Base Text-to-Text model
461
+ outperforms the XLM-Align Base model by 0.84
462
+ points and 0.99 points on exact match accuracy on
463
+ the test dataset and the evaluation set, respectively.
464
+ Meanwhile, compared to the baseline model, us-
465
+ ing consistency regularization achieves an absolute
466
+
467
+ Model
468
+ Test Set
469
+ Evaluation Set
470
+ Intent Acc
471
+ Slot F1
472
+ EMA
473
+ Intent Acc
474
+ Slot F1
475
+ EMA
476
+ XLM-R Base
477
+ 70.62
478
+ 50.27
479
+ 38.70
480
+ -
481
+ -
482
+ -
483
+ XLM-Align Base
484
+ 68.49
485
+ 54.69
486
+ 40.91
487
+ -
488
+ -
489
+ -
490
+ mT5 Base Text-to-Text
491
+ 62.92
492
+ 44.77
493
+ 34.72
494
+ -
495
+ -
496
+ -
497
+ XLM-Align Base + Ours
498
+ 85.12
499
+ 71.27
500
+ 62.18
501
+ 83.18
502
+ 62.84
503
+ 43.05
504
+ XLM-Align Base + Ours + KD
505
+ 85.76
506
+ 73.55
507
+ 64.44
508
+ 83.89
509
+ 64.60
510
+ 44.84
511
+ mT5 Base Text-to-Text + Ours
512
+ 84.58
513
+ 69.24
514
+ 60.59
515
+ 82.56
516
+ 60.00
517
+ 40.93
518
+ Table 3: Test and evaluation results on the MASSIVE dataset under the zero-shot setting. Results of XLM-R Base
519
+ and mT5 Base Text-to-Text are taken from FitzGerald et al. (2022).
520
+ Model
521
+ Intent Acc Slot F1 EMA
522
+ XLM-Align Base + Ours
523
+ 87.12
524
+ 77.99
525
+ 68.76
526
+ - Subword Sampling
527
+ 87.50
528
+ 76.08
529
+ 67.40
530
+ - Consistency Regularization
531
+ 86.16
532
+ 76.32
533
+ 66.57
534
+ Table 4: Ablation studies on the MASSIVE test dataset
535
+ under the full-dataset setting.
536
+ 2.96-point improvement on exact match accuracy
537
+ with the mT5 Base Text-to-Text model.
538
+ Table 3 shows our results on the MASSIVE
539
+ dataset under the zero-shot setting. For the base-
540
+ line models, XLM-Align Base performs the best on
541
+ all three metrics. Difference from the full-dataset
542
+ setting, mT5 Base Text-to-Text models perform
543
+ poorly under the zero-shot setting. We attribute
544
+ it to the fact that Text-to-Text models strongly
545
+ rely on the training data quality since most of the
546
+ training data under the zero-shot setting are ob-
547
+ tained with machine translation systems. When
548
+ applying our consistency regularization method,
549
+ the XLM-Align Base model outperforms the base-
550
+ line model by 21.27 points. Distilled from the In-
551
+ foXLM Large (Chi et al., 2021a) model will further
552
+ improve the performance by an absolute 2.26-point.
553
+ 4.5
554
+ Ablation Studies
555
+ We conduct ablation studies on the test dataset of
556
+ MASSIVE under the two settings. Table 4 shows
557
+ the results under the full-dataset setting. Ablating
558
+ subword sampling will degrade the performance
559
+ by 1.36 points on the exact match accuracy, where
560
+ the performance drop comes mainly from the slot
561
+ filling task, indicating the subword sampling aug-
562
+ mentation mainly works on slot filling. Ablating
563
+ consistency regularization will degrade the perfor-
564
+ mance by 2.19 points on the exact match accuracy.
565
+ The performances on both intent detection and slot
566
+ filling tasks are decreased.
567
+ The zero-shot setting results are presented in Ta-
568
+ Model
569
+ Intent Acc Slot F1 EMA
570
+ XLM-Align Base + Ours
571
+ 85.12
572
+ 71.27
573
+ 62.18
574
+ - Subword Sampling
575
+ 85.14
576
+ 69.52
577
+ 60.94
578
+ - Machine Translation
579
+ 72.27
580
+ 58.37
581
+ 45.50
582
+ - Consistency Regularization
583
+ 83.90
584
+ 69.37
585
+ 59.95
586
+ Table 5: Ablation studies on the MASSIVE test dataset
587
+ under the zero-shot setting.
588
+ ble 5. It can be observed that when machine trans-
589
+ lation augmentation is removed, the exact match
590
+ accuracy drops by 16.68 points, while the perfor-
591
+ mance on intent detection and slot filling are also
592
+ significantly worse. We also removed the subword
593
+ sampling augmentation, and the performance is
594
+ found to have the same trend as in the full-dataset
595
+ setting. An absolute 1.24-point drop on the exact
596
+ match accuracy and an absolute 1.75-point drop
597
+ on slot micro F1 demonstrate that subword sam-
598
+ pling is more beneficial for the slot filling task. By
599
+ removing the consistency regularization, the per-
600
+ formance of exact match accuracy will degrade by
601
+ 2.23 points. The performance shows a significant
602
+ performance drop on both intent detection and slot
603
+ filling tasks.
604
+ 5
605
+ Conclusion
606
+ We propose to use consistency regularization based
607
+ on a hybrid data augmentation strategy to improve
608
+ the performance of multilingual SLU. The pro-
609
+ posed method is flexible and can be easily plugged
610
+ into the fine-tuning process of both the encoder-
611
+ only model and the Text-to-Text model. The ex-
612
+ perimental results demonstrate the importance of
613
+ consistency regularization and the hybrid data aug-
614
+ mentation strategy, respectively.
615
+ Acknowledgments
616
+ This work was supported by the National Key R&D
617
+ Program of China via grant 2020AAA0106501 and
618
+
619
+ the National Natural Science Foundation of China
620
+ (NSFC) via grant 62236004 and 61976072.
621
+ References
622
+ Zewen Chi, Li Dong, Furu Wei, Nan Yang, Sak-
623
+ sham Singhal, Wenhui Wang, Xia Song, Xian-Ling
624
+ Mao, Heyan Huang, and Ming Zhou. 2021a.
625
+ In-
626
+ foXLM: An information-theoretic framework for
627
+ cross-lingual language model pre-training. In Pro-
628
+ ceedings of the 2021 Conference of the North Amer-
629
+ ican Chapter of the Association for Computational
630
+ Linguistics: Human Language Technologies, pages
631
+ 3576–3588, Online. Association for Computational
632
+ Linguistics.
633
+ Zewen Chi, Li Dong, Bo Zheng, Shaohan Huang, Xian-
634
+ Ling Mao, Heyan Huang, and Furu Wei. 2021b.
635
+ Improving pretrained cross-lingual language mod-
636
+ els via self-labeled word alignment.
637
+ In Proceed-
638
+ ings of the 59th Annual Meeting of the Association
639
+ for Computational Linguistics and the 11th Interna-
640
+ tional Joint Conference on Natural Language Pro-
641
+ cessing (Volume 1: Long Papers), pages 3418–3430,
642
+ Online. Association for Computational Linguistics.
643
+ Zewen Chi, Shaohan Huang, Li Dong, Shuming Ma,
644
+ Bo Zheng, Saksham Singhal, Payal Bajaj, Xia Song,
645
+ Xian-Ling Mao, Heyan Huang, and Furu Wei. 2022.
646
+ XLM-E: cross-lingual language model pre-training
647
+ via ELECTRA.
648
+ In Proceedings of the 60th An-
649
+ nual Meeting of the Association for Computational
650
+ Linguistics (Volume 1: Long Papers), ACL 2022,
651
+ Dublin, Ireland, May 22-27, 2022, pages 6170–6182.
652
+ Association for Computational Linguistics.
653
+ Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
654
+ Vishrav Chaudhary, Guillaume Wenzek, Francisco
655
+ Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
656
+ moyer, and Veselin Stoyanov. 2020. Unsupervised
657
+ cross-lingual representation learning at scale.
658
+ In
659
+ Proceedings of the 58th Annual Meeting of the Asso-
660
+ ciation for Computational Linguistics, pages 8440–
661
+ 8451, Online. Association for Computational Lin-
662
+ guistics.
663
+ Alexis Conneau and Guillaume Lample. 2019. Cross-
664
+ lingual language model pretraining.
665
+ In Advances
666
+ in Neural Information Processing Systems, pages
667
+ 7057–7067. Curran Associates, Inc.
668
+ Jack FitzGerald, Christopher Hench, Charith Peris,
669
+ Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
670
+ Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
671
+ Swetha Ranganath, Laurie Crist, Misha Britan,
672
+ Wouter Leeuwis, Gokhan Tur, and Prem Natara-
673
+ jan. 2022.
674
+ Massive:
675
+ A 1m-example multilin-
676
+ gual natural language understanding dataset with 51
677
+ typologically-diverse languages.
678
+ Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
679
+ aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
680
+ SMART: Robust and efficient fine-tuning for pre-
681
+ trained natural language models through principled
682
+ regularized optimization.
683
+ In Proceedings of the
684
+ 58th Annual Meeting of the Association for Compu-
685
+ tational Linguistics, ACL 2020, Online, July 5-10,
686
+ 2020, pages 2177–2190. Association for Computa-
687
+ tional Linguistics.
688
+ Taku Kudo. 2018. Subword regularization: Improving
689
+ neural network translation models with multiple sub-
690
+ word candidates. In Proceedings of the 56th Annual
691
+ Meeting of the Association for Computational Lin-
692
+ guistics, ACL 2018, Melbourne, Australia, July 15-
693
+ 20, 2018, Volume 1: Long Papers, pages 66–75. As-
694
+ sociation for Computational Linguistics.
695
+ Taku Kudo and John Richardson. 2018. Sentencepiece:
696
+ A simple and language independent subword tok-
697
+ enizer and detokenizer for neural text processing. In
698
+ Proceedings of the 2018 Conference on Empirical
699
+ Methods in Natural Language Processing, EMNLP
700
+ 2018: System Demonstrations, Brussels, Belgium,
701
+ October 31 - November 4, 2018, pages 66–71. As-
702
+ sociation for Computational Linguistics.
703
+ Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu
704
+ Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
705
+ 2020. Adversarial training for large neural language
706
+ models. CoRR, abs/2004.08994.
707
+ Libo Qin, Qiguang Chen, Tianbao Xie, Qixin Li,
708
+ Jian-Guang Lou, Wanxiang Che, and Min-Yen Kan.
709
+ 2022. GL-CLeF: A global–local contrastive learn-
710
+ ing framework for cross-lingual spoken language un-
711
+ derstanding.
712
+ In Proceedings of the 60th Annual
713
+ Meeting of the Association for Computational Lin-
714
+ guistics (Volume 1: Long Papers), pages 2677–2686,
715
+ Dublin, Ireland. Association for Computational Lin-
716
+ guistics.
717
+ Libo Qin, Minheng Ni, Yue Zhang, and Wanxiang Che.
718
+ 2020.
719
+ CoSDA-ML: Multi-lingual code-switching
720
+ data augmentation for zero-shot cross-lingual NLP.
721
+ In Proceedings of the Twenty-Ninth International
722
+ Joint Conference on Artificial Intelligence, IJCAI
723
+ 2020, pages 3853–3860. ijcai.org.
724
+ Jasdeep Singh, Bryan McCann, Nitish Shirish Keskar,
725
+ Caiming Xiong, and Richard Socher. 2019. XLDA:
726
+ cross-lingual data augmentation for natural lan-
727
+ guage inference and question answering.
728
+ CoRR,
729
+ abs/1905.11471.
730
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
731
+ Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
732
+ Kaiser, and Illia Polosukhin. 2017.
733
+ Attention is
734
+ all you need.
735
+ In Advances in Neural Information
736
+ Processing Systems, pages 5998–6008. Curran As-
737
+ sociates, Inc.
738
+ Linting Xue, Noah Constant, Adam Roberts, Mi-
739
+ hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
740
+ Barua, and Colin Raffel. 2021. mt5: A massively
741
+ multilingual pre-trained text-to-text transformer. In
742
+ Proceedings of the 2021 Conference of the North
743
+ American Chapter of the Association for Computa-
744
+ tional Linguistics: Human Language Technologies,
745
+
746
+ NAACL-HLT 2021, Online, June 6-11, 2021, pages
747
+ 483–498. Association for Computational Linguis-
748
+ tics.
749
+ Bo Zheng, Li Dong, Shaohan Huang, Saksham Sing-
750
+ hal, Wanxiang Che, Ting Liu, Xia Song, and Furu
751
+ Wei. 2021a.
752
+ Allocating large vocabulary capacity
753
+ for cross-lingual language model pre-training.
754
+ In
755
+ Proceedings of the 2021 Conference on Empirical
756
+ Methods in Natural Language Processing, EMNLP
757
+ 2021, Virtual Event / Punta Cana, Dominican Re-
758
+ public, 7-11 November, 2021, pages 3203–3215. As-
759
+ sociation for Computational Linguistics.
760
+ Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang,
761
+ Zewen Chi, Saksham Singhal, Wanxiang Che, Ting
762
+ Liu, Xia Song, and Furu Wei. 2021b. Consistency
763
+ regularization for cross-lingual fine-tuning. In Pro-
764
+ ceedings of the 59th Annual Meeting of the Associa-
765
+ tion for Computational Linguistics and the 11th In-
766
+ ternational Joint Conference on Natural Language
767
+ Processing (Volume 1: Long Papers), pages 3403–
768
+ 3417, Online. Association for Computational Lin-
769
+ guistics.
770
+
SNA0T4oBgHgl3EQfD_8a/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf,len=441
2
+ page_content='HIT-SCIR at MMNLU-22: Consistency Regularization for Multilingual Spoken Language Understanding Bo Zheng, Zhouyang Li, Fuxuan Wei, Qiguang Chen, Libo Qin, Wanxiang Che∗ Harbin Institute of Technology {bzheng,zhouyangli,fxwei,qgchen,lbqin,car}@ir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
3
+ page_content='hit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
4
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
5
+ page_content='cn Abstract Multilingual spoken language understanding (SLU) consists of two sub-tasks, namely intent detection and slot filling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
6
+ page_content=' To improve the per- formance of these two sub-tasks, we propose to use consistency regularization based on a hybrid data augmentation strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
7
+ page_content=' The consis- tency regularization enforces the predicted dis- tributions for an example and its semantically equivalent augmentation to be consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
8
+ page_content=' We conduct experiments on the MASSIVE dataset under both full-dataset and zero-shot settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
9
+ page_content=' Experimental results demonstrate that our pro- posed method improves the performance on both intent detection and slot filling tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
10
+ page_content=' Our system1 ranked 1st in the MMNLU-22 compe- tition under the full-dataset setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
11
+ page_content=' 1 Introduction The MMNLU-22 evaluation focuses on the prob- lem of multilingual natural language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
12
+ page_content=' It is based on the MASSIVE dataset (FitzGerald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
13
+ page_content=', 2022), a multilingual spoken language under- standing (SLU) dataset with two sub-tasks, includ- ing intent detection and slot filling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
14
+ page_content=' Specifically, given a virtual assistant utterance in an arbitrary language, the model is designed to predict the cor- responding intent label and extract the slot results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
15
+ page_content=' An English example is illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
16
+ page_content=' Fine-tuning pre-trained cross-lingual language models allows task-specific supervision to be shared and transferred across languages (Conneau and Lample, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
17
+ page_content=' Conneau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
18
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
19
+ page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
20
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
21
+ page_content=' This motivates the two setting for the MMNLU-22 evaluation, namely the full-dataset setting and the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
22
+ page_content=' Participants are allowed to use training data in all languages under the full-dataset setting, while they can only access the English training data under the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
23
+ page_content=' ∗Email corresponding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
24
+ page_content=' 1The code will be available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
25
+ page_content='com/ bozheng-hit/MMNLU-22-HIT-SCIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
26
+ page_content=' Utterance Slot Intent Wake me up at five am Friday this week O O O O time time date date date set alarm Figure 1: An English example from the MASSIVE dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
27
+ page_content=' The slot label ‘O’ stands for the ‘Other’ label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
28
+ page_content=' The latter is also called zero-shot cross-lingual SLU in previous work (Qin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
29
+ page_content=', 2020, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
30
+ page_content=' Cross-lingual data augmentation methods have been proven effective to improve cross-lingual transferability, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
31
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
32
+ page_content=', code-switch substitution (Qin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
33
+ page_content=', 2020) and machine translation (Conneau and Lample, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
34
+ page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
35
+ page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
36
+ page_content=' Most previ- ous work directly utilizes the data augmentations as additional training data for fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
37
+ page_content=' How- ever, they ignore the inherent correlation between the original example and its semantically equiva- lent augmentation, which can be fully exploited with the consistency regularization (Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
38
+ page_content=', 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
39
+ page_content=' The consistency regularization enforces the model predictions to be more consistent for semantic-preserving augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
40
+ page_content=' Motivated by this, we propose to apply consis- tency regularization based on a hybrid data aug- mentation strategy, including data augmentation of machine translation and subword sampling (Kudo, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
41
+ page_content=' We use machine translation augmentation to align the model predictions of the intent detec- tion task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
42
+ page_content=' Meanwhile, subword sampling augmen- tation is used to align the model predictions of both intent detection and slot filling tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
43
+ page_content=' The proposed method consistently improves the SLU performance on the MASSIVE dataset under both full-dataset and zero-shot settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
44
+ page_content=' It is worth men- tioning that our system ranked 1st in the MMNLU- 22 competition under the full-dataset setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
45
+ page_content=' We achieved an exact match accuracy of 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
46
+ page_content='65 points, outperforming the 2nd system by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
47
+ page_content='02 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
48
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
49
+ page_content='02010v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
50
+ page_content='CL] 5 Jan 2023 2 Background 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
51
+ page_content='1 Task Description The task of SLU is that given an utterance with a word sequence x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
52
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
53
+ page_content=', xn) with length n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
54
+ page_content=' The model is required to solve two sub-tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
55
+ page_content=' The intent detection task can be seen as an utterance classification task to decide the intent label oI, and the slot filling task is a sequence labeling task that generates a slot label for each word in the utterance to obtain the slot sequence oS = (oS 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
56
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
57
+ page_content=', oS n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
58
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
59
+ page_content='2 Dataset Description The MASSIVE dataset is composed of realistic, human-created virtual assistant utterance text span- ning 51 languages, 60 intents, 55 slot types, and 18 domains (FitzGerald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
60
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
61
+ page_content=' There are 11,514 training utterances for each language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
62
+ page_content=' For the full-dataset setting, all training data can be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
63
+ page_content=' For the zero-shot setting, only English training data can be used, yet we can translate them into other languages using commercial translators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
64
+ page_content=' There are 2,033, 2,974, and 3,000 utterances for each lan- guage in the development, test, and evaluation set, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
65
+ page_content=' The average performance in all lan- guages should be reported under the full-dataset setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
66
+ page_content=' Meanwhile, the average performance in all languages except English should be reported under the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
67
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
68
+ page_content='3 Related Work Pre-trained cross-lingual language models (Con- neau and Lample, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
69
+ page_content=' Conneau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
70
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
71
+ page_content=' Chi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
72
+ page_content=', 2021a,b, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
73
+ page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
74
+ page_content=', 2021) encode dif- ferent languages into universal representations and significantly improve cross-lingual transferability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
75
+ page_content=' These models usually consist of a multilingual vo- cabulary (Conneau and Lample, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
76
+ page_content=' Conneau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
77
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
78
+ page_content=' Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
79
+ page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
80
+ page_content=' Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
81
+ page_content=', 2021a) and a Transformer model (Vaswani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
82
+ page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
83
+ page_content=' A simple yet effective way to improve cross- lingual fine-tuning is to populate the training data with cross-lingual data augmentation (Conneau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
84
+ page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
85
+ page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
86
+ page_content=' (2019) replace a segment of source language input text with its translation in another language as data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
87
+ page_content=' Qin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
88
+ page_content=' (2020) randomly replace words in the source- language training example with target-language words using the bilingual dictionaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
89
+ page_content=' Then the model is fine-tuned on the generated code-switched data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
90
+ page_content=' Instead of directly treating cross-lingual data augmentation as extra training data, Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
91
+ page_content=' (2021b) proposed to better use data augmentations based on consistency regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
92
+ page_content=' 3 Method Given the input utterance x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
93
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
94
+ page_content=', xn) with length n and the corresponding intent label oI and slot labels oS = (oS 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
95
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
96
+ page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
97
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
98
+ page_content='oS n) from training cor- pus D, we define the loss for the two sub-tasks of SLU in our fine-tuning process as: LI = � (x,oI)∈D CE(fI(x), oI), LS = � (x,oS)∈D CE(fS(x), oS), where LI and LS stand for the intent detection task and the slot filling task, fI(·) and fS(·) denote the model which predicts task-specific probability dis- tributions for the input example x, CE(·, ·) denotes cross-entropy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
99
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
100
+ page_content='1 Consistency Regularization In order to make better use of data augmentations, we introduce the consistency regularization used in Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
101
+ page_content=' (2021b), which encourages consis- tent predictions for an example and its semantically equivalent augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
102
+ page_content=' We apply consistency regularization on intent detection and slot filling tasks, which is defined as follows: RI = � x∈D KLS(fI(x)∥fI(A(x, z))), RS = � x∈D KLS(fS(x)∥fS(A(x, z))), KLS(P∥Q) = KL(stopgrad(P)∥Q)+ KL(stopgrad(Q)∥P) where KLS(·∥·) is the symmertrical Kullback- Leibler divergence, A(x, z) denotes the augmented version of input utterance x with data augmenta- tion strategy z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
103
+ page_content=' The regularizer encourages the predicted distributions of the original training ex- ample and its augmented version to agree with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
104
+ page_content=' The stopgrad(·) operation2 is used to stop back-propagating gradients, which is also em- ployed in (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
105
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
106
+ page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
107
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
108
+ page_content=' Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
109
+ page_content=', 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
110
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
111
+ page_content='2 Data Augmentations We consider two types of data augmentation strate- gies for our consistency regularization method, in- cluding subword sampling and machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
112
+ page_content=' 2Implemented by .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
113
+ page_content='detach() in PyTorch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
114
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
115
+ page_content='Subword ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
116
+ page_content='Sampling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
117
+ page_content='Machine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
118
+ page_content='Translation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
119
+ page_content='𝑥 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
120
+ page_content='Pretrained Language Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
121
+ page_content='Slot Classifier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
122
+ page_content='Intent Classifier ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
123
+ page_content='Intent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
124
+ page_content='Task ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
125
+ page_content='Loss ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
126
+ page_content='Intent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
127
+ page_content='Consistency ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
128
+ page_content='Regularization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
129
+ page_content='Slot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
130
+ page_content='Consistency ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
131
+ page_content='Regularization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
132
+ page_content='Slot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
133
+ page_content='Task ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
134
+ page_content='Loss ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
135
+ page_content='Hybrid Data Augmentation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
136
+ page_content='Wake me up at five am ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
137
+ page_content='_Wa/ke/_me/_up/_at/_five/_am ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
138
+ page_content='_Wake/_me/_up/_at/_f/ive/_am ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
139
+ page_content='_Wa/ke/_me/_up/_at/_fiv/e/_am ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
140
+ page_content='早上五点叫醒我 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
141
+ page_content='朝5時に起こして ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
142
+ page_content='Maak me om vijf uur wakker ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
143
+ page_content='Subword ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
144
+ page_content='Sampling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
145
+ page_content='Machine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
146
+ page_content='Translation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
147
+ page_content='Input Utterance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
148
+ page_content='Figure 2: Illustration of our fine-tuning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
149
+ page_content=' ‘MT’ denotes machine translation augmentation and ‘SS’ denotes subword sampling augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
150
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
151
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
152
+ page_content='1 Subword Sampling Subword sampling is to generate multiple subword sequences from the original text as data augmen- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
153
+ page_content=' We apply the on-the-fly subword sampling algorithm from the unigram language model (Kudo, 2018) in SentencePiece (Kudo and Richardson, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
154
+ page_content=' The output distributions of slot labels are generated on the first subword of each word in the input utterance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
155
+ page_content=' Therefore, the subword sampling augmentation can be used to align the output dis- tribution of both intent detection and slot filling tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
156
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
157
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
158
+ page_content='2 Machine Translation Machine translation is a common and effective data augmentation strategy in the cross-lingual sce- nario (Conneau and Lample, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
159
+ page_content=' Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
160
+ page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
161
+ page_content=' Due to the difficulty of accessing ground- truth labels in translation examples, machine trans- lation can not be an available data augmentation strategy in the slot filling task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
162
+ page_content=' To improve the quality of our translations, we employ a variety of approaches (See Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
163
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
164
+ page_content=' Unlike subword sampling, the output distributions of slot labels be- tween the translation pairs can not be aligned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
165
+ page_content=' Thus, we only use machine translation to align the output distributions of the intent detection task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
166
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
167
+ page_content='3 Consistency Regularization based on Hybrid Data Augmentations We illustrate our fine-tuning framework in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
168
+ page_content=' We propose to use consistency regularization based on a hybrid data augmentation strategy, which in- cludes data augmentation of machine translation and subword sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
169
+ page_content=' During the training pro- cess, we perform task fine-tuning and consistency regularization for an input example simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
170
+ page_content=' Then the final training loss is defined as follows: L = LI + λ1LS + λ2RI + λ3RS where λ1 is the slot loss coefficient, λ2 and λ3 are the corresponding weights of the consistency regularization for two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
171
+ page_content=' We sample different data augmentation for the input example with the pre-defined distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
172
+ page_content=' 4 Experiments 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
173
+ page_content='1 Experimental Setup We consider two types of pre-trained cross-lingual language models, which are encoder-only models and Text-to-Text models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
174
+ page_content=' We use XLM-Align Base (Chi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
175
+ page_content=', 2021b) for the encoder-only model setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
176
+ page_content=' We use a two-layer feed-forward network with a 3,072 hidden size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
177
+ page_content=' We use the first representation of sentences “<s>” for the intent detection task and the first subword of each word for the slot filling task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
178
+ page_content=' We use mT5 Base (Xue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
179
+ page_content=', 2021) for the Text- to-Text model setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
180
+ page_content=' We follow FitzGerald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
181
+ page_content=' (2022) to concatenate “Annotate: ” and the unla- beled input utterance as the input of the encoder, and generate the text concatenation of the intent label and the slot labels as the decoder output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
182
+ page_content=' The labels are separated with white spaces and then tokenized into subwords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
183
+ page_content=' We select the model that performs the best on the development dataset to run prediction on the test and evaluation dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
184
+ page_content=' We mainly select the batch size in [32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
185
+ page_content=' 64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
186
+ page_content=' 128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
187
+ page_content=' 256],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
188
+ page_content=' dropout rate in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
189
+ page_content='Text Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
190
+ page_content='Text Content ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
191
+ page_content='Slot Translation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
192
+ page_content='Text Translation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
193
+ page_content='Aligned or Not ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
194
+ page_content='Plain Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
195
+ page_content='Wake me up at five am Friday this week ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
196
+ page_content='five am: 凌晨五点 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
197
+ page_content='Friday this week: 本周周五 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
198
+ page_content='本周周五凌晨五点叫我起床 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
199
+ page_content='Yes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
200
+ page_content='Text with Slots in Brackets ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
201
+ page_content='Wake me up at [five am] [Friday this week] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
202
+ page_content='在[凌晨五点][本周星期五]叫醒我 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
203
+ page_content='No ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
204
+ page_content='Plain Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
205
+ page_content='set an alarm for two hours from now ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
206
+ page_content='two hours from now: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
207
+ page_content='从现在起两小时后 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
208
+ page_content='从现在开始设置两个小时的闹钟 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
209
+ page_content='No ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
210
+ page_content='Text with Slots in Brackets ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
211
+ page_content='set an alarm for [two hours from now] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
212
+ page_content='设置[从现在起两小时后]的闹钟 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
213
+ page_content='Yes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
214
+ page_content='Table 1: Examples of aligning slots into machine translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
215
+ page_content=' Model Test Set Evaluation Set Intent Acc Slot F1 EMA Intent Acc Slot F1 EMA XLM-R Base 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
216
+ page_content='10 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
217
+ page_content='60 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
218
+ page_content='69 XLM-Align Base 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
219
+ page_content='16 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
220
+ page_content='36 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
221
+ page_content='42 mT5 Base Text-to-Text 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
222
+ page_content='33 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
223
+ page_content='77 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
224
+ page_content='64 XLM-Align Base + Ours 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
225
+ page_content='12 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
226
+ page_content='99 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
227
+ page_content='76 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
228
+ page_content='00 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
229
+ page_content='45 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
230
+ page_content='64 mT5 Base Text-to-Text + Ours 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
231
+ page_content='60 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
232
+ page_content='22 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
233
+ page_content='60 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
234
+ page_content='10 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
235
+ page_content='08 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
236
+ page_content='65 Table 2: Test and evaluation results on the MASSIVE dataset under the full-dataset setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
237
+ page_content=' Results of XLM-R Base and mT5 Base Text-to-Text are taken from FitzGerald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
238
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
239
+ page_content=' [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
240
+ page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
241
+ page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
242
+ page_content='15], and the hyper-parameters used in our proposed method, including slot loss coeffi- cient λ1 in [1, 2, 4], weights of consistency regu- larization λ2 and λ3 in [2, 3, 5, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
243
+ page_content=' We select the learning rate in [5e−5, 8e−5, 1e−4] for Text-to-Text models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
244
+ page_content=' As for encoder-only models, we select the learning rate in [4e−6, 6e−6, 8e−6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
245
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
246
+ page_content='2 Data Processing For the full-dataset setting, we use examples with the same id in different languages as machine trans- lation augmentation in our fine-tuning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
247
+ page_content=' For the zero-shot setting, we translated the entire English training set into 50 languages using com- mercial translation APIs, such as DeepL translator and Google translator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
248
+ page_content=' These translations refer to plain text translations and can be used for intent detection training and consistency regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
249
+ page_content=' We used two methods to obtain a translated ex- ample that aligned at the slot level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
250
+ page_content=' One is based on the plain text translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
251
+ page_content=' Each slot value in an English training example is translated into a target language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
252
+ page_content=' If the translation results of each slot can be found in the plain text translation, a slot-aligned translation is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
253
+ page_content=' The other is based on the annotated English training examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
254
+ page_content=' We translated the annotated English training example with brack- ets for slot values (without slot type in brackets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
255
+ page_content=' Using brackets explicitly allows the translator to align slots to consecutive spans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
256
+ page_content=' And we also trans- lated each slot value into the target language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
257
+ page_content=' If the translation result of each slot can be found in the annotated utterance translation, we obtain a slot alignment example after removing the brackets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
258
+ page_content=' In practice, slot-aligned examples based on plain text translations are preferred as the final result of the slot alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
259
+ page_content=' If no such example is avail- able, we use the slot-aligned results from annotated translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
260
+ page_content=' Examples of slot alignment are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
261
+ page_content=' For those plain text translations where we can not align the slot labels, we only use them for the training of the intent detection task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
262
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
263
+ page_content='3 Evaluation Metrics The evaluation in competition is mainly conducted using three metrics: Exact Match Accuracy (EMA): The percent- age of utterance-level predictions where the intent and all slots are exactly correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
264
+ page_content=' Intent Accuracy (Intent Acc): The percentage of predictions in which the intent is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
265
+ page_content=' Slot Micro F1 (Slot F1): The micro-averaged F1 score is calculated over all slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
266
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
267
+ page_content='4 Results Table 2 shows our results on the MASSIVE dataset under the full-set setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
268
+ page_content=' We tried different cross- lingual pre-trained language models under the base- line setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
269
+ page_content=' Among them, XLM-Align Base per- forms the best on the intent detection task, while the mT5 Base Text-to-Text model performs the best on the slot filling task and exact match ac- curacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
270
+ page_content=' When applying our consistency regular- ization method, the mT5 Base Text-to-Text model outperforms the XLM-Align Base model by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
271
+ page_content='84 points and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
272
+ page_content='99 points on exact match accuracy on the test dataset and the evaluation set, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
273
+ page_content=' Meanwhile, compared to the baseline model, us- ing consistency regularization achieves an absolute Model Test Set Evaluation Set Intent Acc Slot F1 EMA Intent Acc Slot F1 EMA XLM-R Base 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
274
+ page_content='62 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
275
+ page_content='27 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
276
+ page_content='70 XLM-Align Base 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
277
+ page_content='49 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
278
+ page_content='69 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
279
+ page_content='91 mT5 Base Text-to-Text 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
280
+ page_content='92 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
281
+ page_content='77 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
282
+ page_content='72 XLM-Align Base + Ours 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
283
+ page_content='12 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
284
+ page_content='27 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
285
+ page_content='18 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
286
+ page_content='18 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
287
+ page_content='84 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
288
+ page_content='05 XLM-Align Base + Ours + KD 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
289
+ page_content='76 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
290
+ page_content='55 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
291
+ page_content='44 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
292
+ page_content='89 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
293
+ page_content='60 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
294
+ page_content='84 mT5 Base Text-to-Text + Ours 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
295
+ page_content='58 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
296
+ page_content='24 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
297
+ page_content='59 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
298
+ page_content='56 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
299
+ page_content='00 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
300
+ page_content='93 Table 3: Test and evaluation results on the MASSIVE dataset under the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
301
+ page_content=' Results of XLM-R Base and mT5 Base Text-to-Text are taken from FitzGerald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
302
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
303
+ page_content=' Model Intent Acc Slot F1 EMA XLM-Align Base + Ours 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
304
+ page_content='12 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
305
+ page_content='99 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
306
+ page_content='76 Subword Sampling 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
307
+ page_content='50 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
308
+ page_content='08 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
309
+ page_content='40 Consistency Regularization 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
310
+ page_content='16 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
311
+ page_content='32 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
312
+ page_content='57 Table 4: Ablation studies on the MASSIVE test dataset under the full-dataset setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
313
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
314
+ page_content='96-point improvement on exact match accuracy with the mT5 Base Text-to-Text model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
315
+ page_content=' Table 3 shows our results on the MASSIVE dataset under the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
316
+ page_content=' For the base- line models, XLM-Align Base performs the best on all three metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
317
+ page_content=' Difference from the full-dataset setting, mT5 Base Text-to-Text models perform poorly under the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
318
+ page_content=' We attribute it to the fact that Text-to-Text models strongly rely on the training data quality since most of the training data under the zero-shot setting are ob- tained with machine translation systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
319
+ page_content=' When applying our consistency regularization method, the XLM-Align Base model outperforms the base- line model by 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
320
+ page_content='27 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
321
+ page_content=' Distilled from the In- foXLM Large (Chi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
322
+ page_content=', 2021a) model will further improve the performance by an absolute 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
323
+ page_content='26-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
324
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
325
+ page_content='5 Ablation Studies We conduct ablation studies on the test dataset of MASSIVE under the two settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
326
+ page_content=' Table 4 shows the results under the full-dataset setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
327
+ page_content=' Ablating subword sampling will degrade the performance by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
328
+ page_content='36 points on the exact match accuracy, where the performance drop comes mainly from the slot filling task, indicating the subword sampling aug- mentation mainly works on slot filling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
329
+ page_content=' Ablating consistency regularization will degrade the perfor- mance by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
330
+ page_content='19 points on the exact match accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
331
+ page_content=' The performances on both intent detection and slot filling tasks are decreased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
332
+ page_content=' The zero-shot setting results are presented in Ta- Model Intent Acc Slot F1 EMA XLM-Align Base + Ours 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
333
+ page_content='12 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
334
+ page_content='27 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
335
+ page_content='18 Subword Sampling 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
336
+ page_content='14 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
337
+ page_content='52 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
338
+ page_content='94 Machine Translation 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
339
+ page_content='27 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
340
+ page_content='37 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
341
+ page_content='50 Consistency Regularization 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
342
+ page_content='90 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
343
+ page_content='37 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
344
+ page_content='95 Table 5: Ablation studies on the MASSIVE test dataset under the zero-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
345
+ page_content=' ble 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
346
+ page_content=' It can be observed that when machine trans- lation augmentation is removed, the exact match accuracy drops by 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
347
+ page_content='68 points, while the perfor- mance on intent detection and slot filling are also significantly worse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
348
+ page_content=' We also removed the subword sampling augmentation, and the performance is found to have the same trend as in the full-dataset setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
349
+ page_content=' An absolute 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
350
+ page_content='24-point drop on the exact match accuracy and an absolute 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
351
+ page_content='75-point drop on slot micro F1 demonstrate that subword sam- pling is more beneficial for the slot filling task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
352
+ page_content=' By removing the consistency regularization, the per- formance of exact match accuracy will degrade by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
353
+ page_content='23 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
354
+ page_content=' The performance shows a significant performance drop on both intent detection and slot filling tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
355
+ page_content=' 5 Conclusion We propose to use consistency regularization based on a hybrid data augmentation strategy to improve the performance of multilingual SLU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
356
+ page_content=' The pro- posed method is flexible and can be easily plugged into the fine-tuning process of both the encoder- only model and the Text-to-Text model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
357
+ page_content=' The ex- perimental results demonstrate the importance of consistency regularization and the hybrid data aug- mentation strategy, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
358
+ page_content=' Acknowledgments This work was supported by the National Key R&D Program of China via grant 2020AAA0106501 and the National Natural Science Foundation of China (NSFC) via grant 62236004 and 61976072.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
359
+ page_content=' References Zewen Chi, Li Dong, Furu Wei, Nan Yang, Sak- sham Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao, Heyan Huang, and Ming Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
360
+ page_content=' 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
361
+ page_content=' In- foXLM: An information-theoretic framework for cross-lingual language model pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
362
+ page_content=' In Pro- ceedings of the 2021 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3576–3588, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
363
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
364
+ page_content=' Zewen Chi, Li Dong, Bo Zheng, Shaohan Huang, Xian- Ling Mao, Heyan Huang, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
365
+ page_content=' 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
366
+ page_content=' Improving pretrained cross-lingual language mod- els via self-labeled word alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
367
+ page_content=' In Proceed- ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Interna- tional Joint Conference on Natural Language Pro- cessing (Volume 1: Long Papers), pages 3418–3430, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
368
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
369
+ page_content=' Zewen Chi, Shaohan Huang, Li Dong, Shuming Ma, Bo Zheng, Saksham Singhal, Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
370
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
371
+ page_content=' XLM-E: cross-lingual language model pre-training via ELECTRA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
372
+ page_content=' In Proceedings of the 60th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 6170–6182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
373
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
374
+ page_content=' Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettle- moyer, and Veselin Stoyanov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
375
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
376
+ page_content=' Unsupervised cross-lingual representation learning at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
377
+ page_content=' In Proceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 8440– 8451, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
378
+ page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
379
+ page_content=' Alexis Conneau and Guillaume Lample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
380
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
381
+ page_content=' Cross- lingual language model pretraining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
382
+ page_content=' In Advances in Neural Information Processing Systems, pages 7057–7067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
383
+ page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
384
+ page_content=' Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron Nash, Liam Urbach, Vishesh Kakarala, Richa Singh, Swetha Ranganath, Laurie Crist, Misha Britan, Wouter Leeuwis, Gokhan Tur, and Prem Natara- jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
385
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
386
+ page_content=' Massive: A 1m-example multilin- gual natural language understanding dataset with 51 typologically-diverse languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
387
+ page_content=' Haoming Jiang, Pengcheng He, Weizhu Chen, Xi- aodong Liu, Jianfeng Gao, and Tuo Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
388
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
389
+ page_content=' SMART: Robust and efficient fine-tuning for pre- trained natural language models through principled regularized optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
390
+ page_content=' In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 2177–2190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
391
+ page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
392
+ page_content=' Taku Kudo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
393
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
394
+ page_content=' Subword regularization: Improving neural network translation models with multiple sub- word candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
395
+ page_content=' In Proceedings of the 56th Annual Meeting of the Association for Computational Lin- guistics, ACL 2018, Melbourne, Australia, July 15- 20, 2018, Volume 1: Long Papers, pages 66–75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
396
+ page_content=' As- sociation for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
397
+ page_content=' Taku Kudo and John Richardson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
398
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
399
+ page_content=' Sentencepiece: A simple and language independent subword tok- enizer and detokenizer for neural text processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
400
+ page_content=' In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pages 66–71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
401
+ page_content=' As- sociation for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
402
+ page_content=' Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
403
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
404
+ page_content=' Adversarial training for large neural language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
405
+ page_content=' CoRR, abs/2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
406
+ page_content='08994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
407
+ page_content=' Libo Qin, Qiguang Chen, Tianbao Xie, Qixin Li, Jian-Guang Lou, Wanxiang Che, and Min-Yen Kan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
408
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
409
+ page_content=' GL-CLeF: A global–local contrastive learn- ing framework for cross-lingual spoken language un- derstanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
410
+ page_content=' In Proceedings of the 60th Annual Meeting of the Association for Computational Lin- guistics (Volume 1: Long Papers), pages 2677–2686, Dublin, Ireland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
411
+ page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
412
+ page_content=' Libo Qin, Minheng Ni, Yue Zhang, and Wanxiang Che.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
413
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
414
+ page_content=' CoSDA-ML: Multi-lingual code-switching data augmentation for zero-shot cross-lingual NLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
415
+ page_content=' In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 3853–3860.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
416
+ page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
417
+ page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
418
+ page_content=' Jasdeep Singh, Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
419
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
420
+ page_content=' XLDA: cross-lingual data augmentation for natural lan- guage inference and question answering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
421
+ page_content=' CoRR, abs/1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
422
+ page_content='11471.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
423
+ page_content=' Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
424
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
425
+ page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
426
+ page_content=' In Advances in Neural Information Processing Systems, pages 5998–6008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
427
+ page_content=' Curran As- sociates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
428
+ page_content=' Linting Xue, Noah Constant, Adam Roberts, Mi- hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
429
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
430
+ page_content=' mt5: A massively multilingual pre-trained text-to-text transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
431
+ page_content=' In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pages 483–498.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
432
+ page_content=' Association for Computational Linguis- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
433
+ page_content=' Bo Zheng, Li Dong, Shaohan Huang, Saksham Sing- hal, Wanxiang Che, Ting Liu, Xia Song, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
434
+ page_content=' 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
435
+ page_content=' Allocating large vocabulary capacity for cross-lingual language model pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
436
+ page_content=' In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Re- public, 7-11 November, 2021, pages 3203–3215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
437
+ page_content=' As- sociation for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
438
+ page_content=' Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang, Zewen Chi, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
439
+ page_content=' 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
440
+ page_content=' Consistency regularization for cross-lingual fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
441
+ page_content=' In Pro- ceedings of the 59th Annual Meeting of the Associa- tion for Computational Linguistics and the 11th In- ternational Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3403– 3417, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}
442
+ page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNA0T4oBgHgl3EQfD_8a/content/2301.02010v1.pdf'}