jackkuo commited on
Commit
16e5a49
·
verified ·
1 Parent(s): 9f96f6b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E1T4oBgHgl3EQf8gV6/content/tmp_files/2301.03546v1.pdf.txt +2086 -0
  2. -9E1T4oBgHgl3EQf8gV6/content/tmp_files/load_file.txt +0 -0
  3. .gitattributes +65 -0
  4. 29E1T4oBgHgl3EQfAQI2/content/tmp_files/load_file.txt +0 -0
  5. 2NE0T4oBgHgl3EQfdwA8/content/tmp_files/2301.02380v1.pdf.txt +1565 -0
  6. 2NE0T4oBgHgl3EQfdwA8/content/tmp_files/load_file.txt +0 -0
  7. 2NE2T4oBgHgl3EQfjAcm/content/tmp_files/2301.03963v1.pdf.txt +787 -0
  8. 2NE2T4oBgHgl3EQfjAcm/content/tmp_files/load_file.txt +0 -0
  9. 3NAyT4oBgHgl3EQfo_gV/vector_store/index.pkl +3 -0
  10. 3NFQT4oBgHgl3EQf3DZF/vector_store/index.faiss +3 -0
  11. 3NFST4oBgHgl3EQfYjhQ/content/2301.13788v1.pdf +3 -0
  12. 3NFST4oBgHgl3EQfYjhQ/vector_store/index.pkl +3 -0
  13. 3tAyT4oBgHgl3EQfb_f6/vector_store/index.pkl +3 -0
  14. 49E4T4oBgHgl3EQfBAv2/content/tmp_files/2301.04849v1.pdf.txt +1823 -0
  15. 49E4T4oBgHgl3EQfBAv2/content/tmp_files/load_file.txt +0 -0
  16. 4dE4T4oBgHgl3EQfBAsA/content/tmp_files/2301.04847v1.pdf.txt +630 -0
  17. 4dE4T4oBgHgl3EQfBAsA/content/tmp_files/load_file.txt +384 -0
  18. 5dE1T4oBgHgl3EQfBAJm/content/tmp_files/2301.02846v1.pdf.txt +1687 -0
  19. 5dE1T4oBgHgl3EQfBAJm/content/tmp_files/load_file.txt +0 -0
  20. 69AzT4oBgHgl3EQfEvpR/content/2301.00998v1.pdf +3 -0
  21. 69AzT4oBgHgl3EQfEvpR/vector_store/index.pkl +3 -0
  22. 8NE1T4oBgHgl3EQfBwLj/content/tmp_files/2301.02857v1.pdf.txt +1645 -0
  23. 8NE1T4oBgHgl3EQfBwLj/content/tmp_files/load_file.txt +0 -0
  24. 8NE2T4oBgHgl3EQflQeg/vector_store/index.faiss +3 -0
  25. 8dE4T4oBgHgl3EQf2w3D/content/tmp_files/2301.05301v1.pdf.txt +0 -0
  26. 8dE4T4oBgHgl3EQf2w3D/content/tmp_files/load_file.txt +0 -0
  27. 9tFST4oBgHgl3EQfbTje/content/2301.13799v1.pdf +3 -0
  28. 9tFST4oBgHgl3EQfbTje/vector_store/index.pkl +3 -0
  29. ANE3T4oBgHgl3EQfsQvt/content/2301.04667v1.pdf +3 -0
  30. ANE3T4oBgHgl3EQfsQvt/vector_store/index.pkl +3 -0
  31. B9AzT4oBgHgl3EQfTfz1/vector_store/index.faiss +3 -0
  32. B9FJT4oBgHgl3EQfsy1U/content/tmp_files/2301.11614v1.pdf.txt +0 -0
  33. B9FJT4oBgHgl3EQfsy1U/content/tmp_files/load_file.txt +0 -0
  34. BtAyT4oBgHgl3EQf4PqZ/content/tmp_files/2301.00783v1.pdf.txt +2003 -0
  35. BtAyT4oBgHgl3EQf4PqZ/content/tmp_files/load_file.txt +0 -0
  36. BtE4T4oBgHgl3EQfeA0g/content/2301.05095v1.pdf +3 -0
  37. CNE1T4oBgHgl3EQfVwTa/vector_store/index.faiss +3 -0
  38. CtE0T4oBgHgl3EQfQQAs/vector_store/index.pkl +3 -0
  39. DdAzT4oBgHgl3EQfwf7y/vector_store/index.pkl +3 -0
  40. FdE1T4oBgHgl3EQfEwOD/content/tmp_files/2301.02894v1.pdf.txt +673 -0
  41. FdE1T4oBgHgl3EQfEwOD/content/tmp_files/load_file.txt +463 -0
  42. FtE1T4oBgHgl3EQfXARM/content/2301.03121v1.pdf +3 -0
  43. GNAyT4oBgHgl3EQfSvfA/content/2301.00093v1.pdf +3 -0
  44. GNAyT4oBgHgl3EQfSvfA/vector_store/index.pkl +3 -0
  45. GNE0T4oBgHgl3EQfhQF8/vector_store/index.faiss +3 -0
  46. HNE4T4oBgHgl3EQfgg1T/vector_store/index.faiss +3 -0
  47. JdAyT4oBgHgl3EQfsPlo/content/2301.00573v1.pdf +3 -0
  48. JdAyT4oBgHgl3EQfsPlo/vector_store/index.pkl +3 -0
  49. KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf +3 -0
  50. KNAyT4oBgHgl3EQff_hn/vector_store/index.faiss +3 -0
-9E1T4oBgHgl3EQf8gV6/content/tmp_files/2301.03546v1.pdf.txt ADDED
@@ -0,0 +1,2086 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DESY 23-001
2
+ UWThPh-2023-1
3
+ Investigation of the scale dependence in the MSR and MS top
4
+ quark mass schemes for the tt invariant mass differential cross
5
+ section using LHC data
6
+ Toni M¨akel¨a∗a,b, Andr´e H. Hoang†c,d, Katerina Lipka‡a,e, and Sven-Olaf Moch§f
7
+ aDeutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
8
+ bNational Centre for Nuclear Research, Pasteura 7, PL-02-093 Warsaw, Poland
9
+ cFaculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
10
+ dErwin Schr¨odinger Institute for Mathematics and Physics, University of Vienna, Boltzmanngasse 9,
11
+ A-1090 Vienna, Austria
12
+ eFakult¨at f¨ur Mathematik und Naturwissenschaften, Bergische Universit¨at Wuppertal, Gaußstrassse 20,
13
+ D-42119 Wuppertal, Germany
14
+ fII. Institut f¨ur Theoretische Physik, Universit¨at Hamburg, Luruper Chaussee 149, D-22761 Hamburg,
15
+ Germany
16
+ January 10, 2023
17
+ Abstract
18
+ The computation of the single-differential top quark-antiquark pair (tt) production cross
19
+ section at NLO in the fixed-order expansion is examined consistently using the MSR and MS
20
+ short-distance top quark mass schemes. A thorough investigation of the dependence of the tt
21
+ invariant mass spectrum on the renormalization scales R and µm of the MSR mass mMSR
22
+ t
23
+ (R) and
24
+ MS mass mt(µm), respectively, is carried out. We demonstrate that a scale choice of R ∼ 80 GeV
25
+ is important for the stability of the cross-section predictions for the low tt invariant mass range,
26
+ which is important for a reliable extraction of the top quark mass. Furthermore, a choice of semi-
27
+ dynamical renormalization and factorization scales is preferred. These findings are expected to
28
+ remain valid once non-relativistic quasi-bound state effects are included in the low invariant
29
+ mass region.
30
31
32
33
34
+ 1
35
+ arXiv:2301.03546v1 [hep-ph] 9 Jan 2023
36
+
37
+ 1
38
+ Introduction
39
+ The top quark mass mt is a fundamental parameter of the Standard Model and has an important
40
+ role in many predictions, both directly and via higher-order corrections. For instance, together with
41
+ the values of the strong coupling constant αs and the mass of the Higgs boson, it determines the
42
+ stability of the electroweak vacuum [1–4]. Yet, the formal definition of quark masses makes them
43
+ renormalization scheme dependent quantities. The frequently used pole mass mpole
44
+ t
45
+ , which is based
46
+ on the picture that real and virtual radiation can be resolved at arbitrarily small energy scales,
47
+ suffers from the renormalon ambiguity, a spurious linear infrared (IR) sensitivity of the order of the
48
+ QCD scale ΛQCD [5–7].1 In contrast, short-distance mass schemes such as the modified minimal
49
+ subtraction (MS) scheme [10, 11] mass mt(µm), or the MSR scheme [12, 13] mass mMSR
50
+ t
51
+ (R), do not
52
+ have this issue, and their renormalization scales µm and R, respectively, act as a finite resolution
53
+ scale. This means that real and virtual radiation are treated inclusively for scales below µm and
54
+ R, which provides a more suitable description for realistic physical observables. The absence of the
55
+ O(ΛQCD) renormalon problem and the additional freedom to adopt suitable scale choices can be
56
+ very useful to achieve higher precision. Moreover, the MSR scheme can be related to quark mass
57
+ definitions used in parton shower Monte Carlo programs, as worked out conceptually in Refs. [14–
58
+ 16], see also Refs. [13, 17] for details. For small, but still perturbative R values at around 2 GeV
59
+ the MSR mass serves as a viable and renormalon-free proxy for the pole mass concept.
60
+ The sensitivity of an observable to mt is always associated to a dynamical physics scale, such as
61
+ the inverse Bohr radius ⟨1/rB⟩ ∼ mtαs for the impact of the top quark-antiquark (tt) quasi-bound
62
+ state on the tt cross section at the threshold, or the top quark width Γt for the single top resonance
63
+ mass distribution. Thus, the scale dependence of mt(µm) and mMSR
64
+ t
65
+ (R) allows to properly adapt
66
+ to these dynamical scales for an observable under consideration. The respective renormalization
67
+ group equations (RGEs) and matching relations provide the tool to unambiguously relate the top
68
+ quark mass extracted at different dynamical scales. This concept is well known for the running
69
+ strong coupling αs and applies to the quark masses as well, particularly for increasing precision.
70
+ In this work, the dependence of the invariant mass of the tt pair, mtt, on the MSR mass scale
71
+ R and the MS mass scale µm is investigated concurrently for the first time accounting for QCD
72
+ corrections. Using experimental measurements of tt production at the LHC at √s = 13 TeV [18],
73
+ the next-to-leading order (NLO) prediction of the mtt differential cross section from Refs. [19, 20]
74
+ and the scheme implementation procedure of Refs. [21, 22], we demonstrate that the proper scheme
75
+ choice is of key importance and affects the size of higher-order corrections as well as the resulting
76
+ value of the extracted top quark mass. In Sec. 2, we review the MS and MSR top quark mass
77
+ schemes and the formulae to implement them, and in Sec. 3 we carry out a detailed investigation
78
+ concerning the best choice of the MSR renormalization scale R. In Sec. 4 we quote the results for
79
+ 1We note that linear IR sensitivities arise in cross sections whenever cuts on soft radiation are imposed, see e.g.
80
+ Ref. [8]. These are associated to nonperturbative corrections in contrast to the pole mass, where the IR sensitivity
81
+ arises purely from the choice of scheme [9].
82
+ 2
83
+
84
+ mMSR
85
+ t
86
+ (R = 1 GeV) and higher R values from the fits to the LHC measurements, demonstrating the
87
+ impact of the renormalization scale choice. We close in Sec. 5 with a summary and an outlook on
88
+ future improvements.
89
+ 2
90
+ Running mt and the tt pair production cross section at NLO
91
+ In terms of a general mass renormalization scale µm, the pole and MS masses are related in
92
+ perturbative QCD as
93
+ mpole
94
+ t
95
+ = mt(µm)
96
+
97
+ 1 +
98
+
99
+ n=1
100
+ dMS
101
+ n (µm)
102
+
103
+ a(6)
104
+ s (µm)
105
+ �n
106
+
107
+ ,
108
+ (2.1)
109
+ where as ≡ αs/π. Here and everywhere else in this study, we explicitly indicate by the superscript
110
+ whether we use the strong coupling α(5)
111
+ s
112
+ in the 5-flavor or α(6)
113
+ s
114
+ in the 6-flavor scheme. For the
115
+ parton distribution functions (PDFs) only the 5-flavor scheme is employed. All quarks except for
116
+ the top quark are treated as massless. The coefficients dMS
117
+ n (µm) in Eq. (2.1) are known up to four
118
+ loops [23] and the first few orders read [24–26]
119
+ dMS
120
+ 1 (µm) = 4/3 + L ,
121
+ dMS
122
+ 2 (µm) = 7.1952 + 4.6806L + 1.4167L2 ,
123
+ dMS
124
+ 3 (µm) = 54.161 + 21.776L + 9.2026L2 + 1.7940L3 ,
125
+ (2.2)
126
+ where the expansion uses α(6)
127
+ s
128
+ in the 6-flavor scheme and L = log((µm/m(µm))2). The running of
129
+ the MS mass is described by the RGE
130
+ µ2
131
+ m
132
+ dmt(µm)
133
+ dµ2m
134
+ = − mt(µm)
135
+
136
+ i=0
137
+ γm
138
+ i
139
+
140
+ a(6)
141
+ s (µ)
142
+ �i+1
143
+ ,
144
+ (2.3)
145
+ where the anomalous dimensions γm
146
+ i
147
+ are known to five loops [27, 28]. The first few orders [29–34]
148
+ are given by
149
+ γm
150
+ 0 = 1 ,
151
+ γm
152
+ 1 = 3.3750 ,
153
+ γm
154
+ 2 = 4.8387 ,
155
+ γm
156
+ 3 = −4.5082 .
157
+ (2.4)
158
+ Electroweak corrections (see, e.g. [35, 36]) are not considered.
159
+ The RGE in Eq. (2.3) has the
160
+ solution
161
+ mt(µ1) = mt(µ0) exp
162
+
163
+ −2
164
+
165
+ i=0
166
+ � µ1
167
+ µ0
168
+
169
+ µ γm
170
+ i
171
+
172
+ a(6)
173
+ s (µ)
174
+ �i+1
175
+
176
+ ,
177
+ (2.5)
178
+ yielding the MS mass at a scale µ1 via evolution from the known mass at a reference scale µ0.
179
+ Here and below we quote relations at O(α3
180
+ s) and evolution equations at O(α4
181
+ s).
182
+ We have also
183
+ 3
184
+
185
+ used these relations in our analysis for determining numerical values for the quark masses (and the
186
+ strong coupling), even though our cross section analysis is based on a fixed-order theory description
187
+ at NLO. Since the mass (and strong coupling) matching relations and RGE equations are well
188
+ convergent series and no subtle cancellations between the different ingredients need to be taken
189
+ care of (which would be the case for the PDFs) this approach is fully consistent and has the
190
+ advantage that the theoretical uncertainties in the numerical values of the masses (and the strong
191
+ coupling) are eliminated entirely from our analysis. We recommend this approach also for future
192
+ phenomenological analyses. For implementing different mass schemes in the analytic expression for
193
+ the differential mtt cross sections at NLO, see Eq. (2.14) below, only the O(αs) coefficients from
194
+ Eqs. (2.1) and (2.6) are used.
195
+ The MS mass is by construction a 6-flavor quantity and should only be used in observables
196
+ where the dynamical scale of the top-quark mass sensitivity is of order mt or larger, i.e. µm ≳ mt.
197
+ The MSR mass is, like the MS mass mass, determined from top-quark self-energy corrections [13,
198
+ 17], but designed such that all virtual and off-shell top-quark quantum fluctuations are integrated
199
+ out in the on-shell limit.2 The MSR mass mMSR
200
+ t
201
+ (R) is therefore a 5-flavor quantity and its R-
202
+ dependence properly captures all radiation off the top quark that is soft in the top quark rest
203
+ frame, which is not the case for the MS mass. The MSR mass is the proper choice if the dynamical
204
+ scale of the top quark mass sensitivity is below mt, i.e. R ≲ mt.
205
+ The pole and MSR masses are related as
206
+ mpole
207
+ t
208
+ = mMSR
209
+ t
210
+ (R) + R
211
+
212
+
213
+ n=1
214
+ dMSR
215
+ n
216
+
217
+ a(5)
218
+ s (R)
219
+ �n
220
+ ,
221
+ (2.6)
222
+ where the coefficients dMSR
223
+ n
224
+ read [13]
225
+ dMSR
226
+ 1
227
+ = 4/3 ,
228
+ dMSR
229
+ 2
230
+ = 8.1330
231
+ dMSR
232
+ 3
233
+ = 71.602 .
234
+ (2.7)
235
+ In the limit R → mt(mt), mMSR
236
+ t
237
+ (R) approaches the MS mass mt(mt) and matches on it in analogy
238
+ to the 5-flavor and 6-flavor strong coupling, see below. In contrast to the logarithmic µm evolution
239
+ of mt(µm), the R-evolution of mMSR
240
+ t
241
+ (R) is linear and captures the correct physical logarithms
242
+ for observables with mt dependence, generated at dynamical scales R < mt, such as resonances,
243
+ thresholds, and low-energy endpoints [37]. The mass renormalization constant of the MSR mass
244
+ only contains the on-shell self-energy corrections for scales larger than R in contrast to the pole
245
+ mass which contains self-energy corrections at all scales. So while the MSR mass is numerically
246
+ close to the pole mass for small R at low orders, it is free of the pole mass renormalon problem.
247
+ Formally the MSR mass approaches the pole mass for R → 0, but the Landau pole prevents taking
248
+ 2We are using the natural MSR mass definition (MSRn), where virtual top-quark loops are integrated out consis-
249
+ tently, see [13].
250
+ 4
251
+
252
+ this limit in practice. For small R values in the range of 1 to 2 GeV the MSR mass captures the
253
+ kinematic particle mass interpretation commonly associated of the pole mass. Within perturbative
254
+ uncertainties at NLO, where we can still ignore the pole mass renormalon problem, the scheme
255
+ choice mMSR
256
+ t
257
+ (R = 1 GeV) is therefore a proxy for the pole mass scheme. The matching of the
258
+ 5-flavor MSR mass to the 6-flavor MS mass at the scale R = mt(mt) reads [13]
259
+ mMSR
260
+ t
261
+ (mt)
262
+ =
263
+ mt(mt)
264
+
265
+ 1 + 0.10357
266
+
267
+ a(5)
268
+ s (mt)
269
+ �2
270
+ + 1.8308
271
+
272
+ a(5)
273
+ s (mt)
274
+ �3
275
+
276
+ ,
277
+ (2.8)
278
+ and the inverse at the scale R = mMSR
279
+ t
280
+ (mMSR
281
+ t
282
+ ) reads [13]
283
+ mt(mt)
284
+ =
285
+ mMSR
286
+ t
287
+
288
+ mMSR
289
+ t
290
+ � �
291
+ 1 − 0.10357
292
+
293
+ a(5)
294
+ s (mMSR
295
+ t
296
+ )
297
+ �2
298
+ − 1.6927
299
+
300
+ a(5)
301
+ s (mMSR
302
+ t
303
+ )
304
+ �3 �
305
+ .
306
+ (2.9)
307
+ The matching starts at O(α2
308
+ s), where virtual top quark loops first appear.3 These relations are in
309
+ close analogy to the corresponding strong coupling matching relation which reads
310
+ a(6)
311
+ s (mt) = a(5)
312
+ s (mt)
313
+
314
+ 1 − 0.15278
315
+
316
+ a(5)
317
+ s (mt)
318
+ �2
319
+ − 0.54881
320
+
321
+ a(5)
322
+ s (mt)
323
+ �3 �
324
+ .
325
+ (2.10)
326
+ The MSR mass at an arbitrary scale R is then obtained from a given MS mass, applying Eq. (2.8),
327
+ and evolving the scale R from mt(mt) to the desired value by solving the RGE
328
+ R d
329
+ dRmMSR
330
+ t
331
+ (R) = −R
332
+
333
+ n
334
+ γR
335
+ n
336
+
337
+ a(5)
338
+ s (R)
339
+ �n+1
340
+ ,
341
+ (2.11)
342
+ where the anomalous dimensions γR
343
+ n are given by [17]
344
+ γR
345
+ 0 = 4/3
346
+ γR
347
+ 1 = 3.0219 ,
348
+ γR
349
+ 2 = 2.8047 ,
350
+ γR
351
+ 3 = −73.257 .
352
+ (2.12)
353
+ The solution of Eq. (2.11) yields
354
+ mMSR
355
+ t
356
+ (mt) − mMSR
357
+ t
358
+ (R) = −
359
+
360
+ n=0
361
+ γR
362
+ n
363
+ � mt
364
+ R
365
+ dR′ �
366
+ a(5)
367
+ s (R′)
368
+ �n+1
369
+ + O
370
+
371
+ a4
372
+ s
373
+
374
+ ≡ ∆m ,
375
+ (2.13)
376
+ so that the MSR mass at R is obtained as mMSR
377
+ t
378
+ (R) = mMSR
379
+ t
380
+ (mt)−∆m. As far as QCD corrections
381
+ are concerned, the formulae above allow to relate MSR and MS top quark mass values at any
382
+ (perturbative) scale with a precision of better than 20 MeV. The REvolver library [37] provides
383
+ this functionality in user-friendly software package.
384
+ In the present work, the MCFM program (version 6.8) [19, 20] is extended to include the im-
385
+ plementation of the MSR scheme in the computation of the hadronic tt production cross section for
386
+ 3In the matching relations in Eqs. (2.8) and (2.9) we have not indicated the 5- or 6-flavor schemes for the strong
387
+ coupling, since at the order shown the coefficients are identical in both schemes.
388
+ 5
389
+
390
+ single-differential kinematics. Based on the procedure presented in Refs. [21, 22], the tt production
391
+ cross section differential with respect to an observable X at NLO reads
392
+
393
+ dX = (as(µr))2 dσ(0)
394
+ dX
395
+
396
+ m, µr, µf
397
+
398
+ + (as(µr))3 dσ(1)
399
+ dX
400
+
401
+ m, µr, µf
402
+
403
+ + (as(µr))3 ˜R d1
404
+ d
405
+ dmt
406
+
407
+ dσ(0)(mt, µr, µf)
408
+ dX
409
+ � ����
410
+ mt=m
411
+ ,
412
+ (2.14)
413
+ where σ(0) is the leading order (LO) and σ(1) the NLO cross section in the pole mass scheme. At
414
+ NLO, the derivative term (the third summand in Eq. (2.14)) implements the MS or MSR top quark
415
+ mass schemes. In the present work, the observable of interest is the invariant mass of the tt system,
416
+ and X = mtt. In particular, we have the following set of parameters in Eq. (2.14))
417
+
418
+ as(µr), m, d1, ˜R
419
+
420
+ =
421
+
422
+
423
+
424
+
425
+ a(5)
426
+ s (µr), mMSR
427
+ t
428
+ (R), dMSR
429
+ 1
430
+ , R
431
+
432
+ ,
433
+ R < mt(mt) (MSR regime) ,
434
+
435
+ a(5)
436
+ s (µr), mt(µm), dMS
437
+ 1 (µm), mt(µm)
438
+
439
+ ,
440
+ µm > mt(mt) (MS regime) .
441
+ (2.15)
442
+ It is important to note that the choice of the renormalization and factorization scales µr and µf
443
+ is independent of the mass renormalization scales R or µm in this implementation. We empha-
444
+ size that it is essential that the mass scheme correction proportional to d1 is consistently used
445
+ at the renormalization scale µr, which yields logarithms ln(R/µr) or ln(µm/µr) beyond NLO to
446
+ consistently cancel the pole mass renormalon. Since MCFM is based on renormalization with 5
447
+ dynamical flavors, one has to consistently expand a(6)
448
+ s (µr) for the MS top mass scheme corrections
449
+ of Eq. (2.1) in powers of a(5)
450
+ s (µr) in the cross section formula of Eq. (2.14). At NLO this leads to
451
+ Eq. (2.15).
452
+ We note that the fixed-order perturbative corrections for the differential cross section in the
453
+ pole mass scheme are known at next-to-next-to-leading order (NNLO) accuracy in QCD [38] and at
454
+ NLO in the electroweak theory [39, 40]. In addition, an implementation of the MS mass scheme at
455
+ NNLO has been provided in Ref. [41]. The conversion of the mass renormalization scheme from the
456
+ pole mass to the running or the MSR mass beyond NLO accuracy in QCD (and LO for electroweak
457
+ effects as presented here) needs to be performed numerically and requires theory predictions for
458
+ differential cross sections with the pole mass at NNLO accuracy for a large array of pole mass
459
+ values (typically in a range 150 GeV < m < 180 GeV)), which are currently not readily available in
460
+ the literature.
461
+ Non-relativistic quasi-bound state QCD corrections are important for the region mtt ∼ 340-
462
+ 360 GeV, where the strongest top quark mass sensitivity arises in the mtt distribution. In this
463
+ threshold region the produced top quarks attain small non-relativistic velocities v ≪ 1 in the tt
464
+ center-of-mass frame, and the dynamics of the tt system are hence governed by the mass mt, the
465
+ relative momentum mtv, and the kinetic energy mtv2 of the top quark.
466
+ Since mt ≫ mtv ≫
467
+ mtv2, the appearance of ratios involving the masses, momenta and kinetic energy of the top quark
468
+ renders the standard fixed-order expansion in powers of αs unreliable in this mtt range.
469
+ The
470
+ 6
471
+
472
+ most pronounced quasi-bound state effects arise from the Coulomb corrections due to the exchange
473
+ of gluons between the produced t and t yielding a dependence of the prediction on the ratio
474
+ mt/(mtv). This leads to a singular (αs/v)n behavior in the fixed-order perturbative QCD correction
475
+ at n-loops [42]. These quasi-bound state effects have been considered in Refs. [43, 44], and more
476
+ recently again in [45]. These predictions, however, do not provide an adequate description of the
477
+ lowest mtt bin in the region between 300 GeV and the quasi-bound state region around 350 GeV,
478
+ where the imaginary energy approach and the use of the optical theorem [46] predict a sizeable
479
+ and unphysical finite tt production rate, see the results shown in Ref. [45].
480
+ In this region the
481
+ differential cross section depends on the experimental cuts on the top and antitop quark decay
482
+ products [47, 48], which complicates the theoretical prediction as well as the experimental analysis,
483
+ but any sensible choice of cuts leads to a strongly suppressed rate for mtt close to 300 GeV. This
484
+ latter aspect is actually better described by the fixed-order predictions for stable top quarks where
485
+ the rate vanishes identically for mtt < 2mt (for a correct top mass scheme choice as discussed
486
+ below). Furthermore, a systematic treatment of the intermediate region, where the non-relativistic
487
+ and relativistic calculations need to be matched, is currently not available with a reliable matching
488
+ error estimate.4
489
+ We also mention that for the electroweak corrections different scheme choices
490
+ for the MS mass are available related to the definition of the vacuum expectation value [35, 36].
491
+ Their effects concerning the MSR mass and their impact on the use of different mass schemes in
492
+ experimental observables is unknown. Overall, there is currently no complete and reliable theory
493
+ prediction for the low mtt distribution available for experimental analysis. For the study of the tt
494
+ differential cross section as a function of mtt and its dependence on the MSR mass scale R, the NLO
495
+ fixed order prediction for stable top quarks based on the MCFM program is appropriate, since it
496
+ properly describes the generic size of subleading QCD corrections and vanishes for mtt < 2mt. For
497
+ a reliable measurement of the MSR top quark mass, however, a more complete code including the
498
+ features mentioned above has to be made available.
499
+ 3
500
+ First investigation of the R scale dependence
501
+ In this section we examine the dependence of the mtt distribution in different representative bins
502
+ in the range between 300 and 700 GeV on the scales µr, µf, and R in the MSR mass scheme as
503
+ well as µm in the MS scheme using as input the results of the ABMP16 PDF fit at NLO [50] with
504
+ α(5)
505
+ s (mZ) = 0.11905 at mZ = 91.19 GeV. For the MS mass value mt(mt) = 160.68 GeV has been
506
+ chosen close to the fit of Ref. [51]. The latter value corresponds to a MSR masses at R = 1 GeV
507
+ and R = 80 GeV of mMSR
508
+ t
509
+ (1 GeV) = 170.48 GeV and mMSR
510
+ t
511
+ (80 GeV) = 164.98 GeV, respectively.
512
+ In Fig. 1, the cross section for the bin mtt ∈ [300, 333] GeV, i.e. the region below the tt pro-
513
+ duction threshold, is shown for different scale choices at LO and NLO. The cross section is zero
514
+ for R < 60 GeV, which corresponds to 2mMSR
515
+ t
516
+ (R) > 333 GeV. Non-zero contributions to the cross
517
+ section in the mtt ∈ [300, 333] GeV range appear only at large values of R or when using the MS
518
+ 4Such a treatment is available only for top quark production in e+e− annihilation, see Ref. [49].
519
+ 7
520
+
521
+ mass, which correspond to smaller values of mMSR
522
+ t
523
+ (R) or mt(µm). The LO contribution to the
524
+ cross section is zero or positive throughout the probed range of R and µm. At NLO, however, the
525
+ quick decrease of the derivative terms in Eq. (2.14) in comparison to the increase of the positive
526
+ contributions would lead to unphysical negative values of the NLO cross section in this kinematic
527
+ range, as was also pointed out in Ref. [41], where the MS mass scheme was examined.
528
+ Since tt production in the range mtt ∈ [300, 333] GeV is impossible, the results in Fig. 1 also
529
+ show that R values above 80 GeV must be avoided. This also implies that the MS mass cannot be
530
+ used if the tt cross section in this mtt range is included in the experimental analysis. This conclusion
531
+ holds even in the presence of quasi-bound state effects, since these provide a more precise prediction
532
+ of the tt production threshold, which is, however, located at mtt values above 333 GeV. A further
533
+ feature of the mtt ∈ [300, 333] GeV range, shown in Fig. 1, is the rapid increase of the cross section
534
+ at µm ≳ 410 GeV. This occurs when mt(µm) is so small, such that LO tt production is even possible
535
+ below 300 GeV.
536
+ In Fig. 2, the cross section for the bin mtt ∈ [333, 366] GeV, i.e. the region where the tt produc-
537
+ tion threshold is located, is shown as a function of R and µm at NLO in the left panel. The right
538
+ panel displays the relative size of the NLO corrections with respect to the LO description. Here, the
539
+ quasi-bound state effects are sizeable and our NLO result only provides a qualitative description.
540
+ Similar as in the lowest bin, we observe a quite strong dependence on the mass renormalization
541
+ scale. We see that for very small values of R the size of the NLO correction increases significantly,
542
+ particularly for large µr and µf values, making the use of fixed-order perturbation theory unreliable
543
+ for these choices. This shows that the impact of the higher-order QCD corrections, including the
544
+ 1
545
+ 100
546
+ 200
547
+ 300
548
+ 400
549
+ 500
550
+ 600
551
+ [GeV]
552
+ m
553
+ µ
554
+ R,
555
+ 6
556
+
557
+ 4
558
+
559
+ 2
560
+
561
+ 0
562
+ 2
563
+ 4
564
+ 6
565
+ 8
566
+ [pb/GeV]
567
+ tt
568
+ dm
569
+ σ
570
+ d
571
+ )=160.68 GeV
572
+ t
573
+ m
574
+ (
575
+ t
576
+ m
577
+ ABMP16_5_nlo
578
+ = 13 TeV
579
+ s
580
+ < 333 GeV
581
+ tt
582
+ 300 GeV < m
583
+ )
584
+ t
585
+ m
586
+ (
587
+ t
588
+ m
589
+ = 1/4
590
+ f
591
+ µ
592
+ =
593
+ r
594
+ µ
595
+ )
596
+ t
597
+ m
598
+ (
599
+ t
600
+ m
601
+ = 1/2
602
+ f
603
+ µ
604
+ =
605
+ r
606
+ µ
607
+ )
608
+ t
609
+ m
610
+ (
611
+ t
612
+ m
613
+ =
614
+ f
615
+ µ
616
+ =
617
+ r
618
+ µ
619
+ )
620
+ t
621
+ m
622
+ (
623
+ t
624
+ m
625
+ = 2
626
+ f
627
+ µ
628
+ =
629
+ r
630
+ µ
631
+ )
632
+ t
633
+ m
634
+ (
635
+ t
636
+ m
637
+ = 4
638
+ f
639
+ µ
640
+ =
641
+ r
642
+ µ
643
+ Total
644
+ LO
645
+ 1
646
+ Figure 1: The mtt ∈ [300, 333] GeV range of the mtt distribution. There is no tt production at
647
+ R ≲ 60 GeV, but the region above it suffers from the lack of Coulomb corrections. The discontinuity
648
+ at µm ≳ 410 GeV is due to the tt production threshold becoming artificially low, and such high
649
+ values of the scale µm should be avoided.
650
+ 8
651
+
652
+ 1
653
+ 100
654
+ 200
655
+ 300
656
+ 400
657
+ 500
658
+ 600
659
+ [GeV]
660
+ m
661
+ µ
662
+ R,
663
+ 0
664
+ 0.5
665
+ 1
666
+ 1.5
667
+ 2
668
+ 2.5
669
+ 3
670
+ 3.5
671
+ 4
672
+ 4.5
673
+ [pb/GeV]
674
+ tt
675
+ dm
676
+ NLO
677
+ σ
678
+ d
679
+ )=160.68 GeV
680
+ t
681
+ m
682
+ (
683
+ t
684
+ m
685
+ ABMP16_5_nlo
686
+ = 13 TeV
687
+ s
688
+ pp,
689
+ < 366 GeV
690
+ tt
691
+ 333 GeV < m
692
+ )t
693
+ m
694
+ (t
695
+ m
696
+ = 1/4
697
+ f
698
+ µ
699
+ =
700
+ r
701
+ µ
702
+ )t
703
+ m
704
+ (t
705
+ m
706
+ = 1/2
707
+ f
708
+ µ
709
+ =
710
+ r
711
+ µ
712
+ )t
713
+ m
714
+ (t
715
+ m
716
+ =
717
+ f
718
+ µ
719
+ =
720
+ r
721
+ µ
722
+ )t
723
+ m
724
+ (t
725
+ m
726
+ = 2
727
+ f
728
+ µ
729
+ =
730
+ r
731
+ µ
732
+ )t
733
+ m
734
+ (t
735
+ m
736
+ = 4
737
+ f
738
+ µ
739
+ =
740
+ r
741
+ µ
742
+ 1
743
+ 1
744
+ 100
745
+ 200
746
+ 300
747
+ 400
748
+ 500
749
+ 600
750
+ [GeV]
751
+ m
752
+ µ
753
+ R,
754
+ 0
755
+ 0.2
756
+ 0.4
757
+ 0.6
758
+ 0.8
759
+ 1
760
+ 1.2
761
+ 1.4
762
+ 1.6
763
+ 1.8
764
+ tt
765
+ dm
766
+ LO
767
+ σ
768
+ d
769
+ /
770
+ tt
771
+ dm
772
+ NLO
773
+ σ
774
+ d
775
+ )=160.68 GeV
776
+ t
777
+ m
778
+ (
779
+ t
780
+ m
781
+ ABMP16_5_nlo
782
+ = 13 TeV
783
+ s
784
+ < 366 GeV
785
+ tt
786
+ 333 GeV < m
787
+ )
788
+ t
789
+ m
790
+ (
791
+ t
792
+ m
793
+ = 1/4
794
+ f
795
+ µ
796
+ =
797
+ r
798
+ µ
799
+ )
800
+ t
801
+ m
802
+ (
803
+ t
804
+ m
805
+ = 1/2
806
+ f
807
+ µ
808
+ =
809
+ r
810
+ µ
811
+ )
812
+ t
813
+ m
814
+ (
815
+ t
816
+ m
817
+ =
818
+ f
819
+ µ
820
+ =
821
+ r
822
+ µ
823
+ )
824
+ t
825
+ m
826
+ (
827
+ t
828
+ m
829
+ = 2
830
+ f
831
+ µ
832
+ =
833
+ r
834
+ µ
835
+ )
836
+ t
837
+ m
838
+ (
839
+ t
840
+ m
841
+ = 4
842
+ f
843
+ µ
844
+ =
845
+ r
846
+ µ
847
+ 1
848
+ Figure 2: The NLO cross section (left) and the ratio of the LO and NLO cross sections (right) for
849
+ mtt ∈ [333, 366] GeV. The transition from a region suffering from the missing Coulomb corrections
850
+ to a more stable region where the threshold effects become less important is seen at R ≳ 60 GeV
851
+ (dashed blue). Further, predictions obtained using small values of µr, µf are observed to stabilize
852
+ the prediction quickly as a function of R or µm.
853
+ quasi-bound state corrections, is particularly sizeable and essentially maximized in the pole mass
854
+ scheme. This is closely mimicked by the result for R = 1 GeV.
855
+ We see that the most stable predictions are obtained and that the NLO corrections are signif-
856
+ icantly smaller for R in the range of 60 to 80 GeV. This is not accidental, but expected from the
857
+ fact that the smaller value of the MSR mass at these R values accounts for the reduced mass of
858
+ the tt system due to the Coulomb-binding effects. So also the impact of the (missing) Coulomb
859
+ corrections can be expected to be moderate and in particular much smaller than in the pole mass
860
+ scheme. Adopting values for µr and µf below the top quark mass further diminishes the size of
861
+ the NLO corrections. This is because for this R-range and for these µr and µf values mMSR
862
+ t
863
+ (R)
864
+ captures a sizeable part of the non-relativistic bound state dynamics relevant in this bin.5
865
+ At this point it is also instructive to examine mtt far above threshold. In Figs. 3 and 4, the
866
+ results for mtt ∈ [465, 498] GeV and mtt ∈ [663, 696] GeV, respectively, are shown. Here the NLO
867
+ predictions provide an appropriate theoretical description. In contrast to the low mtt bins discussed
868
+ above, the mass renormalization scale behavior is very smooth. This is partly related to the much
869
+ smaller top quark mass sensitivity, but also means that none of the top quark mass schemes (and
870
+ values for R or µm) provide any advantage concerning capturing essential QCD corrections. Here,
871
+ only the choices of the scales µr and µf are essential for the prediction showing a preference for
872
+ values of around mt. This observation applies also to other invariant mass bins covering large mtt
873
+ 5Due to the integration over the bin range, the R and µr values are expected to be larger than for a description
874
+ on the bound state resonance peak, where even lower scale choices are appropriate [46].
875
+ 9
876
+
877
+ 1
878
+ 100
879
+ 200
880
+ 300
881
+ 400
882
+ 500
883
+ 600
884
+ [GeV]
885
+ m
886
+ µ
887
+ R,
888
+ 0
889
+ 0.5
890
+ 1
891
+ 1.5
892
+ 2
893
+ 2.5
894
+ 3
895
+ 3.5
896
+ 4
897
+ 4.5
898
+ [pb/GeV]
899
+ tt
900
+ dm
901
+ NLO
902
+ σ
903
+ d
904
+ )=160.68 GeV
905
+ t
906
+ m
907
+ (
908
+ t
909
+ m
910
+ ABMP16_5_nlo
911
+ = 13 TeV
912
+ s
913
+ pp,
914
+ < 498 GeV
915
+ tt
916
+ 465 GeV < m
917
+ )t
918
+ m
919
+ (t
920
+ m
921
+ = 1/4
922
+ f
923
+ µ
924
+ =
925
+ r
926
+ µ
927
+ )t
928
+ m
929
+ (t
930
+ m
931
+ = 1/2
932
+ f
933
+ µ
934
+ =
935
+ r
936
+ µ
937
+ )t
938
+ m
939
+ (t
940
+ m
941
+ =
942
+ f
943
+ µ
944
+ =
945
+ r
946
+ µ
947
+ )t
948
+ m
949
+ (t
950
+ m
951
+ = 2
952
+ f
953
+ µ
954
+ =
955
+ r
956
+ µ
957
+ )t
958
+ m
959
+ (t
960
+ m
961
+ = 4
962
+ f
963
+ µ
964
+ =
965
+ r
966
+ µ
967
+ 1
968
+ 100
969
+ 200
970
+ 300
971
+ 400
972
+ 500
973
+ 600
974
+ [GeV]
975
+ m
976
+ µ
977
+ R,
978
+ 0
979
+ 0.2
980
+ 0.4
981
+ 0.6
982
+ 0.8
983
+ 1
984
+ 1.2
985
+ 1.4
986
+ 1.6
987
+ 1.8
988
+ 2
989
+ 2.2
990
+ tt
991
+ dm
992
+ LO
993
+ σ
994
+ d
995
+ /
996
+ tt
997
+ dm
998
+ NLO
999
+ σ
1000
+ d
1001
+ )=160.68 GeV
1002
+ t
1003
+ m
1004
+ (
1005
+ t
1006
+ m
1007
+ ABMP16_5_nlo
1008
+ = 13 TeV
1009
+ s
1010
+ < 498 GeV
1011
+ tt
1012
+ 465 GeV < m
1013
+ )
1014
+ t
1015
+ m
1016
+ (
1017
+ t
1018
+ m
1019
+ = 1/4
1020
+ f
1021
+ µ
1022
+ =
1023
+ r
1024
+ µ
1025
+ )
1026
+ t
1027
+ m
1028
+ (
1029
+ t
1030
+ m
1031
+ = 1/2
1032
+ f
1033
+ µ
1034
+ =
1035
+ r
1036
+ µ
1037
+ )
1038
+ t
1039
+ m
1040
+ (
1041
+ t
1042
+ m
1043
+ =
1044
+ f
1045
+ µ
1046
+ =
1047
+ r
1048
+ µ
1049
+ )
1050
+ t
1051
+ m
1052
+ (
1053
+ t
1054
+ m
1055
+ = 2
1056
+ f
1057
+ µ
1058
+ =
1059
+ r
1060
+ µ
1061
+ )
1062
+ t
1063
+ m
1064
+ (
1065
+ t
1066
+ m
1067
+ = 4
1068
+ f
1069
+ µ
1070
+ =
1071
+ r
1072
+ µ
1073
+ Figure 3: The NLO cross section (left) and the ratio of the LO and NLO cross sections (right) for
1074
+ mtt ∈ [465, 498] GeV.
1075
+ 1
1076
+ 100
1077
+ 200
1078
+ 300
1079
+ 400
1080
+ 500
1081
+ 600
1082
+ [GeV]
1083
+ m
1084
+ µ
1085
+ R,
1086
+ 0
1087
+ 0.2
1088
+ 0.4
1089
+ 0.6
1090
+ 0.8
1091
+ 1
1092
+ [pb/GeV]
1093
+ tt
1094
+ dm
1095
+ NLO
1096
+ σ
1097
+ d
1098
+ )=160.68 GeV
1099
+ t
1100
+ m
1101
+ (
1102
+ t
1103
+ m
1104
+ ABMP16_5_nlo
1105
+ = 13 TeV
1106
+ s
1107
+ pp,
1108
+ < 696 GeV
1109
+ tt
1110
+ 663 GeV < m
1111
+ )t
1112
+ m
1113
+ (t
1114
+ m
1115
+ = 1/4
1116
+ f
1117
+ µ
1118
+ =
1119
+ r
1120
+ µ
1121
+ )t
1122
+ m
1123
+ (t
1124
+ m
1125
+ = 1/2
1126
+ f
1127
+ µ
1128
+ =
1129
+ r
1130
+ µ
1131
+ )t
1132
+ m
1133
+ (t
1134
+ m
1135
+ =
1136
+ f
1137
+ µ
1138
+ =
1139
+ r
1140
+ µ
1141
+ )t
1142
+ m
1143
+ (t
1144
+ m
1145
+ = 2
1146
+ f
1147
+ µ
1148
+ =
1149
+ r
1150
+ µ
1151
+ )t
1152
+ m
1153
+ (t
1154
+ m
1155
+ = 4
1156
+ f
1157
+ µ
1158
+ =
1159
+ r
1160
+ µ
1161
+ 1
1162
+ 100
1163
+ 200
1164
+ 300
1165
+ 400
1166
+ 500
1167
+ 600
1168
+ [GeV]
1169
+ m
1170
+ µ
1171
+ R,
1172
+ 0
1173
+ 0.2
1174
+ 0.4
1175
+ 0.6
1176
+ 0.8
1177
+ 1
1178
+ 1.2
1179
+ 1.4
1180
+ 1.6
1181
+ 1.8
1182
+ 2
1183
+ 2.2
1184
+ tt
1185
+ dm
1186
+ LO
1187
+ σ
1188
+ d
1189
+ /
1190
+ tt
1191
+ dm
1192
+ NLO
1193
+ σ
1194
+ d
1195
+ )=160.68 GeV
1196
+ t
1197
+ m
1198
+ (
1199
+ t
1200
+ m
1201
+ ABMP16_5_nlo
1202
+ = 13 TeV
1203
+ s
1204
+ < 696 GeV
1205
+ tt
1206
+ 663 GeV < m
1207
+ )
1208
+ t
1209
+ m
1210
+ (
1211
+ t
1212
+ m
1213
+ = 1/4
1214
+ f
1215
+ µ
1216
+ =
1217
+ r
1218
+ µ
1219
+ )
1220
+ t
1221
+ m
1222
+ (
1223
+ t
1224
+ m
1225
+ = 1/2
1226
+ f
1227
+ µ
1228
+ =
1229
+ r
1230
+ µ
1231
+ )
1232
+ t
1233
+ m
1234
+ (
1235
+ t
1236
+ m
1237
+ =
1238
+ f
1239
+ µ
1240
+ =
1241
+ r
1242
+ µ
1243
+ )
1244
+ t
1245
+ m
1246
+ (
1247
+ t
1248
+ m
1249
+ = 2
1250
+ f
1251
+ µ
1252
+ =
1253
+ r
1254
+ µ
1255
+ )
1256
+ t
1257
+ m
1258
+ (
1259
+ t
1260
+ m
1261
+ = 4
1262
+ f
1263
+ µ
1264
+ =
1265
+ r
1266
+ µ
1267
+ Figure 4:
1268
+ Same as Fig. 3 for the bin mtt ∈ [663, 696] GeV.
1269
+ values, see Ref. [52].
1270
+ Overall, our examination suggests that the MSR top quark mass mMSR
1271
+ t
1272
+ (R) and the choice for the
1273
+ central value of R = 80 GeV provide the most reliable theoretical predictions for all mtt bins. For the
1274
+ scales µr and µf the central values mt(mt) and, in particular mt(mt)/2 for the mtt range containing
1275
+ the tt threshold, are adequate choices. We note that these findings are also in line with the optimal
1276
+ scale choices for the total cross section for tt hadro-production, when using the top quark mass in
1277
+ the MS scheme. In this case, central values for µr and µf of the order mt(mt)/2 ≈ 80 GeV are in the
1278
+ 10
1279
+
1280
+ region of fastest apparent convergence considering perturbative QCD corrections through NNLO
1281
+ and also minimize the scale sensitivity of the total cross section [22]. Settings for PDF factorization
1282
+ scale µf different from µr have been explored in Refs [41, 53], corroborating these findings. On the
1283
+ other hand, for the total cross section with the top quarks in the pole mass scheme, which is well
1284
+ modeled by the MSR scheme mass mMSR
1285
+ t
1286
+ (1 GeV), the preferred central values for µr and µf, which
1287
+ minimize scale sensitivity and optimize perturbative convergence through NNLO, are of the order
1288
+ mpole
1289
+ t
1290
+ /4 ≈ 45 GeV, see e.g. Ref. [22]. This is also visible in the ratio plots on the right in Figs. 2–4.
1291
+ In the following, we demonstrate the impact of the mass scheme and the scale setting on the value
1292
+ of the top quark mass obtained in fits to the experimental data of Ref. [18].
1293
+ 4
1294
+ Extraction of the top quark MSR mass
1295
+ The MSR mass mMSR
1296
+ t
1297
+ (R) is extracted from the differential tt production cross section measured by
1298
+ the CMS Collaboration in pp collisions at the LHC at √s = 13 TeV, corresponding to an integrated
1299
+ luminosity of 35.9 fb−1 [18]. The tt cross section is measured as a function of mtt in the ranges:
1300
+ mtt < 420 GeV, mtt ∈ [420, 550] GeV, mtt ∈ [550, 810] GeV and mtt > 810 GeV.
1301
+ The theoretical predictions are obtained using the ABMP16 5-flavor PDF set [51] at NLO.
1302
+ According to the preferred MSR mass scale settings described in the previous section, the initial
1303
+ value of the scale R is set to 80 GeV in Eq. (2.14), and the cross section is calculated for a range of
1304
+ assumed values of mMSR
1305
+ t
1306
+ (80 GeV). The function
1307
+ χ2 =
1308
+
1309
+ i,j
1310
+ (σexp
1311
+ i
1312
+ − σth
1313
+ i )C−1
1314
+ ij (σexp
1315
+ j
1316
+ − σth
1317
+ j ),
1318
+ (4.1)
1319
+ is computed for each mMSR
1320
+ t
1321
+ (80 GeV). The indices i, j in Eq. (4.1) run over the bins of the mtt
1322
+ distribution, while σexp
1323
+ i
1324
+ are the experimental data and σth
1325
+ i
1326
+ the theoretical predictions. The inverse
1327
+ covariance matrix C−1
1328
+ ij
1329
+ provided in Ref. [18] is used.
1330
+ The scales µr and µf are set to mMSR
1331
+ t
1332
+ (80 GeV) for all 4 bins of the mtt distribution or, alter-
1333
+ natively, to mMSR
1334
+ t
1335
+ (80 GeV)/2 for mtt < 420 GeV, to stabilize the prediction against the missing
1336
+ quasi-bound state corrections, and to mMSR
1337
+ t
1338
+ (80 GeV) for the remainder. Fig. 5 shows a 4th order
1339
+ polynomial fit to the χ2 values resulting from each configuration.
1340
+ The fit uncertainties are obtained via the ∆χ2 = 1 tolerance criterion, while the µr and µf scale
1341
+ uncertainties are evaluated by varying their central values in each bin up and down by a factor of
1342
+ 2, avoiding the cases where one scale is multiplied by 1/2 and the other by 2, and constructing
1343
+ an envelope. For comparison with previous analyses, the extracted values of mMSR
1344
+ t
1345
+ (80 GeV) are
1346
+ evolved to the reference scales R of 1 and 3 GeV. Note that determining mMSR
1347
+ t
1348
+ (1 GeV) requires
1349
+ evaluating αs(1 GeV) rather close to the Landau pole, which is expected to lead to an increased
1350
+ perturbative uncertainty in the MSR mass at R = 1 GeV due to missing higher order corrections.
1351
+ Reporting the mass value also at R = 3 GeV thus ensures the stability of the result, and the use of
1352
+ reference scales R > 1 GeV will become increasingly important in future extractions of mMSR
1353
+ t
1354
+ (R).
1355
+ 11
1356
+
1357
+ 160
1358
+ 162
1359
+ 164
1360
+ 166
1361
+ 168
1362
+ 170
1363
+ 172
1364
+ 174
1365
+ 176
1366
+ 178
1367
+ (80 GeV) [GeV]
1368
+ MSR
1369
+ t
1370
+ m
1371
+ 0
1372
+ 20
1373
+ 40
1374
+ 60
1375
+ 80
1376
+ 100
1377
+ 120
1378
+ 140
1379
+ 160
1380
+ 180
1381
+ 200
1382
+ 220
1383
+ 2
1384
+ χ
1385
+ = 1.86 / 3
1386
+ dof
1387
+ / N
1388
+ 2
1389
+ χ
1390
+ Min.
1391
+ [GeV]
1392
+ tt
1393
+ m
1394
+ (80 GeV)
1395
+ MSR
1396
+ t
1397
+ = m
1398
+ f
1399
+ µ
1400
+ ,
1401
+ r
1402
+ µ
1403
+ < 420 :
1404
+ (80 GeV)
1405
+ MSR
1406
+ t
1407
+ = m
1408
+ f
1409
+ µ
1410
+ ,r
1411
+ µ
1412
+ [420, 550] :
1413
+ (80 GeV)
1414
+ MSR
1415
+ t
1416
+ = m
1417
+ f
1418
+ µ
1419
+ ,r
1420
+ µ
1421
+ [550, 810] :
1422
+ (80 GeV)
1423
+ MSR
1424
+ t
1425
+ = m
1426
+ f
1427
+ µ
1428
+ ,
1429
+ r
1430
+ µ
1431
+ > 810 :
1432
+ = 1.86 / 3
1433
+ dof
1434
+ / N
1435
+ 2
1436
+ χ
1437
+ Min.
1438
+ 162
1439
+ 164
1440
+ 166
1441
+ 168
1442
+ 170
1443
+ 172
1444
+ 174
1445
+ 176
1446
+ 178
1447
+ 180
1448
+ (80 GeV) [GeV]
1449
+ MSR
1450
+ t
1451
+ m
1452
+ 0
1453
+ 20
1454
+ 40
1455
+ 60
1456
+ 80
1457
+ 100
1458
+ 120
1459
+ 140
1460
+ 160
1461
+ 180
1462
+ 200
1463
+ 220
1464
+ 2
1465
+ χ
1466
+ = 3.03 / 3
1467
+ dof
1468
+ / N
1469
+ 2
1470
+ χ
1471
+ Min.
1472
+ [GeV]
1473
+ tt
1474
+ m
1475
+ (80 GeV)
1476
+ MSR
1477
+ t
1478
+ m
1479
+ 2
1480
+ 1
1481
+ =
1482
+ f
1483
+ µ
1484
+ ,r
1485
+ µ
1486
+ < 420 :
1487
+ (80 GeV)
1488
+ MSR
1489
+ t
1490
+ = m
1491
+ f
1492
+ µ
1493
+ ,
1494
+ r
1495
+ µ
1496
+ [420, 550] :
1497
+ (80 GeV)
1498
+ MSR
1499
+ t
1500
+ = m
1501
+ f
1502
+ µ
1503
+ ,
1504
+ r
1505
+ µ
1506
+ [550, 810] :
1507
+ (80 GeV)
1508
+ MSR
1509
+ t
1510
+ = m
1511
+ f
1512
+ µ
1513
+ ,r
1514
+ µ
1515
+ > 810 :
1516
+ = 3.03 / 3
1517
+ dof
1518
+ / N
1519
+ 2
1520
+ χ
1521
+ Min.
1522
+ Figure 5: A 4th order polynomial fitted to the χ2 resulting from comparing the experimental
1523
+ data to theory predictions assuming different values of mMSR
1524
+ t
1525
+ (80 GeV).
1526
+ The scales µr and µf
1527
+ are set to mMSR
1528
+ t
1529
+ (80 GeV) considering the whole mtt distribution (left), or to mMSR
1530
+ t
1531
+ (80 GeV)/2 for
1532
+ mtt < 420 GeV and to mMSR
1533
+ t
1534
+ (80 GeV) for the remainder (right). The number of degrees of freedom
1535
+ in the fits is denoted by Ndof.
1536
+ Table 1: The values of mMSR
1537
+ t
1538
+ (R) obtained at different scales R (given in brackets below mMSR
1539
+ t
1540
+ ),
1541
+ and the corresponding mt(mt), the χ2 divided by the number of degrees of freedom Ndof in the
1542
+ fit, along with the fit and scale uncertainties for the mMSR
1543
+ t
1544
+ (R) extracted at R = 80 GeV. The
1545
+ results are shown for the constant µr, µf setting, where the central µr and µf values are set to
1546
+ mMSR
1547
+ t
1548
+ (80 GeV) in the whole mtt distribution, and for the semi-dynamical (SD) setting where they
1549
+ are set to mMSR
1550
+ t
1551
+ (80 GeV)/2 for mtt < 420 GeV and to mMSR
1552
+ t
1553
+ (80 GeV) for higher mtt. The fit and
1554
+ µr, µf uncertainties correspond to the MSR mass extracted at R = 80 GeV. Within the reported
1555
+ accuracy, the uncertainty in the initial choice of R agrees in all cases when the extracted mMSR
1556
+ t
1557
+ (R)
1558
+ is evolved to the reference R.
1559
+ mMSR
1560
+ t
1561
+ mMSR
1562
+ t
1563
+ mMSR
1564
+ t
1565
+ mt
1566
+ Fit
1567
+ µr, µf
1568
+ R
1569
+ µr, µf
1570
+ χ2/Ndof
1571
+ (80 GeV)
1572
+ (1 GeV)
1573
+ (3 GeV)
1574
+ (mt)
1575
+ unc.
1576
+ unc.
1577
+ unc.
1578
+ setting
1579
+ [ GeV]
1580
+ [ GeV]
1581
+ [ GeV]
1582
+ [ GeV]
1583
+ [ GeV]
1584
+ [ GeV]
1585
+ [ GeV]
1586
+ Const.
1587
+ 1.86/3
1588
+ 167.7
1589
+ 173.2
1590
+ 172.9
1591
+ 163.3
1592
+ +0.6
1593
+ −0.6
1594
+ +0.4
1595
+ −0.6
1596
+ +0.4
1597
+ −0.5
1598
+ SD
1599
+ 3.03/3
1600
+ 169.3
1601
+ 174.8
1602
+ 174.5
1603
+ 164.8
1604
+ +0.5
1605
+ −0.5
1606
+ +0.2
1607
+ −0.4
1608
+ +0.2
1609
+ −0.3
1610
+ Furthermore, the results are translated into the standard MS mass mt(mt) by iteratively finding
1611
+ mMSR
1612
+ t
1613
+ (mMSR
1614
+ t
1615
+ ) via the condition R = mMSR
1616
+ t
1617
+ (R), and applying the matching formula in Eq. (2.9)
1618
+ up to O(a3
1619
+ s). The uncertainty related to the initial choice of R is assessed by repeating the fits at
1620
+ R = 60 GeV and R = 100 GeV, and the difference in the resulting masses at the reference scales
1621
+ to the respective values obtained in the R = 80 GeV fit is taken as the R scale uncertainty. The
1622
+ resulting values for the top quark mass are listed in Table 1.
1623
+ In particular, setting the central µr and µf to mMSR
1624
+ t
1625
+ (80 GeV) and considering the complete mtt
1626
+ 12
1627
+
1628
+ distribution yields
1629
+ mMSR
1630
+ t
1631
+ (1 GeV) = 173.2 ± 0.6 (fit)+0.4
1632
+ −0.6 (µr, µf)+0.4
1633
+ −0.5 (R) GeV .
1634
+ (4.2)
1635
+ The value for mMSR
1636
+ t
1637
+ (80 GeV) in this fit translates into mt(mt) = 163.3+0.8
1638
+ −1.0 GeV. This is compatible
1639
+ within uncertainties with the value of mt(mt) = 162.1+1.0
1640
+ −1.0 GeV obtained at NLO in the ABMP16
1641
+ 5-flavor PDF set [50].
1642
+ In accordance with the results shown in Fig. 1, multiplying the scales µr and µf by 1/2 within
1643
+ mtt < 420 GeV is observed to increase the NLO cross section at R = 80 GeV. To compensate for
1644
+ this effect, the fit for mMSR
1645
+ t
1646
+ (80 GeV) leads to a somewhat larger value for the top quark MSR mass,
1647
+ reducing the predicted cross section especially in the vicinity of the tt production threshold. This
1648
+ results in the value
1649
+ mMSR
1650
+ t
1651
+ (1 GeV) = 174.8 ± 0.5 (fit)+0.2
1652
+ −0.4 (µr, µf)+0.2
1653
+ −0.3 (R) GeV.
1654
+ (4.3)
1655
+ It is expected that the impact of the choices for µr and µf, i.e. the shift of 1.6 GeV in the cen-
1656
+ tral values between Eqs. (4.2) and (4.3), will be reduced at NNLO accuracy and once a reliable
1657
+ description of the quasi-bound state effects is available. Nonetheless, as already expected from the
1658
+ observations in Sec. 3, the scale setting in Eq. (4.3) already increases the robustness against scale
1659
+ variations, yielding somewhat smaller uncertainties than Eq. (4.2).
1660
+ In order to illustrate the main conceptual novelty and the phenomenological importance of the
1661
+ mass scheme choice, we perform the following variant of the fit: Instead of determining the top
1662
+ quark MSR mass at R = 80 GeV and evolving the extracted mMSR
1663
+ t
1664
+ (80 GeV) value to R = 1 GeV, as
1665
+ in Eqs. (4.2) and (4.3), we perform the fit to data directly with the initial scale set to R = 1 GeV
1666
+ 166
1667
+ 168
1668
+ 170
1669
+ 172
1670
+ 174
1671
+ (1 GeV) [GeV]
1672
+ MSR
1673
+ t
1674
+ m
1675
+ 0
1676
+ 20
1677
+ 40
1678
+ 60
1679
+ 80
1680
+ 100
1681
+ 120
1682
+ 2
1683
+ χ
1684
+ = 2.16 / 3
1685
+ dof
1686
+ / N
1687
+ 2
1688
+ χ
1689
+ Min.
1690
+ [GeV]
1691
+ tt
1692
+ m
1693
+ (1 GeV)
1694
+ MSR
1695
+ t
1696
+ = m
1697
+ f
1698
+ µ
1699
+ ,
1700
+ r
1701
+ µ
1702
+ < 420 :
1703
+ (1 GeV)
1704
+ MSR
1705
+ t
1706
+ = m
1707
+ f
1708
+ µ
1709
+ ,r
1710
+ µ
1711
+ [420, 550] :
1712
+ (1 GeV)
1713
+ MSR
1714
+ t
1715
+ = m
1716
+ f
1717
+ µ
1718
+ ,r
1719
+ µ
1720
+ [550, 810] :
1721
+ (1 GeV)
1722
+ MSR
1723
+ t
1724
+ = m
1725
+ f
1726
+ µ
1727
+ ,
1728
+ r
1729
+ µ
1730
+ > 810 :
1731
+ = 2.16 / 3
1732
+ dof
1733
+ / N
1734
+ 2
1735
+ χ
1736
+ Min.
1737
+ Figure 6:
1738
+ Same as Fig. 5, now fitting mMSR
1739
+ t
1740
+ (1 GeV) and with the scales µr and µf set to
1741
+ mMSR
1742
+ t
1743
+ (1 GeV) in the whole mtt distribution.
1744
+ 13
1745
+
1746
+ in NLO cross section of Eq. (2.14). Using also the central scales µr, µf set to mMSR
1747
+ t
1748
+ (1 GeV), this
1749
+ results in
1750
+ mMSR
1751
+ t
1752
+ (1 GeV) = 170.1 ± 0.6 (fit)+1.1
1753
+ −0.9 (µr, µf) GeV ,
1754
+ (4.4)
1755
+ where the corresponding fit to χ2 is shown in Fig. 6. In Eq. (4.4) the µr and µf scale uncertainties
1756
+ are twice as large as those of Eq. (4.2). The sizeable discrepancy to the results of Eqs. (4.2) and (4.3)
1757
+ indicates that scale variation does not provide a proper estimate of the theoretical uncertainties
1758
+ due to the missing higher order and quasi-bound state corrections for the result quoted in Eq. (4.4).
1759
+ Since using mMSR
1760
+ t
1761
+ (1 GeV) closely approximates the outcome using pole mass scheme, this confirms
1762
+ our conclusions drawn in Sec. 3 that the use of the pole mass scheme (or a very small initial R value
1763
+ for the MSR mass) leads to less reliable results in a fixed order QCD description at NLO accuracy,
1764
+ where the quasi-bound state effects are missing. The significant difference of 4.7 GeV between the
1765
+ central values in Eqs. (4.3) and (4.4) demonstrates the phenomenological relevance of this issue.
1766
+ This underpins the importance of proper scale setting in future phenomenological analyses.
1767
+ Let us now comment on other recent extractions of the top-quark mass, which have employed
1768
+ different methodologies.
1769
+ Data from the CMS collaboration for the tt production cross section
1770
+ collected in pp collisions at the LHC at √s = 13 TeV has been used previously for a determination
1771
+ of the top-quark mass using both, the pole and the MS mass scheme [54, 55]. The emphasis of
1772
+ those analyses has been on keeping the correlations of the top-quark mass with the strong coupling
1773
+ αs(mZ) and the PDFs. In a different thread of analyses, the running of top quark MS mass mt(µm)
1774
+ has been studied at NLO [18] and NNLO [56] with dynamical scales, using data from the CMS
1775
+ collaboration for the mtt distributions.6
1776
+ Of these analyses, the results of Ref. [55] can be compared to the present work, since they are
1777
+ obtained from normalized multi-differential cross sections which also include the low mtt region
1778
+ discussed here, and the theoretical predictions have also been based on the NLO MCFM cross
1779
+ section description. Ref. [55] quotes mpole
1780
+ t
1781
+ = 170.5±0.8 GeV, which, if interpreted as the asymptotic
1782
+ pole mass [37], translates into mMSR
1783
+ t
1784
+ (1 GeV) = 170.2±0.8 GeV. This is compatible with the variant
1785
+ of the present study in Eq. (4.4) obtained by directly fitting mMSR
1786
+ t
1787
+ (1 GeV) to data, although the
1788
+ combined fit of mpole
1789
+ t
1790
+ , αs(mZ) and PDFs in Ref. [55] reports a smaller value of αs(mZ) than used
1791
+ in Eq. (4.4) on the basis of the ABMP16 PDF set, and a somewhat different gluon PDF.
1792
+ The ATLAS collaboration has derived a value for the top quark MSR mass at the reference scale
1793
+ R = 1 GeV in Ref. [57] by comparing QCD predictions at next-to-leading logarithmic accuracy for
1794
+ the soft-drop groomed top quark jet mass distribution to parton shower Monte Carlo simulations
1795
+ for a Monte-Carlo top quark mass mMC
1796
+ t
1797
+ = 172.5 GeV. Obtained in the Monte Carlo calibration
1798
+ (following [58]), the result of Ref. [57] is not based on experimental data and hence cannot be
1799
+ directly compared to the results of the present study.
1800
+ The value for the top quark MSR mass of mMSR
1801
+ t
1802
+ (3 GeV) = 169.6+0.8
1803
+ −1.1 GeV has been extracted in
1804
+ 6See also http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-19-007/index.
1805
+ html#Figure-aux_001.
1806
+ 14
1807
+
1808
+ Ref. [53], using the CMS data of Ref. [55] and the same methodology, i.e. using fixed-order QCD
1809
+ perturbation theory at NLO accuracy, so that mMSR
1810
+ t
1811
+ (3 GeV) has been fitted simultaneously with
1812
+ the PDFs and strong coupling constant. Evolving the result of the present study in Eq. (4.3) to
1813
+ R = 3 GeV yields
1814
+ mMSR
1815
+ t
1816
+ (3 GeV) = 174.5 ± 0.5 (fit)+0.2
1817
+ −0.4 (µr, µf)+0.2
1818
+ −0.3 (R) GeV ,
1819
+ (4.5)
1820
+ which indicates some tension.7 Part of this difference is due to the direct fitting of mMSR
1821
+ t
1822
+ (3 GeV)
1823
+ in Ref. [53] compared to mMSR
1824
+ t
1825
+ (80 GeV) in Eq. (4.5). In addition, Ref. [53] has obtained αs(mZ) =
1826
+ 0.1132+0.0023
1827
+ −0.0018, which is two standard deviations away from the value of the ABMP16 fit at NLO [50]
1828
+ used in the extraction of Eq. (4.5).
1829
+ Notably, neither any of the cited previous top quark mass extractions nor the present work have
1830
+ included the aforementioned corrections for the quasi-bound state effects. However, the extraction
1831
+ of the top quark MSR mass using predictions in the MSR scheme at the scale R = 80 GeV profits
1832
+ from the smaller size of these effects and thus from an improved stability of the cross section.
1833
+ 5
1834
+ Summary and Conclusions
1835
+ We have presented the first comprehensive study of the mtt distribution in its dependence on the
1836
+ mass renormalization scales R and µm of the MSR and MS top quark mass schemes. Our findings
1837
+ suggest that the scale setting of R close to 80 GeV improves the robustness of the predictions for
1838
+ the mtt distribution against scale variations in general and, in particular, against the impact of
1839
+ quasi-bound state corrections in the region of mtt close to the tt threshold. The theory predictions
1840
+ are based on the NLO fixed order QCD description provided by the MCFM program, adapted to
1841
+ the MSR and MS top quark mass schemes. The optimized scale choices for those mass schemes are
1842
+ characterized by low values of the renormalization and factorization scales µr and µf. This holds
1843
+ in particular in the vicinity of the tt production threshold region in the mtt distribution, where
1844
+ values µr ≃ µf ≃ mt/2 are observed to stabilize cross section predictions and to decrease the scale
1845
+ uncertainty in the determination of the MSR mass.
1846
+ These settings have been applied in an extractions of the top quark MSR mass at R = 80 GeV,
1847
+ using tt pair production cross section, measured as a function of mtt in pp collisions at √s = 13 TeV
1848
+ at the LHC by the CMS collaboration, using fixed-order perturbative QCD predictions at NLO
1849
+ accuracy and also the semi-dynamical scales for µr, µf in the low-mtt regime. The fitted value of
1850
+ mMSR
1851
+ t
1852
+ (80 GeV) has then been evolved to various low reference scales R, rather than computing the
1853
+ cross sections directly at low R as performed in earlier analyses. This procedure yields the value
1854
+ mMSR
1855
+ t
1856
+ (3 GeV) = 174.5+0.6
1857
+ −0.7 GeV, which is discussed in the context of other recent extractions of the
1858
+ top quark mass from LHC data. The observed differences are explained in part by the scale choice
1859
+ 7The computations in Ref. [53] rely on the practical MSR (pMSR) definition [13] instead of the natural MSR
1860
+ (nMSR) scheme used in this work. The difference is at the level of 10 MeV [13] and thus negligible for the uncertainties
1861
+ quoted.
1862
+ 15
1863
+
1864
+ of R = 80 GeV for the top quark MSR mass, advocated by the present study. Other reasons for
1865
+ differences are due to the choice of the value for the strong coupling αs(mZ), which directly affects
1866
+ the normalisation of the cross section and is anti-correlated with the top quark mass, and, to a
1867
+ lesser extent, due to the particular PDF sets used.
1868
+ While we have argued that the implementation of the MSR mass scheme in the tt cross section
1869
+ calculation and the optimal scale choice for R of 80 GeV provide more robust predictions even at
1870
+ NLO accuracy, the findings should be corroborated by extending the analysis to NNLO accuracy. In
1871
+ addition, the proper treatment of both, the quasi-bound state effects, together with a matching to
1872
+ the relativistic tt region, and the mtt region below the threshold are further important improvements
1873
+ to be implemented. A final reliable measurement of the top quark MSR mass needs to address those
1874
+ issues as well as the correlation of the top quark mass with the other theoretical parameters, which
1875
+ control the cross section predictions. We leave these aspects for future studies.
1876
+ Acknowledgements
1877
+ The work of A.H.H was supported in part by FWF Austrian Science Fund under the Project No.
1878
+ P32383-N27, the work of S.M. in part by the Bundesministerium f¨ur Bildung und Forschung under
1879
+ contract 05H21GUCCA, the work by T.M. and K. L. is supported by the Helmholtz Association
1880
+ under the contract W2/W3-123, and T.M. is also supported by the National Science Centre, Poland,
1881
+ research grant No. 2021/42/E/ST2/00031.
1882
+ References
1883
+ [1]
1884
+ F. Bezrukov et al. “Higgs Boson Mass and New Physics”. In: JHEP 10 (2012), p. 140. arXiv:
1885
+ 1205.2893 [hep-ph].
1886
+ [2]
1887
+ G. Degrassi et al. “Higgs mass and vacuum stability in the Standard Model at NNLO”. In:
1888
+ JHEP 08 (2012), p. 098. arXiv: 1205.6497 [hep-ph].
1889
+ [3]
1890
+ S. Alekhin, A. Djouadi, and S. Moch. “The top quark and Higgs boson masses and the stability
1891
+ of the electroweak vacuum”. In: Phys. Lett. B 716 (2012), pp. 214–219. arXiv: 1207.0980
1892
+ [hep-ph].
1893
+ [4]
1894
+ A. V. Bednyakov et al. “Stability of the Electroweak Vacuum: Gauge Independence and
1895
+ Advanced Precision”. In: Phys. Rev. Lett. 115.20 (2015), p. 201802. arXiv: 1507 . 08833
1896
+ [hep-ph].
1897
+ [5]
1898
+ I. I. Y. Bigi et al. “The Pole mass of the heavy quark. Perturbation theory and beyond”. In:
1899
+ Phys. Rev. D 50 (1994), pp. 2234–2246. arXiv: hep-ph/9402360.
1900
+ [6]
1901
+ M. Beneke and V. M. Braun. “Heavy quark effective theory beyond perturbation theory:
1902
+ Renormalons, the pole mass and the residual mass term”. In: Nucl. Phys. B 426 (1994),
1903
+ pp. 301–343. arXiv: hep-ph/9402364.
1904
+ [7]
1905
+ M. C. Smith and S. S. Willenbrock. “Top quark pole mass”. In: Phys. Rev. Lett. 79 (1997),
1906
+ pp. 3825–3828. arXiv: hep-ph/9612329.
1907
+ 16
1908
+
1909
+ [8]
1910
+ S. Ferrario Ravasio, P. Nason, and C. Oleari. “All-orders behaviour and renormalons in top-
1911
+ mass observables”. In: JHEP 01 (2019), p. 203. arXiv: 1810.10931 [hep-ph].
1912
+ [9]
1913
+ A. H. Hoang. “What is the Top Quark Mass?” In: Ann. Rev. Nucl. Part. Sci. 70 (2020),
1914
+ pp. 225–255. arXiv: 2004.12915 [hep-ph].
1915
+ [10]
1916
+ G. ’t Hooft. “Dimensional regularization and the renormalization group”. In: Nucl. Phys. B
1917
+ 61 (1973), pp. 455–468.
1918
+ [11]
1919
+ W. A. Bardeen et al. “Deep-inelastic scattering beyond the leading order in asymptotically
1920
+ free gauge theories”. In: Phys. Rev. D 18 (11 Dec. 1978), pp. 3998–4017. url: https://
1921
+ link.aps.org/doi/10.1103/PhysRevD.18.3998.
1922
+ [12]
1923
+ A. H. Hoang et al. “Infrared Renormalization Group Flow for Heavy Quark Masses”. In:
1924
+ Phys. Rev. Lett. 101 (2008), p. 151602. arXiv: 0803.4214 [hep-ph].
1925
+ [13]
1926
+ A. H. Hoang et al. “The MSR mass and the O (ΛQCD) renormalon sum rule”. In: JHEP 04
1927
+ (2018), p. 003. arXiv: 1704.01580 [hep-ph].
1928
+ [14]
1929
+ A. H. Hoang and I. W. Stewart. “Top Mass Measurements from Jets and the Tevatron Top-
1930
+ Quark Mass”. In: Nucl. Phys. B Proc. Suppl. 185 (2008). Ed. by G. Bellettini, G. Chiarelli,
1931
+ and R. Tenchini, pp. 220–226. arXiv: 0808.0222 [hep-ph].
1932
+ [15]
1933
+ A. H. Hoang. “The Top Mass: Interpretation and Theoretical Uncertainties”. In: 7th Inter-
1934
+ national Workshop on Top Quark Physics. Dec. 2014. arXiv: 1412.3649 [hep-ph].
1935
+ [16]
1936
+ A. H. Hoang, S. Pl¨atzer, and D. Samitz. “On the Cutoff Dependence of the Quark Mass
1937
+ Parameter in Angular Ordered Parton Showers”. In: JHEP 10 (2018), p. 200. arXiv: 1807.
1938
+ 06617 [hep-ph].
1939
+ [17]
1940
+ A. H. Hoang, C. Lepenik, and M. Preisser. “On the Light Massive Flavor Dependence of the
1941
+ Large Order Asymptotic Behavior and the Ambiguity of the Pole Mass”. In: JHEP 09 (2017),
1942
+ p. 099. arXiv: 1706.08526 [hep-ph].
1943
+ [18]
1944
+ A. M. Sirunyan et al. “Running of the top quark mass from proton-proton collisions at √s =
1945
+ 13TeV”. In: Phys. Lett. B 803 (2020), p. 135263. arXiv: 1909.09193 [hep-ex].
1946
+ [19]
1947
+ J. M. Campbell and R. K. Ellis. “MCFM for the Tevatron and the LHC”. In: Nucl. Phys. B
1948
+ Proc. Suppl. 205-206 (2010). Ed. by J. Bl¨umlein, S.-O. Moch, and T. Riemann, pp. 10–15.
1949
+ arXiv: 1007.3492 [hep-ph].
1950
+ [20]
1951
+ J. M. Campbell and R. K. Ellis. “Top-Quark Processes at NLO in Production and Decay”.
1952
+ In: J. Phys. G 42.1 (2015), p. 015005. arXiv: 1204.1513 [hep-ph].
1953
+ [21]
1954
+ U. Langenfeld, S. Moch, and P. Uwer. “Measuring the running top-quark mass”. In: Phys.
1955
+ Rev. D 80 (2009), p. 054009. arXiv: 0906.5273 [hep-ph].
1956
+ [22]
1957
+ M. Dowling and S. Moch. “Differential distributions for top-quark hadro-production with a
1958
+ running mass”. In: Eur. Phys. J. C 74.11 (2014), p. 3167. arXiv: 1305.6422 [hep-ph].
1959
+ [23]
1960
+ P. Marquard et al. “Quark Mass Relations to Four-Loop Order in Perturbative QCD”. In:
1961
+ Phys. Rev. Lett. 114.14 (2015), p. 142002. arXiv: 1502.01030 [hep-ph].
1962
+ [24]
1963
+ N. Gray et al. “Three-loop relation of quark MS and pole masses”. In: Zeitschrift f¨ur Physik
1964
+ C Particles and Fields 48 (1990), pp. 673–679.
1965
+ [25]
1966
+ K. G. Chetyrkin and M. Steinhauser. “The Relation between the MS and the on-shell quark
1967
+ mass at order αs3”. In: Nucl. Phys. B 573 (2000), pp. 617–651. arXiv: hep-ph/9911434.
1968
+ [26]
1969
+ K. Melnikov and T. v. Ritbergen. “The Three loop relation between the MS-bar and the pole
1970
+ quark masses”. In: Phys. Lett. B 482 (2000), pp. 99–108. arXiv: hep-ph/9912391.
1971
+ 17
1972
+
1973
+ [27]
1974
+ P. A. Baikov, K. G. Chetyrkin, and J. H. K¨uhn. “Quark Mass and Field Anomalous Dimen-
1975
+ sions to O(α5
1976
+ s)”. In: JHEP 10 (2014), p. 076. arXiv: 1402.6611 [hep-ph].
1977
+ [28]
1978
+ T. Luthe et al. “Five-loop quark mass and field anomalous dimensions for a general gauge
1979
+ group”. In: JHEP 01 (2017), p. 081. arXiv: 1612.05512 [hep-ph].
1980
+ [29]
1981
+ K. G. Chetyrkin, J. H. K¨uhn, and M. Steinhauser. “RunDec: A Mathematica package for run-
1982
+ ning and decoupling of the strong coupling and quark masses”. In: Comput. Phys. Commun.
1983
+ 133 (2000), pp. 43–65. arXiv: hep-ph/0004189.
1984
+ [30]
1985
+ R. Tarrach. “The Pole Mass in Perturbative QCD”. In: Nucl. Phys. B 183 (1981), pp. 384–
1986
+ 396.
1987
+ [31]
1988
+ O. V. Tarasov. “Anomalous dimensions of quark masses in the three-loop approximation”.
1989
+ In: Phys. Part. Nucl. Lett. 17.2 (2020), pp. 109–115. arXiv: 1910.12231 [hep-ph].
1990
+ [32]
1991
+ S. A. Larin. “The Renormalization of the axial anomaly in dimensional regularization”. In:
1992
+ Phys. Lett. B 303 (1993), pp. 113–118. arXiv: hep-ph/9302240.
1993
+ [33]
1994
+ K. G. Chetyrkin. “Quark mass anomalous dimension to O(α4
1995
+ s)”. In: Phys. Lett. B 404 (1997),
1996
+ pp. 161–165. arXiv: hep-ph/9703278.
1997
+ [34]
1998
+ J. A. M. Vermaseren, S. A. Larin, and T. van Ritbergen. “The four loop quark mass anomalous
1999
+ dimension and the invariant quark mass”. In: Phys. Lett. B 405 (1997), pp. 327–333. arXiv:
2000
+ hep-ph/9703284.
2001
+ [35]
2002
+ S. Dittmaier and H. Rzehak. “Electroweak renormalization based on gauge-invariant vacuum
2003
+ expectation values of non-linear Higgs representations. Part I. Standard Model”. In: JHEP
2004
+ 05 (2022), p. 125. arXiv: 2203.07236 [hep-ph].
2005
+ [36]
2006
+ A. L. Kataev and V. S. Molokoedov. “Notes on Interplay between the QCD and EW Pertur-
2007
+ bative Corrections to the Pole-Running-to-Top-Quark Mass Ratio”. In: JETP Lett. 115.12
2008
+ (2022), pp. 704–712. arXiv: 2201.12073 [hep-ph].
2009
+ [37]
2010
+ A. H. Hoang, C. Lepenik, and V. Mateu. “REvolver: Automated running and matching of
2011
+ couplings and masses in QCD”. In: Comput. Phys. Commun. 270 (2022), p. 108145. arXiv:
2012
+ 2102.01085 [hep-ph].
2013
+ [38]
2014
+ M. Czakon, D. Heymes, and A. Mitov. “High-precision differential predictions for top-quark
2015
+ pairs at the LHC”. In: Phys. Rev. Lett. 116.8 (2016), p. 082003. arXiv: 1511.00549 [hep-ph].
2016
+ [39]
2017
+ J. H. K¨uhn, A. Scharf, and P. Uwer. “Electroweak effects in top-quark pair production at
2018
+ hadron colliders”. In: Eur. Phys. J. C 51 (2007), pp. 37–53. arXiv: hep-ph/0610335.
2019
+ [40]
2020
+ M. Czakon et al. “Top-pair production at the LHC through NNLO QCD and NLO EW”. In:
2021
+ JHEP 10 (2017), p. 186. arXiv: 1705.04105 [hep-ph].
2022
+ [41]
2023
+ S. Catani et al. “Top-quark pair hadroproduction at NNLO: differential predictions with the
2024
+ MS mass”. In: JHEP 08.08 (2020), p. 027. arXiv: 2005.00557 [hep-ph].
2025
+ [42]
2026
+ A. H. Hoang and T. Teubner. “Top quark pair production close to threshold: Top mass, width
2027
+ and momentum distribution”. In: Phys. Rev. D 60 (1999), p. 114027. arXiv: hep-ph/9904468.
2028
+ [43]
2029
+ K. Hagiwara, Y. Sumino, and H. Yokoya. “Bound-state Effects on Top Quark Production at
2030
+ Hadron Colliders”. In: Phys. Lett. B 666 (2008), pp. 71–76. arXiv: 0804.1014 [hep-ph].
2031
+ [44]
2032
+ Y. Kiyo et al. “Top-quark pair production near threshold at LHC”. In: Eur. Phys. J. C 60
2033
+ (2009), pp. 375–386. arXiv: 0812.0919 [hep-ph].
2034
+ [45]
2035
+ W.-L. Ju et al. “Top quark pair production near threshold: single/double distributions and
2036
+ mass determination”. In: JHEP 06 (2020), p. 158. arXiv: 2004.03088 [hep-ph].
2037
+ 18
2038
+
2039
+ [46]
2040
+ A. H. Hoang et al. “Top - anti-top pair production close to threshold: Synopsis of recent
2041
+ NNLO results”. In: Eur. Phys. J. direct 2.1 (2000), p. 3. arXiv: hep-ph/0001286.
2042
+ [47]
2043
+ A. H. Hoang, C. J. Reisser, and P. Ruiz-Femenia. “Phase Space Matching and Finite Lifetime
2044
+ Effects for Top-Pair Production Close to Threshold”. In: Phys. Rev. D 82 (2010), p. 014005.
2045
+ arXiv: 1002.3223 [hep-ph].
2046
+ [48]
2047
+ M. Beneke et al. “Non-resonant and electroweak NNLO correction to the e+e− top anti-top
2048
+ threshold”. In: JHEP 02 (2018), p. 125. arXiv: 1711.10429 [hep-ph].
2049
+ [49]
2050
+ F. Bach et al. “Fully-differential Top-Pair Production at a Lepton Collider: From Threshold
2051
+ to Continuum”. In: JHEP 03 (2018), p. 184. arXiv: 1712.02220 [hep-ph].
2052
+ [50]
2053
+ S. Alekhin, J. Bl¨umlein, and S. Moch. “NLO PDFs from the ABMP16 fit”. In: Eur. Phys. J.
2054
+ C 78.6 (2018), p. 477. arXiv: 1803.07537 [hep-ph].
2055
+ [51]
2056
+ S. Alekhin et al. “Parton distribution functions, αs, and heavy-quark masses for LHC Run
2057
+ II”. In: Phys. Rev. D 96 (2017), p. 014011. arXiv: 1701.05838 [hep-ph].
2058
+ [52]
2059
+ T. M¨akel¨a. “Towards global interpretation of LHC data: SM and EFT couplings from jet and
2060
+ top quark measurements at CMS”. Dissertation, Universit¨at Hamburg. PhD thesis. 2022, 213
2061
+ pages: Illustrations, figures. url: https://bib-pubdb1.desy.de/record/482499.
2062
+ [53]
2063
+ M. V. Garzelli et al. “Heavy-flavor hadro-production with heavy-quark masses renormalized
2064
+ in the MS, MSR and on-shell schemes”. In: JHEP 04 (2021), p. 043. arXiv: 2009.07763
2065
+ [hep-ph].
2066
+ [54]
2067
+ A. M. Sirunyan et al. “Measurement of the tt production cross section, the top quark mass,
2068
+ and the strong coupling constant using dilepton events in pp collisions at √s = 13 TeV”. In:
2069
+ Eur. Phys. J. C 79.5 (2019), p. 368. arXiv: 1812.10505 [hep-ex].
2070
+ [55]
2071
+ A. M. Sirunyan et al. “Measurement of t¯t normalised multi-differential cross sections in pp
2072
+ collisions at √s = 13 TeV, and simultaneous determination of the strong coupling strength,
2073
+ top quark pole mass, and parton distribution functions”. In: Eur. Phys. J. C 80.7 (2020),
2074
+ p. 658. arXiv: 1904.05237 [hep-ex].
2075
+ [56]
2076
+ M. M. Defranchis et al. “Running of the top quark mass at NNLO in QCD”. In: (Aug. 2022).
2077
+ arXiv: 2208.11399 [hep-ph].
2078
+ [57]
2079
+ “A precise interpretation for the top quark mass parameter in ATLAS Monte Carlo sim-
2080
+ ulation”. In: ATL-PHYS-PUB-2021-034 (2021). url: https://cds.cern.ch/record/
2081
+ 2777332/.
2082
+ [58]
2083
+ M. Butensch¨on et al. “Top Quark Mass Calibration for Monte Carlo Event Generators”. In:
2084
+ Phys. Rev. Lett. 117.23 (2016), p. 232001. arXiv: 1608.01318 [hep-ph].
2085
+ 19
2086
+
-9E1T4oBgHgl3EQf8gV6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -3922,3 +3922,68 @@ SdE2T4oBgHgl3EQfWgfj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
3922
  iNFJT4oBgHgl3EQfWSzz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3923
  ydE2T4oBgHgl3EQfMQZF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3924
  79E1T4oBgHgl3EQfnQTu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3922
  iNFJT4oBgHgl3EQfWSzz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3923
  ydE2T4oBgHgl3EQfMQZF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3924
  79E1T4oBgHgl3EQfnQTu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3925
+ YNE5T4oBgHgl3EQfCw5O/content/2301.05398v1.pdf filter=lfs diff=lfs merge=lfs -text
3926
+ 3NFQT4oBgHgl3EQf3DZF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3927
+ SdE2T4oBgHgl3EQfCAaW/content/2301.03609v1.pdf filter=lfs diff=lfs merge=lfs -text
3928
+ B9AzT4oBgHgl3EQfTfz1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3929
+ mNFIT4oBgHgl3EQfsyss/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3930
+ hNE3T4oBgHgl3EQf4AvA/content/2301.04769v1.pdf filter=lfs diff=lfs merge=lfs -text
3931
+ uNAzT4oBgHgl3EQfc_zP/content/2301.01414v1.pdf filter=lfs diff=lfs merge=lfs -text
3932
+ cdE4T4oBgHgl3EQfpA0g/content/2301.05188v1.pdf filter=lfs diff=lfs merge=lfs -text
3933
+ MdE2T4oBgHgl3EQfBQZc/content/2301.03600v1.pdf filter=lfs diff=lfs merge=lfs -text
3934
+ oNFRT4oBgHgl3EQfbzf_/content/2301.13562v1.pdf filter=lfs diff=lfs merge=lfs -text
3935
+ jdE1T4oBgHgl3EQfNQNY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3936
+ ydE0T4oBgHgl3EQfcgDn/content/2301.02365v1.pdf filter=lfs diff=lfs merge=lfs -text
3937
+ x9FST4oBgHgl3EQfSzhz/content/2301.13767v1.pdf filter=lfs diff=lfs merge=lfs -text
3938
+ b9FPT4oBgHgl3EQfBTTg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3939
+ S9E2T4oBgHgl3EQfswjv/content/2301.04064v1.pdf filter=lfs diff=lfs merge=lfs -text
3940
+ KNAyT4oBgHgl3EQff_hn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3941
+ ldE3T4oBgHgl3EQfiAoP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3942
+ 3NFST4oBgHgl3EQfYjhQ/content/2301.13788v1.pdf filter=lfs diff=lfs merge=lfs -text
3943
+ oNE_T4oBgHgl3EQf8RxN/content/2301.08374v1.pdf filter=lfs diff=lfs merge=lfs -text
3944
+ oNFRT4oBgHgl3EQfbzf_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3945
+ VtAzT4oBgHgl3EQfJ_ud/content/2301.01090v1.pdf filter=lfs diff=lfs merge=lfs -text
3946
+ ydE0T4oBgHgl3EQfcgDn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3947
+ r9E2T4oBgHgl3EQfLQZF/content/2301.03711v1.pdf filter=lfs diff=lfs merge=lfs -text
3948
+ ktAyT4oBgHgl3EQfyPnx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3949
+ ktAyT4oBgHgl3EQfyPnx/content/2301.00682v1.pdf filter=lfs diff=lfs merge=lfs -text
3950
+ ndA0T4oBgHgl3EQfJv-v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3951
+ HNE4T4oBgHgl3EQfgg1T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3952
+ KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf filter=lfs diff=lfs merge=lfs -text
3953
+ o9E1T4oBgHgl3EQfPAM1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3954
+ ddAyT4oBgHgl3EQfjPi0/content/2301.00412v1.pdf filter=lfs diff=lfs merge=lfs -text
3955
+ NNFRT4oBgHgl3EQfGTcp/content/2301.13484v1.pdf filter=lfs diff=lfs merge=lfs -text
3956
+ o9E1T4oBgHgl3EQfPAM1/content/2301.03021v1.pdf filter=lfs diff=lfs merge=lfs -text
3957
+ WdE5T4oBgHgl3EQfCA5G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3958
+ odA0T4oBgHgl3EQfJ__J/content/2301.02099v1.pdf filter=lfs diff=lfs merge=lfs -text
3959
+ cdE4T4oBgHgl3EQfpA0g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3960
+ zNE4T4oBgHgl3EQfAQs4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3961
+ YNE5T4oBgHgl3EQfCw5O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3962
+ oNE_T4oBgHgl3EQf8RxN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3963
+ CNE1T4oBgHgl3EQfVwTa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3964
+ BtE4T4oBgHgl3EQfeA0g/content/2301.05095v1.pdf filter=lfs diff=lfs merge=lfs -text
3965
+ odA0T4oBgHgl3EQfJ__J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3966
+ h9AzT4oBgHgl3EQfMvvr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3967
+ GNAyT4oBgHgl3EQfSvfA/content/2301.00093v1.pdf filter=lfs diff=lfs merge=lfs -text
3968
+ VtAzT4oBgHgl3EQfJ_ud/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3969
+ VtAyT4oBgHgl3EQfV_ek/content/2301.00155v1.pdf filter=lfs diff=lfs merge=lfs -text
3970
+ q9AzT4oBgHgl3EQfA_op/content/2301.00934v1.pdf filter=lfs diff=lfs merge=lfs -text
3971
+ ydE2T4oBgHgl3EQf3wjf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3972
+ JdAyT4oBgHgl3EQfsPlo/content/2301.00573v1.pdf filter=lfs diff=lfs merge=lfs -text
3973
+ tdE1T4oBgHgl3EQfQQPo/content/2301.03039v1.pdf filter=lfs diff=lfs merge=lfs -text
3974
+ S9E2T4oBgHgl3EQfswjv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3975
+ tdE1T4oBgHgl3EQfQQPo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3976
+ 8NE2T4oBgHgl3EQflQeg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3977
+ FtE1T4oBgHgl3EQfXARM/content/2301.03121v1.pdf filter=lfs diff=lfs merge=lfs -text
3978
+ 9tFST4oBgHgl3EQfbTje/content/2301.13799v1.pdf filter=lfs diff=lfs merge=lfs -text
3979
+ Y9AyT4oBgHgl3EQf9frR/content/2301.00877v1.pdf filter=lfs diff=lfs merge=lfs -text
3980
+ ANE3T4oBgHgl3EQfsQvt/content/2301.04667v1.pdf filter=lfs diff=lfs merge=lfs -text
3981
+ a9FLT4oBgHgl3EQfXi8l/content/2301.12061v1.pdf filter=lfs diff=lfs merge=lfs -text
3982
+ ddAzT4oBgHgl3EQfn_0r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3983
+ w9E_T4oBgHgl3EQf_xxJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3984
+ ddAyT4oBgHgl3EQfjPi0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3985
+ GNE0T4oBgHgl3EQfhQF8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3986
+ q9AzT4oBgHgl3EQfA_op/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3987
+ NNFRT4oBgHgl3EQfGTcp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3988
+ UtAzT4oBgHgl3EQfX_xg/content/2301.01327v1.pdf filter=lfs diff=lfs merge=lfs -text
3989
+ 69AzT4oBgHgl3EQfEvpR/content/2301.00998v1.pdf filter=lfs diff=lfs merge=lfs -text
29E1T4oBgHgl3EQfAQI2/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NE0T4oBgHgl3EQfdwA8/content/tmp_files/2301.02380v1.pdf.txt ADDED
@@ -0,0 +1,1565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Spectrum Monitoring and Analysis in Urban and
2
+ Rural Environments at Different Altitudes
3
+ Amir Hossein Fahim Raouf∗, Sung Joon Maeng∗, Ismail Guvenc∗, ¨Ozg¨ur ¨Ozdemir∗, and Mihail Sichitiu∗
4
+ ∗Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC
5
+ [email protected], {smaeng,iguvenc,oozdemi,mlsichit}@ncsu.edu
6
+ Abstract—Due to the scarcity of spectrum resources, the emer-
7
+ gence of new technologies and ever-increasing number of wireless
8
+ devices operating in the radio frequency spectrum lead to data
9
+ congestion and interference. In this work, we study the effect of
10
+ altitude on sub-6 GHz spectrum measurement results obtained at
11
+ a Helikite flying over two distinct scenarios; i.e., urban and rural
12
+ environments. Specifically, we aim at investigating the spectrum
13
+ occupancy of various long-term evolution (LTE), 5th generation
14
+ (5G) and citizens broadband radio service (CBRS) bands utilized
15
+ in the United States for both uplink and downlink at altitudes
16
+ up to 180 meters. Our results reveal that generally the mean
17
+ value of the measured power increases as the altitude increases
18
+ where the line-of-sight links with nearby base stations is more
19
+ available. SigMF-compliant spectrum measurement datasets used
20
+ in this paper covering all the bands between 100 MHz to 6 GHz
21
+ are also provided.
22
+ Index Terms—5G, C-Band, CBRS, helikite, LTE, spectrum
23
+ monitoring, unmanned aerial vehicles (UAV).
24
+ I. INTRODUCTION
25
+ Wireless communication services and the emergence of new
26
+ technologies have created a huge demand for radio frequency
27
+ spectrum [1]. One prominent problem is the availability of the
28
+ spectrum and the increase in interference in the current wire-
29
+ less networks [2]. In addition, more aggressive frequency reuse
30
+ is gaining interest recently for achieving higher link capacity
31
+ in networks without introducing additional spectrum [3]. It
32
+ is necessary to conduct occupancy studies using spectrum
33
+ sensing techniques to understand and characterize interference
34
+ problems and identify spectrum sharing opportunities.
35
+ There are various recent examples that highlight the im-
36
+ portance of understanding spectrum occupancy characteristics,
37
+ including non-terrestrial scenarios, for developing effective
38
+ spectrum sharing mechanisms. The launch of 5th generation
39
+ (5G) cellular service in the United States was a concern for
40
+ the commercial airline and private aircraft communities who
41
+ used the radar altimeters of the aircraft industry. Although
42
+ the assigned spectrum band for the altimeters is between
43
+ 4.2-4.4 GHz, due to their poor design the current versions
44
+ suffer from out-of-band leakage problem; i.e., they ignore their
45
+ assigned spectrum boundaries [4]. More specifically, Verizon
46
+ and AT&T have recently begun operating in the 3.7 GHz to
47
+ 3.8 GHz spectrum range which is 400 MHz away from the
48
+ altimeter band. However, this gap may not be sufficient for
49
+ some aircraft to land safely. Moreover, while both Verizon
50
+ and AT&T have been delaying switching on portions of their
51
+ This research is supported in part by the NSF award CNS-1939334 and its
52
+ supplement for studying NRDZs.
53
+ respective 5G C-band wireless networks until July 2023, it is
54
+ expected after that day that the whole 3.7-3.98 GHz C-band
55
+ may be used for 5G transmissions [5], introducing additional
56
+ concerns. There is a similar coexistence concern for spectrum
57
+ sharing between the 5G networks to be deployed in the 3.1-
58
+ 3.55 GHz band in the future and the existing airborne radars
59
+ using the same spectrum. In another recent debate, there is a
60
+ concern in using terrestrial nationwide network in the L-Band
61
+ (i.e., 1-2 GHz) and its potential interference with GPS [6].
62
+ Some existing academic studies on spectrum occupancy
63
+ are summarized in [7]. In more recent works, [8] presents a
64
+ framework that captures and models the short-time spectrum
65
+ occupancy to determine the existing interference for Internet-
66
+ of-things (IoT) applications. In another study [9], current
67
+ state-of-the-art artificial intelligence techniques are reviewed
68
+ for channel forecasting, spectrum sensing, signal detection,
69
+ network optimization, and security in mega-satellite networks.
70
+ In [10], authors investigate and characterize the performance
71
+ of coexisting aerial radar and communication networks for
72
+ spectrum overlay and time-division multiple access by uti-
73
+ lizing stochastic geometry. In [11], the effect of interference
74
+ coming from coexisting ground networks on the aerial link
75
+ is studied, which could be the uplink (UL) of an aerial cell
76
+ served by a drone base station. By considering a Poisson field
77
+ of ground interferers, they characterize aggregate interference
78
+ experienced by the drone.
79
+ In this paper, by post-processing the measurements from
80
+ the experiments conducted by the NSF AERPAW platform in
81
+ Raleigh, NC [12] at urban and rural environments, we analyze
82
+ the spectrum occupancy in different U.S. cellular network
83
+ bands as well as the citizens broadband radio service (CBRS)
84
+ band. In addition, we study the effect of Helikite altitude
85
+ on the signal strength pattern. In Section II, we describe the
86
+ data structure and the overall information of the measurement
87
+ campaign. Section III and Section IV present the spectrum
88
+ monitoring results for various sub-6 Ghz bands in the urban
89
+ and rural environments, respectively. Section V studies the
90
+ time dependency of the spectrum occupancy for the frequency
91
+ bands under consideration. Finally, Section VI highlights the
92
+ conclusions of this work.
93
+ II. DATA STRUCTURE
94
+ The experiment for the urban environment was conducted
95
+ by a Helikite flying up to 140 m on August 27, 2022. For
96
+ the rural environment, the Helikite flew up to 180 m altitude
97
+ on May 5, 2022. An NI USRP B205mini SDR was mounted
98
+ arXiv:2301.02380v1 [eess.SP] 6 Jan 2023
99
+
100
+ 13:00
101
+ 14:00
102
+ 15:00
103
+ 16:00
104
+ 17:00
105
+ 18:00
106
+ 19:00
107
+ 20:00
108
+ Measurement time
109
+ 0
110
+ 50
111
+ 100
112
+ 150
113
+ Height (m)
114
+ (a) Experiment scenario in NC State Main Campus (urban).
115
+ 0
116
+ 10
117
+ 20
118
+ 30
119
+ 40
120
+ 50
121
+ 60
122
+ 70
123
+ 80
124
+ 90
125
+ 100
126
+ 110
127
+ 120
128
+ 130
129
+ 140
130
+ Measurement time (min)
131
+ 0
132
+ 50
133
+ 100
134
+ 150
135
+ 200
136
+ Height (m)
137
+ (b) Experiment scenario in NC State Lake Wheeler Field (rural).
138
+ Fig. 1: Helikite altitude and experiment scenario for: (a) urban
139
+ environment, and (b) rural environment.
140
+ TABLE I: Summary of LTE and 5G bands in United States.
141
+ Technology
142
+ Band
143
+ No
144
+ Duplex
145
+ Mode
146
+ Uplink Band
147
+ (MHz)
148
+ DL Band
149
+ (MHz)
150
+ Operators
151
+ LTE
152
+ 12
153
+ FDD
154
+ 698 - 716
155
+ 728 - 746
156
+ AT&T, Verizon,
157
+ T-Mobile
158
+ 13
159
+ FDD
160
+ 777 - 787
161
+ 746 - 756
162
+ Verizon
163
+ 14
164
+ FDD
165
+ 788 - 798
166
+ 758 - 768
167
+ AT&T, FirstNet
168
+ 411
169
+ TDD
170
+ 2496 - 2690
171
+ 2496 - 2690
172
+ T-Mobile
173
+ 5G
174
+ n5
175
+ FDD
176
+ 824 - 849
177
+ 869 - 894
178
+ AT&T, Verizon
179
+ n71
180
+ FDD
181
+ 663 - 698
182
+ 617 - 652
183
+ T-Mobile
184
+ n77
185
+ TDD
186
+ 3700 - 3980
187
+ 3700 - 3980
188
+ AT&T, Verizon,
189
+ T-Mobile
190
+ CBRS
191
+ n48
192
+ TDD
193
+ 3550 - 3700
194
+ 3550 - 3700
195
+ North America
196
+ on the Helikite which enables executing a Python script to
197
+ collect samples at the desired center frequency with the desired
198
+ sampling rate. The datasets are SigMF compliant and include
199
+ information on spectrum usage in frequency bands ranging
200
+ from 89 MHz up to 6 GHz for different altitudes [13], [14].
201
+ The data consist of time, altitude, power and Helikite location.
202
+ A detailed description of the measurement setups can be found
203
+ in [15]. Fig. 1 illustrates the height of the Helikite during the
204
+ operation time.
205
+ III. URBAN SPECTRUM OCCUPANCY RESULTS
206
+ In this section, we present the spectrum occupancy results
207
+ for several LTE, 5G and CBRS bands. Table I summarizes the
208
+ spectrum allocations for some major cellular providers based
209
+ on the technology exploited in the United States [16]. In this
210
+ work, we investigate the aggregate in-band power for UL and
211
+ downlink (DL) spectrum of various bands.
212
+ A. LTE Bands - Uplink
213
+ Fig. 2 presents the measured power for LTE bands 13, 14,
214
+ 15 and 41 considering the UL frequency spectrum ranges.
215
+ As it can be seen, the spectrum of LTE 12 and LTE 41
216
+ bands are more crowded compared with LTE 13 and LTE 14
217
+ bands. It is worth mentioning that, unlike other LTE bands
218
+ 1It is worth mentioning that T-Mobile 5G n41 also uses the same spectrum.
219
+ 700
220
+ 705
221
+ 710
222
+ 715
223
+ Frequency (MHz)
224
+ 20
225
+ 40
226
+ 60
227
+ 80
228
+ 100
229
+ 120
230
+ 140
231
+ Altitude (m)
232
+ -40
233
+ -20
234
+ 0
235
+ 20
236
+ 40
237
+ dB
238
+ (a) LTE band 12 (UL).
239
+ 778
240
+ 780
241
+ 782
242
+ 784
243
+ 786
244
+ Frequency (MHz)
245
+ 20
246
+ 40
247
+ 60
248
+ 80
249
+ 100
250
+ 120
251
+ 140
252
+ Altitude (m)
253
+ -40
254
+ -20
255
+ 0
256
+ 20
257
+ 40
258
+ dB
259
+ (b) LTE band 13 (UL).
260
+ 788
261
+ 790
262
+ 792
263
+ 794
264
+ 796
265
+ 798
266
+ Frequency (MHz)
267
+ 20
268
+ 40
269
+ 60
270
+ 80
271
+ 100
272
+ 120
273
+ 140
274
+ Altitude (m)
275
+ -40
276
+ -20
277
+ 0
278
+ 20
279
+ 40
280
+ dB
281
+ (c) LTE band 14 (UL).
282
+ 2500
283
+ 2550
284
+ 2600
285
+ 2650
286
+ Frequency (MHz)
287
+ 20
288
+ 40
289
+ 60
290
+ 80
291
+ 100
292
+ 120
293
+ 140
294
+ Altitude (m)
295
+ -40
296
+ -20
297
+ 0
298
+ 20
299
+ 40
300
+ dB
301
+ (d) LTE band 41 (TDD UL/DL).
302
+ Fig. 2: Measured LTE UL power for urban environment.
303
+ 40
304
+ 60
305
+ 80
306
+ 100
307
+ 120
308
+ 140
309
+ Altitude (m)
310
+ -30
311
+ -20
312
+ -10
313
+ 0
314
+ Power (dB)
315
+ LTE Band-12 (AT&T, T-Mobile)
316
+ LTE Band-13 (Verizon)
317
+ LTE Band 14 (AT&T, FirstNet)
318
+ LTE Band 41 (T-Mobile)
319
+ (a) Mean.
320
+ 40
321
+ 60
322
+ 80
323
+ 100
324
+ 120
325
+ 140
326
+ Altitude (m)
327
+ 0
328
+ 50
329
+ 100
330
+ 150
331
+ 200
332
+ Power (dB)
333
+ LTE Band-12 (AT&T, T-Mobile)
334
+ LTE Band-13 (Verizon)
335
+ LTE Band 14 (AT&T, FirstNet)
336
+ LTE Band 41 (T-Mobile)
337
+ (b) Variance.
338
+ Fig. 3: Spectrum occupancy versus altitude in LTE bands 12,
339
+ 13, 14 and 41 (UL) for urban environment.
340
+ under consideration, LTE 41 works in time-division duplexing
341
+ (TDD) mode and includes both UL and DL transmissions.
342
+ The mean and variance of the measured power for various
343
+ LTE bands are presented in Fig. 3. As it can be observed
344
+ from Fig. 3a, generally the mean value of the measured power
345
+ increases as the altitude increases. The mean power value for
346
+ LTE bands 12 and 41 are almost identical and much higher
347
+ than the other two bands under consideration. Note that band
348
+ 41 has significantly larger bandwidth than band 12 and it
349
+ includes both UL and DL transmission. From Fig. 3b, it can
350
+ be observed that the fluctuation of variance for LTE band 13
351
+ is much lower than the other ones. Although the mean value
352
+ of LTE 12 and 41 show similar behaviour, the variance of LTE
353
+ 41 is lower than LTE band 12.
354
+ B. LTE Bands - Downlink
355
+ Considering the DL frequency range for different LTE
356
+ bands, Fig. 4 illustrates the measured power for the bands un-
357
+ der consideration. It can be readily checked that the spectrum
358
+ of DL frequency ranges are more crowded compared with the
359
+ UL ones. Although the occupied spectrum for LTE 13 and 14
360
+ expand the whole range, the main frequency usage of LTE 12
361
+ is between 735 - 745 MHz.
362
+ Fig. 5 shows the mean and variance of the measured power
363
+ versus altitude. As it can be observed from Fig. 5a, the mean
364
+
365
+ 730
366
+ 735
367
+ 740
368
+ 745
369
+ Frequency (MHz)
370
+ 20
371
+ 40
372
+ 60
373
+ 80
374
+ 100
375
+ 120
376
+ 140
377
+ Altitude (m)
378
+ -40
379
+ -20
380
+ 0
381
+ 20
382
+ 40
383
+ dB
384
+ (a) LTE band 12 (DL).
385
+ 746
386
+ 748
387
+ 750
388
+ 752
389
+ 754
390
+ 756
391
+ Frequency (MHz)
392
+ 20
393
+ 40
394
+ 60
395
+ 80
396
+ 100
397
+ 120
398
+ 140
399
+ Altitude (m)
400
+ -40
401
+ -20
402
+ 0
403
+ 20
404
+ 40
405
+ dB
406
+ (b) LTE band 13 (DL).
407
+ 758
408
+ 760
409
+ 762
410
+ 764
411
+ 766
412
+ 768
413
+ Frequency (MHz)
414
+ 20
415
+ 40
416
+ 60
417
+ 80
418
+ 100
419
+ 120
420
+ 140
421
+ Altitude (m)
422
+ -40
423
+ -20
424
+ 0
425
+ 20
426
+ 40
427
+ dB
428
+ (c) LTE band 14 (DL).
429
+ 2500
430
+ 2550
431
+ 2600
432
+ 2650
433
+ Frequency (MHz)
434
+ 20
435
+ 40
436
+ 60
437
+ 80
438
+ 100
439
+ 120
440
+ 140
441
+ Altitude (m)
442
+ -40
443
+ -20
444
+ 0
445
+ 20
446
+ 40
447
+ dB
448
+ (d) LTE band 41 (TDD UL/DL).
449
+ Fig. 4: Measured LTE DL power for urban environment.
450
+ 40
451
+ 60
452
+ 80
453
+ 100
454
+ 120
455
+ 140
456
+ Altitude (m)
457
+ -30
458
+ -20
459
+ -10
460
+ 0
461
+ 10
462
+ 20
463
+ Power (dB)
464
+ LTE Band-12 (AT&T, T-Mobile)
465
+ LTE Band-13 (Verizon)
466
+ LTE Band 14 (AT&T, FirstNet)
467
+ LTE Band 41 (T-Mobile)
468
+ (a) Mean.
469
+ 40
470
+ 60
471
+ 80
472
+ 100
473
+ 120
474
+ 140
475
+ Altitude (m)
476
+ 0
477
+ 100
478
+ 200
479
+ 300
480
+ Power (dB)
481
+ LTE Band-12 (AT&T, T-Mobile)
482
+ LTE Band-13 (Verizon)
483
+ LTE Band 14 (AT&T, FirstNet)
484
+ LTE Band 41 (T-Mobile)
485
+ (b) Variance.
486
+ Fig. 5: Spectrum occupancy versus altitude in LTE bands 12,
487
+ 13, 14 and 41 (DL) for urban environment.
488
+ value of the measured power increases as the altitude increases
489
+ up to almost 80 m. This is due to the fact that at high
490
+ altitudes the probability of receiving signal from neighbor
491
+ cells increases as the obstacles decrease, which results in the
492
+ availability of the line of sight (LoS). For higher altitudes
493
+ (i.e., higher than 80 m), the mean values for LTE bands
494
+ under consideration remain almost constant. As it is shown
495
+ in Fig. 5b, the variance of the measured power for LTE bands
496
+ 13, 14 and 41 show relatively smaller variation over different
497
+ altitudes compared to LTE band 12. The main reason for this
498
+ behavior can be found by observing the measured power for
499
+ LTE band 12 shown in Fig. 4a. It seems that some portion of
500
+ the LTE band 12 is not fully utilized.
501
+ C. 5G Bands - Uplink
502
+ Fig. 6 presents the measured power for 5G bands n5, n71
503
+ and n77 considering the UL frequency spectrum ranges. This
504
+ result reveals that the spectrum of n77 is mainly occupied
505
+ between 3700-3800 MHz. One should also note that 5G band
506
+ n5 and n71 utilize the frequency-division duplexing (FDD),
507
+ while 5G band n77 exploit TDD mode. The performance
508
+ of mean and variance of the measured power for 5G bands
509
+ (uplink) are presented in Fig. 7. As it can be observed from
510
+ Fig. 7a, the mean value of the measured power increases as the
511
+ altitude increases up to almost 80 m due to the same argument
512
+ 825
513
+ 830
514
+ 835
515
+ 840
516
+ 845
517
+ Frequency (MHz)
518
+ 20
519
+ 40
520
+ 60
521
+ 80
522
+ 100
523
+ 120
524
+ 140
525
+ Altitude (m)
526
+ -40
527
+ -20
528
+ 0
529
+ 20
530
+ 40
531
+ dB
532
+ (a) 5G band n5 (UL).
533
+ 670
534
+ 680
535
+ 690
536
+ Frequency (MHz)
537
+ 20
538
+ 40
539
+ 60
540
+ 80
541
+ 100
542
+ 120
543
+ 140
544
+ Altitude (m)
545
+ -40
546
+ -20
547
+ 0
548
+ 20
549
+ 40
550
+ dB
551
+ (b) 5G band n71 (UL)
552
+ 3750 3800 3850 3900 3950
553
+ Frequency (MHz)
554
+ 20
555
+ 40
556
+ 60
557
+ 80
558
+ 100
559
+ 120
560
+ 140
561
+ Altitude (m)
562
+ -40
563
+ -20
564
+ 0
565
+ 20
566
+ 40
567
+ dB
568
+ (c) 5G band n77 (TDD UL/DL).
569
+ Fig. 6: Measured 5G UL power for urban environment.
570
+ 40
571
+ 60
572
+ 80
573
+ 100
574
+ 120
575
+ 140
576
+ Altitude (m)
577
+ -35
578
+ -30
579
+ -25
580
+ -20
581
+ -15
582
+ -10
583
+ Power (dB)
584
+ 5G Band-n5 (AT&T, Verizon)
585
+ 5G Band-n71 (T-Mobile)
586
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
587
+ (a) Mean.
588
+ 40
589
+ 60
590
+ 80
591
+ 100
592
+ 120
593
+ 140
594
+ Altitude (m)
595
+ 0
596
+ 50
597
+ 100
598
+ 150
599
+ 200
600
+ Power (dB)
601
+ 5G Band-n5 (AT&T, Verizon)
602
+ 5G Band-n71 (T-Mobile)
603
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
604
+ (b) Variance.
605
+ Fig. 7: Spectrum occupancy versus altitude in 5G n5, n71 and
606
+ n77 bands (UL) for urban environment.
607
+ 870
608
+ 875
609
+ 880
610
+ 885
611
+ 890
612
+ Frequency (MHz)
613
+ 20
614
+ 40
615
+ 60
616
+ 80
617
+ 100
618
+ 120
619
+ 140
620
+ Altitude (m)
621
+ -40
622
+ -20
623
+ 0
624
+ 20
625
+ 40
626
+ dB
627
+ (a) 5G band n5 (DL).
628
+ 620
629
+ 630
630
+ 640
631
+ 650
632
+ Frequency (MHz)
633
+ 20
634
+ 40
635
+ 60
636
+ 80
637
+ 100
638
+ 120
639
+ 140
640
+ Altitude (m)
641
+ -40
642
+ -20
643
+ 0
644
+ 20
645
+ 40
646
+ dB
647
+ (b) 5G band n71 (DL).
648
+ Fig. 8: Measured 5G DL power for urban environment.
649
+ mentioned earlier. The mean value of 5G band n5 shows higher
650
+ value compared with n71 and n77. As it is shown in Fig. 7b,
651
+ the variance of the measured power for 5G bands n5 and n77
652
+ intersect with each other around the altitude of 60 m. The
653
+ variance of n77 band keeps increasing as the altitude increases.
654
+ D. 5G Bands - Downlink
655
+ Fig. 8 illustrates the measured power for 5G n5 and n71
656
+ bands by considering the DL frequency range. It can be seen
657
+ that the measured power for 870 - 880 MHz and 885-894 MHz
658
+ are higher than the rest of spectrum. Fig. 9 shows the mean and
659
+ variance of the measured power versus altitude. As it can be
660
+ observed from Fig. 9a, the mean value of the measured power
661
+ for n5 and n71 are similar and significantly higher than n77.
662
+
663
+ 40
664
+ 60
665
+ 80
666
+ 100
667
+ 120
668
+ 140
669
+ Altitude (m)
670
+ -40
671
+ -20
672
+ 0
673
+ 20
674
+ Power (dB)
675
+ 5G Band-n5 (AT&T, Verizon)
676
+ 5G Band-n71 (T-Mobile)
677
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
678
+ (a) Mean.
679
+ 40
680
+ 60
681
+ 80
682
+ 100
683
+ 120
684
+ 140
685
+ Altitude (m)
686
+ 0
687
+ 50
688
+ 100
689
+ 150
690
+ 200
691
+ Power (dB)
692
+ 5G Band-n5 (AT&T, Verizon)
693
+ 5G Band-n71 (T-Mobile)
694
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
695
+ (b) Variance.
696
+ Fig. 9: Spectrum occupancy versus altitude in 5G bands n5
697
+ and n77 (DL) for urban environment.
698
+ (a)
699
+ 3550
700
+ 3600
701
+ 3650
702
+ Frequency (MHz)
703
+ 20
704
+ 40
705
+ 60
706
+ 80
707
+ 100
708
+ 120
709
+ 140
710
+ Altitude (m)
711
+ -40
712
+ -20
713
+ 0
714
+ 20
715
+ 40
716
+ dB
717
+ (b)
718
+ Fig. 10: (a) CBRS spectrum and tiers; and (b) Measured CBRS
719
+ band n48 power for urban environment (TDD UL/DL).
720
+ 40
721
+ 60
722
+ 80
723
+ 100
724
+ 120
725
+ 140
726
+ Altitude (m)
727
+ -34
728
+ -32
729
+ -30
730
+ -28
731
+ -26
732
+ -24
733
+ Power (dB)
734
+ CBRS Band-n48 (3550-3600 MHz)
735
+ CBRS Band-n48 (3600-3650 MHz)
736
+ CBRS Band-n48 (3650-3700 MHz)
737
+ (a) Mean.
738
+ 40
739
+ 60
740
+ 80
741
+ 100
742
+ 120
743
+ 140
744
+ Altitude (m)
745
+ 0
746
+ 10
747
+ 20
748
+ 30
749
+ 40
750
+ 50
751
+ Power (dB)
752
+ CBRS Band-n48 (3550-3600 MHz)
753
+ CBRS Band-n48 (3600-3650 MHz)
754
+ CBRS Band-n48 (3650-3700 MHz)
755
+ (b) Variance.
756
+ Fig. 11: Spectrum occupancy versus altitude in CBRS band
757
+ for urban environment.
758
+ For the bands under consideration, the mean value increases
759
+ as the altitude increases up to almost 80 m. As it is shown in
760
+ Fig. 9b, the variance of the measured power for n77 starts with
761
+ a small value, while it climes up to near those of n5 values
762
+ as the altitude increases. The variance of n71 band depicts
763
+ a higher value for all the measured altitudes compared with
764
+ those others 5G bands.
765
+ E. CBRS Band
766
+ Fig. 10a illustrates the CBRS spectrum which it lays out
767
+ three tiers of users. Fig. 10b presents the measured power
768
+ for CBRS n48 band. Similar to LTE 41 and 5G n77 bands,
769
+ n48 also exploits TDD mode. As it can be seen, the spectrum
770
+ is mainly occupied within the range of 3610-3690 MHz. In
771
+ Fig. 11, we study the mean and variance of the measured
772
+ power versus altitude whereas the CBRS band is divided into
773
+ three equal portions. As it can be observed, the mean and
774
+ variance of the measured power for the first portion (i.e.,
775
+ 3550-3600 MHz) are lower than the other parts. The mean
776
+ value of the third portion (i.e., 3650-3700 MHz) increases
777
+ 700
778
+ 705
779
+ 710
780
+ 715
781
+ Frequency (MHz)
782
+ 50
783
+ 100
784
+ 150
785
+ Altitude (m)
786
+ -40
787
+ -20
788
+ 0
789
+ 20
790
+ 40
791
+ dB
792
+ (a) LTE band 12 (UL).
793
+ 778
794
+ 780
795
+ 782
796
+ 784
797
+ 786
798
+ Frequency (MHz)
799
+ 50
800
+ 100
801
+ 150
802
+ Altitude (m)
803
+ -40
804
+ -20
805
+ 0
806
+ 20
807
+ 40
808
+ dB
809
+ (b) LTE band 13 (UL).
810
+ 788
811
+ 790
812
+ 792
813
+ 794
814
+ 796
815
+ 798
816
+ Frequency (MHz)
817
+ 50
818
+ 100
819
+ 150
820
+ Altitude (m)
821
+ -40
822
+ -20
823
+ 0
824
+ 20
825
+ 40
826
+ dB
827
+ (c) LTE band 14 (UL).
828
+ 2500
829
+ 2550
830
+ 2600
831
+ 2650
832
+ Frequency (MHz)
833
+ 50
834
+ 100
835
+ 150
836
+ Altitude (m)
837
+ -40
838
+ -20
839
+ 0
840
+ 20
841
+ 40
842
+ dB
843
+ (d) LTE band 41 (TDD UL/DL).
844
+ Fig. 12: Measured LTE UL power for rural environment.
845
+ 50
846
+ 100
847
+ 150
848
+ Altitude (m)
849
+ -30
850
+ -20
851
+ -10
852
+ 0
853
+ Power (dB)
854
+ LTE Band-12 (AT&T, T-Mobile)
855
+ LTE Band-13 (Verizon)
856
+ LTE Band 14 (AT&T, FirstNet)
857
+ LTE Band 41 (T-Mobile)
858
+ (a) Mean.
859
+ 50
860
+ 100
861
+ 150
862
+ Altitude (m)
863
+ 0
864
+ 100
865
+ 200
866
+ 300
867
+ Power (dB)
868
+ LTE Band-12 (AT&T, T-Mobile)
869
+ LTE Band-13 (Verizon)
870
+ LTE Band 14 (AT&T, FirstNet)
871
+ LTE Band 41 (T-Mobile)
872
+ (b) Variance.
873
+ Fig. 13: Spectrum occupancy versus altitude in LTE bands 12,
874
+ 13, 14 and 41 (UL) for rural environment.
875
+ as the altitude increases up to 60 m and then it drops
876
+ afterwards. However, the man value of the second part (i.e.,
877
+ 3600-3650 MHz) keeps increasing as the altitude increases.
878
+ IV. RURAL SPECTRUM OCCUPANCY RESULTS
879
+ In this section, we study the spectrum occupancy and its
880
+ characteristic for the similar bands as previous section by
881
+ considering the experimental results for the rural environment.
882
+ A. LTE Bands - Uplink
883
+ Fig. 12 illustrates the measured power for for LTE bands
884
+ 13, 14, 15 and 41 considering the UL frequency spectrum.
885
+ As it can be seen, LTE bands 12 and 41 show more crowded
886
+ spectrum compared with LTE bands 13 and 14. The mean and
887
+ variance of the measured power for various LTE bands are
888
+ presented in Fig. 13. As opposed to the urban environment
889
+ (cf. Fig. 3a), the mean value for LTE bands 13 and 14 are
890
+ much higher than the other two bands under consideration.
891
+ B. LTE Bands - Downlink
892
+ Considering the DL frequency range for different LTE
893
+ bands, Fig. 14 illustrates the measured power for the bands
894
+ under consideration. Same as the urban results, the spectrum
895
+ of DL frequency range are more crowded compared with the
896
+ UL ones in the rural environment. Fig. 15 shows the mean
897
+
898
+ 3550 MHz
899
+ 3600 MHz
900
+ 3650 MHz
901
+ 3700 MHz
902
+ Tier 1
903
+ Incumbent Users
904
+ (e.g. the Navy)
905
+ Tier 2
906
+ Priority Access Licensees
907
+ (e.g. private organizations)
908
+ Tier 3
909
+ General Authorized Access
910
+ (e.g. unlicensed users)730
911
+ 735
912
+ 740
913
+ 745
914
+ Frequency (MHz)
915
+ 50
916
+ 100
917
+ 150
918
+ Altitude (m)
919
+ -40
920
+ -20
921
+ 0
922
+ 20
923
+ 40
924
+ dB
925
+ (a) LTE band 12 (DL).
926
+ 746
927
+ 748
928
+ 750
929
+ 752
930
+ 754
931
+ 756
932
+ Frequency (MHz)
933
+ 50
934
+ 100
935
+ 150
936
+ Altitude (m)
937
+ -40
938
+ -20
939
+ 0
940
+ 20
941
+ 40
942
+ dB
943
+ (b) LTE band 13 (DL).
944
+ 758
945
+ 760
946
+ 762
947
+ 764
948
+ 766
949
+ 768
950
+ Frequency (MHz)
951
+ 50
952
+ 100
953
+ 150
954
+ Altitude (m)
955
+ -40
956
+ -20
957
+ 0
958
+ 20
959
+ 40
960
+ dB
961
+ (c) LTE band 14 (DL).
962
+ 2500
963
+ 2550
964
+ 2600
965
+ 2650
966
+ Frequency (MHz)
967
+ 50
968
+ 100
969
+ 150
970
+ Altitude (m)
971
+ -40
972
+ -20
973
+ 0
974
+ 20
975
+ 40
976
+ dB
977
+ (d) LTE band 41 (TDD UL/DL).
978
+ Fig. 14: Measured LTE DL power for rural environment.
979
+ 50
980
+ 100
981
+ 150
982
+ Altitude (m)
983
+ -30
984
+ -20
985
+ -10
986
+ 0
987
+ 10
988
+ 20
989
+ Power (dB)
990
+ LTE Band-12 (AT&T, T-Mobile)
991
+ LTE Band-13 (Verizon)
992
+ LTE Band 14 (AT&T, FirstNet)
993
+ LTE Band 41 (T-Mobile)
994
+ (a) Mean.
995
+ 50
996
+ 100
997
+ 150
998
+ Altitude (m)
999
+ 0
1000
+ 100
1001
+ 200
1002
+ 300
1003
+ Power (dB)
1004
+ LTE Band-12 (AT&T, T-Mobile)
1005
+ LTE Band-13 (Verizon)
1006
+ LTE Band 14 (AT&T, FirstNet)
1007
+ LTE Band 41 (T-Mobile)
1008
+ (b) Variance.
1009
+ Fig. 15: Spectrum occupancy versus altitude in LTE bands 12,
1010
+ 13, 14 and 41 (DL) for rural environment.
1011
+ and variance of the measured power versus altitude. As it can
1012
+ be observed from Fig. 15a, the mean value of the measured
1013
+ power increases as the altitude increases up to 80 m and it
1014
+ remains almost constant for the higher altitudes. The variance
1015
+ of LTE bands 13, 14, and 41 show similar behaviour, while
1016
+ the corresponded plot for LTE band 12 starts with increasing
1017
+ for the altitude up to 40 m and then it drops afterwards.
1018
+ C. 5G Bands - Uplink
1019
+ Fig. 16 illustrates the measured power for 5G bands n5, n71
1020
+ and n77 considering the UL frequency spectrum ranges. This
1021
+ result reveals that the spectrum of n77 is less crowded than
1022
+ those of n5 and n71. The performance of mean and variance
1023
+ of the measured power for 5G bands (uplink) are presented in
1024
+ Fig. 17. As it can be observed from Fig. 17a, while the mean
1025
+ value of the measured power for n77 is almost independent of
1026
+ the altitude, it increases for n5 and n71 bands as the altitude
1027
+ increases. As it is shown in Fig. 17b, the variance of the
1028
+ measured power for n71 depicts higher value compared with
1029
+ the other 5G bands.
1030
+ D. 5G Bands - Downlink
1031
+ Fig. 18 illustrates the measured power for 5G n5 and n71
1032
+ bands by considering the DL frequency range. Similar to the
1033
+ urban case, it can be seen that the measured power for 870
1034
+ 825
1035
+ 830
1036
+ 835
1037
+ 840
1038
+ 845
1039
+ Frequency (MHz)
1040
+ 50
1041
+ 100
1042
+ 150
1043
+ Altitude (m)
1044
+ -40
1045
+ -20
1046
+ 0
1047
+ 20
1048
+ 40
1049
+ dB
1050
+ (a) 5G band n5 (UL).
1051
+ 670
1052
+ 680
1053
+ 690
1054
+ Frequency (MHz)
1055
+ 50
1056
+ 100
1057
+ 150
1058
+ Altitude (m)
1059
+ -40
1060
+ -20
1061
+ 0
1062
+ 20
1063
+ 40
1064
+ dB
1065
+ (b) 5G band n71 (UL).
1066
+ 3750 3800 3850 3900 3950
1067
+ Frequency (MHz)
1068
+ 50
1069
+ 100
1070
+ 150
1071
+ Altitude (m)
1072
+ -40
1073
+ -20
1074
+ 0
1075
+ 20
1076
+ 40
1077
+ dB
1078
+ (c) 5G band n77 (TDD UL/DL).
1079
+ Fig. 16: Measured 5G UL power for rural environment.
1080
+ 50
1081
+ 100
1082
+ 150
1083
+ Altitude (m)
1084
+ -30
1085
+ -25
1086
+ -20
1087
+ -15
1088
+ -10
1089
+ Power (dB)
1090
+ 5G Band-n5 (AT&T, Verizon)
1091
+ 5G Band-n71 (T-Mobile)
1092
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
1093
+ (a) Mean.
1094
+ 50
1095
+ 100
1096
+ 150
1097
+ Altitude (m)
1098
+ 0
1099
+ 50
1100
+ 100
1101
+ 150
1102
+ 200
1103
+ 250
1104
+ Power (dB)
1105
+ 5G Band-n5 (AT&T, Verizon)
1106
+ 5G Band-n71 (T-Mobile)
1107
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
1108
+ (b) Variance.
1109
+ Fig. 17: Spectrum occupancy versus altitude in 5G n5 and n77
1110
+ bands (UL) for rural environment.
1111
+ 870
1112
+ 875
1113
+ 880
1114
+ 885
1115
+ 890
1116
+ Frequency (MHz)
1117
+ 50
1118
+ 100
1119
+ 150
1120
+ Altitude (m)
1121
+ -40
1122
+ -20
1123
+ 0
1124
+ 20
1125
+ 40
1126
+ dB
1127
+ (a) 5G band n5 (DL).
1128
+ 620
1129
+ 630
1130
+ 640
1131
+ 650
1132
+ Frequency (MHz)
1133
+ 50
1134
+ 100
1135
+ 150
1136
+ Altitude (m)
1137
+ -40
1138
+ -20
1139
+ 0
1140
+ 20
1141
+ 40
1142
+ dB
1143
+ (b) 5G band n71 (DL).
1144
+ Fig. 18: Measured 5G DL power for rural environment.
1145
+ - 880 MHz and 885-894 MHz are higher than the rest of
1146
+ spectrum in the rural environment. Fig. 19 depicts the mean
1147
+ and variance of the measured power versus altitude. As it can
1148
+ be observed from Fig. 19a, the mean value of the measured
1149
+ power for n77 band remains almost constant for different
1150
+ altitudes, while it increases as the altitude increases up to
1151
+ almost 80 m for n5 and n71 bands. As it is shown in Fig. 19b,
1152
+ the variance of the measured power for 5G band n71 shows
1153
+ higher values compared with n5 and n77.
1154
+ E. CBRS Band
1155
+ Fig. 20 present the measured power for CBRS n48 band
1156
+ for rural environment. As it can be seen, the spectrum is less
1157
+
1158
+ 50
1159
+ 100
1160
+ 150
1161
+ Altitude (m)
1162
+ -40
1163
+ -20
1164
+ 0
1165
+ 20
1166
+ Power (dB)
1167
+ 5G Band-n5 (AT&T, Verizon)
1168
+ 5G Band-n71 (T-Mobile)
1169
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
1170
+ (a) Mean.
1171
+ 50
1172
+ 100
1173
+ 150
1174
+ Altitude (m)
1175
+ 0
1176
+ 100
1177
+ 200
1178
+ 300
1179
+ 400
1180
+ Power (dB)
1181
+ 5G Band-n5 (AT&T, Verizon)
1182
+ 5G Band-n71 (T-Mobile)
1183
+ 5G Band-n77 (AT&T, Verizon, T-Mobile)
1184
+ (b) Variance.
1185
+ Fig. 19: Spectrum occupancy versus altitude in 5G bands n5
1186
+ and n77 (DL) for rural environment.
1187
+ 3550
1188
+ 3600
1189
+ 3650
1190
+ Frequency (MHz)
1191
+ 50
1192
+ 100
1193
+ 150
1194
+ Altitude (m)
1195
+ -40
1196
+ -20
1197
+ 0
1198
+ 20
1199
+ 40
1200
+ dB
1201
+ Fig. 20: Measured power during Helikite operation over rural
1202
+ environment for CBRS band n48 (TDD UL/DL).
1203
+ 50
1204
+ 100
1205
+ 150
1206
+ Altitude (m)
1207
+ -30
1208
+ -25
1209
+ -20
1210
+ -15
1211
+ -10
1212
+ Power (dB)
1213
+ CBRS Band-n48 (3550-3600 MHz)
1214
+ CBRS Band-n48 (3600-3650 MHz)
1215
+ CBRS Band-n48 (3650-3700 MHz)
1216
+ (a) Mean.
1217
+ 50
1218
+ 100
1219
+ 150
1220
+ Altitude (m)
1221
+ 0
1222
+ 1
1223
+ 2
1224
+ 3
1225
+ 4
1226
+ Power (dB)
1227
+ CBRS Band-n48 (3550-3600 MHz)
1228
+ CBRS Band-n48 (3600-3650 MHz)
1229
+ CBRS Band-n48 (3650-3700 MHz)
1230
+ (b) Variance.
1231
+ Fig. 21: Spectrum occupancy versus altitude in CBRS band
1232
+ for rural environment.
1233
+ crowded compared with the rural environment. In Fig. 21, we
1234
+ study the mean and variance of the measured power versus
1235
+ altitude. As it can be observed, the mean value of the measured
1236
+ power for all three considered portions are almost similar
1237
+ and remain constant as the altitude increases. In addition, the
1238
+ variance also shows slight fluctuations compared to the other
1239
+ bands under consideration.
1240
+ V. TIME DOMAIN ANALYSIS OF SPECTRUM OCCUPENCY
1241
+ In this section, we focus on the spectrum occupancy of
1242
+ LTE and NR signals in time, while we describe the altitude
1243
+ dependency of the spectrum in the previous section. For
1244
+ around 8 hours of measurement duration by the Helikite in
1245
+ the urban environment, we observe signal strength changes.
1246
+ This section focuses exclusively on those urban environment
1247
+ measurements.
1248
+ Fig. 22 shows the spectrum monitoring results by the
1249
+ Helikite. The x-axis is the monitored spectrum range and the
1250
+ y-axis is the measured time stamp, which is indicated by hours
1251
+ and minutes. In Fig. 22a, we capture the frequency range from
1252
+ 700 MHz to 800 MHz, which contains LTE FDD bands 12,
1253
+ 13, 14 (see Table I). First of all, we can clearly observe a
1254
+ series of occupied 10 MHz bandwidth 12, 13, and, 14 DL
1255
+ bands. On the other hand, the signal strength of UL bands is
1256
+ lower than DL bands, and UL bands 13 and 14 are scarcely
1257
+ occupied. We also observe that there are time periods when
1258
+ signal strength becomes low for the whole observed frequency
1259
+ range, which coincides with the periods where the altitude of
1260
+ the Helikite stays low in Fig. 1. It implies that received signal
1261
+ strength is abruptly reduced by the blockage when the altitude
1262
+ of the Helikite is lower than a certain height. In addition,
1263
+ this tendency is observed in other frequency bands as well in
1264
+ Fig. 22b and Fig. 22c. In Fig 22b, we capture the frequency
1265
+ range 2500 MHz - 2700 MHz, which contains LTE TDD
1266
+ 41 band. Since carrier frequency is higher than Fig. 22a, we
1267
+ observe that this LTE band covers wider bandwidth: 20 MHz,
1268
+ 40 MHz, and 100 MHz. It is also observed that the received
1269
+ signal strength is lower than the frequency range in Fig. 22a.
1270
+ This is due to the fact that as carrier frequency increases a
1271
+ received signal suffers higher path loss, which is also observed
1272
+ in a much higher carrier frequency range in Fig. 22c. In
1273
+ particular, Fig. 22c shows spectrum occupancy of NR TDD
1274
+ n77 band, 3700 MHz - 3800 MHz. We can observe 40 MHz
1275
+ and 60 MHz bandwidth signals.
1276
+ Fig. 23 shows the received signal strength changes during
1277
+ the measurement time for the captured LTE and NR bands. In
1278
+ Fig. 23a, we observe the LTE FDD UL/DL 12 band shown
1279
+ in Fig. 22a. Mean value of the received signal strength across
1280
+ the frequency band is represented by lines and half of the
1281
+ standard deviation (std) of signal strength is described by the
1282
+ shaded area around lines. It is observed that the signal strength
1283
+ of UL is lower than DL, while the variation of the signal
1284
+ strength of UL inside the band is higher than DL, which can
1285
+ be observed from higher std values. Fig. 23b and Fig. 23b
1286
+ show the received signal strength changes of LTE TDD 41
1287
+ and NR TDD 77 bands which can be shown in Fig. 22b and
1288
+ Fig. 22c. It is observed that the signal strength fluctuation of
1289
+ NR TDD 77 band is higher than other bands such as LTE 12
1290
+ and 41 bands.
1291
+ VI. CONCLUSION
1292
+ Using the data measured by a Helikite flying over an urban
1293
+ and rural environments, in this paper we studied spectrum
1294
+ measurements in various sub-6 GHz 4G, 5G and CBRS bands.
1295
+ Both UL and DL spectrum occupancy has been investigated.
1296
+ Our results revealed that generally the mean value of measured
1297
+ power tends to increase as the altitude increases due to higher
1298
+ probability of line-of-sight, at least for the considered max-
1299
+ imum altitude range. Further, the spectrum of DL frequency
1300
+ ranges showed to be more crowded compared with the uplink
1301
+ ones for both environments. It has been also seen that for the
1302
+ rural environment the mean value for LTE bands 13 and 14
1303
+ are much higher than the other two bands under considera-
1304
+ tion, as opposed to the urban environment. Furthermore, the
1305
+ performance of CBRS band for urban environment indicates
1306
+ more activity compared with the rural condition.
1307
+
1308
+ (a) 700 MHz - 800 MHz.
1309
+ (b) 2500 MHz - 2700 MHz.
1310
+ (c) 3700 MHz - 3800 MHz.
1311
+ Fig. 22: Spectrum monitoring during the measurement time. We observe different LTE and NR bands’ occupancy and the
1312
+ received signal strength is strong when the Helikite floats at a high altitude.
1313
+ 12:00
1314
+ 14:00
1315
+ 16:00
1316
+ 18:00
1317
+ 20:00
1318
+ Time
1319
+ -30
1320
+ -25
1321
+ -20
1322
+ -15
1323
+ -10
1324
+ -5
1325
+ 0
1326
+ 5
1327
+ 10
1328
+ 15
1329
+ 20
1330
+ Power (dBm)
1331
+ std/2 | LTE DL 12
1332
+ mean | LTE DL 12
1333
+ std/2 | LTE UL 12
1334
+ mean | LTE UL 12
1335
+ (a) LTE FDD 12 band.
1336
+ 12:00
1337
+ 14:00
1338
+ 16:00
1339
+ 18:00
1340
+ 20:00
1341
+ Time
1342
+ -30
1343
+ -25
1344
+ -20
1345
+ -15
1346
+ -10
1347
+ -5
1348
+ 0
1349
+ Power (dBm)
1350
+ std/2 | LTE TDD 41
1351
+ mean | LTE TDD 41
1352
+ (b) LTE TDD 41 band.
1353
+ 14:00
1354
+ 16:00
1355
+ 18:00
1356
+ 20:00
1357
+ Time
1358
+ -35
1359
+ -30
1360
+ -25
1361
+ -20
1362
+ -15
1363
+ -10
1364
+ Power (dBm)
1365
+ std/2 | NR TDD n77
1366
+ maen | NR TDD n77
1367
+ (c) NR TDD 77 band.
1368
+ Fig. 23: Received power of different LTE and NR bands during the measurement time. The solid lines represent the mean value
1369
+ of signal power and shaded areas indicate half of the standard deviation (std) of signal strength, which shows the variation of
1370
+ signal strength inside the specific bands.
1371
+ REFERENCES
1372
+ [1] M. H. Islam, C. L. Koh, S. W. Oh, X. Qing, Y. Y. Lai, C. Wang, Y.-
1373
+ C. Liang, B. E. Toh, F. Chin, G. L. Tan et al., “Spectrum survey in
1374
+ Singapore: Occupancy measurements and analyses,” in Proc. IEEE Int.
1375
+ conf. Cognitive Radio Oriented Wireless Networks and Communications,
1376
+ 2008, pp. 1–7.
1377
+ [2] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
1378
+ Segui, and T. Watteyne, “Understanding the limits of LoRaWAN,” IEEE
1379
+ Commun. Mag., vol. 55, no. 9, pp. 34–40, 2017.
1380
+ [3] Ericsson,
1381
+ “Frequency
1382
+ reuse
1383
+ in
1384
+ limited
1385
+ spectrum
1386
+ networks,”
1387
+ Oct.
1388
+ 2022,
1389
+ accessed:
1390
+ 2023-01-04.
1391
+ [Online].
1392
+ Available:
1393
+ https://www.ericsson.com/en/reports-and-papers/microwave-outlook/
1394
+ articles/maximizing-capacity-in-spectrum-limited-networks
1395
+ [4] D.
1396
+ Roberson,
1397
+ “The
1398
+ 5G/aviation
1399
+ crisis
1400
+ that
1401
+ never
1402
+ should
1403
+ have
1404
+ happened,”
1405
+ https://www.linkedin.com/pulse/
1406
+ 5g-aviation-crisis-never-should-have-happened-dennis-roberson/,
1407
+ 2022, accessed: 2023-01-04.
1408
+ [5] W. Bellamy, “US Airlines Begin Installing 5G C-Band Filter for
1409
+ Radio Altimeters on Airbus A320s,” Sep. 2022, accessed: 2023-
1410
+ 01-04. [Online]. Available: https://www.aviationtoday.com/2022/09/14/
1411
+ us-airlines-begin-installing-5g-c-band-filter-radio-altimeters-airbus-a320s/
1412
+ [6] K.
1413
+ Dennehy,
1414
+ “Ligado
1415
+ scraps
1416
+ 5G
1417
+ network
1418
+ launch
1419
+ amid
1420
+ interference
1421
+ flap,”
1422
+ 2022,
1423
+ accessed:
1424
+ 2023-01-04.
1425
+ [Online].
1426
+ Available:
1427
+ https://locationbusinessnews.substack.com/p/
1428
+ ligado-scraps-5g-network-launch-amid
1429
+ [7] Y. Chen and H.-S. Oh, “A survey of measurement-based spectrum
1430
+ occupancy modeling for cognitive radios,” IEEE Commun. Surv. Tuts.,
1431
+ vol. 18, no. 1, pp. 848–859, 2014.
1432
+ [8] B. Al Homssi, A. Al-Hourani, Z. Krusevac, and W. S. Rowe, “Machine
1433
+ learning framework for sensing and modeling interference in IoT fre-
1434
+ quency bands,” IEEE Internet Things J., vol. 8, no. 6, pp. 4461–4471,
1435
+ 2020.
1436
+ [9] B. A. Homssi, K. Dakic, K. Wang, T. Alpcan, B. Allen, S. Kandeepan,
1437
+ A. Al-Hourani, and W. Saad, “Artificial intelligence techniques for next-
1438
+ generation mega satellite networks,” arXiv preprint arXiv:2207.00414,
1439
+ 2022.
1440
+ [10] S. J. Maeng, J. Park, and I. Guvenc, “Analysis of UAV radar and commu-
1441
+ nication network coexistence with different multiple access protocols,”
1442
+ arXiv preprint arXiv:2211.16614, 2022.
1443
+ [11] M. M. Azari, F. Rosas, A. Chiumento, A. Ligata, and S. Pollin, “Uplink
1444
+ performance analysis of a drone cell in a random field of ground
1445
+ interferers,” in Proc. IEEE Wireless Commun. and Netw. Conf. (WCNC),
1446
+ 2018, pp. 1–6.
1447
+ [12] V. Marojevic, I. Guvenc, R. Dutta, M. L. Sichitiu, and B. A. Floyd,
1448
+ “Advanced wireless for unmanned aerial systems: 5G standardization,
1449
+ research challenges, and AERPAW architecture,” IEEE Vehicular Tech-
1450
+ nology Magazine, vol. 15, no. 2, pp. 22–30, 2020.
1451
+ [13] AERPAW,
1452
+ “Helikite
1453
+ spectrum
1454
+ measurements
1455
+ (pack-
1456
+ apalooza),”
1457
+ Aug.
1458
+ 2022,
1459
+ accessed:
1460
+ 2023-01-04.
1461
+ [Online].
1462
+ Available:
1463
+ https://sites.google.com/ncsu.edu/
1464
+ aerpaw-wiki/aerpaw-user-manual/4-sample-experiments-repository/
1465
+ 4-4-data-repository/aerpaw-nrdz-research/
1466
+ august-2022-helikite-spectrum-measurements-packapalooza
1467
+ [14] ——,
1468
+ “Helikite
1469
+ spectrum
1470
+ measurements,”
1471
+ May.
1472
+ 2022,
1473
+ accessed:
1474
+ 2023-01-04.
1475
+ [Online].
1476
+ Available:
1477
+ https://sites.google.com/ncsu.edu/aerpaw-wiki/aerpaw-user-manual/
1478
+ 4-sample-experiments-repository/4-4-data-repository/
1479
+ aerpaw-nrdz-research/may-2022-helikite-spectrum-measurements
1480
+ [15] S. J. Maeng, O. Ozdemir, H. Nandakumar, I. Guvenc, M. Sichitiu,
1481
+ R. Dutta, and M. Mushi, “Spectrum Activity Monitoring and Analysis
1482
+ for Sub-6 GHz Bands Using a Helikite,” in Proc Int. Conf. Commun.
1483
+ Syst. Netw. (COMSNETS), Bengaluru, India, Jan. 2023.
1484
+ [16] S. J. Maeng, I. G¨uvenc¸, M. Sichitiu, B. A. Floyd, R. Dutta, T. Zajkowski,
1485
+ ¨O. ¨Ozdemir, and M. J. Mushi, “National radio dynamic zone concept
1486
+ with autonomous aerial and ground spectrum sensors,” in IEEE Int. Conf.
1487
+ Communications Workshops (ICC Workshops), 2022, pp. 687–692.
1488
+
1489
+ 18:00
1490
+ 17:00
1491
+ Time
1492
+ 16:00
1493
+ 15:00
1494
+ 111
1495
+ 14:00
1496
+ 12
1497
+ 13
1498
+ 14
1499
+ DL
1500
+ DL
1501
+ DL
1502
+ 13:00
1503
+ 12:00
1504
+ 710
1505
+ 720
1506
+ 730
1507
+ 740
1508
+ 750
1509
+ 760
1510
+ 770
1511
+ 780
1512
+ 790
1513
+ Freq (MHz)20
1514
+ 10
1515
+ 0
1516
+ dBr
1517
+ -10
1518
+ -20
1519
+ -30
1520
+ -4020:00
1521
+ 19:0040
1522
+ 3018:00
1523
+ 17:00
1524
+ Time
1525
+ 16:00
1526
+ 15:00
1527
+ 14:00
1528
+ LTETDD.41
1529
+ 13:00
1530
+ 12:00
1531
+ 2520
1532
+ 25402560258026002620
1533
+ 2640
1534
+ 2660
1535
+ 2680
1536
+ Freg (MHz)20
1537
+ 10
1538
+ 0
1539
+ dBr
1540
+ -10
1541
+ -20
1542
+ -30
1543
+ -4020:00
1544
+ 19:0040
1545
+ 3018:00
1546
+ 17:00
1547
+ Time
1548
+ 16:00
1549
+ 15:00
1550
+ 14:00
1551
+ NRTDD
1552
+ 0n77
1553
+ 13:00
1554
+ 12:00
1555
+ 3790
1556
+ Freg (MHz)20
1557
+ 10
1558
+ 0
1559
+ dBi
1560
+ -10
1561
+ -20
1562
+ -30
1563
+ -4020:00
1564
+ 19:0040
1565
+ 30
2NE0T4oBgHgl3EQfdwA8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NE2T4oBgHgl3EQfjAcm/content/tmp_files/2301.03963v1.pdf.txt ADDED
@@ -0,0 +1,787 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Genetic optimization of Brillouin scattering gain in
2
+ subwavelength-structured silicon membrane
3
+ waveguides
4
+ Paula Nuño Ruano∗, Jianhao Zhang1, Daniele Melati,
5
+ David González-Andrade, Xavier Le Roux, Eric Cassan,
6
+ Delphine Marris-Morini, Laurent Vivien, Daniel Lanzillotti-Kimura,
7
+ Carlos Alonso-Ramos∗
8
+ aCentre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, CNRS, 10
9
+ boulevard Thomas Gobert, 91120, Palaiseau, France
10
+ Abstract
11
+ On-chip Brillouin optomechanics has great potential for applications in com-
12
+ munications, sensing, and quantum technologies. Tight confinement of near-
13
+ infrared photons and gigahertz phonons in integrated waveguides remains a
14
+ key challenge to achieving strong on-chip Brillouin gain. Here, we propose
15
+ a new strategy to harness Brillouin gain in silicon waveguides, based on the
16
+ combination of genetic algorithm optimization and periodic subwavelength
17
+ structuration to engineer photonic and phononic modes simultaneously. The
18
+ proposed geometry is composed of a waveguide core and a lattice of anchoring
19
+ arms with a subwavelength period requiring a single etch step. The waveguide
20
+ geometry is optimized to maximize the Brillouin gain using a multi-physics
21
+ genetic algorithm. Our simulation results predict a remarkable Brillouin gain
22
+ exceeding 3300 W−1m−1, for a mechanical frequency near 15 GHz.
23
+ Keywords:
24
+ Brillouin scattering, subwavelength, genetic optimization
25
+ ∗Corresponding author
26
+ Email addresses: [email protected] (Paula Nuño Ruano),
27
+ [email protected] (Carlos Alonso-Ramos)
28
+ 1Present address: National Research Council Canada, 1200 Montreal Road, Bldg. M50,
29
+ Ottawa, Ontario K1A 0R6, Canada
30
+ arXiv:2301.03963v1 [physics.optics] 10 Jan 2023
31
+
32
+ 1. Introduction
33
+ Brillouin scattering (BS) refers to the nonlinear interaction between opti-
34
+ cal and mechanical fields inside a material. BS has been widely exploited in
35
+ optical fibers to implement a wide range of devices, including optical ampli-
36
+ fiers, ultra-narrow linewidth lasers, radio-frequency (RF) signal generators,
37
+ and distributed sensors [1].
38
+ Brillouin scattering was for long thought to be mediated by electrostric-
39
+ tive forces only. Thus, its spectrum was considered to be governed by ma-
40
+ terial properties [2]. In 2006, microstructuration of optical fibers enabled
41
+ shaping the BS spectrum [3], opening a new path for geometric control of
42
+ this effect [4]. In 2012, a new theory [5] predicted that Brillouin interactions
43
+ could be greatly magnified by strong radiation pressure on the boundaries
44
+ of suspended silicon waveguides with nanometric-scale core sizes [6, 7]. The
45
+ simultaneous confinement of optical and mechanical modes is challenging in
46
+ silicon-on-insulator (SOI) waveguides due to a strong phonon leakage towards
47
+ the silica cladding [8–10]. However, this limitation can be circumvented by
48
+ isolating the silicon waveguide core by complete or partial removal of the silica
49
+ cladding [5, 11, 12]. Suspended or quasi-suspended structures such as silicon
50
+ membrane rib waveguides [13] and fully suspended silicon nanowires [12] have
51
+ demonstrated large Brillouin gain. These results generated a great scientific
52
+ interest for its potential for laser sources [14], microwave signal generation
53
+ [15] and processing [16], sensing applications [17, 18] and non-reciprocal op-
54
+ tical devices [19]. In particular, pedestal waveguides [20] yield an experi-
55
+ mental Brillouin gain of 3000 W−1m−1. However, the need for narrow-width
56
+ pedestals to optimize the Brillouin gain complicates the fabrication process
57
+ and may compromise the mechanical stability of the structures. On the other
58
+ hand, a lower experimental Brillouin gain (1000 W−1m−1) was obtained for
59
+ silicon membrane rib waveguides due to the very different confinement of
60
+ optical and mechanical modes [13]. Still, this comparatively modest Bril-
61
+ louin gain was compensated by achieving ultra-low optical propagation loss,
62
+ allowing the demonstration of lasing effect [14]. The use of photonic crystals
63
+ with simultaneous photonic and phononic bandgaps [21] (also referred to as
64
+ phoxonic crystals) has been proposed to maximize the Brillouin gain in silicon
65
+ membrane waveguides, achieving calculated values up to 8000 W−1m−1. Yet,
66
+ the narrow bandwidth and high optical propagation loss, typically linked to
67
+ bandgap confinement [22], may compromise the performance of these phox-
68
+ onic crystals.
69
+ 2
70
+
71
+ Subwavelength grating silicon waveguides, with periods shorter than half
72
+ of the wavelength of the guided light, exploit index-contrast confinement to
73
+ yield low optical loss and wideband operation [23, 24]. Interestingly, near-
74
+ infrared photons and GHz phonons in nanoscale Si waveguides have compara-
75
+ ble wavelengths (near 1 µm) [10]. Thus, the same periodic structuration could
76
+ operate in the subwavelength regime for both, photons and phonons. In addi-
77
+ tion, forward Brillouin scattering (FBS), used to demonstrate Brillouin gain
78
+ in Si, relies on longitudinally propagating photons and transversally propa-
79
+ gating phonons [8–10]. Hence, engineering the longitudinal and transversal
80
+ subwavelength geometries would allow independent control of photonic and
81
+ phononic modes. Brillouin optimization in silicon membranes has been pro-
82
+ posed based on index-contrast confinement of photons (longitudinal subwave-
83
+ length grating) and bandgap confinement of phonons (transversal phononic
84
+ crystal) [25], achieving a calculated gain of 1750 W−1m−1. More recently,
85
+ the combination of subwavelength index-contrast and subwavelength soften-
86
+ ing has been proposed to optimize Brillouin gain in suspended Si waveguides,
87
+ achieving a calculated value of 3000 W−1m−1, for a minimum feature size of
88
+ 50 nm [26]. Still, these two approaches require several etch steps of the silicon
89
+ core, complicating the device’s fabrication. In this work, we propose a novel
90
+ subwavelength-structured Si membrane, illustrated in Fig. 1, requiring only
91
+ one etch step of silicon. We develop an optimization method to design the
92
+ waveguide geometry, combining multi-physics optical and mechanical simu-
93
+ lations with a genetic algorithm (GA) capable of handling a large number of
94
+ parameters [27]. The optimized geometry yields a calculated Brillouin gain
95
+ of 3300 W−1m−1, with a minimum feature size of 50 nm, compatible with
96
+ electron-beam lithography.
97
+ 2. Design and Results
98
+ The proposed optomechanical waveguide geometry, depicted in Fig. 1,
99
+ comprises a suspended central strip of width Wg = 400 nm that is anchored
100
+ to the lateral silicon slabs by a lattice of arms with a longitudinal period
101
+ (z-direction) of Λ = 300 nm. This period is shorter than half of the optical
102
+ wavelength, ensuring optical operation in the subwavelength regime. The
103
+ anchoring arms are symmetric with respect to the waveguide center. We
104
+ split the arms into five different sections with widths and lengths of Wi (x-
105
+ direction) and Li (z-direction), respectively. The index i = 1 refers to the
106
+ section adjacent to the waveguide core, while the index i = 5 refers to the
107
+ 3
108
+
109
+ outermost section (see Fig. 1, inset). The fifth section has a fixed width
110
+ of W5 = 500 nm and length of L5 = 50 nm to ensure proper guidance and
111
+ localization of the optical mode. The widths and lengths of sections 1 to 4
112
+ are optimized using the genetic algorithm. The whole waveguide has a fixed
113
+ silicon thickness of t = 220 nm, allowing fabrication in a single-etch step.
114
+ Figure 1: Proposed optomechanical waveguide. In the inset, the different sections of the
115
+ anchoring arms are numbered from 1 to 5. The width of the waveguide core (Wg = 400
116
+ nm), the period (Λ = 300 nm), and the dimensions of the outermost section (L5 = 50 nm,
117
+ W5 = 500 nm) remain fixed throughout the optimization process. The thickness of the
118
+ silicon slab is t = 220 nm.
119
+ We focus on FBS, where only near-cut-off acoustic modes are involved.
120
+ In the absence of optical absorption, which is the case of silicon at near-
121
+ infrared wavelengths, the optical and mechanical mode equations describing
122
+ FBS decouple and can be solved separately [10].
123
+ We use here COMSOL
124
+ Multiphysics software for the optomechanical simulations. For the calculation
125
+ of optical and mechanical modes in the optimization process, we reduce the
126
+ 3D structure to an equivalent 2D geometry. The effective index method [28]
127
+ is considered for the computation of the transverse-electric (TE) polarized
128
+ 4
129
+
130
+ Wg
131
+ Wi
132
+ Anchoring arms: sections
133
+ 2
134
+ 3
135
+ 4
136
+ 5optical modes while the in-plane mechanical modes are calculated assuming
137
+ the plane stress approximation [29]. We compute the Brillouin gain, GB, as
138
+ [9]
139
+ GB(Ωm) = Qm
140
+ 2ωp
141
+ meff Ω2
142
+ m
143
+ ����
144
+
145
+ fMB dℓ +
146
+
147
+ fPE dA
148
+ ����
149
+ 2
150
+ ,
151
+ (1)
152
+ where ωp is the frequency of the optical pump, Ωm is the mechanical fre-
153
+ quency, Qm is the mechanical quality factor, meff =
154
+
155
+ ρ |um|2/ max |um|2 dA
156
+ is the effective linear mass density of the mechanical mode with displacement
157
+ profile um, and fMB and fPE are the linear and surface overlap of optical force
158
+ density and deformation representing the moving boundaries effect (MB) and
159
+ the photoelastic effect (PE), respectively,
160
+ fMB = u∗
161
+ m · n
162
+
163
+ δεMB E∗
164
+ p,t · Es,t − δε−1
165
+ MB D∗
166
+ p,n · Ds,n
167
+
168
+ max |um| Pp Ps
169
+ and
170
+ fPE = E∗
171
+ p · δε∗
172
+ PE · Es
173
+ max |um| Pp Ps
174
+ ,
175
+ (2)
176
+ where the permittivity differences due to the moving boundaries effects are
177
+ given by δεMB = ε1 − ε2 and δε−1
178
+ MB = 1/ε1 − 1/ε2, with εi = ε0n2
179
+ i being
180
+ the permittivities of the silicon (i = 1) and air (i = 2). The photoelastic
181
+ tensor perturbation in the material permittivity is δεPE = −ε0 n4 p : S, with
182
+ n being the material refractive index, p the photoelastic tensor, and S the
183
+ mechanical stress tensor induced by the mechanical mode. The term um · n
184
+ is the normal component of the mechanical displacement and Ej,t and Dj,n
185
+ are the tangential electric field and normal dielectric displacement for the
186
+ pump (j = p) and the scattered field (j = s). The denominator represents
187
+ the power normalization given by Pj = [2ℜ(
188
+
189
+ [Ej × H∗
190
+ j] · z dA)]1/2.
191
+ The symmetry directions [100], [010], and [001] of the crystalline silicon
192
+ are set to coincide with the x, y, and z simulation axis, respectively. With this
193
+ orientation, the photoelastic tensor [6, 30] is [p11, p12, p44] = [−0.094, 0.017, −0.051].
194
+ The refractive index of silicon is n = 3.45 and its density ρ = 2329 kg m−3
195
+ while the corresponding values for the air are n = 1 and ρ = 1.293 kg m−3.
196
+ The quality factor of the mechanical mode, Qm, is related to the full width
197
+ at half maximum (FWHM) of the gain spectrum, γm, through Qm = Ωm/γm
198
+ and it is limited by different loss mechanisms,
199
+ 1
200
+ Qm
201
+ =
202
+ 1
203
+ QTE
204
+ + 1
205
+ QL
206
+ +
207
+ 1
208
+ Qair
209
+ .
210
+ (3)
211
+ 5
212
+
213
+ Here, we consider the thermoelastic loss (QTE), the mechanical leakage to-
214
+ wards the silica under-cladding (QL), and the viscous loss from surround-
215
+ ing air (Qair). The thermoelastic loss yields mechanical quality factors of
216
+ QTE ∼ 6 · 105 [31] for silicon nanostructures while the leakage loss is mainly
217
+ governed by the geometries of the waveguide and the arms anchoring it to
218
+ the lateral silicon slab.
219
+ These two effects are directly considered in the
220
+ mechanical-mode simulations performed in COMSOL Multiphysics. The vis-
221
+ cous loss induced by the surrounding air is considered here by imposing a
222
+ limiting value to the mechanical quality factor of Qm = 4 · 103, which is the
223
+ highest expected value at atmospheric pressure and room temperature for
224
+ phonon frequency in the order of GHz [32].
225
+ Based on the resulting optomechanical coupling calculations, a genetic
226
+ algorithm [33] is used to maximize the FBS gain. Starting with randomly
227
+ generated combinations of parameters Wi and Li (individuals), optomechan-
228
+ ical simulations are carried out and the individuals are ranked according to
229
+ their Brillouin gain. Recombination is used to produce a successor set of
230
+ individuals, the next generation. The best-performing individuals directly
231
+ become part of the next generation (elitism). A large number of individuals
232
+ of the new generation is obtained by combining the parameter of pairs of
233
+ individuals from the current generation (crossover). Finally, the remaining
234
+ individuals of the new generation are produced by randomly modifying the
235
+ parameters of single individuals of the current generation (mutation). This
236
+ process continues until the convergence criterion has been reached.
237
+ In our particular optimization problem, an individual is a possible geome-
238
+ try, represented by a set of 8 parameters (width and length of each of the arm
239
+ sections). Each generation is composed of 50 individuals and the successive
240
+ generations are obtained applying a rate of elitism and crossover of 6% and
241
+ 80%, respectively, with the remaining elements obtained through mutation.
242
+ The convergence criterion was defined in terms of the difference between the
243
+ best and the average performance, GB − ⟨GB⟩ < 10 W−1m−1, over 10 gener-
244
+ ations. For this work, we have used a standard computer with the following
245
+ specifications: a 64-bit operating system with an x64-based processor Intel®
246
+ Core™ i7-4790 (4 total cores, 8 total threads, base-frequency of 3.60 GHz),
247
+ and an installed RAM of 8.00 GB. Under these conditions, the optimiza-
248
+ tion process was completed in 12h 35 min, comprising 1500 optomechanical
249
+ simulations of 30 seconds each.
250
+ The method we propose here relies on a defined geometry whose pa-
251
+ rameters are allowed to vary within a specific range of values. Hence, the
252
+ 6
253
+
254
+ optimized structure will depend strongly on our initial guess.
255
+ In Fig. 2, we present the optimization process. Figures 2a and 2b show
256
+ the Brillouin gain and mechanical frequency, respectively, as a function of
257
+ the generation number. As a result of the evolution of the geometry, we
258
+ observe an increase in the gain and a variation in the mechanical frequency.
259
+ This result should be expected as the Brillouin shift in FBS is particularly
260
+ sensitive to the waveguide dimensions. The optimum performance is achieved
261
+ after 10 generations while 30 generations are required for convergence. The
262
+ optimized geometry, whose dimensions are listed in Table 1, is characterized
263
+ by a Brillouin gain of GB = 3350 W−1m−1 for a mechanical mode with
264
+ frequency of Ωm = 14.357 GHz and mechanical quality factor of Qm ≈ 3.2 ·
265
+ 103. The optical mode has a mode effective index of 2.36 and wavelength in
266
+ vacuum of λ = 1556.5 nm (ωp = 2π · 192.6 THz in (1)).
267
+ Figure 2: Optimization process. a) Best (in blue) and average (in orange) Brillouin gain
268
+ as a function of the number of generations during genetic optimization.
269
+ b) Evolution
270
+ of the mechanical frequency as a function of the number of generations.
271
+ During the
272
+ optimization process, all possible mechanical losses are considered, including thermoelastic
273
+ loss, mechanical leakage, and viscous loss due to air (operation in air ambient at room
274
+ temperature).
275
+ In terms of geometry, the first and fourth sections, with considerably
276
+ larger widths, generate reflections that help localize the mechanical mode
277
+ in the waveguide core. The frequency of the mechanical mode is governed
278
+ by the interplay between the waveguide width and the length of the partial
279
+ cavity formed by the fourth section on each side.
280
+ Full 3D simulations are realized to verify the performance of the optimized
281
+ geometry. This structure provides a Brillouin gain of GB = 3310 W−1m−1 for
282
+ a mechanical mode with a frequency of Ωm = 14.579 GHz. The optical mode
283
+ 7
284
+
285
+ a)
286
+ b)
287
+ 4000
288
+ 16.0
289
+ [GHz]
290
+ Brillouin Gain [(Wm)-1]
291
+ 3000
292
+ Frequency
293
+ 15.5
294
+ 2000
295
+ 15.0
296
+ Mechanical
297
+ 1000
298
+ 14.5
299
+ Best
300
+ Average
301
+ 0
302
+ 14.0
303
+ 0
304
+ 5
305
+ 10
306
+ 15
307
+ 20
308
+ 25
309
+ 30
310
+ 35
311
+ 0
312
+ 5
313
+ 10
314
+ 15
315
+ 20
316
+ 25
317
+ 30
318
+ 35
319
+ Number of
320
+ generation
321
+ Number of
322
+ generationTable 1: Dimensions for the GA-optimized geometry when operating in air ambient at
323
+ room temperature. In the table above, Si stands for section i in Fig. 1.
324
+ S1
325
+ S2
326
+ S3
327
+ S4
328
+ Width
329
+ 170 nm
330
+ 320 nm
331
+ 330 nm
332
+ 100 nm
333
+ Length
334
+ 130 nm
335
+ 60 nm
336
+ 60 nm
337
+ 190 nm
338
+ has a mode effective index of 2.23 and wavelength in vacuum of λ = 1557.2
339
+ nm (ωp = 2π · 192.52 THz in (1)).
340
+ Figure 3 shows the calculated field
341
+ distribution for the mechanical and optical modes in the optimized geometry.
342
+ Figure 3: Optical and mechanical modes of the optimized geometry operating in air ambi-
343
+ ent and room temperature (table 1): a) Approximated 2D structure. The upper structure
344
+ corresponds to the normalized mechanical displacement at 14.357 GHz and the lower fig-
345
+ ure to the x-component of the electric field at 1556.5 nm (mode effective index 2.36). b)
346
+ Full 3D device. On the bottom left, x-component of the electric field at 1557.2 nm (mode
347
+ effective index 2.23), and on the top right, normalized mechanical displacement at 14.579
348
+ GHz.
349
+ These results show a good agreement between the approximated 2D ge-
350
+ ometry used for the optimization and the full 3D structure. The small dis-
351
+ crepancies in the optical mode index and mechanical frequency are due to
352
+ the influence of the thickness.
353
+ Finally, we study the fabrication tolerance of the proposed structure us-
354
+ ing again 3D simulations. We consider under- and over-etching errors that
355
+ we model by a variation of all the waveguide lengths and widths by a factor
356
+ ∆, measured in nm (Fig. 4a). Figure 4c shows the variation of the Bril-
357
+ louin gain (in blue) and mechanical frequency (in orange) as a function of ∆.
358
+ 8
359
+
360
+ b)
361
+ a)
362
+ [ul / max|ul
363
+ u/max|u
364
+ E.The Brillouin gain remains above 2000 W−1m−1 for geometry variations of
365
+ ±10 nm. It should be noted that for the over-etch case (∆ < 0 in Fig. 4c),
366
+ the Brillouin gain is larger than the optimized case due to the larger optome-
367
+ chanical coupling resulting from a better overlap of the mechanical mode
368
+ with the optical field. However, these smaller structures are incompatible
369
+ with the target minimum feature size of 50 nm that was chosen to guarantee
370
+ fabrication reliability. The mechanical frequency varies less than 2% (Fig.4c,
371
+ in orange) and the mechanical profile is not modified significantly.
372
+ We also study the effect of stitching errors, modeled by a deviation ζ (in
373
+ nm) of the arm axis at both sides of the waveguide core, hence breaking the
374
+ symmetry of the structure (Fig. 4b). Figure 4d shows the variation of the
375
+ Brillouin gain (in blue) and mechanical frequency (in orange) as a function of
376
+ ζ. A non-perfectly symmetric structure is slightly detrimental to the Brillouin
377
+ gain but does not affect the mechanical frequency or profile. Interestingly,
378
+ both parameters (Brillouin gain and mechanical frequency) remain constant
379
+ over a large range of stitching errors.
380
+ Lastly, we examine the effect of random fabrication errors affecting each
381
+ section independently (Table 2). We consider deviations of 5 to 20 nm, both
382
+ in positive (enlargement) or negative (shrinking) directions. Our geometry
383
+ exhibits a robust performance despite these errors with Brillouin gains above
384
+ 2000 W−1m−1 (Fig. 4e, blue) and mechanical frequencies between 14 and 15
385
+ GHz (Fig. 4e, orange). It should be noted that the period remains constant,
386
+ Λ = 300 nm since it is controlled with high precision (±2 nm) in terms of
387
+ fabrication.
388
+ 3. Conclusions
389
+ In summary, we have proposed a new approach to optimizing Brillouin
390
+ gain in silicon membrane waveguides. We exploit genetic optimization to
391
+ maximize Brillouin gain in subwavelength-structured Si waveguides, requir-
392
+ ing only one etch step.
393
+ Genetic algorithm is a well-known optimization
394
+ technique capable of handling design spaces of moderate dimension [33].
395
+ It has the main advantage over gradient-based algorithms in its capabil-
396
+ ity to search the design space in many directions simultaneously. On the
397
+ other hand, the genetic algorithms cannot guarantee a global optimum so-
398
+ lution, being the final result strongly dependent on the initial population.
399
+ Based on this strategy, a calculated Brillouin gain up to 3310 W−1m−1 is
400
+ achieved for air environment. This result compares favorably to previously
401
+ 9
402
+
403
+ Figure 4: Fabrication tolerance of the optimized geometry. a) and b) Variation of the
404
+ geometry due to fabrication errors. The solid black line corresponds to optimized geometry,
405
+ dotted (solid) blue depicts a positive deviation from the nominal design, and dotted orange
406
+ refers to a negative deviation from the expected design. c) and d) Evolution of the Brillouin
407
+ gain (in blue, left axis) and the mechanical frequency (in orange, right axis) for different
408
+ values of under- and over-etching (c), different values of stitching errors (d), and different
409
+ structures with randomized geometrical parameters (e). In e), N stands for the nominal
410
+ design obtained after the optimization problem and i for the different geometries listed in
411
+ Table 2.
412
+ 10
413
+
414
+ a)
415
+ b)
416
+ Wg/2
417
+ Si Slab
418
+ Si Slab
419
+ W.
420
+ Si Slab
421
+ c)
422
+ d)
423
+ 6000
424
+ 15.0
425
+ 3500
426
+ 15.0
427
+ [(Wm)-
428
+ (Wm)
429
+ 14.8
430
+ ZH
431
+ 14.8
432
+ 3250
433
+ GH
434
+ 4000
435
+ Brillouin Gain
436
+ 'requency
437
+ requency
438
+ 3000
439
+ 14.4
440
+ 14.4
441
+ 2000
442
+ 2750
443
+ 14.2
444
+ 14.0
445
+ 2500
446
+ 14.0
447
+ -10
448
+ -5
449
+ 0
450
+ 5
451
+ 10
452
+ 0
453
+ 5
454
+ 10
455
+ 15
456
+ 20
457
+ 25
458
+ 30
459
+ 35
460
+ Fabrication error, △ [nm
461
+ Stiching error, S[nm]
462
+ e)
463
+ 6000
464
+ 16
465
+ 4000
466
+ 15
467
+ [2H)]
468
+ Brillouin Gain
469
+ 2000
470
+ 14
471
+ 13
472
+ N
473
+ 1
474
+ 2
475
+ 3
476
+ 4
477
+ 5
478
+ 6
479
+ 7
480
+ 8
481
+ 9
482
+ GeometryTable 2: Dimensions for the different geometries used for studying the effect of random-
483
+ ization of the design parameters. In the table, Si stands for section i in Fig. 1, N stands
484
+ for the nominal design as obtained from the optimization (Table 1), and i stands for the
485
+ different geometries in Fig. 4e. In all cases, the period, Λ = 300 nm, remains constant.
486
+ Geometry
487
+ S1
488
+ S2
489
+ S3
490
+ S4
491
+ S5
492
+ Wg
493
+ N
494
+ Width
495
+ 170 nm
496
+ 320 nm
497
+ 330 nm
498
+ 100 nm
499
+ 500 nm
500
+ 400 nm
501
+ Length
502
+ 130 nm
503
+ 60 nm
504
+ 60 nm
505
+ 190 nm
506
+ 50 nm
507
+ 1
508
+ Width
509
+ 165 nm
510
+ 305 nm
511
+ 345 nm
512
+ 90 nm
513
+ 510 nm
514
+ 405 nm
515
+ Length
516
+ 130 nm
517
+ 45 nm
518
+ 65 nm
519
+ 180 nm
520
+ 60 nm
521
+ 2
522
+ Width
523
+ 165 nm
524
+ 320 nm
525
+ 340 nm
526
+ 115 nm
527
+ 495 nm
528
+ 400 nm
529
+ Length
530
+ 110 nm
531
+ 45 nm
532
+ 55 nm
533
+ 170 nm
534
+ 35 nm
535
+ 3
536
+ Width
537
+ 155 nm
538
+ 340 nm
539
+ 340 nm
540
+ 100 nm
541
+ 485 nm
542
+ 405 nm
543
+ Length
544
+ 150 nm
545
+ 40 nm
546
+ 70 nm
547
+ 200 nm
548
+ 55 nm
549
+ 4
550
+ Width
551
+ 185 nm
552
+ 300 nm
553
+ 325 nm
554
+ 95 nm
555
+ 480 nm
556
+ 385 nm
557
+ Length
558
+ 140 nm
559
+ 65 nm
560
+ 75 nm
561
+ 185 nm
562
+ 60 nm
563
+ 5
564
+ Width
565
+ 160 nm
566
+ 320 nm
567
+ 330 nm
568
+ 95 nm
569
+ 510 nm
570
+ 390 nm
571
+ Length
572
+ 140 nm
573
+ 65 nm
574
+ 55 nm
575
+ 210 nm
576
+ 60 nm
577
+ 6
578
+ Width
579
+ 185 nm
580
+ 340 nm
581
+ 315 nm
582
+ 120 nm
583
+ 520 nm
584
+ 420 nm
585
+ Length
586
+ 135 nm
587
+ 40 nm
588
+ 50 nm
589
+ 190 nm
590
+ 35 nm
591
+ 7
592
+ Width
593
+ 185 nm
594
+ 340 nm
595
+ 340 nm
596
+ 110 nm
597
+ 480 nm
598
+ 410 nm
599
+ Length
600
+ 140 nm
601
+ 55 nm
602
+ 65 nm
603
+ 175 nm
604
+ 40 nm
605
+ 8
606
+ Width
607
+ 150 nm
608
+ 300 nm
609
+ 345 nm
610
+ 110 nm
611
+ 510 nm
612
+ 395 nm
613
+ Length
614
+ 120 nm
615
+ 80 nm
616
+ 40 nm
617
+ 175 nm
618
+ 65 nm
619
+ 9
620
+ Width
621
+ 170 nm
622
+ 340 nm
623
+ 325 nm
624
+ 105 nm
625
+ 520 nm
626
+ 410 nm
627
+ Length
628
+ 120 nm
629
+ 70 nm
630
+ 50 nm
631
+ 190 nm
632
+ 70 nm
633
+ 11
634
+
635
+ reported subwavelength-based Brillouin waveguides requiring several etch-
636
+ ing steps [25, 26], with calculated Brillouin gain of 1750 W−1m−1 and 3000
637
+ W−1m−1. Our results show the potential of optimization for obtaining novel
638
+ designs with improved performance in the context of Brillouin scattering.
639
+ Moreover, they show the reliability of computationally efficient optimizations
640
+ based on approximated 2D simulations.
641
+ Declaration of Competing Interest
642
+ The authors declare that they have no known competing financial inter-
643
+ ests or personal relationships that could have appeared to influence the work
644
+ reported in this paper.
645
+ Author Statement
646
+ Paula Nuño Ruano, Jianhao Zhang, and Carlos Alonso Ramos proposed
647
+ the concept. Paula Nuño Ruano, Jianhao Zhang, and Daniele Melati devel-
648
+ oped the simulation framework. Paula Nuño Ruano, Jianhao Zhang, Daniele
649
+ Melati, David González Andrade, and Carlos Alonso Ramos optimized and
650
+ analyzed the results. All authors contributed to the manuscript.
651
+ Data Availability Statement
652
+ The data supporting this study’s findings are available from the corre-
653
+ sponding author upon reasonable request.
654
+ Acknowledgements
655
+ The authors want to thank the Agence Nationale de la Recherche for sup-
656
+ porting this work through BRIGHT ANR-18-CE24-0023-01 and MIRSPEC
657
+ ANR-17-CE09-0041. P.N.R. acknowledges the support of Erasmus Mundus
658
+ Grant: Erasmus+ Erasmus Mundus Europhotonics Master program (599098-
659
+ EPP-1-2018-1-FR-EPPKA1-JMD-MOB) of the European Union. This project
660
+ has received funding from the European Union’s Horizon Europe research and
661
+ innovation program under the Marie Sklodowska-Curie grant agreement Nº
662
+ 101062518.
663
+ 12
664
+
665
+ References
666
+ [1] E. Garmire, Perspectives on stimulated brillouin scattering, New Journal
667
+ of Physics 19 (1) (2017) 011003. doi:10.1088/1367-2630/aa5447.
668
+ [2] G. S. Wiederhecker, L. Chen, A. Gondarenko, M. Lipson, Controlling
669
+ photonic structures using optical forces, Nature 462 (7273) (2009) 633–
670
+ 636. doi:10.1038/nature08584.
671
+ [3] P. Dainese, P. S. J. Russell, N. Joly, J. Knight, G. Wiederhecker, H. L.
672
+ Fragnito, V. Laude, A. Khelif, Stimulated brillouin scattering from
673
+ multi-ghz-guided acoustic phonons in nanostructured photonic crystal
674
+ fibres, Nature Physics 2 (6) (2006) 388–392. doi:10.1038/nphys315.
675
+ [4] J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, V. Laude, Guided
676
+ acoustic wave brillouin scattering in photonic crystal fibers, Optics let-
677
+ ters 32 (1) (2007) 17–19. doi:10.1364/ol.32.000017.
678
+ [5] Peter T. Rakich, Charles Reinke, Ryan Camacho, Paul Davids, Zheng
679
+ Wang, Giant enhancement of stimulated brillouin scattering in the
680
+ subwavelength limit, Physical Review X 2 (1) (2012) 011008.
681
+ doi:
682
+ 10.1103/PhysRevX.2.011008.
683
+ [6] W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, Z. Wang, Stim-
684
+ ulated brillouin scattering in nanoscale silicon step-index waveguides:
685
+ a general framework of selection rules and calculating sbs gain, Optics
686
+ Express 21 (25) (2013) 31402–31419. doi:10.1364/OE.21.031402.
687
+ [7] C. Wolff, M. J. Steel, B. J. Eggleton, C. G. Poulton, Stimulated brillouin
688
+ scattering in integrated photonic waveguides: Forces, scattering mech-
689
+ anisms, and coupled-mode analysis, Physical Review A 92 (1) (2015)
690
+ 013836. doi:10.1103/PhysRevA.92.013836.
691
+ [8] B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, G. Bahl,
692
+ Brillouin integrated photonics, Nature Photonics 13 (10) (2019) 664–
693
+ 677. doi:10.1038/s41566-019-0498-z.
694
+ [9] G. S. Wiederhecker, P. Dainese, T. P. Mayer Alegre, Brillouin optome-
695
+ chanics in nanophotonic structures, APL Photonics 4 (7) (2019) 071101.
696
+ doi:10.1063/1.5088169.
697
+ 13
698
+
699
+ [10] A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, R. V. Laer, Control-
700
+ ling phonons and photons at the wavelength scale: integrated photon-
701
+ ics meets integrated phononics, Optica 6 (2) (2019) 213–232.
702
+ doi:
703
+ 10.1364/OPTICA.6.000213.
704
+ [11] H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck,
705
+ Z. Wang, P. T. Rakich, Tailorable stimulated Brillouin scattering in
706
+ nanoscale silicon waveguides, Nature Communications 4 (1) (2013) 1944.
707
+ doi:10.1038/ncomms2943.
708
+ [12] R. V. Laer, A. Bazin, B. Kuyken, R. Baets, D. V. Thourhout, Net
709
+ on-chip brillouin gain based on suspended silicon nanowires, New Jour-
710
+ nal of Physics 17 (11) (2015) 115005. doi:10.1088/1367-2630/17/11/
711
+ 115005.
712
+ [13] E. A. Kittlaus, H. Shin, P. T. Rakich, Large brillouin amplification in sil-
713
+ icon, Nature Photonics 10 (7) (2016) 463–467. doi:10.1038/nphoton.
714
+ 2016.112.
715
+ [14] N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, P. T. Rakich,
716
+ A silicon brillouin laser, Science 360 (6393) (2018) 1113–1116.
717
+ doi:
718
+ 10.1126/science.aar6113.
719
+ [15] J. Li, H. Lee, K. J. Vahala, Microwave synthesizer using an on-chip
720
+ brillouin oscillator, Nature Communications 4 (1) (2013) 2097. doi:
721
+ 10.1038/ncomms3097.
722
+ [16] Y. Liu, A. Choudhary, D. Marpaung, B. J. Eggleton, Chip-based bril-
723
+ louin Processing for phase control of rf signals, IEEE Journal of Quan-
724
+ tum Electronics 54 (3) (2018) 1–13. doi:10.1109/JQE.2018.2823323.
725
+ [17] D. M. Chow, Z. Yang, M. A. Soto, L. Thévenaz, Distributed forward
726
+ brillouin sensor based on local light phase recovery, Nature Communi-
727
+ cations 9 (1) (2018) 2990. doi:10.1038/s41467-018-05410-2.
728
+ [18] Y.-H. Lai, M.-G. Suh, Y.-K. Lu, B. Shen, Q.-F. Yang, H. Wang, J. Li,
729
+ S. H. Lee, K. Y. Yang, K. Vahala, Earth rotation measured by a chip-
730
+ scale ring laser gyroscope, Nature Photonics 14 (2020) 345–349. doi:
731
+ 10.1038/s41566-020-0588-y.
732
+ 14
733
+
734
+ [19] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, P. T. Ra-
735
+ kich, Non-reciprocal interband brillouin modulation, Nature Photonics
736
+ 12 (10) (2018) 613–619. doi:10.1038/s41566-018-0254-9.
737
+ [20] R. Van Laer, B. Kuyken, D. Van Thourhout, R. Baets, Interaction
738
+ between light and highly confined hypersound in a silicon photonic
739
+ nanowire, Nature Photonics 9 (3) (2015) 199–203.
740
+ doi:10.1038/
741
+ nphoton.2015.11.
742
+ [21] R. Zhang, J. Sun, Design of silicon phoxonic crystal waveguides for
743
+ slow light enhanced forward stimulated brillouin scattering, Journal of
744
+ Lightwave Technology 35 (14) (2017) 2917–2925. doi:10.1109/JLT.
745
+ 2017.2704615.
746
+ [22] T. Baba, Slow light in photonic crystals, Nature Photonics 2 (8) (2008)
747
+ 465–473. doi:10.1038/nphoton.2008.146.
748
+ [23] R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-
749
+ Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez,
750
+ Í. Molina-Fernández, S. Janz, Waveguide sub-wavelength structures: a
751
+ review of principles and applications, Laser & Photonics Reviews 9 (1)
752
+ (2015) 25–49. doi:https://doi.org/10.1002/lpor.201400083.
753
+ [24] P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, D. R. Smith, Sub-
754
+ wavelength integrated photonics, Nature 560 (7720) (2018) 565–572.
755
+ doi:10.1038/s41586-018-0421-7.
756
+ [25] M. K. Schmidt, C. G. Poulton, G. Z. Mashanovich, G. T. Reed, B. J.
757
+ Eggleton, M. Steel, Suspended mid-infrared waveguides for stimulated
758
+ brillouin scattering, Optics express 27 (4) (2019) 4976–4989. doi:10.
759
+ 1364/OE.27.004976.
760
+ [26] J. Zhang, O. Ortiz, X. L. Roux, E. Cassan, L. Vivien, D. Marris-
761
+ Morini, N. D. Lanzillotti-Kimura, C. Alonso-Ramos, C. Alonso-Ramos,
762
+ Subwavelength engineering for brillouin gain optimization in silicon
763
+ optomechanical waveguides, Optics Letters 45 (13) (2020) 3717–3720.
764
+ doi:10.1364/OL.397081.
765
+ [27] J. Håkansson, D. Van Thourhout, Generating novel waveguides for stim-
766
+ ulated brillouin scattering with genetic algorithms, APL Photonics 4 (1)
767
+ (2019) 010803. doi:10.1063/1.5063783.
768
+ 15
769
+
770
+ [28] C. L. Chen, Foundations for Guided-Wave Optics, John Wiley & Sons,
771
+ Inc, 2005.
772
+ [29] B. Auld, Acoustic Fields And Waves In Solids, Vol. I & II, John Wiley
773
+ & Sons, 1973.
774
+ [30] P. T. Rakich, P. Davids, Z. Wang, Tailoring optical forces in waveguides
775
+ through radiation pressure and electrostrictive forces, Optics Express
776
+ 18 (14) (2010) 14439–14453. doi:10.1364/OE.18.014439.
777
+ [31] COMSOL multiphysics® reference manual v.5.4 (2018).
778
+ [32] S. Ghaffari, S. A. Chandorkar, S. Wang, E. J. Ng, C. H. Ahn, V. Hong,
779
+ Y. Yang, T. W. Kenny, Quantum limit of quality Factor in silicon micro
780
+ and nano mechanical resonators, Scientific Reports 3 (1) (2013) 3244.
781
+ doi:10.1038/srep03244.
782
+ [33] X.-S. Yang, Chapter 5 - genetic algorithms, in:
783
+ X.-S. Yang (Ed.),
784
+ Nature-Inspired Optimization Algorithms, Elsevier, 2014, pp. 77–87.
785
+ doi:10.1016/B978-0-12-416743-8.00005-1.
786
+ 16
787
+
2NE2T4oBgHgl3EQfjAcm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NAyT4oBgHgl3EQfo_gV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bdb1dcaa050387ecd3d3ac78085e7aadbf48c9d26b1f973bef8c214202b085c
3
+ size 159314
3NFQT4oBgHgl3EQf3DZF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10b313251882e2787c7af355a9f6b14923fbb7cba56a4ac1150e8aaf2d97e198
3
+ size 917549
3NFST4oBgHgl3EQfYjhQ/content/2301.13788v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80a6f0eb4e9ec38ef160354e879bb51b61af0885127a49a26a75ea18a8b17582
3
+ size 1467235
3NFST4oBgHgl3EQfYjhQ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5972601904815e359914af348f9e07d48222447a977958f6fff94518c3c57f1
3
+ size 117984
3tAyT4oBgHgl3EQfb_f6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66440a4fe9de050b4c76f3e019e4a61fd0af1d09cf65ae7277fdb5a5c8a1f188
3
+ size 184359
49E4T4oBgHgl3EQfBAv2/content/tmp_files/2301.04849v1.pdf.txt ADDED
@@ -0,0 +1,1823 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Exit options sustain altruistic punishment and decrease the second-order free-riders,
2
+ but it is not a panacea
3
+ Chen Shen1,2, Zhao Song3, Lei Shi2,∗ Jun Tanimoto1, and Zhen Wang3,4†
4
+ 1. Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
5
+ 2. School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China
6
+ 3. School of Mechanical Engineering,Northwestern Polytechnical University, Xi’an 710072, China
7
+ 4. School of Artifcial Intelligence, OPtics and ElectroNics (iOPEN),
8
+ Northwestern Polytechnical University, Xi’an 710072, China
9
+ (Dated: January 13, 2023)
10
+ The emergence and maintenance of altruistic punishment remains an open question and this
11
+ conundrum is shared across diverse fields. In this study, we evaluated the evolution of altruistic
12
+ punishment in a two-stage prisoner’s dilemma game in which cooperators and defectors interact with
13
+ another two actors called altruistic punishers and exiters. Traditionally cooperators and defectors,
14
+ in the first stage, choose to cooperate and defect with their opponent, respectively, but they do not
15
+ punish in the second stage; the altruistic punishers cooperate in the first stage and punish defectors
16
+ in the second stage, and the exiters who simply exit the game in favor of a small payoff.
17
+ We
18
+ found that exiters did not provide any substantial assistance to altruistic punishment in well-mixed
19
+ populations, they destabilize defection and finally replace them. In the finite population, although
20
+ the exit option enables the coexistence of altruistic punishers, defectors, and exiters through cyclic
21
+ dominance. Altruistic punishers never dominate the finite population and the exit option provides
22
+ another alternative cyclic dominance route for the emergence of non-punishing cooperators.
23
+ In
24
+ networked populations, however, adding the exit option allows for the establishment of altruistic
25
+ punishment, and enables the coexistence of altruistic punishers, defectors, and exiters through cyclic
26
+ dominance. However, this type of cyclic dominance is not always stable, with adjustments to the
27
+ exit payoff, this type of cyclic dominance is replaced by the cyclic dominance of non-punishing
28
+ cooperators, defectors, and exiters or a bi-stable state between these two types of cyclic dominance.
29
+ Our results indicate that although the exit option can help explain altruistic punishment, it is
30
+ certainly not a panacea.
31
+ Keywords: Evolutionary game theory; Cooperation; Coexistence; Cyclic dominance; Bi-stable
32
+ INTRODUCTION
33
+ Costly punishment is ubiquitous in many animal
34
+ species including humans [1–3].
35
+ Unlike other animals,
36
+ humans often show altruistic traits, i.e., humans punish
37
+ other individuals who have harmed others even at the ex-
38
+ pense of their own interest [3, 4], however, the emergence
39
+ and maintenance of altruistic punishment is an evolu-
40
+ tionary conundrum as costly punishment is unlikely to
41
+ evolve according to natural selection. Costly punishment
42
+ reduces the payoff for both the punisher and the pun-
43
+ ished. If it is the fittest who survive, the second-order
44
+ free riders that cooperate but do not punish are better
45
+ off than punishers, and defectors should eventually take
46
+ over the whole population. Therefore, the understanding
47
+ of whether and how costly punishment can evolve is a
48
+ crucial issue in the study of human cooperation. Fehr
49
+ and G¨achter pointed out that the evolutionary study of
50
+ human cooperation in large groups of unrelated individ-
51
+ uals should include a focus on explaining altruistic pun-
52
+ ishment [4]. In addition, they argued that negative emo-
53
+ tions may be a potential explanation for the emergence
54
+ of costly punishment.
55
+ ∗ shi [email protected]
56
57
+ To resolve this evolutionary puzzle, many scholars have
58
+ explored how and why costly punishment can emerge in
59
+ humans both from a theoretical and experimental per-
60
+ spective. Egas Martijn and Riedl Arno experimentally
61
+ explored the boundary conditions that altruistic punish-
62
+ ment can promote cooperation.
63
+ They found that the
64
+ maintenance of cooperation is subject to the cost-to-
65
+ effect ratio of altruistic punishment, and cooperation is
66
+ maintained if the conditions for altruistic punishment are
67
+ relatively favorable [5]. It has been well established that
68
+ voluntary participation plays a vital role in sustaining the
69
+ prevalence of costly punishment both in finite and infinite
70
+ populations [6–11]. The main idea behind established al-
71
+ truistic punishment is that a loner itself is sufficient to
72
+ maintain cooperation through cyclic dominance even in a
73
+ one-shot game. Other reciprocity mechanisms including
74
+ indirect reciprocity [12–16], group selection [17–19], spa-
75
+ tial interaction [20–23], prior commitment [24–27], and
76
+ so on [28], that can explain the emergence of cooperation
77
+ have been applied to explain costly punishment, and its
78
+ effect on costly punishment has previously been widely
79
+ explored.
80
+ To avoid the exploitation of defectors, exiters simply
81
+ exit the game in favor of a small-but-positive payoff and
82
+ generate nothing for their opponent. While loners can
83
+ receive a small-but-positive payoff by opting out but gen-
84
+ erates the same payoff for its opponent. Although these
85
+ arXiv:2301.04849v1 [q-bio.PE] 12 Jan 2023
86
+
87
+ 2
88
+ two mechanisms seem materially similar, such a subtle
89
+ difference leads to completely different outcomes [29, 30].
90
+ On one hand, exit means a potential punishment for their
91
+ opponent, although the exiters can avoid being exploited
92
+ by the defectors through opting out, they also hurt the
93
+ cooperators. However, loners enable the coexistence with
94
+ cooperators and defectors through cyclic dominance in a
95
+ one-shot game [31], while exiters allow cooperation to
96
+ flourish only if they adhere to either direct, indirect or
97
+ network reciprocity [32]. Given these differences, an in-
98
+ teresting question arises: to what extent do exiters help
99
+ explain altruistic punishment. To this end, we introduce
100
+ the exit option and altruistic punishment in a two-stage
101
+ prisoner’s dilemma game, and we start our analysis in
102
+ well-mixed populations in which the extended prisoner’s
103
+ dilemma game in both finite and infinite populations are
104
+ considered. Then, we turn our attention to a networked
105
+ population.
106
+ In doing so, we found that the exit op-
107
+ tion does not bring any substantial benefit to altruistic
108
+ punishment in well-mixed populations, but enables the
109
+ existence of altruistic punishment in networked popula-
110
+ tions.
111
+ In addition, multiple dynamical phenomena in-
112
+ cluding cyclic dominance and a bi-stable state can be
113
+ observed in networked populations.
114
+ METHODS
115
+ We studied the evolution of altruistic punishment in
116
+ a two-stage prisoner’s dilemma game by introducing two
117
+ other action types, altruistic punishment and exit. In the
118
+ first stage, each individual must make a choice simulta-
119
+ neously between cooperation (C), defection (D), and exit
120
+ (E). In the second stage, cooperators decide whether to
121
+ punish the defectors at a personal cost to themselves γ.
122
+ To the defectors, this means an imposed fine β.
123
+ This
124
+ process results in four possible actions:
125
+ • AP, cooperate and punish defectors. Those who
126
+ cooperate and punish are altruistic punishers be-
127
+ cause they punish free riders even at the expense
128
+ of its own interests .
129
+ • NC,
130
+ cooperate but do not punish defectors.
131
+ These non-punishing cooperators are also known
132
+ as second-order free riders because by free-riding
133
+ on punishment save the the cost of punishing the
134
+ defectors.
135
+ • D, defect but do not punish. These are also known
136
+ as first-order free riders.
137
+ • E, exit the game in favor of a small but positive
138
+ payoff ϵ irrespective of whom they encounter. They
139
+ do not participate in these two stages.
140
+ In a typical prisoner’s dilemma game, mutual cooper-
141
+ ation (defection) generates the reward (punishment) R
142
+ (P). If one player cooperates and the other defects, the
143
+ cooperative player gets the sucker’s payoff S, and the de-
144
+ fected player obtains the temptation to defect T.
145
+ For
146
+ simplicity, we choose the weak prisoner’s dilemma game
147
+ as our base model by setting R = 1, P = S = 0, T = b.
148
+ TABLE I.
149
+ Payoff matrix for the weak prisoner’s dilemma
150
+ game with altruistic punishment and an exit option.
151
+ AP
152
+ NC
153
+ D
154
+ E
155
+ AP
156
+ 1
157
+ 1
158
+ −γ
159
+ 0
160
+ NC
161
+ 1
162
+ 1
163
+ 0
164
+ 0
165
+ D
166
+ b − β
167
+ b
168
+ 0
169
+ 0
170
+ E
171
+ ϵ
172
+ ϵ
173
+ ϵ
174
+ ϵ
175
+ The extended weak prisoner’s dilemma game contains four
176
+ competing action types: altruistic punishers who cooperate
177
+ and punish defectors(AP), non-punishing cooperators who
178
+ cooperate but do not punish defectors (NC), defectors who
179
+ free ride on the non-punishing cooperators and do not punish
180
+ (D), and exiters who exit the game irrespective of whom they
181
+ encounter (E). The first row indicates that when an altruis-
182
+ tic punisher, AP, meets another altruistic punisher AP, non-
183
+ punishing cooperator NC, defector D, or exiter E, they earn
184
+ a payoff equal to 1, 1, −γ, or 0, respectively. When a non-
185
+ punishing cooperator meets another altruistic punisher, non-
186
+ punishing cooperator, defector, or exiter, they earn a payoff
187
+ equal to 1, 1, 0, or 0, respectively. Analogously, when a de-
188
+ fector meets an altruistic punisher, non-punishing cooperator,
189
+ defector, or exiter, they earn a payoff equal to b−β, b, 0, or 0,
190
+ respectively. Finally, exiters earn a payoff equal to ϵ ∈ [0, 1),
191
+ irrespective of whom they meet, and their opponent receives
192
+ nothing.
193
+ To make exiting less valuable than cooperating, and to
194
+ ensure that the weak prisoner’s dilemma game satisfied
195
+ the payoff ranking of the strict prisoner’s dilemma game,
196
+ T > R > P > S was used. Additional limits placed on
197
+ the parameters were 1 ≤ b < 2 and ϵ < 1. The described
198
+ above is summarized in table I. Altruistic punishment
199
+ maintains cooperation only when its effectiveness is rel-
200
+ atively large [5, 33], thus to investigate the effect of the
201
+ exit option on the explanation of altruistic punishment,
202
+ throughout this study, the cost of punishment γ and the
203
+ fine of the defectors was set as 0.1 and 0.3, respectively.
204
+ Finite population
205
+ We first considered a finite and well-mixed population
206
+ of N individuals.
207
+ Each individual adopted the Moran
208
+ process, also known as frequently dependent process, to
209
+ select their action. At each time step, a randomly se-
210
+ lected player i with fitness fi = esΠi (Πi is the actual
211
+ payoff of the individual i obtained through their interac-
212
+ tion) updates its action by imitating the action of player
213
+ j with fitness fj = esΠj who is selected with a proba-
214
+ bility proportional to its fitness. Here, s is the selection
215
+ strength, the condition of s → 0 corresponds to the weak
216
+ selection and evolution proceeds as neutral drift.
217
+ We
218
+ further assumed that with a small probability µ, players
219
+ randomly select their action from the rest of the other
220
+ actions.This small mutation ensures that the population
221
+ is homogeneous most of the time.
222
+ Suppose that there are only two actors in the popula-
223
+ tion, i.e., action A and B, and these actions can be one
224
+
225
+ 3
226
+ of the four actions among the full action set {a, b, c, d}.
227
+ Here, the symbols a, b, c, d represent AP, NC, D and E,
228
+ respectively. In a finite population of size N with x A
229
+ and y = N − x B actions, the average payoff of Πxy and
230
+ Πyx to players with A and B actions are the following:
231
+ ΠAB = (x−1)PAA+(N−x)PAB
232
+ N−1
233
+ ΠBA = xPBA+(N−x−1)PBB
234
+ N−1
235
+ ,
236
+ (1)
237
+ where PAB is the payoff obtained from the single en-
238
+ counter of actors A and B, and so does payoffs PAA, PBA,
239
+ and PBB. This allows us to describe the evolutionary dy-
240
+ namics of the population in terms of a reduced Markov
241
+ Chain of size 4 [34–37]. Given the above assumptions,
242
+ the probability to change the number of x individuals
243
+ with action A in a population of y = N − x individuals
244
+ with action B by ±1, T ±
245
+ AB is:
246
+ T +
247
+ AB =
248
+ xfi
249
+ xfi+yfj
250
+ y
251
+ N
252
+ T −
253
+ AB =
254
+ yfj
255
+ xfi+yfj
256
+ x
257
+ N
258
+ ,
259
+ (2)
260
+ and hence the fixation probability ρAB of a single mutant
261
+ actor A within a population of N − 1 B actors can be
262
+ derived as [38, 39]:
263
+ ρAB =
264
+ 1
265
+ N−1
266
+
267
+ k=0
268
+ k�
269
+ x=1
270
+ T −
271
+ AB
272
+ T +
273
+ AB
274
+ =
275
+ 1
276
+ N−1
277
+
278
+ k=0
279
+ k�
280
+ x=1
281
+ esΠBA
282
+ esΠAB
283
+ .
284
+ (3)
285
+ The fixation probabilities ρAB define the transition prob-
286
+ abilities of the reduced Markov Chain, with the following
287
+ associated transition matrix:
288
+
289
+
290
+
291
+ AP
292
+ NC
293
+ D
294
+ E
295
+ AP
296
+ ρaa
297
+ ρab
298
+ ρac
299
+ ρad
300
+ NC
301
+ ρba
302
+ ρbb
303
+ ρbc
304
+ ρbd
305
+ D
306
+ ρca
307
+ ρcb
308
+ ρcc
309
+ ρcd
310
+ E
311
+ ρda
312
+ ρdb
313
+ ρdc
314
+ ρdd
315
+
316
+
317
+ �.
318
+ (4)
319
+ Here, ρAA = 1 − �
320
+ A̸=B
321
+ ρAB, A, B ∈ {a, b, c, d}. The nor-
322
+ malized right eigenvector to the largest eigenvalue deter-
323
+ mines the stationary distribution of each strategy. For
324
+ any pair of strategies A and B in the finite population,
325
+ natural selection favors B replacing A only if ρAB > 1
326
+ N .
327
+ Infinite population
328
+ We then employed replicator dynamics to analyze the
329
+ evolutionary outcomes in an infinite and well-mixed pop-
330
+ ulation. Let x, y, z, w denote the fractions of altruistic
331
+ punishers (AP), non-punishing cooperators (NC), de-
332
+ fectors (D), and exiters (E) in the population. Where
333
+ 0 ≤ x, y, z, w ≤ 1, and x + y + z + w = 1. The replicator
334
+ equations are:
335
+ ˙x = x
336
+
337
+ ΠAP − Π
338
+
339
+ ,
340
+ ˙y = y
341
+
342
+ ΠNC − Π
343
+
344
+ ,
345
+ ˙z = z
346
+
347
+ ΠD − Π
348
+
349
+ ,
350
+ ˙w = w
351
+
352
+ ΠE − Π
353
+
354
+ .
355
+ (5)
356
+ The symbols ΠAP , ΠNC, ΠD, and ΠE denote the average
357
+ payoff of altruistic punishers, non-punishing cooperators,
358
+ defectors, and exiters. Whereas Π = xΠAP + yΠNC +
359
+ zΠD+wΠE is the average payoff of the whole population.
360
+ According to the defined payoffs in table I, we obtained
361
+ the following equation:
362
+ ΠAP = x + y − zγ
363
+ ΠNC = x + y
364
+ ΠD = x(b − β) + yb
365
+ ΠE = ϵ
366
+ .
367
+ (6)
368
+ Using the constraint w = 1 − x − y − z, we obtained:
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+
382
+ ˙x = f (x, y, z)
383
+ = x [(1 − x) (ΠAP − ΠE) − y (ΠNC − ΠE) − z (ΠD − ΠE)]
384
+ ˙y = g (x, y, z)
385
+ = y [(1 − y) (ΠNC − ΠE) − x (ΠAP − ΠE) − z (ΠD − ΠE)]
386
+ ˙z = h (x, y, z)
387
+ = z [(1 − z) (ΠD − ΠE) − y (ΠNC − ΠE) − x (ΠAP − ΠE)]
388
+ (7)
389
+ For the detailed stability analysis of each equilibria,
390
+ please refer to the Appendix.
391
+ Networked population
392
+ Different with well-mixed populations, global interac-
393
+ tions in which an individual can interact with any other
394
+ individual are no longer possible in the networked pop-
395
+ ulation. Instead, networks only allow local interactions,
396
+ which means that individuals can only interact with their
397
+ direct neighbors. Our basic network structure is a two
398
+ dimensional regular lattice with periodic boundary con-
399
+ ditions, each node was occupied by one individual, and
400
+ each individual can only interact with its neighbors along
401
+ its links. Our simulation contained the following steps.
402
+ Initially, each individual was designed as either an altru-
403
+ istic punisher (AP), a non-punishing cooperator (NC),
404
+ a defector (D), or an exiter (E) with equal probability.
405
+ Each player acquires their total payoff by playing with
406
+ all their direct neighbors according to the payoff matrix
407
+ defined in table I. A randomly selected player i decides
408
+ to imitate the strategy of player j who is also randomly
409
+ selected from all the direct neighbors of player i by com-
410
+ paring their payoff difference with the following proba-
411
+ bility:
412
+ Wi←j =
413
+ 1
414
+ 1 + exp ((Πi − Πj) /K),
415
+ (8)
416
+ where Πi and Πj is the acquired total payoff of the focal
417
+ player i and its randomly selected neighbor j, respec-
418
+ tively. K denotes the noise in the imitation process, and
419
+ we fixed the value of K to be 0.1 throughout the study.
420
+ A full Monte Carlo step is to repeat the above proce-
421
+ dure L2 times, and L2 is the number of nodes in the given
422
+ network. Each individual update their strategy once on
423
+
424
+ 4
425
+ FIG. 1.
426
+ Exiters establish altruistic punishment in a
427
+ finite population, but altruistic punishers struggle to
428
+ dominate the population. A. Stationary probability dis-
429
+ tributions of each actors independence on the exiters’ payoff
430
+ ϵ.
431
+ B. Transition probabilities for each pair of actors when
432
+ the exiters’ payoff is negative (left) and positive (right). The
433
+ parameter values are b = 1.5, β = 0.3, γ = 0.1, s = 0.2,
434
+ N = 100.
435
+ average. To subside the transient dynamics and avoid the
436
+ finite-size effect, we ran simulations for 50,000 steps on a
437
+ regular lattice with size ranging from 200*200 to 800*800.
438
+ The final fraction of each strategy was obtained after up
439
+ to 45,000 steps. The presented data was averaged over
440
+ 20 independent runs.
441
+ RESULTS
442
+ Well-mixed populations
443
+ We started our analysis in a well-mixed and finite pop-
444
+ ulation, then we turned our attention to a well-mixed and
445
+ infinite population, and finally, we investigated the evo-
446
+ lution of altruistic punishment in networked population.
447
+ Finite population.
448
+ In the prisoner’s dilemma game
449
+ with altruistic punishment, cooperation can only be
450
+ maintained if the cost-to-fine ratio of altruistic punish-
451
+ ment is relatively small [5].
452
+ The favorable conditions
453
+ for altruistic punishment imply the small enough pun-
454
+ ishment cost or high enough punishment fine. Although
455
+ altruistic punishment can establish the cooperation even
456
+ in a one-shot game, punishment reduces the social wel-
457
+ fare [40, 41]. If the cost-to-fine ratio of altruistic pun-
458
+ ishment is high, altruistic punishment does not support
459
+ the survival of cooperation, and thus defectors take over
460
+ the whole population. As previously mentioned, nega-
461
+ tive values of exiters’ payoff revert the extended model
462
+ to the traditional weak prisoner’s dilemma game with al-
463
+ truistic punishment, and in this case, selection favors the
464
+ dominance of the defectors (refer to the left panel in fig-
465
+ ure.1B and figure.A1A). A small but positive exiters’ pay-
466
+ off enables the coexistence of altruistic punishers through
467
+ cyclic dominance with defectors and exiters (refer to the
468
+ right panel in figure.1B and figure.A1B). However, ex-
469
+ iters also enable the survival of non-punishing cooper-
470
+ ators, and allows the coexistence of non-punishing co-
471
+ operators, defectors, and exiters through an alternative
472
+ route of cyclic dominance. With increasing ϵ, the fac-
473
+ tion of altruistic punishers first reaches its peak, where
474
+ the maximum faction of altruistic punishers is less than
475
+ 0.2, and then decreases until its extinction. (figure.1A).
476
+ The exiters facilitate the evolution of altruistic punishers
477
+ in a finite population, but also allow for the survival of
478
+ second-order free riders. Importantly, altruistic punish-
479
+ ers never dominate the whole population.
480
+ Infinite population.
481
+ The situation changes greatly
482
+ when the finite population is replaced by the infinite pop-
483
+ ulation. Stability analysis shows that, (i), when b−β > 1
484
+ and ϵ < 0, the monomorphic defecting equilibrium is sta-
485
+ ble, and the others are unstable (figure.A2A); (ii), when
486
+ b−β > 1 and ϵ > 0, the monomorphic exiting equilibrium
487
+ is stable, and the others are unstable (figure.A2B); (iii),
488
+ when b − β < 1 and ϵ < 0, the evolutionary dynamics
489
+ result in either the mixed equilibrium of altruistic pun-
490
+ ishers and non-punishing cooperators or the monomor-
491
+ phic defecting equilibrium (figure.A2C); and (iv), when
492
+ b − β < 1 and ϵ > 0, the evolutionary dynamics result in
493
+ either the mixed equilibrium of altruistic punishers and
494
+ non-punishing cooperators or the monomorphic exiting
495
+ equilibrium (figure.A2D). In other words, exiters support
496
+ the emergence of altruistic punishment only when the
497
+ cost-to-fine ratio of punishment is favorable for coopera-
498
+ tors in the infinite population. Nevertheless, the exiters
499
+ destabilize the defection and eventually replace them re-
500
+ gardless of whether altruistic punishment can establish
501
+ cooperation.
502
+ In a word, our results show that when the exit option
503
+ was introduced in well-mixed populations, there was little
504
+ additional benefit to the dominance of altruistic punish-
505
+ ment. Rather by adding the exit option the equilibrium
506
+ was either monomorphic exiting in the infinite popula-
507
+ tion or joint dominance between the defectors and ex-
508
+ iters in the finite population. Given the above conclusion,
509
+ the natural question arises: does a networked population
510
+ support the dominance of altruistic punishment in the
511
+ extended model?
512
+ Networked population
513
+ Figure.2 shows the full ϵ − b phase diagram obtained
514
+ by the extensive Monte Carlo simulations. It is noted
515
+
516
+ 1.0
517
+ A
518
+ AP
519
+ 0.8
520
+ NC
521
+
522
+ Fractions
523
+ D
524
+ 0.6
525
+ A
526
+ E
527
+ V
528
+ 0.4
529
+ 7
530
+ 0.2
531
+ 0.0
532
+ +
533
+ 0.0
534
+ 0.2
535
+ 0.4
536
+ 0.6
537
+ 0.8
538
+ 1.0
539
+ Exit pay-off, E
540
+ B
541
+ AP
542
+ NC
543
+ NC
544
+ AP
545
+ P=0.01
546
+ p=0.01
547
+ 4%
548
+ 1%
549
+ 8%
550
+ 16%
551
+ p=0.015
552
+ =0.07
553
+ =0.
554
+ =0.
555
+ =0.04
556
+ =0.04
557
+ =0.07
558
+ =0.015
559
+ E
560
+ D
561
+ E
562
+ D
563
+ p=0.04
564
+ p=0.04
565
+ 0%
566
+ 95%
567
+ 44%
568
+ 32%
569
+ E =-0.2
570
+ E =0.25
571
+ FIG. 2. Adding exit option establishes altruistic pun-
572
+ ishment in networked population. Presented is the full
573
+ ϵ − b phase diagram obtained by Monte Carlo simulations of
574
+ the extended weak prisoner’s dilemma game on a regular lat-
575
+ tice. Exiters dominate the whole population when the incen-
576
+ tives to the exiters are large, ϵ ≳ 0.51. Fewer exit option in-
577
+ centives lead to six possible outcomes. If b is relatively small,
578
+ b ≲ 1.19, the effectiveness of altruistic punishment ensures
579
+ the dominance of cooperators, and, altruistic punishers can
580
+ coexist with defectors when 1.19 ≲ b ≲ 1.29. For large temp-
581
+ tation b, b ≳ 1.29, negative ϵ leads to full defection, whereas,
582
+ positive ϵ ensures the coexistence of altruistic punishers with
583
+ defectors and exiters, the coexistence of second-order free rid-
584
+ ers with defectors and exiters, or the bi-stable state of these
585
+ two coexistence types.
586
+ that the addition of the simple exit option leads to com-
587
+ plicated evolutionary outcomes. Initially, when the in-
588
+ centives to exiters are sufficiently large, ϵ ≳ 0.51, the
589
+ exiters outcompete other action types and dominate the
590
+ whole population (the E phase in figure.2), and this is
591
+ consistent with previous findings [32]. Less incentives to
592
+ exiters, ϵ ≲ 1.51, lead to six different possible outcomes.
593
+ In detail, if the temptation to defect is relatively small,
594
+ b ≲ 1.29, altruistic punishment together with network
595
+ reciprocity are sufficient to maintain prosocial behavior
596
+ (the All C phase and the AP + D phase in figure.2).
597
+ When b ≲ 1.19, defectors can be completely eliminated
598
+ by altruistic punishers, and thus altruistic punishers and
599
+ non-punishing cooperators can coexist in a regular lat-
600
+ tice.
601
+ In the absence of defectors, non-punishing coop-
602
+ erators and altruistic punishers cannot be distinguished,
603
+ and whether the evolutionary dynamics lead to the full
604
+ AP state, the full NC state or the mixed AP +NC state
605
+ are determined by the initial conditions (the All C phase
606
+ in figure.2). With increasing b, 1.19 ≲ b ≲ 1.29, the effec-
607
+ tiveness of altruistic punishment is greatly reduced, and
608
+ defectors cannot be completely eliminated by altruistic
609
+ punishers, and they coexist with the altruistic punish-
610
+ ers in the population (the AP + D phase in figure.2).
611
+ It is well established that altruistic punishment together
612
+ with network reciprocity promotes cooperation even in
613
+ the presence of antisocial punishment or second-order
614
+ free-riders when the cost-to-fine ratio of punishment is
615
+ low
616
+ [14, 21, 22].
617
+ The results of this study confirmed
618
+ this conclusion. If b is sufficiently large, altruistic pun-
619
+ ishment loses its effectiveness in sustaining prosocial be-
620
+ havior, and defectors dominate the entire population for
621
+ negative ϵ (the D phase in figure.2). When exit options
622
+ are added, this undesirable outcome is solved and leads
623
+ to three possible outcomes. These outcomes can be either
624
+ (i) the coexistence of AP, D and E (the AP +D+E phase
625
+ in figure.2), (ii) the coexistence of NC, D, and E (the
626
+ NC +D +E phase in figure.2), or (iii) the bi-stable state
627
+ between these two types of coexistences (the B phase in
628
+ figure.2). When the cost-to-fine ratio of punishment is
629
+ relatively large, the exiters sustain cooperation in a net-
630
+ worked population in that it facilitates its coexistence
631
+ of two different routes for altruistic punishers and non-
632
+ punishing cooperators, but interestingly, these two types
633
+ of cooperators cannot coexist in the networked popula-
634
+ tion.
635
+ To gain a better understanding of how these actors
636
+ coexist in the population, the evolution features of the
637
+ fractions of each actors was examined and the results
638
+ are presented in figure.3.
639
+ In the bi-stable phase, it is
640
+ the cooperators (altruistic punishers or non-punishing
641
+ cooperators) start giving way to the defectors and with
642
+ fewer cooperators around, defectors then giving way to
643
+ the exiters. With large numbers of exiters, both the al-
644
+ truistic punishers and non-punishing cooperators com-
645
+ pete for the exiters as they can only survive by adhering
646
+ to the exiters. The described phenomenon is the cyclic
647
+ dominance in which these actors dominate one another.
648
+ Here, the cyclic dominance routes can be either (i) al-
649
+ truistic punishers that dominate exiters, who dominate
650
+ defectors, who in turn dominate the altruistic punishers;
651
+ or (ii) non-punishing cooperators that dominate the ex-
652
+ iters, who dominate the defectors, who then dominate
653
+ the non-punishing cooperators.
654
+ As a key mechanism,
655
+ researchers have verified the efficiency of cyclic domi-
656
+ nance in sustaining bio-diversity or promoting cooper-
657
+ ation [42, 43]. Although we started with random initial
658
+ conditions, the evolutionary outcomes are different by
659
+ implementing more independent simulations under same
660
+ parameter combinations. For example, in the NC+D+E
661
+ attractor (figure.3A), the fraction of altruistic punishers
662
+ is temporarily much larger than that of non-punishing co-
663
+ operators at around 100th step, then the faction of altru-
664
+ istic punishers gradually decreases until it is eliminated
665
+ and the fraction of second-order free riders increases un-
666
+ til it reaches a stable state. However, in the AP + D + E
667
+ attractor (figure.3B), the fraction of altruistic punishers
668
+ is always comparable to that of non-punishing cooper-
669
+ ators up to around 1000th step, after this critical time
670
+ step, the fraction of non-punishing cooperators gradually
671
+ decreases until it is eliminated, and altruistic punishers
672
+ gradually increase to reach a stable state. Thus, it is the
673
+ initial distributions of the actors which determines the
674
+
675
+ 1.0
676
+ 0.8
677
+ E
678
+ 3
679
+ Exit's payoff,
680
+ 0.6
681
+ 0.4
682
+ NC+D+E
683
+ All C
684
+ AP+D+E
685
+ 0.2
686
+ AP+D
687
+ B
688
+ 0.0
689
+ D
690
+ 1.0
691
+ 1.2
692
+ 1.4
693
+ 1.6
694
+ 1.8
695
+ 2.0
696
+ Temptation, b6
697
+ FIG. 3.
698
+ Time dependence of actor abundances exhibits complicated evolutionary dynamics.
699
+ In the bi-stable
700
+ phase, starting from random initial conditions, small incentives to exit option lead the system to either NC + D + E or
701
+ AP + D + E attractor but the coexistence of these four actors is not possible. During the evolution, if the abundance of
702
+ altruistic punishers in the initial stage is much larger than that of the non-punishing cooperators, then altruistic punishers are
703
+ eliminated and non-punishing cooperators coexist with defectors and exiters through cyclic dominance (figure.3A). However,
704
+ if the abundance of altruistic punishers in the initial stage is comparable to that of non-punishing cooperators, then the
705
+ non-punishing cooperators are eliminated and altruistic punishers coexist with defectors and exiters through cyclic dominance
706
+ (figure.3B). Larger incentives to exiters turn the bi-stability to monostability and the evolutionary outcomes are determined
707
+ by the incentives that were presented to exiters. The parameters were fixed as b = 1.8, ϵ = 0.05 (top rows), ϵ = 0.2 (bottom
708
+ left), and ϵ = 0.4(bottom right).
709
+ fate of altruistic punishers and non-punishing coopera-
710
+ tors.
711
+ The phenomenon of bi-stability disappears by increas-
712
+ ing the incentives for exiters.
713
+ Evolutionary dynamics
714
+ lead to either a NC + D + E phase or a AP + D + E
715
+ phase depending on the incentives for exiters. Although
716
+ both altruistic punishers and non-punishing cooperators
717
+ can dominate exiters when the fraction of exiters reaches
718
+ its peak. However, it is non-punishing cooperators who
719
+ dominate the exiters when the incentives for exiters are
720
+ intermediate, ϵ = 0.2.
721
+ Altruistic punishers lose when
722
+ in indirect competition with the non-punishing cooper-
723
+ ators and it is eliminated with simulation proceeds. Fi-
724
+ nally, the non-punishing cooperators coexist with the de-
725
+ fectors and exiters through cyclic dominance in the net-
726
+ worked population(figure.3C). If the incentives for exiters
727
+ are larger, ϵ = 0.4, it is the altruistic punishers start to
728
+ dominate the exiters, and the non-punishing cooperators
729
+ cannot exceed the exiters and is eventually eliminated.
730
+ Finally, the altruistic punishers coexist with defectors
731
+ and exiters through cyclic dominance in the system (fig-
732
+ ure.3D).
733
+ To understand the quantitative power relationships at
734
+ the equilibria abundances of these actors, we present the
735
+ two representative cross sections of the phase diagram in
736
+ figure.4. Along the vertical transect of the ϵ − b phase
737
+ plane, figure.4A shows the stationary fractions of the four
738
+ competing actors in dependence on the exit payoff ϵ at
739
+ b = 1.8. In the traditional weak prisoner’s dilemma game
740
+ with only cooperators and defectors, a high temptation
741
+ leads to the complete dominance of defectors and the net-
742
+ work reciprocity loses its efficiency to support the coexis-
743
+ tence of cooperators and defectors [44]. Although adding
744
+ altruistic punishment in the weak prisoner’s dilemma
745
+ game can avoid this unfavorable outcome, its efficiency
746
+ to decrease defection is at the expanse of social welfare.
747
+
748
+ A
749
+ B
750
+ B phase: NC+D+E attractor
751
+ B phase: AP+D+E attractor
752
+ 1.0
753
+ 1.0
754
+ = 0.05
755
+ 0.8
756
+ 0.8
757
+ = 0.05 -
758
+ Fractions
759
+ 0.6
760
+ 0.6
761
+ 0.4
762
+ 0.4
763
+ 0.2
764
+ 0.2
765
+ 0.0
766
+ 0.0
767
+ 10-2 10-1 100101 102 103
768
+ 104
769
+ 10-2
770
+ 10-1 100 101102 103104
771
+ C
772
+ D
773
+ NC+D+E phase
774
+ AP+D+E phase
775
+ 1.0
776
+ 1.0
777
+ AP
778
+ = 0.2
779
+ 8= 0.4
780
+ 0.8
781
+ 0.8
782
+ NC
783
+ Fractions
784
+ 0.6
785
+ D
786
+ 0.6
787
+ E
788
+ 0.4
789
+ 0.4
790
+ 0.2
791
+ 0.2
792
+ 0.0
793
+ 0.0
794
+ 2 10-1 100 101 102 103 104
795
+ 10-2 10-1 100 101 102 103 104
796
+ 10-2
797
+ time steps
798
+ time steps7
799
+ FIG. 4. Power relations between altruistic punishers, second-order free riders, defectors, and exiters exhibiting
800
+ complicated equilibra. A. Along the vertical transect of ϵ − b phase at b = 1.8. When ϵ ≲ 0.06, the networked population
801
+ falls into the bi-stable state between the coexistence type of altruistic punishers, defectors, and exiters and the coexistence
802
+ type of second-order free riders, defectors and exiters. In the range 0.06 ≲ ϵ ≲ 0.16, altruistic punishment outcompetes the
803
+ second-order free riders, and coexists with the defectors and exiters. Whereas, in the range 0.16 ≲ ϵ ≲ 0.17, there is narrow
804
+ dominance of the bi-stable state. In the range 0.17 ≲ ϵ ≲ 0.25, the second-order free riders outcompete the altruistic punishers,
805
+ and coexist with the defectors and exiters. When 0.25 ≲ ϵ ≲ 0.51, the coexistence of altruistic punishers, defectors, and exiters
806
+ again dominates the population. Finally the eixters dominate the population when 0.51 ≲ ϵ. B. Along the horizontal transect
807
+ of ϵ−b phase plane at ϵ = 0.2, the effectiveness of altruistic punishment together with network reciprocity is sufficient to secure
808
+ prosocial behavior when b ≲ 1.29. With increasing b, altruistic punishment loses its efficiency to sustain prosocial behavior,
809
+ and adding exit option enables the networked population to first enter a coexistence state of altruistic punishers, defectors, and
810
+ exiters in the temptation range of 1.29 ≲ b ≲ 1.73, and reaches a coexistence state between second-order free riders, defectors,
811
+ and exiters when b ≳ 1.73.
812
+ That is the decreasing defection can be realized only if
813
+ the cost-to-fine ratio of altruistic punishment is relatively
814
+ low, i.e., small punishment cost γ or large punishment
815
+ fine β [5, 20–22]. If the cost-to-fine ratio of altruistic pun-
816
+ ishment is relatively large, the altruistic punishment to-
817
+ gether with network reciprocity cannot provide sufficient
818
+ benefit for cooperators, and the complete dominance of
819
+ defectors is still as per the Nash equilibrium. Adding the
820
+ exit option to the weak prisoner’s dilemma game with
821
+ altruistic punishment changes the equilibrium dramati-
822
+ cally even if the conditions to support cooperation for
823
+ altruistic punishment are unfavorable.
824
+ When exit is costly (ϵ < 0), the defectors dominate the
825
+ whole population (the D phase in figure.2). As shown
826
+ in figure.4A, if the incentives to exiters are small but
827
+ positive, the D phase gives way to the B phase, where
828
+ the system converges to either the AP +D +E attractor
829
+ or the NC +D +E attractor depending on the results of
830
+ the indirect competition between the altruistic punishers
831
+ and non-punishing cooperators.
832
+ By further increasing
833
+ the ϵ, the NC + D + E phase is reached at ϵ ≈ 0.17, and
834
+ there are two narrow strips that AP + D + E phase and
835
+ B phase can dominate separately during this increment.
836
+ The AP + D + E phase dominates in the range 0.06 ≲
837
+ ϵ ≲ 0.16, and the B phase is short-lived again in the
838
+ range 0.16 ≲ ϵ ≲ 0.17. As ϵ continues to increase, the
839
+ NC + D + E phase gives way to AP + D + E phase
840
+ via discontinuous phase transition at ϵ ≈ 0.25. When
841
+ incentives to exiters are sufficiently large, the AP +D+E
842
+ phase is finally replaced by the E phase at the critical
843
+ point ϵ ≈ 0.51.
844
+ Figure.4B shows the horizontal transect of ϵ − b at
845
+ ϵ = 0.2, it also reveals the power relations between these
846
+ competing actors, but it is dependent on the temptation
847
+ level, b. When b is small, 1 ≤ b ≲ 1.29, the altruistic pun-
848
+ ishment together with the network reciprocity are able to
849
+ support prosocial behavior. When 1 ≤ b ≲ 1.23, the al-
850
+ truistic punishers can completely eliminate the defectors,
851
+ the elimination of the defectors also negatively affects the
852
+ exiters, and thus altruistic punishers coexist with non-
853
+ punishing cooperators as they cannot be distinguished in
854
+ the absence of defectors. The All C phase gives way to
855
+ the AP + D phase through continuous phase transition.
856
+ Although the advantages of cooperators decreases with
857
+
858
+ A
859
+ B
860
+ NC+D+E
861
+ B
862
+ E
863
+ AP+D+E
864
+ NC+D+E
865
+ 1.0
866
+ 1.0
867
+ 0.8
868
+ 0.8
869
+ AP
870
+
871
+ ractions
872
+ NC
873
+ 0.6
874
+ 0.6
875
+ ID
876
+ -E
877
+ 0.4
878
+ 0.4
879
+ M
880
+ 0.2
881
+ 0.2
882
+ 0.0
883
+ 0.0
884
+ 15888888888
885
+ 0.0
886
+ 0.2
887
+ 0.4
888
+ 0.6
889
+ 0.8
890
+ 1.0
891
+ 1.0
892
+ 1.2
893
+ 1.4
894
+ 1.6
895
+ 1.8
896
+ 2.0
897
+ Exit pay-off,
898
+ temptation, b8
899
+ FIG. 5. Evolutionary snapshots reveal the detailed dominance modes between all actors. Shown are evolutionary
900
+ snapshots at different time steps (column) and for different temptations for defection (rows). When the temptation is small
901
+ (top row), both altruistic punishers and second-order free riders dominate the exiters, who take over the defectors. However,
902
+ the decrease of exiters is much fast than its increase, and they are eliminated first. The defectors are then eliminated by the
903
+ altruistic punishers, and finally the altruistic punishers coexist with second-order free riders in the population, and these two
904
+ actors cannot separately be distinguished. When the temptation is larger (second row), the fate of exiters is the same as in the
905
+ first row, however, the larger temptation leads more competitive defectors. Therefore, instead of completely dominating the
906
+ defectors, the altruistic punishers coexist with defectors who replace the second-order free-riders until second-order free-riders
907
+ they are eliminated. When the temptation is even larger (third row), more competitive defectors can encroach on both, the
908
+ altruistic punishers and second-order free riders can only survive when they adhere to exiters. The indirect competition between
909
+ altruistic punishers and second-order free riders with exiters determine the outcome for these two actors. Compared with non-
910
+ punishing cooperators, altruistic punishers have greater fitness when compared to defectors and have greater probability to
911
+ endure, therefore non-punishing cooperators are eliminated, and altruistic punishers coexist with defectors and exiters through
912
+ cyclic dominance. When the temptation is at its largest (bottom row), exiters dominate and non-punishing cooperators have
913
+ a larger probability to endure than altruistic punishers as it avoids the cost of punishment. Finally altruistic punishers are
914
+ eliminated and non-punishing cooperators coexist with defectors and exiters. Results were obtained with ϵ = 0.2 after the
915
+ 30000th step to generate the final snapshots (rightmost column). The intermediate snapshots (second to fourth columns) were
916
+ taken at different time steps across rows to ensure that the figure as illustrative as possible.
917
+ increasing b, the cooperators who punish defectors gain
918
+ a greater advantage when compared against defectors,
919
+ and thus network reciprocity supports the coexistence of
920
+ altruistic punishers and defectors in this instance. If the
921
+ conditions to support cooperation with altruistic punish-
922
+ ment are unfavorable, adding an exit option can promote
923
+ the system to the AP +D+E phase when b ≲ 1.73. How-
924
+ ever, with increasing b, the AP + D + E phase gives way
925
+ to the NC + D + E phase through discontinuous phase
926
+ transition at the critical point, b ≈ 1.73.
927
+ To reexamine the evolutionary dynamics and further
928
+ check the indirect competition between altruistic punish-
929
+ ers and non-punishing cooperators in both spatial and
930
+ temporal dimensions,. We plotted the evolutionary snap-
931
+ shots for varying b at ϵ = 0.2, and the results are pre-
932
+ sented in figure.5. When the temptation is small (top row
933
+ in figure.5), the exiters were eliminated first by altruistic
934
+ punishers and non-punishing cooperators, and the de-
935
+ fectors experienced the same fate shortly after. The al-
936
+ truistic punishers coexist with non-punishing cooperators
937
+ eventually as they cannot be distinguished and the sys-
938
+ tem falls into frozen state. A larger temptation makes the
939
+ defectors more competitive (second row in figure.5), and
940
+ instead of being eliminated by the altruistic punishers,
941
+
942
+ Temptation, b
943
+ NC
944
+ D
945
+ b=1.04
946
+ AP
947
+ E
948
+ b=1.25
949
+ b=1.5
950
+ b=1.8
951
+ timesteps9
952
+ FIG. 6. Initial conditions determine the outcome of
953
+ altruistic punishers and non-punishing cooperators in
954
+ the bi-stable phase. Shown are the evolutionary outcomes
955
+ after implementing 100 independent simulations for each pa-
956
+ rameter combination under four different initial conditions.
957
+ The initial conditions were (i) 97% of players were initially
958
+ assigned as AP, (ii) 97% of players were initially assigned as
959
+ NC, (iii) 97% of players were initially assigned as D, and (iv)
960
+ 97% of players were initially assigned as E. The rest of the
961
+ other action types were assigned to the other players with
962
+ equal probability in these different initial conditions. Param-
963
+ eters were fixed as b = 1.8, from left to right, ϵ = 0.05, 0.4, 0.6,
964
+ respectively.
965
+ they can coexist. However, the coexistence of defectors
966
+ cannot ensure the survival of exiters, who are eliminated
967
+ in situations with small temptation. The non-punishing
968
+ cooperators are eliminated by defectors and finally, the
969
+ altruistic punishers coexist with defectors in the popula-
970
+ tion. When the temptation is even larger, the coexistence
971
+ of defectors and altruistic punishers was no longer pos-
972
+ sible, instead, defectors can invade both altruistic pun-
973
+ ishers and non-punishing cooperators. The competitive
974
+ defectors allow for the survival of exiters. In turn, altru-
975
+ istic punishers and non-punishing cooperators can sur-
976
+ vive by adhering to the survived exiters. It is therefore,
977
+ both altruistic punishers and non-punishing cooperators
978
+ can coexist with defectors and exiters through different
979
+ cyclic dominance routes.
980
+ However, these two types of
981
+ cyclic dominance cannot coexist in the population, and
982
+ the indirect competition to the territories of exiters be-
983
+ tween altruistic punishers and non-punishing cooperators
984
+ determine the outcome of the competitors. Competitive
985
+ defectors more easily negatively affexct non-punishing co-
986
+ operators than altruistic punishers (third row and second
987
+ column in figure.5), and therefore, non-punishing cooper-
988
+ ators are eliminated first, and the altruistic punishers, de-
989
+ fectors, and exiters coexist within the population. When
990
+ the temptation is the largest (bottom row in figure.5),
991
+ defectors are the most competitive, altruistic punishers
992
+ and non-punishing cooperators are exploited by defectors
993
+ at almost the same speed, and the exiters dominate by
994
+ eliminating the defectors. In the indirect competition of
995
+ exiters with the non-punishing cooperators, the altruis-
996
+ tic punishers loses its advantages due to the existence of
997
+ punishment cost, and non-punishing cooperators coexist
998
+ with defectors and exiters.
999
+ Our results have shown that by adding an exit option
1000
+ results in the bi-stable dynamics and it is the initial dis-
1001
+ tribution of actors determines the outcome of altruistic
1002
+ punishers and non-punishing cooperators. It is generally
1003
+ accepted that the initial conditions are crucial for evolu-
1004
+ tionary outcomes in agent-based models [45]. We further
1005
+ assessed whether the initial fractions of actors is a poten-
1006
+ tial reason that the system exhibits bi-stability. Figure.6
1007
+ presents the evolutionary outcomes with ϵ = 0.05, 0.4,
1008
+ and 0.6 under four different initial conditions. The four
1009
+ different conditions are: (i) 97% of players were initially
1010
+ assigned as AP, (ii) 97% of players were initially assigned
1011
+ as NC, (iii) 97% of players were initially assigned as D,
1012
+ and (iv) 97% of players were initially assigned as E. The
1013
+ other players were assigned one of the other three actions
1014
+ with equal probability in these conditions. The results
1015
+ were obtained by implementing 100 independent simula-
1016
+ tions. We found that when ϵ = 0.05 (left column in fig-
1017
+ ure.6), the evolutionary outcome was always AP +D+E
1018
+ if the majority of players initially had action AP or action
1019
+ D. However, if the majority of players initially had NC
1020
+ action, then the system reached the attractor NC+D+E
1021
+ with 95% probability. If the majority of players were E,
1022
+ then the system reached the attractor AP + D + E or
1023
+ NC +D+E with 36% and 62% probability, respectively.
1024
+ Larger incentives to exiters switched the bi-stability to
1025
+ monostability (middle and right column in figure.6). In
1026
+ the monostability state, evolutionary dynamics lead to
1027
+ either the AP + D + E or the E phase depending on the
1028
+ incentives to the exiters, and evolutionary outcomes are
1029
+ independent on the initial conditions. The finite-size ef-
1030
+ fects are a potential pitfall that may generate misleading
1031
+ results when implementing agent-based models in struc-
1032
+ tured populations [45]. Thus, it is crucial to choose a
1033
+ sufficiently large network size or to employ the method of
1034
+ subsystem solutions to avoid this potential issue [46, 47].
1035
+ It is noteworthy that the system has 23% probability to
1036
+ fall into the full E phase when most players initially had
1037
+ D action at ϵ = 0.4 (middle column in figure.6).
1038
+ We
1039
+ do believe that the counterintuitive E phase is the prod-
1040
+ uct of the finite-size effect, and the pure AP + D + E
1041
+ phase can be expected as long as a larger network size
1042
+ was implemented.
1043
+ DISCUSSION
1044
+ To discuss, we have shown that by adding an exit op-
1045
+ tion to the two-stage prisoner’s dilemma game results in
1046
+ complicated dynamics. Particularly, in the infinite and
1047
+ well-mixed population, it was observed that exiters pro-
1048
+
1049
+ NC+D+E
1050
+ E
1051
+ AP+D+E
1052
+ 62%
1053
+ 100%
1054
+ 100%
1055
+ E
1056
+ 36%
1057
+ 1
1058
+ 1
1059
+ 1
1060
+ 2%
1061
+ /
1062
+ 1
1063
+ 1
1064
+ -
1065
+ I
1066
+ 100%
1067
+ 77%
1068
+ 100%
1069
+ D
1070
+ 23%
1071
+ I
1072
+ 1
1073
+ 1
1074
+ 1
1075
+ /
1076
+ 95%
1077
+ 1
1078
+ 100%
1079
+ 100%
1080
+ NC
1081
+ /
1082
+ 5%
1083
+ 1
1084
+ 1
1085
+ 1
1086
+ 1
1087
+ /
1088
+ 100%
1089
+ 100%
1090
+ I
1091
+ 100%
1092
+ AP
1093
+ 1
1094
+ I
1095
+ 1
1096
+ --
1097
+ 1
1098
+ = 0.05
1099
+ =0.4
1100
+ =0.610
1101
+ vide little benefit to cooperation. When the effectiveness
1102
+ of altruistic punishment is sufficient to support cooper-
1103
+ ation, adding an exit option turns the bi-stable equilib-
1104
+ rium between the mixed AP −NC and pure D to another
1105
+ bi-stable equilibrium, whereby the mixed AP − NC and
1106
+ pure E coexists (panel C and D in the figure.A2). When
1107
+ altruistic punishment itself cannot establishes coopera-
1108
+ tion, the monomorphic defecting equilibrium is replaced
1109
+ by the monomorphic exiting equilibrium (panel A and B
1110
+ in the figure.A2). In the finite and well-mixed popula-
1111
+ tion, although the availability of exit options maintains
1112
+ the survival of both altruistic punishers and second-order
1113
+ free riders through two types of cyclic dominance, the
1114
+ altruistic punishers never dominate the population. In
1115
+ contrast with the well-mixed populations, combining the
1116
+ exit option with network reciprocity produces greatly dif-
1117
+ ferent outcomes. We determined that the domination of
1118
+ altruistic punishment is possible in a networked popula-
1119
+ tion. Altruistic punishers can coexist with defectors and
1120
+ exiters through cyclic dominance in a majority of the ϵ−b
1121
+ phase plane. When the temptation is large, b ≳ 1.71, ex-
1122
+ iters enable the survival of second-order free riders. De-
1123
+ pending on the incentives to exiters, the system also fall
1124
+ into a bi-stable phase or single NC+D+E phase. There-
1125
+ fore the exit option is certainly not a panacea in solving
1126
+ social dilemmas.
1127
+ Previous studies have shown that introduced voluntary
1128
+ participation is capable of establishing altruistic punish-
1129
+ ment in both finite and infinite populations [6–10]. In the
1130
+ infinite population, evolutionary dynamics can result in
1131
+ either a Nash equilibrium of punishing and non-punishing
1132
+ cooperators or to an oscillating state without punish-
1133
+ ers [6].
1134
+ If a single cooperator (either a non-punishing
1135
+ cooperator or a punisher) can participate in the game,
1136
+ and a punisher can punish the non-punishing cooperator
1137
+ even in the absence of defectors, the evolutionary dynam-
1138
+ ics result in the stable coexistence of altruistic punishers
1139
+ and non-punishing cooperators [9]. In a finite population,
1140
+ with the assistance of loners, altruistic punishers can pre-
1141
+ vail and even dominate the whole population for most
1142
+ of the time when mutations are rare [8]. If loners can
1143
+ escape punishment, altruistic punishment prevails even
1144
+ under the threat of anti-social punishment [11]. Exiters
1145
+ produce outcomes that differ greatly from these in lon-
1146
+ ers. In the infinite and well-mixed population, adding
1147
+ an exit option can also result in a bi-stable outcome, in
1148
+ which the Nash equilibrium can be either the coexistence
1149
+ of altruistic punishers and non-punishing cooperators or
1150
+ a monomorphic exiting equilibrium.
1151
+ However, this bi-
1152
+ stable outcome is only possible when the punishment it-
1153
+ self is sufficient to maintain cooperation, otherwise, the
1154
+ bi-stable outcome can be replaced with a monomorphic
1155
+ exiting equilibrium. In other words, exiters just simply
1156
+ destabilize the defectors and eventually replaces them in
1157
+ the infinite population. In the finite population, although
1158
+ exiters allow the survival of altruistic punishment when
1159
+ the exiter’s payoff is moderate, altruistic punishers never
1160
+ dominate the whole population (e.g. figure.1A). The di-
1161
+ rect comparison between exiters and loners in a finite
1162
+ and infinite population lead us to conclude that loners
1163
+ are more effective than exiters in supporting the preva-
1164
+ lence of altruistic punishment.
1165
+ The effectiveness of altruistic punishment is not only
1166
+ challenged by second-order free riders but also by anti-
1167
+ social punishment. It has been experimentally reported
1168
+ that the existence of antisocial punishment is widespread
1169
+ in different human cultures [48–50]. Recent theoretical
1170
+ studies have shown that the existence of antisocial pun-
1171
+ ishment can prevent the successful coevolution of pun-
1172
+ ishment and cooperation [51, 52]. Furthermore, if pun-
1173
+ ishment is available for loners, punishment does not in-
1174
+ creases cooperation and altruistic punishment becomes a
1175
+ self-interested tool for protecting itself against potential
1176
+ competitors [53]. As discussed above, exiters are a po-
1177
+ tential spiteful punishment as it harms both cooperators
1178
+ and defectors, while loners generate a small-but-positive
1179
+ payoff for its opponent. This tiny difference leads to to-
1180
+ tally different equilibrium in a one-shot game. Exiters
1181
+ can destabilize defectors and finally replace them, while
1182
+ loners can sustain cooperation through cyclic dominance.
1183
+ If we extend our model by considering all punishment sets
1184
+ where actors can be punished by each other and exiters
1185
+ cannot escape potential punishment by both cooperators
1186
+ and defectors. By restricting the analysis to a one-shot
1187
+ game, we determine how this setup influenced the stabil-
1188
+ ity of punishment, and whether and how this setup gen-
1189
+ erates outcomes that differ from that of loners. These
1190
+ undoubtedly invite future considerations.
1191
+ Exiters established the prevalence of altruistic punish-
1192
+ ers and eliminated the second-order free riders when it
1193
+ adheres to network reciprocity in a certain parameter
1194
+ range (e.g. figure.2 and figure.4). However exiters allow
1195
+ for the survival of second-order free riders, who can not
1196
+ only survive, but also dominate the population in some
1197
+ certain areas of the phase plane. The robustness of this
1198
+ finding needs to be verified in a human behavior exper-
1199
+ iment. Human behavior experiments may generate con-
1200
+ trasting or surprising outcomes with theories on many is-
1201
+ sues. Scale-free topology, for example, is often recognized
1202
+ theoretically as an optimal structure for the survival of
1203
+ cooperation, however, this argument cannot be verified
1204
+ by experiment and the cooperation level among humans
1205
+ cannot exceed the level established in the lattice [54].
1206
+ Similarly, although strong reciprocity theorists believe
1207
+ that humans are inherently altruistic and cooperators
1208
+ will sacrifice their personal interests to (i). achieve fair
1209
+ outcomes and to (ii). punish non-cooperators[55, 56], this
1210
+ theory cannot be confirmed by experiments. Yamagishi
1211
+ et al. performed large scale human behavior experiments
1212
+ and found that there was no correlation between the ten-
1213
+ dencies to reject unfair offers in the ultimate game and
1214
+ tendencies to exhibit prosocial behavior in other games
1215
+ [57]. Although Yamagishi’s finding was challenged due
1216
+ to its insufficient sample size, Egloff et al. further con-
1217
+ firmed that there was indeed no correlation between pos-
1218
+ itive and negative reciprocity through analyzing the pri-
1219
+
1220
+ 11
1221
+ vate household data from the Socio-Economic Panel of
1222
+ the German Institute for Economics Research [58].
1223
+ A
1224
+ recent experimental work is of direct relevance for our
1225
+ model. Introducing punishment into networks has been
1226
+ proven to be an efficient method to promote cooperation
1227
+ theoretically [14, 21–23]. However, in a recent large-scale
1228
+ human behavior experiment, it was concluded that the
1229
+ introduced peer punishment did not promote coopera-
1230
+ tion in structured populations, and instead diminished
1231
+ the benefits of network reciprocity [59].
1232
+ Although we
1233
+ have shown that exiters support the dominance of altru-
1234
+ istic punishment when it adheres to network reciprocity,
1235
+ human behavior experiments are needed to further verify
1236
+ our theory.
1237
+ ARTICLE INFORMATION
1238
+ Acknowledgements.
1239
+ We thank Prof.
1240
+ Dr.
1241
+ Marko
1242
+ Jusup for valuable discussions. This research was sup-
1243
+ ported by the National Science Fund for Distinguished
1244
+ Young Scholars (grants no. 62025602). We also acknowl-
1245
+ edge support from (i) a JSPS Postdoctoral Fellowship
1246
+ Program for Foreign Researchers (grant no.
1247
+ P21374),
1248
+ and an accompanying Grant-in-Aid for Scientific Re-
1249
+ search from JSPS KAKENHI (grant no. JP 22F31374),
1250
+ and the National Natural Science Foundation of China
1251
+ (grant no. 11931015) to C. S. as a co-investigator, (ii) the
1252
+ National Natural Science Foundation of China (grants
1253
+ no. 11931015, 12271471 and 11671348) to L. S., (iii) Na-
1254
+ tional Natural Science Foundation of China (grants no.
1255
+ U22B2036, 11931015), Key Technology Research and De-
1256
+ velopment Program of Science and Technology-Scientific
1257
+ and Technological Innovation Team of Shaanxi Province
1258
+ (Grant No. 2020TD-013) and the XPLORER PRIZE.
1259
+ to Z. W, and (iv) the grant-in-Aid for Scientific Research
1260
+ from JSPS, Japan, KAKENHI (grant No. JP 20H02314)
1261
+ awarded to J. T.
1262
+ Author contributions.
1263
+ C. S. and L. S. conceived re-
1264
+ search.
1265
+ C. S. and Z. S. performed simulations.
1266
+ All co-
1267
+ authors discussed the results and wrote the manuscript.
1268
+ Conflict of interest.
1269
+ Authors declare no conflict of in-
1270
+ terest.
1271
+ Appendix
1272
+ STABILITY ANALYSIS OF THE EQUILIBRIA IN
1273
+ INFINITE AND WELL-MIXED POPULATION
1274
+ Solving
1275
+ Eq.7,
1276
+ we
1277
+ obtain
1278
+ 12
1279
+ equilibrium
1280
+ points:
1281
+ (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (ϵ, 0, 0, 1 −
1282
+ ϵ),
1283
+ (0, ϵ, 0, 1 − ϵ),
1284
+ (x, 1 − x, 0, 0),
1285
+ (x, ϵ − x, 0, 1 −
1286
+ ϵ), ( −1+b
1287
+ β
1288
+ , 1−b+β
1289
+ β
1290
+ , 0, 0), (
1291
+ ϵ
1292
+ b−β , 0, ϵ−β−ϵβ
1293
+ (βϵ)γ , 1 − ϵ(γ+1+β−b)
1294
+ (b−β)γ
1295
+ ),
1296
+ ( (−1+b)ϵ
1297
+ β
1298
+ , ϵ−β+βϵ
1299
+ β
1300
+ , 0, 1−ϵ), (
1301
+ γ
1302
+ 1−b+β+γ , 0,
1303
+ −1+b−β
1304
+ −1+b−β+γ , 0). To
1305
+ examine the stability of these equilibria, we calculate the
1306
+ 0.0
1307
+ 5.0x104
1308
+ 1.0x105
1309
+ 1.5x105
1310
+ 2.0x105
1311
+ 0.0
1312
+ 0.2
1313
+ 0.4
1314
+ 0.6
1315
+ 0.8
1316
+ 1.0
1317
+ 0.0
1318
+ 0.2
1319
+ 0.4
1320
+ 0.6
1321
+ 0.8
1322
+ 1.0
1323
+ Fractions
1324
+ time steps
1325
+ AP
1326
+ NC
1327
+ D
1328
+ E
1329
+ A
1330
+ B
1331
+ Fractions
1332
+ FIG. A1. Numerical simulation further demonstrates
1333
+ that the survival of altruistic punishment is due to the
1334
+ cyclic dominance between altruistic punishers, defec-
1335
+ tors, and exiters. A. Defectors take over the whole popu-
1336
+ lation even if altruistic punishers initially dominate the pop-
1337
+ ulation when the exiters’ payoff is negative.
1338
+ B. Small but
1339
+ positive exiters’ payoff enables the coexistence of altruistic
1340
+ punishers, non-punishing cooperators, defectors, and exiters
1341
+ through cyclic dominance. If defectors initially dominate the
1342
+ population, the mutated exiters invade the defectors, and af-
1343
+ ter transient dynamics, the defectors finally give way to the
1344
+ exiters.
1345
+ When exiters dominate the population, altruistic
1346
+ punishment is less costly and cooperating is more valuable
1347
+ than exiting, and thus altruistic punishers take over the whole
1348
+ population. Thereafter, non-punishing cooperators dominate
1349
+ altruistic punishers and take over the whole population since
1350
+ altruistic punishers are less valuable than non-punishing coop-
1351
+ erators. This proceeds until the dominance of non-punishing
1352
+ cooperators gives way to defectors again. The Parameter val-
1353
+ ues are b = 1.5, β = 0.3, γ = 0.1, µ = 0.001, s = 0.2, ϵ = −0.2
1354
+ (A) and ϵ = 0.2 (B).
1355
+ eigenvalues of Jacobian matrix:
1356
+ J =
1357
+
1358
+ ��
1359
+ ∂f(x,y,z)
1360
+ ∂x
1361
+ ∂f(x,y,z)
1362
+ ∂y
1363
+ ∂f(x,y,z)
1364
+ ∂z
1365
+ ∂g(x,y,z)
1366
+ ∂x
1367
+ ∂g(x,y,z)
1368
+ ∂y
1369
+ ∂g(x,y,z)
1370
+ ∂z
1371
+ ∂h(x,y,z)
1372
+ ∂x
1373
+ ∂h(x,y,z)
1374
+ ∂y
1375
+ ∂h(x,y,z)
1376
+ ∂z
1377
+
1378
+ �� .
1379
+ (A1)
1380
+ Then we have the following conclusion.
1381
+ Theorem 1. When b < 1 + β, and ϵ < 0, the equi-
1382
+ librium points (x∗, 1 − x∗, 0, 0) and (0, 0, 1, 0) are stable,
1383
+ while the rest of others are unstable; When b < 1 + β,
1384
+ and ϵ > 0, the equilibrium points (x∗, 1 − x∗, 0, 0) and
1385
+ (0, 0, 0, 1) are stable, and the others are unstable; When
1386
+ b ≥ 1 + β, only the equilibrium point (0, 0, 1, 0) is stable,
1387
+ and the rest of others are unstable. When ϵ > 0, only
1388
+ the equilibrium point (0, 0, 0, 1) is stable, and the rest of
1389
+ others are unstable.
1390
+ Proof. (1). For K1: (x, y, z, w) = (1, 0, 0, 0), the Jacobian
1391
+
1392
+ 12
1393
+ FIG. A2. Adding exit option destabilizes defection regardless of whether altruistic punishment can establish
1394
+ cooperation in an infinite population. When the cost-to-effect ratio of altruistic punishment is insufficient to establish
1395
+ cooperation (top row), b − β > 1, the monomorphic defecting equilibrium is replaced by the monomorphic exiting equilibrium
1396
+ for positive values of ϵ. When the cost-to-effect ratio of altruistic punishment is capable of establishing cooperation (bottom
1397
+ row), b − β < 1, the bi-stable equilibrium of the mixed altruistic punisher and non-punishing cooperator equilibrium and the
1398
+ monomorphic defecting equilibrium is replaced by the other bi-stable equilibrium between the mixed altruistic punisher and
1399
+ non-punishing cooperator equilibrium and the monomorphic exiting equilibrium for positive values of ϵ. The dashed line on the
1400
+ AP − NC edge indicates that all the points on this edge are unstable. The filled black circles, filled gray circles, and unfilled
1401
+ circles represent stable fixed points, saddle points, and unstable points, respectively.
1402
+ The parameters values are β = 0.3,
1403
+ γ = 0.1, ϵ = −0.2 (left column), ϵ = 0.2 (right column), b = 1.5 (top row), and b = 1.2 (bottom row).
1404
+ matrix J1 is
1405
+ J1 =
1406
+
1407
+
1408
+ −1 + ϵ −1 + ϵ −b + β + ϵ
1409
+ 0
1410
+ 0
1411
+ 0
1412
+ 0
1413
+ 0
1414
+ −1 + b − β
1415
+
1416
+
1417
+ (A2)
1418
+ and its corresponding eigenvalues are
1419
+ {λ1, λ2, λ3} = {0, −1 + b − β, −1 + ϵ}.
1420
+ (A3)
1421
+ When b > β + 1, K1 is unstable because −1 + b − β is a
1422
+ positive eigenvalue. Otherwise, there is at least one zero
1423
+ eigenvalue. Thus, we use the center manifold theorem to
1424
+ analyze the stability of K1. Using b < β + 1 as an ex-
1425
+ ample. First, there is an invertible matrix whose column
1426
+ elements are the eigenvectors of J1
1427
+ P =
1428
+
1429
+
1430
+ −1 −1 1
1431
+ 1
1432
+ 0
1433
+ 0
1434
+ 0
1435
+ 1
1436
+ 0
1437
+
1438
+
1439
+ (A4)
1440
+ and J1 can be diagonalized as
1441
+ P −1J1P =
1442
+
1443
+
1444
+ 0
1445
+ 0
1446
+ 0
1447
+ 0 −1 + b − β
1448
+ 0
1449
+ 0
1450
+ 0
1451
+ −1 + ϵ
1452
+
1453
+ � .
1454
+ (A5)
1455
+ Then change of variable:
1456
+
1457
+
1458
+ x1
1459
+ y1
1460
+ z1
1461
+
1462
+ � = P −1
1463
+
1464
+
1465
+ x
1466
+ y
1467
+ z
1468
+
1469
+ � =
1470
+
1471
+
1472
+ y
1473
+ z
1474
+ x + y + z
1475
+
1476
+
1477
+ (A6)
1478
+
1479
+ A
1480
+ B
1481
+ D
1482
+ E
1483
+ D
1484
+ D
1485
+ E
1486
+ D
1487
+ O
1488
+ AP
1489
+ NC
1490
+ AP
1491
+ NC
1492
+ D
1493
+ D
1494
+ c
1495
+ D
1496
+ D
1497
+ E
1498
+ D
1499
+ D
1500
+ E
1501
+ D
1502
+ C
1503
+ Q
1504
+ C
1505
+ AP
1506
+ NC
1507
+ AP
1508
+ NC
1509
+ D
1510
+ D13
1511
+ and the system becomes
1512
+ ˙x1 =g(z1 − x1 − y1, x1, y1)
1513
+ =x1((1 − x1)(−ϵ − y1 + z1)−
1514
+ x1(−ϵ + bx1 + (b − β)(−x1 − y1 + z1))−
1515
+ y1(−ϵ + bx1 + (b − β)(−x1 − y1 + z1)))
1516
+ ˙y1 =h(z1 − x1 − y1, x1, y1)
1517
+ =y1(−x1(−ϵ − y1 + z1) − y1(−ϵ − y1 − x1y1 + z1)+
1518
+ (1 − y1)(−ϵ + bx1 + (b − β)(−x1 − y1 + z1)))
1519
+ ˙z1 =f(z1 − x1 − y1, x1, y1) + g(z1 − x1 − y1, x1, y1)
1520
+ + h(z1 − x1 − y1, x1, y1)
1521
+ =x1(ϵ(−1 + 2x1 + y1) + (−1 + x1 + bx1 + by1)(y1 − z1)−
1522
+ β(x1 + y1)(x1 + y1 − z1))+
1523
+ y1((−1 + y1)(ϵ + b(y1 − z1) − β(x1 + y1 − z1))+
1524
+ x1(ϵ + y1 − z1) + y1(ϵ + y1 + x1y1 − z1))+
1525
+ (x1 + y1 − z1)(ϵ + (1 − b + β + x1)y12−
1526
+ ϵz1 + (−1 + z1)z1 + y1(1 + x2
1527
+ 1 + x1(1 + β − z1)+
1528
+ (−2 + b − β)z1))
1529
+ .
1530
+ (A7)
1531
+ Put the system into the form
1532
+ ˙X = AX + F(X, Y )
1533
+ ˙Y = BY + G(X, Y ) ,
1534
+ (A8)
1535
+ where X = [x1], Y
1536
+ =
1537
+
1538
+ y1
1539
+ z1
1540
+
1541
+ , and A = [0], B =
1542
+
1543
+ −1 + b − β
1544
+ 0
1545
+ 0
1546
+ −1 + ϵ
1547
+
1548
+ , whose eigenvalues have zero and
1549
+ negative real parts, respectively. F and G are the func-
1550
+ tions of X and Y . They satisfy the condition F (0, 0) =
1551
+ 0, F ′(0, 0) = O. According to the existence theorem of
1552
+ the center manifold, the system has the center manifold
1553
+ S = {(X, H(X))|H : R1 → R2}. We define a mapping
1554
+ (Mϕ)(X) =ϕ′(X)(AX + F (X, ϕ(X))
1555
+ − Bϕ(X) − G(X, ϕ(X))
1556
+ (A9)
1557
+ Set ϕ(Y ) = O(X2), we obtain
1558
+ ˙x1 = x1(−ϵ(1 − x1) − x1(−ϵ + bx1 − x1(b − β))) + O(x4
1559
+ 1)
1560
+ (A10)
1561
+ Then we define m(x1) = x1(−ϵ(1 − x1) − x1(−ϵ + bx1 +
1562
+ −x1(b−β))), and m(x1)′ = 2ϵx1−3x2
1563
+ 1β−ϵ. Since m(0) <
1564
+ 0, then x1 = 0 is asymptotically stable. Accordingly, we
1565
+ can conclude the point K1 is stable when b < β+1. When
1566
+ b = β + 1, K1 is unstable in accordance with the center
1567
+ manifold theorem whose derivation process is similar to
1568
+ the above analysis.
1569
+ (2). For K2: (x, y, z, w) = (0, 1, 0, 0), the correspond-
1570
+ ing eigenvalues of J are
1571
+ {λ1, λ2, λ3} = {0, −1 + b, −1 + ϵ}.
1572
+ (A11)
1573
+ K2 is unstable since −1 + b > 0.
1574
+ (3). For K3: (x, y, z, w) = (0, 0, 1, 0). Its correspond-
1575
+ ing eigenvalues of J are
1576
+ {λ1, λ2, λ3} = {0, ϵ, −γ}.
1577
+ (A12)
1578
+ When ϵ < 0, K3 has an eigenvalue with zero real part and
1579
+ other eigenvalues with negative real part. According to
1580
+ the center manifold theorem, K3 is stable. When ϵ > 0,
1581
+ K3 is unstable because the eigenvalue ϵ has a positive
1582
+ real part.
1583
+ (4). For K4 : (x, y, z, w) = (0, 0, 0, 1). Its correspond-
1584
+ ing eigenvalues of J are
1585
+ {λ1, λ2, λ3} = {−ϵ, −ϵ, −ϵ}.
1586
+ (A13)
1587
+ K4 is stable when ϵ > 0 because all eigenvalues have
1588
+ negative real parts. K4 is unstable when ϵ < 0 because
1589
+ all eigenvalues have positive real parts.
1590
+ (5). For K5 : (x, y, z, w) = (ϵ, 0, 0, 1 − ϵ). Its corre-
1591
+ sponding eigenvalues of J are
1592
+ {λ1, λ2, λ3} = {0, ϵ(−1 + b − β), ϵ(1 − ϵ)}.
1593
+ (A14)
1594
+ When 0 < ϵ < 1 or ϵ < 0 and b < 1 + β, K5 is unstable
1595
+ because one of its eigenvalues has a positive real part.
1596
+ When ϵ < 0 and b ≥ 1+β, K5 has at least one eigenvalue
1597
+ with a zero real part and the others have negative real
1598
+ parts. According to the center manifold theorem, K5 is
1599
+ unstable.
1600
+ (6). For K6 : (x, y, z, w) = (0, ϵ, 0, 1 − ϵ). Its corre-
1601
+ sponding eigenvalues of J are
1602
+ {λ1, λ2, λ3} = {0, ϵ(−1 + b), ϵ(1 − ϵ)}.
1603
+ (A15)
1604
+ When ϵ > 0, K6 is unstable because eigenvalue ϵ(−1 +
1605
+ b) >. When ϵ < 0, there is one eigenvalue with a zero
1606
+ real part and two eigenvalues with negative real parts.
1607
+ According to the center manifold theorem, K6 is unsta-
1608
+ ble.
1609
+ (7). For K7 : (x, y, z, w) = (x∗, 1 − x∗, 0, 0). Its corre-
1610
+ sponding eigenvalues of J are
1611
+ {λ1, λ2, λ3} = {0, ���1 + ϵ, −1 + b − βx∗}.
1612
+ (A16)
1613
+ When x∗ > b−1
1614
+ β , namely b < 1 + β, there is one eigen-
1615
+ value with a zero real part and others with negative real
1616
+ parts. According to the center manifold theorem, K7 is
1617
+ stable. When x∗ < b−1
1618
+ β , K7 is unstable because one of
1619
+ its eigenvalues has a positive real part.
1620
+ (8). For K8 : (x, y, z, w) = (x∗, ϵ − x∗, 0, 1 − ϵ + x∗).
1621
+ Its corresponding eigenvalues of J are
1622
+ {λ1, λ2, λ3} = {0, ϵ − ϵ2, −ϵ + β − βx∗}.
1623
+ (A17)
1624
+ When ϵ > 0, K8 is unstable because ϵ − ϵ2 > 0. When
1625
+ ϵ < 0, K8 is unstable because −ϵ + β − βx∗ > 0.
1626
+ (9).
1627
+ For K9 : (x, y, z, w) = ( −1+b
1628
+ β
1629
+ , 1−b+β
1630
+ β
1631
+ , 0, 0).
1632
+ Its
1633
+ corresponding eigenvalues of J are
1634
+ {λ1, λ2, λ3} = {0, 0, −1 + ϵ}.
1635
+ (A18)
1636
+
1637
+ 14
1638
+ K9 exists only when b < 1 + β. When K9 exists, there is
1639
+ one eigenvalue with a negative real part and two eigenval-
1640
+ ues with zero real parts. According to the center manifold
1641
+ theorem, k9 is unstable.
1642
+ (10).
1643
+ For K10 : (x, y, z, w) = (
1644
+ ϵ
1645
+ b−β , 0, ϵ−β−ϵβ
1646
+ (b−β)γ , 1 −
1647
+ ϵ(γ+1+β−b)
1648
+ (b−β)γ
1649
+ ). Its corresponding eigenvalues of J are
1650
+ {λ1, λ2, λ3} =
1651
+ {−ϵ(−1 + b − β)
1652
+ b − β
1653
+ ,−ϵ(−1 + b − β)
1654
+ b − β
1655
+ ,ϵ+ ϵ2(−1 + b − β + γ)
1656
+ (b − β)γ
1657
+ }
1658
+ .
1659
+ (A19)
1660
+ K10 exists when 1 − ϵ(γ+1+β−b)
1661
+ (b−β)γ
1662
+ ) < 1, namely b > β +
1663
+ ϵ 1−γ
1664
+ γ+ϵ . Then its eigenvalue ϵ + ϵ2(−1+b−β+γ)
1665
+ (b−β)γ
1666
+ > 0. Thus,
1667
+ K10 is unstable.
1668
+ (11). For K11 : (x, y, z, w) = ( (−1+b)ϵ
1669
+ β
1670
+ , ϵ−β+βϵ
1671
+ β
1672
+ , 0, 1−ϵ).
1673
+ Its corresponding eigenvalues of J are
1674
+ {λ1, λ2, λ3} = {0, 0, ϵ(1 − ϵ)}.
1675
+ (A20)
1676
+ K11 exists when ϵ > 0, then eigenvalue ϵ(1 − ϵ) > 0.
1677
+ Thus, K11 is unstable.
1678
+ (12). For K12 : (x, y, z, w) = (
1679
+ γ
1680
+ 1−b+β+γ , 0,
1681
+ 1−b+β
1682
+ 1−b+β+γ , 0).
1683
+ Its corresponding eigenvalues of J are
1684
+ {λ1, λ2, λ3} =
1685
+ { (1 − b + β)γ
1686
+ 1 − b + β + γ , (1 − b + β)γ
1687
+ 1 − b + β + γ , ϵ +
1688
+ (−b + β)γ
1689
+ 1 − b + β + γ }.
1690
+ (A21)
1691
+ K12 exists when b < 1+β, then eigenvalue (1−b+β)γ
1692
+ 1−b+β+γ > 0.
1693
+ Thus K12 is unstable.
1694
+ [1] Clutton-Brock T H and Parker G A 1995 Nature 373
1695
+ 209–216
1696
+ [2] West S A, Griffin A S and Gardner A 2007 Journal of
1697
+ evolutionary biology 20 415–432
1698
+ [3] Henrich J, McElreath R, Barr A, Ensminger J, Barrett
1699
+ C, Bolyanatz A, Cardenas J C, Gurven M, Gwako E,
1700
+ Henrich N et al. 2006 Science 312 1767–1770
1701
+ [4] Fehr E and G¨achter S 2002 Nature 415 137–140
1702
+ [5] Egas M and Riedl A 2008 Proceedings of the Royal Society
1703
+ B: Biological Sciences 275 871–878
1704
+ [6] Brandt H, Hauert C and Sigmund K 2006 Proceedings of
1705
+ the National Academy of Sciences 103 495–497
1706
+ [7] Mathew S and Boyd R 2009 Proceedings of the Royal
1707
+ Society B: Biological Sciences 276 1167–1174
1708
+ [8] Hauert C, Traulsen A, Brandt H, Nowak M A and Sig-
1709
+ mund K 2007 science 316 1905–1907
1710
+ [9] Fowler J H 2005 Proceedings of the National Academy of
1711
+ Sciences 102 7047–7049
1712
+ [10] Sasaki T, Br¨annstr¨om ˚A, Dieckmann U and Sigmund K
1713
+ 2012 Proceedings of the National Academy of Sciences
1714
+ 109 1165–1169
1715
+ [11] Garcia J and Traulsen A 2012 Journal of theoretical bi-
1716
+ ology 307 168–173
1717
+ [12] Santos M d, Rankin D J and Wedekind C 2011 Pro-
1718
+ ceedings of the Royal Society B: Biological Sciences 278
1719
+ 371–377
1720
+ [13] Rockenbach B and Milinski M 2006 Nature 444 718–723
1721
+ [14] Brandt H, Hauert C and Sigmund K 2003 Proceedings of
1722
+ the royal society of London. Series B: biological sciences
1723
+ 270 1099–1104
1724
+ [15] Ohtsuki H, Iwasa Y and Nowak M A 2009 Nature 457
1725
+ 79–82
1726
+ [16] Hilbe C and Traulsen A 2012 Scientific reports 2 1–4
1727
+ [17] Boyd R, Gintis H, Bowles S and Richerson P J 2003 Pro-
1728
+ ceedings of the National Academy of Sciences 100 3531–
1729
+ 3535
1730
+ [18] S¨a¨aksvuori L, Mappes T and Puurtinen M 2011 Pro-
1731
+ ceedings of the Royal Society B: Biological Sciences 278
1732
+ 3428–3436
1733
+ [19] Gavrilets S and Fortunato L 2014 Nature communica-
1734
+ tions 5 1–11
1735
+ [20] Helbing D, Szolnoki A, Perc M and Szab´o G 2010 PLoS
1736
+ computational biology 6 e1000758
1737
+ [21] Szolnoki A and Perc M 2017 Physical Review X 7 041027
1738
+ [22] Helbing D, Szolnoki A, Perc M and Szab´o G 2010 New
1739
+ Journal of Physics 12 083005
1740
+ [23] Perc M and Szolnoki A 2012 New Journal of Physics 14
1741
+ 043013
1742
+ [24] Molleman L, K¨olle F, Starmer C and G¨achter S 2019
1743
+ Nature Human Behaviour 3 1145–1153
1744
+ [25] Boyd R, Gintis H and Bowles S 2010 Science 328 617–
1745
+ 620
1746
+ [26] Przepiorka W and Diekmann A 2013 Proceedings of the
1747
+ Royal Society B: Biological Sciences 280 20130247
1748
+ [27] Han T A 2016 Emergence of social punishment and co-
1749
+ operation through prior commitments Proceedings of the
1750
+ Thirtieth AAAI Conference on Artificial Intelligence pp
1751
+ 2494–2500
1752
+ [28] Eldakar O T and Wilson D S 2008 Proceedings of the
1753
+ National Academy of Sciences 105 6982–6986
1754
+ [29] Orbell J M and Dawes R M 1993 American sociological
1755
+ review 787–800
1756
+ [30] Hauert C, De Monte S, Hofbauer J and Sigmund K 2002
1757
+ Science 296 1129–1132
1758
+ [31] Hauert C, De Monte S, Hofbauer J and Sigmund K 2002
1759
+ Journal of Theoretical Biology 218 187–194
1760
+ [32] Shen C, Jusup M, Shi L, Wang Z, Perc M and Holme P
1761
+ 2021 Journal of the Royal Society Interface 18 20200777
1762
+ [33] Vukov J, Pinheiro F L, Santos F C and Pacheco J M 2013
1763
+ PLoS computational biology 9 e1002868
1764
+ [34] Fudenberg D and Imhof L A 2006 Journal of Economic
1765
+ Theory 131 251–262
1766
+ [35] Imhof L A, Fudenberg D and Nowak M A 2005 Proceed-
1767
+ ings of the National Academy of Sciences 102 10797–
1768
+ 10800
1769
+ [36] Santos F C, Pacheco J M and Skyrms B 2011 Journal of
1770
+ Theoretical Biology 274 30–35
1771
+ [37] McAvoy A 2015 Journal of Economic Theory 159 66–69
1772
+
1773
+ 15
1774
+ [38] Nowak M A, Sasaki A, Taylor C and Fudenberg D 2004
1775
+ Nature 428 646–650
1776
+ [39] Traulsen A, Nowak M A and Pacheco J M 2006 Physical
1777
+ Review E 74 011909
1778
+ [40] Dreber A, Rand D G, Fudenberg D and Nowak M A 2008
1779
+ Nature 452 348–351
1780
+ [41] Wu J J, Zhang B Y, Zhou Z X, He Q Q, Zheng X D,
1781
+ Cressman R and Tao Y 2009 Proceedings of the National
1782
+ Academy of Sciences 106 17448–17451
1783
+ [42] Reichenbach T, Mobilia M and Frey E 2007 Nature 448
1784
+ 1046–1049
1785
+ [43] Szolnoki A, Mobilia M, Jiang L L, Szczesny B, Ruck-
1786
+ lidge A M and Perc M 2014 Journal of the Royal Society
1787
+ Interface 11 20140735
1788
+ [44] Szab´o G, Vukov J and Szolnoki A 2005 Physical Review
1789
+ E 72 047107
1790
+ [45] Perc M, Jordan J J, Rand D G, Wang Z, Boccaletti S
1791
+ and Szolnoki A 2017 Physics Reports 687 1–51
1792
+ [46] Szolnoki A and Perc M 2016 New Journal of Physics 18
1793
+ 083021
1794
+ [47] Perc M 2017 European Journal of Physics 39 014001
1795
+ [48] Herrmann B, Thoni C and Gachter S 2008 Science 319
1796
+ 1362–1367
1797
+ [49] Denant-Boemont L, Masclet D and Noussair C N 2007
1798
+ Economic theory 33 145–167
1799
+ [50] G¨achter S and Herrmann B 2011 European economic re-
1800
+ view 55 193–210
1801
+ [51] Rand D G, Ohtsuki H and Nowak M A 2009 Journal of
1802
+ theoretical biology 256 45–57
1803
+ [52] Rand D G, Armao IV J J, Nakamaru M and Ohtsuki H
1804
+ 2010 Journal of theoretical biology 265 624–632
1805
+ [53] Rand D G and Nowak M A 2011 Nature communications
1806
+ 2 1–7
1807
+ [54] Gracia-L´azaro C, Ferrer A, Ruiz G, Taranc´on A, Cuesta
1808
+ J A, S´anchez A and Moreno Y 2012 Proceedings of the
1809
+ National Academy of Sciences 109 12922–12926
1810
+ [55] Fehr E, Fischbacher U and G¨achter S 2002 Human nature
1811
+ 13 1–25
1812
+ [56] Bowles S and Gintis H 2004 Theoretical population biol-
1813
+ ogy 65 17–28
1814
+ [57] Yamagishi T, Horita Y, Mifune N, Hashimoto H, Li
1815
+ Y, Shinada M, Miura A, Inukai K, Takagishi H and
1816
+ Simunovic D 2012 Proceedings of the National Academy
1817
+ of Sciences 109 20364–20368
1818
+ [58] Egloff B, Richter D and Schmukle S C 2013 Proceedings
1819
+ of the National Academy of Sciences 110 E786–E786
1820
+ [59] Li X, Jusup M, Wang Z, Li H, Shi L, Podobnik B, Stanley
1821
+ H E, Havlin S and Boccaletti S 2018 Proceedings of the
1822
+ National Academy of Sciences 115 30–35
1823
+
49E4T4oBgHgl3EQfBAv2/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4dE4T4oBgHgl3EQfBAsA/content/tmp_files/2301.04847v1.pdf.txt ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Real-time FPGA implementation of the
2
+ Semi-Global Matching stereo vision algorithm
3
+ for a 4K/UHD video stream
4
+ Mariusz Grabowski
5
+ and Tomasz Kryjak
6
+ Embedded Vision Systems Group, Computer Vision Laboratory,
7
+ Department of Automatic Control and Robotics,
8
+ AGH University of Science and Technology, Krakow, Poland
9
10
+ Abstract. In this paper, we propose a real-time FPGA implementation
11
+ of the Semi-Global Matching (SGM) stereo vision algorithm. The de-
12
+ signed module supports a 4K/Ultra HD (3840 × 2160 pixels @ 30 frames
13
+ per second) video stream in a 4 pixel per clock (ppc) format and a 64-
14
+ pixel disparity range. The baseline SGM implementation had to be mod-
15
+ ified to process pixels in the 4ppc format and meet the timing constrains,
16
+ however, our version provides results comparable to the original design.
17
+ The solution has been positively evaluated on the Xilinx VC707 devel-
18
+ opment board with a Virtex-7 FPGA device.
19
+ Keywords: SGM · FPGA · 4K · Ultra HD · real-time processing · stereo
20
+ vision.
21
+ 1
22
+ Introduction
23
+ Information on the 3D structure (depth) of a scene is very important in many
24
+ robotic systems, including self-driving cars and unmanned aerial vehicles (UAVs),
25
+ as it is used in object detection and navigation modules. The depth map can
26
+ be estimated using several different approaches, active: LiDAR (Light Detec-
27
+ tion and Ranging), Time of Flight (ToF) cameras, stereo vision with structured
28
+ lighting; and passive: stereo vision. Stereo vision uses two or more cameras that
29
+ acquire the same scene, but from slightly different points in space. A detailed
30
+ discussion of the advantages and disadvantages of different sensors can be found
31
+ in the work of Jamwal, Jindal, and Singh [1].
32
+ Stereo vision, in its passive variant, is an often used solution in embedded
33
+ systems due to the low price of the equipment, its small size and weight (no
34
+ need for a laser light source, rotating elements or projectors). The accuracy
35
+ of the results obtained with this technology strictly depends on the algorithm
36
+ used to process the acquired images. The methods used can be divided into two
37
+ groups: local and global [2]. In both cases, the key element is to find the same
38
+ pixels in the image captured by the left (usually considered as the base) and
39
+ arXiv:2301.04847v1 [cs.CV] 12 Jan 2023
40
+
41
+ 2
42
+ M. Grabowski et al.
43
+ right camera (reference). Their offset expressed in pixels is referred to as the
44
+ disparity. This value can be easily converted to the distance from the sensors
45
+ using the vision system parameters.
46
+ Global methods introduce appropriate discontinuity penalties in order to
47
+ smooth the disparity map. Their aim is to optimise the energy function de-
48
+ fined over the whole image. By means of global algorithms, much more reliable
49
+ and accurate disparity maps are determined, but the smoothing task is NP-hard
50
+ and algorithms are very computationally demanding, and for this reason they
51
+ are not suitable for implementation in real-time systems.
52
+ It should be also noted that the current dominant trend is depth estimation
53
+ using deep neural networks [3]. However, due to the high computational com-
54
+ plexity, especially for high-resolution video streams, this topic remains outside
55
+ the focus of our present work.
56
+ The SGM (Semi-Global Matching) algorithm was introduced by Hirshm¨uller
57
+ in 2005 [4] and 2008 [5]. It is based on two components: (1) matching at a single
58
+ pixel level with the use of mutual information and (2) approximation of a global,
59
+ two-dimensional smoothness constraint (obtained by combining multiple 1D con-
60
+ straints). The SGM algorithm is an example of an intermediate method between
61
+ local and global approaches for determining disparity maps and is a compromise
62
+ between accuracy and computational complexity. However, using SGM for high-
63
+ resolution images is still challenging. For example, for a resolution of 1920×1080
64
+ pixels at 30 frames per second, an execution of about 2 TOPS (Tera Operations
65
+ Per Second) with memory bandwidth of 39 Tb/s is required to process all pixels
66
+ (2 million) [6].
67
+ In this paper we present an architecture of a stereo vision system with a mod-
68
+ ified SGM algorithm to process a 4K/Ultra HD (3840 × 2160 pixels @ 30 frames
69
+ per second) video stream in 4ppc (pixel per clock) format and its implemen-
70
+ tation in an FPGA (Field Programmable Gate Array) device. The proposed
71
+ modification solves the data dependency problem while not affecting the algo-
72
+ rithm’s accuracy. To the authors’ knowledge, this is the only verified hardware
73
+ implementation of the SGM method for 4K/Ultra HD resolution.
74
+ The reminder of this paper is organised as follows. In Section 2 we present
75
+ basic information about the SGM algorithm. In Section 3 we review the previous
76
+ work on SGM implementation on FPGAs. We describe the proposed method and
77
+ architecture, as well as the evaluation of the algorithm and the hardware im-
78
+ plementation in Section 4. The paper ends with conclusions and future research
79
+ directions.
80
+ 2
81
+ The SGM algorithm
82
+ As mentioned in the introduction, the SGM algorithm is an intermediate ap-
83
+ proach between local and global methods for determining disparity maps. Fur-
84
+ thermore, it is possible to implement it in an FPGA, in a pipelined vision system.
85
+ The input to the algorithm is a pair of rectified images. It consists of the
86
+ following steps: calculation of the matching cost, aggregation of the cost (cal-
87
+
88
+ Real-time FPGA implementation of the SGM stereo vision in 4K
89
+ 3
90
+ Fig. 1: Matching cost calculation with the Census transform and the Hamming
91
+ distance metric, with example values.
92
+ culation of the smoothness constraint) and determination of the final disparity
93
+ map.
94
+ In this work, the cost of matching C(p, d) between a pixel p = [px, py]T
95
+ from the base image Ib, and the potentially corresponding pixel (shifted by the
96
+ disparity d in a horizontal line) in the reference image Im, is calculated using
97
+ the Census transform and the Hamming distance measure, as shown in Figure
98
+ 1.
99
+ Determining the correspondence between pixels using only the matching cost
100
+ alone can lead to ambiguous and incorrect results. Therefore, an additional global
101
+ condition is proposed in the SGM algorithm, which adds a “penalty” for changing
102
+ the disparity value (i.e, supports the smoothness of the image), by aggregating
103
+ the costs along independent paths.
104
+ Let Lr denote the path in the direction r. The path cost Lr(p, d) is defined
105
+ recursively as:
106
+ Lr(p, d) = C(p, d) + min[Lr(p − r, d),
107
+ Lr(p − r, d − 1) + P1,
108
+ Lr(p − r, d + 1) + P1,
109
+ min
110
+ i
111
+ Lr(p − r, i) + P2]
112
+ − min
113
+ k Lr(p − r, k)
114
+ (1)
115
+ where: C(p, d) is the matching cost, and the second part of the equation is
116
+ the minimum path cost for the previous pixel p − r on the path, taking into
117
+ account the corresponding discontinuity penalty. Two penalties were applied in
118
+ the algorithm, P1 for a 1-level change in disparity and P2 for a larger change.
119
+ Finally, the matching cost is given as:
120
+ S(p, d) =
121
+
122
+ r
123
+ Lr(p, d)
124
+ (2)
125
+ The author of SGM recommend aggregation along at least 8 paths, i.e, ver-
126
+ tically, horizontally and diagonally in both directions (cf. Figure 3), although he
127
+ suggests that good results are achieved for the number 16. The disparity map
128
+ Db corresponding to the base image Ib is obtained by selecting for each value p
129
+ the disparity d that corresponds to the minimum cost i.e, mindS(p, d). Optional
130
+ element of the algorithm is the final post-processing: median filtering and map
131
+ consistency check (so called left-right consistency check).
132
+
133
+ Ib (pxPy)
134
+ Cntx
135
+ Census
136
+ 4
137
+ Gen.
138
+ Transform
139
+ 1314
140
+ 0010
141
+ C(p,d)
142
+ Hamming
143
+ 3
144
+ Distance
145
+ (px+d,py)
146
+ 11111
147
+ 6
148
+ 7
149
+ 6
150
+ Cntx
151
+ Census
152
+ 10
153
+ 3
154
+ 4
155
+ 3
156
+ Gen.
157
+ Transform
158
+ 1
159
+ 1100
160
+ 5
161
+ 24
162
+ M. Grabowski et al.
163
+ Due to the reasonable trade-off between computational complexity and the
164
+ quality of the resulting disparity map, the SGM algorithm has become very
165
+ popular. It is a basic method in the popular OpenCV library and the Computer
166
+ Vision Toolbox of the Matlab software. It also provides an attractive solution
167
+ for hardware implementations in FPGAs.
168
+ 3
169
+ Previous work
170
+ The topic of implementing stereo correspondence using FPGAs is very extensive,
171
+ and hence this review is narrowed only to selected articles describing the SGM
172
+ algorithm. Interested readers are referred to the review [7].
173
+ The paper written by Gehrig, Eberli, and Meye in 2009 [8] described an
174
+ SGM architecture for processing images with a resolution of 750 × 480 pixels
175
+ (effectively 340 × 200) @ 27 fps at 64 levels of disparity. It is worth noting that
176
+ this was the first implementation of the SGM method in an FPGA.
177
+ The paper of Hofmann, Korinth, and Koch from 2016 [9] also proposes a hard-
178
+ ware implementation of the SGM algorithm. The architecture features scalability
179
+ and combines coarse-grain and fine-grain parallelisation capabilities. The authors
180
+ performed tests for different configurations and resolutions. For 1920×1080 pix-
181
+ els @ 30 fps and 128 disparity levels, real-time processing was achieved at a clock
182
+ of 130 MHz (VC709 board with Virtex-7 FPGA device).
183
+ In the paper of Zhao et al. from 2020 [10], the authors presented the FP-
184
+ Stereo library, which uses the HLS language and allows the creation of SGM
185
+ disparity calculation modules. The module has been designed in the form of
186
+ an accelerator interfacing with a DMA controller, rather than directly with the
187
+ video stream. For a 300 MHz clock, a resolution of 1242 × 374 pixels and 128
188
+ disparity range, 161 fps were achieved on the ZCU 102 board with the Xilinx
189
+ Zynq UltraScale+ MPSoC device.
190
+ In the latest publications by Shrivastava et al. in 2020 [11] and Lee with Kim
191
+ in 2021 [6], the support for parallel pixel processing has been added to increase
192
+ throughput. In this approach, the main challenge is the presence of an inherent
193
+ data dependency. In the paper from 2020 [11], it is addressed by dependency
194
+ relaxation, i.e, the aggregation is performed on the basis of the pixel k earlier,
195
+ where k is the number of pixels processed simultaneously. The author points out
196
+ that such a solution represents a trade-off between accuracy and throughput.
197
+ In the work from 2021 [6], on the other hand, a different approach is pre-
198
+ sented, in which operations involving the inherent data dependency are per-
199
+ formed not on a single pixel, but on a vector of pixels. This allows the genera-
200
+ tion of disparity maps with very close accuracy to the original SGM algorithm.
201
+ In both solutions, the matching costs are determined based on the Census trans-
202
+ form. In the first publication [11], for images at a resolution of 1280 × 960 pixels
203
+ and disparity range of 64, 322 fps, and in the second [6] for a resolution of
204
+ 1920 × 1080 pixels and disparity range of 128, 103 fps were obtained.
205
+ We also propose a solution to the inherent data dependency problem. Our
206
+ architecture is based on estimating the previous pixel aggregation cost on a path
207
+
208
+ Real-time FPGA implementation of the SGM stereo vision in 4K
209
+ 5
210
+ Fig. 2: A general scheme of the proposed SGM disparity estimation system.
211
+ with minimal additional logic needed. That allows us to process images with a 4K
212
+ resolution and also to obtain comparable results to the original SGM algorithm
213
+ without parallelism.
214
+ 4
215
+ The proposed hardware implementation
216
+ The aim of our work was to implement a hardware architecture capable of pro-
217
+ cessing a video stream with a resolution of 3840×2160 pixels in real-time (i.e pro-
218
+ cessing 30 frames per second with no pixel dropping). That stream transmitted
219
+ in a 1 pixel per clock format requires a pixel clock frequency of approximately
220
+ 250 MHz. Adding to this value i.e, the vertical and horizontal blanking fields,
221
+ the required clock equals about 300 MHz, which is too high for the rather com-
222
+ plicated SGM algorithm. At the bottleneck, cost aggregation calculations take
223
+ more than 10 ns on our platform. So, in order to process the data in the de-
224
+ sired resolution, it is necessary to introduce parallelisation. In this work, a 4ppc
225
+ (pixel per clock) format is used, in which 4 pixels are processed in parallel. This
226
+ allows the pixel clock to be lowered to approximately 75 MHz. However, the use
227
+ of such format has significant implications on the implementation of the SGM
228
+ algorithm, due to the inherent data dependency.
229
+ A general scheme for the proposed vision system is shown in Figure 2. The
230
+ module accepts a synchronised video stream of rectified images, the base IB(p)
231
+ and the reference IM(p) one. Further processing consists of several steps: de-
232
+ termination of the matching cost C(p, d) using the Census transform based
233
+ matching method, calculation of the cost aggregation Lr(p, d), summation of
234
+ the aggregation costs from all directions S(p, d) and disparity determination
235
+ D(p).
236
+ 4.1
237
+ Determination of the matching cost
238
+ The 4ppc format does not introduce major complications into the hardware
239
+ architecture of the matching cost determination module, but only increases the
240
+ hardware resource requirements. First, 5×5 contexts are created for both images.
241
+ For the base image, in a given cycle, 4 contexts are created (as implied by the
242
+ 4ppc format [12]), and for the reference image this number is increased by the
243
+ disparity range (4 + disp range − 1), so that it is possible to simultaneously
244
+ compare each of the 4 contexts of the base image with all the contexts in the
245
+ disparity range of the reference image. A Census transform is performed on the
246
+ generated contexts, and the contexts are then compared accordingly using the
247
+ Hamming distance metric. The output consists of matching cost vectors.
248
+
249
+ Ib(p)
250
+ C(p, d)
251
+ Lr(p, d)
252
+ S(p,d)
253
+ Disparity
254
+ D(p)
255
+ Matching Costs
256
+ Costs
257
+ Im(p)
258
+ Sum
259
+ Selection
260
+ Determination
261
+ Aggregation6
262
+ M. Grabowski et al.
263
+ Fig. 3: Cost aggregation paths in SGM.
264
+ 4.2
265
+ Cost aggregation
266
+ In the next step, a quasi-global optimisation is performed by aggregating the
267
+ costs for the whole image according to the SGM algorithm. In the current version
268
+ of the module, this is implemented on four paths in the directions 0°, 45°, 90°,
269
+ 135°, as shown in Figure 3, which can be processed directly (without additional
270
+ video stream buffering).
271
+ Theoretically, it is also possible to realise the other four directions (180°,
272
+ 225°, 270°, 315°), but this would require storing the entire image in external
273
+ RAM, using additional resources of the FPGA device, complex control logic and
274
+ introducing additional latency in image processing.
275
+ In order to calculate the aggregation cost for a given pixel, it is necessary to
276
+ know the value of the aggregation cost for the previous pixel on the path (cf.
277
+ Equations (1) and (2)). For the 45°, 90°, 135° paths, the aggregation costs for the
278
+ pixels in a given line are stored in Block RAM and read out accordingly during
279
+ the processing of the next image line to calculate the costs for the subsequent
280
+ pixels on these paths. The hardware architecture of this computation is shown in
281
+ Figure 4 and follows Equation (1). The grey part is replicated for the entire range
282
+ of disparities (disp range) and performs in parallel and one block of finding the
283
+ minimum value of aggregation costs of the previous pixel on the path minLr(p−
284
+ r) is exploited to calculate the aggregation cost for the current pixel for each
285
+ disparity value in the range.
286
+ For the 4ppc format, the difficulty arises for the 0° path. Using the aggrega-
287
+ tion cost of the previous pixel Lr(p − r, d), which for this path lies in the same
288
+ image line and potentially in the same 4ppc format data vector, results in the
289
+ need to process four pixels in the same clock cycle. In the worst case, for the
290
+ last pixel in the vector, in one clock cycle the data would have to propagate
291
+ through four serially connected aggregation cost calculation units, as in Figure
292
+ 4. The critical path would contain 4 minimum modules of size disp range, four
293
+ minimum modules of size 4 and 12 adders/subtractors. For this reason, the cost
294
+ aggregation based on a baseline architecture (i.e, as proposed by the authors of
295
+ SGM) for the 0° path is not feasible for the considered 4K resolution, without
296
+ violating timing constraints.
297
+ It is therefore necessary to propose a new solution for the calculation of the
298
+ aggregation cost for the 0° path. Time constraints require that the new architec-
299
+ ture does not introduce significant additional propagation time and maintains
300
+
301
+ video stream direction
302
+ 45°
303
+ .06
304
+ 135°
305
+ 。0
306
+ dReal-time FPGA implementation of the SGM stereo vision in 4K
307
+ 7
308
+ Fig. 4: Hardware architecture of the aggregation cost calculation unit for path
309
+ r, pixel p and disparity d.
310
+ the approximation assumption of the global smoothness constraint of the SGM
311
+ algorithm.
312
+ In our work, we designed and implemented an architecture with a proposed
313
+ estimation of the aggregation cost value for consecutive pixels based on the
314
+ calculated aggregation cost for the last pixel of the previous 4ppc vector (the
315
+ pixel processed in the previous clock cycle) and the matching costs of the previous
316
+ pixels in the same 4ppc vector.
317
+ For the first pixel in the 4ppc vector, the aggregation cost of the previous
318
+ pixel is available during the calculation (it was calculated for the previous 4ppc
319
+ vector), i.e:
320
+ Lr(p1 − r, d) = Lr(plast, d)
321
+ (3)
322
+ where: Lr(p1 − r, d) is the aggregation cost of the previous pixel relative to the
323
+ first pixel in the 4ppc vector (p1 − r), and Lr(plast − r, d) is the aggregation cost
324
+ of the last pixel in the previous 4ppc vector.
325
+ For the consecutive pixels, we propose an estimation, which is performed
326
+ according to the following Equations:
327
+ L′
328
+ r(p2 − r, d) = Lr(plast, d) + 1
329
+ λ(C(p1, d) − Lr(plast, d))
330
+ L′
331
+ r(p3 − r, d) = Lr(plast, d) + 1
332
+ λ(C(p1, d) + C(p2, d)
333
+ 2
334
+ − Lr(plast, d))
335
+ L′
336
+ r(p4 − r, d) = Lr(plast, d) + 1
337
+ λ(
338
+ C(p1, d) + C(p2, d)
339
+ 2
340
+ + C(p3, d)
341
+ 2
342
+ − Lr(plast, d))
343
+ (4)
344
+ where: L′
345
+ r(p−r, d) is the estimated aggregation cost for the previous pixel relative
346
+ to the pixel p, C(p, d) is the matching cost for a given pixel, and the coefficient
347
+
348
+ Lr(p -r,d)
349
+ Lr(p - r,d - 1)
350
+ C(p, d)
351
+ P1
352
+ Minimum
353
+ Lr(p,d)
354
+ Lr(p -r,min disp)
355
+ Lr(p -r,d + 1)
356
+ (size: 4)
357
+ Lr(p - r,min disp + 1)
358
+ P1
359
+ Minimum
360
+ min Lr(p - r
361
+ (size: disp range)
362
+ P2
363
+ Lr(p -r,max disp - 1
364
+ Lr(p - r,max disp )8
365
+ M. Grabowski et al.
366
+ Fig. 5: The architecture for estimating the aggregation cost of the previous pixel
367
+ for each pixel in the 4ppc vector.
368
+ λ may take a value which is a power of two (1, 2, 4, 8, 16, ...). The architecture of
369
+ this solution is shown in Figure 5.
370
+ The algorithm is based on the difference of the matching cost values of the
371
+ previous pixels in a given 4ppc vector with the aggregation cost for the last pixel
372
+ of the previous vector. The aggregation cost estimation architecture consists of
373
+ basic components and introduces an additional delay only by the propagation
374
+ time of the 3 adders/subtractors (critical path for Lr(p4−r, d). Note: multiplica-
375
+ tion/division by a number that is a power of two is only a bit shift and requires
376
+ no delay in the hardware implementation.
377
+ The solution takes into account the matching cost values of all previous pixels
378
+ with the possibility to adjust the impact of the matching cost of previous pixels
379
+ in a given vector by a factor of λ.
380
+ The estimated aggregation costs are then used to calculate the aggregation
381
+ costs according to the architecture in Figure 4. In the work of Shrivastava et al.
382
+ [11] the estimation has been omitted and in the work of Lee and Kim [6] it has
383
+ been solved by the cluster-wise cost aggregation.
384
+ The aggregation costs from all paths are then summed and the disparity is
385
+ calculated. This involves finding the minimum matching cost.
386
+ 4.3
387
+ Evaluation of the proposed method
388
+ The accuracy evaluation of the proposed algorithm was performed on a set of
389
+ stereo images from the Middlebury 2014 [13] dataset. We skipped the final post-
390
+ processing to better highlight the differences between the base SGM algorithm
391
+ and the modified version proposed in this paper (SGM 4ppc). The accuracy was
392
+
393
+ Lr(p1 - r,d)
394
+ Lr(piast -r,d)
395
+ C(p1,d)
396
+ 1
397
+ Lr(p2 -r,d)
398
+ Lr(piast -r,d)
399
+ C(p1, d)
400
+ C(p2, d)
401
+ L'r(p3 -r,d)
402
+ Lr(plast -r,d)
403
+ C(p1, d)
404
+ 4
405
+ C(p2, d)
406
+ 1
407
+ C(p3, d)
408
+ 1
409
+ Lr(p4 -r,d)
410
+ X
411
+ -2
412
+ Lr(piast -r, d)Real-time FPGA implementation of the SGM stereo vision in 4K
413
+ 9
414
+ (a) Input image – left
415
+ (b) Ground truth
416
+ (c) SGM 4ppc
417
+ (d) Local method based
418
+ on CT
419
+ (e) SGM – 3 paths
420
+ (f) SGM – 4 paths
421
+ Fig. 6: Comparison of output disparity maps for the Motorcycle image in Mid-
422
+ dlebury 2014 dataset: (a) the left input image, (b) the ground truth disparity
423
+ map, (c), (d), (e), (f) estimated disparity maps (on the top) and the error maps
424
+ (on the bottom).
425
+ measured by the ratio of pixels with incorrect disparity value to all pixels of the
426
+ image (all) and also to the non-occluded (noc) pixels (occluded pixels should be
427
+ filled with the Left/Right Check post-processing).
428
+ We compared the proposed method (SGM 4ppc) with the conventional local
429
+ block matching based on the Census transform and the SGM algorithm (also
430
+
431
+ YAMRMA区X10
432
+ M. Grabowski et al.
433
+ Table 1: Comparison of error rates for the Middlebury 2014 dataset, based on
434
+ all (all) and non-occluded (noc) pixels.
435
+ all
436
+ noc
437
+ Local based on CT
438
+ 68.21%
439
+ 63,36%
440
+ SGM 3 paths
441
+ 38.01%
442
+ 28.79%
443
+ SGM 4 paths
444
+ 36.27%
445
+ 26.88%
446
+ SGM 8 paths
447
+ 33.31%
448
+ 23.11%
449
+ SGM 4ppc
450
+ 36.64%
451
+ 27.32%
452
+ based on the Census transform) with 3 and 4 aggregation paths. Figure 6 shows
453
+ sample evaluation results on the Motorcycle images from the Middlebury 2014
454
+ dataset. Table 1 shows the average evaluation results for the entire dataset.
455
+ The accuracy of the proposed method is comparable to the original SGM
456
+ algorithm with 4 paths. The difference between error rates is about 0.4%.
457
+ 4.4
458
+ Hardware implementation
459
+ We implemented the proposed stereo vision system on a VC707 evaluation board
460
+ with Xilinx’s Virtex-7 XC7VX485T-2FFG1761C device. We set up a test envi-
461
+ ronment to evaluate the system, with test images sent directly from a PC do the
462
+ board and later displayed on a 4K monitor.
463
+ We compared our solution with previous FPGA implementations of the SGM
464
+ algorithm in Table 2. We used the following metrics: Frames per Second (FPS),
465
+ Million Disparity Estimates per second (MDE/s) and MDE/s per Kilo LUTs
466
+ (Look-Up Tables) (MDE/s/KLUT). First of all, our solution is the only one ver-
467
+ ified in hardware for a 4K/ Ultra HD resolution. We also would like to point out
468
+ that the lower performance in FPS and MDE/s relative to previous work from
469
+ 2020 [11] and 2021 [6] is due to the use of an FPGA chip with fewer resources. For
470
+ this work, it was necessary to select a suitable platform to enable image acquisi-
471
+ tion in 4K resolution (i.e, having two high-bandwidth FMCs (FPGA Mezzanine
472
+ Connectors) to which TB-FMCH-HDMI4K modules were attached).
473
+ It is also worth mentioning that the used FPGA technology differs not only
474
+ in the number of resources but also in the performance. To compare: the critical
475
+ path propagation time for the technology used in this paper after synthesis
476
+ is 12.967 ns, but for the Xilinx Virtex UltraScale+ XCVU9P-L2FLGA2104E
477
+ FPGA with the same parameters, it is 8.240 ns (36.45% faster).
478
+ 5
479
+ Conclusion
480
+ In this paper, we presented a hardware architecture for an SGM algorithm to
481
+ process a 4K/Ultra HD video stream in real-time. We proposed a solution to
482
+ the inherent data dependency problem. It allowed us to maintain high accuracy
483
+ of the depth map estimation, while making it possible to take advantage of the
484
+
485
+ Real-time FPGA implementation of the SGM stereo vision in 4K
486
+ 11
487
+ Table 2: Comparison with previous FPGA implementations of the SGM algo-
488
+ rithm.
489
+ Image
490
+ Disparity
491
+ Platform
492
+ FPGA
493
+ Throughput
494
+ resolution
495
+ range
496
+ resources
497
+ LUT FF BRAM FPS MDE/s MDE/s/KLUT
498
+ [14]
499
+ 1920x1080
500
+ 128
501
+ Virtex-7
502
+ 195k 217k
503
+ 368
504
+ 30
505
+ 7 963
506
+ 40.84
507
+ [15]
508
+ 1600x1200
509
+ 128
510
+ Stratix-V
511
+ 222k 149k
512
+ N/A
513
+ 43
514
+ 10 472
515
+ 47.2
516
+ [11]
517
+ 1280x960
518
+ 64
519
+ Virtex-7 690T 211k N/A
520
+ 641
521
+ 322 25 056
522
+ 118.6
523
+ [6]
524
+ 1920x1080
525
+ 128
526
+ Zynq US+
527
+ 222k 135k
528
+ 252
529
+ 103 27 297
530
+ 123.0
531
+ New 3840x2160
532
+ 64
533
+ Virtex-7 485T 138k 65k
534
+ 197
535
+ 30
536
+ 15 925
537
+ 116.2
538
+ 4ppc vector format. We implemented the module on a Virtex-7 FPGA platform
539
+ achieving 30 frames per second for a resolution of 3840 × 2160 pixels with 64
540
+ disparity levels.
541
+ In future work, we plan to add more aggregation paths to the algorithm. With
542
+ that, it will be possible to get more accurate results, but at the cost of latency and
543
+ resource usage. We also plan to implement a video stream rectification module.
544
+ Acknowledgements The work presented in this paper was supported by: the
545
+ National Science Centre project no. 2016/23/D/ST6/01389 entitled ”The de-
546
+ velopment of computing resources organization in latest generation of hetero-
547
+ geneous reconfigurable devices enabling real-time processing of UHD/4K video
548
+ stream”, the AGH University of Science and Technology project no. 16.16.120.773
549
+ and the program ”Excellence initiative — research university” for the AGH Uni-
550
+ versity of Science and Technology.
551
+ References
552
+ [1]
553
+ N. Jamwal, N. Jindal, and K. Singh. “A survey on depth map estima-
554
+ tion strategies”. In: International Conference on Signal Processing (ICSP
555
+ 2016). 2016, pp. 1–5. doi: 10.1049/cp.2016.1453.
556
+ [2]
557
+ Daniel Scharstein and Richard Szeliski. “A Taxonomy and Evaluation of
558
+ Dense Two-Frame Stereo Correspondence Algorithms”. In: International
559
+ Journal of Computer Vision 47 (Apr. 2002), pp. 7–42. doi: 10.1023/A:
560
+ 1014573219977.
561
+ [3]
562
+ Hamid Laga et al. “A Survey on Deep Learning Techniques for Stereo-
563
+ Based Depth Estimation”. In: IEEE Transactions on Pattern Analysis and
564
+ Machine Intelligence 44.4 (2022), pp. 1738–1764. doi: 10.1109/TPAMI.
565
+ 2020.3032602.
566
+ [4]
567
+ H. Hirschmuller. “Accurate and efficient stereo processing by semi-global
568
+ matching and mutual information”. In: 2005 IEEE Computer Society Con-
569
+ ference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 2.
570
+ 2005, 807–814 vol. 2. doi: 10.1109/CVPR.2005.56.
571
+
572
+ 12
573
+ M. Grabowski et al.
574
+ [5]
575
+ Hirschmuuller H. “Stereo processing by semiglobal matching and mutual
576
+ information.” In: IEEE Transactions on Pattern Analysis and Machine
577
+ Intelligence 30.2 (2008), pp. 328–341. issn: 0162-8828.
578
+ [6]
579
+ Yeongmin Lee and Hyeji Kim. “A High-Throughput Depth Estimation
580
+ Processor for Accurate Semiglobal Stereo Matching Using Pipelined Inter-
581
+ Pixel Aggregation”. In: IEEE Transactions on Circuits and Systems for
582
+ Video Technology (2021), pp. 1–1. doi: 10.1109/TCSVT.2021.3061200.
583
+ [7]
584
+ Zishen Wan et al. “A Survey of FPGA-Based Robotic Computing”. In:
585
+ IEEE Circuits and Systems Magazine 21.2 (2021), pp. 48–74. doi: 10.
586
+ 1109/MCAS.2021.3071609.
587
+ [8]
588
+ Stefan K. Gehrig, Felix Eberli, and Thomas Meyer. “A real-time low-power
589
+ stereo vision engine using semi-global matching”. In: Lecture Notes in
590
+ Computer Science (including subseries Lecture Notes in Artificial Intel-
591
+ ligence and Lecture Notes in Bioinformatics) 5815 LNCS (2009), pp. 134–
592
+ 143. issn: 03029743. doi: 10.1007/978-3-642-04667-4_14.
593
+ [9]
594
+ Jaco Hofmann, Jens Korinth, and Andreas Koch. “A Scalable High-Performance
595
+ Hardware Architecture for Real-Time Stereo Vision by Semi-Global Match-
596
+ ing”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
597
+ nition Workshops (CVPRW). 2016, pp. 845–853. doi: 10.1109/CVPRW.
598
+ 2016.110.
599
+ [10]
600
+ Jieru Zhao et al. “FP-Stereo: Hardware-Efficient Stereo Vision for Em-
601
+ bedded Applications”. In: 2020 30th International Conference on Field-
602
+ Programmable Logic and Applications (FPL). 2020, pp. 269–276. doi: 10.
603
+ 1109/FPL50879.2020.00052.
604
+ [11]
605
+ Shashwat Shrivastava et al. “FPGA Accelerator for Stereo Vision using
606
+ Semi-Global Matching through Dependency Relaxation”. In: 2020 30th
607
+ International Conference on Field-Programmable Logic and Applications
608
+ (FPL). 2020, pp. 304–309. doi: 10.1109/FPL50879.2020.00057.
609
+ [12]
610
+ Marcin Kowalczyk, Dominika Przewlocka, and Tomasz Kryjak. “Real-
611
+ Time Implementation of Contextual Image Processing Operations for 4K
612
+ Video Stream in Zynq UltraScale+ MPSoC”. In: 2018 Conference on De-
613
+ sign and Architectures for Signal and Image Processing (DASIP). 2018,
614
+ pp. 37–42. doi: 10.1109/DASIP.2018.8597105.
615
+ [13]
616
+ Daniel Scharstein et al. “High-Resolution Stereo Datasets with Subpixel-
617
+ Accurate Ground Truth”. In: Pattern Recognition. Ed. by Xiaoyi Jiang,
618
+ Joachim Hornegger, and Reinhard Koch. Cham: Springer International
619
+ Publishing, 2014, pp. 31–42. isbn: 978-3-319-11752-2.
620
+ [14]
621
+ Jaco Hofmann, Jens Korinth, and Andreas Koch. “A Scalable High-Performance
622
+ Hardware Architecture for Real-Time Stereo Vision by Semi-Global Match-
623
+ ing”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
624
+ nition Workshops (CVPRW). 2016, pp. 845–853. doi: 10.1109/CVPRW.
625
+ 2016.110.
626
+ [15]
627
+ Wenqiang Wang et al. “Real-Time High-Quality Stereo Vision System in
628
+ FPGA”. In: IEEE Transactions on Circuits and Systems for Video Tech-
629
+ nology 25.10 (2015), pp. 1696–1708. doi: 10.1109/TCSVT.2015.2397196.
630
+
4dE4T4oBgHgl3EQfBAsA/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf,len=383
2
+ page_content='Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream Mariusz Grabowski and Tomasz Kryjak Embedded Vision Systems Group, Computer Vision Laboratory, Department of Automatic Control and Robotics, AGH University of Science and Technology, Krakow, Poland grabowski@student.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
3
+ page_content='agh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
4
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
5
+ page_content='pl, tomasz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
6
+ page_content='kryjak@agh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
7
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
8
+ page_content='pl Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
9
+ page_content=' In this paper, we propose a real-time FPGA implementation of the Semi-Global Matching (SGM) stereo vision algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
10
+ page_content=' The de- signed module supports a 4K/Ultra HD (3840 × 2160 pixels @ 30 frames per second) video stream in a 4 pixel per clock (ppc) format and a 64- pixel disparity range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
11
+ page_content=' The baseline SGM implementation had to be mod- ified to process pixels in the 4ppc format and meet the timing constrains, however, our version provides results comparable to the original design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
12
+ page_content=' The solution has been positively evaluated on the Xilinx VC707 devel- opment board with a Virtex-7 FPGA device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
13
+ page_content=' Keywords: SGM · FPGA · 4K · Ultra HD · real-time processing · stereo vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
14
+ page_content=' 1 Introduction Information on the 3D structure (depth) of a scene is very important in many robotic systems, including self-driving cars and unmanned aerial vehicles (UAVs), as it is used in object detection and navigation modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
15
+ page_content=' The depth map can be estimated using several different approaches, active: LiDAR (Light Detec- tion and Ranging), Time of Flight (ToF) cameras, stereo vision with structured lighting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
16
+ page_content=' and passive: stereo vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
17
+ page_content=' Stereo vision uses two or more cameras that acquire the same scene, but from slightly different points in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
18
+ page_content=' A detailed discussion of the advantages and disadvantages of different sensors can be found in the work of Jamwal, Jindal, and Singh [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
19
+ page_content=' Stereo vision, in its passive variant, is an often used solution in embedded systems due to the low price of the equipment, its small size and weight (no need for a laser light source, rotating elements or projectors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
20
+ page_content=' The accuracy of the results obtained with this technology strictly depends on the algorithm used to process the acquired images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
21
+ page_content=' The methods used can be divided into two groups: local and global [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
22
+ page_content=' In both cases, the key element is to find the same pixels in the image captured by the left (usually considered as the base) and arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
23
+ page_content='04847v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
24
+ page_content='CV] 12 Jan 2023 2 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
25
+ page_content=' Grabowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
26
+ page_content=' right camera (reference).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
27
+ page_content=' Their offset expressed in pixels is referred to as the disparity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
28
+ page_content=' This value can be easily converted to the distance from the sensors using the vision system parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
29
+ page_content=' Global methods introduce appropriate discontinuity penalties in order to smooth the disparity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
30
+ page_content=' Their aim is to optimise the energy function de- fined over the whole image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
31
+ page_content=' By means of global algorithms, much more reliable and accurate disparity maps are determined, but the smoothing task is NP-hard and algorithms are very computationally demanding, and for this reason they are not suitable for implementation in real-time systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
32
+ page_content=' It should be also noted that the current dominant trend is depth estimation using deep neural networks [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
33
+ page_content=' However, due to the high computational com- plexity, especially for high-resolution video streams, this topic remains outside the focus of our present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
34
+ page_content=' The SGM (Semi-Global Matching) algorithm was introduced by Hirshm¨uller in 2005 [4] and 2008 [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
35
+ page_content=' It is based on two components: (1) matching at a single pixel level with the use of mutual information and (2) approximation of a global, two-dimensional smoothness constraint (obtained by combining multiple 1D con- straints).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
36
+ page_content=' The SGM algorithm is an example of an intermediate method between local and global approaches for determining disparity maps and is a compromise between accuracy and computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
37
+ page_content=' However, using SGM for high- resolution images is still challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
38
+ page_content=' For example, for a resolution of 1920×1080 pixels at 30 frames per second, an execution of about 2 TOPS (Tera Operations Per Second) with memory bandwidth of 39 Tb/s is required to process all pixels (2 million) [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
39
+ page_content=' In this paper we present an architecture of a stereo vision system with a mod- ified SGM algorithm to process a 4K/Ultra HD (3840 × 2160 pixels @ 30 frames per second) video stream in 4ppc (pixel per clock) format and its implemen- tation in an FPGA (Field Programmable Gate Array) device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
40
+ page_content=' The proposed modification solves the data dependency problem while not affecting the algo- rithm’s accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
41
+ page_content=' To the authors’ knowledge, this is the only verified hardware implementation of the SGM method for 4K/Ultra HD resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
42
+ page_content=' The reminder of this paper is organised as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
43
+ page_content=' In Section 2 we present basic information about the SGM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
44
+ page_content=' In Section 3 we review the previous work on SGM implementation on FPGAs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
45
+ page_content=' We describe the proposed method and architecture, as well as the evaluation of the algorithm and the hardware im- plementation in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
46
+ page_content=' The paper ends with conclusions and future research directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
47
+ page_content=' 2 The SGM algorithm As mentioned in the introduction, the SGM algorithm is an intermediate ap- proach between local and global methods for determining disparity maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
48
+ page_content=' Fur- thermore, it is possible to implement it in an FPGA, in a pipelined vision system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
49
+ page_content=' The input to the algorithm is a pair of rectified images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
50
+ page_content=' It consists of the following steps: calculation of the matching cost, aggregation of the cost (cal- Real-time FPGA implementation of the SGM stereo vision in 4K 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
51
+ page_content=' 1: Matching cost calculation with the Census transform and the Hamming distance metric, with example values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
52
+ page_content=' culation of the smoothness constraint) and determination of the final disparity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
53
+ page_content=' In this work, the cost of matching C(p, d) between a pixel p = [px, py]T from the base image Ib, and the potentially corresponding pixel (shifted by the disparity d in a horizontal line) in the reference image Im, is calculated using the Census transform and the Hamming distance measure, as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
54
+ page_content=' Determining the correspondence between pixels using only the matching cost alone can lead to ambiguous and incorrect results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
55
+ page_content=' Therefore, an additional global condition is proposed in the SGM algorithm, which adds a “penalty” for changing the disparity value (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
56
+ page_content='e, supports the smoothness of the image), by aggregating the costs along independent paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
57
+ page_content=' Let Lr denote the path in the direction r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
58
+ page_content=' The path cost Lr(p, d) is defined recursively as: Lr(p, d) = C(p, d) + min[Lr(p − r, d), Lr(p − r, d − 1) + P1, Lr(p − r, d + 1) + P1, min i Lr(p − r, i) + P2] − min k Lr(p − r, k) (1) where: C(p, d) is the matching cost, and the second part of the equation is the minimum path cost for the previous pixel p − r on the path, taking into account the corresponding discontinuity penalty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
59
+ page_content=' Two penalties were applied in the algorithm, P1 for a 1-level change in disparity and P2 for a larger change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
60
+ page_content=' Finally, the matching cost is given as: S(p, d) = � r Lr(p, d) (2) The author of SGM recommend aggregation along at least 8 paths, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
61
+ page_content='e, ver- tically, horizontally and diagonally in both directions (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
62
+ page_content=' Figure 3), although he suggests that good results are achieved for the number 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
63
+ page_content=' The disparity map Db corresponding to the base image Ib is obtained by selecting for each value p the disparity d that corresponds to the minimum cost i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
64
+ page_content='e, mindS(p, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
65
+ page_content=' Optional element of the algorithm is the final post-processing: median filtering and map consistency check (so called left-right consistency check).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
66
+ page_content=' Ib (pxPy) Cntx Census 4 Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
67
+ page_content=' Transform 1314 0010 C(p,d) Hamming 3 Distance (px+d,py) 11111 6 7 6 Cntx Census 10 3 4 3 Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
68
+ page_content=' Transform 1 1100 5 24 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
69
+ page_content=' Grabowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
70
+ page_content=' Due to the reasonable trade-off between computational complexity and the quality of the resulting disparity map, the SGM algorithm has become very popular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
71
+ page_content=' It is a basic method in the popular OpenCV library and the Computer Vision Toolbox of the Matlab software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
72
+ page_content=' It also provides an attractive solution for hardware implementations in FPGAs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
73
+ page_content=' 3 Previous work The topic of implementing stereo correspondence using FPGAs is very extensive, and hence this review is narrowed only to selected articles describing the SGM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
74
+ page_content=' Interested readers are referred to the review [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
75
+ page_content=' The paper written by Gehrig, Eberli, and Meye in 2009 [8] described an SGM architecture for processing images with a resolution of 750 × 480 pixels (effectively 340 × 200) @ 27 fps at 64 levels of disparity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
76
+ page_content=' It is worth noting that this was the first implementation of the SGM method in an FPGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
77
+ page_content=' The paper of Hofmann, Korinth, and Koch from 2016 [9] also proposes a hard- ware implementation of the SGM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
78
+ page_content=' The architecture features scalability and combines coarse-grain and fine-grain parallelisation capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
79
+ page_content=' The authors performed tests for different configurations and resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
80
+ page_content=' For 1920×1080 pix- els @ 30 fps and 128 disparity levels, real-time processing was achieved at a clock of 130 MHz (VC709 board with Virtex-7 FPGA device).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
81
+ page_content=' In the paper of Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
82
+ page_content=' from 2020 [10], the authors presented the FP- Stereo library, which uses the HLS language and allows the creation of SGM disparity calculation modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
83
+ page_content=' The module has been designed in the form of an accelerator interfacing with a DMA controller, rather than directly with the video stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
84
+ page_content=' For a 300 MHz clock, a resolution of 1242 × 374 pixels and 128 disparity range, 161 fps were achieved on the ZCU 102 board with the Xilinx Zynq UltraScale+ MPSoC device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
85
+ page_content=' In the latest publications by Shrivastava et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
86
+ page_content=' in 2020 [11] and Lee with Kim in 2021 [6], the support for parallel pixel processing has been added to increase throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
87
+ page_content=' In this approach, the main challenge is the presence of an inherent data dependency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
88
+ page_content=' In the paper from 2020 [11], it is addressed by dependency relaxation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
89
+ page_content='e, the aggregation is performed on the basis of the pixel k earlier, where k is the number of pixels processed simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
90
+ page_content=' The author points out that such a solution represents a trade-off between accuracy and throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
91
+ page_content=' In the work from 2021 [6], on the other hand, a different approach is pre- sented, in which operations involving the inherent data dependency are per- formed not on a single pixel, but on a vector of pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
92
+ page_content=' This allows the genera- tion of disparity maps with very close accuracy to the original SGM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
93
+ page_content=' In both solutions, the matching costs are determined based on the Census trans- form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
94
+ page_content=' In the first publication [11], for images at a resolution of 1280 × 960 pixels and disparity range of 64, 322 fps, and in the second [6] for a resolution of 1920 × 1080 pixels and disparity range of 128, 103 fps were obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
95
+ page_content=' We also propose a solution to the inherent data dependency problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
96
+ page_content=' Our architecture is based on estimating the previous pixel aggregation cost on a path Real-time FPGA implementation of the SGM stereo vision in 4K 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
97
+ page_content=' 2: A general scheme of the proposed SGM disparity estimation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
98
+ page_content=' with minimal additional logic needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
99
+ page_content=' That allows us to process images with a 4K resolution and also to obtain comparable results to the original SGM algorithm without parallelism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
100
+ page_content=' 4 The proposed hardware implementation The aim of our work was to implement a hardware architecture capable of pro- cessing a video stream with a resolution of 3840×2160 pixels in real-time (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
101
+ page_content='e pro- cessing 30 frames per second with no pixel dropping).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
102
+ page_content=' That stream transmitted in a 1 pixel per clock format requires a pixel clock frequency of approximately 250 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
103
+ page_content=' Adding to this value i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
104
+ page_content='e, the vertical and horizontal blanking fields, the required clock equals about 300 MHz, which is too high for the rather com- plicated SGM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
105
+ page_content=' At the bottleneck, cost aggregation calculations take more than 10 ns on our platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
106
+ page_content=' So, in order to process the data in the de- sired resolution, it is necessary to introduce parallelisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
107
+ page_content=' In this work, a 4ppc (pixel per clock) format is used, in which 4 pixels are processed in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
108
+ page_content=' This allows the pixel clock to be lowered to approximately 75 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
109
+ page_content=' However, the use of such format has significant implications on the implementation of the SGM algorithm, due to the inherent data dependency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
110
+ page_content=' A general scheme for the proposed vision system is shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
111
+ page_content=' The module accepts a synchronised video stream of rectified images, the base IB(p) and the reference IM(p) one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
112
+ page_content=' Further processing consists of several steps: de- termination of the matching cost C(p, d) using the Census transform based matching method, calculation of the cost aggregation Lr(p, d), summation of the aggregation costs from all directions S(p, d) and disparity determination D(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
113
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
114
+ page_content='1 Determination of the matching cost The 4ppc format does not introduce major complications into the hardware architecture of the matching cost determination module, but only increases the hardware resource requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
115
+ page_content=' First, 5×5 contexts are created for both images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
116
+ page_content=' For the base image, in a given cycle, 4 contexts are created (as implied by the 4ppc format [12]), and for the reference image this number is increased by the disparity range (4 + disp range − 1), so that it is possible to simultaneously compare each of the 4 contexts of the base image with all the contexts in the disparity range of the reference image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
117
+ page_content=' A Census transform is performed on the generated contexts, and the contexts are then compared accordingly using the Hamming distance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
118
+ page_content=' The output consists of matching cost vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
119
+ page_content=' Ib(p) C(p, d) Lr(p, d) S(p,d) Disparity D(p) Matching Costs Costs Im(p) Sum Selection Determination Aggregation6 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
120
+ page_content=' Grabowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
121
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
122
+ page_content=' 3: Cost aggregation paths in SGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
123
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
124
+ page_content='2 Cost aggregation In the next step, a quasi-global optimisation is performed by aggregating the costs for the whole image according to the SGM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
125
+ page_content=' In the current version of the module, this is implemented on four paths in the directions 0°, 45°, 90°, 135°, as shown in Figure 3, which can be processed directly (without additional video stream buffering).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
126
+ page_content=' Theoretically, it is also possible to realise the other four directions (180°, 225°, 270°, 315°), but this would require storing the entire image in external RAM, using additional resources of the FPGA device, complex control logic and introducing additional latency in image processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
127
+ page_content=' In order to calculate the aggregation cost for a given pixel, it is necessary to know the value of the aggregation cost for the previous pixel on the path (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
128
+ page_content=' Equations (1) and (2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
129
+ page_content=' For the 45°, 90°, 135° paths, the aggregation costs for the pixels in a given line are stored in Block RAM and read out accordingly during the processing of the next image line to calculate the costs for the subsequent pixels on these paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
130
+ page_content=' The hardware architecture of this computation is shown in Figure 4 and follows Equation (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
131
+ page_content=' The grey part is replicated for the entire range of disparities (disp range) and performs in parallel and one block of finding the minimum value of aggregation costs of the previous pixel on the path minLr(p− r) is exploited to calculate the aggregation cost for the current pixel for each disparity value in the range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
132
+ page_content=' For the 4ppc format, the difficulty arises for the 0° path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
133
+ page_content=' Using the aggrega- tion cost of the previous pixel Lr(p − r, d), which for this path lies in the same image line and potentially in the same 4ppc format data vector, results in the need to process four pixels in the same clock cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
134
+ page_content=' In the worst case, for the last pixel in the vector, in one clock cycle the data would have to propagate through four serially connected aggregation cost calculation units, as in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
135
+ page_content=' The critical path would contain 4 minimum modules of size disp range, four minimum modules of size 4 and 12 adders/subtractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
136
+ page_content=' For this reason, the cost aggregation based on a baseline architecture (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
137
+ page_content='e, as proposed by the authors of SGM) for the 0° path is not feasible for the considered 4K resolution, without violating timing constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
138
+ page_content=' It is therefore necessary to propose a new solution for the calculation of the aggregation cost for the 0° path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
139
+ page_content=' Time constraints require that the new architec- ture does not introduce significant additional propagation time and maintains video stream direction 45° .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
140
+ page_content='06 135° 。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
141
+ page_content='0 dReal-time FPGA implementation of the SGM stereo vision in 4K 7 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
142
+ page_content=' 4: Hardware architecture of the aggregation cost calculation unit for path r, pixel p and disparity d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
143
+ page_content=' the approximation assumption of the global smoothness constraint of the SGM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
144
+ page_content=' In our work, we designed and implemented an architecture with a proposed estimation of the aggregation cost value for consecutive pixels based on the calculated aggregation cost for the last pixel of the previous 4ppc vector (the pixel processed in the previous clock cycle) and the matching costs of the previous pixels in the same 4ppc vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
145
+ page_content=' For the first pixel in the 4ppc vector, the aggregation cost of the previous pixel is available during the calculation (it was calculated for the previous 4ppc vector), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
146
+ page_content='e: Lr(p1 − r, d) = Lr(plast, d) (3) where: Lr(p1 − r, d) is the aggregation cost of the previous pixel relative to the first pixel in the 4ppc vector (p1 − r), and Lr(plast − r, d) is the aggregation cost of the last pixel in the previous 4ppc vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
147
+ page_content=' For the consecutive pixels,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
148
+ page_content=' we propose an estimation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
149
+ page_content=' which is performed according to the following Equations: L′ r(p2 − r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
150
+ page_content=' d) = Lr(plast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
151
+ page_content=' d) + 1 λ(C(p1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
152
+ page_content=' d) − Lr(plast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
153
+ page_content=' d)) L′ r(p3 − r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
154
+ page_content=' d) = Lr(plast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
155
+ page_content=' d) + 1 λ(C(p1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
156
+ page_content=' d) + C(p2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
157
+ page_content=' d) 2 − Lr(plast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
158
+ page_content=' d)) L′ r(p4 − r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
159
+ page_content=' d) = Lr(plast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
160
+ page_content=' d) + 1 λ( C(p1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
161
+ page_content=' d) + C(p2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
162
+ page_content=' d) 2 + C(p3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
163
+ page_content=' d) 2 − Lr(plast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
164
+ page_content=' d)) (4) where: L′ r(p−r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
165
+ page_content=' d) is the estimated aggregation cost for the previous pixel relative to the pixel p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
166
+ page_content=' C(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
167
+ page_content=' d) is the matching cost for a given pixel,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
168
+ page_content=' and the coefficient Lr(p -r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
169
+ page_content='d) Lr(p - r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
170
+ page_content='d - 1) C(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
171
+ page_content=' d) P1 Minimum Lr(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
172
+ page_content='d) Lr(p -r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
173
+ page_content='min disp) Lr(p -r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
174
+ page_content='d + 1) (size: 4) Lr(p - r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
175
+ page_content='min disp + 1) P1 Minimum min Lr(p - r (size: disp range) P2 Lr(p -r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
176
+ page_content='max disp - 1 Lr(p - r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
177
+ page_content='max disp )8 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
178
+ page_content=' Grabowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
179
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
180
+ page_content=' 5: The architecture for estimating the aggregation cost of the previous pixel for each pixel in the 4ppc vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
181
+ page_content=' λ may take a value which is a power of two (1, 2, 4, 8, 16, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
182
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
183
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
184
+ page_content=' The architecture of this solution is shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
185
+ page_content=' The algorithm is based on the difference of the matching cost values of the previous pixels in a given 4ppc vector with the aggregation cost for the last pixel of the previous vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
186
+ page_content=' The aggregation cost estimation architecture consists of basic components and introduces an additional delay only by the propagation time of the 3 adders/subtractors (critical path for Lr(p4−r, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
187
+ page_content=' Note: multiplica- tion/division by a number that is a power of two is only a bit shift and requires no delay in the hardware implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
188
+ page_content=' The solution takes into account the matching cost values of all previous pixels with the possibility to adjust the impact of the matching cost of previous pixels in a given vector by a factor of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
189
+ page_content=' The estimated aggregation costs are then used to calculate the aggregation costs according to the architecture in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
190
+ page_content=' In the work of Shrivastava et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
191
+ page_content=' [11] the estimation has been omitted and in the work of Lee and Kim [6] it has been solved by the cluster-wise cost aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
192
+ page_content=' The aggregation costs from all paths are then summed and the disparity is calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
193
+ page_content=' This involves finding the minimum matching cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
194
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
195
+ page_content='3 Evaluation of the proposed method The accuracy evaluation of the proposed algorithm was performed on a set of stereo images from the Middlebury 2014 [13] dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
196
+ page_content=' We skipped the final post- processing to better highlight the differences between the base SGM algorithm and the modified version proposed in this paper (SGM 4ppc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
197
+ page_content=" The accuracy was Lr(p1 - r,d) Lr(piast -r,d) C(p1,d) 1 Lr(p2 -r,d) Lr(piast -r,d) C(p1, d) C(p2, d) L'r(p3 -r,d) Lr(plast -r,d) C(p1, d) 4 C(p2, d) 1 C(p3, d) 1 Lr(p4 -r,d) X 2 Lr(piast -r, d)Real-time FPGA implementation of the SGM stereo vision in 4K 9 (a) Input image – left (b) Ground truth (c) SGM 4ppc (d) Local method based on CT (e) SGM – 3 paths (f) SGM – 4 paths Fig." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
198
+ page_content=' 6: Comparison of output disparity maps for the Motorcycle image in Mid- dlebury 2014 dataset: (a) the left input image, (b) the ground truth disparity map, (c), (d), (e), (f) estimated disparity maps (on the top) and the error maps (on the bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
199
+ page_content=' measured by the ratio of pixels with incorrect disparity value to all pixels of the image (all) and also to the non-occluded (noc) pixels (occluded pixels should be filled with the Left/Right Check post-processing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
200
+ page_content=' We compared the proposed method (SGM 4ppc) with the conventional local block matching based on the Census transform and the SGM algorithm (also YAMRMA区X10 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
201
+ page_content=' Grabowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
202
+ page_content=' Table 1: Comparison of error rates for the Middlebury 2014 dataset, based on all (all) and non-occluded (noc) pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
203
+ page_content=' all noc Local based on CT 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
204
+ page_content='21% 63,36% SGM 3 paths 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
205
+ page_content='01% 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
206
+ page_content='79% SGM 4 paths 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
207
+ page_content='27% 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
208
+ page_content='88% SGM 8 paths 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
209
+ page_content='31% 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
210
+ page_content='11% SGM 4ppc 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
211
+ page_content='64% 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
212
+ page_content='32% based on the Census transform) with 3 and 4 aggregation paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
213
+ page_content=' Figure 6 shows sample evaluation results on the Motorcycle images from the Middlebury 2014 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
214
+ page_content=' Table 1 shows the average evaluation results for the entire dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
215
+ page_content=' The accuracy of the proposed method is comparable to the original SGM algorithm with 4 paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
216
+ page_content=' The difference between error rates is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
217
+ page_content='4%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
218
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
219
+ page_content='4 Hardware implementation We implemented the proposed stereo vision system on a VC707 evaluation board with Xilinx’s Virtex-7 XC7VX485T-2FFG1761C device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
220
+ page_content=' We set up a test envi- ronment to evaluate the system, with test images sent directly from a PC do the board and later displayed on a 4K monitor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
221
+ page_content=' We compared our solution with previous FPGA implementations of the SGM algorithm in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
222
+ page_content=' We used the following metrics: Frames per Second (FPS), Million Disparity Estimates per second (MDE/s) and MDE/s per Kilo LUTs (Look-Up Tables) (MDE/s/KLUT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
223
+ page_content=' First of all, our solution is the only one ver- ified in hardware for a 4K/ Ultra HD resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
224
+ page_content=' We also would like to point out that the lower performance in FPS and MDE/s relative to previous work from 2020 [11] and 2021 [6] is due to the use of an FPGA chip with fewer resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
225
+ page_content=' For this work, it was necessary to select a suitable platform to enable image acquisi- tion in 4K resolution (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
226
+ page_content='e, having two high-bandwidth FMCs (FPGA Mezzanine Connectors) to which TB-FMCH-HDMI4K modules were attached).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
227
+ page_content=' It is also worth mentioning that the used FPGA technology differs not only in the number of resources but also in the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
228
+ page_content=' To compare: the critical path propagation time for the technology used in this paper after synthesis is 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
229
+ page_content='967 ns, but for the Xilinx Virtex UltraScale+ XCVU9P-L2FLGA2104E FPGA with the same parameters, it is 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
230
+ page_content='240 ns (36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
231
+ page_content='45% faster).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
232
+ page_content=' 5 Conclusion In this paper, we presented a hardware architecture for an SGM algorithm to process a 4K/Ultra HD video stream in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
233
+ page_content=' We proposed a solution to the inherent data dependency problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
234
+ page_content=' It allowed us to maintain high accuracy of the depth map estimation, while making it possible to take advantage of the Real-time FPGA implementation of the SGM stereo vision in 4K 11 Table 2: Comparison with previous FPGA implementations of the SGM algo- rithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
235
+ page_content=' Image Disparity Platform FPGA Throughput resolution range resources LUT FF BRAM FPS MDE/s MDE/s/KLUT [14] 1920x1080 128 Virtex-7 195k 217k 368 30 7 963 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
236
+ page_content='84 [15] 1600x1200 128 Stratix-V 222k 149k N/A 43 10 472 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
237
+ page_content='2 [11] 1280x960 64 Virtex-7 690T 211k N/A 641 322 25 056 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
238
+ page_content='6 [6] 1920x1080 128 Zynq US+ 222k 135k 252 103 27 297 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
239
+ page_content='0 New 3840x2160 64 Virtex-7 485T 138k 65k 197 30 15 925 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
240
+ page_content='2 4ppc vector format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
241
+ page_content=' We implemented the module on a Virtex-7 FPGA platform achieving 30 frames per second for a resolution of 3840 × 2160 pixels with 64 disparity levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
242
+ page_content=' In future work, we plan to add more aggregation paths to the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
243
+ page_content=' With that, it will be possible to get more accurate results, but at the cost of latency and resource usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
244
+ page_content=' We also plan to implement a video stream rectification module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
245
+ page_content=' Acknowledgements The work presented in this paper was supported by: the National Science Centre project no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
246
+ page_content=' 2016/23/D/ST6/01389 entitled ”The de- velopment of computing resources organization in latest generation of hetero- geneous reconfigurable devices enabling real-time processing of UHD/4K video stream”, the AGH University of Science and Technology project no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
247
+ page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
248
+ page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
249
+ page_content='120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
250
+ page_content='773 and the program ”Excellence initiative — research university” for the AGH Uni- versity of Science and Technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
251
+ page_content=' References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
252
+ page_content=' Jamwal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
253
+ page_content=' Jindal, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
254
+ page_content=' Singh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
255
+ page_content=' “A survey on depth map estima- tion strategies”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
256
+ page_content=' In: International Conference on Signal Processing (ICSP 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
257
+ page_content=' 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
258
+ page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
259
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
260
+ page_content='1049/cp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
261
+ page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
262
+ page_content='1453.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
263
+ page_content=' [2] Daniel Scharstein and Richard Szeliski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
264
+ page_content=' “A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
265
+ page_content=' In: International Journal of Computer Vision 47 (Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
266
+ page_content=' 2002), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
267
+ page_content=' 7–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
268
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
269
+ page_content='1023/A: 1014573219977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
270
+ page_content=' [3] Hamid Laga et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
271
+ page_content=' “A Survey on Deep Learning Techniques for Stereo- Based Depth Estimation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
272
+ page_content=' In: IEEE Transactions on Pattern Analysis and Machine Intelligence 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
273
+ page_content='4 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
274
+ page_content=' 1738–1764.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
275
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
276
+ page_content='1109/TPAMI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
277
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
278
+ page_content='3032602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
279
+ page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
280
+ page_content=' Hirschmuller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
281
+ page_content=' “Accurate and efficient stereo processing by semi-global matching and mutual information”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
282
+ page_content=' In: 2005 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition (CVPR’05).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
283
+ page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
284
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
285
+ page_content=' 2005, 807–814 vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
286
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
287
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
288
+ page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
289
+ page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
290
+ page_content='56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
291
+ page_content=' 12 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
292
+ page_content=' Grabowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
293
+ page_content=' [5] Hirschmuuller H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
294
+ page_content=' “Stereo processing by semiglobal matching and mutual information.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
295
+ page_content='2 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
296
+ page_content=' 328–341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
297
+ page_content=' issn: 0162-8828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
298
+ page_content=' [6] Yeongmin Lee and Hyeji Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
299
+ page_content=' “A High-Throughput Depth Estimation Processor for Accurate Semiglobal Stereo Matching Using Pipelined Inter- Pixel Aggregation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
300
+ page_content=' In: IEEE Transactions on Circuits and Systems for Video Technology (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
301
+ page_content=' 1–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
302
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
303
+ page_content='1109/TCSVT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
304
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
305
+ page_content='3061200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
306
+ page_content=' [7] Zishen Wan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
307
+ page_content=' “A Survey of FPGA-Based Robotic Computing”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
308
+ page_content=' In: IEEE Circuits and Systems Magazine 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
309
+ page_content='2 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
310
+ page_content=' 48–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
311
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
312
+ page_content=' 1109/MCAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
313
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
314
+ page_content='3071609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
315
+ page_content=' [8] Stefan K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
316
+ page_content=' Gehrig, Felix Eberli, and Thomas Meyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
317
+ page_content=' “A real-time low-power stereo vision engine using semi-global matching”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
318
+ page_content=' In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel- ligence and Lecture Notes in Bioinformatics) 5815 LNCS (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
319
+ page_content=' 134– 143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
320
+ page_content=' issn: 03029743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
321
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
322
+ page_content='1007/978-3-642-04667-4_14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
323
+ page_content=' [9] Jaco Hofmann, Jens Korinth, and Andreas Koch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
324
+ page_content=' “A Scalable High-Performance Hardware Architecture for Real-Time Stereo Vision by Semi-Global Match- ing”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
325
+ page_content=' In: 2016 IEEE Conference on Computer Vision and Pattern Recog- nition Workshops (CVPRW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
326
+ page_content=' 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
327
+ page_content=' 845–853.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
328
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
329
+ page_content='1109/CVPRW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
330
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
331
+ page_content='110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
332
+ page_content=' [10] Jieru Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
333
+ page_content=' “FP-Stereo: Hardware-Efficient Stereo Vision for Em- bedded Applications”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
334
+ page_content=' In: 2020 30th International Conference on Field- Programmable Logic and Applications (FPL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
335
+ page_content=' 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
336
+ page_content=' 269–276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
337
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
338
+ page_content=' 1109/FPL50879.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
339
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
340
+ page_content='00052.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
341
+ page_content=' [11] Shashwat Shrivastava et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
342
+ page_content=' “FPGA Accelerator for Stereo Vision using Semi-Global Matching through Dependency Relaxation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
343
+ page_content=' In: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
344
+ page_content=' 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
345
+ page_content=' 304–309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
346
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
347
+ page_content='1109/FPL50879.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
348
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
349
+ page_content='00057.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
350
+ page_content=' [12] Marcin Kowalczyk, Dominika Przewlocka, and Tomasz Kryjak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
351
+ page_content=' “Real- Time Implementation of Contextual Image Processing Operations for 4K Video Stream in Zynq UltraScale+ MPSoC”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
352
+ page_content=' In: 2018 Conference on De- sign and Architectures for Signal and Image Processing (DASIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
353
+ page_content=' 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
354
+ page_content=' 37–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
355
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
356
+ page_content='1109/DASIP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
357
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
358
+ page_content='8597105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
359
+ page_content=' [13] Daniel Scharstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
360
+ page_content=' “High-Resolution Stereo Datasets with Subpixel- Accurate Ground Truth”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
361
+ page_content=' In: Pattern Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
362
+ page_content=' Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
363
+ page_content=' by Xiaoyi Jiang, Joachim Hornegger, and Reinhard Koch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
364
+ page_content=' Cham: Springer International Publishing, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
365
+ page_content=' 31–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
366
+ page_content=' isbn: 978-3-319-11752-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
367
+ page_content=' [14] Jaco Hofmann, Jens Korinth, and Andreas Koch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
368
+ page_content=' “A Scalable High-Performance Hardware Architecture for Real-Time Stereo Vision by Semi-Global Match- ing”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
369
+ page_content=' In: 2016 IEEE Conference on Computer Vision and Pattern Recog- nition Workshops (CVPRW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
370
+ page_content=' 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
371
+ page_content=' 845–853.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
372
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
373
+ page_content='1109/CVPRW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
374
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
375
+ page_content='110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
376
+ page_content=' [15] Wenqiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
377
+ page_content=' “Real-Time High-Quality Stereo Vision System in FPGA”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
378
+ page_content=' In: IEEE Transactions on Circuits and Systems for Video Tech- nology 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
379
+ page_content='10 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
380
+ page_content=' 1696–1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
381
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
382
+ page_content='1109/TCSVT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
383
+ page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
384
+ page_content='2397196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf'}
5dE1T4oBgHgl3EQfBAJm/content/tmp_files/2301.02846v1.pdf.txt ADDED
@@ -0,0 +1,1687 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Simulations of momentum correlation functions of light (anti)nuclei in relativistic
2
+ heavy-ion collisions at √sNN = 39 GeV
3
+ Ting-Ting Wang(王婷婷),1 Yu-Gang Ma(马余刚)
4
+ ID ,1, 2, ∗ and Song Zhang(张松)
5
+ ID 1, 2
6
+ 1Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE),
7
+ Institute of Modern Physics, Fudan University, Shanghai 200433, China
8
+ 2Shanghai Research Center for Theoretical Nuclear Physics,NSFC and Fudan University, Shanghai 200438, China
9
+ (Dated: January 10, 2023)
10
+ Momentum correlation functions of light (anti)nuclei formed by the coalescence mechanism of
11
+ (anti)nucleons are calculated for several central heavy-ion collision systems, namely 10
12
+ 5 B +10
13
+ 5 B,
14
+ 16
15
+ 8 O +16
16
+ 8 O, 40
17
+ 20Ca +40
18
+ 20 Ca as well as 197
19
+ 79 Au +197
20
+ 79 Au in different centralities at center of mass energy
21
+ √sNN = 39 GeV within the framework of A Multi-Phase Transport (AMPT) model complemented
22
+ by the Lednick´y and Lyuboshitz analytical method. Momentum correlation functions for identical
23
+ or nonidentical light (anti)nuclei are constructed and analyzed for the above collision systems. The
24
+ Au + Au results demonstrate that emission of light (anti)nuclei occurs from a source with smaller
25
+ space extent in more peripheral collisions. The effect of system-size on the momentum correlation
26
+ functions of identical or nonidentical light (anti)nuclei is also explored by several collision system
27
+ in central collisions. The results indicate that the emission source-size of light (anti)nuclei pairs
28
+ deduced from their momentum correlation functions and system-size is self-consistent. Momentum
29
+ correlation functions of nonidentical light nuclei pairs gated on velocity are applied to infer the
30
+ average emission sequence of them. The results illustrate that protons are emitted in average on a
31
+ similar time scale with neutrons but earlier than deuterons or tritons in the small relative momentum
32
+ region. In addition, larger interval of the average emission order among them is exhibited for smaller
33
+ collision systems or at more peripheral collisions.
34
+ I.
35
+ INTRODUCTION
36
+ In heavy-ion collisions (HICs), two-particle momentum
37
+ correlation function is different from the original applica-
38
+ tion in astronomy [1, 2], and has been normally utilized
39
+ to extract space-time information of the emission source
40
+ and probe the dynamical evolution of nuclear collisions in
41
+ an extensive energy range [3–12]. Many different studies
42
+ on the two-particle momentum correlation functions in
43
+ intermediate energy HICs can be also found in literature,
44
+ eg. Refs. [12–27], which include the momentum correla-
45
+ tion functions of neutron, proton as well as light charged
46
+ particle (LCP) pairs. Multi-variable dependences of the
47
+ momentum correlation functions, such as impact param-
48
+ eters, total momentum of particle pairs, isospin of the
49
+ emission source, nuclear symmetry energy, nuclear equa-
50
+ tion of state (EOS) as well as in-medium nucleon-nucleon
51
+ cross section (NNCS) etc., contain a wealth of informa-
52
+ tion about the space-time characteristics of intermediate
53
+ energy HICs. In high energy HICs, two-hadron momen-
54
+ tum correlation function,also called as Hanbury Brown-
55
+ Twiss (HBT) interferometry, was also well extensively
56
+ measured and some interesting properties on emission
57
+ source were extracted [28, 29].
58
+ Oscillations of the ex-
59
+ tracted HBT radii versus emission angle indicate that
60
+ emission source is elongated perpendicular to the reaction
61
+ plane. The results indicate that the initial shape is more
62
+ or less remained and could be identified even though the
63
+ collision system undergoes the pressure and expansion.
64
+ ∗ Corresponding author: [email protected]
65
+ Furthermore, interaction between antiprotons has been
66
+ also measured with the momentum correlation functions
67
+ and the equality of interactions between p-p and ¯p-¯p was
68
+ proved by the STAR Collaboration [30].
69
+ The interac-
70
+ tion property of the particle pairs has been discussed for
71
+ other particles, for instance Λ pairs [31], proton-Ω and
72
+ proton-Ξ etc [32, 33], with the same momentum correla-
73
+ tion technique. Furthermore, the measurements of mo-
74
+ mentum correlation functions for nonidentical nucleons
75
+ and light clusters can be used to characterize the mean
76
+ emission sequence of them, which was firstly proposed in
77
+ Ref. [34]. Theoretical study has been extended to differ-
78
+ ent kinds of nonidentical particle pairs, for instance p-d,
79
+ n-p [35–38], π-p [39], K+-K− [40], d-t [12, 22] as well as
80
+ 3He-α particles [41] in intermediate energy HICs.
81
+ In this work we extend the studies, for the first time, on
82
+ the momentum correlation functions of light (anti)nuclei
83
+ to ultra-relativistic heavy-ion collisions simulated by A
84
+ Multi-Phase Transport (AMPT) model [42, 43] coupled
85
+ with a dynamical coalescence model [44–46], specifically
86
+ at √sNN = 39 GeV. Different gating conditions such as
87
+ centrality gate, system-size gate as well as velocity gate
88
+ are applied to the momentum correlation functions of
89
+ light (anti)nuclei pairs. In particular, we report on the in-
90
+ dication of the emission chronology of protons, deuterons
91
+ and tritons which can be deduced from their correspond-
92
+ ing momentum correlation functions in ultra-relativistic
93
+ HICs at √sNN = 39 GeV. The emission sequence of
94
+ light clusters inferred from the correlation functions is
95
+ expected measurable in future experiments to verify our
96
+ deduction from the coalescence picture.
97
+ The rest of this article is organized as follows. In Sec-
98
+ tion II A and II B, we briefly describe A Multi-Phase
99
+ arXiv:2301.02846v1 [hep-ph] 7 Jan 2023
100
+
101
+ 2
102
+ Transport model [42, 43] and the coalescence model [44–
103
+ 46], then introduce how to calculate the momentum cor-
104
+ relation functions of particle pairs by using the Lednick´y
105
+ and Lyuboshitz analytical formalism [3, 47–50] in Sec-
106
+ tion II C. In Section III, we summarize the simulated re-
107
+ sults of the light (anti)nuclei momentum correlation func-
108
+ tions gated on various parameters in relativistic heavy-
109
+ ion collisions.
110
+ Section III A compares the results of
111
+ proton-proton and proton-antiproton momentum corre-
112
+ lation functions with experimental data from the RHIC-
113
+ STAR collaboration. From Section III B to III D, iden-
114
+ tical and nonidentical light (anti)nuclei momentum cor-
115
+ relation functions gated on different conditions are sys-
116
+ tematically discussed. Finally, a summary and outlook
117
+ are given in Section IV.
118
+ II.
119
+ MODELS AND FORMALISM
120
+ A.
121
+ AMPT model
122
+ To obtain phase-space distributions of (anti)particles,
123
+ A Multi-Phase Transport model [42, 43] is used as the
124
+ event generator, which has been applied successfully for
125
+ studying heavy-ion collisions at relativistic energies, eg.
126
+ [45, 46, 51–59]. We briefly review the main components
127
+ of the AMPT model used in the present work. In the
128
+ version of AMPT, the initial phase-space information of
129
+ partons is generated by the heavy-ion jet interaction gen-
130
+ erator (HIJING) model [60, 61]. The interaction between
131
+ partons is then simulated by Zhang’s parton cascade
132
+ (ZPC) model [62].
133
+ During the hadronization process,
134
+ a quark coalescence model is used to combine partons
135
+ into hadrons [63–65].
136
+ Then, the hadronic rescattering
137
+ evolution is described by a relativistic transport (ART)
138
+ model [66].
139
+ In this paper, the collisions of 10
140
+ 5 B +10
141
+ 5 B, 16
142
+ 8 O +16
143
+ 8 O,
144
+ 40
145
+ 20Ca +40
146
+ 20 Ca at 0 − 10 % centrality and mid-rapidity
147
+ (|y| < 0.5) as well as 197
148
+ 79 Au+197
149
+ 79 Au at same mid-rapidity
150
+ for five centralities of 0−10 %, 10−20 %, 20−40 %, 40−60
151
+ %, and 60 − 80 % at √sNN = 39 GeV are simulated.
152
+ Te phase-space distributions of (anti)particles are se-
153
+ lected at the final stage in the hadronic rescattering pro-
154
+ cess (ART model [66]) with considering baryon-baryon,
155
+ baryon-meson, and meson-meson elastic and inelastic
156
+ scatterings, as well as resonance decay or week decay.
157
+ The transverse momentum spectra of light (anti)nuclei
158
+ have been successfully reproduced by the AMPT model
159
+ with the maximum hadronic rescattering time (MRT) of
160
+ 100 fm/c [46]. Therefore, the same maximum hadronic
161
+ rescattering time is used for the most calculations in this
162
+ work except for a quantitative comparison with the p-p
163
+ and p-¯p data from the STAR collaboration in Sec. III A.
164
+ B.
165
+ Coalescence model
166
+ The coalescence model has been used widely in de-
167
+ scribing the production of light clusters in the interme-
168
+ diate [67–71] and high [72, 73] energy heavy-ion colli-
169
+ sions. The detailed definitions of the probability for pro-
170
+ ducing a cluster of nucleons is in Ref. [44]. In our model
171
+ calculations, light (anti)clusters such as (anti)deuterons
172
+ and tritons are constructed by using the coalescence
173
+ model as follows [74, 75]. The probability for producing
174
+ M-nucleon cluster is determined by its Wigner phase-
175
+ space density and the nucleon phase-space distribution
176
+ at the freeze-out stage [44]. The multiplicity of an M-
177
+ nucleon cluster in transport model simulations for heavy-
178
+ ion collisions is given by,
179
+ NM = G
180
+
181
+
182
+ i1>i2>···>iM
183
+ d⃗ri1d⃗ki1 · · · d⃗riM−1d⃗kiM−1
184
+
185
+ ρW
186
+ i
187
+
188
+ ⃗ri1,⃗ki1, · · · ,⃗riM−1,⃗kiM−1
189
+ ��
190
+ (1)
191
+ where ⃗ri1,⃗riM−1 and ⃗ki1,⃗kiM−1 are the relative coordi-
192
+ nates and momentum in the M-nucleon rest frame, and
193
+ spin-isospin statistical factor G is 3/8 for (anti)deuteron
194
+ and 1/3 for triton [44]. In addition, ρW is the Wigner
195
+ density function, which is different for all kinds of parti-
196
+ cles. Therefore, we will calculate separately the Wigner
197
+ phase-space density of (anti)deuteron and triton in de-
198
+ tail. The Wigner phase-space density of (anti)deuteron
199
+ is constructed by,
200
+ ρW
201
+ d (⃗r,⃗k) = 8
202
+ 15
203
+
204
+ i=1
205
+ c2
206
+ i exp
207
+
208
+ −2ωir2 − k2
209
+ 2ωi
210
+
211
+ + 16
212
+ 15
213
+
214
+ i>j
215
+ cicj
216
+
217
+ 4ωiωj
218
+ (ωi + ωj)2
219
+ � 3
220
+ 4
221
+ exp
222
+
223
+ − 4ωiωj
224
+ ωi + ωj
225
+ r2
226
+
227
+ × exp
228
+
229
+
230
+ k2
231
+ ωi + ωj
232
+
233
+ cos
234
+
235
+ 2ωi − ωj
236
+ ωi + ωj
237
+ ⃗r · ⃗k
238
+
239
+ (2)
240
+ where ⃗k =
241
+
242
+ ⃗k1 − ⃗k2
243
+
244
+ /2 is the relative momentum and
245
+ ⃗r = (⃗r1 − ⃗r2) is the relative coordinate of (anti)proton
246
+ and (anti)neutron. The Wigner phase-space density of
247
+ triton is constructed by a spherical harmonic oscilla-
248
+ tor [44, 45, 76],
249
+ ρW
250
+ t
251
+
252
+ ρ, λ,⃗kρ,⃗kλ
253
+
254
+ =
255
+
256
+ ψ
257
+
258
+ ρ +
259
+ ⃗R1
260
+ 2 , λ +
261
+ ⃗R2
262
+ 2
263
+
264
+ ψ∗
265
+
266
+ ρ −
267
+ ⃗R1
268
+ 2 , λ −
269
+ ⃗R2
270
+ 2
271
+
272
+ × exp
273
+
274
+ −i⃗kρ · ⃗R1
275
+
276
+ exp
277
+
278
+ −i⃗kλ · ⃗R2
279
+
280
+ 3
281
+ 3
282
+ 2 d⃗R1d⃗R2
283
+ = 82 exp
284
+
285
+ −ρ2 + λ2
286
+ b2
287
+
288
+ exp
289
+
290
+
291
+
292
+ ⃗k2
293
+ ρ + ⃗k2
294
+ λ
295
+
296
+ b2�
297
+ (3)
298
+
299
+ 3
300
+ where ρ and λ are relative coordinates, ⃗kρ and ⃗kλ are the
301
+ relative momenta in the Jacobi coordinate.
302
+ The above parameters of the Gaussian fit coefficient
303
+ ci and wi for (anti)deuteron as well as b for triton are
304
+ given in Ref. [44].
305
+ Based on the phase-space informa-
306
+ tion of light (anti)cluster obtained by the above coa-
307
+ lescence model, the momentum correlation functions of
308
+ (non)identical light (anti)cluster pairs can be discussed
309
+ in the following.
310
+ C.
311
+ Lednik´ynd Lyuboshitz technique
312
+ Next, we briefly review the technique of the two-
313
+ particle momentum correlation function proposed by
314
+ Lednick´y and Lyuboshitz [47–49]. The method is based
315
+ on the principle as follows: when two particles are emit-
316
+ ted at small relative momentum, their momentum corre-
317
+ lation function is determined by the space-time charac-
318
+ teristics of the production processes owing to the effects
319
+ of quantum statistics (QS) and final-state interactions
320
+ (FSI) [3, 50]. The details on the formalism of the two-
321
+ particle momentum correlation function can be found in
322
+ Ref. [36].
323
+ Here, comparing with our previous literature [36], more
324
+ particle pairs are considered in the article. Therefore, the
325
+ final-state interaction of different particle pairs can be
326
+ known well by introducing fc (k∗) particularly as follows:
327
+ fc (k∗) =
328
+
329
+ Kc (k∗) − 2
330
+ ac
331
+ h (λ) − ik∗Ac (λ)
332
+ �−1
333
+ (4)
334
+ fc (k∗) is the s-wave scattering amplitude renormalizied
335
+ by the long-range Coulomb interaction, with h (λ) =
336
+ λ2 �∞
337
+ n=1
338
+
339
+ n
340
+
341
+ n2 + λ2��−1−C −ln [λ] where C = 0.5772 is
342
+ the Euler constant. Kc (k∗) =
343
+ 1
344
+ f0 + 1
345
+ 2d0k∗2 +Pk∗4 +· · · is
346
+ the effective range function, where d0 is the effective ra-
347
+ dius of the strong interaction, f0 is the scattering length
348
+ and P is the shape parameter. The parameters of effec-
349
+ tive range function are important to characterize the es-
350
+ sential properties of the final-state interactions, and can
351
+ be extracted from the correlation function measured ex-
352
+ perimentally [30, 36, 77, 78]. Table I shows the param-
353
+ eters of the effective range function for different particle
354
+ pairs in the present work.
355
+ In the table I, for n-n (¯n-¯n) and n-p (¯n-¯p) momentum
356
+ correlation functions which include uncharged particle,
357
+ the Coulomb penetration factor (Ac (λ)) is not consid-
358
+ ered and only the short-range particle interaction works.
359
+ For the momentum correlation functions of charged parti-
360
+ cles such as p-¯p, p-p (¯p-¯p), d-d ( ¯d- ¯d), t-t, p-d (¯p- ¯d), p-t and
361
+ d-t, both the Coulomb interaction and the short-range in-
362
+ teraction dominated by the s-wave interaction are taken
363
+ into account. The momentum correlation function of p-
364
+ p (¯p-¯p) particle pairs is dominantly contributed by only
365
+ TABLE I. Experimental determination of the effective range
366
+ function parameters for n-n (¯n-¯n), p-p (¯p-¯p), t-t, n-p (¯n-¯p),
367
+ p-d (¯p- ¯d), p-t and d-t systems [30, 77, 78].
368
+ System
369
+ Spin f0 (fm) d0 (fm) P
370
+
371
+ fm3�
372
+ n-n (¯n-¯n)
373
+ 0
374
+ 17
375
+ 2.7
376
+ 0.0
377
+ p-p (¯p-¯p)
378
+ 0
379
+ 7.8
380
+ 2.77
381
+ 0.0
382
+ t-t
383
+ 0
384
+ 1 × 10−6
385
+ 0.0
386
+ 0.0
387
+ n-p (¯n-¯p)
388
+ 0
389
+ 23.7
390
+ 2.7
391
+ 0.0
392
+ p-d (¯p- ¯d)
393
+ 1/2
394
+ -2.73
395
+ 2.27
396
+ 0.08
397
+ 3/2
398
+ -11.88
399
+ 2.63
400
+ -0.54
401
+ p-t
402
+ 0
403
+ 1 × 10−6
404
+ 0.0
405
+ 0.0
406
+ d-t
407
+ 0
408
+ 1 × 10−6
409
+ 0.0
410
+ 0.0
411
+ the singlet (S = 0) s-wave final-state interactions while
412
+ both spins 1/2 and 3/2 contribute in the case of p-d (¯p-
413
+ ¯d) system. Moreover, for (anti)deuteron-(anti)deuteron
414
+ momentum correlation function, a parametrization of the
415
+ s-wave phase shifts δ has been used from the solution of
416
+ Kc (k∗) = cot δ for each total pair spin S = 0, 1, 2. Note
417
+ that the effective range function for the total spin S = 1
418
+ is irrelevant, since it does not contribute due to the quan-
419
+ tum statistics symmetrization.
420
+ III.
421
+ ANALYSIS AND DISCUSSION
422
+ A.
423
+ Comparison between our p-p and p-¯p correlation
424
+ functions with experimental data
425
+ Fig. 1 presents results of p-p and p-¯p correlation func-
426
+ tions for three different centrality classes of 0 − 10 %,
427
+ 10−30 %, and 30−70 % calculated by the AMPT model
428
+ in Au + Au collisions at √sNN = 39 GeV. Within the
429
+ cut of transverse momentum pt and rapidity y, we con-
430
+ front the experimental data with the predictions of the
431
+ AMPT model combined with Lednick´y and Lyuboshitz
432
+ code. When the phase-space information of nucleons at
433
+ the maximum rescattering time among hadrons of 700
434
+ fm/c is selected from the AMPT model, it is found that
435
+ the results can well describe the experimental data for
436
+ the momentum correlation functions of p-p and p-¯p from
437
+ the RHIC-STAR collaboration [79, 80], especially in more
438
+ central collisions. Considering that the preliminary ex-
439
+ perimental results were not corrected by feed-down effect
440
+ corrections [79, 80], the real correlation functions for pri-
441
+ mary p-p and p-¯p could be much more stronger. In this
442
+ case, using much longer MRT of 700 fm/c in the AMPT
443
+ model might be a reasonable choice for making quanti-
444
+ tative comparison with feed-down uncorrected data since
445
+ the system will become more expanded and weakly corre-
446
+ lated among particles after longer MRT in AMPT. How-
447
+ ever, the quantitative reproduction is not our main con-
448
+ cern in the present work. In the following calculations, we
449
+ fixed the MRT at 100 fm/c and presented systematic re-
450
+ sults among different light (anti)nuclei. However, as one
451
+ can notice that the results for p-p and p-¯p change substan-
452
+
453
+ 4
454
+ tially when changing the MRT by comparing Fig. 1 and
455
+ 2. To estimate this uncertainty, we also check some re-
456
+ sults for light nuclei correlations with different MRT. For
457
+ example, d-d or p-d correlations for MRT equal 700fm/c.
458
+ It is found that the correlation becomes slightly weaker
459
+ at smaller q (i.e. a little larger value of Cdd or Cpd close
460
+ to 1 at MRT = 700 fm/c), which has the similar trend as
461
+ p-p and p-¯p cases. But the uncertainty is less than 20%
462
+ at the lowest relative momentum and tends to vanish at
463
+ q > 50 MeV/c for light nuclei correlations (d-d or p-d)
464
+ when changing the MRT from 100fm/c to 700fm/c, which
465
+ can be essentially understood by weak feed-down effects
466
+ for light nuclei. In addition, we also check the p-d cor-
467
+ relation with different velocity selection. Only less than
468
+ 10% uncertainty is found for lower q between the case
469
+ of MRT equal 700 fm/c to the one at 100fm/c. By this
470
+ comparison of results at MRT equal 700 and 100 fm/c,
471
+ we conclude that nucleon-(anti)nucleon correlations are
472
+ much influenced by the MRT but light nuclei correla-
473
+ tions only change slightly. Overall, the MRT = 100 fm/c
474
+ is basically safe choice for such light nuclei correlations.
475
+ 0.7
476
+ 0.8
477
+ 0.9
478
+ 1.0
479
+ 1.1
480
+ 1.2
481
+ 1.3
482
+ 1.4
483
+ 1.5
484
+ 0
485
+ 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
486
+ 0.6
487
+ 0.8
488
+ 1.0
489
+ 1.2
490
+ 1.4
491
+ Cpp(q)
492
+ STAR data LL-model
493
+ 0-10%
494
+ 0-10%
495
+ 10-30%
496
+ 10-30%
497
+ 30-70%
498
+ 30-70%
499
+
500
+
501
+
502
+
503
+ Au+Au@√sNN=39GeV, |y|<0.5, 0.4<pt<2.5GeV/c
504
+
505
+
506
+ (a)
507
+ (b)
508
+ Cpp(q)
509
+ q (MeV/c)
510
+ FIG. 1.
511
+ Proton-proton (a) and proton-antiproton (b) mo-
512
+ mentum correlation functions for different centrality classes in
513
+ √sNN = 39 GeV Au + Au collisions. Solid markers represent
514
+ the preliminary experimental data from the RHIC-STAR col-
515
+ laboration [79, 80], and lines represent our model calculation
516
+ results from the AMPT model plus the Lednick´y and Lyu-
517
+ boshitz code. Note that the longer hadronic rescattering time
518
+ of 700 fm/c is used in this specific calculation for comparing
519
+ with the data.
520
+ B.
521
+ Centrality and system-size dependence of
522
+ identical light (anti)nuclei momentum correlation
523
+ functions
524
+ The centrality dependence of the two-particle mo-
525
+ mentum correlation function can systematically investi-
526
+ gate the contributions from the system-size and parti-
527
+ cle interactions on the correlations. Fig. 2 (a) and (c)
528
+ present the momentum correlation functions of identi-
529
+ cal (anti)particle pairs (n-n (¯n-¯n) and p-p (¯p-¯p) ) for
530
+ 197
531
+ 79 Au +197
532
+ 79 Au collisions at different centralities of 0 − 10
533
+ %, 10 − 20 %, 20 − 40 %, 40 − 60 %, and 60 − 80 % at
534
+ √sNN = 39 GeV. The momentum correlation functions
535
+ of (anti)neutron pairs exhibit more than unity in Fig. 2
536
+ (a), which is caused by the attractive s-wave interaction
537
+ between the two (anti)neutrons. In Fig. 2 (c), the shape
538
+ of the (anti)proton−(anti)proton momentum correlation
539
+ functions looks as expected from the interplay between
540
+ the quantum statistical (QS) and final state interactions
541
+ (FSI) and is consistent with previous results [13, 30, 36].
542
+ The (anti)proton−(anti)proton momentum correlation
543
+ functions exhibit less than unity at low relative mo-
544
+ mentum q in Fig. 2 (c), which is mainly caused by the
545
+ Coulomb repulsion between the (anti)proton pairs. With
546
+ increasing relative momentum, the attractive s-wave in-
547
+ teraction between the two (anti)protons gives rise to a
548
+ maximum of the (anti)proton−(anti)proton momentum
549
+ correlation functions at q around 0.020 GeV in Fig. 2
550
+ (c). The antiproton−antiproton momentum correlation
551
+ functions show a similar structure with proton pairs, re-
552
+ sulting from the same attractive interaction between two
553
+ antiprotons
554
+ [30]. Fig. 2 (a) and (c) compare five cen-
555
+ tralities of 0 − 10 %, 10 − 20 %, 20 − 40 %, 40 − 60
556
+ %, and 60 − 80 % of the two-(anti)particle momentum
557
+ correlation functions. The enhanced strength of the n-n
558
+ (¯n-¯n) and p-p (¯p-¯p) momentum correlation functions is
559
+ observed in peripheral collisions. These results indicate
560
+ that (anti)particle emission occurs from a source with
561
+ smaller space extent in peripheral collision. In addition,
562
+ the effect of system−size on the momentum correlation
563
+ functions of (anti)particles is also investigated by four dif-
564
+ ferent systems, namely 10
565
+ 5 B+10
566
+ 5 B, 16
567
+ 8 O+16
568
+ 8 O, 40
569
+ 20Ca+40
570
+ 20Ca
571
+ and 197
572
+ 79 Au+197
573
+ 79 Au, in central collisions. In Fig. 2 (b) and
574
+ (d), the n-n (¯n-¯n) and p-p (¯p-¯p) momentum correlation
575
+ functions appear strong sensitivity to system-size and an
576
+ enhanced strength is observed when particle pairs are
577
+ emitted from smaller system collisions. This enhanced
578
+ strength of the momentum correlation functions for par-
579
+ ticle pairs is a physical effect stemming from the smaller
580
+ space extent of the emission source [8]. Therefore, the
581
+ emission source-size of particle pairs obtained by their
582
+ momentum correlation functions and system-size is self-
583
+ consistent.
584
+ Figure 3 shows the centrality and system-size depen-
585
+ dences of the momentum correlation functions for light
586
+ (anti)cluster in similar condition as in Fig. 2. Figure 3
587
+ (a) and (c) present the momentum correlation functions
588
+ of d-d ( ¯d- ¯d) and t-t for 197
589
+ 79 Au +197
590
+ 79 Au collisions at dif-
591
+ ferent centralities of 0 − 10 %, 10 − 20 %, 20 − 40 %,
592
+ 40 − 60 %, and 60 − 80 % at √sNN = 39 GeV. The
593
+ d-d ( ¯d- ¯d) momentum correlation functions exhibit less
594
+ than unity at lower relative momentum q in Fig. 3 (a)
595
+ and (b), which is caused by the Coulomb repulsion. The
596
+ two-triton momentum correlation functions are less than
597
+ unity with increasing relative momentum q as shown in
598
+ Fig. 2 (c) and (d), which is caused by only the Coulomb
599
+ potential in the Lednick´y and Lyuboshitz code [47–49].
600
+
601
+ 5
602
+ 0
603
+ 50
604
+ 100
605
+ 150
606
+ 200
607
+ 250
608
+ 300
609
+ 0
610
+ 1
611
+ 2
612
+ 3
613
+ 0
614
+ 50
615
+ 100
616
+ 150
617
+ 200
618
+ 250
619
+ 300
620
+ 0
621
+ 1
622
+ 2
623
+ 3
624
+ 4
625
+ 5
626
+ C(q)
627
+ nn nn
628
+
629
+ 0-10%
630
+
631
+ 10-20%
632
+
633
+ 20-40%
634
+
635
+ 40-60%
636
+
637
+ 60-80%
638
+ C(q)
639
+ (a) 39GeV AuAu
640
+ (b) 39GeV 0-10%
641
+ nn nn
642
+
643
+ B+B
644
+
645
+ O+O
646
+
647
+ Ca+Ca
648
+
649
+ Au+Au
650
+ (c) 39GeV AuAu
651
+ pp pp
652
+
653
+ 0-10%
654
+
655
+ 10-20%
656
+
657
+ 20-40%
658
+
659
+ 40-60%
660
+
661
+ 60-80%
662
+ q (MeV/c)
663
+ (d) 39GeV 0-10%
664
+ pp pp
665
+
666
+ B+B
667
+
668
+ O+O
669
+
670
+ Ca+Ca
671
+
672
+ Au+Au
673
+ q (MeV/c)
674
+ FIG. 2.
675
+ The momentum correlation functions at mid-
676
+ rapidity (|y| < 0.5) of (anti)neutron-pairs and (anti)proton-
677
+ pairs as a function of five different centralities for 197
678
+ 79 Au +197
679
+ 79
680
+ Au reaction at √sNN = 39 GeV are presented in (a) and
681
+ (c), respectively.
682
+ The momentum correlation functions of
683
+ (anti)neutron-pairs and (anti)proton-pairs at mid-rapidity
684
+ (|y| < 0.5) for 0-10% central collisions of 10
685
+ 5 B+10
686
+ 5 B, 16
687
+ 8 O+16
688
+ 8 O,
689
+ 40
690
+ 20Ca +40
691
+ 20 Ca as well as 197
692
+ 79 Au +197
693
+ 79 Au systems at √sNN = 39
694
+ GeV are presented in (b) and (d), respectively. The p-p and
695
+ n-n momentum correlation functions (solid symbols) and the
696
+ anti-one (open symbols) are shown in each panel.
697
+ 0.0
698
+ 0.5
699
+ 1.0
700
+ 0
701
+ 50
702
+ 100
703
+ 150
704
+ 200
705
+ 250
706
+ 300
707
+ dd dd
708
+
709
+ 0-10%
710
+
711
+ 10-20%
712
+
713
+ 20-40%
714
+
715
+ 40-60%
716
+
717
+ 60-80%
718
+ (a) 39GeV AuAu
719
+ C(q)
720
+ dd dd
721
+
722
+ B+B
723
+
724
+ O+O
725
+
726
+ Ca+Ca
727
+
728
+ Au+Au
729
+ (b) 39GeV 0-10%
730
+ 0
731
+ 50
732
+ 100
733
+ 150
734
+ 200
735
+ 250
736
+ 300
737
+ 0.0
738
+ 0.5
739
+ 1.0
740
+ tt
741
+ 0-10%
742
+ 10-20%
743
+ 20-40%
744
+ 40-60%
745
+ 60-80%
746
+ (c) 39GeV AuAu
747
+ Ctt(q)
748
+ q (MeV/c)
749
+ tt
750
+ B+B
751
+ O+O
752
+ Ca+Ca
753
+ Au+Au
754
+ (d) 39GeV 0-10%
755
+ q (MeV/c)
756
+ FIG. 3.
757
+ Same as Fig. 2 but for the light (anti)cluster pairs.
758
+ (a) and (b) for d − d momentum correlation functions (solid
759
+ symbols) and the anti-one (open symbols), (c) and (d) for t−t
760
+ momentum correlation functions (solid symbols).
761
+ The antideuteron−antideuteron momentum correlation
762
+ function also shows an exact similar shape with deuteron
763
+ pairs due to the similar phase-space distributions be-
764
+ 0
765
+ 50
766
+ 100
767
+ 150
768
+ 200
769
+ 250
770
+ 300
771
+ 0.0
772
+ 0.5
773
+ 1.0
774
+ 1.5
775
+ 0
776
+ 50
777
+ 100
778
+ 150
779
+ 200
780
+ 250
781
+ 300
782
+ 0
783
+ 1
784
+ 2
785
+ 3
786
+ 4
787
+ 5
788
+ np np
789
+
790
+ 0-10%
791
+
792
+ 10-20%
793
+
794
+ 20-40%
795
+
796
+ 40-60%
797
+
798
+ 60-80%
799
+ (a) 39GeV AuAu
800
+ C(q)
801
+ np np
802
+
803
+ B+B
804
+
805
+ O+O
806
+
807
+ Ca+Ca
808
+
809
+ Au+Au
810
+ (d) 39GeV 0-10%
811
+ (b) 39GeV 0-10%
812
+ pp
813
+ 0-10%
814
+ 10-20%
815
+ 20-40%
816
+ 40-60%
817
+ 60-80%
818
+ (c) 39GeV AuAu
819
+ Cpp(q)
820
+ q (MeV/c)
821
+ pp
822
+ B+B
823
+ O+O
824
+ Ca+Ca
825
+ Au+Au
826
+ q (MeV/c)
827
+ FIG. 4.
828
+ Same as Fig. 2 but for the nonidentical particle
829
+ pairs. (a) and (b) for n-p momentum correlation functions
830
+ (solid symbols) and the anti-one (open symbols), (c) and (d
831
+ for) p-¯p momentum correlation functions (solid symbols).
832
+ tween deuteron and antideuteron.
833
+ Due to significant
834
+ less yields of tritons which induce too large error, the
835
+ antitriton−antitriton momentum correlation function is
836
+ not shown in the present work, which should be observed
837
+ as the same trend with triton pairs. Fig. 3 (a) and (c) also
838
+ compare five centralities of 0 − 10 %, 10 − 20 %, 20 − 40
839
+ %, 40 − 60 %, and 60 − 80 % for the momentum correla-
840
+ tion functions of two light (anti)clusters. The larger sup-
841
+ pression of the d-d ( ¯d- ¯d) and t-t correlation functions is
842
+ clearly visible in peripheral collisions. These results also
843
+ indicate that light (anti)cluster emission occurs from a
844
+ source with smaller space extent for peripheral collision,
845
+ which is similar to Fig. 2 (a) and (c). In Fig. 3 (b) and
846
+ (d), an enhanced strength of the momentum correlation
847
+ function for d-d ( ¯d- ¯d) and t-t is also observed when light
848
+ (anti)cluster pairs emitted from smaller systems, such as
849
+ in B + B and O + O collisions. However, the sensitivity
850
+ seems disappear in these small systems.
851
+ C.
852
+ Nonidentical light (anti)nuclei momentum
853
+ correlation functions gated on centrality and
854
+ system-size
855
+ Now we investigate centrality and system-size depen-
856
+ dence of the nonidentical (anti)particle momentum corre-
857
+ lation functions, such as n-p (¯n-¯p), p-¯p, p-d (¯p- ¯d), p-t and
858
+ d-t. Fig. 4 (a) and (c) show results for the momentum
859
+ correlation functions of n-p (¯n-¯p) and p-¯p for the same
860
+ centrality classes as Fig. 2. The same centrality depen-
861
+ dence is also clearly seen in Fig. 4 (a) and (c). Because
862
+ of the strong attractive final state interaction between
863
+ n and p, the n-p (¯n-¯p) momentum correlation functions
864
+ show a strong positive correlation at small values of the
865
+
866
+ 6
867
+ 0.0
868
+ 0.5
869
+ 1.0
870
+ 0
871
+ 50
872
+ 100
873
+ 150
874
+ 200
875
+ 250
876
+ 300
877
+ pd pd
878
+
879
+ 0-10%
880
+
881
+ 10-20%
882
+
883
+ 20-40%
884
+
885
+ 40-60%
886
+
887
+ 60-80%
888
+ (a) 39GeV AuAu
889
+ C(q)
890
+ pd pd
891
+
892
+ B+B
893
+
894
+ O+O
895
+
896
+ Ca+Ca
897
+
898
+ Au+Au
899
+ (b) 39GeV 0-10%
900
+ 0.0
901
+ 0.5
902
+ 1.0
903
+ pt
904
+ 0-10%
905
+ 10-20%
906
+ 20-40%
907
+ 40-60%
908
+ 60-80%
909
+ (c) 39GeV AuAu
910
+ Cpt(q)
911
+ pt
912
+ B+B
913
+ O+O
914
+ Ca+Ca
915
+ Au+Au
916
+ (d) 39GeV 0-10%
917
+ 0
918
+ 50
919
+ 100
920
+ 150
921
+ 200
922
+ 250
923
+ 300
924
+ 0.0
925
+ 0.5
926
+ 1.0
927
+ dt
928
+ 0-10%
929
+ 10-20%
930
+ 20-40%
931
+ 40-60%
932
+ 60-80%
933
+ (e) 39GeV AuAu
934
+ Cdt(q)
935
+ q (MeV/c)
936
+ dt
937
+ B+B
938
+ O+O
939
+ Ca+Ca
940
+ Au+Au
941
+ (f) 39GeV 0-10%
942
+ q (MeV/c)
943
+ FIG. 5.
944
+ Same as Fig. 4 but for nonidentical light (anti)nuclei. (a) and (b) for p-d momentum correlation functions (solid
945
+ symbols) and the anti-one (open symbols). (c) and (d) for p-t momentum correlation functions (solid symbols), (e) and (f) for
946
+ d-t momentum correlation functions (solid symbols).
947
+ relative momentum q in Fig. 4 (a) and (b). Fig. 4 (c)
948
+ shows results for proton−antiproton momentum correla-
949
+ tion functions, which are different from the results for
950
+ proton pairs in Fig. 2 (c), however, qualitatively agrees
951
+ with the experimental results in Ref. [79, 80]. In addition,
952
+ Fig. 4 (b) and (d) show system-size dependence of n-p
953
+ (¯n-¯p) and p-¯p momentum correlation functions, which is
954
+ almost unanimously with the identical (anti)particle one
955
+ in Fig. 2 (b) and (d). We can also observe an enhanced
956
+ strength of momentum correlation function for particle
957
+ pairs in smaller systems. In the same way, we also inves-
958
+ tigate the effect of different centralities and system-size
959
+ on the momentum correlation functions of nonidentical
960
+ light (anti)nuclei. The p-d (¯p- ¯d), p-t and d-t momentum
961
+ correlation functions in Fig. 5 (a), (c) and (e) are all char-
962
+ acterized by an anti-correlation feature. For the p-d (¯p- ¯d)
963
+ momentum correlation functions in Fig. 5 (a), the anti-
964
+ correlation shape is a little unlike to the proton−deuteron
965
+ momentum correlation function in the intermediate en-
966
+ ergy heavy-ion collision [36, 37], indicating that a compe-
967
+ tition between the s-wave attraction and the Coulomb re-
968
+ pulsion. The correlation functions of p-t and d-t in Fig. 4
969
+ (c) and (e) also display the trend of below unity due to
970
+ the dominant Coulomb repulsion, which is similar to the
971
+ previous results in intermediate energy heavy-ion colli-
972
+ sions [36, 37]. In Fig. 5 (b), the system-size dependence
973
+ of p-d (¯p- ¯d) momentum correlation functions is shown, an
974
+ enhancement of p-d (¯p- ¯d) momentum correlation function
975
+
976
+ 7
977
+ -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
978
+ 3.0x10
979
+ 6
980
+ 6.0x10
981
+ 6
982
+ 0
983
+ 1
984
+ 2
985
+ 3
986
+ 4
987
+ 5
988
+ ∆v>0 ∆v<0
989
+
990
+ 0-10%
991
+
992
+ 10-20%
993
+
994
+ 20-40%
995
+
996
+ 40-60%
997
+
998
+ 60-80%
999
+ (a) ∆v = vn-vp
1000
+ Cnp(q)
1001
+ 3.0x10
1002
+ 6
1003
+ 6.0x10
1004
+ 6
1005
+ (b) ∆v = vn-vp
1006
+ counts (arb.unit)
1007
+ 0-10%
1008
+ 10-20%
1009
+ 20-40%
1010
+ 40-60%
1011
+ 60-80%
1012
+ 0
1013
+ 50
1014
+ 100
1015
+ 150
1016
+ 200
1017
+ 250
1018
+ 300
1019
+ 0.0
1020
+ 0.5
1021
+ 1.0
1022
+ (c) ∆v = vp-vp
1023
+ Cpp(q)
1024
+ q (MeV/c)
1025
+ (d) ∆v = vp-vp
1026
+ ∆v (c)
1027
+ FIG. 6.
1028
+ The velocity-gated momentum correlation functions
1029
+ (left) and velocity difference (∆v) spectra (right) for n-p and
1030
+ p-¯p as a function of five different centralities in mid-rapidity
1031
+ (|y| < 0.5) for 39 GeV 197
1032
+ 79 Au +197
1033
+ 79 Au collision. The velocity
1034
+ conditions are indicated in each panel: ∆v > 0 is remarked
1035
+ by solid symbol and the ∆v < 0 by open symbol.
1036
+ 0
1037
+ 1
1038
+ 2
1039
+ 3
1040
+ 4
1041
+ 5
1042
+ (a) ∆v = vn-vp
1043
+ ∆v>0 ∆v<0
1044
+
1045
+ B+B
1046
+
1047
+
1048
+ O+O
1049
+
1050
+ Ca+Ca
1051
+
1052
+ Au+Au
1053
+
1054
+
1055
+ Cnp(q)
1056
+ 3.0x10
1057
+ 6
1058
+ 6.0x10
1059
+ 6
1060
+ counts (arb.unit)
1061
+ (b) ∆v = vn-vp
1062
+ 0
1063
+ 50
1064
+ 100
1065
+ 150
1066
+ 200
1067
+ 250
1068
+ 300
1069
+ 0.0
1070
+ 0.5
1071
+ 1.0
1072
+ (c) ∆v = vp-vp
1073
+ Cpp(q)
1074
+ q (MeV/c)
1075
+ -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
1076
+ 3.0x10
1077
+ 6
1078
+ 6.0x10
1079
+ 6
1080
+
1081
+ (d) ∆v = vp-vp
1082
+ ∆v (c)
1083
+ B+B
1084
+ O+O
1085
+ Ca+Ca
1086
+ Au+Au
1087
+ FIG. 7.
1088
+ Same as Fig. 6 but for 0 − 10 % central collisions
1089
+ of 10
1090
+ 5 B +10
1091
+ 5 B, 16
1092
+ 8 O +16
1093
+ 8 O, 40
1094
+ 20Ca +40
1095
+ 20 Ca as well as 197
1096
+ 79 Au +197
1097
+ 79
1098
+ Au systems at √sNN = 39 GeV. The velocity conditions are
1099
+ indicated in each panel: ∆v > 0 is remarked by solid symbol
1100
+ and the ∆v < 0 by open symbol.
1101
+ is observed in smaller systems. In Fig. 5 (d) and (f), the
1102
+ p-t and d-t momentum correlation functions appear more
1103
+ sensitive to system-size only in the large system such as
1104
+ Au and Ca.
1105
+ 0.90
1106
+ 0.95
1107
+ 1.00
1108
+ 1.05
1109
+ 0
1110
+ 50
1111
+ 100 150 200 250 300
1112
+ 0.90
1113
+ 0.95
1114
+ 1.00
1115
+ 1.05
1116
+ 0
1117
+ 50
1118
+ 100 150 200 250 300
1119
+ (a) 39GeV AuAu ∆v = vn-vp
1120
+ C∆v>0/C∆v<0
1121
+ 0-10%
1122
+ 10-20%
1123
+ 20-40%
1124
+ 40-60%
1125
+ 60-80%
1126
+ (b) 39GeV 0-10% ∆v = vn-vp
1127
+ B+B
1128
+ O+O
1129
+ Ca+Ca
1130
+ Au+Au
1131
+ (c) 39GeV AuAu ∆v = vp-vp
1132
+ q (MeV/c)
1133
+ (d) 39GeV 0-10% ∆v = vp-vp
1134
+ q (MeV/c)
1135
+ FIG. 8.
1136
+ Ratios of the velocity-gated momentum correla-
1137
+ tion functions (left) of n-p (a) and p-¯p (c) pairs for 39 GeV
1138
+ 197
1139
+ 79 Au +197
1140
+ 79 Au collision at mid-rapidity (|y| < 0.5) and five
1141
+ different centralities. Ratios of the velocity-gated momentum
1142
+ correlation functions (right) of n-p (b) and p-¯p (d) pairs for 0
1143
+ − 10 % central collisions of 10
1144
+ 5 B+10
1145
+ 5 B, 16
1146
+ 8 O+16
1147
+ 8 O, 40
1148
+ 20Ca+40
1149
+ 20 Ca
1150
+ as well as 197
1151
+ 79 Au +197
1152
+ 79 Au systems at √sNN = 39 GeV.
1153
+ D.
1154
+ Velocity selected nonidentical light nuclei
1155
+ momentum correlation functions
1156
+ The momentum correlation functions of unlike par-
1157
+ ticles can provide an independent constrain on their
1158
+ mean emission order by simply making velocity selec-
1159
+ tions [22, 34, 35, 81, 82]. The principle of comparing the
1160
+ velocity-gated momentum correlation functions for the
1161
+ nonidentical particle pair to infer their average emission
1162
+ order is as follows. Here the two nonidentical particles
1163
+ are named by “a”and “b”, respectively. If the ve-
1164
+ locity of “a”particle is lower than “b”particle, the
1165
+ (anti)correlation will be stronger when the “a”particle
1166
+ is emitted averagely early than the “b”particle, be-
1167
+ cause the space-size between them is reduced during the
1168
+ flight and the final-state interaction (FSI) is enhanced,
1169
+ and vice versa. In addition, the velocity difference (∆v)
1170
+ spectrum between the two nonidentical particles is also
1171
+ sensitive to the mean emission order. Fig. 6 presents the
1172
+ velocity-gated momentum correlation functions as well as
1173
+ velocity difference (∆v) spectra of unlike particles pairs
1174
+ n-p and p-¯p for 39 GeV 197
1175
+ 79 Au +197
1176
+ 79 Au collisions at dif-
1177
+ ferent centralities of 0 − 10 %, 10 − 20 %, 20 − 40 %,
1178
+ 40 − 60 %, and 60 − 80 %. In Fig. 6 (a) and (c), the
1179
+ centrality dependence on the velocity-gated momentum
1180
+ correlation functions of n-p and p-¯p is similar to Fig. 4.
1181
+ In Fig. 6 (a), the momentum correlation function for n-p
1182
+ pair with vn > vp is similar to one with the reverse situ-
1183
+ ation. The symmetry of velocity difference (∆v) spectra
1184
+ for n-p pairs is shown in Fig. 6 (b). The results demon-
1185
+ strate that the average emission sequence of neutrons and
1186
+ protons is almost the same and is insensitive to the cen-
1187
+ trality. In Fig. 6 (c), the momentum correlation function
1188
+ for p-¯p pair with vp > v¯p is slightly higher than one with
1189
+
1190
+ 8
1191
+ 0.0
1192
+ 0.5
1193
+ 1.0
1194
+ (a) ∆v = vp-vd
1195
+ Cpd(q)
1196
+ ∆v>0 ∆v<0
1197
+
1198
+ 0-10%
1199
+
1200
+ 10-20%
1201
+
1202
+ 20-40%
1203
+
1204
+ 40-60%
1205
+
1206
+ 60-80%
1207
+ 3.0x10
1208
+ 6
1209
+ 6.0x10
1210
+ 6
1211
+ counts (arb.unit)
1212
+ (b) ∆v = vp-vd
1213
+
1214
+ 0-10%
1215
+ 10-20%
1216
+ 20-40%
1217
+ 40-60%
1218
+ 60-80%
1219
+ 0.0
1220
+ 0.5
1221
+ 1.0
1222
+ (c) ∆v = vp-vt
1223
+ Cpt(q)
1224
+ 3.0x10
1225
+ 6
1226
+ 6.0x10
1227
+ 6
1228
+ (d) ∆v = vp-vt
1229
+ 60-80%*10
1230
+ 0
1231
+ 50
1232
+ 100
1233
+ 150
1234
+ 200
1235
+ 250
1236
+ 300
1237
+ 0.0
1238
+ 0.5
1239
+ 1.0
1240
+ (e) ∆v = vd-vt
1241
+ Cdt(q)
1242
+ q (MeV/c)
1243
+ -0.8 -0.6 -0.4-0.2 0.0 0.2 0.4 0.6 0.8
1244
+ 3.0x10
1245
+ 6
1246
+ 6.0x10
1247
+ 6
1248
+ 60-80%*10
1249
+ (f) ∆v = vd-vt
1250
+
1251
+ ∆v (c)
1252
+ FIG. 9.
1253
+ Same as Fig. 6 but for p-d (a) and (b), p-t (c) and (d), and d-t (e) and (f) pairs.
1254
+ the reverse situation. The slight asymmetry of velocity
1255
+ difference (∆v) spectra for p-¯p pairs is shown in Fig. 6 (d),
1256
+ which indicates that the mean order of emission sequence
1257
+ between proton and antiproton may be a little different
1258
+ but is not sensitive to the centrality. In Fig. 7 (a), the
1259
+ momentum correlation functions for n-p pairs with vn >
1260
+ vp are always similar to one with the reverse situation
1261
+ with increasing system-size. The symmetry of velocity
1262
+ difference (∆v) spectra for n-p pairs in different systems
1263
+ is shown in Fig. 7 (b). The comparison of velocity-gated
1264
+ momentum correlation functions illustrates that the av-
1265
+ erage emission sequence between neutrons and protons is
1266
+ always identical for different centrality and system-size,
1267
+ which is also learned from their ratios in Fig. 8 (a) and
1268
+ (b). In Fig. 7 (c) and (d), the comparison of velocity-
1269
+ gated momentum correlation functions for p-¯p indicates
1270
+ that the mean order of emission sequence between pro-
1271
+ tons and antiprotons may be a little different but has no
1272
+ dependence of system-size, which is also learned by their
1273
+ ratios in Fig. 8 (c) and (d).
1274
+ Fig. 9 and Fig. 10 show centrality and system-size de-
1275
+ pendences of velocity-gated momentum correlation func-
1276
+ tions and velocity difference (∆v) spectra of p-d, p-t and
1277
+ d-t pairs, respectively.
1278
+ For p-d and p-t pairs, the mo-
1279
+ mentum correlation functions with vp < vd (vp < vt)
1280
+ are stronger than the ones with the reverse situation
1281
+ vp > vd (vp > vt) in Fig. 9.
1282
+ The comparison of two
1283
+ velocity-gated correlation strengths gives that the mean
1284
+ order of emission of protons are emitted averagely ear-
1285
+ lier than deuterons and tritons according to the above
1286
+ criteria. The similar trend for d-t pairs is not so obvi-
1287
+ ous overall, except for in peripheral collision the momen-
1288
+ tum correlation function with vd < vt is stronger and
1289
+ deuterons are emitted averagely earlier than tritons. In
1290
+ contrast with the emission order as shown in many pre-
1291
+ vious results of the intermediate energy heavy-ion colli-
1292
+ sions [12, 36, 37, 81], the average emission sequence of
1293
+ protons, deuterons, and tritons is opposite for 39 GeV
1294
+
1295
+ 9
1296
+ 0.0
1297
+ 0.5
1298
+ 1.0
1299
+ (a) ∆v = vp-vd
1300
+ Cpd(q)
1301
+ ∆v>0 ∆v<0
1302
+
1303
+
1304
+ B+B
1305
+
1306
+
1307
+ O+O
1308
+
1309
+
1310
+ Ca+Ca
1311
+
1312
+
1313
+ Au+Au
1314
+ 3.0x10
1315
+ 6
1316
+ 6.0x10
1317
+ 6
1318
+ counts (arb.unit)
1319
+ (b) ∆v = vp-vd
1320
+
1321
+ B+B
1322
+ O+O
1323
+ Ca+Ca
1324
+ Au+Au
1325
+ 0.0
1326
+ 0.5
1327
+ 1.0
1328
+ (c) ∆v = vp-vt
1329
+ Cpt(q)
1330
+ 3.0x10
1331
+ 6
1332
+ 6.0x10
1333
+ 6
1334
+ (d) ∆v = vp-vt
1335
+ B+B*10
1336
+ O+O*10
1337
+
1338
+ 0
1339
+ 50
1340
+ 100
1341
+ 150
1342
+ 200
1343
+ 250
1344
+ 300
1345
+ 0.0
1346
+ 0.5
1347
+ 1.0
1348
+ (e) ∆v = vd-vt
1349
+ Cdt(q)
1350
+ q (MeV/c)
1351
+ -0.8 -0.6 -0.4-0.2 0.0 0.2 0.4 0.6 0.8
1352
+ 0.0
1353
+ 3.0x10
1354
+ 6
1355
+ 6.0x10
1356
+ 6
1357
+ (f) ∆v = vd-vt
1358
+ B+B*10
1359
+ O+O*10
1360
+ ∆v (c)
1361
+ FIG. 10.
1362
+ Same as Fig. 7 but for p-d (a) (b), p-t (c) (d) and d-t (e) (f) pairs.
1363
+ heavy-ion collisions. Meanwile, Fig. 9 presents velocity
1364
+ difference spectra for p-d, p-t and d-t pairs, respectively.
1365
+ The velocity difference spectra are all asymmetric due to
1366
+ the mean emission order. In addition, an enhanced dif-
1367
+ ference between the momentum correlation functions for
1368
+ p-d (p-t or d-t) pairs with vp > vd (vp > vt or vd > vt) and
1369
+ ones on the reverse situation at larger centrality, which
1370
+ manifests the larger interval of the mean emission or-
1371
+ der for unlike light nuclei in peripheral collisions. Their
1372
+ ratios in Fig. 11 (a), (c) and (e) can also illustrate the
1373
+ above phenomenon. The system-size dependence for p-
1374
+ d, p-t and d-t pairs can be found by the fact that mo-
1375
+ mentum correlation functions with vp < vd (vp < vt or
1376
+ vd < vt) are stronger than the ones with the reverse sit-
1377
+ uation vp > vd (vp > vt or vd > vt) in Fig. 10. Cor-
1378
+ respondingly, the velocity difference spectra for p-d, p-t
1379
+ and d-t pairs are all asymmetric about ∆v = 0 caused by
1380
+ the average emission order in Fig. 10. Therefore, protons
1381
+ are emitted averagely earliest and deuterons are emitted
1382
+ averagely earlier than tritons in smaller system-size col-
1383
+ lision. The system-size dependence of the velocity-gated
1384
+ momentum correlation functions is also clearly seen by
1385
+ their ratios in Fig. 11. With decreasing system-size, we
1386
+ can also observe an enhanced difference between the mo-
1387
+ mentum correlation functions for p-d (p-t or d-t) pair with
1388
+ vp > vd (vp > vt or vd > vt) and the ones with the reverse
1389
+ situation in Fig. 11 (b), (d) and (f).
1390
+ IV.
1391
+ SUMMARY
1392
+ In summary, with the AMPT model complemented
1393
+ by the Lednick´y and Lyuboshitz analytical method, we
1394
+ have constructed and analyzed the momentum correla-
1395
+ tion functions of light (anti)nuclei formed by the coa-
1396
+ lescence mechanism of (anti)nucleons for heavy-ion colli-
1397
+ sions with different system sizes and centralities at √sNN
1398
+ = 39 GeV. We present a comparison of proton−proton
1399
+
1400
+ 10
1401
+ 0.7
1402
+ 0.8
1403
+ 0.9
1404
+ 1.0
1405
+ 1.1
1406
+ 1.2
1407
+ 0.7
1408
+ 0.8
1409
+ 0.9
1410
+ 1.0
1411
+ 1.1
1412
+ 1.2
1413
+ 1.3
1414
+ 1.4
1415
+ 0
1416
+ 50
1417
+ 100
1418
+ 150
1419
+ 200
1420
+ 250
1421
+ 300
1422
+ 0.7
1423
+ 0.8
1424
+ 0.9
1425
+ 1.0
1426
+ 1.1
1427
+ 1.2
1428
+ 1.3
1429
+ 1.4
1430
+ 1.5
1431
+ 1.6
1432
+ 1.7
1433
+ 1.8
1434
+ 0
1435
+ 50
1436
+ 100
1437
+ 150
1438
+ 200
1439
+ 250
1440
+ 300
1441
+ (a) 39GeV AuAu ∆v = vp-vd
1442
+ 0-10%
1443
+ 10-20%
1444
+ 20-40%
1445
+ 40-60%
1446
+ 60-80%
1447
+ (b) 39GeV 0-10% ∆v = vp-vd
1448
+ B
1449
+ O
1450
+ Ca
1451
+ Au
1452
+ C∆v>0/C∆v<0
1453
+ (c) 39GeV AuAu ∆v = vp-vt
1454
+ (d) 39GeV 0-10% ∆v = vp-vt
1455
+ (e) 39GeV AuAu ∆v = vd-vt
1456
+ q (MeV/c)
1457
+ (f) 39GeV 0-10% ∆v = vd-vt
1458
+ q (MeV/c)
1459
+ FIG. 11.
1460
+ Same as Fig. 8 but for p-d (a) and (b), p-t (c) and (d) and d-t (e) and (f) pairs.
1461
+ and proton−antiproton momentum correlation functions
1462
+ with the experimental data from the RHIC-STAR col-
1463
+ laboration [79, 80].
1464
+ Taking the same transverse mo-
1465
+ mentum and rapidity phase space coverage correspond-
1466
+ ing to the experimental situation as well as the maxi-
1467
+ mum hadronic rescattering time of 700 fm/c in AMPT,
1468
+ it is found that the p-p and p-¯p momentum correla-
1469
+ tion functions simulated by the present model can match
1470
+ the experimental data. We further study centrality and
1471
+ system-size dependence of momentum correlation func-
1472
+ tions for identical and nonidentical light (anti)nuclei
1473
+ pairs, respectively, which is in the condition of the
1474
+ maximum hadronic rescattering time of 100 fm/c in
1475
+ AMPT. The shape of momentum correlation functions
1476
+ for light (anti)nuclei pairs is consistent with previous
1477
+ works [13, 30, 36, 37, 79, 80], which is caused by both
1478
+ QS and FSI. The similar structure between light nuclei
1479
+ momentum correlation functions and anti-ones indicates
1480
+ that the interaction between them are the same, which
1481
+ has been confirmed in Ref. [30] only about proton and
1482
+ antiproton.
1483
+ The centrality dependence of momentum
1484
+ correlation functions for light (anti)nuclei is investigated
1485
+ by 197
1486
+ 79 Au +197
1487
+ 79 Au collisions at different five centralities
1488
+ of 0 − 10 %, 10 − 20 %, 20 − 40 %, 40 − 60 %, and
1489
+ 60 − 80 % at √sNN = 39 GeV. It is found that with
1490
+ increasing centralities from center to periphery, the mo-
1491
+ mentum correlation functions for light (anti)nuclei be-
1492
+ come stronger, which are probably emitted from smaller
1493
+ source.
1494
+ The momentum correlation functions of light
1495
+ (anti)nuclei are sensitive to system-size through studying
1496
+ 10
1497
+ 5 B +10
1498
+ 5 B, 16
1499
+ 8 O +16
1500
+ 8 O, 40
1501
+ 20Ca +40
1502
+ 20 Ca and 197
1503
+ 79 Au +197
1504
+ 79 Au in
1505
+ central collisions, and used to obtain the emission source-
1506
+ size of light (anti)nuclei which is self-consistent with their
1507
+ system-size.
1508
+ Momentum correlation functions between
1509
+
1510
+ 11
1511
+ nonidentical light nuclei can provide important informa-
1512
+ tion about the average emission sequence of them. The
1513
+ average emission time scale between neutrons and pro-
1514
+ tons is almost identical. However, heavier light clusters
1515
+ (deuterons or tritons) are emitted later than protons in
1516
+ the small relative momentum region. In the future we
1517
+ can explore further the energy dependence of the aver-
1518
+ age emission sequence of light nuclei and understand the
1519
+ physical interpretation.
1520
+ ACKNOWLEDGMENTS
1521
+ T. T. Wang thanks for discussion with Ms.
1522
+ Yi-
1523
+ Ling Cheng for the AMPT data.
1524
+ This work was
1525
+ supported in part by the National Natural Science
1526
+ Foundation of China under contract Nos.
1527
+ 11890710,
1528
+ 11890714, 11875066, 11925502, 11961141003, 11935001,
1529
+ 12147101 and 12047514, the Strategic Priority Research
1530
+ Program of CAS under Grant No.
1531
+ XDB34000000,
1532
+ National Key R&D Program of China under Grant
1533
+ No.
1534
+ 2018YFE0104600 and 2016YFE0100900, Guang-
1535
+ dong Major Project of Basic and Applied Basic Research
1536
+ No. 2020B0301030008, and the China PostDoctoral Sci-
1537
+ ence Foundation under Grant No. 2020M681140.
1538
+ [1] R. Hanbury Brown, R. Q. Twiss, Nature 177, 27 (1956).
1539
+ [2] R. Hanbury Brown, R. Q. Twiss, Nature 178, 1046
1540
+ (1956).
1541
+ [3] S. E. Koonin, Phys. Lett. B 70, 43 (1977).
1542
+ [4] M. A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev.
1543
+ Nucl. Part. Sci. 55, 357 (2005).
1544
+ [5] U. A. Wiedemann, U. Heinz, Phys. Rep. 319, 145 (1999).
1545
+ [6] G.Goldhaber, S. Goldhaber, W. Lee, and A. Pais, Phys.
1546
+ Rev. 120, 300 (1960).
1547
+ [7] A. Bialas et al., Phys. Rev. 62, 114007 (2000).
1548
+ [8] R. Ghetti et al., Nucl. Phys. A 674, 277 (2000).
1549
+ [9] D. H. Boal, C. K. Gelbke, B. K. Jennings, Rev. Mod.
1550
+ Phys. 62, 553 (1990).
1551
+ [10] D. Ardouin, Int. J. Mod. Phys. E 6, 391 (1997).
1552
+ [11] J. J. He, S. Zhang, Y. G. Ma, J. H. Chen, C. Zhong, Eur.
1553
+ Phys. J. A 56, 52 (2020).
1554
+ [12] R. Ghetti, J. Helgesson, V. Avdeichikov, P. Golubev, B.
1555
+ Jakobsson, N.Colonna, G. Tagliente et al., Phys. Rev.
1556
+ Lett. 91, 092701 (2003).
1557
+ [13] T. T. Wang, Y. G. Ma, C. J. Zhang, and Z. Q. Zhang,
1558
+ Phys. Rev. C 97, 034617 (2018).
1559
+ [14] R. Kotte et al., Eur. Phys. J. A, 23, 271-278 (2005).
1560
+ [15] J. Pochodzalla, C. K. Gelbke, W. G. Lynch, M. Maier,
1561
+ D. Ardouin, H. Delagrange et al., Phys. Rev. C 35, 1695
1562
+ (1987).
1563
+ [16] W. G. Gong, W. Bauer, C. K. Gelbke, and S. Pratt, Phys.
1564
+ Rev. C 43, 781 (1991).
1565
+ [17] Y. G. Ma, Y. B. Wei, W. Q. Shen et al., Phys. Rev. C
1566
+ 73, 014604 (2006).
1567
+ [18] R. Ghetti, V. Avdeichikov, B. Jakobsson et al., Phys.
1568
+ Rev. C. 69, 031605(R) (2004).
1569
+ [19] L. W. Chen, V. Greco, C. M. Ko, and B. A. Li, Phys.
1570
+ Rev. Lett. 90, 162701 (2003).
1571
+ [20] D. Q. Fang, Y. G. Ma, X. Y. Sun et al., Phys. Rev. C
1572
+ 94, 044621 (2016).
1573
+ [21] B. S. Huang, Y. G. Ma, Phys. Rev. C 101, 034615 (2020).
1574
+ [22] D. Gourio et al., Eur. Phys. J. A 7, 245 (2000).
1575
+ [23] L. Shen, B. S. Huang, and Y. G. Ma, Phys. Rev. C 105,
1576
+ 014603 (2022).
1577
+ [24] T. T. Wang, Y. G.Ma, D. Q. Fang, H. L. Liu, Phys. Rev.
1578
+ C 105, 024620 (2022).
1579
+ [25] L. M. Fang, Y. G. Ma, S. Zhang, Euro. Phys. J. A 58,
1580
+ 81 (2022).
1581
+ [26] P. Li, J. Steinheimer, T. Reichert, A. Kittiratpattana, M.
1582
+ Bleicher, and Q. Li, Science China - Physics, Mechanics,
1583
+ and Astrophysics in press, (2023).
1584
+ [27] P. Li, Y. Wang, Q. Li, and H. Zhang, Science China -
1585
+ Physics, Mechanics, and Astrophysics in press, (2023).
1586
+ [28] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett.
1587
+ 93, 012301 (2004) .
1588
+ [29] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett.
1589
+ 87, 082301 (2001).
1590
+ [30] L. Adamczyk et al. (STAR Collaboration), Nature 527,
1591
+ 345 (2015).
1592
+ [31] L. Adamczyk et al. (STAR Collaboration), Phys. Rev.
1593
+ Lett. 114, 022301 (2015).
1594
+ [32] J. Adam et al. (STAR Collaboration), Phys. Lett. B 790,
1595
+ 490 (2019).
1596
+ [33] S. Acharya et al. (ALICE Collaboration), Nature 588,
1597
+ 232 (2020).
1598
+ [34] C. J. Gelderloos and J. M. Alexander, Nucl. Instrum.
1599
+ Methods. A. 349, 618 (1994).
1600
+ [35] R. Lednick´y, V.L. Lyuboshitz, B. Erazmus, and D.
1601
+ Nouais, Phys. Lett. B 373, 30 (1996).
1602
+ [36] Ting-Ting Wang,
1603
+ Yu-Gang Ma,
1604
+ Zheng-Qiao Zhang,
1605
+ Phys. Rev. C 99, 054626 (2019).
1606
+ [37] Yijie Wang, Fenhai Guan, Qianghua Wu et al., Phys.
1607
+ Lett. B 825, 136856 (2022).
1608
+ [38] B. S. Xi, Z. Q. Zhang, S. Zhang and Y. G. Ma, Phys.
1609
+ Rev. C 102, 064901 (2020).
1610
+ [39] S. Voloshin, R. Lednick´y, S. Panitkin, and Nu Xu, Phys.
1611
+ Rev. L 79, 4766 (1997).
1612
+ [40] D. Ardouin et al., Phys. Lett. B 446, 191 (1999).
1613
+ [41] R. Kotte et al., Eur. Phys. J. A, 6, 185 (1999).
1614
+ [42] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal,
1615
+ Phys. Rev. C 72, 064901 (2005).
1616
+ [43] Z. W. Lin and L. Zheng, Nucl. Sci. Tech. 32, 113 (2021).
1617
+ [44] L. W. Chen, C. M. Ko, and B. A. Li, Nucl. Phys. A 729,
1618
+ 809 (2003).
1619
+ [45] S. Zhang, J. H. Chen, H. Crawford, D. Keane, Y. G. Ma,
1620
+ and Z. Xu, Phys. Lett. B 684, 224 (2010).
1621
+ [46] Yi-Lin Cheng, Song Zhang and Yu-Gang Ma, Eur. Phys.
1622
+ J. A, 57, 330 (2021).
1623
+ [47] R. Lednick´y, Nucl. Phys. A 774, 189 (2006).
1624
+ [48] R. Lednick´y, Phys. Part. Nucl. 40, 307 (2009).
1625
+ [49] R. Lednick´y, Phys. Ato. Nucl. 71, 1572 (2008).
1626
+ [50] R. Lednick´y, Braz. J. Phys. 37, 939 (2007).
1627
+
1628
+ 12
1629
+ [51] B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010).
1630
+ [52] G. L. Ma, X. N. Wang, Phys. Rev. Lett. 106, 162301
1631
+ (2011).
1632
+ [53] L. X. Han, G. L. Ma, Y. G. Ma, X. Z. Cai, J. H. Chen,
1633
+ S. Zhang, C. Zhong, Phys. Rev. C 84, 064907 (2011).
1634
+ [54] A. Bzdak, G. L. Ma, Phys. Rev. Lett. 113, 252301 (2014).
1635
+ [55] S. Zhang, Y. G. Ma, J. H. Chen, W. B. He, C. Zhong,
1636
+ Phys. Rev. C 95, 064904 (2017).
1637
+ [56] Zheng-Qiao Zhang, Song Zhang and Yu-Gang Ma, Chi-
1638
+ nese Phys. C 38, 014102 (2014).
1639
+ [57] H. Zhang, J. F. Liao, E. K. Wang, Q. Wang, H. X. Xing,
1640
+ Phys. Rev. Lett. 126, 012301 (2021).
1641
+ [58] H. Wang, J. H. Chen, Nucl. Sci. Tech. 32, 2 (2021).
1642
+ [59] H. Wang, J. H. Chen, Nucl. Sci. Tech. 33, 15 (2022).
1643
+ [60] X.-N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501
1644
+ (1991).
1645
+ [61] M. Gyulassy and X.-N. Wang, Computer Physics Com-
1646
+ munications 83, 307 (1994).
1647
+ [62] B. Zhang, Computer Physics Communications 109, 193
1648
+ (1998).
1649
+ [63] Zi-wei Lin, Subrata Pal, C. M. Ko, Bao-An Li, and Bin
1650
+ Zhang, Phys. Rev. C 64, 011902(R) (2001).
1651
+ [64] S. Pal, C. M. Ko, Zi-Wei Lin, Nucl. Phys. A 730, 143
1652
+ (2004).
1653
+ [65] S. Pal, C. M. Ko, Zi-Wei Lin, Nucl. Phys. A 707, 525
1654
+ (2002).
1655
+ [66] B. A. Li and C. M. Ko, Phys. Rev. C 52, 2037 (1995).
1656
+ [67] Lie-Wen Chen, C. M. Ko, and Bao-An Li, Phys. Rev. C
1657
+ 68, 017601 (2003).
1658
+ [68] M. Gyulassy et al., Nucl. Phys. A 402, 596 (1983).
1659
+ [69] J. Aichelin,
1660
+ A. Rosenhauer,
1661
+ G.Peilert,
1662
+ H. Stoecker,
1663
+ W.Greiner, Phys. Rev. Lett. 58, 1926 (1987).
1664
+ [70] V. Koch et al., Phys. Lett. B 241, 174 (1990).
1665
+ [71] P. Pawlowski et al., Eur. Phys. J. A 9, 371 (2000).
1666
+ [72] R. Mattiello, H. Sorge, H. Stocker, W. Greiner, Phys.
1667
+ Rev. C 55, 1443 (1997).
1668
+ [73] J.L. Nagle, B. S. Kumar, D. Kusnezov, H. Sorge, R. Mat-
1669
+ tiello, Phys. Rev. C 53, 367 (1996).
1670
+ [74] L. Csernai and J. I. Kapusta, Physics Reports 131, 223
1671
+ (1986).
1672
+ [75] Jinhui Chen, Declan Keane, Yu-Gang Ma, Aihong Tang,
1673
+ Zhangbu Xu, Physics Reports 760, 1 (2018).
1674
+ [76] K. J. Sun and L.-W. Chen, Phys. Lett. B 751, 272 (2015).
1675
+ [77] B. Erazmus, L. Martin, R. Lednicky, N. Carjan, Phys.
1676
+ Rev. C 49, 349 (1994).
1677
+ [78] J. Arvieux, Nucl. Phys. A 221, 253 (1974).
1678
+ [79] H.P. Zbroszczyk, Acta Phys. Pol. B Proc. Suppl. 12, 205
1679
+ (2019).
1680
+ [80] Sebastian Siejka (STAR Collaboration), Nucl. Phys. A
1681
+ 982, 359 (2019).
1682
+ [81] C. J. Gelderloos, R. Sun, N. N. Ajitanand, J. M. Alexan-
1683
+ der, E. Bauge, A. Elmaani et al., Phys. Rev. C 52, R2834
1684
+ (1995).
1685
+ [82] Bo-Song Huang, Yu-Gang Ma, Chin. Phys. C 44, 094105
1686
+ (2020).
1687
+
5dE1T4oBgHgl3EQfBAJm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69AzT4oBgHgl3EQfEvpR/content/2301.00998v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d64aa7f4900a86aba60d2d51ca8252c5e96977f80f04a2a1b17e70f62142ee94
3
+ size 2567082
69AzT4oBgHgl3EQfEvpR/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38473360e9c1339b1b36e399b330716a02b57eeadb3d79aa40f8a1db3d539404
3
+ size 283938
8NE1T4oBgHgl3EQfBwLj/content/tmp_files/2301.02857v1.pdf.txt ADDED
@@ -0,0 +1,1645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ De Haas - van Alphen Effect under Rotation
2
+ Shu-Yun Yang,1, ∗ Ren-Da Dong,1 De-Fu Hou,1, † and Hai-Cang Ren2, 1, ‡
3
+ 1Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS),
4
+ Central China Normal University, Wuhan 430079, China
5
+ 2Physics Department, The Rockefeller University,
6
+ 1230 York Avenue, New York, NY 10021-6399
7
+ Abstract
8
+ We explored the interplay between magnetic field and rotation in the de Hass - van Alphen oscillation.
9
+ The effect is found to be reduced because of the re-weighting of different states within the same Landau
10
+ level by rotation energy. The implications of our results on high energy physics and condensed matter
11
+ physics are speculated.
12
13
+ † Co-corresponding author: [email protected]
14
+ ‡ Co-corresponding author: [email protected]
15
+ 1
16
+ arXiv:2301.02857v1 [hep-ph] 7 Jan 2023
17
+
18
+ I.
19
+ INTRODUCTION
20
+ The experimental activities for recent years regarding the polarization [1–7] and chiral
21
+ magnetic effects [8–10] in off-central relativistic heavy ion collisions promoted theoretical
22
+ research interests in a rotating thermodynamic system in a magnetic field [11–16]. The same
23
+ physical conditions are also present in a neutron star [17–20]. One of the inteplay between
24
+ the magnetism and rotation, the Barnett effect (or Einstein-de Haas effect) [21–23] has been
25
+ considered in hydrodynamic modeling of the collisions.
26
+ In this work, we examine another
27
+ interplay between magnetism and rotation, i.e. the de Haas - van Alphen effect [24, 25] in
28
+ a strongly degenerate rotating Fermi gas.
29
+ Though purely theoretical at present stage, the
30
+ implications are expected to shed light on the magnetic properties of the quark matter core, if
31
+ exists, in a neutron star and/or the QGP droplet of generated in the RHIC STAR fixed target
32
+ experiment, where the quark density is towards the strong degeneracy. The conclusion may
33
+ also be tested directly in condensaed matter physics.
34
+ De Haas-van Alphen effect is the consequence of charged fermions filling discrete but highly
35
+ degenerate Landau levels [26, 27] in a magnetic field. In the absence of rotation, all degenerate
36
+ Landau levels are equally populated at thermal equilibrium and the disceteness of different
37
+ Laudau level is refelected in the thermodynamic limit as the oscillatory terms with respect to
38
+ the chemical potential and the magnetic field in the thermodynamic potential, magnetization
39
+ and magnetic susceptibility as well as some transport coefficients.
40
+ When the system is in
41
+ rotation, the thermodynamic equilibrium is established under a nonzero macroscopc angular
42
+ momentum. The equal distribution of different angular momentum states within a Laudau
43
+ level is offset by the nonzero angular velocity with higher angular momenta more favored than
44
+ lower ones, which amounts to lifts the degeneracy of the Landau level. The dHvA oscillation
45
+ is thereby expected to be reduced by the rotation. Consider a cylindrical volume of radius R
46
+ with a constant magnetic field parallel to its axis, the states of each fermion is characterized
47
+ by the z-component of the momentum q, the z-component of the angular momentum M, and
48
+ the radial quantum number of the wave function, n(≥ 0). A Laudau levels corresponds M > 0,
49
+ the cyclotron motion in classical picture, and all M > 0 are degenerate up to M ∼ eBR2,
50
+ when the cyclotron orbit reaches the boundary. While the energy of a Landau level depends
51
+ only on q and n. The nonzero angular velocity ω weight different M differently through the
52
+ Boltzmann factor eMω/T in the ensemble of a macroscopic angular momentum. On the other
53
+ hand, the requirement of subluminal linear speed on the boundary limits the radius of the
54
+ 2
55
+
56
+ cylinder R < 1/ω and the thermodynamic limit R → ∞ is unrealistic and the degeneracy of
57
+ the Landau levels becomes finite. We shall take the thermodynamic approximation by retaining
58
+ the leading term in power in 1/R in the thermodynamic potential, keeping in mind ωR = O(1)1,
59
+ and a sharp cutoff in the summation over angular momentum states within a Landau level is
60
+ introduced to tak care of the finite size effect of the spectrum. Consequently, the implication
61
+ of the rotation in the dHvA oscillation dependes on the size of the size of the system and the
62
+ angular velocity. As we shall see, the dHvA is completely suppressed for typical parameters
63
+ appropriate in a neutron star but may lead to observaservable effect for a cold and dense QGP
64
+ fire ball created in future RHIC project. For a strongly degenerate non-relativistic electron gas,
65
+ the reduction of the dHvA may be detectable in a rotating metallic sample.
66
+ This paper is organized as follows.
67
+ In section II, the dHvA term of an rotating ultra-
68
+ relativistic quark gas is calculated and its implications is discussed.
69
+ The same effect for a
70
+ non-relativistic electron is examined in section III. Section IV concludes the paper.
71
+ II.
72
+ ULTRA RELATIVISTIC FERMI GAS
73
+ A.
74
+ Solution of Dirac Equation in Cylindrical Cooredinate
75
+ For a massless fermion of electric charge e in a constant magnetic field ⃗B = Bˆz reads, the
76
+ Hamiltonian in chiral representation reads
77
+ H = −i⃗α · (⃗∇ − ieA) =
78
+
79
+ � −i⃗σ · (⃗∇ − ieA)
80
+ 0
81
+ 0
82
+ i⃗σ · (⃗∇ − ieA)
83
+
84
+
85
+ (1)
86
+ where the vector potential
87
+ ⃗A = 1
88
+ 2
89
+ ⃗B × ⃗r
90
+ (2)
91
+ We adapt the circular gauge instead of Landau gauge for the convenience of investigating a
92
+ rotating Fermi gas. As the fermions of opposite chiralities have identical spectrum, we shall
93
+ focus one of them in what follows with the Hamiltonian
94
+ H = −i⃗σ · (⃗∇ − ieA)
95
+ (3)
96
+ 1 In this case the kinetic energy of rotation grows with the volume, like other extensive thermodynamic
97
+ quantities.
98
+ 3
99
+
100
+ and the eigenvalue equation Hχ = Eχ. For the ansatz of the two-component wave function χ
101
+ in cylindrical coordinates, i.e.
102
+ χ(⃗r) =
103
+
104
+ � f(ρ)ei(M− 1
105
+ 2)φ
106
+ g(ρ)ei(M+ 1
107
+ 2)φ
108
+
109
+ � eiqz
110
+ (4)
111
+ we have the equations for the radial functions f(ρ) and g(ρ)
112
+
113
+
114
+
115
+
116
+
117
+ qf(ρ) − i
118
+
119
+ d
120
+ dρ +
121
+ M+ 1
122
+ 2
123
+ ρ
124
+ − 1
125
+ 2eBρ
126
+
127
+ g(ρ) = Ef(ρ)
128
+ −i
129
+
130
+ d
131
+ dρ −
132
+ M− 1
133
+ 2
134
+ ρ
135
+ + 1
136
+ 2eBρ
137
+
138
+ f(ρ) − qg(ρ) = Eg(ρ)
139
+ (5)
140
+ where, q and M are the eigenvalue of the momentum and total angular momentum in the
141
+ direction of the magnetic field with M = ±1/2, ±3/2, .... The equation (5) can be solved in
142
+ terms of the generaliized Laguerre polynomial Lµ
143
+ n(z) and we end up with the normalized wave
144
+ function [28],
145
+ χnMqs(⃗r) = 1
146
+
147
+
148
+ n!
149
+ (n + m)!e− ζ
150
+ 2
151
+
152
+
153
+
154
+ eB(E+q)
155
+ 2E
156
+ ζ
157
+ m
158
+ 2 Lm
159
+ n (ζ)eimφ
160
+ iseB
161
+
162
+ E(E−q)ζm+1Lm+1
163
+ n−1 (ζ)ei(m+1)φ
164
+
165
+ � eiqz
166
+ (6)
167
+ for M > 0, and
168
+ χnMqs(⃗r) = 1
169
+
170
+
171
+ n!
172
+ (n + |m|)!e− ζ
173
+ 2
174
+
175
+
176
+
177
+ eB(E+q)
178
+ 2E
179
+ ζ
180
+ |m|
181
+ 2 L|m|
182
+ n (ζ)eimφ
183
+ − iseB(n+|m|)
184
+
185
+ E(E−q) ζ
186
+ (|m|−1)
187
+ 2
188
+ L|m|−1
189
+ n
190
+ (ζ)ei(m+1)φ
191
+
192
+ � eiqz
193
+ (7)
194
+ for M < 0, where ζ ≡ 1
195
+ 2eBρ2, m ≡ M − 1/2, n = 0, 1, 2, ... and s = ±. The corresponding
196
+ eigenvalue of energy is E = sEnMq with
197
+ EnMq =
198
+
199
+
200
+
201
+
202
+
203
+
204
+ 2neB + q2
205
+ for M > 0
206
+
207
+ 2(n + |m|)eB + q2
208
+ for M < 0
209
+ (8)
210
+ Care must be exercised for the case n = 0 of the solution (6) because of the nonexistence of
211
+ Lm+1
212
+ −1
213
+ and the sigularity at E = −q. For E = ±q, eq.(5) becomes
214
+
215
+
216
+
217
+
218
+
219
+
220
+ d
221
+ dρ + m+1
222
+ ρ
223
+ − 1
224
+ 2eBρ
225
+
226
+ g(ρ) = i(±q − q)f(ρ)
227
+
228
+ d
229
+ dρ − m
230
+ ρ + 1
231
+ 2eBρ
232
+
233
+ f(ρ) = i(±q + q)g(ρ)
234
+ (9)
235
+ A normalizable solution exists only if E = q and reads
236
+ χ0Mqs(⃗r) = 2m+1
237
+ √π (eB)
238
+ m+1
239
+ 2 ρme− 1
240
+ 4 eBρ2+imφ+iqz
241
+
242
+ � 1
243
+ 0
244
+
245
+
246
+ (10)
247
+ 4
248
+
249
+ with s = sign(q), which implies up(down) mover for positive(negative) energy solution. The
250
+ wave function (7) corresponds to the classical motion along the cyclotron orbit and the spectrum
251
+ (8) constitues the entire set of Landau levels and is responsible to magnetic properties including
252
+ de Haas - van Alphen effect to be discussed below in thermodynamic approximation. The wave
253
+ function (7) and the spectrum (8) is specific to the cylindrical coordinates and is subleading in
254
+ the thermodynamic approximation as we shall see below.
255
+ B.
256
+ Thermodynamic Pressure
257
+ The Hamiltonian of massless fermion field in a magnetic filed is given by
258
+ H =
259
+
260
+ d3⃗rψ†Hψ
261
+ (11)
262
+ where H the single particle Hamiltonian (3) and the field operator
263
+ ψ(⃗r) =
264
+
265
+ nMq
266
+ ηnM(q)(anMqχnMq+(⃗r) + b†
267
+ nM−qχnMq−(⃗r))
268
+ (12)
269
+ where
270
+ ηnM(q) =
271
+
272
+
273
+
274
+
275
+
276
+ θ(q)
277
+ for M > 0 and n = 0
278
+ 1
279
+ otherwise
280
+ (13)
281
+ We have
282
+ H =
283
+
284
+ n,M,q
285
+ ηnM(q)EnMq(a†
286
+ nMqanMq + b†
287
+ nMqbnMq)
288
+ (14)
289
+ Correspondingly, the fermion number operator
290
+ Q =
291
+
292
+ d3⃗rψ†ψ
293
+ =
294
+
295
+ n,M,q
296
+ ηnM(q)(a†
297
+ nMqanMq − b†
298
+ nMqbnMq)
299
+ (15)
300
+ and the angular momemtum projection operator
301
+ Jz =
302
+
303
+ d3⃗rψ†
304
+
305
+ −i ∂
306
+ ∂φ + 1
307
+ 2σz
308
+
309
+ ψ
310
+ =
311
+
312
+ n,M,q
313
+ ηnM(q)M(a†
314
+ nMqanMq − b†
315
+ nMqbnMq)
316
+ (16)
317
+ 5
318
+
319
+ Consequently, the thermodynamic pressure at temperature T and chemical potential µ of a
320
+ system rotating about z-axis with an angular velocity ω is
321
+ P =T
322
+
323
+
324
+ n=0,M>0,q>0
325
+ [ln
326
+
327
+ 1 + e−β(|q|−Mω−µ)�
328
+ + ln
329
+
330
+ 1 + e−β(|q|+Mω+µ)�
331
+ ]
332
+ + T
333
+
334
+
335
+ n=0,M>0,q
336
+ [ln
337
+
338
+ 1 + e−β(√
339
+ q2+2neB−Mω−µ)�
340
+ + ln
341
+
342
+ 1 + e−β(√
343
+ q2+2neB+Mω+µ)�
344
+ ]
345
+ + T
346
+
347
+
348
+ n̸=0,M>0,q
349
+ [ln
350
+
351
+ 1 + e−β(√
352
+ q2+2(n+M+ 1
353
+ 2 )eB+Mω−µ)�
354
+ + ln
355
+
356
+ 1 + e−β(√
357
+ q2+2(n+M+ 1
358
+ 2 )eB−Mω+µ)�
359
+ ]
360
+ where we have switched the sign of M of the lower branch of the spectrum (8) for clarity. For
361
+ a cylinder of radius R and length L, Ω = πR2L,
362
+
363
+ n,M,q
364
+ (...) =
365
+ 1
366
+ πR2
367
+ � ∞
368
+ −∞
369
+ dq
370
+
371
+
372
+ n,M
373
+ (...)
374
+ (17)
375
+ To avoid superluminal linear speed on the boundary, we require v ≡ ωR < 1. So the true
376
+ thermodynamic limit R → ∞ is not attainable but we may still take the thermodynamic
377
+ approximation for sufficiently large R by sorting the terms according to its power keeping in
378
+ mind that ωR = O(1). For a finite R summation over M is limited. If follows from eqs. (6) and
379
+ (7) that the square of the wave function for large M and finite n is peaked at the maximum
380
+ of ρ2|m| exp
381
+
382
+ − 1
383
+ 2eBρ2�
384
+ , which gives rise to ρ2 = 2|m|/(eB). When this ρ becomes comparable
385
+ with R the finite size effect will distore the spectrum (8). Therefore, we introduce a cutoff for
386
+ the summation over M, i.e.
387
+ M ≤ Mc = [1
388
+ 2eBR2] >> 1
389
+ (18)
390
+ with [...] tuncate the argument inside to its integer part. As will be shown below, this cutoff
391
+ produces the dHvA effect obtained from the Landau gauge in the absence of rotation. Without
392
+ solving the boundary value problem of the edge states, we assume the uncertainty δMc = O(1)
393
+ of the cutoff.
394
+ Assuming strong degeneracy, µ >> T, the antiparticle contributions may be ignored 2 and
395
+ 2 To be cautious, let us examine whether the combination E ≡
396
+
397
+ q2 + 2(n + M + 1
398
+ 2)eB − Mω in the last
399
+ term of (17) can become negative and compete with µ for large M.
400
+ For the maximum M(= Mc), E >
401
+ √2MceB − Mcω ≃ eBR(1 − v/2) > 0. The approximation of dropping the antiparticle contribution appears
402
+ safe.
403
+ 6
404
+
405
+ we end up with
406
+ P = T
407
+ πR2
408
+ � ∞
409
+ 0
410
+ dq
411
+
412
+
413
+ M>0
414
+ ln
415
+
416
+ 1 + e−β(|q|−Mω−µ)�
417
+ +
418
+ T
419
+ πR2
420
+ � ∞
421
+ −∞
422
+ dq
423
+
424
+
425
+ n>0,M>0
426
+ ln
427
+
428
+ 1 + e−β(√
429
+ q2+2neB−Mω−µ)�
430
+ +
431
+ T
432
+ πR2
433
+ � ∞
434
+ −∞
435
+ dq
436
+
437
+
438
+ n,M>0
439
+ ln
440
+
441
+ 1 + e−β(√
442
+ q2+2(n+M+ 1
443
+ 2 )eB+Mω−µ)�
444
+ (19)
445
+ where the contribution of the lowest Landau level has been isolated from higher Landau levels
446
+ because different integration domain of q. The summation over M in the third term of (19)
447
+ converges in the limit Mc → ∞ and thereby does not contribute to the thermadynamic limit
448
+ and we are left with the Landau level terms only, i.e.
449
+ P = T
450
+ πR2
451
+ � ∞
452
+ 0
453
+ dq
454
+
455
+
456
+ M>0
457
+ ln
458
+
459
+ 1 + e−β(|q|−Mω−µ)�
460
+ +
461
+ T
462
+ πR2
463
+ � ∞
464
+ −∞
465
+ dq
466
+
467
+
468
+ n>0,M>0
469
+ ln
470
+
471
+ 1 + e−β(√
472
+ q2+2neB−Mω−µ)�
473
+ ≡ 1
474
+ πR2PM
475
+ (20)
476
+ where
477
+ PM = T
478
+ � ∞
479
+ 0
480
+ dq
481
+ 4π ln
482
+
483
+ 1 + e−β(|q|−µM)�
484
+ + T
485
+ � ∞
486
+ −∞
487
+ dq
488
+
489
+
490
+ n>0
491
+ ln
492
+
493
+ 1 + e−β(√
494
+ q2+2neB−µM)�
495
+ (21)
496
+ with µM = µ + Mω.
497
+ C.
498
+ de Haas - van Alphen Oscillation
499
+ As the standard derivation of the de Haas - van Alphen (dHvA) effect, the summation over
500
+ the Landau level index n can be carried out with the aid of the Poisson formula
501
+
502
+
503
+ n=0
504
+ f(n) =
505
+ � ∞
506
+ 0
507
+ f(n)dn + 2Re
508
+
509
+
510
+ l=1
511
+ � ∞
512
+ 0
513
+ f(n)e2iπlndx
514
+ (22)
515
+ We have
516
+ FM = F0M + 2Re
517
+
518
+
519
+ l=1
520
+ FlM
521
+ (23)
522
+ where
523
+ FlM = T
524
+ � ∞
525
+ −∞
526
+ dq
527
+
528
+ � ∞
529
+ 0
530
+ dnei2πln ln
531
+
532
+ 1 + e−β(√
533
+ q2+2neB−µM)�
534
+ (24)
535
+ The dHvA oscillation resides in the second term of (23) and we shall focus on it.
536
+ Transforming the integration variables from q, n to q, ϵ with ϵ =
537
+
538
+ q2 + 2neB, we find, via
539
+ twice integration by part with respect to ϵ, that
540
+ FlM = IlM + IIlM + IIIlM
541
+ (25)
542
+ 7
543
+
544
+ for l > 0, where
545
+ IlM = ieBT
546
+ 4π2l
547
+ � ∞
548
+ −∞
549
+ dq ln
550
+
551
+ 1 + e−β(q−µM�
552
+ ),
553
+ (26)
554
+ IIlM =
555
+ eB
556
+ 4iπ2l
557
+
558
+ eB
559
+ πl
560
+ � ∞
561
+ −∞
562
+ dqe−i lπ
563
+ eB q2 φ
564
+ ��
565
+
566
+ eB|q|
567
+
568
+ eβ(q−µM) + 1
569
+ (27)
570
+ and
571
+ IIIlM = − eB
572
+ 4iπ2l
573
+
574
+ eB
575
+
576
+ � ∞
577
+ 0
578
+ dϵφ
579
+ ��
580
+
581
+ eB ϵ
582
+
583
+ βeβ(ϵ−µM)
584
+ [eβ(ϵ−µM) + 1]2
585
+ � ϵ
586
+ −ϵ
587
+ dqe−i lπ
588
+ eB q2
589
+ (28)
590
+ with
591
+ φ(z) ≡
592
+ � ∞
593
+ z
594
+ dxeix2
595
+ (29)
596
+ IlM is imaginary thereby does not contribute to (23). Assuming the condition
597
+ T ≪
598
+
599
+ eB ≪ µ
600
+ (30)
601
+ the leading terms of IIlM and IIIlM can be worked out and we ontain that
602
+ IIlM =
603
+ eB
604
+ 4π3l2
605
+
606
+ ln
607
+ ��
608
+ 4lπ
609
+ eB µM
610
+
611
+ + 1
612
+ 2γE − iπ
613
+ 4
614
+
615
+ (31)
616
+ with γE = 0.5772... the Euler constant (See Appendix A for the derivation), and
617
+ IIIlM = −(eB)
618
+ 1
619
+ 2T
620
+
621
+ e
622
+ i
623
+
624
+ lπ2
625
+ eB µ2
626
+ M− π
627
+ 4
628
+
629
+ l3/2 sinh 2lπ2T(µ+Mω)
630
+ eB
631
+ .
632
+ (32)
633
+ where the integration formula
634
+ � ∞
635
+ −∞
636
+ dx
637
+ ex+iα
638
+ (ex + 1)2 =
639
+ πα
640
+ sinh πα
641
+ (33)
642
+ and the asymptotic form
643
+ φ(z) = i
644
+ 2zeiz2 + ... for z → ∞
645
+ (34)
646
+ have been employed to reduce IIIM. The dHvA osillation stems from IIIM. Summing over M,
647
+ we end up with the dHvA term of the thermodynamic pressure under rotation, i.e.
648
+ PdHvA ≡
649
+ 1
650
+ πR2
651
+
652
+ M>0
653
+
654
+ 2Re
655
+
656
+
657
+ l=1
658
+ IIIlM
659
+
660
+ = −(eB)
661
+ 1
662
+ 2
663
+ 2π2R2
664
+
665
+
666
+ l=1
667
+ 1
668
+ l3/2
669
+
670
+ M>0
671
+ cos
672
+ � lπ
673
+ eB(µ + Mω)2 − π
674
+ 4
675
+
676
+ sinh 2lπ2T(µ+Mω)
677
+ eB
678
+ (35)
679
+ In the absence of rotation, ω = 0, eq.(35) becomes
680
+ PdHvA = −T(eB)
681
+ 3
682
+ 2
683
+ 4π2
684
+
685
+
686
+ l=1
687
+ 1
688
+ l3/2
689
+ cos
690
+ � lπ
691
+ eBµ2 − π
692
+ 4
693
+
694
+ sinh 2lπ2Tµ
695
+ eB
696
+ → (eB)
697
+ 5
698
+ 2
699
+ 8π4µ
700
+
701
+
702
+ l=1
703
+ 1
704
+ l5/2 cos
705
+ � lπ
706
+ eB µ2 − π
707
+ 4
708
+
709
+ (36)
710
+ 8
711
+
712
+ in agreement with the expression derived from the Landau gauge.
713
+ Eq.(35) can be further simplified at zero temperature, i.e.
714
+ PdHvA = −(eB)
715
+ 3
716
+ 2
717
+ 4π4R2
718
+
719
+ M>0
720
+ 1
721
+ µ + Mω
722
+
723
+
724
+ l=1
725
+ 1
726
+ l5/2 cos
727
+ � lπ
728
+ eB (µ + Mω)2 − π
729
+ 4
730
+
731
+ (37)
732
+ The angular velocity and magnetic field considered throught this work satisfy the condition
733
+ ω <<
734
+
735
+ eB and the summation over M can be approximated by an integral. Consequently
736
+ PdHvA ≃ − (eB)
737
+ 3
738
+ 2
739
+ 4π4R2ω
740
+ � µ+Mcω
741
+ µ
742
+ dx1
743
+ x
744
+
745
+
746
+ l=1
747
+ 1
748
+ l5/2 cos
749
+ � lπ
750
+ eB x2 − π
751
+ 4
752
+
753
+ = −
754
+ (eB)
755
+ 3
756
+ 2
757
+ 8
758
+
759
+ 2π4R2ω
760
+
761
+
762
+ l=1
763
+ 1
764
+ l5/2
765
+
766
+ Ci
767
+ � lπ
768
+ eB (µ + Mcω)2
769
+
770
+ − Ci
771
+ � lπ
772
+ eB µ2
773
+
774
+ +Si
775
+ � lπ
776
+ eB (µ + Mcω)2
777
+
778
+ − Si
779
+ � lπ
780
+ eB µ2
781
+ ��
782
+ ≃ (eB)
783
+ 5
784
+ 2
785
+ 8π5R2ω
786
+
787
+
788
+ l=1
789
+ 1
790
+ l7/2
791
+
792
+ sin
793
+ � lπ
794
+ eBµ2 − π
795
+ 4
796
+
797
+ µ2
798
+ − sin
799
+ � lπ
800
+ eB(µ + Mcω)2 − π
801
+ 4
802
+
803
+ (µ + Mcω)2
804
+
805
+ (38)
806
+ where Ci(z) and Si(z) are cosine and sine integrals and the last step follows from their
807
+ asymptotic forms for z ≫ 1, i.e.
808
+
809
+
810
+
811
+
812
+
813
+ Si(z) ≈ π
814
+ 2 − cos z
815
+ z
816
+ Ci(z) ≈ sin z
817
+ z
818
+ (39)
819
+ are employed in the last step. If the maximum rotation energy Mcω dominates, i.e. Mcω >> µ,
820
+ the second term of (38) can be dropped and we have
821
+ PdHvA ≃
822
+ (eB)
823
+ 5
824
+ 2
825
+ 8π5µ2R2ω
826
+
827
+
828
+ l=1
829
+ 1
830
+ l7/2 sin
831
+ � lπ
832
+ eB µ2 − π
833
+ 4
834
+
835
+ (40)
836
+ and the uncertainty of Mc does not contribute.
837
+ D.
838
+ Numerical Estimates
839
+ As pointed out in the introduction, the rotation will lift the degeneracy of states within
840
+ each Landau level and thereby reduce the de Haas - van Alphen oscillation. In this section,
841
+ we shall estimate the amount of reduction using the parameters appropriate for two realistic
842
+ rotating ultra-relativistic fermion system in a magnetic field, the quark matter core and a QGP
843
+ droplet at high baryon density. Since the Fermi gas approximation of these two system tends
844
+ to be poor and the condition of the latter syetem is highly transient, we are not attempting
845
+ to model the two system. The signifinace of our result below is only in the sense of order of
846
+ 9
847
+
848
+ magnitude. For the ultra-relativistic system, we shall use mπ = 130MeV as the scale of the
849
+ chemical potential and temperature and m2
850
+ π = 1014G as the scale of the magnetic field. The
851
+ estimate of the impact of the de Haas - van Alphen effect in a non-relativistic fermion system
852
+ is deferred to the next section.
853
+ The quark matter core of a neutron star
854
+ μ2=10mπ
855
+ 2
856
+ 0.0
857
+ 0.2
858
+ 0.4
859
+ 0.6
860
+ 0.8
861
+ 1.0
862
+ -1.5×10-12
863
+ -1. ×10-12
864
+ -5. ×10-13
865
+ 0
866
+ 5. ×10-13
867
+ 1. ×10-12
868
+ 1.5×10-12
869
+ eB/mπ
870
+ 2
871
+ PdHvA
872
+ Neutron Star
873
+ ωR = 0.06
874
+ ωR = 0.045
875
+ ωR = 0.03
876
+ ωR = 0.015
877
+ FIG. 1. The oscillatory term of pressure P1 as a function of magnetic field eB
878
+ m2π . Here, mπ = 140MeV,
879
+ R = 1km.
880
+ The radius of a neutron star is of the order of 10km and we assume a quark matter core
881
+ made of light flavors of smaller radius R with a chemical potential of several hundreds of MeV,
882
+ i.e. few times of pion’s rest energy, mπ. The magnetic field inside a neutron star can reach as
883
+ high as 1015G, i.e. 1.4×10−3m2
884
+ π. For the fastest spinning neutron star, PSR J1748-2446ad, the
885
+ frequency is 716Hz and the linear speed at the boundary of the core is v ≃ 0.015 (in the unit
886
+ of the speed of light). Consequently
887
+ µ
888
+ Mcω = µ
889
+
890
+ · m2
891
+ π
892
+ eB ·
893
+ 10−16
894
+ R(km)v << 1
895
+ (41)
896
+ PdHvA
897
+ PdHvA∥ω=0
898
+
899
+ 2
900
+ µRv ≃
901
+ 3.86 × 10−16
902
+ µ(MeV)R(km)v
903
+ (42)
904
+ for a typical neutron star. The approximation (40) is valid and we estimate
905
+ PdHvA
906
+ PdHvA∥ω=0
907
+
908
+ 2
909
+ µRv ≃
910
+ 3.86 × 10−16
911
+ µ(MeV)R(km)v
912
+ (43)
913
+ leading to huge suppression of dHvA oscillation.
914
+ The thermodynamic pressure at µ2 = 10m2
915
+ π and zero temperature versus magnetic field
916
+ 0 < eB < 0.01m2
917
+ π is plotted in Fig. 1 for several linear speeds at the boundary of the rotating
918
+ quark matter core. As a benchmark, the thermodynamic pressure in the absence of rotation is
919
+ 10
920
+
921
+ ω=0
922
+ 0.0
923
+ 0.2
924
+ 0.4
925
+ 0.6
926
+ 0.8
927
+ 1.0
928
+ -150000
929
+ -100000
930
+ -50000
931
+ 0
932
+ 50000
933
+ 100000
934
+ 150000
935
+ eB/mπ
936
+ 2
937
+ PdHvA
938
+ μ2 = 20 mπ2
939
+ μ2 = 15 mπ2
940
+ μ2 = 10 mπ2
941
+ μ2 = 5 mπ2
942
+ FIG. 2. The oscillatory term of pressure P1 as a function of magnetic field eB
943
+ m2π . Here, ω = 0 and T = 0.
944
+ displayed in Fig. 2. The parameters underlying both figures satisfy the approximation condition
945
+ (30) for the analytic expressions. The effect is suppressed by 17 order of magnitude.
946
+ A cold and dense QGP droplet
947
+ μ2=10mπ
948
+ 2
949
+ 0.0
950
+ 0.2
951
+ 0.4
952
+ 0.6
953
+ 0.8
954
+ 1.0
955
+ -150000
956
+ -100000
957
+ -50000
958
+ 0
959
+ 50000
960
+ 100000
961
+ 150000
962
+ eB/mπ
963
+ 2
964
+ PdHvA
965
+ R = 10 fm
966
+ ωR = 0.03
967
+ ωR = 0.02
968
+ ωR = 0.01
969
+ ωR = 0
970
+ FIG. 3. The oscillatory term of pressure P1 as a function of magnetic field
971
+ eB
972
+ m2π . Here, we fix the
973
+ chemical potential µ2 = 10m2
974
+ π and the radius is R = 10fm.
975
+ The suppression of dHvA in a neutron star may be attributed to its large size.
976
+ Let us
977
+ switch to a cold and dense QGP droplet where the suppression of dHvA oscillation with the
978
+ angular velocity becomes modest. The dHvA term of the thermodynamic pressure of eq.(38) for
979
+ R = 10fm versus the magnetic field at fixed chemical potential and temperature and is plotted
980
+ for several angular velocity including ω = 0 in Fig. 3. The same equation at fixed chemical
981
+ potential and a nonzero angular velocity is plotted for several temperatures in Fig. 4. The dHvA
982
+ without rotation, eq.(36) at the same chemical potential and the same set of tempertatures is
983
+ plotted in Fig. 5 for reference. Notice that the suppression of dHvA with temperature becomes
984
+ milder with ω ̸= 0. The selection of the size, chemical potential and the magnetic field is
985
+ 11
986
+
987
+ μ2=20mπ
988
+ 2
989
+ 0.30 0.32 0.34 0.36 0.38 0.40
990
+ -1.5×10-11
991
+ -1. ×10-11
992
+ -5. ×10-120
993
+ 5. ×10-12
994
+ 1. ×10-11
995
+ 1.5× 10-11
996
+ 2. ×10-11
997
+ 0.0
998
+ 0.2
999
+ 0.4
1000
+ 0.6
1001
+ 0.8
1002
+ 1.0
1003
+ -0.10
1004
+ -0.05
1005
+ 0.00
1006
+ 0.05
1007
+ 0.10
1008
+ 0.15
1009
+ eB/mπ
1010
+ 2
1011
+ PdHvA
1012
+ R = 10 fm
1013
+ T = 56 MeV
1014
+ T = 54 MeV
1015
+ T = 52 MeV
1016
+ T = 50 MeV
1017
+ FIG. 4. The oscillatory term of pressure
1018
+ P1
1019
+ (eB/m2π)30 as a function of magnetic field eB
1020
+ m2π . Here, we fix the
1021
+ chemical potential µ2 = 10m2
1022
+ π, v = 0.01 and the radius is R = 10fm.
1023
+ μ2=20 mπ
1024
+ 2
1025
+ 0.80
1026
+ 0.85
1027
+ 0.90
1028
+ 0.95
1029
+ 1.00
1030
+ -2. ×10-9
1031
+ -1. ×10-9
1032
+ 0
1033
+ 1. ×10-9
1034
+ 2. ×10-9
1035
+ eB/mπ
1036
+ 2
1037
+ PdHvA
1038
+ ω = 0
1039
+ T = 56 MeV
1040
+ T = 54 MeV
1041
+ T = 52 MeV
1042
+ T = 50 MeV
1043
+ FIG. 5. The oscillatory term of pressure
1044
+ P1
1045
+ (eB/m2π)30 as a function of magnetic field eB
1046
+ m2π . Here, we fix the
1047
+ chemical potential µ2 = 10m2
1048
+ π, and ω = 0.
1049
+ motivated by the conditions of the current heavy ion collisions in RHIC and LHC.
1050
+ While the RHIC STAR fixed target experiment is expected to generate QGP of lower energy
1051
+ and higher bayon density, i.e., closer to the density axis of the QCD phase diagram, there may
1052
+ still be a gap to meet the condition of the cold and dense QGP described above. Even it did,
1053
+ the rapid expansion would hinder the observability of the effect because of non-equilibrium. So
1054
+ our discussions here are highly speculative.
1055
+ III.
1056
+ NON RELATIVISTIC FERMI GAS
1057
+ The Hamiltonin of a non-relativistic electron reads
1058
+ H = − 1
1059
+ 2me
1060
+ (⃗∇ − ie ⃗A)2 + 1
1061
+ 2σzωB
1062
+ (44)
1063
+ 12
1064
+
1065
+ with the vector potential
1066
+ ⃗A = 1
1067
+ 2Bˆz × ⃗r,
1068
+ (45)
1069
+ where ωB = eB/me is the cyclotron frequency and σz = diag.(1, −1).
1070
+ The spectrum in
1071
+ cylindrical coordinates can be found in many textbook of quantum mechnics and are given
1072
+ by
1073
+ Enmqσ =
1074
+ q2
1075
+ 2me
1076
+ +
1077
+
1078
+ n + m − |m|
1079
+ 2
1080
+ + 1
1081
+ 2
1082
+
1083
+ ωB + 1
1084
+ 2σωB
1085
+ (46)
1086
+ where q is the momentum along z-direction, n = 0, 1, 2, ... are radial quantum number and
1087
+ m=0,±1, ±2, ...,±Mc are the z-component of the orbital angular momentum and σ = ±
1088
+ labels spin projections. The Landau levels correspond to m ≥ 0 and are labeled by n. The
1089
+ corresponding wave function reads
1090
+ ψnmqσ(⃗r) =
1091
+
1092
+ n!eB
1093
+ 2π(n + |m|)!Lζ
1094
+ |m|
1095
+ 2 e− ζ
1096
+ 2L|m|
1097
+ n (ζ)ei(mφ+qz)
1098
+ (47)
1099
+ In a cylinder of finite radius, the thermodynamic approximation limits the azimuthal quantum
1100
+ number as (18), i.e.
1101
+ |m| < mc = [1
1102
+ 2eBR2] >> 1.
1103
+ (48)
1104
+ with an uncertainty δmc = O(1) as in the ultra-relativistic case.
1105
+ A.
1106
+ Thermodynamic Pressure and dHvA
1107
+ For a free non-relativistic electron gas, the dHvA can be extracted using the same Poisson
1108
+ formula (22) as in most of the textbooks in solid state physics. Here we adapt a more elegant
1109
+ approach via Mellin transformation [29].
1110
+ The thermodynamic pressure of the electron gas in a rotating cylindrical volume of radius
1111
+ R and length Lz reads
1112
+ P =
1113
+ 1
1114
+ πR2
1115
+
1116
+ m
1117
+ Pm(ζm)
1118
+ (49)
1119
+ where
1120
+ Pm(ζm) = T
1121
+ Lz
1122
+
1123
+ n,q,σ
1124
+ ln
1125
+
1126
+ 1 + 1
1127
+ ζm
1128
+ e−βEqnmσ
1129
+
1130
+ (50)
1131
+ with ω the angular velocity and
1132
+ ζm = e−β(µ+mω)
1133
+ (51)
1134
+ 13
1135
+
1136
+ The case of strong degeneracy corresponds to ζm << 1. The Mellin transformation of the
1137
+ function Pm(ζ) with respect to ζ is given by
1138
+ Q(s) =
1139
+ � ∞
1140
+ 0
1141
+ dζζs−1Pm(ζ)
1142
+ =
1143
+ πT
1144
+ Lzs sin πs
1145
+
1146
+ n,q,σ
1147
+ e−sβ(Enmqσ− 1
1148
+ 2 σω)
1149
+ (52)
1150
+ for 0 < Res < 1. The last equality follows from an integration by part and the formula
1151
+ � ∞
1152
+ 0
1153
+ dx xs−1
1154
+ x + 1 =
1155
+ π
1156
+ sin πs
1157
+ (53)
1158
+ For the same reason as in the relativistic case, the contribution from m < 0 is subleading in
1159
+ the thermodynamic approximation and we focus only on the branch m ≥ 0 of the spectrum.
1160
+ We have for m ≥ 0
1161
+ FIG. 6. Contour integration [29].
1162
+ Q(s) =
1163
+ πT
1164
+ Lzs sin πs
1165
+
1166
+ q
1167
+ e− sβq2
1168
+ 2me
1169
+
1170
+ n,σ
1171
+ e−(n+ 1
1172
+ 2)sβωB− 1
1173
+ 2 σsβ(ωB−ω)
1174
+ =
1175
+ πT
1176
+ λs3/2 sin πs
1177
+ cosh 1
1178
+ 2sβ(ωB − ω)
1179
+ sinh 1
1180
+ 2sβωB
1181
+ (54)
1182
+ where λ =
1183
+
1184
+ 2π/(mT) is the thermal wavelength. It follows from the Mellin inversion formula
1185
+ that
1186
+ Pm(ζ) =
1187
+ � c+i∞
1188
+ c−i∞
1189
+ ds
1190
+ 2πiζ−sQ(s)
1191
+ (55)
1192
+ with 0 < c < 1. The integrand on the complex s-plane consists of a branch cut running along
1193
+ the negative real axis, poles along both real and imaginary axes, i.e.
1194
+ s = l
1195
+ s = 2lπT
1196
+ ωB
1197
+ i
1198
+ (56)
1199
+ 14
1200
+
1201
+ Im s
1202
+ 21元T
1203
+ wB
1204
+ Re swith l = 0, ±1, ±2, .... Closing the contour from the left as shown in Fig.6 for ζ < 1, we find
1205
+ Pm(ζ) = Im(ζ) + IIm(ζ)
1206
+ (57)
1207
+ where Im is the integral around the branch cut and IIm stems from the poles along the imaginary
1208
+ axis. The former contributes to the Landau diamagnetism and Pauli paramagnetism along with
1209
+ the Barnett effect and the latter gives rise to dHvA oscillation. Summing up the residues of
1210
+ the poles within the contour, we end up with
1211
+ IIm(ζm) = 2T
1212
+ λ
1213
+ � ωB
1214
+ 2πT
1215
+
1216
+
1217
+ l=1
1218
+ 1
1219
+ l3/2csch2lπ2T
1220
+ ωB
1221
+ cos lπω
1222
+ ωB
1223
+ cos
1224
+ �2lπ(µ + mω)
1225
+ ωB
1226
+ − π
1227
+ 4
1228
+
1229
+ (58)
1230
+ Summing up the orbital angular momentum, we obtain that
1231
+ PdHvA =
1232
+ 1
1233
+ πR2
1234
+ mc
1235
+
1236
+ m=0
1237
+ IIm
1238
+ = −T(meωB)1/2
1239
+ π2R2
1240
+
1241
+
1242
+ l=1
1243
+ cos lπω
1244
+ ωB
1245
+ sin
1246
+
1247
+ 2lπµ
1248
+ ωB − lπω
1249
+ ωB − π
1250
+ 4
1251
+
1252
+ − sin
1253
+
1254
+ 2lπµ
1255
+ ωB + lπω
1256
+ ωB − π
1257
+ 4 + 2lπmcω
1258
+ ωB
1259
+
1260
+ l3/2 sinh 2lπ2T
1261
+ ωB sin lπω
1262
+ ωB
1263
+ (59)
1264
+ Without rotation, ω = 0, the well-known dHvA formula
1265
+ PdHvA|ω=0 = −T(meωB)3/2
1266
+ 2π2
1267
+
1268
+
1269
+ l=1
1270
+ 1
1271
+ l3/2csch2lπ2T
1272
+ ωB
1273
+ cos
1274
+ �2lπµ
1275
+ ωB
1276
+ − π
1277
+ 4
1278
+
1279
+ (60)
1280
+ emerges. At zero temperature, eq. (59) becomes
1281
+ PdHvA|T=0 = −(meωB)3/2
1282
+ 4π4meR2
1283
+
1284
+
1285
+ l=1
1286
+ cos lπω
1287
+ ωB
1288
+ sin
1289
+
1290
+ 2lπµ
1291
+ ωB + lπω
1292
+ ωB − π
1293
+ 4 + lπmeωR2�
1294
+ − sin
1295
+
1296
+ 2lπµ
1297
+ ωB − lπω
1298
+ ωB − π
1299
+ 4
1300
+
1301
+ l5/2 sin lπω
1302
+ ωB
1303
+ ≃ − (meωB)5/2
1304
+ 4π5m2
1305
+ eωR2
1306
+
1307
+
1308
+ l=1
1309
+ 1
1310
+ l7/2
1311
+
1312
+ sin
1313
+ �2lπµ
1314
+ ωB
1315
+ − π
1316
+ 4 + 2lπmcω
1317
+ ωB
1318
+
1319
+ − sin
1320
+ �2lπµ
1321
+ ωB
1322
+ − π
1323
+ 4
1324
+ ��
1325
+ (61)
1326
+ where the approximation ω << ωB is made for the typical parameters in condensed matter
1327
+ physics. This expression is to be compared with the zero temperature limit of (62), i.e.
1328
+ PdHvA|ω=0 = −(meωB)5/2
1329
+ 4π4
1330
+
1331
+
1332
+ l=1
1333
+ 1
1334
+ l5/2 cos
1335
+ �2lπµ
1336
+ ωB
1337
+ − π
1338
+ 4
1339
+
1340
+ .
1341
+ (62)
1342
+ At this point, it is interesting to compare the non-relativistic dHvA and the ultra-relativistic
1343
+ dHvA. As shown in eq.(46), given q and σ, the non-relativistic Landau levels (m>0) are
1344
+ equally spaced while the spacing between successive ultra-relativistic Landau levels in the upper
1345
+ equation of (8) decreases with the label n. Since the dHvA is sensitive to the energy levels
1346
+ around the chemical potential µ, the amplitude of the oscillation is expected to be independent
1347
+ 15
1348
+
1349
+ of µ in the non-relativistic case but decreases with µ in the ultra-relativistic case as reflected
1350
+ in the large µ suppression by sinh 2lπ2Tµ
1351
+ eB
1352
+ of (36) in the latter case. When rotation is turned
1353
+ on, the effective chemical potential increases with the angular momentum quantum number.
1354
+ Consequently, the non-relativistic dHvA appears less vulnerable than the ultra-relativistic one.
1355
+ B.
1356
+ Numerical Estimates
1357
+ The electron gas in a good metal at room temperature, T ∼ 1/40eV can be well approximated
1358
+ by a free Fermi in the strong degeneracy limit. The chemical potential is of 1 ∼ 10eV, which
1359
+ makes µ/T ∼ 40 ∼ 400 >> 1 and the zero temperature approximation works well. For a
1360
+ magnetic field up to few Tesla’s and an angular velocity is Hz, we have
1361
+ ω/ωB ≃ 5.57 × 10−12 ω(Hz)
1362
+ B(Tesla)
1363
+ (63)
1364
+ justifying the approximation made in the (61) for mechanical rotation achievable in laboratory.
1365
+ The same condition also makes the contribution of the uncertainty in the angular momentum
1366
+ cutoff mc to the phase of the oscillation in (59) and (61) negligible. The dHvA oscillation is
1367
+ expected to be significantly reduced when the largest rotation energy mcω within a Landau
1368
+ level exceeds the spacing between successive levels, ωB. With R in cm, the linear velocity of
1369
+ the corcumference v = ωR in terms of cm/s, it follows from (48) that
1370
+ mcω
1371
+ ωB
1372
+ ≃ 0.43Rv,
1373
+ (64)
1374
+ independent of the magnetic field.
1375
+ ω = 0
1376
+ 1.00000
1377
+ 1.00002
1378
+ 1.00004
1379
+ 1.00006
1380
+ 1.00008
1381
+ 1.00010
1382
+ -0.0004
1383
+ -0.0003
1384
+ -0.0002
1385
+ -0.0001
1386
+ 0.0000
1387
+ 0.0001
1388
+ 0.0002
1389
+ B(T)
1390
+ PdHvA
1391
+ μ = 7 eV
1392
+ μ = 5 eV
1393
+ μ = 3 eV
1394
+ μ = 1 eV
1395
+ FIG. 7. The oscillatory term of non-relativistic pressure P1 as a function of magnetic field B when
1396
+ T = 0 and ω = 0.
1397
+ 16
1398
+
1399
+ ωR = 2 cm/s
1400
+ 1.00000
1401
+ 1.00002
1402
+ 1.00004
1403
+ 1.00006
1404
+ 1.00008
1405
+ 1.00010
1406
+ -0.00010
1407
+ -0.00005
1408
+ 0.00000
1409
+ 0.00005
1410
+ B(T)
1411
+ PdHvA
1412
+ R = 1 cm
1413
+ μ = 7 eV
1414
+ μ = 5 eV
1415
+ μ = 3 eV
1416
+ μ = 1 eV
1417
+ FIG. 8. The oscillatory term of non-relativistic pressure P1 as a function of magnetic field B when
1418
+ T = 0. Here, we fix ωR = 2cm/s and R = 1 cm .
1419
+ μ = 5 eV
1420
+ 1.00000
1421
+ 1.00002
1422
+ 1.00004
1423
+ 1.00006
1424
+ 1.00008
1425
+ 1.00010
1426
+ -0.0003
1427
+ -0.0002
1428
+ -0.0001
1429
+ 0.0000
1430
+ 0.0001
1431
+ 0.0002
1432
+ B(T)
1433
+ PdHvA
1434
+ R = 1 cm
1435
+ ωR = 6 cm/s
1436
+ ωR= 4 cm/s
1437
+ ωR = 2 cm/s
1438
+ ωR = 0
1439
+ FIG. 9. The oscillatory term of non-relativistic pressure P1 as a function of magnetic field B when
1440
+ T = 0. Here, we fix the chemical potential µ = 5eV and the radius is R = 1cm.
1441
+ The dHvA term of the thermodynamic pressure of a strongly degenerate electron gas versus
1442
+ magnetic field for a long cylinder of radius R = 1cm at T = 0 is plotted in Fig. 7, Fig. 8 and
1443
+ Fig. 9. The magnetic field varies in a small neighborhood of 1T and the angular velocity is taken
1444
+ such that RHS of (64) is of order one. The dHvA effect without rotation, eq.(62), for different
1445
+ chemical potentials is shown in Fig. 7 sas benchmark. The parallel setup for ωR = 2cm/s,
1446
+ eq.(61), is shown in Fig. 8 with similar profiles. More important is Fig. 9 where dHvA at
1447
+ different ωR is displayed and the suppression of the oscillation by rotation is evident.
1448
+ IV.
1449
+ CONCLUDING REMARKS
1450
+ Let us recaptulate what we presented in preceding sections. We examined the robustness
1451
+ of the de Haas-van Alphen effect in a strongly degenerate Fermi gas under rotation.
1452
+ We
1453
+ 17
1454
+
1455
+ derived the formula for dHvA oscillation in an long cylinder rotating about its axis in the
1456
+ ultra-relativistic limit and non-relativistic limit. As the macroscopic degeneracy of Landau
1457
+ levels is offset by rotation energy of states of different angular momentum within each Landau
1458
+ level. The amplitude of the scillation is reduced. The amount of reduction depends on the
1459
+ angular velocity ω and the radius of the cylinder R and the oscillation is expected to become
1460
+ insignificant for sufficiently large ω and R. The ultra-relativistic dHvA appear more vulnerable
1461
+ than the non-relativistic one because of decreasing Landau level spacing with energy.
1462
+ Applying the ultra-relativistic formula to estimate dHvA with typical parameters of a
1463
+ neutron star, and with typical parameters of a cold and dense QGP droplet, we noted that
1464
+ the dHvA oscillation is completely suppressed in the former case and remains in the latter.
1465
+ The non-relativistic formula, on the other hand showed that for a typical electron gas in a
1466
+ good metal, the variation of dHvA oscillation with angular velocity appears detectable, via
1467
+ magnetization and/or magnetic susceptibility.
1468
+ As self-criticism, our approximation of the finite size effect by introducing the maximum
1469
+ angular momentum within a Landau level in (18) and (48) may be crude. Limited by the
1470
+ analytical tractability, the cylindrical shape of the system is not suitable to model a neutron
1471
+ star or a QGP droplet. Though the effect is expected to remain for a Fermi liquid, the strong
1472
+ correlation in quark matter may modify significantly the quantitative prediction. In this sense,
1473
+ our result is very preliminary.
1474
+ ACKNOWLEDGMENTS
1475
+ We thank Ren-Hong Fang for fruitful discussions. This work is supported by the National
1476
+ Key Research and Development Program of China (No. 2022YFA1604900). This work also
1477
+ is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos.
1478
+ 11735007, 11890711, 11890710, 12275104.
1479
+ Appendix A: Appendix
1480
+ For µ >> T, eq.(55) can be approximated as
1481
+ IIlM ≃
1482
+ 1
1483
+ 2iπ2l
1484
+
1485
+ eB
1486
+
1487
+ � µM
1488
+ 0
1489
+ dqe−i lπ
1490
+ eB q2φ
1491
+ ��
1492
+
1493
+ eB q
1494
+
1495
+ =
1496
+ eB
1497
+ 2iπ3l2J
1498
+ (A1)
1499
+ 18
1500
+
1501
+ where
1502
+ J =
1503
+ � K
1504
+ 0
1505
+ dxe−ix2φ(x) =
1506
+ � K
1507
+ 0
1508
+ dxe−ix2 � ∞
1509
+ x
1510
+ dξeiξ2
1511
+ (A2)
1512
+ with K =
1513
+
1514
+
1515
+ eBµM. Introducing ξ = xt, we find
1516
+ J =
1517
+ � K
1518
+ 0
1519
+ dxe−ix2x
1520
+ � ∞
1521
+ 1
1522
+ dteit2x2 = 1
1523
+ 2i
1524
+ � ∞
1525
+ 1
1526
+ dteiK2(t2−1) − 1
1527
+ t2 − 1
1528
+ = −1
1529
+ 2K2
1530
+ � ∞
1531
+ 1
1532
+ dteiK2(t2−1)t ln t − 1
1533
+ t + 1
1534
+ (A3)
1535
+ where the last equality follows from an integration by part. Introducing z = t2 − 1, we have
1536
+ J = −1
1537
+ 4K2
1538
+ � ∞
1539
+ 0
1540
+ dzeiK2z ln
1541
+ √z + 1 − 1
1542
+ √z + 1 + 1
1543
+ (A4)
1544
+ If follows from the Jordan lemma that integration path can be rotated to the imaginary axis
1545
+ on the z− plane and we end up with
1546
+ J = − i
1547
+ 4K2
1548
+ � ∞
1549
+ 0
1550
+ dye−K2y ln
1551
+ √1 + iy − 1
1552
+ √1 + iy + 1
1553
+ (A5)
1554
+ For K >> 1, we have
1555
+ J ≃ − i
1556
+ 4K2
1557
+ � ∞
1558
+ 0
1559
+ dye−K2y ln iy
1560
+ 4 = i
1561
+ 2
1562
+
1563
+ ln(2K) + 1
1564
+ 2γE
1565
+
1566
+ + π
1567
+ 8
1568
+ (A6)
1569
+ This gives rise to RHS of (A1).
1570
+ [1] L. Adamczyk et al. Global Λ hyperon polarization in nuclear collisions: evidence for the most
1571
+ vortical fluid. Nature, 548:62–65, 2017.
1572
+ [2] B. I. Abelev et al. Global polarization measurement in Au+Au collisions. Phys. Rev. C, 76:024915,
1573
+ 2007. [Erratum: Phys.Rev.C 95, 039906 (2017)].
1574
+ [3] Jaroslav Adam et al. Global polarization of Λ hyperons in Au+Au collisions at √sNN = 200 GeV.
1575
+ Phys. Rev. C, 98:014910, 2018.
1576
+ [4] Jaroslav Adam et al. Polarization of Λ (¯Λ) hyperons along the beam direction in Au+Au collisions
1577
+ at √sNN = 200 GeV. Phys. Rev. Lett., 123(13):132301, 2019.
1578
+ [5] Jaroslav Adam et al. Measurement of inclusive J/ψ polarization in p + p collisions at √s =200
1579
+ GeV by the STAR experiment. Phys. Rev. D, 102(9):092009, 2020.
1580
+ [6] J. Adam et al. Global Polarization of Ξ and Ω Hyperons in Au+Au Collisions at √sNN = 200
1581
+ GeV. Phys. Rev. Lett., 126(16):162301, 2021.
1582
+ 19
1583
+
1584
+ [7] M. S. Abdallah et al. Global Λ-hyperon polarization in Au+Au collisions at √sNN=3 GeV. Phys.
1585
+ Rev. C, 104(6):L061901, 2021.
1586
+ [8] M. S. Abdallah et al. Search for the Chiral Magnetic Effect via Charge-Dependent Azimuthal
1587
+ Correlations Relative to Spectator and Participant Planes in Au+Au Collisions at √sNN =
1588
+ 200 GeV. Phys. Rev. Lett., 128(9):092301, 2022.
1589
+ [9] M. S. Abdallah et al.
1590
+ Pair invariant mass to isolate background in the search for the chiral
1591
+ magnetic effect in Au + Au collisions at √sNN=200 GeV. Phys. Rev. C, 106(3):034908, 2022.
1592
+ [10] Mohamed Abdallah et al. Search for the chiral magnetic effect with isobar collisions at √sNN=200
1593
+ GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider.
1594
+ Phys. Rev. C,
1595
+ 105(1):014901, 2022.
1596
+ [11] Francesco Becattini, Jinfeng Liao, and Michael Lisa. Strongly Interacting Matter Under Rotation:
1597
+ An Introduction. Lect. Notes Phys., 987:1–14, 2021.
1598
+ [12] Hao-Lei Chen, Kenji Fukushima, Xu-Guang Huang, and Kazuya Mameda.
1599
+ Analogy between
1600
+ rotation and density for Dirac fermions in a magnetic field. Phys. Rev. D, 93(10):104052, 2016.
1601
+ [13] Kenji Fukushima, Takuya Shimazaki, and Lingxiao Wang. Mode decomposed chiral magnetic
1602
+ effect and rotating fermions. Phys. Rev. D, 102(1):014045, 2020.
1603
+ [14] Koichi Hattori and Yi Yin. Charge redistribution from anomalous magnetovorticity coupling.
1604
+ Phys. Rev. Lett., 117:152002, Oct 2016.
1605
+ [15] Yizhuang Liu and Ismail Zahed. Rotating Dirac fermions in a magnetic field in 1+2 and 1+3
1606
+ dimensions. Phys. Rev. D, 98(1):014017, 2018.
1607
+ [16] Emil Mottola and Andrey V. Sadofyev.
1608
+ Chiral Waves on the Fermi-Dirac Sea:
1609
+ Quantum
1610
+ Superfluidity and the Axial Anomaly. Nucl. Phys. B, 966:115385, 2021.
1611
+ [17] R. Gonzalez Felipe, A. Perez Martinez, H. Perez Rojas, and M. Orsaria. Magnetized strange
1612
+ quark matter and magnetized strange quark stars. Phys. Rev. C, 77:015807, 2008.
1613
+ [18] Chinatsu Watanabe, Naotaka Yoshinaga, and Shuichiro Ebata. Equations of State for Hadronic
1614
+ Matter and Mass-Radius Relations of Neutron Stars with Strong Magnetic Fields.
1615
+ Universe,
1616
+ 8(1):48, 2022.
1617
+ [19] Pétri Jérôme. Particle acceleration and radiation reaction in a strongly magnetised rotating dipole.
1618
+ Astron. Astrophys., 666:A5, 2022.
1619
+ [20] Debarati Chatterjee, Jérôme Novak, and Micaela Oertel. Structure of ultra-magnetised neutron
1620
+ stars. Eur. Phys. J. A, 57(8):249, 2021.
1621
+ [21] A Einstein and W de Haas. Verh. d. deutsch. Phys. Ges, 17:152, 1915.
1622
+ 20
1623
+
1624
+ [22] Samuel J Barnett. Gyromagnetic and electron-inertia effects. Reviews of Modern Physics, 7(2):129,
1625
+ 1935.
1626
+ [23] Samapan Bhadury, Wojciech Florkowski, Amaresh Jaiswal, Avdhesh Kumar, and Radoslaw
1627
+ Ryblewski. Relativistic Spin Magnetohydrodynamics. Phys. Rev. Lett., 129(19):192301, 2022.
1628
+ [24] Y. ¯Onuki.
1629
+ Magnetic systems: De haas–van alphen studies of fermi surface.
1630
+ In K.H. Jürgen
1631
+ Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash
1632
+ Mahajan, and Patrick Veyssière, editors, Encyclopedia of Materials: Science and Technology,
1633
+ pages 4964–4968. Elsevier, Oxford, 2001.
1634
+ [25] W. Z. Jiang and N. Van Giai. Magnetic susceptibility oscillation in neutron stars with the hadron-
1635
+ quark transition. AIP Conf. Proc., 865(1):256–261, 2006.
1636
+ [26] Daniel Cangemi and Gerald V. Dunne. Temperature expansions for magnetic systems. Annals
1637
+ Phys., 249:582–602, 1996.
1638
+ [27] Cheng Zhang, Ren-Hong Fang, Jian-Hua Gao, and De-Fu Hou. Thermodynamics of chiral fermion
1639
+ system in a uniform magnetic field. Phys. Rev. D, 102(5):056004, 2020.
1640
+ [28] Ren-Hong Fang. Thermodynamics for a Rotating Chiral Fermion System in the Uniform Magnetic
1641
+ Field. Symmetry, 14(6):1106, 2022.
1642
+ [29] Huanwu Peng and Xishen Xu. Fundamentals of Theoretical Physics. Peking University Press,
1643
+ 1998.
1644
+ 21
1645
+
8NE1T4oBgHgl3EQfBwLj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE2T4oBgHgl3EQflQeg/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74ab3b2bb647124d9dbfd84bb1a22984925e19554d4be7ba57029b99f7c33e6a
3
+ size 5177389
8dE4T4oBgHgl3EQf2w3D/content/tmp_files/2301.05301v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
8dE4T4oBgHgl3EQf2w3D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tFST4oBgHgl3EQfbTje/content/2301.13799v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:644d141d5b3acd5c2852ea64358bf39a0eee085f65bc0741345df20296ae3d39
3
+ size 2718188
9tFST4oBgHgl3EQfbTje/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a94d68383bdbd8509ec52b2a6d372735d54f0c66130f6f6f7fee1074c8aaa777
3
+ size 359326
ANE3T4oBgHgl3EQfsQvt/content/2301.04667v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6cc4617012e3211e49d27f4e261ba079f22bbf77e1d461cd8328900efd3436d
3
+ size 982606
ANE3T4oBgHgl3EQfsQvt/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:914baa87c8adaec3aad4a441588575a154850734047a622a949fc0dbe172c34f
3
+ size 178201
B9AzT4oBgHgl3EQfTfz1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9080ac2ce98f53aaf04ac9992d68389a761049a14a3ebf70935c23d7603eb6bd
3
+ size 6553645
B9FJT4oBgHgl3EQfsy1U/content/tmp_files/2301.11614v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9FJT4oBgHgl3EQfsy1U/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtAyT4oBgHgl3EQf4PqZ/content/tmp_files/2301.00783v1.pdf.txt ADDED
@@ -0,0 +1,2003 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Information content of note transitions in the music of J. S. Bach
2
+ Suman Kulkarni,1 Sophia U. David,2, 3 Christopher W. Lynn,4, 5 and Dani S. Bassett1, 2, 6, 7, 8, 9, ∗
3
+ 1Department of Physics & Astronomy, College of Arts & Sciences,
4
+ University of Pennsylvania, Philadelphia, PA 19104, USA
5
+ 2Department of Bioengineering, School of Engineering & Applied Science,
6
+ University of Pennsylvania, Philadelphia, PA 19104, USA
7
+ 3Department of Psychology, Yale University, New Haven, CT 06520, USA
8
+ 4Initiative for the Theoretical Sciences, Graduate Center,
9
+ City University of New York, New York, NY 10016, USA
10
+ 5Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
11
+ 6Department of Electrical & Systems Engineering, School of Engineering & Applied Science,
12
+ University of Pennsylvania, Philadelphia, PA 19104, USA
13
+ 7Department of Neurology, Perelman School of Medicine,
14
+ University of Pennsylvania, Philadelphia, PA 19104, USA
15
+ 8Department of Psychiatry, Perelman School of Medicine,
16
+ University of Pennsylvania, Philadelphia, PA 19104, USA
17
+ 9Santa Fe Institute, Santa Fe, NM 87501, USA
18
+ (Dated: January 3, 2023)
19
+ Music has a complex structure that expresses emotion and conveys information. Humans process
20
+ that information through imperfect cognitive instruments that produce a gestalt, smeared version of
21
+ reality. What is the information that humans see? And how does their perception relate to (and dif-
22
+ fer from) reality? To address these questions quantitatively, we analyze J. S. Bach’s music through
23
+ the lens of network science and information theory. Regarded as one of the greatest composers in
24
+ the Western music tradition, Bach’s work is highly mathematically structured and spans a wide
25
+ range of compositional forms, such as fugues and choral pieces. Conceptualizing each composition
26
+ as a network of note transitions, we quantify the information contained in each piece and find that
27
+ different kinds of compositions can be grouped together according to their information content.
28
+ Moreover, we find that Bach’s music is structured for efficient communication; that is, it commu-
29
+ nicates large amounts of information while maintaining small deviations of the inferred network
30
+ from reality. We probe the network structures that enable this rapid and efficient communication of
31
+ information—namely, high heterogeneity and strong clustering. Taken together, our findings shed
32
+ new light on the information and network properties of Bach’s compositions. More generally, we
33
+ gain insight into features that make networks of information effective for communication.
34
+ I.
35
+ INTRODUCTION
36
+ From Tibetan throat singing to Scottish piobaireachd
37
+ to modern hip hop, music is a universal aspect of human
38
+ culture, enjoyed by people of all ages from all around the
39
+ world. It has even been proposed that music is a funda-
40
+ mental part of being human [1]. The earliest confirmed
41
+ musical instruments are nearly 40,000 years old, and evi-
42
+ dence suggests that vocal music began much earlier [2, 3].
43
+ While it is a point of controversy, some scientists believe
44
+ that communication through music arose even before lan-
45
+ guage [1, 4, 5]. Though styles, sounds, and instruments
46
+ vary drastically from one culture and time period to an-
47
+ other, it is indisputable that music has had a substantial
48
+ impact on the development of humans and society [6, 7].
49
+ Making and listening to music is more than just a recre-
50
+ ational activity. Music is a medium of communication.
51
+ Through music we can tell stories [8], convey messages
52
+ [9], and imbue the strongest of emotions [10–12]. It is
53
+ ∗ To
54
+ whom
55
+ correspondence
56
+ should
57
+ be
58
+ addressed.;
59
60
+ a common human experience to feel pensive or despon-
61
+ dent after hearing a slow song in a minor key or to feel
62
+ carefree or energized after hearing an upbeat song in a
63
+ major key. But how does something as abstract as mu-
64
+ sic communicate so much? Past literature has discussed
65
+ music in terms of expectation and surprise [13, 14]. In or-
66
+ der to be evolutionarily successful, our brains are adept
67
+ at forming expectations based on prior events.
68
+ When
69
+ these expectations are contradicted by an experience, we
70
+ feel surprised. With surprise can come a host of other
71
+ emotions. We may feel relief when the dissonant sound
72
+ we expected was actually consonant, or we may feel dis-
73
+ tress when the musical resolution we expected did not
74
+ occur [15]. But how do we quantify these expectations
75
+ and surprises? How do we mathematically formalize the
76
+ communicative success of a piece of music? Fundamen-
77
+ tally, music is comprised of fleeting and elusive sounds,
78
+ and hence may appear hard to measure. Even written
79
+ on a page, the jumble of notes, rests, dynamic markings,
80
+ and multilingual commands is daunting to describe with
81
+ mathematical rigor.
82
+ Here, we seek to extract order from music’s complexity
83
+ by examining music through the lens of network science.
84
+ A network consists of nodes and edges—representing en-
85
+ arXiv:2301.00783v1 [physics.soc-ph] 2 Jan 2023
86
+
87
+ 2
88
+ tities and the connections between them, respectively.
89
+ Conceptualizing each note as a node and each transition
90
+ between two notes as an edge, we can build a network for
91
+ any piece of music. Using music networks, we provide a
92
+ comprehensive analysis of Bach’s compositions. Bach is
93
+ a natural case study given his prolific career, the wide
94
+ appreciation his compositions have garnered, and the in-
95
+ fluence he had over contemporaneous and subsequent
96
+ composers. His diverse compositions (from chorales to
97
+ fugues) for a wide range of musicians (from singers to
98
+ orchestra members) often share a fundamental underly-
99
+ ing structure of repeated—and almost mathematical—
100
+ musical themes and motifs.
101
+ These features of Bach’s
102
+ compositions make them particularly interesting to study
103
+ using a mathematical framework.
104
+ As we listen to music, we form expectations.
105
+ Upon
106
+ hearing a particular note, we anticipate which notes
107
+ might come next based on past transitions.
108
+ The less
109
+ likely the outcome, the more surprised we are upon hear-
110
+ ing it. This “suprisal” can be quantified by the Shan-
111
+ non information entropy [16].
112
+ Ideas from information
113
+ theory have led to illuminating insights in a wide range
114
+ of settings, including language [17, 18], social networks
115
+ [19, 20], transportation patterns [21] and music [22, 23].
116
+ We draw upon these ideas to shed light on the features of
117
+ Bach’s music that make it successful in communicating
118
+ information to the human mind. Prior research has at-
119
+ tempted to quantitatively identify patterns and features
120
+ that might be present across different kinds of music [24–
121
+ 27]. However, understanding how humans perceive these
122
+ patterns is more nuanced and complex than simply eval-
123
+ uating the structure of compositions because humans are
124
+ not perfect learners. Rather, humans assimilate patterns
125
+ of information presented to them through imperfect per-
126
+ ceptual systems, sacrificing the accuracy of their internal
127
+ representation to conserve computational energy [28–30].
128
+ This trade-off between the accuracy of the inferred transi-
129
+ tion structure and the computational cost involved in its
130
+ formation results in a slightly distorted version of tran-
131
+ sition networks. The “learned” version of a network can
132
+ be calculated using previous models of human percep-
133
+ tion [31, 32].
134
+ Networks for which the inferred version
135
+ maintains a low deviation from the true network can be
136
+ considered efficient in communicating information. This
137
+ framework thus provides insight into the communicative
138
+ success of a network, from the point of view of how the
139
+ network interacts with our imperfect perceptual systems.
140
+ In this work, we apply information theory to note tran-
141
+ sition networks constructed from Bach’s musical compo-
142
+ sitions. We seek to quantify the amount of information in
143
+ these networks and understand what patterns or features
144
+ allow these networks to successfully hold and accurately
145
+ convey information. We begin by studying the informa-
146
+ tion entropy of each piece.
147
+ Here, we find that Bach’s
148
+ music contains more information than expected from typ-
149
+ ical (or random) transition structures. Strikingly, certain
150
+ composition forms are clustered together based on their
151
+ information content. We hypothesize that the higher in-
152
+ formation content in Bach’s music and the differences
153
+ observed across musical pieces can be explained by the
154
+ heterogeneity in node degrees (or the number of distinct
155
+ pitches that follow a given note). Next, to determine how
156
+ accurately the transition structure of a composition can
157
+ be inferred by a human observer, we use a free energy
158
+ model of how humans perceive networks of information.
159
+ We hypothesize that Bach’s music networks maintain a
160
+ low deviation between the learned and original network,
161
+ and this property is driven by tight clustering in the net-
162
+ work. Additionally, we find that certain compositional
163
+ forms can be distinguished based on the discrepancies
164
+ between the original and the inferred network. Our find-
165
+ ings illuminate how these music networks are structured
166
+ to convey large amounts of information rapidly and accu-
167
+ rately, thereby supporting successful communication. By
168
+ performing this systematic study of how the information
169
+ in a complex system, like music, is structured and per-
170
+ ceived by humans, our work provides a new perspective
171
+ on how humans experience the world around them.
172
+ II.
173
+ MUSIC AS A NETWORK OF NOTE
174
+ TRANSITIONS
175
+ We study a wide range of Bach’s compositions in-
176
+ cluding: preludes, fugues, inventions, cantatas, English
177
+ suites, French suites, chorales, Brandenburg concertos,
178
+ toccatas, and concertos (see Materials and Methods sec-
179
+ tion A 1 for further details).
180
+ The audio files for these
181
+ pieces were collected and read in MIDI format, from
182
+ which the sequence of notes was extracted. Each note
183
+ present in a piece is represented as a node in the network,
184
+ with notes from different octaves represented as distinct
185
+ nodes. The transitions between notes are calculated sep-
186
+ arately for different instruments. If there is a transition
187
+ from note i to note j, then we draw a directed edge from
188
+ node i to node j (see Fig. 1A). For chords, where multiple
189
+ notes occur at the same time, edges are drawn between
190
+ all notes in the first chord to all notes in the second chord.
191
+ To simplify our analysis, we remove any self loops in the
192
+ network, thereby restricting ourselves to understanding
193
+ the structure of transitions to the next different note in
194
+ the piece. We begin by examining unweighted networks
195
+ of note transitions to focus on how the network structure
196
+ alone impacts the information content and perception of
197
+ a musical piece. After understanding the skeleton of the
198
+ transitions, we then add weights to the edges based on
199
+ how frequently various transitions occur. This procedure
200
+ allows us to disentangle the effects of the network struc-
201
+ ture (comprising the set of possible note transitions) and
202
+ edge weights (comprising the note transition probabili-
203
+ ties).
204
+ III.
205
+ QUANTIFYING THE INFORMATION IN
206
+ NETWORKS
207
+ We seek to measure the amount of information pro-
208
+ duced by a sequence of notes. Although note sequences
209
+
210
+ 3
211
+ F
212
+ D
213
+ G
214
+ D
215
+ B
216
+ C
217
+ A
218
+ B
219
+ G
220
+ E
221
+ G
222
+ E
223
+ G
224
+ E
225
+ C
226
+ G
227
+ A
228
+ B
229
+ E
230
+ G'
231
+ D
232
+ F
233
+ E'
234
+ C
235
+ G
236
+ A
237
+ B
238
+ E
239
+ G'
240
+ D
241
+ F
242
+ E'
243
+ B
244
+ A
245
+ E
246
+ D
247
+ G'
248
+ E'
249
+ Model information production using random walks
250
+ (iii) Network Entropy:
251
+ (ii) Node-level Entropy:
252
+ Model human perception using free energy principle
253
+ C
254
+ G
255
+ A
256
+ B
257
+ E
258
+ G'
259
+ D
260
+ F
261
+ E'
262
+ B.
263
+ C.
264
+ A
265
+ High
266
+ Low
267
+ Original Network
268
+ Inferred Network
269
+ Low
270
+ High
271
+ (i)
272
+ FIG. 1. By treating music as a network of note transitions, we build a model for how information is produced
273
+ and the network is perceived by humans. (A) An example of a network constructed from a musical piece using the
274
+ method described in our paper. At the top, we show a toy musical piece. Below, we show the network in which notes are nodes
275
+ and transitions between notes, whether isolated or played simultaneously as part of a chord, are directed edges. The direction
276
+ of the edge matches the temporal direction of the transition. (B) The model of information production using random walks. (i)
277
+ An example of a random walk on the network of note transitions is shown using the blue dotted line. At each node, the walker
278
+ chooses an outgoing edge to traverse, each weighted with equal probability. This walk generates a sequence of notes as shown
279
+ below. (ii) The amount of information, or the entropy, generated when a walker traverses an edge from a node depends on the
280
+ number of edges emanating from the node (called the degree of the node). When traversing nodes with a high versus low degree,
281
+ the walker has more choices for which edge to pick and hence, such a transition generates more information. Thus, nodes with
282
+ a higher degree (right) are said to have higher entropy than nodes with a low degree (left). (iii) To calculate the entropy of the
283
+ entire network, one needs to weigh the contribution of each node by the probability that a walker will occupy it. For networks
284
+ with the same average degree, those with a wider range of degrees (right) have a higher entropy than those with a narrower
285
+ range of degrees (left). (C) The model for how humans form internal estimates of the network. Humans perceive sequences of
286
+ information presented to them through imperfect perceptual systems, which results in an imperfect internal representation of
287
+ the network (left). This inexact inferred version of the network contains extra edges due to biases that stem from imperfect
288
+ perception. The color bar indicates the weight assigned to an edge. Based on models for this fuzzy perception, humans are
289
+ most likely to jumble up transitive relationships, as shown on the right. Therefore, networks with a large number of these
290
+ triangular clusters are resilient to the inaccuracies in human perception and are easier to learn.
291
+ can have long-range temporal dependencies [33, 34], as a
292
+ first analytical step, we focus on the Markov transition
293
+ structure. That is, we study the information contained
294
+ in individual note transitions. This information is quan-
295
+ tified by the Shannon entropy of a random walk on the
296
+ network [16, 35] (Fig.
297
+ 1B; see also the Materials and
298
+ Methods section A 2 for further details). Given a net-
299
+ work of transitions, the contribution of the ith node to
300
+ the entropy can be written in terms of the entries of the
301
+ transition probability matrix P as:
302
+ Si = −
303
+
304
+ j
305
+ Pij log Pij.
306
+ (1)
307
+ In the case of directed unweighted networks, Pij
308
+ =
309
+ 1/kout
310
+ i
311
+ , where kout
312
+ i
313
+ is the out-degree of the node. Hence,
314
+ for unweighted networks, the node-level entropy is Si =
315
+ log (kout
316
+ i
317
+ ), which is solely determined by the out-degree.
318
+ To calculate the entropy of the entire network, the con-
319
+ tributions of the nodes are weighted by their stationary
320
+ distribution—the probability that a walker ends up at
321
+ node i after infinite time—which we denote by πi. The
322
+ entropy of the network is then [35]:
323
+ S =
324
+
325
+ i
326
+ πiSi = −
327
+
328
+ i
329
+ πi
330
+
331
+ j
332
+ Pij log Pij.
333
+ (2)
334
+ For undirected and unweighted networks, the stationary
335
+ distribution has a simple analytical form πi = ki/2E,
336
+ where ki is the degree of node i, and E is the total number
337
+ of edges. The network entropy is then:
338
+ S = 1
339
+ 2E
340
+
341
+ i
342
+ ki log ki.
343
+ (3)
344
+ By contrast, for directed networks the stationary dis-
345
+ tribution depends on the detailed structure of the net-
346
+ work and cannot be written in closed form. Hence, for
347
+ our directed music networks, we calculate the stationary
348
+
349
+ Model information production using random walks
350
+ Node-level Entropy:
351
+ G
352
+ F
353
+ Si=
354
+ >Pii log Pit
355
+ D
356
+ D
357
+ C
358
+ B)
359
+ (B
360
+ G
361
+ Network Entropy:
362
+ E
363
+ TiPii log Pi
364
+ Model human perception using free energy principle4
365
+ A
366
+ B
367
+ C
368
+ FIG. 2. Quantifying the information of Bach’s music using the entropy of random walks on networks of note
369
+ transitions. (A) Entropy of Bach’s music networks (Sreal) compared with random networks of the same size (Srand). We report
370
+ the entropy of the corresponding random networks after averaging over 100 independent realizations. The error bars for Srand
371
+ indicate the standard error of the sample. (B) The entropy of Bach’s music networks (Sreal) compared with random networks
372
+ that preserve the in- and out-degree of each node (Sdeg). We report the entropy of the corresponding degree-preserving random
373
+ networks after averaging over 100 independent realizations. The error bars for Srand indicate the standard error of the sample.
374
+ (C) The entropy of the chorales as a function of the average in-degree heterogeneity Hin = Var(kin)/⟨kin⟩ (top) and out-degree
375
+ heterogeneity Hout = Var(kout)/⟨kout⟩ (bottom) of the networks. In panels (A) and (B), each data point represents a single
376
+ piece. Color and marker indicate the type of piece, as shown in the legend. The dashed line represents the line y = x. In panel
377
+ (C), the dotted line indicates the best linear fit, and the reported rs value is the Spearman correlation coefficient.
378
+ distribution numerically and use Eq. 2 to compute the
379
+ entropy of each piece.
380
+ To understand the amount of information produced
381
+ by the music networks, we compare them to random-
382
+ ized (or “null”) networks with equal number of nodes
383
+ and edges (see the Materials and Methods section A 5 for
384
+ details on generating null networks). If the note transi-
385
+ tions in Bach’s music do have distinct properties that al-
386
+ low them to communicate a large amount of information,
387
+ then we would expect Bach’s networks to contain more
388
+ information than random transition structures. By aver-
389
+ aging over 100 random networks for each piece, we find
390
+ that the real networks have consistently higher entropy—
391
+ thereby containing more information—than their ran-
392
+ dom counterparts (Fig.
393
+ 2A). Moreover, by comparing
394
+ across pieces, we observe that the different kinds of com-
395
+ positions cluster together based on their entropy. The
396
+ chorales, typically meant to be sung by groups in eccle-
397
+ siastical settings, have a markedly lower entropy than
398
+ the rest of the compositions studied. By contrast, the
399
+ toccatas and preludes have a much higher entropy. It is
400
+ possible that the chorales’ functions of meditation, adora-
401
+ tion, and supplication are best supported by predictabil-
402
+ ity and hence low entropy, whereas the entertainment
403
+ functions of the toccatas and preludes are best supported
404
+ by unpredictability and hence high entropy.
405
+ We know that the node-level entropy is defined only
406
+ by the out-degrees of the nodes. Accordingly, it is use-
407
+ ful to assess differences between the true networks and
408
+ others wherein the node-level entropies have been fixed
409
+ by preserving the true degree distribution. To perform
410
+ this assessment, we compare the entropy of the real net-
411
+ works with another set of null models: randomized net-
412
+ works which preserve both the in- and out-degree of each
413
+ node (see the Methods and Materials section A 5 for de-
414
+ tails on generating these networks).
415
+ We observe that
416
+ the entropies of the networks are more or less preserved
417
+ (see Fig. 2B). Although this preservation is expected for
418
+ undirected networks (where the entropy is determined
419
+ only by the degree distribution), it need not exist for di-
420
+ rected networks (where the different stationary distribu-
421
+ tions contribute to the entropy). We therefore find that
422
+ the entropy of music networks is primarily determined
423
+ by their degree distributions rather than their stationary
424
+ distributions.
425
+ Heterogeneity in degrees favors higher entropy
426
+ To gain intuition for how the entropy of note tran-
427
+ sitions depends on network structure, consider the case
428
+ of unweighted and undirected networks. The network en-
429
+ tropy takes a particularly simple form, as shown in Eq. 3.
430
+ Following a Taylor expansion around the average degree
431
+ of the network (see the Materials and Methods section
432
+ A 2), one obtains:
433
+ S = log⟨k⟩ + Var(k)
434
+ 2 ⟨k⟩2 + ...
435
+ (4)
436
+ where ⟨k⟩ is the average degree of the network and Var(k)
437
+ is the variance of the degrees. To first order, we see that
438
+
439
+ 5
440
+ the entropy increases logarithmically with the average
441
+ degree of the network. To second order, the entropy in-
442
+ creases with the variance or the heterogeneity of the de-
443
+ grees, such that more information will be produced by
444
+ networks with heterogeneous (or broader) degree distri-
445
+ butions. We define the degree heterogeneity as:
446
+ H = Var(k)
447
+ ⟨k⟩2 .
448
+ (5)
449
+ Many networks that we encounter in our daily lives are
450
+ characterized by heterogeneous degree distributions, typ-
451
+ ically with few high degree “hub” nodes and many low de-
452
+ gree nodes [36–38]. By contrast, regular graphs—which
453
+ have homogeneous degrees—produce random walks with
454
+ the least entropy.
455
+ Where does Bach’s music fall along this spectrum? We
456
+ found in Fig. 2A that Bach’s music networks have consis-
457
+ tently higher entropy than null networks with the same
458
+ number of nodes and edges (in other words, randomized
459
+ networks with the same average degree). In the Supple-
460
+ mentary Information Sec. B 4, we show that this higher
461
+ information content of Bach’s music networks is due to
462
+ higher heterogeneity in their in- and out-degree distri-
463
+ bution; that is, Bach’s music networks are more hetero-
464
+ geneous in their degrees than expected from transition
465
+ structures of their size, enabling them to pack more in-
466
+ formation into their structure. In (Fig. 2A), we also ob-
467
+ served that various pieces belonging to certain composi-
468
+ tions were clustered together in their entropy. Consistent
469
+ with this observation, we find that the pieces which are
470
+ clustered together in their entropy have very similar de-
471
+ grees (see Supplementary Information Sec. B 3). Exam-
472
+ ples include English suites, French suites, and chorales.
473
+ In contrast, fugues did not cluster together in their en-
474
+ tropy as much as other composition types and displayed
475
+ diverse average degrees. For the compositions that are
476
+ grouped together in their entropy, we find that the dif-
477
+ ferences observed among the pieces in the group can be
478
+ explained by their degree heterogeneity (see Supplemen-
479
+ tary Information Sec. B 4). We can, for example, see
480
+ this relation in the chorales where the pieces which have
481
+ a higher in- and out-degree heterogeneity tend to have a
482
+ higher entropy, despite having similar degrees (Fig. 2C).
483
+ We note that this relationship between the entropy and
484
+ degree heterogeneity holds even in our data set of di-
485
+ rected networks, likely because the in- and out-degrees
486
+ tend to be correlated.
487
+ IV.
488
+ HOW HUMANS PERCEIVE NETWORKS
489
+ OF INFORMATION
490
+ Communication systems, such as music or language,
491
+ convey information in sequences of discrete items. Hu-
492
+ mans then assimilate this information and build repre-
493
+ sentations of the underlying structure of inter-item rela-
494
+ tionships. The information that is perceived by a human
495
+ is the sum of the information present in the system and
496
+ Internal Estimates
497
+ 0
498
+ η
499
+ 0
500
+ 1
501
+ 1/4
502
+ Learned probability
503
+ Maximal accuracy
504
+ Minimal accuracy
505
+ Maximal complexity
506
+ Minimal complexity
507
+ Trade-off between accuracy and computational cost
508
+ Balanced between accuracy
509
+ and complexity
510
+ (i)
511
+ (ii)
512
+ (iii)
513
+ FIG. 3. How humans process networks of information.
514
+ Humans strike a balance between accuracy and complexity
515
+ when forming internal network models of the world. The pa-
516
+ rameter η quantifies this trade-off between accuracy and cost.
517
+ In panel (i), we see the example network built when solely
518
+ maximizing the accuracy (η → 0), which forms a perfect rep-
519
+ resentation of reality. However, building this network requires
520
+ perfect memory and is computationally expensive. In panel
521
+ (iii), we see the network built when solely minimizing the
522
+ computational cost (η → 1), in which all nodes are connected
523
+ to all other nodes, unlike the original network. Constructing
524
+ this network does not require significant cost, but it provides
525
+ no accuracy in representing the original information.
526
+ Hu-
527
+ mans tend to display intermediate values of η = 0.80 [31],
528
+ thereby constructing networks that preserve some but not all
529
+ of the true transition structure, as shown in panel (ii). Figure
530
+ adapted with permission from Ref. [32].
531
+ the inaccuracies that stem from the imperfect cognitive
532
+ processes involved in perception [31]. In the previous sec-
533
+ tion, we focused on quantifying the actual information
534
+ present in the system (see Fig. 1B). We will now account
535
+ for the second piece: the inaccuracies that arise due to
536
+ the imperfect cognitive process of perceiving information
537
+ (see Fig. 1C).
538
+ When forming an internal network representation of
539
+ the information presented to them, humans seek to max-
540
+ imize the accuracy of their internal representation while
541
+ simultaneously minimizing the computational cost in-
542
+ volved in building it [30–32, 39]. One the one hand, a
543
+ human could learn the structure with no errors, forming
544
+ a perfectly accurate network of the transitions (Fig. 3(i))
545
+ but that formation process would be computationally ex-
546
+ pensive. On the other hand, one could disregard accuracy
547
+ and have the least expensive representation (Fig. 3(iii)).
548
+ Most humans do something in between by recalling the
549
+ sequence of transitions sometimes accurately and some-
550
+ times inaccurately, thereby forming a fuzzy perception
551
+ of the true network (Fig. 3(ii)). Formally, the competi-
552
+ tion between computational complexity and accuracy can
553
+ be captured by a free energy model of people’s internal
554
+ representation [30]. The learned transition probabilities
555
+
556
+ 6
557
+ under this model can be written as follows:
558
+ ˆP = (1 − η)P(I − ηP)−1,
559
+ (6)
560
+ where η ∈ [0, 1] captures the errors in representation.
561
+ Using this model, we can compute the learned network
562
+ for each musical piece.
563
+ Prior work indicates that, on
564
+ average, humans display an η = 0.80 in large-scale online
565
+ laboratory experiments [31].
566
+ Given a network of note
567
+ transitions with transition probabilities P, we use this
568
+ empirically measured value of η = 0.8 to calculate the
569
+ average network that a human infers ˆP using Eq. 6.
570
+ V.
571
+ QUANTIFYING THE LEARNABILITY OF
572
+ NOTE TRANSITIONS
573
+ We are now prepared to investigate how a given music
574
+ network differs from the internal representation formed
575
+ by a human listener.
576
+ The closer the learned network
577
+ is to the original network, the more resilient the network
578
+ structure is to human errors in learning, and the network
579
+ is said to be more learnable. Mathematically, one can
580
+ quantify the deviations between the inferred network ( ˆP)
581
+ and the original network (P) using the Kullback-Leiber
582
+ (KL) divergence:
583
+ DKL(P|| ˆP) = −
584
+
585
+ i
586
+ πi
587
+
588
+ j
589
+ Pij log
590
+ ˆPij
591
+ Pij
592
+ ,
593
+ (7)
594
+ where πi is the stationary distribution of the original
595
+ network.
596
+ The lower the KL-divergence, the closer the
597
+ learned transition structure is to the original transition
598
+ structure, and hence the more learnable the network.
599
+ Do Bach’s musical compositions possess distinct features
600
+ that facilitate human learning? How do pieces differ in
601
+ their learnability?
602
+ What are the structural differences
603
+ between the musical pieces that lead to such differences?
604
+ To answer these questions, for each musical piece, we
605
+ compute the KL-divergence between the true transition
606
+ probabilities P and the learned transition probabilities
607
+ ˆP. Then, to understand whether Bach’s music networks
608
+ are structured in a manner that improves their learnabil-
609
+ ity, we compare them against random networks with the
610
+ same number of nodes and edges.
611
+ The data confirms
612
+ our intuition (Fig. 4A): Bach’s music networks have a
613
+ lower KL-divergence than random networks of the same
614
+ size. Even if we compare against null networks with the
615
+ same in- and out-degree distributions, we still see that
616
+ Bach’s music networks have a lower KL-divergence (Fig.
617
+ 4B). This finding suggests that the lower KL-divergence
618
+ of these networks cannot be explained by their degree
619
+ distributions alone. Additionally, we observe variations
620
+ in the KL-divergence among the different compositions
621
+ (Fig. 4). The chorales, at one extreme, seem to have the
622
+ highest KL-divergence, while the preludes have the lowest
623
+ KL-divergence. Our findings indicate that the note tran-
624
+ sitions in Bach’s music are structured in a manner that is
625
+ resilient to errors that humans make when learning infor-
626
+ mation. Further, learnability differs across composition
627
+ forms, with some being easier to learn than others.
628
+ A.
629
+ Transitive clustering
630
+ In the previous section, we saw that the differences
631
+ between the KL-divergences of the music networks and
632
+ the null networks could not be explained by the distri-
633
+ butions of degrees. Here, we seek to understand what
634
+ network property leads to the observed differences. Pre-
635
+ vious work has shown that in the case of undirected net-
636
+ works, the KL-divergence decreases with the density of
637
+ triangles in the network [31]. One can show this ana-
638
+ lytically by substituting the expression for the averaged
639
+ learned version of a network (Eq. 6) into the equation
640
+ for the KL-divergence (Eq. 7). This substitution gives
641
+ us an expression for the KL-divergence in terms of the
642
+ adjacency matrix of the original network:
643
+ DKL(P|| ˆP) = − log(1 − η) −
644
+ η
645
+ ln 2
646
+
647
+ i
648
+ πi×
649
+
650
+
651
+
652
+
653
+ j
654
+ Aij
655
+
656
+ l
657
+ 1
658
+ kout
659
+ i
660
+ Ail
661
+ 1
662
+ kout
663
+ l
664
+ Alj
665
+
666
+
667
+ � + O(η2).
668
+ (8)
669
+ Here we see that the KL-divergence depends on a prod-
670
+ uct of the form AijAilAlj, which measures the transitive
671
+ relationships present in the network. More explicitly, it
672
+ depends on the number of directed triangles of the form
673
+ i → j → k and i → k. Musically, the presence of a larger
674
+ density of such triangles suggests that if there is a tran-
675
+ sition between notes i and j, and notes i and k, there is
676
+ likely also a transition between notes j and k.
677
+ To quantify the extent to which a network has clusters
678
+ of this form, we calculate the transitive clustering coef-
679
+ ficient of the network. For each node, this quantity is
680
+ measured by dividing the number of transitive triangles
681
+ that node i is a part of (∆T
682
+ i ) by the number of possible
683
+ directed triangles:
684
+ CT
685
+ i =
686
+ ∆T
687
+ i
688
+ ktot
689
+ i
690
+ (ktot
691
+ i
692
+ − 1).
693
+ (9)
694
+ Here ktot
695
+ i
696
+ is the total degree (in + out) of the node. We
697
+ average this quantity over all nodes in the network to re-
698
+ port a single value for each piece. Eq. 8 indicates that the
699
+ KL-divergence will be smaller for networks with a large
700
+ number of transitive triangles. This intuition arises from
701
+ the fact that humans can easily make swap errors among
702
+ transitive relations. If node i is connected to node j and
703
+ node j links to node k, a human learner may erroneously
704
+ draw an edge between node i and node k. However, if
705
+ the network had an edge connecting node i to node k to
706
+ begin with, such an edge would not be an error. Hence,
707
+ we expect networks that have more transitive relations
708
+ to be more robust to errors made in learning. Indeed, we
709
+
710
+ 7
711
+ B
712
+ D
713
+ C
714
+ A
715
+ FIG. 4. Quantifying the difference between the actual information and the perceived information in Bach’s
716
+ music networks by calculating the KL-divergence between the actual and perceived network. (A) KL-divergence
717
+ of the real music networks (Dreal
718
+ KL ) compared with random networks of the same size (Drand
719
+ KL ). We report the KL-divergence
720
+ of the corresponding random networks after averaging over 100 independent realizations. The error bars for Drand
721
+ KL
722
+ indicate
723
+ the standard error of the sample. (B) KL-divergence of the real music networks (Dreal
724
+ KL ) compared with random networks that
725
+ preserve the in- and out-degree of each node (Ddeg
726
+ KL ). We report the KL-divergence of the corresponding degree-preserving
727
+ random networks after averaging over 100 independent realizations. The error bars for Ddeg
728
+ KL indicate the standard error of
729
+ the sample. (C) KL-divergence of the real music networks as a function of the transitive clustering coefficient of the network
730
+ C = ⟨∆T
731
+ i /ktot
732
+ i
733
+ (ktot
734
+ i
735
+ − 1)⟩. (D) The transitive clustering coefficient of the real music networks compared with random networks
736
+ that preserve the in- and out-degree of each node. The dotted line indicates the line y = x. For the degree-preserving random
737
+ networks, we report the transitive clustering coefficient after averaging over 100 independent realizations, with error bars
738
+ denoting the standard error of the sample. In all the panels, each data point represents a single piece. Color and marker
739
+ indicate the type of piece, as shown in the legend. The dotted line in panels (A), (B), and (D) represents the line y = x.
740
+ observe that the KL-divergence of the music networks is
741
+ lower for networks that have a higher transitive cluster-
742
+ ing coefficient (Fig.
743
+ 4C).
744
+ In fact, the real music net-
745
+ works have a higher transitive clustering coefficient than
746
+ degree-preserving random networks (Fig. 4D), suggest-
747
+ ing that this feature is not due to mere coincidence. From
748
+ Fig 4D, we make an interesting observation: the chorale
749
+ pieces generally have a higher transitive clustering coef-
750
+ ficient than expected from null networks that preserve
751
+ their size and degree distribution, while the preludes ap-
752
+ pear to have a lower transitive clustering coefficient than
753
+ the corresponding null networks. We probe this further
754
+ in the Supporting Information and identify meso-scale
755
+ structures that could lead to the observed differences be-
756
+ tween the compositional forms.
757
+ VI.
758
+ ACCOUNTING FOR NOTE TRANSITION
759
+ FREQUENCIES
760
+ So far, we have focused our attention on the infor-
761
+ mation content and perception of unweighted (or bi-
762
+ nary) note transition networks created from Bach’s mu-
763
+ sic. These networks only captured whether or not a tran-
764
+ sition exists between two notes and were not sensitive to
765
+ how frequently each transition occurs. The binary net-
766
+ works enabled us to probe how the structure of the tran-
767
+
768
+ 8
769
+ A
770
+ B
771
+ C
772
+ FIG. 5. Accounting for the frequencies of the note transitions in our analysis. (A) Entropy of the weighted versions of
773
+ Bach’s music networks (Sweighted) compared with the corresponding unweighted versions (Sunweighted). (B) The KL-divergence
774
+ of the weighted versions of Bach’s music networks (Dreal,w
775
+ KL
776
+ ) compared with the corresponding unweighted versions (Dreal
777
+ KL ). (C)
778
+ Top: Entropy of the weighted note transition networks (Sreal,w) compared with degree-preserving edge-rewired null networks
779
+ (Sdeg, w). Bottom: The KL-divergence of the weighted note transition networks (Dreal,w
780
+ KL
781
+ ) compared with degree-preserving
782
+ edge-rewired null networks (Ddeg, w
783
+ KL
784
+ ). In all panels, each data point represents a single piece. Color and marker indicate the
785
+ type of piece, as shown in the legend. The dashed line represents the line y = x.
786
+ sitions supports effective communication.
787
+ However, in
788
+ many real networks, not all transitions occur with the
789
+ same frequency. To reflect the different frequencies with
790
+ which transitions may occur, we construct networks in
791
+ which transitions are weighted according to this. For ex-
792
+ ample, if note i follows note j 90% of the time and note
793
+ k follows note j 10% of the time, the edge from node j to
794
+ node i will be more heavily weighted than the edge from
795
+ node j to node k (see the Materials and Methods section
796
+ A 1 for further details on network construction). Adding
797
+ this piece of information to the networks leads us to new
798
+ questions about the role that transition weights play in
799
+ communicating information to listeners.
800
+ For example,
801
+ how is the information generated by a random walk on
802
+ the network altered by differences in the frequencies of
803
+ transitions? In Bach’s music, do these differences in fre-
804
+ quencies make it easier for humans to learn the transition
805
+ networks?
806
+ A.
807
+ Weights reduce the surprisal of transitions
808
+ For unweighted networks, the node-level entropy of
809
+ a random walk is determined solely by the out-degree
810
+ (kout
811
+ i
812
+ ), since each outgoing edge is traversed with prob-
813
+ ability Pij = 1/kout
814
+ i
815
+ . If the edges are weighted by their
816
+ transition frequencies, the Pij’s will no longer be uni-
817
+ formly distributed, and each outgoing edge will not have
818
+ an equal probability of being traversed. Hence, incorpo-
819
+ rating the edge weights reduces the node-level entropy.
820
+ This observation is intuitive since non-uniformities in any
821
+ distribution lead to decreases in entropy. However, ex-
822
+ tending this intuition to the entropy produced by the
823
+ entire network is not as straightforward, since one must
824
+ weigh the contribution of each node by the stationary
825
+ distribution of the random walkers, which cannot be ex-
826
+ pressed in closed form for directed networks. Generally,
827
+ we find that the entropy of weighted networks is still
828
+ lower than the corresponding unweighted networks (Fig.
829
+ 5A). This finding suggests that the different weights re-
830
+ duce the overall surprisal generated by the networks.
831
+ B.
832
+ Weights reduce the deviations between the
833
+ learned network and the original network
834
+ Incorporating the transition frequencies also helps us
835
+ to understand the role that the weights play in the hu-
836
+ man inference of note transitions. We observe that the
837
+ weighted networks of note transitions have lower KL-
838
+ divergence than the binary networks (Fig. 5B). This ob-
839
+ servation suggests that the weights aid in forming more
840
+ accurate internal representations of the transition struc-
841
+ tures, thereby improving their learnability.
842
+ In light of these data, we next verify the role that the
843
+ network structure plays in the communicative success of
844
+ weighted networks by comparing the entropy and KL-
845
+ divergence of the weighted music networks with edge-
846
+ rewired null networks.
847
+ In the analysis on unweighted
848
+ networks, we observed that the entropy was primarily
849
+ driven by the degree distribution of the network and not
850
+ sensitive to the precise connectivity pattern. To make
851
+ this observation, we had compared the entropy of the
852
+ real music networks to randomized networks that pre-
853
+
854
+ 9
855
+ served the exact degree distribution of each node and
856
+ hence, held the node-level entropies fixed. Along simi-
857
+ lar lines, here we make use of null models that keep the
858
+ node-level entropies fixed by preserving the in- and out-
859
+ degree of each node and the out-weights at each node
860
+ (see the Materials and Methods section for details on the
861
+ null models). By comparing the entropy of the weighted
862
+ music networks to the degree-preserving weighted null
863
+ models, we see that the entropies of real networks are
864
+ still more or less unchanged, although the real networks
865
+ have marginally higher entropies than the null networks
866
+ (Fig.
867
+ 5C, top).
868
+ These results support our conclusion
869
+ that the entropy in the real networks is still primarily
870
+ driven by their degree distribution. When we compare
871
+ the KL-divergence of the real weighted networks with the
872
+ degree-preserving weighted null models, we find that the
873
+ real networks have a lower KL-divergence than the cor-
874
+ responding null networks (Fig. 5C, bottom). Together,
875
+ these results suggest that incorporating the weights into
876
+ our network analysis does not alter the effects of network
877
+ structure qualitatively.
878
+ Accounting for the note transition frequencies in our
879
+ network model leads to several interesting lines of inquiry.
880
+ For instance, is it the specific distribution of weights
881
+ that improves the learnability of music networks? Fu-
882
+ ture work could evaluate this possibility by comparing
883
+ the KL-divergence of the weighted networks with a class
884
+ of null models that preserve the skeleton of the network,
885
+ but permute the edge weights. It would also be interest-
886
+ ing to test whether higher edge weights are concentrated
887
+ in triangular clusters of the network, offering a potential
888
+ explanation for the lower KL-divergence of the weighted
889
+ networks compared to the binary networks.
890
+ VII.
891
+ DISCUSSION
892
+ In this article, we study music composed by J. S. Bach
893
+ through the lens of network science and information the-
894
+ ory. Viewing Bach’s musical compositions as networks of
895
+ note transitions, we quantify the information generated
896
+ by the note transitions and study how this information is
897
+ perceived by humans. We analyzed a total of 327 Bach
898
+ compositions spread over a wide range of compositional
899
+ forms, including preludes, fugues, inventions, cantatas,
900
+ English suites, French suites, chorales, Brandenburg con-
901
+ certos, toccatas, and concertos. For each musical piece,
902
+ we construct a network of note transitions by drawing di-
903
+ rected edges between notes that are played consecutively.
904
+ We then quantify the amount of information generated
905
+ by the network structure and find that different composi-
906
+ tional forms are grouped together based on their entropy.
907
+ Further, we find that the note transitions in Bach’s music
908
+ contain more information than expected from transition
909
+ structures of their size, which can be attributed to higher
910
+ heterogeneity in their degree distribution.
911
+ To quantify how the transition structure of Bach’s mu-
912
+ sic is perceived by a human, we use a mathematical model
913
+ for how humans infer networks of information [30, 31],
914
+ which allows us to estimate the average “learned” net-
915
+ work given any network of information. Using this model,
916
+ we compute the inferred version for each music network,
917
+ and quantify the information that arises due to discrep-
918
+ ancies between the original and inferred networks. We
919
+ find here that the discrepancies differ among the compo-
920
+ sitional forms. Moreover, Bach’s music networks main-
921
+ tain a consistently lower deviation between the original
922
+ and inferred version compared to randomized null net-
923
+ works of the same size and degree distribution. Probing
924
+ the structural features that enable these music networks
925
+ to be more resilient to biases in perception, we find that
926
+ this property is driven by a high density of transitive
927
+ triangular clusters in the network.
928
+ Finally, we study how the frequencies of transitions
929
+ influence the information content and perception of the
930
+ musical pieces, by weighing the transitions by the number
931
+ of times they occur. We find that the weights reduce the
932
+ overall entropy or surprisal of the transitions, and also
933
+ reduce the deviations between the inferred and actual
934
+ network, suggesting that the weights aid the learnability
935
+ of these transition structures. On comparing the infor-
936
+ mation content and learnability of the weighted networks
937
+ with degree-preserving null models, we find that qualita-
938
+ tively, our results relating the information content and
939
+ learnability to the network structure are still valid for
940
+ the weighted networks.
941
+ More generally, our findings here along with the re-
942
+ sults in Ref. [31] provide insight into features that make
943
+ a wide range of complex systems around us effective at
944
+ communicating information. To communicate informa-
945
+ tion successfully, networks of information in complex sys-
946
+ tems tend to be structured in a manner that allows them
947
+ to carry large amounts of information, while also being
948
+ robust to inaccuracies that humans make when infer-
949
+ ring relationships between items.
950
+ Networks which are
951
+ denser (have a higher average degree) produce more un-
952
+ predictable random walk sequences, and hence produce
953
+ more information (have a higher entropy). Further, for
954
+ networks of comparable average degree, more heteroge-
955
+ neous (higher variance in degree distribution) structures
956
+ produce more information than those more regular or ho-
957
+ mogeneous in their degree (Fig. 6A(i)). Additionally, we
958
+ find that networks which contain a large number of tri-
959
+ angular clusters can be inferred more accurately when
960
+ viewed through an observer’s imperfect cognitive appa-
961
+ ratus (Fig. 6A(ii)). Together, these findings suggest that
962
+ for networks of a given size, rapid and accurate commu-
963
+ nication of information is supported by structures that
964
+ are simultaneously heterogeneous and clustered (Fig. 6).
965
+ Future directions
966
+ Our study has focused on analyzing the note transi-
967
+ tions present in Bach’s music. It is important to note that
968
+ music is a multifaceted art form that encompasses a range
969
+ of structural and expressive elements. Future work could
970
+
971
+ 10
972
+ Supports efficient communication
973
+ 1
974
+ Low KL-divergence
975
+ Easy to learn
976
+ High KL-divergence
977
+ Hard to learn
978
+ High Entropy
979
+ Contains more information
980
+ Low Entropy
981
+ Contains lesser information
982
+ Does not support effective communication
983
+ A.
984
+ B.
985
+ i.
986
+ ii.
987
+ i.
988
+ ii.
989
+ FIG. 6.
990
+ Network structures that support effective communication of information.
991
+ (A) Networks with a larger
992
+ variance or heterogeneity in their node degrees, as shown in panel (i), pack more information into their structure and have a
993
+ higher entropy. Clustering in the network, as shown in panel (ii), makes the structure more resilient to errors made by humans
994
+ when building an internal representation of the information, allowing the network to be inferred more accurately. Together,
995
+ these structures convey a large amount of information that can be learned by humans more accurately, and are hence more
996
+ efficient for communication. (B) Networks with lower variance in their node degrees, as shown in panel (i), carry relatively
997
+ lower information in their structure compared to networks that are of similar size but more heterogeneous in their degrees. A
998
+ lower tendency for nodes to form clusters, as shown in panel (ii), makes the network more susceptible to errors when humans
999
+ infer its transition structure. Together, these structures convey information less efficiently, rapidly, and accurately compared
1000
+ to those shown in panel (A).
1001
+ build upon our study by exploring other aspects of music,
1002
+ for example, considering networks of transitions between
1003
+ rhythms or harmonies.
1004
+ Beyond music, our study can
1005
+ also be extended to a range of complex systems present
1006
+ around us—such as language and social networks. For
1007
+ example, one could analyze works of literature and ask:
1008
+ Does the entropy of noun transitions in various works of
1009
+ Shakespeare differ based on their genre?
1010
+ More specif-
1011
+ ically, does the information content and learnability of
1012
+ noun transitions or relationships between characters dif-
1013
+ fer between tragedies and comedies?
1014
+ By providing an
1015
+ example of a systematic and comprehensive analysis of
1016
+ the actual and perceived information in music, our study
1017
+ complements and adds to the rich study of language, mu-
1018
+ sic, and art as complex systems [25, 40, 41].
1019
+ Systematically analyzing the information that we ex-
1020
+ tract from complex systems can provide new insights into
1021
+ the human experience. A question that often arises in
1022
+ the context of how humans experience music is: What
1023
+ makes a musical composition appealing to the human
1024
+ ear?
1025
+ While individual preferences in music can vary
1026
+ widely and is highly subjectively, there is still a gen-
1027
+ eral agreement on certain composers being considered
1028
+ “influential” or “great”.
1029
+ This fact raises the possibil-
1030
+ ity that there may be some inherent qualities that are
1031
+ common to musical pieces which are widely considered
1032
+ appealing.
1033
+ Identifying such features might give us in-
1034
+ sight into the creative process of composing music and
1035
+ also complement existing work using AI to generate mu-
1036
+ sic [42, 43]. Several attempts have been made to identify
1037
+ such patterns. For example, Ref. [24] analyzed note tran-
1038
+ sition networks in certain compositions by Bach, Chopin,
1039
+ and Mozart as well as Chinese pop music, and sug-
1040
+ gested that “good” music is characterized by the small-
1041
+ world property [44] and heavy-tailed degree distributions.
1042
+ On the other hand, Ref. [25] studied selected composi-
1043
+ tions from Bach’s Well-Tempered Clavier and found non-
1044
+ heavy-tailed degree distributions, suggesting that such
1045
+ distributions are not necessary for music to be appeal-
1046
+ ing. It would be interesting to devise future experiments
1047
+ to determine whether our findings relate to the aesthetic
1048
+ or emotional appeal of a piece. In our study, we found
1049
+ that Bach’s music networks had a higher number of tran-
1050
+ sitive triangular clusters, enabling them to be learned
1051
+ more efficiently than arbitrary transition structures. Are
1052
+ pieces with a larger number of these triangles also more
1053
+ appealing to a listener? Future work assess this possi-
1054
+ bility by conducting experiments that ask people to rate
1055
+ Bach’s compositions and analyzing whether these ratings
1056
+ correlate with the presence of triangular clusters. More
1057
+ generally, our work focuses not solely on the informa-
1058
+ tion inherent in the transition structure of music, but
1059
+ also on how the information in this transition structure
1060
+ is perceived by a human listener. This framework might
1061
+ be useful in studying cognitive aspects of music and in
1062
+ bridging patterns observed in data with cognitive theo-
1063
+ ries of music.
1064
+ In future work, it would be interesting to extend our
1065
+ analysis to study how music networks evolve with time.
1066
+ There are three potentially interesting lines of inquiry
1067
+ here: First, how do the entropy and KL-divergence of
1068
+ a musical piece change as the piece progresses?
1069
+ Does
1070
+
1071
+ 11
1072
+ this temporal change differ among the various compo-
1073
+ sitional forms?
1074
+ Second, how has the music of a spe-
1075
+ cific composer (whether Bach or otherwise) changed over
1076
+ the course of their lifetime? Has it become more intri-
1077
+ cate and complex, holding more information? Perhaps as
1078
+ the composer gains experience, their compositions con-
1079
+ vey information more efficiently and accurately, as re-
1080
+ flected in a reduced KL-divergence? If the exact dates
1081
+ of when each piece was composed were known, then the
1082
+ framework used in our paper might provide answers to
1083
+ these questions. Third, how has music of a given genre,
1084
+ say classical music, changed over the years across com-
1085
+ posers? Ref. [27], for example, studied the fluctuation in
1086
+ pitch between adjacent notes in compositions by Bach,
1087
+ Mozart, Beethoven, Mendelsohn, and Chopin, and found
1088
+ that the largest pitch fluctuations of a composer gradu-
1089
+ ally increased over time from Bach to Chopin. It would
1090
+ be interesting to expand our analysis to different com-
1091
+ posers, and see how the information and expectations
1092
+ vary across composers and time.
1093
+ Further considering how a genre changes with time, it
1094
+ would be of interest to assess how various styles or gen-
1095
+ res of music differ [45–47]. What are the key features by
1096
+ which a listener distinguishes between music from two
1097
+ eras, say the Classical and the Romantic eras? How do
1098
+ the differences in structure then impact how the piece is
1099
+ perceived by a listener? An analysis of the information
1100
+ content and perception of various genres of music could
1101
+ complement existing work in musicology, and potentially
1102
+ aid in systematically classifying pieces into genres that
1103
+ may not be a priori obvious. Classifying genres of music
1104
+ could also be beneficial for audio streaming services, and
1105
+ our framework could potentially complement existing ap-
1106
+ proaches to musical genre classification [46, 48–51].
1107
+ Methodological considerations
1108
+ Here we highlight the assumptions made in our study
1109
+ and the resulting methodological constraints in our re-
1110
+ search.
1111
+ First, in constructing networks of note transi-
1112
+ tions, the self loops present in the networks were ignored
1113
+ to simplify our analysis. This choice restricted us to un-
1114
+ derstanding only the structure of transitions between dif-
1115
+ ferent notes in a musical piece. However, these self loops
1116
+ may have interesting effects on the discrepancies between
1117
+ the actual and perceived information content from the
1118
+ network. Future work could include self loops, studying
1119
+ their impact on the information content and learnability
1120
+ of the network. Second, the production of information
1121
+ from the underlying transition structure has been mod-
1122
+ elled using Markov random walks. While this is a stan-
1123
+ dard first step in understanding complex systems, in re-
1124
+ ality, the transitions present in music possess long range
1125
+ correlations and constraints to their structure. Including
1126
+ these correlations (perhaps in the form of a biased ran-
1127
+ dom walk with memory) would be a fruitful direction to
1128
+ pursue to gain a better and more realistic understand-
1129
+ ing of the information we encounter from real complex
1130
+ systems around us.
1131
+ VIII.
1132
+ CONCLUSION
1133
+ In this work, we analyze Bach’s musical compositions
1134
+ as networks of note transitions conveying information to
1135
+ humans. Recent studies have shown that the information
1136
+ humans perceive from complex systems around them con-
1137
+ sists of two parts: the information inherent in the system
1138
+ and the information arising due to errors in their per-
1139
+ ception [30, 31]. Analyzing the information from these
1140
+ two parts, we find that different compositional forms can
1141
+ be distinguished from one another.
1142
+ Further, we gain
1143
+ insight into structural features that enable these music
1144
+ networks to communicate effectively: they communicate
1145
+ more information by having more heterogeneous degrees,
1146
+ and they convey information more accurately (minimiz-
1147
+ ing the discrepancies with human inferences) by having
1148
+ a higher density of transitive clusters (Fig. 6). Through
1149
+ this quantitative analysis of Bach’s music, our findings
1150
+ provide new methods to understand how humans share
1151
+ and experience information around them.
1152
+ ACKNOWLEDGMENTS
1153
+ We thank Chris Macklin for an early conversation on
1154
+ this topic and audience members who have asked prob-
1155
+ ing questions about our earlier work in communication
1156
+ networks.
1157
+ These interactions motivated our continued
1158
+ investigation in this space.
1159
+ This particular research
1160
+ was primarily supported by the Army Research Office
1161
+ award number DCIST-W911NF-17-2-0181 and the Na-
1162
+ tional Institutes of Mental Health award number 1-R21-
1163
+ MH-124121-01.
1164
+ D.S.B. would also like to acknowledge
1165
+ additional support from the John D. and Catherine T.
1166
+ MacArthur Foundation, the Alfred P. Sloan Foundation,
1167
+ the Institute for Scientific Interchange Foundation, and
1168
+ the Army Research Office (Grafton-W911NF-16-1-0474).
1169
+ The content is solely the responsibility of the authors and
1170
+ does not necessarily represent the official views of any of
1171
+ the funding agencies.
1172
+ CITATION DIVERSITY STATEMENT
1173
+ Recent work in several fields of science has identi-
1174
+ fied a bias in citation practices such that papers from
1175
+ women and other minority scholars are under-cited rel-
1176
+ ative to the number of such papers in the field [52–60].
1177
+ Here we sought to proactively consider choosing refer-
1178
+ ences that reflect the diversity of the field in thought,
1179
+ form of contribution, gender, race, ethnicity, and other
1180
+ factors. First, we obtained the predicted gender of the
1181
+ first and last author of each reference by using databases
1182
+ that store the probability of a first name being carried by
1183
+
1184
+ 12
1185
+ a woman [56, 61]. By this measure (and excluding self-
1186
+ citations to the first and last authors of our current pa-
1187
+ per), our references contain 9.37% woman (first)/woman
1188
+ (last), 18.67% man/woman, 19.29% woman/man, and
1189
+ 52.67% man/man.
1190
+ This method is limited in that a)
1191
+ names, pronouns, and social media profiles used to con-
1192
+ struct the databases may not, in every case, be indica-
1193
+ tive of gender identity and b) it cannot account for in-
1194
+ tersex, non-binary, or transgender people.
1195
+ Second, we
1196
+ obtained predicted racial/ethnic category of the first and
1197
+ last author of each reference by databases that store the
1198
+ probability of a first and last name being carried by
1199
+ an author of color [62, 63].
1200
+ By this measure (and ex-
1201
+ cluding self-citations), our references contain 11.79% au-
1202
+ thor of color (first)/author of color (last), 11.60% white
1203
+ author/author of color, 16.05% author of color/white
1204
+ author, and 60.56% white author/white author.
1205
+ This
1206
+ method is limited in that a) names and Florida Voter
1207
+ Data to make the predictions may not be indicative of
1208
+ racial/ethnic identity, and b) it cannot account for In-
1209
+ digenous and mixed-race authors, or those who may face
1210
+ differential biases due to the ambiguous racialization or
1211
+ ethnicization of their names. We look forward to future
1212
+ work that could help us to better understand how to sup-
1213
+ port equitable practices in science.
1214
+ Appendix A: Materials and Methods
1215
+ 1.
1216
+ Data Collection and Network Construction
1217
+ The music files were collected in the MIDI for-
1218
+ mat from various sources.
1219
+ The sources for the com-
1220
+ positions analyzed are as follows:
1221
+ preludes [64, 65],
1222
+ fugues [64, 65], inventions[64, 65], cantatas[66], English
1223
+ suites[67], French suites[67], chorales[65], Brandenburg
1224
+ concertos[65], toccatas[67], and concertos[67]. The pre-
1225
+ ludes and fugues are split based on whether they belong
1226
+ to the first or second part of The Well-Tempered Clavier,
1227
+ and are labelled ‘1’ or ‘2’. Certain compositions consist of
1228
+ different movements and our data set has separate MIDI
1229
+ files for each movement. We analyze each movement sep-
1230
+ arately and average our measurements over them to yield
1231
+ a single measured quantity for each piece, as indexed by
1232
+ a unique BWV number.
1233
+ The MIDI files were read in MATLAB using the
1234
+ readmidi function in MATLAB [68] to obtain informa-
1235
+ tion about the notes being played. Different instruments
1236
+ in a piece are stored in separate channels within each
1237
+ data file. The transitions between notes are calculated
1238
+ separately for each instrument or track. We assign each
1239
+ note present in a piece a node in the network, and notes
1240
+ from different octaves are assigned distinct nodes. We
1241
+ then draw an edge from note i to note j if there is a
1242
+ transition between them. If there are multiple notes be-
1243
+ ing played at a single time t (as is the case with chords),
1244
+ edges are drawn from the previously played note to all
1245
+ notes at time t, and from all the notes being played at
1246
+ time t to the subsequent note(s). This procedure gives
1247
+ us a directed binary network of note transitions. We also
1248
+ construct weighted versions of these networks, where each
1249
+ edge is weighted by the number of times the correspond-
1250
+ ing transition occurs.
1251
+ 2.
1252
+ Entropy of random walks on networks
1253
+ We use random walks to model how a sequence of in-
1254
+ formation is generated from an underlying network of
1255
+ information. Under this model, a walker traverses the
1256
+ network by picking an outgoing edge to traverse at each
1257
+ node. Given a network with adjacency matrix A and ma-
1258
+ trix element Aij, the probability that a walker transitions
1259
+ from node i to node j in a standard Markov random walk
1260
+ is Pij = Aij/kout
1261
+ i
1262
+ , where kout
1263
+ i
1264
+ = �
1265
+ j Gij is the out-degree
1266
+ of a node. We are interested in quantifying how much
1267
+ information is contained in the resulting sequence, which
1268
+ is captured by the entropy of the random walk:
1269
+ S = −
1270
+
1271
+ i
1272
+ πi
1273
+
1274
+ j
1275
+ Pij log Pij,
1276
+ where π is the stationary distribution of the walkers,
1277
+ which satisfies the condition Pπ = π. For the simplest
1278
+ possible case of an undirected and unweighted network,
1279
+ Pij = 1/ki and πi = ki/2E, where ki is the degree of
1280
+ the ith node and E = �
1281
+ i,j Aij/2 is the total number of
1282
+ edges. The entropy in this case simplifies to:
1283
+ S = 1
1284
+ 2E
1285
+
1286
+ i
1287
+ ki log ki = ⟨k log k⟩
1288
+ ⟨k⟩
1289
+ .
1290
+ (A1)
1291
+ We can apply a Taylor expansion to this expression
1292
+ around the average degree of the network, and thereby
1293
+ obtain:
1294
+ S = log⟨k⟩ + Var(k)
1295
+ 2 ⟨k⟩2 + ...
1296
+ (A2)
1297
+ Hence we find that the entropy of random walks increase
1298
+ logarithmically with the average degree of the network.
1299
+ Additionally, it grows as the variance of the degrees in-
1300
+ creases. This formalization enables us to relate the in-
1301
+ formation content of various music networks to their net-
1302
+ work structure.
1303
+ 3.
1304
+ Model for how humans learn networks
1305
+ As discussed in the main text, when forming internal
1306
+ representations of information around them, each human
1307
+ arbitrates a trade-off between accuracy and cost [30, 31].
1308
+ In striking this balance, evidence suggests that humans
1309
+ perform a fuzzy temporal integration of transition struc-
1310
+ tures over time [29, 30, 69–71]. This process results in
1311
+ humans connecting items in the sequence that are not
1312
+ directly adjacent to each other. Mathematically, we can
1313
+
1314
+ 13
1315
+ express the inferred transition structure ˆP in terms of
1316
+ the true transition structure P under this model of fuzzy
1317
+ temporal integration as:
1318
+ ˆP =
1319
+
1320
+
1321
+ ∆t=0
1322
+ f(∆t)P ∆t+1,
1323
+ (A3)
1324
+ where f(∆t) is the weight given to the higher powers of
1325
+ P and is a decreasing function of ∆t.
1326
+ The functional form of f(∆t) is obtained using a
1327
+ free energy model that captures the accuracy-complexity
1328
+ trade-off described in Ref. [30]. Under this theory, the
1329
+ optimal distribution for f(∆t) is a Boltzmann distribu-
1330
+ tion with a parameter β that quantifies the trade-off be-
1331
+ tween cost and accuracy in forming an internal represen-
1332
+ tation of the information:
1333
+ f(∆t) = e−β∆t/Z,
1334
+ (A4)
1335
+ where Z = � e−β∆t = (1 − e−β)−1 is a normalization
1336
+ constant.
1337
+ Substituting this expression to simplify Eq.
1338
+ A3, we obtain an equation that relates the inferred tran-
1339
+ sition probabilities ˆP to the true transition probabilities
1340
+ P:
1341
+ ˆP =(1 − e−β)−1
1342
+
1343
+
1344
+ ∆t=0
1345
+ e−β∆tP ∆t+1
1346
+ =(1 − η)P(I − ηP)−1,
1347
+ (A5)
1348
+ where η = e−β. Prior work has estimated the value of
1349
+ η to be 0.8 from large-scale online experiments in hu-
1350
+ mans [31]. Using this measured value of η, we use Eq.
1351
+ A5 to calculate the learned network for any given music
1352
+ network.
1353
+ 4.
1354
+ KL-divergence
1355
+ To quantify how much the distorted learned transition
1356
+ structure ˆP differs from the original transition structure
1357
+ P, we calculate the Kullback-Leiber (KL) divergence be-
1358
+ tween the two transition structures. The Kullback-Leiber
1359
+ divergence is a measure of how different a probability dis-
1360
+ tribution is from a reference distribution, and is given by:
1361
+ DKL(P|| ˆP) = −
1362
+
1363
+ i
1364
+ πi
1365
+
1366
+ j
1367
+ Pij log
1368
+ ˆPij
1369
+ Pij
1370
+ ,
1371
+ (A6)
1372
+ where ⃗π is the stationary probability distribution of the
1373
+ transition matrix P, obtained by solving Pπ = π. The
1374
+ KL-divergence between two quantities is always non-
1375
+ negative and attains the value zero if and only if P = ˆP.
1376
+ The larger the KL-divergence, the more the inferred net-
1377
+ work ˆP differs from the original network.
1378
+ Hence, this
1379
+ quantity acts as a measure of the extent to which a net-
1380
+ work gets scrambled by the inaccuracies of human of
1381
+ learning—or in other words, how learnable a network
1382
+ structure is.
1383
+ 5.
1384
+ Null Models
1385
+ We aim to identify distinct features in the music net-
1386
+ works that enable them to convey information effectively.
1387
+ To assess whether our observations are merely due to ran-
1388
+ dom chance or are instead a unique feature of our dataset,
1389
+ we compare our measurements on the real music networks
1390
+ with the following null network models [72, 73].
1391
+ 1. Null networks with the same number of nodes and
1392
+ edges. These are obtained by generating random
1393
+ networks with the same number of nodes and edges,
1394
+ and enable us to assess whether the quantity we
1395
+ have measured is to be expected merely based on
1396
+ network size.
1397
+ 2. Degree-preserving null networks.
1398
+ These are ran-
1399
+ domized networks of the same size, with the ad-
1400
+ ditional constraint that the in- and out-degrees of
1401
+ each node in the network are preserved. Such net-
1402
+ works are constructed by swapping edges between
1403
+ pairs of nodes in the network iteratively, such that
1404
+ the in- and out-degrees of each node are preserved
1405
+ but the connectivity (or topology) of the network
1406
+ is randomized. This class of null models enable us
1407
+ to evaluate the role that connectivity or topology
1408
+ plays in the quantity we are measuring.
1409
+ We can generalize the degree-preserving null networks
1410
+ to weighted networks.
1411
+ We are interested in degree-
1412
+ preserving randomized networks since these keep the
1413
+ node-level entropies fixed and allow us to study the im-
1414
+ pact of topology on the quantities we are measuring. In
1415
+ the case of weighted networks, the node-level entropies
1416
+ are determined by the out-weights and out-degrees of the
1417
+ nodes. Hence, our procedure of swapping edges between
1418
+ pairs of nodes in the network still works since it pre-
1419
+ served the out-weights of each node in addition to the in-
1420
+ and out-degrees. With these null models, we can bench-
1421
+ mark the presence of the quantities we are interested in,
1422
+ and identify the role that the connectivity pattern or size
1423
+ plays.
1424
+ 6.
1425
+ Transitive Clustering Coefficient
1426
+ Along the lines of the clustering coefficient of a node
1427
+ [44, 74], we define the transitive clustering coefficient as
1428
+ a measure of the degree to which nodes in a directed net-
1429
+ work tend to form transitive relationships. The transitive
1430
+ clustering coefficient of a node i (for an unweighted graph
1431
+ with no self loops) is given by:
1432
+ CT
1433
+ i =
1434
+ ∆T
1435
+ i
1436
+ ktot
1437
+ i
1438
+ (ktot
1439
+ i
1440
+ − 1),
1441
+ (A7)
1442
+ where ∆T
1443
+ i denotes the number of transitive triangles that
1444
+ node i is a part of and ktot
1445
+ i
1446
+ is the total degree (in + out)
1447
+ of the node. The denominator simply counts the number
1448
+
1449
+ 14
1450
+ of triangles that could exist within the neighborhood of
1451
+ node i.
1452
+ FIG. 7. The 8 different possible triangles with node i as a
1453
+ vertex in a directed graph.
1454
+ The triangles which represent
1455
+ transitive relationships are marked using the letter ’T’.
1456
+ The possible directed triangles involving node i can
1457
+ be divided into two categories—those representing cyclic
1458
+ relationships and those representing transitive relation-
1459
+ ships (Fig. 7). The number of transitive triangles involv-
1460
+ ing node i that actually exist can be expressed in terms
1461
+ of the adjacency matrix of the graph A,
1462
+ CT
1463
+ i = (A + AT )3
1464
+ ii − A3
1465
+ ii − (AT )3
1466
+ ii
1467
+ 2 ktot
1468
+ i
1469
+ (ktot
1470
+ i
1471
+ − 1)
1472
+ .
1473
+ (A8)
1474
+ This expression counts a subset of the total number of
1475
+ triangles, and is a special case of the expression derived
1476
+ in Ref. [75]. We will use this expression to measure the
1477
+ transitive clustering coefficient of each music networks.
1478
+ Appendix B: Supplementary Information
1479
+ 1.
1480
+ Introduction
1481
+ In this Supplementary Information, we provide ex-
1482
+ tended analysis and discussion to support the results pre-
1483
+ sented in the main text. In Sec. B 2, we expand upon
1484
+ our analysis of the information content of Bach’s music
1485
+ networks and how it relates to network structure. In Sec.
1486
+ B 5, we examine the transitive clustering coefficient more
1487
+ closely and study meso-scale features that might explain
1488
+ the differences observed across compositional forms.
1489
+ 2.
1490
+ Information content
1491
+ To better visualize the variation in information content
1492
+ among the musical compositions, we assign each piece
1493
+ an index number and plot the information entropy for
1494
+ each piece as a function of its index number (Fig. 8A).
1495
+ We observe here more clearly how different compositional
1496
+ forms tend to have pieces clustered together in their en-
1497
+ tropies. As reported in the main text, we find that the
1498
+ chorales have a markedly lower entropy than the rest
1499
+ of the compositions studied.
1500
+ In contrast, the toccatas
1501
+ and the second set of preludes have a much higher en-
1502
+ tropy.
1503
+ To relate the information entropy of the music
1504
+ networks to their structure, we compare their entropy to
1505
+ corresponding null networks (Fig. 2A and B in the main
1506
+ text), where we conclude that the information entropy is
1507
+ primarily determined by the degree distributions. In the
1508
+ case of undirected and unweighted networks, the network
1509
+ entropy depends upon the logarithm of the average de-
1510
+ gree of the network and the heterogeneity in the degree
1511
+ distribution (Eq.
1512
+ 4) to first and second order, respec-
1513
+ tively [31, 35]. We now provide supplementary results
1514
+ that relate the information entropy of the music networks
1515
+ to their structure.
1516
+ 3.
1517
+ Understanding the information entropy to first
1518
+ order: average degree
1519
+ On plotting the information entropy of the music net-
1520
+ works as a function of their average degree (Fig. 8B), we
1521
+ see that the differences in the information entropy of the
1522
+ compositional forms to first order arise due to differences
1523
+ in their average degrees. Although we observed in Fig.
1524
+ 8A that the compositional forms are clustered together
1525
+ in their entropy, it is clear that some pieces—such as the
1526
+ chorales, French suites, English suites, and cantatas—
1527
+ are more tightly clustered than the fugues and first set of
1528
+ preludes. These differences can be explained by the how
1529
+ much the average degrees vary across pieces. In Fig. 9,
1530
+ we plot the entropy of the music networks as a function
1531
+ of the average network degree, separately for each com-
1532
+ position type. Additionally, we also report the standard
1533
+ deviation in the average degree of the pieces for each com-
1534
+ position type. Studying these plots, we observe that the
1535
+ English suites, French suites, and chorales (which clus-
1536
+ tered more tightly in their entropies) have tighter degree
1537
+ distributions, while the fugues (which are more spread
1538
+ out in their entropy) display more diverse average de-
1539
+ grees.
1540
+ 4.
1541
+ Understanding the information entropy to
1542
+ second order: degree heterogeneity
1543
+ In Fig.
1544
+ 2A of the main text, we observed that the
1545
+ entropy of the real music networks is larger than corre-
1546
+ sponding randomized null networks with the same num-
1547
+ ber of nodes and edges. Since the average degree is the
1548
+ same for the two networks, we hypothesize that the differ-
1549
+ ences arise due to higher in- and out-degree heterogene-
1550
+ ity as per Eq. 4. To test our hypothesis, we compare the
1551
+ in- and out-degree heterogeneity of the music networks
1552
+ (calculated using Eq. 5) with their corresponding null
1553
+ networks in Fig. 10. In general, we observe that Bach’s
1554
+ music networks are indeed more heterogeneous than ex-
1555
+ pected from the random networks of the same size. This
1556
+ organization allows them to pack more information into
1557
+ their structure.
1558
+ The heterogeneity in degrees can also explain the dif-
1559
+ ferences in entropies observed between pieces that are
1560
+
1561
+ 1
1562
+ 2
1563
+ 0
1564
+ 2
1565
+ 215
1566
+ A
1567
+ B
1568
+ FIG. 8. The entropy of Bach’s music networks and its relation to the average degree of the network. (A) The
1569
+ entropy of Bach’s music networks (Sreal) indexed by the pieces. (B) The entropy of Bach’s music networks (Sreal) as a function
1570
+ of the average degree of the network ⟨k⟩. Each data point in panels (A) and (B) represents a single piece. Colors and markers
1571
+ indicate the type of pieces, as shown in the legend.
1572
+ tightly clustered together in their entropy. As observed
1573
+ earlier, compositions such as the chorales, French suites,
1574
+ English suites, and cantatas have pieces that are clus-
1575
+ tered together in their average degree and consequen-
1576
+ tially, in their entropy. We expect that the differences
1577
+ observed among the pieces in each group can be explained
1578
+ by differences in their degree heterogeneity. In Fig. 11
1579
+ and Fig. 2C, we plot the entropies of the pieces that clus-
1580
+ tered together as a function of their in- and out-degree
1581
+ heterogeneity, and in general observe that the pieces with
1582
+ higher heterogeneity have a higher information entropy.
1583
+ However, we note that our sample size for most com-
1584
+ positional forms is small and hence, we only report the
1585
+ chorales in the main text.
1586
+ 5.
1587
+ Further analysis of the transitive clustering
1588
+ coefficient
1589
+ In our analysis of the discrepancies between the ac-
1590
+ tual and perceived information content of note transi-
1591
+ tions in Bach’s musical compositions, we found that these
1592
+ discrepancies were primarily driven by the presence of
1593
+ transitive triangular clusters. These transitive triangular
1594
+ clusters tend to bring the inferred network closer to the
1595
+ actual network, making the network more learnable. As
1596
+ shown in Fig. 12A, the real (unweighted) music networks
1597
+ tend to have a higher transitive clustering coefficient than
1598
+ random networks that preserve the degree of each node,
1599
+ indicating that this is a distinct feature of the music net-
1600
+ works that is not merely due to coincidence. The data
1601
+ in Fig. 12A has a striking shape, which we elaborate on
1602
+ and analyze in this section. First we observe that the
1603
+ chorale pieces tend to have a higher transitive clustering
1604
+ coefficient than expected from networks of their same
1605
+ size and degree distribution. Second, although the pre-
1606
+ ludes have a higher transitive clustering coefficient than
1607
+ other compositional forms, the value was still lower than
1608
+ expected from networks of their same size and degree
1609
+ distribution. Indeed, by examining only the x-axis, we
1610
+ notice that the null networks corresponding to the pre-
1611
+ ludes have a higher transitive clustering coefficient than
1612
+ the null networks corresponding to chorales. However,
1613
+ by examining the y-axis, we see that the deviation be-
1614
+ tween the real chorales and the prelude networks are not
1615
+ that pronounced. We hypothesize that these differences
1616
+ might be due to the presence of mesoscale features in the
1617
+ networks, such as core-periphery structure.
1618
+ a.
1619
+ Core-periphery structure
1620
+ Core-periphery structure in a network refers to the
1621
+ presence of two components: a tightly connected “core”
1622
+ and a sparsely connected “periphery. The core consists of
1623
+ nodes which are well-connected to each other and to the
1624
+ periphery, while the nodes in the periphery are sparsely
1625
+ connected to one another and to the nodes in the core
1626
+ [76, 77]. We hypothesize that the presence of a relatively
1627
+ larger core might explain why the chorales have a higher
1628
+ clustering coefficient than expected given their size and
1629
+ degree. Similarly, a smaller than expected core for the
1630
+ preludes might be explain why their clustering coefficient
1631
+ was lower than expected from networks of the same size
1632
+ and degree distribution. Since the core consists of nodes
1633
+ that are well-connected to themselves and the periphery,
1634
+
1635
+ 16
1636
+ A
1637
+ B
1638
+ C
1639
+ D
1640
+ E
1641
+ F
1642
+ G
1643
+ H
1644
+ I
1645
+ J
1646
+ K
1647
+ L
1648
+ FIG. 9. The relation between the information entropy and the average degree of the music networks plotted
1649
+ separately for each compositional form. The entropy of Bach’s music networks (Sreal) plotted against the average degree
1650
+ of the network ⟨k⟩. Each data point represents a single piece. Colors and markers indicate the type of pieces, as shown in the
1651
+ legend.
1652
+ if there are a larger number of edges occurring within
1653
+ the core and between the core and periphery than be-
1654
+ tween the periphery nodes, it is likely that these edges
1655
+ will form the clusters that we are interested in. We de-
1656
+
1657
+ 17
1658
+ A
1659
+ B
1660
+ FIG. 10. Comparing the heterogeneity of Bach’s music networks to randomized null networks of the same size.
1661
+ (A) The in-degree heterogeneity of the music networks compared with random networks of the same size. (B) The out-degree
1662
+ heterogeneity of the music networks compared with random networks of the same size. Each data point in panels (A) and (B)
1663
+ represents a single piece. Colors and markers indicate the type of pieces, as shown in the legend. For each random network,
1664
+ we report the in- and out- degree heterogeneity after averaging over 100 independent realizations. Error bars on the x-axis
1665
+ represent the standard error of the sample.
1666
+ A
1667
+ B
1668
+ C
1669
+ D
1670
+ FIG. 11. The relation between the information entropy of Bach’s music networks and its degree heterogeneity.
1671
+ The entropy of Bach’s music networks (Sreal) plotted against the network in- and out-degree heterogeneity. Each data point
1672
+ represents a single piece. Colors and markers indicate the type of pieces, as shown in the legend. The dotted line in each
1673
+ panel indicates the best linear fit, and the reported rs value is the Spearman correlation coefficient between the x- and y-axis
1674
+ variables.
1675
+ note the edges between two nodes that belong to the
1676
+ core by core-core (CC), those between nodes that belong
1677
+ to the periphery by periphery-periphery (PP), and those
1678
+ between the nodes in the core and the nodes in the pe-
1679
+ riphery by core-periphery (CP).
1680
+ To test our hypothesis, we compute the core-periphery
1681
+
1682
+ 18
1683
+ A
1684
+ B
1685
+ FIG. 12. Core-periphery analysis of the music networks. (A) The transitive clustering coefficient of the real music
1686
+ networks compared to null networks that preserve the in- and out-degree of each node. For the degree-preserving null networks,
1687
+ we report the average over 100 independent realizations, with error bars denoting the standard error of the sample. (B) The
1688
+ ratio of the number of core-core (CC) edges and core-periphery (CP) edges to the number of periphery-periphery (PP) edges in
1689
+ the real music networks compared to degree-preserving null networks. For the degree-preserving null networks, we report the
1690
+ average value computed over 100 independent random graphs. In both panels, the dotted line indicates the line y = x. Colors
1691
+ and markers indicate the type of piece, as shown in the legend.
1692
+ structure for each music network using the method de-
1693
+ scribed by Borgatti and Everett [77]. We then compute
1694
+ the ratio of the sum of the number of core-core (CC)
1695
+ edges and core-periphery (CP) edges to the number of
1696
+ periphery-periphery (PP) edges for each network.
1697
+ To
1698
+ understand this ratio, we compare it to corresponding
1699
+ degree-preserving null networks (Fig. 12B). Strikingly,
1700
+ we observe that the chorales have a higher fraction of
1701
+ edges that are within or emanating from the core than
1702
+ expected from their corresponding null networks.
1703
+ The
1704
+ preludes are at the other end, and have a lower frac-
1705
+ tion of edges that are within or emanating from the core
1706
+ than expected from their corresponding null networks.
1707
+ This pattern of findings suggests that the chorales have a
1708
+ more pronounced core-periphery structure than expected
1709
+ by chance, while the preludes have a less pronounced
1710
+ core-periphery structure than expected.
1711
+ Although the
1712
+ preludes still have a slightly higher transitive clustering
1713
+ coefficient than the other pieces, the differences are not
1714
+ as pronounced as one would expect because of these dif-
1715
+ ferences in their core-periphery structure.
1716
+ By performing this additional analysis, we provide an
1717
+ example of how the music networks display interesting
1718
+ meso-scale structures that differ from one compositional
1719
+ form to another, resulting in differences in how their net-
1720
+ work structure is perceived.
1721
+
1722
+ 19
1723
+ [1] S. J. Mithen, The Singing Neanderthals: the origins of
1724
+ music, language, mind and body (Harvard University
1725
+ Press, 2005).
1726
+ [2] W. T. Fitch, “The biology and evolution of music:
1727
+ A comparative perspective,” Cognition 100, 173–215
1728
+ (2006).
1729
+ [3] E. H. Hagen and P. Hammerstein, “Did neanderthals and
1730
+ other early humans sing? seeking the biological roots of
1731
+ music in the territorial advertisements of primates, li-
1732
+ ons, hyenas, and wolves,” Musicae Scientiae 13, 291–320
1733
+ (2009).
1734
+ [4] B. G. Levman, “The genesis of music and language,” Eth-
1735
+ nomusicology 36, 147–170 (1992).
1736
+ [5] N. Masataka, “Music, evolution and language,” Develop-
1737
+ mental science 10, 35–39 (2007).
1738
+ [6] G. F. Welch, M. Biasutti, J. MacRitchie, G. E. McPher-
1739
+ son, and E. Himonides, “The impact of music on human
1740
+ development and well-being,” (2020).
1741
+ [7] I. Cross, “Music, cognition, culture, and evolution,” An-
1742
+ nals of the New York Academy of sciences 930, 28–42
1743
+ (2001).
1744
+ [8] S. McClary, “The impromptu that trod on a loaf: Or how
1745
+ music tells stories,” Narrative 5, 20–35 (1997).
1746
+ [9] E. Glennie, E. Mac Donald, et al., Musical communica-
1747
+ tion (Oxford University Press on Demand, 2005).
1748
+ [10] K. R Scherer and E. Coutinho, “How music creates emo-
1749
+ tion: a multifactorial process approach,” The emotional
1750
+ power of music: Multidisciplinary perspectives on mu-
1751
+ sical arousal, expression, and social control , 121–145
1752
+ (2013).
1753
+ [11] S. Koelsch, “Brain correlates of music-evoked emotions,”
1754
+ Nature Reviews Neuroscience 15, 170–180 (2014).
1755
+ [12] A. J. Blood and R. J. Zatorre, “Intensely pleasurable
1756
+ responses to music correlate with activity in brain regions
1757
+ implicated in reward and emotion,” Proceedings of the
1758
+ National Academy of Sciences 98, 11818–11823 (2001).
1759
+ [13] D. Huron, Sweet Anticipation: Music and the Psychology
1760
+ of Expectation (The MIT Press, 2006).
1761
+ [14] B. Tillmann, B. Poulin-Charronnat,
1762
+ and E. Bigand,
1763
+ “The role of expectation in music:
1764
+ from the score to
1765
+ emotions and the brain,” WIREs Cognitive Science 5,
1766
+ 105–113 (2014).
1767
+ [15] L. B. Meyer, Emotion and Meaning in Music, ACLS Hu-
1768
+ manities E-Book (University of Chicago Press, 1956).
1769
+ [16] C. E. Shannon, “A mathematical theory of communica-
1770
+ tion,” The Bell System Technical Journal 27, 379–423
1771
+ (1948).
1772
+ [17] S. T. Piantadosi, H. Tily, and E. Gibson, “Word lengths
1773
+ are optimized for efficient communication,” Proceedings
1774
+ of the National Academy of Sciences 108, 3526–3529
1775
+ (2011).
1776
+ [18] J. B. Plotkin and M. A. Nowak, “Language evolution and
1777
+ information theory,” Journal of Theoretical Biology 205,
1778
+ 147–159 (2000).
1779
+ [19] J.-P. Eckmann, E. Moses,
1780
+ and D. Sergi, “Entropy of
1781
+ dialogues creates coherent structures in e-mail traffic,”
1782
+ Proceedings of the National Academy of Sciences 101,
1783
+ 14333–14337 (2004).
1784
+ [20] K. Zhao, M. Karsai, and G. Bianconi, “Entropy of dy-
1785
+ namical social networks,” PLOS ONE 6 (2011).
1786
+ [21] M. Rosvall, A. Trusina, P. Minnhagen,
1787
+ and K. Snep-
1788
+ pen, “Networks and cities: An information perspective,”
1789
+ Phys. Rev. Lett. 94, 028701 (2005).
1790
+ [22] J. E. Cohen, “Information theory and music,” Behavioral
1791
+ Science 7, 137–163 (1962).
1792
+ [23] L. Hiller and C. Bean, “Information theory analyses of
1793
+ four sonata expositions,” Journal of Music Theory 10,
1794
+ 96–137 (1966).
1795
+ [24] X. F. Liu, K. T. Chi, and M. Small, “Complex network
1796
+ structure of musical compositions: Algorithmic genera-
1797
+ tion of appealing music,” Physica A: Statistical Mechan-
1798
+ ics and its Applications 389, 126–132 (2010).
1799
+ [25] F. Gomez, T. Lorimer,
1800
+ and R. Stoop, “Complex net-
1801
+ works of harmonic structure in classical music,” in Non-
1802
+ linear Dynamics of Electronic Systems (Springer Inter-
1803
+ national Publishing, Cham, 2014) pp. 262–269.
1804
+ [26] J.-P. Boon, A. Noullez, and C. Mommen, “Complex dy-
1805
+ namics and musical structure,” Interface 19, 3–14 (1990).
1806
+ [27] L. Liu, J. Wei, H. Zhang, J. Xin, and J. Huang, “A sta-
1807
+ tistical physics view of pitch fluctuations in the classical
1808
+ music from bach to chopin: Evidence for scaling,” PLOS
1809
+ ONE 8, 1–6 (2013).
1810
+ [28] D. Kahneman, S. P. Slovic, P. Slovic,
1811
+ and A. Tver-
1812
+ sky, Judgment under uncertainty: Heuristics and biases
1813
+ (Cambridge university press, 1982).
1814
+ [29] P. Dayan, “Improving generalization for temporal dif-
1815
+ ference learning: The successor representation,” Neural
1816
+ computation 5, 613–624 (1993).
1817
+ [30] C. W. Lynn, A. E. Kahn, N. Nyema, D. S. Bassett, “Ab-
1818
+ stract representations of events arise from mental errors
1819
+ in learning and memory,” Nature Communications , 2313
1820
+ (2020).
1821
+ [31] C. W. Lynn, L. Papadopoulos, A. E. Kahn, and D. S.
1822
+ Bassett, “Human information processing in complex net-
1823
+ works,” Nature Physics 16, 965 (2020).
1824
+ [32] C. W. Lynn and D. S. Bassett, “How humans learn
1825
+ and represent networks,” Proceedings of the National
1826
+ Academy of Sciences 117, 29407 (2020).
1827
+ [33] G.
1828
+ R.
1829
+ Jagari,
1830
+ P.
1831
+ Pedram,
1832
+ L.
1833
+ Hedayatifar,
1834
+ “Long-
1835
+ range correlation and multifractality in Bach’s invention
1836
+ pitches,” Journal of Statistical Mechanics: Theory and
1837
+ Experiment 04 (2007).
1838
+ [34] J. M. Moore, D. C. Corrˆea,
1839
+ and M. Small, “Is bach’s
1840
+ brain a markov chain? recurrence quantification to assess
1841
+ markov order for short, symbolic, musical compositions,”
1842
+ Chaos: An Interdisciplinary Journal of Nonlinear Science
1843
+ 28, 085715 (2018).
1844
+ [35] J. Gomez-Gardenes and V. Latora, “Entropy rate of dif-
1845
+ fusion processes on complex networks,” Physical Review
1846
+ E 78, 065102 (2008).
1847
+ [36] R. Albert, “Scale-free networks in cell biology,” Journal
1848
+ of cell science 118, 4947–4957 (2005).
1849
+ [37] K. Lerman, X. Yan, and X.-Z. Wu, “The” majority illu-
1850
+ sion” in social networks,” PloS one 11, e0147617 (2016).
1851
+ [38] A.-L. Barab´asi and R. Albert, “Emergence of scaling in
1852
+ random networks,” Science 286, 509–512 (1999).
1853
+ [39] A. E. Kahn, E. A. Karuza, J. M. Vettel, D. S. Bas-
1854
+ sett, “Network constraints on learnability of probabilis-
1855
+ tic motor sequences,” Nature Human Behavior , 936–947
1856
+ (2018).
1857
+ [40] J. Stiller, D. Nettle,
1858
+ and R. IM Dunbar, “The small
1859
+ world of shakespeare’s plays,” Human Nature 14, 397–
1860
+
1861
+ 20
1862
+ 408 (2003).
1863
+ [41] Y.-M. Choi and H.-J. Kim, “A directed network of greek
1864
+ and roman mythology,” Physica A: statistical Mechanics
1865
+ and its Applications 382, 665–671 (2007).
1866
+ [42] J. Thickstun, Z. Harchaoui,
1867
+ and S. Kakade, “Learn-
1868
+ ing features of music from scratch,” arXiv preprint
1869
+ arXiv:1611.09827 (2016).
1870
+ [43] I Liu, Bhiksha Ramakrishnan, et al., “Bach in 2014: Mu-
1871
+ sic composition with recurrent neural network,” arXiv
1872
+ preprint arXiv:1412.3191 (2014).
1873
+ [44] D. J. Watts and S. H. Strogatz, “Collective dynamics of
1874
+ ‘small-world’ networks,” Nature 393, 440–442 (1998).
1875
+ [45] P. H. R. Zivic, F. Shifres,
1876
+ and G. A. Cecchi, “Percep-
1877
+ tual basis of evolving western musical styles,” Proceed-
1878
+ ings of the National Academy of Sciences 110, 10034–
1879
+ 10038 (2013).
1880
+ [46] C. P´erez-Sancho, D. Rizo, and J. M. I˜nesta, “Genre clas-
1881
+ sification using chords and stochastic language models,”
1882
+ Connection Science 21, 145–159 (2009).
1883
+ [47] D. K. Simonton, “Melodic structure and note transi-
1884
+ tion probabilities: A content analysis of 15,618 classical
1885
+ themes,” Psychology of Music 12, 3–16 (1984).
1886
+ [48] G. Tzanetakis and P. Cook, “Musical genre classification
1887
+ of audio signals,” IEEE Transactions on speech and audio
1888
+ processing 10, 293–302 (2002).
1889
+ [49] H. Soltau, T. Schultz, M. Westphal,
1890
+ and A. Waibel,
1891
+ “Recognition of music types,” in Proceedings of the 1998
1892
+ IEEE International Conference on Acoustics, Speech and
1893
+ Signal Processing, ICASSP’98 (Cat. No. 98CH36181),
1894
+ Vol. 2 (IEEE, 1998) pp. 1137–1140.
1895
+ [50] T. Lidy, A. Schindler, et al., “Parallel convolutional neu-
1896
+ ral networks for music genre and mood classification,”
1897
+ MIREX2016 3 (2016).
1898
+ [51] H. Bahuleyan, “Music genre classification using machine
1899
+ learning techniques,” arXiv preprint arXiv:1804.01149
1900
+ (2018).
1901
+ [52] Sara McLaughlin Mitchell, Samantha Lange, and Holly
1902
+ Brus, “Gendered citation patterns in international re-
1903
+ lations journals,” International Studies Perspectives 14,
1904
+ 485–492 (2013).
1905
+ [53] Michelle
1906
+ L
1907
+ Dion,
1908
+ Jane
1909
+ Lawrence
1910
+ Sumner,
1911
+ and
1912
+ Sara McLaughlin Mitchell, “Gendered citation patterns
1913
+ across political science and social science methodology
1914
+ fields,” Political Analysis 26, 312–327 (2018).
1915
+ [54] Neven Caplar, Sandro Tacchella,
1916
+ and Simon Birrer,
1917
+ “Quantitative evaluation of gender bias in astronomical
1918
+ publications from citation counts,” Nature Astronomy 1,
1919
+ 0141 (2017).
1920
+ [55] Daniel Maliniak, Ryan Powers, and Barbara F Walter,
1921
+ “The gender citation gap in international relations,” In-
1922
+ ternational Organization 67, 889–922 (2013).
1923
+ [56] Jordan D. Dworkin, Kristin A. Linn, Erin G. Teich, Perry
1924
+ Zurn, Russell T. Shinohara,
1925
+ and Danielle S. Bassett,
1926
+ “The extent and drivers of gender imbalance in neuro-
1927
+ science reference lists,” bioRxiv (2020).
1928
+ [57] Maxwell A. Bertolero, Jordan D. Dworkin, Sophia U.
1929
+ David, Claudia L´opez Lloreda, Pragya Srivastava, Jen-
1930
+ nifer Stiso, Dale Zhou, Kafui Dzirasa, Damien A. Fair,
1931
+ Antonia N. Kaczkurkin, Bianca Jones Marlin, Daphna
1932
+ Shohamy, Lucina Q. Uddin, Perry Zurn, and Danielle S.
1933
+ Bassett, “Racial and ethnic imbalance in neuroscience
1934
+ reference lists and intersections with gender,” bioRxiv
1935
+ (2020).
1936
+ [58] Xinyi Wang, Jordan D. Dworkin, Dale Zhou, Jennifer
1937
+ Stiso, Emily B Falk, Danielle S. Bassett, Perry Zurn, and
1938
+ David M. Lydon-Staley, “Gendered citation practices in
1939
+ the field of communication,” Annals of the International
1940
+ Communication Association (2021).
1941
+ [59] Paula Chatterjee and Rachel M Werner, “Gender dispar-
1942
+ ity in citations in high-impact journal articles,” JAMA
1943
+ Netw Open 4, e2114509 (2021).
1944
+ [60] Jacqueline M Fulvio, Ileri Akinnola, and Bradley R Pos-
1945
+ tle, “Gender (im)balance in citation practices in cognitive
1946
+ neuroscience,” J Cogn Neurosci 33, 3–7 (2021).
1947
+ [61] Dale Zhou, Eli J. Cornblath, Jennifer Stiso, Erin G. Te-
1948
+ ich, Jordan D. Dworkin, Ann S. Blevins, and Danielle S.
1949
+ Bassett, “Gender diversity statement and code notebook
1950
+ v1.0,” (2020).
1951
+ [62] Anurag Ambekar, Charles Ward, Jahangir Mohammed,
1952
+ Swapna Male, and Steven Skiena, “Name-ethnicity clas-
1953
+ sification from open sources,” in Proceedings of the 15th
1954
+ ACM SIGKDD international conference on Knowledge
1955
+ Discovery and Data Mining (2009) pp. 49–58.
1956
+ [63] Gaurav Sood and Suriyan Laohaprapanon, “Predicting
1957
+ race and ethnicity from the sequence of characters in a
1958
+ name,” arXiv preprint arXiv:1805.02109 (2018).
1959
+ [64] “Bach
1960
+ central,”
1961
+ http://www.bachcentral.com/
1962
+ midiindexcomplete.html.
1963
+ [65] “Kern scores,” http://kern.humdrum.org/search?s=t&
1964
+ keyword=Bach+Johann.
1965
+ [66] “Bach cantatas website,” https://www.bach-cantatas.
1966
+ com/Mus/BWV1-Mus.htm.
1967
+ [67] “Suzu
1968
+ midi,”
1969
+ http://www.suzumidi.com/eng/bach4.
1970
+ htm.
1971
+ [68] “Midi file tools for matlab by ken schutte,” https://
1972
+ github.com/kts/matlab-midi.
1973
+ [69] I. Momennejad, E. M. Russek, J. H. Cheong, M. M.
1974
+ Botvinick, N. D. Daw,
1975
+ and S. J. Gershman, “The suc-
1976
+ cessor representation in human reinforcement learning,”
1977
+ Nature human behaviour 1, 680–692 (2017).
1978
+ [70] S. J. Gershman, C. D. Moore, M. T. Todd, K. A. Nor-
1979
+ man, and P. B. Sederberg, “The successor representation
1980
+ and temporal context,” Neural Computation 24, 1553–
1981
+ 1568 (2012).
1982
+ [71] M. M. Garvert, R. J. Dolan,
1983
+ and T. EJ Behrens,
1984
+ “A map of abstract relational knowledge in the human
1985
+ hippocampal–entorhinal cortex,” elife 6 (2017).
1986
+ [72] M. E. J. Newman and M. Girvan, “Finding and evaluat-
1987
+ ing community structure in networks,” Physical review
1988
+ E 69, 026113 (2004).
1989
+ [73] F. V´aˇsa and B. Miˇsi´c, “Null models in network neuro-
1990
+ science,” Nature Reviews Neuroscience , 1–12 (2022).
1991
+ [74] G. Szab´o, M. J. Alava,
1992
+ and J. Kert´esz, “Clustering in
1993
+ complex networks,” Lecture Notes in Physics 650, 139–
1994
+ 162 (2004).
1995
+ [75] G. Fagiolo, “Clustering in complex directed networks,”
1996
+ Physical Review E 76, 026107 (2007).
1997
+ [76] M. P. Rombach, M. A. Porter, J. H. Fowler,
1998
+ and P. J.
1999
+ Mucha, “Core-periphery structure in networks,” SIAM
2000
+ Journal on Applied mathematics 74, 167–190 (2014).
2001
+ [77] S. P. Borgatti, M. G. Everett, “Models of core/periphery
2002
+ structures,” Social Networks 21, 375–395 (2000).
2003
+
BtAyT4oBgHgl3EQf4PqZ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtE4T4oBgHgl3EQfeA0g/content/2301.05095v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f0506f157f1a266406cedfecb93de920110b5b6ba4cd7036bae4842d6392743
3
+ size 6758859
CNE1T4oBgHgl3EQfVwTa/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b67d9d03e9d20ba329deb493846355deec9ba44184072e1507e7a1312f7949d7
3
+ size 6094893
CtE0T4oBgHgl3EQfQQAs/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8d110fb83f3c8af8d636e00814bedc46234d9d1911eeb07b4e614914bec5151
3
+ size 433440
DdAzT4oBgHgl3EQfwf7y/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5eeaf14de544b45d3b49ce1b5504a69282183ec0dcc6b56424fbe06a5c869c5
3
+ size 239563
FdE1T4oBgHgl3EQfEwOD/content/tmp_files/2301.02894v1.pdf.txt ADDED
@@ -0,0 +1,673 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE
2
+ Quantum Encryption in Phase Space using
3
+ Displacement Operator for QPSK Data Modulation
4
+
5
+
6
+
7
+
8
+ Randy Kuang
9
+ Quantropi Inc.
10
+ Ottawa, Canada
11
12
+ ORCID: 000-0002-5567-2192
13
+
14
+
15
+ Adrian Chan
16
+ Quantropi Inc.
17
+ Ottawa, Canada
18
19
+
20
+
21
+
22
+
23
+
24
+ Abstract—Quantum Public Key Distribution or QPKE with
25
+ the randomized phase shift gate was proposed by Kuang and
26
+ Bettenburg in 2020. It has been implemented theoretically with
27
+ simulations and experimentally over existing fiber optical
28
+ networks since then. QPKE can be considered as an RSA-type
29
+ scheme in optical analogue domain. QPKE was renamed as
30
+ Quantum Encryption in Phase Space or QEPS to reflect the
31
+ encryption of coherent states in phase space. QEPS with the phase
32
+ shift gate can only be applied to data modulation scheme with
33
+ phase shift keying such as quadrature phase shift keying or QPSK.
34
+ It would leak data information in amplitude once it is applied to
35
+ quadrature amplitude modulation or QAM schemes. Kuang and
36
+ Chan recently proposed a new version of QEPS called Quantum
37
+ Encryption in Phase Space with the displacement gate or QEPS-d.
38
+ It demonstrated to overcome the limitation of QEPS with the
39
+ phase shift gate. We introduced a reduced displacement operator
40
+ by ignoring the global phase factor then the reduced displacement
41
+ operators are commutable. This commutability helps our
42
+ implementation at both transmission and receiving. An arbitrary
43
+ displacement operator can be decoupled into a standard QAM
44
+ modulation with a phase shift modulation to ease our encryption
45
+ and decryption. This paper simulates the QEPS-d encryption for
46
+ QPSK data modulation to demonstrate how QEPS-d works.
47
+ Keywords—quantum cryptography, post-quantum cryptography,
48
+ PQC, quantum encryption, coherent state, phase shift gate,
49
+ displacement gate, quadrature amplitude modulation, QAM,
50
+ quadrature phase shift keying, QPSK
51
+ I. INTRODUCTION
52
+ After Shor proposed his algorithm with quantum bit or qubit
53
+ for integer factorization in 1994 [1], it has been well-understood
54
+ that classical public key algorithms such as RSA based on the
55
+ factorization problem, Diffie-Hellman or elliptic Diffie-
56
+ Hellman based on the discrete logarithm are breakable once fault
57
+ tolerate quantum computers are available. However, breaking
58
+ RSA-2048 requires a fault tolerate quantum computer to have
59
+ more than 4000 logic qubits or 4 million physical qubits. The
60
+ latest released IBM quantum computer Osprey offers 433
61
+ physical qubits [2]. The IBM roadmap shows that they will
62
+ release their next quantum computer Condor with 1121 qubits
63
+ in 2023 and qubits will raise over 100,000 in 2026. Very
64
+ recently, Yan, et al. proposed a new algorithm by combining
65
+ classical lattice reduction with quantum optimization called
66
+ Sublinear-resource Quantum Integer Factorization (SQIF) [3].
67
+ SQIF works in a noise quantum computer with a quantum
68
+ resource reduction or qubits of 4 magnitudes from 4 million of
69
+ physical qubits to less than 400 physical qubits. They have
70
+ demonstrated it for a 48-bit integer factorization with as little as
71
+ a 10-qubit quantum processor.
72
+ National Institute of Standards and Technology or NIST
73
+ started the standardization process in the late of 2017 and
74
+ completed its three rounds in 2021 [4] and announced its final
75
+ standardized algorithms for key encapsulation mechanism or
76
+ KEM and digital signature algorithms [5]. The lattice-based
77
+ Kyber [6] becomes the standardized winner for KEM and the
78
+ lattice-based Dillithium [7] and Falcon [8], as well as hash-
79
+ based SPHINCS+ [9] become the standardized algorithms for
80
+ digital signature. NIST continues its standardization for KEM in
81
+ its round 4 and reopens its standardization of digital signature
82
+ for submissions in the early 2023.
83
+ Some major cryptanalyses have made NIST finalists
84
+ vulnerable in 2022. Beullens broke Rainbow signature with a
85
+ laptop over a weekend [10], Robert broke SIDH [11] and
86
+ Castryck and Decru made its more efficient to break SIDH level
87
+ I in one hour with a single core computer [12]. Wenger, et al.
88
+ reported their secret recovery of lattice-based PQC with
89
+ machine learning by training the transformer with 300,000
90
+ samples and achieved the complete secret recovery for up to a
91
+ mid-size lattice dimension.
92
+ Some recent developments in PQC KEM and digital
93
+ signature were proposed by Kuang’s team, called Multivariate
94
+ Polynomial Public Key or MPPK by leveraging the NP-
95
+ complete problem of the Modular Diophantine Equation
96
+ Problem [14, 15, 16, 17]. MPPK offers relatively small public
97
+ key size, cipher size, and signature size, comparable to the
98
+ classical public key schemes. They also outperform NIST
99
+ finalists in performances of key generation, encryption,
100
+ decryption, signing and verification. MPPK could become good
101
+ alternatives to NIST finalists for generic use cases. MPPK
102
+ digital signature scheme is planned to participate in the NIST
103
+ reopening submission for digital signature.
104
+ On the other hand, Quantum Key Distribution or QKD was
105
+ developed over three decades since it was proposed in 1984.
106
+ Shor and Preskill proved that QKD offers the information
107
+ theoretical security in 2000 [18]. It has become commercial
108
+ ready for a distance at around 100km. To break the distance
109
+
110
+ boundary, Lucamarini, et. Al. proposed Twin-Field QKD or TF-
111
+ QKD in 2018 [19]. TF-QKD has been widely explored since
112
+ then and the longest distance of 830km was reported by Wang,
113
+ et al. in 2022 [20]. QKD generally offers a key rate at kbps level
114
+ and TF-QKD [20] achieved a key rate at 0.014 bps at 830km,
115
+ requiring more than 5 hours to establish a 256 bits of AES key.
116
+ Considering the pre-shared secret for QKD authentication,
117
+ Kuang and Bettenburg in 2020 proposed a new mechanism
118
+ using Quantum Permutation Pad or QPP to digitally distribute
119
+ quantum random [21]. The pre-shared secret is not only used for
120
+ authentication but also used to map to a QPP pad for encoding
121
+ at the sender and decoding at the receiver. QPP is implemented
122
+ into matrices operating on data column vector or Dirac ket.
123
+ Permutation matrix is unitary and reversable, so the decoding
124
+ side uses the reversed QPP. Kuang and Barbeau proposed a
125
+ universal quantum safe cryptography using QPP in 2022 [22].
126
+ QPP has been developed as a platform for digital QKD and
127
+ benchmarked by Deutsche Telekom in 2022 [23]. Leveraging
128
+ the quantum gate property of QPP, quantum encryption with
129
+ QPP implemented inside quantum computers was reported by
130
+ Kuang and Perepechaenko in 2022 [24], Perepechaenko and
131
+ Kuang in 2022 [25, 26].
132
+ To eliminate the pre-shared key in quantum key distribution
133
+ in coherent optical domain, Kuang and Bettenburg in 2020
134
+ proposed Quantum Public Key Envelope or QPKE using
135
+ randomized phase shift gate in a round-trip scheme [27],
136
+ leveraging the self-shared random secret to drive the phase shift
137
+ encoding without the specific requirement of the pre-shared
138
+ secret. QPKE was designed to operate in the existing coherent
139
+ optical networks with the same coherent detection module. It has
140
+ been simulated and experimentally implemented through the
141
+ collaborations with McGill University [28, 29, 30, 31]. QPKE
142
+ mimics the RSA-type public key scheme in coherent optical
143
+ domain. The experiment implementation with off-shelf optical
144
+ modules demonstrated the speed at 200 gbps for a distance 80km
145
+ between two communication peers. To mimicking its
146
+ implementation in a symmetric fashion with a pre-shared secret,
147
+ QPKE was renamed as Quantum Encryption in Phase Space or
148
+ QEPS with the randomized phase shift gate, reflecting to its
149
+ possible implementation in photonic quantum computer with
150
+ phase shift gate. There is one limitation of QEPS with phase shift
151
+ gate, or only applicable for data modulation schemes with phase
152
+ shift keying such as QPSK or M-PSK. Once the data modulation
153
+ is quadrature amplitude modulation or QAM, the amplitude bits
154
+ would be leaked out.
155
+ To overcome this limitation, Kuang and Chan recently
156
+ proposed to use coherent displacement operator ����� where �
157
+ denotes a coherent state [32]. This paper will report its
158
+ simulation results with QPSK data modulation. Section 2 will
159
+ briefly summarize the QEPS with the displacement operator and
160
+ section 3 will present the simulation result and the conclusion is
161
+ at the end.
162
+ II. QEPS WITH DISPLACEMENT OPERATOR
163
+ A. Coherent State and Displacement Operator
164
+
165
+ A coherent state is the specific quantum state of quantum
166
+ harmonic oscillator denoted by a Dirac ket |�⟩ where � is a
167
+ complex variable in the phase space. � can be expressed either
168
+ in terms of in-phase and quadrature as � = �� + � �� or
169
+ amplitude and phase � = |�|���. Then a coherent state can be
170
+ written as
171
+
172
+ |�⟩ = ��� + � ��� = | |�|��� ⟩
173
+ (1)
174
+ And the displacement operator is defined with creation and
175
+ annihilation operators ��� and �� through following equation
176
+
177
+
178
+ |�⟩ = �� �� ���∗ �� |0⟩ = ����� |0⟩
179
+ (2)
180
+ So
181
+
182
+
183
+ ����� = �� �� ���∗ ��
184
+ (3)
185
+ which indicates the displacement operator is unitary and
186
+ reversable:
187
+
188
+
189
+ ������ = ��� �� ���∗ ���
190
+
191
+ = ���−�� = ��� ��� (4)
192
+ Let’s apply the displacement operator ����� to a coherent state
193
+ |�⟩
194
+ ����� |�⟩ = ����� ����� |0⟩ = ��!∗��∗!���� + ��|0⟩ (5)
195
+ And in the same way
196
+ ����� |�⟩ = ����� ����� |0⟩ = �!�∗�!∗����� + ��|0⟩ (6)
197
+ So, it is clear that ����� and ����� are not commutable due to the
198
+ global phase factor ��!∗��∗! but that does not impact our
199
+ physical measurements on the amplitude and phase of a coherent
200
+ state. Therefore, we can ignore the global phase factor and
201
+ introduce
202
+ a
203
+ reduced
204
+ displacement
205
+ operator
206
+ "#��� =
207
+ ���!∗$�∗!�����. Then the reduced displacement operator "#���
208
+ and "#��� are commutable.
209
+ B. QEPS with Reduced Displacement Operator
210
+ From Eq. (5), QEPS encryption with a reduced displacement
211
+ operator "#��� can be expressed as follows
212
+ "#��� |�⟩ = "#�� + ��|0⟩ = |� + �⟩ = |%⟩ (7)
213
+ with |�⟩ to be a plain coherent state, "#��� to be an encryption
214
+ operator and |%⟩ to be the encrypted cipher coherent state. Eq.
215
+ (7) indicates that QEPS encryption with the reduced
216
+ displacement operator or QEPS-d essentially performs an
217
+ addition of two coherent states |�⟩ and |�⟩ as shown in Fig. 1.
218
+ A general displacement operator would change both the
219
+ amplitude and phase of a plain coherent state. But it can also
220
+ only change the phase of the plain coherent as shown in Fig. 1.
221
+ In this special case, the displacement operator behaves like a
222
+ phase shift operator.
223
+ The encryptor "#��� can be controlled by a pre-shared secret
224
+ in a symmetric encryption or a self-shared secret in an
225
+ asymmetric encryption as shown in QPKE [27]. In the ideal
226
+ communication case, the receiver would decrypt the cipher
227
+ coherent state |%⟩ with "#� ��� = "#�−�� : "#� ���|%⟩ =
228
+ "#�−��|%⟩ = |−� + %⟩ = |�⟩.
229
+ In coherent optical communications, optical line path would
230
+ impact a coherent state during transmission from the sender to
231
+ the receiver such as dispersion, attenuation, polarization, noise,
232
+
233
+ environment factors, etc. Thanks to the digital signal processing
234
+ or DSP, all those impacts could be compensated and corrected
235
+ in the electrical digital domain. Based on that, we only consider
236
+ the encryption and decryption in the ideal transmission situation.
237
+ A displacement operator can be decomposed into two or
238
+ more displacement operators as follows
239
+ "#��� = "#�� � "#��&� … "#��(�
240
+ And
241
+ "#���|�⟩ = "#�� � "#��&� … "#��(�|�⟩
242
+ = |� + �& + ⋯ �( + �⟩
243
+ This decomposition feature helps us to ease the implementation
244
+ of a general displacement operator with two operators: "#�� �
245
+ implemented with a standard modulation such as QAM and
246
+ "#��&� with a phase shift operator. By doing that, we can
247
+ overcome the weakness of original QPKE scheme [27].
248
+ III. QEPS-D SIMULATION
249
+ The simulation is performed with OptiSystem and the
250
+ simulation layout is illustrated in Fig. 2. The major modules are
251
+ explained in the figure caption. The only extra components are
252
+ needed to discuss here are QEPS and RNG. All others are
253
+ common for typical coherent optical communications. The
254
+ random number generator or RNG should be a cryptographic
255
+ PRNG or pseudo–Quantum Random Number Generator or
256
+ pQRNG [33] with generated random number meeting
257
+ cryptographic requirement. pQRNG is capable to take upto 16
258
+ KB of the pre-shared secret and produces pseudo random
259
+ number with excellent randomness [33]. QEPS consists of two
260
+ operators: "#�� � implemented with standard data modulation
261
+ such as 16-QAM or QPSK and "#��&� implemented with a
262
+ random phase shift operator. These two operators together offer
263
+ a coherent encryption with a generic displacement operator
264
+ "#���. QEPS produces a complex modulation form based on the
265
+ rand number generated from RNG module. The complex
266
+ modulation form dictates the signal generator to produce
267
+ voltages for IQ modulator. In Fig. 2, we omitted the data input
268
+ which is combined with QEPS. Once the coherent states are
269
+ generated from CW and pass IQ Modulator, their amplitude and
270
+ phase would be modulated by IQ modulator then the encrypted
271
+ cipher coherent states are transmitted over 80 km fiber to
272
+ coherent detector at the receiver side. Typical coherent detection
273
+ is applied to produce electrical digital signal and QEPS-d
274
+ decryption is done before DSP processing. The simulation
275
+ parameters are given in Table 1.
276
+ We simulated QEPS encryption with the reduced
277
+ displacement operator for QPSK data modulations and plot
278
+ constellation diagrams in 3 cases:
279
+ 1. Constellation right after coherent detection as shown in Fig.
280
+ 3. This constellation diagram displays the detections of
281
+ cipher coherent states together with fiber path impacts.
282
+ 2. Constellation diagram after applying the digital signal
283
+ processing as shown in Fig. 4.
284
+ TABLE 1. SIMULATION PARAMETERS ARE TABULATED.
285
+
286
+ Layout
287
+ Parameter
288
+ Sequence length
289
+ Baudrate
290
+ PM period
291
+ 65,536 bits
292
+ 28 Gbaud
293
+ 1024
294
+ CW Laser and
295
+ LO Laser
296
+ Center wavelength
297
+ Power
298
+ Linewidth
299
+ Azimuth
300
+ 1550 nm
301
+ 5 dBm
302
+ 0.1 MHz
303
+ 0.45 degree
304
+ IQ Modulator
305
+ Extinction ratio
306
+ Switching bias
307
+ Insertion loss
308
+ 20 dB
309
+ 3 V
310
+ 5 dB
311
+ EDFA
312
+ Forward pump power
313
+ Forward pump wavelength
314
+ Loss at 1550 nm
315
+ Loss at 980 nm
316
+ 13-14 mW
317
+ 980 nm
318
+ 0.1dB/m
319
+ 0.15 dB/m
320
+ Optical Fiber
321
+ Length (1 spool)
322
+ Attenuation
323
+ Dispersion
324
+ Dispersion slope
325
+ Differential group delay
326
+ Effective area
327
+ 80 km
328
+ 0.2 dB/km
329
+ 0.3 16.75 ps/nm/km
330
+ 0.4 0.075 ps/nm2/km
331
+ 0.5 0.2ps/km
332
+ 80 μm2
333
+ Figure 1. Illustration of QEPS-d is plotted in the phase space. A
334
+ special case of QEPS with phase shift operator is also plotted for
335
+ demonstration purpose of a general displacement operator "#���.
336
+ Figure 2. Simulation layout is illustrated. CW: continuous wave
337
+ source, IQ Modulator: in-phase and quadrature modulator, +,, .,and
338
+ +/ , .0: in-phase and quadrature components for IQ modulator, QEPS:
339
+ coherent encryption module driven by a random number generator or
340
+ RNG seeded with a pre-shared secret, EDFA: Erbium-Doped Fiber
341
+ Amplifier, Coherent Receiver: coherent detection, LO: local oscillator,
342
+ QEPS and DSP: digital QEPS decryption and DSP.
343
+ QEPS
344
+ and
345
+ DSP
346
+
347
+ Qy
348
+ LO
349
+ DSP
350
+ Signal Generator
351
+ Quantum
352
+ QEPS
353
+ Encoding :
354
+ RNGAliceTransmitter
355
+ Bob Receiver
356
+ BPF
357
+ Ix
358
+ Digital
359
+ cW
360
+ IQModulator
361
+ Qx
362
+ Phase De-
363
+ 80 km
364
+ Coherent
365
+ EDFA
366
+ EDFA
367
+ randomiz
368
+ Ix
369
+ Qx
370
+ Receiver
371
+ 1y
372
+ ationandy) =a(α)Iβ)= [α +β)
373
+ a(a)
374
+ lα)
375
+ Iβ)
376
+ p3. Constellation after applying digital QEPS decryption and
377
+ DSP compensations as shown in Fig. 5.
378
+
379
+ Fig. 3 is used to mimic the attacker’s coherent detection by
380
+ assuming the attacker taped good portion of the transmitted
381
+ cipher coherent signals. Then he/she would obtain a coherent
382
+ constellation diagram as shown in Fig. 3, which is randomly
383
+ scattered points. Then we also assume that the attacker knows
384
+ the data modulation scheme to be QPSK so he/she can apply
385
+ DSP to compensate and correct the impacts from the fiber path.
386
+ After applying DSP processing, he/she obtains a constellation
387
+ diagram as shown in Fig. 4 with a huge Bit-Error-Rate or BER
388
+ at 0.38. That means, it is impossible to extract any meaningful
389
+ transmitted data. If we carefully look at Fig. 4, we will notice
390
+ that there is a square-typed band with 2-unit amplitude,
391
+ indicating two QPSK modulations through QEPS-d encryption
392
+ "#�� � on a QPSK data modulation. The square band reflects the
393
+ phase shift operator "#��&� driving by the random number
394
+ generated from RNG. The central disk reflects the QPSK data
395
+ modulations have the opposite phases of "#�� � so they cancel
396
+ out and give the “zero” amplitudes.
397
+
398
+ In QPSK data modulation scheme, data values are
399
+ modulated into phases not in amplitude, so Fig. 4 would not leak
400
+ transmitted data information. So, they transmission is totally
401
+ secure.
402
+ Coherent detection turns coherent optical domain into
403
+ coherent electrical domain so digital signal processing can
404
+ compensate and correct the impacts from the optical path. That
405
+ is fantastic for QEPS encryption: encryption in coherent optical
406
+ domain or analogue encryption then decryption in electrical
407
+ digital domain before DSP processing. That means, QEPS
408
+ encryption is an analogue encryption which blocks attackers to
409
+ Figure 3. Constellation diagram of directly detected cipher coherent
410
+ states is displayed.
411
+ Figure 4. Constellation diagram of directly detected cipher coherent
412
+ states is displayed after applying the DSP processing. The BER is
413
+ 0.38.
414
+ Figure 5. Constellation diagram of QEPS decryption and DSP
415
+ processing. BER is 0.
416
+
417
+ Electrical Constellation Visualizer
418
+ 2
419
+ -1
420
+ 0
421
+ 2
422
+ Amplitude -I (a.u.)Electrical Constellation Visualizer
423
+ Amplitude
424
+ C
425
+ 2
426
+ 1
427
+ 0
428
+ 2
429
+ Amplitude -I (a.u.)Electrical Constelation Visualizer_1
430
+
431
+ 'n'e)
432
+ Q :
433
+ -10 m
434
+ 0
435
+ 10 m
436
+ Amplitude -I (a.u.)extract transmitted digital data. Of course, one can apply AES
437
+ encryption in data then transmit with coherent optical
438
+ communications which would allow attackers to extract AES
439
+ ciphertexts. That is the major difference between QEPS and
440
+ other encryption schemes.
441
+ Leveraging the feature of coherent detection, we apply
442
+ QEPS-d decryption with "#�−�� driving by the synchronized
443
+ RNG seeded with the pre-shared secret. Fig. 5 illustrates the
444
+ constellation diagram with QEPS-d decryption then DSP
445
+ processing. It is clearly seen that a QPSK constellation with
446
+ BER to be zero.
447
+ The described technique in the above can be implemented in
448
+ a round trip as shown in QPKE [27, 30] where Alice becomes
449
+ Alice Transmission and Alice receiving with a self-shared
450
+ random secret for encryption and decryption then Bob only
451
+ performs data modulations, Alice would securely extract Bob’s
452
+ transmitted data without pre-share secret. Using this way, one
453
+ trick needs to be remembered: phase shift operator must be in a
454
+ reverse
455
+ order
456
+ of
457
+ transmission
458
+ side.
459
+ The
460
+ round-trip
461
+ implementation can be also used for true random number
462
+ distributions, as an alternative of traditional QKD but the key
463
+ rate can be dramatically increased to 100s gbps. For example, in
464
+ this simulation, we could achieve 56 gbps with a single
465
+ polarization and 112 gbps with dual polarizations.
466
+ The distance can be extended with EDFA amplification as
467
+ what we have used in today’s coherent optical communications.
468
+
469
+ IV. CONCLUSION
470
+ We briefly introduced QEPS with the reduced displacement
471
+ operator proposed in [32] and applied it for QPSK data
472
+ modulation
473
+ with
474
+ QPSK
475
+ implementation
476
+ of
477
+ the
478
+ first
479
+ displacement operator "#�� � and a randomized phase shift
480
+ operator of the second displacement operator "#��&� . The
481
+ simulation demonstrates QEPS-d offers security in analogue
482
+ domain encryption and the transmitted cipher coherent states
483
+ can not be extracted without knowing the pre-shared secret in
484
+ symmetric implementation mode. It can be also implemented in
485
+ a roundtrip scheme without the pre-shared secret which can be
486
+ used
487
+ for
488
+ key
489
+ distributions
490
+ over
491
+ coherent
492
+ optical
493
+ communications. The simulation shows that we can achieve 56
494
+ gbps distributions rate with a single polarization and 112 gbps
495
+ with dual polarizations. As what we have demonstrated in [32]
496
+ that the displacement operator can also be implemented with
497
+ QAM schemes such as 16-QAM or 32-QAM. That makes
498
+ QEPS-d be a generic encryption in coherent optical domain or
499
+ analogue encryption. In the future, we plan to implement it
500
+ experimentally.
501
+
502
+ REFERENCES
503
+ [1] Shor, P.W. (1994). "Algorithms for quantum computation: discrete
504
+ logarithms and factoring". Proceedings 35th Annual Symposium on
505
+ Foundations of Computer Science. IEEE Comput. Soc. Press: 124–
506
+ 134. doi:10.1109/sfcs.1994.365700.
507
+ [2] IBM, https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-
508
+ Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-
509
+ Two.
510
+ [3] Yan, Bao, et al. "Factoring integers with sublinear resources on a
511
+ superconducting quantum processor." arXiv preprint arXiv:2212.12372
512
+ (2022).
513
+ [4] Dustin Moody: Status Update on the 3rd Round. NIST, Online:
514
+ https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-
515
+ 3rd-round/images-media/session-1-moody-nist-round-3-update.
516
+ pdf. Accessed: 2022-05-23
517
+ [5] NIST: Status Report on the Third Round of the NIST Post-Quantum
518
+ Cryptography Standardization Process. https://csrc.nist.gov/publications/
519
+ detail/nistir/8413/final (2022)
520
+ [6] Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM,
521
+ Schwabe P, Seiler G, Stehle D (2018) CRYSTALS - Kyber: A CCA-
522
+ secure module-lattice-based KEM. 2018 IEEE European Symposium on
523
+ Security and Privacy (EuroS P), pp 353–367.
524
+ [7] Lyubashevsky V (2009) Fiat-Shamir with aborts: Applications to lattice
525
+ and factoring-based signatures. Advances in Cryptology – ASIACRYPT
526
+ 2009, ed Matsui M (Springer Berlin Heidelberg, Berlin, Heidelberg), pp
527
+ 598–616.
528
+ [8] Gentry C, Peikert C, Vaikuntanathan V (2008) Trapdoors for hard lattices
529
+ and new cryptographic constructions. Proceedings of the Fortieth Annual
530
+ ACM Symposium on Theory of Computing STOC ’08 (Association for
531
+ Computing Machinery, New York, NY, USA), pp 197–206.
532
+ https://doi.org/10.1145/1374376.1374407.
533
+ [9] Bernstein DJ, Hulsing ¨ A (2019) Decisional second-preimage resistance:
534
+ When does SPR imply PRE? Advances in Cryptology – ASIACRYPT
535
+ 2019, eds Galbraith SD, Moriai S (Springer International Publishing,
536
+ Cham), pp 33–62.
537
+ [10] Beullens, W.: Breaking Rainbow Takes a Weekend on a Laptop.
538
+ Cryptology
539
+ ePrint
540
+ Archive,
541
+ Paper
542
+ 2022/214.
543
+ https://eprint.iacr.org/2022/214 (2022).
544
+ [11] Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint
545
+ Archive, Paper 2022/1038. https://eprint.iacr.org/2022/1038 (2022).
546
+ [12] Castryck, W., Decru, T.: An efficient key recovery attack on SIDH
547
+ (preliminary version). Cryptology ePrint Archive, Paper 2022/975.
548
+ https://eprint.iacr.org/2022/975 (2022).
549
+ [13] Wenger, E., Chen, M., Charton, F., Lauter, K.: SALSA: Attacking Lattice
550
+ Cryptography with Transformers. Cryptology ePrint Archive, Paper
551
+ 2022/935. https://eprint.iacr.org/2022/935 (2022).
552
+ [14] Kuang, R., Perepechaenko, M. & Barbeau, M. A new quantum-safe
553
+ multivariate polynomial public key digital signature algorithm. Sci
554
+ Rep 12, 13168 (2022). https://doi.org/10.1038/s41598-022-15843-x
555
+ [15] Kuang, R., Perepechaenko, M. & Barbeau, M. A new post-quantum
556
+ multivariate polynomial public key encapsulation algorithm. Quantum Inf
557
+ Process 21, 360 (2022). https://doi.org/10.1007/s11128-022-03712-5
558
+ [16] R. Kuang, M. Perepechaenko, R. Toth and M. Barbeau, "Benchmark
559
+ Performance of a New Quantum-Safe Multivariate Polynomial Digital
560
+ Signature Algorithm," 2022 IEEE International Conference on Quantum
561
+ Computing and Engineering (QCE), 2022, pp. 454-464, doi:
562
+ 10.1109/QCE53715.2022.00067.
563
+ [17] R. Kuang and M. Perepechaenko, "Digital Signature Performance of a
564
+ New
565
+ Quantum
566
+ Safe
567
+ Multivariate
568
+ Polynomial
569
+ Public
570
+ Key
571
+ Algorithm," 2022 7th International Conference on Computer and
572
+ Communication
573
+ Systems
574
+ (ICCCS),
575
+ 2022,
576
+ pp.
577
+ 419-424,
578
+ doi:
579
+ 10.1109/ICCCS55155.2022.9846785.
580
+ [18] Shor PW, Preskill J. Simple proof of security of the BB84 quantum key
581
+ distribution protocol Physical Review Letters. 2000 Jul;85(2):441-444.
582
+ DOI: 10.1103/physrevlett.85.441. PMID: 10991303.
583
+ [19] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the
584
+ rate–distance limit of quantum key distribution without quantum
585
+ repeaters. Nature 557(7705), 400–403 (2018).
586
+ [20] Wang, S., Yin, ZQ., He, DY. et al. Twin-field quantum key distribution
587
+ over
588
+ 830-km
589
+ fibre. Nat.
590
+ Photon. 16,
591
+ 154–161
592
+ (2022).
593
+ https://doi.org/10.1038/s41566-021-00928-2
594
+ [21] R. Kuang and N. Bettenburg, "Shannon Perfect Secrecy in a Discrete
595
+ Hilbert Space," 2020 IEEE International Conference on Quantum
596
+ Computing and Engineering (QCE), 2020, pp. 249-255, doi:
597
+ 10.1109/QCE49297.2020.00039.
598
+
599
+ [22] Kuang, R., Barbeau, M. Quantum permutation pad for universal quantum-
600
+ safe
601
+ cryptography. Quantum
602
+ Inf
603
+ Process 21,
604
+ 211
605
+ (2022).
606
+ https://doi.org/10.1007/s11128-022-03557-y.
607
+ [23] D. Lou et al., "Benchmark Performance of Digital QKD Platform Using
608
+ Quantum Permutation Pad," in IEEE Access, vol. 10, pp. 107066-107076,
609
+ 2022, doi: 10.1109/ACCESS.2022.3212738.
610
+ [24] Kuang, R., Perepechaenko, M. Quantum encryption with quantum
611
+ permutation pad in IBMQ systems. EPJ Quantum Technol. 9, 26
612
+ (2022). https://doi.org/10.1140/epjqt/s40507-022-00145-y.
613
+ [25] M. Perepechaenko and R. Kuang, "Quantum Encrypted Communication
614
+ between Two IBMQ Systems Using Quantum Permutation Pad," 2022
615
+ 11th International Conference on Communications, Circuits and Systems
616
+ (ICCCAS),
617
+ 2022,
618
+ pp.
619
+ 146-152,
620
+ doi:
621
+ 10.1109/ICCCAS55266.2022.9824836.
622
+ [26] M. Perepechaenko and R. Kuang, “Quantum encryption and decryption
623
+ in IBMQ systems using quantum Permutation Pad,” Journal of
624
+ Communications, vol. 17, no. 12, December 2022.
625
+ [27] R. Kuang and N. Bettenburg, "Quantum Public Key Distribution using
626
+ Randomized Glauber States," 2020 IEEE International Conference on
627
+ Quantum Computing and Engineering (QCE), 2020, pp. 191-196, doi:
628
+ 10.1109/QCE49297.2020.00032.
629
+ [28] A. Chan, M. Khalil, K. A. Shahriar, L. R. Chen, D. V. Plant and R. Kuang,
630
+ "Security Analysis of a Next Generation TF-QKD for Secure Public Key
631
+ Distribution with Coherent Detection over Classical Optical Fiber
632
+ Networks," 2021 7th International Conference on Computer and
633
+ Communications
634
+ (ICCC),
635
+ 2021,
636
+ pp.
637
+ 416-420,
638
+ doi:
639
+ 10.1109/ICCC54389.2021.9674320.
640
+ [29] A. Chan, M. Khalil, K. A. Shahriar, L. R. Chen, D. V. Plant and R. Kuang,
641
+ "On the Security of an Optical Layer Encryption Using Coherent-based
642
+ TF-QKD in Classical Optical Fiber Links," 2022 4th International
643
+ Conference on Computer Communication and the Internet (ICCCI), 2022,
644
+ pp. 105-110, doi: 10.1109/ICCCI55554.2022.9850244.
645
+ [30] K. A. Shahriar, M. Khalil, A. Chan, L. R. Chen, R. Kuang and D. V. Plant,
646
+ "Physical-Layer Secure Optical Communication Based on Randomized
647
+ Phase Space in Pseudo-3-Party Infrastructure," 2022 Conference on
648
+ Lasers and Electro-Optics (CLEO), 2022, pp. 1-2.
649
+ [31] K. A. Shahriar, M. Khalil, A. Chan, L. R. Chen, R. Kuang and D. V. Plant,
650
+ "Security Performance of Physical-Layer Encryption Based on
651
+ Randomized Phase Space in Optical Fiber Communication," 2022 IEEE
652
+ Photonics
653
+ Conference
654
+ (IPC),
655
+ 2022,
656
+ pp.
657
+ 1-2,
658
+ doi:
659
+ 10.1109/IPC53466.2022.9975665.
660
+ [32] Kuang, R., Chan A.. Quantum encryption in Phase Space with
661
+ Displacement Operators. EPJ Quantum Technol., submitted (2022)
662
+ [33] R. Kuang, D. Lou, A. He, C. McKenzie and M. Redding, "Pseudo
663
+ Quantum Random Number Generator with Quantum Permutation
664
+ Pad," 2021 IEEE International Conference on Quantum Computing and
665
+ Engineering
666
+ (QCE),
667
+ 2021,
668
+ pp.
669
+ 359-364,
670
+ doi:
671
+ 10.1109/QCE52317.2021.00053.
672
+
673
+
FdE1T4oBgHgl3EQfEwOD/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf,len=462
2
+ page_content='XXX-X-XXXX-XXXX-X/XX/$XX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
3
+ page_content='00 ©20XX IEEE Quantum Encryption in Phase Space using Displacement Operator for QPSK Data Modulation Randy Kuang Quantropi Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
4
+ page_content=' Ottawa, Canada randy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
5
+ page_content='kuang@quantropi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
6
+ page_content='com ORCID: 000-0002-5567-2192 Adrian Chan Quantropi Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
7
+ page_content=' Ottawa, Canada adrian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
8
+ page_content='chan@quantropi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
9
+ page_content='com Abstract—Quantum Public Key Distribution or QPKE with the randomized phase shift gate was proposed by Kuang and Bettenburg in 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
10
+ page_content=' It has been implemented theoretically with simulations and experimentally over existing fiber optical networks since then.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
11
+ page_content=' QPKE can be considered as an RSA-type scheme in optical analogue domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
12
+ page_content=' QPKE was renamed as Quantum Encryption in Phase Space or QEPS to reflect the encryption of coherent states in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
13
+ page_content=' QEPS with the phase shift gate can only be applied to data modulation scheme with phase shift keying such as quadrature phase shift keying or QPSK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
14
+ page_content=' It would leak data information in amplitude once it is applied to quadrature amplitude modulation or QAM schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
15
+ page_content=' Kuang and Chan recently proposed a new version of QEPS called Quantum Encryption in Phase Space with the displacement gate or QEPS-d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
16
+ page_content=' It demonstrated to overcome the limitation of QEPS with the phase shift gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
17
+ page_content=' We introduced a reduced displacement operator by ignoring the global phase factor then the reduced displacement operators are commutable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
18
+ page_content=' This commutability helps our implementation at both transmission and receiving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
19
+ page_content=' An arbitrary displacement operator can be decoupled into a standard QAM modulation with a phase shift modulation to ease our encryption and decryption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
20
+ page_content=' This paper simulates the QEPS-d encryption for QPSK data modulation to demonstrate how QEPS-d works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
21
+ page_content=' Keywords—quantum cryptography, post-quantum cryptography, PQC, quantum encryption, coherent state, phase shift gate, displacement gate, quadrature amplitude modulation, QAM, quadrature phase shift keying, QPSK I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
22
+ page_content=' INTRODUCTION After Shor proposed his algorithm with quantum bit or qubit for integer factorization in 1994 [1], it has been well-understood that classical public key algorithms such as RSA based on the factorization problem, Diffie-Hellman or elliptic Diffie- Hellman based on the discrete logarithm are breakable once fault tolerate quantum computers are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
23
+ page_content=' However, breaking RSA-2048 requires a fault tolerate quantum computer to have more than 4000 logic qubits or 4 million physical qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
24
+ page_content=' The latest released IBM quantum computer Osprey offers 433 physical qubits [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
25
+ page_content=' The IBM roadmap shows that they will release their next quantum computer Condor with 1121 qubits in 2023 and qubits will raise over 100,000 in 2026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
26
+ page_content=' Very recently, Yan, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
27
+ page_content=' proposed a new algorithm by combining classical lattice reduction with quantum optimization called Sublinear-resource Quantum Integer Factorization (SQIF) [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
28
+ page_content=' SQIF works in a noise quantum computer with a quantum resource reduction or qubits of 4 magnitudes from 4 million of physical qubits to less than 400 physical qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
29
+ page_content=' They have demonstrated it for a 48-bit integer factorization with as little as a 10-qubit quantum processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
30
+ page_content=' National Institute of Standards and Technology or NIST started the standardization process in the late of 2017 and completed its three rounds in 2021 [4] and announced its final standardized algorithms for key encapsulation mechanism or KEM and digital signature algorithms [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
31
+ page_content=' The lattice-based Kyber [6] becomes the standardized winner for KEM and the lattice-based Dillithium [7] and Falcon [8], as well as hash- based SPHINCS+ [9] become the standardized algorithms for digital signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
32
+ page_content=' NIST continues its standardization for KEM in its round 4 and reopens its standardization of digital signature for submissions in the early 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
33
+ page_content=' Some major cryptanalyses have made NIST finalists vulnerable in 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
34
+ page_content=' Beullens broke Rainbow signature with a laptop over a weekend [10], Robert broke SIDH [11] and Castryck and Decru made its more efficient to break SIDH level I in one hour with a single core computer [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
35
+ page_content=' Wenger, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
36
+ page_content=' reported their secret recovery of lattice-based PQC with machine learning by training the transformer with 300,000 samples and achieved the complete secret recovery for up to a mid-size lattice dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
37
+ page_content=' Some recent developments in PQC KEM and digital signature were proposed by Kuang’s team, called Multivariate Polynomial Public Key or MPPK by leveraging the NP- complete problem of the Modular Diophantine Equation Problem [14, 15, 16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
38
+ page_content=' MPPK offers relatively small public key size, cipher size, and signature size, comparable to the classical public key schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
39
+ page_content=' They also outperform NIST finalists in performances of key generation, encryption, decryption, signing and verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
40
+ page_content=' MPPK could become good alternatives to NIST finalists for generic use cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
41
+ page_content=' MPPK digital signature scheme is planned to participate in the NIST reopening submission for digital signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
42
+ page_content=' On the other hand, Quantum Key Distribution or QKD was developed over three decades since it was proposed in 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
43
+ page_content=' Shor and Preskill proved that QKD offers the information theoretical security in 2000 [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
44
+ page_content=' It has become commercial ready for a distance at around 100km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
45
+ page_content=' To break the distance boundary, Lucamarini, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
46
+ page_content=' Al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
47
+ page_content=' proposed Twin-Field QKD or TF- QKD in 2018 [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
48
+ page_content=' TF-QKD has been widely explored since then and the longest distance of 830km was reported by Wang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
49
+ page_content=' in 2022 [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
50
+ page_content=' QKD generally offers a key rate at kbps level and TF-QKD [20] achieved a key rate at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
51
+ page_content='014 bps at 830km, requiring more than 5 hours to establish a 256 bits of AES key.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
52
+ page_content=' Considering the pre-shared secret for QKD authentication, Kuang and Bettenburg in 2020 proposed a new mechanism using Quantum Permutation Pad or QPP to digitally distribute quantum random [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
53
+ page_content=' The pre-shared secret is not only used for authentication but also used to map to a QPP pad for encoding at the sender and decoding at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
54
+ page_content=' QPP is implemented into matrices operating on data column vector or Dirac ket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
55
+ page_content=' Permutation matrix is unitary and reversable, so the decoding side uses the reversed QPP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
56
+ page_content=' Kuang and Barbeau proposed a universal quantum safe cryptography using QPP in 2022 [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
57
+ page_content=' QPP has been developed as a platform for digital QKD and benchmarked by Deutsche Telekom in 2022 [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
58
+ page_content=' Leveraging the quantum gate property of QPP, quantum encryption with QPP implemented inside quantum computers was reported by Kuang and Perepechaenko in 2022 [24], Perepechaenko and Kuang in 2022 [25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
59
+ page_content=' To eliminate the pre-shared key in quantum key distribution in coherent optical domain, Kuang and Bettenburg in 2020 proposed Quantum Public Key Envelope or QPKE using randomized phase shift gate in a round-trip scheme [27], leveraging the self-shared random secret to drive the phase shift encoding without the specific requirement of the pre-shared secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
60
+ page_content=' QPKE was designed to operate in the existing coherent optical networks with the same coherent detection module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
61
+ page_content=' It has been simulated and experimentally implemented through the collaborations with McGill University [28, 29, 30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
62
+ page_content=' QPKE mimics the RSA-type public key scheme in coherent optical domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
63
+ page_content=' The experiment implementation with off-shelf optical modules demonstrated the speed at 200 gbps for a distance 80km between two communication peers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
64
+ page_content=' To mimicking its implementation in a symmetric fashion with a pre-shared secret, QPKE was renamed as Quantum Encryption in Phase Space or QEPS with the randomized phase shift gate, reflecting to its possible implementation in photonic quantum computer with phase shift gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
65
+ page_content=' There is one limitation of QEPS with phase shift gate, or only applicable for data modulation schemes with phase shift keying such as QPSK or M-PSK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
66
+ page_content=' Once the data modulation is quadrature amplitude modulation or QAM, the amplitude bits would be leaked out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
67
+ page_content=' To overcome this limitation, Kuang and Chan recently proposed to use coherent displacement operator ����� where � denotes a coherent state [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
68
+ page_content=' This paper will report its simulation results with QPSK data modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
69
+ page_content=' Section 2 will briefly summarize the QEPS with the displacement operator and section 3 will present the simulation result and the conclusion is at the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
70
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
71
+ page_content=' QEPS WITH DISPLACEMENT OPERATOR A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
72
+ page_content=' Coherent State and Displacement Operator A coherent state is the specific quantum state of quantum harmonic oscillator denoted by a Dirac ket |�⟩ where � is a complex variable in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
73
+ page_content=' � can be expressed either in terms of in-phase and quadrature as � = �� + � �� or amplitude and phase � = |�|���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
74
+ page_content=' Then a coherent state can be ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
75
+ page_content='written as ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
76
+ page_content='|�⟩ = ��� + � ��� = | |�|��� ⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
77
+ page_content='(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
78
+ page_content='And the displacement operator is defined with creation and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
79
+ page_content='annihilation operators ��� and �� through following equation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
80
+ page_content='|�⟩ = �� �� ���∗ �� |0⟩ = ����� |0⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
81
+ page_content='(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
82
+ page_content='So ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
83
+ page_content='����� = �� �� ���∗ �� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
84
+ page_content='(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
85
+ page_content='which indicates the displacement operator is unitary and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
86
+ page_content='reversable: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
87
+ page_content='������ = ��� �� ���∗ ��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
88
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
89
+ page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
90
+ page_content='���−�� = ��� ��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
91
+ page_content='(4) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
92
+ page_content='Let’s apply the displacement operator ����� to a coherent state ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
93
+ page_content='|�⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
94
+ page_content='����� |�⟩ = ����� ����� |0⟩ = ��!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
95
+ page_content='∗��∗!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
96
+ page_content='���� + ��|0⟩ (5) And in the same way ����� |�⟩ = ����� ����� |0⟩ = �!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
97
+ page_content='�∗�!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
98
+ page_content='∗����� + ��|0⟩ (6) So, it is clear that ����� and ����� are not commutable due to the global phase factor ��!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
99
+ page_content='∗��∗!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
100
+ page_content=' but that does not impact our physical measurements on the amplitude and phase of a coherent state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
101
+ page_content=' Therefore, we can ignore the global phase factor and introduce a reduced displacement operator "#��� = ���!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
102
+ page_content='∗$�∗!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
103
+ page_content='�����.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
104
+ page_content=' Then the reduced displacement operator "#��� and "#��� are commutable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
105
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
106
+ page_content=' QEPS with Reduced Displacement Operator From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
107
+ page_content=' (5), QEPS encryption with a reduced displacement operator "#��� can be expressed as follows "#��� |�⟩ = "#�� + ��|0⟩ = |� + �⟩ = |%⟩ (7) with |�⟩ to be a plain coherent state, "#��� to be an encryption operator and |%⟩ to be the encrypted cipher coherent state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
108
+ page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
109
+ page_content=' (7) indicates that QEPS encryption with the reduced displacement operator or QEPS-d essentially performs an addition of two coherent states |�⟩ and |�⟩ as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
110
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
111
+ page_content=' A general displacement operator would change both the amplitude and phase of a plain coherent state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
112
+ page_content=' But it can also only change the phase of the plain coherent as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
113
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
114
+ page_content=' In this special case, the displacement operator behaves like a phase shift operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
115
+ page_content=' The encryptor "#��� can be controlled by a pre-shared secret in a symmetric encryption or a self-shared secret in an asymmetric encryption as shown in QPKE [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
116
+ page_content=' In the ideal communication case, the receiver would decrypt the cipher coherent state |%⟩ with "#� ��� = "#�−�� : "#� ���|%⟩ = "#�−��|%⟩ = |−� + %⟩ = |�⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
117
+ page_content=' In coherent optical communications, optical line path would impact a coherent state during transmission from the sender to the receiver such as dispersion, attenuation, polarization, noise, environment factors, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
118
+ page_content=' Thanks to the digital signal processing or DSP, all those impacts could be compensated and corrected in the electrical digital domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
119
+ page_content=' Based on that, we only consider the encryption and decryption in the ideal transmission situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
120
+ page_content=' A displacement operator can be decomposed into two or more displacement operators as follows "#��� = "#�� � "#��&� … "#��(� And "#���|�⟩ = "#�� � "#��&� … "#��(�|�⟩ = |� + �& + ⋯ �( + �⟩ This decomposition feature helps us to ease the implementation of a general displacement operator with two operators: "#�� � implemented with a standard modulation such as QAM and "#��&� with a phase shift operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
121
+ page_content=' By doing that, we can overcome the weakness of original QPKE scheme [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
122
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
123
+ page_content=' QEPS-D SIMULATION The simulation is performed with OptiSystem and the simulation layout is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
124
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
125
+ page_content=' The major modules are explained in the figure caption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
126
+ page_content=' The only extra components are needed to discuss here are QEPS and RNG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
127
+ page_content=' All others are common for typical coherent optical communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
128
+ page_content=' The random number generator or RNG should be a cryptographic PRNG or pseudo–Quantum Random Number Generator or pQRNG [33] with generated random number meeting cryptographic requirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
129
+ page_content=' pQRNG is capable to take upto 16 KB of the pre-shared secret and produces pseudo random number with excellent randomness [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
130
+ page_content=' QEPS consists of two operators: "#�� � implemented with standard data modulation such as 16-QAM or QPSK and "#��&� implemented with a random phase shift operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
131
+ page_content=' These two operators together offer a coherent encryption with a generic displacement operator "#���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
132
+ page_content=' QEPS produces a complex modulation form based on the rand number generated from RNG module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
133
+ page_content=' The complex modulation form dictates the signal generator to produce voltages for IQ modulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
134
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
135
+ page_content=' 2, we omitted the data input which is combined with QEPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
136
+ page_content=' Once the coherent states are generated from CW and pass IQ Modulator, their amplitude and phase would be modulated by IQ modulator then the encrypted cipher coherent states are transmitted over 80 km fiber to coherent detector at the receiver side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
137
+ page_content=' Typical coherent detection is applied to produce electrical digital signal and QEPS-d decryption is done before DSP processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
138
+ page_content=' The simulation parameters are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
139
+ page_content=' We simulated QEPS encryption with the reduced displacement operator for QPSK data modulations and plot constellation diagrams in 3 cases: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
140
+ page_content=' Constellation right after coherent detection as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
141
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
142
+ page_content=' This constellation diagram displays the detections of cipher coherent states together with fiber path impacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
143
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
144
+ page_content=' Constellation diagram after applying the digital signal processing as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
145
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
146
+ page_content=' TABLE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
147
+ page_content=' SIMULATION PARAMETERS ARE TABULATED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
148
+ page_content=' Layout Parameter Sequence length Baudrate PM period 65,536 bits 28 Gbaud 1024 CW Laser and LO Laser Center wavelength Power Linewidth Azimuth 1550 nm 5 dBm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
149
+ page_content='1 MHz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
150
+ page_content='45 degree IQ Modulator Extinction ratio Switching bias Insertion loss 20 dB 3 V 5 dB EDFA Forward pump power Forward pump wavelength Loss at 1550 nm Loss at 980 nm 13-14 mW 980 nm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
151
+ page_content='1dB/m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
152
+ page_content='15 dB/m Optical Fiber Length (1 spool) Attenuation Dispersion Dispersion slope Differential group delay Effective area 80 km 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
153
+ page_content='2 dB/km 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
154
+ page_content='3 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
155
+ page_content='75 ps/nm/km 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
156
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
157
+ page_content='075 ps/nm2/km 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
158
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
159
+ page_content='2ps/km 80 μm2 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
160
+ page_content=' Illustration of QEPS-d is plotted in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
161
+ page_content=' A special case of QEPS with phase shift operator is also plotted for demonstration purpose of a general displacement operator "#���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
162
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
163
+ page_content=' Simulation layout is illustrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
164
+ page_content=' CW: continuous wave source, IQ Modulator: in-phase and quadrature modulator, +,, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
165
+ page_content=',and +/ , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
166
+ page_content='0: in-phase and quadrature components for IQ modulator, QEPS: coherent encryption module driven by a random number generator or RNG seeded with a pre-shared secret, EDFA: Erbium-Doped Fiber Amplifier, Coherent Receiver: coherent detection, LO: local oscillator, QEPS and DSP: digital QEPS decryption and DSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
167
+ page_content=' QEPS and DSP Qy LO DSP Signal Generator Quantum QEPS Encoding : RNGAliceTransmitter Bob Receiver BPF Ix Digital cW IQModulator Qx Phase De- 80 km Coherent EDFA EDFA randomiz Ix Qx Receiver 1y ationandy) =a(α)Iβ)= [α +β) a(a) lα) Iβ) p3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
168
+ page_content=' Constellation after applying digital QEPS decryption and DSP compensations as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
169
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
170
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
171
+ page_content=' 3 is used to mimic the attacker’s coherent detection by assuming the attacker taped good portion of the transmitted cipher coherent signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
172
+ page_content=' Then he/she would obtain a coherent constellation diagram as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
173
+ page_content=' 3, which is randomly scattered points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
174
+ page_content=' Then we also assume that the attacker knows the data modulation scheme to be QPSK so he/she can apply DSP to compensate and correct the impacts from the fiber path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
175
+ page_content=' After applying DSP processing, he/she obtains a constellation diagram as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
176
+ page_content=' 4 with a huge Bit-Error-Rate or BER at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
177
+ page_content='38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
178
+ page_content=' That means, it is impossible to extract any meaningful transmitted data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
179
+ page_content=' If we carefully look at Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
180
+ page_content=' 4, we will notice that there is a square-typed band with 2-unit amplitude, indicating two QPSK modulations through QEPS-d encryption "#�� � on a QPSK data modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
181
+ page_content=' The square band reflects the phase shift operator "#��&� driving by the random number generated from RNG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
182
+ page_content=' The central disk reflects the QPSK data modulations have the opposite phases of "#�� � so they cancel out and give the “zero” amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
183
+ page_content=' In QPSK data modulation scheme, data values are modulated into phases not in amplitude, so Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
184
+ page_content=' 4 would not leak transmitted data information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
185
+ page_content=' So, they transmission is totally secure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
186
+ page_content=' Coherent detection turns coherent optical domain into coherent electrical domain so digital signal processing can compensate and correct the impacts from the optical path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
187
+ page_content=' That is fantastic for QEPS encryption: encryption in coherent optical domain or analogue encryption then decryption in electrical digital domain before DSP processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
188
+ page_content=' That means, QEPS encryption is an analogue encryption which blocks attackers to Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
189
+ page_content=' Constellation diagram of directly detected cipher coherent states is displayed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
190
+ page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
191
+ page_content=' Constellation diagram of directly detected cipher coherent states is displayed after applying the DSP processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
192
+ page_content=' The BER is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
193
+ page_content='38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
194
+ page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
195
+ page_content=' Constellation diagram of QEPS decryption and DSP processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
196
+ page_content=' BER is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
197
+ page_content=' Electrical Constellation Visualizer 2 1 0 2 Amplitude -I (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
198
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
199
+ page_content=' )Electrical Constellation Visualizer Amplitude C 2 1 0 2 Amplitude -I (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
200
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
201
+ page_content=" )Electrical Constelation Visualizer_1 山 'n'e) Q : 10 m 0 10 m Amplitude -I (a." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
202
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
203
+ page_content=' )extract transmitted digital data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
204
+ page_content=' Of course, one can apply AES encryption in data then transmit with coherent optical communications which would allow attackers to extract AES ciphertexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
205
+ page_content=' That is the major difference between QEPS and other encryption schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
206
+ page_content=' Leveraging the feature of coherent detection, we apply QEPS-d decryption with "#�−�� driving by the synchronized RNG seeded with the pre-shared secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
207
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
208
+ page_content=' 5 illustrates the constellation diagram with QEPS-d decryption then DSP processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
209
+ page_content=' It is clearly seen that a QPSK constellation with BER to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
210
+ page_content=' The described technique in the above can be implemented in a round trip as shown in QPKE [27, 30] where Alice becomes Alice Transmission and Alice receiving with a self-shared random secret for encryption and decryption then Bob only performs data modulations, Alice would securely extract Bob’s transmitted data without pre-share secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
211
+ page_content=' Using this way, one trick needs to be remembered: phase shift operator must be in a reverse order of transmission side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
212
+ page_content=' The round-trip implementation can be also used for true random number distributions, as an alternative of traditional QKD but the key rate can be dramatically increased to 100s gbps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
213
+ page_content=' For example, in this simulation, we could achieve 56 gbps with a single polarization and 112 gbps with dual polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
214
+ page_content=' The distance can be extended with EDFA amplification as what we have used in today’s coherent optical communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
215
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
216
+ page_content=' CONCLUSION We briefly introduced QEPS with the reduced displacement operator proposed in [32] and applied it for QPSK data modulation with QPSK implementation of the first displacement operator "#�� � and a randomized phase shift operator of the second displacement operator "#��&� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
217
+ page_content=' The simulation demonstrates QEPS-d offers security in analogue domain encryption and the transmitted cipher coherent states can not be extracted without knowing the pre-shared secret in symmetric implementation mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
218
+ page_content=' It can be also implemented in a roundtrip scheme without the pre-shared secret which can be used for key distributions over coherent optical communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
219
+ page_content=' The simulation shows that we can achieve 56 gbps distributions rate with a single polarization and 112 gbps with dual polarizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
220
+ page_content=' As what we have demonstrated in [32] that the displacement operator can also be implemented with QAM schemes such as 16-QAM or 32-QAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
221
+ page_content=' That makes QEPS-d be a generic encryption in coherent optical domain or analogue encryption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
222
+ page_content=' In the future, we plan to implement it experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
223
+ page_content=' REFERENCES [1] Shor, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
224
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
225
+ page_content=' (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
226
+ page_content=' "Algorithms for quantum computation: discrete logarithms and factoring".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
227
+ page_content=' Proceedings 35th Annual Symposium on Foundations of Computer Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
228
+ page_content=' IEEE Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
229
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
230
+ page_content=' Press: 124– 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
231
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
232
+ page_content='1109/sfcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
233
+ page_content='1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
234
+ page_content='365700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
235
+ page_content=' [2] IBM, https://newsroom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
236
+ page_content='ibm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
237
+ page_content='com/2022-11-09-IBM-Unveils-400-Qubit- Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System- Two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
238
+ page_content=' [3] Yan, Bao, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
239
+ page_content=' "Factoring integers with sublinear resources on a superconducting quantum processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
240
+ page_content='" arXiv preprint arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
241
+ page_content='12372 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
242
+ page_content=' [4] Dustin Moody: Status Update on the 3rd Round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
243
+ page_content=' NIST, Online: https://csrc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
244
+ page_content='nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
245
+ page_content='gov/CSRC/media/Presentations/status-update-on-the- 3rd-round/images-media/session-1-moody-nist-round-3-update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
246
+ page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
247
+ page_content=' Accessed: 2022-05-23 [5] NIST: Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
248
+ page_content=' https://csrc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
249
+ page_content='nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
250
+ page_content='gov/publications/ detail/nistir/8413/final (2022) [6] Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler G, Stehle D (2018) CRYSTALS - Kyber: A CCA- secure module-lattice-based KEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
251
+ page_content=' 2018 IEEE European Symposium on Security and Privacy (EuroS P), pp 353–367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
252
+ page_content=' [7] Lyubashevsky V (2009) Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
253
+ page_content=' Advances in Cryptology – ASIACRYPT 2009, ed Matsui M (Springer Berlin Heidelberg, Berlin, Heidelberg), pp 598–616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
254
+ page_content=' [8] Gentry C, Peikert C, Vaikuntanathan V (2008) Trapdoors for hard lattices and new cryptographic constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
255
+ page_content=' Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing STOC ’08 (Association for Computing Machinery, New York, NY, USA), pp 197–206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
256
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
257
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
258
+ page_content='1145/1374376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
259
+ page_content='1374407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
260
+ page_content=' [9] Bernstein DJ, Hulsing ¨ A (2019) Decisional second-preimage resistance: When does SPR imply PRE?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
261
+ page_content=' Advances in Cryptology – ASIACRYPT 2019, eds Galbraith SD, Moriai S (Springer International Publishing, Cham), pp 33–62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
262
+ page_content=' [10] Beullens, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
263
+ page_content=': Breaking Rainbow Takes a Weekend on a Laptop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
264
+ page_content=' Cryptology ePrint Archive, Paper 2022/214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
265
+ page_content=' https://eprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
266
+ page_content='iacr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
267
+ page_content='org/2022/214 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
268
+ page_content=' [11] Robert, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
269
+ page_content=': Breaking SIDH in polynomial time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
270
+ page_content=' Cryptology ePrint Archive, Paper 2022/1038.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
271
+ page_content=' https://eprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
272
+ page_content='iacr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
273
+ page_content='org/2022/1038 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
274
+ page_content=' [12] Castryck, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
275
+ page_content=', Decru, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
276
+ page_content=': An efficient key recovery attack on SIDH (preliminary version).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
277
+ page_content=' Cryptology ePrint Archive, Paper 2022/975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
278
+ page_content=' https://eprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
279
+ page_content='iacr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
280
+ page_content='org/2022/975 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
281
+ page_content=' [13] Wenger, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
282
+ page_content=', Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
283
+ page_content=', Charton, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
284
+ page_content=', Lauter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
285
+ page_content=': SALSA: Attacking Lattice Cryptography with Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
286
+ page_content=' Cryptology ePrint Archive, Paper 2022/935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
287
+ page_content=' https://eprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
288
+ page_content='iacr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
289
+ page_content='org/2022/935 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
290
+ page_content=' [14] Kuang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
291
+ page_content=', Perepechaenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
292
+ page_content=' & Barbeau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
293
+ page_content=' A new quantum-safe multivariate polynomial public key digital signature algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
294
+ page_content=' Sci Rep 12, 13168 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
295
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
296
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
297
+ page_content='1038/s41598-022-15843-x [15] Kuang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
298
+ page_content=', Perepechaenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
299
+ page_content=' & Barbeau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
300
+ page_content=' A new post-quantum multivariate polynomial public key encapsulation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
301
+ page_content=' Quantum Inf Process 21, 360 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
302
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
303
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
304
+ page_content='1007/s11128-022-03712-5 [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
305
+ page_content=' Kuang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
306
+ page_content=' Perepechaenko, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
307
+ page_content=' Toth and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
308
+ page_content=' Barbeau, "Benchmark Performance of a New Quantum-Safe Multivariate Polynomial Digital Signature Algorithm," 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
309
+ page_content=' 454-464, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
310
+ page_content='1109/QCE53715.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
311
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
312
+ page_content='00067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
313
+ page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
314
+ page_content=' Kuang and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
315
+ page_content=' Perepechaenko, "Digital Signature Performance of a New Quantum Safe Multivariate Polynomial Public Key Algorithm," 2022 7th International Conference on Computer and Communication Systems (ICCCS), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
316
+ page_content=' 419-424, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
317
+ page_content='1109/ICCCS55155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
318
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
319
+ page_content='9846785.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
320
+ page_content=' [18] Shor PW, Preskill J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
321
+ page_content=' Simple proof of security of the BB84 quantum key distribution protocol Physical Review Letters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
322
+ page_content=' 2000 Jul;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
323
+ page_content='85(2):441-444.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
324
+ page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
325
+ page_content='1103/physrevlett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
326
+ page_content='85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
327
+ page_content='441.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
328
+ page_content=' PMID: 10991303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
329
+ page_content=' [19] Lucamarini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
330
+ page_content=', Yuan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
331
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
332
+ page_content=', Dynes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
333
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
334
+ page_content=', Shields, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
335
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
336
+ page_content=' : Overcoming the rate–distance limit of quantum key distribution without quantum repeaters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
337
+ page_content=' Nature 557(7705), 400–403 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
338
+ page_content=' [20] Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
339
+ page_content=', Yin, ZQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
340
+ page_content=', He, DY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
341
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
342
+ page_content=' Twin-field quantum key distribution over 830-km fibre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
343
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
344
+ page_content=' Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
345
+ page_content=' 16, 154–161 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
346
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
347
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
348
+ page_content='1038/s41566-021-00928-2 [21] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
349
+ page_content=' Kuang and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
350
+ page_content=' Bettenburg, "Shannon Perfect Secrecy in a Discrete Hilbert Space," 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
351
+ page_content=' 249-255, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
352
+ page_content='1109/QCE49297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
353
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
354
+ page_content='00039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
355
+ page_content=' [22] Kuang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
356
+ page_content=', Barbeau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
357
+ page_content=' Quantum permutation pad for universal quantum- safe cryptography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
358
+ page_content=' Quantum Inf Process 21, 211 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
359
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
360
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
361
+ page_content='1007/s11128-022-03557-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
362
+ page_content=' [23] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
363
+ page_content=' Lou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
364
+ page_content=', "Benchmark Performance of Digital QKD Platform Using Quantum Permutation Pad," in IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
365
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
366
+ page_content=' 107066-107076, 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
367
+ page_content='1109/ACCESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
368
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
369
+ page_content='3212738.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
370
+ page_content=' [24] Kuang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
371
+ page_content=', Perepechaenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
372
+ page_content=' Quantum encryption with quantum permutation pad in IBMQ systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
373
+ page_content=' EPJ Quantum Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
374
+ page_content=' 9, 26 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
375
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
376
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
377
+ page_content='1140/epjqt/s40507-022-00145-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
378
+ page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
379
+ page_content=' Perepechaenko and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
380
+ page_content=' Kuang, "Quantum Encrypted Communication between Two IBMQ Systems Using Quantum Permutation Pad," 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
381
+ page_content=' 146-152, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
382
+ page_content='1109/ICCCAS55266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
383
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
384
+ page_content='9824836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
385
+ page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
386
+ page_content=' Perepechaenko and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
387
+ page_content=' Kuang, “Quantum encryption and decryption in IBMQ systems using quantum Permutation Pad,” Journal of Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
388
+ page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
389
+ page_content=' 12, December 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
390
+ page_content=' [27] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
391
+ page_content=' Kuang and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
392
+ page_content=' Bettenburg, "Quantum Public Key Distribution using Randomized Glauber States," 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
393
+ page_content=' 191-196, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
394
+ page_content='1109/QCE49297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
395
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
396
+ page_content='00032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
397
+ page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
398
+ page_content=' Chan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
399
+ page_content=' Khalil, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
400
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
401
+ page_content=' Shahriar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
402
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
403
+ page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
404
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
405
+ page_content=' Plant and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
406
+ page_content=' Kuang, "Security Analysis of a Next Generation TF-QKD for Secure Public Key Distribution with Coherent Detection over Classical Optical Fiber Networks," 2021 7th International Conference on Computer and Communications (ICCC), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
407
+ page_content=' 416-420, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
408
+ page_content='1109/ICCC54389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
409
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
410
+ page_content='9674320.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
411
+ page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
412
+ page_content=' Chan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
413
+ page_content=' Khalil, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
414
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
415
+ page_content=' Shahriar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
416
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
417
+ page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
418
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
419
+ page_content=' Plant and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
420
+ page_content=' Kuang, "On the Security of an Optical Layer Encryption Using Coherent-based TF-QKD in Classical Optical Fiber Links," 2022 4th International Conference on Computer Communication and the Internet (ICCCI), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
421
+ page_content=' 105-110, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
422
+ page_content='1109/ICCCI55554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
423
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
424
+ page_content='9850244.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
425
+ page_content=' [30] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
426
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
427
+ page_content=' Shahriar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
428
+ page_content=' Khalil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
429
+ page_content=' Chan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
430
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
431
+ page_content=' Chen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
432
+ page_content=' Kuang and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
433
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
434
+ page_content=' Plant, "Physical-Layer Secure Optical Communication Based on Randomized Phase Space in Pseudo-3-Party Infrastructure," 2022 Conference on Lasers and Electro-Optics (CLEO), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
435
+ page_content=' 1-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
436
+ page_content=' [31] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
437
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
438
+ page_content=' Shahriar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
439
+ page_content=' Khalil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
440
+ page_content=' Chan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
441
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
442
+ page_content=' Chen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
443
+ page_content=' Kuang and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
444
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
445
+ page_content=' Plant, "Security Performance of Physical-Layer Encryption Based on Randomized Phase Space in Optical Fiber Communication," 2022 IEEE Photonics Conference (IPC), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
446
+ page_content=' 1-2, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
447
+ page_content='1109/IPC53466.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
448
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
449
+ page_content='9975665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
450
+ page_content=' [32] Kuang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
451
+ page_content=', Chan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
452
+ page_content='. Quantum encryption in Phase Space with Displacement Operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
453
+ page_content=' EPJ Quantum Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
454
+ page_content=', submitted (2022) [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
455
+ page_content=' Kuang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
456
+ page_content=' Lou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
457
+ page_content=' He, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
458
+ page_content=' McKenzie and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
459
+ page_content=' Redding, "Pseudo Quantum Random Number Generator with Quantum Permutation Pad," 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
460
+ page_content=' 359-364, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
461
+ page_content='1109/QCE52317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
462
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
463
+ page_content='00053.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf'}
FtE1T4oBgHgl3EQfXARM/content/2301.03121v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3f0c7b8e6adff218510f5c9b642074e9da12bb8db7481ead94b7433ab854748
3
+ size 29400169
GNAyT4oBgHgl3EQfSvfA/content/2301.00093v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91d92313dd280401d9c86fb00620713a0703e0cc9cdbcb11013a8c36e6bc641f
3
+ size 742454
GNAyT4oBgHgl3EQfSvfA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7cc8d6b670d718bc04e61b14d3155ee234dc5d4ab7c0aea84bd4164f633b83e
3
+ size 204042
GNE0T4oBgHgl3EQfhQF8/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcf1dd003bb048cbfd85bf31d4610a5d81a30ff34e40f44f3d412f803a363a71
3
+ size 6750253
HNE4T4oBgHgl3EQfgg1T/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a769ec20dd16b38cb7870fc0b72c176ba2d83392089377d8184fb561c2657c7e
3
+ size 6619181
JdAyT4oBgHgl3EQfsPlo/content/2301.00573v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e60c7b01143d2c903bdaf648b19422ba6690b1e6cd3e5e73ceb5dc78c543af8c
3
+ size 458286
JdAyT4oBgHgl3EQfsPlo/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b78565e323d289233460d3043ee4270ea678d066b07c48d15d4f5f35802880f6
3
+ size 122004
KNAyT4oBgHgl3EQff_hn/content/2301.00350v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e79cb60156a81045f5424364821efafd59a4861d617c68a30e569827cea7cdd7
3
+ size 1218728
KNAyT4oBgHgl3EQff_hn/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:741c60a8a676c3764e29886ef09749535539746bff01ffcae16f2ad3a6748b50
3
+ size 1507373