jackkuo commited on
Commit
9f96f6b
·
verified ·
1 Parent(s): a46f884

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +60 -0
  2. 0tAyT4oBgHgl3EQfbfeR/content/tmp_files/2301.00264v1.pdf.txt +605 -0
  3. 0tAyT4oBgHgl3EQfbfeR/content/tmp_files/load_file.txt +0 -0
  4. 2NAzT4oBgHgl3EQf8_6P/content/tmp_files/2301.01913v1.pdf.txt +1130 -0
  5. 2NAzT4oBgHgl3EQf8_6P/content/tmp_files/load_file.txt +0 -0
  6. 3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf +3 -0
  7. 3NFQT4oBgHgl3EQf3DZF/vector_store/index.pkl +3 -0
  8. 4dA0T4oBgHgl3EQfNf-w/content/tmp_files/2301.02148v1.pdf.txt +0 -0
  9. 4dA0T4oBgHgl3EQfNf-w/content/tmp_files/load_file.txt +0 -0
  10. 5dAzT4oBgHgl3EQf9_4T/content/tmp_files/2301.01926v1.pdf.txt +1605 -0
  11. 5dAzT4oBgHgl3EQf9_4T/content/tmp_files/load_file.txt +0 -0
  12. 5tAzT4oBgHgl3EQf9_5e/content/tmp_files/2301.01927v1.pdf.txt +1066 -0
  13. 5tAzT4oBgHgl3EQf9_5e/content/tmp_files/load_file.txt +0 -0
  14. 6NAyT4oBgHgl3EQfQfY1/content/tmp_files/2301.00045v1.pdf.txt +1492 -0
  15. 6NAyT4oBgHgl3EQfQfY1/content/tmp_files/load_file.txt +0 -0
  16. 79E1T4oBgHgl3EQfnQTu/content/2301.03308v1.pdf +3 -0
  17. 79E1T4oBgHgl3EQfnQTu/vector_store/index.faiss +3 -0
  18. 79E1T4oBgHgl3EQfnQTu/vector_store/index.pkl +3 -0
  19. 7tAyT4oBgHgl3EQfpvj9/content/2301.00533v1.pdf +3 -0
  20. 7tAyT4oBgHgl3EQfpvj9/vector_store/index.pkl +3 -0
  21. 8NE2T4oBgHgl3EQflQeg/content/2301.03987v1.pdf +3 -0
  22. 8NE2T4oBgHgl3EQflQeg/vector_store/index.pkl +3 -0
  23. 99FQT4oBgHgl3EQf6TZx/content/tmp_files/2301.13438v1.pdf.txt +750 -0
  24. 99FQT4oBgHgl3EQf6TZx/content/tmp_files/load_file.txt +388 -0
  25. AtE1T4oBgHgl3EQfpAWX/content/2301.03327v1.pdf +3 -0
  26. AtE1T4oBgHgl3EQfpAWX/vector_store/index.faiss +3 -0
  27. B9AzT4oBgHgl3EQfTfz1/content/2301.01252v1.pdf +3 -0
  28. B9AzT4oBgHgl3EQfTfz1/vector_store/index.pkl +3 -0
  29. CNAzT4oBgHgl3EQfh_3R/content/tmp_files/2301.01494v1.pdf.txt +735 -0
  30. CNAzT4oBgHgl3EQfh_3R/content/tmp_files/load_file.txt +488 -0
  31. CNE1T4oBgHgl3EQfVwTa/content/2301.03107v1.pdf +3 -0
  32. CNE1T4oBgHgl3EQfVwTa/vector_store/index.pkl +3 -0
  33. CNE1T4oBgHgl3EQfpgW7/content/tmp_files/2301.03333v1.pdf.txt +916 -0
  34. CNE1T4oBgHgl3EQfpgW7/content/tmp_files/load_file.txt +412 -0
  35. EtAyT4oBgHgl3EQf4_op/content/tmp_files/2301.00795v1.pdf.txt +0 -0
  36. EtAyT4oBgHgl3EQf4_op/content/tmp_files/load_file.txt +0 -0
  37. FNFRT4oBgHgl3EQfCDcd/content/tmp_files/2301.13467v1.pdf.txt +594 -0
  38. FNFRT4oBgHgl3EQfCDcd/content/tmp_files/load_file.txt +503 -0
  39. FdE0T4oBgHgl3EQfzALi/content/tmp_files/2301.02668v1.pdf.txt +1648 -0
  40. FdE0T4oBgHgl3EQfzALi/content/tmp_files/load_file.txt +0 -0
  41. GNE0T4oBgHgl3EQfhQF8/vector_store/index.pkl +3 -0
  42. HNE4T4oBgHgl3EQfgg1T/content/2301.05117v1.pdf +3 -0
  43. HNE4T4oBgHgl3EQfgg1T/vector_store/index.pkl +3 -0
  44. I9AzT4oBgHgl3EQfjv2R/content/tmp_files/2301.01521v1.pdf.txt +717 -0
  45. I9AzT4oBgHgl3EQfjv2R/content/tmp_files/load_file.txt +0 -0
  46. K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf +3 -0
  47. K9E4T4oBgHgl3EQf8A5c/vector_store/index.faiss +3 -0
  48. K9E4T4oBgHgl3EQf8A5c/vector_store/index.pkl +3 -0
  49. KNAyT4oBgHgl3EQff_hn/vector_store/index.pkl +3 -0
  50. KdE3T4oBgHgl3EQfvQvs/content/2301.04693v1.pdf +3 -0
.gitattributes CHANGED
@@ -3862,3 +3862,63 @@ n9AyT4oBgHgl3EQflfie/content/2301.00454v1.pdf filter=lfs diff=lfs merge=lfs -tex
3862
  jNE2T4oBgHgl3EQfdAe8/content/2301.03902v1.pdf filter=lfs diff=lfs merge=lfs -text
3863
  NNFQT4oBgHgl3EQfWDbE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3864
  SdE2T4oBgHgl3EQfCAaW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3862
  jNE2T4oBgHgl3EQfdAe8/content/2301.03902v1.pdf filter=lfs diff=lfs merge=lfs -text
3863
  NNFQT4oBgHgl3EQfWDbE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3864
  SdE2T4oBgHgl3EQfCAaW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3865
+ AtE1T4oBgHgl3EQfpAWX/content/2301.03327v1.pdf filter=lfs diff=lfs merge=lfs -text
3866
+ WNAyT4oBgHgl3EQf8_py/content/2301.00866v1.pdf filter=lfs diff=lfs merge=lfs -text
3867
+ wdAzT4oBgHgl3EQf7f5k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3868
+ ZtAyT4oBgHgl3EQf9vp1/content/2301.00880v1.pdf filter=lfs diff=lfs merge=lfs -text
3869
+ PtE1T4oBgHgl3EQfagQG/content/2301.03161v1.pdf filter=lfs diff=lfs merge=lfs -text
3870
+ KdE3T4oBgHgl3EQfvQvs/content/2301.04693v1.pdf filter=lfs diff=lfs merge=lfs -text
3871
+ QdE3T4oBgHgl3EQfyAvv/content/2301.04717v1.pdf filter=lfs diff=lfs merge=lfs -text
3872
+ ndAyT4oBgHgl3EQflfhA/content/2301.00452v1.pdf filter=lfs diff=lfs merge=lfs -text
3873
+ AtE1T4oBgHgl3EQfpAWX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3874
+ B9AzT4oBgHgl3EQfTfz1/content/2301.01252v1.pdf filter=lfs diff=lfs merge=lfs -text
3875
+ KdE3T4oBgHgl3EQfvQvs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3876
+ ftAzT4oBgHgl3EQf3_6L/content/2301.01838v1.pdf filter=lfs diff=lfs merge=lfs -text
3877
+ k9FST4oBgHgl3EQfIzgr/content/2301.13730v1.pdf filter=lfs diff=lfs merge=lfs -text
3878
+ O9AyT4oBgHgl3EQfUffK/content/2301.00128v1.pdf filter=lfs diff=lfs merge=lfs -text
3879
+ iNFJT4oBgHgl3EQfWSzz/content/2301.11517v1.pdf filter=lfs diff=lfs merge=lfs -text
3880
+ ZtAyT4oBgHgl3EQf9vp1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3881
+ ydE2T4oBgHgl3EQfMQZF/content/2301.03722v1.pdf filter=lfs diff=lfs merge=lfs -text
3882
+ xtE5T4oBgHgl3EQfNA53/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3883
+ k9FST4oBgHgl3EQfIzgr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3884
+ w9E_T4oBgHgl3EQf_xxJ/content/2301.08394v1.pdf filter=lfs diff=lfs merge=lfs -text
3885
+ SdE2T4oBgHgl3EQfWgfj/content/2301.03835v1.pdf filter=lfs diff=lfs merge=lfs -text
3886
+ gtE0T4oBgHgl3EQfpAHr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3887
+ ctE0T4oBgHgl3EQfoAE4/content/2301.02519v1.pdf filter=lfs diff=lfs merge=lfs -text
3888
+ ftAzT4oBgHgl3EQf3_6L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3889
+ O9AyT4oBgHgl3EQfUffK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3890
+ ctE0T4oBgHgl3EQfoAE4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3891
+ UdE3T4oBgHgl3EQf0Atf/content/2301.04733v1.pdf filter=lfs diff=lfs merge=lfs -text
3892
+ VdAyT4oBgHgl3EQfuvn4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3893
+ cNE1T4oBgHgl3EQfdgR_/content/2301.03196v1.pdf filter=lfs diff=lfs merge=lfs -text
3894
+ ldE3T4oBgHgl3EQfiAoP/content/2301.04575v1.pdf filter=lfs diff=lfs merge=lfs -text
3895
+ Y9FOT4oBgHgl3EQf-TSC/content/2301.12973v1.pdf filter=lfs diff=lfs merge=lfs -text
3896
+ p9AyT4oBgHgl3EQfZPfT/content/2301.00221v1.pdf filter=lfs diff=lfs merge=lfs -text
3897
+ ntE1T4oBgHgl3EQfhgSw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3898
+ 7tAyT4oBgHgl3EQfpvj9/content/2301.00533v1.pdf filter=lfs diff=lfs merge=lfs -text
3899
+ UdE3T4oBgHgl3EQf0Atf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3900
+ p9AyT4oBgHgl3EQfZPfT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3901
+ _tAyT4oBgHgl3EQf3vm5/content/2301.00775v1.pdf filter=lfs diff=lfs merge=lfs -text
3902
+ StE0T4oBgHgl3EQfUwAJ/content/2301.02253v1.pdf filter=lfs diff=lfs merge=lfs -text
3903
+ m9AyT4oBgHgl3EQflPjP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3904
+ OdE1T4oBgHgl3EQfaAQ0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3905
+ ntE1T4oBgHgl3EQfhgSw/content/2301.03242v1.pdf filter=lfs diff=lfs merge=lfs -text
3906
+ CNE1T4oBgHgl3EQfVwTa/content/2301.03107v1.pdf filter=lfs diff=lfs merge=lfs -text
3907
+ idAyT4oBgHgl3EQf-_pB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3908
+ jNE2T4oBgHgl3EQfdAe8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3909
+ Y9FOT4oBgHgl3EQf-TSC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3910
+ mNE_T4oBgHgl3EQf6xyS/content/2301.08366v1.pdf filter=lfs diff=lfs merge=lfs -text
3911
+ mNFIT4oBgHgl3EQfsyss/content/2301.11337v1.pdf filter=lfs diff=lfs merge=lfs -text
3912
+ 79E1T4oBgHgl3EQfnQTu/content/2301.03308v1.pdf filter=lfs diff=lfs merge=lfs -text
3913
+ HNE4T4oBgHgl3EQfgg1T/content/2301.05117v1.pdf filter=lfs diff=lfs merge=lfs -text
3914
+ K9E4T4oBgHgl3EQf8A5c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3915
+ QdE3T4oBgHgl3EQfyAvv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3916
+ l9FLT4oBgHgl3EQfeS-E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3917
+ cNE1T4oBgHgl3EQfdgR_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3918
+ K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf filter=lfs diff=lfs merge=lfs -text
3919
+ 3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf filter=lfs diff=lfs merge=lfs -text
3920
+ 8NE2T4oBgHgl3EQflQeg/content/2301.03987v1.pdf filter=lfs diff=lfs merge=lfs -text
3921
+ SdE2T4oBgHgl3EQfWgfj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3922
+ iNFJT4oBgHgl3EQfWSzz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3923
+ ydE2T4oBgHgl3EQfMQZF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3924
+ 79E1T4oBgHgl3EQfnQTu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0tAyT4oBgHgl3EQfbfeR/content/tmp_files/2301.00264v1.pdf.txt ADDED
@@ -0,0 +1,605 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Application Of ADNN For Background Subtraction In
2
+ Smart Surveillance System
3
+ University Of Alberta
4
+ Department of Computing Science
5
+ Piyush Batra, Gagan Raj Singh, Neeraj Goyal
6
+ December 7, 2022
7
+ Brief Abstract
8
+ Object movement identification is one of the most researched problems in the
9
+ field of computer vision. In this task, we try to classify a pixel as foreground or
10
+ background. Even though numerous traditional machine learning and deep learning
11
+ methods already exist for this problem, the two major issues with most of them
12
+ are the need for large amounts of ground truth data and their inferior performance
13
+ on unseen videos. Since every pixel of every frame has to be labeled, acquiring
14
+ large amounts of data for these techniques gets rather expensive. Recently, Zhao
15
+ et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN)
16
+ for universal background subtraction which utilizes probability information from
17
+ the histogram of temporal pixels and achieves promising results. Building onto
18
+ this work, we developed an intelligent video surveillance system that uses ADNN
19
+ architecture for motion detection, trims the video with parts only containing motion,
20
+ and performs anomaly detection on the trimmed video.
21
+ 1
22
+ Literature review
23
+ Motion detection aims to find regions related to moving objects, and background subtraction is a
24
+ widely used technique for this task. Herein, every pixel of each video frame is compared against
25
+ their historical counterparts or a background model, depending on the technique, and then
26
+ classified into foreground or background. Pixels that differ significantly from the reference are
27
+ classified as moving objects or foreground, and static pixels are referred to as background. This
28
+ section will discuss some of the previously proposed methods related to background subtraction,
29
+ video surveillance, and anomaly detection.
30
+ Many background modeling techniques based on mathematical theories, like the temporal
31
+ average [2], temporal median [3], or the histogram over time [4], have been proposed for motion
32
+ detection by a stationary camera. But these are not robust to challenges in surveillance videos
33
+ such as dynamic background, object shadow, camera jitter, weather conditions (either snow or
34
+ rain), and variations in illumination. To overcome these problems, several motion-detection
35
+ methods, like Temporal Differencing [5], Three-frame Difference [6], Gaussian mixture model [7],
36
+ 1
37
+
38
+ DSTEI [9], etc, have been presented over the past years.
39
+ Temporal Differencing, proposed by Cheung et al. [5], is used for detecting temporal changes
40
+ in intensity in video frames. However, its main drawback is that the detected objects are
41
+ incomplete and poorly presented.
42
+ In the Gaussian mixture model proposed by Stauffer and Grimson [7], the temporal histogram
43
+ of each pixel is modeled using a mixture of K Gaussian distributions to precisely model a dynamic
44
+ background. This method produced a real-time tracker which can deal with lighting changes,
45
+ repetitive motions from clutter, and long-term scene changes. Later, Chan et al. [8] proposed a
46
+ Generalized Stauffer–Grimson (GSG) algorithm for background subtraction in dynamic scenes.
47
+ In this method, the statistics required for online learning of dynamic texture are derived from
48
+ generalizing the GMM proposed by Stauffer and Grimson [7].
49
+ The Difference-based Spatio-Temporal Entropy Image (DSTEI) by Jing et al. [9] is an entropy-
50
+ based method for human motion detection. A Spatio-temporal histogram is generated by
51
+ accumulated pixels obtained by the difference between consecutive images. This histogram is
52
+ then normalized to calculate the degree of randomness and magnitude of entropy to denote
53
+ the significance of motion. In this method, noises are assumed to follow Gaussian distribution.
54
+ However, these assumptions, such as heavy shadows or sudden illumination changes, will be
55
+ violated in some cases.
56
+ Soumyadip Sengupta et al. [10] proposed a background matting technique that generated
57
+ high-quality foreground and alpha mattes in natural settings. In this method, a deep learning
58
+ framework is developed and trained on synthetic-composite data and then adapted to actual data
59
+ using an adversarial network. Even though providing an additional photo of the background
60
+ requires a small amount of foresight, it is far less tedious than creating a trimap for traditional
61
+ matting methods.
62
+ In 2017, Dan Yang et al. [11] proposed a multi-feature background approach for complex
63
+ video scenes that measures the stability of features and then selects different dominant features
64
+ to model the background from the pixel and time-sequence domains. This Stability of Adaptive
65
+ Features approach showed promising results on both complex and baseline scenes.
66
+ For applications of background subtraction in real time, Z. Kuang et al. [12] proposed a
67
+ combination of the Horn-Schunck optical-flow estimation technique [13] and autoencoder neural
68
+ networks that solve the problem of motion blur in real-time background subtraction during
69
+ video conferencing. This method uses an optical-flow-based model to extract motion features
70
+ between every two frames and then combine these features with the appearance feature from
71
+ the original frame. An encoder-decoder network in combination with CNN is then used to learn
72
+ and predict a mask output for the human head and shoulders for background subtraction.
73
+ Similarly, for real-time background subtraction, DK Yadav et al. [14] proposed a Pixel
74
+ Intensity Based (PIBBS) system that first models the background, then extracts moving objects
75
+ with a threshold and updates the background using a feedback-based background updation
76
+ scheme. To improve the detection quality, this system also uses morphological operators as the
77
+ last step.
78
+ Bruno Sauvalle et al. [15] proposed using an autoencoder to model the background of a
79
+ video as a low-dimensional manifold. The output of this autoencoder is then compared with
80
+ the original image to compute the segmentation masks. In this method, the autoencoder is also
81
+ trained to predict the background noise, which allows it to compute a pixel-dependent threshold
82
+ for each frame to perform the foreground segmentation. Without using temporal or motion
83
+ information, this method could perform at par with state-of-the-art solutions on CDnet 2014 [16]
84
+ 2
85
+
86
+ and LASIESTA [17] datasets.
87
+ To overcome the problem of camera jitter and sudden changes in illumination, Ye Tao et al.
88
+ [18] proposed a generative architecture for unsupervised deep background modeling, which
89
+ learns the parameters automatically and uses intensity and optical flow features between a
90
+ reference and a target frame. This system generates a background with a probabilistic heat map
91
+ of the color values for a given input frame. This method could also be applied to unseen videos
92
+ without re-training. When tested, this method shows promising results over state-of-the-art
93
+ [19][20][21] methods on the SBMnet dataset[22].
94
+ Guanfang Dong et al. [23] proposed a novel denoising neural network model called Feature-
95
+ guided Denoising Convolutional Neural Network (FDCNN) to denoise the images produced
96
+ by portable devices. This technique employed a hierarchical denoising framework driven
97
+ by a feature masking layer. The feature extraction algorithm used in this method is based
98
+ on Explainable Artificial Intelligence (XAI) for medical images. Similarly, Yingnan Ma et al.
99
+ [24] proposed an Edge-guided Denoising Convolutional Neural Network which can preserve
100
+ important edge information in ultrasound images when removing noise. This method increases
101
+ the recognition of various organs in ultrasound images.
102
+ Jhony H. Giraldo et al. [25] proposed a new algorithm called Graph Background Subtraction
103
+ (GraphBGS). It is composed of instance segmentation, background initialization, graph construc-
104
+ tion, and graph sampling. Unlike Deep Learning methods for background subtraction which
105
+ require vast amounts of data, this method is a semi-supervised algorithm inspired by the theory
106
+ of recovery of graph signals.
107
+ To generate descriptions of human actions and their interactions, Zijian Kuang et al. [26]
108
+ proposed a technique that utilizes an Actor Relation Graph (ARG) based model with novel
109
+ improvements for group activity recognition. This method also used MobileNet as the backbone
110
+ to extract features from each video frame.
111
+ To accurately perform background subtraction in a freely moving camera, Zhao et al. [27]
112
+ developed a novel method called “the integration of foreground and background cues.” The
113
+ underlying motivation in this technique is to utilize the exclusiveness between these cues to
114
+ compensate for their corresponding defects. The foreground is segmented by combining super-
115
+ pixels with proximity under multiple levels.
116
+ As video resolution and, subsequently, the video size is increasing daily, Ruixing et al. [28]
117
+ proposed a method to compute the optimal image resolution adaptively. This is achieved by
118
+ exploiting the correlation between an image’s gray-value distribution and resolution. This
119
+ approach was proposed to increase the performance of multi-object online tracking and learning.
120
+ A novel tracklet reliability assessment metric was also introduced in this paper to eliminate the
121
+ incorrect samples and can recover occluded targets.
122
+ As a unique application of neural networks in multimedia, C. Sun et al. [29] proposed a 2-step
123
+ product re-identification (Re-ID) method which involves image feature extraction and a feature
124
+ search and retrieval engine. To extract the features of the input image, a novel AlphaAlexNet, an
125
+ extended version of the AlexNet, is being used. Vearch, a visual search system, is used as the
126
+ image search similarity engine. The new model - AlphaAlexNet, demonstrated improved object
127
+ detection accuracy of Vearch.
128
+ To classify two distributions without using just histograms and incorporating a deep learning
129
+ network to learn and classify distributions automatically, Chunqiu Zhao and Anup Basu [30]
130
+ proposed a novel vessel segmentation method based on distribution learning using a spatial
131
+ distribution descriptor (RPoSP) under multiple scales. Here, statistical distributions are indirectly
132
+ forced as an input to a CNN for distribution learning. The proposed approach showed promising
133
+ 3
134
+
135
+ results when compared to existing state-of-the-art methods[31][32] on the DRIVE[33] dataset.
136
+ Yongxin Ge et al. [34] proposed the Deep Variation Transformation Network (DVTN) model,
137
+ which uses pixel variations to detect the background. This model assigns the probability to
138
+ each pixel, and then by using thresholding, it computes whether it’s background or foreground.
139
+ This model compares the pixel variation instead of distributions. Previously used models
140
+ in background detection usually fail when they encounter similar observations, causing false
141
+ detections. The DVTN analyzes the pixel variations in a new space, where the above observations
142
+ are classified easily. This model outperforms the traditional background detection models by
143
+ showing astonishing results on the CDnet2014 dataset.
144
+ However, all of the methods mentioned above require either a large amount of ground truth
145
+ data or result in inadequate performance on unseen videos. Zhao and Basu [35] proposed a
146
+ Deep Pixel Distribution Learning (DPDL) technique to overcome these issues. Unlike typical
147
+ approaches, which compare new frames to a formulated background model, this technique
148
+ focuses on comparing pixels’ current and historical frames. This method uses a novel pixel-
149
+ based feature called the Random Permutation of Temporal Pixels (RPoTP) to represent the
150
+ distribution of past observations for a particular pixel. Subsequently, a CNN is used to learn
151
+ whether the current pixel is foreground or background. Adding on to this method, Zhao et al.
152
+ [36] later proposed a new Dynamic Deep Pixel Distribution Learning (D-DPDL) technique. In
153
+ this method, the RPoTP feature is dynamically permuted in this method for every training epoch.
154
+ To compensate for the random noise generated in this process, a Bayesian Refinement model is
155
+ used and improve the accuracy.
156
+ Zhao et al. [1] also proposed an Arithmetic Distribution Neural Network architecture demon-
157
+ strating even better performance than the D-DPDL method. The input in the ADNN method is
158
+ histograms of subtractions between current pixels and their historical counterparts. The sum
159
+ and product arithmetic distribution layers proposed here demonstrate a better ability to clas-
160
+ sify distributions than the convolutional layers in D-DPDL. Moreover, the number of learning
161
+ parameters used in ADNN architecture (0.1 Million) is significantly less than that used in the
162
+ D-DPDL method (7 Million).
163
+ Coming onto detecting anomalies in videos, Virender Singh et al. [37] proposed an approach
164
+ to detect variation from the norm in real-world CCTV recordings. This method uses two deep
165
+ learning models (CNN and RNN) to learn a general anomaly detection model with a poorly
166
+ labeled dataset. The training dataset has been doubled by flipping the videos horizontally, thus
167
+ increasing the testing accuracy. The overall accuracy of the model is 97.23
168
+ Y Fan et al. [38] proposed a technique that first converts the video clips of an ongoing event
169
+ into Dynamic Images, which can simultaneously capture the appearance and temporal evolution
170
+ of the occurrence. The approach uses dynamic images of two categories of video clips and
171
+ involves training a detector based on deep-learning techniques.
172
+ Yu Tian et al. [39] proposed a weakly-supervised anomaly detection algorithm, Robust
173
+ Temporal Feature Magnitude learning (RTFM), aiming to identify snippets containing abnormal
174
+ events. This method trains a feature magnitude learning function to effectively recognize the
175
+ positive instances, substantially enhancing the robustness of this method to the negative instances
176
+ from abnormal videos. RTFM achieves significantly improved subtle anomaly discriminability
177
+ and sample efficiency.
178
+ The Weakly Supervised Video Anomaly Detection(WSVAD) [40]-[42] method for anomaly
179
+ detection suffers from the wrong identification of normal and abnormal instances during the
180
+ training process. Kapil Deshpande et al. [43] proposed better-quality transformer-based features
181
+ named Videoswin Features, followed by an attention layer to capture long and short-range
182
+ 4
183
+
184
+ dependencies in the temporal domain. This method extracts better-quality features from available
185
+ videos resulting in better performance.
186
+ 2
187
+ Method
188
+ In this work, we implemented an Arithmetic Distribution Neural Network [1] to develop a video
189
+ surveillance system for identifying object movement in a static video. In this ADNN model,
190
+ the arithmetic operations are utilized to introduce the arithmetic distribution layers, including
191
+ the product and sum distribution layers. Outputs from these layers are combined and passed
192
+ through a classifier for accurate classification. We chose this architecture because it requires
193
+ training only one network, with limited training data, and it works well with unseen test videos.
194
+ Figure 1: The flow diagram of our proposed approach
195
+ Upon successful object movement detection using background subtraction, we further ana-
196
+ lyzed the results obtained from ADNN to filter out their anomalous activities.
197
+ 2.1
198
+ Motion detection - Arithmetic Distribution Neural Network
199
+ In this work, we used ADNN proposed by Zhao et al. [1] to detect motion in the input surveil-
200
+ lance video. This paper proposed arithmetic distribution layers, which are a new type of network
201
+ layer that is designed to improve distribution analysis in classification tasks. These layers, which
202
+ include product and sum distribution layers, are an alternative to convolution layers. During
203
+ the forward pass of the proposed arithmetic distribution layers, the input distributions are
204
+ processed using the distributions in the learning kernels to generate the output distributions.
205
+ In the backpropagation process, the gradient of the distributions in the learning kernels with
206
+ respect to the network output is calculated to update the learning kernels. These operations are
207
+ based on histograms and arithmetic distribution operations rather than the matrix arithmetic
208
+ operations used in traditional convolution layers.
209
+ To improve the accuracy of the foreground mask generated, an improved Bayesian refinement
210
+ model is used. This model takes into account the correlations between pixels by using a mixture
211
+ of Gaussian approximation functions rather than just Euclidean distance, as in the original
212
+ Bayesian refinement model. The Bayesian refinement model is used to iteratively refine the
213
+ foreground mask, with the output of the arithmetic distribution neural network serving as the
214
+ initial binary mask for the iteration process.
215
+ 5
216
+
217
+ Sum Distribution
218
+ Layer
219
+ Convolution
220
+ Classifier
221
+ Anomalydetection
222
+ ramework
223
+ Basedonpixe
224
+ classification
225
+ A Set of trimmed videos
226
+ Input Video
227
+ with activity
228
+ A Set of anomaly
229
+ detected videos
230
+ Product
231
+ Distribution LayerFigure 2: Arithmetic distribution neural network for background subtraction
232
+ After obtaining the refined foreground masks from the ADNN architecture, we utilize a
233
+ python script to generate a trimmed video from a set of input frames by using a threshold value
234
+ on the frames generated by the Bayesian refinement model. The threshold value determines the
235
+ minimum number of white pixels (foreground pixels) that must be present in a frame in order
236
+ for it to be included in the trimmed video. For this work, we are using a threshold value of 5% to
237
+ generate the trimmed videos.
238
+ Figure 3: Generation of trimmed video from input frames passed through the ADNN (arithmetic
239
+ distribution neural network)
240
+ 2.2
241
+ Anomaly Detection
242
+ Following the works of Waqas Sultani et al. [44], we have put into use their novel Multiple
243
+ Instance Learning framework for the second part of our system. Once we obtain the trimmed
244
+ video from the previous step, we use that as the input in this step. In this, a training set of
245
+ positive (containing an abnormality someplace) and negative (having no anomaly) videos are
246
+ used to train the anomaly detection model. Then each video is divided into a sequence of
247
+ non-overlapping temporal segments.
248
+ 6
249
+
250
+ Convolution,
251
+ Full Connection
252
+ Relu
253
+ Convolution
254
+ Product
255
+ Distribution Layer
256
+ Foreground
257
+ Size:B × 3 × 201 × 2
258
+ Background
259
+ Size:B × 3 × 201 × 1
260
+ Size:B × 2×1 × 1
261
+ Size:B × 10 × 201 × 1
262
+ Sum Distribution
263
+ Layer
264
+ Size:B × 512 × 1 × 1
265
+ Datadimensions:BatchSize×Channels×Width×Height
266
+ Size:B × 3 × 201 × 2Frames from ADNN Output
267
+ CombinedTrimmed Videc
268
+ Motion Video1
269
+ Motion Video 2
270
+ Framesfrom inputvideo
271
+ Input VideoFigure 4: Anomaly detection flow diagram
272
+ Each video in the training set can be represented as a bag, and each video segment represents
273
+ an instance in the bag. After extracting C3D features from video segments using a pre-trained
274
+ 3D convNet, a fully connected neural network is trained using the novel ranking loss function; it
275
+ computes the ranking loss between the top-rated occurrences in the positive bag and the negative
276
+ bag.
277
+ In conclusion, the proposed method for detecting anomalies in surveillance videos consists
278
+ of two main steps. First, the ADNN architecture is used to detect motion in the input video
279
+ and generate a refined foreground mask. This mask is then used to create a trimmed video,
280
+ which is used as input for the second step of the system. In this step, we used a pre-trained
281
+ multiple instance learning model trained on a set of positive and negative videos and used to
282
+ classify each temporal segment in the test video as normal or anomalous. The predicted scores
283
+ for each segment are then combined to generate a prediction (anomaly graph) for the entire
284
+ video. By combining these two approaches, the system is able to effectively detect abnormalities
285
+ in surveillance videos, even when they only occur for a short period of time or are only present
286
+ in a small number of segments.
287
+ 3
288
+ Results
289
+ In this section, we will discuss our experimental results for two different videos. Table 1 compares
290
+ the full video and trimmed video for two different videos, labeled Video 1 and Video 2. For
291
+ Video 1, the full video had a duration of 06:37 minutes, a size of 90.5 MB, and contained 11937
292
+ frames. The anomaly detection process for this video took 789 seconds. The trimmed video
293
+ for Video 2 had a duration of 04:09 minutes, a size of 68.5 MB, and contained 7470 frames. The
294
+ anomaly detection process for this video took 540 seconds, which is lower than the time taken
295
+ for the full video.
296
+ For Video 2, the full video had a duration of 04:59 minutes, a size of 40.6 MB, and contained
297
+ 8990 frames. The anomaly detection process for this video took 610 seconds. On the other hand,
298
+ the trimmed video for Video 2 had a duration of 1:04 minutes, a size of 10.2 MB, and contained
299
+ 1950 frames. The anomaly detection process for this video took 137 seconds, which is also lower
300
+ than the time taken for the full video.
301
+ 7
302
+
303
+ Positive bag
304
+ Instance scores in positive bag
305
+ Anomaly video
306
+ Bag instance (video segment)
307
+ 4096
308
+ MIL Ranking Loss with sparsity
309
+ and smoothness constraints
310
+ 609
311
+ 512
312
+ N
313
+ C3D feature extraction
314
+ 32
315
+ for each video segment
316
+ 0.1
317
+ ...
318
+ 32 temporal segments
319
+ 32 temporal segments
320
+ (anomaly score)
321
+ ...
322
+ pre-trained 3D ConvNet
323
+ Normal video
324
+ Negative bag
325
+ Instance scores in negative bagThe graphs obtained after anomaly detection are shown below. These are the relative anomaly
326
+ scores of each video segment (32 in this case). We can see that the anomalous regions in the
327
+ trimmed video are more focused, and there are comparatively fewer inactive regions. Moreover,
328
+ the overall structure of the graphs is similar for both the original and trimmed videos, indicating
329
+ that trimming down the video does not affect the anomaly identification and the relative scores
330
+ of different segments.
331
+ Figure 5: The graphs indicate anomaly scores of the video2 (left) and its trimmed version (right)
332
+ Overall, the results in Table 1 show that the trimmed videos had shorter durations and
333
+ smaller sizes compared to the full videos. Additionally, the anomaly detection process for the
334
+ trimmed videos took much less time than the full videos in both examples. This suggests that
335
+ using trimmed videos leads to a more efficient anomaly detection process.
336
+ 4
337
+ Discussion
338
+ The results presented above demonstrate the effectiveness of our ADNN-based video surveillance
339
+ system in identifying object movement and filtering out anomalous activities. As shown, the
340
+ trimmed videos had shorter durations, smaller sizes and required less time for anomaly detection
341
+ compared to the full videos in both examples. This suggests that the ADNN model and the use
342
+ of trimmed videos lead to a more efficient and effective video surveillance system. Additionally,
343
+ the ADNN model we employed has the advantage of requiring only limited training data and
344
+ 8
345
+
346
+ Duration
347
+ Size
348
+ Frames
349
+ Anomaly
350
+ (mm: ss)
351
+ (MB)
352
+ Detection
353
+ (cpu - sec)
354
+ Full Video
355
+ 06:37
356
+ 90.5
357
+ 11937
358
+ 789
359
+ Video 1
360
+ Trimmed Video (Combined)
361
+ 04:09
362
+ 68.5
363
+ 7470
364
+ 540
365
+ Full Video
366
+ 04:59
367
+ 40.6
368
+ 8990
369
+ 610
370
+ Vide02
371
+ Trimmed Video (Combined)
372
+ 1:04
373
+ 10.2
374
+ 1950
375
+ 137
376
+ Table I: Comparison of results for trimmed and full-length videos0.40
377
+ 0.35
378
+ 0.8
379
+ 0.30
380
+ 0.25
381
+ 0.6
382
+ 0.20
383
+ 0.4
384
+ 0.15
385
+ 0.10
386
+ 0.2
387
+ 0.05
388
+ 0.00
389
+ 0.0
390
+ 5
391
+ 10
392
+ 15
393
+ 20
394
+ 25
395
+ 30
396
+ n
397
+ 10
398
+ 15
399
+ 20
400
+ 25
401
+ 30being able to perform well with unseen test videos. This makes it a suitable choice for practical
402
+ implementation in real-world scenarios.
403
+ In conclusion, our ADNN-based video surveillance system has demonstrated its ability to
404
+ accurately detect object movement and filter out anomalous activities, making it a promising
405
+ solution for video surveillance applications.
406
+ 5
407
+ Future Work
408
+ In the future, we plan to work on making the ADNN model more efficient at inferring foreground
409
+ masks, as it currently takes a significant amount of time to process videos. This will be a major
410
+ challenge, but we believe it is necessary in order to make the system more practical and useful in
411
+ real-world scenarios.
412
+ Additionally, we will work on generating a better test dataset to further evaluate the adapt-
413
+ ability of this system. This will help us to better understand the limitations and potential
414
+ improvements of the system. Overall, the goal would be to improve the efficiency of the ADNN
415
+ model in order to make it a useful tool for video surveillance and anomaly detection applications.
416
+ References
417
+ [1] Zhao, C., Hu, K., Basu, A. (2022). Universal Background Subtraction Based on Arith-
418
+ metic Distribution Neural Network. IEEE Transactions on Image Processing, 31, 2934–2949.
419
+ https://doi.org/10.1109/tip.2022.3162961
420
+ [2] Lee, B.; Hedley, M. Background estimation for video surveillance. In:
421
+ Image
422
+ Vi-
423
+ sion Computing New Zealand (IVCNZ ’02); 2002; Auckland, NZ. 2002. 315-320.
424
+ http://hdl.handle.net/102.100.100/199802
425
+ [3] Graszka, P. (2014). Median mixture model for background–foreground segmentation in
426
+ video sequences.
427
+ [4] Roy, S. M., Ghosh, A. (2018). Real-Time Adaptive Histogram Min-Max Bucket (HMMB)
428
+ Model for Background Subtraction. IEEE Transactions on Circuits and Systems for Video
429
+ Technology, 28(7), 1513–1525. https://doi.org/10.1109/tcsvt.2017.2669362
430
+ [5] Cheung, S.-C. S., Kamath, C. (2005). Robust Background Subtraction with Foreground
431
+ Validation for Urban Traffic Video. EURASIP Journal on Advances in Signal Processing,
432
+ 2005(14). https://doi.org/10.1155/asp.2005.2330
433
+ [6] Chen, C., Zhang, X. (2012). Moving Vehicle Detection Based on Union of Three-Frame
434
+ Difference. Lecture Notes in Electrical Engineering, 459–464. https://doi.org/10.1007/978-
435
+ 3-642-27296-7 71
436
+ [7] Stauffer, C., Grimson, W. E. L. (2022). Adaptive background mixture models for real-time
437
+ tracking. Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and
438
+ Pattern Recognition (Cat. No PR00149). https://doi.org/10.1109/cvpr.1999.784637
439
+ [8] Chan, A. B., Mahadevan, V., Vasconcelos, N. (2010). Generalized Stauffer–Grimson back-
440
+ ground subtraction for dynamic scenes. Machine Vision and Applications, 22(5), 751–766.
441
+ https://doi.org/10.1007/s00138-010-0262-3
442
+ 9
443
+
444
+ [9] Guo-Jing, Chng Eng Siong, Rajan, D. (2022). Foregroung motion detection by difference-
445
+ based spatial temporal entropy image. 2004 IEEE Region 10 Conference TENCON 2004.
446
+ https://doi.org/10.1109/tencon.2004.1414436
447
+ [10] Sengupta, S., Jayaram, V., Curless, B., Seitz, S. M., Kemelmacher-Shlizerman, I. (2020). Back-
448
+ ground Matting: The World Is Your Green Screen. 2020 IEEE/CVF Conference on Computer
449
+ Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.2020.00236
450
+ [11] Yang, D., Zhao, C., Zhang, X., Huang, S. (2018). Background Modeling by Stability of Adap-
451
+ tive Features in Complex Scenes. IEEE Transactions on Image Processing, 27(3), 1112–1125.
452
+ https://doi.org/10.1109/tip.2017.2768828
453
+ [12] Kuang, Z., Tie, X. (2021). Flow-based Video Segmentation for Human Head and Shoulders.
454
+ ArXiv.org. https://doi.org/10.48550/arXiv.2104.09752
455
+ [13] sniklaus. (2022, March 16). sniklaus/pytorch-pwc: a reimplementation of PWC-Net in Py-
456
+ Torch that matches the official Caffe version. GitHub. https://github.com/sniklaus/pytorch-
457
+ pwc
458
+ [14] Yadav, D. K., Sharma, L., Bharti, S. K. (2014). Moving object detection in real-time visual
459
+ surveillance using background subtraction technique. 2014 14th International Conference
460
+ on Hybrid Intelligent Systems. https://doi.org/10.1109/his.2014.7086176
461
+ [15] Sauvalle,
462
+ B.,
463
+ de.
464
+ (2021).
465
+ Autoencoder-based
466
+ background
467
+ reconstruction
468
+ and
469
+ foreground
470
+ segmentation
471
+ with
472
+ background
473
+ noise
474
+ estimation.
475
+ ArXiv.org.
476
+ https://doi.org/10.48550/arXiv.2112.08001
477
+ [16] Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P. (2014). CDnet 2014:
478
+ An Expanded Change Detection Benchmark Dataset. 2014 IEEE Conference on Computer
479
+ Vision and Pattern Recognition Workshops. https://doi.org/10.1109/cvprw.2014.126
480
+ [17] Cuevas, C., Y´a˜nez, E. M., Garc´ıa, N. (2016). Labeled dataset for integral evaluation of mov-
481
+ ing object detection algorithms: LASIESTA. Computer Vision and Image Understanding,
482
+ 152, 103–117. https://doi.org/10.1016/j.cviu.2016.08.005
483
+ [18] Tao, Y., Palasek, P., Ling, Z., Patras, I. (2017). Background modelling based on genera-
484
+ tive unet. 2017 14th IEEE International Conference on Advanced Video and Signal Based
485
+ Surveillance (AVSS). https://doi.org/10.1109/avss.2017.8078483
486
+ [19] De Gregorio, M., Giordano, M. (2017). Background estimation by weightless neural net-
487
+ works. Pattern Recognition Letters, 96, 55–65. https://doi.org/10.1016/j.patrec.2017.05.029
488
+ [20] Ramirez-Alonso, G., Ramirez-Quintana, J. A.,
489
+ Chacon-Murguia, M. I. (2017). Tem-
490
+ poral weighted learning model for background estimation with an automatic re-
491
+ initialization stage and adaptive parameters update. Pattern Recognition Letters, 96, 34–44.
492
+ https://doi.org/10.1016/j.patrec.2017.01.011
493
+ [21] Laugraud, B., Pierard, S., Van Droogenbroeck, M. (2016). LaBGen-P: A pixel-level stationary
494
+ background generation method based on LaBGen. 2016 23rd International Conference on
495
+ Pattern Recognition (ICPR). https://doi.org/10.1109/icpr.2016.7899617
496
+ [22] Jodoin, P.-M., Maddalena, L., Petrosino, A., Wang, Y. (2017). Extensive Benchmark and
497
+ Survey of Modeling Methods for Scene Background Initialization. IEEE Transactions on
498
+ Image Processing, 26(11), 5244–5256. https://doi.org/10.1109/tip.2017.2728181
499
+ 10
500
+
501
+ [23] Dong,
502
+ G.,
503
+ Ma,
504
+ Y.,
505
+ Basu,
506
+ A.
507
+ (2021).
508
+ Feature-Guided
509
+ CNN
510
+ for
511
+ Denoising
512
+ Images
513
+ From
514
+ Portable
515
+ Ultrasound
516
+ Devices.
517
+ IEEE
518
+ Access,
519
+ 9,
520
+ 28272–28281.
521
+ https://doi.org/10.1109/access.2021.3059003
522
+ [24] Ma, Y., Yang, F., Basu, A. (2021). Edge-guided CNN for Denoising Images from Portable
523
+ Ultrasound Devices. 2020 25th International Conference on Pattern Recognition (ICPR).
524
+ https://doi.org/10.1109/icpr48806.2021.9412758
525
+ [25] Giraldo, J. H., Bouwmans, T. (2020). GraphBGS: Background Subtraction via Recovery of
526
+ Graph Signals. ArXiv.org. https://doi.org/10.48550/arXiv.2001.06404
527
+ [26] Kuang, Z., Tie, X. (2020). Improved Actor Relation Graph based Group Activity Recognition.
528
+ ArXiv.org. https://doi.org/10.48550/arXiv.2010.12968
529
+ [27] Zhao, C., Sain, A., Qu, Y., Ge, Y., Hu, H. (2019). Background Subtraction Based on Integra-
530
+ tion of Alternative Cues in Freely Moving Camera. IEEE Transactions on Circuits and Sys-
531
+ tems for Video Technology, 29(7), 1933–1945. https://doi.org/10.1109/tcsvt.2018.2854273
532
+ [28] Yu, R., Cheng, I., Zhu, B., Bedmutha, S.,
533
+ Basu, A. (2018). Adaptive Resolution
534
+ Optimization and Tracklet Reliability Assessment for Efficient Multi-Object Tracking.
535
+ IEEE Transactions on Circuits and Systems for Video Technology, 28(7), 1623–1633.
536
+ https://doi.org/10.1109/tcsvt.2017.2668278
537
+ [29] Sun, C., Song, L. B. (2021). Product Re-identification System in Fully Automated Defect
538
+ Detection. ArXiv.org. https://doi.org/10.48550/arXiv.2112.10324
539
+ [30] Zhao, C., Basu, A. (2021). Pixel Distribution Learning for Vessel Segmentation under
540
+ Multiple Scales. 2021 43rd Annual International Conference of the IEEE Engineering in
541
+ Medicine Biology Society (EMBC). https://doi.org/10.1109/embc46164.2021.9629614
542
+ [31] Fu, H., Xu, Y., Lin, S., Kee Wong, D. W., Liu, J. (2016). DeepVessel: Retinal Vessel Segmen-
543
+ tation via Deep Learning and Conditional Random Field. Medical Image Computing and
544
+ Computer-Assisted Intervention – MICCAI 2016, 132–139. https://doi.org/10.1007/978-3-
545
+ 319-46723-8 16
546
+ [32] Dasgupta, A., Singh, S. (2017). A fully convolutional neural network based structured
547
+ prediction approach towards the retinal vessel segmentation. 2017 IEEE 14th International
548
+ Symposium on Biomedical Imaging (ISBI 2017). https://doi.org/10.1109/isbi.2017.7950512
549
+ [33] Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., van Ginneken, B. (2004). Ridge-
550
+ Based Vessel Segmentation in Color Images of the Retina. IEEE Transactions on Medical
551
+ Imaging, 23(4), 501–509. https://doi.org/10.1109/tmi.2004.825627
552
+ [34] Ge, Y., Zhang, J., Ren, X., Zhao, C., Yang, J., Basu, A. (2021). Deep Variation Transformation
553
+ Network for Foreground Detection. IEEE Transactions on Circuits and Systems for Video
554
+ Technology, 31(9), 3544–3558. https://doi.org/10.1109/tcsvt.2020.3042559
555
+ [35] Zhao, C., Cham, T.-L., Ren, X., Cai, J., Zhu, H. (2018). Background Subtraction Based on
556
+ Deep Pixel Distribution Learning. 2018 IEEE International Conference on Multimedia and
557
+ Expo (ICME). https://doi.org/10.1109/icme.2018.8486510
558
+ [36] Zhao, C., Basu, A. (2020). Dynamic Deep Pixel Distribution Learning for Background Sub-
559
+ traction. IEEE Transactions on Circuits and Systems for Video Technology, 30(11), 4192–4206.
560
+ https://doi.org/10.1109/tcsvt.2019.2951778
561
+ 11
562
+
563
+ [37] Singh, V., Singh, S.,
564
+ Gupta, P. (2020). Real-Time Anomaly Recognition Through
565
+ CCTV
566
+ Using
567
+ Neural
568
+ Networks.
569
+ Procedia
570
+ Computer
571
+ Science,
572
+ 173,
573
+ 254–263.
574
+ https://doi.org/10.1016/j.procs.2020.06.030
575
+ [38] Fan, Y., Wen, G., Li, D., Qiu, S., Levine, M. D. (2018). Early event detection based on dynamic
576
+ images of surveillance videos. Journal of Visual Communication and Image Representation,
577
+ 51, 70–75. https://doi.org/10.1016/j.jvcir.2018.01.002
578
+ [39] Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, Johan W, Carneiro, G. (2021). Weakly-
579
+ supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning.
580
+ ArXiv.org. https://doi.org/10.48550/arXiv.2101.10030
581
+ [40] Liu, W., Luo, W., Li, Z., Zhao, P.,
582
+ Gao, S. (2019). Margin Learning Embedded Pre-
583
+ diction for Video Anomaly Detection with A Few Anomalies. Ijcai.org, 3023–3030.
584
+ https://www.ijcai.org/proceedings/2019/419
585
+ [41] Pang, G., Cao, L., Chen, L.,
586
+ Liu, H. (2018). Learning Representations of Ultrahigh-
587
+ dimensional Data for Random Distance-based Outlier Detection. Proceedings of the
588
+ 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining.
589
+ https://doi.org/10.1145/3219819.3220042
590
+ [42] Pang, G., Shen, C., Anton. (2019). Deep Anomaly Detection with Deviation Networks.
591
+ ArXiv.org. https://doi.org/10.48550/arXiv.1911.08623
592
+ [43] Deshpande, K., Punn, N. S., Sonbhadra, Sanjay Kumar, Agarwal, S. (2022). Anomaly
593
+ detection in surveillance videos using transformer-based attention model. ArXiv.org.
594
+ https://doi.org/10.48550/arXiv.2206.01524
595
+ [44] Sultani, W., Chen, C., Shah, M. (2018). Real-world Anomaly Detection in Surveillance
596
+ Videos. ArXiv.org. https://doi.org/10.48550/arXiv.1801.04264
597
+ [45] zhaochenqiu.
598
+ (2022,
599
+ June
600
+ 6).
601
+ zhaochenqiu/UBgS ADNNet.
602
+ GitHub.
603
+ https://github.com/zhaochenqiu/UBgS ADNNet
604
+ 12
605
+
0tAyT4oBgHgl3EQfbfeR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NAzT4oBgHgl3EQf8_6P/content/tmp_files/2301.01913v1.pdf.txt ADDED
@@ -0,0 +1,1130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Training a Deep Q-Learning Agent Inside a
2
+ Generic Constraint Programming Solver
3
+ Tom Marty1,2, Tristan François2, Pierre Tessier2, Louis Gautier2,
4
+ Louis-Martin Rousseau1, and Quentin Cappart1
5
+ 1 Polytechnique Montréal, Montreal, Canada
6
+ {tom.marty,louis-martin.rousseau,quentin.cappart}@polymtl.ca
7
+ 2 Ecole Polytechnique, Palaiseau, France
8
+ {tristan.francois,pierre.tessier,louis.gautier}@polytechnique.edu
9
+ Abstract. Constraint programming is known for being an efficient ap-
10
+ proach to solving combinatorial problems. Important design choices in
11
+ a solver are the branching heuristics, designed to lead the search to the
12
+ best solutions in a minimum amount of time. However, developing these
13
+ heuristics is a time-consuming process that requires problem-specific ex-
14
+ pertise. This observation has motivated many efforts to use machine
15
+ learning to learn efficient heuristics without expert intervention automat-
16
+ ically. To our knowledge, it is still an open research question. Although
17
+ several generic variable-selection heuristics are available in the literature,
18
+ the options for a generic value-selection heuristic are more scarce. In this
19
+ paper, we propose to tackle this issue by introducing a generic learning
20
+ procedure that can be used to obtain a value-selection heuristic inside
21
+ a constraint programming solver. This has been achieved thanks to the
22
+ combination of a deep Q-learning algorithm, a tailored reward signal, and
23
+ a heterogeneous graph neural network architecture. Experiments on graph
24
+ coloring, maximum independent set, and maximum cut problems show
25
+ that our framework is able to find better solutions close to optimality
26
+ without requiring a large number of backtracks while being generic.
27
+ Keywords: Constraint Programming · Reinforcement Learning · Graph
28
+ Representation Learning
29
+ 1
30
+ Introduction
31
+ Combinatorial optimization has countless industrial applications, such as schedul-
32
+ ing, routing, or finance. Unfortunately, most of these problems are NP-hard and,
33
+ thereby, challenging to solve efficiently in practice. It is why finding good solu-
34
+ tions have motivated intense research efforts for many years. Traditional methods
35
+ for tackling them are somehow based on a search procedure: A clever enumer-
36
+ ation of the solution space is performed to find a feasible and possibly optimal
37
+ solution. Among these methods, constraint programming (CP) is an exact algo-
38
+ rithm. It constitutes a popular approach as they offer the possibility to find the
39
+ optimal solution or good feasible approximations by stopping the search early.
40
+ arXiv:2301.01913v1 [cs.AI] 5 Jan 2023
41
+
42
+ 2
43
+ T. Marty et al.
44
+ An additional asset is its declarative paradigm in modeling, which makes the
45
+ technology easier for the end user to grasp. This aspect has been greatly facili-
46
+ tated by introducing solver-agnostic modeling languages, such as MiniZinc [30].
47
+ Aligned with this goal, the propagation engine inside a CP solver is mostly hid-
48
+ den from the end user. However, ensuring a generic search procedure is trickier
49
+ as non-trivial heuristics must be designed to make the solving process efficient
50
+ for an arbitrary problem. That being said, generic variable-selection heuristics
51
+ (i.e., selecting the next variable to branch on) have been successfully designed.
52
+ Notable examples are impact-based search [32] or activity-based search [26]. On
53
+ the other hand, there is no similar generic heuristic for the value-selection (i.e.,
54
+ selecting the next value to branch one). As a concrete example, the current
55
+ version of MiniZinc3 does not propose generic value-selection heuristics, except
56
+ in(out)domain. In practice, this heuristic is often designed thanks to problem-
57
+ specific expert knowledge, which is often out of reach for end-users that do not
58
+ have a solid background in artificial intelligence.
59
+ In another context, machine learning (ML) has been recently considered
60
+ for automating the design of branching heuristics, both in constraint program-
61
+ ming [11], mixed-integer programming [14,20], or SAT solving [35]. Specifically,
62
+ reinforcement learning (RL) [38] or imitation learning [19] approaches, often
63
+ combined with deep learning [23], have gained special attention. Although this
64
+ idea seems appealing, this is not an easy task to achieve in practice as several
65
+ technical considerations must be taken into account in order to ensure both the
66
+ efficiency and the genericity of the approach. In constraint programming, we
67
+ identified three questions to resolve when learning a generic branching heuristic
68
+ inside a solver. They are as follows:
69
+ 1. How to train the machine learning model? An intuitive way is to leverage an
70
+ RL agent that would explore the tree search by making branching decisions
71
+ and rewarding it based on the quality of the solution found on a terminal
72
+ node. For getting a certificate of optimality, this would typically be done with
73
+ a depth-first search traversal of the tree. However, as pointed out by several
74
+ authors [33,36], the backtracking operations inside a solver raise difficulties
75
+ when formalizing the task as a Markov decision process and may require
76
+ redefining it. Besides, this training scheme intensifies the credit assignment
77
+ problem [27], which is ubiquitous in reinforcement learning.
78
+ 2. How to evaluate the quality of a value selection? A core component of an
79
+ RL environment is the reward function, which gives a score to each decision
80
+ performed. The end goal for the agent is to perform a sequence of decisions
81
+ leading to the best-accumulated sum of rewards. In our case, an intuitive
82
+ solution would be to reward the agent according to the quality of the solution
83
+ found. However, this information is only available at terminal nodes, and
84
+ only a zero reward is provided in branching nodes. This is related to sparse
85
+ reward problematic, which is known to complicate the training process.
86
+ 3. How to learn from a CP model? This question relates to the type of archi-
87
+ tecture that can be used to obtain a value-selection heuristic from a search
88
+ 3 https://www.minizinc.org/doc-2.5.5/en/lib-stdlib.html
89
+
90
+ Training a DQN Agent Inside a Generic CP Solver
91
+ 3
92
+ node (i.e., a partially solved CP model). A promising direction has been
93
+ proposed by Gasse et al. [14] for binary mixed-integer programs. They intro-
94
+ duced a bipartite graph linking variables and constraints (i.e., the two types
95
+ of nodes) when a variable is involved in a given constraint. The subsequent
96
+ architecture is a heterogeneous graph neural network. However, this encod-
97
+ ing is not directly applicable in constraint programming, as a CP model
98
+ generally involves non-binary variables and combinatorial constraints. This
99
+ has been partially addressed by Chalumeau et al. [12], who introduced a
100
+ tripartite graph where variables, values, and constraints are specific types
101
+ of nodes. Their approach, however, suffers from a lack of genericity as their
102
+ method requires retraining when the number of variables changes.
103
+ To our knowledge, answering such questions is still an open challenge in the
104
+ research community. This paper proposes to progress in this direction. It intro-
105
+ duces a generic learning procedure that can be used to obtain a value-selection
106
+ heuristic from a constraint programming model given as input. The approach
107
+ has been designed to be generic in that it can be used in whatever the CP model
108
+ is. In practice, a specific way to extract features from a constraint should be
109
+ designed for any available constraint, but this has to be done only once per
110
+ constraint type. In this proof of concept, we limit our experiments to three com-
111
+ binatorial optimization problems, namely graph coloring, maximum independent
112
+ set, and maximum cut. Specifically, we propose three main contributions, each
113
+ dedicated to addressing one of the aforementioned difficulties. They are as fol-
114
+ lows: (1) a learning procedure, based on restarts, for training a reinforcement
115
+ learning agent directly inside a CP solver, (2) a reward function able to assign
116
+ non-zero intermediate rewards based on the propagation that has been carried
117
+ out on the node, and (3) a neural architecture based on a tripartite graph and a
118
+ heterogeneous graph neural network. Experimental results show that combining
119
+ these three ideas enables the search to find good solutions without requiring
120
+ many backtracks. As shown by limiting the search tree’s size with a budget.
121
+ The paper is structured as follows. The next section presents other ap-
122
+ proaches related to our contribution. Then, Section 3 introduces succinctly tech-
123
+ nical background on reinforcement learning and graph neural networks. The core
124
+ contribution is then presented in Section 4. Finally, Section 5 provides experi-
125
+ mental results and closes with a discussion of the results and of some limitations.
126
+ 2
127
+ Related Work
128
+ Bengio et al. [5] identified three ways to leverage machine learning for com-
129
+ binatorial optimization. First, end-to-end learning aims to solve the problem
130
+ only with a trained ML model. This has been, for instance, considered for the
131
+ traveling salesman problem [4,21]. However, such an approach does not guar-
132
+ antee the validity nor the optimality of the solution returned. Second, learning
133
+ to configure is dedicated to providing insights to a solver before its execution.
134
+ This can be, for instance, the decision to linearize the problem in the context
135
+ of quadratic programs [7] or to learn when a decomposition is appropriate [22].
136
+
137
+ 4
138
+ T. Marty et al.
139
+ This approach is also referred to as parameter tuning [18]. We refer to the initial
140
+ survey for extended information about these two families of approaches. Third,
141
+ learning within a search procedure uses machine learning within the solver. Our
142
+ contribution belongs to this last category of methods. Although the idea of com-
143
+ bining learning and searching for solving combinatorial optimization problems
144
+ was already discussed in the nineties [31], it has re-emerged only recently with
145
+ the rise of deep learning. Most combinatorial optimization solvers are based
146
+ on branch-and-bound and backtracking. In this context, ML is often used with
147
+ branching rules to follow. Imitation learning [19] has been for instance used to
148
+ replicate the expensive strong branching strategy for mixed-integer programming
149
+ solvers [14,20]. One limitation of imitation learning is that the performances are
150
+ bounded by the relevance of the imitated strategy, which remains heuristic and
151
+ perfectible [37]. This opens the door for RL approaches that have the guarantee
152
+ to find the best branching strategy [25] eventually. A branching strategy can be
153
+ split into two challenging decisions, variable selection, and value selection. Both
154
+ of them have been addressed by reinforcement learning approaches.
155
+ Concerning the learning for selecting the next variable to branch on, Song
156
+ et al. [36] propose to combine a double deep Q-network algorithm [40] with a
157
+ graph neural network for carrying out this task. The approach is trained to
158
+ minimize the expected number of nodes to reach a leaf node using the first-fail
159
+ principle. Although this is a good proxy for pruning a maximum of infeasible
160
+ solutions for a constraint satisfaction problem, it does not extend naturally to
161
+ optimization variants, for which one should consider a trade-off between the
162
+ quality of the solution found and the number of nodes required to reach that
163
+ solution. For the value-selection heuristic, Cappart et al. [11] proposed to train
164
+ a model with reinforcement learning outside the CP solver and to integrate
165
+ the agent, once trained, subsequently in the solver. This has been achieved by
166
+ reaping the benefits of a dynamic programming formulation of a combinatorial
167
+ problem. An important limitation of this work is that no information related to
168
+ the CP solver, such as the propagation achieved on a node, can be used to drive
169
+ the decision. Chalumeau et al. [12] proposed to carry out the learning inside the
170
+ solver. The model is trained to find the optimal solution and to prove it with
171
+ the least number of search nodes possible. However, this goal is disconnected
172
+ from finding the best solution as quickly as possible and is practically hard
173
+ to achieve, even with a good heuristic. A more realistic goal is to find a good
174
+ solution quickly without closing the search. This is how the contribution of this
175
+ paper is positioned.
176
+ We would like to point out that learning how to branch is not the only way to
177
+ leverage ML inside a combinatorial optimization solver. Related works have also
178
+ been proposed on learning tight optimization bounds [8,10] or for accelerating
179
+ column generation approaches [29]. A recurrent design choice is an architecture
180
+ based on graph neural networks. We refer to the following survey for more in-
181
+ formation about combinatorial optimization with graph neural networks [9].
182
+
183
+ Training a DQN Agent Inside a Generic CP Solver
184
+ 5
185
+ 3
186
+ Technical Background
187
+ 3.1
188
+ Reinforcement Learning
189
+ Let ⟨S, A, T, R⟩ be a 4-tuple representing a Markov decision process where S is
190
+ the set of states in the environment, A is the set of actions that the agent can
191
+ do, T : S × A → S is a transition function leading the agent from one state
192
+ to another, given the action taken, and R : S × A → R is a reward function
193
+ of taking action from a specific state. The sequence [s1, . . . , sT ] from the initial
194
+ state (s1) of an agent towards a terminal state (sT ) is referred to as an episode.
195
+ The returned reward within a partial episode [st, . . . , sT ] can be formalized as
196
+ follows: Gt = �T
197
+ i=t R(si, ai). We intentionally omitted the discounting factor
198
+ as we do not want to discount the late rewards in our application. The agent
199
+ is governed by a policy π : S → A, which indicates the action that must be
200
+ taken on a given state. The agent’s goal is to find the policy that will lead
201
+ it to maximize the accumulated reward until a terminal state is reached. The
202
+ core idea of reinforcement learning is to determine this policy by letting the
203
+ agent interact with the environment and by increasing the probability of taking
204
+ action if it leads to high amounts of subsequent rewards. There are a plethora
205
+ of reinforcement learning algorithms dedicated to this task, such as trust region
206
+ policy optimization [34] or soft actor-critic [15]. We refer to SpinningUp website
207
+ for explanations of the main algorithms [1].
208
+ This section presents the core principles of deep Q-learning [28], which is
209
+ the algorithm used in this paper. The idea of this algorithm is to compute
210
+ an action-value function Qπ(st, at) = Gt. Intuitively, this function gives the
211
+ accumulated reward that the agent will obtain when performing the action a
212
+ at state s while subsequently following a policy π. The output of this func-
213
+ tion for a specific action is referred to as a Q-value. Provided that the action-
214
+ value function can be computed exactly, the optimal policy π⋆ turns to be sim-
215
+ ply the selection of the action having the highest Q-value on a specific state:
216
+ π∗ = argmaxπQπ(s, a), ∀(s, a) ∈ (S, A). Although the exact computation of Q-
217
+ values can theoretically be performed, a specific value must be computed for each
218
+ pair of states and actions, which is not tractable for realistic situations. It is why
219
+ a tremendous amount of work has been carried out to approximate accurately
220
+ and efficiently Q-values. Among them, deep Q-learning aims to provide a neural
221
+ estimator ˆQ(s, a, θ) ≈ Q(s, a), where θ is a tensor of parameters that must be
222
+ learned during a training phase. This algorithm is commonly enriched with other
223
+ mechanisms dedicated to speed-up or stabilizing the training process, such as
224
+ the double deep Q-network variant [40]. Concerning the neural architecture, we
225
+ opted for a graph neural network, which is explained in the next section.
226
+ 3.2
227
+ Graph Neural Network
228
+ Intuitively, the goal of a graph neural network (GNN) is to embed information
229
+ contained in a graph (e.g., the structure of the graph, spatial properties, features
230
+ of the nodes, etc.) into a d-dimensional tensor for each node u ∈ V of the graph.
231
+
232
+ 6
233
+ T. Marty et al.
234
+ To do so, information on a node is iteratively refined by aggregating information
235
+ from neighboring nodes. Each iteration of aggregation is referred to as a layer
236
+ of the GNN and involves parameters that must be learned. Let hk
237
+ u ∈ Rd×1 be
238
+ the tensor representation of node a u at layer k of the GNN, hk+1
239
+ u
240
+ ∈ Rl×1 be
241
+ the tensor representation of this node at the next layer (l being the dimension
242
+ of a node at the layer k + 1), and θ1 ∈ Rl×d and θ2 ∈ Rl×d be two matrices of
243
+ parameters, respectively. Each GNN layer carries out the following update:
244
+ hk+1
245
+ u
246
+ = g
247
+
248
+ θ1hk
249
+ u ⋆ (
250
+
251
+ v∈N(u)
252
+ θ2hk
253
+ v)
254
+
255
+ ∀u ∈ V
256
+ (1)
257
+ Three operations are involved in this update: (1) � is an aggregation operator
258
+ that is dedicated to aggregating information of neighbors (e.g., mean-pooling or
259
+ sum-pooling), (2) ⋆ is a merging which enables to combine of the information
260
+ of a node with the ones from the neighbors (e.g., a concatenation), and (3) g is
261
+ an element-wise non-linear activation function, such as the ones commonly used
262
+ in fully connected neural networks (e.g., ReLU). Without loss of generality, the
263
+ bias term is not included in the equation. A concrete implementation of a GNN
264
+ turns out to define these three functions adequately. The training is carried out
265
+ in a fully connected neural network through back-propagation and an optimizer
266
+ based on gradient descent.
267
+ 4
268
+ Learning a Value-Selection Heuristic Inside a Solver
269
+ This section presents how a value-selection heuristic can be learned with re-
270
+ inforcement learning in a CP solver from a model given as input. This is the
271
+ core contribution of this paper. Three mechanisms are introduced: (1) a train-
272
+ ing procedure based on restarts, (2) a reward function leveraging propagation of
273
+ domains, and (3) a heterogeneous graph neural network architecture. They are
274
+ described individually in the next subsections. They have been implemented in
275
+ recently introduced SeaPearl.jl solver [12]. The main specificity of this solver
276
+ is to natively integrate support for learning inside the search procedure. This
277
+ greatly facilitates the prototyping of new search algorithms based on learning.
278
+ 4.1
279
+ Restart-Based Training
280
+ Generally speaking, the performance of a reinforcement learning agent is tightly
281
+ correlated with the definition on an episode. This corresponds to the agent’s
282
+ interactions with the CP solver’s search procedure and is related to the goal
283
+ desired for the agent. Two options are discussed in this section, (1) an episode
284
+ based on depth-first search, which has been introduced by Chalumeau et al. [12],
285
+ and (2) an episode based on restarts is one contribution of the paper.
286
+ Building branching heuristics for solving exact combinatorial optimization
287
+ problems often concurrently targets two objectives: finding quickly good solu-
288
+ tions and proving the optimality of a solution. The approach of Chalumeau et
289
+
290
+ Training a DQN Agent Inside a Generic CP Solver
291
+ 7
292
+ al. [12] relies heavily on the second objective and aims to minimize the number
293
+ of visited search nodes before proving optimality (e.g. closing the search). To do
294
+ so, they defined a training episode as a complete solving process carried out by
295
+ the depth-first search of a solver and penalized through the reward function the
296
+ generation of each node. This is illustrated in the left picture of Fig. 1. However,
297
+ this approach suffers from an important difficulty. An episode only terminates
298
+ when the search is completed, which is often intractable for realistic problems as
299
+ it requires exploring an exponentially large search tree. This is especially prob-
300
+ lematic during the training phase, where the heuristic is still mediocre. This has
301
+ also been pointed out by Scavuzzo et al. [33] for mixed-integer programming.
302
+ Fig. 1: The two training procedures (left: depth-first search, right: restart-based)
303
+ Unlike this approach, we propose to train the model to find good solutions
304
+ quickly. To do so, we followed the approach proposed by Cappart et al. [11]:
305
+ an episode is defined as a diving heuristic. No backtrack is allowed; the episode
306
+ stops when a complete solution is found or when a failure is generated. Once
307
+ the episode is terminated, a restart from the root node is performed, and a
308
+ new episode is generated, whereas the name of restart-based episode. This is
309
+ illustrated in the right picture of Fig. 1. One limitation of Cappart et al. [11] is
310
+ that episodes are executed outside the CP solver during the training and are then
311
+ unable to use information based on the propagation for the branching. Inspired
312
+ by Song et al. [36] for variable-selection heuristics, we addressed this limitation
313
+ by executing each episode inside the solver during the training. Formally, this
314
+ requires defining the dynamics of the environment as a Markov Decision Process
315
+ (i.e., a tuple ⟨S, A, T, R⟩, see Section 3.1).
316
+ Set of states Let P = ⟨X, D(X), C, O⟩ be the expression of a combinatorial
317
+ optimization problem (COP), defined by its variables (X), the domains (D),
318
+ its constraints (C), and an objective function (O). Each state st ∈ S is
319
+ defined as the pair st = (Pt, xt), where Pt is a partially solved COP (i.e.,
320
+ some variables may have been assigned), and xt ∈ X is a variable selected for
321
+ branching, at step t of the episode. The initial state s1 ∈ S corresponds to
322
+ the situation after the execution of the fix-point. A terminal node is reached
323
+ either if all the variables are assigned (∀x ∈ X : |Dt(x)| = 1), or if a failure
324
+
325
+ Decision branching
326
+ Back-tracking
327
+ Reward Signal
328
+ End of the episode8
329
+ T. Marty et al.
330
+ is detected (∃x ∈ X : |Dt(x)| = 0). The variable selected for branching is
331
+ obtained through a standard heuristic such as first-fail.
332
+ Set of actions Given a state st = (Pt, xt), an action at corresponds to the
333
+ selection of a value v ∈ D(xt) for branching at step t. Finding the most
334
+ promising value to branch on is the problem addressed in this paper.
335
+ Transition function Given a state st = (Pt, xt) and an action at = v, the
336
+ transition function executes three successive operations. First, it assigns the
337
+ value v to the variable x (i.e., D(xt+1) = v). Second, it executes the fix-
338
+ point on Pt in order to prune the domains (i.e., Pt+1 = fixPoint(Pt)). Third,
339
+ it selects the next variable to branch on (i.e., xt+1 = nextVariable(Pt)). This
340
+ results in a new state st+1 = (Pt+1, xt+1). Integrating the propagation inside
341
+ the transition is the main difference from the work of Cappart et al. [11].
342
+ Reward function The function is defined separately in Section 4.2.
343
+ Concerning the training, we opted for a double deep Q-learning algorithm,
344
+ known to perform well for discrete action space, but other RL algorithms could
345
+ also be used. Finally, we compared both training procedures for the maximum
346
+ independent set problem with instances with 50 nodes using performance pro-
347
+ files [13]. The ratio is computed using the optimal solution as a reference. As a
348
+ non-learned baseline, we added the performances of an agent performing only
349
+ random decisions. Training is carried out on randomly generated Barabási-Albert
350
+ graphs [2]. Evaluation is performed on 20 other graphs following the same dis-
351
+ tribution. A detailed explanation of the experimental protocol is proposed in
352
+ Section 5. Figure 2 shows performance profiles. As expected, we observe that
353
+ our new agent (single dive learning) can obtain better solutions quickly, with a
354
+ comparable ability to prove optimality compared to Chalumeau et al. [12].
355
+ (a) Value of the solution obtained.
356
+ (b) Node visited until optimality.
357
+ Fig. 2: Comparison of both training methods on max. independent set (50 nodes).
358
+ 4.2
359
+ Propagation-Based Reward
360
+ The goal of the reward is to lead the agent to good solutions to the combinato-
361
+ rial problem. Based on our training procedure, an intuitive function is to reward
362
+
363
+ 1.0
364
+ 20 instances
365
+ 0.8
366
+ 0.6
367
+ 0.4
368
+ Single Dive Learning
369
+ 0.2
370
+ DFS-based Learning
371
+ Random
372
+ 0.0
373
+ 1.00
374
+ 1.25
375
+ 1.50
376
+ 1.75
377
+ 2.00
378
+ 2.25
379
+ 2.50
380
+ 2.75
381
+ 3.00
382
+ Within this factor of the best score1.0
383
+ 20 instances
384
+ 0.8
385
+ 0.6
386
+ Proportion of the
387
+ 0.4
388
+ Single Dive Learning
389
+ 0.2
390
+ DFS-based Learning
391
+ Random
392
+ 0.0
393
+ 1.0
394
+ 1.2
395
+ 1.4
396
+ 1.6
397
+ 1.8
398
+ 2.0
399
+ 2.2
400
+ Within this factor of the smallest number of node visitedTraining a DQN Agent Inside a Generic CP Solver
401
+ 9
402
+ the agent proportionally to the quality of the solution found at the end of an
403
+ episode. In case of an infeasible solution is found, a penalty can be given. The
404
+ main drawback of this rewarding scheme is that this information is only available
405
+ at terminal nodes, and only a zero reward is provided in branching nodes. This is
406
+ related to the sparse reward problem, which is known to complicate the training
407
+ process [39]. To address this difficulty, we propose a new rewarding scheme based
408
+ on the domain reduction of the objective variable (i.e., the variable that must be
409
+ minimized or maximized). This happens either thanks to the branching assign-
410
+ ment or the application of the fix-point. There are two main components: (1)
411
+ an intermediate reward (rmid) collected at branching nodes, and (2) a terminal
412
+ reward (rend) collected only at the end of an episode.
413
+ Fig. 3: Intermediate reward when four values are pruned from the domain.
414
+ Assuming a minimization problem, the intermediate reward follows two prin-
415
+ ciples: each domain reduction of the largest values of the domain is rewarded,
416
+ and each domain reduction of the lowest values of the domain is penalized. The
417
+ rationale is to lead the agent to a situation where the minimum cost can be even-
418
+ tually obtained while removing costly solutions. It is formalized in Equations (2)
419
+ to (4), where rmid
420
+ t
421
+ is the reward obtained at step t, and is illustrated in Fig 3. As
422
+ shown in Equation 5, the terminal reward is set to -1 if the leaf node corresponds
423
+ to an infeasible solution and 0 if it is feasible. Finally, the total reward (racc)
424
+ accumulated during an episode of T steps is the sum of all intermediate rewards
425
+ with the final term, as proposed in Equation (6).
426
+ rub
427
+ t
428
+ = #
429
+
430
+ v ∈ Dt(xobj)
431
+ ��� v /∈ Dt+1(xobj) ∧ v > max
432
+
433
+ Dt(xobj)
434
+ ��
435
+ (2)
436
+ rlb
437
+ t = #
438
+
439
+ v ∈ Dt(xobj)
440
+ ��� v /∈ Dt+1(xobj) ∧ v < min
441
+
442
+ Dt(xobj)
443
+ ��
444
+ (3)
445
+ rmid
446
+ t
447
+ = rub
448
+ t − rlb
449
+ t
450
+ ��D1(xobj)
451
+ ��
452
+ (4)
453
+ rend
454
+ t
455
+ = −1 if unfeasible solution found (0 otherwise)
456
+ (5)
457
+ racc =
458
+ T −1
459
+
460
+ t=1
461
+ rmid
462
+ t
463
+ + rend
464
+ T
465
+ (6)
466
+ An experimental analysis of this new reward scheme (propagation-based re-
467
+ ward) is carried out for the maximum cut, graph coloring, and maximum inde-
468
+ pendent set problems. As a baseline, we consider a reward (score reward) that
469
+
470
+ 1
471
+ 2
472
+ 3
473
+ 4
474
+ 5
475
+ 6
476
+ 7
477
+ 8
478
+ 9
479
+ 10
480
+ D+
481
+ 1
482
+ 2
483
+ 3
484
+ 4
485
+ 5
486
+ 6
487
+ 7
488
+
489
+ 3-1
490
+ 2
491
+ D++1
492
+ 2
493
+ 3
494
+ 4
495
+ 10
496
+ 1010
497
+ T. Marty et al.
498
+ only gives a value at terminal nodes (rend
499
+ T ) without an intermediate reward. Be-
500
+ sides, we present the values of the optimal solution and the solutions obtained
501
+ by a random value-selection heuristic. Fig. 4 shows the evolution of the objective
502
+ value (y-axis, averaged on 20 instances of the validation step) with the training
503
+ time (number of episodes in the x-axis). Instances are Barabási-Albert randomly
504
+ generated graphs with 50 nodes. Except for the reward scheme, the other parts
505
+ of the architecture are unchanged. We observe that the propagation-based reward
506
+ provides a more stable training (Fig. 4a) and can converge to a better model or,
507
+ at least, to an equally good model as the sparse reward (Figs. 4b and 4c).
508
+ (a) Graph coloring.
509
+ (b) Maximum cut.
510
+ (c) Max. independent set.
511
+ Fig. 4: Training curve for the two rewarding schemes.
512
+ 4.3
513
+ Heterogeneous Graph Neural Network Architecture
514
+ An important part of our framework is the neural network architecture that we
515
+ designed to perform a prediction of the next value to branch on. A high-level
516
+ representation is proposed in Fig. 5. Four steps are carried out: (1) a CP model
517
+ encoder, (2) a graph neural network encoder, (3) a neural network decoder, and
518
+ (4) an action-selection policy. They are detailed in the next subsections.
519
+ Fig. 5: High-level overview of the neural architecture designed.
520
+
521
+ 50
522
+ Propagation-based reward
523
+ Score reward
524
+ 40
525
+ Optimal Score
526
+ Random
527
+ 30
528
+ 20
529
+ 10
530
+ 0
531
+ 2
532
+ 4
533
+ 6
534
+ 8
535
+ 10
536
+ Training episode
537
+ (x1000)0
538
+ Propagation-based reward
539
+ -20
540
+ Score reward
541
+ Optimal Score
542
+ -40
543
+ Random
544
+ -60
545
+ -80
546
+ -100
547
+ -120
548
+ 0
549
+ 2
550
+ 4
551
+ 6
552
+ 8
553
+ 10
554
+ Training episode (x1000)-2
555
+ -3
556
+ Propagation-based reward
557
+ Score reward
558
+ -4
559
+ Optimal Score
560
+ -5
561
+ Random
562
+ -6
563
+ -7
564
+ -8
565
+ -9
566
+ -10
567
+ 0
568
+ 2
569
+ 4
570
+ 6
571
+ 10
572
+ Training episode (x1000)GNN Encoder (2)
573
+ NN Decoder (3)
574
+ Solver state and
575
+ Predicted
576
+ selected variable
577
+ Q-Table
578
+ St = (Pt,&t)
579
+ *=3
580
+ Extract
581
+ *=2
582
+ value
583
+ GNN layers
584
+ CP Encoder
585
+ features
586
+ *=1
587
+ Q(St, X1 = 3)
588
+ X1
589
+ *=3
590
+ Q(St, Xi = 2)
591
+ X1
592
+ X1
593
+ *=1
594
+ Q(St, Xi = 1)
595
+ Extract
596
+ variable
597
+ X1
598
+ C1
599
+ C2
600
+ Action-Selection
601
+ features
602
+ 4'
603
+ PolicyTraining a DQN Agent Inside a Generic CP Solver
604
+ 11
605
+ Step 1: CP Model Encoder This module’s core idea is to learn for any CP
606
+ model given as input, unlike Cappart et al. [11], who require a specific encod-
607
+ ing for each combinatorial problem. This has been achieved for mixed-integer
608
+ programs thanks to a bipartite graph representation [14] and by Chalumeau et
609
+ al. [12] for CP models thanks to a tripartite graph. This last work does not lever-
610
+ age any feature related to the variables, values, or constraints. We built upon
611
+ this last approach by adding such features. Specifically, let P = ⟨X, D(X), C, O⟩
612
+ be the combinatorial problem we want to encode. The idea consists in building
613
+ a simple undirected graph G(V1, V2, V3, f1, f2, f3, E1, E2) encoding all the infor-
614
+ mation of Pt from a state st = (Pt, xt). In this representation, V1, V2, and V3 are
615
+ three types of vertices, f1, f2, and f3 are three vectors of features, and E1 with
616
+ E2 are two distinct sets of edges. This yields a graph with three types of nodes
617
+ decorated with features. The first part of the encoding we propose is as follows:
618
+ (1) each variable, constraint, and value corresponds to a specific type of node
619
+ (V1 = X, V2 = C, and V3 = D), (2) each time a variable x ∈ V1 is involved in
620
+ a constraint c ∈ V2, an edge (x, c) ∈ E1 is added between both nodes, (3) each
621
+ time a value v ∈ V3 is in the domain of a variable x ∈ V1, an edge (v, x) ∈ E2 is
622
+ added between both nodes. This gives a tripartite graph representation of a CP
623
+ model generically. This is illustrated in Fig. 6. The second part of the encoding
624
+ is to add features to each node. Intuitively, the features will provide meaningful
625
+ information and thus improve the quality of the model. The features we consid-
626
+ ered are proposed below. We note that we can easily extend this encoding by
627
+ integrating new features.
628
+ 1. Features attached to variables (f1): the current domain size, the initial do-
629
+ main size, a binary indication if the variable is already assigned, and a binary
630
+ indication if the variable corresponds to the objective.
631
+ 2. Features attached to constraints (f2): the constraint type (one-hot encoding),
632
+ and a binary indication if the constraint propagation has reduced domains.
633
+ 3. Features attached to values (f3): its numerical value.
634
+ Fig. 6: Representation computed by the CP encoder on a simple example.
635
+ Step 2: Graph Neural Network Encoder Once the CP model has been
636
+ encoded as a graph, the next step is to embed this representation as a latent
637
+
638
+ Solver State
639
+ Tripartite Heterogeneous Graph
640
+ Vi
641
+ V2
642
+ XiE1,2.X2E1,21,X3E[1,2,3]
643
+ CP Encoder
644
+ fi(X1)
645
+ f2(C))
646
+ .C1 = X1 ≤ X2
647
+ fi(X2)
648
+ .C2 = X2 ≤X3
649
+ f2(Ca)
650
+ .C3 = AllDifferent(Xi, X2, X3)
651
+ fi(Xs)
652
+ f2(C2)
653
+ E
654
+ Ei12
655
+ T. Marty et al.
656
+ vector of features for each node of the graph (see Section 3.2). We propose
657
+ to carry out this operation with a graph neural network. Unlike the standard
658
+ prediction scheme presented in Equation (1), our graph has three types of nodes.
659
+ For this reason, we opted for a heterogeneous architecture. Concretely, a specific
660
+ convolution is carried out for each node type. The architecture is detailed in
661
+ Equations (7) to (9), where � is the sum-pooling or mean-pooling aggregation,
662
+ operator (.∥.) is a concatenation of vectors, Nx(n) is the set of neighbouring
663
+ nodes of n from V1 (variable), Nc(n) is the set of neighbouring nodes of n from V2
664
+ (constraint), Nv(n) is the set of neighbouring nodes of n from V3 (value), θk
665
+ 1,...,10
666
+ are weight matrices at layer k, and g is the leakyReLU activation function [24].
667
+ Another difference with the canonical GNN equation is the integration of skip
668
+ connections (h0
669
+ x, h0
670
+ c, and h0
671
+ c) allowing to keep at each layer information from
672
+ the input features. This technique is ubiquitous in deep convolutional networks
673
+ such as in ResNet [17]. Finally, the initial embedding are initialized as follows:
674
+ h0
675
+ x = θ11f1, h0
676
+ c = θ12f2, and h0
677
+ v = θ13f3, where θ11,...,13 are new weight matrices.
678
+ hk+1
679
+ x
680
+ = g
681
+
682
+ θk
683
+ 1h0
684
+ x
685
+ �� θk
686
+ 2hk
687
+ x
688
+ �� (
689
+
690
+ c∈Nc(x)
691
+ θk
692
+ 3hk
693
+ c)
694
+ �� (
695
+
696
+ v∈Nv(x)
697
+ θk
698
+ 4hk
699
+ v)
700
+
701
+ ∀x ∈ V1
702
+ (7)
703
+ hk+1
704
+ c
705
+ = g
706
+
707
+ θk
708
+ 5h0
709
+ c
710
+ �� θk
711
+ 6hk
712
+ c
713
+ �� (
714
+
715
+ x∈Nx(c)
716
+ θk
717
+ 7hk
718
+ x)
719
+
720
+ ∀c ∈ V2
721
+ (8)
722
+ hk+1
723
+ v
724
+ = g
725
+
726
+ θk
727
+ 8h0
728
+ v
729
+ �� θk
730
+ 9hk
731
+ v
732
+ �� (
733
+
734
+ x∈Nx(v)
735
+ θk
736
+ 10hk
737
+ x)
738
+
739
+ ∀v ∈ V3
740
+ (9)
741
+ Step 3: Neural Network Decoder At this step, a d-dimensional tensor is
742
+ obtained for each node of the graph. Let x ∈ V1 be the node representing the
743
+ current variable selected for branching, and Vx ⊆ V3 the subset of nodes repre-
744
+ senting the values available for x (i.e., the values that are in the domain of the
745
+ variable). The goal of the decoder is to predict a Q-value (see Section 3.1) for each
746
+ v ∈ Vx. The computation is formalized in Equation (10), where hK
747
+ x and hK
748
+ v are
749
+ the node embedding of variable x and value v, respectively, after K iterations of
750
+ the GNN architecture. The functions ϕx : Rd → Rl, ϕv : Rd → Rl, ϕq : R2l → R
751
+ are fully-connected neural networks. Such a Q-value must computed for each
752
+ value v ∈ Vx. It is internally done thanks to matrix operations, allowing a more
753
+ efficient computation.
754
+ ˆQ(hK
755
+ x , hK
756
+ v ) = ϕq
757
+
758
+ ϕx(hK
759
+ x )
760
+ �� ϕv(hK
761
+ v )
762
+
763
+ ∀v ∈ Vx
764
+ (10)
765
+ Step 4: Action-Selection Policy Once all the Q-values have been computed
766
+ for the current variable, the branching policy π on variable x consists simply
767
+ by taking the highest Q-value, according to the standard Q-learning algorithm
768
+ shown in Equation (11). Once trained, this value should represent the branching
769
+ choice leading to the best decision according to the reward of Equation (6).
770
+ π(v|x) = argmaxv∈Vx ˆQ(hK
771
+ x , hK
772
+ v )
773
+ (11)
774
+
775
+ Training a DQN Agent Inside a Generic CP Solver
776
+ 13
777
+ Assembling all the pieces together, this architecture gives a generic approach to
778
+ obtain a data-driven value-selection heuristic inside a CP solver. Concerning the
779
+ search strategy, we propose to embed our predictions inside an iterative limited
780
+ discrepancy search (ILDS) [16]. This strategy is commonly used when we are
781
+ confident on the quality of the heuristic. The core idea is to restrict the number
782
+ of branching choices deviating from the heuristic (i.e., a discrepancy). By doing
783
+ so, the search will explore a subset of solutions expected to be good while giving
784
+ a chance to reconsider the value-heuristic selection which is nevertheless prone
785
+ to errors. This mechanism is enriched with a procedure that iteratively increases
786
+ the number of discrepancies allowed once a level has been explored.
787
+ 5
788
+ Experiments
789
+ The goal of the experiments is to evaluate the quality of the learned value-
790
+ selection heuristic and the efficiency of the approach when solving combinatorial
791
+ optimization problems. Three problems are considered: graph coloring (COL),
792
+ maximum independent set (MIS), and maximum cut (MAXCUT).
793
+ 5.1
794
+ Experimental Protocol
795
+ Three configurations are proposed for each problem: small (20 to 30 nodes),
796
+ medium (40 to 50 nodes) and large (80 to 100 nodes) instances, except for
797
+ MAXCUT which was already challenging for the medium size. Training is carried
798
+ out on randomly generated Barabási-Albert graph [2] with a density factor vary-
799
+ ing between 4 and 15 according to the size of the instances. A specific model is
800
+ trained for each configuration using randomly generated instances. Evaluation is
801
+ then performed on 20 other graphs following the same distributions. The models
802
+ are trained on an Nvidia Tesla V100 32Go GPU until convergences. It took up
803
+ to 72 hours of training time for the most difficult cases (graph coloring with
804
+ 80 nodes) and less than 1 hour for the simplest cases (graph coloring with 20
805
+ nodes). Each operation of the CP solver during training and evaluation is carried
806
+ out on a CPU Intel Xeon Silver 4116 at 2.10GHz. The approach has been imple-
807
+ mented in Julia and is integrated into the solver Seapearl. The implementation
808
+ is available on GitHub with MIT open-source licence4.
809
+ Our approach (ILDS-Learned) is compared with the optimal solution (OPT)
810
+ which is obtained by an exact solver, with a standard depth-first search strategy
811
+ based on a random value selection (DFS-Random), and with the application of
812
+ the learned heuristic without any backtrack (Dive-Learned). A standard first-
813
+ fail variable-selection heuristic is used for all the methods. Finally, a maximum
814
+ budget in terms of the number of nodes visited is enforced. The idea is to show
815
+ that we can obtain solutions close to optimality with few backtracks.
816
+ 4 https://github.com/corail-research/SeaPearl.jl
817
+
818
+ 14
819
+ T. Marty et al.
820
+ 5.2
821
+ Quantitative Results
822
+ Table 1 summarizes the main results of our approach. A first observation is that
823
+ the learned value-selection, even without backtrack (Dive-Learned) can find solu-
824
+ tions close to optimality. For instance, a single dive for MAXCUT with 50 nodes
825
+ yields a solution with an optimality gap of 17% in less than 1 second, whereas
826
+ DFS-Random required 22 seconds and roughly 51,000 nodes explored to find a
827
+ solution with the same gap. Within the same budget, ILDS-Learned improves
828
+ the solution but with a longer execution time. This increased computation time
829
+ is mainly due to the fact that calling the graph neural network architecture
830
+ (Section 4.3) at each tree search node is more expensive than calling a random
831
+ heuristic. Experimental results are also proposed in Fig. 7 using performance
832
+ profiles [13] for the hardest instances of each problem (80 for graph coloring, 100
833
+ for max independent set, and 50 for maximum cut. The ratio is computed using
834
+ the optimal solution as a reference. Within the same maximal number of nodes
835
+ visited (1000), we observe that ILDS-Learned dominate DFS-Random. Besides,
836
+ when restricting ten times the budget for ILDS-Learned, we still perform better
837
+ than the competitor.
838
+ Table 1: Results for the three problems. For each configuration, the average
839
+ result (rounded) on the 20 test instances is reported, and a specific node budget
840
+ is enforced for DFS-Random and ILDS-Learned. Gap indicates the optimality gap,
841
+ Node gives the number of nodes explored before finding the best solution within
842
+ the budget, and Time gives the time, in seconds, before finding this solution.
843
+ DFS-Random
844
+ Dive-Learned
845
+ ILDS-Learned
846
+ (with budget)
847
+ (no backtrack)
848
+ (with budget)
849
+ Size
850
+ OPT Gap
851
+ Node Time Gap
852
+ Time Gap
853
+ Node Time Budget
854
+ COL
855
+ 20
856
+ 4.95 2,33
857
+ 85
858
+ < 1 0.00
859
+ < 1 0.00
860
+ 21
861
+ < 1
862
+ 102
863
+ 40
864
+ 7.90 0.00
865
+ 1,559
866
+ < 1 0.00
867
+ < 1 0.00
868
+ 41
869
+ < 1
870
+ 104
871
+ 80
872
+ 12.00 0.00
873
+ 6,698
874
+ 11 0.02
875
+ 2 0.00
876
+ 85
877
+ 2
878
+ 104
879
+ MIS
880
+ 30
881
+ 10.20 0.00
882
+ 291
883
+ < 1 0.05
884
+ < 1 0.00
885
+ 41
886
+ < 1
887
+ 104
888
+ 50
889
+ 14.90 0.00
890
+ 8,011
891
+ < 1 0.19
892
+ < 1 0.00
893
+ 2,749
894
+ 2
895
+ 105
896
+ 100
897
+ 21.75 0.09 51,174
898
+ 7 0.19
899
+ < 1 0.01 28,483
900
+ 170
901
+ 105
902
+ MAXCUT
903
+ 20
904
+ 46.45 0.03
905
+ 5,071
906
+ < 1 0.19
907
+ < 1 0.03
908
+ 3,059
909
+ 2
910
+ 104
911
+ 50 135.19 0.17 51,222
912
+ 22 0.17
913
+ < 1 0.10 35,977
914
+ 172
915
+ 105
916
+ 5.3
917
+ Discussions
918
+ Previous experiments showed the capacity of our approach to obtain a value-
919
+ selection heuristic in a CP solver, thanks to historical instances of the same
920
+ distribution. Unlike many related works based on imitation learning [14,20], the
921
+ training is not supervised and thus does not require labels from an expert (e.g.,
922
+
923
+ Training a DQN Agent Inside a Generic CP Solver
924
+ 15
925
+ (a) Graph coloring.
926
+ (b) Maximum cut.
927
+ (c) Max. independent set.
928
+ Fig. 7: Best solutions found on largest instances for the three problems.
929
+ an expensive heuristic or an exact solving). One major difficulty encountered
930
+ by our approach is the increased computation time due to the inference of the
931
+ graph neural network at each node of the tree search. A first solution would
932
+ be to reduce the complexity of the model by compressing its knowledge, e.g.,
933
+ using network pruning tools [41]. Another idea is to call the model only in a
934
+ few nodes, in a similar fashion as Cappart et al. [8] did for decision-diagram-
935
+ based branch-and-bound [6]. The last idea to tackle this scaling issue would be
936
+ to restrict the learning only to small instances and transfer the model to solve
937
+ larger instances. The architecture has been designed to do so, and experiments
938
+ on this aspect are part of future work. A second difficulty is the size of the CP
939
+ encoding as a tripartite graph, which involves a specific node for each variable,
940
+ value, and constraint. This grows proportionally with the problem size and slows
941
+ down the training phase. As a concrete example, graph coloring instances with
942
+ 80 nodes require 72 hours of training time. An interesting research question is
943
+ how to build such a generic encoding more compactly.
944
+ 6
945
+ Conclusion
946
+ The efficiency of constraint programming solvers is partially due to the branch-
947
+ ing heuristics used to guide the search. Unlike the variable selection, there is
948
+ no available generic and efficient heuristic for the value selection. In practice,
949
+ value-selection heuristics are often designed thanks to problem-specific expert
950
+ knowledge, often out of reach for non-practitioners. In this paper, we proposed
951
+ a learning-based approach for obtaining such a heuristic thanks to historical
952
+ data, characterized by problem instances following the same distribution of the
953
+ one that must be solved. This has been achieved thanks to the combination of
954
+ a restart-based training procedure, a non-sparse reward signal, and a hetero-
955
+ geneous graph neural network architecture. Experiments on three combinato-
956
+ rial optimization problems show that the framework can find better solutions
957
+ close to optimality without requiring many backtracks. Several limitations (e.g.,
958
+ tractability for larger instances) have been identified, and addressing them is
959
+ part of future work. We also plan to consider other combinatorial problems,
960
+ such as the ones proposed in XCSP3 competitions [3].
961
+
962
+ 20 instances
963
+ 1.0
964
+ 0.8
965
+ 0.6
966
+ Proportion of the 2
967
+ 0.4
968
+ RL Agent - ILDS - 100
969
+ 0.2
970
+ RL Agent - ILDS - 1000
971
+ Random - DFS - 1oo0
972
+ 0.0
973
+ 1
974
+ 2
975
+ 3
976
+ 4
977
+ 5
978
+ 6
979
+ Within this factor of the best score1.0
980
+ 0.8
981
+ 0.6
982
+ 0.4
983
+ RL Agent - ILDS - 1o0
984
+ 0.2
985
+ RL Agent - ILDS - 1000
986
+ Random - DFS - 1oo0
987
+ 0.0
988
+ 1.0
989
+ 1.1
990
+ 1.2
991
+ 1.3
992
+ 1.4
993
+ Within this factor of the best score1.0
994
+ 0.8
995
+ 0.6
996
+ 0.4
997
+ RL Agent - ILDS - 1o0
998
+ 0.2
999
+ RL Agent - ILDS - 1000
1000
+ Random - DFS - 1oo0
1001
+ 0.0
1002
+ 1.0
1003
+ 1.1
1004
+ 1.2
1005
+ 1.3
1006
+ 1.4
1007
+ 1.5
1008
+ 1.6
1009
+ Within this factor of the best score16
1010
+ T. Marty et al.
1011
+ References
1012
+ 1. Achiam, J.: Spinning up as a deep rl researcher (Oct 2018), spinningup.openai.
1013
+ com/en/latest/spinningup/spinningup.html
1014
+ 2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
1015
+ modern physics 74(1), 47 (2002)
1016
+ 3. Audemard, G., Lecoutre, C., Lonca, E.: Proceedings of the 2022 xcsp3 competition.
1017
+ arXiv preprint arXiv:2209.00917 (2022)
1018
+ 4. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
1019
+ mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)
1020
+ 5. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
1021
+ tion: a methodological tour d’horizon. European Journal of Operational Research
1022
+ 290(2), 405–421 (2021)
1023
+ 6. Bergman, D., Cire, A.A., Van Hoeve, W.J., Hooker, J.N.: Discrete optimization
1024
+ with decision diagrams. INFORMS Journal on Computing 28(1), 47–66 (2016)
1025
+ 7. Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer
1026
+ quadratic programming problems. In: International Conference on the Integration
1027
+ of Constraint Programming, Artificial Intelligence, and Operations Research. pp.
1028
+ 595–604. Springer (2018)
1029
+ 8. Cappart, Q., Bergman, D., Rousseau, L.M., Prémont-Schwarz, I., Parjadis, A.:
1030
+ Improving variable orderings of approximate decision diagrams using reinforcement
1031
+ learning. INFORMS Journal on Computing (2022)
1032
+ 9. Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., Veličković, P.: Com-
1033
+ binatorial optimization and reasoning with graph neural networks. arXiv preprint
1034
+ arXiv:2102.09544 (2021)
1035
+ 10. Cappart, Q., Goutierre, E., Bergman, D., Rousseau, L.M.: Improving optimization
1036
+ bounds using machine learning: Decision diagrams meet deep reinforcement learn-
1037
+ ing. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp.
1038
+ 1443–1451 (2019)
1039
+ 11. Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.A.: Com-
1040
+ bining reinforcement learning and constraint programming for combinatorial opti-
1041
+ mization. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35,
1042
+ pp. 3677–3687 (2021)
1043
+ 12. Chalumeau, F., Coulon, I., Cappart, Q., Rousseau, L.M.: Seapearl: A constraint
1044
+ programming solver guided by reinforcement learning. In: International Conference
1045
+ on Integration of Constraint Programming, Artificial Intelligence, and Operations
1046
+ Research. pp. 392–409. Springer (2021)
1047
+ 13. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
1048
+ profiles. Mathematical programming 91(2), 201–213 (2002)
1049
+ 14. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial
1050
+ optimization with graph convolutional neural networks. Advances in Neural Infor-
1051
+ mation Processing Systems 32 (2019)
1052
+ 15. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
1053
+ mum entropy deep reinforcement learning with a stochastic actor. In: International
1054
+ conference on machine learning. pp. 1861–1870. PMLR (2018)
1055
+ 16. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI (1). pp.
1056
+ 607–615 (1995)
1057
+ 17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
1058
+ Proceedings of the IEEE conference on computer vision and pattern recognition.
1059
+ pp. 770–778 (2016)
1060
+
1061
+ Training a DQN Agent Inside a Generic CP Solver
1062
+ 17
1063
+ 18. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Au-
1064
+ tonomous search, pp. 37–71. Springer (2011)
1065
+ 19. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: A survey of
1066
+ learning methods. ACM Computing Surveys (CSUR) 50(2), 1–35 (2017)
1067
+ 20. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in
1068
+ mixed integer programming. In: Proceedings of the AAAI Conference on Artificial
1069
+ Intelligence. vol. 30 (2016)
1070
+ 21. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing prob-
1071
+ lems! In: International Conference on Learning Representations (2019), https:
1072
+ //openreview.net/forum?id=ByxBFsRqYm
1073
+ 22. Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposi-
1074
+ tion. In: International conference on AI and OR techniques in constraint program-
1075
+ ming for combinatorial optimization problems. pp. 202–210. Springer (2017)
1076
+ 23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
1077
+ (2015)
1078
+ 24. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural
1079
+ network acoustic models. In: Proc. icml. vol. 30, p. 3. Atlanta, Georgia, USA (2013)
1080
+ 25. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for
1081
+ combinatorial optimization: A survey. Computers & Operations Research 134,
1082
+ 105400 (2021)
1083
+ 26. Michel, L., Hentenryck, P.V.: Activity-based search for black-box constraint pro-
1084
+ gramming solvers. In: International Conference on Integration of Artificial Intelli-
1085
+ gence (AI) and Operations Research (OR) Techniques in Constraint Programming.
1086
+ pp. 228–243. Springer (2012)
1087
+ 27. Minsky, M.: Steps toward artificial intelligence. Proceedings of the IRE 49(1), 8–30
1088
+ (1961). https://doi.org/10.1109/JRPROC.1961.287775
1089
+ 28. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
1090
+ Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
1091
+ arXiv:1312.5602 (2013)
1092
+ 29. Morabit, M., Desaulniers, G., Lodi, A.: Machine-learning–based column selection
1093
+ for column generation. Transportation Science 55(4), 815–831 (2021)
1094
+ 30. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
1095
+ inc: Towards a standard cp modelling language. In: International Conference on
1096
+ Principles and Practice of Constraint Programming. pp. 529–543. Springer (2007)
1097
+ 31. Potvin, J.Y., Dubé, D., Robillard, C.: A hybrid approach to vehicle routing using
1098
+ neural networks and genetic algorithms. Applied Intelligence 6(3), 241–252 (1996)
1099
+ 32. Refalo, P.: Impact-based search strategies for constraint programming. In: Inter-
1100
+ national Conference on Principles and Practice of Constraint Programming. pp.
1101
+ 557–571. Springer (2004)
1102
+ 33. Scavuzzo, L., Chen, F.Y., Chételat, D., Gasse, M., Lodi, A., Yorke-Smith, N.,
1103
+ Aardal, K.: Learning to branch with tree mdps. arXiv preprint arXiv:2205.11107
1104
+ (2022)
1105
+ 34. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
1106
+ optimization. In: International conference on machine learning. pp. 1889–1897.
1107
+ PMLR (2015)
1108
+ 35. Selsam, D., Bjørner, N.: Guiding high-performance SAT solvers with unsat-core
1109
+ predictions. In: International Conference on Theory and Applications of Satisfia-
1110
+ bility Testing. pp. 336–353. Springer (2019)
1111
+ 36. Song, W., Cao, Z., Zhang, J., Xu, C., Lim, A.: Learning variable ordering heuristics
1112
+ for solving constraint satisfaction problems. Engineering Applications of Artificial
1113
+ Intelligence 109, 104603 (2022)
1114
+
1115
+ 18
1116
+ T. Marty et al.
1117
+ 37. Sun, H., Chen, W., Li, H., Song, L.: Improving learning to branch via reinforcement
1118
+ learning. In: Learning Meets Combinatorial Algorithms at NeurIPS2020 (2020)
1119
+ 38. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
1120
+ (2018)
1121
+ 39. Trott, A., Zheng, S., Xiong, C., Socher, R.: Keeping your distance: Solving sparse
1122
+ reward tasks using self-balancing shaped rewards. Advances in Neural Information
1123
+ Processing Systems 32 (2019)
1124
+ 40. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-
1125
+ learning. In: Proceedings of the AAAI conference on artificial intelligence. vol. 30
1126
+ (2016)
1127
+ 41. Yu, X., Serra, T., Ramalingam, S., Zhe, S.: The combinatorial brain surgeon: Prun-
1128
+ ing weights that cancel one another in neural networks. In: International Confer-
1129
+ ence on Machine Learning. pp. 25668–25683. PMLR (2022)
1130
+
2NAzT4oBgHgl3EQf8_6P/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NFQT4oBgHgl3EQf3DZF/content/2301.13426v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5da70dc47636aff10e8c7423489f0e910afa33545fabff25a80a859b002dc58
3
+ size 536836
3NFQT4oBgHgl3EQf3DZF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:390a71ed47d155ab47685f0f4875522d08ccf7cc33d6d86da9292e3cc9a483e1
3
+ size 48167
4dA0T4oBgHgl3EQfNf-w/content/tmp_files/2301.02148v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
4dA0T4oBgHgl3EQfNf-w/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dAzT4oBgHgl3EQf9_4T/content/tmp_files/2301.01926v1.pdf.txt ADDED
@@ -0,0 +1,1605 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Springer Nature 2021 LATEX template
2
+ Auditing citation polarization during the
3
+ COVID-19 pandemic
4
+ Taekho You1, Jinseo Park2, June Young Lee2 and Jinhyuk
5
+ Yun3*
6
+ 1Institute for Social Data Science, Pohang University of Science
7
+ and Technology, Cheongam-ro 77, Pohang, 37673,
8
+ Gyeongsangbukdo, Republic of Korea.
9
+ 2Center for Global R&D Data Analysis, Korea Institute of
10
+ Science and Technology Information, Hoegi-ro 66,
11
+ Dongdaemun-gu, 02456 Seoul, Republic of Korea.
12
+ 3*School of AI Convergence, Soongsil University, Sangdo-ro 369,
13
+ Dongjak-gu, 06978 Seoul, Republic of Korea.
14
+ *Corresponding author(s). E-mail(s): [email protected];
15
+ Abstract
16
+ The recent pandemic stimulated scientists to publish a significant amount
17
+ of research that created a surge of citations of COVID-19-related papers
18
+ in a short time, leading to an abrupt inflation of the journal impact fac-
19
+ tor (IF). By auditing the complete set of COVID-19-related publications
20
+ in the Web of Science, we reveal here that COVID-19-related research
21
+ worsened the polarization of academic journals: the IF before the pan-
22
+ demic was proportional to the increment of IF, which had the effect of
23
+ increasing inequality while retaining the journal rankings. We also found
24
+ that the most highly cited studies related to COVID-19 were published
25
+ in prestigious journals at the onset of the epidemic, independent of their
26
+ innate importance or quality. Through the present quantitative investi-
27
+ gation, our findings caution against the belief that quantitative metrics,
28
+ particularly IF, can indicate the significance of individual papers. Rather,
29
+ such metrics reflect the social attention given to a particular study.
30
+ 1
31
+ arXiv:2301.01926v1 [cs.DL] 5 Jan 2023
32
+
33
+ Springer Nature 2021 LATEX template
34
+ 2
35
+ Auditing citation polarization during the COVID-19 pandemic
36
+ 1 Introduction
37
+ The recent pandemic has boosted COVID-19-related research, which has led
38
+ to a growing number of researchers publishing COVID-19-related papers [1].
39
+ During the pandemic, as of 2021 more than 4% of published research papers
40
+ focused on COVID-19 [1]. The availability of COVID-19-related research has
41
+ supported the public to overcome the current pandemic.
42
+ The expansion of this new research field has had a substantial impact
43
+ on the scholarly publishing ecosystem. COVID-19-related papers received a
44
+ large number of citations in a short period, causing a dramatic shift in
45
+ citation counts. Specifically, some journals benefited from publishing COVID-
46
+ 19-related research because it significantly increased their mean citation rate.
47
+ As an illustrative example, the Lancet more than doubled its impact factor
48
+ (IF) from 79.323 to 202.731, according to the 2021 Journal Citation Reports
49
+ (JCR) released in June 2022. It has been contended that COVID-19-related
50
+ papers have inflated the citation-based metrics; indeed, some journals have
51
+ increased their IF by more than tenfold [2].
52
+ Consequently, the long-lasting IF controversy has reemerged. Due to the
53
+ heavy-tailed nature of citation, which is sometimes referred to as the rich-get-
54
+ richer effect, many critics argue that IFs do not accurately reflect the impact
55
+ of scientific items because they rely solely upon mean citation counts [3, 4].
56
+ In response, alternative metrics have been proposed [5, 6]. Moreover, although
57
+ the IF metric was designed to measure the performance of journals rather
58
+ than single papers [7], it is nevertheless frequently misunderstood to reflect
59
+ the quality of an individual paper [8]. The spreading of these misunderstand-
60
+ ings has increased unintended dynamics in the conduction and evaluation of
61
+ research [9, 10], even leading to cases of malpractice [11].
62
+ Resolving this IF controversy from COVID-19-related papers necessitates
63
+ a deep comprehension of citation dynamics in academia, such as the extent to
64
+ which COVID-19 publications affect journal IFs and who benefits more from
65
+ publishing COVID-19-related papers. The Matthew effect [12], also known
66
+ as the rich-get-richer effect, gives valuable insight into the accumulation of
67
+ rewards in academia [13, 14, 15, 16, 17]. Previous studies demonstrated that a
68
+ little variation in early stages leads to a substantial difference in the productiv-
69
+ ity and citations of authors and journals in later stages [18, 14, 15]. Moreover,
70
+ a paper is more likely to receive citations when published in a prestigious jour-
71
+ nal that has a high IF [19]. Citation inequality results from the widening gaps
72
+ in return from such small, initial differences [20, 21, 17]. We believe that the
73
+ emergence of the COVID-19 research field presents an excellent opportunity
74
+ to comprehend scholarly dynamics in response to external societal influence.
75
+ In this study, we quantitatively exhibit the impact of COVID-19-related
76
+ papers on the citation ecosystem to aid in resolving the long-lasting debates on
77
+ the IF metric. For this purpose, we investigate the changes in IF by the publi-
78
+ cation of COVID-19-related papers considering prior journal IF. We find that
79
+ COVID-19-related papers received more citations than other papers, and we
80
+
81
+ Springer Nature 2021 LATEX template
82
+ Auditing citation polarization during the COVID-19 pandemic
83
+ 3
84
+ 100
85
+ 101
86
+ 102
87
+ 103
88
+ 104
89
+ Number of citations received
90
+ 10
91
+ 6
92
+ 10
93
+ 5
94
+ 10
95
+ 4
96
+ 10
97
+ 3
98
+ 10
99
+ 2
100
+ 10
101
+ 1
102
+ 100
103
+ Cumulative density function
104
+ COVID-19-related papers (2020)
105
+ Non-COVID-19-related papers (2020)
106
+ COVID-19-related papers (2021)
107
+ Non-COVID-19-related papers (2021)
108
+ 2019
109
+ 2020
110
+ 2021
111
+ Year
112
+ 0.0
113
+ 0.2
114
+ 0.4
115
+ 0.6
116
+ 0.8
117
+ Citations between COVID-19-related papers
118
+ 83.1 %
119
+ 90.9 %
120
+ 83.9 %
121
+ 5.8 %
122
+ 45.3 %
123
+ 48.3 %
124
+ A
125
+ B
126
+ Citations received
127
+ References citing
128
+ Fig.
129
+ 1 Difference
130
+ in
131
+ citation
132
+ distribution
133
+ between
134
+ COVID-19-related
135
+ and
136
+ non-COVID-19-related papers. A Citation distribution of COVID-19-related and non-
137
+ COVID-19-related papers that contribute to the annual IF calculation. For example, the
138
+ distribution of citations in 2021 includes citations received for papers published in 2019 and
139
+ 2020 from the papers published in 2021. A distribution of the yearly citation pattern is
140
+ displayed in Fig. S2. B Citation origin of COVID-19-related papers. We display both the
141
+ percentage of citations received from other COVID-19-related papers and references citing
142
+ other COVID-19 publications.
143
+ also show that although most of the citations originated from other COVID-
144
+ 19-related papers, the degree of benefit to the journals differs by the prestige of
145
+ the journals reflected in their prior IFs. We reveal that the number of COVID-
146
+ 19-related papers and the extent of the increase in journal IF are nearly
147
+ uncorrelated, while the IFs of prestigious journals with high IFs increased more
148
+ than those of low-IF journals. Lastly, we find that the majority of highly cited
149
+ COVID-19 publications were published during the earliest stages of the pan-
150
+ demic, selected by prestige journals. Taken together, the results demonstrate
151
+ that the benefits of publishing COVID-19-related research were granted mainly
152
+ to the prestige journals, which may aggravate citation inequality in academia.
153
+ 2 Results
154
+ 2.1 Citation homophily between COVID-19-related
155
+ papers
156
+ During the pandemic, COVID-19-related papers have increased their share in
157
+ academia. In 2019, only 350 papers (0.013%) were related to COVID-19, many
158
+ of which were mainly focused on other coronaviruses, based on our search
159
+ query (see Methods for step-by-step details on gathering COVID-19-related
160
+ papers). As the virus spread, their share increased to 89,112 (2.004%) and
161
+ 162,256 (4.194%) in 2020 and 2021, respectively. Moreover, COVID-19-related
162
+ research occupied a major fraction of all citations across academia. Such papers
163
+ published in 2020 received 2,654,613 citations until the end of 2021, which is
164
+
165
+ Springer Nature 2021 LATEX template
166
+ 4
167
+ Auditing citation polarization during the COVID-19 pandemic
168
+ 13.8% among the total 19,203,421 citations in 2020 and 2021. But not only
169
+ gaining a high share, COVID-19-related publications also received immediate
170
+ citations: those published in 2021 received 787,009 citations out of the total
171
+ 6,457,473 citations in 2021 (12.2%). This same trend even extended down to
172
+ the monthly citation level, as displayed in Fig. S1. After publication, 31.8% of
173
+ the citations of COVID-19-related papers arose within 6 months, while 22.2%
174
+ did so for non-COVID-19 papers. Compared to the statistics indicating that
175
+ COVID-19-related papers produced just 4.1% and 6.9% of references within
176
+ the same time period (2020 and 2021, respectively), this proportion of received
177
+ citations is high.
178
+ The increased attention given to COVID-19 research resulted in a citation
179
+ distribution with a longer tail than other research. The two-year citation dis-
180
+ tribution shows that COVID-19-related papers received more citations than
181
+ non-COVID-19-related papers in a given year (see Fig. 1A for the merged
182
+ distribution along with Fig. S2 displaying separated distributions). When we
183
+ assume that the citation distribution follows a simple power law (y ∼ xk),
184
+ the COVID-19-related papers show k ≃ 1.9 and k ≃ 2.7 for 2020 and 2021,
185
+ respectively (see Methods for the detailed computation), while non-COVID-19-
186
+ related papers have an exponent of 3.2 and 3.3 for 2020 and 2021, respectively.
187
+ The lower exponents indicate that the proportion of COVID-19-related papers
188
+ with extremely high citation counts is greater than that of non-COVID-19-
189
+ related papers. Consequently, COVID-19-related papers also received more
190
+ citations on average. COVID-19-related research received an average of 22.6
191
+ (2020) and 21.8 (2021) citations, while non-COVID-19-related papers received
192
+ 4.9 (2020) and 5.2 (2021) citations. This result is consistent with a previous
193
+ observation using SCOPUS [1].
194
+ We also find a homophily of citations, namely that the high citation counts
195
+ of COVID-19-related papers are attributable to other COVID-19-related
196
+ papers. We observed a high rate of citation exchange between publications
197
+ related to COVID-19, in which more than 40% of the references in these
198
+ papers cite other COVID-19-related papers, excluding 2019 (Fig. 1B). The
199
+ homophily is much stronger when we consider the received citations, where
200
+ 90.9% of citations to COVID-19-related papers published in 2020 were from
201
+ other COVID-19-related papers. This finding indicates that the rising amount
202
+ of COVID-19-related research in 2020 and 2021 resulted in a number of such
203
+ papers receiving a substantial number of citations.
204
+ 2.2 Contribution of COVID-19-related research to IF
205
+ inflation
206
+ Several highly cited COVID-19-related studies may bolster the publishing jour-
207
+ nals’ IF. To quantify this, we calculate the IF in terms of the existence and
208
+ number of COVID-19-related papers (see Methods for IF calculation). We mea-
209
+ sure two different types of IFs and compare them to estimate the advantage of
210
+ publishing COVID-19-related papers: IF excluding COVID-19-related papers
211
+ and IF including them. We observe that only 763 journals (16%) among those
212
+
213
+ Springer Nature 2021 LATEX template
214
+ Auditing citation polarization during the COVID-19 pandemic
215
+ 5
216
+ 10
217
+ 2
218
+ 10
219
+ 1
220
+ 100
221
+ 101
222
+ 102
223
+ Impact factor (IF)
224
+ 10
225
+ 5
226
+ 10
227
+ 3
228
+ 10
229
+ 1
230
+ 101
231
+ Surplus IF by COVID-19-related papers
232
+ A
233
+ B
234
+ 100
235
+ 101
236
+ 102
237
+ 103
238
+ Number of COVID-19-related papers
239
+ 10
240
+ 5
241
+ 10
242
+ 4
243
+ 10
244
+ 3
245
+ 10
246
+ 2
247
+ 10
248
+ 1
249
+ 100
250
+ 101
251
+ Surplus IF by a single COVID-19-related paper
252
+ Fig. 2 Surplus impact factor (IF) by COVID-19-related publications. A Journal
253
+ impact factor increase by publishing COVID-19-related papers, where the simple superlinear
254
+ growth y ∼ x1.7 can characterize the growth pattern (dotted line). Here, we applied a simple
255
+ linear regression method to the logarithm of the values of interest to estimate the power-law
256
+ scaling relationship between the IF and its surplus by COVID-19-related papers, assuming
257
+ a simple power-law scaling of y = Cxk. B Increase in IF per COVID-19-related paper in
258
+ proportion to the number of COVID-19-related papers published in journals. The increase is
259
+ calculated by dividing the absolute difference in IF between papers including and excluding
260
+ COVID-19 by the number of COVID-19-related papers in the journals. In both A and B,
261
+ the red dots represent the average value of surplus IF and the error bars show the standard
262
+ deviation in log-scale.
263
+ publishing one or more COVID-19-related papers in 2019 and 2020 dropped in
264
+ IF in 2021, while the other 4,004 journals (84%) enhanced their IFs through
265
+ the publication of COVID-19-related papers in the same period. For the for-
266
+ mer, even though the journals decreased in IF by publishing COVID-19-related
267
+ papers, the amount of decrease was limited. Only one of these 763 journals
268
+ (CA-A CANCER JOURNAL FOR CLINICIANS) dropped in IF by more
269
+ than 1 (Fig. S3).
270
+ Individual scientists have a greater tendency to cite widespread, popular
271
+ journals than less popular journals due to psychological, sociological, and eco-
272
+ nomic factors, leading to the rich-get-richer phenomenon of citation [22]. For
273
+ the COVID-19-related papers, we find that the surplus IF is proportional to
274
+ the prior IF (Fig. 2). High correlation exists between IF and its surplus (Pear-
275
+ son r = 0.670, Fig. 2A), and their relationship is even superlinear (y = x1.7).
276
+ This pattern is also verified when we consider the relative advantage of IFs by
277
+ dividing the surplus IF by the prior journal IF, which also shows a positive
278
+ correlation (Fig. S4).
279
+ However, publishing numerous papers on COVID-19 did not necessar-
280
+ ily increase the journal IF. Instead, as more COVID-19-related papers were
281
+ published, the gain in IF per COVID-19-related paper decreased (Fig. 2B).
282
+ Journals that published only one COVID-19-related paper in 2019 and 2020
283
+ increased their IF by 0.12 on average, whereas journals that published over
284
+
285
+ Springer Nature 2021 LATEX template
286
+ 6
287
+ Auditing citation polarization during the COVID-19 pandemic
288
+ 500 papers in the same period increased their IF by only 0.0009. For example,
289
+ the Lancet, the journal with the highest IF in JCR 2021, doubled its IF (from
290
+ 93.04 to 189.25) while publishing only 46 COVID-19-related papers (9.4% of
291
+ all citable items) in 2019 and 2020. To take one more extreme example, one
292
+ journal that published only one COVID-19-related paper in 2019 and 2020
293
+ increased its IF by 37, whereas the journal that published the largest num-
294
+ ber of COVID-19-related papers (730 papers) improved its IF by only 1.02. In
295
+ other words, while a single well-chosen paper published during the pandemic
296
+ could have potentially resulted in a significant increase in IF, publishing a large
297
+ number of COVID-19-related papers did not provide many benefits. Although
298
+ allocating more shares to COVID-19-related papers correlates positively with
299
+ the rise in the IFs of journals, the correlation is slight (Pearson r = 0.110; see
300
+ Fig. S5).
301
+ To confirm that COVID-19 research has legitimately increased journal
302
+ IFs, we examine the correlation between IFs across years taking into account
303
+ the existence of COVID-19-related papers. When excluding COVID-19-related
304
+ papers, the correlation between two consecutive years (Pearson r = 0.957
305
+ between 2019 and 2020 and Pearson r = 0.925 between 2020 and 2021) is
306
+ significantly high. The correlation between the IF in 2021 excluding COVID-
307
+ 19-related papers and the IF in 2020 with COVID-19-related papers is r =
308
+ 0.926. Thus, the overall trend of journal IF without papers related to COVID-
309
+ 19 did not change significantly, and this high correlation suggests the existence
310
+ of a linear relationship between the IFs for two consecutive years. Incorporat-
311
+ ing COVID-19-related papers, however, reduces the correlation between the
312
+ IFs for 2020 and 2021 (Pearson r = 0.850). Note that we also observe a lower
313
+ correlation between the IF for 2021 with COVID-19-related papers and the
314
+ IF for 2020 without COVID-19-related papers (Pearson r = 0.849), indicating
315
+ non-linear relationships between the IFs of the two consecutive years. Given
316
+ that journals with a higher prior IF received a greater increase in IF from
317
+ COVID-19-related papers (Fig. 2A), the publication of COVID-19 research
318
+ may contribute to the polarization of journal IFs.
319
+ 2.3 The Matthew effect of IF polarization during the
320
+ pandemic
321
+ In the preceding sections, we demonstrated that the publication of COVID-19-
322
+ related research had a positive correlation with journal IFs, while the amount
323
+ of increment had a strong correlation with the prior IFs of the journals (Fig. 2).
324
+ One may wonder how much the overall journal landscape, i.e., the journal
325
+ rankings, has changed due to the surplus IFs, or conversely, the magnitude
326
+ of the change in IF based on the journal ranking [23]. To demonstrate the
327
+ influence of COVID-19-related publications on the landscape of JCR rankings,
328
+ we compare the ratio of surplus IF in 2021 considering the journal rank in their
329
+ research categories. On average, the publication of COVID-19-related papers
330
+ increased the journal IF by 15.2% (dotted line in Fig. 3). The IFs of the top
331
+ 10% prestige journals increased by 39.4%, while the IFs of the bottom 10%
332
+
333
+ Springer Nature 2021 LATEX template
334
+ Auditing citation polarization during the COVID-19 pandemic
335
+ 7
336
+ 100
337
+ 101
338
+ Increase ratio
339
+ Top 10%
340
+ 10-20%
341
+ 20-30%
342
+ 30-40%
343
+ 40-50%
344
+ 50-60%
345
+ 60-70%
346
+ 70-80%
347
+ 80-90%
348
+ 90-100%
349
+ Journal Ranking
350
+ Fig. 3 Relative ratio of surplus IF from publishing COVID-19-related papers by
351
+ the 2021 journal rankings for JCR categories. The ratio was calculated by subtracting
352
+ the IF for 2021 excluding COVID-19-related papers from the IF for 2021 including COVID-
353
+ 19-related papers and then dividing this value by the prior IF. The dotted line indicates
354
+ the average surplus IF from publishing COVID-19-related research (15.2%). Here, the boxes
355
+ represent the quartiles of the dataset except for points determined to be outliers.
356
+ journals increased by only 9.6% on average. Most journals increased their IF
357
+ by less than the average increase (15.2%) except for the top 20%. On average,
358
+ higher-ranked journals gained more citations, and this trend is robust across
359
+ all categories (Table S1).
360
+ The majority of journals with a significant increase in IF due to COVID-
361
+ 19-related publications were already high-IF journals. Among all journals, 132
362
+ increased their IF by greater than twofold. 55.3% of these 132 journals are
363
+ in the top 10% of at least one of their research categories. Only five journals
364
+ fall within the bottom 10%. In terms of research category, 102 of the 132
365
+ journals (77.3%) are classified into Clinical Medicine since the majority of
366
+ COVID-19-related papers (70.9%) were published in this category.
367
+ This proportion of highly cited articles in prestigious journals has the
368
+ potential to exacerbate citation polarization. Indeed, we found that more
369
+ COVID-19-related articles were published in prestigious journals with a high
370
+
371
+ Springer Nature 2021 LATEX template
372
+ 8
373
+ Auditing citation polarization during the COVID-19 pandemic
374
+ IF than in other journals (Fig. 4A). While the top 10% ranked journals pub-
375
+ lished 26.3% (51,976) of all COVID-19-related papers from 2019 to 2021, the
376
+ bottom 90% to 100% ranked journals published only 3.5% (6,977) in the same
377
+ period. We also observe that the share of COVID-19-related papers decreases
378
+ as the journal ranking falls (Fig. 4A). Moreover, the proportion of highly cited
379
+ papers exacerbates the disparity. Eighty-four percent (86) of the 102 papers
380
+ with over 1000 citations were published by the top 10% journals, while jour-
381
+ nals ranked 10 to 20 % published only eight of these studies. No papers with
382
+ over 1000 citations were published in the bottom 50% journals.
383
+ Citation is a stochastic multiplicative process, whereby papers with a higher
384
+ citation count are more likely to receive additional citations. Even with simi-
385
+ lar content between papers, those published in a more prominent location are
386
+ more likely to be cited [19]. In addition, earlier works may receive more cita-
387
+ tions because citations are cumulative. Indeed, we find that the majority of
388
+ highly cited COVID-19-related papers were published during the early stage
389
+ of the pandemic (early 2020), as shown in Fig. 4B. The number of COVID-19-
390
+ related publications gradually increased as the pandemic progressed (see the
391
+ blue line in Fig. 4B). Despite this, papers with higher numbers of citations were
392
+ generally published earlier. In conjunction with the finding that highly cited
393
+ studies were likely to be published in prestigious journals, we may conclude
394
+ that COVID-19-related studies were originally introduced in high IF journals,
395
+ and that lower IF journals then cited the previous publications from high IF
396
+ journals.
397
+ This growing pattern of citations could worsen the polarization of aca-
398
+ demic journals. Publication of COVID-19-related research gave a significantly
399
+ greater benefit to journals with higher IFs than to those with lower IFs. Con-
400
+ sequently, the relative position (rank) of the majority of journals shows only
401
+ minor changes, although the overall IF of all journals tended to increase dur-
402
+ ing the pandemic. Only 39.0% of journals that published COVID-19-related
403
+ papers moved to a higher rank by including COVID-19-related research in one
404
+ of their subject categories; among them, only 51.8% changed their IF quantile
405
+ to a higher one (Fig. S6). The other 61.0% of journals maintained or decreased
406
+ their ranking. In addition, significant increases or decreases in the ranks of
407
+ journals were rarely observed (Fig. S6). The majority (90%) of the top 10%
408
+ ranked journals maintained their position regardless of COVID-19 research,
409
+ while the other 10% fell into the 10% to 20% group.
410
+ In summary, i) the IF of journals increased overall by publishing COVID-
411
+ 19-related research, ii) journals with higher IFs received greater benefits by
412
+ publishing COVID-19-related research, and iii) the relative ranks of jour-
413
+ nals did not change significantly from publishing COVID-19-related research.
414
+ These findings lead to an interesting question: Did the publication of COVID-
415
+ 19-related research actually increase the polarization of journals? To answer
416
+ this, we applied the Gini coefficient [24], a well-known measure of income
417
+ inequality, to the distribution of journal IFs. In our investigation, the Gini
418
+ coefficient measures the distribution of citations across journals within a JCR
419
+
420
+ Springer Nature 2021 LATEX template
421
+ Auditing citation polarization during the COVID-19 pandemic
422
+ 9
423
+ All
424
+ >10
425
+ >100
426
+ >1000
427
+ Number of citations received
428
+ 0.0
429
+ 0.2
430
+ 0.4
431
+ 0.6
432
+ 0.8
433
+ Fraction of COVID-19-related papers
434
+ A
435
+ B
436
+ C
437
+ Top 10%
438
+ 10-20%
439
+ 20-30%
440
+ 30-40%
441
+ 40-50%
442
+ 50-60%
443
+ 60-70%
444
+ 70-80%
445
+ 80-90%
446
+ 90-100%
447
+ 2020
448
+ 2021
449
+ 2022
450
+ Year
451
+ 0.000
452
+ 0.025
453
+ 0.050
454
+ 0.075
455
+ 0.100
456
+ 0.125
457
+ 0.150
458
+ 0.175
459
+ Probability density function
460
+ all
461
+ >10
462
+ >100
463
+ >1000
464
+ 0.0
465
+ 0.1
466
+ 0.2
467
+ 0.3
468
+ 0.4
469
+ 0.5
470
+ 0.6
471
+ 0.7
472
+ Gini coefficient excluding COVID-19-related papers
473
+ 0.0
474
+ 0.1
475
+ 0.2
476
+ 0.3
477
+ 0.4
478
+ 0.5
479
+ 0.6
480
+ 0.7
481
+ Gini coefficient including COVID-19-related papers
482
+ Number of COVID-19
483
+ -related papers
484
+ 0
485
+ 800
486
+ 1600
487
+ 2400
488
+ 3200
489
+ Gini coefficient changes
490
+ Increased
491
+ Decreased
492
+ Fig. 4 Distribution of COVID-19-related papers and their disparities. A Distribu-
493
+ tion of COVID-19-related research by journal ranking. As the number of citations increases,
494
+ the likelihood of papers belonging to high-IF journals increases. 26.4% of all papers were
495
+ published in the top 10% ranked journals, whereas 85.3% of papers with more than 1000 cita-
496
+ tions were published in the top 10% ranked journals. B Distribution of COVID-19-related
497
+ papers by publication date. From the beginning of the pandemic to mid-2020, the number of
498
+ papers increased. Approximately the same number of papers were published between then
499
+ and the end of 2021. Most of the highly cited papers (> 1000 citations) were published in
500
+ early 2020. C Plot of the Gini coefficient of the IF distribution by JCR category. Each dot
501
+ represents a JCR category. The Gini coefficient is computed using the IF distribution of
502
+ journals in a particular category including and excluding COVID-19-related papers. Blue
503
+ (orange) dots indicate an increase (decrease) in the Gini coefficient by publishing COVID-
504
+ 19-related research. The size of the dots is proportional to the number of COVID-19-related
505
+ studies published in the category.
506
+ category, ranging from 0 for the lowest heterogeneity (when all journals receive
507
+ the same average number of citations) to 1 for the highest heterogeneity
508
+ (when only a single journal receives all citations). The trend illustrated by the
509
+ difference in the Gini coefficient as a function of the number of COVID-19-
510
+ related papers (see Figs. 4 and S7) implies that the disparity in the number
511
+ of citations between journals increases as the number of COVID-19-related
512
+ papers published increases. In conclusion, based on the present snapshot of
513
+ the Web of Science (WOS) dataset, we found that the general pattern of het-
514
+ erogeneity, or polarization, among journals rises as the number of published
515
+ COVID-19-related papers increases.
516
+ 3 Discussion
517
+ From the outset of the global COVID-19 pandemic, many scholars pursued
518
+ the topic and published a massive number of studies in an unprecedentedly
519
+ short period. We discovered a trend that, as a result of the intensive publica-
520
+ tion, COVID-19-related papers acquired more citations than papers in other
521
+ domains, which reflects its considerable attention in academia. We uncovered
522
+ two significant consequences that may have led to a more severe polarization
523
+ of journals in terms of citations. First, 84% of journals that published COVID-
524
+ 19-related papers in 2019 and 2020 increased their impact factors. Second,
525
+ prestigious journals were more likely to publish highly cited COVID-19-related
526
+ papers than other journals (Fig. 3).
527
+
528
+ Springer Nature 2021 LATEX template
529
+ 10
530
+ Auditing citation polarization during the COVID-19 pandemic
531
+ Nonetheless, we demonstrated that publishing a large number of COVID-
532
+ 19-related papers did not immediately boost a journal’s IF. Increasing numbers
533
+ of COVID-19-related papers published in a journal tended to diminish the
534
+ citation impact of a single COVID-19-related article. In addition, we found
535
+ that prestigious journals with a high prior IF gained more benefit (increased
536
+ IF) from publishing COVID-19-related research, and also that the publications
537
+ receiving the highest number of citations were predominantly published in
538
+ prestige journals during the early stages of the pandemic. Given that not all
539
+ COVID-19-related publications increased their journal’s IF, one may assume
540
+ that prestige journals simply have accepted and published more significant
541
+ research. However, considering that some papers published in prestige journals
542
+ were ultimately retracted [25, 26], the high number of citations given to these
543
+ journals is not only based on the significance of the works but also based in
544
+ part on the visibility of these journals, which can worsen the polarization of
545
+ academic publishing (Fig. 4).
546
+ As we could not explicitly assess the quality of each paper due to the scale
547
+ of the dataset, it is unclear which of the two aforementioned characteristics
548
+ (quality or visibility) has a larger impact on the current disparity in benefit
549
+ from publishing COVID-19-related research. We believe that a more in-depth
550
+ investigation of the relationship between research quality (or significance) and
551
+ citations may be necessary to increase the impact of our findings. Also, a more
552
+ detailed understanding of such correlation should form the basis of explaining
553
+ complex citation dynamics, yet we leave this for future research.
554
+ Despite its limitations, this study can provide important insights into
555
+ citation dynamics and its effects on global events. Because of the rich-get-
556
+ richer nature of citations, papers published in prestigious journals tend to
557
+ receive more citations. As the relative ranking of the journals did not change
558
+ significantly despite the increase in the overall IFs of journals publishing
559
+ COVID-19-related research, fluctuations in IF may not well reflect the actual
560
+ impact of academic publications. This effect predominantly benefited well-
561
+ established journals, while other journals did not experience benefits to the
562
+ same extent (Fig. 4). Our research indicates that IFs are vulnerable to exter-
563
+ nal events. The majority of the recent IF changes are attributable to citations
564
+ of COVID-19-related publications; consequently, after the pandemic is over,
565
+ the majority of the journals may revert to their pre-pandemic IF levels. It is
566
+ challenging to evaluate academic journals or other participants (researchers,
567
+ institutions, etc.) using basic statistics because doing so reflects only a portion
568
+ of actual scientific achievements. Therefore, the simplified metrics employed
569
+ by some governments [27] should be accompanied by a comprehensive and
570
+ qualitative analysis of journals and individual papers for assessment.
571
+ The use of quantitative indicators such as the IF metric has been under
572
+ debate. The San Francisco Declaration on Research Assessment (DORA),
573
+ which serves as the starting point for these discussions, explicitly states that
574
+ the use of journal-based measures (such as IFs) should be avoided to act as a
575
+
576
+ Springer Nature 2021 LATEX template
577
+ Auditing citation polarization during the COVID-19 pandemic
578
+ 11
579
+ proxy for the quality of individual research publications, to evaluate the con-
580
+ tributions of an individual scientist, or to make hiring, promotion, or funding
581
+ choices. In practice, however, many funders and institutions employ journal-
582
+ based measures or the number of citations as markers for evaluation rather
583
+ than assessing the quality of individual papers. The polarization of citations
584
+ observed in this study demonstrates the inherent hazard of such indicators.
585
+ The IF metric is not a stable index against external shocks; it might fluctuate
586
+ temporarily and then revert following external factors. Along with the other
587
+ well-known limitations of IF, such as skewed citation distributions within jour-
588
+ nals [28, 29], the vulnerability of the IF metric as we found here indicates
589
+ that it is increasingly inappropriate to consider journal IF as a proxy for an
590
+ individual paper’s quality.
591
+ During the current pandemic, the rapid release of COVID-19-related works
592
+ resulted in less-qualified academic outputs to the public, leading to the retrac-
593
+ tion of many publications [30, 31]. Unfortunately, this issue happened not only
594
+ in journals with a reputation for a weak review process or low publishing dif-
595
+ ficulty but also in prestigious journals that are widely respected. Worse still,
596
+ these retracted works earned a substantial number of citations and extensive
597
+ media attention [32]. The general public may assume that papers published in
598
+ academic journals are trustworthy and may likewise trust secondary sources
599
+ such as scientific news reporting the results of academic findings. In the current
600
+ context of appraising science and technology, there is a chance that content
601
+ published in journals with strong indicators will be considered more reputable.
602
+ Scientists must inform the public that citation measures and journals are not
603
+ equivalent to the quality of individual research publications. In other words,
604
+ the number of citations should not be the defining characteristic of quality
605
+ research. The contemporary ecosystem of research and technology is seemingly
606
+ supported by scientists’ mutual trust and goodwill, and the public may view
607
+ the scientific community’s findings with a similar level of confidence. Combined
608
+ with the stability issue of the IF metric identified in this study, shouldn’t the
609
+ current practice of over-reliance on citation indices be discontinued so as not
610
+ to break this chain of trust? For this reason, we believe that responsible action
611
+ based on actual societal influence is essential for all members of academia, as
612
+ opposed to merely producing popular research to boost citation impact and
613
+ one’s professional reputation.
614
+ Methods
615
+ Data
616
+ We used publications and citation data from the XML dump of the Web of
617
+ Science Core Collection, which is dated back to 2017 and updated until the
618
+ 26th week of 2022. The data includes complete copies of Science Citation
619
+ Index Expanded (SCIE), Social Sciences Citation Index (SSCI), and Arts &
620
+ Humanities Citation Index (AHCI), along with the Emerging Sources Citation
621
+
622
+ Springer Nature 2021 LATEX template
623
+ 12
624
+ Auditing citation polarization during the COVID-19 pandemic
625
+ Index (ESCI). The data comprises 16,957,120 articles, 82,317 journals, and
626
+ 116,086,223 references retrieved from papers published between 2017 and 2022.
627
+ COVID-19-related publications
628
+ COVID-19-related papers were retrieved from the Web of Science database
629
+ (WOS,
630
+ urlhttps://www.webofscience.com/)
631
+ using
632
+ the
633
+ following
634
+ search
635
+ queries
636
+ provided
637
+ by
638
+ Dimensions
639
+ (https://www.dimensions.ai/covid19/):
640
+ "2019-nCoV" OR "COVID-19" OR \SARS-CoV-2" OR "HCoV-2019" OR
641
+ "hcov" OR "NCOVID-19" OR "severe acute respiratory syndrome
642
+ coronavirus 2" OR "severe acute respiratory syndrome corona
643
+ virus 2" OR \coronavirus disease 2019" OR (("coronavirus" OR
644
+ "corona virus") AND (Wuhan OR China OR novel)). We limited the publi-
645
+ cations from 2019. A total of 251, 718 COVID-19-related papers were collected
646
+ on 4 July 2022. We consider all other papers in the WOS that were not
647
+ retrieved from the above searching process as non-COVID-19-related papers.
648
+ Estimation of the power-law exponent
649
+ In this study, the power-law exponents of the citation distribution in Fig. 1A
650
+ were estimated using the Python package named powerlaw [33]. Although
651
+ all the citation distributions in Fig. 1A seem to be heavy-tailed distribu-
652
+ tions, which are commonly referred to as the power law, we verified that
653
+ the distributions sincerely follow the power law via comparison with alterna-
654
+ tive distributions (e.g., log-normal or exponential). In the comparison with
655
+ the exponential distribution, all distributions were found to be more likely
656
+ to be power-law distributions rather than exponential (p < 0.001). However,
657
+ comparison with the log-normal distribution was unclear. Only non-COVID-
658
+ 19-related papers published in 2021 better fit the power-law distribution in a
659
+ statistically significant manner, while the other three were inconclusive (p var-
660
+ ied 0.48–0.60). In this study, we estimated the power-law exponent with the
661
+ assumption of a simple power law (y ∼ xk) regardless of the best fit distribu-
662
+ tion, as we were more interested in comparing the thickness of the tails than
663
+ in determining the exact exponents.
664
+ Reproduction of the journal impact factors
665
+ Although we extracted the total number of publications in the WOS with
666
+ a complete copy of the WOS provided by Clarivate, minor differences can
667
+ be presented mainly because the WOS does not report detailed methods to
668
+ filter the dataset, e.g., dump dates and the coverage of citable items. Thus,
669
+ to reproduce and estimate the journal impact factors (IFs), we followed the
670
+ method used for the JCR impact factor [2] but with an in-house XML copy of
671
+ the Web of Science, as follows:
672
+
673
+ Springer Nature 2021 LATEX template
674
+ Auditing citation polarization during the COVID-19 pandemic
675
+ 13
676
+ IF = citations received by items published in the past 2 years
677
+ number of citable items published in the past 2 years .
678
+ (1)
679
+ We limited the citable items to those belonging to the journals indexed in
680
+ SCI-Expanded, SSCI, and A&HCI. We also considered as citable items only
681
+ articles, review papers, and proceedings papers in terms of publication type;
682
+ however, publication types were not considered when computing the number
683
+ of citations.
684
+ Note that, as of 2020, Clarivate Inc. now considers early access publications
685
+ as regular publications and includes them in the calculation of IF. For instance,
686
+ if an article is published as early access in 2020 and officially published in
687
+ 2021, then the article is counted as a citable item published in 2020, taking
688
+ into account the references as the citations occurred in 2020. The article is not
689
+ considered in 2021.
690
+ With this procedure, we successfully reproduced IF scores highly correlated
691
+ with the IFs provided by Clarivate JCR (Pearson r = 0.99; see Fig. S8). In
692
+ this study, we refer to the value computed from Eq. 1 as IF instead of the
693
+ impact factor provided by JCR unless otherwise specified. When computing
694
+ the IFs excluding COVID-19-related papers, we counted out the COVID-19-
695
+ related citable items and their references from the denominator and numerator
696
+ in Eq. 1, respectively.
697
+ Acknowledgement
698
+ This research was supported by the MSIT (Ministry of Science and ICT),
699
+ Republic of Korea, under the Innovative Human Resource Development
700
+ for Local Intellectualization support program (IITP-2022-RS-2022-00156360)
701
+ supervised by the IITP (Institute for Information & Communications Tech-
702
+ nology Planning & Evaluation). This work was also supported by the National
703
+ Research Foundation of Korea (NRF) funded by the Korean government (grant
704
+ No. NRF-2022R1C1C2004277 (T.Y.) and 2022R1A2C1091324 (J.Y.)). The
705
+ Korea Institute of Science and Technology Information (KISTI) also supported
706
+ this research with grant No. K-23-L03-C01 (J.Y.L., J.P.) and by providing
707
+ KREONET, a high-speed Internet connection. The funders had no role in the
708
+ study design, data collection and analysis, decision to publish, or preparation
709
+ of the manuscript.
710
+ Ethics declarations
711
+ Competing interests
712
+ The authors declare no competing interests.
713
+
714
+ Springer Nature 2021 LATEX template
715
+ 14
716
+ Auditing citation polarization during the COVID-19 pandemic
717
+ References
718
+ [1] Ioannidis, J. P., Bendavid, E., Salholz-Hillel, M., Boyack, K. W. & Baas,
719
+ J. Massive covidization of research citations and the citation elite. Proceed-
720
+ ings of the National Academy of Sciences of the United States of America
721
+ 119(28):e2204074,119 (2022).
722
+ [2] McVeigh, M. Journal citation reports 2022: A preview. (2022). https://
723
+ clarivate.com/blog/journal-citation-reports-2022-a-preview/
724
+ [3] Pendlebury, D. A. The use and misuse of journal metrics and other citation
725
+ indicators. Archivum immunologiae et therapiae experimentalis 57(1):1–11
726
+ (2009).
727
+ [4] Larivi`ere, V., Kiermer, V., MacCallum, C. J., McNutt, M., Patterson, M.,
728
+ Pulverer, B., Swaminathan, S., Taylor, S. & Curry, S. A simple proposal
729
+ for the publication of journal citation distributions. Preprint at https://
730
+ www.biorxiv.org/content/10.1101/062109v2.abstract (2016).
731
+ [5] Moed, H. F. Measuring contextual citation impact of scientific journals.
732
+ Journal of Informetrics 4(3):265–277 (2010).
733
+ [6] Bradshaw, C. J. & Brook., B. W. How to rank journals. PLoS One
734
+ 11(3):e0149,852 (2016).
735
+ [7] Garfield, E. Citation analysis as a tool in journal evaluation: Journals can
736
+ be ranked by frequency and impact of citations for science policy studies.
737
+ Science 178(4060):471–479 (1972).
738
+ [8] Lozano, G. A., Larivi`ere, V. & Gingras, Y. The weakening relation-
739
+ ship between the impact factor and papers’ citations in the digital age.
740
+ Journal of the American Society for Information Science and Technology
741
+ 63(11):2140–2145 (2012).
742
+ [9] Calcagno, V., Demoinet, E., Gollner, K., Guidi, L., Ruths, D. & de Mazan-
743
+ court, C. Flows of research manuscripts among scientific journals reveal
744
+ hidden submission patterns. Science 338(6110):1065–1069 (2012).
745
+ [10] Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P. & Stirling, A. How
746
+ journal rankings can suppress interdisciplinary research: A comparison
747
+ between innovation studies and business & management. Research Policy
748
+ 41(7):1262–1282 (2012).
749
+ [11] You, T., Park. J., Lee, J. Y., Yun, J. & Jung, W.-S. Disturbance of ques-
750
+ tionable publishing to academia. Journal of Informetrics 16(2):101,294
751
+ (2022).
752
+
753
+ Springer Nature 2021 LATEX template
754
+ Auditing citation polarization during the COVID-19 pandemic
755
+ 15
756
+ [12] Merton, R. K.: The matthew effect in science: The reward and com-
757
+ munication systems of science are considered. Science 159(3810):56–63
758
+ (1968).
759
+ [13] Perc, M. The matthew effect in empirical data. Journal of The Royal
760
+ Society Interface 11(98):20140,378 (2014).
761
+ [14] Bol, T., de Vaan, M. & van de Rijt, A. The matthew effect in science
762
+ funding. Proceedings of the National Academy of Sciences of the United
763
+ States of America 115(19):4887–4890 (2018).
764
+ [15] Nielsen, M. W. & Andersen, J.P. Global citation inequality is on the rise.
765
+ Proceedings of the National Academy of Sciences of the United States of
766
+ America 118(7):e2012208,118 (2021).
767
+ [16] Huang, J., Gates, A. J., Sinatra, R. & Barab´asi, A. L. Historical compari-
768
+ son of gender inequality in scientific careers across countries and disciplines.
769
+ Proceedings of the National Academy of Sciences of the United States of
770
+ America 117(9):4609–4616 (2020).
771
+ [17] Lawson, C., Geuna, A., Finardi, U.: The funding-productivity-gender
772
+ nexus in science, a multistage analysis. Research Policy 50(3):104,182
773
+ (2021).
774
+ [18] Petersen, A. M., Jung, W.-S., Yang, J.-S. & Stanley, H.E. Quantitative
775
+ and empirical demonstration of the matthew effect in a study of career
776
+ longevity. Proceedings of the National Academy of Sciences of the United
777
+ States of America 108(1):18–23 (2011).
778
+ [19] Larivi`ere, V. & Gingras, Y. The impact factor’s matthew effect: A nat-
779
+ ural experiment in bibliometrics. Journal of the American Society for
780
+ Information Science and Technology 61(2):424–427 (2010).
781
+ [20] Allison, P. D., Long, J. S. & Krauze, T. K., Cumulative advantage and
782
+ inequality in science. American Sociological Review 615–62 (1982).
783
+ [21] Van de Rijt, A., Kang, S. M., Restivo, M. & Patil, A. Field experiments
784
+ of success-breeds-success dynamics. Proceedings of the National Academy
785
+ of Sciences of the United States of America 111(19):6934–6939 (2014).
786
+ [22] Wang, J. Unpacking the matthew effect in citations. Journal of Informet-
787
+ rics 8(2):329–339 (2014).
788
+ [23] Quaderi,
789
+ N.
790
+ Journal
791
+ citation
792
+ reports
793
+ 2022:
794
+ Covid-
795
+ 19
796
+ research
797
+ continues
798
+ to
799
+ drive
800
+ increased
801
+ citation
802
+ impact.
803
+ Clarivate
804
+ (2022).
805
+ https://clarivate.com/blog/
806
+ journal-citation-reports-2022-covid-19-research-continues-to-drive-increased-citation-impact/
807
+
808
+ Springer Nature 2021 LATEX template
809
+ 16
810
+ Auditing citation polarization during the COVID-19 pandemic
811
+ [24] Gini, C Variabilit`a e mutabilit`a: contributo allo studio delle distribuzioni
812
+ e delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini (1912)
813
+ [25] Mehra,
814
+ M.
815
+ R.,
816
+ Ruschitzka,
817
+ F.
818
+ &
819
+ Patel,
820
+ A.
821
+ N.
822
+ Retrac-
823
+ tion—hydroxychloroquine or chloroquine with or without a macrolide for
824
+ treatment of covid-19: a multinational registry analysis (2020).
825
+ [26] Mehra, M. R., Desai, S. S., Kuy, S., Henry, T. D. & Patel, A. N. Retrac-
826
+ tion: cardiovascular disease, drug therapy, and mortality in covid-19. N
827
+ ENGL J MED. doi:10.1056/nejmoa2007621. (2020).
828
+ [27] Van Dalen, H. P. & Henkens, K. Intended and unintended consequences of
829
+ a publish-or-perish culture: A worldwide survey. Journal of the American
830
+ Society for Information Science and Technology 63(7):1282–1293 (2012).
831
+ [28] Van Leeuwen, T. N. & Moed, H.F. Characteristics of journal impact
832
+ factors: The effects of uncitedness and citation distribution on the under-
833
+ standing of journal impact factors. Scientometrics 63(2):357–371 (2005).
834
+ [29] Bornmann, L. & Leydesdorff, L. Skewness of citation impact data and
835
+ covariates of citation distributions: A large-scale empirical analysis based
836
+ on web of science data. Journal of Informetrics 11(1):164–175 (2017).
837
+ [30] Quinn, T. J., Burton, J. K., Carter, B., Cooper, N., Dwan, K., Field, R.,
838
+ Freeman, S. C., Geue, C., Hsieh, P., McGill, K., Nevill, C. R., Rana, D.,
839
+ Sutton, A., Rowan, M. T. & Xin, Y. Following the science? comparison of
840
+ methodological and reporting quality of covid-19 and other research from
841
+ the first wave of the pandemic. BMC Medicine 19(1):1–10 (2021).
842
+ [31] El-Menyar, A., Mekkodathil, A., Asim, M., Consunji, R., Rizoli, S., Abdel-
843
+ Aziz Bahey, A. & Al-Thani, H. Publications and retracted articles of
844
+ covid-19 pharmacotherapy-related research: A systematic review. Science
845
+ Progress 104(2):00368504211016,936 (2021).
846
+ [32] Khan, H., Gupta, P., Zimba, O. & Gupta, L. Bibliometric and altmet-
847
+ ric analysis of retracted articles on covid-19. Journal of Korean Medical
848
+ Science 37(6) (2022).
849
+ [33] Alstott, J., Bullmore, E. & Plenz., D. powerlaw: a python package for
850
+ analysis of heavy-tailed distributions. PloS One 9(1):e85,777 (2014).
851
+
852
+ Springer Nature 2021 LATEX template
853
+ Auditing citation polarization during the COVID-19 pandemic
854
+ 1
855
+ Supplementary Information for
856
+ Auditing citation polarization during the COVID-19
857
+ pandemic
858
+ Taekho You, Jinseo Park, June Young Lee, Jinhyuk Yun∗
859
+ ∗Corresponding author. Email: [email protected]
860
+ This PDF file includes:
861
+ Supplementary table S1
862
+ Figures. S1 to S8
863
+
864
+ Springer Nature 2021 LATEX template
865
+ 2
866
+ Auditing citation polarization during the COVID-19 pandemic
867
+ Figure S1 Probability density function of the citation time difference between
868
+ the publication and the citation month of the papers. For the plot, the COVID-19-
869
+ related and non-COVID-19-related papers published in 2020 and 2021 were used.
870
+ Figure
871
+ S2 Citation
872
+ distribution
873
+ of
874
+ COVID-19-related
875
+ and
876
+ non-COVID-19-
877
+ related papers. The citation distribution that can contribute to the annual IF calculation
878
+ (left) is the same distribution as in Fig. 1A. The separated citation distributions in one-
879
+ year (middle) and two-year (right) time gaps show the same pattern. Both plots show that
880
+ COVID-19-related papers have a heavier-tailed distribution.
881
+
882
+ Non-COviD-19-relatedpapers
883
+ COVID-19-relatedpapers
884
+ 10'0
885
+ Probability density function
886
+ 0.06
887
+ 0.05
888
+ 0.04
889
+ 0.03
890
+ 乙O'0
891
+ 0.01
892
+ 0.00
893
+ 0
894
+ 5
895
+ 10
896
+ 15
897
+ 20
898
+ Citationsafterpublication (month)100
899
+ 100
900
+ 100
901
+ 10-1
902
+ 10-1
903
+ 10-1,
904
+ Function
905
+ 10-2,
906
+ 10-2
907
+ Density
908
+ 10-3
909
+ 10-3,
910
+ 10-3,
911
+ Cumulative
912
+ 10-4
913
+ 10-4
914
+ 10-4
915
+ Non-COVID-19 papers (2017)
916
+ 10-5,
917
+ Non-COVID-19 papers (2017+2018)
918
+ 10-5
919
+ Non-COVID-19 papers (2018)
920
+ 10-5
921
+ cOVID-19 papers (2018+2019)
922
+ COVID-19 papers (2019)
923
+ Non-COVID-19 papers (2017)
924
+ Non-COVID-19 papers (2018+2019)
925
+ Non-COVID-19 papers (2019)
926
+ Non-COVID-19 papers (2018)
927
+ 10-6
928
+ COVID-19 papers (2019+2020)
929
+ COVID-19 papers (2020)
930
+ COVID-19 papers (2019)
931
+ 10-6
932
+ Non-COVID-19 papers (2019+2020)
933
+ Non-COVID-19 papers (2020)
934
+ Non-COVID-19 papers (2019)
935
+ 100
936
+ 101
937
+ 102
938
+ 103
939
+ 104
940
+ 100
941
+ 101
942
+ 102
943
+ 103
944
+ 104
945
+ 100
946
+ 101
947
+ 102
948
+ 103
949
+ 104
950
+ Number of Citations Received
951
+ Number of Citations Received
952
+ Number of Citations ReceivedSpringer Nature 2021 LATEX template
953
+ Auditing citation polarization during the COVID-19 pandemic
954
+ 3
955
+ Table S1 Relative ratio of surplus impact factor (IF) from publishing COVID-19-related papers by journal category classified by JCR. The bold
956
+ numbers represent the highest ratio of surplus IF in each category.
957
+ Journal Category
958
+ Top 10%
959
+ 10–20%
960
+ 20–30%
961
+ 30–40%
962
+ 40–50%
963
+ 50–60%
964
+ 60–70%
965
+ 70–80%
966
+ 80–90%
967
+ 90–100%
968
+ Agricultural Science
969
+ 1.664
970
+ 1.098
971
+ 1.111
972
+ 1.040
973
+ 1.002
974
+ 1.029
975
+ 1.078
976
+ 1.051
977
+ 1.039
978
+ 1.062
979
+ Arts & Humanities, Interdisciplinary
980
+ 1.209
981
+ 1.399
982
+ 1.146
983
+ 1.046
984
+ 0.999
985
+ 1.086
986
+ 1.165
987
+ 0.995
988
+ 0.990
989
+ 0.982
990
+ Biology & Biochemistry
991
+ 1.286
992
+ 1.103
993
+ 1.101
994
+ 1.090
995
+ 1.064
996
+ 1.067
997
+ 1.115
998
+ 1.062
999
+ 1.066
1000
+ 1.081
1001
+ Chemistry
1002
+ 1.104
1003
+ 1.043
1004
+ 1.040
1005
+ 1.042
1006
+ 1.038
1007
+ 1.055
1008
+ 1.063
1009
+ 1.026
1010
+ 1.046
1011
+ 1.109
1012
+ Clinical Medicine
1013
+ 1.508
1014
+ 1.251
1015
+ 1.189
1016
+ 1.162
1017
+ 1.152
1018
+ 1.127
1019
+ 1.142
1020
+ 1.106
1021
+ 1.102
1022
+ 1.111
1023
+ Computer Science
1024
+ 1.112
1025
+ 1.118
1026
+ 1.125
1027
+ 1.079
1028
+ 1.061
1029
+ 1.038
1030
+ 1.090
1031
+ 1.041
1032
+ 1.071
1033
+ 1.053
1034
+ Economics & Business
1035
+ 1.423
1036
+ 1.161
1037
+ 1.180
1038
+ 1.115
1039
+ 1.105
1040
+ 1.088
1041
+ 1.103
1042
+ 1.075
1043
+ 1.078
1044
+ 1.024
1045
+ Engineering
1046
+ 1.044
1047
+ 1.109
1048
+ 1.041
1049
+ 1.048
1050
+ 1.029
1051
+ 1.053
1052
+ 1.027
1053
+ 1.026
1054
+ 1.037
1055
+ 1.146
1056
+ Environment/Ecology
1057
+ 1.388
1058
+ 1.209
1059
+ 1.201
1060
+ 1.135
1061
+ 1.129
1062
+ 1.112
1063
+ 1.126
1064
+ 1.106
1065
+ 1.074
1066
+ 1.121
1067
+ Geosciences
1068
+ 1.024
1069
+ 1.012
1070
+ 1.037
1071
+ 1.018
1072
+ 1.018
1073
+ 1.002
1074
+ 1.021
1075
+ 1.033
1076
+ 1.041
1077
+ 1.001
1078
+ History & Archaeology
1079
+ 1.162
1080
+ 1.165
1081
+ 1.121
1082
+ 1.072
1083
+ 1.114
1084
+ 0.994
1085
+ 1.069
1086
+ 1.003
1087
+ 0.988
1088
+ 0.969
1089
+ Literature & Language
1090
+ 1.106
1091
+ 1.175
1092
+ 1.111
1093
+ 1.205
1094
+ 1.026
1095
+ 1.136
1096
+ 1.110
1097
+ 1.050
1098
+ 1.019
1099
+ 1.045
1100
+ Material Science
1101
+ 1.017
1102
+ 1.018
1103
+ 1.010
1104
+ 1.024
1105
+ 1.009
1106
+ 1.010
1107
+ 1.008
1108
+ 1.011
1109
+ 1.024
1110
+ 1.054
1111
+ Mathematics
1112
+ 1.053
1113
+ 1.046
1114
+ 1.139
1115
+ 1.039
1116
+ 1.052
1117
+ 1.062
1118
+ 1.061
1119
+ 1.016
1120
+ 1.080
1121
+ 1.013
1122
+ Multidisciplinary
1123
+ 1.102
1124
+ 1.086
1125
+ 1.081
1126
+ 1.081
1127
+ 1.056
1128
+ 1.066
1129
+ 1.057
1130
+ 1.048
1131
+ 1.061
1132
+ 1.030
1133
+ Philosophy & Religion
1134
+ 1.232
1135
+ 1.219
1136
+ 1.221
1137
+ 1.155
1138
+ 1.067
1139
+ 1.141
1140
+ 1.131
1141
+ 1.010
1142
+ 1.066
1143
+ 1.046
1144
+ Physics
1145
+ 1.058
1146
+ 1.057
1147
+ 1.039
1148
+ 1.025
1149
+ 1.018
1150
+ 1.030
1151
+ 1.030
1152
+ 1.028
1153
+ 1.014
1154
+ 1.073
1155
+ Plant & Animal Science
1156
+ 1.102
1157
+ 1.046
1158
+ 1.055
1159
+ 1.020
1160
+ 1.068
1161
+ 1.063
1162
+ 1.096
1163
+ 1.022
1164
+ 1.039
1165
+ 1.027
1166
+ Psychiatry/Psychology
1167
+ 1.666
1168
+ 1.341
1169
+ 1.183
1170
+ 1.153
1171
+ 1.121
1172
+ 1.227
1173
+ 1.137
1174
+ 1.176
1175
+ 1.137
1176
+ 1.136
1177
+ Social Sciences, General
1178
+ 1.389
1179
+ 1.218
1180
+ 1.182
1181
+ 1.147
1182
+ 1.130
1183
+ 1.073
1184
+ 1.087
1185
+ 1.070
1186
+ 1.088
1187
+ 1.033
1188
+ Visual & Performing Arts
1189
+ 1.088
1190
+ 1.095
1191
+ 1.069
1192
+ 1.109
1193
+ 1.049
1194
+ 1.138
1195
+ 1.038
1196
+ 1.041
1197
+ 1.025
1198
+ 1.115
1199
+
1200
+ Springer Nature 2021 LATEX template
1201
+ 4
1202
+ Auditing citation polarization during the COVID-19 pandemic
1203
+ Figure S3 Probability density function of journals with IFs that increased or
1204
+ decreased by publishing COVID-19-related papers. The IFs of 763 journals (16%)
1205
+ decreased while the IFs of 4004 journals (84%) increased. A The pdf for the absolute increase
1206
+ in IF. B The pdf for the relative increase in IF divided by the IF excluding COVID-19-related
1207
+ papers.
1208
+ Figure S4 Relative IF increase by publishing COVID-19-related papers relative
1209
+ to the journal’s IF. The extent of IF increase is divided by the IF excluding COVID-19-
1210
+ related papers. The red squares and error bars respectively show the average value and the
1211
+ standard deviation of the increased IF in log-scale.
1212
+
1213
+ Increased
1214
+ 103
1215
+ Increased
1216
+ Decreased
1217
+ Decreased
1218
+ 102
1219
+ 102
1220
+ Probability density function
1221
+ 101
1222
+ Probability density function
1223
+ 101
1224
+ 100
1225
+ 100
1226
+ 10
1227
+ 10-1
1228
+ 10-2
1229
+ 10-2,
1230
+ 10-3
1231
+ 10-4
1232
+ 10-3
1233
+ 10-5
1234
+ 10-3
1235
+ 10-1
1236
+ 100
1237
+ 101
1238
+ 102
1239
+ 10-5
1240
+ 10-3
1241
+ 10-1
1242
+ 100
1243
+ 101
1244
+ Increase (decrease) of IF
1245
+ Relative increase fdecreasej of IF101
1246
+ papers
1247
+ 100
1248
+ [9-related
1249
+ by COVID-1!
1250
+ 10-2
1251
+ 10-2
1252
+ 10-1
1253
+ 100
1254
+ 101
1255
+ 102
1256
+ Impact factor (IF)Springer Nature 2021 LATEX template
1257
+ Auditing citation polarization during the COVID-19 pandemic
1258
+ 5
1259
+ Figure S5 Fraction of COVID-19-related papers published in journals by the
1260
+ journal IFs. The red squares and error bars respectively show the average value and the
1261
+ standard deviation of the fraction of COVID-19-related papers in log-scale. The Pearson
1262
+ correlation is 0.110.
1263
+ Figure S6 Change in journal ranking by publishing COVID-19-related papers.
1264
+ The values show the change rate between ranking groups by publishing COVID-19-related
1265
+ papers. Both Pearson and Spearman rank correlations of the IF ranks are 0.99. A Rank
1266
+ change of all journals that published COVID-19-related papers in their category. B Rank
1267
+ change of the journals that published COVID-19-related papers, where less than 10% of the
1268
+ journals published COVID-19-related papers in their category.
1269
+
1270
+ A
1271
+ B
1272
+ 1.0
1273
+ papers
1274
+ Top 10%
1275
+ 0.90
1276
+ 0.11
1277
+ EO0
1278
+ 0.02
1279
+ 0.01
1280
+ 0.00
1281
+ 0.00
1282
+ 0.00
1283
+ 0.01
1284
+ 0.00
1285
+ Top 10%
1286
+ 1.00
1287
+ 0.08
1288
+ 0.00
1289
+ 0.00
1290
+ 0.00
1291
+ 0.00
1292
+ 0.00
1293
+ 0.00
1294
+ 0.00
1295
+ 0.00
1296
+ paper
1297
+ 0.8
1298
+ 10-20%
1299
+ 0.10
1300
+ 0.75
1301
+ 0.13
1302
+ 0.03
1303
+ 0.02
1304
+ 0.01
1305
+ 0.01
1306
+ 0.00
1307
+ 0.00
1308
+ 0.00
1309
+ 10-20%
1310
+ 0.00
1311
+ 0.92
1312
+ 0.00
1313
+ 0.00
1314
+ 0.00
1315
+ 0.00
1316
+ 0.00
1317
+ 0.00
1318
+ 0.00
1319
+ 0.00
1320
+ COVID-19
1321
+ COVID-19
1322
+ 0.8
1323
+ 20-30%
1324
+ 0.00
1325
+ 0.14
1326
+ 0.68
1327
+ 0.15
1328
+ 0.06
1329
+ 0.02
1330
+ 0.01
1331
+ 1O'0
1332
+ 0.01
1333
+ 0.00
1334
+ 20-30%
1335
+ 0.00
1336
+ 0.00
1337
+ 1.00
1338
+ 0.12
1339
+ 0.00
1340
+ 0.08
1341
+ 0.00
1342
+ 0.00
1343
+ 0.00
1344
+ 0.00
1345
+ 30-40%
1346
+ 0.00
1347
+ 0.01
1348
+ 0.02
1349
+ 0.01
1350
+ 0.00
1351
+ 0.00
1352
+ 0.6
1353
+ 0.14
1354
+ 0.64
1355
+ 0.14
1356
+ 0.06
1357
+ 30-40%
1358
+ 0.00
1359
+ 0.00
1360
+ 0.00
1361
+ 0.88
1362
+ 0.17
1363
+ 0.00
1364
+ 0.00
1365
+ 0.00
1366
+ 0.00
1367
+ 0.00
1368
+ including
1369
+ including
1370
+ 0.6
1371
+ 40-50%
1372
+ 0.00
1373
+ 0.00
1374
+ 0.00
1375
+ 0.15
1376
+ 0.61
1377
+ 0.13
1378
+ 0.05
1379
+ 0.02
1380
+ 0.01
1381
+ 0.00
1382
+ 40-50%
1383
+ 0.00
1384
+ 0.00
1385
+ 0.00
1386
+ 0.00
1387
+ 0.83
1388
+ 0.00
1389
+ 0.09
1390
+ 0.00
1391
+ 0.00
1392
+ 0.00
1393
+ I ranking by IF i
1394
+ 50-60%
1395
+ 0.00
1396
+ 0.00
1397
+ 0.00
1398
+ 0.01
1399
+ 0.16
1400
+ 0.63
1401
+ 0.12
1402
+ 0.05
1403
+ 0.01
1404
+ 0.00
1405
+ 0.4
1406
+ 50-60%
1407
+ 0.00
1408
+ 0.00
1409
+ 0.00
1410
+ 0.00
1411
+ 0.00
1412
+ 0.92
1413
+ 0.18
1414
+ 0.00
1415
+ 0.00
1416
+ 0.00
1417
+ F
1418
+ by
1419
+ 0.4
1420
+ 60-70%
1421
+ 0.00
1422
+ 0.00
1423
+ 0.00
1424
+ 0.00
1425
+ 0.01
1426
+ 0.15
1427
+ 0.64
1428
+ 0.14
1429
+ 0.05
1430
+ 0.01
1431
+ 60-70%
1432
+ 0.00
1433
+ 0.00
1434
+ 0.00
1435
+ 0.00
1436
+ 0.00
1437
+ 0.00
1438
+ 0.73
1439
+ 0.09
1440
+ 0.00
1441
+ 0.00
1442
+ I ranking !
1443
+ 70-80%
1444
+ 0.00
1445
+ 0.00
1446
+ 0.00
1447
+ 0.00
1448
+ 0.00
1449
+ 0.00
1450
+ 0.13
1451
+ 0.65
1452
+ 0.12
1453
+ 0.02
1454
+ 70-80%
1455
+ 0.00
1456
+ 0.00
1457
+ 0.00
1458
+ 0.00
1459
+ 0.00
1460
+ 0.00
1461
+ 0.00
1462
+ 0.91
1463
+ 0.09
1464
+ 0.00
1465
+ 0.2
1466
+ 0.2
1467
+ 80-90%
1468
+ 0.00
1469
+ 0.00
1470
+ 0.00
1471
+ 0.00
1472
+ 0.00
1473
+ 0.00
1474
+ 0.00
1475
+ 0.11
1476
+ 0.11
1477
+ euuno
1478
+ 0.71
1479
+ 80-90%
1480
+ 0.00
1481
+ 0.00
1482
+ 0.00
1483
+ 0.00
1484
+ 0.00
1485
+ 0.00
1486
+ 0.00
1487
+ 0.00
1488
+ 0.82
1489
+ 0.00
1490
+ 0.00
1491
+ 0.00
1492
+ 0.00
1493
+ 0.00
1494
+ 0.00
1495
+ 0.00
1496
+ 0.00
1497
+ 0.00
1498
+ 0.07
1499
+ 0.86
1500
+ 90-100%
1501
+ 0.00
1502
+ 0.00
1503
+ 0.00
1504
+ 0.00
1505
+ 0.00
1506
+ 0.00
1507
+ 0.00
1508
+ 0.00
1509
+ 0.09
1510
+ 1.00
1511
+ 0.0
1512
+ 0.0
1513
+ oo
1514
+ ol
1515
+ ola
1516
+ oo
1517
+ ola
1518
+ 10
1519
+ lo
1520
+ olo
1521
+ olo
1522
+ ofo
1523
+ 30°
1524
+ 20
1525
+ TOP
1526
+ 70
1527
+ -100°
1528
+ ToF
1529
+ 30
1530
+ JournalrankingbyIF
1531
+ excluding
1532
+ COVID-19
1533
+ papers
1534
+ Journal ranking
1535
+ by IF
1536
+ excluding
1537
+ COVID-19
1538
+ papers100
1539
+ Fraction of COVID-19-related papers
1540
+ 10-4
1541
+ 10-2
1542
+ 10-1
1543
+ 100
1544
+ 101
1545
+ 102
1546
+ Impact factorSpringer Nature 2021 LATEX template
1547
+ 6
1548
+ Auditing citation polarization during the COVID-19 pandemic
1549
+ Figure S7 Change in the Gini coefficients of the JCR categories by the number
1550
+ of published COVID-19-related papers. A positive correlation between the number
1551
+ of COVID-19-related papers and the changes in the Gini coefficients of the categories is
1552
+ observed (Pearson r = 0.545).
1553
+ Figure S8 Correlation between the IFs provided by JCR and those calculated
1554
+ in this paper. The Pearson correlation is high for both years 2020 and 2021.
1555
+
1556
+ work
1557
+ 0.20
1558
+ 19-related
1559
+ COVID-1
1560
+ 0.15
1561
+ Ag
1562
+ 0.10
1563
+ increased
1564
+ coefficient
1565
+ 0.05
1566
+ 00'0
1567
+ Gini
1568
+ 100
1569
+ 101
1570
+ 102
1571
+ 103
1572
+ Number of COVID-19-related papers2020
1573
+ 2021
1574
+ Pearson:0.997
1575
+ Pearson:0.998
1576
+ 500
1577
+ 250
1578
+ 400
1579
+ 200
1580
+ lated
1581
+ 150
1582
+ Icul
1583
+ lcul
1584
+ cal
1585
+ 200
1586
+ F
1587
+ 100
1588
+ 100
1589
+ 50
1590
+ 0
1591
+ 0
1592
+ 100
1593
+ 200
1594
+ 300
1595
+ 400
1596
+ 500
1597
+ 0
1598
+ 50
1599
+ 100
1600
+ 150
1601
+ 200
1602
+ 250
1603
+ 300
1604
+ IF provided by JCR
1605
+ IF provided by JCR
5dAzT4oBgHgl3EQf9_4T/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tAzT4oBgHgl3EQf9_5e/content/tmp_files/2301.01927v1.pdf.txt ADDED
@@ -0,0 +1,1066 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Towards simultaneous coherent radiation in the
2
+ visible and microwave bands with doped
3
+ molecular crystals
4
+ Hao Wu,†,‡,§ Tong Li,†,‡,§ Zhang-Qi Yin,† Jiyang Ma,∗,†,‡ Xu-Ri Yao,†,‡ Bo
5
+ Zhang,†,‡ Mark Oxborrow,¶ and Qing Zhao†,‡
6
+ †Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic
7
+ Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of
8
+ Technology, Beijing 100081, China
9
+ ‡Beijing Academy of Quantum Information Sciences, Beijing 100193, China
10
+ ¶Department of Materials, Imperial College London, South Kensington, SW7 2AZ London,
11
+ United Kingdom
12
+ §These authors contributed equally: Hao Wu, Tong Li
13
+ E-mail: [email protected]
14
+ Abstract
15
+ Coherent sources exploiting the stimulated emission of non-equilibrium quantum
16
+ systems, i.e. gain media, have proven indispensable for advancing fundamental research
17
+ and engineering. The operating electromagnetic bands of such coherent sources have
18
+ been continuously enriched for increasing demands. Nevertheless, for a single bench-
19
+ top coherent source, simultaneous generation of radiation in multiple bands, especially
20
+ when the bands are widely separated, present formidable challenges with a single gain
21
+ medium. Here, we propose a mechanism of simultaneously realizing the stimulated
22
+ 1
23
+ arXiv:2301.01927v1 [physics.optics] 5 Jan 2023
24
+
25
+ emission of radiation in the visible and microwave bands, i.e. lasing and masing ac-
26
+ tions, at ambient conditions by utilizing photoexcited singlet and triplet states of the
27
+ pentacene molecules that are doped in p-terphenyl. The possibility is validated by the
28
+ observed amplified spontaneous emission (ASE) at 645 nm with a narrow linewidth
29
+ around 1 nm from the pentacene-doped p-terphenyl crystal used for masing at 1.45
30
+ GHz and consolidated by a 20-fold-lower threshold of ASE compared to the reported
31
+ masing threshold. The overall threshold of the pentacene-based multiband coherent
32
+ source can be optimized by appropriate alignment of the pump-light polarization with
33
+ the pentacene’s transition dipole moment. Our work not only shows a great promise on
34
+ immediate realization of multiband coherent sources but also establishes an intriguing
35
+ solid-state platform for fundamental research of quantum optics in multiple frequency
36
+ domains.
37
+ Introduction
38
+ Coherent sources that capable of generating coherent electromagnetic radiation have served
39
+ as crucial ingredients enabling numerous breakthroughs in the fields of physical, environmen-
40
+ tal, and biological sciences. A well-established approach to achieve coherent electromagnetic
41
+ radiation is to exploit the stimulated emission process1 induced by interactions between elec-
42
+ tromagnetic fields and matters. Stemming from the discovery of the stimulated emission,
43
+ optical lasers spanning from the ultraviolet to the near-infrared region, together with their
44
+ forerunners and microwave analogs, masers, have become indispensable coherent sources for
45
+ applications in telecommunication,2 metrology,3,4 sensing,5–7 machining8 and quantum infor-
46
+ mation.9,10 In addition, the recent development of terahertz11 and X-ray12 lasers has offered
47
+ alluring promise of shedding light on astronomical observations, spectroscopy and structural
48
+ biology. The rich variety of applications require distinct coherent sources operational across
49
+ the extremely wide electromagnetic spectrum from microwave to X-rays. Even though the
50
+ underlying mechanism of those coherent sources is the same (i.e. the stimulated emission),
51
+ 2
52
+
53
+ their practical realizations are completely different in terms of the components, structures
54
+ and scale, rendering simultaneous generation of coherent radiation in widely separated spec-
55
+ trum bands with a single source hitherto unattainable on the bench top.
56
+ Gain media, constituted by the quantum systems with non-degenerate energy levels, are
57
+ the core determining radiation wavelengths of the stimulated emission, therefore, vital for
58
+ realizing multiband coherent sources. It is not scarce for quantum systems to possess multiple
59
+ transitions across different spectrum bands by their intrinsic properties (e.g. large quantum
60
+ numbers13) and/or external manipulations with electric/magnetic fields.14 Ruby (chromium
61
+ ions-doped aluminum oxide) is a representative gain medium which can be employed for
62
+ both solid-state masers15 and lasers,16 i.e. capable of generating coherent radiation in the
63
+ microwave and visible regions, while the vastly different experimental setups, especially the
64
+ cryogenic and magnetic-field requirements for ruby masers, have resulted in no demonstration
65
+ of simultaneous maser and laser actions of ruby to date. More recently, the negatively charged
66
+ nitrogen-vacancy defects (NV−) in diamond have been demonstrated to be promising solid-
67
+ state maser17 and laser18 gain media at ambient conditions. However, the preparations and
68
+ material properties of the NV− diamonds employed for the maser and laser applications
69
+ are rather different. The diamonds were synthesized via the routes of high pressure high
70
+ temperature (HPHT) and chemical vapor deposition (CVD) for the NV− laser and maser,
71
+ respectively, which gives rise to the different concentrations of the doped nitrogen atoms and
72
+ NV−. The concentration of the gain media, i.e. NV−, required for the laser action is 1.4
73
+ p.p.m. which is about four folds higher than that (0.36 p.p.m.) used for the NV− maser.
74
+ With respect to the performance of the NV− diamond based coherent sources, the relatively
75
+ weak output (∼1 pW) of the NV− maser17 and the broad spectral linewidth (20 nm) of the
76
+ NV− laser18 still need to be substantially improved for practical considerations. In addition
77
+ to the solid-state systems, due to the rich energy structures, the stimulated emission of
78
+ radiation ranging from the microwave to infrared (IR) domain have been observed in vapor
79
+ of Rydberg atoms19,20 but their ability of simultaneous generation of coherent radiation in
80
+ 3
81
+
82
+ multiple wavelength domains is still not evident. Moreover, the limited number of atoms
83
+ has also restricted the power of such coherent sources. The output power of the Rydberg
84
+ masers has been reported to be up to 10 pW21 and the pulse energy of a Rydberg IR laser
85
+ was approximately 1 µJ.20
86
+ Compared to the gain media mentioned above, doped molecular crystals combines the key
87
+ advantages of the inorganic solid-state systems (e.g. robustness and ease of integration) with
88
+ rich opportunities of tuning the energy levels of the quantum systems, like Rydberg atoms,
89
+ through bottom-up engineering of the guests and host matrices.22,23 While sustaining the
90
+ satisfying optical, magnetic and electronic properties, the doping concentrations of molecular
91
+ crystals are tunable up to tens of thousands p.p.m.24 implying the great potential of realizing
92
+ powerful coherent sources with such gain media. Among numerous doped molecular crystals,
93
+ pentacene-doped p-terphenyl (Pc:Ptp) has attracted extensive attention especially in the
94
+ last decade.
95
+ Pc:Ptp is a low-cost and easy-fabricated single organic crystal, which can
96
+ be produced in bulk with a high quality.25 Due to the doping structure, the functional
97
+ dopants, i.e. pentacene molecules, are well protected by the matrix of p-terphenyl, which
98
+ not only possess great steadiness and durability but also emerge appealing photophysical
99
+ properties (which are lacking in neat pentacene) well suited for multidisciplinary applications,
100
+ such as photovoltaics,24 dynamic nuclear polarization (DNP)26 and quantum information
101
+ processing.10,27,28 In particular, Pc:Ptp is the first, and so far the only doped molecular crystal
102
+ capable of masing at room temperature in Earth’s field29 and the superior maser output at
103
+ a level of milliwatt (i.e. 109 times higher than that of NV− masers) has yet to be surpassed
104
+ by other room-temperature maser gain media. The maser application as well as the recent
105
+ applications mentioned above mainly exploits the photoexcited triplet states of pentacene in
106
+ p-terphenyl. It is worth noting that the singlet states of pentacene are also intriguing due to
107
+ their photoluminescent properties, owing to which the stimulated emission of radiation in the
108
+ visible region manifesting as amplified spontaneous emission (ASE) have been observed30,31
109
+ implying the potential of the pentacene molecules to be suitable gain media for lasing as
110
+ 4
111
+
112
+ well. However, since the ASE phenomena were observed with pentacene doped in trans-1,4-
113
+ distyrylbenzene (trans-DSB)30 and 1,4-bis(2-cyano styryl)benzene (2-CSB),31 respectively,
114
+ instead of p-terphenyl, and the dynamics of pentacene’s triplet spins can be modulated by
115
+ the host effects,32 the suitability of these two host matrices for the maser action of pentacene
116
+ remains elusive.
117
+ In this work, we investigate the optical emission properties of the Pc:Ptp crystals em-
118
+ ployed in the previous maser studies6,27,33 and first demonstrate the ASE process in Pc:Ptp at
119
+ 645 nm, where molecular crystals rarely reached, under the experimental conditions identical
120
+ to those required for the maser action. Combining spectral analysis with nanosecond time-
121
+ resolved characterizations, the ASE properties of Pc:Ptp are systematically studied at room
122
+ temperature. The obtained ASE spectrum shows an extremely narrow linewidth around 1
123
+ nm that is the narrowest among the reported molecular crystals revealing ASE behaviors.
124
+ Since ASE is a prerequisite for lasing, our results provide solid evidence that Pc:Ptp can
125
+ serve as a solid-state multiband gain medium for emitting coherent microwave and visible
126
+ light simultaneously at ambient conditions.
127
+ Results
128
+ Structural and optical properties of Pc:Ptp
129
+ Throughout the study, pink Pc:Ptp single crystals, shown in Fig. 1a, with a doping concen-
130
+ tration of 1000 p.p.m. was used, which is the same as that employed for room-temperature
131
+ masers.6,27,33 The relatively high doping concentration allowing sufficient pentacene molecules
132
+ for microwave and optical gains arises from the similar molecular packing coefficients of pen-
133
+ tacene and p-terphenyl which favors the formation of solid solutions with these two organic
134
+ substances.34,35 The molecular packing coefficient k can be expressed as k = (z × V0)/V ,
135
+ where z is the number of molecules in the unit cell, V0 and V are the volumes of the molecule
136
+ and unit cell, respectively. The k values of pentacene and p-terphenyl have been determined
137
+ 5
138
+
139
+ b
140
+ c
141
+ 400 μm
142
+ ab plane
143
+ a
144
+ d
145
+ e
146
+ S0
147
+ S1
148
+ 510 nm
149
+ 550 nm
150
+ 590 nm
151
+ 475 nm
152
+
153
+ λ = 645 nm
154
+ T2
155
+ T1
156
+ Tx
157
+ Ty
158
+ Tz
159
+ Intersystem crossing
160
+ Non-
161
+ radiative
162
+ transition
163
+ Radiative
164
+ transition
165
+ Maser transition
166
+
167
+ fxz = 1.45 GHz
168
+ Internal
169
+ conversion
170
+ Site 1
171
+ Site 2
172
+ b
173
+ a
174
+ c
175
+ x
176
+ z
177
+ y
178
+ 500
179
+ 600
180
+ 700
181
+ 800
182
+ 0.0
183
+ 0.5
184
+ 1.0
185
+ Normalized intensity (a.u.)
186
+ Wavelength (nm)
187
+ Fluorescence
188
+ Fitting
189
+ 27.6
190
+ 0.3 nm
191
+ 400
192
+ 500
193
+ 600
194
+ 700
195
+ 0.0
196
+ 0.5
197
+ 1.0
198
+ Normalized absorbance (a.u.)
199
+ Wavelength (nm)
200
+ Absorbance
201
+ Laser transition
202
+ 0-1
203
+ }
204
+ 475 nm
205
+ 510 nm
206
+ 550 nm
207
+ 590 nm
208
+ 645 nm
209
+ 599 nm
210
+ 701 nm
211
+ ±
212
+ 1 mm
213
+ Figure 1: Material characterizations of Pc:Ptp and mechanism of simultaneous
214
+ coherent radiation. a Optical microscopic image of a Pc:Ptp crystal under white-light
215
+ illumination. The cleavage plane, i.e. ab plane, of the crystal is labelled. b Crystal struc-
216
+ ture of the host matrix, p-terphenyl (blue) with substitutionally doped pentacene molecules
217
+ (pink). The two inequivalent doping sites as well as the molecular axes of pentacene are
218
+ labelled. c UV/vis absorption and d Fluorescence spectra of Pc:Ptp with all characteristic
219
+ peaks labelled. The linewidth, i.e. FWHM of the strongest fluorescent peak is determined
220
+ by a Lorentzian fitting. Inset: optical microscopic image of a fluorescent Pc:Ptp with the
221
+ excitation light filtered. e Proposed mechanism of simultaneous lasing and masing actions
222
+ in Pc:Ptp exploiting the transitions of stimulated emission highlighted in the pentacene’s
223
+ singlet (pink) and triplet (orange) manifolds.
224
+ 6
225
+
226
+ to be 0.743 and 0.751 that brings them adjacent to the closest packing condition where k=
227
+ 0.74.34 As shown in Fig. 1b, at room temperature, pentacene molecules are substitutionally
228
+ doped in the monoclinic unit cell of p-terphenyl with two inequivalent doping sites.36 The
229
+ structural properties of Pc:Ptp crystals are dominated by the host matrix, i.e. p-terphenyl.
230
+ Therefore, Pc:Ptp also possesses an intrinsic laminar structure with a cleavage (001) (i.e.
231
+ ab) plane25 where the molecules stand (see Fig. 1b). The ‘head-to-head’ packing against
232
+ the ab plane results in the weaker intermolecular interactions compared to the π − π inter-
233
+ actions along the molecular xy plane where x and y denote the long and short axes of the
234
+ molecules, respectively. The cleavage property facilitates the fabrication of Pc:Ptp crystals
235
+ with distinguishable crystal planes. As exhibited in Fig. 1a, the large crystal facet can be
236
+ straightforwardly determined to be the (001) plane due to the obvious delamination shown
237
+ on the edge.
238
+ The optical properties of Pc:Ptp were investigated by measuring its absorption and flu-
239
+ orescence spectra as illustrated in Fig. 1c and 1d. It can be found that the doped crystal
240
+ reveals explicit absorption at wavelengths of 475, 510, 550 and 590 nm, which correspond to
241
+ the characteristic transitions between pentacene’s excited and ground singlet states25,37 as
242
+ depicted in Fig. 1e. According to the absorption spectrum, the highest absorbance locates
243
+ at 590 nm was referred to determine the optimal wavelength for optically pumping Pc:Ptp in
244
+ the following measurements. In terms of the photoluminescent property of Pc:Ptp, Fig. 1d
245
+ indicates that the crystal can generate intense fluorescence at wavelengths of 599 and 645
246
+ nm, corresponding to the 0-0 and 0-1 transitions,30 respectively, as well as a weak emission
247
+ band central at 701 nm under illumination of a green light-emitting diode (LED). The small
248
+ peak near 550 nm is attributed to the emission of LED which was not completed filtered
249
+ during the fluorescence measurements. The full width at half maximum (FWHM) of the
250
+ strongest fluorescence peak at 645 nm is measured to be 27.6±0.3 nm.
251
+ 7
252
+
253
+ Mechanism of the simultaneous lasing and masing actions in Pc:Ptp
254
+ Combining the optical properties obtained above with the reported properties of Pc:Ptp
255
+ masers,29,38 we propose the mechanism of realizing simultaneous lasing and masing actions
256
+ by exploiting both the photoexcited singlet and triplet states of Pc:Ptp crystals. As schemat-
257
+ ically demonstrated in Fig. 1e, the pentacene molecules in the ground singlet state can be
258
+ efficiently promoted to the excited singlet state with an optical pumping at 590 nm, by which
259
+ the population inversion is achieved in the singlet manifold for the stimulated emission of ra-
260
+ diation in the visible region, e.g. 599 or 645 nm where the strong fluorescence was observed.
261
+ In the meantime, due to the spin-orbit coupling, pentacene molecules can also transfer to
262
+ the excited triplet state (T2) via the intersystem crossing with a yield of 62.5% at room
263
+ temperature39 and rapidly decay to the lowest triplet state (T1) via the internal conversion.
264
+ Since the triplet state is metastable, the pentacene molecules will eventually decay back to
265
+ the ground singlet state by either the radiative or non-radiative T1 →S0 transition.40,41 In
266
+ Earth’s field, T1 is non-degenerate and constituted by three sublevels Tx, Ty and Tz due to
267
+ the dipolar interactions of pentacene’s triplet electron spins. The resonance frequencies of
268
+ the triplet sublevels governed by the zero-field-splitting (ZFS) parameters have been deter-
269
+ mined by electron paramagnetic resonance (EPR) measurements42,43 to be 1.45 GHz, 1.344
270
+ GHz and 106.5 MHz for Tx ↔Tz, Ty ↔Tz and Tx ↔Ty transitions, respectively. An alluring
271
+ property of the pentacene’s lowest triplet state is that, upon its generation, the populations
272
+ of the triplet electrons follow a non-Boltzmann distribution in the three sublevels with a ratio
273
+ of Px : Py : Pz= 0.76:0.16:0.0844 at room temperature. The strong population inversion and
274
+ relatively slow spin-lattice relaxation43 between the Tx and Tz sublevels can be exploited for
275
+ realizing the stimulated emission of radiation in the microwave region, i.e. masing. There-
276
+ fore, the optical pumping of Pc:Ptp can simultaneously introduce population inversions in
277
+ both singlet and triplet manifolds fulfilling the prerequisites of the lasing and masing actions
278
+ at ambient conditions.
279
+ 8
280
+
281
+ Spectral analysis of the ASE of Pc:Ptp
282
+ As the masing action has been successfully demonstrated with the Pc:Ptp crystal,27,33 we
283
+ verify the mechanism of multiband coherent radiation proposed above by investigating the
284
+ feasibility of the stimulated emission in the pentacene’s singlet states under the experimental
285
+ conditions similar to that for the maser studies. We measured the emission spectra of Pc:Ptp
286
+ under the optical pumping of a nanosecond pulsed laser which has proven to be sufficiently
287
+ powerful for achieving the threshold of Pc:Ptp masers.38 The pump laser was focused onto
288
+ the cleavage plane of the crystal with a beam diameter of about 5 mm (see Supplementary
289
+ Fig. 2 for the detailed experimental setup). At different pump intensities, the emission
290
+ spectra shown in Fig. 2a were recorded by collecting the emitted light from the edge of the
291
+ sample (see inset in Fig. 2a). It can be seen that at the peak wavelength (i.e. 645 nm) of
292
+ the Pc:Ptp’s emission spectra, the intensity gradually increases while the spectral linewidth
293
+ equal to the FWHM gets narrower with the increment of pump energies implying the ASE
294
+ process occurs. The incomplete emission peaks at the wavelength of 600 nm is due to the
295
+ long pass filter with a cut-on wavelength of 600 nm used to filter out the pump light at 590
296
+ nm. In contrast, the filter used in the fluorescence measurements has a cut-on wavelength
297
+ of 550 nm leading to a complete peak at 600 nm, as shown in Fig. 2a.
298
+ To characterize the ASE process of Pc:Ptp, the intensity as well as the FWHM of the
299
+ strongest emission peak at 645 nm was plotted as a function of the pump intensity as shown
300
+ in Fig. 2b. There are two distinct areas in Fig. 2b, which were respectively fitted by linear
301
+ equations, resulting in a kink behavior of laser-like thresholds. The difference between ASE
302
+ and lasing processes is that in general, there is an optical cavity in the composition of a
303
+ laser, while ASE is the stimulated emission that occurs without a cavity.74 We define the
304
+ kink intensity as the ASE threshold of Pc:Ptp, which is 1.47 mJ cm−2. From the slopes of
305
+ the two fitted lines, it is evident that below the threshold, with the increment of the pump
306
+ intensity, the emission intensity increases slightly while the FWHM narrows rapidly, whereas
307
+ the situation changes oppositely above the threshold. This is because once the pump intensity
308
+ 9
309
+
310
+ a
311
+ b
312
+ d
313
+ c
314
+ e
315
+ Optical pumping
316
+ Emission
317
+ 1.2
318
+ Pump intensity
319
+ 0.6
320
+ 1.8
321
+ 2.4
322
+ 0.0
323
+ 0.5
324
+ 1.0
325
+ Emission intensity
326
+ FWHM
327
+ Fitting
328
+ mJ cm-2
329
+ Normalized intensity (a.u.)
330
+ 0
331
+ 4
332
+ 8
333
+ 12
334
+ FWHM (nm)
335
+ (
336
+ )
337
+ 640
338
+ 642
339
+ 644
340
+ 646
341
+ 648
342
+ 650
343
+ 0.0
344
+ 4.0
345
+ 8.0
346
+ Emission intensity (a.u.)
347
+ Wavelength (nm)
348
+ Experiment
349
+ Fitting
350
+ 1.33 nm
351
+ 400
352
+ 500
353
+ 600
354
+ 700
355
+ 2
356
+ 4
357
+ 6
358
+ 8
359
+ 10
360
+ 67
361
+ 31
362
+ 72
363
+ 69
364
+ 49
365
+ 71
366
+ 70
367
+ 69
368
+ 68
369
+ 66
370
+ 65
371
+ 49
372
+ 65
373
+ 64
374
+ 63
375
+ 62
376
+ 61
377
+ 60
378
+ 59
379
+ 58
380
+ 57
381
+ 49
382
+ 4950
383
+ 54
384
+ 53
385
+ 52
386
+ 51
387
+ 56
388
+ 56
389
+ 55
390
+ 48
391
+ 47
392
+ 46
393
+ FWHM (nm)
394
+ Wavelength (nm)
395
+ Pc:Ptp
396
+ 45
397
+ 550
398
+ 600
399
+ 650
400
+ 700
401
+ 750
402
+ 0.0
403
+ 0.5
404
+ 1.0
405
+ 1.5
406
+ Emission intensity (a.u.)
407
+ Wavelength (nm)
408
+ Fluorescence spectrum
409
+ 0.58 mJ cm-2
410
+ 0.80 mJ cm-2
411
+ 1.09 mJ cm-2
412
+ 1.43 mJ cm-2
413
+ (
414
+ 400
415
+ 500
416
+ 600
417
+ 700
418
+ 800
419
+ 900
420
+ 0.0
421
+ 2.0
422
+ 4.0
423
+ 6.0
424
+ Emission intensity (a.u.)
425
+ Wavelength (nm)
426
+ 2.20 mJ cm-2
427
+ Figure 2: Spectral analysis of Pc:Ptp’s ASE process. a Effect of pump intensity in
428
+ the emission spectrum of Pc:Ptp. Inset: schematic of the experimental setup. b Dependence
429
+ of the intensity (pink dots) and FWHM (orange triangles) of the emission peak at 645 nm
430
+ on pump intensity. The kink behavior of the dependence reveals the ASE process whose
431
+ threshold is determined by the point of intersection between the two linear fitting lines
432
+ (black dotted).
433
+ c Emission spectrum of Pc:Ptp measured above the ASE threshold.
434
+ d
435
+ Zoomed-in view of the 645-nm ASE peak (highlighted by a pink dotted box in c) whose
436
+ FWHM is determined by a Lorentzian fitting (black dotted curve). e Comparison of the
437
+ wavelength and FWHM of Pc:Ptp’s narrowest ASE peak with those of the reported organic
438
+ single crystals31,45–72 reviewed in ref.73 Details of the reported organic single crystals are
439
+ summarized in Supplementary Information. The regime of ASE wavelength rarely reached
440
+ by organic single crystals is highlighted with a black dotted box.
441
+ 10
442
+
443
+ exceeds the threshold, the stimulated radiation near the wavelength of 645 nm is substantially
444
+ enhanced, resulting in a rapid increase in the emission intensity in the vicinity of 645 nm
445
+ manifesting a narrowing of the entire emission spectrum while the reduction of FWHM is
446
+ limited by the optical inhomogeneous broadening of pentacene molecules. In Fig. 2c and
447
+ 2d, the narrowest emission spectrum arising from Pc:Ptp’s ASE process was obtained with
448
+ a pump intensity of 2.2 mJ cm−2. Compared with the normal fluorescence spectrum of the
449
+ Pc:Ptp crystal in Fig. 2a, the ASE spectra in Fig. 2c and 2d show a substantial narrowing
450
+ of the linewidth from 25 to 1.33 nm, which clearly reveals the feasibility of Pc:Ptp for
451
+ achieving the stimulated emission of radiation in the visible region. Most importantly, the
452
+ ASE threshold determined here, i.e. 1.47 mJ cm−2, is much lower than the maser threshold38
453
+ of Pc:Ptp, 26.3 mJ cm−2 measured with the similar optical pump source, which indicates the
454
+ simultaneous lasing and masing actions can be realized once the maser threshold is fulfilled.
455
+ In addition, we have also compared the ASE performance of Pc:Ptp with various organic
456
+ single crystals in terms of the ASE wavelength and linewidth.73 In Fig. 2e, we summarized
457
+ the reported organic single crystals with evident ASE behaviors of which the measured
458
+ emission linewidths are below 10 nm. The types of the referred crystals can be found in
459
+ the Supplementary Information. As demonstrated in Fig. 2e, the ASE wavelengths of these
460
+ organic single crystals are distributed in various visible bands, especially in the wavelength
461
+ range of 400-600 nm, but leave the regime between 600 and 700 nm (i.e. red-color regime)
462
+ rarely reached. Thus, the ASE wavelength of Pc: Ptp at 645 nm is a good supplement to fill
463
+ in this almost blank regime. Moreover, among the listed crystals, Pc:Ptp has the narrowest
464
+ ASE linewidth of 1.33 nm, as per our knowledge, which is even comparable to some organic
465
+ crystal lasers.75–79 The outstanding monochromaticity reveals the potential of Pc:Ptp to be
466
+ a novel organic solid-state laser gain media.
467
+ 11
468
+
469
+ a
470
+ c
471
+ b
472
+ d
473
+ Exp.
474
+ Sim.
475
+ τem= 6.7 ns
476
+ T1
477
+ |1>
478
+ |3>
479
+ |2>
480
+ |4>
481
+ |5>
482
+ P
483
+ W32
484
+ W23
485
+ A32
486
+ k43
487
+ k35
488
+ k21
489
+ k51
490
+ τem= 3.4 ns
491
+ S1
492
+ S0
493
+ 2
494
+ 4
495
+ 6
496
+ 8
497
+ 3
498
+ 4
499
+ 5
500
+ 6
501
+ 7
502
+ Pump intensity mJ cm-2
503
+ Emission lifetime (ns)
504
+ 4
505
+ 8
506
+ 12
507
+ 16
508
+ 20
509
+ W32 ( × 107 s-1)
510
+ τem, cal= 6.7 ns
511
+ τem, cal= 3.4 ns
512
+ τem, cal = A32+W32+k35
513
+ 1
514
+ 0.0
515
+ 0.5
516
+ 1.0
517
+ Normalized intensity (a.u.)
518
+ 1.13 mJ cm-2
519
+ 2.20 mJ cm-2
520
+ 3.16 mJ cm-2
521
+ 4.09 mJ cm-2
522
+ 5.12 mJ cm-2
523
+ 6.14 mJ cm-2
524
+ 7.16 mJ cm-2
525
+ Pump enhancement
526
+ 0
527
+ 10
528
+ 20
529
+ 30
530
+ 40
531
+ 0.0
532
+ 0.5
533
+ 1.0
534
+ 1.13 mJ cm-2
535
+ 2.20 mJ cm-2
536
+ 3.16 mJ cm-2
537
+ 4.09 mJ cm-2
538
+ 5.12 mJ cm-2
539
+ 6.14 mJ cm-2
540
+ 7.16 mJ cm-2
541
+ Pump enhancement
542
+ Normalized intensity (a.u.)
543
+ Time (ns)
544
+ (k52)
545
+ (
546
+ )
547
+ Figure 3: Kinetic analysis of Pc:Ptp’s ASE process. a Pump-intensity-dependent
548
+ emission decays of Pc:Ptp measured at 645 nm. The emission lifetimes are obtained with an
549
+ exponential fitting. b Five-level kinetic model accounting for the pump-intensity-dependent
550
+ emission decays of Pc:Ptp. c Simulation results of the pump-intensity-dependent emission
551
+ decay of Pc:Ptp on the basis of the five-level model in b. d Simulated rates of stimulated
552
+ emission W32 (pink) as a function of pump intensity. The pump-intensity-dependent emission
553
+ lifetimes (orange) are calculated according to the equation embedded.
554
+ 12
555
+
556
+ Kinetic analysis of the ASE of Pc:Ptp
557
+ Emission lifetimes are important parameters that can be employed to interpret the kinetic
558
+ processes involved in the electronic states upon photoexcitation. We therefore further an-
559
+ alyze the kinetic behaviors of the ASE process of Pc:Ptp based on the emission lifetime
560
+ measurements. The associated experimental setup can be found in the Supplementary In-
561
+ formation Fig. 3. As the fluorescence lifetime of Pc:Ptp has been estimated to be around
562
+ 9 ns39 at room temperature, a photodetector with a time resolution of 1 ns resolution was
563
+ employed in our setup for capturing the kinetic process accurately. Fig. 3a shows the emis-
564
+ sion decays obtained with different pump intensities. By exponential fittings of the decay
565
+ curves, we found the emission lifetime was decreased from 6.7 to 3.4 ns (as indicated by
566
+ the black arrow in Fig. 3a) with enhanced optical pumping. The emission lifetime of 6.7 ns
567
+ obtained with the relative weak pumping is close to the reported value of 9 ns.39 The faster
568
+ decays observed with the stronger optical pumping implies a pump-intensity-dependent ki-
569
+ netic process that is included in the emission process. This behavior is consistent with the
570
+ characteristic of an ASE process that the higher pump intensity will lead to enhanced stim-
571
+ ulated emission induced by the increased photons generated from spontaneous emission. To
572
+ fully characterize the observed pump-intensity-dependent emission decays, we constructed a
573
+ five-level kinetic model comprising both singlet and triplet states of the pentacene molecules
574
+ as demonstrated in Fig. 3b. The origins of the photoexcited singlet and triplet states are
575
+ similar to that demonstrated in Fig. 1c. To reduce the complexity of the kinetic model,
576
+ the numbers of the vibrational levels included in the ground (S0) and first excited singlet
577
+ states (S1) were decreased to two, as illustrated by |1⟩ and |2⟩ of S0, and |3⟩ and |4⟩ of S1
578
+ in Fig. 3b. In addition, due to the extremely fast internal conversion between T2 and T1 in
579
+ a time scale of femtosecond to picosecond,80 the model was further simplified by assuming
580
+ the direct intersystem crossing from S1 to T1, i.e. from the lowest vibrational level of S1,
581
+ |3⟩ to |5⟩ shown in Fig. 3b. Thus, the kinetic processes involved in the five-level model are
582
+ the optical pumping (|1⟩ → |4⟩), the relaxation between the vibrational levels in the singlet
583
+ 13
584
+
585
+ manifold (|4⟩ → |3⟩ and |2⟩ → |1⟩), the spontaneous emission (|3⟩ → |2⟩), the simulated
586
+ emission (|3⟩ → |2⟩) and absorption (|2⟩ → |3⟩) and the intersystem crossing (|3⟩ → |5⟩ and
587
+ |5⟩ → |1⟩ (|2⟩)).
588
+ Based on the kinetic processes, we derived a set of coupled rate equations to simulate
589
+ the observed emission decays as a function of the pump intensity (see Supplementary In-
590
+ formation). We found the simulated decay curves shown in Fig. 3c can well reproduce the
591
+ measured emission decays as well as the dependence of the emission lifetimes with the pump
592
+ intensity by a set of stimulated transition rates, W32 and W23 (see Fig. 3b and 3d). The
593
+ stimulated emission rate, W32, obtained from the simulation shows an almost linear increase
594
+ from 4×107 to 1.8×108 s−1 (exceeding the spontaneous emission rate,39 A32 = 4.2×107 s−1)
595
+ with the enhanced pump intensity that reveals the transition of the dominant kinetic process
596
+ in the emission decay from the spontaneous emission to the stimulated emission, i.e. ASE
597
+ occurs. The emission lifetimes τem,cal in Fig. 3d were calculated with τem,cal =
598
+ 1
599
+ A32+W32+k35
600
+ where k35 = 6.9 × 107 s−1 is the rate of the intersystem crossing.39
601
+ Optimization of the ASE efficiency
602
+ It is known that the efficiency of the transition of molecules in the ground singlet state to the
603
+ excited singlet state can be maximized by aligning the polarization of pump light with the
604
+ molecules’ transition dipole moments.81 For the pentacene molecules doped in p-terphenyl,
605
+ the pentacene’s short axis (i.e. the y axis in Fig. 1b), almost parallel to the ab cleavage
606
+ plane of the crystal,25 coincides with the transition dipole moment of the lowest spin allowed
607
+ transition of pentacene.82 Therefore, we further attempted to optimize the ASE efficiency
608
+ by enhancing the singlet transition probability of the pentacene’s molecules which would
609
+ benefit the realization of a low-threshold Pc:Ptp laser in the future.
610
+ Fig. 4a schematically illustrates the experimental setup (see Methods and Supplementary
611
+ Information for more details) where a horizontally polarized laser beam was focused by a
612
+ combination of a reversely placed beam expander and a convex lens and propagated perpen-
613
+ 14
614
+
615
+ 0
616
+ 100
617
+ 200
618
+ 300
619
+ 1.2
620
+ 1.4
621
+ 1.6
622
+ 1.8
623
+ ASE threshold (mJ cm )
624
+ -2
625
+ Angle (°)
626
+ 1.2
627
+ 1.8
628
+ 2.4
629
+ 3.0
630
+ Experiment
631
+ Fitting
632
+ 95% Confidence interval
633
+ Emission intensity (a.u.)
634
+ a
635
+ b
636
+ c
637
+ Beam expander
638
+ (reversely placed)
639
+ Convex lens
640
+ Rotational stage
641
+ Pump laser
642
+ Pc:Ptp
643
+ Horizontal polarization
644
+ 33.7°
645
+ 33.7°
646
+ θ
647
+ Light polarization
648
+ Transition dipole moment
649
+ PLmax
650
+ PLmin
651
+ b axis
652
+ +
653
+ -
654
+ ab
655
+ 1
656
+ D
657
+ ab
658
+ 2
659
+ D
660
+ ab plane
661
+ d
662
+
663
+ Figure 4: Dependence of ASE performance on the alignment of crystal orien-
664
+ tation with pump-light polarization. a Schematic of the experimental setup. b The
665
+ emission intensity (upper subplot) and ASE threshold (lower subplot) of Pc:Ptp’s ASE peak
666
+ at 645 nm as a function of the rotated angle of the crystal. The measured data sets (squares
667
+ and triangles) are fitted by sinusoidal functions (solid curves) with a period of 180◦ and 95%
668
+ confidence interval bands (shadowed areas). Error bars denote the standard errors of the
669
+ data. c Schematic diagram illustrating the orientations of pentacene’s short molecular axes
670
+ (purple sticks), i.e., the transition dipole moments (dashed lines) projected into the Pc:Ptp
671
+ crystal’s ab plane. The angle between pentacene’s short axes and light polarization (solid
672
+ lines with arrows) is defined by θ. The maximum and minimum emission intensities obtained
673
+ respectively with θ = 33.7◦ and −56.3◦ are indicated in the left bottom corner.
674
+ 15
675
+
676
+ dicular with respect to the cleavage plane (i.e. ab plane) of the Pc:Ptp crystal fixed on a
677
+ rotational sample disk. Under the excitation of a fixed pump intensity exceeding the ASE
678
+ threshold, the strong emission intensity resulting from the ASE process shown in Fig. 4b was
679
+ measured when the crystal was rotated within the plane where the cleavage facet locates.
680
+ It can be seen that the emission intensity shows an angular dependence, and the periodic
681
+ behavior can be fitted by a sinusoidal function with a period of 180◦, i.e. the maximum
682
+ and minimum emission intensities occur with a 90◦ interval. The orthogonal correlation
683
+ can be explained by the convolution effect of the alignments between the light polarization
684
+ and the transition dipole moments of the pentacene molecules doped in two inequivalent
685
+ sites. As shown in Fig. 4c, the projections of the pentacene’s transition dipole moments
686
+ into the ab plane, Dab
687
+ i
688
+ (i = 1 and 2) are parallel to the short molecular axes of the two
689
+ groups of pentacene molecules, and thus, symmetrical about the crystal b-axis according to
690
+ the room-temperature crystal structure of p-terphenyl.83 The angles of the two transition
691
+ dipole moments with respect to the b-axis are both 33.7◦. By assuming the transition dipole
692
+ moments of the two groups of pentacene molecules only vary in terms of the orientation,
693
+ the obtained emission intensity is proportional to |Dab
694
+ 1 · E|2 + |Dab
695
+ 2 · E|2 where E is the
696
+ electric field vector of the laser light in the ab plane.84 By denoting the angle between the
697
+ light polarization and one of the transition dipole moments to be θ (−90◦ < θ ≤ 90◦),
698
+ the emission intensity is found to be proportional to 1 + cos[( 2θ
699
+ 180π) − 67.4
700
+ 180 π] cos ( 67.4
701
+ 180 π) which
702
+ implies a modulation of the emission intensity with a period of 180◦ and matches with our
703
+ measurements. It can also be found that the maximum and minimum emission intensities
704
+ should be obtained when θ = 33.7◦ and −56.3◦ which correspond to the scenarios where the
705
+ light polarization is parallel and perpendicular to the b axis, respectively.
706
+ Moreover, the ASE threshold was measured as a function of the rotation angle which
707
+ reveals a similar periodic trend and orthogonal relationship but with a ∼ 90◦ offset of the
708
+ extreme points with respect to those in Fig. 4d. This offset is due to that the highest singlet
709
+ transition probability indicated by the strongest emission intensity in Fig. 4d facilitates the
710
+ 16
711
+
712
+ buildup of the population inversion in the singlet manifold and thus reduces the threshold
713
+ of achieving the ASE process, and vice versa.
714
+ Therefore, by adjusting the angle of the light polarization with respect to the pentacene’s
715
+ transition dipole moment, the highest singlet transition probability can be achieved, offering
716
+ the advantages of a two-fold enhancement of the emission intensity and a reduction of the
717
+ ASE threshold by around 30% (see Fig. 4b and 4d) compared to those measured at an
718
+ orthogonal position. This strategy will be beneficial for lowering not only the lasing threshold
719
+ of Pc:Ptp, but also its masing threshold, because the facilitated transition to the excited
720
+ singlet state can also lead to the more efficient generation of the pentacene’s triplet states
721
+ via the intersystem crossing.
722
+ Discussion
723
+ In summary, our study reveals the unexplored potential of Pc:Ptp crystals as room-temperature
724
+ laser gain media which has been overlooked in previous fluorescent and magnetic-resonance
725
+ spectroscopic studies44,81,85 on Pc:Ptp’s photoexcited spin states. Even without an optical
726
+ cavity, the stimulated emission observed at 645 nm with a narrow linewidth around 1 nm
727
+ shows a great promise of Pc:Ptp lasers to fill the wavelength gap of the existing organic
728
+ solid-state lasers. Most importantly, since Pc:Ptp masers have been realized with the identi-
729
+ cal crystals and optical-pumping conditions,38 our findings prove the feasibility of achieving
730
+ simultaneous lasing and masing actions with Pc:Ptp crystals at room temperature.
731
+ The next step will be to fabricate a multiband coherent device by incorporating a Pc:Ptp
732
+ crystal with a hybrid cavity architecture supporting both resonances at 645 nm and 1.45 GHz.
733
+ Considering the volumes of the three-dimensional (3D) dielectric microwave cavities29,86 and
734
+ the Pc:Ptp crystals employed in the Pc:Ptp masers, a Fabry-P´erot optical cavity could
735
+ be a compatible choice for promoting the lasing action while not perturbing the microwave
736
+ electromagnetic modes in the 3D dielectric cavities. The pumping threshold of the multiband
737
+ 17
738
+
739
+ coherent radiations can be minimized by appropriate alignments of the pentacene’s short
740
+ molecular axis with the polarization of the optical pumping, as well as the magnetic field
741
+ of the electromagnetic mode in the microwave cavity.86 We envision that the correlation
742
+ and manipulation of the optical and microwave photons simultaneously generated by the
743
+ proposed multiband coherent source are worth being investigated for fundamental tests of
744
+ quantum optics, the possibility of phase locking for development of self-referenced frequency
745
+ combs and optimization of the solid-state quantum sensors exploiting the nonlinear behaviors
746
+ of the stimulated emission in either the microwave6 or visible5 band.
747
+ Methods
748
+ Sample preparation
749
+ A Pc:Ptp single crystal with a doping concentration of 1000 p.p.m. was grown with the
750
+ Bridgman method as reported in ref.29 The as-grown Pc:Ptp crystal was cut to obtain a
751
+ cleavage facet which was successively polished by abrasive papers, 0.1-µm cerium oxide
752
+ powder and 0.05-µm aluminum oxide powder. The surface parallel to the finished facet was
753
+ polished by repeating the above procedures.
754
+ Optical characterizations
755
+ The UV/vis absorption spectrum of Pc:Ptp was collected using a UV-visible-near infrared
756
+ spectrophotometer (Lambda 1050+, PerkinElmer). The fluorescence spectrum of Pc:Ptp
757
+ was collected using a home-built setup whose block diagram is shown in Supplementary
758
+ Information Fig.1. A green LED source was used to illuminate the sample, and the fluo-
759
+ rescence spectrum was collected by an optical spectrum analyzer (Maya 2000 Pro, Ocean
760
+ Optics, resolution 1 nm). The optical microscopic images were taken by a Complementary
761
+ Metal-Oxide-Semiconductor Transistor (CMOS) camera (AP-MV-UH1080, Apico).
762
+ 18
763
+
764
+ ASE measurements
765
+ The ASE properties of Pc:Ptp were determined via a home-built setup illustrated in Supple-
766
+ mentary Information Fig.2. An optical parametric oscillator (OPO) (BBOPO-Vis, Deyang
767
+ Tech.
768
+ Inc., pulse duration 7 ns) pumped by an Nd:YAG Q-switched laser (Nimma-900,
769
+ Beamtech, repetition rate 10 Hz) with horizontal polarized output at 590 nm was used for
770
+ the ASE measurements. The OPO output beam was focused on the sample surface by a
771
+ reversely placed beam expander (2x) and a convex lens with a focal length of 20 cm. The
772
+ beam diameter was 5 mm, which completely covered the sample surface. A 50/50 beam split-
773
+ ter was used to divert the pump light for measuring the pump energy with a energy meter
774
+ (BGS6321, Beijing Institute of Optoelectronic Technology). A long-pass filter with cut-on
775
+ wavelength of 600 nm was used to eliminate the pump light. The ASE signals were collected
776
+ by an optical fiber connected to a high-resolution spectrometer (SpectraPro HRS-750, Pro
777
+ EM 512B, Teledyne Princeton Instruments).
778
+ Emission lifetime measurements
779
+ The experimental setup was similar to that used for the ASE measurements except the
780
+ spectrometer was replaced by a photodetector (DET10A2, Thorlabs, resolution 1 ns). The
781
+ time-domain emission signals under several different pump energies were collected by an
782
+ oscilloscope (WAVERUNNER 6KA, LeCroy).
783
+ Orientation-dependent emission measurements
784
+ The setup was the same as the ASE measurements. The Pc:Ptp crystal was fixed on the
785
+ center of a rotational disk (HRSP40-L, Heng Yang Optics, 0.1◦ resolution) so that the in-
786
+ cident light can propagate perpendicular to the cleavage plane. The crystal was rotated
787
+ with an interval of 30◦ between each measurement. The emission spectra of Pc:Ptp were
788
+ measured at different rotation angles under the same pump intensity of 1.53 mJ cm−2. The
789
+ 19
790
+
791
+ ASE thresholds were measured by varying the pump intensity at different rotation angles
792
+ with an interval of 30◦.
793
+ Acknowledgement
794
+ The authors sincerely thank Shamil Mirkhanov for stimulating discussions and Tan Wang and
795
+ FORTEC Technology (HK) Co.Ltd. for providing us with the monochromator SpectraPro
796
+ HRS-750. H.W. acknowledges financial support from the National Science Foundation of
797
+ China (NSFC) (12204040) and the China Postdoctoral Science Foundation (YJ20210035 and
798
+ 2021M700439). Jiyang Ma acknowledge financial support from China National Postdoctral
799
+ Program for Innovative Talents (BX20200057).
800
+ References
801
+ (1) Einstein, A. Zur quantentheorie der strahlung. First published in 1916, 121–128.
802
+ (2) Nagourney, W. Quantum electronics for atomic physics and telecommunication; OUP
803
+ Oxford, 2014.
804
+ (3) Hall, J. L.; Ye, J.; Diddams, S. A.; Ma, L.-S.; Cundiff, S. T.; Jones, D. J. Ultrasensitive
805
+ spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear
806
+ fiber: a new alliance for physics and metrology. IEEE Journal of Quantum Electronics
807
+ 2001, 37, 1482–1492.
808
+ (4) Arias, E. F. The metrology of time. Philosophical Transactions of the Royal Society A:
809
+ Mathematical, Physical and Engineering Sciences 2005, 363, 2289–2305.
810
+ (5) Hahl, F. A.; Lindner, L.; Vidal, X.; Luo, T.; Ohshima, T.; Onoda, S.; Ishii, S.; Zait-
811
+ sev, A. M.; Capelli, M.; Gibson, B. C., et al. Magnetic-field-dependent stimulated emis-
812
+ sion from nitrogen-vacancy centers in diamond. Science Advances 2022, 8, eabn7192.
813
+ 20
814
+
815
+ (6) Wu, H.; Yang, S.; Oxborrow, M.; Zhao, Q.; Zhang, B.; Du, J. Enhanced quantum
816
+ sensing with room-temperature solid-state masers. arXiv preprint arXiv:2201.04298
817
+ 2022,
818
+ (7) Jiang, M.; Su, H.; Wu, Z.; Peng, X.; Budker, D. Floquet maser. Science Advances 2021,
819
+ 7, eabe0719.
820
+ (8) Dubey, A. K.; Yadava, V. Laser beam machining—A review. International Journal of
821
+ Machine Tools and Manufacture 2008, 48, 609–628.
822
+ (9) Lamas-Linares, A.; Howell, J. C.; Bouwmeester, D. Stimulated emission of polarization-
823
+ entangled photons. Nature 2001, 412, 887–890.
824
+ (10) Breeze, J. D.; Salvadori, E.; Sathian, J.; Alford, N. M.; Kay, C. W. Room-temperature
825
+ cavity quantum electrodynamics with strongly coupled Dicke states. npj Quantum In-
826
+ formation 2017, 3, 1–5.
827
+ (11) Chevalier, P.; Amirzhan, A.; Wang, F.; Piccardo, M.; Johnson, S. G.; Capasso, F.;
828
+ Everitt, H. O. Widely tunable compact terahertz gas lasers. Science 2019, 366, 856–
829
+ 860.
830
+ (12) Bostedt, C.; Boutet, S.; Fritz, D. M.; Huang, Z.; Lee, H. J.; Lemke, H. T.; Robert, A.;
831
+ Schlotter, W. F.; Turner, J. J.; Williams, G. J. Linac coherent light source: The first
832
+ five years. Reviews of Modern Physics 2016, 88, 015007.
833
+ (13) Gallagher, T. Springer Handbook of Atomic, Molecular, and Optical Physics; Springer
834
+ New York: New York, NY, 2006; pp 235–245.
835
+ (14) Condon, E. GH Shortley The Theory of Atomic Spectra. 1935.
836
+ (15) Strayer, D.; Dick, G.; Mercereau, J. Performance of a superconducting cavity stabilized
837
+ ruby maser oscillator. IEEE Transactions on Magnetics 1987, 23, 1624–1628.
838
+ 21
839
+
840
+ (16) MAIMAN, T. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494.
841
+ (17) Breeze, J. D.; Salvadori, E.; Sathian, J.; Alford, N. M.; Kay, C. W. Continuous-wave
842
+ room-temperature diamond maser. Nature 2018, 555, 493–496.
843
+ (18) Savvin, A.; Dormidonov, A.; Smetanina, E.; Mitrokhin, V.; Lipatov, E.; Genin, D.;
844
+ Potanin, S.; Yelisseyev, A.; Vins, V. NV–diamond laser. Nature Communications 2021,
845
+ 12, 1–8.
846
+ (19) Moi, L.; Goy, P.; Gross, M.; Raimond, J.; Fabre, C.; Haroche, S. Rydberg-atom masers.
847
+ I. A theoretical and experimental study of super-radiant systems in the millimeter-wave
848
+ domain. Physical Review A 1983, 27, 2043.
849
+ (20) Grischkowsky, D.; Lankard, J.; Sorokin, P. An atomic Rydberg state 16-µ laser. IEEE
850
+ Journal of Quantum Electronics 1977, 13, 392–396.
851
+ (21) Moi, L.; Fabre, C.; Goy, P.; Gross, M.; Haroche, S.; Encrenaz, P.; Beaudin, G.;
852
+ Lazareff, B. Heterodyne detection of Rydberg atom maser emission. Optics Communi-
853
+ cations 1980, 33, 47–50.
854
+ (22) Bayliss, S.; Laorenza, D.; Mintun, P.; Kovos, B.; Freedman, D.; Awschalom, D. Opti-
855
+ cally addressable molecular spins for quantum information processing. Science 2020,
856
+ 370, 1309–1312.
857
+ (23) Bayliss, S. L.; Deb, P.; Laorenza, D. W.; Onizhuk, M.; Galli, G.; Freedman, D. E.;
858
+ Awschalom, D. D. Enhancing Spin Coherence in Optically Addressable Molecular
859
+ Qubits through Host-Matrix Control. Phys. Rev. X 2022, 12, 031028.
860
+ (24) Lubert-Perquel, D.; Salvadori, E.; Dyson, M.; Stavrinou, P. N.; Montis, R.; Na-
861
+ gashima, H.; Kobori, Y.; Heutz, S.; Kay, C. W. Identifying triplet pathways in dilute
862
+ pentacene films. Nature communications 2018, 9, 1–10.
863
+ 22
864
+
865
+ (25) Cui, S.; Liu, Y.; Li, G.; Han, Q.; Ge, C.; Zhang, L.; Guo, Q.; Ye, X.; Tao, X. Growth reg-
866
+ ulation of pentacene-doped p-terphenyl crystals on their physical properties for promis-
867
+ ing maser gain medium. Crystal Growth & Design 2020, 20, 783–792.
868
+ (26) Takeda, K. Studies on dynamic nuclear polarization using photo-excited triplet electron
869
+ spins. Ph.D. thesis, Kyoto University, 2003.
870
+ (27) Wu, H.; Mirkhanov, S.; Ng, W.; Oxborrow, M. Bench-Top Cooling of a Microwave
871
+ Mode Using an Optically Pumped Spin Refrigerator. Physical Review Letters 2021,
872
+ 127, 053604.
873
+ (28) Kothe, G.; Lukaschek, M.; Yago, T.; Link, G.; Ivanov, K. L.; Lin, T.-S. Initializing 214
874
+ Pure 14-Qubit Entangled Nuclear Spin States in a Hyperpolarized Molecular Solid. The
875
+ Journal of Physical Chemistry Letters 2021, 12, 3647–3654.
876
+ (29) Oxborrow, M.; Breeze, J. D.; Alford, N. M. Room-temperature solid-state maser. Na-
877
+ ture 2012, 488, 353–356.
878
+ (30) Wang, H.; Li, F.; Gao, B.; Xie, Z.; Liu, S.; Wang, C.; Hu, D.; Shen, F.; Xu, Y.;
879
+ Shang, H., et al. Doped organic crystals with high efficiency, color-tunable emission
880
+ toward laser application. Crystal growth & design 2009, 9, 4945–4950.
881
+ (31) Zhao, Y.; Wang, L.; Chen, X.; Zhang, B.; Shen, F.; Song, H.; Wang, H. A high-mobility,
882
+ high-luminescence and low-threshold pentacene-doped cyano-substituted distyrylben-
883
+ zene crystal. Journal of Materials Chemistry C 2019, 7, 13447–13453.
884
+ (32) Ong, J.-L.; Sloop, D.; Lin, T.-S. Peculiar spin dynamics of the photoexcited triplet
885
+ state of pentacene in a benzoic acid crystal: an ESE study. Applied Magnetic Resonance
886
+ 1994, 6, 359–371.
887
+ (33) Wu, H.; Xie, X.; Ng, W.; Mehanna, S.; Li, Y.; Attwood, M.; Oxborrow, M. Room-
888
+ 23
889
+
890
+ temperature quasi-continuous-wave pentacene maser pumped by an invasive Ce: YAG
891
+ luminescent concentrator. Physical Review Applied 2020, 14, 064017.
892
+ (34) Yu, H.-L. Electron spin echo studies of photoexcited triplet states of polyacenes in
893
+ mixed crystals. Ph.D. thesis, Washington University in St. Louis, 1982.
894
+ (35) Kitaigorodsky, A. Molecular crystals and molecules; Elsevier, 2012; Vol. 29.
895
+ (36) Lang, J.; Sloop, D. J.; Lin, T.-S. Dynamics of p-terphenyl crystals at the phase transi-
896
+ tion temperature: a zero-field EPR study of the photoexcited triplet state of pentacene
897
+ in p-terphenyl crystals. The Journal of Physical Chemistry A 2007, 111, 4731–4736.
898
+ (37) Bogatko, S.; Haynes, P. D.; Sathian, J.; Wade, J.; Kim, J.-S.; Tan, K.-J.; Breeze, J.;
899
+ Salvadori, E.; Horsfield, A.; Oxborrow, M. Molecular design of a room-temperature
900
+ maser. The Journal of Physical Chemistry C 2016, 120, 8251–8260.
901
+ (38) Salvadori, E.; Breeze, J. D.; Tan, K.-J.; Sathian, J.; Richards, B.; Fung, M. W.; Wol-
902
+ fowicz, G.; Oxborrow, M.; Alford, N. M.; Kay, C. W. Nanosecond time-resolved char-
903
+ acterization of a pentacene-based room-temperature MASER. Scientific reports 2017,
904
+ 7, 1–8.
905
+ (39) Takeda, K.; Takegoshi, K.; Terao, T. Zero-field electron spin resonance and theoretical
906
+ studies of light penetration into single crystal and polycrystalline material doped with
907
+ molecules photoexcitable to the triplet state via intersystem crossing. The Journal of
908
+ chemical physics 2002, 117, 4940–4946.
909
+ (40) Siebrand, W. Mechanisms of intersystem crossing in aromatic hydrocarbons. Chemical
910
+ Physics Letters 1970, 6, 192–194.
911
+ (41) Henry, B. R.; Siebrand, W. Spin–orbit coupling in aromatic hydrocarbons. Analysis of
912
+ nonradiative transitions between singlet and triplet states in benzene and naphthalene.
913
+ The Journal of Chemical Physics 1971, 54, 1072–1085.
914
+ 24
915
+
916
+ (42) Yang, T.-C.; Sloop, D. J.; Weissman, S.; Lin, T.-S. Zero-field magnetic resonance of the
917
+ photo-excited triplet state of pentacene at room temperature. The Journal of Chemical
918
+ Physics 2000, 113, 11194–11201.
919
+ (43) Wu, H.; Ng, W.; Mirkhanov, S.; Amirzhan, A.; Nitnara, S.; Oxborrow, M. Unraveling
920
+ the room-temperature spin dynamics of photoexcited pentacene in its lowest triplet
921
+ state at zero field. The Journal of Physical Chemistry C 2019, 123, 24275–24279.
922
+ (44) Sloop, D. J.; Yu, H.-L.; Lin, T.-S.; Weissman, S. Electron spin echoes of a photoexcited
923
+ triplet: pentacene in p-terphenyl crystals. The Journal of Chemical Physics 1981, 75,
924
+ 3746–3757.
925
+ (45) Qu, S.; Lu, Q.; Wu, S.; Wang, L.; Liu, X. Two dimensional directed π–π interactions
926
+ in a linear shaped bi-1, 3, 4-oxadiazole derivative to achieve organic single crystal with
927
+ highly polarized fluorescence and amplified spontaneous emissions. Journal of Materials
928
+ Chemistry 2012, 22, 24605–24609.
929
+ (46) Losio, P. A.; Hunziker, C.; G¨unter, P. Amplified spontaneous emission in para-
930
+ sexiphenyl bulk single crystals. Applied physics letters 2007, 90, 241103.
931
+ (47) Hibino, R.; Nagawa, M.; Hotta, S.; Ichikawa, M.; Koyama, T.; Taniguchi, Y. Emission
932
+ Gain-Narrowing from Melt-Recrystallized Organic Semiconductors. Advanced Materials
933
+ 2002, 14, 119–122.
934
+ (48) Baronas, P.; Kreiza, G.; Adom˙enas, P.; Adom˙enien˙e, O.; Kazlauskas, K.; Ribierre, J.-C.;
935
+ Adachi, C.; Jurˇs˙enas, S. Low-threshold light amplification in bifluorene single crystals:
936
+ Role of the trap states. ACS applied materials & interfaces 2018, 10, 2768–2775.
937
+ (49) Ichikawa, M.; Hibino, R.; Inoue, M.; Haritani, T.; Hotta, S.; Koyama, T.; Taniguchi, Y.
938
+ Improved crystal-growth and emission gain-narrowing of thiophene/phenylene co-
939
+ oligomers. Advanced Materials 2003, 15, 213–217.
940
+ 25
941
+
942
+ (50) Xu, Z.; Liao, Q.; Shi, Q.; Zhang, H.; Yao, J.; Fu, H. Low-Threshold Nanolasers Based
943
+ on Slab-Nanocrystals of H-Aggregated Organic Semiconductors. Advanced Materials
944
+ 2012, 24, OP216–OP220.
945
+ (51) Xie, W.; Li, Y.; Li, F.; Shen, F.; Ma, Y. Amplified spontaneous emission from cyano
946
+ substituted oligo (p-phenylene vinylene) single crystal with very high photoluminescent
947
+ efficiency. Applied physics letters 2007, 90, 141110.
948
+ (52) Park, S.; Kwon, J. E.; Park, S.-Y.; Kwon, O.-H.; Kim, J. K.; Yoon, S.-J.; Chung, J. W.;
949
+ Whang, D. R.; Park, S. K.; Lee, D. K., et al. Crystallization-Induced Emission
950
+ Enhancement and Amplified Spontaneous Emission from a CF3-Containing Excited-
951
+ State Intramolecular-Proton-Transfer Molecule. Advanced Optical Materials 2017, 5,
952
+ 1700353.
953
+ (53) Wu, C.; DeLong, M.; Vardeny, Z.; Ferraris, J. Structual and optical studies of distyryl-
954
+ benzene single crystals. Synthetic metals 2003, 137, 939–941.
955
+ (54) Xu, Y.; Zhang, H.; Li, F.; Shen, F.; Wang, H.; Li, X.; Yu, Y.; Ma, Y. Supramolecular
956
+ interaction-induced self-assembly of organic molecules into ultra-long tubular crystals
957
+ with wave guiding and amplified spontaneous emission. Journal of Materials Chemistry
958
+ 2012, 22, 1592–1597.
959
+ (55) Xie, W.; Li, F.; Wang, H.; Xie, Z.; Shen, F.; Ma, Y.; Lu, W.; Zhang, D.; Ma, D.
960
+ Stimulated emission from distyrylbenzene derivative crystals grown by vapor deposition.
961
+ Applied optics 2007, 46, 4431–4433.
962
+ (56) Kabe, R.; Nakanotani, H.; Sakanoue, T.; Yahiro, M.; Adachi, C. Effect of molecular
963
+ morphology on amplified spontaneous emission of bis-styrylbenzene derivatives. Ad-
964
+ vanced Materials 2009, 21, 4034–4038.
965
+ (57) Nakanotani, H.; Saito, M.; Nakamura, H.; Adachi, C. Highly balanced ambipolar mobil-
966
+ 26
967
+
968
+ ities with intense electroluminescence in field-effect transistors based on organic single
969
+ crystal oligo (p-phenylenevinylene) derivatives. Applied Physics Letters 2009, 95, 197.
970
+ (58) Mizuno, H.; Haku, U.; Marutani, Y.; Ishizumi, A.; Yanagi, H.; Sasaki, F.; Hotta, S. Sin-
971
+ gle Crystals of 5, 5’-Bis (4’-methoxybiphenyl-4-yl)-2, 2’-bithiophene for Organic Laser
972
+ Media. Advanced Materials 2012, 24, 5744–5749.
973
+ (59) Xia, H.; Yang, J.; Fang, H.-H.; Chen, Q.-D.; Wang, H.-Y.; Yu, X.-Q.; Ma, Y.-G.;
974
+ Jiang, M.-H.; Sun, H.-B. Efficient Two-Photon Excited Amplified Spontaneous Emis-
975
+ sion from Organic Single Crystals. ChemPhysChem 2010, 11, 1871–1875.
976
+ (60) Chen, Q.-D.; Fang, H.-H.; Xu, B.; Yang, J.; Xia, H.; Chen, F.-P.; Tian, W.-J.; Sun, H.-
977
+ B. Two-photon induced amplified spontaneous emission from needlelike triphenylamine-
978
+ containing derivative crystals with low threshold. Applied Physics Letters 2009, 94,
979
+ 201113.
980
+ (61) Gu, X.; Yao, J.; Zhang, G.; Yan, Y.; Zhang, C.; Peng, Q.; Liao, Q.; Wu, Y.; Xu, Z.;
981
+ Zhao, Y., et al. Polymorphism-Dependent Emission for Di (p-methoxylphenyl) diben-
982
+ zofulvene and Analogues: Optical Waveguide/Amplified Spontaneous Emission Behav-
983
+ iors. Advanced Functional Materials 2012, 22, 4862–4872.
984
+ (62) Chen, J.; Ma, S.; Zhang, J.; Li, B.; Xu, B.; Tian, W. Low-loss optical waveguide
985
+ and highly polarized emission in a uniaxially oriented molecular crystal based on 9,
986
+ 10-distyrylanthracene derivatives. Acs Photonics 2015, 2, 313–318.
987
+ (63) Wang, K.; Zhang, H.; Chen, S.; Yang, G.; Zhang, J.; Tian, W.; Su, Z.; Wang, Y.
988
+ Organic Polymorphs: One-Compound-Based Crystals with Molecular-Conformation-
989
+ and Packing-Dependent Luminescent Properties. Advanced Materials 2014, 26, 6168–
990
+ 6173.
991
+ (64) Xu, B.; Fang, H.; Dong, Y.; Chen, F.; Chen, Q.; Sun, H.; Tian, W. Solid state emis-
992
+ 27
993
+
994
+ sion enhancement of 9, 10-distyrylanthracene derivatives and amplified spontaneous
995
+ emission from a large single crystal. New Journal of Chemistry 2010, 34, 1838–1842.
996
+ (65) Sakurai, Y.; Yamamoto, J.; Yamao, T.; Hotta, S. Emission and charge transport proper-
997
+ ties of thiophene-terminated thiophene/phenylene co-oligomer crystals. Displays 2013,
998
+ 34, 406–412.
999
+ (66) Fang, H.-H.; Chen, Q.-D.; Yang, J.; Xia, H.; Gao, B.-R.; Feng, J.; Ma, Y.-G.; Sun, H.-
1000
+ B. Two-photon pumped amplified spontaneous emission from cyano-substituted oligo
1001
+ (p-phenylenevinylene) crystals with aggregation-induced emission enhancement. The
1002
+ Journal of Physical Chemistry C 2010, 114, 11958–11961.
1003
+ (67) Varghese, S.; Yoon, S.-J.; Calzado, E. M.; Casado, S.; Boj, P. G.; D´ıaz-Garc´ıa, M. A.;
1004
+ Resel, R.; Fischer, R.; Mili´an-Medina, B.; Wannemacher, R., et al. Stimulated Res-
1005
+ onance Raman Scattering and Laser Oscillation in Highly Emissive Distyrylbenzene-
1006
+ Based Molecular Crystals. Advanced Materials 2012, 24, 6473–6478.
1007
+ (68) Ichikawa, M.; Nakamura, K.; Inoue, M.; Mishima, H.; Haritani, T.; Hibino, R.;
1008
+ Koyama, T.; Taniguchi, Y. Photopumped laser oscillation and charge-injected lumines-
1009
+ cence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer.
1010
+ Applied Physics Letters 2005, 87, 221113.
1011
+ (69) Cheng, X.; Wang, K.; Huang, S.; Zhang, H.; Zhang, H.; Wang, Y. Organic crystals with
1012
+ near-infrared amplified spontaneous emissions based on 2’-hydroxychalcone derivatives:
1013
+ subtle structure modification but great property change. Angewandte Chemie 2015,
1014
+ 127, 8489–8493.
1015
+ (70) Fichou, D.; Delysse, S.; Nunzi, J.-M. First evidence of stimulated emission from a
1016
+ monolithic organic single crystal: α-Octithiophene. Advanced Materials 1997, 9, 1178–
1017
+ 1181.
1018
+ 28
1019
+
1020
+ (71) Ichikawa, M.; Hibino, R.; Inoue, M.; Haritani, T.; Hotta, S.; Araki, K.-i.; Koyama, T.;
1021
+ Taniguchi, Y. Laser oscillation in monolithic molecular single crystals. Advanced mate-
1022
+ rials 2005, 17, 2073–2077.
1023
+ (72) Wang, X.; Liao, Q.; Lu, X.; Li, H.; Xu, Z.; Fu, H. Shape-engineering of self-assembled
1024
+ organic single microcrystal as optical microresonator for laser applications. Scientific
1025
+ reports 2014, 4, 1–8.
1026
+ (73) Jiang, Y.; Liu, Y.-Y.; Liu, X.; Lin, H.; Gao, K.; Lai, W.-Y.; Huang, W. Organic solid-
1027
+ state lasers: A materials view and future development. Chemical Society Reviews 2020,
1028
+ 49, 5885–5944.
1029
+ (74) Allen, L.; Peters, G. Superradiance, coherence brightening and amplified spontaneous
1030
+ emission. Physics Letters A 1970, 31, 95–96.
1031
+ (75) Li, Y.; Wang, K.; Liao, Q.; Fu, L.; Gu, C.; Yu, Z.; Fu, H. Tunable triplet-mediated
1032
+ multicolor lasing from nondoped organic TADF microcrystals. Nano Letters 2021, 21,
1033
+ 3287–3294.
1034
+ (76) Huang, H.; Yu, Z.; Zhou, D.; Li, S.; Fu, L.; Wu, Y.; Gu, C.; Liao, Q.; Fu, H. Wavelength-
1035
+ Turnable organic microring laser arrays from thermally activated delayed fluorescent
1036
+ emitters. Acs Photonics 2019, 6, 3208–3214.
1037
+ (77) Zhou, Z.; Qiao, C.; Wang, K.; Wang, L.; Liang, J.; Peng, Q.; Wei, Z.; Dong, H.;
1038
+ Zhang, C.; Shuai, Z., et al. Experimentally Observed Reverse Intersystem Crossing-
1039
+ Boosted Lasing. Angewandte Chemie International Edition 2020, 59, 21677–21682.
1040
+ (78) Zhang, T.; Zhou, Z.; Liu, X.; Wang, K.; Fan, Y.; Zhang, C.; Yao, J.; Yan, Y.; Zhao, Y. S.
1041
+ Thermally Activated Lasing in Organic Microcrystals toward Laser Displays. Journal
1042
+ of the American Chemical Society 2021, 143, 20249–20255.
1043
+ 29
1044
+
1045
+ (79) Cai, Y.; Zhang, S.; Wu, C.; Wang, Z.; Xu, W.; Chen, X.; Wang, Y. Octagonal Qua-
1046
+ sicrystal Defect Mode Laser-Based PVK: Ir (ppy)3 Polymer Driven by Optical Pumping.
1047
+ Nanomaterials 2022, 12, 1386.
1048
+ (80) Iinuma, M. Dynamic nuclear polarization at high temperature for polarized proton
1049
+ target. Ph.D. thesis, Kyoto University, 1997.
1050
+ (81) G¨uttler, F.; Croci, M.; Renn, A.; Wild, U. P. Single molecule polarization spectroscopy:
1051
+ pentacene in p-terphenyl. Chemical physics 1996, 211, 421–430.
1052
+ (82) Pariser, R. Theory of the electronic spectra and structure of the polyacenes and of
1053
+ alternant hydrocarbons. The Journal of Chemical Physics 1956, 24, 250–268.
1054
+ (83) Rietveld, H.; Maslen, E.; Clews, C. An X-ray and neutron diffraction refinement of the
1055
+ structure of p-terphenyl. Acta Crystallographica Section B: Structural Crystallography
1056
+ and Crystal Chemistry 1970, 26, 693–706.
1057
+ (84) G¨uttler, F.; Sepiol, J.; Plakhotnik, T.; Mitterdorfer, A.; Renn, A.; Wild, U. P. Single
1058
+ molecule spectroscopy: fluorescence excitation spectra with polarized light. Journal of
1059
+ luminescence 1993, 56, 29–38.
1060
+ (85) K¨ohler, J. Magnetic resonance of a single molecular spin. Physics reports 1999, 310,
1061
+ 261–339.
1062
+ (86) Breeze, J.; Tan, K.-J.; Richards, B.; Sathian, J.; Oxborrow, M.; Alford, N. M. Enhanced
1063
+ magnetic Purcell effect in room-temperature masers. Nature Communications 2015, 6,
1064
+ 1–6.
1065
+ 30
1066
+
5tAzT4oBgHgl3EQf9_5e/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6NAyT4oBgHgl3EQfQfY1/content/tmp_files/2301.00045v1.pdf.txt ADDED
@@ -0,0 +1,1492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ An Analysis of Honeypots and their Impact as a
4
+ Cyber Deception Tactic
5
+ Daniel Zielinski, Hisham A. Kholidy
6
+ State University of New York (SUNY) Polytechnic Institute,
7
+ College of Engineering, Network and Computer Security Department, Utica, NY USA
8
9
+
10
+ Abstract— This paper explores deploying a cyber
11
+ honeypot system to learn how cyber defenders can use a
12
+ honeypot system as a deception mechanism to gather
13
+ intelligence. Defenders can gather intelligence about an
14
+ attacker such as the autonomous system that the
15
+ attacker’s IP is allocated from, the way the attacker is
16
+ trying to penetrate the system, what different types of
17
+ attacks are being used, the commands the attacker is
18
+ running once they are inside the honeypot, and what
19
+ malware the attacker is downloading to the deployed
20
+ system. We demonstrate an experiment to implement a
21
+ honeypot system that can lure in attackers and gather all
22
+ the information mentioned above. The data collected is
23
+ then thoroughly analyzed and explained to understand
24
+ all this information. This experiment can be recreated
25
+ and makes use of many open-source tools to successfully
26
+ create a honeypot system.
27
+ Keywords—honeypots, deception mechanism, autonomous
28
+ system, deceptive honeypot system, open-source tools
29
+ I.
30
+ INTRODUCTION
31
+ Cyber honeypots can be very useful tools when trying to
32
+ lure in attackers and gain a defensive advantage by learning
33
+ how attackers are operating and what information they are
34
+ seeking. Honeypots are very common systems that many
35
+ enterprise organizations use to improve their security
36
+ program and gain insight into the common attacks they face.
37
+ When using a honeypot, defenders can gain various
38
+ amounts of information about the attackers targeting them.
39
+ Defenders can then use this information to better protect
40
+ their “real” environments. Defenders can gain insight into
41
+ the most popular types of attacks that are being used to
42
+ break into their honeypot systems and then make sure that
43
+ their actual systems are properly protected against these
44
+ attacks. Defenders can also learn what data the attackers are
45
+ trying to reach, or what exactly the motive of the attackers
46
+ is. In addition, defenders will be able to learn the different
47
+ types of malware that attackers are installing onto the
48
+ honeypot systems.
49
+ Modern honeypots are not able to look or be configured
50
+ the same way that they have in the past. This is
51
+ because over time attackers started learning different ways
52
+ to detect if what they were attacking is a honeypot. Once an
53
+ attacker figures out that what they are attacking is a
54
+ honeypot, they will no longer use their time or resources on
55
+ the honeypot. This will then make it where the defender will
56
+ not be able to gain the information they are seeking about
57
+ the attacker, and the attacker will not use up a great number
58
+ of resources on the honeypot. Therefore, modern honeypot
59
+ systems must be deceptive. They need to look, run, and
60
+ operate like the “real” system. An effective way of doing so
61
+ is by looking at your actual system and then placing data
62
+ that looks the same but is fake into your honeypot. This will
63
+ make attackers spend a lot of time trying to exploit your
64
+ honeypot and make them spend time searching for artifacts
65
+ such as valid credentials. This will also help dry up a lot of
66
+ the attackers’ resources and make them waste a lot of
67
+ money. By the time the attackers realize that they have been
68
+ caught in a honeypot trap, they may become extremely
69
+ frustrated and decide to use their remaining resources on a
70
+ different target to prevent them from falling into another
71
+ honeytrap that you or your organization may have set up.
72
+ In the next sections, We will be explaining the details of a
73
+ honeypot and the architecture of a modern deceptive
74
+ honeypot system. We will also go into the different types of
75
+ information a defender can gain from using a honeypot and
76
+ how this information can be leveraged. We then conduct an
77
+ experiment in which we use a Virtual Private Server to
78
+ deploy an open-source honeypot system that utilizes many
79
+ different honeypot containers to create an effective system.
80
+ This system also utilizes many other features such as an
81
+ IPS/IDS and a data visualization dashboard to make it easier
82
+ to analyze data.
83
+ II.
84
+ BACKGROUND
85
+ In this section, we will discuss the network architecture
86
+ of where to place a honeypot, different types of honeypots,
87
+ types of data honeypots can collect, and techniques to
88
+ achieve deception within the honeypot itself.
89
+ A. Honeypot Network Architecture
90
+ When deciding where to place a honeypot on a network
91
+ you must be very careful. Placing a honeypot inside an
92
+ internal network can be a major security design flaw. This is
93
+ because it would allow an attacker to easily gain access to
94
+ your internal network by exploiting the honeypot. An
95
+
96
+ 2
97
+
98
+ attacker would then be able to move laterally throughout the
99
+ network to find real systems and servers. In essence, this
100
+ would make it much easier for the attacker because you
101
+ would be “inviting” them into your internal local area
102
+ network (LAN). Instead, a honeypot should be placed inside
103
+ a network’s Demilitarized Zone (DMZ).
104
+
105
+ Figure 1: Architecture of a network with a honeypot deployed [1].
106
+
107
+ A DMZ is an isolated part of the network that is connected
108
+ to the internet and is typically where public-facing services
109
+ are placed. In this example, a web server, DNS server, and
110
+ FTP server are all placed inside the DMZ along with the
111
+ honeypot [1]. The DMZ is separated on both sides with a
112
+ firewall. The firewall between the DMZ and Internet is
113
+ typically a weaker firewall that allows traffic to outside
114
+ users to do tasks like visiting a website hosted or interacting
115
+ with available files. This firewall will not allow in all traffic
116
+ but will have the necessary ports open to allow
117
+ functionality. The firewall between the DMZ and the
118
+ production network is a much more hardened firewall. This
119
+ firewall will not let outside, or unauthorized users bypass it
120
+ easily. In an enterprise setting, most organizations will have
121
+ an Intrusion Detection System (IDS), or Intrusion
122
+ Prevention System (IPS) configured to alert on attacks being
123
+ made against this firewall [2]. This is to keep cyber analysts
124
+ alert of any attacks that might be going on against their
125
+ network. The production network may have sensitive data
126
+ flowing through it and may have systems that store
127
+ important data, so it is important to keep the honeypot
128
+ isolated from it.
129
+ B. Honeypot Characteristics
130
+ There are different types of modern honeypots that one
131
+ can deploy into their environments. However, all the
132
+ honeypots do have some things in common such as being
133
+ low-maintenance, low cost, and easy to deploy [3]. The
134
+ reason honeypots need to need to be low maintenance is
135
+ that, from an organizational perspective, engineers cannot
136
+ be using up large amounts of their time manually making
137
+ changes and fixes to the honeypot. They have many other
138
+ duties to take care of and should be able to look at and
139
+ analyze data collected from the honeypot easily. This is also
140
+ connected to why a honeypot is easy to deploy. You should
141
+ take your time deploying a honeypot to ensure that
142
+ everything is working properly, but honeypots are easy to
143
+ deploy because more time and focus should be spent on
144
+ securing the real environment. If anything goes wrong with
145
+ your honeypot you should be able to just reboot it and most
146
+ of the time it will fix itself. Furthermore, a honeypot is often
147
+ relatively low cost compared to the number of resources an
148
+ individual or organization may have. Now, one can make a
149
+ massive honeypot that is extremely expensive, but it would
150
+ not make any sense from a financial perspective or provide
151
+ a great amount of additional benefit. Most individuals and
152
+ organizations deploy honeypots that are not very expensive
153
+ since they can provide great benefits at a low cost. This also
154
+ then allows for a great number of financial resources to be
155
+ spent on other things like employees, software, and other
156
+ systems.
157
+ C. Types of Honeypots Based on their Design
158
+ Many different types of Honeypots can be deployed with
159
+ various complexities.
160
+
161
+ Figure 2: Types of Honeypots [Based on Design] [4].
162
+
163
+ A pure honeypot is meant to be a full-scale replica of a
164
+ production environment that contains fake data that is meant
165
+ to pose as real data. A high-interactive honeypot is like a
166
+ pure honeypot because it runs many different real-like
167
+ services, but it does not hold as much data and is not a
168
+ replica of a full-scale production environment. A mild-
169
+ interaction honeypot is different than a high-interaction
170
+ honeypot because it just emulates aspects of the application
171
+ layer but does not have its own OS. This can be used to stall
172
+ or confuse attackers who are trying to attack your systems
173
+ [5]. Finally, a low-interaction honeypot is very lightweight
174
+ and can be used to match a small number of services and
175
+ applications that are in use. This type of honeypot can be
176
+ used to keep track of UDP, TCP, and ICMP ports and
177
+
178
+ TYPESOFHONEYPOT
179
+ [Based on the design]
180
+ Low-interaction Honeypots
181
+ Medium-interaction Honeypots
182
+ High-interaction Honeypots
183
+ Pure HoneypotsDMZ
184
+ Webserver
185
+ DNSserver
186
+ Internet
187
+ Firewall
188
+ Firewall
189
+ Production
190
+ Honeypot
191
+ network
192
+ FTPserver3
193
+
194
+ services. In which we make can make use of things like fake
195
+ databases, data, and files as bait to trap attackers to
196
+ understand the attacks that happen in real-time [4].
197
+ D. Types of Honeypots Based on their Technologies
198
+ There are different types of honeypots based on the
199
+ deception technologies that they utilize.
200
+
201
+
202
+ Figure 3: Types of Honeypots [Based on their deception technology] [4].
203
+
204
+ A malware honeypot is a type of honeypot that is meant
205
+ to identify and trap malware inside a network or system. A
206
+ sophisticated malware honeypot will recognize the
207
+ malware’s signature and alert based on its Common
208
+ Vulnerabilities and Exposures (CVE) ID. It will also keep a
209
+ count of the CVEs to help recognize the most used malware
210
+ that is being installed onto a system. A database honeypot is
211
+ exactly what it sounds like – a honeypot that appears to be a
212
+ vulnerable database. Often it will be something like an SQL
213
+ database that will allow things like injection attacks to occur
214
+ to attract attackers looking to gain sensitive information that
215
+ can be stored in a database such as credit card numbers. A
216
+ spider honeypot is installed to trap web crawlers that target
217
+ web applications with the intent of stealing data. An email
218
+ honeypot is a fake email server that utilizes hoax email
219
+ addresses and emails to attract attackers to interact with it.
220
+ Any suspicious email received by attackers can be scanned,
221
+ and their email addresses can be then blacklisted on the real
222
+ email servers. A spam honeypot is like an email honeypot
223
+ but is meant to attract spammers to exploit vulnerable email
224
+ elements and give details about their activities. Finally, a
225
+ honeynet is a honeypot system that can contain various
226
+ types of honeypots mentioned. It will often aggregate data
227
+ from all the honeypots into a central location to make
228
+ alerting and monitoring easier [4].
229
+ E. Data that Honeypots Collect
230
+ Honeypots can collect a large amount of data that can be
231
+ very useful in establishing a more secure security program
232
+ as well as serve to be very useful for research purposes. It is
233
+ often useful to have a service configured that aggregates this
234
+ data into a dashboard that makes it easier to look at and
235
+ understand.
236
+ One of the most basic artifacts that a honeypot can
237
+ collect is the attacker’s IP address. This is a useful artifact
238
+ because from the IP address we can see things like the
239
+ general location of the attacker to help identify if potentially
240
+ many attacks are coming from a specific area. Additionally,
241
+ we can see if this attacker is launching many attacks on our
242
+ systems, and we can see how long they have been attacking
243
+ our systems [6]. We can also block this IP address from
244
+ accessing our real network. Finally, from the IP address, we
245
+ can find the attacker’s Autonomous System Number (ASN)
246
+ to see what Autonomous System the attacker’s IP is
247
+ allocated from.
248
+ Another artifact we can gather about the attacker is what
249
+ Operating System (OS) they are using on their host. We
250
+ may not be able to figure out the exact version of what OS
251
+ they are using, but we will be able to figure out a general
252
+ version of the OS they are using. For instance, we can see if
253
+ the attacker is running Windows 7 or if the attacker is
254
+ running a Linux version from 2.2.x-3.x.
255
+ Many attackers utilize automation tools to try to break
256
+ into a server.
257
+
258
+ Figure 4: A sample Dictionary Attack trying common passwords on an
259
+ SSH server [7].
260
+ They often run dictionary attacks, a type of attack that
261
+ tries to log in to a server using a list of commonly used or
262
+ default usernames and passwords, to crack into your system.
263
+ We can use a honeypot to see what passwords and
264
+ usernames the attackers are trying to use to log in and even
265
+ take it a step further by making a count of each username
266
+ and password attempted to find the most popular credentials
267
+ attackers are trying to use.
268
+ Furthermore, when an attacker gains access to a
269
+ honeypot system we can see what commands they are
270
+ running once they break in. This can help us figure out what
271
+ their motives may be and what they are looking for. We can
272
+ also see what they are downloading onto the system. They
273
+
274
+ ACCoUNTCHECK:[ssh)Host:192.168.18.132(1of1,complete)User:owmedb(1of1,complete
275
+ Password:123456(1of3546complete
276
+ ICcoUNTCHECK:[ssh)Host:192.168.18.132(1of1,complete)User:ownedb(1of1,ecomplete
277
+ Password:12345(2of3546complete)
278
+ AccoUNTCHECK:[ssh)Host:192.168.18.132(1of1,0complete)User:Ounedb(1of1,0complete
279
+ Password:password(3of3546complete)
280
+ ICcoUNTCHECK:[ssh]Host:192.168.18.132(1of1,0complete)User:ownedb(1of1,0complete
281
+ Password:password1(4of3546complete)
282
+ ACCouNTCHECK:ssh)Host:192.168.18.132(1of1,0complete)User:ownedb(1of1,0complete
283
+ Pas5word:123456789(5of3546complete
284
+ ACCoUNTCHECK:[ssh)Host:192.168.18.132(1of1,complete)User:ownedb(1of1,complete
285
+ as5word:12345678(6of3546complete
286
+ CCoUNTCHECK:[ssh)Host:192.168.18.132(1of1,ecomplete)User:ownedb(1of1,ecomplete
287
+ assword:1234567890(7of3546complete)
288
+ ACCoUNTCHECK:[ssh)Host:192.168.18.132(1of1,complete)User:ownedb(1of1,ecomplete
289
+ assword:abc123(8of3546.complete
290
+ ACcoUNTCHECK:[ssh)Host:192.168.18.132(1of1,0complete)User:ownedb(1of1,@complete
291
+ Password:computer(9of3546complete)
292
+ ICoUNTCHECK:[ssh)Host:192.168.18.132(1of1,0complete)User:ownedb(1of1,0complete
293
+ Password:Th3Basics(10of3546complete
294
+ ACCOUNTFOUND:[ssh]Host:192.168.18.132User:OwnedbPassword:Th3B@sics[SUCCESS]
295
+ rootebt:~#TypesofHoneypot
296
+ Based on theirdeception technology
297
+ MalwareHoneypots
298
+ Database Honeypots
299
+ Spam Honeypots
300
+ Email Honeypots
301
+ SpiderHoneypots
302
+ Honeynet Honeypots4
303
+
304
+ can download worms or viruses onto the system, or maybe
305
+ even agents that will try to clean up log files to keep them
306
+ undetected so they can persist more. They even might install
307
+ things like rootkits to help with this persistence. In essence,
308
+ any time the attacker attempts to interact with the honeypot
309
+ system, you can access and track that information.
310
+ F. Honeypot Deception Techniques
311
+ Many different techniques can be utilized to achieve
312
+ deception within a honeypot system to trick attackers. To
313
+ start, a commonly used technique is to not allow open
314
+ access to a server. If attackers can connect to your server on
315
+ the first try, it is often a sign that you are inviting them in,
316
+ and it may cause them to be very suspicious. To solve this,
317
+ make it that after many failed attempts they will finally be
318
+ able to gain access and login into your system. This will
319
+ make them think that their brute-forcing or dictionary attack
320
+ worked, but it still took a while for it to be a success. This
321
+ will cause them to have less suspicion.
322
+ Another more complex technique is to utilize honey
323
+ credentials.
324
+
325
+ Figure 5: Honey Credentials being stored in memory [8].
326
+
327
+ Honey credentials help catch malicious actors by
328
+ injecting fake credentials into a system’s memory. When an
329
+ attacker gains access to your network and finds the honey
330
+ credentials, they will attempt to use them. Since these
331
+ credentials don’t exist, any attempt to use them can trigger
332
+ an alert and notify you immediately. In a targeted attack, the
333
+ attacker will be able to dump recovered honey credentials
334
+ from the system’s memory through privilege escalation or a
335
+ system flaw. The attacker will then attempt to perform
336
+ lateral movement into the fake objects, resulting in their
337
+ exposure and making it easy to trace them [9].
338
+ Finally, the most important deception technique is to
339
+ make the honeypot blend in and look realistic. Earlier we
340
+ mentioned the different types of honeypots based on their
341
+ deception technology. It is important to be able to look at
342
+ these honeypots from the attacker’s perspective. For
343
+ instance, an SSH server must look like an actual SSH server
344
+ that you or your organization would utilize. If it looks fake
345
+ no one will take the bait and they will be able to easily detect
346
+ what they are attacking is a honeypot. You should be
347
+ configuring and storing data on your honeypot that you
348
+ would store on your actual systems but just make sure it is
349
+ fake information [10]. You can install real services you
350
+ would normally use onto your honeypot, but just make sure
351
+ they do not contain sensitive information. By having your
352
+ honeypot blend in, it will keep your attacker occupied and
353
+ cause them to reveal more information about themselves and
354
+ what their motives are.
355
+ III. T-POT HONEYPOT SYSTEM FRAMEWORK
356
+ In this section, we detail the honeypot system we will be
357
+ deploying to gather data and intelligence about attackers.
358
+ A. System Fundamentals
359
+ T-Pot is an open-source all-in-one honeypot platform
360
+ that runs on Debian Linux. The honeypot daemons as well
361
+ as other support components are dockered. This allows T-
362
+ Pot to run multiple honeypot daemons and tools on the same
363
+ network interface while maintaining a small footprint and
364
+ while constraining each honeypot within its own
365
+ environment [11]. Documentation to the platform can be
366
+ found at https://github.com/telekom-security/tpotce. T-Pot
367
+ uses docker images for 25 different honeypots to create a
368
+ massive honeypot system. All the honeypots each represent
369
+ different systems. For instance, cowrie is a medium-to-high
370
+ interaction SSH and Telnet honeypot designed to log brute
371
+ force attacks and the shell interaction performed by the
372
+ attacker [12]. In addition, another example is the honeytrap
373
+ honeypot is a network security tool written to observe
374
+ attacks against TCP or UDP services [13]. You can read
375
+ about all 25 different honeypots deployed in the system on
376
+ the documentation page for T-Pot. For the most part,
377
+ understanding each honeypot will not be very important
378
+ because we will mainly focus on the aggregated data
379
+ collected for the whole system.
380
+ B. Tools Utilized by T-Pot
381
+ T-Pot uses a variety of different tools to aggregate, alert,
382
+ monitor, and analyze data collected.
383
+
384
+ Figure 6: Description of tools used by T-Pot [11].
385
+
386
+ mitrikate20alptax6foeto)
387
+ msy.
388
+ [0000003]
389
+ Primary
390
+ Username
391
+ adninistrator
392
+ Donain
393
+ NTLM
394
+ microsoft
395
+ -
396
+ 76d202631
397
+ SHAI
398
+ bc059168c2d8d1200c
399
+ tspkg:
400
+ KO
401
+ wdigest
402
+ Username
403
+ adninistrator
404
+ Donain
405
+ Passuord
406
+ microsoft.con
407
+ (nuil)
408
+ kerberos :
409
+ Csername
410
+ adninistrator
411
+ Donain
412
+ microsoft.con
413
+ Password
414
+ ssp:
415
+ superpass
416
+ credman :
417
+ AuthenticationIdt
418
+ Q91755333(00000090:05781345)
419
+ UOTSSOC
420
+ NewCredentials fron 0
421
+ Jser Name
422
+ HindouaBMarkB
423
+ nark
424
+ Domsin
425
+ SID
426
+ S-1-5-21-1469176257-2007698836-3967804884-1001
427
+ mSY.
428
+ (00800003]
429
+ Primary
430
+ Username
431
+ root
432
+ Donain
433
+ :
434
+ NTLM
435
+ 211394dc229g20
436
+ 200018a69ac04
437
+ SHA1
438
+ Sa71afbecd987668b917e4425c82ac29a0e39b93
439
+ tspkg:
440
+ KO
441
+ wdsgest
442
+ Username
443
+ root
444
+ Donain
445
+ Iinux,org
446
+ Password
447
+ :
448
+ (ltnu)
449
+ livessp
450
+ kerberos :
451
+ Username
452
+ root
453
+ Donain
454
+ linux.org
455
+ Password
456
+ notreallythepassword
457
+ ssp:
458
+ credman :
459
+ 2
460
+ HACyberchefawebappforencryption,encoding,compressionanddataanalysis
461
+ ELK stack to beautifulyvisualizeallthe events captured byT-Pot
462
+ ElasticsearchHeadawebfrontendforbrowsingandinteractingwithanElasticSearchcluster
463
+ Fattapysharkbasedscriptforextractingnetworkmetadataandfingerprintsfrompcapfilesandlivenetwork
464
+ traffic.
465
+ Spiderfoot a open source intelligenceautomation tool
466
+ ·Suricata a Network Security Monitoring engine5
467
+
468
+ All the tools mentioned in Figure 6 can be further
469
+ analyzed by examining the information found on the T-Pot
470
+ documentation page. For our experiment, we will focus on
471
+ the ELK stack and Suricata tools. ELK stack has a tool
472
+ named Kibana, which we will utilize to visualize all the data
473
+ collected by the different honeypots. We can use Kibana to
474
+ analyze the data for each individual honeypot as well as
475
+ look at an aggregated view of information collected from all
476
+ the honeypots deployed in one dashboard [14]. Suricata is a
477
+ network security monitoring engine that we can use to
478
+ monitor and alert us about suspicious activity occurring
479
+ within the system [15]. The information from Suricata will
480
+ be viewable and aggregated into the Kibana Dashboard. As
481
+ mentioned previously and displayed in Figure 6 there are
482
+ many other tools pre-built into T-Pot, but we will not be
483
+ using them as they are not necessary to understand and
484
+ analyze the data collected.
485
+ C. Deploying the T-Pot Honeypot System
486
+ The system requirements for deploying the system are as
487
+ follows: 8 GB Ram, 128 GB SSD, Network via DHCP, and
488
+ a non-proxied internet connection. You can download the
489
+ Pre-built ISO Image (~50 MB), or you can create your own
490
+ ISO Image that allows you to customize the system to fit
491
+ your needs better. Since we are doing this for research
492
+ purposes to see what information we can learn about
493
+ attackers and not using the system in an enterprise
494
+ environment, xutilized the Pre-built ISO Image.
495
+ To deploy the honeypot system, I used a Virtual Private
496
+ Server (VPS). I uploaded the ISO file to the VPS provider’s
497
+ website and then began installation. The reason I used a
498
+ VPS is to avoid large amounts of unwanted traffic coming
499
+ towards my personal network. I also did not want to reveal
500
+ my actual public IP address to attackers.
501
+ Once the ISO image finished installing in my VM the
502
+ honeypot system was fully functional and ready to lure in
503
+ attackers. To reach the T-Pot landing page to gain access to
504
+ all the tools deployed in the system I had to go into a web
505
+ browser and enter “https://<my.ip>:64297”. I then logged in
506
+ with the credentials created during installation.
507
+
508
+ Figure 7: T-Pot Landing Page.
509
+
510
+ Now that the honeypot is fully deployed attackers will
511
+ begin to attack the honeypot. We can view data collected
512
+ from the attacks in the Kibana dashboard. I will wait
513
+ approximately 3 weeks before analyzing the data just to let a
514
+ good amount of data accumulate. In the next section, we
515
+ will test some of the functionality on the honeypot by
516
+ running some attacks to make sure the honeypot is
517
+ configured properly before waiting the 3 weeks to analyze
518
+ the data collected.
519
+ IV. TESTING HONEYPOT SYSTEM
520
+ FUNCTIONALITY
521
+ In this section, we will test some of the functionalities of
522
+ the honeypot by running a Nmap scan and brute force attack
523
+ against the honeypot system. We will target Cowrie, the
524
+ SSH honeypot container.
525
+ A. Port Scanning the Honeypot System
526
+ I used a Kali Linux Virtual Machine to simulate an
527
+ attack on the honeypot system. Information on how to
528
+ install
529
+ Kali
530
+ Linux
531
+ can
532
+ be
533
+ found
534
+ at
535
+ https://www.kali.org/docs/. Kali Linux comes with Nmap, a
536
+ port scanning tool, preinstalled on the system. To use this
537
+ tool, I opened a terminal session and ran the command
538
+ “nmap -p 22 140.82.3.147” as seen in Figure 8.
539
+
540
+ Figure 8: Nmap scan ran against the Honeypot System.
541
+ This command runs a port scan only checking to see if port
542
+ 22 is open on the IP address specified. From the results
543
+ returned from the Nmap scan, we can see that port 22 is open
544
+ to be used by the SSH Service. This is because as mentioned
545
+ earlier, Cowrie is a high interaction SSH honeypot designed
546
+ to log brute force attacks and the shell interaction performed
547
+ by the attacker once they gain entry.
548
+ A. Brute-Forcing the System
549
+ For simplicity of the experiment and to test the
550
+ functionality of the honeypot system, I logged into the
551
+ honeypot SSH server and made the root account accessible
552
+ over SSH. Also, I changed the password to 12345. I then
553
+ went to my Kali Linux terminal and used the hydra tool to
554
+ crack the password for the root account to the honeypot. I
555
+ ran
556
+ the
557
+ command
558
+ “hydra
559
+ -l
560
+ root
561
+ -P
562
+ /usr/share/wordlists/Metasploit/unix_password.txt
563
+ -T
564
+ 6
565
+ ssh://140.82.3.147” as seen below in Figure 9.
566
+
567
+ Elasticsearch
568
+ Cockpit
569
+ Cyberchef
570
+ Head
571
+ Kibana
572
+ SecurityMeter
573
+ Spiderfoot
574
+ T-Pot@GitHub(kalikali)-[~
575
+ nmap-p22140.82.3.147
576
+ Nmapscanreportfor 140.82.3.147.vultr.com(140.82.3.147)
577
+ Hostisup(0.20slatency).
578
+ PORT
579
+ STATESERVICE
580
+ 22/tcp openssh
581
+ Nmap done:1IPaddress(1hostup)scanned in 0.o9 seconds
582
+ (kalikali)-[~]6
583
+
584
+
585
+ Figure 9: Running the Hydra Brute-Force Attack.
586
+ The -l option in the command tells hydra to try to log in
587
+ with the root user. The -P option tells hydra to use the
588
+ password list specified in the command and the -t option
589
+ tells hydra how many threads to use. So, in this attack
590
+ scenario, we used 6 threads. Also, we told it to attack the
591
+ SSH service on the IP specified. As we can see in Figure 9,
592
+ we got the exact results that we expected. The password
593
+ that was cracked for the root user was 12345. Since the test
594
+ has concluded, I logged back into the SSH server and
595
+ made it not possible to login to the root user through SSH
596
+ like how it was prior to me modifying it. This is because
597
+ this is a good security practice and if it was possible to
598
+ login to the root user over SSH it would make the attacker
599
+ suspicious of the honeypot. I then changed the password
600
+ back to what it was prior. The original password was not
601
+ that difficult to crack either, but more difficult to crack
602
+ than 12345. This is because we do still want the attacker to
603
+ be able to gain access so we can gain more information on
604
+ what they are looking to do once they are inside the server.
605
+ I will now let the honeypot system run for a few weeks so it
606
+ can collect a large amount of data to come back and
607
+ analyze.
608
+ V.
609
+ ANALYZING
610
+ DATA
611
+ COLLECTED
612
+ FROM
613
+ ATTACKS
614
+ ON
615
+ THE
616
+ SYSTEM
617
+ In this section, we will analyze the data collected by
618
+ the honeypot system in the Kibana Dashboard. We will
619
+ look at the different categories of information collected to
620
+ see what information we can learn about the attackers. For
621
+ the most part, we will look at the aggregated data collected
622
+ by all the containers, but in some cases, we will look at
623
+ data collected by a specific container.
624
+ A. Accessing the Data
625
+ To access the data, we need to first go back to the T-Pot
626
+ Landing Page. This can be reached by entering
627
+ “https://<my.ip>:64297” into a web browser and logging in
628
+ with the credentials created. I then clicked on “Kibana” to
629
+ bring me to the Kibana app dashboards page.
630
+
631
+ Figure 10: Kibana App Main Dashboards Page.
632
+
633
+ As seen in Figure 10, a page opens that displays a list of
634
+ the different honeypot containers deployed. You can reach
635
+ an individual dashboard by just clicking on the name of
636
+ that honeypot. You will also notice that the first two titles
637
+ are
638
+ “T-Pot” and “T-Pot Live Attack Map”. T-Pot Live Attack
639
+ Map just shows a global map of where attacks within the
640
+ T- Pot Network are occurring in the current time. This is
641
+ not very useful to us. However, the T-Pot Dashboard is the
642
+ dashboard we will be mainly using because it displays the
643
+ visuals and data collected by all the honeypots aggregated
644
+ into one dashboard. Therefore, we will go ahead and click
645
+ on “T-Pot” to display this dashboard.
646
+
647
+ Figure 11: Kibana T-Pot Dashboard.
648
+
649
+ The dashboard displayed is shown in Figure 11. As
650
+ mentioned, this dashboard allows us to visualize and view
651
+
652
+ -(kalickali)-[]
653
+ Shydraroot-P/usr/share/wordlists/netasploit/unixpasswords.txt-t6ssh://140.82.3.147
654
+ ydrav9.2(c)2021byvanHauser/THC6DavidMaciejakPleasedonotuseinmilitaryorsecretsel
655
+ -bindnhe*gawsndaay
656
+ ydra(https://github.com/vanhauser-thc/thc-hydra)starting at2022-03-0518:36:55
657
+ WARNINGRestorefile(youhave10secondstoabort...(useoption-Itoskipwaiting))fromaprev
658
+ ore
659
+ DATAmax6tasksper1serveroveralu6tasks,1009 Logintries(L:1/p:1009),-169 triespertas
660
+ DATAlattacking ssh://140.82.3.147:22/
661
+ 22[ssh] host:140.82.3.147login:rootpasword12345
662
+ 1 of 1target successfully completed,1 valid password found
663
+ ydra(https://github.com/vanhauser-thc/thc-hydra)finishedat2022-03-0518:37:06Dashboards
664
+ Search..
665
+ Title
666
+ Description
667
+ >T-Pot
668
+ T-PotDashboard
669
+ >T-PotLiveAttackMap
670
+ T-PotLiveAttackMap
671
+ Adbhoney
672
+ AdbhoneyDashboard
673
+ Ciscoasa
674
+ CiscoasaDashboard
675
+ CitrixHoneypot
676
+ CitrixHoneypotDashboard
677
+ Conpot
678
+ ConpotDashboard
679
+ Cowrie
680
+ CowrieDashboard
681
+ Ddospot
682
+ Ddospot Dashboard
683
+ Dicompot
684
+ DicompotDashboard
685
+ Dionaea
686
+ Dionaea Dashboardceetineis-toto
687
+ 330.008
688
+ 198.915
689
+ 132.032
690
+ 18.613
691
+ 4.300
692
+ 3.661
693
+ 1,015
694
+ 640
695
+ 623
696
+ 520
697
+ Covte-ltxde
698
+ Ooge-As
699
+ wd-Aade
700
+ Aehony-Atste
701
+ opy-tci
702
+ -Ad
703
+ Rixis
704
+ --7
705
+
706
+ the data collected from all the honeypots in one place. Next,
707
+ we will be looking at and analyzing some of the charts and
708
+ data lists that are relevant to gathering intelligence about the
709
+ attackers.
710
+ B. Most Attacked Honeypots
711
+ At the top of the dashboard, we can see the ten
712
+ honeypots that experienced the most attacks ranked in
713
+ sequential order from the most attacked honeypot to the
714
+ least attacked honeypot.
715
+
716
+ Figure 12: Top 10 attacked honeypots
717
+
718
+ As we can see in Figure 12, the most attacked honeypot
719
+ was Cowrie, the SSH honeypot. This is not very surprising
720
+ since SSH is a very well-understood protocol and can be
721
+ used to gain remote shell access to a server. If the attacker
722
+ can abuse the SSH service and gain access to your server,
723
+ they will be able to obtain a lot of information and have
724
+ access to your system. From a defender’s point of view,
725
+ this is important information to understand because since
726
+ SSH is the most attacked protocol, in a live production
727
+ environment gaining remote access should not be very
728
+ easy. On top of utilizing a very secure password and SSH
729
+ keys, MFA should also be configured to gain remote shell
730
+ access. We can also see that the Dionaea is the second most
731
+ attacked honeypot, which uses the FTP service to capture
732
+ attack payloads and malware. This tells us that any way
733
+ that an attacker can either gain remote access to a server
734
+ (SSH) or be able to upload files to a server remotely (FTP)
735
+ is going to attract attackers. This is because the concept of
736
+ being able to remotely impact a server can have high
737
+ consequences if abused. As a defender, we can learn from
738
+ this to make sure that all servers that have remote protocol
739
+ ports open must be highly secure.
740
+ C. Attacks by Country
741
+ The next graphic we will examine is the countries where
742
+ the most attacks are from. I will also discuss why that
743
+ information may and may not be useful.
744
+
745
+ Figure 13: Attacks by Country Pie Chart.
746
+ The legend on the right of Figure 13 shows the list of
747
+ where the most attacks came from in descending order. As
748
+ we can see, the top 3 countries where the most attacks
749
+ came from are the United States, China, and Russia. These
750
+ countries tend to have more sophisticated cyber programs
751
+ and larger populations, so it is not very surprising. This
752
+ information can be useful to us because if a specific threat
753
+ actor is targeting an individual company, we may be able
754
+ to track where that threat actor is located. However, any
755
+ decent attacker is most likely using a VPS where they can
756
+ choose the location of where their IP address is located, or
757
+ they are using a VPN to hide their true location. That is
758
+ why focusing on this graphic is not very useful, but it is
759
+ more important to focus on the IP addresses themselves.
760
+ We will look at this next.
761
+ D. Attacker Source IP Addresses and their ASNs
762
+ Looking at the Source IP Addresses of where most of the
763
+ attacks are coming from is very useful to cyber defenders.
764
+ This is because most attackers have a finite number of
765
+ resources to work with, so their IP Space is not unlimited.
766
+
767
+
768
+ Figure 14: Top 10 Attacker Source IP Addresses.
769
+
770
+ In Figure 14, we can see the IP addresses where most of
771
+ the attacks came from. This information is very useful to
772
+ cyber defenders because these IP addresses can be
773
+ blacklisted from the production network. This will not allow
774
+
775
+ HoneypotAttacks-Top10
776
+ 334,592
777
+ 197,072
778
+ 132,574
779
+ 18,613
780
+ 4,308
781
+ Cowrie-Attacks
782
+ Dionaea-Attacks
783
+ Honeytrap-Attacks
784
+ Heralding-Attacks
785
+ Adbhoney-Attacks
786
+ 3,668
787
+ 1,020
788
+ 640
789
+ 627
790
+ 526
791
+ Rdpy-Attacks
792
+ Tanner-Attacks
793
+ CitrixHoneypot-Attacks
794
+ Mailoney-Attacks
795
+ ConPot-AttacksAttacks byCountry
796
+ UnitedStates
797
+ China
798
+ Russia
799
+ Vietnam
800
+ India
801
+ Canada
802
+ Japan
803
+ Singapore
804
+ Hong Kong
805
+ TurkeyAttackersourcelp-Top1o
806
+ Source Ip
807
+ Count
808
+ 165.22.234.121
809
+ 26,552
810
+ 2.56.56.14
811
+ 18,204
812
+ 69.171.13.237
813
+ 11,027
814
+ 140.82.156.72
815
+ 9,094
816
+ 85.100.124.175
817
+ 3,158
818
+ 109.94.179.81
819
+ 3,154
820
+ 110.227.249.142
821
+ 3,152
822
+ 190.75.220.137
823
+ 3,151
824
+ 83.52.23.252
825
+ 3,151
826
+ 103.43.77.175
827
+ 3,1498
828
+
829
+ these attackers to use these IP addresses on the actual
830
+ network. The attackers will now have to use other IP
831
+ addresses to gain access to your resources, therefore making
832
+ them exhaust their resources. If you continuously blacklist
833
+ the IP addresses where a lot of the attacks are coming from
834
+ you can deter attacks from continuing to attack your
835
+ network. This will help prevent a lot of the noisier attackers
836
+ from being able to exploit your systems, but you also must
837
+ be aware that more stealthy attackers will be able to remain
838
+ under the radar.
839
+ From the attacker’s IP address, we can figure out the
840
+ Autonomous System Number (ASN) to learn what
841
+ organizations are allocating the attacker’s IP address.
842
+
843
+
844
+ Figure 15: Top 10 ASNs used by attackers attacking the system.
845
+
846
+ In Figure 15 we can see that the most popular ASN
847
+ organization used to attack our honeypot system is
848
+ Digital Ocean, one of the most popular VPS providers.
849
+ This shows that a lot of people are abusing the benefits
850
+ they offer to launch cyber-attacks. There also does
851
+ appear to be a good number of China-based
852
+ organizations on the list, helping to support that there
853
+ might be a lot of attacks launched on the honeypot
854
+ from China. This information can be useful to us
855
+ because when we see a user utilizing an IP allocated
856
+ from Digital Ocean, for example, we can be more
857
+ cautious and possibly even raise an alert since we
858
+ know it is commonly used by attackers to attack our
859
+ systems.
860
+ E. Most Used OS by Attackers
861
+ From our honeypot system, we can gather information
862
+ about the most popular Operating Systems used by
863
+ attackers to attack the honeypot system. Kibana displays a
864
+ pie chart of the operating systems and displays the legend
865
+ in descending order from most to least used OS.
866
+
867
+ Figure 16: Pie Chart displaying Attacker OS Distributions.
868
+
869
+ From this pie chart, we can see that Windows 7/8 was
870
+ the most popular used OS by attackers followed by Linux
871
+ 2.2.x-3.x. We do not get an exact version number for the
872
+ most part, but still, get a good idea of the OS the attacker
873
+ is using. I found it particularly unusual that attackers are
874
+ running older versions of Windows and Linux, but it can
875
+ be valuable information. Most common users run
876
+ Windows 10 as of now, so users running Windows 7/8
877
+ can be something to look out for when investigating
878
+ attackers. A lot of basic users do not run Linux, so
879
+ anytime there is suspicious activity coming from a user
880
+ running Linux it can be a red flag.
881
+ F. Most Common Credentials
882
+ In this section, we will look at the most common
883
+ credentials used by attackers to try to brute-force login to
884
+ our systems. Many of these usernames and passwords
885
+ come from dictionary lists of commonly used passwords.
886
+
887
+ Figure 17: Most Common Usernames attempted by attackers.
888
+
889
+ In Figure 17, we see the most common usernames
890
+ attackers tried to use to log in to our honeypot system. As
891
+ we can see, root and admin were among the most popular.
892
+ This makes sense because root and admin accounts tend to
893
+ have higher privileges. This shows us from a defensive
894
+ perspective why it is so important to disable remote root
895
+ login because it can be very dangerous if attackers manage
896
+ to log in.
897
+
898
+
899
+ AttackerAs/N-Top10
900
+ AS
901
+ ASN
902
+ Count
903
+ 14061
904
+ DigitalOcean,LLC
905
+ 83.743
906
+ 45899
907
+ VNPTCorp
908
+ 25,944
909
+ 395800
910
+ GreybeardTechnologyLLC
911
+ 18.324
912
+ 45090
913
+ Shenzhen Tencent Computer...
914
+ 16,955
915
+ 38365
916
+ BeijingBaiduNetcom Scienc...
917
+ 11,744
918
+ 4134
919
+ No.31,Jin-rongStreet
920
+ 11,167
921
+ 29944
922
+ Latisys-Ashburn,LLC
923
+ 11,027
924
+ 12389
925
+ Rostelecom
926
+ 10,625
927
+ 174
928
+ CogentCommunications
929
+ 9,895
930
+ 135377
931
+ UCloud (Hk) Holdings Group...
932
+ 8,074PofoSDistribution
933
+ Windows7or8
934
+ Linux 2.2.x-3.x
935
+ WindowsNTkernel
936
+ Linux3.11andnewer
937
+ Linux3.1-3.10
938
+ Linux 2.2.x-3.x (barebon..
939
+ WindowsNTkernel6.x
940
+ WindowsNTkernel5.x
941
+ Linux 2.2.x-3.x (no time..
942
+ Linux 2.4.xes
943
+ student
944
+ zabbix
945
+ user
946
+ admin1
947
+ 666666
948
+ jenkins
949
+ minecraft service
950
+ postgres
951
+ Hoddns
952
+ 888888
953
+ default
954
+ test
955
+ tomcat
956
+ wwwroot
957
+ ftp
958
+ sa
959
+ ubuntu
960
+ ubnt
961
+ root
962
+ www-data
963
+ administrator
964
+ user
965
+ phil
966
+ Admin
967
+ user123
968
+ ftpuser
969
+ testuser
970
+ admin
971
+ nproc
972
+ (empty)
973
+ mysql
974
+ guest
975
+ hadoop
976
+ supervisor
977
+ git
978
+ oracle
979
+ www
980
+ server
981
+ anonymous
982
+ deploy
983
+ Administrator
984
+ web
985
+ tech
986
+ mother
987
+ data
988
+ pi
989
+ dev9
990
+
991
+
992
+ Figure 18: Most Common Passwords attempted by attackers.
993
+
994
+ In Figure 18, we see the most common passwords
995
+ attackers tried to use to log in to our honeypot system. Many
996
+ of these are weak passwords that a basic user might make or
997
+ default passwords. We can learn from this that it is
998
+ extremely important to change default passwords and to
999
+ replace them with a very strong password to prevent
1000
+ attackers from gaining easy access. Passwords should be
1001
+ relatively long and utilize a combination of letters,
1002
+ numbers, and special characters.
1003
+ G. Analyzing Suricata Alerts
1004
+ In this section, we will analyze the alert raised by
1005
+ Suricata, an open-source IDS/IPS that feeds data into our
1006
+ Kibana dashboard.
1007
+
1008
+ Figure 19: Suricata Alerts.
1009
+
1010
+ In Figure 19, we can see the 10 most common alerts
1011
+ detected by Suricata. From this, we can tell that a lot of
1012
+ attackers try to abuse TCP and manipulate the Three-Way
1013
+ TCP Handshake. We can also tell that a lot of users were
1014
+ using a port scanning tool like Nmap because there were a
1015
+ lot of detections of incomplete connections. Finally, we
1016
+ also detected some alerts that SSH and SMB sessions were
1017
+ established. This means that some attackers did gain entry
1018
+ inside our honeypot system, as we expected.
1019
+
1020
+ Figure 20: Suricata CVEs Detected.
1021
+
1022
+ In Figure 20, we can see the top 3 CVEs detected by
1023
+ Suricata. As mentioned before, a CVE is a common
1024
+ vulnerability and exposure that is known by the public and
1025
+ is detected by a unique signature. CVE-2019-12263 is a
1026
+ high vulnerability with a CVSS score of 8.1. This
1027
+ vulnerability refers to a Buffer Overflow in the TCP
1028
+ component of Wind River VxWorks 6.9.4 and vx7 [16].
1029
+ The next most common CVE detected is CVE-2019-0708
1030
+ which has a CVSS score of 9.8, also very high. This
1031
+ vulnerability is a “Remote Desktop Services Remote Code
1032
+ Execution Vulnerability.” This means that an attacker can
1033
+ remotely execute code on another user’s system [17].
1034
+ Finally, the third most popular CVE is CVE-2020-11910
1035
+ which has a CVSS score of 5.3, a medium level severity.
1036
+ This vulnerability is caused by the Treck TCP/IP stack
1037
+ before version 6.0.1.66 having an ICMPv4 Out-of-bounds
1038
+ Read [18]. This means that the system is reading packets
1039
+ that are not in bounds. From all these CVEs detected, it can
1040
+ teach us to make sure that our systems are patched against
1041
+ these popular vulnerabilities. It also shows us how
1042
+ important it is to regularly patch our systems when there
1043
+ are security updates because attackers will try to exploit
1044
+ our systems if they are not patched.
1045
+ H. Cowrie Top Shell Commands Executed
1046
+ In this section, we will look at the top commands
1047
+ executed inside of the Cowrie honeypot. To look at this, we
1048
+ will go back to the main T-Pot Dashboard page and select
1049
+ “Cowrie Dashboard” to only see the Dashboard for this
1050
+ specific honeypot. As mentioned earlier, Cowrie is a high
1051
+ interaction SSH honeypot that tracks commands entered by
1052
+ attackers into the command line and that data gets sent into
1053
+ Kibana to analyze.
1054
+
1055
+ Figure 20: Top 10 Commands Executed by attackers.
1056
+
1057
+ In Figure 20, we can see the top 10 commands run by
1058
+
1059
+ 1q2w3e4r admin1234 abc123
1060
+ 1234qwer
1061
+ fucker
1062
+ 666666
1063
+ 54321
1064
+ 111111
1065
+ 1111 test
1066
+ default
1067
+ 111111234567
1068
+ 1 root 1234
1069
+ admin
1070
+ aquario user1
1071
+ 888888
1072
+ guest
1073
+ 1001chin
1074
+ (empty)123456
1075
+ system
1076
+ 12345
1077
+ Win1doWs
1078
+ tech
1079
+ ivdev
1080
+ 123123
1081
+ 123 nproc password
1082
+ friend
1083
+ password123
1084
+ pass
1085
+ ubnt
1086
+ 1234567890
1087
+ 07ujMkoadmin
1088
+ 00000000
1089
+ XC3511
1090
+ 5up123456789
1091
+ alpine
1092
+ 12345678
1093
+ vizxV
1094
+ qwerty
1095
+ ZIxx.
1096
+ 1qaz2wsxSuricataAlertSignature-Top10
1097
+ Description
1098
+ Count
1099
+ SURICATASTREAMreassemblysequenceGAP--missingpacket(s)
1100
+ 65,799
1101
+ ETPOLiCYSSHsessioninprogressonExpectedPort
1102
+ 13,043
1103
+ SURICATASTREAMPacketwithbrokenack
1104
+ 12,053
1105
+ SURICATATCPy4invalidchecksum
1106
+ 5,008
1107
+ SURICATASTREAMPacketwithinvalidtimestamp
1108
+ 3,609
1109
+ SURlCATAApplayerDetectprotocolonlyonedirection
1110
+ 1,553
1111
+ SURICATASTREAMFINrecvbutnosession
1112
+ 1,034
1113
+ ETSCANZmapUser-Agent(inbound)
1114
+ 998
1115
+ SURICATASTREAMRSTrecvbutnoSession
1116
+ 831
1117
+ ETINFOPotentiallyunsafeSMBv1protocolinuse
1118
+ 740SuricatacVE-Top10
1119
+ CVEID
1120
+ Count
1121
+ CVE-2019-12263...
1122
+ 62
1123
+ CVE-2019-0708
1124
+ 14
1125
+ CVE-2020-11910
1126
+ 6CowrieInput-Top1o
1127
+ CommandLineInput
1128
+ Count
1129
+ uname -a
1130
+ 126
1131
+ cat/proc/cpuinfo/grepmodel/grepname
1132
+ 117
1133
+ cat/proc/cpuinfo|grepname|head-n1
1134
+ a...
1135
+ 117
1136
+ cat/proc/cpuinfogrepname
1137
+ WC-
1138
+ 117
1139
+ crontab -l
1140
+ 117
1141
+ free-m|grepMem|awk'(print$2,$3,$4,$...
1142
+ 117
1143
+ Is-lh$(whichIs)
1144
+ 117
1145
+ top
1146
+ 117
1147
+ uname
1148
+ 117
1149
+ uname -m
1150
+ 11710
1151
+
1152
+ attackers inside the honeypot. As we can see, the most run
1153
+ command is the “uname” command with the -a flag. We
1154
+ also see many different variations of this command in the
1155
+ top 10 list. This command reveals a lot about the system
1156
+ such as what Linux distro is being run on the system and the
1157
+ version of the distro. This is useful to attackers because if
1158
+ the system is out of date there may be vulnerabilities that
1159
+ the attacker can exploit. Therefore, it is important to update
1160
+ and patch your systems. The next most popular command
1161
+ that we see being run is the attacker looking for information
1162
+ about the system’s CPU. An attacker may be interested in
1163
+ the CPU info to see how much processing power your
1164
+ system has. The reason they care about this is that crypto
1165
+ mining is currently extremely popular but requires many
1166
+ resources to drive a profit. So, if attackers can create a
1167
+ botnet of devices that mines for crypto in the background of
1168
+ victims’ computers, it will have no cost to the attackers, and
1169
+ they will receive all the benefits.
1170
+ I.
1171
+ CONCLUSION
1172
+ A honeypot system can be very beneficial to an
1173
+ organization, but it must be properly implemented and
1174
+ deployed. Honeypots need to be deceptive enough to trick
1175
+ the attacker into thinking that they are in a real system.
1176
+ This will cause the attackers to use up time and resources
1177
+ when attacking the honeypot system, but it will also reveal
1178
+ information about how the attackers are penetrating the
1179
+ system and what they are looking for once they gain access
1180
+ to the system. This information can be useful to the
1181
+ defenders because we can learn how attackers operate and
1182
+ can make sure our actual systems are secure against the
1183
+ various attacks that are being used by attackers. We can
1184
+ also make sure that the information attackers are looking to
1185
+ seek is properly protected.
1186
+ For future work, we will extend our current
1187
+ cybersecurity framework [19-53] by integrating the
1188
+ Honeypot system as a Cyber Deception Tactic to deceive
1189
+ the attacker.
1190
+ REFERENCS
1191
+ [1] B. Lutkevich, “How to build a honeypot to increase network
1192
+ security,”
1193
+ WhatIs.com,
1194
+ 31-Mar-2021.
1195
+ [Online].
1196
+ Available:
1197
+ https://whatis.techtarget.com/feature/How-to-build-a-honeypot-to-increase-
1198
+ network-security. [Accessed: 10-Mar-2022].
1199
+ [2] J. Xi, "A Design and Implement of IPS Based on Snort," 2011
1200
+ Seventh International Conference on Computational Intelligence and
1201
+ Security, 2011, pp. 771-773, doithat: 10.1109/CIS.2011.175.
1202
+ [3] R. Bhardwaj, “Understanding types and benefits of honeypot in
1203
+ network security,” IP With Ease, 22-May-2020. [Online]. Available:
1204
+ https://ipwithease.com/understanding-types-and-benefits-of-honeypot-in-
1205
+ network-security/. [Accessed: 10-Mar-2022].
1206
+ [4] R. Chandel, “Comprehensive guide on honeypots,” Hacking
1207
+ Articles,
1208
+ 13-Jan-2022.
1209
+ [Online].
1210
+ Available:
1211
+ https://www.hackingarticles.in/comprehensive-guide-on-honeypots/.
1212
+ [Accessed: 10-Mar-2022].
1213
+ [5] “What is a honeypot? how it increases security,” Rapid7. [Online].
1214
+ Available:
1215
+ https://www.rapid7.com/fundamentals/honeypots/.
1216
+ [Accessed: 10-Mar-2022].
1217
+ [6] Taylor, Jamie, Joseph Devlin, and Kevin Curran. "Bringing location
1218
+ to
1219
+ IP Addresses with IP Geolocation." Journal of Emerging
1220
+ Technologies in Web Intelligence 4.3 (2012).
1221
+ [7] P. Engebretson and D. Kennedy, The basics of hacking and
1222
+ penetration testing ethical hacking and penetration testing Made Easy.
1223
+ Amsterdam: Syngress, an imprint of Elsevier, 2013.
1224
+ [8] S. R. Northcutt, “Improve detection using Honeycreds,”
1225
+ Improve Detection using HoneyCreds, 01-Jan-1970. [Online].
1226
+ Available:
1227
+ https://securitywa.blogspot.com/2016/04/improve-
1228
+ detection-using- honeycreds.html. [Accessed: 10-Mar-2022].
1229
+ [9] “Using honey credentials to make pivoting detectable,” LogRhythm,
1230
+ 26-Mar-2020. [Online]. Available: https://logrhythm.com/blog/using-
1231
+ honeywords-to-make-password-cracking-detectable/. [Accessed: 10-
1232
+ Mar- 2022].
1233
+ [10] N. C. Rowe, “&nbsp;Honeypot Deception Tactics,” U.S. Naval
1234
+ Postgraduate
1235
+ School.
1236
+ [Online].
1237
+ Available:
1238
+ http://faculty.nps.edu/ncrowe/honeypot_deception_tactics.htm.
1239
+ [Accessed: 10-Mar-2022].
1240
+ [11]
1241
+ Telekom-Security, “Telekom-security/TPOTCE: T-pot - the
1242
+ all in one honeypot platform ,” GitHub. [Online]. Available:
1243
+ https://github.com/telekom-security/tpotce. [Accessed: 10-Mar-2022].
1244
+ [12]
1245
+ Cowrie, “Cowrie/Cowrie: Cowrie SSH/telnet honeypot
1246
+ https://cowrie.readthedocs.io,”
1247
+ GitHub.
1248
+ [Online].
1249
+ Available:
1250
+ https://github.com/cowrie/cowrie. [Accessed: 10-Mar-2022].
1251
+ [13]
1252
+ T. Werner, “Armedpot/Honeytrap,” Honeytrap. [Online].
1253
+ Available: https://github.com/armedpot/honeytrap/. [Accessed: 10-Mar-
1254
+ 2022].
1255
+ [14]
1256
+ Kibana, “Kibana Guide,” Elastic. [Online]. Available:
1257
+ https://www.elastic.co/guide/en/kibana/current/index.html. [Accessed:
1258
+ 10- Mar-2022].
1259
+ [15]
1260
+ Suricata, “Documentation - Suricata,” Suricata, 02-Jun-2021.
1261
+ [Online]. Available: https://suricata.io/documentation/. [Accessed: 10-
1262
+ Mar-2022].
1263
+ [16]
1264
+ NIST, “CVE-2019-12263 Detail,” National Vulnerability
1265
+ Database,
1266
+ 09-Aug-2019.
1267
+ [Online].
1268
+ Available:
1269
+ https://nvd.nist.gov/vuln/detail/CVE- 2019-12263. [Accessed: 10-Mar-
1270
+ 2022].
1271
+ [17]
1272
+ “CVE-2019-0708 Detail,” National Vulnerability Database,
1273
+ 16-May-
1274
+ 2019.
1275
+ [Online].
1276
+ Available:
1277
+ https://nvd.nist.gov/vuln/detail/CVE-2019-0708. [Accessed: 10-Mar-
1278
+ 2022].
1279
+ [18]
1280
+ “CVE-2020-11910 Detail,” National Vulnerability Database,
1281
+ 17-Jun-
1282
+ 2020.
1283
+ [Online].
1284
+ Available:
1285
+ https://nvd.nist.gov/vuln/detail/CVE-2020- 11910. [Accessed: 10-Mar-
1286
+ 2022].
1287
+ [19] Hisham A. Kholidy, “Multi-Layer Attack Graph Analysis in the
1288
+ 5G Edge Network Using a Dynamic Hexagonal Fuzzy Method”,.
1289
+ Sensors 2022, 22, 9.
1290
+ [20] Hisham A. Kholidy, “Multi-Layer Attack Graph Analysis in the
1291
+ 5G Edge Network Using a Dynamic Hexagonal Fuzzy Method”, Sensor
1292
+ Journal. Sensors 2022, 22, 9. https://doi.org/10.3390/s22010009.
1293
+ [21] Hisham A. Kholidy, Andrew Karam, James L. Sidoran,
1294
+ Mohammad A. Rahman, "5G Core Security in Edge Networks: A
1295
+ Vulnerability Assessment Approach", the 26th IEEE Symposium on
1296
+ Computers and Communications (IEEE ISCC 2021), Athens, Greece,
1297
+ September 5-8, 2021. https://ieeexplore.ieee.org/document/9631531
1298
+ [22] Hisham A. Kholidy, “A Triangular Fuzzy based Multicriteria
1299
+ Decision Making Approach for Assessing Security Risks in 5G
1300
+ Networks”, December 2021, Preprint={2112.13072}, arXiv.
1301
+ [23] Kholidy, H.A., Fabrizio Baiardi, "CIDS: A framework for
1302
+ Intrusion Detection in Cloud Systems", in the 9th Int. Conf. on
1303
+ Information Technology: New Generations ITNG 2012, April 16-18,
1304
+ Las
1305
+ Vegas,
1306
+ Nevada,
1307
+ USA.
1308
+ http://www.di.unipi.it/~hkholidy/projects/cids/
1309
+ [24] Kholidy, H.A. (2020), "Autonomous mitigation of cyber risks in
1310
+ the Cyber–Physical Systems", doi:10.1016/j.future.2020.09.002, Future
1311
+ Generation Computer Systems,Volume 115, 2021, Pages 171-187,
1312
+ ISSN 0167-739X, https://doi.org/10.1016/j.future.2020.09.002.
1313
+ [25] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed,
1314
+
1315
+ 11
1316
+
1317
+ Fabrizio Baiardi, "A risk mitigation approach for autonomous cloud
1318
+ intrusion response system", Computing Journal, Springer, DOI:
1319
+ 10.1007/s00607-016-0495-8, June 2016. (Impact factor: 2.220).
1320
+ https://link.springer.com/article/10.1007/s00607-016-0495-8
1321
+ [26] Hisham A. Kholidy, “Detecting impersonation attacks in cloud
1322
+ computing environments using a centric user profiling approach”,
1323
+ Future Generation Computer Systems, Vol 115, 17, December 13,
1324
+ 2020, ISSN 0167-739X.
1325
+ [27] Kholidy, H.A., Baiardi, F., Hariri, S., et al.: “A hierarchical
1326
+ cloud intrusion detection system: design and evaluation”, Int. J. Cloud
1327
+ Comput., Serv. Archit. (IJCCSA), 2012, 2, pp. 1–24.
1328
+ [28] Kholidy, H.A., “Detecting impersonation attacks in cloud
1329
+ computing environments using a centric user profiling approach”,
1330
+ Future Generation Computer Systems, Volume 115, issue 17,
1331
+ December
1332
+ 13,
1333
+ 2020,
1334
+ Pages
1335
+ 171-187,
1336
+ ISSN
1337
+ 0167-739X,
1338
+ https://doi.org/10.1016/j.future.2020.12.
1339
+ [29] Kholidy, Hisham A.: 'Correlation-based sequence alignment
1340
+ models for detecting masquerades in cloud computing', IET
1341
+ Information Security, 2020, 14, (1), p.39-50, DOI: 10.1049/iet-
1342
+ ifs.2019.0409.
1343
+ [30] Kholidy, H.A., Abdelkarim Erradi, “A Cost-Aware Model for
1344
+ Risk Mitigation in Cloud Computing SystemsSuccessful accepted in
1345
+ 12th ACS/IEEE International Conference on Computer Systems and
1346
+ Applications (AICCSA), Marrakech, Morocco, November, 2015.
1347
+ [31] A H M Jakaria, Mohammad A. Rahman, Alvi A. Khalil, Hisham
1348
+ A. Kholidy, Matthew Anderson et al “Trajectory Synthesis for a UAV
1349
+ Swarm Based on Resilient Data Collection Objectives", IEEE
1350
+ Transactions on Network and Service Management, November, 2022
1351
+ doi: 10.1109/TNSM.2022.3216804.
1352
+ [32] Hisham A. Kholidy, Andrew Karam, James Sidoran, et al.
1353
+ “Toward Zero Trust Security in 5G Open Architecture Network Slices”,
1354
+ the 40th IEEE Military Conference (MILCOM), San Diego, CA, USA,
1355
+ November 29, 2022.
1356
+ [33] Hisham A. Kholidy, Riaad Kamaludeen “An Innovative
1357
+ Hashgraph-based Federated Learning Approach for Multi Domain 5G
1358
+ Network Protection”, IEEE Future Networks (5G World Forum),
1359
+ Montreal, Canada, October 2022.
1360
+ [34] Hisham A. Kholidy, Andrew Karam, Jeffrey H. Reed, Yusuf
1361
+ Elazzazi, "An Experimental 5G Testbed for Secure Network Slicing
1362
+ Evaluation", IEEE Future Networks (5G World Forum), Montreal,
1363
+ Canada, October 2022.
1364
+ [35] Hisham A. Kholidy, Salim Hariri, Pratik Satam, Safwan Ahmed
1365
+ Almadani “Toward an Experimental Federated 6G Testbed: A
1366
+ Federated learning Approach”, the 13th Int. Conf. on Information and
1367
+ Communication Technology Convergence (ICTC), Jeju Island, Korea,
1368
+ October 9, 2022.
1369
+ [36] NI Haque, MA Rahman, D Chen, Hisham Kholidy, “BIoTA:
1370
+ Control-Aware Attack Analytics for Building Internet of Things”, 2021
1371
+ 18th
1372
+ Annual
1373
+ IEEE
1374
+ International
1375
+ Conference
1376
+ on
1377
+ Sensing,
1378
+ Communication
1379
+ [37] Kholidy, H.A., Ali T., Stefano I., et al, “Attacks Detection in
1380
+ SCADA Systems Using an Improved Non-Nested Generalized
1381
+ Exemplars Algorithm", the 12th IEEE International Conference on
1382
+ Computer Engineering and Systems (ICCES 2017), December 19-20,
1383
+ 2017.
1384
+ [38] Qian Chen, Kholidy, H.A., Sherif Abdelwahed, John Hamilton,
1385
+ "Towards Realizing a Distributed Event and Intrusion Detection
1386
+ System", the Int. Conf. on Future Network Systems and Security,
1387
+ Florida, USA, Aug 2017.
1388
+ [39] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed,
1389
+ Abdulrahman Azab, “A Finite State Hidden Markov Model for
1390
+ Predicting Multistage Attacks in Cloud Systems", in the 12th IEEE Int.
1391
+ Conf. on Dependable, Autonomic and Secure Computing, China,
1392
+ August 2014.
1393
+ [40] Ferrucci, R., & Kholidy, H. A. (2020, May). A Wireless
1394
+ Intrusion Detection for the Next Generation (5G) Networks”, Master’s
1395
+ Thesis, SUNY poly.
1396
+ [41] Rahman, A., Mahmud, M., Iqbal, T., Saraireh, L., Hisham A.
1397
+ Kholidy., et. al. (2022). Network anomaly detection in 5G networks.
1398
+ Mathematical Modelling of Engineering Problems, Vol. 9, No. 2, pp.
1399
+ 397-404. https://doi.org/10.18280/mmep.090213
1400
+ [42] Hisham Kholidy,
1401
+ “State
1402
+ Compression
1403
+ and
1404
+ Quantitative
1405
+ Assessment Model for Assessing Security Risks in the Oil and Gas
1406
+ Transmission
1407
+ Systems”,
1408
+ doi
1409
+ :
1410
+ 10.48550/ARXIV.2112.14137,
1411
+ https://arxiv.org/abs/2112.14137}, December 2021.
1412
+ [43] Hisham A. Kholidy, “Correlation Based Sequence Alignment
1413
+ Models For Detecting Masquerades in Cloud Computing”, IET
1414
+ Information Security Journal, DOI: 10.1049/iet-ifs.2019.0409, Sept.
1415
+ 2019
1416
+ (ISI
1417
+ Impact
1418
+ Factor(IF):
1419
+ 1.51)
1420
+ https://digital-
1421
+ library.theiet.org/content/journals/10.1049/iet-ifs.2019.0409
1422
+ [44] Hisham A. Kholidy, “An Intelligent Swarm based Prediction
1423
+ Approach for Predicting Cloud Computing User Resource Needs”, the
1424
+ Computer Communications Journal, December 19 (ISI IF: 2.766).
1425
+ https://www.sciencedirect.com/science/article/abs/pii/S0140366419303
1426
+ 329
1427
+ [45] Hisham A. Kholidy, Abdelkarim Erradi, “VHDRA: A Vertical
1428
+ and Horizontal Dataset Reduction Approach for Cyber-Physical Power-
1429
+ Aware
1430
+ Intrusion
1431
+ Detection
1432
+ Systems”,
1433
+ SECURITY
1434
+ AND
1435
+ COMMUNICATION NETWORKS Journal (ISI IF: 1.376), March 7,
1436
+ 2019.
1437
+ vol.
1438
+ 2019,
1439
+ Article
1440
+ ID
1441
+ 6816943,
1442
+ 15
1443
+ pages. https://doi.org/10.1155/2019/6816943.
1444
+ [46] Hisham A. Kholidy, Hala Hassan, Amany Sarhan, Abdelkarim
1445
+ Erradi, Sherif Abdelwahed, "QoS Optimization for Cloud Service
1446
+ Composition Based on Economic Model", Book Chapter in the Internet
1447
+ of Things. User-Centric IoT, Volume 150 of the series Lecture Notes of
1448
+ the Institute for Computer Sciences, Social Informatics and
1449
+ Telecommunications Engineering pp 355-366, June 2015.
1450
+ [47] Hisham A. Kholidy, Alghathbar Khaled s., “Adapting and
1451
+ accelerating the Stream Cipher Algorithm RC4 using Ultra Gridsec and
1452
+ HIMAN and use it to secure HIMAN Data”, Journal of Information
1453
+ Assurance and Security (JIAS), vol. 4 (2009)/ issue 4, pp 274-283,
1454
+ 2009. (Indexed by INSPEC, Scopus, Pubzone, Computer Information
1455
+ System Abstracts, MathSci).
1456
+ [48] Hisham A. Kholidy, “Towards A Scalable Symmetric Key
1457
+ Cryptographic
1458
+ Scheme:
1459
+ Performance
1460
+ Evaluation
1461
+ and
1462
+ Security
1463
+ Analysis”, IEEE International Conference on Computer Applications &
1464
+ Information Security (ICCAIS), Riyadh, Saudi Arabia, May 1-3, 2019.
1465
+ https://ieeexplore.ieee.org/document/8769482
1466
+ [49] Samar SH. Haytamy, Hisham A. Kholidy, Fatma A. “ICSD:
1467
+ Integrated Cloud Services Dataset”, Springer, Lecture Note in
1468
+ Computer
1469
+ Science,
1470
+ ISBN
1471
+ 978-3-319-94471-5,
1472
+ https://doi.org/10.1007/978-3-319-94472-2.
1473
+ [50] Stefano Iannucci, Hisham A. Kholidy Amrita Dhakar Ghimire,
1474
+ Rui Jia, Sherif Abdelwahed, Ioana Banicescu, “A Comparison of
1475
+ Graph-Based Synthetic Data Generators for Benchmarking Next-
1476
+ Generation Intrusion Detection Systems”, IEEE Cluster 2017, Sept 5
1477
+ 2017, Hawaii, USA.
1478
+ [51] Mustafa, F.M., Kholidy, H.A., Sayed, A.F. et al. Enhanced
1479
+ dispersion reduction using apodized uniform fiber Bragg grating for
1480
+ optical MTDM transmission systems. Opt Quant Electron 55, 55 (2023).
1481
+ https://doi.org/10.1007/s11082-022-04339-7
1482
+ [52] Abuzamak, M., & Kholidy, H. (2022). UAV Based 5G Network: A
1483
+ Practical
1484
+ Survey
1485
+ Study. arXiv. https://doi.org/10.48550/arXiv.2212.13329
1486
+ [53] Abuzamak, M., & Kholidy, H. (2022). UAV Based 5G Network: A
1487
+ Practical
1488
+ Survey
1489
+ Study. arXiv. https://doi.org/10.48550/arXiv.2212.13329
1490
+
1491
+
1492
+
6NAyT4oBgHgl3EQfQfY1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
79E1T4oBgHgl3EQfnQTu/content/2301.03308v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddea85ee4064be6b81343fad7bd0100374189857696c91e20362a9124f8d49bc
3
+ size 2314434
79E1T4oBgHgl3EQfnQTu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2aeb82720d9ab3803c3869f3c9e5f0b75a068fde39cd4aaab12c37b6a1c9e3a3
3
+ size 3932205
79E1T4oBgHgl3EQfnQTu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:513c786964d0ef4da78a1d6054bdfb01c21bdd7d436b033531f9f02544831daa
3
+ size 153917
7tAyT4oBgHgl3EQfpvj9/content/2301.00533v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a664c3a90d79c6c829716d1785d09854764a6fee5af698f7b41796dadd7ec3b8
3
+ size 2085850
7tAyT4oBgHgl3EQfpvj9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:981f5a86113bdae0f4befcf3056683408c822ac4f7e90bbe867382bdb5cdc69a
3
+ size 207040
8NE2T4oBgHgl3EQflQeg/content/2301.03987v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:188ac89c41d82ed059235d0a7125f2fdbec6dd9291ca7c899a76f1ea3313675b
3
+ size 1830457
8NE2T4oBgHgl3EQflQeg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:252873dbadab185a14cccb92678acf9b74675715184ee3e9f35be105d4d92863
3
+ size 195051
99FQT4oBgHgl3EQf6TZx/content/tmp_files/2301.13438v1.pdf.txt ADDED
@@ -0,0 +1,750 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13438v1 [math.DG] 31 Jan 2023
2
+ HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY
3
+ LAYTH M. ALABDULSADA AND L´ASZL ´O KOZMA
4
+ Abstract. The sub-Finslerian geometry means that the metric F is defined
5
+ only on a given subbundle of the tangent bundle, called a horizontal bundle.
6
+ In the paper, a version of the Hopf-Rinow theorem is proved in the case of sub-
7
+ Finslerian manifolds, which relates the properties of completeness, geodesically
8
+ completeness, and compactness. The sub-Finsler bundle, the exponential map
9
+ and the Legendre transformation are deeply involved in this investigation.
10
+ 1. Introduction
11
+ In the Riemannian and Finslerian geometry, there are two concepts of complete-
12
+ ness. The first is the completeness in the sense of metric spaces, using the Riemann-
13
+ ian metric. Secondly, a Riemannian or Finsler manifold M is called geodesically
14
+ complete if any geodesic γ(t) starting from x ∈ M is defined for all values of
15
+ t ∈ R. On the other hand, the completeness in the Finsler geometry is divided
16
+ into forward and backward geodesically completenesses, according to forward and
17
+ backward distance metrics, resp.
18
+ Hopf-Rinow theorem is a basic theorem of complete Riemannian manifolds,
19
+ which connects the completeness properties with compactness, and the exponen-
20
+ tial map. Its consequence says that any two points of a complete manifold can
21
+ be connected by a length minimizing geodesic. In 1931, H. Hopf and W. Rinow
22
+ showed their theorem only for surfaces, but the proof in higher dimensions is not
23
+ significantly different. Hopf-Rinow theorem has been studied in detail in both Rie-
24
+ mannian and Finslerian geometries in the literature, the best general references
25
+ here are [5, 7], [10]. In the Finsler case forward geodesic completeness is involved,
26
+ only.
27
+ After a development of the sub-Riemannian geometry as well as its generaliza-
28
+ tion, namely sub-Finslerian geometry, the generalization of core theorems of Rie-
29
+ mannian geometry has been started. Relating to our issue, Strichartz [13], Rifford
30
+ [12] and Agrachev et al. [1] gave an extension for a sub-Riemannian case, while Bao
31
+ et al. [5] showed the Finslerian version of Hopf-Rinow theorem. It turned out that
32
+ in sub-Riemannian geometry, for general complete sub-Riemannian structures, the
33
+ exponential mapping is not surjective. This is due to the fact that we may have
34
+ abnormal minimizing curves and this is the case in the sub-Finslerian context, too.
35
+ To prove the statements of Hopf-Rinow theorem in the sub-Finsler setting, we
36
+ need the following concepts and explanations. First, in Section 2 we review some
37
+ of the standard facts of sub-Finsler geometry. In the third Section, we extend our
38
+ discussion about the Legendre transformation (see [2]) to define the sub-Finsler
39
+ 2000 Mathematics Subject Classification. 53C60, 53C17, 53C22.
40
+ Key words and phrases. sub-Finslerian geometry; sub-Hamiltonian geometry; Legendre trans-
41
+ formation; sub-Finsler bundle; normal geodesics; Exponential map; Hopf-Rinow theorem.
42
+ 1
43
+
44
+ 2
45
+ LAYTH M. ALABDULSADA AND L´ASZL ´O KOZMA
46
+ manifold on the distribution D∗ of the cotangent space, where we look more closely
47
+ at a sub-Hamiltonian H defined on D∗, induced by the sub-Finslerian metric F ∗.
48
+ Afterwards, we construct a sub-Finsler bundle, which plays a major role in the for-
49
+ malization of the sub-Hamiltonian in sub-Finsler geometry, in Section 4. Moreover,
50
+ the sub-Finsler bundle allows an orthonormal frame for the sub-Finsler structure.
51
+ In Section 5, we introduce the notion of an exponential map in sub-Finsler geometry.
52
+ In the last section our main theorem is stated and proved.
53
+ 2. Definitions and some properties of sub-Finsler manifolds
54
+ In this section we review some of the standard facts on the sub-Finsler metrics
55
+ and set up the notations and the terminology which will play an essential role in
56
+ this paper, for more details we refer the reader to [2, 3, 4].
57
+ Definition 1. Let M be an n–dimensional connected manifold. A sub-Finslerian
58
+ structure on M is a triple (D, σ, F) where:
59
+ (1) (D, πD) is a vector bundle on M.
60
+ (2) σ : D
61
+ � T M is a morphism of vector bundles. In particular, the following
62
+ diagram is commutative
63
+ M
64
+ π
65
+
66
+ D
67
+ T M
68
+ σ
69
+
70
+ M
71
+ πD
72
+ �❄
73
+
74
+
75
+
76
+
77
+
78
+
79
+
80
+
81
+ such that πD : D
82
+ � M and π : T M
83
+ � M are the canonical projections.
84
+ (3) A function F : �D → R, where �D = D \ {0}, called a sub-Finsler metric,
85
+ which satisfies the following properties:
86
+ • (Positive definiteness): Fx(v) > 0 for all v ∈ �D, x ∈ M.
87
+ • (Regularity): F is smooth, i.e. C∞ on �D.
88
+ • (Positive homogeneity): Fx(λv) = λFx(v) for all v ∈ �Dx and λ ∈ R+.
89
+ • (Strong convexity condition): The Hessian matrix of F 2 with respect
90
+ to the coordinates on the fibre is positive definite.
91
+ One can replace the strong convexity condition by the following subad-
92
+ ditivity property (in an equivalent terminology, a triangle inequality):
93
+ Fx(v + u) ⩽ Fx(v) + Fx(u), for all v, u ∈ �D.
94
+ A sub-Finsler manifold is a smooth manifold M endowed with a sub-Finslerian
95
+ structure, i.e. the triple (D, σ, F).
96
+ Let Dx be the fiber over x ∈ M. The last condition of the sub-Finsler metric
97
+ means that the matrix
98
+ ∂2F 2
99
+ ∂vi∂vj (x, v) is positive definite for all v = (v1, . . . , vk) ∈ Dx.
100
+ Equivalently, the corresponding indicatrix
101
+ Ix = {v | v ∈ Dx, Fx(v) = 1}
102
+ is strictly convex.
103
+ The following technique describes the association between the sub-Finsler struc-
104
+ ture (D, σ, F) and a Finsler metric ˆF on Im(σ) ⊂ T M:
105
+ For each u ∈ Im(σ)x ⊂ TxM and x ∈ M, we have
106
+ ˆFx(u) = inf
107
+ v {Fx(v)| v ∈ Dx, σ(v) = u}.
108
+
109
+ HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY
110
+ 3
111
+ From now on we suppose that D ⊂ T M,
112
+ σ : D
113
+ � T M is the inclusion i :
114
+ D
115
+ � T M and F is a sub-Finsler metric on D.
116
+ As in the sub-Riemannian case, we call D the horizontal distribution. A piecewise
117
+ smooth curve γ : [0, T ] → M is called horizontal, or admissible if ˙γ(t) ∈ Dγ(t) for
118
+ all t ∈ [0, T ], that is, γ(t) is tangent to D. The length of γ is defined as usual by
119
+ ℓ(γ) =
120
+ � T
121
+ 0
122
+ F(˙γ(t))dt.
123
+ Equivalently, as in the Finslerian case, we observe that it suffices to minimize
124
+ the energy
125
+ E(γ) = 1
126
+ 2
127
+ � T
128
+ 0
129
+ F 2(˙γ(t))dt.
130
+ instead of length ℓ(γ).
131
+ The length induces a sub-Finslerian distance d(x, y) between two points x and
132
+ y as in Finsler geometry:
133
+ d(x, y) = inf{ℓ(γ) |γ : [0, T ]
134
+ � M horizontal, γ(0) = x, γ(T ) = y},
135
+ where we consider the infimum over all horizontal curves joining x and y. The
136
+ distance is infinite if there is no such a horizontal curve between x and y.
137
+ In
138
+ addition, the horizontal curve γ : [0, T ] → M is called a length minimizing (or
139
+ simply a minimizing) geodesic, if it realizes the distance between its end points,
140
+ that is, ℓ(γ) = d(γ(0), γ(T )).
141
+ Chow theorem answers to the following question: given two points x and y in a
142
+ sub-Finsler manifold, is there a horizontal curve that joins x and y?
143
+ In the case of an involutive distribution D the Frobenius theorem asserts that
144
+ the set of the horizontal paths through S form a smooth immersed submanifold, the
145
+ leaf through x, of dimension equal to the rank of distribution k. In this case, if D
146
+ is involutive and y is not contained in the leaf through y, there is no any horizontal
147
+ curve joining x and y.
148
+ A positive answer is given by the Chow theorem in the case of bracket generating
149
+ distributions, which are the ”contrary” of the involutive distributions.
150
+ Definition 2. [9] A distribution D is said to be bracket generating if any local frame
151
+ Xi of D, together with all of its iterated Lie brackets spans the whole tangent bundle
152
+ T M.
153
+ Theorem 3. (Chow’s theorem [9]) If D is a bracket generating distribution on a
154
+ connected manifold M then any two points of M can be joined by a horizontal path.
155
+ Remark 1. The problem of minimizing the length of a curve joining two given
156
+ points x and y is equivalent to a time optimal problem: where the control bundle
157
+ is (D, πD, M) and we are searching for such a curve γ(t) and a control curve v(t) ∈
158
+ Dγ(t) minimizing the time T needed to connect x and y.
159
+ 3. Legendre transformation of sub-Finslerian geometry
160
+ Let D∗ be a distribution of rank s on a smooth manifold M that assigns to
161
+ each point x ∈ U ⊂ M a linear subspace D∗
162
+ x ⊂ T ∗
163
+ xM of dimension s, see [4]. In
164
+ other words, D∗ of rank s is a smooth subbundle of rank s of the cotangent bundle
165
+
166
+ 4
167
+ LAYTH M. ALABDULSADA AND L´ASZL ´O KOZMA
168
+ T ∗M. Such a field of cotangent s-planes is spanned locally by s pointwise linear
169
+ independent smooth differential 1-forms, namely,
170
+ D∗
171
+ x = span{α1(x), . . . , αs(x)},
172
+ αi(x) ∈ X∗(M).
173
+ In addition, we refer to D0
174
+ x as the annihilator of the distribution D (isomorphic to
175
+ D), of rank n − k, which is the set of all covectors that annihilates the vectors in
176
+ Dx, i.e.
177
+ D0
178
+ x = {α ∈ T ∗
179
+ xM : α(v) = 0 ∀ v ∈ Dx}.
180
+ (1)
181
+ In [2], we introduced the Legendre transformation of sub-Finsler geometry. Let
182
+ us briefly recall it:
183
+ The sub-Lagrange function L : D
184
+ �R, determined by F is given in the following
185
+ way: L = 1
186
+ 2F 2. The fiber derivative of L defines the map
187
+ LL : D
188
+ � D∗,
189
+ LL(v)(w) = d
190
+ dtLx(v + tw), where v, w ∈ Dx,
191
+ called the Legendre transformation of (M, D, F).
192
+ We denote by (xi) the coordinate in a neighborhood U ⊂ M with (xi, va) in
193
+ D|U ⊂ T M, and (xi, pa) in D∗|U ⊂ T ∗M, respectively, where i = 1, . . . , n, a =
194
+ 1, . . . , k. Then the relation of the distribution D of the tangent bundle and the
195
+ distribution D∗ of the cotangent bundle is given by the Legendre transformation in
196
+ local coordinates as follows
197
+ LL(xi, va) = (xi, ∂L
198
+ ∂va ).
199
+ Then the sub-Hamiltonian is given by
200
+ H : D∗
201
+ � R,
202
+ H = ιL−1
203
+ L − L ◦ L−1
204
+ L ,
205
+ where ιv(p) = ⟨v, p⟩ = p(v) for any v = L−1
206
+ L (p) ∈ D and p ∈ D∗. Moreover, locally
207
+ given by,
208
+ H(xi, pa) = vapa − L(xi, va), where pa = ∂L
209
+ ∂va .
210
+ Secondly, using the fiber derivative of H, we define the Legendre transformation of
211
+ the sub-Hamiltonian H in the following way:
212
+ LH : D∗
213
+ � D,
214
+ For any p, q ∈ D∗
215
+ x, it holds
216
+ q(LH(p)) = d
217
+ dtH(x, p + tq).
218
+ This locally relates the distribution D∗ of the cotangent bundle and the distribution
219
+ D of the tangent bundle according to the next expression:
220
+ LH(xi, pa) = (xi, ∂H
221
+ ∂pa
222
+ ).
223
+ Naturally, LL and LH are inverses of each other:
224
+ LH ◦ LL = 1D,
225
+ LL ◦ LH = 1D∗.
226
+
227
+ HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY
228
+ 5
229
+ In other hand, for every p ∈ D∗
230
+ x, one can define the sub-Finsler metric F ∗ ∈
231
+ �D∗ ∼ T ∗M \ D0 with help of the indicatrix Ix as follows:
232
+ F ∗
233
+ x(p) := sup
234
+ w∈Ix
235
+ p(w) =
236
+ sup
237
+ 0̸=v∈Dx
238
+ p[
239
+ v
240
+ Fx(v)].
241
+ Observed that �D∗ is the subbundle of the cotangent bundle obtained by removing
242
+ the zero cotangent vector from each fibre. In fact, F ∗ turns out to meet the same
243
+ properties that mentioned in Definition 1, but on D∗ instead of D. Then
244
+ F ∗(p) = F(v), where p = LL(v),
245
+ and
246
+ H := 1
247
+ 2(F ∗)2,
248
+ see details in [5].
249
+ 4. Sub-Finsler bundle
250
+ We define in this section a sub-Finsler vector bundle which will play a major role
251
+ in the formalization of the sub-Hamiltonian in sub-Finsler geometry. Let us consider
252
+ first the covector subbundle (D∗, τ, M) with the projection τ : D∗
253
+ � M, which is
254
+ a subbundle of rank k (= dim D∗) in the cotangent bundle of T ∗M. The illustrious
255
+ role in our consideration will play by the pullback bundle τ ∗(τ) = (D∗×D∗, pr1, D∗)
256
+ of τ by τ as follows:
257
+ D∗ ×M D∗ := {(p, q) ∈ D∗ × D∗| τ(p) = τ(q)},
258
+ pr1 : D∗ ×M D∗
259
+ � D∗, (p, q) �→ p.
260
+ Throughout, we call the above pullback bundle as the sub-Finsler bundle over
261
+ D∗. Now, if p is fixed, then
262
+ (pr1)−1(p) = {(p, q) ∈ D∗ × D∗| q ∈ D∗
263
+ τ(q)}
264
+ = {p} × D∗
265
+ τ(p),
266
+ is a fiber of the sub-Finsler bundle over p ∈ D∗.
267
+ We can introduce a Riemannian metric g∗ on the sub-Finsler vector bundle
268
+ induced by the sub-Hamiltonian H as follows:
269
+ ⟨q, r⟩p = g∗
270
+ p(q, r) := ∂2H(p + tq + sr)
271
+ ∂t∂s
272
+ |t,s=0
273
+ for all q, r ∈ D∗
274
+ τ(p),
275
+ which locally means
276
+ g∗ij =
277
+ ∂2H
278
+ ∂pi∂pj
279
+ .
280
+ Now the sub-Finsler bundle τ ∗(τ) allows k covector fields X1, X2, . . . , Xk which
281
+ form an orthonormal frame with respect to the induced Riemannian metric g∗.
282
+ Notice that Xi(p) is a covector field that depends on the position x ∈ M and the
283
+ direction p ∈ D∗. Moreover, one can choose in a way that Xi(p) is a homogeneous of
284
+ degree zero in p, i.e. Xi(tp) = t0Xi(p) = Xi(p). According to the above metric g∗ij
285
+ on M which is homogeneous of degree zero, we could generate a new formalism of
286
+ the sub-Hamiltonian function in the components pi (induces naturally by the inner
287
+ product, see [6])
288
+ H(x, p) = 1
289
+ 2
290
+ n
291
+
292
+ i,j=1
293
+ g∗ijpipj,
294
+ (2)
295
+
296
+ 6
297
+ LAYTH M. ALABDULSADA AND L´ASZL ´O KOZMA
298
+ such that this metric defined in the extended Finsler metric which was shown in
299
+ [2]. We can write the sub-Hamiltonian function (2) in a more useful way using the
300
+ orthonormality of Xi as follows
301
+ H(x, p) = 1
302
+ 2
303
+ k
304
+
305
+ i=1
306
+ ⟨p, Xi(p)⟩2,
307
+ p ∈ D∗
308
+ x.
309
+ (3)
310
+ One can easily check the homogeneity of degree 2 in p of the sub-Hamiltonian
311
+ function H(x, p):
312
+ H(x, tp) = 1
313
+ 2
314
+ k
315
+
316
+ i=1
317
+ ⟨tp, Xi(tp)⟩2 = t2
318
+ 2
319
+ k
320
+
321
+ i=1
322
+ ⟨p, Xi(p)⟩2 = t2H(x, p).
323
+ (4)
324
+ The importance of H(x, p) is to define sub-Finslerian geodesics. Our function
325
+ H(x, p) produces a system of sub-Hamiltonian differential equations, since it is
326
+ a smooth function on D∗. Such differential equations are in terms of canonical
327
+ coordinates (xi, pi).
328
+ Definition 4. The generated sub-Hamiltonian differential equations
329
+ ˙xi = ∂H
330
+ ∂pi
331
+ (x, p),
332
+ ˙pi = −∂H
333
+ ∂xi (x, p),
334
+ i = 1, . . . , n,
335
+ are called normal geodesic equations.
336
+ Lemma 5. If ξ(t) := (x(t), p(t)) is a solution of the sub-Hamiltonian system for
337
+ all t ∈ R, then there exists a constant c ∈ R such that H(x(t), p(t)) = c.
338
+ Proof. Taking the derivative of H(x(t), p(t)) w.r.t. t, we get
339
+ d
340
+ dtH(x(t), p(t)) = ∂H
341
+ ∂xi (x(t), p(t)) ˙x(t) + ∂H
342
+ ∂pi
343
+ (x(t), p(t)) ˙p(t).
344
+ Replacing ˙x(t) and ˙p(t) by the above sub-Hamiltonian differential equations in the
345
+ Definition 4, we obtain
346
+ d
347
+ dtH(x(t), p(t))) = ∂H
348
+ ∂xi (x(t), p(t))∂H
349
+ ∂pi
350
+ (x(t), p(t)) − ∂H
351
+ ∂pi
352
+ (x(t), p(t))∂H
353
+ ∂xi (x(t), p(t))
354
+ = 0.
355
+ Therefore H(x(t), p(t)) is constant.
356
+
357
+ Remark 2. From Lemma 5, it follows that any solution ξ(t) := (x(t), p(t)) of
358
+ the sub-Hamiltonian differential equations on D∗ for a sub-Hamiltonian function
359
+ H(p) satisfies H(x(t), p(t)) = c. Let the projection x(t) = τ(ξ(t)) ∈ M, so each
360
+ sufficiently short subarc of x(t) is a minimizer sub-Finslerian geodesic, (see [11,
361
+ Corollary 2.2]). In addition, this subarc is the unique minimizer joining its end
362
+ points.
363
+ The projection curve x(t) mentioned above is said to be the normal sub-Finslerian
364
+ geodesics or simply the normal geodesics.
365
+ Remark 3. In the sub-Finslerian geometry, not all the sub-Finslerian geodesics
366
+ are normal (contrary to the Finsler geometry). This is due to the fact that the
367
+ sub-Finslerian geodesics which are also a minimizing geodesic might not be solved
368
+
369
+ HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY
370
+ 7
371
+ the sub-Hamiltonian system. Those minimizer that are not normal geodesics called
372
+ singular or abnormal geodesics (see [9] for more details).
373
+ Moreover, we call the extremal pair ξ(t) = (x(t), p(t)) a normal extremal if it
374
+ is a solution for the sub-Hamiltonian system, otherwise it is called an abnormal
375
+ extremal.
376
+ Turning to the relationship between the normal geodesic and the locally length-
377
+ minimizing horizontal curves, Calin et al. proved in [6] that any normal geodesic is
378
+ a horizontal curve and a locally length-minimizing horizontal curve. After all, by
379
+ using (3) one can generate the system of differential equations in terms of canonical
380
+ coordinates (x, p) as follows:
381
+ ˙xi = ∂H
382
+ ∂pi
383
+ =
384
+ k
385
+
386
+ j=1
387
+ ⟨p, Xj(p)⟩ (δi(Xj(p)) + ⟨p, DpiXj(p)⟩),
388
+ (5)
389
+ ˙pi = −∂H
390
+ ∂xi = −
391
+ k
392
+
393
+ j=1
394
+ ⟨p, Xj(p)⟩⟨p, DxiXj(p)⟩,
395
+ (6)
396
+ where δi is the i-th coordinate function.
397
+ 5. Exponential map in sub-Finsler geometry
398
+ Let (M, d) be a general metric space, such that M is an n-dimensional manifold
399
+ and the function d : M × M
400
+ � R+ ∪ {∞}, is called a metric if have the following
401
+ properties: for all x, y, z ∈ M,
402
+ (i) d(x, y) = 0, with equality if and only if x = y;
403
+ (ii) d(x, y) + d(y, z) ≤ d(x, z).
404
+ If the function d is an asymmetric, then we can define the forward metric balls and
405
+ forward metric spheres, with center x ∈ M and radius r > 0 as follows:
406
+ Bx(r) = { y ∈ M : d(x, y) < r},
407
+ Sx(r) = { y ∈ M : d(x, y) = r}.
408
+ The cotangent balls and the cotangent spheres in D∗ are defined as follows:
409
+ B∗
410
+ x(r) = { p ∈ D∗ : F ∗
411
+ x(p) < r},
412
+ S∗
413
+ x(r) = { p ∈ D∗ : F ∗
414
+ x(p) = r},
415
+ for any fix x ∈ M and radius r.
416
+ A subset U ⊂ M is said to be open if, for each point x ∈ U, there is a forward
417
+ metric ball about x contained in U. Then we get the topology on M and all metric
418
+ spaces are first countable and T1-spaces. In general, we assume that the metric d
419
+ of any metric space (M, d) is continuous with respect to the product topology on
420
+ M × M. Thus, every backward metric ball, i.e. B−
421
+ x (r) = { y ∈ M : d(y, x) < r},
422
+ is open and the metric space is a Hausdorff (T2) space. Hence the compact sets in
423
+ such a space are closed.
424
+ As a result of the above, we immediately have the following
425
+ Proposition 6. In a metric space (M, d) the following are equivalent:
426
+ (i) A sequence {xk} in (M, d) converges to x ∈ M in the sense of topology.
427
+ (ii) limk→∞ d(x, xk) = 0.
428
+
429
+ 8
430
+ LAYTH M. ALABDULSADA AND L´ASZL ´O KOZMA
431
+ Proposition 7. Let x be any point in a (reversible) sub-Finslerian manifold M,
432
+ and ¯Bx(r) is a compact ball, for some r > 0. Then for any y ∈ Bx(r) there is a
433
+ minimizing geodesic from x to y, that is,
434
+ d(x, y) = min{ℓ(γ) |γ : [0, T ]
435
+ � M horizontal, γ(0) = x, γ(T ) = y}.
436
+ Proof. Fix y ∈ Bx(r) and suppose that γk : [0, T ]
437
+ � M is a minimizing sequence
438
+ of horizontal paths with unit speed from x to y and such that
439
+ lim
440
+ k→∞ γk(0) = x,
441
+ lim
442
+ k→∞ γk(T ) = y,
443
+ lim
444
+ k→∞ ℓ(γk) = d(x, y).
445
+ For the reason that d(x, y) < r, we get ℓ(γk) ≤ r for all k ≥ k0 large enough.
446
+ Proposition 6 asserts that the metric d is continuous under the topology of the
447
+ manifold and the reversibility of F holds on a compact set.
448
+ Consequently, any
449
+ sequence γk of curves which have uniformly bounded lengths has an uniformly
450
+ convergent subsequence (Ascoli—Arzela theorem), we denote this subsequence by
451
+ the same symbol, and a Lipschitz curve γ : [0, T ]
452
+ � M.
453
+ From above one can assume that γk : [0, T ]
454
+ � M is a convergent subsequence
455
+ of length minimizers parametrized by arc length (i.e. F(˙γ(t)) = 1) on M such that
456
+ such that γk
457
+ � γ uniformly on [0, T ]. This gives that
458
+ ℓ(γk) = d(γk(0), γk(T )),
459
+ which is due to the claim that γk is a minimizing geodesic.
460
+ The sequence γk
461
+ converges uniformly if for every ǫ > 0 there is a natural number N such that for
462
+ all n ≥ N and all t ∈ [0, T ] one has d(γk(t), γ(t)) < ǫ. Further, the semicontinuity
463
+ of the length implies that if limk→∞ γk = γ then
464
+ ℓ(γ) ≤ lim
465
+ k→∞ inf ℓ(γk).
466
+ Now, by continuity of the distance, we obtain
467
+ ℓ(γ) ≤ lim
468
+ k→∞ inf ℓ(γk) = lim
469
+ k→∞ inf d(γk(0), γk(T )) = d(γ(0), γ(T )).
470
+ This yields that γ is minimizing geodesic, i.e.
471
+ ℓ(γ) = d(x, y).
472
+ The horizontal
473
+ property of γ follows in the same way as was done in [1], Theorem 3.41.
474
+
475
+ Next, we define the exponential map. For the general case, roughly speaking,
476
+ if M is a smooth Finsler manifold, x a point in M and u ∈ TxM.
477
+ Then the
478
+ exponential map is given by
479
+ expx : TxM
480
+ � M,
481
+ such that expx(u) = γu(1) for the unique geodesic γ that starts at x and has initial
482
+ speed vector u.
483
+ Furthermore, in the dual space the exponential map for every
484
+ x ∈ M and p ∈ T ∗
485
+ xM defined by
486
+ exp∗
487
+ x : T ∗
488
+ xM
489
+ � M,
490
+ such that exp∗
491
+ x(p) = γp(1) for the unique geodesic γ that starts at x and has initial
492
+ speed vector u = L−1
493
+ L (p), where L here is the Lagrangian of the Finsler manifold.
494
+ The exponential map is an essential object in sub-Finslerian geometry, parametriz-
495
+ ing normal extremals through their initial covectors. We are going to define the
496
+ exponential map in both of the distribution D, D∗ of the tangent and the cotangent
497
+ bundles respectively.
498
+
499
+ HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY
500
+ 9
501
+ Definition 8. Let Ωx ⊂ Dx be the domain of the exponential map over x ∈ M
502
+ such that Ωx given by
503
+ Ωx = {v ∈ Dx| ξ is defined on the interval [0, 1]} ,
504
+ where v = LH(p) by the Legendre transformation of sub-Hamiltonian H, and ξ(t)
505
+ is the normal extremal. Then the sub-Finsler exponential map is defined as follows
506
+ expx : Ωx ⊂ Dx ⊂ TxM
507
+ � M, v �→ πD(LH(ξ(1))).
508
+ We can do the same in the distribution D∗
509
+ x. Let Ω∗
510
+ x ⊂ D∗
511
+ x be the domain of the
512
+ exponential map over x ∈ M such that Ω∗
513
+ x given by
514
+ Ω∗
515
+ x = {p ∈ D∗
516
+ x| ξ is defined on the interval [0, 1]} .
517
+ Consequently, the sub-Hamiltonian exponential map is given by
518
+ exp∗
519
+ x : Ω∗
520
+ x ⊂ D∗
521
+ x ⊂ T ∗
522
+ xM
523
+ � M, p �→ τ(ξ(1)),
524
+ where ξ(t) is the same normal extremal as above. The set Ω∗
525
+ x contains the origin and
526
+ star-shaped with respect to 0. Moreover, with the help of Legendre transformation
527
+ it is fairly easy to see that
528
+ expx(v) = exp∗
529
+ x(p),
530
+ where
531
+ p = LL(v).
532
+ (7)
533
+ It follows that the normal sub-Finslerian geodesics x(t) = τ(ξ(t)) satisfies
534
+ x(t) = exp∗
535
+ x(tp),
536
+ for all t ∈ [0, T ].
537
+ Theorem 9. The exponential mapping exp∗
538
+ x is a local diffeomorphism on D∗
539
+ x ⊂
540
+ T ∗
541
+ xM\{0}.
542
+ Proof. In 4, we show the homogeneity of the sub-Hamiltonian function H(x, p) with
543
+ respect to p. So, for any constant a > 0, the curve ξ(at) : (ǫ/a, ǫ/a)
544
+ � M is the
545
+ same geodesic satisfying the initial conditions τ(ξp(0)) = x and ξp(0) = ap, i.e.,
546
+ τ(ξp(at)) = τ(ξap(t)).
547
+ Since the sub-Hamiltonian vector field
548
+ ⃗H(x, p) = gab(x, p)pb
549
+
550
+ ∂xa − 1
551
+ 2
552
+ ∂gab
553
+ ∂xk (x, p)papb
554
+
555
+ ∂pk
556
+ ,
557
+ that introduced in [2], is smooth except for p = 0 where it is C1. Then exp∗
558
+ x is C∞
559
+ on D∗
560
+ x ⊂ T ∗
561
+ xM\{0}, while it is C1 at p = 0 and d(exp∗
562
+ x)|0 = id. Thus, exp∗
563
+ x is a
564
+ local diffeomorphism.
565
+
566
+ By equation (7), one can get the following
567
+ Corollary 10. The sub-Finsler exponential map expx is a C∞ away from the zero
568
+ section of D and only C1 at the zero section such that for each x ∈ M
569
+ d(expx)|0 : Ωx ⊂ Dx
570
+ � Ωx ⊂ Dx,
571
+ is the identity map at the origin 0 ∈ Dx.
572
+ Remark 4. It is clear that in the case of sub-Finsler exponential map the following
573
+ expressions holds:
574
+ exp∗
575
+ x[B∗
576
+ x(r)] = Bx(r),
577
+ exp∗
578
+ x[S∗
579
+ x(r)] = Sx(r),
580
+ which are analogous to the Finslerian context, see Bao et al. [5] for more details.
581
+
582
+ 10
583
+ LAYTH M. ALABDULSADA AND L´ASZL ´O KOZMA
584
+ Remark 5. Turning to sub-Riemannian case, Strichartz in [13] stated that for
585
+ bracket generating distributions the exponential map is a local diffeomorphism.
586
+ This is due to the fact that the solutions of the sub-Hamiltonian system depend
587
+ differentially on the initial data.
588
+ But this is a difference from the Riemannian
589
+ context, the exponential map is not a diffeomorphism at the origin just like the
590
+ Finslerian case.
591
+ 6. Hopf-Rinow Theorem in sub-Finslerian geometry
592
+ In the following, one can see the explanation of the terms that will be used in
593
+ Hopf-Rinow Theorem. A sub-Finsler manifold is said to be forward complete if
594
+ every forward Cauchy sequence converges, and it is a forward geodesically complete
595
+ if every normal geodesic γ(t), t ∈ [0, T ) parametrized to have unit speed, can be
596
+ extended to a geodesic for all t ∈ [0, ∞). A subset is said to be forward bounded if
597
+ it is contained in some forward metric ball Bx(r).
598
+ Theorem 11. Let (M, D, F) be any connected sub-Finsler manifold, where D is
599
+ bracket generating distribution. The following conditions are equivalent:
600
+ (i) The metric space (M, d) is forward complete.
601
+ (ii) The sub-Finsler manifold (M, D, F) is forward geodesically complete.
602
+ (iii) Ω∗
603
+ x = D∗
604
+ x, additionally, the exponential map is onto if there are no strictly
605
+ abnormal minimizer.
606
+ (iv) Every closed and forward bounded subset of (M, d) is compact.
607
+ Furthermore, for any x, y ∈ M there exists a minimizing geodesic γ joining x to y,
608
+ i.e. the length of this geodesic is equal to the distance between these points.
609
+ Proof. (i) =⇒ (ii) Let γ(t) : [0, T )
610
+ � M be a unit speed and maximally forward
611
+ extended geodesic, t ∈ [0, T ). If we assume that T ̸= ∞, and choose a sequence
612
+ {ti}
613
+ � T in [0, T ) then γ(ti) is forward Cauchy, since
614
+ d(γ(ti), γ(tj)) ≤ |tj − ti|, for all i ≤ j.
615
+ Now, (i) makes it obvious that γ(ti) converges to y ∈ M. On one hand, let us
616
+ define γ(T ) to be y. On the other hand, Lemma 4.1 in [13] told us that γ(t) can
617
+ be extended beyond t = T . This contradicts our assumption the fact that T ̸= ∞.
618
+ Thus, T = ∞ for sure, so we have the forward geodesically completeness.
619
+ (ii) =⇒ (iii) It is sufficient (for first part Ω∗
620
+ x = D∗
621
+ x) to prove that any normal
622
+ extremal pair ξ(t), starting from the initial conditions, is defined for all t ∈ R.
623
+ Suppose that the normal extremal is not extendable to the some interval [0, T +δ) for
624
+ all δ > 0 and suppose that it is defined on [0, T ). Let {ti} be any increasing sequence
625
+ such that the limit of this sequence is T . Hence, the projection x(t) = τ(ξ(t)) is
626
+ a curve with unit speed defined on [0, T ), therefore, the sequence {ti} is a forward
627
+ Cauchy sequence on M, since
628
+ d(x(ti), x(tj)) ≤ |ti − tj|.
629
+ By completeness, it follows that the sequence x(ti) converges to some point
630
+ y ∈ M. We suppose there are coordinates around the point y and an orthonormal
631
+ frame X1, X2, ..., Xk in small ball B∗
632
+ y(r) in the sub-Finsler bundle. Let us show
633
+ that in the coordinates ξ(t) = (x(t), p(t)) the curve x(t) is uniformly bounded. This
634
+ grants a contradiction that the normal extremal is not extendable. In fact, for every
635
+
636
+ HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY
637
+ 11
638
+ p ∈ D∗, we consider the following non-negative form (3) of the sub-Hamiltonian
639
+ function H:
640
+ H(x, p) = 1
641
+ 2
642
+ k
643
+
644
+ i=1
645
+ ⟨p, Xi(p)⟩2.
646
+ Then, the sub-Hamiltonian system has the form:
647
+ ˙xi(t) = ∂H
648
+ ∂pi
649
+ (x(t), p(t)) =
650
+ k
651
+
652
+ j=1
653
+ ⟨p(t), Xj(p(t))⟩(δi(Xj(p)) + ⟨p, DpiXj(p)⟩),
654
+ ˙pi(t) = −∂H
655
+ ∂xi (x(t), p(t)) = −
656
+ k
657
+
658
+ j=1
659
+ ⟨p(t), Xj(p(t))⟩⟨p(t), DxiXj(p(t))⟩,
660
+ for t ∈ [T − δ, T ) with δ > 0 small enough. Since Dγ(t)Xi are given in a compact
661
+ small ball ¯B∗
662
+ y(r), they are bounded, so there is a constant C > 0 such that
663
+ | ˙p(t)| ≤ C|p(t)|
664
+ ∀t ∈ [T − δ, T ).
665
+ If we apply Gronwall’s Lemma (see [12], p.122), it leads us to that |p(t)| is uniformly
666
+ bounded on a bounded interval. This contradicts our assumption that the normal
667
+ extremal can not be extended beyond T .
668
+ (iii) =⇒ (iv) Assume that ¯A is a closed and forward bounded subset of (M, d).
669
+ Applying the bracket generating assumption, for every y ∈ ¯A, Proposition 7 asserts
670
+ that there is a minimizing geodesic exp∗
671
+ x(tpy), 0 ≤ t ≤ T, from x to y. The set of all
672
+ py is subset A of D∗
673
+ x. Since F ∗
674
+ x (py) = d(x, y), and d(x, y) ≤ r for some r due to the
675
+ forward boundedness of ¯A, the subset A is bounded and contained in the compact
676
+ set B∗
677
+ x(r) ∪ S∗
678
+ x(r). By Remark 4, exp∗
679
+ x[B∗
680
+ x(r) ∪ S∗
681
+ x(r)] is compact and contained in
682
+ the closed set ¯A, then ¯A it must be compact.
683
+ (iv) =⇒ (i) Let {xi} be a forward Cauchy sequence in M, and by the subaddi-
684
+ tivity it must be forward bounded. Choose A := {xi|i ∈ N}, then its closure ¯A is
685
+ still forward bounded under the manifold topology of M. Taking into account the
686
+ assumption (iv), ¯A should satisfy the compactness property, therefore, the sequence
687
+ {xi} contains a convergent subsequence.
688
+ Let {xk} be a convergent subsequence, consider it converges to some y ∈ ¯A ⊂ M.
689
+ In other hand, we need to check that {xi} converges to y ∈ ¯A ⊂ M. To do this,
690
+ fix ǫ > 0, since {xi} is forward Cauchy, there exist a positive number n0 such that
691
+ j > i ≥ n0, then
692
+ d(xi, xj) < ǫ
693
+ 2.
694
+ At the same time {xk} converge to y. So there is a positive number n1 such that
695
+ if k ≥ n1, then
696
+ d(xk, y) < ǫ
697
+ 2.
698
+ One can assume that n is greater than n0 and n1. If needed, by expanding n
699
+ further, there is no loss of generality in assuming that n indeed equals some index
700
+ of the convergent subsequence. Then d(xn, y) ≤ ǫ
701
+ 2, so, for i > n, we get
702
+ d(xi, y) ≤ d(xi, xn) + d(xn, y)< ǫ
703
+ 2 + ǫ
704
+ 2 = ǫ.
705
+ So, we have been shown that every forward Cauchy sequence is convergent. Hence
706
+ (M, d) is forward complete.
707
+
708
+ 12
709
+ LAYTH M. ALABDULSADA AND L´ASZL ´O KOZMA
710
+ At the end, we can use the same proof of Proposition 7 to verify that for every
711
+ x, y ∈ M there exists a length minimizing geodesic joining x and y, and it has
712
+ to be normal geodesic by Remark 2.
713
+ Finally, the property of compactness and
714
+ completeness with help of Proposition 7, proves the second part of (iii).
715
+
716
+ References
717
+ [1] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to Sub-Riemannian
718
+ geometry. Cambridge Studies in Advanced Mathematics (2019).
719
+ [2] L. M. Alabdulsada, L. Kozma, On the connection of sub-Finslerian geometry. Int. J. Geom.
720
+ Methods Mod. Phys. 16, No. supp02, 1941006 (2019)
721
+ [3] L. M. Alabdulsada, A note on the distributions in quantum mechanical systems. J. Phys.:
722
+ Conf. Ser. 1999, (2021), 012112
723
+ [4] L. M. Alabdulsada, Sub-Finsler geometry and nonholonomic mechanics. Submitted
724
+ [5] D. Bao, S.-S. Chern, Z. Shen, An Introduction to Riemann-Finsler geometry, Graduate Texts
725
+ in Mathematics 200. Springer-Verlag, New York, (2000).
726
+ [6] O. Calin, D. Chang, Subriemannian geometry, a variational approach. J. Differential Geom.
727
+ 80 (2008), no. 1, 23–43.
728
+ [7] P. do Carmo, Riemannian geometry. Mathematics:
729
+ Theory & Applications. Birkh¨auser
730
+ Boston, Inc., Boston, MA, (1992).
731
+ [8] W.-L. Chow, ¨Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung.
732
+ Math. Ann. 117 (1939) 98-105.
733
+ [9] R. Montgomery, A Tour of Subriemannian Geometries, their Geodesics and Applications,
734
+ Mathematical Surveys and Monographs 91. Amer. Math. Soc., Providence, RI, (2002).
735
+ [10] B. O’Neill, Semi-Riemannian Geometry. With applications to Relativity. Pure and Applied
736
+ Mathematics, 103. Academic Press, Inc. New York, (1983).
737
+ [11] C. B. Rayner, The Exponential Map for the Lagrange Problem on Differentiable Manifolds.
738
+ Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Phys-
739
+ ical Sciences Vol. 262, No. 1127 (Oct. 6, 1967), pp. 299-344 (46 pages) Published By: Royal
740
+ Society
741
+ [12] L. Rifford, Sub-Riemannian geometry and optimal transport. Springer, (2014).
742
+ [13] R. Strichartz, Sub-Riemannian geometry. J. Differ. Geom. 24 (1986), 221-263; correction
743
+ ibid. 30 (1989), 595-596.
744
+ Layth M. Alabdulsada, Institute of Mathematics, University of Debrecen, H-4002
745
+ Debrecen, P.O. Box 400, Hungary
746
+ Email address: [email protected]
747
+ L´aszl´o Kozma, Institute of Mathematics, University of Debrecen, H-4002 Debrecen,
748
+ P.O. Box 400, Hungary
749
+ Email address: [email protected]
750
+
99FQT4oBgHgl3EQf6TZx/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf,len=387
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
3
+ page_content='13438v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
4
+ page_content='DG] 31 Jan 2023 HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY LAYTH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
5
+ page_content=' ALABDULSADA AND L´ASZL ´O KOZMA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
6
+ page_content=' The sub-Finslerian geometry means that the metric F is defined only on a given subbundle of the tangent bundle, called a horizontal bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
7
+ page_content=' In the paper, a version of the Hopf-Rinow theorem is proved in the case of sub- Finslerian manifolds, which relates the properties of completeness, geodesically completeness, and compactness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
8
+ page_content=' The sub-Finsler bundle, the exponential map and the Legendre transformation are deeply involved in this investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
9
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
10
+ page_content=' Introduction In the Riemannian and Finslerian geometry, there are two concepts of complete- ness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
11
+ page_content=' The first is the completeness in the sense of metric spaces, using the Riemann- ian metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
12
+ page_content=' Secondly, a Riemannian or Finsler manifold M is called geodesically complete if any geodesic γ(t) starting from x ∈ M is defined for all values of t ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
13
+ page_content=' On the other hand, the completeness in the Finsler geometry is divided into forward and backward geodesically completenesses, according to forward and backward distance metrics, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
14
+ page_content=' Hopf-Rinow theorem is a basic theorem of complete Riemannian manifolds, which connects the completeness properties with compactness, and the exponen- tial map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
15
+ page_content=' Its consequence says that any two points of a complete manifold can be connected by a length minimizing geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
16
+ page_content=' In 1931, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
17
+ page_content=' Hopf and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
18
+ page_content=' Rinow showed their theorem only for surfaces, but the proof in higher dimensions is not significantly different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
19
+ page_content=' Hopf-Rinow theorem has been studied in detail in both Rie- mannian and Finslerian geometries in the literature, the best general references here are [5, 7], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
20
+ page_content=' In the Finsler case forward geodesic completeness is involved, only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
21
+ page_content=' After a development of the sub-Riemannian geometry as well as its generaliza- tion, namely sub-Finslerian geometry, the generalization of core theorems of Rie- mannian geometry has been started.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
22
+ page_content=' Relating to our issue, Strichartz [13], Rifford [12] and Agrachev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
23
+ page_content=' [1] gave an extension for a sub-Riemannian case, while Bao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
24
+ page_content=' [5] showed the Finslerian version of Hopf-Rinow theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
25
+ page_content=' It turned out that in sub-Riemannian geometry, for general complete sub-Riemannian structures, the exponential mapping is not surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
26
+ page_content=' This is due to the fact that we may have abnormal minimizing curves and this is the case in the sub-Finslerian context, too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
27
+ page_content=' To prove the statements of Hopf-Rinow theorem in the sub-Finsler setting, we need the following concepts and explanations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
28
+ page_content=' First, in Section 2 we review some of the standard facts of sub-Finsler geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
29
+ page_content=' In the third Section, we extend our discussion about the Legendre transformation (see [2]) to define the sub-Finsler 2000 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
30
+ page_content=' 53C60, 53C17, 53C22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
31
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
32
+ page_content=' sub-Finslerian geometry;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
33
+ page_content=' sub-Hamiltonian geometry;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
34
+ page_content=' Legendre trans- formation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
35
+ page_content=' sub-Finsler bundle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
36
+ page_content=' normal geodesics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
37
+ page_content=' Exponential map;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
38
+ page_content=' Hopf-Rinow theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
39
+ page_content=' 1 2 LAYTH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
40
+ page_content=' ALABDULSADA AND L´ASZL ´O KOZMA manifold on the distribution D∗ of the cotangent space, where we look more closely at a sub-Hamiltonian H defined on D∗, induced by the sub-Finslerian metric F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
41
+ page_content=' Afterwards, we construct a sub-Finsler bundle, which plays a major role in the for- malization of the sub-Hamiltonian in sub-Finsler geometry, in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
42
+ page_content=' Moreover, the sub-Finsler bundle allows an orthonormal frame for the sub-Finsler structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
43
+ page_content=' In Section 5, we introduce the notion of an exponential map in sub-Finsler geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
44
+ page_content=' In the last section our main theorem is stated and proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
45
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
46
+ page_content=' Definitions and some properties of sub-Finsler manifolds In this section we review some of the standard facts on the sub-Finsler metrics and set up the notations and the terminology which will play an essential role in this paper, for more details we refer the reader to [2, 3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
47
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
48
+ page_content=' Let M be an n–dimensional connected manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
49
+ page_content=' A sub-Finslerian structure on M is a triple (D, σ, F) where: (1) (D, πD) is a vector bundle on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
50
+ page_content=' (2) σ : D � T M is a morphism of vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
51
+ page_content=' In particular, the following diagram is commutative M π � D T M σ � M πD �❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ such that πD : D � M and π : T M � M are the canonical projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
52
+ page_content=' (3) A function F : �D → R, where �D = D \\ {0}, called a sub-Finsler metric, which satisfies the following properties: (Positive definiteness): Fx(v) > 0 for all v ∈ �D, x ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
53
+ page_content=' (Regularity): F is smooth, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
54
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
55
+ page_content=' C∞ on �D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
56
+ page_content=' (Positive homogeneity): Fx(λv) = λFx(v) for all v ∈ �Dx and λ ∈ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
57
+ page_content=' (Strong convexity condition): The Hessian matrix of F 2 with respect to the coordinates on the fibre is positive definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
58
+ page_content=' One can replace the strong convexity condition by the following subad- ditivity property (in an equivalent terminology, a triangle inequality): Fx(v + u) ⩽ Fx(v) + Fx(u), for all v, u ∈ �D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
59
+ page_content=' A sub-Finsler manifold is a smooth manifold M endowed with a sub-Finslerian structure, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
60
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
61
+ page_content=' the triple (D, σ, F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
62
+ page_content=' Let Dx be the fiber over x ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
63
+ page_content=' The last condition of the sub-Finsler metric means that the matrix ∂2F 2 ∂vi∂vj (x, v) is positive definite for all v = (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
64
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
65
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
66
+ page_content=' , vk) ∈ Dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
67
+ page_content=' Equivalently, the corresponding indicatrix Ix = {v | v ∈ Dx, Fx(v) = 1} is strictly convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
68
+ page_content=' The following technique describes the association between the sub-Finsler struc- ture (D, σ, F) and a Finsler metric ˆF on Im(σ) ⊂ T M: For each u ∈ Im(σ)x ⊂ TxM and x ∈ M, we have ˆFx(u) = inf v {Fx(v)| v ∈ Dx, σ(v) = u}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
69
+ page_content=' HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY 3 From now on we suppose that D ⊂ T M, σ : D � T M is the inclusion i : D � T M and F is a sub-Finsler metric on D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
70
+ page_content=' As in the sub-Riemannian case, we call D the horizontal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
71
+ page_content=' A piecewise smooth curve γ : [0, T ] → M is called horizontal, or admissible if ˙γ(t) ∈ Dγ(t) for all t ∈ [0, T ], that is, γ(t) is tangent to D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
72
+ page_content=' The length of γ is defined as usual by ℓ(γ) = � T 0 F(˙γ(t))dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
73
+ page_content=' Equivalently, as in the Finslerian case, we observe that it suffices to minimize the energy E(γ) = 1 2 � T 0 F 2(˙γ(t))dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
74
+ page_content=' instead of length ℓ(γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
75
+ page_content=' The length induces a sub-Finslerian distance d(x, y) between two points x and y as in Finsler geometry: d(x, y) = inf{ℓ(γ) |γ : [0, T ] � M horizontal, γ(0) = x, γ(T ) = y}, where we consider the infimum over all horizontal curves joining x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
76
+ page_content=' The distance is infinite if there is no such a horizontal curve between x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
77
+ page_content=' In addition, the horizontal curve γ : [0, T ] → M is called a length minimizing (or simply a minimizing) geodesic, if it realizes the distance between its end points, that is, ℓ(γ) = d(γ(0), γ(T )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
78
+ page_content=' Chow theorem answers to the following question: given two points x and y in a sub-Finsler manifold, is there a horizontal curve that joins x and y?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
79
+ page_content=' In the case of an involutive distribution D the Frobenius theorem asserts that the set of the horizontal paths through S form a smooth immersed submanifold, the leaf through x, of dimension equal to the rank of distribution k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
80
+ page_content=' In this case, if D is involutive and y is not contained in the leaf through y, there is no any horizontal curve joining x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
81
+ page_content=' A positive answer is given by the Chow theorem in the case of bracket generating distributions, which are the ”contrary” of the involutive distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
82
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
83
+ page_content=' [9] A distribution D is said to be bracket generating if any local frame Xi of D, together with all of its iterated Lie brackets spans the whole tangent bundle T M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
84
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
85
+ page_content=' (Chow’s theorem [9]) If D is a bracket generating distribution on a connected manifold M then any two points of M can be joined by a horizontal path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
86
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
87
+ page_content=' The problem of minimizing the length of a curve joining two given points x and y is equivalent to a time optimal problem: where the control bundle is (D, πD, M) and we are searching for such a curve γ(t) and a control curve v(t) ∈ Dγ(t) minimizing the time T needed to connect x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
88
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
89
+ page_content=' Legendre transformation of sub-Finslerian geometry Let D∗ be a distribution of rank s on a smooth manifold M that assigns to each point x ∈ U ⊂ M a linear subspace D∗ x ⊂ T ∗ xM of dimension s, see [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
90
+ page_content=' In other words, D∗ of rank s is a smooth subbundle of rank s of the cotangent bundle 4 LAYTH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
91
+ page_content=' ALABDULSADA AND L´ASZL ´O KOZMA T ∗M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
92
+ page_content=' Such a field of cotangent s-planes is spanned locally by s pointwise linear independent smooth differential 1-forms, namely, D∗ x = span{α1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
93
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
94
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
95
+ page_content=' , αs(x)}, αi(x) ∈ X∗(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
96
+ page_content=' In addition, we refer to D0 x as the annihilator of the distribution D (isomorphic to D), of rank n − k, which is the set of all covectors that annihilates the vectors in Dx, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
97
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
98
+ page_content=' D0 x = {α ∈ T ∗ xM : α(v) = 0 ∀ v ∈ Dx}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
99
+ page_content=' (1) In [2], we introduced the Legendre transformation of sub-Finsler geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
100
+ page_content=' Let us briefly recall it: The sub-Lagrange function L : D �R, determined by F is given in the following way: L = 1 2F 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
101
+ page_content=' The fiber derivative of L defines the map LL : D � D∗, LL(v)(w) = d dtLx(v + tw), where v, w ∈ Dx, called the Legendre transformation of (M, D, F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
102
+ page_content=' We denote by (xi) the coordinate in a neighborhood U ⊂ M with (xi, va) in D|U ⊂ T M, and (xi, pa) in D∗|U ⊂ T ∗M, respectively, where i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
103
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
104
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
105
+ page_content=' , n, a = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
106
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
107
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
108
+ page_content=' , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
109
+ page_content=' Then the relation of the distribution D of the tangent bundle and the distribution D∗ of the cotangent bundle is given by the Legendre transformation in local coordinates as follows LL(xi, va) = (xi, ∂L ∂va ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
110
+ page_content=' Then the sub-Hamiltonian is given by H : D∗ � R, H = ιL−1 L − L ◦ L−1 L , where ιv(p) = ⟨v, p⟩ = p(v) for any v = L−1 L (p) ∈ D and p ∈ D∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
111
+ page_content=' Moreover, locally given by, H(xi, pa) = vapa − L(xi, va), where pa = ∂L ∂va .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
112
+ page_content=' Secondly, using the fiber derivative of H, we define the Legendre transformation of the sub-Hamiltonian H in the following way: LH : D∗ � D, For any p, q ∈ D∗ x, it holds q(LH(p)) = d dtH(x, p + tq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
113
+ page_content=' This locally relates the distribution D∗ of the cotangent bundle and the distribution D of the tangent bundle according to the next expression: LH(xi, pa) = (xi, ∂H ∂pa ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
114
+ page_content=' Naturally, LL and LH are inverses of each other: LH ◦ LL = 1D, LL ◦ LH = 1D∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
115
+ page_content=' HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY 5 In other hand, for every p ∈ D∗ x, one can define the sub-Finsler metric F ∗ ∈ �D∗ ∼ T ∗M \\ D0 with help of the indicatrix Ix as follows: F ∗ x(p) := sup w∈Ix p(w) = sup 0̸=v∈Dx p[ v Fx(v)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
116
+ page_content=' Observed that �D∗ is the subbundle of the cotangent bundle obtained by removing the zero cotangent vector from each fibre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
117
+ page_content=' In fact, F ∗ turns out to meet the same properties that mentioned in Definition 1, but on D∗ instead of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
118
+ page_content=' Then F ∗(p) = F(v), where p = LL(v), and H := 1 2(F ∗)2, see details in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
119
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
120
+ page_content=' Sub-Finsler bundle We define in this section a sub-Finsler vector bundle which will play a major role in the formalization of the sub-Hamiltonian in sub-Finsler geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
121
+ page_content=' Let us consider first the covector subbundle (D∗, τ, M) with the projection τ : D∗ � M, which is a subbundle of rank k (= dim D∗) in the cotangent bundle of T ∗M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
122
+ page_content=' The illustrious role in our consideration will play by the pullback bundle τ ∗(τ) = (D∗×D∗, pr1, D∗) of τ by τ as follows: D∗ ×M D∗ := {(p, q) ∈ D∗ × D∗| τ(p) = τ(q)}, pr1 : D∗ ×M D∗ � D∗, (p, q) �→ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
123
+ page_content=' Throughout, we call the above pullback bundle as the sub-Finsler bundle over D∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
124
+ page_content=' Now, if p is fixed, then (pr1)−1(p) = {(p, q) ∈ D∗ × D∗| q ∈ D∗ τ(q)} = {p} × D∗ τ(p), is a fiber of the sub-Finsler bundle over p ∈ D∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
125
+ page_content=' We can introduce a Riemannian metric g∗ on the sub-Finsler vector bundle induced by the sub-Hamiltonian H as follows: ⟨q, r⟩p = g∗ p(q, r) := ∂2H(p + tq + sr) ∂t∂s |t,s=0 for all q, r ∈ D∗ τ(p), which locally means g∗ij = ∂2H ∂pi∂pj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
126
+ page_content=' Now the sub-Finsler bundle τ ∗(τ) allows k covector fields X1, X2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
127
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
128
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
129
+ page_content=' , Xk which form an orthonormal frame with respect to the induced Riemannian metric g∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
130
+ page_content=' Notice that Xi(p) is a covector field that depends on the position x ∈ M and the direction p ∈ D∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
131
+ page_content=' Moreover, one can choose in a way that Xi(p) is a homogeneous of degree zero in p, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
132
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
133
+ page_content=' Xi(tp) = t0Xi(p) = Xi(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
134
+ page_content=' According to the above metric g∗ij on M which is homogeneous of degree zero, we could generate a new formalism of the sub-Hamiltonian function in the components pi (induces naturally by the inner product, see [6]) H(x, p) = 1 2 n ��� i,j=1 g∗ijpipj, (2) 6 LAYTH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
135
+ page_content=' ALABDULSADA AND L´ASZL ´O KOZMA such that this metric defined in the extended Finsler metric which was shown in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
136
+ page_content=' We can write the sub-Hamiltonian function (2) in a more useful way using the orthonormality of Xi as follows H(x, p) = 1 2 k � i=1 ⟨p, Xi(p)⟩2, p ∈ D∗ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
137
+ page_content=' (3) One can easily check the homogeneity of degree 2 in p of the sub-Hamiltonian function H(x, p): H(x, tp) = 1 2 k � i=1 ⟨tp, Xi(tp)⟩2 = t2 2 k � i=1 ⟨p, Xi(p)⟩2 = t2H(x, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
138
+ page_content=' (4) The importance of H(x, p) is to define sub-Finslerian geodesics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
139
+ page_content=' Our function H(x, p) produces a system of sub-Hamiltonian differential equations, since it is a smooth function on D∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
140
+ page_content=' Such differential equations are in terms of canonical coordinates (xi, pi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
141
+ page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
142
+ page_content=' The generated sub-Hamiltonian differential equations ˙xi = ∂H ∂pi (x, p), ˙pi = −∂H ∂xi (x, p), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
143
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
144
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
145
+ page_content=' , n, are called normal geodesic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
146
+ page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
147
+ page_content=' If ξ(t) := (x(t), p(t)) is a solution of the sub-Hamiltonian system for all t ∈ R, then there exists a constant c ∈ R such that H(x(t), p(t)) = c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
148
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
149
+ page_content=' Taking the derivative of H(x(t), p(t)) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
150
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
151
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
152
+ page_content=' t, we get d dtH(x(t), p(t)) = ∂H ∂xi (x(t), p(t)) ˙x(t) + ∂H ∂pi (x(t), p(t)) ˙p(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
153
+ page_content=' Replacing ˙x(t) and ˙p(t) by the above sub-Hamiltonian differential equations in the Definition 4, we obtain d dtH(x(t), p(t))) = ∂H ∂xi (x(t), p(t))∂H ∂pi (x(t), p(t)) − ∂H ∂pi (x(t), p(t))∂H ∂xi (x(t), p(t)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
154
+ page_content=' Therefore H(x(t), p(t)) is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
155
+ page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
156
+ page_content=' From Lemma 5, it follows that any solution ξ(t) := (x(t), p(t)) of the sub-Hamiltonian differential equations on D∗ for a sub-Hamiltonian function H(p) satisfies H(x(t), p(t)) = c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
157
+ page_content=' Let the projection x(t) = τ(ξ(t)) ∈ M, so each sufficiently short subarc of x(t) is a minimizer sub-Finslerian geodesic, (see [11, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
158
+ page_content='2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
159
+ page_content=' In addition, this subarc is the unique minimizer joining its end points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
160
+ page_content=' The projection curve x(t) mentioned above is said to be the normal sub-Finslerian geodesics or simply the normal geodesics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
161
+ page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
162
+ page_content=' In the sub-Finslerian geometry, not all the sub-Finslerian geodesics are normal (contrary to the Finsler geometry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
163
+ page_content=' This is due to the fact that the sub-Finslerian geodesics which are also a minimizing geodesic might not be solved HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY 7 the sub-Hamiltonian system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
164
+ page_content=' Those minimizer that are not normal geodesics called singular or abnormal geodesics (see [9] for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
165
+ page_content=' Moreover, we call the extremal pair ξ(t) = (x(t), p(t)) a normal extremal if it is a solution for the sub-Hamiltonian system, otherwise it is called an abnormal extremal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
166
+ page_content=' Turning to the relationship between the normal geodesic and the locally length- minimizing horizontal curves, Calin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
167
+ page_content=' proved in [6] that any normal geodesic is a horizontal curve and a locally length-minimizing horizontal curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
168
+ page_content=' After all, by using (3) one can generate the system of differential equations in terms of canonical coordinates (x, p) as follows: ˙xi = ∂H ∂pi = k � j=1 ⟨p, Xj(p)⟩ (δi(Xj(p)) + ⟨p, DpiXj(p)⟩), (5) ˙pi = −∂H ∂xi = − k � j=1 ⟨p, Xj(p)⟩⟨p, DxiXj(p)⟩, (6) where δi is the i-th coordinate function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
169
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
170
+ page_content=' Exponential map in sub-Finsler geometry Let (M, d) be a general metric space, such that M is an n-dimensional manifold and the function d : M × M � R+ ∪ {∞}, is called a metric if have the following properties: for all x, y, z ∈ M, (i) d(x, y) = 0, with equality if and only if x = y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
171
+ page_content=' (ii) d(x, y) + d(y, z) ≤ d(x, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
172
+ page_content=' If the function d is an asymmetric, then we can define the forward metric balls and forward metric spheres, with center x ∈ M and radius r > 0 as follows: Bx(r) = { y ∈ M : d(x, y) < r}, Sx(r) = { y ∈ M : d(x, y) = r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
173
+ page_content=' The cotangent balls and the cotangent spheres in D∗ are defined as follows: B∗ x(r) = { p ∈ D∗ : F ∗ x(p) < r}, S∗ x(r) = { p ∈ D∗ : F ∗ x(p) = r}, for any fix x ∈ M and radius r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
174
+ page_content=' A subset U ⊂ M is said to be open if, for each point x ∈ U, there is a forward metric ball about x contained in U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
175
+ page_content=' Then we get the topology on M and all metric spaces are first countable and T1-spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
176
+ page_content=' In general, we assume that the metric d of any metric space (M, d) is continuous with respect to the product topology on M × M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
177
+ page_content=' Thus, every backward metric ball, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
178
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
179
+ page_content=' B− x (r) = { y ∈ M : d(y, x) < r}, is open and the metric space is a Hausdorff (T2) space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
180
+ page_content=' Hence the compact sets in such a space are closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
181
+ page_content=' As a result of the above, we immediately have the following Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
182
+ page_content=' In a metric space (M, d) the following are equivalent: (i) A sequence {xk} in (M, d) converges to x ∈ M in the sense of topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
183
+ page_content=' (ii) limk→∞ d(x, xk) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
184
+ page_content=' 8 LAYTH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
185
+ page_content=' ALABDULSADA AND L´ASZL ´O KOZMA Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
186
+ page_content=' Let x be any point in a (reversible) sub-Finslerian manifold M, and ¯Bx(r) is a compact ball, for some r > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
187
+ page_content=' Then for any y ∈ Bx(r) there is a minimizing geodesic from x to y, that is, d(x, y) = min{ℓ(γ) |γ : [0, T ] � M horizontal, γ(0) = x, γ(T ) = y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
188
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
189
+ page_content=' Fix y ∈ Bx(r) and suppose that γk : [0, T ] � M is a minimizing sequence of horizontal paths with unit speed from x to y and such that lim k→∞ γk(0) = x, lim k→∞ γk(T ) = y, lim k→∞ ℓ(γk) = d(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
190
+ page_content=' For the reason that d(x, y) < r, we get ℓ(γk) ≤ r for all k ≥ k0 large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
191
+ page_content=' Proposition 6 asserts that the metric d is continuous under the topology of the manifold and the reversibility of F holds on a compact set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
192
+ page_content=' Consequently, any sequence γk of curves which have uniformly bounded lengths has an uniformly convergent subsequence (Ascoli—Arzela theorem), we denote this subsequence by the same symbol, and a Lipschitz curve γ : [0, T ] � M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
193
+ page_content=' From above one can assume that γk : [0, T ] � M is a convergent subsequence of length minimizers parametrized by arc length (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
194
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
195
+ page_content=' F(˙γ(t)) = 1) on M such that such that γk � γ uniformly on [0, T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
196
+ page_content=' This gives that ℓ(γk) = d(γk(0), γk(T )), which is due to the claim that γk is a minimizing geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
197
+ page_content=' The sequence γk converges uniformly if for every ǫ > 0 there is a natural number N such that for all n ≥ N and all t ∈ [0, T ] one has d(γk(t), γ(t)) < ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
198
+ page_content=' Further, the semicontinuity of the length implies that if limk→∞ γk = γ then ℓ(γ) ≤ lim k→∞ inf ℓ(γk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
199
+ page_content=' Now, by continuity of the distance, we obtain ℓ(γ) ≤ lim k→∞ inf ℓ(γk) = lim k→∞ inf d(γk(0), γk(T )) = d(γ(0), γ(T )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
200
+ page_content=' This yields that γ is minimizing geodesic, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
201
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
202
+ page_content=' ℓ(γ) = d(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
203
+ page_content=' The horizontal property of γ follows in the same way as was done in [1], Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
204
+ page_content='41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
205
+ page_content=' □ Next, we define the exponential map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
206
+ page_content=' For the general case, roughly speaking, if M is a smooth Finsler manifold, x a point in M and u ∈ TxM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
207
+ page_content=' Then the exponential map is given by expx : TxM � M, such that expx(u) = γu(1) for the unique geodesic γ that starts at x and has initial speed vector u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
208
+ page_content=' Furthermore, in the dual space the exponential map for every x ∈ M and p ∈ T ∗ xM defined by exp∗ x : T ∗ xM � M, such that exp∗ x(p) = γp(1) for the unique geodesic γ that starts at x and has initial speed vector u = L−1 L (p), where L here is the Lagrangian of the Finsler manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
209
+ page_content=' The exponential map is an essential object in sub-Finslerian geometry, parametriz- ing normal extremals through their initial covectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
210
+ page_content=' We are going to define the exponential map in both of the distribution D, D∗ of the tangent and the cotangent bundles respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
211
+ page_content=' HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY 9 Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
212
+ page_content=' Let Ωx ⊂ Dx be the domain of the exponential map over x ∈ M such that Ωx given by Ωx = {v ∈ Dx| ξ is defined on the interval [0, 1]} , where v = LH(p) by the Legendre transformation of sub-Hamiltonian H, and ξ(t) is the normal extremal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
213
+ page_content=' Then the sub-Finsler exponential map is defined as follows expx : Ωx ⊂ Dx ⊂ TxM � M, v �→ πD(LH(ξ(1))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
214
+ page_content=' We can do the same in the distribution D∗ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
215
+ page_content=' Let Ω∗ x ⊂ D∗ x be the domain of the exponential map over x ∈ M such that Ω∗ x given by Ω∗ x = {p ∈ D∗ x| ξ is defined on the interval [0, 1]} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
216
+ page_content=' Consequently, the sub-Hamiltonian exponential map is given by exp∗ x : Ω∗ x ⊂ D∗ x ⊂ T ∗ xM � M, p �→ τ(ξ(1)), where ξ(t) is the same normal extremal as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
217
+ page_content=' The set Ω∗ x contains the origin and star-shaped with respect to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
218
+ page_content=' Moreover, with the help of Legendre transformation it is fairly easy to see that expx(v) = exp∗ x(p), where p = LL(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
219
+ page_content=' (7) It follows that the normal sub-Finslerian geodesics x(t) = τ(ξ(t)) satisfies x(t) = exp∗ x(tp), for all t ∈ [0, T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
220
+ page_content=' Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
221
+ page_content=' The exponential mapping exp∗ x is a local diffeomorphism on D∗ x ⊂ T ∗ xM\\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
222
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
223
+ page_content=' In 4, we show the homogeneity of the sub-Hamiltonian function H(x, p) with respect to p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
224
+ page_content=' So, for any constant a > 0, the curve ξ(at) : (ǫ/a, ǫ/a) � M is the same geodesic satisfying the initial conditions τ(ξp(0)) = x and ξp(0) = ap, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
225
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
226
+ page_content=', τ(ξp(at)) = τ(ξap(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
227
+ page_content=' Since the sub-Hamiltonian vector field ⃗H(x, p) = gab(x, p)pb ∂ ∂xa − 1 2 ∂gab ∂xk (x, p)papb ∂ ∂pk , that introduced in [2], is smooth except for p = 0 where it is C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
228
+ page_content=' Then exp∗ x is C∞ on D∗ x ⊂ T ∗ xM\\{0}, while it is C1 at p = 0 and d(exp∗ x)|0 = id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
229
+ page_content=' Thus, exp∗ x is a local diffeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
230
+ page_content=' □ By equation (7), one can get the following Corollary 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
231
+ page_content=' The sub-Finsler exponential map expx is a C∞ away from the zero section of D and only C1 at the zero section such that for each x ∈ M d(expx)|0 : Ωx ⊂ Dx � Ωx ⊂ Dx, is the identity map at the origin 0 ∈ Dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
232
+ page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
233
+ page_content=' It is clear that in the case of sub-Finsler exponential map the following expressions holds: exp∗ x[B∗ x(r)] = Bx(r), exp∗ x[S∗ x(r)] = Sx(r), which are analogous to the Finslerian context, see Bao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
234
+ page_content=' [5] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
235
+ page_content=' 10 LAYTH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
236
+ page_content=' ALABDULSADA AND L´ASZL ´O KOZMA Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
237
+ page_content=' Turning to sub-Riemannian case, Strichartz in [13] stated that for bracket generating distributions the exponential map is a local diffeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
238
+ page_content=' This is due to the fact that the solutions of the sub-Hamiltonian system depend differentially on the initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
239
+ page_content=' But this is a difference from the Riemannian context, the exponential map is not a diffeomorphism at the origin just like the Finslerian case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
240
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
241
+ page_content=' Hopf-Rinow Theorem in sub-Finslerian geometry In the following, one can see the explanation of the terms that will be used in Hopf-Rinow Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
242
+ page_content=' A sub-Finsler manifold is said to be forward complete if every forward Cauchy sequence converges, and it is a forward geodesically complete if every normal geodesic γ(t), t ∈ [0, T ) parametrized to have unit speed, can be extended to a geodesic for all t ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
243
+ page_content=' A subset is said to be forward bounded if it is contained in some forward metric ball Bx(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
244
+ page_content=' Theorem 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
245
+ page_content=' Let (M, D, F) be any connected sub-Finsler manifold, where D is bracket generating distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
246
+ page_content=' The following conditions are equivalent: (i) The metric space (M, d) is forward complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
247
+ page_content=' (ii) The sub-Finsler manifold (M, D, F) is forward geodesically complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
248
+ page_content=' (iii) Ω∗ x = D∗ x, additionally, the exponential map is onto if there are no strictly abnormal minimizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
249
+ page_content=' (iv) Every closed and forward bounded subset of (M, d) is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
250
+ page_content=' Furthermore, for any x, y ∈ M there exists a minimizing geodesic γ joining x to y, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
251
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
252
+ page_content=' the length of this geodesic is equal to the distance between these points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
253
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
254
+ page_content=' (i) =⇒ (ii) Let γ(t) : [0, T ) � M be a unit speed and maximally forward extended geodesic, t ∈ [0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
255
+ page_content=' If we assume that T ̸= ∞, and choose a sequence {ti} � T in [0, T ) then γ(ti) is forward Cauchy, since d(γ(ti), γ(tj)) ≤ |tj − ti|, for all i ≤ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
256
+ page_content=' Now, (i) makes it obvious that γ(ti) converges to y ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
257
+ page_content=' On one hand, let us define γ(T ) to be y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
258
+ page_content=' On the other hand, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
259
+ page_content='1 in [13] told us that γ(t) can be extended beyond t = T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
260
+ page_content=' This contradicts our assumption the fact that T ̸= ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
261
+ page_content=' Thus, T = ∞ for sure, so we have the forward geodesically completeness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
262
+ page_content=' (ii) =⇒ (iii) It is sufficient (for first part Ω∗ x = D∗ x) to prove that any normal extremal pair ξ(t), starting from the initial conditions, is defined for all t ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
263
+ page_content=' Suppose that the normal extremal is not extendable to the some interval [0, T +δ) for all δ > 0 and suppose that it is defined on [0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
264
+ page_content=' Let {ti} be any increasing sequence such that the limit of this sequence is T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
265
+ page_content=' Hence, the projection x(t) = τ(ξ(t)) is a curve with unit speed defined on [0, T ), therefore, the sequence {ti} is a forward Cauchy sequence on M, since d(x(ti), x(tj)) ≤ |ti − tj|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
266
+ page_content=' By completeness, it follows that the sequence x(ti) converges to some point y ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
267
+ page_content=' We suppose there are coordinates around the point y and an orthonormal frame X1, X2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
268
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
269
+ page_content=', Xk in small ball B∗ y(r) in the sub-Finsler bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
270
+ page_content=' Let us show that in the coordinates ξ(t) = (x(t), p(t)) the curve x(t) is uniformly bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
271
+ page_content=' This grants a contradiction that the normal extremal is not extendable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
272
+ page_content=' In fact, for every HOPF-RINOW THEOREM OF SUB-FINSLERIAN GEOMETRY 11 p ∈ D∗, we consider the following non-negative form (3) of the sub-Hamiltonian function H: H(x, p) = 1 2 k � i=1 ⟨p, Xi(p)⟩2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
273
+ page_content=' Then, the sub-Hamiltonian system has the form: ˙xi(t) = ∂H ∂pi (x(t), p(t)) = k � j=1 ⟨p(t), Xj(p(t))⟩(δi(Xj(p)) + ⟨p, DpiXj(p)⟩), ˙pi(t) = −∂H ∂xi (x(t), p(t)) = − k � j=1 ⟨p(t), Xj(p(t))⟩⟨p(t), DxiXj(p(t))⟩, for t ∈ [T − δ, T ) with δ > 0 small enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
274
+ page_content=' Since Dγ(t)Xi are given in a compact small ball ¯B∗ y(r), they are bounded, so there is a constant C > 0 such that | ˙p(t)| ≤ C|p(t)| ∀t ∈ [T − δ, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
275
+ page_content=' If we apply Gronwall’s Lemma (see [12], p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
276
+ page_content='122), it leads us to that |p(t)| is uniformly bounded on a bounded interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
277
+ page_content=' This contradicts our assumption that the normal extremal can not be extended beyond T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
278
+ page_content=' (iii) =⇒ (iv) Assume that ¯A is a closed and forward bounded subset of (M, d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
279
+ page_content=' Applying the bracket generating assumption, for every y ∈ ¯A, Proposition 7 asserts that there is a minimizing geodesic exp∗ x(tpy), 0 ≤ t ≤ T, from x to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
280
+ page_content=' The set of all py is subset A of D∗ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
281
+ page_content=' Since F ∗ x (py) = d(x, y), and d(x, y) ≤ r for some r due to the forward boundedness of ¯A, the subset A is bounded and contained in the compact set B∗ x(r) ∪ S∗ x(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
282
+ page_content=' By Remark 4, exp∗ x[B∗ x(r) ∪ S∗ x(r)] is compact and contained in the closed set ¯A, then ¯A it must be compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
283
+ page_content=' (iv) =⇒ (i) Let {xi} be a forward Cauchy sequence in M, and by the subaddi- tivity it must be forward bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
284
+ page_content=' Choose A := {xi|i ∈ N}, then its closure ¯A is still forward bounded under the manifold topology of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
285
+ page_content=' Taking into account the assumption (iv), ¯A should satisfy the compactness property, therefore, the sequence {xi} contains a convergent subsequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
286
+ page_content=' Let {xk} be a convergent subsequence, consider it converges to some y ∈ ¯A ⊂ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
287
+ page_content=' In other hand, we need to check that {xi} converges to y ∈ ¯A ⊂ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
288
+ page_content=' To do this, fix ǫ > 0, since {xi} is forward Cauchy, there exist a positive number n0 such that j > i ≥ n0, then d(xi, xj) < ǫ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
289
+ page_content=' At the same time {xk} converge to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
290
+ page_content=' So there is a positive number n1 such that if k ≥ n1, then d(xk, y) < ǫ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
291
+ page_content=' One can assume that n is greater than n0 and n1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
292
+ page_content=' If needed, by expanding n further, there is no loss of generality in assuming that n indeed equals some index of the convergent subsequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
293
+ page_content=' Then d(xn, y) ≤ ǫ 2, so, for i > n, we get d(xi, y) ≤ d(xi, xn) + d(xn, y)< ǫ 2 + ǫ 2 = ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
294
+ page_content=' So, we have been shown that every forward Cauchy sequence is convergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
295
+ page_content=' Hence (M, d) is forward complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
296
+ page_content=' 12 LAYTH M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
297
+ page_content=' ALABDULSADA AND L´ASZL ´O KOZMA At the end, we can use the same proof of Proposition 7 to verify that for every x, y ∈ M there exists a length minimizing geodesic joining x and y, and it has to be normal geodesic by Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
298
+ page_content=' Finally, the property of compactness and completeness with help of Proposition 7, proves the second part of (iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
299
+ page_content=' □ References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
300
+ page_content=' Agrachev, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
301
+ page_content=' Barilari, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
302
+ page_content=' Boscain, A Comprehensive Introduction to Sub-Riemannian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
303
+ page_content=' Cambridge Studies in Advanced Mathematics (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
304
+ page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
305
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
306
+ page_content=' Alabdulsada, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
307
+ page_content=' Kozma, On the connection of sub-Finslerian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
308
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
309
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
310
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
311
+ page_content=' Methods Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
312
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
313
+ page_content=' 16, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
314
+ page_content=' supp02, 1941006 (2019) [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
315
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
316
+ page_content=' Alabdulsada, A note on the distributions in quantum mechanical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
317
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
318
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
319
+ page_content=' : Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
320
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
321
+ page_content=' 1999, (2021), 012112 [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
322
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
323
+ page_content=' Alabdulsada, Sub-Finsler geometry and nonholonomic mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
324
+ page_content=' Submitted [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
325
+ page_content=' Bao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
326
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
327
+ page_content=' Chern, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
328
+ page_content=' Shen, An Introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
329
+ page_content=' Springer-Verlag, New York, (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
330
+ page_content=' [6] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
331
+ page_content=' Calin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
332
+ page_content=' Chang, Subriemannian geometry, a variational approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
333
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
334
+ page_content=' Differential Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
335
+ page_content=' 80 (2008), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
336
+ page_content=' 1, 23–43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
337
+ page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
338
+ page_content=' do Carmo, Riemannian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
339
+ page_content=' Mathematics: Theory & Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
340
+ page_content=' Birkh¨auser Boston, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
341
+ page_content=', Boston, MA, (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
342
+ page_content=' [8] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
343
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
344
+ page_content=' Chow, ¨Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
345
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
346
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
347
+ page_content=' 117 (1939) 98-105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
348
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
349
+ page_content=' Montgomery, A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical Surveys and Monographs 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
350
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
351
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
352
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
353
+ page_content=', Providence, RI, (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
354
+ page_content=' [10] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
355
+ page_content=' O’Neill, Semi-Riemannian Geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
356
+ page_content=' With applications to Relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
357
+ page_content=' Pure and Applied Mathematics, 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
358
+ page_content=' Academic Press, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
359
+ page_content=' New York, (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
360
+ page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
361
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
362
+ page_content=' Rayner, The Exponential Map for the Lagrange Problem on Differentiable Manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
363
+ page_content=' Philosophical Transactions of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
364
+ page_content=' Series A, Mathematical and Phys- ical Sciences Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
365
+ page_content=' 262, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
366
+ page_content=' 1127 (Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
367
+ page_content=' 6, 1967), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
368
+ page_content=' 299-344 (46 pages) Published By: Royal Society [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
369
+ page_content=' Rifford, Sub-Riemannian geometry and optimal transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
370
+ page_content=' Springer, (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
371
+ page_content=' [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
372
+ page_content=' Strichartz, Sub-Riemannian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
373
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
374
+ page_content=' Differ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
375
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
376
+ page_content=' 24 (1986), 221-263;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
377
+ page_content=' correction ibid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
378
+ page_content=' 30 (1989), 595-596.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
379
+ page_content=' Layth M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
380
+ page_content=' Alabdulsada, Institute of Mathematics, University of Debrecen, H-4002 Debrecen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
381
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
382
+ page_content=' Box 400, Hungary Email address: layth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
383
+ page_content='muhsin@science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
384
+ page_content='unideb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
385
+ page_content='hu L´aszl´o Kozma, Institute of Mathematics, University of Debrecen, H-4002 Debrecen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
386
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
387
+ page_content=' Box 400, Hungary Email address: kozma@unideb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
388
+ page_content='hu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FQT4oBgHgl3EQf6TZx/content/2301.13438v1.pdf'}
AtE1T4oBgHgl3EQfpAWX/content/2301.03327v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feae64199d627c41a69ce1429eb78662e9a653f59c38ca361b91a9a80d4f2124
3
+ size 734544
AtE1T4oBgHgl3EQfpAWX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0976edfcf02abf4fd229fa998b0c144dd9328c035bf51a19845a2ab1042f3b7e
3
+ size 2162733
B9AzT4oBgHgl3EQfTfz1/content/2301.01252v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeee073aaed5777c2f87602dfaef128ddc2e9578d1184b120432c8d892cc0fd2
3
+ size 2193389
B9AzT4oBgHgl3EQfTfz1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c5c80cd9908a66ab55ca2227c58ba3764c6ede86784b811d65c808bd3458215
3
+ size 227296
CNAzT4oBgHgl3EQfh_3R/content/tmp_files/2301.01494v1.pdf.txt ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analyzing I/O Performance of a Hierarchical
2
+ HPC Storage System for Distributed Deep
3
+ Learning
4
+ Takaaki Fukai1[0000−0003−4216−4807], Kento Sato2, and Takahiro
5
+ Hirofuchi1[0000−0002−1253−6625]
6
+ 1 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
7
+ Japan
8
+ {takaaki.fukai, t.hirofuchi}@aist.go.jp
9
+ 2 RIKEN Center for Computational Science, Kobe, Japan
10
11
+ Abstract. Today, deep learning is an essential technology for our life.
12
+ To solve more complex problems with deep learning, both sizes of train-
13
+ ing datasets and neural networks are increasing. To train a model with
14
+ large datasets and networks, distributed deep neural network (DDNN)
15
+ training technique is necessary. For large-scale DDNN training, HPC
16
+ clusters are a promising computation environment. In large-scale DDNN
17
+ on HPC clusters, I/O performance is critical because it is becoming a
18
+ bottleneck. Most flagship-class HPC clusters have hierarchical storage
19
+ systems. For designing future HPC storage systems, it is necessary to
20
+ quantify the performance improvement effect of the hierarchical storage
21
+ system on the workloads. This paper demonstrates the quantitative per-
22
+ formance analysis of the hierarchical storage system for DDNN workload
23
+ in a flagship-class supercomputer. Our analysis shows how much perfor-
24
+ mance improvement and volume increment of the storage will be required
25
+ to meet the performance goal.
26
+ Keywords: Deep neural network · Distributed deep neural network
27
+ training · I/O performance · Hierarchical storage system · High per-
28
+ formance computing
29
+ 1
30
+ Introduction
31
+ Today, the demand for large-scale deep learning has significantly increased. The
32
+ sizes of training models and datasets for the training are expanding to meet
33
+ the demand. For example, training models for image classification, such as Ef-
34
+ ficientNet [19] with large datasets, such as OpenImages dataset [10] are used.
35
+ Some computational science applications also use deep learning methods such
36
+ as CosmoFlow [12] and DeepCam [9]. A single machine does not have enough
37
+ computational and memory capacity for these large workloads. Therefore, dis-
38
+ tributed deep neural network (DDNN) training technique, which allows training
39
+ arXiv:2301.01494v1 [cs.DC] 4 Jan 2023
40
+
41
+ 2
42
+ T. Fukai et al.
43
+ models on multiple machines connected by a network, is necessary. HPC, opti-
44
+ mized for huge and distributed workloads, are promising environments for large
45
+ training workloads.
46
+ I/O is becoming a bottleneck in the training workloads for the following
47
+ reasons [14,16]. The first reason is dataset growth. The size of datasets is in-
48
+ creasing for training higher quality models [11,5]. Large datasets that do not fit
49
+ in memory cause training applications to issue many I/O requests. The second
50
+ reason is expanding performance gap between computation and I/O. Although
51
+ computation time is becoming shorter by distributed execution techniques, I/O
52
+ performance is not improved. This expands the performance gap. Therefore the
53
+ I/O performance of future HPC clusters is crucial.
54
+ For designing a storage system for future HPC, it is crucial but difficult to
55
+ find out what improvement of storage systems would achieve a performance goal
56
+ of a target I/O intensive DDNN workload. The first reason why it is difficult is
57
+ that most storage systems in flagship-class HPC clusters are hierarchical, which
58
+ combines fast but small storage, and a slow but large storage system [17,20].
59
+ Therefore, it is unclear which we should pay our cost for the throughput of the
60
+ global or local filesystems or the volume for the local file system. The second
61
+ reason is that tuning a DNN application for distributed execution requires several
62
+ weeks or months for a new cluster or processor architecture. Therefore, we need a
63
+ much cost and time to find out the I/O bottleneck in a DDNN training workload.
64
+ This paper shows a case study on the performance analysis of a hierarchical
65
+ storage system for DDNN workload and the estimation of necessary improve-
66
+ ment of the storage systems to meet a performance goal. To reveal the effect
67
+ of faster storage, we first measure the I/O operations time of a synthetic I/O
68
+ intensive training workload with various proportions of fast and slow storage
69
+ sizes. Then we estimate the impact of storage system improvement on the train-
70
+ ing performance based on a result of the I/O performance analysis. The method
71
+ can estimate the contribution of various improvement of a hierarchical storage
72
+ system, to overall the training performance.
73
+ The contributions of this work are: (1) A methodology to study the I/O
74
+ bottleneck of DDNN training workloads in the hierarchical storage system; (2)
75
+ A methodology to explore options for improvement of a storage system to achieve
76
+ a performance goal of DDNN training workloads.
77
+ The remainder of this paper is organized as follows. Section 2 explains the
78
+ background. Section 3 reviews the related work. Section 4 explains our method.
79
+ Section 5 demonstrates our methods on a flagship-class supercomputer. Section 6
80
+ discusses the potential of the method. Conclusions are presented in Section 7.
81
+ 2
82
+ Background
83
+ 2.1
84
+ File access in distributed neural network workloads
85
+ The file access pattern by DNN training applications is different from that in
86
+ scientific computational applications. In training, stochastic gradient descent
87
+
88
+ Title Suppressed Due to Excessive Length
89
+ 3
90
+ (SGD) is a common technique to improve training speed and accuracy[3,13,22].
91
+ In SGD, a program splits a training dataset into mini-batch and inputs a mini-
92
+ batch to the neural network. To avoid the degradation of training accuracy due
93
+ to a fixed input order, it shuffles the order of the files of the dataset every
94
+ time when inputting all samples to the neural network. Therefore the program
95
+ accesses each file once an epoch in a random order. It is hard to apply general
96
+ cache policies because of less time and spatial locality. If the dataset is larger
97
+ than the memory volume for page caches, the cache miss on reading file often
98
+ occurs. It is a reason why I/O is easy to be the bottleneck.
99
+ In distributed training, multiple compute nodes read the dataset simultane-
100
+ ously. In data-parallel, which is one of common parallelizing techniques, each
101
+ compute node has a part of the dataset and calculates it. There are two data
102
+ shuffling manners called local shuffling and global shuffling. Local shuffle means
103
+ that each process only shuffles and reads a part of the dataset. On the other
104
+ hand, global shuffle means that the application shuffles the whole dataset and
105
+ splits it for each computer every epoch. Local shuffling is easy to use local stor-
106
+ age for each computer because the computer needs to access only the initial
107
+ allocated part of the dataset. However, it reduces the training accuracy because
108
+ it reduces the randomness of the input dataset. In some cases, the local shuffle
109
+ approach is not suitable due to the accuracy degradation. On the other hand,
110
+ the global shuffling does not affect the training accuracy, but replacing the part
111
+ of the dataset for each epoch is a heavy I/O workload, especially, training with
112
+ a large dataset and a large number of computers. Therefore, we focus on the
113
+ global shuffling in this paper.
114
+ 2.2
115
+ Storage system in HPC
116
+ Recent flagship class HPC clusters provide a hierarchical storage system. Hi-
117
+ erarchical storage systems typically consist of a small but fast storage system
118
+ and a large but slow storage system. HPC clusters often provide the former as
119
+ a local file system (LFS) and the latter as a global file system (GFS). Summit
120
+ [20] provides node-local burst buffers (node-local NVMe SSD) and a parallel file
121
+ system (IBM’s SpectrumScale GPFS™). Fugaku[17] also provides a hierarchical
122
+ storage system that consists of the 1st level storage (an SSD for every 16 nodes)
123
+ and the 2nd level storage (a Global storage system). We assume that DDNN
124
+ applications in a global shuffle manner use the local storage in the hierarchical
125
+ storage as the cache of global storage. An important question to answer to de-
126
+ sign future storage systems in HPC for machine learning workload is the best
127
+ balance of fast and slow storage from the viewpoint of size and performance.
128
+ 3
129
+ Related work
130
+ There are several works to analyze and model the DNN performance. Wang et
131
+ al. proposed a modeling method for the DNN training workload based on the
132
+
133
+ 4
134
+ T. Fukai et al.
135
+ Roofline model [21]. They focus on the performance of the computation and
136
+ memory accesses however the I/O performance is not considered.
137
+ There are several works for analyzing and optimizing I/O performance for
138
+ DDNN workloads. Several works [16,14] have analyzed the I/O performance
139
+ for the DDNN and proposed optimization methods. Devarajan et al. proposed a
140
+ benchmark to measure the I/O performance for DDNN and find the opportunity
141
+ for tuning I/O parameters [7,6]. These works assume a non-hierarchical storage
142
+ system. We focus on I/O performance of hierarchical storage systems.
143
+ Several works [23,18,24,8] assume hierarchical storage systems in their I/O
144
+ optimization method for DDNN workloads. They focus on application-level op-
145
+ timization to solve the I/O bottleneck. On the other hand, our work is toward
146
+ performance improvement of storage systems.
147
+ Paul et al. analyzed the I/O log generated by all the jobs on Supercomputer
148
+ Summit during a year [15]. They revealed the tendency of ML jobs and the usage
149
+ of the storage system by them, especially, the usage of the burst buffer. In this
150
+ work, the 23,389 ML jobs of 845,036 jobs in 2020 on Summit were analyzed. The
151
+ analysis results suggested a rapid increment in the use of ML technologies in
152
+ HPC, and some of the ML jobs used the burst buffer in addition to the GPFS.
153
+ This work analyzes the comprehensive analysis of the real ML workload from the
154
+ viewpoint of usage of the hierarchical storage system in the HPC environment.
155
+ Our work analyzes the I/O performance of hierarchical storage systems in detail.
156
+ 4
157
+ Methodology
158
+ 4.1
159
+ Overview
160
+ Our analysis method is composed of three steps, (1) measuring I/O performance,
161
+ (2) analyzing measurement results, and (3) estimating the impact of the speed-
162
+ up of global and local storage on training performance.
163
+ In the measurement, we execute a DDNN benchmark with profiling the I/O
164
+ on a hierarchical storage system. The benchmark reads a dataset from the hier-
165
+ archical storage system and uses LFS as the cache of GFS. To reveal how LFS
166
+ contributes to overall the I/O performance, we measure the I/O performance
167
+ with various proportions of the size of the cached data on LFS. We expect that
168
+ the performance characteristics depend on a performance balance of GFS and
169
+ LFS as well as the sizes of files in a dataset. Therefore, we measure the I/O
170
+ performance with multiple performance balances and the file sizes combination.
171
+ In the analyzing step, we analyze the profiling data separately by file system
172
+ and by type of I/O operations. To do this, we break down the I/O time into
173
+ the following four I/O classes based on the I/O profiling data obtained in the
174
+ benchmark execution. GFS-READ is a class for read operations on a GFS, GFS-
175
+ META is a class for metadata operations (open(), close()) on a GFS, LFS-
176
+ READ is a class for read operations on an LFS, and LFS-META is a class for
177
+ metadata operations on an LFS. Note that file operations on the dataset in a
178
+ DNN training are only open(), close(), and read() because applications do
179
+
180
+ Title Suppressed Due to Excessive Length
181
+ 5
182
+ not make any modifications and new samples. We target the I/O time of the
183
+ slowest process among all parallel processes, because it is the most dominant for
184
+ the overall training time.
185
+ In the estimating step, we extrapolate from the above results, expected train-
186
+ ing time enabled by the speed-up of global and local storage. We first calculate
187
+ the expected overall I/O operation time on the assumption that the speed of an
188
+ I/O class is improved by a given ratio. We also calculate the expected impact
189
+ on training time by the performance improvement of multiple I/O classes and
190
+ which combination of the improvement will satisfy the performance goal.
191
+ 4.2
192
+ Measuring I/O performance by benchmark
193
+ To measure the I/O performance, we use DLIO [7] benchmark, a benchmark for
194
+ I/O performance on distributed deep neural network workloads. DLIO bench-
195
+ mark supports distributed execution and generating the synthetic dataset for
196
+ the benchmark. However, it does not support hierarchical storage. Therefore, we
197
+ add the three functions to DLIO for our measurement of hierarchical storage sys-
198
+ tems. The functions are (1) Reading the dataset from both GFS and LFS with a
199
+ specified proportion, (2) Global shuffling, and (3) Generating the synthetic files
200
+ on the local filesystem by each compute node.
201
+ In the benchmark execution, the cached files are not evicted, in other words,
202
+ the cache policy is pinning. As described in Section 2, the training application
203
+ accesses all samples the same number of times. Therefore, the cache hit rate with
204
+ the pinning policy is the same as the percentage of the cached file [14].
205
+ We prepare two datasets, a small file dataset and a large file emulating Ima-
206
+ geNet dataset and CosmoFlow dataset respectively. The small file dataset con-
207
+ sists of 128 KiB files and the large file dataset consists of 12 MiB files. The
208
+ numbers of files in the small and large datasets are 589824 and 6144 respec-
209
+ tively. The total size of both datasets is 72 GiB so that whole of the dataset can
210
+ be on the LFS and all of the processes read the same number of files. Because
211
+ the entire dataset cannot be put on the memory of each compute node (32 GiB),
212
+ the benchmark application reads the files from the filesystem. The file format in
213
+ both datasets is tfrecord, and the number of samples in each file is one.
214
+ To measure the I/O performance with multiple performance balances of the
215
+ GFS and LFS, we measure the I/O performance with different numbers of the
216
+ object storage targets (OSTs) of the lustre-based GFS. We can limit the number
217
+ of OSTs to 1 by lfs command. Therefore, we measure the I/O performance with
218
+ all provided OSTs (faster GFS) and 1 OST (slower GFS).
219
+ To measure the I/O performance in the benchmark execution, we use Dar-
220
+ shan [2], which is a profiling tool for I/O. Darshan can capture and record each
221
+ file operations such as open(), close(), and read().
222
+ 4.3
223
+ Analyzing the I/O performance
224
+ To reveal the bottleneck in detail, we break down the I/O time of the slowest
225
+ process into the following four I/O classes and recognize which I/O class is a
226
+
227
+ 6
228
+ T. Fukai et al.
229
+ bottleneck. We calculate the I/O time for each process and find the slowest one,
230
+ which dominates the training performance. We analyze the I/O performance
231
+ from the log generated by darshan using darshan-parser command [1]. We cal-
232
+ culate for each I/O time based on POSIX_F_READ_TIME and POSIX_F_META_TIME.
233
+ 4.4
234
+ Estimate performance by storage improvement
235
+ To estimate impact of N% throughput improvement of a I/O class, we calcu-
236
+ late ×
237
+ 100
238
+ 100+N of the measured time of the I/O class. The improvement may not
239
+ directly affect the total I/O time because the improvement may change the bot-
240
+ tleneck to another I/O class. Therefore, we calculate total I/O time for each
241
+ process with the improvement of a class, then pick the slowest process.
242
+ 5
243
+ Experiment results
244
+ 5.1
245
+ Setup for experiment
246
+ We perform the experiments on Supercomputer Fugaku[17]. Compute nodes of
247
+ Fugaku has 48 computing cores of A64FX and 32 GiB HBM2 memory. Fugaku
248
+ has a hierarchical filesystem comprising the 1st- and 2nd-level filesystems named
249
+ LLIO and FEFS, respectively. In our measurement, we regard the LLIO as a local
250
+ filesystem (LFS) and the FEFS as a global filesystem (GFS). FEFS is a lustre-
251
+ based parallel filesystem and it has 60 OSTs in Fugaku. One per 192 compute
252
+ nodes connected to the FEFS by InfiniBand EDR. The other compute nodes
253
+ connected by TofuD access to FEFS via the network and the compute node.
254
+ For LLIO, one per 16 compute nodes has an NVMe SSD and the other compute
255
+ nodes connected access to the SSD via the network and the compute node. LLIO
256
+ provides three areas, node temporary area, shared temporary area, and 2nd-layer
257
+ cache area[4]. In our measurement, we only use node temporary areas, which is
258
+ a dedicated area for a compute node, because the transparent cache does not
259
+ allow us to control caching files of the dataset on LLIO.
260
+ In our measurement, we run the DLIO benchmark on the 768 compute nodes
261
+ of Supercomputer Fugaku as batch jobs. The four processes execute on every
262
+ compute nodes, so that total number of processes is 3072. The node layout is
263
+ 8×6×16 in the TofuD torus network. We also pass an option to the job scheduler
264
+ to strict the position of the node connected to the GFS.
265
+ Before executing the benchmark job, we generate the datasets on the GFS.
266
+ Because the system removes data on LFS after finishing the job, every benchmark
267
+ job generates the same dataset on LFS as GFS. Note that the job generates the
268
+ dataset instead of copying the dataset from GFS to reduce the setup time.
269
+ We execute the benchmark with every 5% from 0% to 100% cache rate.
270
+ We set the calculation time in the DLIO to zero. Therefore, the DLIO reports
271
+ only the I/O and data processing time. The number of epochs is three to avoid
272
+ making the darshan log files huge. The prefetch of the dataloader is enabled so
273
+ that it is not synchronized for each iteration even if the computation threads are
274
+ synchronized for all-reduce communication. The batch size is 12 for the small
275
+ file dataset and 2 for the large file dataset.
276
+
277
+ Title Suppressed Due to Excessive Length
278
+ 7
279
+ 0
280
+ 10
281
+ 20
282
+ 30
283
+ 40
284
+ 50
285
+ 60
286
+ 70
287
+ 80
288
+ 90
289
+ 100
290
+ Percentage of the cache(%)
291
+ 0
292
+ 10
293
+ 20
294
+ 30
295
+ 40
296
+ Time in an epoch (seconds)
297
+ Small file dataset with faster GFS
298
+ 0
299
+ 10
300
+ 20
301
+ 30
302
+ 40
303
+ 50
304
+ 60
305
+ 70
306
+ 80
307
+ 90
308
+ 100
309
+ Percentage of the cache(%)
310
+ 0
311
+ 20
312
+ 40
313
+ 60
314
+ 80
315
+ 100
316
+ Small file dataset with slower GFS
317
+ 0
318
+ 10
319
+ 20
320
+ 30
321
+ 40
322
+ 50
323
+ 60
324
+ 70
325
+ 80
326
+ 90
327
+ 100
328
+ Percentage of the cache(%)
329
+ 0
330
+ 2
331
+ 4
332
+ 6
333
+ Large file dataset with faster GFS
334
+ Epoch
335
+ #0 (DLIO)
336
+ #1 (DLIO)
337
+ #2 (DLIO)
338
+ #0 (Darshan)
339
+ #1 (Darshan)
340
+ #2 (Darshan)
341
+ Fig. 1: Execution time of DLIO benchmark and I/O time reported by Darshan
342
+ 5.2
343
+ Measuring execution time for epochs
344
+ In our experiments, we first measure the execution time of the DLIO benchmark
345
+ and I/O time in the benchmark execution with various settings as mentioned
346
+ in 4.2. We reveal the difference in the performance depending on file sizes in
347
+ the datasets and speeds of GFS. Additionally, by comparing the execution time
348
+ reported by the benchmark and the total I/O time reported by the I/O profiler,
349
+ we verify that the benchmark is I/O intensive.
350
+ Figure 1 shows the execution time and I/O time for each epoch in a job. The
351
+ x-axes of the graphs show the percentage of the files on the LFS. The y-axes
352
+ show the execution time of an epoch. The graph shows the results of 3 epochs
353
+ in a benchmark execution. The lines with round markers are the execution time
354
+ reported by the DLIO benchmark, and those with triangular markers are the
355
+ I/O time reported by Darshan. Because the I/O time of the slowest I/O process
356
+ is dominant, we calculate and plot them as I/O time on the graph.
357
+ The results show that the impact of the LFS on the training performance
358
+ depends on the file sizes and the performance balance of GFS and LFS. The
359
+ effect of the LFS with the 1 OST of GFS is larger than that with the 60 OSTs.
360
+ The reason is the performance difference between LFS and GFS on the 1 OST
361
+ is larger than that on 60 OSTs. In 12 MiB files workload with 60 OST of GFS,
362
+ the LFS does not contribute to the performance improvement, and using only
363
+ the GFS with the 60 OST is the best.
364
+ About the I/O time, the graph indicates that the execution time is constantly
365
+ longer about 2 sec, but it is strongly related to the I/O time. This result indicate
366
+ that the I/O time of the slowest process during the synchronizations among the
367
+ processes strongly interrelates to the training performance.
368
+ 5.3
369
+ Analyzing I/O performance
370
+ Next, we classify the Darshan records into the four I/O classes and calculate
371
+ the I/O time for each class. Figure 2 shows the result of the breakdown of the
372
+ #2 epoch in the previous graphs. Each line shows the total I/O time same as
373
+
374
+ 8
375
+ T. Fukai et al.
376
+ 0
377
+ 10
378
+ 20
379
+ 30
380
+ 40
381
+ 50
382
+ 60
383
+ 70
384
+ 80
385
+ 90
386
+ 100
387
+ Percentage of the cache(%)
388
+ 0
389
+ 10
390
+ 20
391
+ 30
392
+ Time in an epoch (seconds)
393
+ Small file dataset with faster GFS
394
+ 0
395
+ 10
396
+ 20
397
+ 30
398
+ 40
399
+ 50
400
+ 60
401
+ 70
402
+ 80
403
+ 90
404
+ 100
405
+ Percentage of the cache(%)
406
+ 0
407
+ 25
408
+ 50
409
+ 75
410
+ 100
411
+ Small file dataset with slower GFS
412
+ 0
413
+ 10
414
+ 20
415
+ 30
416
+ 40
417
+ 50
418
+ 60
419
+ 70
420
+ 80
421
+ 90
422
+ 100
423
+ Percentage of the cache(%)
424
+ 0
425
+ 1
426
+ 2
427
+ Large file dataset with faster GFS
428
+ Total I/O time
429
+ GFS-META
430
+ GFS-READ
431
+ LFS-META
432
+ LFS-READ
433
+ Fig. 2: Break down the I/O time of the slowest process for each epoch (Note:
434
+ Range of y-axis are different)
435
+ Figure 1. According to the result, the bottleneck is different depending on the
436
+ setup.
437
+ In 128 KiB files workload with the faster GFS, the bottleneck is GFS-META
438
+ when less than 60% of data is on the LFS. On the other hand, the bottleneck is
439
+ changed to LFS-READ with more than 60% cached data on LFS. We think
440
+ when more than 60% of data is put on LFS, LFS throughput is saturated.
441
+ Therefore, the read time from LFS is linearly increased with the percentage of
442
+ the cached data. So putting more than 60% of data on the cache in the workload
443
+ does not contribute to the training performance. For example, in training with
444
+ ImageNet dataset whose size is almost 150 GB, almost the 90 GiB LFS for each
445
+ compute node is enough to achieve the best I/O performance by the hierarchical
446
+ storage system. With the 60% cached data, both GFS-META and LFS-READ
447
+ are included in the I/O time of the slowest process.
448
+ As compared with the faster GFS, the I/O bottleneck in the workload with
449
+ the slower GFS is much different. The graph in the middle of Figure 2 shows
450
+ that the bottleneck is GFS-READ instead of GFS-META with small percentages
451
+ of the LFS (less than 80%). We think that the reason why GFS-META time
452
+ becomes shorter is reducing the load on the metadata server of FEFS due to the
453
+ lower throughput of the GFS.
454
+ As compared with the small files workload, the I/O bottleneck in the large
455
+ files workload with the faster GFS is also much different. The right side graph
456
+ in Figure 2 shows that the bottleneck is the LFS-READ in most of the cases.
457
+ Because the number of metadata operations is much smaller than that in the
458
+ small file workload, the GFS fully provides its bandwidth without the bottleneck
459
+ by the metadata operation. As a result, the total bandwidth of the GFS is higher
460
+ than LFS. It means that the number of compute nodes is not enough to take
461
+ advantage of the scalability of the LFS. Note that the 768 nodes are not so large
462
+ scale as a workload in Fugaku, however from viewpoint of the machine learning
463
+ workload, the number of nodes is large enough to lead to a large batch problem.
464
+ From viewpoint of exploration of storage design for a performance goal, the
465
+ result on small file dataset and faster GFS (the left side graph in Figure 2)
466
+
467
+ Title Suppressed Due to Excessive Length
468
+ 9
469
+ 0
470
+ 5
471
+ 10
472
+ 15
473
+ 20
474
+ 25
475
+ 30
476
+ 35
477
+ 40
478
+ 45
479
+ 50
480
+ 55
481
+ 60
482
+ 65
483
+ 70
484
+ 75
485
+ 80
486
+ 85
487
+ 90
488
+ 95
489
+ 100
490
+ Percentage of the cache(%)
491
+ 0
492
+ 5
493
+ 10
494
+ 15
495
+ 20
496
+ 25
497
+ 30
498
+ Time in an epoch (seconds)
499
+ Epoch #2, min: 7.226sec (60 %)
500
+ Orig: min: 8.119sec (65 %)
501
+ Total I/O time (Orig.)
502
+ Total I/O time (Expected)
503
+ GFS-META
504
+ GFS-READ
505
+ LFS-META
506
+ LFS-READ
507
+ (a) Improving GFS-META
508
+ 0
509
+ 5
510
+ 10
511
+ 15
512
+ 20
513
+ 25
514
+ 30
515
+ 35
516
+ 40
517
+ 45
518
+ 50
519
+ 55
520
+ 60
521
+ 65
522
+ 70
523
+ 75
524
+ 80
525
+ 85
526
+ 90
527
+ 95
528
+ 100
529
+ Percentage of the cache(%)
530
+ 0
531
+ 5
532
+ 10
533
+ 15
534
+ 20
535
+ 25
536
+ 30
537
+ Time in an epoch (seconds)
538
+ Epoch #2, min: 6.027sec (65 %)
539
+ Orig: min: 8.119sec (65 %)
540
+ Total I/O time (Orig.)
541
+ Total I/O time (Expected)
542
+ GFS-META
543
+ GFS-READ
544
+ LFS-META
545
+ LFS-READ
546
+ (b) Improving LFS-READ
547
+ Fig. 3: Expectation the I/O time with 50% improvement with small file dataset
548
+ and 60 OSTs of the GFS
549
+ is challenging situation because multiple I/O class is included in the I/O time
550
+ in the fastest result (cache rate = 65%). This means that improving only one
551
+ I/O class processing will not be enough to improve entire I/O performance.
552
+ Therefore, we pick up the result to demonstrate our estimation method of the
553
+ I/O improvement effect.
554
+ 5.4
555
+ Estimating the impact of the storage improvement
556
+ As mentioned in 4.4, we estimate the performance improvement by simple cal-
557
+ culation based on the analysis result. Figure 3 shows the result of the estimation
558
+ of the impact of a 50% improvement of GFS-META (Figure 3a) and LFS-READ
559
+ (Figure 3b). The axes in the graph are the same as in Figure 2.
560
+ Figure 3a shows the estimation result of improving the GFS-META by 50%.
561
+ The best combination of the GFS and LFS is changed from 65% to 60% LFS,
562
+ and the slowest I/O time is reduced by almost 12.8% in the best case. Figure
563
+ 3a shows the estimation result of improving the LFS-READ by 50%. The best
564
+ cache rate is not changed, and the slowest I/O time in the best case is reduced
565
+ by 24%.
566
+ Next, we show the estimation of the impact of improvement of two oper-
567
+ ations classes simultaneously. There are many parameters and values such as
568
+ improvement rate for each operation, cache rate, and the I/O time. All of them
569
+ are too many to put on a single graph. Again, the architect of the system needs
570
+ knowledge of the given performance goal. Therefore, we show the estimation by
571
+ indicating which improvement combination would meet the performance goal.
572
+ Figure 4 shows the sufficient combinations of the performance improvement
573
+ on two classes, GFS-META and LFS-READ, on the small files dataset and the
574
+ faster GFS workload. The result in the graph is based on the measurement of
575
+
576
+ 10
577
+ T. Fukai et al.
578
+ 0
579
+ 25
580
+ 50
581
+ 75
582
+ 100
583
+ 125
584
+ 150
585
+ 175
586
+ 200
587
+ Improvement rate of GFS META(%)
588
+ 0
589
+ 25
590
+ 50
591
+ 75
592
+ 100
593
+ 125
594
+ 150
595
+ 175
596
+ 200
597
+ Improvement rate of LFS READ(%)
598
+ 0.55
599
+ 0.60
600
+ 0.65
601
+ 0.70
602
+ 0.75
603
+ Cache rate (%)
604
+ Fig. 4: The estimation of performance improvement of GFS-META and LFS-
605
+ META for meeting performance goal of 4 sec / epoch (128 KiB, 60 OST GFS)
606
+ I/O time in the #2 epoch. The x and y axes show each improvement rate. On the
607
+ graph, the dot is plotted if the improvement combination will meet the given
608
+ performance goal. The graph indicates a result for the performance goal of 4
609
+ seconds I/O time in an epoch. Additionally, the colors of the dots indicate the
610
+ minimum cache rate to meet the goal. For example, to achieve 4 seconds I/O time
611
+ in an epoch with a 65% cache rate, at least 120% improvement of LFS-READ is
612
+ required. In that case, a 140% improvement of the GFS-META is required. The
613
+ architect can explore the option of the improvement choice by the plot.
614
+ 6
615
+ Discussion
616
+ In our evaluation, we assume the global shuffling manner to exploit GFS. How-
617
+ ever, training applications with the local shuffle also can combine the LFS and
618
+ GFS to put larger chunks of the dataset than that with only the LFS. In this
619
+ case, the size of the LFS and the randomness of the shuffling are a trade-off. To
620
+ consider how large chunks are preferred, the application user also can use our
621
+ method to find the contributions to the performance of the LFS.
622
+ In our evaluation, we assume a pinning cache policy on the LFS. However,
623
+ our analysis can apply to the other cache policy if the cache hit rate can be
624
+ calculated. You can replace the "cache rate" with "cache hit rate" in the analysis
625
+ result because both are the same in DNN workloads with the pinning policy.
626
+ Then you can find the required size of the LFS from the relation between the
627
+ cache hit rate and the size of the cache in your better cache policy.
628
+ In our evaluation, we estimate the improvement by a simple calculation.
629
+ However, the performance characteristic may not be simple. For example, the
630
+ estimation from the measurement results with 1 OST of the GFS with the sim-
631
+ ple calculation does not fit that with the 60 OSTs of GFS. For more accurate
632
+
633
+ Title Suppressed Due to Excessive Length
634
+ 11
635
+ estimation, improving the calculation method is necessary by modeling the char-
636
+ acteristic. The considerable approach is based on machine learning or queueing
637
+ theory. Even if the calculation method will be improved, our plot method shown
638
+ in Figure 4 is useful for the storage system architect.
639
+ 7
640
+ Conclusion
641
+ This paper presented a case study on the performance analysis of a hierarchical
642
+ storage system for a DDNN workload in a flagship-class HPC cluster, discussing
643
+ potential performance improvement enabled by the speed-up of the storage sys-
644
+ tem. We also estimated the improvement of training performance by various
645
+ improvement of the hierarchical filesystem. The analysis result showed that the
646
+ I/O bottleneck in the training workload depends on performance balance be-
647
+ tween global and local storage as well as file sizes in a dataset.
648
+ Our estimation showed that the performance improvement of a global filesys-
649
+ tem will contribute to reducing the necessary volume size of a local filesystem,
650
+ and the performance improvement of the local file system will contribute to re-
651
+ ducing fastest I/O time. Our estimation method can help architects of HPC
652
+ filesystems to find the necessary performance and the volume size of the local
653
+ and global filesystems to meet a given performance goal.
654
+ Because our proposed method needs the measurement of I/O performance
655
+ at least once, one of our future works is exploring a simpler or no measurement-
656
+ required method. The other future work is to build the performance modeling
657
+ of the storage system for more accurate estimation.
658
+ References
659
+ 1. Darshan-util
660
+ installation
661
+ and
662
+ usage,
663
+ https://www.mcs.anl.gov/research/
664
+ projects/darshan/docs/darshan-util.html
665
+ 2. Darshan – HPC I/O Characterization Tool, https://www.mcs.anl.gov/research/
666
+ projects/darshan/
667
+ 3. Akiba, T., et al.: Extremely large minibatch sgd: Training resnet-50 on imagenet
668
+ in 15 minutes (2017), https://arxiv.org/abs/1711.04325
669
+ 4. Akimoto, H., et al.: File system and power management enhanced for supercom-
670
+ puter fugaku. Fujitsu Technical Review (3), 2020–03 (2020)
671
+ 5. Beal, J., et al.: Billion-scale pretraining with vision transformers for multi-task
672
+ visual representations. In: Proceedings of the IEEE/CVF Winter Conference on
673
+ Applications of Computer Vision. pp. 564–573 (2022)
674
+ 6. Devarajan, H.: DLIO Benchmark, https://github.com/hariharan-devarajan/
675
+ dlio_benchmark
676
+ 7. Devarajan, H., et al.: DLIO: A Data-Centric Benchmark for Scientific Deep Learn-
677
+ ing Applications. In: 2021 IEEE/ACM 21st International Symposium on Cluster,
678
+ Cloud and Internet Computing (CCGrid). pp. 81–91 (2021)
679
+ 8. Dryden, N., et al.: Clairvoyant prefetching for distributed machine learning i/o.
680
+ In: Proceedings of the International Conference for High Performance Computing,
681
+ Networking, Storage and Analysis. SC ’21, Association for Computing Machinery,
682
+ New York, NY, USA (2021)
683
+
684
+ 12
685
+ T. Fukai et al.
686
+ 9. Kurth, T., et al.: Exascale deep learning for climate analytics. In: SC18: Inter-
687
+ national Conference for High Performance Computing, Networking, Storage and
688
+ Analysis. pp. 649–660. IEEE (2018)
689
+ 10. Kuznetsova, A., et al.: The open images dataset v4. International Journal of Com-
690
+ puter Vision 128(7), 1956–1981 (2020)
691
+ 11. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In:
692
+ Proceedings of the European conference on computer vision (ECCV). pp. 181–196
693
+ (2018)
694
+ 12. Mathuriya, A., et al.: Cosmoflow: Using deep learning to learn the universe at scale.
695
+ In: Proceedings of the International Conference for High Performance Computing,
696
+ Networking, Storage, and Analysis. SC ’18, IEEE Press (2018)
697
+ 13. Mikami, H., et al.: Massively distributed sgd: Imagenet/resnet-50 training in a flash
698
+ (2018), https://arxiv.org/abs/1811.05233
699
+ 14. Mohan, J., et al.: Analyzing and mitigating data stalls in dnn training. Proc. VLDB
700
+ Endow. 14(5), 771–784 (Jan 2021)
701
+ 15. Paul, A.K., et al.: Characterizing machine learning i/o workloads on leadership
702
+ scale hpc systems. In: 2021 29th International Symposium on Modeling, Analysis,
703
+ and Simulation of Computer and Telecommunication Systems (MASCOTS). pp. 1–
704
+ 8 (2021)
705
+ 16. Pumma, S., et al.: Scalable Deep Learning via I/O Analysis and Optimization.
706
+ ACM Trans. Parallel Comput. 6(2) (Jul 2019)
707
+ 17. Sato, M., et al.: Co-design for a64fx manycore processor and ”fugaku”. In: SC20:
708
+ International Conference for High Performance Computing, Networking, Storage
709
+ and Analysis. pp. 1–15 (2020)
710
+ 18. Serizawa, K., Tatebe, O.: Accelerating machine learning i/o by overlapping data
711
+ staging and mini-batch generations. In: Proceedings of the 6th IEEE/ACM Inter-
712
+ national Conference on Big Data Computing, Applications and Technologies. p.
713
+ 31–34. BDCAT ’19, Association for Computing Machinery, New York, NY, USA
714
+ (2019)
715
+ 19. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
716
+ networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
717
+ International Conference on Machine Learning. Proceedings of Machine Learning
718
+ Research, vol. 97, pp. 6105–6114. PMLR (09–15 Jun 2019), https://proceedings.
719
+ mlr.press/v97/tan19a.html
720
+ 20. Vazhkudai, S.S., et al.: The design, deployment, and evaluation of the coral pre-
721
+ exascale systems. In: SC18: International Conference for High Performance Com-
722
+ puting, Networking, Storage and Analysis. pp. 661–672 (2018)
723
+ 21. Wang, Y., et al.: Time-Based Roofline for Deep Learning Performance Analysis. In:
724
+ 2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS).
725
+ pp. 10–19 (2020)
726
+ 22. Yamazaki, M., et al.: Yet another accelerated sgd: Resnet-50 training on imagenet
727
+ in 74.7 seconds (2019), https://arxiv.org/abs/1903.12650
728
+ 23. Zhu, Y., et al.: Entropy-aware i/o pipelining for large-scale deep learning on hpc
729
+ systems. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and
730
+ Simulation of Computer and Telecommunication Systems (MASCOTS). pp. 145–
731
+ 156 (2018)
732
+ 24. Zhu, Y., et al.: Efficient user-level storage disaggregation for deep learning. In:
733
+ 2019 IEEE International Conference on Cluster Computing (CLUSTER). pp. 1–
734
+ 12 (2019)
735
+
CNAzT4oBgHgl3EQfh_3R/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf,len=487
2
+ page_content='Analyzing I/O Performance of a Hierarchical HPC Storage System for Distributed Deep Learning Takaaki Fukai1[0000−0003−4216−4807], Kento Sato2, and Takahiro Hirofuchi1[0000−0002−1253−6625] 1 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan {takaaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
3
+ page_content='fukai, t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
4
+ page_content='hirofuchi}@aist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
5
+ page_content='go.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
6
+ page_content='jp 2 RIKEN Center for Computational Science, Kobe, Japan kento.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
7
+ page_content='sato@riken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
8
+ page_content='jp Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
9
+ page_content=' Today, deep learning is an essential technology for our life.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
10
+ page_content=' To solve more complex problems with deep learning, both sizes of train- ing datasets and neural networks are increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
11
+ page_content=' To train a model with large datasets and networks, distributed deep neural network (DDNN) training technique is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
12
+ page_content=' For large-scale DDNN training, HPC clusters are a promising computation environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
13
+ page_content=' In large-scale DDNN on HPC clusters, I/O performance is critical because it is becoming a bottleneck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
14
+ page_content=' Most flagship-class HPC clusters have hierarchical storage systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
15
+ page_content=' For designing future HPC storage systems, it is necessary to quantify the performance improvement effect of the hierarchical storage system on the workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
16
+ page_content=' This paper demonstrates the quantitative per- formance analysis of the hierarchical storage system for DDNN workload in a flagship-class supercomputer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
17
+ page_content=' Our analysis shows how much perfor- mance improvement and volume increment of the storage will be required to meet the performance goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
18
+ page_content=' Keywords: Deep neural network · Distributed deep neural network training · I/O performance · Hierarchical storage system · High per- formance computing 1 Introduction Today, the demand for large-scale deep learning has significantly increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
19
+ page_content=' The sizes of training models and datasets for the training are expanding to meet the demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
20
+ page_content=' For example, training models for image classification, such as Ef- ficientNet [19] with large datasets, such as OpenImages dataset [10] are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
21
+ page_content=' Some computational science applications also use deep learning methods such as CosmoFlow [12] and DeepCam [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
22
+ page_content=' A single machine does not have enough computational and memory capacity for these large workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
23
+ page_content=' Therefore, dis- tributed deep neural network (DDNN) training technique, which allows training arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
24
+ page_content='01494v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
25
+ page_content='DC] 4 Jan 2023 2 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
26
+ page_content=' Fukai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
27
+ page_content=' models on multiple machines connected by a network, is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
28
+ page_content=' HPC, opti- mized for huge and distributed workloads, are promising environments for large training workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
29
+ page_content=' I/O is becoming a bottleneck in the training workloads for the following reasons [14,16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
30
+ page_content=' The first reason is dataset growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
31
+ page_content=' The size of datasets is in- creasing for training higher quality models [11,5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
32
+ page_content=' Large datasets that do not fit in memory cause training applications to issue many I/O requests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
33
+ page_content=' The second reason is expanding performance gap between computation and I/O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
34
+ page_content=' Although computation time is becoming shorter by distributed execution techniques, I/O performance is not improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
35
+ page_content=' This expands the performance gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
36
+ page_content=' Therefore the I/O performance of future HPC clusters is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
37
+ page_content=' For designing a storage system for future HPC, it is crucial but difficult to find out what improvement of storage systems would achieve a performance goal of a target I/O intensive DDNN workload.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
38
+ page_content=' The first reason why it is difficult is that most storage systems in flagship-class HPC clusters are hierarchical, which combines fast but small storage, and a slow but large storage system [17,20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
39
+ page_content=' Therefore, it is unclear which we should pay our cost for the throughput of the global or local filesystems or the volume for the local file system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
40
+ page_content=' The second reason is that tuning a DNN application for distributed execution requires several weeks or months for a new cluster or processor architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
41
+ page_content=' Therefore, we need a much cost and time to find out the I/O bottleneck in a DDNN training workload.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
42
+ page_content=' This paper shows a case study on the performance analysis of a hierarchical storage system for DDNN workload and the estimation of necessary improve- ment of the storage systems to meet a performance goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
43
+ page_content=' To reveal the effect of faster storage, we first measure the I/O operations time of a synthetic I/O intensive training workload with various proportions of fast and slow storage sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
44
+ page_content=' Then we estimate the impact of storage system improvement on the train- ing performance based on a result of the I/O performance analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
45
+ page_content=' The method can estimate the contribution of various improvement of a hierarchical storage system, to overall the training performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
46
+ page_content=' The contributions of this work are: (1) A methodology to study the I/O bottleneck of DDNN training workloads in the hierarchical storage system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
47
+ page_content=' (2) A methodology to explore options for improvement of a storage system to achieve a performance goal of DDNN training workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
48
+ page_content=' The remainder of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
49
+ page_content=' Section 2 explains the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
50
+ page_content=' Section 3 reviews the related work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
51
+ page_content=' Section 4 explains our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
52
+ page_content=' Section 5 demonstrates our methods on a flagship-class supercomputer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
53
+ page_content=' Section 6 discusses the potential of the method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
54
+ page_content=' Conclusions are presented in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
55
+ page_content=' 2 Background 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
56
+ page_content='1 File access in distributed neural network workloads The file access pattern by DNN training applications is different from that in scientific computational applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
57
+ page_content=' In training, stochastic gradient descent Title Suppressed Due to Excessive Length 3 (SGD) is a common technique to improve training speed and accuracy[3,13,22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
58
+ page_content=' In SGD, a program splits a training dataset into mini-batch and inputs a mini- batch to the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
59
+ page_content=' To avoid the degradation of training accuracy due to a fixed input order, it shuffles the order of the files of the dataset every time when inputting all samples to the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
60
+ page_content=' Therefore the program accesses each file once an epoch in a random order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
61
+ page_content=' It is hard to apply general cache policies because of less time and spatial locality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
62
+ page_content=' If the dataset is larger than the memory volume for page caches, the cache miss on reading file often occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
63
+ page_content=' It is a reason why I/O is easy to be the bottleneck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
64
+ page_content=' In distributed training, multiple compute nodes read the dataset simultane- ously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
65
+ page_content=' In data-parallel, which is one of common parallelizing techniques, each compute node has a part of the dataset and calculates it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
66
+ page_content=' There are two data shuffling manners called local shuffling and global shuffling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
67
+ page_content=' Local shuffle means that each process only shuffles and reads a part of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
68
+ page_content=' On the other hand, global shuffle means that the application shuffles the whole dataset and splits it for each computer every epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
69
+ page_content=' Local shuffling is easy to use local stor- age for each computer because the computer needs to access only the initial allocated part of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
70
+ page_content=' However, it reduces the training accuracy because it reduces the randomness of the input dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
71
+ page_content=' In some cases, the local shuffle approach is not suitable due to the accuracy degradation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
72
+ page_content=' On the other hand, the global shuffling does not affect the training accuracy, but replacing the part of the dataset for each epoch is a heavy I/O workload, especially, training with a large dataset and a large number of computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
73
+ page_content=' Therefore, we focus on the global shuffling in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
74
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
75
+ page_content='2 Storage system in HPC Recent flagship class HPC clusters provide a hierarchical storage system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
76
+ page_content=' Hi- erarchical storage systems typically consist of a small but fast storage system and a large but slow storage system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
77
+ page_content=' HPC clusters often provide the former as a local file system (LFS) and the latter as a global file system (GFS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
78
+ page_content=' Summit [20] provides node-local burst buffers (node-local NVMe SSD) and a parallel file system (IBM’s SpectrumScale GPFS™).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
79
+ page_content=' Fugaku[17] also provides a hierarchical storage system that consists of the 1st level storage (an SSD for every 16 nodes) and the 2nd level storage (a Global storage system).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
80
+ page_content=' We assume that DDNN applications in a global shuffle manner use the local storage in the hierarchical storage as the cache of global storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
81
+ page_content=' An important question to answer to de- sign future storage systems in HPC for machine learning workload is the best balance of fast and slow storage from the viewpoint of size and performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
82
+ page_content=' 3 Related work There are several works to analyze and model the DNN performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
83
+ page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
84
+ page_content=' proposed a modeling method for the DNN training workload based on the 4 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
85
+ page_content=' Fukai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
86
+ page_content=' Roofline model [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
87
+ page_content=' They focus on the performance of the computation and memory accesses however the I/O performance is not considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
88
+ page_content=' There are several works for analyzing and optimizing I/O performance for DDNN workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
89
+ page_content=' Several works [16,14] have analyzed the I/O performance for the DDNN and proposed optimization methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
90
+ page_content=' Devarajan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
91
+ page_content=' proposed a benchmark to measure the I/O performance for DDNN and find the opportunity for tuning I/O parameters [7,6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
92
+ page_content=' These works assume a non-hierarchical storage system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
93
+ page_content=' We focus on I/O performance of hierarchical storage systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
94
+ page_content=' Several works [23,18,24,8] assume hierarchical storage systems in their I/O optimization method for DDNN workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
95
+ page_content=' They focus on application-level op- timization to solve the I/O bottleneck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
96
+ page_content=' On the other hand, our work is toward performance improvement of storage systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
97
+ page_content=' Paul et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
98
+ page_content=' analyzed the I/O log generated by all the jobs on Supercomputer Summit during a year [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
99
+ page_content=' They revealed the tendency of ML jobs and the usage of the storage system by them, especially, the usage of the burst buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
100
+ page_content=' In this work, the 23,389 ML jobs of 845,036 jobs in 2020 on Summit were analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
101
+ page_content=' The analysis results suggested a rapid increment in the use of ML technologies in HPC, and some of the ML jobs used the burst buffer in addition to the GPFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
102
+ page_content=' This work analyzes the comprehensive analysis of the real ML workload from the viewpoint of usage of the hierarchical storage system in the HPC environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
103
+ page_content=' Our work analyzes the I/O performance of hierarchical storage systems in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
104
+ page_content=' 4 Methodology 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
105
+ page_content='1 Overview Our analysis method is composed of three steps, (1) measuring I/O performance, (2) analyzing measurement results, and (3) estimating the impact of the speed- up of global and local storage on training performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
106
+ page_content=' In the measurement, we execute a DDNN benchmark with profiling the I/O on a hierarchical storage system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
107
+ page_content=' The benchmark reads a dataset from the hier- archical storage system and uses LFS as the cache of GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
108
+ page_content=' To reveal how LFS contributes to overall the I/O performance, we measure the I/O performance with various proportions of the size of the cached data on LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
109
+ page_content=' We expect that the performance characteristics depend on a performance balance of GFS and LFS as well as the sizes of files in a dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
110
+ page_content=' Therefore, we measure the I/O performance with multiple performance balances and the file sizes combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
111
+ page_content=' In the analyzing step, we analyze the profiling data separately by file system and by type of I/O operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
112
+ page_content=' To do this, we break down the I/O time into the following four I/O classes based on the I/O profiling data obtained in the benchmark execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
113
+ page_content=' GFS-READ is a class for read operations on a GFS, GFS- META is a class for metadata operations (open(), close()) on a GFS, LFS- READ is a class for read operations on an LFS, and LFS-META is a class for metadata operations on an LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
114
+ page_content=' Note that file operations on the dataset in a DNN training are only open(), close(), and read() because applications do Title Suppressed Due to Excessive Length 5 not make any modifications and new samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
115
+ page_content=' We target the I/O time of the slowest process among all parallel processes, because it is the most dominant for the overall training time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
116
+ page_content=' In the estimating step, we extrapolate from the above results, expected train- ing time enabled by the speed-up of global and local storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
117
+ page_content=' We first calculate the expected overall I/O operation time on the assumption that the speed of an I/O class is improved by a given ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
118
+ page_content=' We also calculate the expected impact on training time by the performance improvement of multiple I/O classes and which combination of the improvement will satisfy the performance goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
119
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
120
+ page_content='2 Measuring I/O performance by benchmark To measure the I/O performance, we use DLIO [7] benchmark, a benchmark for I/O performance on distributed deep neural network workloads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
121
+ page_content=' DLIO bench- mark supports distributed execution and generating the synthetic dataset for the benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
122
+ page_content=' However, it does not support hierarchical storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
123
+ page_content=' Therefore, we add the three functions to DLIO for our measurement of hierarchical storage sys- tems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
124
+ page_content=' The functions are (1) Reading the dataset from both GFS and LFS with a specified proportion, (2) Global shuffling, and (3) Generating the synthetic files on the local filesystem by each compute node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
125
+ page_content=' In the benchmark execution, the cached files are not evicted, in other words, the cache policy is pinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
126
+ page_content=' As described in Section 2, the training application accesses all samples the same number of times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
127
+ page_content=' Therefore, the cache hit rate with the pinning policy is the same as the percentage of the cached file [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
128
+ page_content=' We prepare two datasets, a small file dataset and a large file emulating Ima- geNet dataset and CosmoFlow dataset respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
129
+ page_content=' The small file dataset con- sists of 128 KiB files and the large file dataset consists of 12 MiB files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
130
+ page_content=' The numbers of files in the small and large datasets are 589824 and 6144 respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
131
+ page_content=' The total size of both datasets is 72 GiB so that whole of the dataset can be on the LFS and all of the processes read the same number of files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
132
+ page_content=' Because the entire dataset cannot be put on the memory of each compute node (32 GiB), the benchmark application reads the files from the filesystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
133
+ page_content=' The file format in both datasets is tfrecord, and the number of samples in each file is one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
134
+ page_content=' To measure the I/O performance with multiple performance balances of the GFS and LFS, we measure the I/O performance with different numbers of the object storage targets (OSTs) of the lustre-based GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
135
+ page_content=' We can limit the number of OSTs to 1 by lfs command.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
136
+ page_content=' Therefore, we measure the I/O performance with all provided OSTs (faster GFS) and 1 OST (slower GFS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
137
+ page_content=' To measure the I/O performance in the benchmark execution, we use Dar- shan [2], which is a profiling tool for I/O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
138
+ page_content=' Darshan can capture and record each file operations such as open(), close(), and read().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
139
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
140
+ page_content='3 Analyzing the I/O performance To reveal the bottleneck in detail, we break down the I/O time of the slowest process into the following four I/O classes and recognize which I/O class is a 6 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
141
+ page_content=' Fukai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
142
+ page_content=' bottleneck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
143
+ page_content=' We calculate the I/O time for each process and find the slowest one, which dominates the training performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
144
+ page_content=' We analyze the I/O performance from the log generated by darshan using darshan-parser command [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
145
+ page_content=' We cal- culate for each I/O time based on POSIX_F_READ_TIME and POSIX_F_META_TIME.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
146
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
147
+ page_content='4 Estimate performance by storage improvement To estimate impact of N% throughput improvement of a I/O class, we calcu- late × 100 100+N of the measured time of the I/O class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
148
+ page_content=' The improvement may not directly affect the total I/O time because the improvement may change the bot- tleneck to another I/O class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
149
+ page_content=' Therefore, we calculate total I/O time for each process with the improvement of a class, then pick the slowest process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
150
+ page_content=' 5 Experiment results 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
151
+ page_content='1 Setup for experiment We perform the experiments on Supercomputer Fugaku[17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
152
+ page_content=' Compute nodes of Fugaku has 48 computing cores of A64FX and 32 GiB HBM2 memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
153
+ page_content=' Fugaku has a hierarchical filesystem comprising the 1st- and 2nd-level filesystems named LLIO and FEFS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
154
+ page_content=' In our measurement, we regard the LLIO as a local filesystem (LFS) and the FEFS as a global filesystem (GFS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
155
+ page_content=' FEFS is a lustre- based parallel filesystem and it has 60 OSTs in Fugaku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
156
+ page_content=' One per 192 compute nodes connected to the FEFS by InfiniBand EDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
157
+ page_content=' The other compute nodes connected by TofuD access to FEFS via the network and the compute node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
158
+ page_content=' For LLIO, one per 16 compute nodes has an NVMe SSD and the other compute nodes connected access to the SSD via the network and the compute node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
159
+ page_content=' LLIO provides three areas, node temporary area, shared temporary area, and 2nd-layer cache area[4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
160
+ page_content=' In our measurement, we only use node temporary areas, which is a dedicated area for a compute node, because the transparent cache does not allow us to control caching files of the dataset on LLIO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
161
+ page_content=' In our measurement, we run the DLIO benchmark on the 768 compute nodes of Supercomputer Fugaku as batch jobs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
162
+ page_content=' The four processes execute on every compute nodes, so that total number of processes is 3072.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
163
+ page_content=' The node layout is 8×6×16 in the TofuD torus network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
164
+ page_content=' We also pass an option to the job scheduler to strict the position of the node connected to the GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
165
+ page_content=' Before executing the benchmark job, we generate the datasets on the GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
166
+ page_content=' Because the system removes data on LFS after finishing the job, every benchmark job generates the same dataset on LFS as GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
167
+ page_content=' Note that the job generates the dataset instead of copying the dataset from GFS to reduce the setup time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
168
+ page_content=' We execute the benchmark with every 5% from 0% to 100% cache rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
169
+ page_content=' We set the calculation time in the DLIO to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
170
+ page_content=' Therefore, the DLIO reports only the I/O and data processing time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
171
+ page_content=' The number of epochs is three to avoid making the darshan log files huge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
172
+ page_content=' The prefetch of the dataloader is enabled so that it is not synchronized for each iteration even if the computation threads are synchronized for all-reduce communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
173
+ page_content=' The batch size is 12 for the small file dataset and 2 for the large file dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
174
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
175
+ page_content='Title Suppressed Due to Excessive Length ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
176
+ page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
177
+ page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
178
+ page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
179
+ page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
180
+ page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
181
+ page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
182
+ page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
183
+ page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
184
+ page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
185
+ page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
186
+ page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
187
+ page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
188
+ page_content='Percentage of the cache(%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
189
+ page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
190
+ page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
191
+ page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
192
+ page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
193
+ page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
194
+ page_content='Time in an epoch (seconds) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
195
+ page_content='Small file dataset with faster GFS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
196
+ page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
197
+ page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
198
+ page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
199
+ page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
200
+ page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
201
+ page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
202
+ page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
203
+ page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
204
+ page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
205
+ page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
206
+ page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
207
+ page_content='Percentage of the cache(%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
208
+ page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
209
+ page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
210
+ page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
211
+ page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
212
+ page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
213
+ page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
214
+ page_content='Small file dataset with slower GFS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
215
+ page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
216
+ page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
217
+ page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
218
+ page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
219
+ page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
220
+ page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
221
+ page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
222
+ page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
223
+ page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
224
+ page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
225
+ page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
226
+ page_content='Percentage of the cache(%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
227
+ page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
228
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
229
+ page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
230
+ page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
231
+ page_content='Large file dataset with faster GFS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
232
+ page_content='Epoch ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
233
+ page_content='#0 (DLIO) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
234
+ page_content='#1 (DLIO) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
235
+ page_content='#2 (DLIO) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
236
+ page_content='#0 (Darshan) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
237
+ page_content='#1 (Darshan) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
238
+ page_content='#2 (Darshan) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
239
+ page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
240
+ page_content=' 1: Execution time of DLIO benchmark and I/O time reported by Darshan 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
241
+ page_content='2 Measuring execution time for epochs In our experiments, we first measure the execution time of the DLIO benchmark and I/O time in the benchmark execution with various settings as mentioned in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
242
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
243
+ page_content=' We reveal the difference in the performance depending on file sizes in the datasets and speeds of GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
244
+ page_content=' Additionally, by comparing the execution time reported by the benchmark and the total I/O time reported by the I/O profiler, we verify that the benchmark is I/O intensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
245
+ page_content=' Figure 1 shows the execution time and I/O time for each epoch in a job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
246
+ page_content=' The x-axes of the graphs show the percentage of the files on the LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
247
+ page_content=' The y-axes show the execution time of an epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
248
+ page_content=' The graph shows the results of 3 epochs in a benchmark execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
249
+ page_content=' The lines with round markers are the execution time reported by the DLIO benchmark, and those with triangular markers are the I/O time reported by Darshan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
250
+ page_content=' Because the I/O time of the slowest I/O process is dominant, we calculate and plot them as I/O time on the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
251
+ page_content=' The results show that the impact of the LFS on the training performance depends on the file sizes and the performance balance of GFS and LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
252
+ page_content=' The effect of the LFS with the 1 OST of GFS is larger than that with the 60 OSTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
253
+ page_content=' The reason is the performance difference between LFS and GFS on the 1 OST is larger than that on 60 OSTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
254
+ page_content=' In 12 MiB files workload with 60 OST of GFS, the LFS does not contribute to the performance improvement, and using only the GFS with the 60 OST is the best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
255
+ page_content=' About the I/O time, the graph indicates that the execution time is constantly longer about 2 sec, but it is strongly related to the I/O time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
256
+ page_content=' This result indicate that the I/O time of the slowest process during the synchronizations among the processes strongly interrelates to the training performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
257
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
258
+ page_content='3 Analyzing I/O performance Next, we classify the Darshan records into the four I/O classes and calculate the I/O time for each class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
259
+ page_content=' Figure 2 shows the result of the breakdown of the #2 epoch in the previous graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
260
+ page_content=' Each line shows the total I/O time same as 8 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
261
+ page_content=' Fukai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
262
+ page_content=' 0 10 20 30 40 50 60 70 80 90 100 Percentage of the cache(%) 0 10 20 30 Time in an epoch (seconds) Small file dataset with faster GFS 0 10 20 30 40 50 60 70 80 90 100 Percentage of the cache(%) 0 25 50 75 100 Small file dataset with slower GFS 0 10 20 30 40 50 60 70 80 90 100 Percentage of the cache(%) 0 1 2 Large file dataset with faster GFS Total I/O time GFS-META GFS-READ LFS-META LFS-READ Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
263
+ page_content=' 2: Break down the I/O time of the slowest process for each epoch (Note: Range of y-axis are different) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
264
+ page_content=' According to the result, the bottleneck is different depending on the setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
265
+ page_content=' In 128 KiB files workload with the faster GFS, the bottleneck is GFS-META when less than 60% of data is on the LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
266
+ page_content=' On the other hand, the bottleneck is changed to LFS-READ with more than 60% cached data on LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
267
+ page_content=' We think when more than 60% of data is put on LFS, LFS throughput is saturated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
268
+ page_content=' Therefore, the read time from LFS is linearly increased with the percentage of the cached data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
269
+ page_content=' So putting more than 60% of data on the cache in the workload does not contribute to the training performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
270
+ page_content=' For example, in training with ImageNet dataset whose size is almost 150 GB, almost the 90 GiB LFS for each compute node is enough to achieve the best I/O performance by the hierarchical storage system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
271
+ page_content=' With the 60% cached data, both GFS-META and LFS-READ are included in the I/O time of the slowest process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
272
+ page_content=' As compared with the faster GFS, the I/O bottleneck in the workload with the slower GFS is much different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
273
+ page_content=' The graph in the middle of Figure 2 shows that the bottleneck is GFS-READ instead of GFS-META with small percentages of the LFS (less than 80%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
274
+ page_content=' We think that the reason why GFS-META time becomes shorter is reducing the load on the metadata server of FEFS due to the lower throughput of the GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
275
+ page_content=' As compared with the small files workload, the I/O bottleneck in the large files workload with the faster GFS is also much different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
276
+ page_content=' The right side graph in Figure 2 shows that the bottleneck is the LFS-READ in most of the cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
277
+ page_content=' Because the number of metadata operations is much smaller than that in the small file workload, the GFS fully provides its bandwidth without the bottleneck by the metadata operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
278
+ page_content=' As a result, the total bandwidth of the GFS is higher than LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
279
+ page_content=' It means that the number of compute nodes is not enough to take advantage of the scalability of the LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
280
+ page_content=' Note that the 768 nodes are not so large scale as a workload in Fugaku, however from viewpoint of the machine learning workload, the number of nodes is large enough to lead to a large batch problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
281
+ page_content=' From viewpoint of exploration of storage design for a performance goal, the result on small file dataset and faster GFS (the left side graph in Figure 2) Title Suppressed Due to Excessive Length 9 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percentage of the cache(%) 0 5 10 15 20 25 30 Time in an epoch (seconds) Epoch #2, min: 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
282
+ page_content='226sec (60 %) Orig: min: 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
283
+ page_content='119sec (65 %) Total I/O time (Orig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
284
+ page_content=') Total I/O time (Expected) GFS-META GFS-READ LFS-META LFS-READ (a) Improving GFS-META 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percentage of the cache(%) 0 5 10 15 20 25 30 Time in an epoch (seconds) Epoch #2, min: 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
285
+ page_content='027sec (65 %) Orig: min: 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
286
+ page_content='119sec (65 %) Total I/O time (Orig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
287
+ page_content=') Total I/O time (Expected) GFS-META GFS-READ LFS-META LFS-READ (b) Improving LFS-READ Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
288
+ page_content=' 3: Expectation the I/O time with 50% improvement with small file dataset and 60 OSTs of the GFS is challenging situation because multiple I/O class is included in the I/O time in the fastest result (cache rate = 65%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
289
+ page_content=' This means that improving only one I/O class processing will not be enough to improve entire I/O performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
290
+ page_content=' Therefore, we pick up the result to demonstrate our estimation method of the I/O improvement effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
291
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
292
+ page_content='4 Estimating the impact of the storage improvement As mentioned in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
293
+ page_content='4, we estimate the performance improvement by simple cal- culation based on the analysis result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
294
+ page_content=' Figure 3 shows the result of the estimation of the impact of a 50% improvement of GFS-META (Figure 3a) and LFS-READ (Figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
295
+ page_content=' The axes in the graph are the same as in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
296
+ page_content=' Figure 3a shows the estimation result of improving the GFS-META by 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
297
+ page_content=' The best combination of the GFS and LFS is changed from 65% to 60% LFS, and the slowest I/O time is reduced by almost 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
298
+ page_content='8% in the best case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
299
+ page_content=' Figure 3a shows the estimation result of improving the LFS-READ by 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
300
+ page_content=' The best cache rate is not changed, and the slowest I/O time in the best case is reduced by 24%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
301
+ page_content=' Next, we show the estimation of the impact of improvement of two oper- ations classes simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
302
+ page_content=' There are many parameters and values such as improvement rate for each operation, cache rate, and the I/O time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
303
+ page_content=' All of them are too many to put on a single graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
304
+ page_content=' Again, the architect of the system needs knowledge of the given performance goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
305
+ page_content=' Therefore, we show the estimation by indicating which improvement combination would meet the performance goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
306
+ page_content=' Figure 4 shows the sufficient combinations of the performance improvement on two classes, GFS-META and LFS-READ, on the small files dataset and the faster GFS workload.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
307
+ page_content=' The result in the graph is based on the measurement of 10 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
308
+ page_content=' Fukai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
309
+ page_content=' 0 25 50 75 100 125 150 175 200 Improvement rate of GFS META(%) 0 25 50 75 100 125 150 175 200 Improvement rate of LFS READ(%) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
310
+ page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
311
+ page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
312
+ page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
313
+ page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
314
+ page_content='75 Cache rate (%) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
315
+ page_content=' 4: The estimation of performance improvement of GFS-META and LFS- META for meeting performance goal of 4 sec / epoch (128 KiB, 60 OST GFS) I/O time in the #2 epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
316
+ page_content=' The x and y axes show each improvement rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
317
+ page_content=' On the graph, the dot is plotted if the improvement combination will meet the given performance goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
318
+ page_content=' The graph indicates a result for the performance goal of 4 seconds I/O time in an epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
319
+ page_content=' Additionally, the colors of the dots indicate the minimum cache rate to meet the goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
320
+ page_content=' For example, to achieve 4 seconds I/O time in an epoch with a 65% cache rate, at least 120% improvement of LFS-READ is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
321
+ page_content=' In that case, a 140% improvement of the GFS-META is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
322
+ page_content=' The architect can explore the option of the improvement choice by the plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
323
+ page_content=' 6 Discussion In our evaluation, we assume the global shuffling manner to exploit GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
324
+ page_content=' How- ever, training applications with the local shuffle also can combine the LFS and GFS to put larger chunks of the dataset than that with only the LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
325
+ page_content=' In this case, the size of the LFS and the randomness of the shuffling are a trade-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
326
+ page_content=' To consider how large chunks are preferred, the application user also can use our method to find the contributions to the performance of the LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
327
+ page_content=' In our evaluation, we assume a pinning cache policy on the LFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
328
+ page_content=' However, our analysis can apply to the other cache policy if the cache hit rate can be calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
329
+ page_content=' You can replace the "cache rate" with "cache hit rate" in the analysis result because both are the same in DNN workloads with the pinning policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
330
+ page_content=' Then you can find the required size of the LFS from the relation between the cache hit rate and the size of the cache in your better cache policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
331
+ page_content=' In our evaluation, we estimate the improvement by a simple calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
332
+ page_content=' However, the performance characteristic may not be simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
333
+ page_content=' For example, the estimation from the measurement results with 1 OST of the GFS with the sim- ple calculation does not fit that with the 60 OSTs of GFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
334
+ page_content=' For more accurate Title Suppressed Due to Excessive Length 11 estimation, improving the calculation method is necessary by modeling the char- acteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
335
+ page_content=' The considerable approach is based on machine learning or queueing theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
336
+ page_content=' Even if the calculation method will be improved, our plot method shown in Figure 4 is useful for the storage system architect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
337
+ page_content=' 7 Conclusion This paper presented a case study on the performance analysis of a hierarchical storage system for a DDNN workload in a flagship-class HPC cluster, discussing potential performance improvement enabled by the speed-up of the storage sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
338
+ page_content=' We also estimated the improvement of training performance by various improvement of the hierarchical filesystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
339
+ page_content=' The analysis result showed that the I/O bottleneck in the training workload depends on performance balance be- tween global and local storage as well as file sizes in a dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
340
+ page_content=' Our estimation showed that the performance improvement of a global filesys- tem will contribute to reducing the necessary volume size of a local filesystem, and the performance improvement of the local file system will contribute to re- ducing fastest I/O time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
341
+ page_content=' Our estimation method can help architects of HPC filesystems to find the necessary performance and the volume size of the local and global filesystems to meet a given performance goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
342
+ page_content=' Because our proposed method needs the measurement of I/O performance at least once, one of our future works is exploring a simpler or no measurement- required method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
343
+ page_content=' The other future work is to build the performance modeling of the storage system for more accurate estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
344
+ page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
345
+ page_content=' Darshan-util installation and usage, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
346
+ page_content='mcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
347
+ page_content='anl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
348
+ page_content='gov/research/ projects/darshan/docs/darshan-util.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
349
+ page_content='html 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
350
+ page_content=' Darshan – HPC I/O Characterization Tool, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
351
+ page_content='mcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
352
+ page_content='anl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
353
+ page_content='gov/research/ projects/darshan/ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
354
+ page_content=' Akiba, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
355
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
356
+ page_content=' : Extremely large minibatch sgd: Training resnet-50 on imagenet in 15 minutes (2017), https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
357
+ page_content='org/abs/1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
358
+ page_content='04325 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
359
+ page_content=' Akimoto, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
360
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
361
+ page_content=' : File system and power management enhanced for supercom- puter fugaku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
362
+ page_content=' Fujitsu Technical Review (3), 2020–03 (2020) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
363
+ page_content=' Beal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
364
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
365
+ page_content=' : Billion-scale pretraining with vision transformers for multi-task visual representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
366
+ page_content=' In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
367
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
368
+ page_content=' 564–573 (2022) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
369
+ page_content=' Devarajan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
370
+ page_content=': DLIO Benchmark, https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
371
+ page_content='com/hariharan-devarajan/ dlio_benchmark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
372
+ page_content=' Devarajan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
373
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
374
+ page_content=' : DLIO: A Data-Centric Benchmark for Scientific Deep Learn- ing Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
375
+ page_content=' In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
376
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
377
+ page_content=' 81–91 (2021) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
378
+ page_content=' Dryden, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
379
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
380
+ page_content=' : Clairvoyant prefetching for distributed machine learning i/o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
381
+ page_content=' In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
382
+ page_content=' SC ’21, Association for Computing Machinery, New York, NY, USA (2021) 12 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
383
+ page_content=' Fukai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
384
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
385
+ page_content=' Kurth, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
386
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
387
+ page_content=' : Exascale deep learning for climate analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
388
+ page_content=' In: SC18: Inter- national Conference for High Performance Computing, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
389
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
390
+ page_content=' 649–660.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
391
+ page_content=' IEEE (2018) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
392
+ page_content=' Kuznetsova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
393
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
394
+ page_content=' : The open images dataset v4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
395
+ page_content=' International Journal of Com- puter Vision 128(7), 1956–1981 (2020) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
396
+ page_content=' Mahajan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
397
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
398
+ page_content=' : Exploring the limits of weakly supervised pretraining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
399
+ page_content=' In: Proceedings of the European conference on computer vision (ECCV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
400
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
401
+ page_content=' 181–196 (2018) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
402
+ page_content=' Mathuriya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
403
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
404
+ page_content=' : Cosmoflow: Using deep learning to learn the universe at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
405
+ page_content=' In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
406
+ page_content=' SC ’18, IEEE Press (2018) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
407
+ page_content=' Mikami, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
408
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
409
+ page_content=' : Massively distributed sgd: Imagenet/resnet-50 training in a flash (2018), https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
410
+ page_content='org/abs/1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
411
+ page_content='05233 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
412
+ page_content=' Mohan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
413
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
414
+ page_content=' : Analyzing and mitigating data stalls in dnn training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
415
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
416
+ page_content=' VLDB Endow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
417
+ page_content=' 14(5), 771–784 (Jan 2021) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
418
+ page_content=' Paul, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
419
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
420
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
421
+ page_content=' : Characterizing machine learning i/o workloads on leadership scale hpc systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
422
+ page_content=' In: 2021 29th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
423
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
424
+ page_content=' 1– 8 (2021) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
425
+ page_content=' Pumma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
426
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
427
+ page_content=' : Scalable Deep Learning via I/O Analysis and Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
428
+ page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
429
+ page_content=' Parallel Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
430
+ page_content=' 6(2) (Jul 2019) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
431
+ page_content=' Sato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
432
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
433
+ page_content=' : Co-design for a64fx manycore processor and ”fugaku”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
434
+ page_content=' In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
435
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
436
+ page_content=' 1–15 (2020) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
437
+ page_content=' Serizawa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
438
+ page_content=', Tatebe, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
439
+ page_content=': Accelerating machine learning i/o by overlapping data staging and mini-batch generations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
440
+ page_content=' In: Proceedings of the 6th IEEE/ACM Inter- national Conference on Big Data Computing, Applications and Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
441
+ page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
442
+ page_content=' 31–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
443
+ page_content=' BDCAT ’19, Association for Computing Machinery, New York, NY, USA (2019) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
444
+ page_content=' Tan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
445
+ page_content=', Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
446
+ page_content=': EfficientNet: Rethinking model scaling for convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
447
+ page_content=' In: Chaudhuri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
448
+ page_content=', Salakhutdinov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
449
+ page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
450
+ page_content=') Proceedings of the 36th International Conference on Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
451
+ page_content=' Proceedings of Machine Learning Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
452
+ page_content=' 97, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
453
+ page_content=' 6105–6114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
454
+ page_content=' PMLR (09–15 Jun 2019), https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
455
+ page_content=' mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
456
+ page_content='press/v97/tan19a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
457
+ page_content='html 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
458
+ page_content=' Vazhkudai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
459
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
460
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
461
+ page_content=' : The design, deployment, and evaluation of the coral pre- exascale systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
462
+ page_content=' In: SC18: International Conference for High Performance Com- puting, Networking, Storage and Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
463
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
464
+ page_content=' 661–672 (2018) 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
465
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
466
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
467
+ page_content=' : Time-Based Roofline for Deep Learning Performance Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
468
+ page_content=' In: 2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
469
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
470
+ page_content=' 10–19 (2020) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
471
+ page_content=' Yamazaki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
472
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
473
+ page_content=' : Yet another accelerated sgd: Resnet-50 training on imagenet in 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
474
+ page_content='7 seconds (2019), https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
475
+ page_content='org/abs/1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
476
+ page_content='12650 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
477
+ page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
478
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
479
+ page_content=' : Entropy-aware i/o pipelining for large-scale deep learning on hpc systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
480
+ page_content=' In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
481
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
482
+ page_content=' 145– 156 (2018) 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
483
+ page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
484
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
485
+ page_content=' : Efficient user-level storage disaggregation for deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
486
+ page_content=' In: 2019 IEEE International Conference on Cluster Computing (CLUSTER).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
487
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
488
+ page_content=' 1– 12 (2019)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAzT4oBgHgl3EQfh_3R/content/2301.01494v1.pdf'}
CNE1T4oBgHgl3EQfVwTa/content/2301.03107v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266ba611da28d6061c01802c0deb594685f469bda23e2639a1998307e145bd30
3
+ size 1551420
CNE1T4oBgHgl3EQfVwTa/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be68562fc63ae6b2eaa72c139acee4f603f2aeb64b837cb5357dcd4edf1895ae
3
+ size 222853
CNE1T4oBgHgl3EQfpgW7/content/tmp_files/2301.03333v1.pdf.txt ADDED
@@ -0,0 +1,916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A tutorial on the conservation of momentum in
2
+ photonic time-varying media
3
+ Angel Ortega-Gomez,1 Micha¨el Lobet,2, 3 J. Enrique V´azquez-Lozano,1 and I˜nigo Liberal1, ∗
4
+ 1Department of Electrical, Electronic and Communications
5
+ Engineering, Institute of Smart Cities (ISC),
6
+ Public University of Navarre (UPNA), 31006 Pamplona, Spain
7
+ 2John A. Paulson School of Engineering and Applied Sciences,
8
+ Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA
9
+ 3Department of Physics and Namur Institute of Structured Materials,
10
+ University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
11
+ 1
12
+ arXiv:2301.03333v1 [physics.optics] 9 Jan 2023
13
+
14
+ Abstract
15
+ Time-varying media break temporal symmetries while preserving spatial symmetries intact.
16
+ Thus, it represents an excellent conceptual framework to investigate the fundamental implications
17
+ of Noether’s theorem for the electromagnetic field. At the same time, addressing momentum con-
18
+ servation in time-varying media sheds light on the Abraham-Minkowski debate, where two opposing
19
+ forms of the electromagnetic field momentum are defended. Here, we present a tutorial review on
20
+ the conservation of momentum in time-varying media. We demonstrate that the Minkowski mo-
21
+ mentum is a conserved quantity with three independent approaches of increasing complexity: (i)
22
+ via the application of the boundary conditions for Maxwell equations at a temporal boundary, (ii)
23
+ testing for constants of motion and deriving conservation laws, and (iii) applying temporal and
24
+ spatial translations within the framework of the Lagrangian theory of the electromagnetic field.
25
+ Each approach provides a different and complementary insight into the problem.
26
+ I.
27
+ INTRODUCTION
28
+ Time-varying media are revolutionizing the fields of optics and nanophotonics by har-
29
+ nessing time as an additional resource for controlling light-matter interactions [1–4]. Dy-
30
+ namically modulating matter offers new possibilities for the manipulation of electromagnetic
31
+ fields including compact and low-energy nonreciprocal devices [5], inverse prism and tempo-
32
+ ral aiming effects [6, 7], overcoming bandwidth bounds in impedance matching [8], energy
33
+ accumulation without a theoretical limit [9], quantum state frequency shifting [10], and
34
+ ultra-fast switching without thermal noise amplification [10], to name a few. Time-varying
35
+ media also empower new amplification [11] and photon generation mechanisms, such as
36
+ directional vacuum amplification effects [12], amplified light emission from quantum emit-
37
+ ters [13] and free electrons [14], as well as incandescent sources not constrained within the
38
+ black-body spectrum [15].
39
+ Because a homogeneous time-varying medium is invariant under spatial translations (see
40
+ Fig.1), it is usually argued that time-varying media preserves the momentum of the elec-
41
+ tromagnetic field [1–4, 16–18]. This intuition stems from Noether’s theorem [19–22], which
42
+ more generally states that symmetries of the action of a physical system have an associated
43
+ ∗ Corresponding author: [email protected]
44
+ 2
45
+
46
+ conserved quantity. However, a direct connection between invariance under spatial transla-
47
+ tions and momentum conservation in time-varying media is not specified. In addition, the
48
+ notion of the momentum of the electromagnetic field is quite subtle. In fact, according to the
49
+ Abraham-Minkowski debate [23–27], there is more than one definition for the momentum of
50
+ the electromagnetic field. On the one hand, one can define the Abraham momentum,
51
+ PA (t) =
52
+
53
+ d3r pA (r, t) = µ0ε0
54
+
55
+ d3r E (r, t) × H (r, t)
56
+ (1)
57
+ where we have also defined the Abraham momentum density, which is proportional to the
58
+ Poynting vector field, pA = µ0ε0S. On the other hand, the Minkowski momentum reads as
59
+ PM (t) =
60
+
61
+ d3r pM (r, t) =
62
+
63
+ d3r D (r, t) × B (r, t)
64
+ (2)
65
+ A common simplification of those definitions for a plane wave in non-dispersive media
66
+ is pA = ℏω/nc and pM = nℏω/c, which highlights the role of the refractive index n. In-
67
+ terestingly, as pointed out by Leonhardt [28] one should call for the Minkowski momentum
68
+ whenever the wave aspects dominate, for example, in experiments involving momentum re-
69
+ coil [26, 29], while the Abraham momentum appears when the particle aspects are probed
70
+ [23].
71
+ A resolution of the debate was offered among others by Barnett [30, 31].
72
+ It is sug-
73
+ gested that the Abraham momentum is the kinetic momentum of the electromagnetic field,
74
+ associated with energy transport. The Minkowski momentum is, however, the canonical
75
+ momentum of the electromagnetic field, being the generator of spatial translations. Never-
76
+ theless, certain aspects of the momentum of the electromagnetic field are still under question
77
+ [32]. Moreover, the avenue of near-zero-index (NZI) media exacerbates the differences be-
78
+ tween the forms of the momentum [33–35] giving rise to zero Minkowski momentum but
79
+ nonzero Abraham momentum inside epsilon-and-mu-near-zero (EMNZ) media where both
80
+ permittivity and permeability approach zero.
81
+ Since time-varying media preserve spatial symmetries while breaking temporal symme-
82
+ tries, it represents an excellent conceptual playground to illuminate the Abraham-Minkowski
83
+ debate. Following the interpretation offered by Barnett [30], it should be expected that the
84
+ Minkowski momentum - related to spatial translations - is a conserved quantity, while the
85
+ Abraham momentum - related to energy transport - is not. This work aims to provide a
86
+ 3
87
+
88
+ FIG. 1. Schematic depiction of time-varying media, in which both permittivity ε (t) and perme-
89
+ ability µ (t) change with time. Thus, the systems is invariant with respect to spatial translations,
90
+ but is not invariant with respect to temporal translations.
91
+ tutorial review of different aspects on the conservation of the momentum of the electromag-
92
+ netic field in time-varying media. We address three independent derivations showing that
93
+ only the Minkowski momentum is a conserved quantity in time-varying media based on: (i)
94
+ boundary conditions on Maxwell equations, (ii) directly evaluating constants of motion and
95
+ deriving conservation laws, and (iii) inducing spatial translations to the Lagrangian of the
96
+ electromagnetic field. Each approach provides a different physical insight into the problem.
97
+ II.
98
+ MOMENTUM CONSERVATION FROM INSPECTING MAXWELL EQUA-
99
+ TIONS AT A TEMPORAL BOUNDARY
100
+ Our starting point is Maxwell curl equations in time-varying media, which, in the absence
101
+ of charges and currents, can be written as follows
102
+ ∇ × E (r, t) = −∂tB (r, t)
103
+ (3)
104
+ ∇ × H (r, t) = ∂tD (r, t)
105
+ (4)
106
+ For the sake of simplicity, we assume homogeneous and instantaneous time-varying media,
107
+ with constitutive relations
108
+ D (r, t) = ε (t) E (r, t)
109
+ (5)
110
+ 4
111
+
112
+ (tn),μ(tn)
113
+ ...
114
+ (t2),μ(t2)
115
+ (ti),μ(ti)
116
+ (to), μ(to)
117
+ toB (r, t) = µ (t) H (r, t)
118
+ (6)
119
+ A more complete description of time-varying media would include the impact of dispersion
120
+ and loss [17, 36]. However, a system with dissipation does not necessarily conserve quantities
121
+ even in the presence of symmetries. In addition, the assumption of instantaneous media is
122
+ widespread in the field of temporal metamaterials [2].
123
+ Integrating Maxwell equations (3)-(4) accross a temporal boundary taking place at t0,
124
+ where material parameters suddenly change from ε(t−
125
+ 0 ), µ(t−
126
+ 0 ) to ε(t+
127
+ 0 ), µ(t+
128
+ 0 ), gives
129
+ � t+
130
+ 0
131
+ t−
132
+ 0
133
+ dt ∇ × H (r, t) =
134
+ � t+
135
+ 0
136
+ t−
137
+ 0
138
+ dt ∂tD (r, t) = D
139
+
140
+ r, t+
141
+ 0
142
+
143
+ − D
144
+
145
+ r, t−
146
+ 0
147
+
148
+ (7)
149
+
150
+ � t+
151
+ 0
152
+ t−
153
+ 0
154
+ dt ∇ × E (r, t) =
155
+ � t+
156
+ 0
157
+ t−
158
+ 0
159
+ dt ∂tB (r, t) = B
160
+
161
+ r, t+
162
+ 0
163
+
164
+ − B
165
+
166
+ r, t−
167
+ 0
168
+
169
+ (8)
170
+ Therefore, we find that D (r, t) and B (r, t) must be continuous accross changes of the
171
+ constitutive parameters, for finite E (r, t) and H (r, t) fields. This property is well-known
172
+ since early works on time-varying media [16]. As a consequence, this reasoning confirms that
173
+ the Minkowski momentum – uniquely defined as a function of D and B fields via Eq. (2) - is
174
+ a continuous quantity across a temporal boundary, suggesting that is should be a conserved
175
+ quantity in time-varying media. However, this approach fails at providing any insight on
176
+ the associated conservation law and/or how it can be related to invariance under spatial
177
+ translations. Moreover, it does not clarify the (non) conservation of Abraham momentum.
178
+ III.
179
+ CONSTANTS OF MOTION AND CONSERVATION LAWS
180
+ In this section, we address the conservation of momentum in time-varying media by
181
+ direcly testing if a given quantity is a constant of motion. To this end, one can take the time
182
+ derivative of the quantity under question and check if it is zero, in which case it shall be a
183
+ constant of motion/conserved quantity. Before addressing the momentum, it is instructive to
184
+ analyze the energy of the electromagnetic field, which in time-varying media can be written
185
+ as
186
+ U (t) =
187
+
188
+ d3r u (r, t)
189
+ (9)
190
+ 5
191
+
192
+ with energy density
193
+ u (r, t) = 1
194
+ 2
195
+
196
+ ε (t) E2 (r, t) + µ (t) H2 (r, t)
197
+
198
+ (10)
199
+ Taking the time derivative of the energy and, substituting Maxwell equations (3)-(4),
200
+ leads to the following expression
201
+ dU
202
+ dt = − 1
203
+ µ0ε0
204
+
205
+ dS · pA − 1
206
+ 2
207
+
208
+ d3r
209
+ �dε (t)
210
+ dt E2 (r, t) + dµ (t)
211
+ dt
212
+ H2 (r, t)
213
+
214
+ (11)
215
+ On the one hand, the first term in the r.h.s. of (11) is a surface term proportional to the
216
+ E and H fields. This term physically means that the change of energy over time is partly
217
+ due to energy either leaking out or coming into the system. It can be seen as a flux of either
218
+ outgoing or incoming Poynting vector field, hence setting down a link with PA (Eq. (1)).
219
+ It confirms the role of the Abraham momentum as the kinetic momentum, associated with
220
+ energy transport. If the volume is large enough to capture the entirety of the E and H
221
+ fields within the time interval of interest, its contribution vanishes. On the other hand, the
222
+ second term in the r.h.s. of (11) is a volume integral directly linked to the time modulation
223
+ of the permittivity and permeability, which results in a change of the energy of the system.
224
+ It represents the energy that must be pumped into or retracted from the system in order to
225
+ realize the time modulation of the material parameters. In other words, the time variation
226
+ of the material parameters act as sources or sinks of electromagnetic energy. By contrast,
227
+ Eq. (11) shows that for a medium with static material properties dU/dt = 0 and energy
228
+ would be a conserved quantity.
229
+ Eq. (11) can also be casted as a local conservation law as a function of the energy and
230
+ momentum densities
231
+ du (r, t)
232
+ dt
233
+ +
234
+ 1
235
+ µ0ε0
236
+ ∇ · pA (r, t) = −1
237
+ 2
238
+ �dε (t)
239
+ dt E2 (r, t) + dµ (t)
240
+ dt
241
+ H2 (r, t)
242
+
243
+ (12)
244
+ where we clearly identify the source/sink at the r.h.s..
245
+ Let us now tackle the conservation of Minkowski momentum and examine the time varia-
246
+ tion of Abraham momentum. By introducing Maxwell equations and applying a few vector
247
+ calculus identities, it can be found that the time derivative of the Minkowski momentum is
248
+ given by
249
+ dPM (t)
250
+ dt
251
+ = ε (t)
252
+ � �
253
+ p=x,y,z
254
+ up
255
+
256
+ dS · (EpE) − 1
257
+ 2
258
+
259
+ dS (E · E)
260
+
261
+ 6
262
+
263
+ + µ (t)
264
+ � �
265
+ p=x,y,z
266
+ up
267
+
268
+ dS · (HpH) − 1
269
+ 2
270
+
271
+ dS (H · H)
272
+
273
+ (13)
274
+ By doing so, we find that the time derivative of the Minkowski momentum reduces to
275
+ surface terms. Once again, if the volume of integration is taken large enough so that all the
276
+ E and H fields are confined within its interior, all surface terms vanish. In other words,
277
+ dPM (t) /dt = 0, proving that the Minkowski momentum is a constant of motion as expected.
278
+ It is also instructive to note that the above equation can be written in a differential form as
279
+ a conservation law for the momentum density:
280
+ dpM (t)
281
+ dt
282
+ = ∇ · TM (r, t)
283
+ (14)
284
+ where we define the Minkowski stress tensor for time-varying media as
285
+ TM (r, t) = ε (t)
286
+
287
+ E ⊗ E − 1
288
+ 2I (E · E)
289
+
290
+ + µ (t)
291
+
292
+ H ⊗ H − 1
293
+ 2I (H · H)
294
+
295
+ (15)
296
+ with I being the identity dyadic. Conservation laws in the form of (14) can be found scattered
297
+ in the literature, for example, in the appendix of [18].
298
+ Proceeding similarly with the Abraham momentum reveals that in general it is not a
299
+ conserved quantity:
300
+ dPA
301
+ dt
302
+ = −
303
+ � 1
304
+ ε (t)
305
+ dε (t)
306
+ dt
307
+ +
308
+ 1
309
+ µ (t)
310
+ dµ (t)
311
+ dt
312
+
313
+ PA (t)
314
+ −ε0µ0
315
+ µ (t)
316
+
317
+ 1
318
+ 2
319
+
320
+ dS (E · E) −
321
+
322
+ p=x,y,z
323
+ up
324
+
325
+ dS · (EpE)
326
+
327
+ − ε0µ0
328
+ ε (t)
329
+
330
+ 1
331
+ 2
332
+
333
+ dS (H · H) −
334
+
335
+ p=x,y,z
336
+ up
337
+
338
+ dS · (HpH)
339
+
340
+ (16)
341
+ Here again, the second and third terms are surface terms that would vanish for a suffi-
342
+ ciently large volume. However, the first term illustrates that the Abraham momentum does
343
+ change in time, following the change in the permittivity and permeability of the medium.
344
+ Equation (16) can also be compactly written as a local conservation law for the momentum
345
+ density
346
+ dpA
347
+ dt = ∇ · TA −
348
+ � 1
349
+ ε (t)
350
+ dε (t)
351
+ dt
352
+ +
353
+ 1
354
+ µ (t)
355
+ dµ (t)
356
+ dt
357
+
358
+ pA (r, t)
359
+ (17)
360
+ where we define the Abraham stress tensor in time-varying media, related to the Minkowski
361
+ stress tensor as follows
362
+ TA =
363
+ ε0µ0
364
+ µ (t) ε (t) TM (r, t)
365
+ (18)
366
+ 7
367
+
368
+ In conclusion, testing for constants of motions provides an independent confirmation
369
+ that the Minkowski momentum is indeed a conserved quantity in time-varying media. In
370
+ addition, it provides insight in the form of the conservation law that supports its invariance.
371
+ Furthermore, it shows that the Abraham momentum is not a constant of motion in close
372
+ connection to energy considerations, and re-emphasizes its role as the kinetic momentum of
373
+ the electromagnetic field. Nevertheless, writing the conservation law does not clarify the role
374
+ of the invariance of the system under spatial translations in the conservation of momentum.
375
+ IV.
376
+ MOMENTUM CONSERVATION AS A CONSEQUENCE OF INVARIANCE
377
+ UNDER SPATIAL TRANSLATIONS: A LAGRANGIAN APPROACH
378
+ In this section we address the conservation of momentum in time-varying media from the
379
+ perspective of the Lagrangian formalism for electromagnetic fields. Using the Lagrangian
380
+ formalism adds an extra layer of complexity, but allows to unequivocally identify momen-
381
+ tum conservation as a fundamental consequence of the invariance of time-varying media
382
+ under spatial translations. We note that most works identifying the Minkowski momentum
383
+ as the generator of spatial translations do it from a quantum description of the electro-
384
+ magnetic field, where the Minkowski momentum appears as an operator [30]. However, it
385
+ is important to understand that momentum conservation as a consequence of invariance
386
+ under spatial translations is also a classical effect. Therefore, we keep here a classical La-
387
+ grangian description of the electromagnetic fields, without introducing the quantization of
388
+ the electromagnetic field.
389
+ In the following, we first review the Lagrangian description of electromagnetic fields
390
+ extended to time-varying media. Then, we derive a form of Noether’s theorem in our for-
391
+ malism and we finally show the quantities associated with temporal and spatial translations
392
+ for time-varying media.
393
+ A.
394
+ Lagrangian description of the electromagnetic field
395
+ An in-depth review of the Lagrangian theory of the electromagnetic field can be found in
396
+ Cohen-Tannoudji’s book [21]. Here we review it and extend it to time-varying media. From
397
+ the perspective of Lagrangian theory, Maxwell equations are equations of motion that can
398
+ 8
399
+
400
+ be derived from the principle of least (or stationary) action. This principle states that true
401
+ path of motion corresponds to a stationary point of the action. By motion we refer to the
402
+ values that the dynamical variables have in a given interval of time, which, when position
403
+ is a dynamical variable, aligns with the common notion of motion. The action is defined as
404
+ the integral of the Lagrangian between two instants of time t1 and t2:
405
+ S (t1, t2) =
406
+ � t2
407
+ t1
408
+ dt L (t)
409
+ (19)
410
+ with the Lagrangian
411
+ L (t) =
412
+
413
+ d3r L (r, t)
414
+ (20)
415
+ and the Lagrangian density
416
+ L (r, t) = 1
417
+ 2
418
+
419
+ d3r [ε (t) E (r, t) · E (r, t) − µ (t) H (r, t) · H (r, t)]
420
+ (21)
421
+ The choice of this Lagrangian density is a direct extension from the case with no time
422
+ modulation. It is justified because Lagrange’s equation correctly recovers the equations of
423
+ motion for the electromagnetic field, as shown below. For the Lagrangian description of
424
+ the electromagnetic field, it is convenient to work with scalar V (r, t) and vector A (r, t)
425
+ potentials instead of fields. For the sake of simplicity, we work in the Coulomb gauge, for
426
+ which ∇ · A (r, t) = 0. By doing so, the scalar potential is zero in the absence of charges
427
+ V (r, t) = 0, all the fields are transversal, and they can be simply written as a function of
428
+ the vector potential
429
+ D (r, t) = −ε (t) ∂tA (r, t)
430
+ (22)
431
+ B (r, t) = ∇ × A (r, t)
432
+ (23)
433
+ Then, Maxwell equations lead to the following wave equation for the components of the
434
+ vector potential (p = x, y, z):
435
+ ∇2Ap (r, t) − µ (t) ∂t {ε (t) ∂tAp (r, t)} = 0
436
+ (24)
437
+ Due to field transversality, the Minkowski momentum can be compactly written as
438
+ PM = −ε (t)
439
+
440
+ p
441
+
442
+ d3r ∂tAp (r, t) ∇Ap (r, t)
443
+ (25)
444
+ Similarly, the Lagrangian density reduces to
445
+ L = 1
446
+ 2
447
+
448
+ p
449
+
450
+ ε (t) ˙A2
451
+ p (r, t) −
452
+ 1
453
+ µ (t) (∇ × A (r, t))2
454
+ p
455
+
456
+ (26)
457
+ 9
458
+
459
+ where we have used ˙Ap as a shorter way to write the time derivative. From this description,
460
+ it lies that the components of the vector potential, Ap, and its time derivatives, ˙Ap, are the
461
+ dynamical variables of the system.
462
+ Imposing that a true path of motion is a stationary point of the action, for which δS = 0,
463
+ leads to Lagrange’s equations
464
+ ∂L
465
+ ∂Ap
466
+
467
+
468
+ q
469
+ ∂q
470
+
471
+ ∂L
472
+ ∂ (∂qAp)
473
+
474
+ − d
475
+ dt
476
+ ∂L
477
+ ∂ ˙Ap
478
+ = 0
479
+ (27)
480
+ which reduces to the wave equation for Ap in (24), justifying the direct extension of the
481
+ Lagrangian to time-varying media.
482
+ With equation (26), we find that the conjugate momentum of each vector potential com-
483
+ ponent, Ap, is the negative of the electric displacement field components
484
+ Πp (r, t) = ∂L
485
+ ∂ ˙Ap
486
+ = ε (t) ˙Ap (r, t) = −Dp (r, t)
487
+ (28)
488
+ This point allow us to clarify another ambiguity related to the momentum of the elec-
489
+ tromagnetic field. For a freely moving particle of mass m with Lagrangian, L = �
490
+ p
491
+ 1
492
+ 2 m ˙r2
493
+ p,
494
+ the dynamical variables are the position coordinates rp, p = x, y, z. Thus, their associated
495
+ conjugate momenta pp = ∂L/∂ ˙rp = m ˙rp correspond to the components of the linear mo-
496
+ mentum. The latter is also the momentum associated with the spatial translations of the
497
+ system. However, for the electromagnetic field, position is not a dynamical variable of the
498
+ system while the vector potential is. For this reason, one has to differentiate between the
499
+ conjugate momentum and the momentum associated with spatial translations, as clarified
500
+ below.
501
+ Finally, the Hamiltonian is defined as a function of the conjugate momentum as follows
502
+ H =
503
+
504
+ p
505
+
506
+ d3r Πp (r, t) ˙Ap (r, t) − L
507
+ (29)
508
+ which can be found to be fully equivalent to the form of the electromagnetic energy in
509
+ time-varing media employed in the previous section, and given by Eqs. (9)-(10).
510
+ B.
511
+ Noether’s theorem in the Coulomb gauge
512
+ In this section, we cast a form of Noether’s theorem which allows us to discern the
513
+ conserved quantities associated with the continuous symmetries of time-varying media. To
514
+ 10
515
+
516
+ FIG. 2. (a) Schematic depiction of the motion of a dynamical variable Ap (r, t) between times t1
517
+ and t2, and an infinitesimally close motion, described by A′
518
+ p (r, t) between times t′
519
+ 1 and t′
520
+ 2. The
521
+ difference between both motions at time t is given by dA (r, t) = A′ (r, t) − A (r, t). The difference
522
+ between the initial and final temporal points is given by dt1 = t′
523
+ 1−t1 and dt2 = t′
524
+ 2−t2, respectively.
525
+ (b) Schematic depiction of trajectories for systems with (left) temporal translation symmetry, and
526
+ (right) spatial translation symmetry.
527
+ this end, we note that any continuous symmetry can be described as an infinitesimal variation
528
+ of the action. Therefore, as schematically depicted in Fig. 2(a), we consider a motion between
529
+ times t1 and t2, defined by the dynamical variables Ap (r, t), and an infinitesimally close
530
+ motion between times t′
531
+ 1 and t′
532
+ 2, described by A′
533
+ p (r, t).
534
+ The variation of the dynamical
535
+ variables at a given point of time is dAp (r, t) = A′
536
+ p (r, t) − Ap (r, t), and the variation of the
537
+ action can be written as
538
+ dS = S′ − S =
539
+ � t′
540
+ 2
541
+ t′
542
+ 1
543
+ dt L
544
+
545
+ A′
546
+ p
547
+
548
+
549
+ � t2
550
+ t1
551
+ dt L (Ap)
552
+ =
553
+ � t2
554
+ t1
555
+ dt
556
+
557
+ L
558
+
559
+ A′
560
+ p
561
+
562
+ − L (Ap)
563
+
564
+ +
565
+ � t′
566
+ 2
567
+ t2
568
+ dt L
569
+
570
+ A′
571
+ p
572
+
573
+
574
+ � t′
575
+ 1
576
+ t1
577
+ dt L
578
+
579
+ A′
580
+ p
581
+
582
+ (30)
583
+ 11
584
+
585
+ (a)
586
+ p (r,t)
587
+ Ap(r,t2)
588
+ Ap(r,t2)
589
+ Ap(r,t1)
590
+ Ap(r,t')
591
+ dt2
592
+ dti
593
+ ti
594
+ t2
595
+ 34
596
+ (b)
597
+ Temporal translation symmetry
598
+ Spatial translation symmetry
599
+ Ap(r -n,t2)
600
+ Ap (r,ti)
601
+ A"(r,t))
602
+ Ap (r,ti)
603
+ dAp (r,t) As(r;t2)
604
+ Ap(r,t2)
605
+ Ap (r,t2)
606
+ t1
607
+ t2
608
+ dt
609
+ dt
610
+ t
611
+ ti
612
+ ti
613
+ t2
614
+ t2
615
+ ti
616
+ t2To first order, last two terms can be approximated by
617
+ � t′
618
+ 2
619
+ t2
620
+ dt L
621
+
622
+ A′
623
+ p
624
+
625
+ = L (Ap)|t2 dt2
626
+ (31)
627
+ and the equivalent expression for t1.
628
+ Similarly, for two infinitesimally closed motions, the first term is given by
629
+ � t2
630
+ t1
631
+ dt
632
+
633
+ L
634
+
635
+ A′
636
+ p
637
+
638
+ − L (Ap)
639
+
640
+ =
641
+ =
642
+ � t2
643
+ t1
644
+ dt
645
+
646
+ p
647
+
648
+ d3r
649
+
650
+ ∂L
651
+ ∂Ap (r, t) dAp (r, t) +
652
+ ∂L
653
+ ∂ ˙Ap (r, t)
654
+ d ˙Ap (r, t)
655
+ +
656
+
657
+ q
658
+
659
+ ∂L
660
+ ∂ (∂qAp (r, t))
661
+
662
+ d∂qAp (r, t)
663
+
664
+ (32)
665
+ Similarly to the derivation of Lagrange’s equation, we integrate by parts the second term
666
+ with respect to time and the third term with respect to r, so the variation of the action
667
+ reduces to
668
+ � t2
669
+ t1
670
+ dt
671
+
672
+ L
673
+
674
+ A′
675
+ p
676
+
677
+ − L (Ap)
678
+
679
+ =
680
+ =
681
+ � t2
682
+ t1
683
+ dt
684
+
685
+ p
686
+
687
+ d3r
688
+
689
+ ∂L
690
+ ∂Ap (r, t) − d
691
+ dt
692
+ ∂L
693
+ ∂ ˙Ap (r, t)
694
+
695
+
696
+ q
697
+ ∂q
698
+
699
+ ∂L
700
+ ∂ (∂qAp (r, t))
701
+ ��
702
+ dAp (r, t)
703
+ +
704
+
705
+ p
706
+
707
+ d3r
708
+ ∂L
709
+ ∂ ˙Ap (r, t)
710
+ dAp (r, t)
711
+ �����
712
+ t2
713
+ t1
714
+ (33)
715
+ Note that, in deriving the above equation we have assumed that the fields vanish at
716
+ infinity, so that there are no surface contributions. By contrast, the fields do not need to
717
+ vanish at the initial and final temporal boundaries, leading the contribution from the last
718
+ term. In addition, the integrand of the first term is a solution to Lagrange’s equation (27),
719
+ which reduces to zero. Thus, by substituting (31)-(33) into (30) we find that the variation
720
+ of the action is given by:
721
+ dS =
722
+
723
+ p
724
+
725
+ d3r
726
+
727
+ ∂L
728
+ ∂ ˙Ap (r, t)
729
+ dAp (r, t)
730
+ �����
731
+ t2
732
+ + L (Ap)|t2 dt2
733
+
734
+ ∂L
735
+ ∂ ˙Ap (r, t)
736
+ dAp (r, t)
737
+ �����
738
+ t1
739
+ − L (Ap)|t1 dt1
740
+
741
+ (34)
742
+ If a system has a continuous symmetry, then the corresponding action remains invariant
743
+ with respect to infinitesimal displacements, i.e., dS = 0. In addition, since dS = 0 must
744
+ 12
745
+
746
+ hold for any pair of times t1 and t2 we find that the term within brackets must be a constant
747
+ of motion. These relations correspond to Noether’s theorem applied to our formulation of
748
+ the electromagnetic field in time-varying media in the Coulomb Gauge. Given a continuous
749
+ symmetry, specified by the variation dAp (r, t) and the boundary condition on the Lagrangian
750
+ L (Ap) dt, one can identify an associated conserved quantity.
751
+ C.
752
+ Temporal and spatial translations
753
+ First, let us assume that the variation is produced by an infinitesimal temporal displace-
754
+ ment dt, such that dt2 = dt1 = dt (see Fig. 2(b)). If the system is invariant with respect to
755
+ temporal translations we can write A′
756
+ p (r, t) = Ap (r, t − dt) ≃ Ap (r, t) − ˙Ap (r, t) dt. Then,
757
+ we have dAp (r, t) = − ˙Ap (r, t) dt. Substituting this result in (34) and factoring out dt we
758
+ find that the conserved quantity is
759
+
760
+ p
761
+
762
+ d3r
763
+
764
+
765
+ ∂L
766
+ ∂ ˙Ap (r, t)
767
+ ˙Ap (r, t) + L (Ap)
768
+
769
+ =
770
+ = −
771
+
772
+ p
773
+
774
+ d3r 1
775
+ 2
776
+
777
+ p
778
+
779
+ ε (t) ˙A2
780
+ p (r, t) +
781
+ 1
782
+ µ (t) (∇ × A (r, t))2
783
+ p
784
+
785
+ = −H
786
+ (35)
787
+ Therefore, it is found that invariance with respect to temporal translations implies that
788
+ the Hamiltonian must be a conserved quantity. In time-varying media, the system is not
789
+ invariant under temporal translations, and, consequently, the Hamiltonian manifestly de-
790
+ pends on time. As shown in the previous section, taking its time derivative explicitly shows
791
+ that it is not a constant of motion.
792
+ Second, we assume that the variation is produced by an infinitesimal spatial displacement
793
+ η (see Fig. 2(b)). Then, if the system is invariant under spatial translations we must have
794
+ A′
795
+ p (r, t) = Ap (r − η, t) ≃ Ap (r, t)−η·∇Ap (r, t), so that dAp (r, t) = −η·∇Ap (r, t) . Again,
796
+ substituting this result into (34) and factoring out η we find that the conserved quantity
797
+ must be
798
+ P =
799
+
800
+ p
801
+
802
+ d3r
803
+ ∂L
804
+ ∂ ˙Ap (r, t)
805
+ ∇Ap (r, t) = −
806
+
807
+ p
808
+
809
+ d3r ε (t) ˙Ap (r, t) ∇Ap (r, t)
810
+ (36)
811
+ which equals the Minkowski momentum in (25). Therefore, we finally found that the fact
812
+ that time-varying media are invariant under spatial translations directly enforces that the
813
+ Minkowski momentum is a conserved quantity.
814
+ 13
815
+
816
+ V.
817
+ CONCLUDING REMARKS
818
+ Symmetries play a fundamental role in physics. They reduce the complexity of difficult
819
+ problems, as well as the computational cost needed to solve them. Symmetries also en-
820
+ able the identification of conserved quantities and the formal link between both symmetries
821
+ and conserved quantities is Noether’s theorem. One of the reasons why time-varying media
822
+ and/or temporal metamaterials provide a fresh view on electromagnetic theory is because
823
+ they break temporal symmetries, which are conserved in most traditional photonics systems,
824
+ while they maintain spatial symmetries. However, the connection between spatial and tem-
825
+ poral symmetries and the properties of time-varying media is not always explicitely stated,
826
+ or analyzed through the point of view of Lagrangian mechanics. The present tutorial aims
827
+ at filling this gap. Furthermore, we hope that this tutorial may clarify the subtleties of the
828
+ conservation of the electromagnetic momentum in time-varying media, the nuances of defin-
829
+ ing the momentum of the electromagnetic fields within the Abraham-Minkowski debate, and
830
+ that it will foster further research on the role and significance of symmetries in temporal
831
+ metamaterials.
832
+ [1] C. Caloz and Z.-L. Deck-Leger, Spacetime metamaterials—part II: theory and applications,
833
+ IEEE Transactions on Antennas and Propagation 68, 1583 (2019).
834
+ [2] E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza,
835
+ A. Al`u, and J. Pendry, Photonics of time-varying media, Advanced Photonics 4, 014002 (2022).
836
+ [3] S. Yin, E. Galiffi, and A. Al`u, Floquet metamaterials, eLight 2, 1 (2022).
837
+ [4] N. Engheta, Metamaterials with high degrees of freedom: space, time, and more, Nanopho-
838
+ tonics 10, 639 (2021).
839
+ [5] D. L. Sounas and A. Alu, Non-reciprocal photonics based on time modulation, Nature Pho-
840
+ tonics 11, 774 (2017).
841
+ [6] A. Akbarzadeh, N. Chamanara, and C. Caloz, Inverse prism based on temporal discontinuity
842
+ and spatial dispersion, Optics Letters 43, 3297 (2018).
843
+ [7] V. Pacheco-Pe˜na and N. Engheta, Temporal aiming, Light: Science & Applications 9, 1 (2020).
844
+ 14
845
+
846
+ [8] A. Shlivinski and Y. Hadad, Beyond the bode-fano bound: Wideband impedance matching
847
+ for short pulses using temporal switching of transmission-line parameters, Physical Review
848
+ Letters 121, 204301 (2018).
849
+ [9] M. S. Mirmoosa, G. Ptitcyn, V. S. Asadchy, and S. A. Tretyakov, Time-varying reactive
850
+ elements for extreme accumulation of electromagnetic energy, Physical Review Applied 11,
851
+ 014024 (2019).
852
+ [10] I. Liberal, J. E. V´azquez-Lozano, and V. Pachecho-Pe˜na, Quantum antireflection temporal
853
+ coatings: quantum state frequency shifting and inhibited thermal noise amplification, arXiv
854
+ preprint arXiv:2208.10089 (2022).
855
+ [11] J. Pendry, E. Galiffi, and P. Huidobro, Gain in time-dependent media—a new mechanism,
856
+ Journal of the Optical Society of America B 38, 3360 (2021).
857
+ [12] J. E. V´azquez-Lozano and I. Liberal, Shaping the quantum vacuum with anisotropic temporal
858
+ boundaries, Nanophotonics (2022).
859
+ [13] M. Lyubarov, Y. Lumer, A. Dikopoltsev, E. Lustig, Y. Sharabi, and M. Segev, Amplified
860
+ emission and lasing in photonic time crystals, Science 377, 425 (2022).
861
+ [14] A. Dikopoltsev, Y. Sharabi, M. Lyubarov, Y. Lumer, S. Tsesses, E. Lustig, I. Kaminer, and
862
+ M. Segev, Light emission by free electrons in photonic time-crystals, Proceedings of the Na-
863
+ tional Academy of Sciences 119, e2119705119 (2022).
864
+ [15] J. E. V´azquez-Lozano and I. Liberal, Incandescent temporal metamaterials, arXiv preprint
865
+ arXiv:2210.05565 (2022).
866
+ [16] F. R. Morgenthaler, Velocity modulation of electromagnetic waves, IRE Transactions on Mi-
867
+ crowave Theory and Techniques 6, 167 (1958).
868
+ [17] D. M. Sol´ıs, R. Kastner, and N. Engheta, Time-varying materials in the presence of disper-
869
+ sion: plane-wave propagation in a lorentzian medium with temporal discontinuity, Photonics
870
+ Research 9, 1842 (2021).
871
+ [18] T. T. Koutserimpas and R. Fleury, Electromagnetic fields in a time-varying medium: excep-
872
+ tional points and operator symmetries, IEEE Transactions on Antennas and Propagation 68,
873
+ 6717 (2020).
874
+ [19] M. Banados and I. Reyes, A short review on noether’s theorems, gauge symmetries and bound-
875
+ ary terms, International Journal of Modern Physics D 25, 1630021 (2016).
876
+ 15
877
+
878
+ [20] Y. Kosmann-Schwarzbach, The noether theorems, in The Noether Theorems (Springer, 2011)
879
+ pp. 55–64.
880
+ [21] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and atoms-Introduction to
881
+ quantum electrodynamics (1997).
882
+ [22] J. Sakurai and J. Napolitano, Modern quantum mechanics. 2-nd edition (Person, 2014) p. 39.
883
+ [23] I. Brevik, Experiments in phenomenological electrodynamics and the electromagnetic energy-
884
+ momentum tensor, Physics Reports 52, 133 (1979).
885
+ [24] R. N. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Colloquium:
886
+ Momentum of an electromagnetic wave in dielectric media, Reviews of Modern Physics 79,
887
+ 1197 (2007).
888
+ [25] B. Kemp, Resolution of the abraham-minkowski debate: Implications for the electromagnetic
889
+ wave theory of light in matter, Journal of Applied Physics 109, 7 (2011).
890
+ [26] P. Milonni and R. Boyd, Recoil and photon momentum in a dielectric, Laser Physics 15, 1432
891
+ (2005).
892
+ [27] M. Mansuripur, Radiation pressure and the linear momentum of the electromagnetic field,
893
+ Optics Express 12, 5375 (2004).
894
+ [28] U. Leonhardt, Momentum in an uncertain light, Nature 444, 823 (2006).
895
+ [29] G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E.
896
+ Pritchard, Photon recoil momentum in dispersive media, Physical Review Letters 94, 170403
897
+ (2005).
898
+ [30] S. M. Barnett, Resolution of the abraham-minkowski dilemma, Physical Review Letters 104,
899
+ 070401 (2010).
900
+ [31] S. M. Barnett and R. Loudon, The enigma of optical momentum in a medium, Philosophical
901
+ Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368,
902
+ 927 (2010).
903
+ [32] M. G. Silveirinha, Reexamination of the abraham-minkowski dilemma, Physical Review A 96,
904
+ 033831 (2017).
905
+ [33] M. Lobet, I. Liberal, L. Vertchenko, A. V. Lavrinenko, N. Engheta, and E. Mazur, Momentum
906
+ considerations inside near-zero index materials, Light: Science & Applications 11, 1 (2022).
907
+ [34] I. Liberal and N. Engheta, Near-zero refractive index photonics, Nature Photonics 11, 149
908
+ (2017).
909
+ 16
910
+
911
+ [35] N. Kinsey, Developing momentum in vanishing index photonics, Light Science & Applications
912
+ 11, 1 (2022).
913
+ [36] J. Gratus, R. Seviour, P. Kinsler, and D. A. Jaroszynski, Temporal boundaries in electromag-
914
+ netic materials, New Journal of Physics 23, 083032 (2021).
915
+ 17
916
+
CNE1T4oBgHgl3EQfpgW7/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf,len=411
2
+ page_content='A tutorial on the conservation of momentum in photonic time-varying media Angel Ortega-Gomez,1 Micha¨el Lobet,2, 3 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
3
+ page_content=' Enrique V´azquez-Lozano,1 and I˜nigo Liberal1, ∗ 1Department of Electrical, Electronic and Communications Engineering, Institute of Smart Cities (ISC), Public University of Navarre (UPNA), 31006 Pamplona, Spain 2John A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
4
+ page_content=' Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA 3Department of Physics and Namur Institute of Structured Materials, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
5
+ page_content='03333v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
6
+ page_content='optics] 9 Jan 2023 Abstract Time-varying media break temporal symmetries while preserving spatial symmetries intact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
7
+ page_content=' Thus, it represents an excellent conceptual framework to investigate the fundamental implications of Noether’s theorem for the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
8
+ page_content=' At the same time, addressing momentum con- servation in time-varying media sheds light on the Abraham-Minkowski debate, where two opposing forms of the electromagnetic field momentum are defended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
9
+ page_content=' Here, we present a tutorial review on the conservation of momentum in time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
10
+ page_content=' We demonstrate that the Minkowski mo- mentum is a conserved quantity with three independent approaches of increasing complexity: (i) via the application of the boundary conditions for Maxwell equations at a temporal boundary, (ii) testing for constants of motion and deriving conservation laws, and (iii) applying temporal and spatial translations within the framework of the Lagrangian theory of the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
11
+ page_content=' Each approach provides a different and complementary insight into the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
12
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
13
+ page_content=' INTRODUCTION Time-varying media are revolutionizing the fields of optics and nanophotonics by har- nessing time as an additional resource for controlling light-matter interactions [1–4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
14
+ page_content=' Dy- namically modulating matter offers new possibilities for the manipulation of electromagnetic fields including compact and low-energy nonreciprocal devices [5], inverse prism and tempo- ral aiming effects [6, 7], overcoming bandwidth bounds in impedance matching [8], energy accumulation without a theoretical limit [9], quantum state frequency shifting [10], and ultra-fast switching without thermal noise amplification [10], to name a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
15
+ page_content=' Time-varying media also empower new amplification [11] and photon generation mechanisms, such as directional vacuum amplification effects [12], amplified light emission from quantum emit- ters [13] and free electrons [14], as well as incandescent sources not constrained within the black-body spectrum [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
16
+ page_content=' Because a homogeneous time-varying medium is invariant under spatial translations (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
17
+ page_content='1), it is usually argued that time-varying media preserves the momentum of the elec- tromagnetic field [1–4, 16–18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
18
+ page_content=' This intuition stems from Noether’s theorem [19–22], which more generally states that symmetries of the action of a physical system have an associated ∗ Corresponding author: inigo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
19
+ page_content='liberal@unavarra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
20
+ page_content='es 2 conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
21
+ page_content=' However, a direct connection between invariance under spatial transla- tions and momentum conservation in time-varying media is not specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
22
+ page_content=' In addition, the notion of the momentum of the electromagnetic field is quite subtle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
23
+ page_content=' In fact, according to the Abraham-Minkowski debate [23–27], there is more than one definition for the momentum of the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
24
+ page_content=' On the one hand, one can define the Abraham momentum, PA (t) = � d3r pA (r, t) = µ0ε0 � d3r E (r, t) × H (r, t) (1) where we have also defined the Abraham momentum density, which is proportional to the Poynting vector field, pA = µ0ε0S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
25
+ page_content=' On the other hand, the Minkowski momentum reads as PM (t) = � d3r pM (r, t) = � d3r D (r, t) × B (r, t) (2) A common simplification of those definitions for a plane wave in non-dispersive media is pA = ℏω/nc and pM = nℏω/c, which highlights the role of the refractive index n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
26
+ page_content=' In- terestingly, as pointed out by Leonhardt [28] one should call for the Minkowski momentum whenever the wave aspects dominate, for example, in experiments involving momentum re- coil [26, 29], while the Abraham momentum appears when the particle aspects are probed [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
27
+ page_content=' A resolution of the debate was offered among others by Barnett [30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
28
+ page_content=' It is sug- gested that the Abraham momentum is the kinetic momentum of the electromagnetic field, associated with energy transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
29
+ page_content=' The Minkowski momentum is, however, the canonical momentum of the electromagnetic field, being the generator of spatial translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
30
+ page_content=' Never- theless, certain aspects of the momentum of the electromagnetic field are still under question [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
31
+ page_content=' Moreover, the avenue of near-zero-index (NZI) media exacerbates the differences be- tween the forms of the momentum [33–35] giving rise to zero Minkowski momentum but nonzero Abraham momentum inside epsilon-and-mu-near-zero (EMNZ) media where both permittivity and permeability approach zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
32
+ page_content=' Since time-varying media preserve spatial symmetries while breaking temporal symme- tries, it represents an excellent conceptual playground to illuminate the Abraham-Minkowski debate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
33
+ page_content=' Following the interpretation offered by Barnett [30], it should be expected that the Minkowski momentum - related to spatial translations - is a conserved quantity, while the Abraham momentum - related to energy transport - is not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
34
+ page_content=' This work aims to provide a 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
35
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
36
+ page_content=' Schematic depiction of time-varying media, in which both permittivity ε (t) and perme- ability µ (t) change with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
37
+ page_content=' Thus, the systems is invariant with respect to spatial translations, but is not invariant with respect to temporal translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
38
+ page_content=' tutorial review of different aspects on the conservation of the momentum of the electromag- netic field in time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
39
+ page_content=' We address three independent derivations showing that only the Minkowski momentum is a conserved quantity in time-varying media based on: (i) boundary conditions on Maxwell equations, (ii) directly evaluating constants of motion and deriving conservation laws, and (iii) inducing spatial translations to the Lagrangian of the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
40
+ page_content=' Each approach provides a different physical insight into the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
41
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
42
+ page_content=' MOMENTUM CONSERVATION FROM INSPECTING MAXWELL EQUA- TIONS AT A TEMPORAL BOUNDARY Our starting point is Maxwell curl equations in time-varying media, which, in the absence of charges and currents, can be written as follows ∇ × E (r, t) = −∂tB (r, t) (3) ∇ × H (r, t) = ∂tD (r, t) (4) For the sake of simplicity, we assume homogeneous and instantaneous time-varying media, with constitutive relations D (r, t) = ε (t) E (r, t) (5) 4 (tn),μ(tn) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
43
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
44
+ page_content=' (t2),μ(t2) (ti),μ(ti) (to), μ(to) toB (r, t) = µ (t) H (r, t) (6) A more complete description of time-varying media would include the impact of dispersion and loss [17, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
45
+ page_content=' However, a system with dissipation does not necessarily conserve quantities even in the presence of symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
46
+ page_content=' In addition, the assumption of instantaneous media is widespread in the field of temporal metamaterials [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
47
+ page_content=' Integrating Maxwell equations (3)-(4) accross a temporal boundary taking place at t0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
48
+ page_content=' where material parameters suddenly change from ε(t− 0 ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
49
+ page_content=' µ(t− 0 ) to ε(t+ 0 ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
50
+ page_content=' µ(t+ 0 ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
51
+ page_content=' gives � t+ 0 t− 0 dt ∇ × H (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
52
+ page_content=' t) = � t+ 0 t− 0 dt ∂tD (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
53
+ page_content=' t) = D � r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
54
+ page_content=' t+ 0 � − D � r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
55
+ page_content=' t− 0 � (7) − � t+ 0 t− 0 dt ∇ × E (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
56
+ page_content=' t) = � t+ 0 t− 0 dt ∂tB (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
57
+ page_content=' t) = B � r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
58
+ page_content=' t+ 0 � − B � r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
59
+ page_content=' t− 0 � (8) Therefore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
60
+ page_content=' we find that D (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
61
+ page_content=' t) and B (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
62
+ page_content=' t) must be continuous accross changes of the constitutive parameters,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
63
+ page_content=' for finite E (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
64
+ page_content=' t) and H (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
65
+ page_content=' t) fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
66
+ page_content=' This property is well-known since early works on time-varying media [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
67
+ page_content=' As a consequence, this reasoning confirms that the Minkowski momentum – uniquely defined as a function of D and B fields via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
68
+ page_content=' (2) - is a continuous quantity across a temporal boundary, suggesting that is should be a conserved quantity in time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
69
+ page_content=' However, this approach fails at providing any insight on the associated conservation law and/or how it can be related to invariance under spatial translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
70
+ page_content=' Moreover, it does not clarify the (non) conservation of Abraham momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
71
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
72
+ page_content=' CONSTANTS OF MOTION AND CONSERVATION LAWS In this section, we address the conservation of momentum in time-varying media by direcly testing if a given quantity is a constant of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
73
+ page_content=' To this end, one can take the time derivative of the quantity under question and check if it is zero, in which case it shall be a constant of motion/conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
74
+ page_content=' Before addressing the momentum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
75
+ page_content=' it is instructive to analyze the energy of the electromagnetic field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
76
+ page_content=' which in time-varying media can be written as U (t) = � d3r u (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
77
+ page_content=' t) (9) 5 with energy density u (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
78
+ page_content=' t) = 1 2 � ε (t) E2 (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
79
+ page_content=' t) + µ (t) H2 (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
80
+ page_content=' t) � (10) Taking the time derivative of the energy and,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
81
+ page_content=' substituting Maxwell equations (3)-(4),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
82
+ page_content=' leads to the following expression dU dt = − 1 µ0ε0 � dS · pA − 1 2 � d3r �dε (t) dt E2 (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
83
+ page_content=' t) + dµ (t) dt H2 (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
84
+ page_content=' t) � (11) On the one hand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
85
+ page_content=' the first term in the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
86
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
87
+ page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
88
+ page_content=' of (11) is a surface term proportional to the E and H fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
89
+ page_content=' This term physically means that the change of energy over time is partly due to energy either leaking out or coming into the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
90
+ page_content=' It can be seen as a flux of either outgoing or incoming Poynting vector field, hence setting down a link with PA (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
91
+ page_content=' (1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
92
+ page_content=' It confirms the role of the Abraham momentum as the kinetic momentum, associated with energy transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
93
+ page_content=' If the volume is large enough to capture the entirety of the E and H fields within the time interval of interest, its contribution vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
94
+ page_content=' On the other hand, the second term in the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
95
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
96
+ page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
97
+ page_content=' of (11) is a volume integral directly linked to the time modulation of the permittivity and permeability, which results in a change of the energy of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
98
+ page_content=' It represents the energy that must be pumped into or retracted from the system in order to realize the time modulation of the material parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
99
+ page_content=' In other words, the time variation of the material parameters act as sources or sinks of electromagnetic energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
100
+ page_content=' By contrast, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
101
+ page_content=' (11) shows that for a medium with static material properties dU/dt = 0 and energy would be a conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
102
+ page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
103
+ page_content=' (11) can also be casted as a local conservation law as a function of the energy and momentum densities du (r, t) dt + 1 µ0ε0 ∇ · pA (r, t) = −1 2 �dε (t) dt E2 (r, t) + dµ (t) dt H2 (r, t) � (12) where we clearly identify the source/sink at the r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
104
+ page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
105
+ page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
106
+ page_content='. Let us now tackle the conservation of Minkowski momentum and examine the time varia- tion of Abraham momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
107
+ page_content=' By introducing Maxwell equations and applying a few vector calculus identities, it can be found that the time derivative of the Minkowski momentum is given by dPM (t) dt = ε (t) � � p=x,y,z up � dS · (EpE) − 1 2 � dS (E · E) � 6 + µ (t) � � p=x,y,z up � dS · (HpH) − 1 2 � dS (H · H) � (13) By doing so, we find that the time derivative of the Minkowski momentum reduces to surface terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
108
+ page_content=' Once again, if the volume of integration is taken large enough so that all the E and H fields are confined within its interior, all surface terms vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
109
+ page_content=' In other words, dPM (t) /dt = 0, proving that the Minkowski momentum is a constant of motion as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
110
+ page_content=' It is also instructive to note that the above equation can be written in a differential form as a conservation law for the momentum density: dpM (t) dt = ∇ · TM (r, t) (14) where we define the Minkowski stress tensor for time-varying media as TM (r, t) = ε (t) � E ⊗ E − 1 2I (E · E) � + µ (t) � H ⊗ H − 1 2I (H · H) � (15) with I being the identity dyadic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
111
+ page_content=' Conservation laws in the form of (14) can be found scattered in the literature, for example, in the appendix of [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
112
+ page_content=' Proceeding similarly with the Abraham momentum reveals that in general it is not a conserved quantity: dPA dt = − � 1 ε (t) dε (t) dt + 1 µ (t) dµ (t) dt � PA (t) −ε0µ0 µ (t) � 1 2 � dS (E · E) − � p=x,y,z up � dS · (EpE) � − ε0µ0 ε (t) � 1 2 � dS (H · H) − � p=x,y,z up � dS · (HpH) � (16) Here again, the second and third terms are surface terms that would vanish for a suffi- ciently large volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
113
+ page_content=' However, the first term illustrates that the Abraham momentum does change in time, following the change in the permittivity and permeability of the medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
114
+ page_content=' Equation (16) can also be compactly written as a local conservation law for the momentum density dpA dt = ∇ · TA − � 1 ε (t) dε (t) dt + 1 µ (t) dµ (t) dt � pA (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
115
+ page_content=' t) (17) where we define the Abraham stress tensor in time-varying media,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
116
+ page_content=' related to the Minkowski stress tensor as follows TA = ε0µ0 µ (t) ε (t) TM (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
117
+ page_content=' t) (18) 7 In conclusion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
118
+ page_content=' testing for constants of motions provides an independent confirmation that the Minkowski momentum is indeed a conserved quantity in time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
119
+ page_content=' In addition, it provides insight in the form of the conservation law that supports its invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
120
+ page_content=' Furthermore, it shows that the Abraham momentum is not a constant of motion in close connection to energy considerations, and re-emphasizes its role as the kinetic momentum of the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
121
+ page_content=' Nevertheless, writing the conservation law does not clarify the role of the invariance of the system under spatial translations in the conservation of momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
122
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
123
+ page_content=' MOMENTUM CONSERVATION AS A CONSEQUENCE OF INVARIANCE UNDER SPATIAL TRANSLATIONS: A LAGRANGIAN APPROACH In this section we address the conservation of momentum in time-varying media from the perspective of the Lagrangian formalism for electromagnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
124
+ page_content=' Using the Lagrangian formalism adds an extra layer of complexity, but allows to unequivocally identify momen- tum conservation as a fundamental consequence of the invariance of time-varying media under spatial translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
125
+ page_content=' We note that most works identifying the Minkowski momentum as the generator of spatial translations do it from a quantum description of the electro- magnetic field, where the Minkowski momentum appears as an operator [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
126
+ page_content=' However, it is important to understand that momentum conservation as a consequence of invariance under spatial translations is also a classical effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
127
+ page_content=' Therefore, we keep here a classical La- grangian description of the electromagnetic fields, without introducing the quantization of the electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
128
+ page_content=' In the following, we first review the Lagrangian description of electromagnetic fields extended to time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
129
+ page_content=' Then, we derive a form of Noether’s theorem in our for- malism and we finally show the quantities associated with temporal and spatial translations for time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
130
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
131
+ page_content=' Lagrangian description of the electromagnetic field An in-depth review of the Lagrangian theory of the electromagnetic field can be found in Cohen-Tannoudji’s book [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
132
+ page_content=' Here we review it and extend it to time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
133
+ page_content=' From the perspective of Lagrangian theory, Maxwell equations are equations of motion that can 8 be derived from the principle of least (or stationary) action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
134
+ page_content=' This principle states that true path of motion corresponds to a stationary point of the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
135
+ page_content=' By motion we refer to the values that the dynamical variables have in a given interval of time, which, when position is a dynamical variable, aligns with the common notion of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
136
+ page_content=' The action is defined as the integral of the Lagrangian between two instants of time t1 and t2: S (t1, t2) = � t2 t1 dt L (t) (19) with the Lagrangian L (t) = � d3r L (r, t) (20) and the Lagrangian density L (r, t) = 1 2 � d3r [ε (t) E (r, t) · E (r, t) − µ (t) H (r, t) · H (r, t)] (21) The choice of this Lagrangian density is a direct extension from the case with no time modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
137
+ page_content=' It is justified because Lagrange’s equation correctly recovers the equations of motion for the electromagnetic field, as shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
138
+ page_content=' For the Lagrangian description of the electromagnetic field, it is convenient to work with scalar V (r, t) and vector A (r, t) potentials instead of fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
139
+ page_content=' For the sake of simplicity, we work in the Coulomb gauge, for which ∇ · A (r, t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
140
+ page_content=' By doing so,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
141
+ page_content=' the scalar potential is zero in the absence of charges V (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
142
+ page_content=' t) = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
143
+ page_content=' all the fields are transversal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
144
+ page_content=' and they can be simply written as a function of the vector potential D (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
145
+ page_content=' t) = −ε (t) ∂tA (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
146
+ page_content=' t) (22) B (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
147
+ page_content=' t) = ∇ × A (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
148
+ page_content=' t) (23) Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
149
+ page_content=' Maxwell equations lead to the following wave equation for the components of the vector potential (p = x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
150
+ page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
151
+ page_content=' z): ∇2Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
152
+ page_content=' t) − µ (t) ∂t {ε (t) ∂tAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
153
+ page_content=' t)} = 0 (24) Due to field transversality,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
154
+ page_content=' the Minkowski momentum can be compactly written as PM = −ε (t) � p � d3r ∂tAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
155
+ page_content=' t) ∇Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
156
+ page_content=' t) (25) Similarly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
157
+ page_content=' the Lagrangian density reduces to L = 1 2 � p � ε (t) ˙A2 p (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
158
+ page_content=' t) − 1 µ (t) (∇ × A (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
159
+ page_content=' t))2 p � (26) 9 where we have used ˙Ap as a shorter way to write the time derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
160
+ page_content=' From this description, it lies that the components of the vector potential, Ap, and its time derivatives, ˙Ap, are the dynamical variables of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
161
+ page_content=' Imposing that a true path of motion is a stationary point of the action, for which δS = 0, leads to Lagrange’s equations ∂L ∂Ap − � q ∂q � ∂L ∂ (∂qAp) � − d dt ∂L ∂ ˙Ap = 0 (27) which reduces to the wave equation for Ap in (24), justifying the direct extension of the Lagrangian to time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
162
+ page_content=' With equation (26), we find that the conjugate momentum of each vector potential com- ponent, Ap, is the negative of the electric displacement field components Πp (r, t) = ∂L ∂ ˙Ap = ε (t) ˙Ap (r, t) = −Dp (r, t) (28) This point allow us to clarify another ambiguity related to the momentum of the elec- tromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
163
+ page_content=' For a freely moving particle of mass m with Lagrangian, L = � p 1 2 m ˙r2 p, the dynamical variables are the position coordinates rp, p = x, y, z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
164
+ page_content=' Thus, their associated conjugate momenta pp = ∂L/∂ ˙rp = m ˙rp correspond to the components of the linear mo- mentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
165
+ page_content=' The latter is also the momentum associated with the spatial translations of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
166
+ page_content=' However, for the electromagnetic field, position is not a dynamical variable of the system while the vector potential is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
167
+ page_content=' For this reason, one has to differentiate between the conjugate momentum and the momentum associated with spatial translations, as clarified below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
168
+ page_content=' Finally, the Hamiltonian is defined as a function of the conjugate momentum as follows H = � p � d3r Πp (r, t) ˙Ap (r, t) − L (29) which can be found to be fully equivalent to the form of the electromagnetic energy in time-varing media employed in the previous section, and given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
169
+ page_content=' (9)-(10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
170
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
171
+ page_content=' Noether’s theorem in the Coulomb gauge In this section, we cast a form of Noether’s theorem which allows us to discern the conserved quantities associated with the continuous symmetries of time-varying media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
172
+ page_content=' To 10 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
173
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
174
+ page_content=' (a) Schematic depiction of the motion of a dynamical variable Ap (r, t) between times t1 and t2, and an infinitesimally close motion, described by A′ p (r, t) between times t′ 1 and t′ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
175
+ page_content=' The difference between both motions at time t is given by dA (r, t) = A′ (r, t) − A (r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
176
+ page_content=' The difference between the initial and final temporal points is given by dt1 = t′ 1−t1 and dt2 = t′ 2−t2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
177
+ page_content=' (b) Schematic depiction of trajectories for systems with (left) temporal translation symmetry, and (right) spatial translation symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
178
+ page_content=' this end, we note that any continuous symmetry can be described as an infinitesimal variation of the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
179
+ page_content=' Therefore, as schematically depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
180
+ page_content=' 2(a), we consider a motion between times t1 and t2, defined by the dynamical variables Ap (r, t), and an infinitesimally close motion between times t′ 1 and t′ 2, described by A′ p (r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
181
+ page_content=' The variation of the dynamical variables at a given point of time is dAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
182
+ page_content=' t) = A′ p (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
183
+ page_content=' t) − Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
184
+ page_content=' t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
185
+ page_content=' and the variation of the action can be written as dS = S′ − S = � t′ 2 t′ 1 dt L � A′ p � − � t2 t1 dt L (Ap) = � t2 t1 dt � L � A′ p � − L (Ap) � + � t′ 2 t2 dt L � A′ p � − � t′ 1 t1 dt L � A′ p � (30) 11 (a) p (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
186
+ page_content='t) Ap(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
187
+ page_content='t2) Ap(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
188
+ page_content='t2) Ap(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
189
+ page_content='t1) Ap(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
190
+ page_content="t') dt2 dti ti t2 34 (b) Temporal translation symmetry Spatial translation symmetry Ap(r -n," metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
191
+ page_content='t2) Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
192
+ page_content='ti) A"(r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
193
+ page_content='t)) Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
194
+ page_content='ti) dAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
195
+ page_content='t) As(r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
196
+ page_content='t2) Ap(r,t2) Ap (r,t2) t1 t2 dt dt t ti ti t2 t2 ti t2To first order, last two terms can be approximated by � t′ 2 t2 dt L � A′ p � = L (Ap)|t2 dt2 (31) and the equivalent expression for t1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
197
+ page_content=' Similarly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
198
+ page_content=' for two infinitesimally closed motions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
199
+ page_content=' the first term is given by � t2 t1 dt � L � A′ p � − L (Ap) � = = � t2 t1 dt � p � d3r � ∂L ∂Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
200
+ page_content=' t) dAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
201
+ page_content=' t) + ∂L ∂ ˙Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
202
+ page_content=' t) d ˙Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
203
+ page_content=' t) + � q � ∂L ∂ (∂qAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
204
+ page_content=' t)) � d∂qAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
205
+ page_content=' t) � (32) Similarly to the derivation of Lagrange’s equation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
206
+ page_content=' we integrate by parts the second term with respect to time and the third term with respect to r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
207
+ page_content=' so the variation of the action reduces to � t2 t1 dt � L � A′ p � − L (Ap) � = = � t2 t1 dt � p � d3r � ∂L ∂Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
208
+ page_content=' t) − d dt ∂L ∂ ˙Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
209
+ page_content=' t) − � q ∂q � ∂L ∂ (∂qAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
210
+ page_content=' t)) �� dAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
211
+ page_content=' t) + � p � d3r ∂L ∂ ˙Ap (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
212
+ page_content=' t) dAp (r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
213
+ page_content=' t) ����� t2 t1 (33) Note that,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
214
+ page_content=' in deriving the above equation we have assumed that the fields vanish at infinity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
215
+ page_content=' so that there are no surface contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
216
+ page_content=' By contrast, the fields do not need to vanish at the initial and final temporal boundaries, leading the contribution from the last term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
217
+ page_content=' In addition, the integrand of the first term is a solution to Lagrange’s equation (27), which reduces to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
218
+ page_content=' Thus, by substituting (31)-(33) into (30) we find that the variation of the action is given by: dS = � p � d3r � ∂L ∂ ˙Ap (r, t) dAp (r, t) ����� t2 + L (Ap)|t2 dt2 − ∂L ∂ ˙Ap (r, t) dAp (r, t) ����� t1 − L (Ap)|t1 dt1 � (34) If a system has a continuous symmetry, then the corresponding action remains invariant with respect to infinitesimal displacements, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
219
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
220
+ page_content=', dS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
221
+ page_content=' In addition, since dS = 0 must 12 hold for any pair of times t1 and t2 we find that the term within brackets must be a constant of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
222
+ page_content=' These relations correspond to Noether’s theorem applied to our formulation of the electromagnetic field in time-varying media in the Coulomb Gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
223
+ page_content=' Given a continuous symmetry, specified by the variation dAp (r, t) and the boundary condition on the Lagrangian L (Ap) dt, one can identify an associated conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
224
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
225
+ page_content=' Temporal and spatial translations First, let us assume that the variation is produced by an infinitesimal temporal displace- ment dt, such that dt2 = dt1 = dt (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
226
+ page_content=' 2(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
227
+ page_content=' If the system is invariant with respect to temporal translations we can write A′ p (r, t) = Ap (r, t − dt) ≃ Ap (r, t) − ˙Ap (r, t) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
228
+ page_content=' Then, we have dAp (r, t) = − ˙Ap (r, t) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
229
+ page_content=' Substituting this result in (34) and factoring out dt we find that the conserved quantity is � p � d3r � − ∂L ∂ ˙Ap (r, t) ˙Ap (r, t) + L (Ap) � = = − � p � d3r 1 2 � p � ε (t) ˙A2 p (r, t) + 1 µ (t) (∇ × A (r, t))2 p � = −H (35) Therefore, it is found that invariance with respect to temporal translations implies that the Hamiltonian must be a conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
230
+ page_content=' In time-varying media, the system is not invariant under temporal translations, and, consequently, the Hamiltonian manifestly de- pends on time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
231
+ page_content=' As shown in the previous section, taking its time derivative explicitly shows that it is not a constant of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
232
+ page_content=' Second, we assume that the variation is produced by an infinitesimal spatial displacement η (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
233
+ page_content=' 2(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
234
+ page_content=' Then, if the system is invariant under spatial translations we must have A′ p (r, t) = Ap (r − η, t) ≃ Ap (r, t)−η·∇Ap (r, t), so that dAp (r, t) = −η·∇Ap (r, t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
235
+ page_content=' Again, substituting this result into (34) and factoring out η we find that the conserved quantity must be P = � p � d3r ∂L ∂ ˙Ap (r, t) ∇Ap (r, t) = − � p � d3r ε (t) ˙Ap (r, t) ∇Ap (r, t) (36) which equals the Minkowski momentum in (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
236
+ page_content=' Therefore, we finally found that the fact that time-varying media are invariant under spatial translations directly enforces that the Minkowski momentum is a conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
237
+ page_content=' 13 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
238
+ page_content=' CONCLUDING REMARKS Symmetries play a fundamental role in physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
239
+ page_content=' They reduce the complexity of difficult problems, as well as the computational cost needed to solve them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
240
+ page_content=' Symmetries also en- able the identification of conserved quantities and the formal link between both symmetries and conserved quantities is Noether’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
241
+ page_content=' One of the reasons why time-varying media and/or temporal metamaterials provide a fresh view on electromagnetic theory is because they break temporal symmetries, which are conserved in most traditional photonics systems, while they maintain spatial symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
242
+ page_content=' However, the connection between spatial and tem- poral symmetries and the properties of time-varying media is not always explicitely stated, or analyzed through the point of view of Lagrangian mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
243
+ page_content=' The present tutorial aims at filling this gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
244
+ page_content=' Furthermore, we hope that this tutorial may clarify the subtleties of the conservation of the electromagnetic momentum in time-varying media, the nuances of defin- ing the momentum of the electromagnetic fields within the Abraham-Minkowski debate, and that it will foster further research on the role and significance of symmetries in temporal metamaterials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
245
+ page_content=' [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
246
+ page_content=' Caloz and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
247
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
248
+ page_content=' Deck-Leger, Spacetime metamaterials—part II: theory and applications, IEEE Transactions on Antennas and Propagation 68, 1583 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
249
+ page_content=' [2] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
250
+ page_content=' Galiffi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
251
+ page_content=' Tirole, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
252
+ page_content=' Yin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
253
+ page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
254
+ page_content=' Vezzoli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
255
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
256
+ page_content=' Huidobro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
257
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
258
+ page_content=' Silveirinha, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
259
+ page_content=' Sapienza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
260
+ page_content=' Al`u, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
261
+ page_content=' Pendry, Photonics of time-varying media, Advanced Photonics 4, 014002 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
262
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
263
+ page_content=' Yin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
264
+ page_content=' Galiffi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
265
+ page_content=' Al`u, Floquet metamaterials, eLight 2, 1 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
266
+ page_content=' [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
267
+ page_content=' Engheta, Metamaterials with high degrees of freedom: space, time, and more, Nanopho- tonics 10, 639 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
268
+ page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
269
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
270
+ page_content=' Sounas and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
271
+ page_content=' Alu, Non-reciprocal photonics based on time modulation, Nature Pho- tonics 11, 774 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
272
+ page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
273
+ page_content=' Akbarzadeh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
274
+ page_content=' Chamanara, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
275
+ page_content=' Caloz, Inverse prism based on temporal discontinuity and spatial dispersion, Optics Letters 43, 3297 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
276
+ page_content=' [7] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
277
+ page_content=' Pacheco-Pe˜na and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
278
+ page_content=' Engheta, Temporal aiming, Light: Science & Applications 9, 1 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
279
+ page_content=' 14 [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
280
+ page_content=' Shlivinski and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
281
+ page_content=' Hadad, Beyond the bode-fano bound: Wideband impedance matching for short pulses using temporal switching of transmission-line parameters, Physical Review Letters 121, 204301 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
282
+ page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
283
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
284
+ page_content=' Mirmoosa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
285
+ page_content=' Ptitcyn, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
286
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
287
+ page_content=' Asadchy, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
288
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
289
+ page_content=' Tretyakov, Time-varying reactive elements for extreme accumulation of electromagnetic energy, Physical Review Applied 11, 014024 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
290
+ page_content=' [10] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
291
+ page_content=' Liberal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
292
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
293
+ page_content=' V´azquez-Lozano, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
294
+ page_content=' Pachecho-Pe˜na, Quantum antireflection temporal coatings: quantum state frequency shifting and inhibited thermal noise amplification, arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
295
+ page_content='10089 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
296
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
297
+ page_content=' Pendry, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
298
+ page_content=' Galiffi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
299
+ page_content=' Huidobro, Gain in time-dependent media—a new mechanism, Journal of the Optical Society of America B 38, 3360 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
300
+ page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
301
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
302
+ page_content=' V´azquez-Lozano and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
303
+ page_content=' Liberal, Shaping the quantum vacuum with anisotropic temporal boundaries, Nanophotonics (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
304
+ page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
305
+ page_content=' Lyubarov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
306
+ page_content=' Lumer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
307
+ page_content=' Dikopoltsev, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
308
+ page_content=' Lustig, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
309
+ page_content=' Sharabi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
310
+ page_content=' Segev, Amplified emission and lasing in photonic time crystals, Science 377, 425 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
311
+ page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
312
+ page_content=' Dikopoltsev, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
313
+ page_content=' Sharabi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
314
+ page_content=' Lyubarov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
315
+ page_content=' Lumer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
316
+ page_content=' Tsesses, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
317
+ page_content=' Lustig, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
318
+ page_content=' Kaminer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
319
+ page_content=' Segev, Light emission by free electrons in photonic time-crystals, Proceedings of the Na- tional Academy of Sciences 119, e2119705119 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
320
+ page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
321
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
322
+ page_content=' V´azquez-Lozano and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
323
+ page_content=' Liberal, Incandescent temporal metamaterials, arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
324
+ page_content='05565 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
325
+ page_content=' [16] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
326
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
327
+ page_content=' Morgenthaler, Velocity modulation of electromagnetic waves, IRE Transactions on Mi- crowave Theory and Techniques 6, 167 (1958).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
328
+ page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
329
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
330
+ page_content=' Sol´ıs, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
331
+ page_content=' Kastner, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
332
+ page_content=' Engheta, Time-varying materials in the presence of disper- sion: plane-wave propagation in a lorentzian medium with temporal discontinuity, Photonics Research 9, 1842 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
333
+ page_content=' [18] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
334
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
335
+ page_content=' Koutserimpas and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
336
+ page_content=' Fleury, Electromagnetic fields in a time-varying medium: excep- tional points and operator symmetries, IEEE Transactions on Antennas and Propagation 68, 6717 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
337
+ page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
338
+ page_content=' Banados and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
339
+ page_content=' Reyes, A short review on noether’s theorems, gauge symmetries and bound- ary terms, International Journal of Modern Physics D 25, 1630021 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
340
+ page_content=' 15 [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
341
+ page_content=' Kosmann-Schwarzbach, The noether theorems, in The Noether Theorems (Springer, 2011) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
342
+ page_content=' 55–64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
343
+ page_content=' [21] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
344
+ page_content=' Cohen-Tannoudji, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
345
+ page_content=' Dupont-Roc, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
346
+ page_content=' Grynberg, Photons and atoms-Introduction to quantum electrodynamics (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
347
+ page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
348
+ page_content=' Sakurai and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
349
+ page_content=' Napolitano, Modern quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
350
+ page_content=' 2-nd edition (Person, 2014) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
351
+ page_content=' 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
352
+ page_content=' [23] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
353
+ page_content=' Brevik, Experiments in phenomenological electrodynamics and the electromagnetic energy- momentum tensor, Physics Reports 52, 133 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
354
+ page_content=' [24] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
355
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
356
+ page_content=' Pfeifer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
357
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
358
+ page_content=' Nieminen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
359
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
360
+ page_content=' Heckenberg, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
361
+ page_content=' Rubinsztein-Dunlop, Colloquium: Momentum of an electromagnetic wave in dielectric media, Reviews of Modern Physics 79, 1197 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
362
+ page_content=' [25] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
363
+ page_content=' Kemp, Resolution of the abraham-minkowski debate: Implications for the electromagnetic wave theory of light in matter, Journal of Applied Physics 109, 7 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
364
+ page_content=' [26] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
365
+ page_content=' Milonni and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
366
+ page_content=' Boyd, Recoil and photon momentum in a dielectric, Laser Physics 15, 1432 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
367
+ page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
368
+ page_content=' Mansuripur, Radiation pressure and the linear momentum of the electromagnetic field, Optics Express 12, 5375 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
369
+ page_content=' [28] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
370
+ page_content=' Leonhardt, Momentum in an uncertain light, Nature 444, 823 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
371
+ page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
372
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
373
+ page_content=' Campbell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
374
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
375
+ page_content=' Leanhardt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
376
+ page_content=' Mun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
377
+ page_content=' Boyd, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
378
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
379
+ page_content=' Streed, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
380
+ page_content=' Ketterle, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
381
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
382
+ page_content=' Pritchard, Photon recoil momentum in dispersive media, Physical Review Letters 94, 170403 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
383
+ page_content=' [30] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
384
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
385
+ page_content=' Barnett, Resolution of the abraham-minkowski dilemma, Physical Review Letters 104, 070401 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
386
+ page_content=' [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
387
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
388
+ page_content=' Barnett and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
389
+ page_content=' Loudon, The enigma of optical momentum in a medium, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 927 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
390
+ page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
391
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
392
+ page_content=' Silveirinha, Reexamination of the abraham-minkowski dilemma, Physical Review A 96, 033831 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
393
+ page_content=' [33] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
394
+ page_content=' Lobet, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
395
+ page_content=' Liberal, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
396
+ page_content=' Vertchenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
397
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
398
+ page_content=' Lavrinenko, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
399
+ page_content=' Engheta, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
400
+ page_content=' Mazur, Momentum considerations inside near-zero index materials, Light: Science & Applications 11, 1 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
401
+ page_content=' [34] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
402
+ page_content=' Liberal and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
403
+ page_content=' Engheta, Near-zero refractive index photonics, Nature Photonics 11, 149 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
404
+ page_content=' 16 [35] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
405
+ page_content=' Kinsey, Developing momentum in vanishing index photonics, Light Science & Applications 11, 1 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
406
+ page_content=' [36] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
407
+ page_content=' Gratus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
408
+ page_content=' Seviour, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
409
+ page_content=' Kinsler, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
410
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
411
+ page_content=' Jaroszynski, Temporal boundaries in electromag- netic materials, New Journal of Physics 23, 083032 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
412
+ page_content=' 17' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf'}
EtAyT4oBgHgl3EQf4_op/content/tmp_files/2301.00795v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
EtAyT4oBgHgl3EQf4_op/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FNFRT4oBgHgl3EQfCDcd/content/tmp_files/2301.13467v1.pdf.txt ADDED
@@ -0,0 +1,594 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Research OR Education of Physics
2
+ Revista Mexicana de Física ?? (*?*) ???–???
3
+ MES? AÑO?
4
+ Perfect QCD – a new Universal approach to soft QCD
5
+ P. Christiansen
6
+ Division of Particle Physics, Lund University, Sweden
7
+ The ideas presented in this proceeding aims to be a first step towards a description of hadronic collisions where all soft processes are
8
+ fundamentally strongly coupled and the same Universal strongly coupled physics drives both initial and final-state interactions.
9
+ As it is not currently possible to derive such a picture from first principles, instead, an attempt to generalize the perfect liquid observation to
10
+ a “perfect QCD” guiding principle is presented, focusing on implications for particle production in small systems. The first steps towards
11
+ a microscopic model is taken by arguing that “perfect QCD” suggests that the screening in the initial state is so large that multi-parton
12
+ interactions are of little or no importance. Instead, a target and projectile remnant is coherently excited and particle production is mainly
13
+ driven by radiation in a qualitative similar manner as e+e− → q¯q.
14
+ Finally, some of the possible implications of this “excited remnant model” are presented. It is argued that the time ordering of soft and hard
15
+ physics can explain the absence of jet quenching in small systems and that the coherence scale of the projectile and target provides insights
16
+ into what small systems will exhibit flow.
17
+ Keywords:
18
+ 1
19
+ Introduction
20
+ The goal of this proceeding for the Winter Workshop 2022 is
21
+ to present a new picture for hadronic collisions. To be pre-
22
+ cise, the focus in this paper is only on non-diffractive inelastic
23
+ collisions and only the soft physics1, which is expected to be
24
+ responsible for bulk particle production. When hadronic col-
25
+ lisions are mentioned in the following it always refers to this
26
+ type of collision unless another type is explicitly mentioned.
27
+ The motivation for doing this is the observation of several
28
+ phenomena in small systems2 that has traditionally been as-
29
+ sociated with the formation of a quark-gluon plasma (QGP)
30
+ in large systems, see, e.g., Refs. [3,4] for an overview. These
31
+ new phenomena can all be explained by the presence of large
32
+ final-state interactions in small system and many excellent
33
+ ideas have been presented for describing this with weakly
34
+ coupled physics, see e.g., [5], but what seems to the author to
35
+ be a fundamental flaw in these models is that a weakly cou-
36
+ pled interaction leads to a non-vanishing mean free path so
37
+ that the QGP-like effects will build up as the system grows
38
+ and first dominate at a certain system size [5]. This means
39
+ that QGP-like effects do not in a natural way extend down
40
+ to the smallest systems, even if there is no indication in data
41
+ of an onset [3, 4]. At the same time, a non-vanishing mean
42
+ free path will introduce diffusion and dissipation effects that
43
+ will supposedly modify the initial-state correlations, which
44
+ the author is unaware of experimental evidence for, see e.g.
45
+ C. A. Pruneau’s contribution to these proceedings [6].
46
+ FIGURE 1. Illustration of how the initial soft scatterings are de-
47
+ scribed in different models/pictures. Top: in Pythia, soft and hard
48
+ interactions are modeled in the same way as leading-order perturba-
49
+ tive processes and multiple interactions occur in most pp collisions.
50
+ The strings forming between color charges are not shown. Bottom:
51
+ in the “perfect QCD” picture a remnant of each nucleon is excited
52
+ as a whole, as if there was only a single interaction, and the picture
53
+ is therefore denoted the “excited remnant model”.
54
+ 1 Meaning that momentum transfers are small so that perturbative cal-
55
+ culations are inaccurate. As, for example, the Pythia generator [1, 2] for
56
+ proton-proton collisions treats all interactions perturbatively, this is not a
57
+ unique definition but part of the motivation for exploring a completely dif-
58
+ ferent picture in this paper.
59
+ 2 Small systems are taken to mean proton-proton, proton-nuclei and
60
+ ultra-peripheral nuclei-nuclei collisions.
61
+ arXiv:2301.13467v1 [hep-ph] 31 Jan 2023
62
+
63
+ QQQQQQQQQ
64
+ ooooopooooopooTarget nucleon
65
+ Projectile nucleon
66
+ Target "sea"
67
+ Excited
68
+ remnant
69
+ Color neutral
70
+ Projectile"sea"
71
+ spectator remnant2
72
+ RMF EDITORIAL TEAM
73
+ In this paper, the decision has been to take a fresh look at
74
+ things from the perspective offered by the new measurements
75
+ and try to bring forth a picture that is fundamentally strongly
76
+ coupled with a vanishing mean free path so that large final-
77
+ state effects are present in all systems and do not introduce
78
+ diffusion or dissipation (are essentially reversible) thereby
79
+ hopefully preserving correlations such as those introduced by
80
+ string breakings or similar processes. In traditional pictures,
81
+ “soft” can have two very different meanings:
82
+ 1. The extrapolation from high-momentum transfers to
83
+ low momentum transfer, e.g., using leading-order per-
84
+ turbative cross sections even for situations where next-
85
+ to-leading order correlations are large
86
+ 2. Phenomenological physics such as the Lund string
87
+ model [7]
88
+ The approach in this paper is to claim that point 1 does not
89
+ work, meaning that next-to-leading order corrections distorts
90
+ the leading-order picture, and the proposal is instead that
91
+ “perfect QCD” is a Universal version of point 2 and can pro-
92
+ vide guidance in that way. This means that any time where
93
+ soft is mentioned in the text one should in principle be able
94
+ to apply the “perfect QCD” principle.
95
+ To help convince
96
+ the reader that this leads to fundamentally different physics
97
+ from that found in existing models, one of the main find-
98
+ ings will be already discussed here and illustrated in Fig. 1.
99
+ In pp event generators, such as Pythia [1, 2], one typically
100
+ treats the initial stages of pp collisions as two interacting par-
101
+ ton gases where the scattering of each parton-parton inter-
102
+ action is motivated by perturbative (weakly coupled) QCD,
103
+ Fig. 1 top. In the Color-Glass Condensate (CGC) model, not
104
+ shown, one instead considers it as a weakly coupled interac-
105
+ tion between dense gluon fields [8] that produce longitudinal
106
+ Glasma tubes, Fig. 1. In both models the collision can involve
107
+ one or more interactions and the number of interactions is the
108
+ main driving mechanism of the final-state multiplicity. In the
109
+ picture motivated in this paper, one considers a strongly cou-
110
+ pled scenario where the color field of each projectile parton is
111
+ neutralized by the target partons. It is argued that this results
112
+ instead in that the remnant of the projectile and the target is
113
+ coherently excited, corresponding essentially to a single soft
114
+ interaction. This gives rise to two semi-independent color
115
+ fields, Fig. 1 bottom, which would mean that most of the par-
116
+ ticle production is driven by final-state radiation from the col-
117
+ ored target and projectile remnants, similar to e+e− → q¯q.
118
+ Concretely, the idea of this paper is to extend the experi-
119
+ mental observation that the QGP behaves like a perfect liquid
120
+ to a “perfect QCD” principle that can guide our understand-
121
+ ing of particle production in general. The goal is not to come
122
+ up with a full model, but to demonstrate that it is possible us-
123
+ ing the proposed “perfect QCD” principle to obtain surpris-
124
+ ing insights into particle production where the physics and
125
+ the explanations for observed phenomena are very different
126
+ from those found in existing models, such as Pythia and the
127
+ CGC.
128
+ 2
129
+ Perfect QCD
130
+ One of the most remarkable discoveries of the heavy-ion pro-
131
+ gram at RHIC and LHC is that the Quark-Gluon Plasma
132
+ (QGP) behaves as a perfect liquid [9–15].
133
+ The shear-
134
+ viscosity-to-entropy density (η/s) is as low as possible [16].
135
+ This means that the build up of flow is almost deterministic,
136
+ which has enabled the precise measurement of fluctuations
137
+ in the initial distribution of matter, e.g., Refs. [17,18]. At the
138
+ Winter Workshop it was further shown how the same mini-
139
+ mal η/s is also obtained when analyzing balance functions
140
+ and momentum correlations, see C. A. Pruneau’s contribu-
141
+ tion to these proceedings [6].
142
+ The perfect nature of the liquid seems to indicate that it
143
+ is very fundamental and since it is observed in all hadronic
144
+ collisional systems (pp, p–Pb, and Pb–Pb collisions), see for
145
+ example Refs. [19,20] for small systems, one could hope that
146
+ it provides a deep insight into QCD.
147
+ Based on the characteristics of the perfect liquid it is pro-
148
+ posed that “perfect QCD” has to have the following two char-
149
+ acteristics:
150
+ • Strongly interacting
151
+ • Minimal entropy production
152
+ The minimal entropy production comes from the observation
153
+ that the hydrodynamic description of the QGP is as close to
154
+ ideal (reversible) as it can be and means that dissipation and
155
+ diffusion can play no significant role in the description of the
156
+ system.
157
+ 3
158
+ The Perfect QCD Picture of Particle Produc-
159
+ tion
160
+ It might seem impossible to derive a microscopic picture
161
+ from a strongly interacting soft QCD model because one
162
+ looses the perturbative guidance but the surprise is that the
163
+ proposed picture is extremely simple. The “perfect QCD”
164
+ principle dictates that the entropy production during the ini-
165
+ tial collisions should be as small as possible, yet strongly in-
166
+ teracting, and this suggests that all that happens is the ex-
167
+ change of a single soft gluon so that only color and essen-
168
+ tially no momentum is exchanged. As the interacting hadrons
169
+ are of course made up of partons, this would require that the
170
+ screening in the initial state is so strong for the initial inter-
171
+ actions that the soft parton-parton (and/or CGC equivalent)
172
+ interactions are suppressed to a degree where they can be ne-
173
+ glected. One will of course have parton-parton interactions
174
+ for very large momentum transfers but they are not of inter-
175
+ est here where the focus is on bulk production.
176
+ Let us first treat the rest of the collision, ignoring pos-
177
+ sible radiation, using the Lund string model [7], which, as
178
+ it is derived from the confining long-range part of the QCD
179
+ potential, is a strongly coupled model. In the Lund string
180
+ model, strings will form between colors and anti-colors that
181
+ Rev. Mex. Fis. ?? (*?*) (????) ???–???
182
+
183
+ A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF
184
+ 3
185
+ eventually breaks, producing hadrons uniformly in rapidity.
186
+ In this case, two strings will form as the gluon carries both
187
+ a color and anti-color. Let us assume that all the energy of
188
+ each proton is carried by the color and the anti-color sys-
189
+ tems. If both have half the energy, the total string length will
190
+ be ≈4(ybeam−log 2) while if one color (or anti-color) has all
191
+ the energy one can supposedly form a string of length 2ybeam
192
+ (this must be the minimal length for the color field to stretch
193
+ between the target and projectile). As the average number of
194
+ particles produced a by a string is proportional to the string
195
+ length [7], the “perfect QCD” principle tells us that nature
196
+ will take the 2nd solution. This means that instead of hav-
197
+ ing two remnants with a similar amount of energy, one will
198
+ have a “valence”-like remnant with almost all the energy and
199
+ a “sea”-like remnant with almost no energy. This is reminis-
200
+ cent of the BGK picture [21], and so it is naturally to propose
201
+ that the “valence” remnant in one proton is color-coupled to
202
+ the “sea” remnant in the other proton, and vice versa, so that
203
+ one in some sense has two semi-independent systems carry-
204
+ ing approximately half the total initial energy each.
205
+ Let us finally try to give a partonic picture of how the “per-
206
+ fect QCD” picture can be understood. As the two nucleon
207
+ penetrate at high energy the partons inside them are interact-
208
+ ing strongly but the claim is that they interact in a way that
209
+ screens the partonic interactions. However, this screening can
210
+ only happen in a certain regime. If x denotes the usual four
211
+ momentum fraction then one can maximally “organize” the
212
+ nucleon into n ≈ 1/x constituents. Screening will be impos-
213
+ sible when the four momentum transfer, Q2, is very large be-
214
+ cause one can resolve individual partons (the hard scattering
215
+ limit), or when x is large so that the number of constituents is
216
+ small. The latter argument is why nucleon remnants will be
217
+ excited as a whole.
218
+ In the current picture, dNch/dη at η = 0 would be inde-
219
+ pendent of √s as all the energy will go to extend the strings
220
+ in rapidity. What has been ignored is radiation: the color
221
+ charge carrying most of the energy is, as QCD is strongly in-
222
+ teracting, very likely to emit soft or collinear radiation. How
223
+ to calculate this radiation is not trivial, but one can at least
224
+ note that one qualitatively get a system very similar to what
225
+ one has for e+e− → q¯q (denoted e+e− in the following).
226
+ Comparing particle production in e+e− collisions to that of
227
+ pp collisions, one finds that the former produces more parti-
228
+ cles on the average [11]. The common understanding is that
229
+ it is possible for part of the proton to escape as a color neutral
230
+ object, taking away around 50% of the energy [22]. Based
231
+ on the observed particle production in e+e−, it is concluded
232
+ that there is no fundamental reason one should not be able to
233
+ create the observed particle production via radiation also in
234
+ pp, pA, and AA collisions.
235
+ To recap, the general microscopic “perfect QCD” pic-
236
+ ture of pp, pA, and AA collisions will be that the soft initial
237
+ interactions will excite a remnant of each nucleon in a “pro-
238
+ jectile” coherently and that the main particle production at
239
+ high energy collisions is driven by final-state radiation. For
240
+ this reason the picture will be denoted the “excited remnant
241
+ model”. This might sound like the Dual Parton Model but
242
+ it is important to note that the Dual Parton Model contains
243
+ MPIs [23].
244
+ In the limit that particle production is dominated by radi-
245
+ ation, the color-connections to the “sea” systems in the “tar-
246
+ get” can be ignored and one can therefore factorize the soft
247
+ particle production into Npart semi-independent terms. Semi-
248
+ independent, because there must be some dependence on the
249
+ nucleon-nucleon impact parameter to explain the slightly in-
250
+ creased particle production per participant in AA collisions.
251
+ 3.1
252
+ An Illustration of Particle Production in pp Colli-
253
+ sions
254
+ 5
255
+
256
+ 4
257
+
258
+ 3
259
+
260
+ 2
261
+
262
+ 1
263
+
264
+ 0
265
+ η
266
+
267
+ 0
268
+ 2
269
+ 4
270
+ 6
271
+ 8
272
+ 10
273
+ η
274
+ /d
275
+ ch
276
+ N
277
+ d
278
+ n
279
+
280
+ 52
281
+ 50
282
+
283
+ n
284
+
285
+ 42
286
+ 40
287
+
288
+ n
289
+
290
+ 32
291
+ 30
292
+
293
+ n
294
+
295
+ 22
296
+ 20
297
+
298
+ n
299
+
300
+ 12
301
+ 10
302
+
303
+ n
304
+
305
+ 2
306
+ NSD
307
+ FIGURE 2. dNch/dη measured in √s = 200 GeV/c pp collisions by
308
+ UA5 for NSD events and for events with different final-state charged
309
+ particle multiplicities, n. The data have been read off from the pub-
310
+ lished figures [24]. As the figure is just meant to illustrate a trend,
311
+ the statistical uncertainties have not been included for clarity.
312
+ The main goal here is to discuss small systems. In these sys-
313
+ tems, e.g., pp collisions, the full “perfect QCD” picture of a
314
+ collision is:
315
+ 1. the initial interactions produce up to three semi-
316
+ independent systems:
317
+ • coherently excited target and projectile remnants
318
+ • possible color-neutral target and projectile rem-
319
+ nants that act as spectators (escape with energy
320
+ along beam direction)
321
+ • possible hard parton-parton scatterings
322
+ 2. the excited remnants radiate gluons
323
+ 3. the color fields decay into partons
324
+ Rev. Mex. Fis. ?? (*?*) (????) ???–???
325
+
326
+ 4
327
+ RMF EDITORIAL TEAM
328
+ 4. final-state partonic interactions: flow, strangeness en-
329
+ hancement
330
+ 5. hadronization
331
+ 6. possible final-state hadronic rescattering
332
+ One could in principle try to implement a generator along
333
+ these lines but the goal here is to illustrate the picture using
334
+ UA5 data [24]. Fig. 2 shows the dNch/dη measured by UA5
335
+ for NSD events as well as for multiplicity selected events. In
336
+ low-multiplicity events, dNch/dη is flat as one would expect
337
+ for a single long string. As the multiplicity grows, one ob-
338
+ serves a narrowing of dNch/dη, which in the perfect QCD
339
+ picture should be caused by the radiation adding shorter and
340
+ shorter (less energetic) strings. In this way the “excited rem-
341
+ nant model” is at least qualitatively consistent with the ob-
342
+ served trends by UA5.
343
+ 4
344
+ Insights and Predictions for Small Systems
345
+ In this section, the hope is to demonstrate for the reader that
346
+ the perfect-QCD picture of particle production can provide
347
+ many new insights and predictions.
348
+ 4.1
349
+ A Simple Explanation for the Absence of Jet
350
+ Quenching in Small Systems
351
+ One can immediately notice that, if the time scales involved
352
+ with the hard interactions are shorter than the formation time
353
+ for step 2 (“the excited remnants radiate gluons”) as one
354
+ would imagine from the scales of the momentum transfers
355
+ involved, then one can understand why there is no jet quench-
356
+ ing in small systems even if there is a relation between flow
357
+ and jet quenching in a large system. The medium simply has
358
+ not been produced yet when the jet propagates. This seems
359
+ very attractive to the author as this is in line with experimental
360
+ findings, see, for example, Ref. [25], and it is hard to explain
361
+ in most existing models.
362
+ 4.2
363
+ Flow in pp Collisions ≫ Flow in e+e− Collisions
364
+ It should be clear from the way the “excited remnant model”
365
+ work that it “postdicts” that the particle production in pp col-
366
+ lisions and e+e− collisions should be very similar because
367
+ in this model, and unlike traditional MPI-based models, the
368
+ growth with √s is in both cases driven by radiation. Indeed
369
+ this surprising similarity have been noted and discussed much
370
+ in the past by experimental collaborations [11, 26], even it
371
+ was never theoretically understood.
372
+ It can therefore be surprising that while one observes
373
+ strong flow in pp collisions, one does not observe it for e+e−
374
+ collisions [27]. However, there could be a simple explana-
375
+ tion for that. As the “excited remnant model” postulates that
376
+ for each nucleon a single “valence” remnant is excited as a
377
+ whole, then it is clear that the radiation in step 2 will have
378
+ to have very low transverse momentum, pT < 1/R, where R
379
+ is the size of the excited remnant. As the pT is so low, the
380
+ color fields will have to stack and so one will naturally get a
381
+ quite dense system of parallel color fields with a large energy
382
+ density. In the “perfect QCD” picture these color fields will
383
+ be strongly interacting and so they will immediately start to
384
+ build up collective flow. This makes a big difference when
385
+ comparing to e+e−, where all the energy is located with a
386
+ single parton and so the radiated gluons can and will typi-
387
+ cally have very large pT. This means that most energy will be
388
+ radiated away from the initial color field and so there is little
389
+ time where system is dense and can build up collective flow.
390
+ 4.3
391
+ How to Control Flow in Ultra-Small Systems
392
+ In the previous subsection it was argued that for small sys-
393
+ tems, the size of the excited remnant determines the flow that
394
+ can be built up in the final system. This then is naturally in
395
+ line with the observation of flow in Ultra-Peripheral Colli-
396
+ sions (UPCs), where the photon field of one nuclei interacts
397
+ with the other nuclei, because in this case the photon field
398
+ has a long wavelength since it is emitted coherently by the
399
+ protons in the nuclei. Recall that photons can interact as a
400
+ “hadronic” system by fluctuating into a q¯q pair, which will
401
+ have a size that reflects the photon four momentum (Q2). AT-
402
+ LAS has observed flow in UPC Pb–Pb events [28] and CMS
403
+ has reported non-zero v2{2} in p–Pb events [29], which is in
404
+ line with the ideas presented here.
405
+ By going to electron-proton or electron-ion collisions one
406
+ can in principle measure the wavelength of the photon from
407
+ the change in electron four momentum. One can in this way
408
+ select different sizes of the excited remnants and if the pic-
409
+ ture is true, control the pT radiation and switch on (low Q2)
410
+ and off (high Q2) flow. ZEUS and H1 has reanalyzed old
411
+ data both for low and high Q2 but neither ZEUS [30, 31]
412
+ nor H1 [32] observes any signatures of collective flow. This
413
+ clearly goes against the ideas presented here. However, it
414
+ seems that if there is flow in UPCs at LHC then there would
415
+ also likely be flow in low Q2 ep collisions at HERA and
416
+ vice verse. On the other hand, one knows that flow in small
417
+ systems is very hard to detect. Looking from the outside, it
418
+ would be good if one could resolve the situation so that one is
419
+ as certain as possible that similar procedures have been used
420
+ before one concludes too strongly on the current results.
421
+ 5
422
+ Conclusions
423
+ An attempt to generalize the perfect-liquid nature from flow
424
+ to particle production has been presented.
425
+ The “perfect
426
+ QCD” principle has been proposed to be a Universal principle
427
+ for soft QCD that applies both in the initial and final state of
428
+ hadronic collisions. Using the idea of minimal entropy pro-
429
+ duction, a microscopic picture, the “excited remnant model”,
430
+ has been presented. In the microscopic picture, the screening
431
+ as the two hadronic systems penetrate is so large that sub-
432
+ collisions between constituents does not occur, in contrast to
433
+ most existing pictures, e.g., MPI and CGC based ones.
434
+ Rev. Mex. Fis. ?? (*?*) (????) ???–???
435
+
436
+ A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF
437
+ 5
438
+ No attempt has been done to prove the “perfect QCD”
439
+ principle in this paper but several surprising insights have
440
+ been provided, such as simple arguments for why jet quench-
441
+ ing is absent in small systems and which collisional systems
442
+ will exhibit flow. The hope is that the principle can be used to
443
+ provide novel insights into a wide range of topics, for exam-
444
+ ple, jet quenching in large systems and the relation between
445
+ diffractive and non-diffractive physics.
446
+ 6
447
+ Acknowledgements
448
+ The author would like to thank Adrian Nassirpour for
449
+ many valuable comments on earlier versions of similar
450
+ manuscripts.
451
+ 7
452
+ References
453
+ 1. T. Sjöstrand, et al., An Introduction to PYTHIA 8.2, Comput.
454
+ Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.
455
+ 01.024
456
+ 2. T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics
457
+ and Manual, JHEP 05 (2006) 026, 10.1088/1126-6708/
458
+ 2006/05/026
459
+ 3. C. Loizides, Experimental overview on small collision systems
460
+ at the LHC, Nucl. Phys. A 956 (2016) 200, 10.1016/j.
461
+ nuclphysa.2016.04.022
462
+ 4. J.
463
+ L.
464
+ Nagle
465
+ and
466
+ W.
467
+ A.
468
+ Zajc,
469
+ Small
470
+ System
471
+ Col-
472
+ lectivity in Relativistic Hadronic and Nuclear Collisions,
473
+ Ann. Rev. Nucl. Part. Sci. 68 (2018) 211,
474
+ 10.1146/
475
+ annurev-nucl-101916-123209
476
+ 5. A. Kurkela and A. Mazeliauskas, Chemical Equilibration in
477
+ Hadronic Collisions,
478
+ Phys. Rev. Lett. 122 (2019) 142301,
479
+ 10.1103/PhysRevLett.122.142301
480
+ 6. C. Pruneau,
481
+ Determination of the shear viscosity and light
482
+ quark diffusivity of QGP with two-particle correlation func-
483
+ tions, Rev. Mex. Fis. Suppl. 3 (2022) 040904, 10.31349/
484
+ SuplRevMexFis.3.040904
485
+ 7. B. Andersson, et al., Parton Fragmentation and String Dynam-
486
+ ics, Phys. Rept. 97 (1983) 31, 10.1016/0370-1573(83)
487
+ 90080-7
488
+ 8. F. Gelis, et al.,
489
+ The Color Glass Condensate,
490
+ Ann. Rev.
491
+ Nucl. Part. Sci. 60 (2010) 463, 10.1146/annurev.nucl.
492
+ 010909.083629
493
+ 9. I. Arsene et al., Quark gluon plasma and color glass conden-
494
+ sate at RHIC? The Perspective from the BRAHMS experiment,
495
+ Nucl. Phys. A 757 (2005) 1,
496
+ 10.1016/j.nuclphysa.
497
+ 2005.02.130
498
+ 10. K. Adcox et al., Formation of dense partonic matter in rela-
499
+ tivistic nucleus-nucleus collisions at RHIC: Experimental eval-
500
+ uation by the PHENIX collaboration, Nucl. Phys. A 757 (2005)
501
+ 184, 10.1016/j.nuclphysa.2005.03.086
502
+ 11. B. Back et al.,
503
+ The PHOBOS perspective on discoveries
504
+ at RHIC,
505
+ Nucl. Phys. A 757 (2005) 28,
506
+ 10.1016/j.
507
+ nuclphysa.2005.03.084
508
+ 12. J. Adams et al., Experimental and theoretical challenges in the
509
+ search for the quark gluon plasma: The STAR Collaboration’s
510
+ critical assessment of the evidence from RHIC collisions, Nucl.
511
+ Phys. A 757 (2005) 102, 10.1016/j.nuclphysa.2005.
512
+ 03.085
513
+ 13. K. Aamodt et al., Elliptic flow of charged particles in Pb-Pb
514
+ collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302,
515
+ 10.1103/PhysRevLett.105.252302
516
+ 14. G. Aad et al., Measurement of the pseudorapidity and trans-
517
+ verse momentum dependence of the elliptic flow of charged
518
+ particles in lead-lead collisions at √sNN = 2.76 TeV with the
519
+ ATLAS detector, Phys. Lett. B 707 (2012) 330, 10.1016/j.
520
+ physletb.2011.12.056
521
+ 15. S. Chatrchyan et al., Measurement of the elliptic anisotropy of
522
+ charged particles produced in PbPb collisions at √sNN=2.76
523
+ TeV, Phys. Rev. C 87 (2013) 014902, 10.1103/PhysRevC.
524
+ 87.014902
525
+ 16. P. Kovtun, D. T. Son, and A. O. Starinets,
526
+ Viscosity in
527
+ strongly interacting quantum field theories from black hole
528
+ physics,
529
+ Phys. Rev. Lett. 94 (2005) 111601,
530
+ 10.1103/
531
+ PhysRevLett.94.111601
532
+ 17. B. Alver et al., Importance of correlations and fluctuations on
533
+ the initial source eccentricity in high-energy nucleus-nucleus
534
+ collisions,
535
+ Phys. Rev. C 77 (2008) 014906,
536
+ 10.1103/
537
+ PhysRevC.77.014906
538
+ 18. B. Alver and G. Roland, Collision geometry fluctuations and
539
+ triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010)
540
+ 054905, 10.1103/PhysRevC.82.039903
541
+ 19. V. Khachatryan et al.,
542
+ Evidence for Collective Multiparticle
543
+ Correlations in p-Pb Collisions, Phys. Rev. Lett. 115 (2015)
544
+ 012301, 10.1103/PhysRevLett.115.012301
545
+ 20. M. Aaboud et al.,
546
+ Measurement of long-range multiparticle
547
+ azimuthal correlations with the subevent cumulant method in
548
+ pp and p + Pb collisions with the ATLAS detector at the
549
+ CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 024904,
550
+ 10.1103/PhysRevC.97.024904
551
+ 21. S. J. Brodsky, J. Gunion, and J. H. Kuhn, Hadron Production in
552
+ Nuclear Collisions: A New Parton Model Approach, Phys. Rev.
553
+ Lett. 39 (1977) 1120, 10.1103/PhysRevLett.39.1120
554
+ 22. B. Back et al., Centrality and energy dependence of charged-
555
+ particle multiplicities in heavy ion collisions in the context
556
+ of elementary reactions,
557
+ Phys. Rev. C 74 (2006) 021902,
558
+ 10.1103/PhysRevC.74.021902
559
+ 23. A. Capella, et al., Dual parton model, Phys. Rept. 236 (1994)
560
+ 225, 10.1016/0370-1573(94)90064-7
561
+ 24. G. J. Alner et al.,
562
+ Scaling of Pseudorapidity Distributions
563
+ at c.m. Energies Up to 0.9-TeV,
564
+ Z. Phys. C 33 (1986) 1,
565
+ 10.1007/BF01410446
566
+ Rev. Mex. Fis. ?? (*?*) (????) ???–???
567
+
568
+ 6
569
+ RMF EDITORIAL TEAM
570
+ 25. S. Acharya et al., Constraints on jet quenching in p-Pb colli-
571
+ sions at √sNN = 5.02 TeV measured by the event-activity de-
572
+ pendence of semi-inclusive hadron-jet distributions, Phys. Lett.
573
+ B 783 (2018) 95, 10.1016/j.physletb.2018.05.059
574
+ 26. A. Zichichi, The ISR’s totally unexpected results, CERN Cour.
575
+ 51N6 (2011) 39
576
+ 27. A. Badea, et al., Measurements of two-particle correlations in
577
+ e+e− collisions at 91 GeV with ALEPH archived data, Phys.
578
+ Rev. Lett. 123 (2019) 212002, 10.1103/PhysRevLett.
579
+ 123.212002
580
+ 28. G. Aad et al., Two-particle azimuthal correlations in photonu-
581
+ clear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS
582
+ (2021)
583
+ 29. Search for elliptic azimuthal anisotropies in γp interactions
584
+ within ultra-peripheral pPb collisions at √sNN = 8.16 TeV
585
+ (2020)
586
+ 30. I. Abt et al., Two-particle azimuthal correlations as a probe of
587
+ collective behaviour in deep inelastic ep scattering at HERA,
588
+ JHEP 04 (2020) 070, 10.1007/JHEP04(2020)070
589
+ 31. I. Abt et al., Azimuthal correlations in photoproduction and
590
+ deep inelastic ep scattering at HERA, JHEP 12 (2021) 102,
591
+ 10.1007/JHEP12(2021)102
592
+ 32. Search for collectivity in e-p collisions with H1 (2020)
593
+ Rev. Mex. Fis. ?? (*?*) (????) ???–???
594
+
FNFRT4oBgHgl3EQfCDcd/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf,len=502
2
+ page_content='Research OR Education of Physics Revista Mexicana de Física ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
3
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
4
+ page_content=' (*?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
5
+ page_content=' *) ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
6
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
7
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
8
+ page_content='–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
9
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
10
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
11
+ page_content=' MES?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
12
+ page_content=' AÑO?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
13
+ page_content=' Perfect QCD – a new Universal approach to soft QCD P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
14
+ page_content=' Christiansen Division of Particle Physics, Lund University, Sweden The ideas presented in this proceeding aims to be a first step towards a description of hadronic collisions where all soft processes are fundamentally strongly coupled and the same Universal strongly coupled physics drives both initial and final-state interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
15
+ page_content=' As it is not currently possible to derive such a picture from first principles, instead, an attempt to generalize the perfect liquid observation to a “perfect QCD” guiding principle is presented, focusing on implications for particle production in small systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
16
+ page_content=' The first steps towards a microscopic model is taken by arguing that “perfect QCD” suggests that the screening in the initial state is so large that multi-parton interactions are of little or no importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
17
+ page_content=' Instead, a target and projectile remnant is coherently excited and particle production is mainly driven by radiation in a qualitative similar manner as e+e− → q¯q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
18
+ page_content=' Finally, some of the possible implications of this “excited remnant model” are presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
19
+ page_content=' It is argued that the time ordering of soft and hard physics can explain the absence of jet quenching in small systems and that the coherence scale of the projectile and target provides insights into what small systems will exhibit flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
20
+ page_content=' Keywords: 1 Introduction The goal of this proceeding for the Winter Workshop 2022 is to present a new picture for hadronic collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
21
+ page_content=' To be pre- cise, the focus in this paper is only on non-diffractive inelastic collisions and only the soft physics1, which is expected to be responsible for bulk particle production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
22
+ page_content=' When hadronic col- lisions are mentioned in the following it always refers to this type of collision unless another type is explicitly mentioned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
23
+ page_content=' The motivation for doing this is the observation of several phenomena in small systems2 that has traditionally been as- sociated with the formation of a quark-gluon plasma (QGP) in large systems, see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
24
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
25
+ page_content=', Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
26
+ page_content=' [3,4] for an overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
27
+ page_content=' These new phenomena can all be explained by the presence of large final-state interactions in small system and many excellent ideas have been presented for describing this with weakly coupled physics, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
28
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
29
+ page_content=', [5], but what seems to the author to be a fundamental flaw in these models is that a weakly cou- pled interaction leads to a non-vanishing mean free path so that the QGP-like effects will build up as the system grows and first dominate at a certain system size [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
30
+ page_content=' This means that QGP-like effects do not in a natural way extend down to the smallest systems, even if there is no indication in data of an onset [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
31
+ page_content=' At the same time, a non-vanishing mean free path will introduce diffusion and dissipation effects that will supposedly modify the initial-state correlations, which the author is unaware of experimental evidence for, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
32
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
33
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
34
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
35
+ page_content=' Pruneau’s contribution to these proceedings [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
36
+ page_content=' FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
37
+ page_content=' Illustration of how the initial soft scatterings are de- scribed in different models/pictures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
38
+ page_content=' Top: in Pythia, soft and hard interactions are modeled in the same way as leading-order perturba- tive processes and multiple interactions occur in most pp collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
39
+ page_content=' The strings forming between color charges are not shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
40
+ page_content=' Bottom: in the “perfect QCD” picture a remnant of each nucleon is excited as a whole, as if there was only a single interaction, and the picture is therefore denoted the “excited remnant model”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
41
+ page_content=' 1 Meaning that momentum transfers are small so that perturbative cal- culations are inaccurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
42
+ page_content=' As, for example, the Pythia generator [1, 2] for proton-proton collisions treats all interactions perturbatively, this is not a unique definition but part of the motivation for exploring a completely dif- ferent picture in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
43
+ page_content=' 2 Small systems are taken to mean proton-proton, proton-nuclei and ultra-peripheral nuclei-nuclei collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
44
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
45
+ page_content='13467v1 [hep-ph] 31 Jan 2023 QQQQQQQQQ ooooopooooopooTarget nucleon Projectile nucleon Target "sea" Excited remnant Color neutral Projectile"sea" spectator remnant2 RMF EDITORIAL TEAM In this paper,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
46
+ page_content=' the decision has been to take a fresh look at things from the perspective offered by the new measurements and try to bring forth a picture that is fundamentally strongly coupled with a vanishing mean free path so that large final- state effects are present in all systems and do not introduce diffusion or dissipation (are essentially reversible) thereby hopefully preserving correlations such as those introduced by string breakings or similar processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
47
+ page_content=' In traditional pictures, “soft” can have two very different meanings: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
48
+ page_content=' The extrapolation from high-momentum transfers to low momentum transfer, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
49
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
50
+ page_content=', using leading-order per- turbative cross sections even for situations where next- to-leading order correlations are large 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
51
+ page_content=' Phenomenological physics such as the Lund string model [7] The approach in this paper is to claim that point 1 does not work, meaning that next-to-leading order corrections distorts the leading-order picture, and the proposal is instead that “perfect QCD” is a Universal version of point 2 and can pro- vide guidance in that way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
52
+ page_content=' This means that any time where soft is mentioned in the text one should in principle be able to apply the “perfect QCD” principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
53
+ page_content=' To help convince the reader that this leads to fundamentally different physics from that found in existing models, one of the main find- ings will be already discussed here and illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
54
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
55
+ page_content=' In pp event generators, such as Pythia [1, 2], one typically treats the initial stages of pp collisions as two interacting par- ton gases where the scattering of each parton-parton inter- action is motivated by perturbative (weakly coupled) QCD, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
56
+ page_content=' 1 top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
57
+ page_content=' In the Color-Glass Condensate (CGC) model, not shown, one instead considers it as a weakly coupled interac- tion between dense gluon fields [8] that produce longitudinal Glasma tubes, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
58
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
59
+ page_content=' In both models the collision can involve one or more interactions and the number of interactions is the main driving mechanism of the final-state multiplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
60
+ page_content=' In the picture motivated in this paper, one considers a strongly cou- pled scenario where the color field of each projectile parton is neutralized by the target partons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
61
+ page_content=' It is argued that this results instead in that the remnant of the projectile and the target is coherently excited, corresponding essentially to a single soft interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
62
+ page_content=' This gives rise to two semi-independent color fields, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
63
+ page_content=' 1 bottom, which would mean that most of the par- ticle production is driven by final-state radiation from the col- ored target and projectile remnants, similar to e+e− → q¯q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
64
+ page_content=' Concretely, the idea of this paper is to extend the experi- mental observation that the QGP behaves like a perfect liquid to a “perfect QCD” principle that can guide our understand- ing of particle production in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
65
+ page_content=' The goal is not to come up with a full model, but to demonstrate that it is possible us- ing the proposed “perfect QCD” principle to obtain surpris- ing insights into particle production where the physics and the explanations for observed phenomena are very different from those found in existing models, such as Pythia and the CGC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
66
+ page_content=' 2 Perfect QCD One of the most remarkable discoveries of the heavy-ion pro- gram at RHIC and LHC is that the Quark-Gluon Plasma (QGP) behaves as a perfect liquid [9–15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
67
+ page_content=' The shear- viscosity-to-entropy density (η/s) is as low as possible [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
68
+ page_content=' This means that the build up of flow is almost deterministic, which has enabled the precise measurement of fluctuations in the initial distribution of matter, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
69
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
70
+ page_content=', Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
71
+ page_content=' [17,18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
72
+ page_content=' At the Winter Workshop it was further shown how the same mini- mal η/s is also obtained when analyzing balance functions and momentum correlations, see C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
73
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
74
+ page_content=' Pruneau’s contribu- tion to these proceedings [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
75
+ page_content=' The perfect nature of the liquid seems to indicate that it is very fundamental and since it is observed in all hadronic collisional systems (pp, p–Pb, and Pb–Pb collisions), see for example Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
76
+ page_content=' [19,20] for small systems, one could hope that it provides a deep insight into QCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
77
+ page_content=' Based on the characteristics of the perfect liquid it is pro- posed that “perfect QCD” has to have the following two char- acteristics: Strongly interacting Minimal entropy production The minimal entropy production comes from the observation that the hydrodynamic description of the QGP is as close to ideal (reversible) as it can be and means that dissipation and diffusion can play no significant role in the description of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
78
+ page_content=' 3 The Perfect QCD Picture of Particle Produc- tion It might seem impossible to derive a microscopic picture from a strongly interacting soft QCD model because one looses the perturbative guidance but the surprise is that the proposed picture is extremely simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
79
+ page_content=' The “perfect QCD” principle dictates that the entropy production during the ini- tial collisions should be as small as possible, yet strongly in- teracting, and this suggests that all that happens is the ex- change of a single soft gluon so that only color and essen- tially no momentum is exchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
80
+ page_content=' As the interacting hadrons are of course made up of partons, this would require that the screening in the initial state is so strong for the initial inter- actions that the soft parton-parton (and/or CGC equivalent) interactions are suppressed to a degree where they can be ne- glected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
81
+ page_content=' One will of course have parton-parton interactions for very large momentum transfers but they are not of inter- est here where the focus is on bulk production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
82
+ page_content=' Let us first treat the rest of the collision, ignoring pos- sible radiation, using the Lund string model [7], which, as it is derived from the confining long-range part of the QCD potential, is a strongly coupled model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
83
+ page_content=' In the Lund string model, strings will form between colors and anti-colors that Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
84
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
85
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
86
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
87
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
88
+ page_content=' (*?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
89
+ page_content=' *) (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
90
+ page_content='??' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
91
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
92
+ page_content=') ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
93
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
94
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
95
+ page_content='–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
96
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
97
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
98
+ page_content=' A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF 3 eventually breaks, producing hadrons uniformly in rapidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
99
+ page_content=' In this case, two strings will form as the gluon carries both a color and anti-color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
100
+ page_content=' Let us assume that all the energy of each proton is carried by the color and the anti-color sys- tems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
101
+ page_content=' If both have half the energy, the total string length will be ≈4(ybeam−log 2) while if one color (or anti-color) has all the energy one can supposedly form a string of length 2ybeam (this must be the minimal length for the color field to stretch between the target and projectile).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
102
+ page_content=' As the average number of particles produced a by a string is proportional to the string length [7], the “perfect QCD” principle tells us that nature will take the 2nd solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
103
+ page_content=' This means that instead of hav- ing two remnants with a similar amount of energy, one will have a “valence”-like remnant with almost all the energy and a “sea”-like remnant with almost no energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
104
+ page_content=' This is reminis- cent of the BGK picture [21], and so it is naturally to propose that the “valence” remnant in one proton is color-coupled to the “sea” remnant in the other proton, and vice versa, so that one in some sense has two semi-independent systems carry- ing approximately half the total initial energy each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
105
+ page_content=' Let us finally try to give a partonic picture of how the “per- fect QCD” picture can be understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
106
+ page_content=' As the two nucleon penetrate at high energy the partons inside them are interact- ing strongly but the claim is that they interact in a way that screens the partonic interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
107
+ page_content=' However, this screening can only happen in a certain regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
108
+ page_content=' If x denotes the usual four momentum fraction then one can maximally “organize” the nucleon into n ≈ 1/x constituents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
109
+ page_content=' Screening will be impos- sible when the four momentum transfer, Q2, is very large be- cause one can resolve individual partons (the hard scattering limit), or when x is large so that the number of constituents is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
110
+ page_content=' The latter argument is why nucleon remnants will be excited as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
111
+ page_content=' In the current picture, dNch/dη at η = 0 would be inde- pendent of √s as all the energy will go to extend the strings in rapidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
112
+ page_content=' What has been ignored is radiation: the color charge carrying most of the energy is, as QCD is strongly in- teracting, very likely to emit soft or collinear radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
113
+ page_content=' How to calculate this radiation is not trivial, but one can at least note that one qualitatively get a system very similar to what one has for e+e− → q¯q (denoted e+e− in the following).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
114
+ page_content=' Comparing particle production in e+e− collisions to that of pp collisions, one finds that the former produces more parti- cles on the average [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
115
+ page_content=' The common understanding is that it is possible for part of the proton to escape as a color neutral object, taking away around 50% of the energy [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
116
+ page_content=' Based on the observed particle production in e+e−, it is concluded that there is no fundamental reason one should not be able to create the observed particle production via radiation also in pp, pA, and AA collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
117
+ page_content=' To recap, the general microscopic “perfect QCD” pic- ture of pp, pA, and AA collisions will be that the soft initial interactions will excite a remnant of each nucleon in a “pro- jectile” coherently and that the main particle production at high energy collisions is driven by final-state radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
118
+ page_content=' For this reason the picture will be denoted the “excited remnant model”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
119
+ page_content=' This might sound like the Dual Parton Model but it is important to note that the Dual Parton Model contains MPIs [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
120
+ page_content=' In the limit that particle production is dominated by radi- ation, the color-connections to the “sea” systems in the “tar- get” can be ignored and one can therefore factorize the soft particle production into Npart semi-independent terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
121
+ page_content=' Semi- independent, because there must be some dependence on the nucleon-nucleon impact parameter to explain the slightly in- creased particle production per participant in AA collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
122
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
123
+ page_content='1 An Illustration of Particle Production in pp Colli- sions 5 − 4 − 3 − 2 − 1 − 0 η 0 2 4 6 8 10 η /d ch N d n ≤ 52 50 ≤ n ≤ 42 40 ≤ n ≤ 32 30 ≤ n ≤ 22 20 ≤ n ≤ 12 10 ≤ n ≤ 2 NSD FIGURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
124
+ page_content=' dNch/dη measured in √s = 200 GeV/c pp collisions by UA5 for NSD events and for events with different final-state charged particle multiplicities, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
125
+ page_content=' The data have been read off from the pub- lished figures [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
126
+ page_content=' As the figure is just meant to illustrate a trend, the statistical uncertainties have not been included for clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
127
+ page_content=' The main goal here is to discuss small systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
128
+ page_content=' In these sys- tems, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
129
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
130
+ page_content=', pp collisions, the full “perfect QCD” picture of a collision is: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
131
+ page_content=' the initial interactions produce up to three semi- independent systems: coherently excited target and projectile remnants possible color-neutral target and projectile rem- nants that act as spectators (escape with energy along beam direction) possible hard parton-parton scatterings 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
132
+ page_content=' the excited remnants radiate gluons 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
133
+ page_content=' the color fields decay into partons Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
134
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
135
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
136
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
137
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
138
+ page_content=' (*?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
139
+ page_content=' *) (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
140
+ page_content='??' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
141
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
142
+ page_content=') ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
143
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
144
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
145
+ page_content='–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
146
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
147
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
148
+ page_content=' 4 RMF EDITORIAL TEAM 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
149
+ page_content=' final-state partonic interactions: flow, strangeness en- hancement 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
150
+ page_content=' hadronization 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
151
+ page_content=' possible final-state hadronic rescattering One could in principle try to implement a generator along these lines but the goal here is to illustrate the picture using UA5 data [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
152
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
153
+ page_content=' 2 shows the dNch/dη measured by UA5 for NSD events as well as for multiplicity selected events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
154
+ page_content=' In low-multiplicity events, dNch/dη is flat as one would expect for a single long string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
155
+ page_content=' As the multiplicity grows, one ob- serves a narrowing of dNch/dη, which in the perfect QCD picture should be caused by the radiation adding shorter and shorter (less energetic) strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
156
+ page_content=' In this way the “excited rem- nant model” is at least qualitatively consistent with the ob- served trends by UA5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
157
+ page_content=' 4 Insights and Predictions for Small Systems In this section, the hope is to demonstrate for the reader that the perfect-QCD picture of particle production can provide many new insights and predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
158
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
159
+ page_content='1 A Simple Explanation for the Absence of Jet Quenching in Small Systems One can immediately notice that, if the time scales involved with the hard interactions are shorter than the formation time for step 2 (“the excited remnants radiate gluons”) as one would imagine from the scales of the momentum transfers involved, then one can understand why there is no jet quench- ing in small systems even if there is a relation between flow and jet quenching in a large system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
160
+ page_content=' The medium simply has not been produced yet when the jet propagates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
161
+ page_content=' This seems very attractive to the author as this is in line with experimental findings, see, for example, Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
162
+ page_content=' [25], and it is hard to explain in most existing models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
163
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
164
+ page_content='2 Flow in pp Collisions ≫ Flow in e+e− Collisions It should be clear from the way the “excited remnant model” work that it “postdicts” that the particle production in pp col- lisions and e+e− collisions should be very similar because in this model, and unlike traditional MPI-based models, the growth with √s is in both cases driven by radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
165
+ page_content=' Indeed this surprising similarity have been noted and discussed much in the past by experimental collaborations [11, 26], even it was never theoretically understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
166
+ page_content=' It can therefore be surprising that while one observes strong flow in pp collisions, one does not observe it for e+e− collisions [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
167
+ page_content=' However, there could be a simple explana- tion for that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
168
+ page_content=' As the “excited remnant model” postulates that for each nucleon a single “valence” remnant is excited as a whole, then it is clear that the radiation in step 2 will have to have very low transverse momentum, pT < 1/R, where R is the size of the excited remnant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
169
+ page_content=' As the pT is so low, the color fields will have to stack and so one will naturally get a quite dense system of parallel color fields with a large energy density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
170
+ page_content=' In the “perfect QCD” picture these color fields will be strongly interacting and so they will immediately start to build up collective flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
171
+ page_content=' This makes a big difference when comparing to e+e−, where all the energy is located with a single parton and so the radiated gluons can and will typi- cally have very large pT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
172
+ page_content=' This means that most energy will be radiated away from the initial color field and so there is little time where system is dense and can build up collective flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
173
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
174
+ page_content='3 How to Control Flow in Ultra-Small Systems In the previous subsection it was argued that for small sys- tems, the size of the excited remnant determines the flow that can be built up in the final system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
175
+ page_content=' This then is naturally in line with the observation of flow in Ultra-Peripheral Colli- sions (UPCs), where the photon field of one nuclei interacts with the other nuclei, because in this case the photon field has a long wavelength since it is emitted coherently by the protons in the nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
176
+ page_content=' Recall that photons can interact as a “hadronic” system by fluctuating into a q¯q pair, which will have a size that reflects the photon four momentum (Q2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
177
+ page_content=' AT- LAS has observed flow in UPC Pb–Pb events [28] and CMS has reported non-zero v2{2} in p–Pb events [29], which is in line with the ideas presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
178
+ page_content=' By going to electron-proton or electron-ion collisions one can in principle measure the wavelength of the photon from the change in electron four momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
179
+ page_content=' One can in this way select different sizes of the excited remnants and if the pic- ture is true, control the pT radiation and switch on (low Q2) and off (high Q2) flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
180
+ page_content=' ZEUS and H1 has reanalyzed old data both for low and high Q2 but neither ZEUS [30, 31] nor H1 [32] observes any signatures of collective flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
181
+ page_content=' This clearly goes against the ideas presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
182
+ page_content=' However, it seems that if there is flow in UPCs at LHC then there would also likely be flow in low Q2 ep collisions at HERA and vice verse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
183
+ page_content=' On the other hand, one knows that flow in small systems is very hard to detect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
184
+ page_content=' Looking from the outside, it would be good if one could resolve the situation so that one is as certain as possible that similar procedures have been used before one concludes too strongly on the current results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
185
+ page_content=' 5 Conclusions An attempt to generalize the perfect-liquid nature from flow to particle production has been presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
186
+ page_content=' The “perfect QCD” principle has been proposed to be a Universal principle for soft QCD that applies both in the initial and final state of hadronic collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
187
+ page_content=' Using the idea of minimal entropy pro- duction, a microscopic picture, the “excited remnant model”, has been presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
188
+ page_content=' In the microscopic picture, the screening as the two hadronic systems penetrate is so large that sub- collisions between constituents does not occur, in contrast to most existing pictures, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
189
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
190
+ page_content=', MPI and CGC based ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
191
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
192
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
193
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
194
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
195
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
196
+ page_content=' (*?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
197
+ page_content=' *) (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
198
+ page_content='??' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
199
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
200
+ page_content=') ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
201
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
202
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
203
+ page_content='–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
204
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
205
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
206
+ page_content=' A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF 5 No attempt has been done to prove the “perfect QCD” principle in this paper but several surprising insights have been provided, such as simple arguments for why jet quench- ing is absent in small systems and which collisional systems will exhibit flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
207
+ page_content=' The hope is that the principle can be used to provide novel insights into a wide range of topics, for exam- ple, jet quenching in large systems and the relation between diffractive and non-diffractive physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
208
+ page_content=' 6 Acknowledgements The author would like to thank Adrian Nassirpour for many valuable comments on earlier versions of similar manuscripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
209
+ page_content=' 7 References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
210
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
211
+ page_content=' Sjöstrand, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
212
+ page_content=', An Introduction to PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
213
+ page_content='2, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
214
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
215
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
216
+ page_content=' 191 (2015) 159, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
217
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
218
+ page_content='cpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
219
+ page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
220
+ page_content=' 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
221
+ page_content='024 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
222
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
223
+ page_content=' Sjöstrand, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
224
+ page_content=' Mrenna, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
225
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
226
+ page_content=' Skands, PYTHIA 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
227
+ page_content='4 Physics and Manual, JHEP 05 (2006) 026, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
228
+ page_content='1088/1126-6708/ 2006/05/026 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
229
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
230
+ page_content=' Loizides, Experimental overview on small collision systems at the LHC, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
231
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
232
+ page_content=' A 956 (2016) 200, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
233
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
234
+ page_content=' nuclphysa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
235
+ page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
236
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
237
+ page_content='022 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
238
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
239
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
240
+ page_content=' Nagle and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
241
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
242
+ page_content=' Zajc, Small System Col- lectivity in Relativistic Hadronic and Nuclear Collisions, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
243
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
244
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
245
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
246
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
247
+ page_content=' 68 (2018) 211, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
248
+ page_content='1146/ annurev-nucl-101916-123209 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
249
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
250
+ page_content=' Kurkela and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
251
+ page_content=' Mazeliauskas, Chemical Equilibration in Hadronic Collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
252
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
253
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
254
+ page_content=' 122 (2019) 142301, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
255
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
256
+ page_content='122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
257
+ page_content='142301 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
258
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
259
+ page_content=' Pruneau, Determination of the shear viscosity and light quark diffusivity of QGP with two-particle correlation func- tions, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
260
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
261
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
262
+ page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
263
+ page_content=' 3 (2022) 040904, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
264
+ page_content='31349/ SuplRevMexFis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
265
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
266
+ page_content='040904 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
267
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
268
+ page_content=' Andersson, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
269
+ page_content=', Parton Fragmentation and String Dynam- ics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
270
+ page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
271
+ page_content=' 97 (1983) 31, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
272
+ page_content='1016/0370-1573(83) 90080-7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
273
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
274
+ page_content=' Gelis, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
275
+ page_content=', The Color Glass Condensate, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
276
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
277
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
278
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
279
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
280
+ page_content=' 60 (2010) 463, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
281
+ page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
282
+ page_content='nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
283
+ page_content=' 010909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
284
+ page_content='083629 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
285
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
286
+ page_content=' Arsene et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
287
+ page_content=', Quark gluon plasma and color glass conden- sate at RHIC?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
288
+ page_content=' The Perspective from the BRAHMS experiment, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
289
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
290
+ page_content=' A 757 (2005) 1, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
291
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
292
+ page_content='nuclphysa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
293
+ page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
294
+ page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
295
+ page_content='130 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
296
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
297
+ page_content=' Adcox et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
298
+ page_content=', Formation of dense partonic matter in rela- tivistic nucleus-nucleus collisions at RHIC: Experimental eval- uation by the PHENIX collaboration, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
299
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
300
+ page_content=' A 757 (2005) 184, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
301
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
302
+ page_content='nuclphysa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
303
+ page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
304
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
305
+ page_content='086 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
306
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
307
+ page_content=' Back et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
308
+ page_content=', The PHOBOS perspective on discoveries at RHIC, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
309
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
310
+ page_content=' A 757 (2005) 28, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
311
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
312
+ page_content=' nuclphysa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
313
+ page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
314
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
315
+ page_content='084 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
316
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
317
+ page_content=' Adams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
318
+ page_content=', Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
319
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
320
+ page_content=' A 757 (2005) 102, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
321
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
322
+ page_content='nuclphysa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
323
+ page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
324
+ page_content=' 03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
325
+ page_content='085 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
326
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
327
+ page_content=' Aamodt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
328
+ page_content=', Elliptic flow of charged particles in Pb-Pb collisions at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
329
+ page_content='76 TeV, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
330
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
331
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
332
+ page_content=' 105 (2010) 252302, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
333
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
334
+ page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
335
+ page_content='252302 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
336
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
337
+ page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
338
+ page_content=', Measurement of the pseudorapidity and trans- verse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at √sNN = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
339
+ page_content='76 TeV with the ATLAS detector, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
340
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
341
+ page_content=' B 707 (2012) 330, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
342
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
343
+ page_content=' physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
344
+ page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
345
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
346
+ page_content='056 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
347
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
348
+ page_content=' Chatrchyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
349
+ page_content=', Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at √sNN=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
350
+ page_content='76 TeV, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
351
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
352
+ page_content=' C 87 (2013) 014902, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
353
+ page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
354
+ page_content=' 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
355
+ page_content='014902 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
356
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
357
+ page_content=' Kovtun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
358
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
359
+ page_content=' Son, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
360
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
361
+ page_content=' Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
362
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
363
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
364
+ page_content=' 94 (2005) 111601, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
365
+ page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
366
+ page_content='94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
367
+ page_content='111601 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
368
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
369
+ page_content=' Alver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
370
+ page_content=', Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
371
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
372
+ page_content=' C 77 (2008) 014906, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
373
+ page_content='1103/ PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
374
+ page_content='77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
375
+ page_content='014906 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
376
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
377
+ page_content=' Alver and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
378
+ page_content=' Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
379
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
380
+ page_content=' C 81 (2010) 054905, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
381
+ page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
382
+ page_content='82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
383
+ page_content='039903 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
384
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
385
+ page_content=' Khachatryan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
386
+ page_content=', Evidence for Collective Multiparticle Correlations in p-Pb Collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
387
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
388
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
389
+ page_content=' 115 (2015) 012301, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
390
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
391
+ page_content='115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
392
+ page_content='012301 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
393
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
394
+ page_content=' Aaboud et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
395
+ page_content=', Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p + Pb collisions with the ATLAS detector at the CERN Large Hadron Collider, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
396
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
397
+ page_content=' C 97 (2018) 024904, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
398
+ page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
399
+ page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
400
+ page_content='024904 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
401
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
402
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
403
+ page_content=' Brodsky, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
404
+ page_content=' Gunion, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
405
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
406
+ page_content=' Kuhn, Hadron Production in Nuclear Collisions: A New Parton Model Approach, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
407
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
408
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
409
+ page_content=' 39 (1977) 1120, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
410
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
411
+ page_content='39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
412
+ page_content='1120 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
413
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
414
+ page_content=' Back et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
415
+ page_content=', Centrality and energy dependence of charged- particle multiplicities in heavy ion collisions in the context of elementary reactions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
416
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
417
+ page_content=' C 74 (2006) 021902, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
418
+ page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
419
+ page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
420
+ page_content='021902 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
421
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
422
+ page_content=' Capella, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
423
+ page_content=', Dual parton model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
424
+ page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
425
+ page_content=' 236 (1994) 225, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
426
+ page_content='1016/0370-1573(94)90064-7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
427
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
428
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
429
+ page_content=' Alner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
430
+ page_content=', Scaling of Pseudorapidity Distributions at c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
431
+ page_content='m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
432
+ page_content=' Energies Up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
433
+ page_content='9-TeV, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
434
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
435
+ page_content=' C 33 (1986) 1, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
436
+ page_content='1007/BF01410446 Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
437
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
438
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
439
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
440
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
441
+ page_content=' (*?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
442
+ page_content=' *) (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
443
+ page_content='??' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
444
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
445
+ page_content=') ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
446
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
447
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
448
+ page_content='–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
449
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
450
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
451
+ page_content=' 6 RMF EDITORIAL TEAM 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
452
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
453
+ page_content=' Acharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
454
+ page_content=', Constraints on jet quenching in p-Pb colli- sions at √sNN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
455
+ page_content='02 TeV measured by the event-activity de- pendence of semi-inclusive hadron-jet distributions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
456
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
457
+ page_content=' B 783 (2018) 95, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
458
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
459
+ page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
460
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
461
+ page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
462
+ page_content='059 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
463
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
464
+ page_content=' Zichichi, The ISR’s totally unexpected results, CERN Cour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
465
+ page_content=' 51N6 (2011) 39 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
466
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
467
+ page_content=' Badea, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
468
+ page_content=', Measurements of two-particle correlations in e+e− collisions at 91 GeV with ALEPH archived data, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
469
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
470
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
471
+ page_content=' 123 (2019) 212002, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
472
+ page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
473
+ page_content=' 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
474
+ page_content='212002 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
475
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
476
+ page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
477
+ page_content=', Two-particle azimuthal correlations in photonu- clear ultraperipheral Pb+Pb collisions at 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
478
+ page_content='02 TeV with ATLAS (2021) 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
479
+ page_content=' Search for elliptic azimuthal anisotropies in γp interactions within ultra-peripheral pPb collisions at √sNN = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
480
+ page_content='16 TeV (2020) 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
481
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
482
+ page_content=' Abt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
483
+ page_content=', Two-particle azimuthal correlations as a probe of collective behaviour in deep inelastic ep scattering at HERA, JHEP 04 (2020) 070, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
484
+ page_content='1007/JHEP04(2020)070 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
485
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
486
+ page_content=' Abt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
487
+ page_content=', Azimuthal correlations in photoproduction and deep inelastic ep scattering at HERA, JHEP 12 (2021) 102, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
488
+ page_content='1007/JHEP12(2021)102 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
489
+ page_content=' Search for collectivity in e-p collisions with H1 (2020) Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
490
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
491
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
492
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
493
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
494
+ page_content=' (*?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
495
+ page_content=' *) (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
496
+ page_content='??' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
497
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
498
+ page_content=') ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
499
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
500
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
501
+ page_content='–?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
502
+ page_content='?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
503
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNFRT4oBgHgl3EQfCDcd/content/2301.13467v1.pdf'}
FdE0T4oBgHgl3EQfzALi/content/tmp_files/2301.02668v1.pdf.txt ADDED
@@ -0,0 +1,1648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Framework for Large Scale Particle Filters Validated
2
+ with Data Assimilation for Weather Simulation
3
+ Sebastian Friedemanna, Kai Kellerb, Yen-Sen Luc, Bruno Raffina,∗,
4
+ Leonardo Bautista-Gomezb
5
+ aUniv. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000, Grenoble, France
6
+ bBarcelona Supercomputing Center, Barcelona, 08034, Spain
7
+ cForschungzentrum Juelich, Juelich, 52428, Germany
8
+ Abstract
9
+ Particle filters are a group of algorithms to solve inverse problems through
10
+ statistical Bayesian methods when the model does not comply with the lin-
11
+ ear and Gaussian hypothesis. Particle filters are used in domains like data
12
+ assimilation, probabilistic programming, neural network optimization, local-
13
+ ization and navigation. Particle filters estimate the probability distribution
14
+ of model states by running a large number of model instances, the so called
15
+ particles. The ability to handle a very large number of particles is critical
16
+ for high dimensional models. This paper proposes a novel paradigm to run
17
+ very large ensembles of parallel model instances on supercomputers. The
18
+ approach combines an elastic and fault tolerant runner/server model min-
19
+ imizing data movements while enabling dynamic load balancing. Particle
20
+ weights are computed locally on each runner and transmitted when available
21
+ to a server that normalizes them, resamples new particles based on their
22
+ weight, and redistributes dynamically the work to runners to react to load
23
+ imbalance. Our approach relies on a an asynchronously managed distributed
24
+ particle cache permitting particles to move from one runner to another in the
25
+ background while particle propagation goes on. This also enables the num-
26
+ ber of runners to vary during the execution either in reaction to failures and
27
+ ∗Corresponding author
28
+ Email addresses: [email protected] (Sebastian Friedemann),
29
+ [email protected] (Kai Keller), [email protected] (Yen-Sen Lu),
30
+ [email protected] (Bruno Raffin), [email protected] (Leonardo
31
+ Bautista-Gomez)
32
+ arXiv:2301.02668v1 [cs.DC] 6 Jan 2023
33
+
34
+ restarts, or to adapt to changing resource availability dictated by external de-
35
+ cision processes. The approach is experimented with the Weather Research
36
+ and Forecasting (WRF) model, to assess its performance for probabilistic
37
+ weather forecasting. Up to 2,555 particles on 20,442 compute cores are used
38
+ to assimilate cloud cover observations into short–range weather forecasts over
39
+ Europe.
40
+ Keywords:
41
+ ls Data Assimilation, Particle Filter, Ensemble Run, Resilience,
42
+ Elasticity
43
+ 1. introduction
44
+ Given an output and a transformation function, finding the input states
45
+ represents a so called inverse problem. A wide range of approaches to ad-
46
+ dress this central problem exist. Statistical Bayesian methods stand out as
47
+ they provide uncertainty measures of the proposed input in form of probabil-
48
+ ity density functions. In this paper, we consider particle filters, a statistical
49
+ Bayesian method combining uncertainties of both the dynamical system and
50
+ observations, to estimate the system state. Several realizations of the dy-
51
+ namical system, called particles, with differently perturbed internal states,
52
+ are propagated up to a time where observation data are available. These
53
+ particles are then weighted corresponding to their distance to the obser-
54
+ vations. The weights are used to generate a new sample of particles that
55
+ better matches the observations. This process repeats while observations are
56
+ available.
57
+ Particle filters are used for several purposes, like Data Assimilation (DA) [1],
58
+ probabilistic programming [2, 3, 4], neural network optimization [5], local-
59
+ ization and navigation[6]. Particle filters stands by their ability to work with
60
+ nonlinear and/or non-Gaussian state space models in opposition to technics
61
+ like Ensemble Kalman Filtering (EnKF). But this ability comes with a need
62
+ to run larger number of particles. If the dynamical system is an advanced
63
+ parallel high-dimensional numerical model solver, as for geoscience applica-
64
+ tions, thousands of particles may be necessary to avoid undersampling and
65
+ degeneracy. While high-dimensional large-scale solvers are compute intense
66
+ already, the execution of several thousands of instances adds orders of magni-
67
+ tude of calculations. Large scale DA with particle filters is for instance used
68
+ for geoscience applications such as weather forecasting [7]. Supercomputers,
69
+ reaching today Exascale, have the compute power to support very large scale
70
+ 2
71
+
72
+ particle filters. But using such resources efficiently, time and energy wise, is
73
+ challenging. Applications need to limit the use of the Parallel File System
74
+ (PFS), a classical supercomputer bottleneck, and favor instead in situ data
75
+ processing as well as local data storage to reduce data movements, asyn-
76
+ chronism to overlap tasks whenever possible. Applications also need to be
77
+ flexible to adapt to changes during execution, requiring support for resilience,
78
+ elasticity and dynamics load balancing.
79
+ Existing large scale approaches can be divided into two types: online
80
+ and offline approaches. Offline approaches use temporary files to exchange
81
+ data. To propagate one particle, one model instance starts, loads the particle
82
+ from a file, propagates it up to a given time, stores the resulting particle back
83
+ to a file and shuts down. This approach is flexible, fault tolerance is easy
84
+ to support, but performance, especially at scale is impaired by the heavy
85
+ use of the file system and the cost of starting a new model instance for each
86
+ propagation. Online approaches bypass the file system by running a large
87
+ MPI application that encompasses the full workflow, where the particles are
88
+ distributed to the different model instances through the network via MPI
89
+ communications. While saving I/O overheads, this approach loses flexibility.
90
+ For instance, a fault during a single particle propagation stops the entire
91
+ application.
92
+ Thus existing online approaches, as will be detailled in the
93
+ related work section (Section 6), usually do not support fault tolerance or
94
+ dynamic load balancing.
95
+ In this paper we develop an alternate approach that leads to a high ef-
96
+ ficient yet flexible framework. The key to achieve this goal is the virtual-
97
+ ization of particle propagations. We turn a numerical model solver instance
98
+ into a runner capable of propagating several particles one after the other
99
+ with low overheads and idle times. Each runner is coupled with a node-local
100
+ distributed state cache enabling fast loads and stores of particles. The caches
101
+ are asynchronously persisted to the file system for checkpointing and load bal-
102
+ ancing between runners. Asynchronous prefetching of particles into the cache
103
+ enables overlapping particle loads with the particle propagation. A server
104
+ organizes the work distribution to the runners and performs the centralized
105
+ tasks of the particle filter update and (re-)sampling. Runners and server are
106
+ each executed as independent executables to support elasticity and facilitate
107
+ fault tolerance.
108
+ The association of these different features complemented
109
+ with a fault tolerance protocol, leads to an elastic and resilient framework,
110
+ minimizing data movements while enabling dynamic load balancing. Parti-
111
+ cle virtualization enables to decouple resource allocation from the number
112
+ 3
113
+
114
+ Figure 1: Initially particles are uniformly sampled. They are propagated to T1 where
115
+ they are weighted taking into account observation data. Resampling leads to discard some
116
+ particles with low weights (top and bottom), while others with high weights become parent
117
+ of several ones (3 here).
118
+ of particles. The number of runners can vary during the execution either
119
+ in reaction to failures and restarts, or to adapt to changing resource avail-
120
+ ability dictated by external decision processes. The proposed architecture
121
+ is designed for running at extreme scale, leveraging deep storage hierarchies
122
+ and heterogeneous cluster designs of current and future supercomputers.
123
+ We strain our proposed particle filter framework with a realistic use-case,
124
+ interfacing with the Weather Research and Forecasting (WRF, version 3.7.1)
125
+ model [8]. WRF is a widely used weather model for operational forecasting
126
+ and research. Using our particle filter, we are able to run 2,555 particles on
127
+ 20,442 compute cores for WRF simulations on a European domain with 87 %
128
+ efficiency.
129
+ The rest of the paper is structured as follows: Section 2 reviews the
130
+ principles of particle filters and the associated workflow. Section 3 presents
131
+ the architecture of our proposed approach, while Section 4 is dedicated to
132
+ experiments and Section 5 to discussion. The papers ends with related work
133
+ in Section 6 and a conclusion in Section 7.
134
+ 2. Particle Filters
135
+ In this section, we give a brief introduction on the particle filter formalism,
136
+ focusing on properties that we exploit in our proposal. For a comprehensive
137
+ 4
138
+
139
+ weighting
140
+ resampling
141
+ weighting
142
+ initial
143
+ To
144
+ T1
145
+ Ti
146
+ T2
147
+ Assimilation Cycle
148
+ Assimilation Cycleintroduction, we refer to [1, 9]. Let M be a numerical model, that propagates
149
+ a particle p from state xp,t−1 at time t − 1 to state xp,t at time t:
150
+ xp,t = M(xp,t−1) + βt
151
+ 1
152
+ Where β is a random forcing representing errors in the model. Let H be the
153
+ projection operator from the state space to the observation space:
154
+ y = H(x) + ϵt
155
+ 2
156
+ Where ϵ is a random vector, representing the measurement errors.
157
+ The bootstrap particle filter formalism can be derived using Bayes’ the-
158
+ orem:
159
+ p(xt|yt) = p(yt|xt) p(xt)
160
+ p(yt)
161
+ 3
162
+ Where p(xt|yt) is the posterior Probability Density Function (PDF), p(xt) is
163
+ the prior PDF, p(yt|xt) is the likelihood of observing yt if xt would represent
164
+ the true state, and p(yt) is the evidence available. The goal of the filtering
165
+ formalism is to derive the posterior p(xt|yt), which describes the PDF of the
166
+ state xt taking into account the evidence yt.
167
+ In the bootstrap particle filter, the prior p(xt) is estimated via sampling
168
+ an ensemble of P particles xp,t representing different model states
169
+ p(xt) = 1
170
+ P
171
+ P−1
172
+
173
+ p=0
174
+ δ(xt − xp,t),
175
+ 4
176
+ The likelihood p(yt|xt) is assumed to be known, estimated when calibrating
177
+ the sensor. It is derived from the PDF of ϵ applied to the distance between
178
+ state and observation yt − H(xt):
179
+ p(yt|xt) = pϵ(yt − H(xt))
180
+ 5
181
+ The evidence p(yt) can be computed by:
182
+ p(yt) =
183
+
184
+ p(yt|xt)p(xt) dxt
185
+ 6
186
+ =
187
+ P−1
188
+
189
+ p=0
190
+ 1
191
+ P p(yt|xp,t)
192
+ 7
193
+ 8
194
+ 5
195
+
196
+ Putting all together and replacing the expressions in Bayes’ theorem (Equa-
197
+ tion 3) we arrive to the expression for the posterior [1]:
198
+ p(xt|yt) ≈
199
+ P−1
200
+
201
+ p=0
202
+ ˆwp,t δ(xt − xp,t)
203
+ 9
204
+ With ˆwp,t being the normalized particle weights:
205
+ ˆwp,t =
206
+ p(yt|xp,t)
207
+ �P−1
208
+ q=0 p(yt|xq,t)
209
+ =
210
+ wp,t
211
+ �P−1
212
+ q=0 wq,t
213
+ 10
214
+ and wp,t being the unnormalized particle weights:
215
+ wp,t = p(yt|xp,t) wp,t−1
216
+ 11
217
+ Note that the initial weights are set equal to wp,0 = 1/P.
218
+ Especially for high dimensional models, particle filters tend to suffer from
219
+ weight degeneration, i.e., one normalized weight is close to one and all the
220
+ others are close to zero. A classical approach against ensemble degeneration
221
+ is Sequential Importance Resampling (SIR) [10, 11]. The procedure of SIR
222
+ consists in resampling particles from the posterior (Equation 9) at the end of
223
+ the propagation step; P particles are randomly drawn, resampled, from the
224
+ existing particles, each with a probability wp,t. Low weighted particles be-
225
+ come discarded, while high weighted particles can become the starting point
226
+ of multiple particle propagations (Figure 1). More precisely, the resampling
227
+ leads to the multiset P defined by the ordered pair (Q, α). Where Q is the
228
+ set of unique particles q in P, and αq the number of the occurrences of q in
229
+ P. The particles q are hereinafter called parent particles.
230
+ The resampled particles are all assigned the same weight of wp,t = 1/P
231
+ again. Particles departing from the same parent may need to become stochas-
232
+ tically perturbed if the model does not contain a stochastic component itself.
233
+ Otherwise, the trajectories of those particles would be identical.
234
+ Different flavors of SIR and resampling algorithms, like Residual Resam-
235
+ pling, exist [12]. Some perform a resampling step after each propagation
236
+ phase, while others make this dependent on criteria like the variance of the
237
+ weights. In this paper we rely on SIR with resampling after each propagation
238
+ phase.
239
+ 6
240
+
241
+ Box 1
242
+ (a) The propagation of particle p depends only on the associated state
243
+ xp,t and can be performed independently of other particles.
244
+ (b) Weights wp,t depend only on the associated particle p and observa-
245
+ tion vector yt, and can be computed independently of other weights
246
+ and particles.
247
+ (c) The filter update only depends on the weights wp,t, and not on the
248
+ particles and associated states.
249
+ (d) The states xp,t associated to the particles p remain unchanged during
250
+ the filter update.
251
+ Box 1 lists the properties of particle filters that are the basis for our
252
+ implementation.
253
+ We exploit property (d): In contrast to other DA techniques, such as
254
+ EnKF, particle states remain unchanged during the filter update.
255
+ Parti-
256
+ cles that have departed too much from the observations (low weights) are
257
+ discarded, and the sample set is narrowed around the best particles (high
258
+ weights). The associated states, however, are not changed. Property (a)
259
+ follows directly from Equation 11.
260
+ Property (b) results from decoupling
261
+ the weight calculation from the filter update (decentralization). The update
262
+ itself, only consist of the weight normalization and particle resampling. Fi-
263
+ nally, property (c) is an intrinsic property of the bootstrap particle filter,
264
+ since particles are either withdrawn or selected, but not changed. In the fol-
265
+ lowing sections, we will show how we can exploit those properties to improve
266
+ efficiency of and resilience particle filter implementations.
267
+ 3. Architecture
268
+ In this section we detail the proposed architecture to run a large number
269
+ of particles with parallel numerical models. The algorithm, as presented in
270
+ Section 2, is a sequence of two main steps:
271
+ 1. A first compute intensive massively parallel step where particles can be
272
+ processed concurrently to:
273
+ (a) propagate each sate: xp,t = M(xp,t−1),
274
+ 7
275
+
276
+ Batch Scheduler
277
+ Server:
278
+ - schedule propagations and cache evictions
279
+ - gather weights and performs resampling
280
+ Shared Particle Store
281
+ (PFS)
282
+ Launcher:
283
+ - submit and monitor jobs
284
+ - manage recovery on server or   
285
+   runner fault
286
+ Checkpoints
287
+ Observations
288
+ Submit jobs
289
+ Run Jobs
290
+ Job status
291
+ Monitoring
292
+ Weights
293
+ Cache evictions
294
+ and
295
+ particle propagations
296
+
297
+ Parallel Runner:
298
+ - propagates particles
299
+ - calculates weights
300
+ - sends weights to server
301
+ Parallel Runner:
302
+ - propagates particles
303
+ - calculates weights
304
+ - sends weights to server
305
+ Parallel Runner:
306
+ - propagate particles
307
+ - calculate weights
308
+ - send weights to server
309
+ Local
310
+ Particle
311
+ Cache
312
+ Particle states
313
+ Figure 2: Architecture overview.
314
+ (b) compute each unormalized weight from each state and observation
315
+ data:
316
+ wp,t = pϵ(yt − H(xp,t))
317
+ 12
318
+ 2. A second lightweight step that requires to gather all unormalized weights
319
+ wp,t, usually one double per weight, for normalization and resampling.
320
+ We attribute the first step work to runners and the second step to a server.
321
+ A runner is designed to propagate several particles one after the other with
322
+ low overheads and idle times (Figure 2). Each one is coupled with a node-
323
+ local distributed cache enabling fast loads and stores of particles. The caches
324
+ are asynchronously persisted to the global file system for checkpointing and
325
+ dynamic load balancing (i.e., ensure global availability of the particles). Be-
326
+ cause resampling can lead to discard some particles, or duplicate others orig-
327
+ inating from the same parent (with a local perturbation if needed), states
328
+ need to be dynamically redistributed to runners to keep them evenly busy.
329
+ The server drives the dynamic distribution of particle propagation tasks to
330
+ runners. Runners use the distributed cache to load from the file system the
331
+ 8
332
+
333
+ missing states. This design ensures low communications between the server
334
+ and runners, and reduced state movements. The runners and the server run
335
+ as independent executables, enabling to have a dynamically changing number
336
+ of runners. This is a key feature used for fault tolerance and elasticity. Elas-
337
+ ticity (sometimes also called maleability) is the ability to run under changing
338
+ resource availability, here varying number of runners.
339
+ In the following we detail this design: the runners (Section 3.1), the
340
+ server (Section 3.2), the distributed cache (Section 3.3), the workflow be-
341
+ tween these components (Section 3.4), the particle propagation scheduling
342
+ (Section 3.5), the jobs monitoring (Section 3.6), and the fault tolerance pro-
343
+ tocol (Section 3.7) before ending with additional implementation details (Sec-
344
+ tion 3.8).
345
+ 3.1. Runners
346
+ Runners are built from the simulation code, often an advanced parallel
347
+ code or even a coupling of several parallel codes, with significant start-up
348
+ times to load and build the different internal data structures.
349
+ To avoid
350
+ paying the cost of a restart for each particle propagation, we augment the
351
+ simulation code with a mechanism to store and load particle states. This is
352
+ the base of particle virtualization: a runner can load a particle, propagate
353
+ it, store the result, and repeat this as many times as necessary. Runners are
354
+ associated with a distributed cache to accelerate state loads and stores as
355
+ detailled in Section 3.3. Runners also compute the associated weights wp,t.
356
+ Hence, each runner also needs to load the observations yt once per cycle.
357
+ Notice that the size of the observations is typically much smaller than the
358
+ size of the states xp,t.
359
+ 3.2. Server
360
+ The server is entrusted with multiple tasks. First, it is responsible for
361
+ scheduling the particle propagations to the runners (Section 3.5). Second,
362
+ it gathers the weights from the runners and performs the resampling at the
363
+ end of each assimilation cycle. Third, it controls the content of a distributed
364
+ particle cache (Section 3.3). To collect the weights wp,t, the server is mes-
365
+ saged from the runners after each propagation. If there are still particles
366
+ to propagate in the current cycle, the server responds to the message with
367
+ an id uniquely defining a particle (hereinafter called particle-id) for the next
368
+ propagation. If not, the server performs the resampling and starts the new
369
+ cycle by scheduling the sampled particles to the runners. Very little data is
370
+ 9
371
+
372
+ Runner 1
373
+ Server
374
+ Node 1
375
+ Node n
376
+ MPI Communicator
377
+ Model process (master)
378
+ Model process
379
+ Helper process
380
+ Helper process (master)
381
+ Node local cache
382
+ MPI communication
383
+ ZMQ communication
384
+ File transfer
385
+ Runner M
386
+ Node 1
387
+ Node n
388
+ PFS
389
+ Figure 3: Internal runner architecture and interactions with the server and global storage
390
+ (PFS). Communications with the server combine MPI and ZMQ data exchanges.
391
+ exchanged between a runner and server. The runners send the particle-id
392
+ (a single int) and the corresponding weight (a single float), and the server
393
+ responds with the particle-id next to propagate.
394
+ 3.3. Distributed Particle Cache
395
+ To allow multiple propagations of one particle on different runners, it is
396
+ necessary to make them globally available. A straight forward approach is to
397
+ store particles on global storage. However, on supercomputers global storage
398
+ is subject to large throughput variability due to the high workload and the
399
+ limited bandwidth. Node-local storage, on the other hand, is only used by the
400
+ processes that run on the nodes, and the bandwidth can be stacked. Storing
401
+ the particles locally results in scalable I/O performance, scaling linearly with
402
+ the number of nodes.
403
+ To leverage node-local storage while still providing the particles globally,
404
+ runners rely on a distributed particle cache. Each runner executes helper
405
+ processes (one per node) in addition to the model processes, where both
406
+ groups of processes are associated with its own MPI communicator (Figure 3).
407
+ The model processes propagate the particles and store the associated states
408
+ locally on the nodes allocated to the runner (RAM disk or other node-local
409
+ storage when available). The helper processes then stage the states from local
410
+ 10
411
+
412
+ Init
413
+ Propagate x4
414
+ Store
415
+ State x4
416
+ Calculate
417
+ weight w4
418
+ Load State x5
419
+ Calculate
420
+ weight w5
421
+ Load
422
+ State x6
423
+ Init
424
+ App process 0
425
+ Helper process
426
+ Init
427
+ Load
428
+ State x4
429
+ Propagate x4
430
+ Calculate
431
+ weight w4
432
+ Calculate
433
+ weight w5
434
+ App process 1
435
+ Propagate x5
436
+ Propagate x5
437
+ Request new state
438
+ from server
439
+ Request new state
440
+ from server
441
+ Send w4 to server
442
+ Request new state
443
+ from server
444
+ Time
445
+ Init
446
+ Load
447
+ State x1
448
+ Propagate x1
449
+ Store
450
+ State x1
451
+ Calculate
452
+ weight w1
453
+ Load State
454
+ x2
455
+ Calculate
456
+ weight w2
457
+ Load
458
+ State x3
459
+ Init
460
+ App process 0
461
+ Helper process
462
+ Init
463
+ Propagate x1
464
+ Calculate
465
+ weight w1
466
+ Calculate
467
+ weight w2
468
+ App process 1
469
+ Propagate x2
470
+ Propagate x2
471
+ Request new state
472
+ from server
473
+ Request new state
474
+ from server
475
+ Send w1 to server
476
+ Request new state
477
+ from server
478
+ Parallel File System
479
+ Runner 1
480
+ Runner 2
481
+ Figure 4: Schematic Gantt diagram showing the activity of two runners (initialization
482
+ followed by two assimilation cycles). Focus on how the helper process asynchronous loads
483
+ and stores enables to shadow the parallel file system accesses. For sake of simplicity no
484
+ cache is used here.
485
+ 11
486
+
487
+ to global storage asynchronously, enabling to overlap the associated I/O costs
488
+ (Figure 4). Also notice that persisting particles to global storage acts as a
489
+ particle checkpoint used by the fault tolerance protocol (Section 3.7).
490
+ We allow keeping a number of particles in each of the runner caches
491
+ to exploit property (d) from Box 1: resampling does not change the parti-
492
+ cle states. Hence, keeping propagated particles in the cache, increases the
493
+ probability to find a particle locally for future propagations (i.e., during the
494
+ next cycle). If available in its local cache, a runner can propagate a parti-
495
+ cle without loading it from global storage. To further minimize cache loads,
496
+ runners implement an optimized cache eviction strategy. The eviction strat-
497
+ egy becomes especially important if the cache capacity is exceeded by the
498
+ accumulated size of the particles propagated during one cycle. Because the
499
+ runners have no knowledge about the status of the particle filtering (propa-
500
+ gations, resampling), the evictions are controlled by the server and directed
501
+ to the runners.
502
+ As explained in Section 3.4, each time a particle has been stored in the
503
+ cache by the model processes upon successful propagation, the helper pro-
504
+ cesses copy it in the background to global storage. Hence, all propagated
505
+ particle states can be selected for eviction, since they are safely stored on
506
+ global storage. When an eviction is required, the server selects a particle
507
+ from the cache in the following order:
508
+ 1. A particle from the previous cycle discarded by resampling;
509
+ 2. A parent particle from the current cycle for which all associated prop-
510
+ agations have been performed, and all weights received;
511
+ 3. The particle with the lowest weight propagated during the current cy-
512
+ cle;
513
+ 4. A randomly selected particle.
514
+ The particle states for cases 1 and 2 can safely be removed from cache, since
515
+ those particle are not needed anymore for future propagations. In case 3, we
516
+ select the particle state with the lowest weight, as it has the lowest probability
517
+ of being selected for future cycles during the resampling.
518
+ 3.4. Runners/Server Workflow
519
+ Once a runner job has started, it dynamically connects to the server and
520
+ requests a particle to propagate from it. The server selects the particle fol-
521
+ 12
522
+
523
+ lowing a scheduling policy described in Section 3.5. The model checks the
524
+ location of the particle. If already located inside the local cache, the prop-
525
+ agation starts. Otherwise, the model processes request the helper processes
526
+ to load the state into the cache. The model processes block until the helper
527
+ processes fetched the particle into the cache, and afterwards start the prop-
528
+ agation.
529
+ Once a particle propagation finishes, the model computes the associated
530
+ weight wp and stores the particle into the cache. Further, the weight and
531
+ particle-id are sent to the helper processes and a new particle is requested for
532
+ propagation. The helper processes, after receiving the weight from the model
533
+ processes, stage the particle from the cache to global storage and afterwards
534
+ sends the weight and particle-id to the server. This order ensures that the
535
+ server receives a weight only after the corresponding particle is propagated
536
+ and successfully stored on global storage.
537
+ The helper processes further prefetch particles in parallel to the propa-
538
+ gations (Figure 4). The goal is to avoid blocking the model processes while
539
+ waiting for a particle load from global storage (cache miss). Each time helper
540
+ processes send a weight to the server, they also request the next-to-next
541
+ particle-id to propagate. This particle is prefetched into the cache to become
542
+ locally available for the next to follow propagation. Prefetching is suspended
543
+ at the end of each propagation cycle, as propagation work for the next cycle
544
+ becomes only known after the server has performed the resampling of all par-
545
+ ticles. Notice that a helper may need to cancel prefetching if the prefetched
546
+ particle was in the meantime assigned to another runner, making idle the
547
+ model process while waiting for the next particle to propagate. When the
548
+ server makes such a decision to better balance the work load, it also takes
549
+ care of ensuring coherency between runners. Globally prefetching proved to
550
+ be very efficient for overlapping particle state loads with propagation (Sec-
551
+ tion 4.2).
552
+ 3.5. Particle Propagation Scheduling
553
+ In this section, we present the scheduling algorithm implemented on the
554
+ server to distribute the particle propagations to the runners. The algorithm
555
+ aims to ensure an even load balancing between runners and minimizing the
556
+ global particle loads, i.e. transfers of particles from global to local storage.
557
+ 13
558
+
559
+ Compulsory state load
560
+ Extra state load due to parallelization
561
+ Runner work lists
562
+ Figure 5: Two possible schedules of 24 propagation tasks of equal duration on 4 runners.
563
+ All particles propagated from the same parent particle state have the same color (9 parents
564
+ here). Top schedule is optimal with 9 compulsory loads (one per parent), and one for the
565
+ dark blue parent that cannot fit in one runner. The bottom schedule, with 2 more sate
566
+ loads, is a possible one that our on-line scheduling algorithm can produce. This is not
567
+ optimal but still below the general Q+R−1 bound as the algorithm ensures that no more
568
+ than R − 1 ”color cuts” occur and avoids the same runner loads more than once a given
569
+ parent particle state.
570
+ 3.5.1. Static Scheduling
571
+ Let R be the number of runners. Let P be the number of particles to
572
+ propagate. Resampling may lead to have some parent particles drawn to be
573
+ propagated several times. Let Q the number of parent particles q, and αq the
574
+ number of times the particle q needs to be propagated. The total number of
575
+ particles to propagate is:
576
+ P =
577
+
578
+ 0≤q<Q
579
+ αq
580
+ 13
581
+ To assess the performance of our scheduling algorithm, we first derive a
582
+ lower and upper bound of the minimum number of particle loads c∗ for the
583
+ static case, where: (i) runners do not cache states, (ii) the number of runners
584
+ is constant, and (iii) all particle propagations take the same amount of time.
585
+ Under these conditions, each runner propagates P
586
+ R particles. Without local
587
+ cache, each parent particle q needs to be loaded at least once. Therefore,
588
+ the number of compulsory particle loads is Q. If αq = 1 for all q, that is,
589
+ every particle is drawn only once, then c∗ = P. Otherwise, parallelizing the
590
+ propagation on R runners may require some particles to be loaded by more
591
+ than one runner, accounting for extra particle loads beyond the compulsory
592
+ ones. Indeed, each particle q needs to be provided at least on sq runners,
593
+ 14
594
+
595
+ where
596
+ sq =
597
+
598
+ αq
599
+ P
600
+ R
601
+
602
+ .
603
+ 14
604
+ Distributed to R runners, the list of P particles is cut R − 1 times. Con-
605
+ sequently, the extra particle loads are at most R − 1.
606
+ This is visualized
607
+ in Figure 5. This upper bound occurs if all particles are propagated from a
608
+ single parent(Q = 1). Thus, the minimum number of particle loads is tightly
609
+ bound by
610
+ Q ≤ c∗ ≤ Q + R − 1.
611
+ 15
612
+ We can apply a static schedule that respects the upper bound: distribute
613
+ P
614
+ R particles per runner, where each parent particle q is given to no more than
615
+ sq runners, and by imposing that runners do not switch to the next particle
616
+ before completing all propagations associated to the current one.
617
+ 3.5.2. Dynamics List Scheduling
618
+ However, we target a more general case. We soften the initial assump-
619
+ tions now considering that the number of runners can vary, and the time
620
+ to propagate particles may vary significantly and is not known beforehand
621
+ (but we still have no cache). In this context we propose to rely on the clas-
622
+ sical dynamic list scheduling algorithm: when idle, a runner requests work
623
+ from the server that returns a particle-id to propagate. In the general case
624
+ the list scheduling algorithm guarantees to be at worst twice as long as the
625
+ optimal schedule that requires to know the particle propagation time in ad-
626
+ vance [13, 14]. Instead of blindly selecting the next particle to propagate,
627
+ we adapt the static scheduling strategy for particle selection with the goal of
628
+ limiting the number of particle loads. The scheduling is based on the split
629
+ factor sq (Equation 14). However, we adapt the static scheduling to the dy-
630
+ namic case by recomputing sq each time with the updated values of αq, P,
631
+ and R. To implement this algorithm on the server, we need a bookkeeping of
632
+ the number of runners Rq currently propagating particle q, and the number
633
+ αq of remaining propagations for particle q. Let r be the runner requesting a
634
+ particle for propagation, the particle distribution algorithm works as follows:
635
+ 1: If αq > 0 for particle q last propagated by r, decrement αq and assign q
636
+ again. If αq = 0 continue with (2);
637
+ 2: Select a different particle q′ with αq′ > 0;
638
+ 15
639
+
640
+ 3: Compute split factor sq′. If Rq′ < sq′ assign q′, increment Rq′, and decre-
641
+ ment αq′. If Rq′ = sq′ continue with (2).
642
+ Notice that when the server recognizes the loss of one runner, it needs to
643
+ update the bookkeeping to reintegrate the particle that this runner was prop-
644
+ agating.
645
+ In conditions of even propagation time and a static number of runners,
646
+ this algorithm leads to the same distribution as for the static schedule and
647
+ respects the upper bound of Equation 15.
648
+ 3.5.3. Cache Aware Scheduling
649
+ We now remove the last assumption to propose a scheduling strategy that
650
+ takes into consideration the particle cache. This is a heuristic build upon the
651
+ previous strategy and validated though several experiments. The particle
652
+ selection strategy is:
653
+ 1. Select a parent particle pi already loaded in the runner cache (cache
654
+ hit);
655
+ 2. Select a parent particle pi that is in no runner cache (cache miss);
656
+ 3. Select a particle pi fulfilling the split factor criterion (cache miss);
657
+ 4. Select a parent particle pi with maximal split factor si (even if voids
658
+ the split factor) (cache miss).
659
+ The three first items comply with the scheduling proposed in Section 3.5.2.
660
+ The first item gives priority to particles already in the cache, before they may
661
+ be evicted to provide space for a particle load. The next two items pursue
662
+ with the strategy of Section 3.5.2, favoring particles with no previous propa-
663
+ gation. The rational is to start as soon as possible with new parent particles
664
+ and, once in a cache, propagate them has often as required, and intend to
665
+ reduce the need for splitting. The last item departs from the strategy of
666
+ Section 3.5.2, but its addition proved efficient by our experiments. This case
667
+ occurs when reaching the end of a cycle. It proved to be an efficient strat-
668
+ egy to keep runners busy, even at the cost of extra loads, to improve load
669
+ balancing and so completion time.
670
+ 16
671
+
672
+ 3.6. Job Submission and Monitoring
673
+ The workflow is controlled by the launcher. The launcher is the user
674
+ entry point to configure and start the application. The launcher starts first
675
+ and is responsible to start and monitor the runner and server instances,
676
+ that all run in separate executables/jobs. The launcher is also in charge of
677
+ killing and restarting the runners or server as requested by the fault tolerance
678
+ protocol (Section 3.7), or for elasticity purpose.
679
+ The launcher tightly interacts with the job scheduler (Slurm or OAR
680
+ for instance) of the machine.
681
+ The launcher can be configured to submit
682
+ one job per runner and server to the batch scheduler. This strategy offers
683
+ the maximum flexibility for the batch scheduler to optimize the machine
684
+ ressource allocation, but the execution progress becomes very dependent on
685
+ the machine availability. The user may need more control on the number of
686
+ concurrently running runners. In that case the launcher can be set to request
687
+ to the batch scheduler one or several large resource allocations and fit several
688
+ runner instances in each one. To support this feature the launcher relies on
689
+ a combination of Slurm salloc/srun [15], or OAR containers[16]. For even
690
+ more flexible schemes, we plan to support workflow pilot-based schedulers
691
+ like Radical-Pilot [17] or QCG-PilotJob [18].
692
+ 3.7. Fault Tolerance
693
+ The fault tolerance relies on the fast identification of failures from run-
694
+ ner and server instances. Runner failures are detected in two different ways.
695
+ Runner crashes are recognized by the launcher, which is monitoring their
696
+ execution using the cluster scheduler. Unresponsive runners are identified
697
+ by the server relying on timeouts for the particle propagations. If propaga-
698
+ tions exceed the timeout, the server requests the launcher to terminate the
699
+ respective runner. In both cases, the launcher eventually starts a new runner
700
+ instance. The new runner connects to the server and requests work. If a
701
+ runner fails, the server cancels the on-going propagation, and the time spent
702
+ in the propagation plus the time to recognize the runner failure is lost.
703
+ Server failures are detected similarly, either directly if the server crashes,
704
+ or if the server exceeds a timeout. The timeout is mediated by a periodical
705
+ exchange of signals between launcher and server (heartbeats). If the server
706
+ fails, the launcher terminates all runner instances and restarts the framework
707
+ as a whole. The server frequently stores the status of the propagations in
708
+ checkpoints, and in case of failures, the framework can recover to the point
709
+ of the last successful propagations.
710
+ 17
711
+
712
+ Finally, a launcher failure is detected by the server monitoring the heart-
713
+ beat connection between launcher and server. In case of a missing heartbeat,
714
+ the server checkpoints the current particle state and shuts down. In parallel,
715
+ the runners detect the server crash and shut down, again using timeouts.
716
+ While runner or server failures lead to an automatic restart, the framework
717
+ needs to be restarted manually if the launcher fails.
718
+ 3.8. Implementation Details
719
+ The launcher and server are developed in Python.
720
+ The runner relies
721
+ on the simulation code instrumented with our framework API, supporting
722
+ C/C++, Fortran and Python.
723
+ The implementation reuses some software
724
+ components, like the launcher, from the framework developed for EnKF
725
+ DA [19]. The distributed cache implementation relies on the Fault Tolerance
726
+ Interface (FTI) [20]. FTI is a multilevel checkpoint-restart library supporting
727
+ asynchronous checkpointing to global storage. One of the main modification
728
+ performed to FTI is related to its event loop. Events are triggered in form of
729
+ MPI communication between the application and FTI processes. The events
730
+ are identified by tags. To extend this mechanism, we enabled to register a
731
+ callback function. This callback function is called inside the event loop and
732
+ can trigger user defined events using unique tags. With this, it becomes pos-
733
+ sible to use the application checkpointing into all available levels of reliability
734
+ FTI provides, and to implement the cache mangement on the dedicated FTI
735
+ processes.
736
+ The communication between helper and model processes relies on asyn-
737
+ chronous MPI messages. Communications with the server are implemented
738
+ in two steps for efficiency purpose. Only rank 0 (master) of the application
739
+ (i.e., model) communicator and the rank 0 (master) of the helper process
740
+ communicator communicate with the server. As a dynamic connection is
741
+ needed, each master connects to the server using a socket through the ZMQ
742
+ library. Information that needs to be propagated between helper or model
743
+ processes relies on MPI collective communications in the associated commu-
744
+ nicator (Figure 3).
745
+ The framework code is available at https://gitlab.inria.fr/melissa/
746
+ melissa-da.
747
+ 18
748
+
749
+ 4. Experiments
750
+ 4.1. WRF Use Case
751
+ Experiments rely on an established Numerical Weather Prediction (NWP)
752
+ system; the Weather Research and Forecasting Model (WRF) (V3.7.1)[8].
753
+ The core of WRF is based on solving fully compressible non-hydrostatic equa-
754
+ tions with complete Coriolis and curvature terms, and a large set of physics
755
+ options. The simulation domain covers most of Europe (See Figure 6) and is
756
+ composed of 220 by 220 grid cells with a horizontal resolution of 15 km and
757
+ 49 vertical levels with uneven thickness. We perform one day-ahead weather
758
+ forecasting (24 hours of initial time plus 48 hours of production time) of an
759
+ arbitrary date (2018-10-12) with 24-seconds or 100-seconds time steps. The
760
+ model employs the WSM6 microphysics, MYNN2 boundary layer physics,
761
+ Grell-3 cumulus parameterization, Eta Monin-Obukhov similarity surface
762
+ layer processes, and RUC land surface model.
763
+ Also non-hydrostatics are
764
+ activated to provide more details in simulated clouds and precipitation. The
765
+ input, initial, and boundary conditions are based on the reanalyzed ERA5
766
+ dataset from the European Center for Medium-Range Weather Forecasts
767
+ (ECMWF), which is updated every 3 hours. Data assimilation is performed
768
+ using the cloud fraction (CFRACT). The particle weights are determined by
769
+ comparison against the observed cloud mask obtained from the EUMETSAT
770
+ Level-2 satellite data of the cloud mask. The simulated cloud fraction is con-
771
+ verted into cloud mask and the observed cloud mask data is upscaling to the
772
+ size of the model gridcells for the further applications. The data is hourly
773
+ available, thus, one assimilation cycle comprises 150 (36) model time steps
774
+ (150 × 24 s �= 1 h or 36 × 100 s �= 1 h).
775
+ The experiments presented in this article leverage our proposed Particle
776
+ Filtering (PF) implementation with a sample size of up to 2,555 particles
777
+ on the European domain. In that case, we utilize 20,442 compute cores on
778
+ 512 Nodes of the Jean-Zay supercomputer. The compute nodes are equipped
779
+ with 2 Intel Cascade Lake 6,248 processors, summing up to 40 cores with
780
+ 2.5 GHz and 192 GiB RAM per node. Intel Omni-Path (100 GB/s) connects
781
+ the compute nodes, and the global file system is an IBM Spectrum Scale
782
+ (ex-GPFS) parallel file system with SSD disks (GridScaler GS18K SSD). For
783
+ all experiments the node-local caches were stored on RAM disk. In Table 1
784
+ we list the parameters of our main experiments.
785
+ The meteorological state of the European domain associated to one par-
786
+ ticle comprises 2.5 GiB of data. Hence, the data from 2,555 particles for the
787
+ 19
788
+
789
+ Figure 6: The topography of the target domain of Europe for the simulation.
790
+ full simulation period of 48h (48 time steps) correspond to an aggregated
791
+ size of about 300 TiB. The experiments performed for this article, including
792
+ small beta-stage experiments, account for about 900,000 CPU hours split
793
+ between the JUWELS, Jean-Zay and Marenostrum supercomputers.
794
+ 4.2. Runner Activity
795
+ The benefit of the local cache in combination with the cache-aware schedul-
796
+ ing leads to a drastic reduction in transfers from global to local file system
797
+ layers. The cache hit ratio, i.e., the ratio of particles found inside the cache
798
+ to the total number of particle loads, depends on the cache size and the ratio
799
+ of particles per runner. Figure 7 shows how the cache misses develop for
800
+ different cache sizes. Our experiments demonstrate a cache hit ratio of 88 %
801
+ for 128 particles, 32 runners, and a cache size of 9 particles. This translates
802
+ to a saving of 88 % in transfers from global to local storage. The pattern of
803
+ cache hits and misses is visualized in Figure 8. The initial phase is dominated
804
+ by starting up the runners, and all the particles are fetched from the global
805
+ storage (cache warm up). But beginning with the next assimilation cycle,
806
+ the low transfer ratio from global to local storage starts to establish.
807
+ Runners are designed to separate I/O operations to the PFS from other
808
+ tasks: model processes only perform local I/O operations. We observe in
809
+ our experiments that this leads to a high computational efficiency. The local
810
+ I/O accesses are negligible compared to the computational tasks (< 0.1 s
811
+ 20
812
+
813
+ 20°W
814
+ 10°W
815
+ 00
816
+ 10°E
817
+ 20°E
818
+ 30°E
819
+ 40°E
820
+ 3000
821
+ 2500
822
+ 60°N
823
+ 20°W
824
+ 2000
825
+ Latitude
826
+ Elevation
827
+ 1500
828
+ 50°N
829
+ 1000
830
+ 500
831
+ 40°N
832
+ 10°W
833
+ 10°E
834
+ 20°E
835
+ Longitude3
836
+ 4
837
+ 5
838
+ 6
839
+ 7
840
+ 8
841
+ 9
842
+ 10
843
+ 11
844
+ 12
845
+ cache size
846
+ 0.2
847
+ 0.3
848
+ 0.4
849
+ 0.5
850
+ cache miss ratio
851
+ Figure 7: Cache miss ratio for different cache sizes on each runner. In total 128 particles
852
+ run on 32 runners. First and last assimilation cycles were disregarded to remove warm up
853
+ effects and not fully recorded cycles.
854
+ 21
855
+
856
+ Experimental Setup
857
+ Particles
858
+ 315
859
+ 635
860
+ 1,275
861
+ 2,555
862
+ Number of runners
863
+ 63
864
+ 127
865
+ 255
866
+ 511
867
+ Number of nodes
868
+ 64
869
+ 128
870
+ 256
871
+ 512
872
+ Model processes
873
+ 2,457
874
+ 4,953
875
+ 9,945
876
+ 19,929
877
+ Particles per runner (avg.)
878
+ 5
879
+ 5
880
+ 5
881
+ 5
882
+ Particle state size (GiB)
883
+ 2.5
884
+ 2.5
885
+ 2.5
886
+ 2.5
887
+ Performance Data
888
+ Scaling efficiency
889
+ 92%
890
+ 91%
891
+ 92%
892
+ 87%
893
+ Resampling (ms)
894
+ 2.21
895
+ 4.06
896
+ 8.16
897
+ 16.37
898
+ Assimilation cycle (s)
899
+ 136
900
+ 138
901
+ 139
902
+ 146
903
+ Propagation (s)
904
+ 25.1
905
+ 25.2
906
+ 25.1
907
+ 25.0
908
+ Load particle state
909
+ from PFS to cache (s)
910
+ 2.1
911
+ 2.1
912
+ 2.4
913
+ 4.1
914
+ Write particle state
915
+ from cache to PFS (s)
916
+ 1.4
917
+ 1.6
918
+ 1.8
919
+ 2.3
920
+ Writes to PFS per cycle (TiB)
921
+ 0.77
922
+ 1.55
923
+ 3.11
924
+ 6.24
925
+ Reads from PFS per cycle (TiB)
926
+ 0.30-0.40
927
+ 0.64-0.79
928
+ 1.27-1.79
929
+ 2.54-3.82
930
+ Table 1: Experimental setting and performance overview at 4 different scales. The times
931
+ are given as average in all cases. Model time steps were set to 100 seconds.
932
+ compared to up to 6 s). Some general idle periods can be observed between
933
+ assimilation cycles when runners are waiting for the last propagations of one
934
+ cycle to finish so that the server can normalize weights, resample and start to
935
+ distribute work again. This is illustrated in Figure 9 where we show a trace
936
+ recorded from the execution of an arbitrary runner. The trace illustrates the
937
+ efficiency of the runners in performing the actual tasks of the simulation,
938
+ particle propagation and weight calculation, while the I/O tasks are moved
939
+ to the background.
940
+ A global parallelization of the computational tasks is achieved by dynami-
941
+ cally distributing the particle propagations to the available runners. The fully
942
+ parallelized case corresponds to R = P, i.e., the number of runners matches
943
+ the number of particles. The sequential case corresponds to R = 1, i.e., all
944
+ propagations are performed by only one runner. However, The best parallel
945
+ efficiency is achieved at values between those limits. Because WRF propa-
946
+ gates particles with very low time variability (maximum variation of 10%),
947
+ we observe an even distribution of propagations to runners when R divides P
948
+ (Figure 8). A single-particle propagation takes between 24 and 26.5 seconds,
949
+ 22
950
+
951
+ 0
952
+ 1000
953
+ 2000
954
+ 3000
955
+ 4000
956
+ 5000
957
+ Time (s)
958
+ 0
959
+ 10
960
+ 20
961
+ 30
962
+ Runner ID
963
+ state load
964
+ Cache hit
965
+ Cache miss
966
+ Assimilation cycle
967
+ 0
968
+ 1
969
+ 2
970
+ 3
971
+ 4
972
+ 5
973
+ 6
974
+ 7
975
+ 8
976
+ 9
977
+ 10
978
+ 11
979
+ 12
980
+ 13
981
+ 14
982
+ 15
983
+ cachesize: 9, cache hit ratio (cycles 2-14): 0.88
984
+ Figure 8:
985
+ Gantt chart of particle propagations executed by the 32 runners over 15
986
+ assimilation cycles. Tasks are green if the associated parent particle state was already
987
+ present in the runner cache and did not require a load from the PFS (red otherwise).
988
+ globally making from 87% to 92% of an average assimilation cycle. Calcu-
989
+ lating weights takes 1% of the time and communicating with the server from
990
+ 7%to 12% including the idle time at the end of each cycle (Table 1 – Perfor-
991
+ mance Data). The extra resources for helper processes, one core per runner
992
+ node, and the server, 1 node, comprise only 2.7% for our largest experiment
993
+ at 512 nodes. On the other hand, leveraging the runner’s particle cache, and
994
+ the cache aware dynamic scheduling on the server, move > 97% of the state
995
+ loads completely into the background. Loading and writing particle states
996
+ synchronously would otherwise add about 6.4 seconds to each single-particle
997
+ propagation corresponding to 14% of the average propagation time (Table 1
998
+ – 2,555 particles).
999
+ Note that in contrast to the traditional offline approach, we start-up the
1000
+ numerical simulation code only once for several particle propagations. The
1001
+ setup involves the request and allocation of the runner job and initializing
1002
+ the simulation code.
1003
+ On the other hand, the traditional offline approach
1004
+ associates each particle propagation with a different job, and the start-up
1005
+ has to be performed anew for each particle. Starting up the WRF model on
1006
+ 23
1007
+
1008
+ Figure 9: Trace detailing the activity of a runner over the course of an assimilation cycle.
1009
+ Helper processes enable to keep model processes busy with particle propagation, except at
1010
+ the end of assimilation cycles when they wait for the server to finish particle resampling
1011
+ (dark blue). Some activities are so thin that they are not visible here (state copies from
1012
+ cache to model).
1013
+ the European domain on one node until the first model propagation begins
1014
+ takes 3-4 s, excluding the provisioning of the job allocation via the cluster
1015
+ scheduler.
1016
+ 4.3. Server Activity
1017
+ We further measured the server responsivity to runner requests.
1018
+ The
1019
+ response time is always in the order of a few hundred microseconds, except
1020
+ for some job requests that take up to a few seconds (Figure 10). However,
1021
+ these are outliers at the end of the assimilation cycle, resulting from idle times
1022
+ due to the load balancing and the particle filter update. During our largest
1023
+ experiments with 511 runners, the server processes 676 requests per second
1024
+ at maximum load. This shows that the server is fast enough to support this
1025
+ scale, even though it is a sequential python code. Simple optimizations are
1026
+ at reach if the server needs to be accelerated (e.g., adding parallelization).
1027
+ 24
1028
+
1029
+ Assimilation cycle
1030
+ Weight calculation
1031
+ processes
1032
+ Model
1033
+ Request job from server-
1034
+ Propagation -
1035
+ Load state from cache
1036
+ Load state from PFS into cache-
1037
+ processes
1038
+ Helper
1039
+ Write state from cache into PFS -
1040
+ 300
1041
+ 400
1042
+ 500
1043
+ 600
1044
+ Time (s)Delete request
1045
+ Job request
1046
+ Prefetch request
1047
+ Push weight to server
1048
+ 1
1049
+ 1e2
1050
+ 1e4
1051
+ Duration (ms)
1052
+ Figure 10: Server response times on runner requests.
1053
+ 4.4. State Transfers To/From PFS
1054
+ Next, we take a closer look at the particle loads from the PFS (Figure 11).
1055
+ With a sample size of 1024 particles, leveraging 256 runners, and a local cache
1056
+ size of 9 particles, between 121 and 248 particles are loaded to the cache
1057
+ during each cycle. The number of distinct parent particles Q propagated per
1058
+ cycle lies between 813 and 889. Each one is propagated at most 5 times to
1059
+ sum to a total of 1024 particles. The cache enables to achieve significantly
1060
+ less loads than the Q + R − 1 upper bound expected with static scheduling
1061
+ and no cache (Equation 15).
1062
+ The access times to the Parallel File System (PFS) (load/store) vary sig-
1063
+ nificantly and increase with the number of runners (Figure 12), showing that
1064
+ 25
1065
+
1066
+ Q
1067
+ Q+R-1
1068
+ Figure 11: Number of parent particles Q, particles loads from the PFS to the cache,
1069
+ and Q + R − 1 upper bound from Equation 15 for different ensemble sizes, a cache size
1070
+ of 9 particles with 4 particles per runner.
1071
+ 26
1072
+
1073
+ our application alone can stress the PFS 1. Each particle is associated with
1074
+ 2.5 GiB of data. During each assimilation cycle, all the propagated parti-
1075
+ cles are written to the PFS for supporting fault-tolerance and dynamic load
1076
+ balancing. For our experiments at 512 nodes with 2,555 particles, this accu-
1077
+ mulates to about 6.2 TiB of data each cycle (compare Table 1). However, our
1078
+ experiments on the Jean-Zay and JUWELS supercomputer demonstrate that
1079
+ our framework performs most of those transfers asynchronously (Section 4.2).
1080
+ In less than 2% of the cases, the model processes wait more than 0.1 seconds
1081
+ for a particle to be loaded corresponding to cases where helper processes do
1082
+ not (entirely) finish prefetching. Time to perform the local loads and stores
1083
+ from the cache shows a constant average independently on the number of
1084
+ runners (Figure 13).
1085
+ 63
1086
+ 127
1087
+ 255
1088
+ 511
1089
+ Number of runners
1090
+ 1000
1091
+ 2000
1092
+ 3000
1093
+ 4000
1094
+ 5000
1095
+ 6000
1096
+ Duration (ms)
1097
+ Load state from
1098
+ PFS into cache
1099
+ Write state from
1100
+ cache into PFS
1101
+ Figure 12: Mean time to load or store particle states of 2.5 GiB from / to the PFS with
1102
+ different numbers of runners.
1103
+ 4.5. Fault Tolerance, Elasticity and Load Balancing
1104
+ Fault tolerance relies on 1) persisting the particle to the PFS 2) the
1105
+ framework elasticity enabling to adjust dynamically the number of runners.
1106
+ 1these numbers may also be impacted by other jobs on the cluster
1107
+ 27
1108
+
1109
+ 128
1110
+ 256
1111
+ 512
1112
+ 1024
1113
+ members
1114
+ 1e-4
1115
+ 1e-2
1116
+ 1
1117
+ duration [s]
1118
+ Load from local cache
1119
+ Store to local cache
1120
+ Figure 13: Box plot of the time spent for loads and stores from/to the local cache with
1121
+ different numbers of particles.
1122
+ If a runner fails, the launcher requests the execution of a new one, so as to
1123
+ maintain a constant number of runners. Once this new runner connects to
1124
+ the server, it asks for a particle to propagate to the server, assigned according
1125
+ to the load balancing algorithm.
1126
+ We tested the fault tolerance and elasticity on an experiment with 63
1127
+ runners provoking the crash of 2 runners (Figure 14). First, notice that the
1128
+ fault tolerance algorithm reacts appropriately as it restarts a new runner after
1129
+ each crash. The first crash (runner #53) occurs in the worst-case situation:
1130
+ just when propagating the last particle of the current cycle, leading to a
1131
+ significant idle period. The idle period is caused first, because the server
1132
+ needs to wait for the timeout (set to 60 s) to acknowledge that runner #53
1133
+ is unresponsive and second, there is no work left except the particle that
1134
+ runner #53 was propagating, which is re-assigned to runner #44. Meanwhile
1135
+ all other runners stay idle until the beginning of the next cycle. If the crash
1136
+ happens earlier during a cycle, smaller idle periods appear.
1137
+ This can be
1138
+ observed during the second crash (runner #48), as the other runners are
1139
+ kept busy with propagation work.
1140
+ We generally observe an efficient load
1141
+ balancing, as the work load is kept well distributed amongst runners, even
1142
+ when their number varies.
1143
+ 28
1144
+
1145
+ 0
1146
+ 250
1147
+ 500
1148
+ 750
1149
+ 1000
1150
+ 1250
1151
+ Time (s)
1152
+ 0
1153
+ 20
1154
+ 40
1155
+ 60
1156
+ Runner ID
1157
+ Initial propagation
1158
+ Assimilation cycle
1159
+ 1
1160
+ 2
1161
+ 3
1162
+ 4
1163
+ 5
1164
+ 6
1165
+ 7
1166
+ 8
1167
+ Figure 14:
1168
+ Gantt chart of particle propagations executed by the 63 runners over 8
1169
+ assimilation cycles.
1170
+ After runners #48 and #53 crashed (black cross), two new ones
1171
+ restarted (top 2 runners #63 and #64).
1172
+ 4.6. Scaling
1173
+ We evaluated the performance of the particle filter in a strong scaling
1174
+ scenario, constant number of runners while increasing the number of particles,
1175
+ and a weak scaling scenario, constant particle-to-runner ratio while increasing
1176
+ the number of runners. In the strong scaling scenario we observe that the
1177
+ runner utilization shows an upwards trend when increasing the number of
1178
+ particles per runner, with a plateau at about 96% (Figure 15). As global
1179
+ I/O operations are almost completely shadowed, thanks to the asynchronous
1180
+ prefetching, increasing the number of particles per runner mainly enables to
1181
+ better amortize the cost of the synchronization associated with resampling.
1182
+ We observe an almost constant time for the assimilation cycle, demonstrating
1183
+ a desirable weak scaling behavior. The time for the cycles increase only by
1184
+ 8% from 63 to 511 runners, indicating an efficient scaling behavior of the
1185
+ 29
1186
+
1187
+ framework up to production scale (Figure 16). Particle filtering with WRF
1188
+ on a European domain for short-range weather prediction at this scale is
1189
+ an important advancement of the previous work done by Berndt et. al. [21].
1190
+ Moreover, besides assimilating at a higher frequency, our proposal offers fault
1191
+ tolerance, automatic load balancing and elasticity while minimizing the I/O
1192
+ cost and time to calculate weights.
1193
+ 63 particles
1194
+ (1 per runner)
1195
+ 315 particles
1196
+ (5 per runner)
1197
+ 630 particles
1198
+ (10 per runner)
1199
+ 945 particles
1200
+ (15 per runner)
1201
+ 0
1202
+ 0.1
1203
+ 0.2
1204
+ 0.3
1205
+ 0.4
1206
+ 0.5
1207
+ 0.6
1208
+ 0.7
1209
+ 0.8
1210
+ 0.9
1211
+ 1
1212
+ Scaling efficiency
1213
+ Figure 15: Scaling efficiency using different numbers of particles with 63 runners. One
1214
+ runner sets the reference case.
1215
+ 4.7. Comparison to a File-based Approach
1216
+ Melissa
1217
+ ESIAS-met
1218
+ ESIAS-met/Melissa
1219
+ part.
1220
+ cores
1221
+ time (s)
1222
+ core.s/part.
1223
+ cores
1224
+ time(s)
1225
+ core.s/part.
1226
+ resource usage ratio
1227
+ 128
1228
+ 384
1229
+ 1062
1230
+ 3186
1231
+ 1536
1232
+ 267
1233
+ 3204
1234
+ 1.01
1235
+ 256
1236
+ 768
1237
+ 1062
1238
+ 3186
1239
+ 3072
1240
+ 317
1241
+ 3804
1242
+ 1.19
1243
+ 512
1244
+ 1536
1245
+ 1068
1246
+ 3204
1247
+ 6144
1248
+ 422
1249
+ 5064
1250
+ 1.58
1251
+ 1024
1252
+ 3072
1253
+ 1071
1254
+ 3213
1255
+ 12288
1256
+ 761
1257
+ 9132
1258
+ 2.84
1259
+ Table 2: Comparing the resource usage (core.second/particle) per cycle for Melissa and
1260
+ ESIAS-met (file-based) runs.
1261
+ We compare Melissa with the file-based approach ESIAS-met [22] using
1262
+ the same simulation code WRF (V3.7.1) and the same data set. For the
1263
+ same number of particle, both approaches use a very different amount of
1264
+ 30
1265
+
1266
+ 63
1267
+ (315)
1268
+ 127
1269
+ (635)
1270
+ 255
1271
+ (1275)
1272
+ 511
1273
+ (2555)
1274
+ Runners
1275
+ (particles)
1276
+ 0
1277
+ 50
1278
+ 100
1279
+ 150
1280
+ Assimilation cycle
1281
+ duration (s)
1282
+ 5 particles per runner
1283
+ 2522
1284
+ 5082
1285
+ 10202
1286
+ 20442
1287
+ Cores
1288
+ Figure 16: Weak scaling performance test: assimilation cycle duration for different num-
1289
+ bers of runners, but always 5 particles per runner.
1290
+ cores (Table 2). With ESIAS-met each particle propagation requires to start
1291
+ a dedicated instance of WRF. Each time it includes the cost from loading
1292
+ and storing the particle state from/to a file. At 1024 particles ESIAS-met
1293
+ uses 12288 cores while Melissa just needs 3072 cores as runners propagate
1294
+ several particles each. ESIAS-met execution time is thus shorter as highly
1295
+ parallelized, but the resource usage (core.second/particle/cycle) is 2.84 times
1296
+ improved for Melissa due to the combined strategies developed to improve
1297
+ efficiency. The gain increases with the number of particles, showing that the
1298
+ Melissa approach is particularly beneficial when targeting the large ensemble
1299
+ size.
1300
+ 5. Discussion
1301
+ in Section 4.1 we derived that the total amount of data resulting from
1302
+ 48 time-steps of particle filtering on the european domain with 2,555 parti-
1303
+ cles accumulates to about 300 TiB. Post processing this amount of data is
1304
+ challenging. Our framework could be extended using in situ data processing
1305
+ techniques as presented in Terraz et. al. [23].
1306
+ We only considered the case where the propagation time is longer than
1307
+ the time for loading states from the PFS; while applications where propaga-
1308
+ tions are shorter than loading the states would limit our proposal efficiency,
1309
+ as we cannot further hide the I/O cost in that case. On the other hand,
1310
+ we already have short propagation times in the WRF context as we per-
1311
+ 31
1312
+
1313
+ form hourly resampling.
1314
+ We chose this frequency primarily to stress our
1315
+ proposal. Production runs usually do not require such a high frequency, and
1316
+ rather have even longer propagation times as in our experiments. However,
1317
+ to minimize transfer times further, we are evaluating approaches leveraging
1318
+ node-local persistent storage as globally shared storage layer. Solutions for
1319
+ this are readily available in form of distributed ad hoc file-systems [24] such
1320
+ as BeeOND, GekkoFS, and BurstFS. We have also experimented with con-
1321
+ necting the runners, establishing a peer to peer network, where runners can
1322
+ exchange directly the required states between each other.
1323
+ The particle propagation time in our experiments with WRF is relatively
1324
+ even, showing at most a 10% variability. Situations with more variability are
1325
+ possible using different physics in WRF, with other simulation codes, or, if
1326
+ runners execute on heterogeneous resources, some runners propagating faster
1327
+ than others by leveraging GPUs for instance. Also use cases from other con-
1328
+ texts such as Simulation Based Inference (SIB) and ensemble classification,
1329
+ which can be performed using our framework, might lead to vastly different
1330
+ propagation times. Therefore, testing our framework under such conditions
1331
+ is an important future work.
1332
+ Our proposal currently relies on filters that do not compute internal mem-
1333
+ ber state corrections.
1334
+ Extending our approach to such particle filters [1]
1335
+ would possibly require aggregating more than just the particle weights to the
1336
+ server. Exploring the requirements to align our framework to such cases is
1337
+ the goal of a future implementation of the particle filter that we propose. We
1338
+ validated our proposal with the SIR particle filter, but many variations exist
1339
+ and are active research topics [25, 26]. One challenge is the exponentially
1340
+ growing required particle number with the dimension of the problem [27, 28].
1341
+ This is particularly acute for geoscience use cases that, as in this paper, work
1342
+ in high dimensional spaces. The survey [1] gives an extensive overlook of DA
1343
+ by particle filters for geoscience and ways to cope with dimensionality issues.
1344
+ Particle filters, as used here, require a synchronization point at the end
1345
+ of each assimilation cycle. For our framework, this is the major remaining
1346
+ source of inefficiency. Loosening this requirement needs revisiting the particle
1347
+ filtering algorithm, which constitutes an active topic of research [29, 30, 31].
1348
+ 6. Related Work
1349
+ The DA domain encompasses a large variety of techniques and algorithms,
1350
+ like nudging [32], kriging [33], ensemble Kalman Filter [34], ensemble max-
1351
+ 32
1352
+
1353
+ imum likelihood filter [35], or particle filter [36]. For an overview, we refer
1354
+ to [37, 38]. We focus here on statistical DA relying on an ensemble run of
1355
+ the model to compute a statistical estimator (co-variance matrix for EnKF,
1356
+ PDF for particle filters).
1357
+ To aggregate the data produced by all members (i.e., particles) two main
1358
+ groups of approaches are used. Either the data is stored to files and then
1359
+ processed in a second step (off-line mode), or the data is processed on-line
1360
+ usually within a large MPI code in charge of running the members and data
1361
+ processing. Frameworks relying on the off-line mode include EnTK [39], with
1362
+ the largest published DA use cases reaching 4,096 members for a molecular
1363
+ dynamics application with an EnKF filter [40]. OpenDA also follows this
1364
+ model, using NetCDF for data exchange with the NEMO code [41]. DART
1365
+ supports both [42], with reports of large scale DA in off-line mode in [43]
1366
+ (about 1,000 members with an oceanic code), or [44, 45] (1,024 member,
1367
+ LETKF filter, 6 M Fugaku cores). File based approaches have the benefit of
1368
+ their simplicity, providing fault tolerance and elasticity. But these solutions
1369
+ do not support member virtualization, state caching and prefetching.
1370
+ So
1371
+ starting or restarting a member requires to request a new resource allocation
1372
+ launching a new instance of the model code with all the associated start-up
1373
+ costs. Node-local persistent storage capabilities, for instance with SSDs, can
1374
+ store intermediate files, avoiding the PFS to loosen the I/O bottleneck. They
1375
+ are used for member state storage in [44], but without specific fault tolerance
1376
+ mechanism. So if a node fails and the node-local storage becomes unavailable,
1377
+ the lost member states need to be recomputed. Besides leveraging the node
1378
+ storage for the distributed cache, using node-storage rather than the parallel
1379
+ file system as a globally shared file system layer is one of our future goals.
1380
+ The on-line mode avoids the I/O bottleneck. PDAF [46], which supports
1381
+ both modes, has for instance been used on-line for the assimilation of ob-
1382
+ servations into the regional earth system model TerrSysMP. DA was based
1383
+ on EnKF with up to 256 members [47]. ESIAS uses on-line DA via particle
1384
+ filters with up to 4,096 particles on a wind power simulation on Europe [21].
1385
+ Notice that we work with the same WRF component of ESIAS in this paper,
1386
+ using a configuration on a similar domain but at higher spatial resolution and
1387
+ with more advanced and more time consuming physics. We also find ad hoc
1388
+ MPI codes for on-line DA as in [48] (atmospheric model, 10,240 members,
1389
+ Local ENKF filter, 4,608 compute nodes). But all these MPI approaches
1390
+ lead to monolithic code without support for fault tolerance, elasticity or load
1391
+ balancing. In [49], the authors analyze various particle propagation schedul-
1392
+ 33
1393
+
1394
+ ing but at limited scale (6 compute nodes and 300 particles). We performed
1395
+ experiments on a similar architecture as our proposed one, but for EnKF in-
1396
+ stead of PF [19]. We demonstrated fault-tolerance, elasticity and scalability
1397
+ for experiments using up to 16 k members, 16 k cores for DA with EnKF for
1398
+ the hydrology code Parflow. In contrast to our novel proposal, EnKF re-
1399
+ quires a centralized filter update, gathering the full ensemble of states at the
1400
+ central instance for the assimilation of observations. In our novel proposal
1401
+ for PF, we exploit certain properties of particle filters to suppress the server
1402
+ bottleneck and significantly reduce data movements.
1403
+ 7. Conclusion
1404
+ In this article we proposed an architecture for handling very large en-
1405
+ sembles for particle filters.
1406
+ The architecture was designed to address the
1407
+ challenge of exascale computing that will allow massive ensemble runs [50].
1408
+ The architecture is based on a server/runner model where runners support a
1409
+ distributed cache and virtualization of particle propagation, while the server
1410
+ aggregates the weights computed by the runners and ensures the dynamic
1411
+ balancing of the work load. Particle propagation is virtualized so the re-
1412
+ quired number of runners is decoupled from the particle number. With the
1413
+ addition of a distributed checkpointing mechanism, the architecture supports
1414
+ dynamic changes in the number of runners during execution for fault toler-
1415
+ ance and elasticity. Experiments with the WRF weather simulation code
1416
+ show that our framework can run at least 2,555 particles on 20,442 cores
1417
+ with a 87% scaling efficiency. Dynamic particle-propagation scheduling and
1418
+ caching enable to avoid 88% of the global I/O operations. Compared to the
1419
+ ESIAS file based approach, Melissa improves resource usage 2.83 times at
1420
+ 1024 particles.
1421
+ Future work includes experimenting with adaptive or localized particle
1422
+ filters as well as combining particle and Kalman filter.
1423
+ We also plan to
1424
+ extend the distributed cache and fault tolerance algorithm to fully avoid the
1425
+ centralized file system and only rely on node-local SSDs for particle storage.
1426
+ Acknowledgement
1427
+ This project has received funding from the European Union’s Horizon
1428
+ 2020 research and innovation program under grant agreement No 824158
1429
+ (EoCoE-2). This work was granted access to the HPC resources of IDRIS
1430
+ 34
1431
+
1432
+ under the allocation 2020-A8 A0080610366 attributed by GENCI (Grand
1433
+ Equipement National de Calcul Intensif). The authors gratefully acknowl-
1434
+ edge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
1435
+ funding this project by providing computing time through the John von Neu-
1436
+ mann Institute for Computing (NIC) on the GCS Supercomputer JUWELS
1437
+ at J¨ulich Supercomputing Centre (JSC). We acknowledge the access to the
1438
+ meteorological input data from the Meteocloud of SDL Climate Science, JSC.
1439
+ We also acknowledge PRACE for awarding us access to JUWELS at J¨ulich
1440
+ Supercomputing Centre (JSC), Germany.
1441
+ References
1442
+ [1] P. J. Van Leeuwen, H. R. K¨unsch, L. Nerger, R. Potthast, S. Reich,
1443
+ Particle filters for high-dimensional geoscience applications: A review,
1444
+ Quarterly Journal of the Royal Meteorological Society 145 (723) (2019)
1445
+ 2335–2365.
1446
+ [2] D. Lund´en, J. Borgstr¨om, D. Broman, Correctness of sequential monte
1447
+ carlo inference for probabilistic programming languages., in: ESOP,
1448
+ 2021, pp. 404–431.
1449
+ [3] F. Ronquist, J. Kudlicka, V. Senderov, J. Borgstr¨om, N. Lartillot,
1450
+ D. Lund´en, L. Murray, T. B. Sch¨on, D. Broman, Universal probabilis-
1451
+ tic programming offers a powerful approach to statistical phylogenetics,
1452
+ Communications biology 4 (1) (2021) 1–10.
1453
+ [4] J.-W. van de Meent, B. Paige, H. Yang, F. Wood, An Introduction to
1454
+ Probabilistic Programming, arXiv, 2018. doi:10.48550/ARXIV.1809.
1455
+ 10756.
1456
+ URL https://arxiv.org/abs/1809.10756
1457
+ [5] J. F. G. de Freitas, M. Niranjan, A. H. Gee, A. Doucet, Sequential Monte
1458
+ Carlo Methods to Train Neural Network Models, Neural Computation
1459
+ 12 (4) (2000) 955–993. doi:10.1162/089976600300015664.
1460
+ [6] P. M. Blok, K. van Boheemen, F. K. van Evert, J. IJsselmuiden, G.-H.
1461
+ Kim, Robot navigation in orchards with localization based on Particle
1462
+ filter and Kalman filter, Computers and Electronics in Agriculture 157
1463
+ (2019) 261–269. doi:10.1016/j.compag.2018.12.046.
1464
+ 35
1465
+
1466
+ URL
1467
+ https://www.sciencedirect.com/science/article/pii/
1468
+ S0168169918315230
1469
+ [7] P. Bauer, P. D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess, N. P.
1470
+ Wedi, The digital revolution of earth-system science, Nature Computa-
1471
+ tional Science 1 (2) (2021) 104–113.
1472
+ [8] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G.
1473
+ Duda, J. G. Powers, A description of the advanced research wrf ver-
1474
+ sion 3, Tech. Rep. No. NCAR/TN-475+STR, University Corporation
1475
+ for Atmospheric Research (2008).
1476
+ [9] J. V. Candy, Bootstrap Particle Filtering, IEEE Signal Processing Mag-
1477
+ azine 24 (4) (2007) 73–85, conference Name: IEEE Signal Processing
1478
+ Magazine. doi:10.1109/MSP.2007.4286566.
1479
+ [10] N. Gordon, D. Salmond, A. Smith, Novel approach to nonlinear/non-
1480
+ Gaussian Bayesian state estimation, IEE Proceedings F Radar and
1481
+ Signal Processing 140 (2) (1993) 107. doi:10.1049/ip-f-2.1993.0015.
1482
+ URL
1483
+ https://digital-library.theiet.org/content/journals/
1484
+ 10.1049/ip-f-2.1993.0015
1485
+ [11] J. S. Liu, R. Chen, T. Logvinenko, A Theoretical Framework for Sequen-
1486
+ tial Importance Sampling with Resampling, in: A. Doucet, N. de Freitas,
1487
+ N. Gordon (Eds.), Sequential Monte Carlo Methods in Practice, Statis-
1488
+ tics for Engineering and Information Science, Springer, New York, NY,
1489
+ 2001, pp. 225–246. doi:10.1007/978-1-4757-3437-9_11.
1490
+ URL https://doi.org/10.1007/978-1-4757-3437-9_11
1491
+ [12] M. Bolic, P. Djuric, Sangjin Hong, New resampling algorithms for parti-
1492
+ cle filters, in: 2003 IEEE International Conference on Acoustics, Speech,
1493
+ and Signal Processing, 2003. Proceedings. (ICASSP ’03)., Vol. 2, IEEE,
1494
+ Hong Kong, China, 2003, pp. II–589–92. doi:10.1109/ICASSP.2003.
1495
+ 1202435.
1496
+ URL http://ieeexplore.ieee.org/document/1202435/
1497
+ [13] R. L. Graham, Bounds for Certain Multiprocessing Anomalies, Bell Sys-
1498
+ tem Technical Journal 45 (9) (1966) 1563–1581.
1499
+ [14] D. Shmoys, J. Wein, D. Williamson, Scheduling parallel machines on-
1500
+ line, in: [1991] Proceedings 32nd Annual Symposium of Foundations of
1501
+ 36
1502
+
1503
+ Computer Science, IEEE Comput. Soc. Press, San Juan, Puerto Rico,
1504
+ 1991, pp. 131–140.
1505
+ [15] The slurm workload manager - https://slurm.schedmd.com/.
1506
+ [16] The oar resource and task manager - http://oar.imag.fr/.
1507
+ [17] A. Merzky, M. Turilli, M. Titov, A. Al-Saadi, S. Jha, Design and per-
1508
+ formance characterization of radical-pilot on leadership-class platforms
1509
+ (2021). doi:10.48550/ARXIV.2103.00091.
1510
+ URL https://arxiv.org/abs/2103.00091
1511
+ [18] Qcg-pilotjob - https://github.com/psnc-qcg/QCG-PilotJob.
1512
+ [19] S. Friedemann, B. Raffin, An elastic framework for ensemble-based large-
1513
+ scale data assimilation, The international journal of high performance
1514
+ computing applications 36 (4) (2022) 543–563.
1515
+ URL https://hal.inria.fr/hal-03017033
1516
+ [20] L.
1517
+ Bautista-Gomez,
1518
+ S.
1519
+ Tsuboi,
1520
+ D.
1521
+ Komatitsch,
1522
+ F.
1523
+ Cappello,
1524
+ N. Maruyama, S. Matsuoka, FTI: High performance Fault Tolerance In-
1525
+ terface for hybrid systems, in: SC ’11: Proceedings of 2011 International
1526
+ Conference for High Performance Computing, Networking, Storage and
1527
+ Analysis, 2011, pp. 1–12.
1528
+ [21] J. Berndt, On the predictability of exceptional error events in wind
1529
+ power forecasting —an ultra large ensemble approach—, Ph.D. thesis,
1530
+ Universit¨at zu K¨oln (2018).
1531
+ [22] Y.-S. Lu, G. Good, H. Elbern, Optimization of weather forecasting
1532
+ for cloud cover over the european domain using the meteorological
1533
+ component
1534
+ of
1535
+ the
1536
+ ensemble
1537
+ for
1538
+ stochastic
1539
+ integration
1540
+ of
1541
+ atmo-
1542
+ spheric simulations version 1.0 1–31Publisher:
1543
+ Copernicus GmbH.
1544
+ doi:10.5194/gmd-2022-118.
1545
+ URL
1546
+ https://gmd.copernicus.org/preprints/gmd-2022-118/
1547
+ #discussion
1548
+ [23] T. Terraz, A. Ribes, Y. Fournier, B. Iooss, B. Raffin, Melissa: Large
1549
+ scale in transit sensitivity analysis avoiding intermediate files, in: In-
1550
+ ternational Conference for High Performance Computing, Networking,
1551
+ Storage and Analysis (SC’17), Denver, 2017.
1552
+ 37
1553
+
1554
+ [24] A. Brinkmann, K. Mohror, W. Yu, P. Carns, T. Cortes, S. A. Klasky,
1555
+ A. Miranda, F.-J. Pfreundt, R. B. Ross, M.-A. Vef, Ad Hoc File Sys-
1556
+ tems for High-Performance Computing, Journal of Computer Science
1557
+ and Technology 35 (1) (2020) 4–26. doi:10.1007/s11390-020-9801-1.
1558
+ URL https://doi.org/10.1007/s11390-020-9801-1
1559
+ [25] A. Doucet, S. Godsill, C. Andrieu, On sequential monte carlo sampling
1560
+ methods for bayesian filtering, Statistics and computing 10 (3) (2000)
1561
+ 197–208.
1562
+ [26] S. C. Surace, A. Kutschireiter, J.-P. Pfister, How to avoid the curse of di-
1563
+ mensionality: Scalability of particle filters with and without importance
1564
+ weights, SIAM review 61 (1) (2019) 79–91.
1565
+ [27] C. Snyder, T. Bengtsson, M. Morzfeld, Performance Bounds for Particle
1566
+ Filters Using the Optimal Proposal, MONTHLY WEATHER REVIEW
1567
+ 143 (2015) 12.
1568
+ [28] P. Fearnhead, H. K¨unsch, Particle Filters and Data Assimilation, Annual
1569
+ Review of Statistics and Its Application 5 (1) (2018) 421–449, arXiv:
1570
+ 1709.04196.
1571
+ [29] C. Verg´e, C. Dubarry, P. Del Moral, E. Moulines, On parallel imple-
1572
+ mentation of sequential monte carlo methods: the island particle model,
1573
+ Statistics and Computing 25 (2) (2015) 243–260.
1574
+ [30] A. Jasra, A. Lee, C. Yau, X. Zhang, The alive particle filter, arXiv
1575
+ preprint arXiv:1304.0151.
1576
+ [31] V. Elvira, J. M´ıguez, P. M. Djuri´c, Adapting the number of particles
1577
+ in sequential monte carlo methods through an online scheme for conver-
1578
+ gence assessment, IEEE Transactions on Signal Processing 65 (7) (2016)
1579
+ 1781–1794.
1580
+ [32] V. R. N. Pauwels, R. Hoeben, N. E. C. Verhoest, F. P. De Troch, The
1581
+ importance of the spatial patterns of remotely sensed soil moisture in
1582
+ the improvement of discharge predictions for small-scale basins through
1583
+ data assimilation, Journal of Hydrology 251 (1) (2001) 88–102.
1584
+ 38
1585
+
1586
+ [33] J. L. Williams, R. M. Maxwell, Propagating subsurface uncertainty to
1587
+ the atmosphere using fully coupled stochastic simulations, Journal of
1588
+ Hydrometeorology 12 (4) (2011) 690–701.
1589
+ [34] D. Zhang, H. Madsen, M. E. Ridler, J. Kidmose, K. H. Jensen, J. C.
1590
+ Refsgaard, Multivariate hydrological data assimilation of soil moisture
1591
+ and groundwater, Hydrol. Earth Syst. Sci. 20 (10) (2016) 4341–4357.
1592
+ [35] S. Q. Zhang, M. Zupanski, A. Y. Hou, X. Lin, S. H. Cheung, Assimila-
1593
+ tion of precipitation-affected radiances in a cloud-resolving wrf ensemble
1594
+ data assimilation system, Monthly Weather Review 141 (2) (2013) 754–
1595
+ 772.
1596
+ [36] van Leeuwen, J. P., A variance-minimizing filter for large-scale applica-
1597
+ tions, Mon. Wea. Rev. 131 (9) (2003) 2071–2084.
1598
+ [37] M. Asch, M. Bocquet, M. Nodet, Data assimilation: methods, algo-
1599
+ rithms, and applications, Vol. 11, SIAM, 2016.
1600
+ [38] G. Evensen, Data assimilation: the ensemble Kalman filter, Springer
1601
+ Science & Business Media, 2009.
1602
+ [39] V. Balasubramanian, M. Turilli, W. Hu, M. Lefebvre, W. Lei, G. Cer-
1603
+ vone, J. Tromp, S. Jha, Harnessing the power of many: Extensible
1604
+ toolkit for scalable ensemble applications, in: IPDPS 2018, 2018.
1605
+ [40] V. Balasubramanian, T. Jensen, M. Turilli, P. Kasson, M. Shirts, S. Jha,
1606
+ Adaptive ensemble biomolecular applications at scale, SN Computer
1607
+ Science 1 (2) (2020) 1–15.
1608
+ [41] N. van Velzen, M. U. Altaf, M. Verlaan, OpenDA-NEMO framework for
1609
+ ocean data assimilation, Ocean Dynamics 66 (5) (2016) 691–702.
1610
+ [42] J. Anderson, T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, A. Avel-
1611
+ lano, The Data Assimilation Research Testbed: A Community Facility,
1612
+ Bulletin of the American Meteorological Society 90 (9) (2009) 1283–
1613
+ 1296, publisher: American Meteorological Society.
1614
+ [43] H. Toye, S. Kortas, P. Zhan, I. Hoteit, A fault-tolerant hpc scheduler
1615
+ extension for large and operational ensemble data assimilation: Appli-
1616
+ cation to the red sea, Journal of Computational Science 27 (2018) 46 –
1617
+ 56.
1618
+ 39
1619
+
1620
+ [44] H. Yashiro, K. Terasaki, Y. Kawai, S. Kudo, T. Miyoshi, T. Imamura,
1621
+ K. Minami, H. Inoue, T. Nishiki, T. Saji, M. Satoh, H. Tomita, A 1024-
1622
+ member ensemble data assimilation with 3.5-km mesh global weather
1623
+ simulations, in: Supercomputing 2020: International Conference for
1624
+ High Performance Computing, Networking, Storage and Analysis (SC),
1625
+ IEEE Computer Society, Los Alamitos, CA, USA, 2020, pp. 1–10.
1626
+ [45] H. Yashiro, K. Terasaki, T. Miyoshi, H. Tomita, Performance evaluation
1627
+ of a throughput-aware framework for ensemble data assimilation: The
1628
+ case of nicam-letkf, Geoscientific Model Development 9 (7).
1629
+ [46] L. Nerger, W. Hiller, Software for ensemble-based data assimilation
1630
+ systems—implementation strategies and scalability, Computers & Geo-
1631
+ sciences 55 (2013) 110–118.
1632
+ [47] W. Kurtz, G. He, S. J. Kollet, R. M. Maxwell, H. Vereecken, H.-J.
1633
+ Hendricks Franssen, TerrSysMP–PDAF (version 1.0): a modular high-
1634
+ performance data assimilation framework for an integrated land sur-
1635
+ face–subsurface model, Geosci. Model Dev. 9 (4) (2016) 1341–1360.
1636
+ [48] T. Miyoshi, K. Kondo, T. Imamura, The 10,240-member ensemble
1637
+ Kalman filtering with an intermediate AGCM: 10240-MEMBER ENKF
1638
+ WITH AN AGCM, Geophysical Research Letters 41 (14) (2014) 5264–
1639
+ 5271.
1640
+ [49] F. Bai, F. Gu, X. Hu, S. Guo, Particle routing in distributed particle
1641
+ filters for large-scale spatial temporal systems, IEEE Transactions on
1642
+ Parallel and Distributed Systems 27 (2) (2015) 481–493.
1643
+ [50] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler, C. Schar, Re-
1644
+ flecting on the Goal and Baseline for Exascale Computing: A Roadmap
1645
+ Based on Weather and Climate Simulations, Computing in Science &
1646
+ Engineering 21 (1) (2019) 30–41.
1647
+ 40
1648
+
FdE0T4oBgHgl3EQfzALi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNE0T4oBgHgl3EQfhQF8/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d20af60975f8783f0b17d9b26141e35ab60919449c3f158dbf9c6d691657ed83
3
+ size 222951
HNE4T4oBgHgl3EQfgg1T/content/2301.05117v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c382844dfd3e1752e997d98d33c7a15adf3475439b05b6b51f5dacfa55e9c61
3
+ size 8974639
HNE4T4oBgHgl3EQfgg1T/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83839a5fc3d87581d5685c84c5c8dfa5d4c22af3026562840e77c5d4027c167b
3
+ size 249689
I9AzT4oBgHgl3EQfjv2R/content/tmp_files/2301.01521v1.pdf.txt ADDED
@@ -0,0 +1,717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Artificial neural network as an effective tool to calculate parameters
2
+ of positron annihilation lifetime spectra
3
+ M. Pietrow∗1 and A. Miaskowski2
4
+ 1Institute of Physics, M. Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031
5
+ Lublin, Poland
6
+ 2Faculty of Production Engineering, University of Life Sciences, Akademicka 13, 20-950
7
+ Lublin, Poland
8
+ January 5, 2023
9
+ Abstract
10
+ The paper presents the application of the multi-layer perceptron regressor model for predicting the
11
+ parameters of positron annihilation lifetime spectra using the example of alkanes in the solid phase.
12
+ A
13
+ good agreement of calculation results was found when comparing with the commonly used methods. The
14
+ presented method can be used as an alternative quick and accurate tool for decomposition of PALS spectra
15
+ in general. The advantages and disadvantages of the new method are discussed.
16
+ 1
17
+ Introduction
18
+ Positron Annihilation Lifetime Spectroscopy (PALS) is one of the useful experimental methods using positrons
19
+ for studying structural details in a wide spectrum of materials, in particular in the solid state [1]. This method is
20
+ based on the annihilation of positrons where their lifetime and annihilation intensity in the sample is dependent
21
+ on some properties of the material in the nano scale, including local electron density, bound electron energy,
22
+ and the density and size of free volumes in the sample.
23
+ Depending on the material, besides the process of direct annihilation, a positron can form a meta-stable atomic
24
+ state with an electron, called a positronium (Ps), which can exist in two spin states referred to as para- and
25
+ ortho-Ps differing in properties (especially, their lifetimes differ in vacuum by three orders of magnitude) [2]. A
26
+ number of conditions must be met for the Ps to be formed in matter. One of them is that free volumes of a
27
+ sufficiently large size must be present. For these materials, a Ps is extremely useful in material science since its
28
+ lifetime can be related to the size of free volumes [3]. Depending on the structure of the sample, there is possibly
29
+ a variety of Ps components which annihilate with characteristic lifetimes. All these populations give their own
30
+ account to the positron annihilation spectrum measured experimentally. PALS spectra require decomposition
31
+ in the post-measuring procedure of decomposition resulting in both the calculation of lifetimes for particular
32
+ species of positrons and the relative amplitudes for these processes (so-called spectrum inversion problem) [4].
33
+ Many algorithms used for data processing require assuming an exponential character of positron decay. They
34
+ also require fixing the number of components used during the decomposition. For example, the method used by
35
+ one of the adequate software, the LT programme [5] or PALSfit [6], consists in fitting the PALS experimental
36
+ spectrum to a sum of a given number of exponential functions usually convoluted with the (multi) gaussian
37
+ apparatus resolution curve.
38
+ The PALS spectra used here were measured for normal alkanes (n-alkanes), i.e. the simplest organic molecules
39
+ where carbon atoms form a straight chain of the molecule and are saturated by hydrogen atoms. The n-alkanes
40
+ with a different number n of carbon atoms in the molecule form a homologous series described by the general
41
+ chemical formula CnH2n+2 (Cn is used as an abbreviation). Alkanes in the solid phase form molecular crystals
42
+ where the trains of elongated molecules are separated by gaps called the inter-lamellar gaps. Ps can be formed
43
+ ∗Corresponding Author: [email protected]
44
+ 1
45
+ arXiv:2301.01521v1 [physics.atom-ph] 4 Jan 2023
46
+
47
+ Figure 1: Schematic view of the MLP applied. The PALS data from consecutive channels of the MCA are
48
+ transferred as the amplitudes of the consecutive input neurons Ini. hi denote neurons in the i-th hidden layer
49
+ whereas Outi denote output neurons returning chosen PALS decomposition parameters.
50
+ in the free volumes made by both the gaps and the spaces generated by changes in the conformation with
51
+ temperature [3]. Using the PALS technique, the size of these free volumes can be determined from the lifetime
52
+ and the relation between both being given by the Tao-Eldrup formula or its modification [7]. According to our
53
+ previous analysis of alkanes carried out with the use of the PALS technique, the best results of the spectrum
54
+ decomposition are achieved assuming only one population of ortho- and para-Ps, whereas the ratio of the ortho
55
+ to para intensity is fixed at 3/1.
56
+ Tools of machine learning like genetic algorithms or artificial neural networks have been used to perform nu-
57
+ merical calculations in a variety of aspects in positron science [8, 9, 8, 10, 11, 12]. They have also been used for
58
+ unfolding the lifetimes and intensities from PALS spectra [13, 14, 15, 16]. Possibly due to the low computing
59
+ power of the hardware and the low time resolution of PALS spectrometers at the time when the neural network
60
+ algorithms for decomposition of PALS spectra were proposed, most of the spectra used in these calculations are
61
+ simulated by the software but not measured directly. For the same reason, the neural network architecture used
62
+ there does not allow changing parameters as much as is allowed by algorithms developed today. Furthermore,
63
+ no procedure allowing application for the same calculations of spectra registered for different time constants per
64
+ channel has been presented since then. Thus, the preferred software used for spectrum decomposition is still
65
+ based on non-linear fitting algorithms which do not include a possibility of establishing the result based on a
66
+ multi-spectra set at the same time.
67
+ Here, we present an approach to analysis of PALS spectra based on the multi-layer perceptron (MLP) model,
68
+ which is one of the tools of machine learning [17]. The model assumes a network of inter-connected neurons
69
+ grouped in the input layer (Ini), the hidden neurons layers (hk
70
+ i ) and the output neurons layer (Outi), where i
71
+ goes over the neurons in a given layer and k numbers the hidden layers. A graphical diagram of the network
72
+ used is shown in fig. 1. The numbers of In and Out neurons are determined by the amount of the independent
73
+ input data introduced to the network and the data defined to be the results of calculation in a given problem,
74
+ respectively. The number of hidden layers and the number of neurons within these layers are set experimentally
75
+ to optimise the network to give required results. To each layer (excluding the output layer), one bias neuron is
76
+ attached for technical reasons [18]. The tool assumes the learning process first, where the In neurons are fed
77
+ with the data for which the result of the Out neurons is known in advance. During this process, the weight
78
+ coefficients for pairs of inter-connected neurons are adjusted by an algorithm, so that the output of the MLP
79
+ can give results most similar to the expected ones. The MLP becomes to be trained after a number of iterations
80
+ of training. Once the MLP results of learning are satisfied, the MLP can be used to calculate the output for
81
+ the input data never used in the training process.
82
+ 2
83
+
84
+ Chanel (ns)
85
+ MCA times values followed by log of
86
+ normed PALS spectra amplitudes
87
+ Input
88
+ Input
89
+ Input I
90
+ T
91
+ 2
92
+ z
93
+ 000
94
+ 000
95
+ 000
96
+ 000
97
+ 000
98
+ Output
99
+ indno
100
+ T
101
+ 3
102
+ PALS output parameters
103
+ I2, T2, T3The MLP type of network can be applied to solve the problem of both classification and regression. For the
104
+ first group of problems, it is required from the MLP to ascribe the values of the output parameters in the form
105
+ of well separated categories. These so-called labels can always be parametrised by a discrete set of numbers.
106
+ The problem described in this paper is classified as rather a regression problem (MLPR) where the values of
107
+ the output at each Out neuron are characterised by a continuous set of values. Consequently, the output may
108
+ contain values approaching these appearing during the learning process but may not necessarily be exactly of
109
+ the same value. The internal algorithms of the MLPR allows regarding the learning process as a way of finding
110
+ the quasi-continuous output function of input parameters. In our case, based on the data from the PALS spectra
111
+ applied as the input values of the perceptron, the MLPR is used for solving the regression problem of finding
112
+ the values of key PALS parameters on the output.
113
+ 2
114
+ Method
115
+ The scikit-learn library was used to estimate the PALS parameters for alkanes [19]. In our case, the MLP
116
+ regressor class (called MLPRegressor), which belongs to one of the supervised neural network models, was
117
+ implemented. In this class, the output is a set of continuous values. It uses the square error as the loss function.
118
+ This model optimises the squared error using the Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS) [20],
119
+ which belongs to quasi-Newton methods. Some MLPRegressor parameters playing a key role are mentioned
120
+ below. Their values require to be tuned, especially the alpha hyper-parameter, which helps in avoiding over-
121
+ fitting by penalising weights with large magnitudes. A full list of parameters of MLPRegressor is defined in [21].
122
+ In the learning process here, we used spectra collected for years from an analog spectrometer for several alkanes
123
+ (in the range of C6 – C40) measured at several temperatures (-142◦C – 100◦C). Irrespective of both the goal of
124
+ the particular experiment and the length of the alkane chain used as a sample, the initial assumptions made for
125
+ starting the analysis of the spectra made by the LT programme [5] were the same. Each measurement resulting
126
+ in the spectra used was performed with a sample prepared in a similar way, i.e. the sample was degassed, and the
127
+ rate of cooling or heating was the same. In each case, the measurement at constant temperature took place for
128
+ at least one hour which gave some hundreds of thousands of annihilations (the strength of the radioactive source
129
+ was similar in each case). During some experiments the temperature was changed stepswise but each spectrum
130
+ was collected at constant temperature. The most important issue here is that the post-experimental analysis of
131
+ the spectra was conducted under the same general assumptions every time. Especially, for the decomposition of
132
+ these spectra, we used LT supposing that the time resolution curve can be approximated by one-gaussian curve.
133
+ Every time it was assumed that the annihilation process in the Kapton envelope accounted for 10% (so-called
134
+ source correction). Additionally, only one component was always assumed for para- and ortho-Ps, whereas their
135
+ intensity ratio was fixed at the value 3/1 (see [22] for details of the experimental procedure).
136
+ Taking into account these assumptions, each spectrum was decomposed into three exponential curves for which
137
+ the intensities (I) and lifetimes (τ) were calculated for the following sub-populations of positrons: the free
138
+ positron annihilation (I2, τ2), para (I1, τ1), and ortho-Ps (I3, τ3)1. The database collected in this way contained
139
+ 7973 PALS spectra, wherein about 75% were used in the neural network training process and the rest were used
140
+ as a testing set for checking the accuracy of the results given by the learned network.
141
+ The number of input neurons is determined by the number of channels of the Multi-channel Analyser (MCA)
142
+ module of the PALS spectrometer recording PALS spectra. Furthermore, the number of the output neurons
143
+ is related in this model to the number of PALS parameters, which are supposed to be predicted for further
144
+ studies of physical processes in the sample. The decomposition of the PALS spectrum made by commonly used
145
+ programs, like LT, allows determining (I,τ) pairs for all assumed components of a given spectrum. However,
146
+ often, not all these parameters are needed for further analysis. Furthermore, some of these parameters are
147
+ inter-dependent. For example, in the case of PALS spectra for the alkanes discussed here, one assumes that
148
+ the spectrum is built up by events from the three populations of positrons mentioned above (τ1 – τ3, I1 –
149
+ I3 parameters). However, from the practical view point, only τ2, I2, τ3, and I3 are then used for studying
150
+ physical processes and the structure of the sample. Furthermore, in this case, Ii are inter-dependent and fulfil
151
+ the following relations I1+I2+I3=100%2 and I3/I1=3. Thus, effectively, the parameters considered as the Out
152
+ 1Numbering of the indices is related to the length of τ. The increasing values of the indices correspond to the rising length of
153
+ lifetime.
154
+ 2Annihilation in Kapton was subtracted in advance.
155
+ 3
156
+
157
+ Figure 2: Number of spectra (horizontal axis) with a given value of the time constant per channel ∆ (vertical
158
+ axis) used as a data set in the presented calculations.
159
+ parameters of MLPR are only I2, τ2, and τ3. According to this, we declared in our modelling only three output
160
+ neurons for receiving values for these three parameters.
161
+ 3
162
+ Preparation of input and output data
163
+ During the PALS measurements, the time constant per channel (∆) varied, depending on the internal properties
164
+ and settings of the spectrometer. Most of the data used here were collected with ∆=11.9 ps; however, some
165
+ spectra were measured with ∆=11.2 ps, 13.2 ps, 11.6 ps, and 19.5 ps (fig. 2). Therefore, it is important for the
166
+ In neurons to code the PALS amplitude samples not in the relation to the channel numbers but in the scale of
167
+ time. Hence, in addition to the spectrum amplitudes, the regressor has to learn the times associated with these
168
+ amplitudes. Thus, one half of the In neurons is fed with time values for consecutive channels of a spectrum,
169
+ whereas the second half is fed with the values of their amplitude. The advantage of the regression approach
170
+ applied here is the ability to test spectra measured even for a time sequence that has never appeared in an
171
+ extreme case in the training process.
172
+ This method requires setting correctly a common zero-time for each spectrum. To achieve this, the original
173
+ data from the left slope of the spectrum peak (and only a few points to its right) were used to interpolate the
174
+ resolution curve, which is assumed to be in the gaussian form. The position of this peak defines a zero-time
175
+ for a spectrum. One-gaussian interpolation is compatible with previous LT analysis assumptions. Based on
176
+ the common starting position for all spectra established in this way, the values of time for each channel on the
177
+ right to the peak were re-calibrated for each spectrum depending on ∆ for which the spectrum was measured.
178
+ Finally, for further analysis, we took the same N number of consecutive channels for each spectrum on the right
179
+ to its peak (points pi in fig. 3). The δ parameter shown in fig. 3 denotes the distance (in time units) between
180
+ the first point on the right to the peak and the calculated time position of the peak. The number N taken
181
+ for further analysis was established experimentally. Finally, the spectrum data for the MLPR input are the N
182
+ points pi with their two values: the re-calibrated number of counts in a given channel (see below) and their
183
+ re-calibrated times of annihilation.
184
+ Then, to minimise errors, the original input data were transformed before application. Each original spectrum
185
+ was stored in 8192 channels of MCA. Firstly, starting from the first channel on the right to the spectrum
186
+ maximum (p1 in fig. 3), 2k channels were taken from the original spectrum.
187
+ This means that the spectra
188
+ were truncated at about 25 ns of the registration time (varying to some extent, depending on the ∆ for a
189
+ given spectrum). Secondly, to smooth random fluctuations, the data were smoothed in most cases. One of the
190
+ examples of smoothing is averaging over five consecutive channels. In this case, the number of samples in each
191
+ spectrum shrank from the original 2k channels to the amount of 400. Since the In neurons transfer information
192
+ about the pair of values – times (t-part) and amplitudes (A-part), 800 input neurons that fed the MLPR with
193
+ the data in this case were declared. Thirdly, to standardise the range of the input data values, the set of the
194
+ PALS amplitudes was normalised to the maximum value of the amplitude and then logarithmised. According
195
+ to these transformations, the A-part data covered the numerical range [-9,0] – fig. 4. Furthermore, to adjust
196
+ the range of the values in the t-sector, the values of time were divided by -2.5. As a result, all data transferred
197
+ 4
198
+
199
+ (sd)
200
+ constant (
201
+ 18
202
+ 16
203
+ Time calibration
204
+ 14
205
+ 12
206
+ 0
207
+ 1000
208
+ 2000
209
+ 3000
210
+ 4000
211
+ 5000
212
+ 6000
213
+ 7000
214
+ 8000
215
+ Number of spectraFigure 3: Schematic view of a peak region of the PALS spectrum. The bullets indicate (t, log(A)) pairs saved
216
+ in the MCA channels, whereas the star indicates a position of a peak calculated assuming a gaussian shape
217
+ of an apparatus distribution function. Only the points to the right of the star (p1, p2, ...) are taken as data
218
+ introduced to MLPR. The δ parameter denotes a time distance between the calculated peak and the first point,
219
+ whereas ∆ is the time distance between two points.
220
+ Figure 4: Input data directed to In neurons can be divided into two sub-sets: t-part which is a set of time
221
+ values for points p1, p2, ... (see fig. 3) and A-part coding the log function of their normalised amplitudes. In
222
+ special cases, these data are smoothed or compressed before use in MLPR.
223
+ to the In neurons were in the range of [-10,0].
224
+ Additionally, we applied some transformation of the original values for the Out neurons in order to have their
225
+ values at each neuron scaled to the same range. Initially, the first output neuron is related to I2, whereas its
226
+ original value range is typically tenths (in % units). The second neuron transfers the information related to
227
+ τ2 whose original values are of the order of 0.1 (of ns), whereas the order of τ3 related to the third neuron is
228
+ originally 1 (of ns). In order to have the uniform order of numerical values on all Out neurons, the data that
229
+ finally feed with them are [I2/10, τ2·10, τ3].
230
+ The criterion of acceptance of training the network was the best value of the score validation function defined
231
+ for this regressor as
232
+ S = 1 −
233
+
234
+ N(Otrue − Opred)2
235
+
236
+ N O2
237
+ true
238
+ ,
239
+ (1)
240
+ where Otrue, Opred – expected (known) and calculated (predicted) values of the result, respectively [19, 21]. S
241
+ is calculated for both the learning and testing sets separately. N here denotes the number of spectra in the
242
+ trained or tested set. The optimum value of S is ≈1.
243
+ 5
244
+
245
+ 0
246
+ P
247
+ +2△0
248
+ t-part
249
+ A-part
250
+ -2
251
+ -4
252
+ a.u.
253
+ -6
254
+ -8
255
+ 0
256
+ 100
257
+ 200
258
+ 300
259
+ 400
260
+ 500
261
+ 600
262
+ 700
263
+ 800
264
+ neurons4
265
+ Results
266
+ The MLPRegressor used in these calculations requires establishing some key parameters [21] influencing the
267
+ ability to learn and a speed of the learning process. We performed some tests trying to optimise these param-
268
+ eters. The best results we obtained by the settings shown in tab. 1. Both the names and the meaning of the
269
+ Table 1: Values of the MLPRegressor parameters applied for producing the final MPLR results.
270
+ Parameter
271
+ value
272
+ hidden_layer_sizes =
273
+ 7×150
274
+ activation =
275
+ relu
276
+ solver =
277
+ lbfgs
278
+ alpha =
279
+ 0.01
280
+ learning_rate =
281
+ invscaling
282
+ power_t =
283
+ 0.5
284
+ max_iter =
285
+ 5e+9
286
+ random_state =
287
+ None
288
+ tol =
289
+ 0.0001
290
+ warm_start =
291
+ True
292
+ max_fun =
293
+ 15000
294
+ technical parameters shown in the table are identical to these defined in the routine description [21]. Once
295
+ the key parameters of the MLPR were established (especially the solver), we performed tests of credibility
296
+ of the network changing the number of hidden layers, the number of neurons within (hidden_layer_sizes
297
+ parameter), and the alpha parameter. The results in tab. 2 show examples of the results. For these networks,
298
+ we specified the mean validation score parameter for both the training ⟨Str⟩ and testing ⟨Ste⟩ sets separately
299
+ with their variation δS. Averaging was made over the results of ten runs of the training process for identical
300
+ networks differing by initially random weights. We did not notice any rule giving a ratio of the numbers of
301
+ neurons that should be declared in the consecutive hidden layers (especially as the number of neurons should
302
+ decrease proportionally in the consecutive layers). A few initial examples shown here suggest that the accuracy
303
+ of results increases when both the number of hidden layers and the number of neurons inside increase. However,
304
+ the last two rows of the table show that a further increase in these parameters does not give better results.
305
+ Finally, the network that gave a nearly best result was chosen (marked in bold ⟨Str⟩ in the table). It was checked
306
+ for this network that an increase in the iterations of training (max_iter parameter) beyond about 5·109 did
307
+ not improve ⟨S⟩.
308
+ Table 2: Valuation score for chosen values of some MLPR parameters. S values are averages over 10 runs with
309
+ random initial neuron weights. A nearly optimum case of parameters is placed in a row with S marked in bold.
310
+ hidden_layer_sizes
311
+ max_iter
312
+ alpha
313
+ ⟨Str⟩
314
+ δStr
315
+ ⟨Ste⟩
316
+ δSte
317
+ 30 × 25 × 15
318
+ 106
319
+ 0.7
320
+ 0.950
321
+ 0.003
322
+ 0.942
323
+ 0.004
324
+ 3 × 100
325
+ 108
326
+ 0.7
327
+ 0.969
328
+ 0.005
329
+ 0.965
330
+ 0.008
331
+ 3 × 100
332
+ 108
333
+ 0.1
334
+ 0.974
335
+ 0.005
336
+ 0.968
337
+ 0.008
338
+ 3 × 100
339
+ 5· 108
340
+ 0.1
341
+ 0.975
342
+ 0.003
343
+ 0.976
344
+ 0.003
345
+ 4 × 100
346
+ 108
347
+ 0.1
348
+ 0.978
349
+ 0.004
350
+ 0.975
351
+ 0.006
352
+ 500 × 400 × 300 × 200
353
+ 5·109
354
+ 0.01
355
+ 0.977
356
+ 0.003
357
+ 0.974
358
+ 0.007
359
+ 7 × 150
360
+ 5·108
361
+ 0.01
362
+ 0.985
363
+ 0.002
364
+ 0.975
365
+ 0.013
366
+ 500 × 500 × 400 × 400×
367
+ ×300 × 300 × 200 × 200
368
+ 5·109
369
+ 0.01
370
+ 0.978
371
+ 0.005
372
+ 0.977
373
+ 0.008
374
+ 8 × 500
375
+ 5·109
376
+ 0.01
377
+ 0.982
378
+ 0.004
379
+ 0.980
380
+ 0.005
381
+ For several finally tested networks, the spectrum of the magnitude of inter-neurons weights was checked. It
382
+ is expected that weights that differ significantly from the average range of values may affect the stability of
383
+ the results. In this case, the range of weight values seems to be quite narrow. As shown in fig. 5, the weight
384
+ magnitude order (exponent of weights) for the chosen network ranges from 10−5 to 100, while the relative
385
+ number of cases in these subsets changes exponentially. The lack of values outside the narrow set of values
386
+ 6
387
+
388
+ suggests that self-cleaning of the resultant weights is performed by the MLPRegressor algorithm itself.
389
+ Figure 5: Number of cases (log scale) of exponents of weights for a network with 7×100 hidden layers. For this
390
+ network, the key parameters are: solver=lbfgs, max_iter=5·1011, alpha=0.005, learning_rate=invscaling,
391
+ and activation=relu.
392
+ The number of all PALS spectra used as a database for the network was 7973, and 6500 were used to learn
393
+ the output values (training set) by the network, while the rest were used for checking the results of learning
394
+ (testing set). Tab. 3 shows a few examples of randomly taken results given by one of the networks finally used.
395
+ The results given by the trained network were compared to the expected values known from the LT analysis.
396
+ Table 3: Examples of a few randomly taken results of calculations (prediction) of the I2, τ2, and τ3 parameters
397
+ compared to the expected values calculated by LT. Here, hidden_layer_size=7×150, S=0.985 for both
398
+ training and testing sets.
399
+ Example
400
+ I2 [%]
401
+ τ2 [ns]
402
+ τ3 [ns]
403
+ expected
404
+ predicted
405
+ expected
406
+ predicted
407
+ expected
408
+ predicted
409
+ 1
410
+ 68.0
411
+ 68.8
412
+ 0.27
413
+ 0.28
414
+ 1.21
415
+ 1.20
416
+ 2
417
+ 47.2
418
+ 47.6
419
+ 0.38
420
+ 0.39
421
+ 3.23
422
+ 3.18
423
+ 3
424
+ 65.4
425
+ 65.5
426
+ 0.30
427
+ 0.29
428
+ 1.35
429
+ 1.38
430
+ 4
431
+ 78.3
432
+ 78.3
433
+ 0.23
434
+ 0.24
435
+ 1.11
436
+ 1.12
437
+ 5
438
+ 52.4
439
+ 52.4
440
+ 0.35
441
+ 0.34
442
+ 2.93
443
+ 2.93
444
+ 6
445
+ 60.5
446
+ 60.4
447
+ 0.31
448
+ 0.30
449
+ 1.25
450
+ 1.20
451
+ 7
452
+ 59.3
453
+ 58.8
454
+ 0.29
455
+ 0.29
456
+ 1.19
457
+ 1.22
458
+ 8
459
+ 61.0
460
+ 62.3
461
+ 0.30
462
+ 0.31
463
+ 1.91
464
+ 1.91
465
+ 9
466
+ 70.2
467
+ 69.5
468
+ 0.21
469
+ 0.21
470
+ 1.06
471
+ 1.10
472
+ 10
473
+ 39.9
474
+ 38.8
475
+ 0.23
476
+ 0.22
477
+ 1.15
478
+ 1.13
479
+ Although S for both the trained and tested sets in this case is not the highest one obtained in our tests, the
480
+ result of the use of this network is satisfactory in a practical sense because the deviation of the predicted and
481
+ expected result is in the range of deviation given by LT itself.
482
+ The problem of pre-preparation of spectra for calculations by MLPR is worth mentioning. The main problems
483
+ are where the spectrum should be cut and to what extent it is acceptable to smooth the spectra by averaging
484
+ their consecutive values. As for the first problem, it was determined by series of runs for which the spectra were
485
+ cut at other that mentioned limit of 2k channels that this number of channels was almost the best choice. ⟨S⟩
486
+ was found to worsen in the case of a shorter cut (say, 1.5k channels), and did not improve significantly in the
487
+ case of the longer ones (e.g. 3k channels) (but it took longer to compute the result because of an increase in
488
+ the number of In neurons).
489
+ 7
490
+
491
+ amount of weights
492
+ 104
493
+ 1000
494
+ 100
495
+ 10
496
+ -5
497
+ -3
498
+ -2
499
+ -4
500
+ 1
501
+ 0
502
+ exponent of weightThe accuracy of the prediction increases when the learning and testing processes are limited to one only ∆ with
503
+ all parameters of the network kept constant. In this case, the set of values in the t-part for every spectrum
504
+ varies in a much narrower range (only δ changes). In this case, the training process is more effective even if
505
+ the size of the training set is reduced. To show this, we separated the set of spectra measured for only one
506
+ ∆=11.9 ps. Consequently, the whole set of samples under consideration shrank to 4116 members, and 3000 of
507
+ them were used for training after the transformations described above. The score S obtained in this case was
508
+ much greater than S for an identical network applied to spectra with all possible ∆. The comparison of these
509
+ two cases is shown in tab. 4 (the last row of the table). Here, to have the result reliable for networks with
510
+ different (random) initial weights, the score was averaged over 30 runs.
511
+ Table 4: Comparison of MLPR validation score S for different formats of the input data. Comparison of the
512
+ results for ’raw’ data (log of normalised and adjusted data according to the procedure described in section 3)
513
+ and data on which the moving average and compressing average (by each 3 and 5 separate spectrum points)
514
+ are applied. The result for the network fed with the data collected for one chosen ∆ is added in the last row of
515
+ the table.
516
+ MLPR and spectra parameters
517
+ ⟨Str⟩
518
+ ⟨Ste⟩
519
+ solver=lbfgs
520
+ activation=relu
521
+ learning_rate=invscaling
522
+ alpha=0.01, In=800
523
+ hidden_layer_sizes=7×150
524
+ max_iter=5×109
525
+ averaged over 30 trials
526
+ Several ∆s
527
+ Ntr=6500 (∼ 80%)
528
+ Nte=1473
529
+ unsmoothed data
530
+ 0.984±0.005
531
+ 0.963±0.006
532
+ moving average
533
+ 0.984±0.005
534
+ 0.977±0.007
535
+ k=3
536
+ 0.981±0.005
537
+ 0.976±0.007
538
+ k=5
539
+ 0.981±0.006
540
+ 0.974±0.010
541
+ Fixed ∆=11.9 ps
542
+ Ntr=3000 (∼73%)
543
+ Nte=1116
544
+ k=5
545
+ 0.993±0.002
546
+ 0.989±0.003
547
+ The validation score S is sensitive to smoothing the spectrum which reduces to some extent the information
548
+ given by the PALS spectrum. In tab. 4, two cases are compared where each 3- and 5-tuples of points of the
549
+ spectrum (forming non-overlapping windows) were taken to calculate their average amplitude. For example,
550
+ N=3500 points of the initial spectrum are reduced to 700 points when averaging over k=5 points; when the
551
+ remainder of the division of N by k is not zero, an integer quotient is taken. ⟨S⟩ calculated for these two cases
552
+ shows that both of them give the same results statistically. However, further shrinking the spectrum by setting
553
+ k=6 or more produces worse S.
554
+ Tab. 4 also shows the S parameter when the moving average is applied during preparation of spectra. The
555
+ sampling window applied here is 10. The comparison of this result to the result of calculation with unsmoothed
556
+ data shows that the application of the moving average does improve predictions for the testing data set.
557
+ 5
558
+ Conclusions
559
+ We have shown in this paper that the easy-to-reach machine learning MLPRegressor tool enhanced with some
560
+ programming in Python making some preparation of data, can be used as an alternative method of solving
561
+ the problem of inversion of PALS spectra. The main disadvantage of the presented method is the need of
562
+ decomposition of training spectra by other software to have Out values for training. Once the training set is
563
+ collected and the network is trained, the algorithm works very quickly, giving the result for the tested spectrum.
564
+ The training process used here is based on results given by LT, i.e. a method producing results with some
565
+ uncertainty itself. The uncertainty produced by the LT is caused by the use of numerical methods to compute
566
+ the fit in particular cases. On the other hand, since the MLPR prediction bases on information from a large
567
+ set of spectra, this approach seems to be less sensitive to the specific shape of a given spectrum and may
568
+ be more accurate in predicting parameters. Furthermore, the presented method seems to be faster than the
569
+ referenced ones, since calculations made by a trained network are reduced to simple transformations of matrices
570
+ and vectors, which is not demanding computationally and less sensitive to numerical problems.
571
+ Although the model presented here is similar to that described in [14] (and repeated in [15]), there are significant
572
+ differences indicated in tab. 5. Our experimental data are collected by spectrometers differing in functional
573
+ properties, especially differing in time resolution. Even for one spectrometer, this parameter should be re-
574
+ calibrated periodically due to changes in experimental conditions, especially temperature. In the algorithm
575
+ 8
576
+
577
+ Table 5: Comparison of key parameters and results of the MLPR modelling applied in this study (skLearn) and
578
+ a three-component spectrum analysis published previously (presented in [14] and [15]).
579
+ Pázsit [14]
580
+ An [15]
581
+ skLearn
582
+ Type of training spectra
583
+ simulated
584
+ simulated
585
+ real (alkanes)
586
+ No. of training spectra
587
+ 575
588
+ 920
589
+ 7973
590
+ Type of spectra tested
591
+ simulated
592
+ simulated, silicon
593
+ alkanes
594
+ No. of test spectra
595
+ 50
596
+ 100 (30)
597
+ 1473
598
+ Type of network
599
+ one-layer perc.
600
+ one-layer perc.
601
+ multi-layer perc.
602
+ Channel width [ps]
603
+ 23.2
604
+ 24.5
605
+ some (11.2-19.5)
606
+ No. of MCA/taken channels
607
+ 1500/1500
608
+ 1024/1024
609
+ 8192/3500
610
+ Approx. no. of counts in spec.
611
+ 10M
612
+ 10M
613
+ ∼400k
614
+ Solver
615
+ backward error prop.
616
+ backward error prop.
617
+ some
618
+ No. of hidden layers
619
+ 1
620
+ 1
621
+ some
622
+ I2, τ3 average error [%]
623
+ on tested simulated spectra
624
+ 7.3, 1.0
625
+ 1.07-3.52, 0.55-1.21
626
+ -, -
627
+ I2, τ3 average error [%]
628
+ on tested real spectra
629
+ -, -
630
+ -, -
631
+ 1.03, 1.70
632
+ presented in [14], the same resolution curve for all spectra is assumed. In our data preparation procedure, the
633
+ parameters of the resolution curve are interpolated for each case. Based on this, the δ parameter is calculated
634
+ and the value of the shift in time is established for consecutive channels. Although one-gaussian resolution
635
+ curve was assumed here, it is possible to extend this algorithm for much more complicated cases where the
636
+ distribution curve consisted in a sum of gaussians, for example. As already mentioned in [14], in that case,
637
+ a possibility of recognising a distribution function would give compatibility to MELT [23]. Such an extension
638
+ requires extending the calculations by applying another neural network, working in advance, which returns the
639
+ parameters of the resolution curve in a given case. This problem has been solved by application of a Hopfield
640
+ neural network [16]. Taking into account our collection of spectra, it was checked with the use of LT and
641
+ (occasionally) with MELT that the apparatus resolution curve is one-gaussian for our spectra. Hence, they do
642
+ not allow testing such an extended model.
643
+ Furthermore, the MCA module of spectrometers may differ in the time constant per channel ∆. Thus, spectra
644
+ used as a training data set may be collected for different channel widths. Taking into account the method
645
+ presented in [14] for fixed ∆, the training result is of little use for spectra collected with another ∆. Oppositely,
646
+ we have shown the possibility of application of an improved algorithm to data collected for different ∆s. The
647
+ data collected from many spectrometers may contribute to a large training data set, which allows solving the
648
+ inversion problem for any PALS spectrum and, thus, may be a universal tool that can be used in different
649
+ laboratories. Although the set of ∆ used here is small, the accuracy of the results is quite good. To use this
650
+ tool to determine the real-world spectrum parameters, the training process should be extended by adding the
651
+ spectra measured for a wider range of ∆.
652
+ For greater generalisation, it is possible in principle to attach spectra collected for other compounds to the
653
+ training data set. For consistency, it suffices for a training database to keep the same number of components
654
+ (three here) in spectrum decomposition. However, in practice, some incompatibilities of the spectra for different
655
+ compounds may arise because decomposition into a few exponential processes is probably always a simplification
656
+ of a real case where some distribution of the size and shape of free volumes should be taken into account as well
657
+ as other Ps formation details.
658
+ Although the approach presented here is reduced to the analysis of alkanes solely, the algorithm can be applied
659
+ in calculation of PALS parameters of other types of samples as well.
660
+ References
661
+ [1] D. Manara, A. Seibert, et al. Positron annihilation spectroscopy. In M.H.A. Piro, editor, Advances in
662
+ Nuclear Fuel Chemistry, chapter 2.3.5, pages 126–131. Elsevier Ltd., Woodhead Publishing, 2020.
663
+ [2] W. Greiner and J. Reinhardt. Field Quantization. Springer, 2013.
664
+ 9
665
+
666
+ [3] T. Goworek. Positronium as a probe of small free volumes in crystals, polymers and porous media. Ann.
667
+ Univ. Mariae Curie Sklodowska, sectio AA – Chemia, LXIX:1–110, 2014.
668
+ [4] Y.C. Jean, J.D. Van Horn, W-S Hung, and K-R Lee. Perspective of positron annihilation spectroscopy in
669
+ polymers. Macromolecules, 46:7133–7145, 2013.
670
+ [5] J. Kansy. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instr. Meth.
671
+ A, 374:235–244, 1996.
672
+ [6] Jens V. Olsen, Peter Kirkegaard, Niels Jørgen Pedersen, and Morten Mostgaard Eldrup. Palsfit: A new
673
+ program for the evaluation of positron lifetime spectra. Physica Status Solidi (C) Current Topics in Solid
674
+ State Physics, 4(10):4004–4006, 2007.
675
+ [7] K. Wada and T. Hyodo. A simple shape-free model for pore-size estimation with positron annihilation
676
+ lifetime spectroscopy. J. Phys. Conf. Ser., 443:012003, 2013.
677
+ [8] J. Jegal, D. Jeong, E.S. Seo, et al. Convolutional neural network-based reconstruction for positronium
678
+ annihilation localization. Sci Rep, 12:8531, 2022.
679
+ [9] J.L. Herraiz, A. Bembibre, and A. López-Montes. Deep-learning based positron range correction of pet
680
+ images. Applied Sciences, 11(1), 2021.
681
+ [10] M. Wędrowski. Artificial neural network based position estimation in positron emission tomography. PhD
682
+ thesis, Interuniversity Institute for High Energies, Vrije Universiteit Brussel, Belgium, 2010.
683
+ [11] W.J. Whiteley. Deep Learning in Positron Emission Tomography ImageDeep Learning in Positron Emission
684
+ Tomography Image ReconstructionReconstruction. PhD thesis, University of Tennessee, Knoxville, U.S.A.,
685
+ 2020.
686
+ [12] D. Petschke and T.E.M. Staab. A supervised machine learning approach using naive gaussian bayes clas-
687
+ sification for shape-sensitive detector pulse discrimination in positron annihilation lifetime spectroscopy
688
+ (pals). Nucl. Instrum. Methods. Phys. Res. B, 947:162742, 2019.
689
+ [13] N.H.T. Lemes, J.P. Braga, and J.C. Belchior. Applications of genetic algorithms for inverting positron
690
+ lifetime spectrum. Chem. Phys. Lett., 412(4):353–358, 2005.
691
+ [14] I. Pázsit, R. Chakarova, P Lindén, and F. Maurer. Unfolding positron lifetime spectra with neural networks.
692
+ Appl. Surf. Sci., 149:97–102, 08 1999.
693
+ [15] R. An, J. Zhang, W. Kong, and B-J. Ye. The application of artificial neural networks to the inversion of
694
+ the positron lifetime spectrum. Chinese Physics B, 21(11):117803, nov 2012.
695
+ [16] V.C. Viterbo, J.P. Braga, A.P. Braga, and M.B. de Almeida. Inversion of simulated positron annihilation
696
+ lifetime spectrum using a neural network. J. Chem. Inf. Comput. Sci., 41:309–313, 2001.
697
+ [17] G. Rebala, A. Ravi, and S. Churiwala. An Introduction to Machine Learning. Springer Nature, 2019.
698
+ [18] J. Heaton. Introduction to the Math of Neuroal Networks. Heaton Res., 2012.
699
+ [19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
700
+ R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:2825–2830,
701
+ 2011.
702
+ [20] Broyden–fletcher–goldfarb–shanno
703
+ algorithm.
704
+ https://en.wikipedia.org/wiki/
705
+ Broyden-Fletcher-Goldfarb-Shanno_algorithm. Accessed: 2022-11-20.
706
+ [21] sklearn.neural_network.mlpregressor.
707
+ https://scikit-learn.org/stable/modules/generated/
708
+ sklearn.neural_network.MLPRegressor.html.
709
+ [22] T. Goworek, M. Pietrow, R. Zaleski, and B. Zgardzińska.
710
+ Positronium in high temperature phases of
711
+ long-chain even n-alkanes. Chem. Phys., 355:123–129, 2009.
712
+ [23] A. Shukla, M. Peter, and L. Hoffmann. Analysis of positron lifetime spectra using quantified maximum
713
+ entropy and a general linear filter.
714
+ Nuclear Instruments and Methods in Physics Research Section A:
715
+ Accelerators, Spectrometers, Detectors and Associated Equipment, 335(1):310–317, 1993.
716
+ 10
717
+
I9AzT4oBgHgl3EQfjv2R/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
K9E4T4oBgHgl3EQf8A5c/content/2301.05344v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbfc059aa8a31bc8ddeea5ffd5efe1e04e08f4bb1d794298ffcdd1765c5591df
3
+ size 1801530
K9E4T4oBgHgl3EQf8A5c/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:591619985db33fcf2b4ca358b79618518e09b6ee175b639af6214d19e5f673fb
3
+ size 1507373
K9E4T4oBgHgl3EQf8A5c/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1568342da472521c3277dced685c4c63372b4c87699ec7b97b6c2846ec075d2f
3
+ size 56836
KNAyT4oBgHgl3EQff_hn/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a69734d75fcb854588c86692d2bec6d3eb456102e8d5a90feee3a4039c4169b4
3
+ size 65642
KdE3T4oBgHgl3EQfvQvs/content/2301.04693v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fec0b030c9fb550514e77e9bddce93351f4520f1fcdb41254ef34c0aad131c6
3
+ size 763433