jackkuo commited on
Commit
10bfdb7
·
verified ·
1 Parent(s): ffbb134

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E4T4oBgHgl3EQf4A3h/content/2301.05311v1.pdf +3 -0
  2. -9E4T4oBgHgl3EQf4A3h/vector_store/index.faiss +3 -0
  3. .gitattributes +52 -0
  4. 0NE0T4oBgHgl3EQfdADd/content/tmp_files/2301.02372v1.pdf.txt +1052 -0
  5. 0NE0T4oBgHgl3EQfdADd/content/tmp_files/load_file.txt +455 -0
  6. 19AzT4oBgHgl3EQfuP0B/content/2301.01686v1.pdf +3 -0
  7. 19AzT4oBgHgl3EQfuP0B/vector_store/index.pkl +3 -0
  8. 19E1T4oBgHgl3EQf5QWX/content/tmp_files/2301.03510v1.pdf.txt +1224 -0
  9. 19E1T4oBgHgl3EQf5QWX/content/tmp_files/load_file.txt +0 -0
  10. 1dFIT4oBgHgl3EQf3yva/vector_store/index.faiss +3 -0
  11. 2dE3T4oBgHgl3EQfnwqt/content/2301.04628v1.pdf +3 -0
  12. 2dE3T4oBgHgl3EQfnwqt/vector_store/index.faiss +3 -0
  13. 2dE3T4oBgHgl3EQfnwqt/vector_store/index.pkl +3 -0
  14. 2tE1T4oBgHgl3EQf5gWl/content/2301.03513v1.pdf +3 -0
  15. 2tE1T4oBgHgl3EQf5gWl/vector_store/index.pkl +3 -0
  16. 3dAyT4oBgHgl3EQf1vn1/content/tmp_files/2301.00742v1.pdf.txt +3143 -0
  17. 3dAyT4oBgHgl3EQf1vn1/content/tmp_files/load_file.txt +0 -0
  18. 3dAzT4oBgHgl3EQffPzi/content/tmp_files/2301.01451v1.pdf.txt +1824 -0
  19. 3dAzT4oBgHgl3EQffPzi/content/tmp_files/load_file.txt +0 -0
  20. 3tE3T4oBgHgl3EQfPwn9/content/tmp_files/2301.04407v1.pdf.txt +1588 -0
  21. 3tE3T4oBgHgl3EQfPwn9/content/tmp_files/load_file.txt +0 -0
  22. 3tE4T4oBgHgl3EQfbQwY/vector_store/index.faiss +3 -0
  23. 5NE4T4oBgHgl3EQfbwwx/content/2301.05076v1.pdf +3 -0
  24. 69AyT4oBgHgl3EQf2vl7/vector_store/index.faiss +3 -0
  25. 69AyT4oBgHgl3EQf2vl7/vector_store/index.pkl +3 -0
  26. 69E0T4oBgHgl3EQffAC0/vector_store/index.faiss +3 -0
  27. 7NAzT4oBgHgl3EQf-f4D/vector_store/index.faiss +3 -0
  28. BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf +3 -0
  29. BdAyT4oBgHgl3EQf4Ppc/vector_store/index.faiss +3 -0
  30. BtFIT4oBgHgl3EQf_yzx/vector_store/index.faiss +3 -0
  31. CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf +3 -0
  32. CNE0T4oBgHgl3EQfQACa/vector_store/index.faiss +3 -0
  33. CNE0T4oBgHgl3EQfQACa/vector_store/index.pkl +3 -0
  34. DdE0T4oBgHgl3EQfygJ9/content/tmp_files/2301.02660v1.pdf.txt +1583 -0
  35. DdE0T4oBgHgl3EQfygJ9/content/tmp_files/load_file.txt +0 -0
  36. EdAyT4oBgHgl3EQf4vrl/content/2301.00794v1.pdf +3 -0
  37. EdAyT4oBgHgl3EQf4vrl/vector_store/index.faiss +3 -0
  38. EdAyT4oBgHgl3EQf4vrl/vector_store/index.pkl +3 -0
  39. EtE4T4oBgHgl3EQfGgz2/content/tmp_files/2301.04896v1.pdf.txt +496 -0
  40. EtE4T4oBgHgl3EQfGgz2/content/tmp_files/load_file.txt +0 -0
  41. H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf +3 -0
  42. H9AzT4oBgHgl3EQfHvt9/vector_store/index.faiss +3 -0
  43. IdE1T4oBgHgl3EQfYAQI/content/tmp_files/2301.03132v1.pdf.txt +2578 -0
  44. IdE1T4oBgHgl3EQfYAQI/content/tmp_files/load_file.txt +0 -0
  45. J9E2T4oBgHgl3EQfpQj_/content/2301.04028v1.pdf +3 -0
  46. J9E2T4oBgHgl3EQfpQj_/vector_store/index.pkl +3 -0
  47. J9E4T4oBgHgl3EQfhw2D/content/tmp_files/2301.05128v1.pdf.txt +0 -0
  48. J9E4T4oBgHgl3EQfhw2D/content/tmp_files/load_file.txt +0 -0
  49. K9AzT4oBgHgl3EQfkP22/content/2301.01529v1.pdf +3 -0
  50. K9AzT4oBgHgl3EQfkP22/vector_store/index.pkl +3 -0
-9E4T4oBgHgl3EQf4A3h/content/2301.05311v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:404bff0b0301334d8af694fc3d638ab4c189bacc41001ee35baeee9e813420a7
3
+ size 2359967
-9E4T4oBgHgl3EQf4A3h/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cef633d66d9d153d5322bfc0d7f60c1780aef36cd5a3811346794d11f6e51f0
3
+ size 2424877
.gitattributes CHANGED
@@ -15623,3 +15623,55 @@ d9E4T4oBgHgl3EQfQgxo/content/2301.04982v1.pdf filter=lfs diff=lfs merge=lfs -tex
15623
  rdFKT4oBgHgl3EQfIy1s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15624
  LNAyT4oBgHgl3EQf6fpN/content/2301.00822v1.pdf filter=lfs diff=lfs merge=lfs -text
15625
  Q9E0T4oBgHgl3EQfUQAL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15623
  rdFKT4oBgHgl3EQfIy1s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15624
  LNAyT4oBgHgl3EQf6fpN/content/2301.00822v1.pdf filter=lfs diff=lfs merge=lfs -text
15625
  Q9E0T4oBgHgl3EQfUQAL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15626
+ u9E0T4oBgHgl3EQfsQGm/content/2301.02577v1.pdf filter=lfs diff=lfs merge=lfs -text
15627
+ Q9E0T4oBgHgl3EQfUQAL/content/2301.02246v1.pdf filter=lfs diff=lfs merge=lfs -text
15628
+ sdE5T4oBgHgl3EQfKQ7c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15629
+ BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf filter=lfs diff=lfs merge=lfs -text
15630
+ ytFKT4oBgHgl3EQf7i5G/content/2301.11945v1.pdf filter=lfs diff=lfs merge=lfs -text
15631
+ atE1T4oBgHgl3EQfdARl/content/2301.03190v1.pdf filter=lfs diff=lfs merge=lfs -text
15632
+ vtFRT4oBgHgl3EQffzca/content/2301.13577v1.pdf filter=lfs diff=lfs merge=lfs -text
15633
+ MtE0T4oBgHgl3EQfTAAm/content/2301.02229v1.pdf filter=lfs diff=lfs merge=lfs -text
15634
+ odE1T4oBgHgl3EQfOwOM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15635
+ 3tE4T4oBgHgl3EQfbQwY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15636
+ aNFJT4oBgHgl3EQf8C11/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15637
+ kdFPT4oBgHgl3EQf2DV-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15638
+ K9AzT4oBgHgl3EQfkP22/content/2301.01529v1.pdf filter=lfs diff=lfs merge=lfs -text
15639
+ atE2T4oBgHgl3EQfFAam/content/2301.03642v1.pdf filter=lfs diff=lfs merge=lfs -text
15640
+ ytFKT4oBgHgl3EQf7i5G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15641
+ BtFIT4oBgHgl3EQf_yzx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15642
+ adAzT4oBgHgl3EQfZPz1/content/2301.01350v1.pdf filter=lfs diff=lfs merge=lfs -text
15643
+ P9E3T4oBgHgl3EQfCwkW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15644
+ MNE0T4oBgHgl3EQfSwCR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15645
+ aNFJT4oBgHgl3EQf8C11/content/2301.11681v1.pdf filter=lfs diff=lfs merge=lfs -text
15646
+ J9E2T4oBgHgl3EQfpQj_/content/2301.04028v1.pdf filter=lfs diff=lfs merge=lfs -text
15647
+ H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf filter=lfs diff=lfs merge=lfs -text
15648
+ UdE5T4oBgHgl3EQfbQ_H/content/2301.05595v1.pdf filter=lfs diff=lfs merge=lfs -text
15649
+ eNFKT4oBgHgl3EQfrS7d/content/2301.11878v1.pdf filter=lfs diff=lfs merge=lfs -text
15650
+ H9AzT4oBgHgl3EQfHvt9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15651
+ BdAyT4oBgHgl3EQf4Ppc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15652
+ EdAyT4oBgHgl3EQf4vrl/content/2301.00794v1.pdf filter=lfs diff=lfs merge=lfs -text
15653
+ y9E0T4oBgHgl3EQfcwB8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15654
+ EdAyT4oBgHgl3EQf4vrl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15655
+ CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf filter=lfs diff=lfs merge=lfs -text
15656
+ hNE2T4oBgHgl3EQfcQei/content/2301.03894v1.pdf filter=lfs diff=lfs merge=lfs -text
15657
+ 19AzT4oBgHgl3EQfuP0B/content/2301.01686v1.pdf filter=lfs diff=lfs merge=lfs -text
15658
+ 69AyT4oBgHgl3EQf2vl7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15659
+ vNAzT4oBgHgl3EQfB_pj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15660
+ 69E0T4oBgHgl3EQffAC0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15661
+ xtAzT4oBgHgl3EQfQvsC/content/2301.01202v1.pdf filter=lfs diff=lfs merge=lfs -text
15662
+ MNE2T4oBgHgl3EQfBQYB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15663
+ 2tE1T4oBgHgl3EQf5gWl/content/2301.03513v1.pdf filter=lfs diff=lfs merge=lfs -text
15664
+ CNE0T4oBgHgl3EQfQACa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15665
+ 1dFIT4oBgHgl3EQf3yva/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15666
+ cNFRT4oBgHgl3EQfSjci/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15667
+ LNAyT4oBgHgl3EQf6fpN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15668
+ MNE2T4oBgHgl3EQfBQYB/content/2301.03599v1.pdf filter=lfs diff=lfs merge=lfs -text
15669
+ 2dE3T4oBgHgl3EQfnwqt/content/2301.04628v1.pdf filter=lfs diff=lfs merge=lfs -text
15670
+ 2dE3T4oBgHgl3EQfnwqt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15671
+ 5NE4T4oBgHgl3EQfbwwx/content/2301.05076v1.pdf filter=lfs diff=lfs merge=lfs -text
15672
+ -9E4T4oBgHgl3EQf4A3h/content/2301.05311v1.pdf filter=lfs diff=lfs merge=lfs -text
15673
+ mdE2T4oBgHgl3EQfzAi5/content/2301.04127v1.pdf filter=lfs diff=lfs merge=lfs -text
15674
+ 7NAzT4oBgHgl3EQf-f4D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15675
+ P9E3T4oBgHgl3EQfCwkW/content/2301.04278v1.pdf filter=lfs diff=lfs merge=lfs -text
15676
+ TdE3T4oBgHgl3EQfEAmL/content/2301.04292v1.pdf filter=lfs diff=lfs merge=lfs -text
15677
+ -9E4T4oBgHgl3EQf4A3h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0NE0T4oBgHgl3EQfdADd/content/tmp_files/2301.02372v1.pdf.txt ADDED
@@ -0,0 +1,1052 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Multi-Objective Planning and Scheduling
2
+ Framework for Community Energy Storage Systems
3
+ in Low Voltage Distribution Networks
4
+ K.B.J. Anuradha
5
+ The Australian National University
6
+ Canberra, Australia
7
8
+ Chathurika P. Mediwaththe
9
+ The Australian National University & CSIRO
10
+ Canberra, Australia
11
12
+ Masoume Mahmoodi
13
+ The Australian National University
14
+ Canberra, Australia
15
16
+ Abstract—This paper presents a methodology for optimizing
17
+ the planning and scheduling aspects of a community energy
18
+ storage (CES) system in the presence of solar photovoltaic (SPV)
19
+ power in low voltage (LV) distribution networks. To this end, we
20
+ develop a multi-objective optimization framework that minimizes
21
+ the real power loss, the energy trading cost of LV customers and
22
+ the CES provider with the grid, and the investment cost for the
23
+ CES. Distribution network limits including the voltage constraint
24
+ are also taken into account by combining the optimization
25
+ problem with a linearized power flow model. Simulations for the
26
+ proposed optimization framework with real power consumption
27
+ and SPV generation data of the customers, highlight both real
28
+ power loss and energy trading cost with the grid are reduced
29
+ compared with the case without a CES by nearly 29% and 16%,
30
+ respectively. Moreover, a case study justifies our methodology
31
+ is competent in attaining the three objectives better than the
32
+ optimization models which optimize only the CES scheduling.
33
+ Keywords—Community energy storage, distribution networks,
34
+ multi-objective optimization, planning and scheduling, power
35
+ flow
36
+ NOMENCLATURE
37
+ Sets and Indices
38
+ V, i, j
39
+ Set of nodes, node indices
40
+ E
41
+ Set of lines in the network
42
+ Wj
43
+ Set of downstream nodes of node j includ-
44
+ ing itself
45
+ Cj, c
46
+ Set of customers at node j, customer index
47
+ T , t
48
+ Set of time intervals, time index
49
+ X, x
50
+ Feasible set, decision variable vector
51
+ Model Parameters
52
+ rij, xij
53
+ Resistance and reactance of line (i, j) - (Ω)
54
+ Umin, Umax
55
+ Minimum and maximum squared voltage
56
+ magnitude limits - (V 2)
57
+ ηch, ηdis
58
+ Charging and discharging efficiencies of the
59
+ CES
60
+ λmin, λmax
61
+ Percentage coefficients of the CES capacity
62
+ aj
63
+ Binary variable to find the optimal CES
64
+ location
65
+ pRate
66
+ j
67
+ Optimal CES rated power- (kW)
68
+ Ecap
69
+ j
70
+ Optimal CES capacity - (kWh)
71
+ pRate
72
+ min , pRate
73
+ max
74
+ Minimum and maximum allowable CES
75
+ rated power- (kW)
76
+ ECES
77
+ min , ECES
78
+ max
79
+ Minimum and maximum allowable CES
80
+ capacity - (kWh)
81
+ λp(t)
82
+ Grid energy price at time t - (AUD/kWh)
83
+ γCES
84
+ Fixed part of the CES investment cost -
85
+ (AUD)
86
+ δCES
87
+ Cost of the CES for a unit capacity -
88
+ (AUD/kWh)
89
+ ∆t
90
+ Time difference between two adjacent time
91
+ instances - (h)
92
+ wi
93
+ Weight coefficient of the ith objective func-
94
+ tion
95
+ Power Flows and Injections
96
+ pL
97
+ cj(t), qL
98
+ cj(t)
99
+ Real and reactive power consumption of
100
+ the customer c at node j at time t -
101
+ (kW, kV AR)
102
+ pP V
103
+ cj (t)
104
+ SPV generation of the customer c at node
105
+ j at time t - (kW)
106
+ Pij(t), Qij(t)
107
+ Real and reactive power flow from i to j
108
+ node at time t - (kW, kV AR)
109
+ pj(t), qj(t)
110
+ Real and reactive power absorption at node
111
+ j at time t - (kW, kV AR)
112
+ pG
113
+ cj(t))
114
+ Real power exchange with the grid by the
115
+ customer c at node j at time t - (kW)
116
+ pCES
117
+ cj
118
+ (t))
119
+ Real power exchange with the CES by the
120
+ arXiv:2301.02372v1 [eess.SY] 6 Jan 2023
121
+
122
+ customer c at node j at time t - (kW)
123
+ pG
124
+ CES(t))
125
+ Real power exchange with the grid by the
126
+ CES at time t- (kW)
127
+ pCES,ch
128
+ j
129
+ (t)
130
+ Charging power of the CES at node j at
131
+ time t - (kW)
132
+ pCES,dis
133
+ j
134
+ (t)
135
+ Discharging power of the CES at node j at
136
+ time t - (kW)
137
+ Other Notations
138
+ ECES
139
+ j
140
+ (t)
141
+ Energy level of the CES at node j at time
142
+ t - (kWh)
143
+ Vj(t)
144
+ Voltage magnitude of node j at time t - (V )
145
+ Uj(t)
146
+ Squared voltage magnitude of node j at
147
+ time t - (V 2)
148
+ Iij(t)
149
+ Current flow from node i to j at time t -
150
+ (A)
151
+ I. INTRODUCTION
152
+ In the recent past, there has been a notable interest among
153
+ the power systems research community and the industry for
154
+ the uptake of community energy storage (CES) in low voltage
155
+ (LV) power systems. This trend is driven by the benefits
156
+ gained from a CES such as providing the opportunity to
157
+ increase the hosting capacity of the network, enhancing the
158
+ solar energy self consumption of the customers, and increasing
159
+ the community access to renewable energy [1]. Additionally,
160
+ CES devices can be deployed to gain technical merits such as
161
+ real power loss minimization and economic benefits including
162
+ the curtailment of energy purchase cost of the customers [2].
163
+ As discussed in literature, a CES may be used in energy
164
+ management problems to earn technical and monetary benefits
165
+ together [3], [4]. Those merits can be fully exploited if the
166
+ CES planning aspects including its location, the rated power
167
+ and the capacity are optimized simultaneously with the CES
168
+ scheduling aspects namely, its charging and discharging.
169
+ The existing literature on CES utilization in LV distribution
170
+ networks can be divided into two categories as; (i) optimiza-
171
+ tion of CES scheduling only, (ii) optimization of both CES
172
+ planning and scheduling. In the first category, the authors
173
+ have presented optimization frameworks for CES scheduling
174
+ without accounting for its planning aspects. For instance, a
175
+ method built up on game theory concepts to maximize the
176
+ revenue for the CES provider and minimize energy costs for
177
+ the customers is discussed in [3]. A multi-objective framework
178
+ to minimize the real energy loss and energy costs of the
179
+ customers and the CES provider for trading energy with the
180
+ grid is discussed in [4]. A method based on model predictive
181
+ control to optimize the CES scheduling is presented in [5].
182
+ In addition to the papers which have presented methods for
183
+ optimizing only the CES scheduling, there are research work
184
+ which have proposed methods for optimizing both planning
185
+ and scheduling of CES simultaneously. For instance, a method
186
+ for maximizing the hosting capacity in a distribution network
187
+ in the presence of a CES is proposed in [6]. Analytical meth-
188
+ ods to minimize the real energy loss of a network by finding
189
+ the optimal CES location and its capacity are discussed in [7],
190
+ [8]. A common feature of these methods is that the optimal
191
+ CES planning aspects are determined based on analytical
192
+ (such as graphical or numerical methods) and sensitivity based
193
+ approaches (methods which decide the optimal values based
194
+ on a calculated sensitivity parameter). These approaches can
195
+ be computationally exhaustive as the optimal CES location and
196
+ the capacity are found upon computing a sensitivity parameter
197
+ for a large number of location-capacity combinations. Also,
198
+ even after an exhaustive search, it is not always guaranteed to
199
+ reach an optimal solution [7]. Thus, a robust formulation to
200
+ optimize the capacity, the rated power and the location of a
201
+ CES while generating the techno-economic benefits associated
202
+ with such storage devices would be an effective alternative to
203
+ overcome the challenges in the literature.
204
+ In this paper, we study the extent to which the location,
205
+ the capacity and the power rating of a CES in addition to its
206
+ scheduling, affect network and economic benefits achievable
207
+ from it. For this, we develop an optimization framework
208
+ that optimizes both planning and scheduling of a CES. The
209
+ optimized planning and scheduling aspects are then leveraged
210
+ to minimize the network power loss, cost incurred by the
211
+ customers and the CES provider for trading energy with the
212
+ grid and the investment cost of the CES simultaneously. To the
213
+ best of our knowledge, this problem has not been addressed in
214
+ the literature. The contributions of this paper are as follows.
215
+ • A linearized power flow model is exploited with the
216
+ CES operational constraints to develop a multi-objective
217
+ optimization framework. It is then solved as a mixed
218
+ integer quadratic program according to the optimization
219
+ algorithms in [9]. The analytic hierarchy process (AHP)
220
+ is used for fairly weighting the objective functions [10].
221
+ • The performance of the proposed optimization framework
222
+ is evaluated on a real LV distribution network. Here,
223
+ we do a comparison between our proposed optimization
224
+ framework, and the models that arbitrarily choose the
225
+ CES planning aspects such as its location, to assess the
226
+ impact of it on the objectives. Finally, a comprehensive
227
+ analysis of the results is also presented.
228
+ The rest of the paper is structured as follows. Section II
229
+ presents the mathematical models used in our problem. The
230
+ proposed CES planning and scheduling optimization frame-
231
+ work is illustrated in Section III. Section IV is about the
232
+ numerical and graphical results along with their discussion.
233
+ Eventually, the conclusion of the work and possible future
234
+ developments are given in Section V.
235
+ II. SYSTEM MATHEMATICAL MODELLING
236
+ In this paper, the positive power absorption convention is
237
+ considered for all nodes. Also, it is considered that there are
238
+ multiple customers at each node. All the real and reactive
239
+ power quantities are measured in kW and kVAR, respectively.
240
+ It is assumed that power consumption (both real and reactive)
241
+ and SPV generation of each customer are known ahead from
242
+ their forecasts. A summary of the notations used in this paper,
243
+ together with their definitions are given in the Nomenclature.
244
+
245
+ Fig. 1: Possible power exchanges between a customer, the CES
246
+ and the grid
247
+ A. Power Flow Model
248
+ The typical mutual power exchanges that can ensue between
249
+ different entities (i.e. customers, CES and grid) in the presence
250
+ of a CES is shown in Fig. 1. pCES
251
+ cj
252
+ (t) > 0 suggests a power
253
+ import by the customer c at node j at time t from the CES,
254
+ and pCES
255
+ cj
256
+ (t) < 0 occurs when that customer exports power
257
+ to the CES. The same sign convention used for pCES
258
+ cj
259
+ (t) is
260
+ valid for pG
261
+ cj(t) and pG
262
+ CES(t). The mathematical relationships
263
+ between the power flows shown in Fig. 1 are described later.
264
+ The relationship between the line power flows and node
265
+ absorptions which follows the LinDistflow model are given
266
+ by (1), (2) [11].
267
+ Pij(t) = pj(t) +
268
+
269
+ k:j→k
270
+ Pjk(t)
271
+ (1)
272
+ Qij(t) = qj(t) +
273
+
274
+ k:j→k
275
+ Qjk(t)
276
+ (2)
277
+ The nodal real and reactive power absorptions are illustrated
278
+ by the equations (3) and (4). The equation (3a) governs the
279
+ real power absorption for the CES connected node and for the
280
+ rest of the nodes (except the slack node), it is the equation
281
+ (3b). Additionally, we assume all the SPV units and the CES
282
+ operate at unity power factor.
283
+ pj(t) =
284
+
285
+ c∈Cj
286
+ pL
287
+ cj(t) −
288
+
289
+ c∈Cj
290
+ pP V
291
+ cj (t) + pCES,ch
292
+ j
293
+ (t)
294
+ −pCES,dis
295
+ j
296
+ (t)
297
+ ∀j ∈ V\ {0} , t∈ T
298
+ (3a)
299
+ pj(t) =
300
+
301
+ c∈Cj
302
+ pL
303
+ cj(t) −
304
+
305
+ c∈Cj
306
+ pP V
307
+ cj (t)
308
+ ∀j ∈ V\ {0} , t∈ T
309
+ (3b)
310
+ qj(t) =
311
+
312
+ c∈Cj
313
+ qL
314
+ cj(t)
315
+ ∀j ∈ V\ {0} , t∈ T
316
+ (4)
317
+ The equations (5) and (6) demonstrate how a customer
318
+ exchanges power with the CES and the grid, when that
319
+ customer encounters a mismatch of its real power consumption
320
+ and SPV generation. When a customer experiences a deficit of
321
+ its SPV generation to supply its real power consumption, that
322
+ deficit can be fulfilled in share by the CES and the grid. On
323
+ the other hand, if a customer has a surplus SPV generation,
324
+ that customer exports the excess to both CES and the grid.
325
+ The mathematical relationship between pG
326
+ CES(t), pCES
327
+ cj
328
+ (t),
329
+ pCES,ch
330
+ j
331
+ (t) and pCES,dis
332
+ j
333
+ (t) can be written as (7).
334
+ If pL
335
+ cj(t) ≥ pP V
336
+ cj (t):
337
+ 0 ≤ pG
338
+ cj(t) + pCES
339
+ cj
340
+ (t) = pL
341
+ cj(t) − pP V
342
+ cj (t)
343
+ (5a)
344
+ 0 ≤ pG
345
+ cj(t) ≤ pL
346
+ cj(t) − pP V
347
+ cj (t)
348
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T
349
+ (5b)
350
+ Otherwise:
351
+ pG
352
+ cj(t) + pCES
353
+ cj
354
+ (t) = pL
355
+ cj(t) − pP V
356
+ cj (t) ≤ 0
357
+ (6a)
358
+ pL
359
+ cj(t) − pP V
360
+ cj (t) ≤ pG
361
+ cj(t) ≤ 0
362
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T
363
+ (6b)
364
+ pG
365
+ CES(t) =
366
+ N
367
+
368
+ j=1
369
+
370
+
371
+
372
+
373
+ c∈Cj
374
+ pCES
375
+ cj
376
+ (t) + pCES,ch
377
+ j
378
+ (t) − pCES,dis
379
+ j
380
+ (t)
381
+
382
+
383
+
384
+ (7)
385
+ The Lindistflow equations given in (1)-(4) can be written in
386
+ matrix format as ((8) [11]
387
+ U = U01 − 2˜Rp − 2˜Xq
388
+ ∀t∈ T
389
+ (8)
390
+ where U = |V(t)|2 is the vector of squared voltage magni-
391
+ tudes of nodes, 1 is a vector of all ones and U0 = |V0|2 is
392
+ the squared voltage magnitude of the slack node. Also, p and
393
+ q are the vectors of nodal real and reactive power absorption.
394
+ The matrices ˜R and ˜X ∈ RN×N have the elements Rij =
395
+ � (a.b) ∈ Li ∩ Ljrab and Xij = � (a.b) ∈ Li ∩ Ljxab, re-
396
+ spectively where Li is the set of lines on the path connecting
397
+ node 0 and “i” [3], [11].
398
+ The squared voltage magnitudes at each node needs to be
399
+ maintained within its allowable voltage magnitude limits. This
400
+ is guaranteed by the inequality given in (9). Here, Umin =
401
+ Umin1 and Umax = Umax1.
402
+ Umin ≤ U ≤ Umax
403
+ ∀t∈ T
404
+ (9)
405
+ B. Community Energy Storage Model
406
+ In this section we present the mathematical modelling of
407
+ the CES. We consider the CES is owned by a third party, and
408
+ the owner is designated as the CES provider.
409
+ The set of constraints listed from (10) to (17) model the
410
+ CES. The equations (10) and (11) imply that the CES charging
411
+ and discharging power should not exceed the rated power
412
+ pRate
413
+ j
414
+ of the CES. The temporal variation of the energy level
415
+ of the CES is expressed by (12). Also, the CES energy level
416
+
417
+ External Grid
418
+ Grid
419
+ pCEs(t) < 0
420
+ pCes(t) > 0
421
+ 0 > ()号d
422
+ pgj(t) > 0
423
+ 田田
424
+ pCES(t) < 0
425
+ cth Customer
426
+ CES Device
427
+ at node jat any time should exist within its upper and lower state of
428
+ charge (SoC) limits. This is handled by (13). The continuity
429
+ of the CES operation over the next day is guaranteed by the
430
+ inequality given in (14) which is bounded by a small positive
431
+ number ε [3], [4]. Note that td in (14) represents the day num-
432
+ ber of the year. Here td ∈ TD, where TD = {1, 2, ...., NT /24}
433
+ and NT is the cardinality of set T .
434
+ 0 ≤ pCES,ch
435
+ j
436
+ (t) ≤ pRate
437
+ j
438
+ ∀j ∈ V\ {0} , t∈ T
439
+ (10)
440
+ 0 ≤ pCES,dis
441
+ j
442
+ (t) ≤ pRate
443
+ j
444
+ ∀j ∈ V\ {0} , t∈ T
445
+ (11)
446
+ ECES
447
+ j
448
+ (t) = ECES
449
+ j
450
+ (t − 1) + (ηchpCES,ch
451
+ j
452
+ (t)
453
+
454
+ 1
455
+ ηdis pCES,dis
456
+ j
457
+ (t))∆t
458
+ ∀j ∈ V\ {0} , t∈ T
459
+ (12)
460
+ λminEcap
461
+ j
462
+ ≤ ECES
463
+ j
464
+ (t) ≤ λmaxEcap
465
+ j
466
+ ∀j ∈ V\ {0} , t∈ T
467
+ (13)
468
+ ��ECES
469
+ j
470
+ (24td) − ECES
471
+ j
472
+ (0)
473
+ �� ≤ ε
474
+ ∀j ∈ V\ {0} , td∈ T D
475
+ (14)
476
+ The equation (15) is used to find the optimal CES location.
477
+ Also, (15) ensures that only one CES is installed in the
478
+ network. If aj = 0, it implies that there is no CES at node j.
479
+ If aj = 1, then the CES is connected to node j. To determine
480
+ the optimal CES capacity Ecap
481
+ j
482
+ , the inequality given in (16)
483
+ is utilized. For a case aj = 0, (16) makes Ecap
484
+ j
485
+ also to be
486
+ zero. When Ecap
487
+ j
488
+ = 0, the values ECES
489
+ j
490
+ (t), pCES,ch
491
+ j
492
+ (t) and
493
+ pCES,dis
494
+ j
495
+ (t) in (12) and (13) also turn out to be zero. The
496
+ inequality in (17) guarantees the rated power of the CES is
497
+ bounded by its minimum and maximum allowable values.
498
+ N
499
+
500
+ j=1
501
+ aj = 1
502
+ ∀j ∈ V\ {0} , aj ∈ {0, 1}
503
+ (15)
504
+ ajEcap
505
+ min ≤ Ecap
506
+ j
507
+ ≤ ajEcap
508
+ max
509
+ ∀j ∈ V\ {0} , aj ∈ {0, 1}
510
+ (16)
511
+ ajpRate
512
+ min ≤ pRate
513
+ j
514
+ ≤ ajpRate
515
+ max
516
+ ∀j ∈ V\ {0} , aj ∈ {0, 1}
517
+ (17)
518
+ III. OPTIMIZATION FRAMEWORK & PROBLEM
519
+ FORMULATION
520
+ In our paper, it is expected to minimize the real power
521
+ loss of the network, energy trading costs of the customers
522
+ and the CES provider with the grid, and to minimize the
523
+ CES investment cost. Therefore, a multi-objective function
524
+ is obtained by combining those objectives functions, and its
525
+ formulation is given as follows.
526
+ A. Objective Functions
527
+ 1) Minimizing the Real Power Loss of the Network: The
528
+ real power loss in a network can be written as (19), in terms
529
+ of (18), and by taking Ui(t) ≈ U0(t) ∀i ∈ V\ {0} [4], [11].
530
+ |Iij(t)|2 = Pij(t)2 + Q2
531
+ ij(t)
532
+ Ui(t)
533
+ ∀(i, j)∈ E, t∈ T
534
+ (18)
535
+ fP loss =
536
+
537
+ t∈T
538
+
539
+ (i,j)∈E
540
+ rij |Iij(t)|2
541
+ (19)
542
+ 2) Minimizing the Energy Trading Cost of the Customers
543
+ and the CES Provider with the Grid: The first term of the
544
+ objective function given in (20) relates to the energy trading
545
+ cost with the grid by customers, and latter for the CES
546
+ provider.
547
+ fEn,cost =
548
+
549
+ t∈T
550
+ λp(t)
551
+
552
+
553
+
554
+ N
555
+
556
+ j=1
557
+
558
+ c∈Cj
559
+ pG
560
+ cj(t) + pG
561
+ CES(t)
562
+
563
+
564
+ � ∆t (20)
565
+ Here, it is considered a one-for-one non-dispatchable energy
566
+ buyback scheme such that the same energy price for both
567
+ imports and exports of energy from the grid by the customers
568
+ and the CES is used [12]. This kind of an energy pricing
569
+ scheme can effectively value the SPV power as being same as
570
+ the power imported from the grid, which is usually generated
571
+ by a conventional generation method.
572
+ 3) Minimizing the Investment Cost of the CES: The third
573
+ objective is to minimize the investment cost of the CES device
574
+ which is given by (21) [2].
575
+ fInv,cost = γCES + δCESEcap
576
+ j
577
+ (21)
578
+ B. Problem Formulation
579
+ The three objective functions are normalized and weighted
580
+ to form the multi-objective function in (22), according to the
581
+ techniques described in [13]. The normalization guarantees
582
+ the objective functions are converted into a form which can
583
+ be added together (since fP loss is measured in kW, and
584
+ fEn,cost, fInv,cost are measured in AUD ).
585
+ x∗ = argmin
586
+ x∈X
587
+ w1
588
+ � fP loss−f utopia
589
+ P loss
590
+ f Nadir
591
+ P loss −f utopia
592
+ P loss
593
+
594
+ + w2
595
+
596
+ fEn,cost−f utopia
597
+ En,cost
598
+ f Nadir
599
+ En,cost−f utopia
600
+ En,cost
601
+
602
+ +w3
603
+
604
+ fInv,cost−f utopia
605
+ Inv,cost
606
+ f Nadir
607
+ Inv,cost−f utopia
608
+ Inv,cost
609
+
610
+ (22)
611
+ where X is the feasible set which is constrained by (1)-(17).
612
+ The utopia values, individual minimum point values and nadir
613
+ values of the multi-objective function are found by (23), (24)
614
+ and (25), respectively. Besides, the decision variable vector
615
+ can be explicitly expressed as (26).
616
+ f utopia
617
+ P loss = fP loss(x∗
618
+ Ploss)
619
+ (23a)
620
+
621
+ Fig. 2: 7-Node LV radial distribution network
622
+ f utopia
623
+ En,cost = fEn,cost(x∗
624
+ En,cost)
625
+ (23b)
626
+ f utopia
627
+ Inv,cost = fInv,cost(x∗
628
+ Inv,cost)
629
+ (23c)
630
+ x∗
631
+ Ploss = argmin
632
+ x∈X
633
+ fP loss
634
+ (24a)
635
+ x∗
636
+ En,cost = argmin
637
+ x∈X
638
+ fEn,cost
639
+ (24b)
640
+ x∗
641
+ Inv,cost = argmin
642
+ x∈X
643
+ fInv,cost
644
+ (24c)
645
+ f Nadir
646
+ P loss = Max
647
+
648
+ fP loss(x∗
649
+ Ploss), fP loss(x∗
650
+ En,cost),
651
+ fP loss(x∗
652
+ Inv,cost)
653
+
654
+ (25a)
655
+ f Nadir
656
+ En,cost = Max
657
+
658
+ fEn,cost(x∗
659
+ Ploss), fEn,cost(x∗
660
+ En,cost),
661
+ fEn,cost(x∗
662
+ Inv,cost)
663
+
664
+ (25b)
665
+ f Nadir
666
+ Inv,cost = Max
667
+
668
+ fInv,cost(x∗
669
+ Ploss), fInv,cost(x∗
670
+ En,cost),
671
+ fInv,cost(x∗
672
+ Inv,cost)
673
+
674
+ (25c)
675
+ x = (aj, pRate
676
+ j
677
+ , Ecap
678
+ j
679
+ , pCES,ch
680
+ j
681
+ , pCES,dis
682
+ j
683
+ , pG
684
+ CES, pG
685
+ cj) (26)
686
+ In summary, the optimization framework can be written as
687
+ (22), subject to a set of constraints (1)-(17). Also, as (22) being
688
+ a quadratically-constrained convex multi-objective function, it
689
+ is solved as a mixed-integer quadratic program.
690
+ IV. NUMERICAL AND SIMULATION RESULTS
691
+ In the simulations, a 7-node LV radial distribution network
692
+ given in Fig. 2 is used and its line data can be found
693
+ in [14]. Also, real power consumption and SPV generation
694
+ data of 30 customers in an Australian residential community
695
+ were used for simulations [15]. To be more practical, we
696
+ randomly allocated multiple customers for each node. Hence,
697
+ �N
698
+ j=1 |Cj| = 30, and the number of customers at each node
699
+ are marked in Fig. 2. Here, all the customers generate SPV
700
+ power in addition to their real power consumption. However,
701
+ reactive power consumption of the customers is not considered
702
+ due to the lack of sufficient real data. As the optimization
703
+ Fig. 3: Variation of grid energy price for 24 hours
704
+ involves not only a scheduling problem but also a planning
705
+ problem, the optimization is performed over a long time
706
+ period. Thus, we consider one year time period split in one
707
+ hour time intervals (i.e.|T | = 8760 ) for the simulations.
708
+ The voltage and power base are taken as 400V and
709
+ 100 kVA, respectively. In addition to that, V0
710
+ = 1p.u.,
711
+ Umin = 0.9025p.u., Umax = 1.1025p.u., λmin = 0.05,
712
+ λmax = 1, ηch = 0.98, ηdis = 1.02, Ecap
713
+ min = 200kWh,
714
+ Ecap
715
+ max = 2000kWh, pRate
716
+ min
717
+ = 20kW, pRate
718
+ max
719
+ = 200kW,
720
+ ε = 0.0001kWh and ∆t = 1h are used as the model
721
+ parameters. The values of γCES and δCES are taken as 24000
722
+ AUD and 300 AUD/kWh as specified in [2]. Additionally, the
723
+ weighting factors w1, w2 and w3 were calculated according
724
+ to the principles of AHP specified in [10]. We considered
725
+ a moderate plus importance for both fEn,cost and fInv,cost
726
+ compared to fP loss, and an equal importance for fEn,cost and
727
+ fInv,cost. Hence, based on the AHP method, the values of
728
+ w1, w2 and w3 were calculated as 1/9, 4/9 and 4/9, respec-
729
+ tively. Fig. 3 depicts how the grid energy price varies with the
730
+ time of the day following a time of use (ToU) tariff scheme.
731
+ As seen in Fig. 3, the grid energy price is 0.24871 AUD/kWh
732
+ during T1(from 12am-7am) & T5(from 10pm-12am), 0.31207
733
+ AUD/kWh during T2(from 7am-3pm) & T4 (from 9pm-10pm)
734
+ and 0.52602 AUD/kWh during T3(from 3pm-9pm) [16].
735
+ A. Case Study - Proposed Optimization Framework Vs Opti-
736
+ mization Models With Arbitrary CES Locations
737
+ We did a case study to compare the results of our model with
738
+ four different cases by arbitrarily changing the CES location.
739
+ For this, we considered our optimization framework as Case I,
740
+ while the rest as Case II-V. The same optimization framework
741
+ (except the constraint that finds the optimal CES location),
742
+ and the model parameters as for Case I were used for Case II-
743
+ V. A synopsis of the results for the five cases are tabulated in
744
+ Table I. The Case I lists the planning results and the minimized
745
+ objective function values for our proposed model. The Cases
746
+ II and III suggest the same optimal CES capacity and the rated
747
+ power. Nevertheless, due to their difference in CES location,
748
+ Case II provides less real energy loss and energy trading cost
749
+ compared with the Case III. When the CES is at node 6, the
750
+ optimization suggests the same optimal capacity as in Case I.
751
+ However, as node 6 is not the optimal location for CES, the
752
+ real energy loss and energy trading cost for Case IV are higher
753
+
754
+ 2
755
+ 6
756
+ External
757
+ Transformer
758
+ IC2l = 4
759
+ IC6l = 4
760
+ Grid
761
+ 22/0.4 kV
762
+ 0
763
+ 1
764
+ 3
765
+ 4
766
+ IC1l = 3
767
+ IC3l = 5
768
+ C4 = 6
769
+ ICzl = 5
770
+ 5
771
+ ICsl = 30.55
772
+ I (AUD/kWh)
773
+ 0.50
774
+ 0.45
775
+ Signal (
776
+ 0.40
777
+ 0.35
778
+ Price
779
+ Energy I
780
+ 0.30
781
+ 0.25
782
+ T4 T5
783
+ 0.20
784
+ 0
785
+ 5
786
+ 10
787
+ 15
788
+ 20
789
+ 25
790
+ Time Duration (24 HoursTABLE I: SUMMARY OF THE RESULTS FOR CASE STUDIES
791
+ CES
792
+ Location
793
+ (Node)
794
+ Optimal CES
795
+ Capacity (kWh)
796
+ Optimal CES
797
+ Power Rating (kW)
798
+ Real Energy
799
+ Loss1 (kWh)
800
+ Energy Trading
801
+ Cost With
802
+ Grid1 (AUD)
803
+ CES Investment
804
+ Cost (AUD)
805
+ Base Case (Without CES)
806
+ Not applicable
807
+ Not applicable
808
+ Not applicable
809
+ 110116.68
810
+ 45585
811
+ Not applicable
812
+ Case I (Proposed Model)
813
+ 4 (optimal)
814
+ 482.15
815
+ 200
816
+ 78200.88 (71.02%)
817
+ 38520 (84.50%)
818
+ 168645
819
+ Case II
820
+ 3 (chosen)
821
+ 601.32
822
+ 200
823
+ 80250.48 (72.88%)
824
+ 43362 (95.12%)
825
+ 204396
826
+ Case III
827
+ 5 (chosen)
828
+ 601.32
829
+ 200
830
+ 81961.28 (74.43%)
831
+ 43840 (96.17%)
832
+ 204396
833
+ Case IV
834
+ 6 (chosen)
835
+ 482.15
836
+ 200
837
+ 80761.16 (73.34%)
838
+ 44154 (96.86%)
839
+ 168645
840
+ Case V
841
+ 7 (chosen)
842
+ 547.69
843
+ 200
844
+ 86082.52 (78.17%)
845
+ 43625 (95.70%)
846
+ 188307
847
+ 1 Percentage values are calculated with respect to their corresponding values without a CES
848
+ Fig. 4: Total power exchange with the grid by the customers
849
+ Fig. 5: Total power exchange with the CES by the customers
850
+ than in Case I. Also, our model has produced the highest cost
851
+ reduction percentages for real energy loss (28.98%) and the
852
+ energy trading cost with the grid (15.5%), compared to all the
853
+ other cases. Hence, it is clear that Case I yields the minimum
854
+ values for all the three objective functions, and this justifies
855
+ the effectiveness of our optimization framework compared to
856
+ the models that optimize only the CES scheduling.
857
+ B. Analysis of the Results-Mutual Power Exchanges Between
858
+ the customers, the CES and the grid
859
+ In order to understand the CES scheduling and power
860
+ exchanges between different entities, we select a single day (24
861
+ hours) for our discussion. Fig. 4 shows the variation of total
862
+ Fig. 6: Power exchange with the grid by the CES
863
+ Fig. 7: CES charging and discharging power pattern
864
+ power exchange that occurs with the grid by the customers.
865
+ Since �N
866
+ j=1
867
+
868
+ c∈Cj pG
869
+ cj(t) being a positive value approxi-
870
+ mately during T1, T3, T4, T5 time intervals, it implies that the
871
+ customers tend to import certain amount of power from the
872
+ grid for satisfying their real power consumption during those
873
+ time periods. On the other hand, during T2 (time period of the
874
+ day usually the SPV generation is high), the customers have a
875
+ tendency to export a portion of their surplus SPV generation
876
+ to the grid. This is evident as �N
877
+ j=1
878
+
879
+ c∈Cj pG
880
+ cj(t) < 0 during
881
+ T2. This behavior guarantees a cost benefit for the customers
882
+ for their exported power according to equation (20).
883
+ The Fig. 5 depicts how the customers exchange power
884
+
885
+ ) (kw)
886
+ 50
887
+ ()53
888
+ 0
889
+ -50
890
+ -100
891
+ 0
892
+ 5
893
+ 10
894
+ 15
895
+ 20
896
+ 2550
897
+ (kw)
898
+ 0
899
+ -50
900
+ -100
901
+ -150
902
+ -200
903
+ 0
904
+ 5
905
+ 10
906
+ 15
907
+ 20
908
+ 25100
909
+ (kW)
910
+ 50
911
+ 0
912
+ CG
913
+ -50
914
+ -100
915
+ 0
916
+ 5
917
+ 10
918
+ 15
919
+ 20
920
+ 25
921
+ Time
922
+ e Duration(24 Hours100
923
+ (kW)
924
+ 50
925
+ 0
926
+ and
927
+ -50
928
+ -100
929
+ p
930
+ 0
931
+ 5
932
+ 10
933
+ 15
934
+ 20
935
+ 25Fig. 8: Temporal variation of the CES energy level
936
+ with the CES. During T2, the customers export a part of
937
+ their surplus SPV generation to the CES. On the contrary,
938
+ during rest of the time periods, the customers import a certain
939
+ amount of power from the CES for satisfying their real power
940
+ consumption. This action results in reducing the cost for the
941
+ customers as the amount of power imported from the grid is
942
+ minimized.
943
+ The Fig. 6 illustrates how the CES exchanges power with
944
+ the grid. As the grid energy price during T1 being the lowest,
945
+ the CES tends to import power from the grid (i.e. pCES
946
+ G
947
+ (t) >
948
+ 0) during T1. This guarantees that the CES is charged with
949
+ low priced energy from the grid. However, during T2, T3 and
950
+ T4, it is seen that the CES exports its power back to the grid
951
+ (i.e. pCES
952
+ G
953
+ (t) < 0). This happens as the CES provider can
954
+ maximize its revenue by exporting power back to grid.
955
+ In Fig. 7 and 8, it is observed that during T1, the CES
956
+ charges (from the low priced grid energy) and partially dis-
957
+ charges by the end of T1. During T2, the CES continues
958
+ to charge and by the end of this time period, it reaches its
959
+ maximum energy level. The stored energy in the CES is fully
960
+ utilized during T3 and T4 for partially supplying the real
961
+ power consumption of the customers. This facilitates monetary
962
+ benefits for both the customers as the amount of expensive
963
+ power imported from the grid is lowered. Additionally, when
964
+ observing the temporal variation of the CES energy level, it
965
+ is visualized that it is the peak value of the CES energy level
966
+ which was obtained as the optimal CES capacity (i.e. 482.15
967
+ kWh).
968
+ V. CONCLUSION & FUTURE WORK
969
+ In this work, we have explored how the optimization of
970
+ the planning and scheduling aspects of a community energy
971
+ storage (CES) can benefit both the network and the customers.
972
+ To this end, we developed a multi-objective mixed-integer
973
+ quadratic optimization framework to minimize three objec-
974
+ tives: (i) network real power loss, (ii) energy trading cost of
975
+ the customers and the CES provider with the grid, and (iii)
976
+ the CES investment cost. The simulation results highlighted
977
+ our optimization framework is competent in acquiring the
978
+ expected merits compared with the case without a CES, and
979
+ optimization models that optimize only the scheduling of CES.
980
+ As future work, we expect to develop the work considering
981
+ a stochastic model taking into account the uncertainties of
982
+ real power consumption and SPV generation of the customers.
983
+ Moreover, we look forward to extend the work by considering
984
+ the unbalanced nature of LV distribution networks, and reac-
985
+ tive power control capabilities of solar photovoltaic (SPV) and
986
+ CES inverters.
987
+ REFERENCES
988
+ [1] M. Shaw, B. Sturmberg, C.P. Mediwaththe, H. Ransan-Cooper, D. Taylor
989
+ and L. Blackhall “Community batteries: a cost/benefit analysis,” Tech-
990
+ nical Report, Australian National University, 2020.
991
+ [2] Y.
992
+ Zheng, Y. Song, A. Huang, and D.J. Hill, “Hierarchical Optimal
993
+ Allocation of Battery Energy Storage Systems for Multiple Services in
994
+ Distribution Systems,” IEEE Trans. Sust. Energy, vol. 11, no. 3, pp.
995
+ 1911–1921, 2020.
996
+ [3] C.P. Mediwaththe, and L. Blackhall, “Network-Aware Demand-Side
997
+ Management Framework With A Community Energy Storage System
998
+ Considering Voltage Constraints,” IEEE Trans.Power Syst., vol. 36,
999
+ no. 2, pp. 1229–1238, 2021.
1000
+ [4] C.P. Mediwaththe, and L. Blackhall, “Community Energy Storage-based
1001
+ Energy Trading Management for Cost Benefits and Network Support,”
1002
+ in Proc. Int. Conf. Smart Grids and Energy Syst., 2020, pp. 516–521.
1003
+ [5] R. Zafar, J. Ravishankar, J.E. Fletcher and H.R. Pota, “Multi-Timescale
1004
+ Model Predictive Control of Battery Energy Storage System Using
1005
+ Conic Relaxation in Smart Distribution Grids,” IEEE Trans.Power Syst.,
1006
+ vol. 33, no. 6, pp. 7152–7161, 2018.
1007
+ [6] P. Hasanpor Divshali , and L. S¨oder, “Improving Hosting Capacity of
1008
+ Rooftop PVs by Quadratic Control of an LV-Central BSS,” IEEE Trans.
1009
+ Smart Grid, vol. 10, no. 1, pp. 919–927, 2019.
1010
+ [7] D.Q. Hung , and N. Mithulananthan, “Community energy storage and
1011
+ capacitor allocation in distribution systems,” in Proc. Aus. Uni. Power
1012
+ Eng. Conf., 2011, pp. 1–6.
1013
+ [8] M. B¨ohringer , S. Choudhury, S. Weck and J. Hanson, “Sizing and
1014
+ Placement of Community Energy Storage Systems using Multi-Period
1015
+ Optimal Power Flow,” in Proc. IEEE Mad. PowerTech, 2021, pp. 1–6.
1016
+ [9] S. Boyd, and L. Vandenberghe,, “Convex Optimization,” 1st ed. Cam-
1017
+ bridge U.K.: Cambridge Univ. Press, 2004.
1018
+ [10] T.L. Saaty, “Decision making — the analytic hierarchy and Network
1019
+ Processes (AHP/ANP),” J. Syst. Sci. Syst. Eng., vol. 13, no. 1, pp. 1–35,
1020
+ 2004.
1021
+ [11] W. Lin, and E. Bitar, “Decentralized Stochastic Control of Distributed
1022
+ Energy Resources,” IEEE Trans.Power Syst., vol. 33, no. 1, pp. 888–900,
1023
+ 2018.
1024
+ [12] J. Martin“1-to-1 solar buyback vs solar feed-in tariffs: The eco-
1025
+ nomics,”2012. [Online]. Available: https://www.solarchoice.net.au/blog/
1026
+ the-economics-of-a-1-to-1-solar-buyback-vs-solar-feed-in-tariffs/”
1027
+ [13] O. Grodzevich , and O. Romanko, “Normalization and other topics in
1028
+ multi-objective optimization,” in Fields MITACS Indust. Prob. Workshop,
1029
+ 2006.
1030
+ [14] M. Zeraati, M.E. Hamedani Golshan, and J.M. Guerrero, “Distributed
1031
+ control of battery energy storage systems for voltage regulation in
1032
+ distribution networks with high pv penetration,” IEEE Trans. Smart Grid,
1033
+ vol. 9, no. 4, pp. 3582–3593, 2018.
1034
+ [15] “Solar Home Electricity Data,” [Online]. Available: https://www.ausgrid.
1035
+ com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-
1036
+ data/.”
1037
+ [16] “Origin, “VIC residential energy price fact sheet,” 2018.” [Online].
1038
+ Available: shorturl.at/gkmV5”
1039
+
1040
+ 500
1041
+ 400
1042
+ (kWh)
1043
+ 300
1044
+ 200
1045
+ 100
1046
+ 0
1047
+ 5
1048
+ 10
1049
+ 15
1050
+ 20
1051
+ 25
1052
+ Time Duration (24 Hours)
0NE0T4oBgHgl3EQfdADd/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf,len=454
2
+ page_content='A Multi-Objective Planning and Scheduling Framework for Community Energy Storage Systems in Low Voltage Distribution Networks K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
3
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
4
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
5
+ page_content=' Anuradha The Australian National University Canberra, Australia Jayaminda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
6
+ page_content='KariyawasamBovithanthri@anu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
7
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
8
+ page_content='au Chathurika P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
9
+ page_content=' Mediwaththe The Australian National University & CSIRO Canberra, Australia chathurika.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
10
+ page_content='mediwaththe@csiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
11
+ page_content='au Masoume Mahmoodi The Australian National University Canberra, Australia masoume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
12
+ page_content='mahmoodi@anu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
13
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
14
+ page_content='au Abstract—This paper presents a methodology for optimizing the planning and scheduling aspects of a community energy storage (CES) system in the presence of solar photovoltaic (SPV) power in low voltage (LV) distribution networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
15
+ page_content=' To this end, we develop a multi-objective optimization framework that minimizes the real power loss, the energy trading cost of LV customers and the CES provider with the grid, and the investment cost for the CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
16
+ page_content=' Distribution network limits including the voltage constraint are also taken into account by combining the optimization problem with a linearized power flow model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
17
+ page_content=' Simulations for the proposed optimization framework with real power consumption and SPV generation data of the customers, highlight both real power loss and energy trading cost with the grid are reduced compared with the case without a CES by nearly 29% and 16%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
18
+ page_content=' Moreover, a case study justifies our methodology is competent in attaining the three objectives better than the optimization models which optimize only the CES scheduling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
19
+ page_content=' Keywords—Community energy storage,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
20
+ page_content=' distribution networks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
21
+ page_content=' multi-objective optimization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
22
+ page_content=' planning and scheduling,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
23
+ page_content=' power flow NOMENCLATURE Sets and Indices V,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
24
+ page_content=' i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
25
+ page_content=' j Set of nodes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
26
+ page_content=' node indices E Set of lines in the network Wj Set of downstream nodes of node j includ- ing itself Cj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
27
+ page_content=' c Set of customers at node j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
28
+ page_content=' customer index T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
29
+ page_content=' t Set of time intervals,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
30
+ page_content=' time index X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
31
+ page_content=' x Feasible set,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
32
+ page_content=' decision variable vector Model Parameters rij,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
33
+ page_content=' xij Resistance and reactance of line (i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
34
+ page_content=' j) - (Ω) Umin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
35
+ page_content=' Umax Minimum and maximum squared voltage magnitude limits - (V 2) ηch,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
36
+ page_content=' ηdis Charging and discharging efficiencies of the CES λmin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
37
+ page_content=' λmax Percentage coefficients of the CES capacity aj Binary variable to find the optimal CES location pRate j Optimal CES rated power- (kW) Ecap j Optimal CES capacity - (kWh) pRate min ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
38
+ page_content=' pRate max Minimum and maximum allowable CES rated power- (kW) ECES min ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
39
+ page_content=' ECES max Minimum and maximum allowable CES capacity - (kWh) λp(t) Grid energy price at time t - (AUD/kWh) γCES Fixed part of the CES investment cost - (AUD) δCES Cost of the CES for a unit capacity - (AUD/kWh) ∆t Time difference between two adjacent time instances - (h) wi Weight coefficient of the ith objective func- tion Power Flows and Injections pL cj(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
40
+ page_content=' qL cj(t) Real and reactive power consumption of the customer c at node j at time t - (kW,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
41
+ page_content=' kV AR) pP V cj (t) SPV generation of the customer c at node j at time t - (kW) Pij(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
42
+ page_content=' Qij(t) Real and reactive power flow from i to j node at time t - (kW,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
43
+ page_content=' kV AR) pj(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
44
+ page_content=' qj(t) Real and reactive power absorption at node j at time t - (kW,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
45
+ page_content=' kV AR) pG cj(t)) Real power exchange with the grid by the customer c at node j at time t - (kW) pCES cj (t)) Real power exchange with the CES by the arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
46
+ page_content='02372v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
47
+ page_content='SY] 6 Jan 2023 customer c at node j at time t - (kW) pG CES(t)) Real power exchange with the grid by the CES at time t- (kW) pCES,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
48
+ page_content='ch j (t) Charging power of the CES at node j at time t - (kW) pCES,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
49
+ page_content='dis j (t) Discharging power of the CES at node j at time t - (kW) Other Notations ECES j (t) Energy level of the CES at node j at time t - (kWh) Vj(t) Voltage magnitude of node j at time t - (V ) Uj(t) Squared voltage magnitude of node j at time t - (V 2) Iij(t) Current flow from node i to j at time t - (A) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
50
+ page_content=' INTRODUCTION In the recent past, there has been a notable interest among the power systems research community and the industry for the uptake of community energy storage (CES) in low voltage (LV) power systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
51
+ page_content=' This trend is driven by the benefits gained from a CES such as providing the opportunity to increase the hosting capacity of the network, enhancing the solar energy self consumption of the customers, and increasing the community access to renewable energy [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
52
+ page_content=' Additionally, CES devices can be deployed to gain technical merits such as real power loss minimization and economic benefits including the curtailment of energy purchase cost of the customers [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
53
+ page_content=' As discussed in literature, a CES may be used in energy management problems to earn technical and monetary benefits together [3], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
54
+ page_content=' Those merits can be fully exploited if the CES planning aspects including its location, the rated power and the capacity are optimized simultaneously with the CES scheduling aspects namely, its charging and discharging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
55
+ page_content=' The existing literature on CES utilization in LV distribution networks can be divided into two categories as;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
56
+ page_content=' (i) optimiza- tion of CES scheduling only, (ii) optimization of both CES planning and scheduling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
57
+ page_content=' In the first category, the authors have presented optimization frameworks for CES scheduling without accounting for its planning aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
58
+ page_content=' For instance, a method built up on game theory concepts to maximize the revenue for the CES provider and minimize energy costs for the customers is discussed in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
59
+ page_content=' A multi-objective framework to minimize the real energy loss and energy costs of the customers and the CES provider for trading energy with the grid is discussed in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
60
+ page_content=' A method based on model predictive control to optimize the CES scheduling is presented in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
61
+ page_content=' In addition to the papers which have presented methods for optimizing only the CES scheduling, there are research work which have proposed methods for optimizing both planning and scheduling of CES simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
62
+ page_content=' For instance, a method for maximizing the hosting capacity in a distribution network in the presence of a CES is proposed in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
63
+ page_content=' Analytical meth- ods to minimize the real energy loss of a network by finding the optimal CES location and its capacity are discussed in [7], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
64
+ page_content=' A common feature of these methods is that the optimal CES planning aspects are determined based on analytical (such as graphical or numerical methods) and sensitivity based approaches (methods which decide the optimal values based on a calculated sensitivity parameter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
65
+ page_content=' These approaches can be computationally exhaustive as the optimal CES location and the capacity are found upon computing a sensitivity parameter for a large number of location-capacity combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
66
+ page_content=' Also, even after an exhaustive search, it is not always guaranteed to reach an optimal solution [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
67
+ page_content=' Thus, a robust formulation to optimize the capacity, the rated power and the location of a CES while generating the techno-economic benefits associated with such storage devices would be an effective alternative to overcome the challenges in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
68
+ page_content=' In this paper, we study the extent to which the location, the capacity and the power rating of a CES in addition to its scheduling, affect network and economic benefits achievable from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
69
+ page_content=' For this, we develop an optimization framework that optimizes both planning and scheduling of a CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
70
+ page_content=' The optimized planning and scheduling aspects are then leveraged to minimize the network power loss, cost incurred by the customers and the CES provider for trading energy with the grid and the investment cost of the CES simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
71
+ page_content=' To the best of our knowledge, this problem has not been addressed in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
72
+ page_content=' The contributions of this paper are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
73
+ page_content=' A linearized power flow model is exploited with the CES operational constraints to develop a multi-objective optimization framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
74
+ page_content=' It is then solved as a mixed integer quadratic program according to the optimization algorithms in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
75
+ page_content=' The analytic hierarchy process (AHP) is used for fairly weighting the objective functions [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
76
+ page_content=' The performance of the proposed optimization framework is evaluated on a real LV distribution network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
77
+ page_content=' Here, we do a comparison between our proposed optimization framework, and the models that arbitrarily choose the CES planning aspects such as its location, to assess the impact of it on the objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
78
+ page_content=' Finally, a comprehensive analysis of the results is also presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
79
+ page_content=' The rest of the paper is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
80
+ page_content=' Section II presents the mathematical models used in our problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
81
+ page_content=' The proposed CES planning and scheduling optimization frame- work is illustrated in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
82
+ page_content=' Section IV is about the numerical and graphical results along with their discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
83
+ page_content=' Eventually, the conclusion of the work and possible future developments are given in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
84
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
85
+ page_content=' SYSTEM MATHEMATICAL MODELLING In this paper, the positive power absorption convention is considered for all nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
86
+ page_content=' Also, it is considered that there are multiple customers at each node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
87
+ page_content=' All the real and reactive power quantities are measured in kW and kVAR, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
88
+ page_content=' It is assumed that power consumption (both real and reactive) and SPV generation of each customer are known ahead from their forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
89
+ page_content=' A summary of the notations used in this paper, together with their definitions are given in the Nomenclature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
90
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
91
+ page_content=' 1: Possible power exchanges between a customer, the CES and the grid A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
92
+ page_content=' Power Flow Model The typical mutual power exchanges that can ensue between different entities (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
93
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
94
+ page_content=' customers, CES and grid) in the presence of a CES is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
95
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
96
+ page_content=' pCES cj (t) > 0 suggests a power import by the customer c at node j at time t from the CES, and pCES cj (t) < 0 occurs when that customer exports power to the CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
97
+ page_content=' The same sign convention used for pCES cj (t) is valid for pG cj(t) and pG CES(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
98
+ page_content=' The mathematical relationships between the power flows shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
99
+ page_content=' 1 are described later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
100
+ page_content=' The relationship between the line power flows and node absorptions which follows the LinDistflow model are given by (1), (2) [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
101
+ page_content=' Pij(t) = pj(t) + � k:j→k Pjk(t) (1) Qij(t) = qj(t) + � k:j→k Qjk(t) (2) The nodal real and reactive power absorptions are illustrated by the equations (3) and (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
102
+ page_content=' The equation (3a) governs the real power absorption for the CES connected node and for the rest of the nodes (except the slack node), it is the equation (3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
103
+ page_content=' Additionally, we assume all the SPV units and the CES operate at unity power factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
104
+ page_content=' pj(t) = � c∈Cj pL cj(t) − � c∈Cj pP V cj (t) + pCES,ch j (t) −pCES,dis j (t) ∀j ∈ V\\ {0} , t∈ T (3a) pj(t) = � c∈Cj pL cj(t) − � c∈Cj pP V cj (t) ∀j ∈ V\\ {0} , t∈ T (3b) qj(t) = � c∈Cj qL cj(t) ∀j ∈ V\\ {0} , t∈ T (4) The equations (5) and (6) demonstrate how a customer exchanges power with the CES and the grid, when that customer encounters a mismatch of its real power consumption and SPV generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
105
+ page_content=' When a customer experiences a deficit of its SPV generation to supply its real power consumption, that deficit can be fulfilled in share by the CES and the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
106
+ page_content=' On the other hand, if a customer has a surplus SPV generation, that customer exports the excess to both CES and the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
107
+ page_content=' The mathematical relationship between pG CES(t), pCES cj (t), pCES,ch j (t) and pCES,dis j (t) can be written as (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
108
+ page_content=' If pL cj(t) ≥ pP V cj (t): 0 ≤ pG cj(t) + pCES cj (t) = pL cj(t) − pP V cj (t) (5a) 0 ≤ pG cj(t) ≤ pL cj(t) − pP V cj (t) ∀j ∈ V\\ {0} ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
109
+ page_content=' c ∈ Cj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
110
+ page_content=' t∈ T (5b) Otherwise: pG cj(t) + pCES cj (t) = pL cj(t) − pP V cj (t) ≤ 0 (6a) pL cj(t) − pP V cj (t) ≤ pG cj(t) ≤ 0 ∀j ∈ V\\ {0} ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
111
+ page_content=' c ∈ Cj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
112
+ page_content=' t∈ T (6b) pG CES(t) = N � j=1 � � � � c∈Cj pCES cj (t) + pCES,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
113
+ page_content='ch j (t) − pCES,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
114
+ page_content='dis j (t) � � � (7) The Lindistflow equations given in (1)-(4) can be written in matrix format as ((8) [11] U = U01 − 2˜Rp − 2˜Xq ∀t∈ T (8) where U = |V(t)|2 is the vector of squared voltage magni- tudes of nodes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
115
+ page_content=' 1 is a vector of all ones and U0 = |V0|2 is the squared voltage magnitude of the slack node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
116
+ page_content=' Also, p and q are the vectors of nodal real and reactive power absorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
117
+ page_content=' The matrices ˜R and ˜X ∈ RN×N have the elements Rij = � (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
118
+ page_content='b) ∈ Li ∩ Ljrab and Xij = � (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
119
+ page_content='b) ∈ Li ∩ Ljxab, re- spectively where Li is the set of lines on the path connecting node 0 and “i” [3], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
120
+ page_content=' The squared voltage magnitudes at each node needs to be maintained within its allowable voltage magnitude limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
121
+ page_content=' This is guaranteed by the inequality given in (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
122
+ page_content=' Here, Umin = Umin1 and Umax = Umax1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
123
+ page_content=' Umin ≤ U ≤ Umax ∀t∈ T (9) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
124
+ page_content=' Community Energy Storage Model In this section we present the mathematical modelling of the CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
125
+ page_content=' We consider the CES is owned by a third party, and the owner is designated as the CES provider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
126
+ page_content=' The set of constraints listed from (10) to (17) model the CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
127
+ page_content=' The equations (10) and (11) imply that the CES charging and discharging power should not exceed the rated power pRate j of the CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
128
+ page_content=' The temporal variation of the energy level of the CES is expressed by (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
129
+ page_content=' Also, the CES energy level External Grid Grid pCEs(t) < 0 pCes(t) > 0 0 > ()号d pgj(t) > 0 田田 pCES(t) < 0 cth Customer CES Device at node jat any time should exist within its upper and lower state of charge (SoC) limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
130
+ page_content=' This is handled by (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
131
+ page_content=' The continuity of the CES operation over the next day is guaranteed by the inequality given in (14) which is bounded by a small positive number ε [3], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
132
+ page_content=' Note that td in (14) represents the day num- ber of the year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
133
+ page_content=' Here td ∈ TD, where TD = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
134
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
135
+ page_content='., NT /24} and NT is the cardinality of set T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
136
+ page_content=' 0 ≤ pCES,ch j (t) ≤ pRate j ∀j ∈ V\\ {0} , t∈ T (10) 0 ≤ pCES,dis j (t) ≤ pRate j ∀j ∈ V\\ {0} , t∈ T (11) ECES j (t) = ECES j (t − 1) + (ηchpCES,ch j (t) − 1 ηdis pCES,dis j (t))∆t ∀j ∈ V\\ {0} , t∈ T (12) λminEcap j ≤ ECES j (t) ≤ λmaxEcap j ∀j ∈ V\\ {0} , t∈ T (13) ��ECES j (24td) − ECES j (0) �� ≤ ε ∀j ∈ V\\ {0} , td∈ T D (14) The equation (15) is used to find the optimal CES location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
137
+ page_content=' Also, (15) ensures that only one CES is installed in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
138
+ page_content=' If aj = 0, it implies that there is no CES at node j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
139
+ page_content=' If aj = 1, then the CES is connected to node j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
140
+ page_content=' To determine the optimal CES capacity Ecap j , the inequality given in (16) is utilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
141
+ page_content=' For a case aj = 0, (16) makes Ecap j also to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
142
+ page_content=' When Ecap j = 0, the values ECES j (t), pCES,ch j (t) and pCES,dis j (t) in (12) and (13) also turn out to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
143
+ page_content=' The inequality in (17) guarantees the rated power of the CES is bounded by its minimum and maximum allowable values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
144
+ page_content=' N � j=1 aj = 1 ∀j ∈ V\\ {0} , aj ∈ {0, 1} (15) ajEcap min ≤ Ecap j ≤ ajEcap max ∀j ∈ V\\ {0} , aj ∈ {0, 1} (16) ajpRate min ≤ pRate j ≤ ajpRate max ∀j ∈ V\\ {0} , aj ∈ {0, 1} (17) III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
145
+ page_content=' OPTIMIZATION FRAMEWORK & PROBLEM FORMULATION In our paper, it is expected to minimize the real power loss of the network, energy trading costs of the customers and the CES provider with the grid, and to minimize the CES investment cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
146
+ page_content=' Therefore, a multi-objective function is obtained by combining those objectives functions, and its formulation is given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
147
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
148
+ page_content=' Objective Functions 1) Minimizing the Real Power Loss of the Network: The real power loss in a network can be written as (19), in terms of (18), and by taking Ui(t) ≈ U0(t) ∀i ∈ V\\ {0} [4], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
149
+ page_content=' |Iij(t)|2 = Pij(t)2 + Q2 ij(t) Ui(t) ∀(i, j)∈ E, t∈ T (18) fP loss = � t∈T � (i,j)∈E rij |Iij(t)|2 (19) 2) Minimizing the Energy Trading Cost of the Customers and the CES Provider with the Grid: The first term of the objective function given in (20) relates to the energy trading cost with the grid by customers, and latter for the CES provider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
150
+ page_content=' fEn,cost = � t∈T λp(t) � � � N � j=1 � c∈Cj pG cj(t) + pG CES(t) � � � ∆t (20) Here, it is considered a one-for-one non-dispatchable energy buyback scheme such that the same energy price for both imports and exports of energy from the grid by the customers and the CES is used [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
151
+ page_content=' This kind of an energy pricing scheme can effectively value the SPV power as being same as the power imported from the grid, which is usually generated by a conventional generation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
152
+ page_content=' 3) Minimizing the Investment Cost of the CES: The third objective is to minimize the investment cost of the CES device which is given by (21) [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
153
+ page_content=' fInv,cost = γCES + δCESEcap j (21) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
154
+ page_content=' Problem Formulation The three objective functions are normalized and weighted to form the multi-objective function in (22), according to the techniques described in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
155
+ page_content=' The normalization guarantees the objective functions are converted into a form which can be added together (since fP loss is measured in kW, and fEn,cost, fInv,cost are measured in AUD ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
156
+ page_content=' x∗ = argmin x∈X w1 � fP loss−f utopia P loss f Nadir P loss −f utopia P loss � + w2 � fEn,cost−f utopia En,cost f Nadir En,cost−f utopia En,cost � +w3 � fInv,cost−f utopia Inv,cost f Nadir Inv,cost−f utopia Inv,cost � (22) where X is the feasible set which is constrained by (1)-(17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
157
+ page_content=' The utopia values, individual minimum point values and nadir values of the multi-objective function are found by (23), (24) and (25), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
158
+ page_content=' Besides, the decision variable vector can be explicitly expressed as (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
159
+ page_content=' f utopia P loss = fP loss(x∗ Ploss) (23a) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
160
+ page_content=' 2: 7-Node LV radial distribution network f utopia En,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
161
+ page_content='cost = fEn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
162
+ page_content='cost(x∗ En,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
163
+ page_content='cost) (23b) f utopia Inv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
164
+ page_content='cost = fInv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
165
+ page_content='cost(x∗ Inv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
166
+ page_content='cost) (23c) x∗ Ploss = argmin x∈X fP loss (24a) x∗ En,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
167
+ page_content='cost = argmin x∈X fEn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
168
+ page_content='cost (24b) x∗ Inv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
169
+ page_content='cost = argmin x∈X fInv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
170
+ page_content='cost (24c) f Nadir P loss = Max � fP loss(x∗ Ploss),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
171
+ page_content=' fP loss(x∗ En,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
172
+ page_content='cost),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
173
+ page_content=' fP loss(x∗ Inv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
174
+ page_content='cost) � (25a) f Nadir En,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
175
+ page_content='cost = Max � fEn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
176
+ page_content='cost(x∗ Ploss),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
177
+ page_content=' fEn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
178
+ page_content='cost(x∗ En,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
179
+ page_content='cost),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
180
+ page_content=' fEn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
181
+ page_content='cost(x∗ Inv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
182
+ page_content='cost) � (25b) f Nadir Inv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
183
+ page_content='cost = Max � fInv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
184
+ page_content='cost(x∗ Ploss),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
185
+ page_content=' fInv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
186
+ page_content='cost(x∗ En,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
187
+ page_content='cost),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
188
+ page_content=' fInv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
189
+ page_content='cost(x∗ Inv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
190
+ page_content='cost) � (25c) x = (aj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
191
+ page_content=' pRate j ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
192
+ page_content=' Ecap j ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
193
+ page_content=' pCES,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
194
+ page_content='ch j ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
195
+ page_content=' pCES,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
196
+ page_content='dis j ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
197
+ page_content=' pG CES,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
198
+ page_content=' pG cj) (26) In summary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
199
+ page_content=' the optimization framework can be written as (22),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
200
+ page_content=' subject to a set of constraints (1)-(17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
201
+ page_content=' Also, as (22) being a quadratically-constrained convex multi-objective function, it is solved as a mixed-integer quadratic program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
202
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
203
+ page_content=' NUMERICAL AND SIMULATION RESULTS In the simulations, a 7-node LV radial distribution network given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
204
+ page_content=' 2 is used and its line data can be found in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
205
+ page_content=' Also, real power consumption and SPV generation data of 30 customers in an Australian residential community were used for simulations [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
206
+ page_content=' To be more practical, we randomly allocated multiple customers for each node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
207
+ page_content=' Hence, �N j=1 |Cj| = 30, and the number of customers at each node are marked in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
208
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
209
+ page_content=' Here, all the customers generate SPV power in addition to their real power consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
210
+ page_content=' However, reactive power consumption of the customers is not considered due to the lack of sufficient real data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
211
+ page_content=' As the optimization Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
212
+ page_content=' 3: Variation of grid energy price for 24 hours involves not only a scheduling problem but also a planning problem, the optimization is performed over a long time period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
213
+ page_content=' Thus, we consider one year time period split in one hour time intervals (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
214
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
215
+ page_content='|T | = 8760 ) for the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
216
+ page_content=' The voltage and power base are taken as 400V and 100 kVA, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
217
+ page_content=' In addition to that, V0 = 1p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
218
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
219
+ page_content=', Umin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
220
+ page_content='9025p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
221
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
222
+ page_content=', Umax = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
223
+ page_content='1025p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
224
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
225
+ page_content=', λmin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
226
+ page_content='05, λmax = 1, ηch = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
227
+ page_content='98, ηdis = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
228
+ page_content='02, Ecap min = 200kWh, Ecap max = 2000kWh, pRate min = 20kW, pRate max = 200kW, ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
229
+ page_content='0001kWh and ∆t = 1h are used as the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
230
+ page_content=' The values of γCES and δCES are taken as 24000 AUD and 300 AUD/kWh as specified in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
231
+ page_content=' Additionally, the weighting factors w1, w2 and w3 were calculated according to the principles of AHP specified in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
232
+ page_content=' We considered a moderate plus importance for both fEn,cost and fInv,cost compared to fP loss, and an equal importance for fEn,cost and fInv,cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
233
+ page_content=' Hence, based on the AHP method, the values of w1, w2 and w3 were calculated as 1/9, 4/9 and 4/9, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
234
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
235
+ page_content=' 3 depicts how the grid energy price varies with the time of the day following a time of use (ToU) tariff scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
236
+ page_content=' As seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
237
+ page_content=' 3, the grid energy price is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
238
+ page_content='24871 AUD/kWh during T1(from 12am-7am) & T5(from 10pm-12am), 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
239
+ page_content='31207 AUD/kWh during T2(from 7am-3pm) & T4 (from 9pm-10pm) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
240
+ page_content='52602 AUD/kWh during T3(from 3pm-9pm) [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
241
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
242
+ page_content=' Case Study - Proposed Optimization Framework Vs Opti- mization Models With Arbitrary CES Locations We did a case study to compare the results of our model with four different cases by arbitrarily changing the CES location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
243
+ page_content=' For this, we considered our optimization framework as Case I, while the rest as Case II-V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
244
+ page_content=' The same optimization framework (except the constraint that finds the optimal CES location), and the model parameters as for Case I were used for Case II- V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
245
+ page_content=' A synopsis of the results for the five cases are tabulated in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
246
+ page_content=' The Case I lists the planning results and the minimized objective function values for our proposed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
247
+ page_content=' The Cases II and III suggest the same optimal CES capacity and the rated power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
248
+ page_content=' Nevertheless, due to their difference in CES location, Case II provides less real energy loss and energy trading cost compared with the Case III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
249
+ page_content=' When the CES is at node 6, the optimization suggests the same optimal capacity as in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
250
+ page_content=' However, as node 6 is not the optimal location for CES, the real energy loss and energy trading cost for Case IV are higher 2 6 External Transformer IC2l = 4 IC6l = 4 Grid 22/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
251
+ page_content='4 kV 0 1 3 4 IC1l = 3 IC3l = 5 C4 = 6 ICzl = 5 5 ICsl = 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
252
+ page_content='55 I (AUD/kWh) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
253
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
254
+ page_content='45 Signal ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
255
+ page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
256
+ page_content='35 Price Energy I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
257
+ page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
258
+ page_content='25 T4 T5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
259
+ page_content='20 0 5 10 15 20 25 Time Duration (24 HoursTABLE I: SUMMARY OF THE RESULTS FOR CASE STUDIES CES Location (Node) Optimal CES Capacity (kWh) Optimal CES Power Rating (kW) Real Energy Loss1 (kWh) Energy Trading Cost With Grid1 (AUD) CES Investment Cost (AUD) Base Case (Without CES) Not applicable Not applicable Not applicable 110116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
260
+ page_content='68 45585 Not applicable Case I (Proposed Model) 4 (optimal) 482.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
261
+ page_content='15 200 78200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
262
+ page_content='88 (71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
263
+ page_content='02%) 38520 (84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
264
+ page_content='50%) 168645 Case II 3 (chosen) 601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
265
+ page_content='32 200 80250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
266
+ page_content='48 (72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
267
+ page_content='88%) 43362 (95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
268
+ page_content='12%) 204396 Case III 5 (chosen) 601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
269
+ page_content='32 200 81961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
270
+ page_content='28 (74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
271
+ page_content='43%) 43840 (96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
272
+ page_content='17%) 204396 Case IV 6 (chosen) 482.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
273
+ page_content='15 200 80761.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
274
+ page_content='16 (73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
275
+ page_content='34%) 44154 (96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
276
+ page_content='86%) 168645 Case V 7 (chosen) 547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
277
+ page_content='69 200 86082.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
278
+ page_content='52 (78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
279
+ page_content='17%) 43625 (95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
280
+ page_content='70%) 188307 1 Percentage values are calculated with respect to their corresponding values without a CES Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
281
+ page_content=' 4: Total power exchange with the grid by the customers Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
282
+ page_content=' 5: Total power exchange with the CES by the customers than in Case I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
283
+ page_content=' Also, our model has produced the highest cost reduction percentages for real energy loss (28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
284
+ page_content='98%) and the energy trading cost with the grid (15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
285
+ page_content='5%), compared to all the other cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
286
+ page_content=' Hence, it is clear that Case I yields the minimum values for all the three objective functions, and this justifies the effectiveness of our optimization framework compared to the models that optimize only the CES scheduling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
287
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
288
+ page_content=' Analysis of the Results-Mutual Power Exchanges Between the customers, the CES and the grid In order to understand the CES scheduling and power exchanges between different entities, we select a single day (24 hours) for our discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
289
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
290
+ page_content=' 4 shows the variation of total Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
291
+ page_content=' 6: Power exchange with the grid by the CES Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
292
+ page_content=' 7: CES charging and discharging power pattern power exchange that occurs with the grid by the customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
293
+ page_content=' Since �N j=1 � c∈Cj pG cj(t) being a positive value approxi- mately during T1, T3, T4, T5 time intervals, it implies that the customers tend to import certain amount of power from the grid for satisfying their real power consumption during those time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
294
+ page_content=' On the other hand, during T2 (time period of the day usually the SPV generation is high), the customers have a tendency to export a portion of their surplus SPV generation to the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
295
+ page_content=' This is evident as �N j=1 � c∈Cj pG cj(t) < 0 during T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
296
+ page_content=' This behavior guarantees a cost benefit for the customers for their exported power according to equation (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
297
+ page_content=' The Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
298
+ page_content=' 5 depicts how the customers exchange power ) (kw) 50 ()53 0 50 100 0 5 10 15 20 2550 (kw) 0 50 100 150 200 0 5 10 15 20 25100 (kW) 50 0 CG 50 100 0 5 10 15 20 25 Time e Duration(24 Hours100 (kW) 50 0 and 50 100 p 0 5 10 15 20 25Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
299
+ page_content=' 8: Temporal variation of the CES energy level with the CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
300
+ page_content=' During T2, the customers export a part of their surplus SPV generation to the CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
301
+ page_content=' On the contrary, during rest of the time periods, the customers import a certain amount of power from the CES for satisfying their real power consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
302
+ page_content=' This action results in reducing the cost for the customers as the amount of power imported from the grid is minimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
303
+ page_content=' The Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
304
+ page_content=' 6 illustrates how the CES exchanges power with the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
305
+ page_content=' As the grid energy price during T1 being the lowest, the CES tends to import power from the grid (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
306
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
307
+ page_content=' pCES G (t) > 0) during T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
308
+ page_content=' This guarantees that the CES is charged with low priced energy from the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
309
+ page_content=' However, during T2, T3 and T4, it is seen that the CES exports its power back to the grid (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
310
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
311
+ page_content=' pCES G (t) < 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
312
+ page_content=' This happens as the CES provider can maximize its revenue by exporting power back to grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
313
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
314
+ page_content=' 7 and 8, it is observed that during T1, the CES charges (from the low priced grid energy) and partially dis- charges by the end of T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
315
+ page_content=' During T2, the CES continues to charge and by the end of this time period, it reaches its maximum energy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
316
+ page_content=' The stored energy in the CES is fully utilized during T3 and T4 for partially supplying the real power consumption of the customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
317
+ page_content=' This facilitates monetary benefits for both the customers as the amount of expensive power imported from the grid is lowered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
318
+ page_content=' Additionally, when observing the temporal variation of the CES energy level, it is visualized that it is the peak value of the CES energy level which was obtained as the optimal CES capacity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
319
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
320
+ page_content=' 482.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
321
+ page_content='15 kWh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
322
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
323
+ page_content=' CONCLUSION & FUTURE WORK In this work, we have explored how the optimization of the planning and scheduling aspects of a community energy storage (CES) can benefit both the network and the customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
324
+ page_content=' To this end, we developed a multi-objective mixed-integer quadratic optimization framework to minimize three objec- tives: (i) network real power loss, (ii) energy trading cost of the customers and the CES provider with the grid, and (iii) the CES investment cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
325
+ page_content=' The simulation results highlighted our optimization framework is competent in acquiring the expected merits compared with the case without a CES, and optimization models that optimize only the scheduling of CES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
326
+ page_content=' As future work, we expect to develop the work considering a stochastic model taking into account the uncertainties of real power consumption and SPV generation of the customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
327
+ page_content=' Moreover, we look forward to extend the work by considering the unbalanced nature of LV distribution networks, and reac- tive power control capabilities of solar photovoltaic (SPV) and CES inverters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
328
+ page_content=' REFERENCES [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
329
+ page_content=' Shaw, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
330
+ page_content=' Sturmberg, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
331
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
332
+ page_content=' Mediwaththe, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
333
+ page_content=' Ransan-Cooper, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
334
+ page_content=' Taylor and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
335
+ page_content=' Blackhall “Community batteries: a cost/benefit analysis,” Tech- nical Report, Australian National University, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
336
+ page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
337
+ page_content=' Zheng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
338
+ page_content=' Song, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
339
+ page_content=' Huang, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
340
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
341
+ page_content=' Hill, “Hierarchical Optimal Allocation of Battery Energy Storage Systems for Multiple Services in Distribution Systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
342
+ page_content=' Sust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
343
+ page_content=' Energy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
344
+ page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
345
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
346
+ page_content=' 1911–1921, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
347
+ page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
348
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
349
+ page_content=' Mediwaththe, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
350
+ page_content=' Blackhall, “Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
351
+ page_content='Power Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
352
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
353
+ page_content=' 36, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
354
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
355
+ page_content=' 1229–1238, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
356
+ page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
357
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
358
+ page_content=' Mediwaththe, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
359
+ page_content=' Blackhall, “Community Energy Storage-based Energy Trading Management for Cost Benefits and Network Support,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
360
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
361
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
362
+ page_content=' Smart Grids and Energy Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
363
+ page_content=', 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
364
+ page_content=' 516–521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
365
+ page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
366
+ page_content=' Zafar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
367
+ page_content=' Ravishankar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
368
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
369
+ page_content=' Fletcher and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
370
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
371
+ page_content=' Pota, “Multi-Timescale Model Predictive Control of Battery Energy Storage System Using Conic Relaxation in Smart Distribution Grids,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
372
+ page_content='Power Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
373
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
374
+ page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
375
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
376
+ page_content=' 7152–7161, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
377
+ page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
378
+ page_content=' Hasanpor Divshali , and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
379
+ page_content=' S¨oder, “Improving Hosting Capacity of Rooftop PVs by Quadratic Control of an LV-Central BSS,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
380
+ page_content=' Smart Grid, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
381
+ page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
382
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
383
+ page_content=' 919–927, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
384
+ page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
385
+ page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
386
+ page_content=' Hung , and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
387
+ page_content=' Mithulananthan, “Community energy storage and capacitor allocation in distribution systems,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
388
+ page_content=' Aus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
389
+ page_content=' Uni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
390
+ page_content=' Power Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
391
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
392
+ page_content=', 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
393
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
394
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
395
+ page_content=' B¨ohringer , S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
396
+ page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
397
+ page_content=' Weck and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
398
+ page_content=' Hanson, “Sizing and Placement of Community Energy Storage Systems using Multi-Period Optimal Power Flow,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
399
+ page_content=' IEEE Mad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
400
+ page_content=' PowerTech, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
401
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
402
+ page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
403
+ page_content=' Boyd, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
404
+ page_content=' Vandenberghe,, “Convex Optimization,” 1st ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
405
+ page_content=' Cam- bridge U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
406
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
407
+ page_content=': Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
408
+ page_content=' Press, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
409
+ page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
410
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
411
+ page_content=' Saaty, “Decision making — the analytic hierarchy and Network Processes (AHP/ANP),” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
412
+ page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
413
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
414
+ page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
415
+ page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
416
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
417
+ page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
418
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
419
+ page_content=' 1–35, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
420
+ page_content=' [11] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
421
+ page_content=' Lin, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
422
+ page_content=' Bitar, “Decentralized Stochastic Control of Distributed Energy Resources,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
423
+ page_content='Power Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
424
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
425
+ page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
426
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
427
+ page_content=' 888–900, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
428
+ page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
429
+ page_content=' Martin“1-to-1 solar buyback vs solar feed-in tariffs: The eco- nomics,”2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
430
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
431
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
432
+ page_content='solarchoice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
433
+ page_content='net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
434
+ page_content='au/blog/ the-economics-of-a-1-to-1-solar-buyback-vs-solar-feed-in-tariffs/” [13] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
435
+ page_content=' Grodzevich , and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
436
+ page_content=' Romanko, “Normalization and other topics in multi-objective optimization,” in Fields MITACS Indust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
437
+ page_content=' Prob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
438
+ page_content=' Workshop, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
439
+ page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
440
+ page_content=' Zeraati, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
441
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
442
+ page_content=' Hamedani Golshan, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
443
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
444
+ page_content=' Guerrero, “Distributed control of battery energy storage systems for voltage regulation in distribution networks with high pv penetration,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
445
+ page_content=' Smart Grid, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
446
+ page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
447
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
448
+ page_content=' 3582–3593, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
449
+ page_content=' [15] “Solar Home Electricity Data,” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
450
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
451
+ page_content='ausgrid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
452
+ page_content=' com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
453
+ page_content='au/Industry/Our-Research/Data-to-share/Solar-home-electricity- data/.” [16] “Origin, “VIC residential energy price fact sheet,” 2018.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
454
+ page_content=' Available: shorturl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
455
+ page_content='at/gkmV5” 500 400 (kWh) 300 200 100 0 5 10 15 20 25 Time Duration (24 Hours)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NE0T4oBgHgl3EQfdADd/content/2301.02372v1.pdf'}
19AzT4oBgHgl3EQfuP0B/content/2301.01686v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29ce0e0a870abf6e51ebd6c2efdcd90bdf0609912538d1eb649ee4bdaa339606
3
+ size 3591594
19AzT4oBgHgl3EQfuP0B/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dedd1a1b4a8c46909911a24822fb393f7ac17fad180b3c3f5f5e9580cdf66b15
3
+ size 2386836
19E1T4oBgHgl3EQf5QWX/content/tmp_files/2301.03510v1.pdf.txt ADDED
@@ -0,0 +1,1224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Parallel Reasoning Network for Human-Object Interaction Detection
2
+ Huan Peng1,2, Fenggang Liu2, Yangguang Li2, Bin Huang2, Jing Shao2, Nong Sang1, Changxin Gao1
3
+ 1Huazhong University of Science and Technology
4
+ 2SenseTime Group
5
+ {nsang,cgao}@hust.edu.cn; [email protected];
6
+ {penghuan,liufenggang,huangbin1,shaojing}@senseauto.com
7
+ Abstract
8
+ Human-Object Interaction (HOI) detection aims to learn
9
+ how human interacts with surrounding objects. Previous
10
+ HOI detection frameworks simultaneously detect human,
11
+ objects and their corresponding interactions by using a
12
+ predictor. Using only one shared predictor cannot differ-
13
+ entiate the attentive field of instance-level prediction and
14
+ relation-level prediction. To solve this problem, we pro-
15
+ pose a new transformer-based method named Parallel Rea-
16
+ soning Network(PR-Net), which constructs two indepen-
17
+ dent predictors for instance-level localization and relation-
18
+ level understanding. The former predictor concentrates on
19
+ instance-level localization by perceiving instances’ extrem-
20
+ ity regions. The latter broadens the scope of relation region
21
+ to reach a better relation-level semantic understanding. Ex-
22
+ tensive experiments and analysis on HICO-DET benchmark
23
+ exhibit that our PR-Net effectively alleviated this problem.
24
+ Our PR-Net has achieved competitive results on HICO-DET
25
+ and V-COCO benchmarks.
26
+ 1. Introduction
27
+ The real world contains large amounts of complex
28
+ human-centric activities, which are mainly composed of
29
+ various human-object interactions (HOIs). In order for ma-
30
+ chines to better understand these complex activities, we
31
+ need to detect all these HOIs accurately. To be specific,
32
+ HOI detection can be defined as detecting the human-object
33
+ pair and their corresponding interactions in an image. It
34
+ can be divided into two sub-tasks, instance detection, and
35
+ interaction understanding. Only if these two sub-tasks are
36
+ completed can we build a good HOI detector.
37
+ Previously, different methods were taken to process
38
+ these two sub-tasks. Traditional methods like [4,11,23,28]
39
+ first locates all instances and then extracts their correspond-
40
+ ing features with an off-the-shelf object detector like [12,
41
+ 29]. After that, instance matching and feature fusing ap-
42
+ proaches are used to construct human-object pairs which
43
+ Figure 1. The attention fields for two different level predictors
44
+ in our PR-Net. The first column shows these input images. The
45
+ second column exhibits the attention fields of instance-level pre-
46
+ dictor, in which the model concentrates on the extremity region of
47
+ human and object. The third column exhibits the attention fields
48
+ of interaction-level predictor, in which the model spreads its scope
49
+ of attention to the relation-level region.
50
+ are more likely to have interactive relations. These pairs are
51
+ then sent into the intention parsing network as inputs, and
52
+ HOI is classified and outpus, so as to obtain the humain-
53
+ object position and corresponding interactive relation cate-
54
+ gory. In summary, these traditional two-stage approaches
55
+ suffer from the isolated training process of instance local-
56
+ ization and interaction understanding, so they cannot lo-
57
+ calize interactive human-object pairs and understand those
58
+ complex HOI instances.
59
+ To alleviate the above problems, multitask learning man-
60
+ ners [5, 17, 18, 24, 30, 35, 40, 42] are proposed to com-
61
+ plete these two sub-tasks simultaneously. Among these ap-
62
+ proaches, they [5,18,24,35,40] process these two sub-tasks
63
+ concurrently.
64
+ Whereas they need an additional complex
65
+ group composition procedure to match the predictions of
66
+ these two sub-tasks, which reduces the computation effi-
67
+ ciency. In addition, other one-stage methods [30, 42] pre-
68
+ dict human-object pairs and corresponding interactions us-
69
+ ing one shared prediction head, without needing matching
70
+ or gathering processes. However, they accomplish instance
71
+ 1
72
+ arXiv:2301.03510v1 [cs.CV] 9 Jan 2023
73
+
74
+ localization and interaction understanding in a mixed and
75
+ tied manner. This naive mixed prediction manner can cause
76
+ inconsistent focus in attentive fields between the instance-
77
+ level and the relation-level prediction. This inconsistent fo-
78
+ cus has caused limited interaction understanding for those
79
+ hard-negative HOIs, which leads to dissatisfactory HOI de-
80
+ tection performance.
81
+ To sum up, we propose a new transformer-based ap-
82
+ proach named Parallel Reasoning Network (PR-Net) to alle-
83
+ viate inconsistent focus of attentive fields for different level
84
+ prediction. Specificly, two parallel predictos, instance-level
85
+ predictor and relation-level predictor,are concluded in PR-
86
+ Net. The former focuses on instance-level localization, and
87
+ the latter keeps a watchful eye on relation-level semantic
88
+ understanding. As can be seen from the two examples in
89
+ the second columns of Figure 1, PR-Net’s attention to in-
90
+ stances is focused on the endpoints of human skeleton and
91
+ the particular edge regions of objects, indicating that the
92
+ instance-level predictor can accurately locate the localiza-
93
+ tion of human and objects by focusing on these critical ex-
94
+ tremity regions of instances. From the two examples in the
95
+ third column of Figure 1, it can be seen that PR-Net’s at-
96
+ tention to relational areas is focused on the interaction con-
97
+ tact areas between human and objects and some contextual
98
+ areas containing helpful understanding of the interaction,
99
+ which indicates that the relational level predictor spreads
100
+ its vision to relation areas to better understand the subtle
101
+ relationships between human and objects. In addition, the
102
+ instance-level queries of our instance-level predictor strictly
103
+ correspond to the relation-level queries of our relationship-
104
+ level predictors. So there is no need for any instance-level
105
+ queries between them, which greatly reduces the computa-
106
+ tional cost [30].
107
+ Our contribution can be concluded in the following three
108
+ aspects:
109
+ • We propose PR-Net, which leverages a parallel reason-
110
+ ing architecture to effectively alleviate the problem of
111
+ inconsistent focus in attention fields between instance-
112
+ level and relation-level prediction. PR-Net achieves a
113
+ better trade-off between two contradictory sub-tasks of
114
+ HOI detection. The former needs more local informa-
115
+ tion from the extremity region of instances, the latter is
116
+ eager for more context information from the relation-
117
+ level area.
118
+ • With a decoupled prediction manner, PR-Net can de-
119
+ tect various HOIs simultaneously without any match-
120
+ ing or recomposition process to link the instance-level
121
+ prediction and relation-level prediction.
122
+ • Equipped with additional techniques, including Con-
123
+ sistency Loss for better training and Trident-NMS for
124
+ better post-processing, PR-Net achieves competitive
125
+ results on both HICO-DET and V-COCO benchmark
126
+ datasets in HOI detection.
127
+ 2. Related Works
128
+ 2.1. Two-stage Approaches in HOI Detection
129
+ Most two-stage HOI detectors firstly detect all the hu-
130
+ man and object instances with a modern object detection
131
+ framework such as Faster R-CNN, Mask R-CNN [12, 29].
132
+ After instance-level feature extraction and contextual infor-
133
+ mation collection, these approaches pair the human and ob-
134
+ ject instances for interaction recognition. In the process of
135
+ interaction recognition, various contextual features are ag-
136
+ gregated to acquire a better relation-level semantic repre-
137
+ sentation. InteractNet [9] introduces an additional branch
138
+ for interaction prediction, iCAN [8] captures contextual in-
139
+ formation using attention mechanisms for interaction pre-
140
+ diction. TIN [23] further extends HOI detection models
141
+ with a transferable knowledge learner. In-GraphNet [37]
142
+ presents a novel graph-based interactive reasoning model to
143
+ infer HOIs. VSGNet [31] utilizes relative spatial reasoning
144
+ and structual connections to analyze HOIs. IDN [22] repre-
145
+ sents the implicit interaction in the transformation function
146
+ space to learn a better HOI semantic. Hou proposes fabri-
147
+ cating object representations in feature space for few-shot
148
+ learning [16] and learning to transfer object affordance for
149
+ HOI detection [15]. Zhang [38] proposes to merge multi-
150
+ modal features using a graphical model to generate a more
151
+ discriminative feature.
152
+ 2.2. One-stage Approaches in HOI Detection
153
+ One-stage approaches directly detect Human-Object In-
154
+ teractions without complicated coarse-to-fine bounding box
155
+ regression [5, 17, 18, 24, 30, 35, 40, 42]. Among these ap-
156
+ proaches, [24, 36] introduced a keypoint-style interaction
157
+ detection method which performs inference at each interac-
158
+ tion key point. [17] introduced a real-time method to pre-
159
+ dict the interactions for each human-object union box. Re-
160
+ cently, transformer-based detection approach was proposed
161
+ to handle HOI detection as a sparse set prediction prob-
162
+ lem [5, 30, 42]. Specifically, [30] designed a transformer
163
+ encoder-decoder architecture to predict Human-Object In-
164
+ teractions in an end-to-end manner directly and introduced
165
+ additional cost terms for interaction prediction. On the other
166
+ hand, Kim et al. [19] and Chen et al. [6] propose an in-
167
+ teraction decoder to be used alongside the DETR instance
168
+ decoder. It is equally important for predicting interactions
169
+ and matching related human-object pairs. These aforemen-
170
+ tioned one-stage approaches have enormously boosted the
171
+ performance of Human-Object Interaction Detectors.
172
+ 2
173
+
174
+ Pairwise
175
+ Instance
176
+ Decoder
177
+ Instance-level
178
+ Queries
179
+ Instance-level
180
+ Feature
181
+ Relation
182
+ Decoder
183
+ Relation-Level Predictor
184
+ Instance-level Predictor
185
+ Relation-level
186
+ Queries
187
+ Relation-level
188
+ Feature
189
+ Convolutional
190
+ Neural
191
+ Network
192
+ ……
193
+ Transformer
194
+ Encoder
195
+
196
+
197
+ Positional Encoding
198
+ Input Feature
199
+ Visual Memory
200
+ Image Feature Extractor
201
+ Classification Loss
202
+ Regression Loss
203
+ Consistency Loss
204
+ Training
205
+ Trident-NMS
206
+ Testing
207
+ Object Class
208
+ Human Box
209
+ Object Box
210
+ Relation Box
211
+ Relation class
212
+ ……
213
+ ……
214
+ ……
215
+ ……
216
+ Figure 2. The framework of our PR-Net. It is comprised of four components:Image Feature Extractor, Pairwise Instance Predictor,
217
+ Relation-level Predictor, Training and Post-processing Techniques.
218
+ 3. Proposed Method
219
+ In this section, we present our Parallel Reasoning
220
+ Network(PR-Net) for HOI detection, which is illustrated in
221
+ the Figure 2. We can know that our PR-Net includes an
222
+ Image Feature Extractor(CNN backbone and transformer
223
+ encoder) and two parallel predictors (i.e., Instance-level
224
+ Predictor and Relation-level Predictor). The two parallel
225
+ predictors are designed to decode instance information(i.e.
226
+ human-box, object-box, object-class) and relation informa-
227
+ tion(i.e. relation-box, relation-class) respectively. Next, we
228
+ introduce the proposed instance-level and relation-level loss
229
+ functions to learn the location of instances and the interac-
230
+ tions within each human-object pair. At last, we introduce
231
+ the proposed Trident-NMS which is utilized to filter those
232
+ duplicated HOI predictions effectively.
233
+ 3.1. Image Feature Extractor
234
+ The overall Image Feature Extractor architecture con-
235
+ sists of a standard CNN backbone fc and transformer en-
236
+ coder fe. The conventional CNN backbone is used to pro-
237
+ cess the input image xϵR3×H×W to a global context feature
238
+ map zϵRc×H′×W ′, in which typically images are down-
239
+ sampled to (H′, W ′) spatial shape with a dimension of c.
240
+ Then, the global context feature map is serialized as to-
241
+ kens, in which the spatial dimensions of the feature map
242
+ are collapsed into one dimension, resulting in H′ × W ′
243
+ tokens.
244
+ Then, the tokens are linearly mapped to T =
245
+ {ti|tiϵRc′}Nq
246
+ i=1, where Nq = H′ × W ′. Afterward, these
247
+ tokens are shaped as a sequence to feed into the transformer
248
+ encoder.
249
+ For the transformer encoder, each encoder layer fol-
250
+ lows standard architecture of transformer, which con-
251
+ sists of a multi-head self-attention module and a feed
252
+ forward network (FFN). Additional position embedding
253
+ qeϵRc′×H′×W ′ is also added to the serialized token to
254
+ supplement the positional information.
255
+ With the mech-
256
+ anism of self-attention, the encoder can map the former
257
+ global context feature map from CNN to richer contex-
258
+ tual information. Finally, the set of encoded image fea-
259
+ tures {di|diϵRc′}Nq
260
+ i=1 can be formulated as visual memory
261
+ E = fe(T, qe). The visual memory E contains richer con-
262
+ textual information.
263
+ 3.2. Instance-level Predictor
264
+ The Instance-level Predictor includes a standard trans-
265
+ former decoder fip with just three layers.
266
+ The decoder
267
+ response for above visual memory E, according to a set
268
+ of learnable instance query vectors Qp = {qi|qiϵRc′}Nq
269
+ i=1
270
+ which is added with position embedding plϵRc′×H′×W ′.
271
+ The instance-level queries vectors are trained to learn a
272
+ more precise location of instances, which focuses more
273
+ on those local information about location of instances.
274
+ The independent predictors are composed of three feed-
275
+ forward networks (FFNs), including human-bounding-box
276
+ FFN φhb, object-bounding-box FFN φob, and object-class
277
+ FFN φoc, each of which response for decoding instance fea-
278
+ ture to human-box ˆbh, object-box ˆbo and object-class ˆco re-
279
+ spectively. The formulation can be denoted as:
280
+ ˆbh = φhb(fip(Qp, pl, E)),
281
+ ˆbo = φob(fip(Qp, pl, E)),
282
+ ˆco = φoc(fip(Qp, pl, E)).
283
+ (1)
284
+ 3.3. Relation-level Predictor
285
+ We decouple the relation problems from HOI and use a
286
+ Relation-level Predictor to reason relationships from larger-
287
+ scale semantics. We propose a relation box to guide the
288
+ predictor to percept the human-object relationship in the
289
+ 3
290
+
291
+ human blow cakeRelation-level Predictor.
292
+ The Relation-level Predictor consists of a standard trans-
293
+ former decoder frd and two independent predictors(FFNs).
294
+ Another relation-level queries Qr and position embedding
295
+ pr are randomly initialed and fed into the Relation-level
296
+ Predictor. One of the predictors φub predicts relation boxes
297
+ ˆbu, the other predictor φac decodes the relation class in-
298
+ formation ˆca. The relation boxes ˆbu and the relation class
299
+ information ˆca can be formulated as Eq. 2.
300
+ ˆbu = φub(fdr(Qr, pr, E)),
301
+ ˆca = φac(fdr(Qr, pr, E)).
302
+ (2)
303
+ Attributed to the relation boxes, the decoder of Interaction-
304
+ level Predictor is guided to enlarge the receptive field (as
305
+ shown in Figure 1). The relation queries Qr can pay at-
306
+ tention to the entire area where human and object interact.
307
+ Thus, the predictor φac can predict a more accurate relation
308
+ class.
309
+ In addiction, to match the relation class information ˆca
310
+ with the aforementioned human-box ˆbh, object-box ˆbo and
311
+ object-class ˆco from the Instance-level Predictor, we ditch
312
+ the complex matching method like HO pointer in HOTR.
313
+ Instead, we just match the relation class information ˆca
314
+ and the instances information ˆbh etc. one by one in order.
315
+ Specifically, for a pair of instances {ˆbh
316
+ i ,ˆbo
317
+ , ˆco
318
+ i , iϵNq}, ˆca
319
+ i is
320
+ the corresponding relation class. In this way, the instance-
321
+ level query vectors Qp and the relation-level query vectors
322
+ Qr represent the same human-object interaction, but have
323
+ the ability to focus on different receptive field.
324
+ 3.4. Loss Functions
325
+ The overall loss functions consist of the instance-level
326
+ loss and relation-level loss, applied to Instance-level Predic-
327
+ tor and Relation-level Predictor, respectively. The instance-
328
+ level loss supervises the Instance-level Predictor to pre-
329
+ dict instance-level target, i.e., human-box, object-box, and
330
+ object-class. The relation-level loss assists the Relation-
331
+ level Predictor to predict relation-class and relation-box
332
+ from the larger receptive field.
333
+ 3.4.1
334
+ The Instance-level loss function
335
+ LIL supervises the instance information, including human-
336
+ box ˆbh, object-box ˆbo and object-class ˆco. The instance-
337
+ level loss function consists of human-box regression Lhr,
338
+ object-box regression Lor and object-class classification
339
+ Loc. Lhr and Lor are standard bounding-box regression
340
+ loss, i.e. L1 loss, to locate the position of human and ob-
341
+ ject. Loc is a classification loss to classify the categories of
342
+ the object. The loss functions can be defined as Eq. 5.
343
+ Lhr = 1
344
+ N
345
+ N
346
+
347
+ i
348
+ ||ˆbh
349
+ i − bh
350
+ i ||,
351
+ Lor = 1
352
+ N
353
+ N
354
+
355
+ i
356
+ ||ˆbo
357
+ i − bo
358
+ i ||,
359
+ Loc = 1
360
+ N
361
+ N
362
+
363
+ i
364
+ CE(ˆco
365
+ i , co
366
+ i ),
367
+ (3)
368
+ where CE is cross entropy loss, co
369
+ i is the ground truth of
370
+ object class.
371
+ The instance-level loss function LIL can be defined as:
372
+ LIL = Whr ∗ Lhr + Wor ∗ Lor + Woc ∗ Loc.
373
+ (4)
374
+ 3.4.2
375
+ The Relation-level loss function
376
+ LRL supervises the relationship information, i.e., the rela-
377
+ tion class ˆca, primarily. In addition, auxiliary relation boxes
378
+ are also supervised to pay attention to the entire area where
379
+ the interaction happens. Thus, the Relation-level loss func-
380
+ tion consists of relation-box regression Lur, relation-box
381
+ consistency loss Luc and relation-class loss Lac. The Lac is
382
+ a classification loss to classify the categories of the interac-
383
+ tion. The relation-box regression loss function Lur is a L1
384
+ loss to resemble the predicted relation boxes and its ground-
385
+ ing truth. The grounding truth of relation boxes is the outer
386
+ bounding box of human and object boxes. The relation-box
387
+ regression loss function helps the Relation-level Predictor
388
+ to be aware of the relation feature of human and object. The
389
+ consistency loss Luc are used to keep the consistency of ˆbh,
390
+ ˆbo and ˆbu. Specifically, a pseudo relation box ˆbho is gener-
391
+ ated by taking the outer bounding box of ˆbh and ˆbo. Then,
392
+ an L1 loss resemble ˆbu and ˆbho. With the relation box, the
393
+ relation-class loss can supervise better relation semantics.
394
+ Lur = 1
395
+ N
396
+ N
397
+
398
+ i
399
+ ||ˆbu
400
+ i − bu
401
+ i ||,
402
+ Luc = 1
403
+ N
404
+ N
405
+
406
+ i
407
+ ||ˆbu
408
+ i − ˆbho
409
+ i ||,
410
+ Lac = 1
411
+ N
412
+ N
413
+
414
+ i
415
+ SigmoidCE(ˆca
416
+ i , ca
417
+ i ).
418
+ (5)
419
+ The relation-level loss function LRL can be defined as:
420
+ LRL = Wur ∗ Lur + Wuc ∗ Luc + Wac ∗ Lac.
421
+ (6)
422
+ In all, the overall loss fucntion L can be denoted as:
423
+ L = LIL + LRL.
424
+ (7)
425
+ 4
426
+
427
+ 3.5. Inference for HOI Detection
428
+ The inference process of our PR-Net can be divided into
429
+ two parts: the calculation of the HOI predictions and the
430
+ Trident-NMS post-processing technique.
431
+ HOI Prediction To acquire the final HOI detection results,
432
+ we need to predict human bounding box, object bounding
433
+ box, and object class using both instance-level predictions
434
+ and relation class and relation box using relation-level pre-
435
+ diction. Based on the above predictions, we can calculate
436
+ the final HOI prediction score as below:
437
+ shoi
438
+ i
439
+ = {maxkso
440
+ i (k)} ∗ srel
441
+ i
442
+ (8)
443
+ Where maxkso
444
+ i (k) means the most probable class score of
445
+ the i-th output object from instance-level predictor; srel
446
+ i
447
+ means the multi-class scores of the i-th output interaction
448
+ from relation-level predictor. Note that each human-object
449
+ pair can only have one object with certain class, but there
450
+ maybe exist multiple human-object interactions within one
451
+ pair.
452
+ Trident-NMS For each predicted HOI class in one image,
453
+ we choose to filter its duplicated predictions according to
454
+ the above calculated HOI prediction scores with our pro-
455
+ posed Trident Non Maximal Suppression(Trident-NMS). In
456
+ detail, if the TriIoU(i, j) between the i-th and the j-th HOI
457
+ prediction is higher than the threshold Thresnms, we will
458
+ filter the prediction which has a lower HOI score. And the
459
+ calculation of TriIoU(i, j) is as below:
460
+ TriIoU(i, j) =IoU(bh
461
+ i , bh
462
+ j )Wh
463
+ × IoU(bo
464
+ i , bo
465
+ j)Wo
466
+ × IoU(brel
467
+ i , brel
468
+ j )Wrel
469
+ (9)
470
+ Where IoU(bh
471
+ i , bh
472
+ j ), IoU(bo
473
+ i , bo
474
+ j), IoU(brel
475
+ i , brel
476
+ j ) repre-
477
+ sent the Interaction over Union between the i-th and the j-
478
+ th human boxes, object boxes and relation boxes; Wh, Wo,
479
+ Wrel represent the weights of Human IoU, Object IoU and
480
+ Relation IoU.
481
+ 4. Experiment
482
+ 4.1. Datasets and Evaluation Metrics
483
+ We evaluate our method on two large-scale benchmarks,
484
+ including V-COCO [10] and HICO-DET [3] datasets. V-
485
+ COCO includes 10,346 images, which contains 16,199 hu-
486
+ man instances in total and provides 26 common verb cate-
487
+ gories. HICO-DET contains 47,776 images, where 80 ob-
488
+ ject categories and 117 verb categories compose of 600 HOI
489
+ categories. There are three different HOI category sets in
490
+ HICO-DET, which are: (a) all 600 HOI categories (Full),
491
+ (b) 138 HOI categories with less than 10 training instances
492
+ (Rare), and (c) 462 HOI categories with 10 or more training
493
+ instances (Non-Rare). Following the standard protocols, we
494
+ use mean average precision (mAP) in HICO-DET [4] and
495
+ role average precision (AProle) in V-COCO [10] to report
496
+ evaluation results.
497
+ 4.2. Implementation Details
498
+ We use ResNet-50 and ResNet-101 [13] as a backbone
499
+ feature extractor.
500
+ The transformer encoder consist of 6
501
+ transformer layers with multi-head attention of 8 heads.
502
+ The number of transformer layers in Instance-level Predic-
503
+ tor and Interaction-level Predictor is both set to be 3. The
504
+ reduced dimension size of visual memory is set to 256. The
505
+ number of instance-level and relation-level queries is set
506
+ to 100 for both HICO-Det and V-COCO benchmark. The
507
+ human, object and relation box FFNs both have 3 linear
508
+ layers with ReLU, while the object and relation category
509
+ FFNs have one linear layer. During training, we initial-
510
+ ize the network with the parameters of DETR [2] trained
511
+ on the MS-COCO dataset. We set the weight coefficients
512
+ of bounding box regression, Generalized IoU, object class,
513
+ relation class and consistency loss to 2.5, 1, 1, 1 and 0.5,
514
+ respectively, which follows QPIC [30]. We optimize the
515
+ network by AdamW [26] with the weight decay 10−4. We
516
+ train the model for 150 epochs with a learning rate of 10−5
517
+ for the backbone and 10−4 for the other parts decreased by
518
+ 10 times at the 100th and the 130th epoch respectively. All
519
+ experiments are conducted on the 8 Tesla A100 GPUs and
520
+ CUDA11.2, with a batch size of 16.
521
+ We select 100 detection results with the highest scores
522
+ for validation and then adopt Trident-NMS to filter results
523
+ further.
524
+ 4.3. Overall Performance
525
+ We summarize the performance comparisons in this sub-
526
+ section.
527
+ Performance on HICO-DET. Table 1 shows the per-
528
+ formance comparison on HICO-DET. Firstly, the detection
529
+ results of our PR-Net are the best among all approaches un-
530
+ der the Full and Non-Rare settings, demonstrating that our
531
+ method is more competitive than the others in detecting the
532
+ most common HOIs. It is noted that PR-Net is also pre-
533
+ eminent in detecting rare HOIs (HOI categories with less
534
+ than 10 training instances), because our parallel reasoning
535
+ network can migrate the non-rare knowledge into a rare do-
536
+ main. Besides, our PR-Net obtains 32.86 mAP on HICO-
537
+ DET (Default Full), which achieves a relative gain of 9.8%
538
+ compared with the baseline. These results quantitatively
539
+ show the efficacy of our method.
540
+ Performance on V-COCO. Comparison results on V-
541
+ COCO in terms of mAProle are shown in Table 2. It can
542
+ be seen that our proposed PR-Net has a mAP(%) of 62.4,
543
+ obtaining the best performance among all approaches. Al-
544
+ though we do not adopt previous region-based feature learn-
545
+ ing (e.g., RPNN [41], Contextual Att [34]), or employ ad-
546
+ 5
547
+
548
+ Table 1. Results on HICO-DET [4]. “COCO” is the COCO pre-
549
+ trained detector, “HICO-DET” means that the detector is further
550
+ fine-tuned on HICO-DET.
551
+ Default Full
552
+ Method
553
+ Detector
554
+ Backbone
555
+ Full
556
+ Rare Non-Rare
557
+ CNN-based
558
+ VCL [14]
559
+ COCO
560
+ ResNet-50
561
+ 19.43 16.55
562
+ 20.29
563
+ VSGNet [31]
564
+ COCO
565
+ ResNet-152
566
+ 19.80 16.05
567
+ 20.91
568
+ DJ-RN [21]
569
+ COCO
570
+ ResNet-50
571
+ 21.34 18.53
572
+ 22.18
573
+ PPDM [24]
574
+ HICO-DET Hourglass-104 21.73 13.78
575
+ 24.10
576
+ Bansal et al. [1]
577
+ HICO-DET
578
+ ResNet-101
579
+ 21.96 16.43
580
+ 23.62
581
+ TIN [23]DRG
582
+ HICO-DET
583
+ ResNet-50
584
+ 23.17 15.02
585
+ 25.61
586
+ VCL [14]
587
+ HICO-DET
588
+ ResNet-50
589
+ 23.63 17.21
590
+ 25.55
591
+ GG-Net [40]
592
+ HICO-DET Hourglass-104 23.47 16.48
593
+ 25.60
594
+ IDNDRG [22]
595
+ HICO-DET
596
+ ResNet-50
597
+ 26.29 22.61
598
+ 27.39
599
+ Transformer-based
600
+ HOI-Trans [42]
601
+ HICO-DET
602
+ ResNet-50
603
+ 23.46 16.91
604
+ 25.41
605
+ HOTR [18]
606
+ HICO-DET
607
+ ResNet-50
608
+ 25.10 17.34
609
+ 27.42
610
+ AS-Net [5]
611
+ HICO-DET
612
+ ResNet-50
613
+ 28.87 24.25
614
+ 30.25
615
+ QPIC [30]
616
+ HICO-DET
617
+ ResNet-50
618
+ 29.07 21.85
619
+ 31.23
620
+ PR-Net (Ours)
621
+ HICO-DET
622
+ ResNet-50
623
+ 31.17 25.66
624
+ 32.82
625
+ PR-Net (Ours)
626
+ HICO-DET
627
+ ResNet-101
628
+ 32.86 28.03
629
+ 34.30
630
+ ditional human pose (e.g., PMFNet [32], TIN [23]), our
631
+ method outperforms these approaches with sizable gains.
632
+ Besides, our method achieves an absolute gain of 3.6 points,
633
+ a relative improvement of 6.1% compared with the baseline,
634
+ validating its efficacy in the HOI detection task.
635
+ Table 2. Performance comparison on V-COCO dataset.
636
+ Method
637
+ Backbone Network
638
+ APS1
639
+ role
640
+ APS2
641
+ role
642
+ CNN-based
643
+ VSGNet [31]
644
+ ResNet-152
645
+ 51.8
646
+ 57.0
647
+ PMFNet [32]
648
+ ResNet-50-FPN
649
+ 52.0
650
+ -
651
+ PD-Net [39]
652
+ ResNet-152-FPN
653
+ 52.6
654
+ -
655
+ CHGNet [33]
656
+ ResNet-50-FPN
657
+ 52.7
658
+ -
659
+ FCMNet [25]
660
+ ResNet-50
661
+ 53.1
662
+ -
663
+ ACP [20]
664
+ ResNet-152
665
+ 53.23
666
+ -
667
+ IDN [22]
668
+ ResNet-50
669
+ 53.3
670
+ 60.3
671
+ GG-Net [40]
672
+ Hourglass-104
673
+ 54.7
674
+ -
675
+ DIRV [7]
676
+ EfficientDet-d3
677
+ 56.1
678
+ -
679
+ Transformer-based
680
+ HOI-Trans [42]
681
+ ResNet-101
682
+ 52.9
683
+ -
684
+ AS-Net [5]
685
+ ResNet-50
686
+ 53.9
687
+ -
688
+ HOTR [18]
689
+ ResNet-50
690
+ 55.2
691
+ 64.4
692
+ QPIC [30]
693
+ ResNet-50
694
+ 58.8
695
+ 61.0
696
+ PR-Net (Ours)
697
+ ResNet-50
698
+ 61.4
699
+ 62.5
700
+ PR-Net (Ours)
701
+ ResNet-101
702
+ 62.9
703
+ 64.2
704
+ 4.4. Ablation Analysis
705
+ To evaluate the contribution of different components
706
+ in our PR-Net, we first conduct a comprehensive ablation
707
+ analysis on the HICO-DET dataset. Next, we analyze the
708
+ impact of the number of different-level predictors. At last,
709
+ we analyze the effects of different post-processing manners.
710
+ Contribution of different components.
711
+ Compared
712
+ Table 3. Ablation analysis of the proposed PR-Net with the back-
713
+ bone of ResNet-101 on HICO-DET test set. Parallel Predictor
714
+ means we parallelly predict instance-level locations and relation-
715
+ level semantics. Consistency Loss means we constrain the union
716
+ box of the human-object pair and the relation box to be consis-
717
+ tent. Trident-NMS means duplicate filtering through human, ob-
718
+ ject, and relation bounding boxes.
719
+ Parallel Predictor
720
+ Consistency Loss
721
+ Trident-NMS
722
+ HICO-DET
723
+ Full
724
+ Rare
725
+ NonRare
726
+ -
727
+ -
728
+ -
729
+ 29.90
730
+ 23.92
731
+ 31.69
732
+
733
+ -
734
+ -
735
+ 31.62
736
+ 25.43
737
+ 33.47
738
+
739
+
740
+ -
741
+ 31.87
742
+ 27.59
743
+ 33.14
744
+
745
+
746
+
747
+ 32.86
748
+ 28.03
749
+ 34.30
750
+ with our baseline [30], the performance improvements of
751
+ our PR-Net are from three components: Parallel Predictor,
752
+ Consistency Loss, and Trident-NMS. From Table 3, we can
753
+ know the contribution of different components.
754
+ Among
755
+ these components, Parallel Predictor is our core approach.
756
+ With that, we can observe a noticeable gain of mAP in
757
+ HICO-DET by 1.72. It proves that the parallel reasoning
758
+ structure can significantly improve instance localization
759
+ and interaction understanding for an HOI detection model.
760
+ Additionally, we design a consistency loss between the
761
+ union box of the human-object pair and the relation box,
762
+ which can contribute about 0.25 mAP gain in the HICO-
763
+ DET test set. It shows that it is meaningful and helpful
764
+ to constrain the union region of instance-level predictions
765
+ and the relation region of relation-level predictions.
766
+ At
767
+ last, we design a more effective post-processing technique
768
+ named Trident-NMS, which brings about 1.0 mAP gain in
769
+ the HICO-DET test set. It reveals that the set-prediction
770
+ method can also benefit from duplicate filtering technique
771
+ and post-processing technique like NMS is essential for
772
+ HOI detection.
773
+ Impacts of different numbers of parallel predictors.
774
+ In our PR-Net, two parallel predictors are significant for
775
+ HOI detection, and we detailedly analyze the impact of
776
+ different numbers of parallel predictors. From Table 4, we
777
+ can know that equipped with three layers of instance-level
778
+ predictor and relation-level predictor, our PR-Net can
779
+ acquire the best mAP performance in the HICO-DET test
780
+ set. It reveals that our PR-Net can significantly outperform
781
+ the baseline QPIC [30] without additional computational
782
+ cost.
783
+ Interestingly, we can also observe that even with
784
+ only one layer of parallel predictors, our PR-Net can also
785
+ outperform the baseline equipped with a six-layer predictor.
786
+ Effects of different implements of Trident-NMS. In
787
+ Table 5, we analyze the effects of different implements
788
+ of Trident-NMS. We find that Product-based Trident-
789
+ NMS performs better than Sum-based Trident-NMS.
790
+ 6
791
+
792
+ Table 4. Ablation analysis of the number of instance-level predic-
793
+ tor Ndec and the number of relation-level predictor Nreldec.
794
+ approaches
795
+ Backbone Ndec Nreldec Full Rare Non-Rare
796
+ QPIC(Baseline) [30] ResNet50
797
+ 6
798
+ -
799
+ 29.07 21.85
800
+ 31.23
801
+ PR-Net(Ours)
802
+ ResNet50
803
+ 1
804
+ 1
805
+ 29.64 24.18
806
+ 31.27
807
+ PR-Net(Ours)
808
+ ResNet50
809
+ 3
810
+ 3
811
+ 31.17 25.66
812
+ 32.82
813
+ PR-Net(Ours)
814
+ ResNet50
815
+ 6
816
+ 6
817
+ 31.04 24.87
818
+ 32.89
819
+ QPIC(Baseline) [30] ResNet101
820
+ 6
821
+ -
822
+ 29.90 23.92
823
+ 31.69
824
+ PR-Net(Ours)
825
+ ResNet101
826
+ 1
827
+ 1
828
+ 30.26 23.27
829
+ 32.34
830
+ PR-Net(Ours)
831
+ ResNet101
832
+ 3
833
+ 3
834
+ 32.86 28.03
835
+ 34.30
836
+ PR-Net(Ours)
837
+ ResNet101
838
+ 6
839
+ 6
840
+ 32.52 27.04
841
+ 34.16
842
+ Additionally, we can also observe that when the weight
843
+ of Human-IoU in TriIoU increases, the HOI detection
844
+ performance will be better. This reveals that human box
845
+ duplication is more frequent than that of object box or
846
+ relation box. In summary, with either the Product-based
847
+ or Sum-based TriIoU calculation, we should pay more
848
+ attention to the non-maximal suppression of the human box.
849
+ Table 5. Ablation analysis of the Trident-NMS module on HICO-
850
+ DET test set. Product means we calculate TriIoU by multiply-
851
+ ing these weighted Human-IoU, Object-IoU, and Relation-IoU.
852
+ Sum means we calculate TriIoU by adding all these weighted
853
+ Human-IoU, Object-IoU, and Relation-IoU. Wh, Wo, Wrel rep-
854
+ resent the weights of Human-IoU, Object-IoU and Relation-IoU
855
+ respectively. Thresnms means the threshold of non-maximum
856
+ suppression.
857
+ Product
858
+ Sum
859
+ Wh
860
+ Wo
861
+ Wrel
862
+ Thresnms
863
+ HICO-DET
864
+ Full
865
+ Rare
866
+ NonRare
867
+ -
868
+ -
869
+ -
870
+ -
871
+ -
872
+ -
873
+ 31.87
874
+ 27.59
875
+ 33.14
876
+ -
877
+
878
+ 0.33
879
+ 0.33
880
+ 0.33
881
+ 0.5
882
+ 30.61
883
+ 27.00
884
+ 31.69
885
+ -
886
+
887
+ 0.33
888
+ 0.33
889
+ 0.33
890
+ 0.7
891
+ 32.53
892
+ 27.88
893
+ 33.91
894
+ -
895
+
896
+ 0.4
897
+ 0.4
898
+ 0.2
899
+ 0.7
900
+ 32.63
901
+ 27.96
902
+ 34.02
903
+ -
904
+
905
+ 0.5
906
+ 0.4
907
+ 0.1
908
+ 0.7
909
+ 32.66
910
+ 27.91
911
+ 34.00
912
+ -
913
+
914
+ 0.6
915
+ 0.3
916
+ 0.1
917
+ 0.7
918
+ 32.56
919
+ 27.70
920
+ 34.01
921
+
922
+ -
923
+ 1.0
924
+ 1.0
925
+ 1.0
926
+ 0.5
927
+ 32.77
928
+ 27.98
929
+ 34.20
930
+
931
+ -
932
+ 1.0
933
+ 1.0
934
+ 0.5
935
+ 0.5
936
+ 32.81
937
+ 28.02
938
+ 34.25
939
+
940
+ -
941
+ 0.5
942
+ 0.5
943
+ 0.5
944
+ 0.5
945
+ 32.61
946
+ 27.65
947
+ 34.08
948
+
949
+ -
950
+ 0.5
951
+ 1.0
952
+ 0.5
953
+ 0.5
954
+ 32.61
955
+ 27.67
956
+ 34.09
957
+
958
+ -
959
+ 1.0
960
+ 0.5
961
+ 0.5
962
+ 0.5
963
+ 32.86
964
+ 28.03
965
+ 34.30
966
+ 4.5. Visualization of features
967
+ Using the t-SNE visualization technique [27], we visual-
968
+ ize 20000 samples of output feature. These object and inter-
969
+ action features are extracted from the last layer of Instance-
970
+ level Predictor and Relation-level Predictor in our PR-Net,
971
+ respectively. From the Figure 3, we can observe that our
972
+ PR-Net can obviously distinguish different class of objects
973
+ and interactions. Interestingly, from this visualization of
974
+ features, our PR-Net can even learn better the complex
975
+ interaction representations then the object representations
976
+ which benefits from our advantageous parallel reasoning ar-
977
+ chitecture.
978
+ Figure 3. Visualization of object features and relation features on
979
+ HICO-DET dataset via t-SNE technique. Left is object features
980
+ and right is relation features.
981
+ 4.6. Qualitative Examples
982
+ From Figure 4, we can observe that our PR-Net can accu-
983
+ rately detect both human box, object box, and relation box
984
+ as well as their corresponding interactions. From the first
985
+ row and second column of Figure 4, we can know that our
986
+ PR-Net can precisely distinguish which man is riding the
987
+ horse in the image. From the second row and third column
988
+ of Figure 4, our PR-Net can precisely detect those subtle
989
+ and indiscernible HOIs. In summary, our PR-Net can cor-
990
+ rectly detect those complex and hard HOIs.
991
+ Figure 4. Visualization of some HOI detection examples (Top 1
992
+ result) detected by the proposed Parallel Reasoning Network on
993
+ the HICO-DET test set.
994
+ 5. Conclusion
995
+ In this paper, we propose a new Human-Object Inter-
996
+ action Detector named Parallel Reasoning Network(PR-
997
+ Net), which consists of an instance-level predictor and
998
+ a relation-level predictor, to alleviate the problem of in-
999
+ consistent focus in attentive fields between instance-level
1000
+ and interaction-level predictions.
1001
+ In addition, our PR-
1002
+ Net achieves a better trade-off between instance localiza-
1003
+ tion and interaction understanding. Furthermore, equipped
1004
+ with Consistency Loss and Trident-NMS, our PR-Net has
1005
+ achieved competitive results on two main HOI benchmarks,
1006
+ validating its efficacy in detecting Human-Object Interac-
1007
+ tions.
1008
+ 7
1009
+
1010
+ 100
1011
+ 100
1012
+ 75
1013
+ 75
1014
+ 50
1015
+ 50
1016
+ 25
1017
+ 25
1018
+ 0
1019
+ 0
1020
+ -25
1021
+ -25
1022
+ -50
1023
+ -50
1024
+ -75
1025
+ -75
1026
+ -100
1027
+ -100
1028
+ -100
1029
+ -75
1030
+ -50
1031
+ -25
1032
+ 0
1033
+ 25
1034
+ 50
1035
+ 75
1036
+ 100
1037
+ -100
1038
+ -75
1039
+ -50
1040
+ -25
1041
+ 0
1042
+ 25
1043
+ 50
1044
+ 75
1045
+ 100uman
1046
+ human lie_on chair
1047
+ ridehorse
1048
+ LOG
1049
+ numan sit on benchReferences
1050
+ [1] Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava,
1051
+ and Rama Chellappa. Detecting human-object interactions
1052
+ via functional generalization. AAAI, 2020. 6
1053
+ [2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
1054
+ Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
1055
+ end object detection with transformers. In ECCV, 2020. 5
1056
+ [3] Yuwei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia
1057
+ Deng. Learning to detect human-object interactions. work-
1058
+ shop on applications of computer vision, pages 381–389,
1059
+ 2018. 5
1060
+ [4] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and
1061
+ Jia Deng. Learning to detect human-object interactions. In
1062
+ Proceedings of the IEEE Winter Conference on Applications
1063
+ of Computer Vision, 2018. 1, 5, 6
1064
+ [5] Mingfei Chen, Yue Liao, Si Liu, Zhiyuan Chen, Fei Wang,
1065
+ and Chen Qian. Reformulating hoi detection as adaptive set
1066
+ prediction. In CVPR, 2021. 1, 2, 6
1067
+ [6] Mingfei Chen, Yue Liao, Si Liu, Zhiyuan Chen, Fei Wang,
1068
+ and Chen Qian. Reformulating hoi detection as adaptive set
1069
+ prediction. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.
1070
+ 2
1071
+ [7] Hao-Shu Fang, Yichen Xie, Dian Shao, and Cewu Lu. Dirv:
1072
+ Dense interaction region voting for end-to-end human-object
1073
+ interaction detection. In AAAI, 2021. 6
1074
+ [8] Chen Gao, Yuliang Zou, and Jiabin Huang. ican: Instance-
1075
+ centric attention network for human-object interaction detec-
1076
+ tion. british machine vision conference, page 41, 2018. 2
1077
+ [9] Georgia Gkioxari, Ross B Girshick, Piotr Dollar, and Kaim-
1078
+ ing He.
1079
+ Detecting and recognizing human-object interac-
1080
+ tions. computer vision and pattern recognition, pages 8359–
1081
+ 8367, 2018. 2
1082
+ [10] Saurabh Gupta and Jitendra Malik. Visual semantic role la-
1083
+ beling. arXiv preprint arXiv:1505.04474, 2015. 5
1084
+ [11] Tanmay Gupta, Alexander Schwing, and Derek Hoiem. No-
1085
+ frills human-object interaction detection: Factorization, lay-
1086
+ out encodings, and training techniques. In Int. Conf. Comput.
1087
+ Vis., 2019. 1
1088
+ [12] Kaiming He, Georgia Gkioxari, Piotr Doll´ar, and Ross Gir-
1089
+ shick. Mask r-cnn. In Proceedings of the IEEE international
1090
+ conference on computer vision, pages 2961–2969, 2017. 1,
1091
+ 2
1092
+ [13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
1093
+ Deep residual learning for image recognition. In IEEE Conf.
1094
+ Comput. Vis. Pattern Recog., pages 770–778, 2016. 5
1095
+ [14] Zhi Hou, Xiaojiang Peng, Yu Qiao, and Dacheng Tao. Vi-
1096
+ sual compositional learning for human-object interaction de-
1097
+ tection. In Eur. Conf. Comput. Vis., 2020. 6
1098
+ [15] Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and
1099
+ Dacheng Tao. Affordance transfer learning for human-object
1100
+ interaction detection. In IEEE Conf. Comput. Vis. Pattern
1101
+ Recog., 2021. 2
1102
+ [16] Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and
1103
+ Dacheng Tao. Detecting human-object interaction via fab-
1104
+ ricated compositional learning. In IEEE Conf. Comput. Vis.
1105
+ Pattern Recog., 2021. 2
1106
+ [17] Bumsoo Kim, Taeho Choi, Jaewoo Kang, and Hyunwoo J
1107
+ Kim.
1108
+ Uniondet: Union-level detector towards real-time
1109
+ human-object interaction detection. In European Conference
1110
+ on Computer Vision, pages 498–514. Springer, 2020. 1, 2
1111
+ [18] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim,
1112
+ and Hyunwoo J. Kim. Hotr: End-to-end human-object in-
1113
+ teraction detection with transformers. In CVPR, 2021. 1, 2,
1114
+ 6
1115
+ [19] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim,
1116
+ and Hyunwoo J. Kim. Hotr: End-to-end human-object inter-
1117
+ action detection with transformers. In IEEE Conf. Comput.
1118
+ Vis. Pattern Recog., 2021. 2
1119
+ [20] Dong-Jin Kim, Xiao Sun, Jinsoo Choi, Stephen Lin, and
1120
+ In So Kweon. Detecting human-object interactions with ac-
1121
+ tion co-occurrence priors. In European Conference on Com-
1122
+ puter Vision, pages 718–736. Springer, 2020. 6
1123
+ [21] Yong-Lu Li, Xinpeng Liu, Han Lu, Shiyi Wang, Junqi Liu,
1124
+ Jiefeng Li, and Cewu Lu. Detailed 2d-3d joint representation
1125
+ for human-object interaction. In CVPR, 2020. 6
1126
+ [22] Yong-Lu Li, Xinpeng Liu, Xiaoqian Wu, Yizhuo Li, and
1127
+ Cewu Lu.
1128
+ Hoi analysis:
1129
+ Integrating and decomposing
1130
+ human-object interaction. Advances in Neural Information
1131
+ Processing Systems, 33, 2020. 2, 6
1132
+ [23] Yong-Lu Li, Siyuan Zhou, Xijie Huang, Liang Xu, Ze Ma,
1133
+ Hao-Shu Fang, Yanfeng Wang, and Cewu Lu. Transferable
1134
+ interactiveness knowledge for human-object interaction de-
1135
+ tection. In Proceedings of the IEEE Conference on Computer
1136
+ Vision and Pattern Recognition, pages 3585–3594, 2019. 1,
1137
+ 2, 6
1138
+ [24] Yue Liao, Si Liu, Fei Wang, Yanjie Chen, Chen Qian, and
1139
+ Jiashi Feng. Ppdm: Parallel point detection and matching
1140
+ for real-time human-object interaction detection. In CVPR,
1141
+ 2020. 1, 2, 6
1142
+ [25] Yang Liu, Qingchao Chen, and Andrew Zisserman. Ampli-
1143
+ fying key cues for human-object-interaction detection.
1144
+ In
1145
+ European Conference on Computer Vision, pages 248–265.
1146
+ Springer, 2020. 6
1147
+ [26] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
1148
+ regularization. In ICLR, 2018. 5
1149
+ [27] Laurens van der Maaten and Geoffrey Hinton.
1150
+ Visualiz-
1151
+ ing data using t-sne. Journal of machine learning research,
1152
+ 9(Nov):2579–2605, 2008. 7
1153
+ [28] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen,
1154
+ and Songchun Zhu. Learning human-object interactions by
1155
+ graph parsing neural networks. european conference on com-
1156
+ puter vision, pages 407–423, 2018. 1
1157
+ [29] Shaoqing Ren, Kaiming He, Ross B Girshick, and Jian Sun.
1158
+ Faster r-cnn: Towards real-time object detection with region
1159
+ proposal networks. IEEE Transactions on Pattern Analysis
1160
+ and Machine Intelligence, 39(6):1137–1149, 2017. 1, 2
1161
+ [30] Masato Tamura, Hiroki Ohashi, and Tomoaki Yoshinaga.
1162
+ Qpic: Query-based pairwise human-object interaction de-
1163
+ tection with image-wide contextual information. In CVPR,
1164
+ 2021. 1, 2, 5, 6, 7
1165
+ [31] Oytun Ulutan, A S M Iftekhar, and B. S. Manjunath. VS-
1166
+ GNet: Spatial attention network for detecting human object
1167
+ interactions using graph convolutions. In IEEE Conf. Com-
1168
+ put. Vis. Pattern Recog., June 2020. 2, 6
1169
+ 8
1170
+
1171
+ [32] Bo Wan, Desen Zhou, Yongfei Liu, Rongjie Li, and Xuming
1172
+ He. Pose-aware multi-level feature network for human ob-
1173
+ ject interaction detection. In Proceedings of the IEEE Inter-
1174
+ national Conference on Computer Vision, pages 9469–9478,
1175
+ 2019. 6
1176
+ [33] Hai Wang, Wei-shi Zheng, and Ling Yingbiao. Contextual
1177
+ heterogeneous graph network for human-object interaction
1178
+ detection. In ECCV, 2020. 6
1179
+ [34] Tiancai Wang, Rao Muhammad Anwer, Muhammad Haris
1180
+ Khan, Fahad Shahbaz Khan, Yanwei Pang, Ling Shao, and
1181
+ Jorma Laaksonen.
1182
+ Deep contextual attention for human-
1183
+ object interaction detection.
1184
+ In Proceedings of the IEEE
1185
+ International Conference on Computer Vision, pages 5694–
1186
+ 5702, 2019. 5
1187
+ [35] Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz
1188
+ Khan, Xiangyu Zhang, and Jian Sun. Learning human-object
1189
+ interaction detection using interaction points. 2020. 1, 2
1190
+ [36] Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz
1191
+ Khan, Xiangyu Zhang, and Jian Sun. Learning human-object
1192
+ interaction detection using interaction points.
1193
+ In CVPR,
1194
+ 2020. 2
1195
+ [37] Dongming Yang and Yuexian Zou. A graph-based interactive
1196
+ reasoning for human-object interaction detection.
1197
+ In Pro-
1198
+ ceedings of the Twenty-Ninth International Joint Conference
1199
+ on Artificial Intelligence, IJCAI-20, pages 1111–1117. Inter-
1200
+ national Joint Conferences on Artificial Intelligence Organi-
1201
+ zation, 2020. 2
1202
+ [38] Frederic Z. Zhang, Dylan Campbell, and Stephen Gould.
1203
+ Spatially conditioned graphs for detecting human-object in-
1204
+ teractions. In Int. Conf. Comput. Vis., pages 13319–13327,
1205
+ October 2021. 2
1206
+ [39] Xubin Zhong, Changxing Ding, Xian Qu, and Dacheng Tao.
1207
+ Polysemy deciphering network for human-object interaction
1208
+ detection. In ECCV, 2020. 6
1209
+ [40] Xubin Zhong, Xian Qu, Changxing Ding, and Dacheng Tao.
1210
+ Glance and gaze: Inferring action-aware points for one-
1211
+ stage human-object interaction detection. In Proceedings of
1212
+ the IEEE/CVF Conference on Computer Vision and Pattern
1213
+ Recognition (CVPR), pages 13234–13243, June 2021. 1, 2,
1214
+ 6
1215
+ [41] Penghao Zhou and Mingmin Chi. Relation parsing neural
1216
+ network for human-object interaction detection. In Proceed-
1217
+ ings of the IEEE International Conference on Computer Vi-
1218
+ sion, pages 843–851, 2019. 5
1219
+ [42] Cheng Zou, Bohan Wang, Yue Hu, Junqi Liu, Qian Wu, Yu
1220
+ Zhao, Boxun Li, Chenguang Zhang, Chi Zhang, Yichen Wei,
1221
+ and Jian Sun. End-to-end human object interaction detection
1222
+ with hoi transformer. In CVPR, 2021. 1, 2, 6
1223
+ 9
1224
+
19E1T4oBgHgl3EQf5QWX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dFIT4oBgHgl3EQf3yva/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:075459fc9cbeff3d9678e46370c9870e3412cc467bce96531f49a559296b227b
3
+ size 4915245
2dE3T4oBgHgl3EQfnwqt/content/2301.04628v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5995237b3c0f73a7a53704463ec5f3bcd5a7011b38592a0620aaac644e43d2ea
3
+ size 4723410
2dE3T4oBgHgl3EQfnwqt/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da3f8b12711bc461c47f90cab63de371f2609f832a47c673467e7a74e7c280c7
3
+ size 4063277
2dE3T4oBgHgl3EQfnwqt/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48ddfb6132f6e8e260ba0add49f8b5d220144906af672a9e4220b9db3040e91
3
+ size 147432
2tE1T4oBgHgl3EQf5gWl/content/2301.03513v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f48cc0e2e9bd111dc4bbbd735f43df8568a3cc4c98ee56537bfe388b8d9964b7
3
+ size 633893
2tE1T4oBgHgl3EQf5gWl/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:226b909b6c0c5ed126f8d51ee0d4f2449cbe2494236d866cfe147242d931536a
3
+ size 380441
3dAyT4oBgHgl3EQf1vn1/content/tmp_files/2301.00742v1.pdf.txt ADDED
@@ -0,0 +1,3143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ UDK 539.125.17; 539.126.17
2
+ Ya. D. Krivenko-Emetov*
3
+ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
4
+ National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
5
+ *Corresponding author: [email protected]; [email protected]
6
+ MULTICOMPONENT VAN DER WAALS MODEL OF A NUCLEAR FIREBALL IN THE
7
+ FREEZE-OUT STAGE
8
+
9
+ Abstract. A two-component van der Waals gas model is proposed to describe the hadronic stages of the
10
+ evolution of a nuclear fireball in the cooling stage. At the first stage of hadronization, when mesons
11
+ dominate, a two-component meson model (
12
+ 0
13
+  - and
14
+
15
+  -mesons) with an effective two-particle interaction
16
+ potential of a rectangular well is proposed. At the late-stage hadronization, when almost all mesons have
17
+ decayed, a two-component nucleon model of protons and neutrons is proposed with the corresponding
18
+ effective rectangular nucleon potential. The saddle point method has been applied for analytical calculations
19
+ of the partition function. This made it possible to uniformly obtain analytical expressions for both the
20
+ pressure and density, taking into account the finite dimensions of the system, and the analytical expressions
21
+ for chemical potentials. It is assumed that the proposed models and derived formulas can be used to analyze
22
+ experimental data connected to the quantitative characteristics of the particle yields of different types in the
23
+ final state from the hadronic stages of the evolution of a nuclear fireball, as well as to determine the critical
24
+ parameters of the system in high-energy nucleus-nucleus collisions.
25
+ Keywords: fireball, freeze-out, van der Waals equation, effective nuclear capability, Grand Canonical
26
+ Ensemble, pressure fluctuation, quark-gluon plasma, experimental data
27
+
28
+ Introduction
29
+
30
+ Experimental observations of an elliptical flow in non-central collisions of heavy nuclei at high
31
+ energies provide much evidence that in these collisions of nuclei a state of quark-gluon plasma
32
+ appears and thermalization occurs, which is associated with the fact that particles collide with each
33
+ other more than once. For this state, one can introduce the concept of temperature, viscosity,
34
+ density, and other thermodynamic quantities that characterize the substance. In these terms, one can
35
+ describe and study the phenomena that occur during the cooling of a hadron gas formed after a
36
+ phase transition from the state of a quark-gluon plasma. It is believed that at a critical temperature
37
+ (
38
+ 150
39
+
40
+ T
41
+ MeV, the so-called Hagedorn temperature), hadrons "melt" and a phase transition of the
42
+ hadron gas (hadron matter) into the quark-gluon phase occurs. Therefore, in recent decades,
43
+ statistical models of hadron gas have been actively used to describe the data of the Large Hadron
44
+ Collider (LHC), the Relativistic Heavy Ion Collider (RHIC), and even earlier to describe the data of
45
+
46
+ Alternating Gradient Synchrotron (AGS) and Super proton synchrotron (SPS), on the particle yields
47
+ in a relativistic nuclear-nuclear (
48
+ A
49
+ A 
50
+ ) collision at high energies [1, 2]. The van der Waals (vdW)
51
+ model, taking into account hadron-hadron interactions at short distances, is especially useful in this
52
+ description [3-10]. This is due to the fact that taking into account the effect of repulsion (off
53
+ volumes) leads to the prevention of an undesirably high density at high temperatures, which appears
54
+ in ideal gas models [11]. In addition, collisions of heavy high-energy ions in the LHC produce a
55
+ large number of different types of particles. The number of these particles is not fixed. Therefore,
56
+ the formalism of the Grand Canonical Ensemble (GCE) is one of the adequate mathematical
57
+ formalisms for these phenomena. In this case, the thermodynamic quantities do not depend on the
58
+ number of particles, but on the chemical potentials. For many years, researchers have proposed and
59
+ applied different versions of vdW models. These models have been mainly used to describe
60
+ experimental data on the number of particles at high energies, when tens or even hundreds of
61
+ hadrons of different types can be generated. Naturally, this generation process is limited only by the
62
+ energy of collisions.
63
+ Among these models, the model proposed in [11] should be noted. In this model, the
64
+ phenomenological parameters of the radii of the hard-core
65
+ ii
66
+ R and
67
+ ij
68
+ R are introduced, which
69
+ significantly changes the number of the yield particles with different types
70
+ i
71
+ N (i is the particle
72
+ sort) and is mainly confirmed by experimental data. In order to describe more subtle effects in the
73
+ dependence of the hadronic gas pressure on density, various authors (e.g. [12, 13]) proposed the
74
+ development of this model [11]. Here, the effects of attraction between hadrons at a large distance
75
+ have been taken into account, which leads to the appearance of a corresponding contribution to the
76
+ pressure as
77
+ 2
78
+ an
79
+ Pattr
80
+
81
+ ~
82
+ ( n is the density). For a multicomponent gas, the parameter a ,
83
+ corresponding to attraction, transforms into parameters
84
+ ij
85
+ a , and the repulsive parameter b
86
+ transforms into parameters
87
+ ij
88
+ b . At the same time, the parameters of the effective potential
89
+ corresponding to attraction and repulsion depend on the effective radii of repulsion
90
+ 0
91
+ iR and
92
+ attraction
93
+ iR as follows:
94
+
95
+
96
+ ij
97
+ ij
98
+ ij
99
+ ij
100
+ b
101
+ c
102
+ u
103
+ a
104
+
105
+ 0
106
+ ~
107
+ ,
108
+
109
+
110
+ 3
111
+ 0
112
+ 0
113
+ 3
114
+ 2
115
+ j
116
+ i
117
+ ij
118
+ R
119
+ R
120
+ b
121
+
122
+
123
+
124
+ ,
125
+
126
+ 3
127
+ 3
128
+ 2
129
+ j
130
+ i
131
+ ij
132
+ R
133
+ R
134
+ c
135
+
136
+
137
+
138
+ ,
139
+ ij
140
+ u0 is the depth
141
+ of the effective potential well [12].
142
+ However, even this vdW model cannot be developed properly when considering a finite nuclear
143
+ system. So, in the case of nuclear collisions, a nuclear fireball with dimensions
144
+ 10
145
+ 7 
146
+
147
+
148
+ ~
149
+ r
150
+ Fm is
151
+ observed. In a fairly general case, this problem (without taking into account the effects of reflection
152
+ from the system wall) has been solved for a two-component system. In this case, the GCE
153
+ formalism leads to the use of a double sum, which, in turn, can be transformed into a
154
+
155
+ multidimensional integral, which can be integrated by the saddle point method in the vicinity of a
156
+ saddle point with coordinates
157
+
158
+
159
+ 2
160
+ 1 N
161
+ N ,
162
+ [12].
163
+ Of course, it would be good to apply this model to the analysis of experimental data obtained for
164
+ collisions of heavy nuclei at CERN. One of the variants of such a model was presented in [14] in a
165
+ concise form. It was believed that the collision energies were not high enough, and one could limit
166
+ oneself to only two varieties: protons and neutrons. It was assumed that the characteristic
167
+ temperatures do not exceed the temperatures at which new particles can be generated. The
168
+ temperatures of the nuclear fireball are of the order of
169
+ 140
170
+ 135 
171
+ ~
172
+ T
173
+ MeV in units
174
+ 1
175
+
176
+ B
177
+ k
178
+ (freeze-
179
+ out phase, see Fig. 1) at the stage after the transition to the hadronic gas phase. Therefore, the model
180
+ itself should have a transparent nonrelativistic limit, taking into account the law of conservation of
181
+ the total number of nucleons without the generation of new particles.
182
+ The successive stages of the evolution of a nuclear fireball are schematically shown in Fig. 1
183
+ [15]. From left to right: two touching ultrarelativistic nuclei; the state of a hot and superdense
184
+ nuclear system; quark-gluon phase; hadronization and chemical freeze-out; kinetic freeze-out.
185
+
186
+
187
+ Fig. 1. The successive stages of the evolution of a nuclear fireball
188
+
189
+ A more detailed and consistent description of the mathematical apparatus of the model [14] is
190
+ proposed in the article. Some more subtle effects are estimated (additional corrections for pressure,
191
+ density, and root-mean-square (RMS) fluctuations). A new two-component meson model [16] has
192
+ been proposed for the case of temperatures above the production threshold (
193
+ 135
194
+
195
+ T
196
+ MeV ), when
197
+ the number of mesons is not conserved.
198
+
199
+ 1 One-component vdW gas
200
+
201
+ According to various estimates, the lifetime of a nuclear fireball is much longer than the
202
+ characteristic nuclear interaction time
203
+ 23
204
+ 22
205
+ 10
206
+ 10
207
+
208
+
209
+
210
+ ~
211
+ 't
212
+ c. (see Fig. 1). It is of the order of the
213
+ relaxation time
214
+ 23
215
+ 21
216
+ 10
217
+ 10
218
+
219
+
220
+
221
+  ~
222
+ c for sufficiently small local fireball volumes (subsystem).
223
+
224
+ 0
225
+ 10.01
226
+ 1
227
+ 10
228
+ 1100
229
+ t (fm/c)Therefore, we will assume that at each moment of time exceeding the relaxation time, a local
230
+ statistical equilibrium has time to be established in the subsystem. That is, such a local fireball
231
+ region is quasi-stationary, and therefore the methods of statistical physics can be applied to it. Since
232
+ all thermodynamic potentials, as well as entropy and volume, are additive (extensive) quantities,
233
+ therefore, the corresponding potentials (values) of the entire system (fireball) can be defined as the
234
+ sum of the corresponding thermodynamic potentials of quasi-closed subsystems [17]. Then, at each
235
+ moment of time, one can give a standard representation of the partition function of a rarefied
236
+ quasi-ideal van der Waals gas in the canonical ensemble (CE) for such quasi-closed subsystems. In
237
+ the approximation of pair interaction and condition  
238
+ 1
239
+ 
240
+ V
241
+ N
242
+ T
243
+ B
244
+ , this quantity has the form [17]:
245
+
246
+
247
+
248
+
249
+  
250
+
251
+ N
252
+ N
253
+ N
254
+ T
255
+ B
256
+ V
257
+ m
258
+ T
259
+ N
260
+ N
261
+ T
262
+ V
263
+ Z
264
+
265
+
266
+
267
+ ,
268
+ !
269
+ ,
270
+ ,
271
+ 1
272
+ ,
273
+
274
+
275
+
276
+ (1)
277
+ where, respectively, N and m are the number and mass of particles, V and T are the volume and
278
+ temperature of the gas.
279
+ Formula (1) uses the notation [11]:
280
+
281
+
282
+
283
+
284
+ T
285
+ m
286
+ K
287
+ T
288
+ m
289
+ dp
290
+ T
291
+ p
292
+ m
293
+ p
294
+ m
295
+ T
296
+ 2
297
+ 2
298
+ 2
299
+ 0
300
+ 2
301
+ 2
302
+ 2
303
+ 2
304
+ 2
305
+
306
+ exp
307
+ 2
308
+ 1
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+ ,
327
+ ,
328
+
329
+ (2)
330
+ where
331
+  z
332
+ K2
333
+ is the modified Bessel function, and the second virial coefficient in (1) has the form:
334
+  
335
+
336
+
337
+
338
+  dV
339
+ T
340
+ U
341
+ T
342
+ B
343
+
344
+
345
+
346
+
347
+
348
+ 0
349
+ exp
350
+ 1
351
+ 2
352
+ 1
353
+
354
+
355
+
356
+
357
+ (3)
358
+ and includes pairwise interaction of particles,
359
+  
360
+
361
+ j
362
+ i
363
+ ij
364
+ U
365
+ U
366
+ .
367
+ In relativistic limit
368
+ T
369
+ m 
370
+ one can easy obtain, given the asymptotes of the Bessel function:
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+ 
379
+
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+ T
388
+ m
389
+ mT
390
+ m
391
+ T
392
+ exp
393
+ 2
394
+ 2
395
+ 3
396
+ ~
397
+ ,
398
+ .
399
+ This formula further leads to the effect of exponential suppression of the particle yields with
400
+ large mass, which is important in the study of quark-gluon plasma.
401
+ The pressure in the system is easy to find from the partition function:
402
+
403
+
404
+
405
+
406
+
407
+
408
+  N
409
+ T
410
+ B
411
+ V
412
+ TN
413
+ N
414
+ T
415
+ V
416
+ Z
417
+ V
418
+ T
419
+ N
420
+ T
421
+ V
422
+
423
+
424
+
425
+
426
+
427
+ ,
428
+ ,
429
+ ,
430
+ ,
431
+ ln
432
+ P
433
+ . (4)
434
+ Note that if the Stirling formula is used in the partition function for the factorial:
435
+
436
+ N
437
+ e
438
+ N
439
+ N
440
+ N
441
+
442
+
443
+ 2
444
+ !
445
+ , then the final pressure formula (4) will not change.
446
+ *THE MODEL. According to the above, all calculations for subsystems will be carried out by
447
+ methods of statistical physics. This implies, in addition to the local statistical equilibrium, the
448
+
449
+ fulfillment of the condition of the statistical (thermodynamic) boundary:
450
+ A
451
+ N
452
+ N 
453
+ , where
454
+ A
455
+ N is the
456
+ Avogadro constant.
457
+ In this case, the final formulas can be applied to the nuclear fireball due to the indicated
458
+ additivity of thermodynamic potentials and volume. Since the number of generated particles in a
459
+ fireball is about 4-6 thousand during high-energy nucleus-nucleus interactions, this assumption is
460
+ more or less justified at the first stages of its evolution.
461
+ Of course, at later stages of evolution, since the number of nucleons at the nonrelativistic
462
+ boundary is limited by the baryon number conservation law and equal to ( heavy element nuclei
463
+ collide with mass number ), this assumption is, in general, somewhat doubtful.
464
+ Of course, at later stages of evolution, this assumption is, in general, somewhat doubtful, since
465
+ the number of nucleons n the nonrelativistic limit is confined by the baryon number conservation
466
+ law and is equal to
467
+ 300
468
+ 200 
469
+
470
+ N
471
+ (the nuclei of heavy elements collide with the mass number
472
+ 200
473
+ ~
474
+ A
475
+ ). However, the practical application of the van der Waals equation quite often goes
476
+ beyond the conditions under which the virial approximation has been obtained as experience
477
+ shows. Considering this fact, as well as the fact that we can always restrict ourselves to the first
478
+ stage (see Section 3), we believe that our approximation is sufficiently justified.
479
+ Although calculations by the saddle point method are made when
480
+  
481
+ 0
482
+
483
+ T
484
+ B
485
+ , however, for the
486
+ reasons stated above, the final formulas are extended to region where the second virial coefficient
487
+  
488
+ T
489
+ B
490
+ is not necessarily negative.
491
+ From the partition function
492
+
493
+
494
+ N
495
+ T
496
+ V
497
+ Z
498
+ ,
499
+ ,
500
+ one can also get: free energy
501
+
502
+  
503
+ N
504
+ T
505
+ V
506
+ F
507
+ ,
508
+ ,
509
+
510
+
511
+
512
+
513
+
514
+ N
515
+ T
516
+ V
517
+ Z
518
+ T
519
+ ,
520
+ ,
521
+ ln
522
+
523
+
524
+ , chemical potential
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+  
534
+ 
535
+
536
+ 
537
+
538
+
539
+
540
+
541
+
542
+ 
543
+
544
+ 
545
+
546
+
547
+
548
+
549
+
550
+ V
551
+ N
552
+ T
553
+ B
554
+ T,m
555
+ V
556
+ N
557
+ T
558
+ N
559
+ N
560
+ T
561
+ V
562
+ F
563
+ 2
564
+ ln
565
+ ln
566
+ ,
567
+ ,
568
+
569
+
570
+ (5)
571
+ and the derivative of the chemical potential which in the statistical limit has the form:
572
+
573
+
574
+
575
+ 
576
+
577
+  
578
+  
579
+ V
580
+ T
581
+ T
582
+ B
583
+ V
584
+ T
585
+ T
586
+ B
587
+ N
588
+ T
589
+ N
590
+ V
591
+ V
592
+ P
593
+ N
594
+ 2
595
+ 2
596
+ lim
597
+ A
598
+ N
599
+ N
600
+ 2
601
+
602
+ 
603
+
604
+ 
605
+
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+ .
617
+
618
+ (6)
619
+ Then, we obtain the Grand partition function (GPF)
620
+
621
+
622
+
623
+ ,
624
+ ,T
625
+ V
626
+ Z
627
+ from the partition function
628
+
629
+
630
+ N
631
+ T
632
+ V
633
+ Z
634
+ ,
635
+ ,
636
+ taking into account the above physical considerations (see, e.g., [18, 19]):
637
+
638
+
639
+
640
+
641
+ N
642
+ T
643
+ V
644
+ Z
645
+ T
646
+ N
647
+ T
648
+ V
649
+ N
650
+ ,
651
+ ,
652
+ ,
653
+ ,
654
+
655
+
656
+
657
+
658
+
659
+  
660
+
661
+
662
+ exp
663
+ Z
664
+ .
665
+
666
+
667
+
668
+
669
+ (7)
670
+ At high temperatures (which, for example, are realized during collisions of heavy ions in the
671
+ GCE, and
672
+ '
673
+ dN
674
+ T
675
+ N
676
+
677
+
678
+ ) one can turn from the sum to the integral using the Euler-Maclaurin
679
+
680
+ formula. In this case, the first integral term remains and the logarithm of the statistical sum is
681
+ introduced into the exponent. Let's denote this indicator by
682
+
683
+ '
684
+ N
685
+
686
+ :
687
+
688
+
689
+  
690
+
691
+
692
+
693
+
694
+
695
+
696
+
697
+
698
+
699
+
700
+
701
+
702
+
703
+
704
+
705
+
706
+
707
+
708
+
709
+
710
+ 0
711
+ 0
712
+ exp
713
+ ln
714
+ exp
715
+ '
716
+ '
717
+ '
718
+ ,
719
+ '
720
+ '
721
+ ,
722
+ ,
723
+ N
724
+ dN
725
+ T
726
+ T
727
+ N
728
+ V
729
+ Z
730
+ N
731
+ dN
732
+ T
733
+ T
734
+ V
735
+ Z
736
+ .
737
+
738
+ (8)
739
+ Further integration is performed by the saddle point method [16], since at high temperatures the
740
+ integrand has a strongly pronounced maximum. We obtain the following expression for finding the
741
+ maximum point (
742
+
743
+ N ) for the integrand from the extremum condition imposed on the saddle point:
744
+
745
+
746
+
747
+
748
+
749
+
750
+
751
+
752
+
753
+
754
+
755
+
756
+
757
+ 
758
+
759
+ 
760
+
761
+
762
+
763
+
764
+
765
+ 
766
+
767
+ 
768
+
769
+
770
+
771
+
772
+
773
+
774
+ N
775
+ N
776
+ N
777
+ N
778
+ N
779
+ N
780
+ N
781
+ T
782
+ V
783
+ Z
784
+ N
785
+ T
786
+ N
787
+ ,
788
+ ,
789
+ ln
790
+ ,
791
+
792
+
793
+
794
+ (9)
795
+
796
+
797
+
798
+
799
+
800
+
801
+
802
+
803
+
804
+
805
+ m
806
+ T
807
+ V
808
+ N
809
+ T
810
+ N
811
+ ,
812
+
813
+
814
+
815
+
816
+
817
+
818
+
819
+ ln
820
+ ln
821
+ ,
822
+
823
+
824
+
825
+
826
+ (10)
827
+ where
828
+
829
+  is the chemical potential at the saddle point.
830
+ As a result, we obtain:
831
+
832
+
833
+
834
+
835
+
836
+
837
+  
838
+
839
+
840
+
841
+
842
+
843
+ 
844
+
845
+
846
+ 
847
+
848
+
849
+
850
+
851
+
852
+
853
+
854
+
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+ N
863
+ V
864
+ N
865
+ T
866
+ B
867
+ T
868
+ V
869
+ e
870
+ N
871
+ N
872
+ m
873
+ T
874
+ N
875
+ N
876
+ T
877
+ V
878
+ N
879
+ N
880
+ N
881
+ N
882
+ N
883
+ exp
884
+ 2
885
+ 2
886
+ 2
887
+ 2
888
+ ,
889
+ ,
890
+ ,
891
+ Z
892
+ , (11)
893
+ where the second derivative of the exponent  at the saddle point is defined as follows:
894
+
895
+
896
+
897
+ 
898
+
899
+
900
+ 
901
+
902
+
903
+
904
+
905
+
906
+ 
907
+
908
+ 
909
+
910
+
911
+
912
+
913
+
914
+ 
915
+
916
+
917
+ 
918
+
919
+
920
+
921
+
922
+
923
+
924
+ 
925
+
926
+
927
+ 
928
+
929
+
930
+
931
+
932
+
933
+
934
+
935
+
936
+
937
+
938
+
939
+
940
+
941
+
942
+ N
943
+ N
944
+ N
945
+ N
946
+ N
947
+ N
948
+ N
949
+ N
950
+ N
951
+ N
952
+ T
953
+ V
954
+ Z
955
+ N
956
+ T
957
+ N
958
+ T
959
+ N
960
+ N
961
+ 2
962
+ 2
963
+ 2
964
+ 2
965
+ 2
966
+ 2
967
+ ln
968
+ 2
969
+ ,
970
+ ,
971
+
972
+  
973
+  
974
+ 0
975
+ 2
976
+ 2
977
+ 1
978
+ 1
979
+ 1
980
+ 2
981
+ 2
982
+
983
+
984
+
985
+
986
+
987
+
988
+ 
989
+
990
+ 
991
+
992
+
993
+
994
+
995
+
996
+ 
997
+
998
+
999
+ 
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+ V
1014
+ T
1015
+ B
1016
+ V
1017
+ T
1018
+ B
1019
+ N
1020
+ N
1021
+ N
1022
+ T
1023
+ N
1024
+ T
1025
+ N
1026
+ N
1027
+ N
1028
+ N
1029
+ N
1030
+ ,
1031
+ because
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+ 
1038
+
1039
+
1040
+ 
1041
+
1042
+
1043
+
1044
+
1045
+
1046
+
1047
+ N
1048
+ N
1049
+ T
1050
+ N
1051
+ N
1052
+ N
1053
+ 1
1054
+ 2
1055
+ 2
1056
+ ,
1057
+
1058
+
1059
+
1060
+
1061
+
1062
+
1063
+ 
1064
+
1065
+
1066
+ 
1067
+
1068
+
1069
+
1070
+
1071
+
1072
+
1073
+ 
1074
+
1075
+ 
1076
+
1077
+
1078
+
1079
+
1080
+ N
1081
+ N
1082
+ N
1083
+ N
1084
+ N
1085
+ N
1086
+ T
1087
+ V
1088
+ Z
1089
+ N
1090
+ T
1091
+ 2
1092
+ 2ln
1093
+ 1
1094
+ ,
1095
+ ,
1096
+ .
1097
+ The pressure in the GCE is defined as follows in terms of the temperature and the logarithm of
1098
+ the GPF (see, e.g., [18]):
1099
+
1100
+
1101
+
1102
+
1103
+ V
1104
+ T
1105
+ V
1106
+ T
1107
+ T
1108
+ P
1109
+
1110
+
1111
+
1112
+ ,
1113
+ ,
1114
+ ,
1115
+ Z
1116
+ ln
1117
+ .
1118
+
1119
+
1120
+
1121
+
1122
+ (12)
1123
+ It's easy to show that pressure (12), taking into account (5) and (11), can be rewritten as follows:
1124
+
1125
+
1126
+  
1127
+
1128
+
1129
+  
1130
+  
1131
+
1132
+
1133
+ 
1134
+
1135
+ 
1136
+
1137
+
1138
+
1139
+
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+
1148
+
1149
+
1150
+
1151
+
1152
+
1153
+
1154
+
1155
+
1156
+
1157
+
1158
+
1159
+
1160
+
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+ V
1167
+ T
1168
+ B
1169
+ T
1170
+ B
1171
+ T
1172
+ V
1173
+ N
1174
+ T
1175
+ B
1176
+ T
1177
+ T
1178
+ P
1179
+ N
1180
+ N
1181
+ 2
1182
+ ln
1183
+ 1
1184
+ 2
1185
+ ln
1186
+ 1
1187
+ 2
1188
+ 2
1189
+ ,
1190
+ , (13)
1191
+ where the saddle point
1192
+
1193
+  V
1194
+ T
1195
+ V
1196
+ N
1197
+
1198
+
1199
+
1200
+
1201
+
1202
+ ,
1203
+ ,
1204
+ is defined according to (5) and (10) as
1205
+  
1206
+
1207
+
1208
+  
1209
+
1210
+
1211
+ T
1212
+ N
1213
+ T
1214
+ m
1215
+ N
1216
+
1217
+
1218
+
1219
+
1220
+
1221
+ exp
1222
+ ,
1223
+ . The parameter  can be eliminated from equation (13) using the
1224
+ definition of density, which in the thermodynamic limit turns into the well-known formula [1]:
1225
+
1226
+
1227
+
1228
+  
1229
+
1230
+
1231
+  
1232
+
1233
+
1234
+
1235
+
1236
+
1237
+
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+
1248
+ T
1249
+ B
1250
+ V
1251
+ T
1252
+ B
1253
+ T
1254
+ P
1255
+ n
1256
+ 2
1257
+ 1
1258
+ 2
1259
+ 1
1260
+ 2
1261
+ 1
1262
+ ,
1263
+ .
1264
+
1265
+
1266
+ (14)
1267
+ In the thermodynamic limit (
1268
+ A
1269
+ N
1270
+ N 
1271
+ ,
1272
+
1273
+
1274
+ V
1275
+ ) the chemical potential of the saddle point
1276
+
1277
+
1278
+ from (10) when
1279
+  
1280
+
1281
+
1282
+ V
1283
+ N
1284
+ T
1285
+ B
1286
+ N
1287
+ N
1288
+ 2
1289
+ 1
1290
+
1291
+
1292
+ turns into the chemical potential  (
1293
+
1294
+
1295
+ 
1296
+ ), which is
1297
+ determined by the well-known thermodynamic equation (5).
1298
+ Both equations (13) and (14) in parametric form (the saddle point  acts as a parameter)
1299
+ determine the relationship between pressure P , temperature T , and density n . We obtain the state
1300
+ equation in GCE by excluding explicitly this parameter from the system of equations (13) and (14):
1301
+
1302
+
1303
+  
1304
+
1305
+
1306
+ dP
1307
+ n
1308
+ T
1309
+ B
1310
+ Tn
1311
+ n
1312
+ T
1313
+ P
1314
+
1315
+
1316
+
1317
+
1318
+ 1
1319
+ ,
1320
+ ,
1321
+ .
1322
+
1323
+
1324
+
1325
+ (15)
1326
+ Of course, the resulting state equation is implicitly a parametric equation, since the saddle point
1327
+  (and, hence, and n ) determines the chemical potential  according to (5) and (10).
1328
+ It is important that the resulting formula takes into account the contribution to the pressure of the
1329
+ finite volume of the system,
1330
+ s
1331
+ V . This contribution naturally vanishes in the thermodynamic limit,
1332
+ where there is no difference between CE and GCE.
1333
+ Only the last of the three terms remains for large but finite volumes, as in the nuclear fireball
1334
+ model discussed in Sec. 4:
1335
+  
1336
+  
1337
+
1338
+
1339
+
1340
+
1341
+  
1342
+
1343
+
1344
+ s
1345
+ V
1346
+ V
1347
+ V
1348
+ n
1349
+ T
1350
+ B
1351
+ T
1352
+ n
1353
+ T
1354
+ B
1355
+ n
1356
+ T
1357
+ B
1358
+ V
1359
+ T
1360
+ dP
1361
+ s
1362
+ 2
1363
+ ln
1364
+ ln
1365
+ 1
1366
+ 2
1367
+
1368
+
1369
+
1370
+
1371
+
1372
+
1373
+ lim
1374
+ . (16)
1375
+ RMS fluctuations of pressure and density calculated by known formulas (see, e.g., [20]) give
1376
+ estimates of the found corrections to the corresponding quantities:
1377
+
1378
+
1379
+
1380
+
1381
+  
1382
+
1383
+
1384
+ n
1385
+ T
1386
+ B
1387
+ V
1388
+ n
1389
+ T
1390
+ n
1391
+ P
1392
+ V
1393
+ Tn
1394
+ P
1395
+ s
1396
+ 2
1397
+ 1
1398
+ 2
1399
+ 2
1400
+
1401
+
1402
+
1403
+ 
1404
+
1405
+
1406
+ ~
1407
+ ,
1408
+
1409
+
1410
+ (17)
1411
+
1412
+
1413
+
1414
+
1415
+  
1416
+
1417
+
1418
+ n
1419
+ T
1420
+ B
1421
+ V
1422
+ N
1423
+ V
1424
+ N
1425
+ T
1426
+ n
1427
+ N
1428
+ N
1429
+ 2
1430
+ 1
1431
+ 1
1432
+ 2
1433
+ 2
1434
+ 2
1435
+
1436
+
1437
+
1438
+
1439
+ 
1440
+
1441
+
1442
+
1443
+
1444
+
1445
+ ~
1446
+ .
1447
+
1448
+
1449
+
1450
+ (18)
1451
+
1452
+ 2 Two-component vdW gas
1453
+
1454
+ Let us consider the procedure for taking into account the excluded volume and attraction in the
1455
+ vdW model for the case of a two-component hadron gas of two types of particles “i ” and “ j ”.
1456
+ 1
1457
+ N
1458
+ and
1459
+ 2
1460
+ N are the number of particles of the first and second sorts. In this case, the partition function
1461
+ has the form:
1462
+
1463
+  
1464
+ 2
1465
+ 1 N
1466
+ N
1467
+ T
1468
+ V
1469
+ Z
1470
+ ,
1471
+ ,
1472
+ ,
1473
+
1474
+
1475
+  
1476
+
1477
+
1478
+
1479
+
1480
+  
1481
+
1482
+
1483
+
1484
+
1485
+  
1486
+  
1487
+
1488
+
1489
+
1490
+
1491
+ T
1492
+ U
1493
+ r
1494
+ d
1495
+ r
1496
+ d
1497
+ T
1498
+ m
1499
+ T
1500
+ m
1501
+ N
1502
+ N
1503
+ N
1504
+ k
1505
+ k
1506
+ N
1507
+ l
1508
+ l
1509
+ N
1510
+ N
1511
+ 12
1512
+ 1
1513
+ 2
1514
+ 3
1515
+ 1
1516
+ 1
1517
+ 3
1518
+ 2
1519
+ 1
1520
+ 2
1521
+ 1
1522
+ exp
1523
+ !
1524
+ !
1525
+ 1
1526
+ 2
1527
+ 1
1528
+ 2
1529
+ 1
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+
1536
+
1537
+ 
1538
+ 
1539
+
1540
+
1541
+ ,
1542
+ ,
1543
+ , (19)
1544
+ This expression for the pair-interactions approximation (
1545
+
1546
+
1547
+
1548
+
1549
+ 12
1550
+ 123
1551
+ U
1552
+ U
1553
+ 
1554
+ ) and a weakly ideal gas
1555
+ (
1556
+ 1
1557
+ 2
1558
+ 
1559
+ V
1560
+ NB
1561
+ ) can be rewritten as follows [11]:
1562
+
1563
+
1564
+  
1565
+
1566
+
1567
+  
1568
+
1569
+
1570
+
1571
+
1572
+
1573
+ 2
1574
+ 1
1575
+ 2
1576
+ 1
1577
+ 2
1578
+ 1
1579
+ 2
1580
+ 1
1581
+ !
1582
+ !
1583
+ 1
1584
+ N
1585
+ N
1586
+ T
1587
+ m
1588
+ T
1589
+ m
1590
+ N
1591
+ N
1592
+ N
1593
+ N
1594
+ T
1595
+ V
1596
+ Z
1597
+ ,
1598
+ ,
1599
+ ~
1600
+ ,
1601
+ ,
1602
+ ,
1603
+
1604
+
1605
+
1606
+
1607
+
1608
+ 2
1609
+ 1
1610
+ 1
1611
+ 12
1612
+ 2
1613
+ 22
1614
+ 2
1615
+ 21
1616
+ 1
1617
+ 11
1618
+ N
1619
+ N
1620
+ N
1621
+ B
1622
+ N
1623
+ B
1624
+ V
1625
+ N
1626
+ B
1627
+ N
1628
+ B
1629
+ V
1630
+ ~
1631
+ ~
1632
+
1633
+
1634
+
1635
+
1636
+
1637
+
1638
+ .
1639
+
1640
+
1641
+ (20)
1642
+ Here we have introduced the notation:
1643
+ jj
1644
+ ii
1645
+ ij
1646
+ ii
1647
+ ij
1648
+ B
1649
+ B
1650
+ B
1651
+ B
1652
+ B
1653
+
1654
+  2
1655
+ ~
1656
+ .
1657
+ The two-particle partition function
1658
+
1659
+
1660
+ 2
1661
+ 1 
1662
+  ,
1663
+ ,
1664
+ ,T
1665
+ V
1666
+ Z
1667
+ in GCE is expressed in terms of the
1668
+ two-particle partition function 
1669
+
1670
+ 2
1671
+ 1 N
1672
+ N
1673
+ T
1674
+ V
1675
+ Z
1676
+ ,
1677
+ ,
1678
+ ,
1679
+ in CE [12, 17], as:
1680
+
1681
+
1682
+
1683
+  
1684
+
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+ 2
1695
+ 1
1696
+ 2
1697
+ 0
1698
+ 1
1699
+ 0
1700
+ 2
1701
+ 2
1702
+ 1
1703
+ 2
1704
+ 2
1705
+ 1
1706
+ 1
1707
+ e
1708
+ d
1709
+ d
1710
+ '
1711
+ ,
1712
+ '
1713
+ ,
1714
+ ,
1715
+ '
1716
+ '
1717
+ ,
1718
+ ,
1719
+ ,
1720
+ '
1721
+ '
1722
+ N
1723
+ N
1724
+ T
1725
+ V
1726
+ Z
1727
+ N
1728
+ N
1729
+ T
1730
+ T
1731
+ V
1732
+ N
1733
+ N
1734
+ Z
1735
+
1736
+
1737
+
1738
+
1739
+
1740
+ 2
1741
+ 1
1742
+ 2
1743
+ 0
1744
+ 1
1745
+ 0
1746
+ 2
1747
+ exp
1748
+ d
1749
+ d
1750
+ '
1751
+ ,
1752
+ '
1753
+ '
1754
+ '
1755
+ N
1756
+ N
1757
+ N
1758
+ N
1759
+ T
1760
+
1761
+
1762
+
1763
+
1764
+
1765
+
1766
+ . (21)
1767
+ Integration of (21) by the saddle point method [21] leads us to the following result:
1768
+
1769
+
1770
+
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+ 
1779
+
1780
+
1781
+ 
1782
+
1783
+
1784
+
1785
+
1786
+
1787
+
1788
+
1789
+ 
1790
+
1791
+ 2
1792
+ 1
1793
+ 2
1794
+ 2
1795
+ 1
1796
+ 1
1797
+ 2
1798
+ 1
1799
+ exp
1800
+ 2
1801
+ N
1802
+ N
1803
+ T
1804
+ V
1805
+ Z
1806
+ T
1807
+ N
1808
+ N
1809
+ N
1810
+ N
1811
+ ,
1812
+ ,
1813
+ ,
1814
+ ,
1815
+ ~
1816
+ Z
1817
+ , where the coordinates of the saddle
1818
+ point
1819
+
1820
+ i
1821
+ N (
1822
+ 2
1823
+ 1,
1824
+
1825
+ i
1826
+ ) are found from the extremum conditions:
1827
+
1828
+
1829
+ 0
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+
1836
+
1837
+ i
1838
+ j
1839
+ i
1840
+ N
1841
+ N
1842
+ N ,
1843
+ ,
1844
+
1845
+
1846
+ 22
1847
+ 21
1848
+ 12
1849
+ 11
1850
+ 2
1851
+ 1
1852
+ c
1853
+ c
1854
+ c
1855
+ c
1856
+ N
1857
+ N
1858
+ det
1859
+ ,
1860
+
1861
+
1862
+
1863
+ 
1864
+
1865
+
1866
+ ,
1867
+
1868
+
1869
+ 
1870
+
1871
+
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+
1881
+
1882
+
1883
+
1884
+
1885
+
1886
+
1887
+
1888
+
1889
+ N
1890
+ N
1891
+ j
1892
+ i
1893
+ j
1894
+ i
1895
+ ij
1896
+ N
1897
+ N
1898
+ N
1899
+ N
1900
+ c
1901
+ ,
1902
+ 2
1903
+ .
1904
+ Substituting the value of the partition function into the definition of pressure in the GCE [18], we
1905
+ obtain the following expression [12]:
1906
+
1907
+
1908
+
1909
+
1910
+
1911
+
1912
+ 
1913
+
1914
+ 
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+ V
1934
+ C
1935
+ B
1936
+ B
1937
+ B
1938
+ B
1939
+ T
1940
+ V
1941
+ T
1942
+ V
1943
+ T
1944
+ T
1945
+ P
1946
+ 2
1947
+ ln
1948
+ ln
1949
+ 2
1950
+ 1
1951
+ 21
1952
+ 12
1953
+ 22
1954
+ 2
1955
+ 2
1956
+ 11
1957
+ 2
1958
+ 1
1959
+ 2
1960
+ 1
1961
+ 2
1962
+ 1
1963
+ 2
1964
+ 1
1965
+ ~
1966
+ ~
1967
+ ~
1968
+ ,
1969
+ ,
1970
+ ,
1971
+ ,
1972
+ ,
1973
+ Z
1974
+ , (22)
1975
+ where
1976
+ 21
1977
+ 2
1978
+ 12
1979
+ 1
1980
+ 22
1981
+ 2
1982
+ 11
1983
+ 1
1984
+ B
1985
+ B
1986
+ B
1987
+ B
1988
+ C
1989
+ ~
1990
+ ~ 
1991
+
1992
+
1993
+
1994
+
1995
+
1996
+ .
1997
+ Using such a mathematical apparatus, one can organically introduce the law of conservation of
1998
+ chemical potentials. The latter are related to the condition imposed on the integrand when finding
1999
+ the saddle point. In the thermodynamic limit the chemical potential determined by the extremum
2000
+ condition coincides with the definition of the chemical potential itself:
2001
+
2002
+
2003
+ i
2004
+ j
2005
+ i
2006
+ i
2007
+ i
2008
+ N
2009
+ N
2010
+ N
2011
+ T
2012
+ V
2013
+ F
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+ 
2020
+ ,
2021
+ ,
2022
+ ,
2023
+ ,
2024
+
2025
+ where 
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+ 2
2032
+ 1
2033
+ 2
2034
+ 1
2035
+ ln
2036
+ N
2037
+ N
2038
+ T
2039
+ V
2040
+ Z
2041
+ T
2042
+ N
2043
+ N
2044
+ T
2045
+ V
2046
+ F
2047
+ ,
2048
+ ,
2049
+ ,
2050
+ ,
2051
+ ,
2052
+ ,
2053
+
2054
+
2055
+ is the definition of free energy (10).
2056
+ We get from the definition of density
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+
2065
+ ji
2066
+ ij
2067
+ j
2068
+ ii
2069
+ i
2070
+ i
2071
+ i
2072
+ j
2073
+ i
2074
+ i
2075
+ B
2076
+ B
2077
+ B
2078
+ T
2079
+ P
2080
+ n
2081
+ ~
2082
+ ~
2083
+ ~
2084
+ ,
2085
+ ,
2086
+
2087
+
2088
+
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+
2095
+
2096
+
2097
+
2098
+ 2
2099
+ 1
2100
+ . (23)
2101
+ The virial expansion (22) can be rewritten, taking into account (23), as a two-component vdW
2102
+ equation in the approximation
2103
+ 1
2104
+ 
2105
+ V
2106
+ N
2107
+ b
2108
+ i
2109
+ ij
2110
+ and
2111
+
2112
+
2113
+ 1
2114
+ 
2115
+ ij
2116
+ ij
2117
+ Tb
2118
+ a
2119
+ ):
2120
+
2121
+  
2122
+
2123
+
2124
+ 2
2125
+ 1
2126
+ 2
2127
+ 1
2128
+ n
2129
+ n
2130
+ T
2131
+ P
2132
+ ,
2133
+ ,
2134
+ ,
2135
+ ,
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+ dP
2142
+ n
2143
+ a
2144
+ n
2145
+ a
2146
+ n
2147
+ n
2148
+ a
2149
+ n
2150
+ a
2151
+ n
2152
+ n
2153
+ b
2154
+ n
2155
+ b
2156
+ Tn
2157
+ n
2158
+ b
2159
+ n
2160
+ b
2161
+ Tn
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+ 1
2174
+ 12
2175
+ 2
2176
+ 22
2177
+ 2
2178
+ 2
2179
+ 21
2180
+ 1
2181
+ 11
2182
+ 1
2183
+ 1
2184
+ 12
2185
+ 2
2186
+ 22
2187
+ 2
2188
+ 2
2189
+ 21
2190
+ 1
2191
+ 11
2192
+ 1
2193
+ 1
2194
+ 1
2195
+ ~
2196
+ ~
2197
+ ~
2198
+ ~
2199
+ , (24)
2200
+ where dP , according to (22), takes into account the finite size of the fireball. When formula (24)
2201
+ was derived, the expression
2202
+ T
2203
+ a
2204
+ b
2205
+ B
2206
+ ij
2207
+ ij
2208
+ ij
2209
+ ~
2210
+ ~
2211
+ ~
2212
+
2213
+
2214
+ was used (see, e.g., [12]), and for each type of particles
2215
+ the corresponding parameters of attraction and repulsion were introduced [11]:
2216
+
2217
+
2218
+ jj
2219
+ ii
2220
+ ii
2221
+ ij
2222
+ ij
2223
+ a
2224
+ a
2225
+ a
2226
+ a
2227
+ a
2228
+
2229
+
2230
+
2231
+
2232
+ 2
2233
+ ~
2234
+ ,
2235
+
2236
+
2237
+ jj
2238
+ ii
2239
+ ij
2240
+ ii
2241
+ ij
2242
+ b
2243
+ b
2244
+ b
2245
+ b
2246
+ b
2247
+
2248
+
2249
+ 2
2250
+ ~
2251
+ ,  is a phenomenological parameter reflecting the
2252
+ complexity of the problem.
2253
+
2254
+ 3 The asymmetric two-component freeze-out model with non-conservation of the number
2255
+ of particles
2256
+
2257
+ The considering nucleus-nucleus collisions 
2258
+
2259
+ A
2260
+ A
2261
+ have very high energies, more than 1 GeV
2262
+ per nucleon. At the same time, mesons of different sorts dominate in the initial freeze-out stages.
2263
+ Therefore, to describe the nucleus-nucleus interactions at this stage of the freeze-out above the
2264
+ production threshold of new particles (
2265
+ 135
2266
+
2267
+ T
2268
+ MeV), we propose a generalization of the vdW
2269
+ model to a medium-sized nuclear fireball [16]:
2270
+
2271
+
2272
+
2273
+
2274
+
2275
+
2276
+ 
2277
+ 
2278
+
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+ A
2290
+ r
2291
+ b
2292
+ a
2293
+ V
2294
+ V
2295
+ V
2296
+ f
2297
+ f
2298
+ f
2299
+ 3
2300
+ 0
2301
+ 2
2302
+ 4
2303
+ 3
2304
+ 4
2305
+ 3
2306
+ 2
2307
+ ~
2308
+ ~
2309
+ ~
2310
+ max
2311
+ min
2312
+ .
2313
+ Here
2314
+ 2
2315
+ 1
2316
+ 1
2317
+ 1
2318
+ 0
2319
+ .
2320
+ . 
2321
+
2322
+ r
2323
+ Fm,
2324
+
2325
+  a
2326
+ ,
2327
+
2328
+  b
2329
+ are the mean semiaxes of the ellipsoid, and
2330
+ 
2331
+  A
2332
+ is the
2333
+ mass number of nuclei left in the fireball after the collision. In our considerations we assume that
2334
+ the fireball consists, mainly, of mesons, given that the number of nucleons is much less than the
2335
+ number of mesons (
2336
+ 
2337
+  300
2338
+ 200
2339
+ ~
2340
+ pn
2341
+ N
2342
+ 5000
2343
+ 4000 
2344
+  ~
2345
+ N
2346
+ ). We neglect the contribution of other
2347
+ particles. Therefore, we introduce the following additional natural assumptions.
2348
+ 1. The average internucleon energies do not exceed the production threshold of the heavy
2349
+ mesons. Therefore, we restrict ourselves to two sorts of particles ("0" is the
2350
+ 0
2351
+  -meson, "+" is the
2352
+
2353
+  -meson).
2354
+
2355
+ 2. Since
2356
+
2357
+  -meson production reactions are twice as likely as
2358
+ 0
2359
+  -meson production reactions,
2360
+ we assume that
2361
+ n
2362
+ kn
2363
+ n
2364
+
2365
+
2366
+
2367
+ 0
2368
+ , where,
2369
+ 1
2370
+
2371
+ k
2372
+ ,
2373
+ 0
2374
+ n is the
2375
+ 0
2376
+  -meson density, and
2377
+
2378
+ n is the
2379
+
2380
+  -meson
2381
+ density. This corresponds to a more probable production of the
2382
+
2383
+  -mesons in reactions
2384
+
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+ n
2391
+ d
2392
+ d
2393
+ p
2394
+ ,
2395
+ 0
2396
+
2397
+
2398
+
2399
+
2400
+
2401
+ p
2402
+ d
2403
+ d
2404
+ p
2405
+ than production of the
2406
+ 0
2407
+  -mesons.
2408
+ 3. We introduce the effective potential of the meson interaction
2409
+
2410
+ j
2411
+ i
2412
+ U
2413
+ , where 
2414
+  
2415
+
2416
+ 0,
2417
+ ,
2418
+
2419
+
2420
+ j
2421
+ i
2422
+ . That
2423
+ is, "(0+)" is the interaction of
2424
+ 0
2425
+  -mesons with
2426
+
2427
+  -mesons, "(++)" is the interaction of
2428
+
2429
+  -mesons
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+
2449
+ r
2450
+ R
2451
+ R
2452
+ if
2453
+ R
2454
+ R
2455
+ r
2456
+ R
2457
+ R
2458
+ if
2459
+ u
2460
+ R
2461
+ R
2462
+ r
2463
+ if
2464
+ U
2465
+ j
2466
+ i
2467
+ j
2468
+ i
2469
+ j
2470
+ i
2471
+ j
2472
+ i
2473
+ j
2474
+ i
2475
+ j
2476
+ i
2477
+ 0
2478
+ 0
2479
+ 0
2480
+ 0
2481
+ 0
2482
+ 0
2483
+ ,
2484
+ . (25)
2485
+ Since the effective rectangular potential a well leads to approximately the same values of
2486
+ pressure and density as the real potential (see Fig. 2, where
2487
+
2488
+
2489
+ U
2490
+ U
2491
+
2492
+ 0
2493
+ ,
2494
+
2495
+
2496
+
2497
+
2498
+ 0
2499
+ 0
2500
+ u
2501
+ ). Therefore, the
2502
+ real meson-meson potential (a) can be replaced by a similar effective rectangular potential (b).
2503
+
2504
+ a b
2505
+ Fig. 2. Meson-meson potential
2506
+
2507
+ 4. We accept that the
2508
+ 0
2509
+  -meson hard-core radius is much smaller than the
2510
+
2511
+  -meson hard-core
2512
+ radius:
2513
+ 0
2514
+ 0
2515
+ 0
2516
+
2517
+  R
2518
+ R
2519
+ . The radius of the hard-core of the
2520
+
2521
+  -meson is assumed to be known.
2522
+ Average pressure and density fluctuations are easily found within the framework of the proposed
2523
+ model, similarly to formulas (18) and (19):
2524
+
2525
+
2526
+
2527
+
2528
+
2529
+
2530
+ Tn
2531
+ B
2532
+ V
2533
+ n
2534
+ T
2535
+ P
2536
+ f
2537
+
2538
+
2539
+
2540
+
2541
+
2542
+
2543
+ 1
2544
+ ~
2545
+ ,
2546
+
2547
+
2548
+
2549
+
2550
+
2551
+ (26)
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+ Tn
2559
+ B
2560
+ V
2561
+ n
2562
+ V
2563
+ n
2564
+ f
2565
+ f
2566
+
2567
+
2568
+
2569
+
2570
+
2571
+
2572
+
2573
+
2574
+ 1
2575
+ 1
2576
+ ~
2577
+ .
2578
+
2579
+
2580
+
2581
+
2582
+ (27)
2583
+ The following results are obtained (Fig. 3, Fig. 4). Such data have been used (Fig. 3):
2584
+ 3
2585
+ 142,
2586
+
2587
+ T
2588
+ MeV, the effective radius of the
2589
+
2590
+  -meson,
2591
+ 45
2592
+ 0
2593
+ 0
2594
+ ,
2595
+
2596
+
2597
+ R
2598
+ Fm, and
2599
+ 0
2600
+  -meson,
2601
+ 01
2602
+ 0
2603
+ 0
2604
+ 0
2605
+ ,
2606
+
2607
+ R
2608
+ Fm, the average value of the volume of the meson fireball is taken as the value
2609
+ 600
2610
+ ~
2611
+
2612
+
2613
+ f
2614
+ V
2615
+ Fm 3 ,
2616
+ 5
2617
+ 0.
2618
+
2619
+ k
2620
+ , the parameter of the potential depth,
2621
+
2622
+
2623
+ 100
2624
+ 80
2625
+ 0
2626
+ 0
2627
+
2628
+
2629
+ ~
2630
+ ,
2631
+ u
2632
+ MeV. One can
2633
+
2634
+ U来
2635
+ U*clearly see (Fig. 4) an increase in the correction
2636
+
2637
+  P
2638
+ dP
2639
+ at low densities, which is typical in the
2640
+ final stages of the freeze-out.
2641
+
2642
+
2643
+ Fig. 3. Dependence of the meson pressure P (24) on the meson density
2644
+ n
2645
+ kn
2646
+ n
2647
+
2648
+
2649
+
2650
+ 0
2651
+ for the
2652
+ two-component asymmetric vdW model with correction (upper isotherm) and without correction (lower
2653
+ isotherm)
2654
+
2655
+
2656
+ Fig. 4. Ratio of the correction to pressure dP from the size of the meson fireball to the value of the RMS
2657
+ pressure fluctuation
2658
+
2659
+  P
2660
+ (26) as a function of the meson density
2661
+ n
2662
+ kn
2663
+ n
2664
+
2665
+
2666
+
2667
+ 0
2668
+
2669
+
2670
+ 4 Two-component model of a nucleon fireball at the final stage of the freeze-out
2671
+
2672
+ The average lifetime of mesons dominating in the initial stages of the freeze-out is relatively
2673
+ short (
2674
+ 16
2675
+ 8
2676
+ 10
2677
+ 10
2678
+
2679
+  
2680
+  ~
2681
+ c). That's why they decay pretty quickly. Accordingly, baryons, namely
2682
+ protons and neutrons, begin to dominate at the final stage of freezing. In addition, as shown above,
2683
+ the effects of the finite volume size become noticeable at sufficiently low density values. This
2684
+ formally corresponds to just such final stages of the fireball evolution. Therefore, despite a certain
2685
+ doubt about the existence of a fireball at such late stages, when the boundary between the gas and
2686
+ the aggregate of individual nucleons gradually disappears, to describe the nucleus-nucleus
2687
+
2688
+ P(T=142.3, n), MeV/Fm-3
2689
+ 10
2690
+ n, Fm-3
2691
+ 0.05
2692
+ 0.10
2693
+ 0.20
2694
+ 0.25
2695
+ 0.30
2696
+ -10
2697
+ -20
2698
+ -30
2699
+ -40
2700
+ -50 FdP/<P>
2701
+ 2.0
2702
+ 1.5
2703
+ 1.0
2704
+ n, Fm-3
2705
+ 0.05
2706
+ 0.10
2707
+ 0.15
2708
+ 9.20
2709
+ 0.25
2710
+ 0.30interactions at the last stage of the freeze-out, which is below the production threshold of new
2711
+ particles (
2712
+ 135
2713
+
2714
+ T
2715
+ MeV), in [14] the following generalization of the vdW model to the nucleon
2716
+ fireball was proposed. We accept the following simplifications by analogy with the previous
2717
+ section.
2718
+ 1. The average energies of internucleon collisions do not exceed the production threshold of
2719
+ other hadrons. Therefore, we restrict ourselves to two varieties (“ p ” is the proton, “ n ” is the
2720
+ neutron).
2721
+ 2. We take the relation between the density of protons and neutrons in the form
2722
+ n
2723
+ n
2724
+ n
2725
+ n
2726
+ p
2727
+
2728
+
2729
+
2730
+ following from the law of conservation of the baryon number,
2731
+ A
2732
+ N
2733
+ Z
2734
+
2735
+
2736
+ .
2737
+ 3. We assume that the nucleon composition of colliding nuclei is known as such
2738
+ n
2739
+ p
2740
+ kn
2741
+ n 
2742
+ , where
2743
+ 1
2744
+
2745
+ k
2746
+ , since heavy nuclei have an excess of neutrons.
2747
+ 4. The effective potential of the proton-neutron, proton-proton and neutron-neutron interactions,
2748
+ which leads to approximately the same values of pressure and density as the real potential (Fig. 3),
2749
+ can be represented by analogy to (25) as
2750
+
2751
+ j
2752
+ i
2753
+ U
2754
+ , where
2755
+
2756
+
2757
+ n
2758
+ p
2759
+ j
2760
+ i
2761
+ ,
2762
+ ,
2763
+
2764
+ .
2765
+ 5. The hard-core radius of the proton is assumed to be known,
2766
+ 5
2767
+ 0
2768
+ 0
2769
+ ,
2770
+
2771
+ p
2772
+ R
2773
+ Fm. We accept that the
2774
+ radius of the neutron is much less than the radius of the proton:
2775
+ 0
2776
+ 0
2777
+ p
2778
+ n
2779
+ R
2780
+ R 
2781
+ .
2782
+ We get from equation (27):
2783
+
2784
+
2785
+
2786
+
2787
+  
2788
+  
2789
+ dP
2790
+ n
2791
+ a
2792
+ n
2793
+ n
2794
+ n
2795
+ k
2796
+ Tn
2797
+ T
2798
+ P
2799
+
2800
+
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+
2808
+
2809
+
2810
+
2811
+
2812
+
2813
+
2814
+
2815
+
2816
+
2817
+ 2
2818
+ 2
2819
+ 2
2820
+ 1
2821
+ 1
2822
+ 1
2823
+ ,
2824
+ ,
2825
+ , (28)
2826
+ where
2827
+
2828
+
2829
+ k
2830
+ n
2831
+ n
2832
+
2833
+
2834
+
2835
+ 1
2836
+ , k is a dimensionless quantity,
2837
+ k
2838
+ b
2839
+ k
2840
+ b
2841
+ b
2842
+ k
2843
+ b
2844
+ 22
2845
+ 2
2846
+ 21
2847
+ 12
2848
+ 11
2849
+
2850
+
2851
+
2852
+
2853
+
2854
+ ~
2855
+ ~
2856
+ ,
2857
+ 22
2858
+ 21
2859
+ 12
2860
+ 11
2861
+ b
2862
+ k
2863
+ b
2864
+ b
2865
+ k
2866
+ b
2867
+
2868
+
2869
+
2870
+
2871
+
2872
+ ~
2873
+ ~
2874
+ ,
2875
+ k
2876
+ b
2877
+ b
2878
+ b
2879
+ b
2880
+ b
2881
+ b
2882
+ k
2883
+ b
2884
+ kb
2885
+ 21
2886
+ 12
2887
+ 21
2888
+ 22
2889
+ 12
2890
+ 11
2891
+ 2
2892
+ 22
2893
+ 11
2894
+ ~
2895
+ ~
2896
+ ~
2897
+ ~
2898
+
2899
+
2900
+
2901
+
2902
+
2903
+ ,
2904
+
2905
+
2906
+ 22
2907
+ 21
2908
+ 12
2909
+ 2
2910
+ 11
2911
+ a
2912
+ k
2913
+ a
2914
+ a
2915
+ k
2916
+ a
2917
+ a
2918
+
2919
+
2920
+
2921
+
2922
+
2923
+ ~
2924
+ ~
2925
+ .
2926
+ It follows from the condition
2927
+ 0
2928
+ 1
2929
+ 0
2930
+ 2
2931
+ R
2932
+ R 
2933
+ that
2934
+ 11
2935
+ 22
2936
+ b
2937
+ b
2938
+ 
2939
+ ,
2940
+
2941
+
2942
+
2943
+ . By analogy with Eqs. (18) and
2944
+ (19), we find the corresponding average fluctuations of pressure and density.
2945
+ Functional dependences for pressure, obtained by Eq. (28), and the ratio of dP to RMS pressure
2946
+ fluctuations are shown in Figs. 5 and 6.
2947
+
2948
+
2949
+
2950
+ Fig. 5. Dependence of nucleon pressure P (28) on nucleon density,
2951
+ n
2952
+ kn
2953
+ n
2954
+ n
2955
+ p
2956
+
2957
+
2958
+ , in the two-component
2959
+ asymmetric vdW model with correction (upper isotherm) and without correction (lower isotherm)
2960
+
2961
+
2962
+
2963
+ Fig. 6. The ratio of correction from the size of the nucleon fireball to pressure dP to the value of the
2964
+ RMS pressure fluctuation
2965
+
2966
+  P
2967
+ depending on the density of nucleons,
2968
+ n
2969
+ kn
2970
+ n
2971
+ n
2972
+ p
2973
+
2974
+
2975
+
2976
+
2977
+ It can be seen that the correction dP makes a nonzero contribution to the total pressure also in
2978
+ this case. On the other hand, it is negligibly small almost everywhere in comparison with the
2979
+ contribution from fluctuations. The correction makes a contribution comparable to fluctuations only
2980
+ in the region near zero density that is nonphysical for a nuclear fireball. But it can be neglected in
2981
+ this region, as can be seen from Fig. 6.
2982
+
2983
+ Summary
2984
+
2985
+ The effect of taking into account the excluded volume and attraction is analyzed in the case of a
2986
+ two-component gas: (i)
2987
+ 0
2988
+  - and
2989
+
2990
+  -mesons; (ii) protons and neutrons. The calculations have been
2991
+ performed in the Canonical and Grand Canonical ensembles by the saddle point method for a two-
2992
+ component system. The particles interact with the potentials of the hard-core at short distances and
2993
+ with relatively high potentials at large distances (effective attraction radii). For effective
2994
+
2995
+ P(T=142.3. n), MeV/Fm-3
2996
+ 10
2997
+ n, Fm-3
2998
+ 0.05
2999
+ 0.10
3000
+ N15
3001
+ 0.20
3002
+ 0.25
3003
+ 0.30
3004
+ -10
3005
+ -20
3006
+ -30
3007
+ -40
3008
+ -50 FdP/<P>
3009
+ 1.0
3010
+ 0.9
3011
+ 0.8
3012
+ F
3013
+ 0.7
3014
+ n, Fm-3
3015
+ 0.05
3016
+ 0.10
3017
+ 0.15
3018
+ 0.20
3019
+ 0.23
3020
+ 0.30interparticle interactions of this type, an equation of state has been obtained with corrections that
3021
+ take into account the finite dimensions of the nuclear fireball, as well as RMS fluctuations of
3022
+ pressure and density.
3023
+ The pressure correction disappears in the thermodynamic limit, when, according to statistical
3024
+ physics, there is no difference between various statistical ensembles. The formulas for pressure and
3025
+ density obtained by the saddle point method can be used to analyze experimental data concerning
3026
+ the relative number of the yield particleshe of various sorts and critical parameters in high-energy
3027
+ nuclear-nucleus collisions. A generalization of the presented vdW model to the asymmetric case of
3028
+ a two-component model (
3029
+ 0
3030
+  - and
3031
+
3032
+  -mesons) with realistic parameters of the hard-core and
3033
+ attraction has been proposed as an example of such a use. The ratio of the pressure correction to the
3034
+ RMS value of pressure fluctuation is estimated for the case of an asymmetric two-component
3035
+ meson fireball model. An increase in the correction has been found at low density values
3036
+ corresponding to the final stages of freezing.
3037
+ It is found that the contribution to pressure and relative fluctuations, taking into account different
3038
+ radii and the finiteness of the nuclear fireball, is noticeable in the case of the meson model with
3039
+ nonconservation of the number of particles. However, this correction can be neglected for the final
3040
+ stages of the freeze-out, when nucleons begin to dominate (the model of Sec. 4). Therefore, the
3041
+ developed model is applicable in the analysis of experimental data on the study of the initial meson
3042
+ phase of a nuclear fireball (the model of Sec. 3), which occurs, in particular, in experiments on the
3043
+ study of quark-gluon plasma.
3044
+ The research was carried out within the framework of the initiative scientific topic 0122U200549
3045
+ (“National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv,
3046
+ Ukraine is the customer).
3047
+
3048
+ REFERENCES
3049
+
3050
+ 1. J. Stachel, U. Heidelberg. Tests of thermalization in relativistic nucleus nucleus collisions. Nucl. Phys. A
3051
+ 610 (1996) 509C.
3052
+ 2. P. Braun-Munzinger, J. Stachel. Dynamics of ultra-relativistic nuclear collisions with heavy beams: An
3053
+ experimental overview. Nucl. Phys. A 638 (1998) 3C.
3054
+ 3. J. Cleymans, H. Satz. Thermal Hadron Production in High Energy Heavy Ion Collisions. Z. Phys. C 57
3055
+ (1993) 135.
3056
+ 4. J. Cleymans et al. The hadronisation of a quark-gluon plasma. Z. Phys. C 58 (1993) 347.
3057
+ 5. K. Redlich et al. Hadronisation of quark-gluon plasma. Nucl. Phys. A 566 (1994) 391.
3058
+
3059
+ 6. P. Braun-Munzinger et al. Thermal equilibration and expansion in nucleus-nucleus collisions at the AGS.
3060
+ Phys. Lett. B 344 (1995) 43.
3061
+ 7. P. Braun-Munzinger et al. Thermal and hadrochemical equilibration in nucleus-nucleus collisions at the
3062
+ SPS. Phys. Lett. B 365 (1996) 1.
3063
+ 8. R.A. Ritchie, M.I. Gorenstein, H.G. Miller. The excluded volume hadron gas model and pion production
3064
+ at the SPS. Z. Phys. C 75 (1997) 535.
3065
+ 9. G.D. Yen et al. Excluded volume hadron gas model for particle number ratios in
3066
+ A
3067
+ A 
3068
+ collisions. Phys.
3069
+ Rev. C 56 (1997) 2210.
3070
+ 10. G.D. Yen at al. Chemical freezeout in relativistic
3071
+ A
3072
+ A 
3073
+ collisions: is it close to the quark-gluon plasma?
3074
+ J. Phys. G 24 (1998) 1777.
3075
+ 11. M.I. Gorenstein, A.P. Kostyuk, Ya.D Krivenko. Van der Waals excluded-volume model of
3076
+ multicomponent hadron gas. J. Phys. G 25 (1999) 75.
3077
+ 12. Ya.D. Krivenko-Emetov. Attractive inter-particle force in van der Waals model of multicomponent
3078
+ hadron gas in the grand canonical ensemble. 2019 arXiv:1909.08441v1 [hep-ph]; Ya.D. Krivenko-
3079
+ Emetov. Interparticle attractive forces account of the multicomponent hadron gas in the grand canonical
3080
+ ensenble. Book of abstract of the 24th Annual Scientific Conf. of Inst. for Nucl. Research, Kyiv, Ukraine,
3081
+ April 10-13, 2017 (Kyiv, 2017) p. 36.
3082
+ 13. V. Vovchenko at al. Multicomponent van der Waals equation of state: Applications in nuclear and
3083
+ hadronic physics. Phys. Rev. C 96 (2017) 045202.
3084
+ 14. Ya.D. Krivenko-Emetov. Finite volume effects in the two-component van der Waals model in
3085
+ relativistic nucleus-nucleus collisions of heavy ions. Book of abstract of the 28th Annual Scientific
3086
+ Conf. of Inst. for Nucl. Research, Kyiv, Ukraine, Sept. 27 – Oct. 01, 2021 (Kyiv, 2021) p. 27.
3087
+ 15. Quark-Gluon
3088
+ Plasma
3089
+ (QGP)
3090
+ Physics
3091
+ with
3092
+ ALICE
3093
+ at
3094
+ the
3095
+ CERN
3096
+ LHC.
3097
+ URL:
3098
+ https://indico.cern.ch/event/1013634/contributions/4255256/attachments/2227069/3772748/IoP-
3099
+ April2021.pdf.
3100
+ 16. Krivenko-Emetov, Ya.D. Pressure corrections for one-component and two-component van der Waals
3101
+ nuclear fireball models at the freezeout stage. Book of abstract of 29th Annual Scientific Conf. of Inst. for
3102
+ Nucl. Research, Kyiv, Sept. 26 – 30, 2022, p.21-22. (Ukr). D. Sokolyuk, Ya. Krivenko-Emetov. Two-
3103
+ component van der Waals model of a nuclear fireball in the cooling stage (freezeout). Mat. of XX All-
3104
+ Ukrainian science and practice conf. students, postgraduates and young scientists “Theoretical and
3105
+ applied problems of physics, mathematics and informatics”, Kyiv, June 15, 2022 (Igor Sikorsky Kyiv
3106
+ Polytechnic Institute, 2022) p. 88. (Ukr).
3107
+ 17. L.D. Landau, E.M. Lifshitz. Statistical Physics Vol. 5 of Course of Theoretical Physics. (2 ed. Addison
3108
+ Wesley, 1969) 484 p.
3109
+ 18. R. Kubo. Statistical mechanics (Moskva: Mir, 1967) 452 p. (Rus).
3110
+ 19. R.P. Feynman. Statistical Mechanics: a set of lectures. Advanced Book Classics (2 ed. Perseus Books,
3111
+ Reading, Mass., 1998) 354 p.
3112
+
3113
+ 20. A.M. Fedorchenko. Theoretical physics. T.2. Quantum mechanics, thermodynamics and statistical
3114
+ physics (Kyiv: Vyshcha shkola, 1993) 415 p. (Ukr).
3115
+ 21. M.V. Fedoruk. Saddle point method (Moskva, 1977) 368 p. (Rus).
3116
+
3117
+ Я. Д. Кривенко-Еметов*
3118
+ Інститут ядерних досліджень НАН України, Київ, Україна
3119
+ Національний технічний університет України «Київський політехнічний інститут
3120
+ імені Ігоря Сікорського», Київ, Україна
3121
+ *Відповідальний автор: [email protected]; [email protected]
3122
+ БАГАТОКОМПОНЕНТНА МОДЕЛЬ ВАН ДЕР ��АЛЬСА
3123
+ ЯДЕРНОГО ФАЄРБОЛУ НА СТАДІЇ ФРІЗАУТУ
3124
+
3125
+ Двокомпонентна газова модель Ван-дер-Ваальсу запропонована для опису адронних етапів
3126
+ еволюції ядерного фаєрболу у стадії охолодження. Для першого етапу адронізації, коли домінують
3127
+ мезони, запропонована двокомпонентна мезонна модель(
3128
+ 0
3129
+  - та
3130
+
3131
+  -мезонів) з ефективним
3132
+ двочастинковим потенціалом взаємодії прямокутної ями. Для останнього етапу, коли майже усі
3133
+ мезони розпались, запропонована двокомпонентна нуклонна модель протонів та нейтронів з
3134
+ відповідним ефективним прямокутним нуклонним потенціалом. При аналітичних розрахунках
3135
+ статистичної суми використовувався методу перевалу, що дозволило єдиним чином отримати
3136
+ аналітичні вирази, як для тиску та щільності з урахуванням скінченних розмірів системи, так і вирази
3137
+ для хімічних потенціалів. Очікується, що запропоновані моделі й отримані формули можуть бути
3138
+ використані для аналізу експериментальних даних щодо кількісних характеристик виходу частинок
3139
+ різних сортів у кінцевому стані від адронних стадій еволюції ядерного фаєрболу, а також для
3140
+ визначення критичних параметрів системи у ядро-ядерних зіткненнях за високих енергій.
3141
+ Ключові слова: фаєрбол, фрізаут, рівняння Ван-дер Ваальса, ефективний ядерний потенціал,
3142
+ Великий канонічний ансамбль, флуктуація тиску, кварк-глюонна плазма, експериментальні дані.
3143
+
3dAyT4oBgHgl3EQf1vn1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dAzT4oBgHgl3EQffPzi/content/tmp_files/2301.01451v1.pdf.txt ADDED
@@ -0,0 +1,1824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01451v1 [quant-ph] 4 Jan 2023
2
+ Reduced dynamics with Poincar´e symmetry in open quantum system
3
+ Akira Matsumura∗
4
+ Department of Physics, Kyushu University, Fukuoka, 819-0395, Japan
5
+ Abstract
6
+ We consider how the reduced dynamics of an open quantum system coupled to an environment admits
7
+ the Poincar´e symmetry. The reduced dynamics is described by a dynamical map, which is given by tracing
8
+ out the environment from the total dynamics. Introducing the notion of covariant map, we investigate the
9
+ dynamical map which is symmetric under the Poincar´e group. Based on the representation theory of the
10
+ Poincar´e group, we develop a systematic way to give the dynamical map with the Poincar´e symmetry. Using
11
+ this way, we derive the dynamical map for a massive particle with a finite spin and a massless particle with
12
+ a finite spin and a nonzero momentum. We show that the derived map gives the unitary evolution of a
13
+ particle when its energy is conserved. We also find that the dynamical map for a particle does not have the
14
+ Poincar´e symmetry when the superposition state of the particle decoheres into a mixed state.
15
+ ∗Electronic address: [email protected]
16
+ 1
17
+
18
+ Contents
19
+ I. Introduction
20
+ 2
21
+ II. Quantum dynamical map and its symmetry
22
+ 4
23
+ III. Dynamical map with Poincar´e symmetry
24
+ 5
25
+ IV. A model of the dynamical map for a single particle
26
+ 10
27
+ V. Conclusion
28
+ 13
29
+ Acknowledgments
30
+ 14
31
+ A. Derivation of Eqs.(54),(55),(56),(57),(58) and (59)
32
+ 14
33
+ B. Analysis of a massive particle
34
+ 15
35
+ C. Analysis on a massless particle
36
+ 21
37
+ References
38
+ 27
39
+ I.
40
+ INTRODUCTION
41
+ It is difficult to isolate a quantum system perfectly, which is affected by the inevitable influence
42
+ of a surrounding environment. Such a quantum system is called an open quantum system. Since
43
+ we encounter open quantum systems in a wide range of fields such as quantum information science
44
+ [1, 2], condensed matter physics [3, 4] and high energy physics [5], it is important to understand
45
+ their dynamics.
46
+ In general, the dynamics of an open quantum system, the so-called reduced
47
+ dynamics, is very complicated. This is because the environment may have infinitely many degrees
48
+ of freedom and they are uncontrollable. One needs the effective theory with relevant degrees of
49
+ freedom to describe the reduced dynamics of an open quantum system [2].
50
+ As is well-known, symmetry gives a powerful tool for capturing relevant degrees of freedom in
51
+ the dynamics of interest. For example, let us focus on the symmetry in the Minkowski spacetime,
52
+ which is called the Poincar´e symmetry. Imposing the Poincar´e symmetry on a quantum theory,
53
+ one finds that quantum dynamics in the theory is described by the fundamental degrees of freedom
54
+ such as a massive particle and a massless particle [6]. The approach based on symmetries provides
55
+ 2
56
+
57
+ a way to get the effective theory of open quantum systems.
58
+ In this paper, we discuss the consequences of the Poincar´e symmetry on the reduced dynamics
59
+ of an open quantum system. This may give the understanding of the relativistic theories of open
60
+ quantum systems (for example, [7–14]).
61
+ The present paper is also motivated by the theory of
62
+ quantum gravity. Since the unification of quantum mechanics and gravity has not been completed
63
+ yet, we do not exactly know how gravity is incorporated in quantum mechanics. This situation
64
+ has prompted to propose many models on the gravity of quantum systems. In the previous work
65
+ [15], the model with a classical gravitational interaction between quantum systems was proposed,
66
+ which is called the Kafri-Taylor-Milburn model. In addition, the Diosi-Penrose model [16–18] and
67
+ the Tilloy-Diosi model [19] were advocated, for which the gravity of a quantum system intrinsically
68
+ induces decoherence.
69
+ They are formulated by the theory of open quantum systems in a non-
70
+ relativistic regime.
71
+ One may concern how the models are consistent with a relativistic theory.
72
+ Our analysis on reduced dynamics with the Poincar´e symmetry would help to obtain a relativistic
73
+ extension of the above proposed models.
74
+ For our analysis, we assume that the reduced dynamics of an open quantum system is described
75
+ by a dynamical map. The dynamical map is obtained by tracing out the environment from the total
76
+ unitary evolution with an initial product state. It is known that the dynamical map is represented
77
+ by using the Kraus operators [2, 20–22]. The notion of covariant map is adopted for incorporating
78
+ a symmetry into a dynamical map. We derive the condition of a dynamical map with the Poincar´e
79
+ symmetry in terms of the Kraus operators. With the help of the representation theory of the
80
+ Poincar´e group, we obtain a systematic way to deduce those Kraus operators.
81
+ Applying the way, we exemplify the dynamical map with the Poincar´e symmetry.
82
+ To get
83
+ the concrete Kraus operators, we focus on the dynamics of a single particle, which is possible to
84
+ decay into the vacuum state. Assuming that the particle is a massive particle with a finite spin or a
85
+ massless particle with a finite spin and a nonzero momentum, we get a model of the dynamical map
86
+ with the Poincar´e symmetry. In the model, we find the following consequences: (i) if the particle
87
+ is stable or the energy of particle is conserved, the obtained map turns out to be the unitary map
88
+ given by the Hamiltonian of particle. (ii) If the superposition state of a particle decoheres into
89
+ a mixed state, the dynamical map for the particle does not have the Poincar´e symmetry. These
90
+ consequences imply that the Poincar´e symmetry can strongly constraint the reduced dynamics of
91
+ an open quantum system.
92
+ The structure of this paper is as follows. In Sec.II, we discuss a dynamical map describing the
93
+ reduced dynamics of an open quantum system and consider how symmetries are introduced in the
94
+ 3
95
+
96
+ dynamical map. In Sec.III, we derive the condition that the dynamical map is symmetric under the
97
+ Poincar´e group. In Sec.IV, focusing on the dynamics of a single particle, we present a model of the
98
+ dynamical map with the Poincar´e symmetry. We then investigate the properties of the dynamical
99
+ map in details. Sec.V is devoted as the conclusion. We use the unit ℏ = c = 1 in this paper.
100
+ II.
101
+ QUANTUM DYNAMICAL MAP AND ITS SYMMETRY
102
+ In this section, we consider the reduced dynamics of an open quantum system and discuss the
103
+ symmetry of the dynamics. The reduced dynamics is given as the time evolution of the density
104
+ operator of the system. The time evolution from a time τ = s to τ = t is assumed to be given by
105
+ ρ(t) = Φt,s[ρ(s)] = TrE[ ˆU(t, s)ρ(s) ⊗ ρE ˆU †(t, s)],
106
+ (1)
107
+ where ρ(τ) is the system density operator, ρE is the density operator of an environment and ˆU(t, s)
108
+ is the unitary evolution operator of the total system.
109
+ In this paper, the map Φt,s is called a
110
+ dynamical map, which has the property called completely positive and trace-preserving (CPTP)
111
+ [2, 20–22]. The dynamical map Φt,s is rewritten in the operator-sum representation,
112
+ Φt,s[ρ(s)] =
113
+
114
+ λ
115
+ ˆF t,s
116
+ λ ρ(s) ˆF t,s †
117
+ λ
118
+ ,
119
+ (2)
120
+ where ˆF t,s
121
+ λ
122
+ called the Kraus operators satisfy the completeness condition,
123
+
124
+ λ
125
+ ˆF t,s †
126
+ λ
127
+ ˆF t,s
128
+ λ
129
+ = ˆI.
130
+ (3)
131
+ In this notation, λ takes discrete values. When the label λ is continuous, we should replace the
132
+ summation �
133
+ λ with the integration
134
+
135
+ dµ(λ) with an appropriate measure µ(λ). It is known that
136
+ two dynamical maps Φ and Φ′ with
137
+ Φ[ρ] =
138
+
139
+ λ
140
+ ˆFλ ρ ˆF †
141
+ λ,
142
+ Φ′[ρ] =
143
+
144
+ λ
145
+ ˆF ′
146
+ λ ρ ˆF
147
+ ′†
148
+ λ ,
149
+ (4)
150
+ are equivalent to each other (i.e. Φ[ρ] = Φ′[ρ] for any density operator ρ) if and only if there is a
151
+ unitary matrix Uλλ′ satisfying �
152
+ λ Uλ1λU∗
153
+ λ2λ = δλ1λ2 = �
154
+ λ Uλλ1U∗
155
+ λλ2 and
156
+ ˆF
157
+
158
+ λ =
159
+
160
+ λ′
161
+ Uλλ′ ˆFλ′.
162
+ (5)
163
+ This is the uniqueness of a dynamical map [2, 20–22].
164
+ We introduce the notion of covariant map [22–24] to impose symmetry on dynamical maps. A
165
+ dynamical map Φt,s is covariant under a group G if
166
+ Φt,s[ ˆUs(g) ρ(s) ˆU †
167
+ s (g)] = ˆUt(g)Φt,s[ρ(s)] ˆU †
168
+ t (g),
169
+ (6)
170
+ 4
171
+
172
+ where ˆUs(g) and ˆUt(g) with g ∈ G are the unitary representations of G. In this paper, the dynamical
173
+ map Φt,s satisfying (6) is called symmetric under the group G. In the next section, we will discuss
174
+ the dynamical map which is symmetric under the Poincar´e group.
175
+ III.
176
+ DYNAMICAL MAP WITH POINCAR´E SYMMETRY
177
+ In this section, we consider a quantum theory with the Poincar´e symmetry and discuss the
178
+ general conditions on a dynamical map with the Poincare symmetry. The generators of the unitary
179
+ representation of the Poincar´e group in the Schr¨odinger picture [6] are given by
180
+ ˆPµ =
181
+
182
+ d3x ˆT 0
183
+ µ,
184
+ ˆJµν =
185
+
186
+ d3x ˆ
187
+ Mµν0,
188
+ (7)
189
+ where ˆTµν is the energy-momentum tensor satisfying
190
+ ∂µ ˆT µ
191
+ ν = 0,
192
+ ˆTµν = ˆTνµ
193
+ (8)
194
+ and ˆ
195
+ Mµνρ with
196
+ ˆ
197
+ Mµνρ = xµ ˆT ρ
198
+ ν − xν ˆT ρ
199
+ µ
200
+ (9)
201
+ is the Noether current associated with the Lorentz transformations. From Eq.(8), we can show
202
+ that ∂ρ ˆ
203
+ Mµνρ = 0. Focusing on each component of the generators, we have
204
+ ˆH = ˆP 0 =
205
+
206
+ d3x ˆT 00,
207
+ ˆP i =
208
+
209
+ d3x ˆT 0i,
210
+ (10)
211
+ ˆJk = 1
212
+ 2ǫijk ˆJij =
213
+
214
+ d3x ǫijkxi ˆT 0
215
+ j ,
216
+ ˆKk =
217
+
218
+ d3(xk ˆT 00 − t ˆT 0k),
219
+ (11)
220
+ where note that the boost generator ˆKk explicitly depends on a time t. These operators satisfy
221
+ the commutation relations,
222
+ [ ˆPi, ˆPj] = 0,
223
+ (12)
224
+ [ ˆPi, ˆH] = 0,
225
+ (13)
226
+ [ ˆJi, ˆH] = 0,
227
+ (14)
228
+ [ ˆJi, ˆJj] = iǫijk ˆJk,
229
+ (15)
230
+ [ ˆJi, ˆPj] = iǫijk ˆP k,
231
+ (16)
232
+ [ ˆJi, ˆKj] = iǫijk ˆKk,
233
+ (17)
234
+ [ ˆKi, ˆPj] = iδij ˆH,
235
+ (18)
236
+ [ ˆKi, ˆH] = i ˆPi,
237
+ (19)
238
+ [ ˆKi, ˆKj] = −iǫijk ˆJk,
239
+ (20)
240
+ 5
241
+
242
+ which correspond to the Poincar´e algebra.
243
+ We consider a dynamical map Φt,s from ρ(s) to ρ(t) = Φt,s[ρ(s)]. The Poincar´e symmetry of
244
+ the dynamical map requires that
245
+ ˆUt(Λ, a)Φt,s[ρ(s)] ˆU †
246
+ t (Λ, a) = Φt,s[ ˆUs(Λ, a)ρ(s) ˆU †
247
+ s (Λ, a)],
248
+ (21)
249
+ where the unitary operator ˆUt(Λ, a) depends on the proper (detΛ = 1) orthochronous (Λ00 ≥ 1)
250
+ Lorentz transformation matrix Λµν and the real parameters aµ for the spacetime translations. The
251
+ unitary operator ˆUt(Λ, a) generated by ˆH, ˆPi, ˆJi and ˆKi has the group multiplication rule
252
+ ˆUt(Λ′, a′) ˆUt(Λ, a) = ˆUt(Λ′Λ, a′ + Λ′a),
253
+ (22)
254
+ where we used the fact that we can always adopt the non-projective unitary representation of the
255
+ Poincar´e group [6]. The explicit time dependence of ˆUt comes from the boost generator ˆKi. Using
256
+ the operator-sum representation, we have
257
+ ˆUt(Λ, a)
258
+
259
+ λ
260
+ ˆF t,s
261
+ λ ρ(s) ˆF t,s†
262
+ λ
263
+ ˆU †
264
+ t (Λ, a) =
265
+
266
+ λ
267
+ ˆF t,s
268
+ λ
269
+ ˆUs(Λ, a)ρ(s) ˆU †
270
+ s (Λ, a) ˆF t,s†
271
+ λ
272
+ .
273
+ From the uniqueness of the Kraus operators ˆF t,s
274
+ λ
275
+ (see Eq.(5)), we obtain
276
+ ˆU †
277
+ t (Λ, a) ˆF t,s
278
+ λ ˆUs(Λ, a) =
279
+
280
+ λ′
281
+ Uλλ′(Λ, a) ˆF t,s
282
+ λ′ .
283
+ (23)
284
+ We can always choose ˆF t,s
285
+ λ
286
+ so that { ˆF t,s
287
+ λ }λ is the set of linearly independent operators. This linear
288
+ independence and the group multiplication rule of ˆUt(Λ, a) given in (22) lead to the fact that the
289
+ unitary matrix Uλλ′(Λ, a) satisfies the group multiplication rule
290
+
291
+ λ′
292
+ Uλλ′(Λ′, a′)Uλ′λ′′(Λ, a) = Uλλ′′(Λ′Λ, Λa + a′).
293
+ (24)
294
+ Hence, the unitary matrix Uλλ′(Λ, a) is a representation of the Poincar´e group.
295
+ Before discussing the condition of symmetry, Eq.(23), we present the useful relation
296
+ ˆKi = e−i ˆ
297
+ Ht ˆKi
298
+ 0 ei ˆ
299
+ Ht,
300
+ (25)
301
+ where
302
+ ˆKi
303
+ 0 =
304
+
305
+ d3x xi ˆT 00.
306
+ (26)
307
+ According to the Poincar´e algebra, we have
308
+ ˆUt(Λ, a) = e−i ˆ
309
+ Ht ˆU0(Λ, a)ei ˆ
310
+ Ht,
311
+ (27)
312
+ 6
313
+
314
+ where ˆU0(Λ, a) is the unitary representation of the Poincar´e group with the genrators ˆH, ˆP i, ˆKi
315
+ 0 and
316
+ ˆJi. In the scattering theory, Eq. (27) is consistent with the Poincar´e invariance of the S-operator
317
+ ˆS(∞, −∞), where ˆS(tf, ti) = ei ˆ
318
+ H0tfe−i ˆ
319
+ H(tf−ti)e−i ˆ
320
+ H0ti and ˆH = ˆH0 + ˆV . This is because
321
+ ˆU I†
322
+ tf (Λ, a) ˆS(tf, ti) ˆU I
323
+ ti(Λ, a) = ei ˆ
324
+ H0tf ˆU †
325
+ tf(Λ, a)e−i ˆ
326
+ H(tf−ti) ˆUti(Λ, a)e−i ˆ
327
+ H0ti
328
+ = ei ˆ
329
+ H0tfe−i ˆ
330
+ Htf ˆU †
331
+ 0(Λ, a) ˆU0(Λ, a)ei ˆ
332
+ Htie−i ˆ
333
+ H0ti
334
+ = ˆS(tf, ti),
335
+ (28)
336
+ where ˆU I
337
+ t(Λ, a) = ei ˆ
338
+ H0t ˆUt(Λ, a)e−i ˆ
339
+ H0t. Eq.(27) also implies that the unitary evolution generated by
340
+ ˆH is symmetric under the Poincar´e group. Indeed, we can show that the unitary map
341
+ Ut,s[ρ(s)] = e−i ˆ
342
+ H(t−s) ρ(s) ei ˆ
343
+ H(t−s)
344
+ (29)
345
+ satisfies the condition of symmetry (21) as
346
+ Ut,s[ ˆUs(Λ, a)ρ(s) ˆU †
347
+ s (Λ, a)] = e−i ˆ
348
+ H(t−s) ˆUs(Λ, a) ρ(s) ˆU †
349
+ s (Λ, a)ei ˆ
350
+ H(t−s)
351
+ = e−i ˆ
352
+ H(t−s) ˆUs(Λ, a)ei ˆ
353
+ H(t−s) Ut,s[ρ(s)] e−i ˆ
354
+ H(t−s) ˆU †
355
+ s(Λ, a)ei ˆ
356
+ H(t−s)
357
+ = ˆUt(Λ, a) Ut,s[ρ(s)] ˆU †
358
+ t (Λ, a).
359
+ Eq.
360
+ (27) helps us to simplify the condition of symmetry, Eq.(23), on the Kraus operators.
361
+ Defining the Kraus operators ˆEt,s
362
+ λ
363
+ as
364
+ ˆEt,s
365
+ λ = ei ˆ
366
+ Ht ˆF t,s
367
+ λ e−i ˆ
368
+ Hs
369
+ (30)
370
+ which have the completeness condition,
371
+
372
+ λ
373
+ ˆEt,s†
374
+ λ
375
+ ˆEt,s
376
+ λ = ˆI,
377
+ (31)
378
+ we can rewrite Eq.(23) as
379
+ ˆU †
380
+ 0(Λ, a) ˆE ˆU0(Λ, a) = U(Λ, a) ˆE.
381
+ (32)
382
+ Here, we introduced the vector ˆE with the λ component given by ˆEt,s
383
+ λ
384
+ and the matrix U(Λ, a) with
385
+ the (λ, λ′) component given by Uλλ′(Λ, a). We define the dynamical map Et,s as
386
+ Et,s[ρ] =
387
+
388
+ λ
389
+ ˆEt,s
390
+ λ ρ ˆEt,s†
391
+ λ
392
+ .
393
+ (33)
394
+ The condition (32) gives the fact that the map Et,s is symmetric under the Poincar`e group in the
395
+ sense that
396
+ ˆU0(Λ, a)Et,s[ρ] ˆU †
397
+ 0(Λ, a) = Et,s[ ˆU0(Λ, a) ρ ˆU †
398
+ 0(Λ, a)].
399
+ (34)
400
+ 7
401
+
402
+ The dynamical map Φt,s is written by the unitary map Ut,s and the dynamical map Et,s as
403
+ Φt,s[ρ] =
404
+
405
+ λ
406
+ ˆF t,s
407
+ λ ρ ˆF t,s†
408
+ λ
409
+ = e−i ˆ
410
+ Ht �
411
+ λ
412
+ ˆEt,s
413
+ λ ei ˆ
414
+ Hsρe−i ˆ
415
+ Hs ˆEt,s†
416
+ λ
417
+ ei ˆ
418
+ Ht
419
+ = e−i ˆ
420
+ HtEt,s[ei ˆ
421
+ Hsρe−i ˆ
422
+ Hs]ei ˆ
423
+ Ht
424
+ = e−i ˆ
425
+ H(t−s)Et,s[ρ]ei ˆ
426
+ H(t−s)
427
+ = Ut,s ◦ Et,s[ρ],
428
+ (35)
429
+ where in the fourth equality we used the symmetric condition (34) noticing that ei ˆ
430
+ Hs is the unitary
431
+ transformation of the time translation.
432
+ Our task is to determine ˆE satisfying Eq.(32) (or Et,s
433
+ satisfying Eq.(34)). Since Eq. (32) is decomposed into equations for each irreducible representation
434
+ subspace, the irreducible unitary representations of the Poincar´e group is useful for our analysis.
435
+ Let us present how to classify the unitary representations of the Poincar´e group [6]. We consider
436
+ the standard momentum ℓµ and the Lorentz transformation matrix (Sq)µν with
437
+ qµ = (Sq)µνℓν.
438
+ (36)
439
+ The unitary matrix U(Λ, a) is written as
440
+ U(Λ, a) = U(I, a)U(Λ, 0) = T (a)V(Λ),
441
+ (37)
442
+ where I is the identity matrix, U(I, a) = T (a) = e−iPµaµ and U(Λ, 0) = V(Λ). We define the vector
443
+ vq,ξ as
444
+ vq,ξ = NqV(Sq)vℓ,ξ,
445
+ (38)
446
+ where Pµvℓ,ξ = ℓµvℓ,ξ, Nq is the normalization and the label ξ describes the degrees of freedom
447
+ other than them determined by ℓµ. We obtain the following transformation rules for the vector
448
+ vq,ξ:
449
+ T (a)vq,ξ = Nqe−iP µaµV(Sq)vℓ,ξ
450
+ = NqV(Sq)e−i(Sq)µνP νaµvℓ,ξ
451
+ = NqV(Sq)e−i(Sq)µνℓνaµvℓ,ξ
452
+ = NqV(Sq)e−iqµaµvℓ,ξ
453
+ = e−iqµaµvq,ξ
454
+ (39)
455
+ 8
456
+
457
+ and
458
+ V(Λ)vq,ξ = NqV(Λ)V(Sq)vℓ,ξ
459
+ = NqV(ΛSq)vℓ,ξ
460
+ = NqV(SΛq)V(S−1
461
+ Λq ΛSq)vℓ,ξ
462
+ = NqV(SΛq)
463
+
464
+ ξ′
465
+ Dξ′ξ(Q(Λ, q))vℓ,s′
466
+ = Nq
467
+ NΛq
468
+
469
+ ξ′
470
+ Dξ′ξ(Q(Λ, q))vΛq,s′,
471
+ (40)
472
+ where Q(Λ, q) = S−1
473
+ Λq ΛSq is an element of the little group, which satisfies Qµνℓν = ℓµ, and Dξ′ξ(Q)
474
+ is the unitary representation of the little group. The irreducible unitary representations of the
475
+ Poincar´e group are classified by the standard momentum ℓµ and the irreducible unitary represen-
476
+ tations of the little group which does not change ℓµ.
477
+ standard momentum ℓµ
478
+ little group composed of Qµν with Qµνℓν = ℓµ
479
+ (a)
480
+ ℓµ = [M, 0, 0, 0], M > 0
481
+ SO(3)
482
+ (b)
483
+ ℓµ = [−M, 0, 0, 0], M > 0
484
+ SO(3)
485
+ (c)
486
+ ℓµ = [κ, 0, 0, κ], κ > 0
487
+ ISO(2)
488
+ (d)
489
+ ℓµ = [−κ, 0, 0, κ], κ > 0
490
+ ISO(2)
491
+ (e)
492
+ ℓµ = [0, 0, 0, N], N 2 > 0
493
+ SO(2,1)
494
+ (f)
495
+ ℓµ = [0, 0, 0, 0]
496
+ SO(3,1)
497
+ TABLE I: Classification of the standard momentum ℓµ and the little group associated with ℓµ.
498
+ For simplicity, ξ is regarded as the label of basis vectors of the irreducible representation sub-
499
+ spaces of the little group. Other degeneracies not represented by q and ξ will be reintroduced in
500
+ the form of the dynamical map Φt,s, which we will see in the next section. We investigate Eq.(32)
501
+ restricted on each irreducible representation. For convenience, we separately focus on the Lorentz
502
+ transformation and the spacetime translation in Eq.(32). The unitary operator ˆU0(Λ, a) is written
503
+ as
504
+ ˆU0(Λ, a) = ˆU0(I, a) ˆU0(Λ, 0) = ˆT(a) ˆV (Λ),
505
+ (41)
506
+ where ˆU0(I, a) = ˆT(a) = e−i ˆPµaµ with ˆP µ = [ ˆH, ˆP 1, ˆP 2, ˆP 3] and ˆU0(Λ, 0) = ˆV (Λ) with the genera-
507
+ tors ˆJi and ˆKi
508
+ 0. From Eq.(32) for Λ = I, we have
509
+ ˆT †(a) ˆE ˆT(a) = T (a) ˆE.
510
+ (42)
511
+ 9
512
+
513
+ Eq.(32) for aµ = 0 gives
514
+ ˆV †(Λ) ˆE ˆV (Λ) = V(Λ) ˆE.
515
+ (43)
516
+ Introducing ˆEq,ξ = v†
517
+ q,ξ ˆE, we obtain the following equations from Eqs.(42) and (43):
518
+ ˆT †(a) ˆEq,ξ ˆT(a) = e−iqµaµ ˆEq,ξ
519
+ (44)
520
+ and
521
+ ˆV †(Λ) ˆEq,ξ ˆV (Λ) =
522
+ N ∗
523
+ q
524
+ N ∗
525
+ Λ−1q
526
+
527
+ ξ′
528
+ D∗
529
+ ξ′ξ(Q(Λ−1, q)) ˆEΛ−1q,ξ′,
530
+ (45)
531
+ where we used Eqs.(39) and (40), and Q(Λ, q) = S−1
532
+ Λq ΛSq. The label ξ can take discrete or contin-
533
+ uous values. For the continous case, the summation �
534
+ ξ is replaced with the integration
535
+
536
+ dµ(ξ)
537
+ with a measure µ(ξ). Focusing on Eq.(45) for Λ = Sq, we get
538
+ ˆV †(Sq) ˆEq,ξ ˆV (Sq) = N ∗
539
+ q ˆEℓ,ξ,
540
+ (46)
541
+ where note that Nℓ = 1 and Q(S−1
542
+ q , q) = S−1
543
+ S−1
544
+ q
545
+ qS−1
546
+ q Sq = S−1
547
+
548
+ = I hold by the definition of vq,ξ.
549
+ Eq.(46) tells us that the Kraus operators ˆEq,ξ is determined from the Kraus operators ˆEℓ,ξ with
550
+ the standard momentum ℓµ. All we have to do is to give the form of the Kraus operators ˆEℓ,ξ.
551
+ To this end, we present the following equations given by Eq.(44) for qµ = ℓµ and by Eq.(45) for
552
+ qµ = ℓµ and Λ = W with W µνℓν = ℓµ, respectively:
553
+ ˆT †(a) ˆEℓ,ξ ˆT(a) = e−iℓµaµ ˆEℓ,ξ,
554
+ (47)
555
+ ˆV †(W) ˆEℓ,ξ ˆV (W) =
556
+
557
+ ξ′
558
+ D∗
559
+ ξ′ξ(W −1) ˆEℓ,ξ′,
560
+ (48)
561
+ where Q(Λ−1, q) = Q(W −1, ℓ) = S−1
562
+ W −1ℓW −1Sℓ = W −1. In the next section, we construct a model
563
+ of the dynamical map with the Poincar´e symmetry to describe the reduced dynamics of a single
564
+ particle.
565
+ IV.
566
+ A MODEL OF THE DYNAMICAL MAP FOR A SINGLE PARTICLE
567
+ In this section, based on Eqs.(47) and (48), we give a model of the dynamical map with the
568
+ Poincar´e symmetry. To simplify the analysis, we consider the Hilbert space H0 ⊗ H1, where H0 is
569
+ the one-dimensional Hilbert space with a vacuum state |0⟩ and H1 is the irreducible subspace with
570
+ one-particle states. Any state vector |Ψ⟩ in H1 ( |Ψ⟩ ∈ H1 ) is given by
571
+ |Ψ⟩ =
572
+
573
+ d3q
574
+
575
+ σ
576
+ Ψ(p, σ) ˆa†(p, σ)|0⟩,
577
+ (49)
578
+ 10
579
+
580
+ where |0⟩ is the vacuum state satisfying ˆa(p, σ)|0⟩ = 0, Ψ(p, σ) with the momentum p and the spin
581
+ σ is the wave function, ˆa(p, σ) and ˆa†(p, σ) are the annihilation and creation operators satisfying
582
+ [ˆa(p, σ), ˆa(p′, σ′)]± = 0 = [ˆa†(p, σ), ˆa†(p′, σ′)]±,
583
+ [ˆa(p, σ), ˆa†(p′, σ′)]± = δ3(p − p′)δσσ′.
584
+ (50)
585
+ In the above notation, [ ˆA, ˆB]± is defined as [ ˆA, ˆB]± = ˆA ˆB ± ˆB ˆA, in which the signs − and + apply
586
+ bosons and fermions, respectively. In Ref.[6, 26], the transformation rules of ˆa†(p, σ) are given by
587
+ ˆT(a)ˆa†(p, σ) ˆT †(a) = e−ipµaµˆa†(p, σ),
588
+ (51)
589
+ ˆV (Λ)ˆa†(p, σ) ˆV †(Λ) =
590
+
591
+ EpΛ
592
+ Ep
593
+
594
+ σ′
595
+ Dσ′σ(Q(Λ, p))ˆa†(pΛ, σ′),
596
+ (52)
597
+ where Ep = p0, EpΛ = (Λp)0 and pΛ is the vector with the component (pΛ)i = (Λp)i. The matrix
598
+ Q(Λ, p) = S−1
599
+ Λp ΛSp is the element of the little group which satisfies Q(Λ, p)µνkν = kµ, where kµ
600
+ is the standard momentum for a massive particle (kµ = [m, 0, 0, 0], m > 0) or a massless particle
601
+ (kµ = [k, 0, 0, k], k > 0). The momentum pµ and the standard momentum kµ are connected with
602
+ (Sp)µνkν = pµ, and Dσ′σ(Q(Λ, p)) is the irreducible unitary representation of the little group.
603
+ We consider the Kraus operators ˆEℓ,ξ acting on the Hilbert space H0
604
+ � H1, that is, ˆEℓ,ξ :
605
+ H0
606
+ � H1 → H0
607
+ � H1, which have the following form
608
+ ˆEℓ,ξ = Aℓ,ξˆI +
609
+
610
+ d3p
611
+
612
+ σ
613
+ Bℓ,ξ(p, σ)ˆa(p, σ) +
614
+
615
+ d3p′d3p
616
+
617
+ σ′,σ
618
+ Cℓ,ξ(p′, σ′, p, σ)ˆa†(p′, σ′)ˆa(p, σ).
619
+ (53)
620
+ The dynamical map given by these operators describes the reduced dynamics of a single particle,
621
+ which can possibly decay into the vacuum state. Substituting the above operators into Eq.(47)
622
+ and Eq.(48), we obtain the equations
623
+ Aℓ,ξ = e−iℓµaµAℓ,ξ,
624
+ (54)
625
+ Bℓ,ξ(p, σ)e−ipµaµ = Bℓ,ξ(p, σ)e−iℓµaµ,
626
+ (55)
627
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′µ−pµ)aµ = Cℓ,ξ(p′, σ′, p, σ)e−iℓµaµ,
628
+ (56)
629
+ and
630
+ Aℓ,ξ =
631
+
632
+ ξ′
633
+ D∗
634
+ ξ′ξ(W −1)Aℓ,ξ′,
635
+ (57)
636
+
637
+ EpW
638
+ Ep
639
+
640
+ σ
641
+ Bℓ,ξ(pW , σ)D∗
642
+ σ′σ(Q) =
643
+
644
+ ξ′
645
+ D∗
646
+ ξ′ξ(W −1)Bℓ,ξ′(p, σ′),
647
+ (58)
648
+
649
+ Ep′
650
+ W EpW
651
+ Ep′Ep
652
+
653
+ σ′,σ
654
+ Cℓ,ξ(p′
655
+ W, σ′, pW , σ)D¯σ′σ′(Q′)D∗
656
+ ¯σσ(Q) =
657
+
658
+ ξ′
659
+ D∗
660
+ ξ′ξ(W −1)Cℓ,ξ′(p′, ¯σ′, p, ¯σ),
661
+ (59)
662
+ 11
663
+
664
+ where Q = Q(W −1, Wp) and Q′ = Q(W −1, Wp′). The derivation of these equations is devoted in
665
+ Appendix A.
666
+ We can analyze the explicit form of Aℓ,ξ, Bℓ,ξ(p, σ) and Cℓ,ξ(p′, σ′, p, σ) for a massive particle
667
+ and a massless particle, respectively. For the analysis, we assume that the massive particle has
668
+ a finite spin and the massless particle has a finite spin and a nonzero momentum. Through the
669
+ long computations presented in Appendices B and C, we get the following dynamical map with
670
+ the Poincar´e symmetry,
671
+ Φt,s[ρ(s)] = Ut,s◦Et,s[ρ(s)],
672
+ Et,s[ρ] =
673
+
674
+ j
675
+
676
+ β(j)
677
+ t,s
678
+
679
+ d3p
680
+
681
+ σ
682
+ ˆa(p, σ)ρˆa†(p, σ)+α(j)
683
+ t,s
684
+ �ˆI+γ(j)
685
+ t,s ˆN
686
+
687
+ ρ
688
+ �ˆI+γ(j)∗
689
+ t,s
690
+ ˆN
691
+ ��
692
+ ,
693
+ (60)
694
+ where α(j)
695
+ t,s , β(j)
696
+ t,s and γ(j)
697
+ t,s are the parameters depending on time, ˆN is the number operator defined
698
+ as
699
+ ˆN =
700
+
701
+ d3p
702
+
703
+ σ
704
+ ˆa†(p, σ)ˆa(p, σ),
705
+ (61)
706
+ and Ut,s is the unitary map given in (29). In the form of the dynamical map Φt,s, we recovered
707
+ the labels j which represent the degeneracies other than the labels q and ξ appearing in the Kraus
708
+ operators ˆEq,ξ defined around (44). The parameters α(j)
709
+ t,s, β(j)
710
+ t,s and γ(j)
711
+ t,s in Eq.(60) satisfy
712
+ 0 ≤ α(j)
713
+ t,s ≤ 1,
714
+
715
+ j
716
+ α(j)
717
+ t,s = 1,
718
+ 0 ≤ β(j)
719
+ t,s ,
720
+ 0 ≤
721
+
722
+ j
723
+ β(j)
724
+ t,s ≤ 1
725
+
726
+ j
727
+
728
+ β(j)
729
+ t,s + α(j)
730
+ t,s
731
+
732
+ γ(j)
733
+ t,s + γ(j)∗
734
+ t,s
735
+ + |γ(j)
736
+ t,s |2��
737
+ = 0.
738
+ (62)
739
+ These conditions come from the completeness condition of the Kraus operators (3). For the com-
740
+ putation of the completeness condition, note that the number operator ˆN satisfies ˆN 2 = ˆN on the
741
+ Hilbert space H0 ⊗ H1, since we assume that the dynamical map describes the reduced dynamics
742
+ of a single particle.
743
+ From the transformation rules of the creation and the annihilation operators, Eqs.(51) and (52),
744
+ it is easy to check that the map Et,s satisfies the condition of symmetry given in (34). Since the
745
+ unitary map Ut,s is symmetric under the Poincar´e group, which is checked around Eq.(29), we can
746
+ confirm that Φt,s is also symmetric.
747
+ Let us consider the case where there is no decay under the dynamical map Φt,s and focus on the
748
+ dynamics of one-particle states. In this case, the parameter �
749
+ j β(j)
750
+ t,s vanishes. Since the density
751
+ operator ρ given by one-particle states satisfies ˆNρ = ρ = ρ ˆN, we have
752
+ Φt,s[ρ(s)] = Ut,s ◦ Et,s[ρ(s)] =
753
+
754
+ j
755
+ α(j)
756
+ t,s |1 + γ(j)
757
+ t,s |2Ut,s[ρ(s)] = Ut,s[ρ(s)],
758
+ (63)
759
+ 12
760
+
761
+ where we used the condition (62) with �
762
+ j β(j)
763
+ t,s = 0 in the third equality. This means that the
764
+ dynamical map with the Poincar´e symmetry for a non-decaying particle is the unitary map. The
765
+ result corresponds to a non-perturbative extension of the analysis in [25], which gives an implication
766
+ on the particle dynamics. For example, if the superposition state of a particle decoheres under
767
+ a non-unitary evolution, the Poincar´e symmetry breaks in the particle dynamics described by a
768
+ dynamical map.
769
+ We discuss the energy conservation. The expectation value of ˆHn at a time t, where n is a
770
+ natural number, is computed as
771
+ Tr[ ˆHnρ(t)] =
772
+
773
+ j
774
+
775
+ β(j)
776
+ t,s Tr[ ˆHn
777
+
778
+ d3p
779
+
780
+ σ
781
+ ˆa(p, σ)ρ(s)ˆa†(p, σ)] + α(j)
782
+ t,s Tr[ ˆHn(ˆI + γ(j)
783
+ t,s ˆN)ρ(s)(ˆI + γ(j)∗
784
+ t,s
785
+ ˆN)]
786
+
787
+ = (1 −
788
+
789
+ j
790
+ β(j)
791
+ t,s )Tr[ ˆHnρ(s)].
792
+ (64)
793
+ In the reduced dynamics by the dynamical map Φt,s, the energy of a single particle is not conserved
794
+ unless �
795
+ j β(j)
796
+ t,s is a constant, even when the map is symmetric under the Poincar´e group. Such
797
+ a deviation between symmetry and conservation law was discussed in, for example, Refs [23] and
798
+ [24]. If the parameter �
799
+ j β(j)
800
+ t,s is a constant, then �
801
+ j β(j)
802
+ t,s = �
803
+ j β(j)
804
+ s,s = 0 and the dynamical map
805
+ Φt,s is reduced to the unitary map Ut,s as discussed above.
806
+ V.
807
+ CONCLUSION
808
+ We discussed what a dynamical map describing the reduced dynamics of an open quantum
809
+ system is realized under the Poincar´e symmetry. The unitary representation theory of the Poincar´e
810
+ group refines the condition for the dynamical map with the Poincar´e symmetry. For a massive
811
+ particle and a massless particle, we derived a concrete model of the dynamical map. In the model,
812
+ the particle can decay into the vacuum state. If there is no decay process, the dynamical map
813
+ describes the unitary evolution generated by the Hamiltonian of the particle. This means that
814
+ the non-decaying single particle does not decohere as long as the dynamical map for the particle
815
+ has the Poincar´e symmetry. In this way, it was exemplified that the Poincar´e symmetry strongly
816
+ constrains the possible dynamics of an open quantum system.
817
+ In this paper, we assumed an open system with a single particle. Our analysis is possible to
818
+ be extended to the case with many particles.
819
+ Considering interactions among many particles,
820
+ we can understand more general effective theories in terms of the Poincar´e symmetry. For the
821
+ particles interacting via gravity, the models which induce intrinsic gravitational decoherence have
822
+ 13
823
+
824
+ been proposed [15–19]. These models are written in the theory of open quantum systems. In the
825
+ weak field regime of gravity, the Poincar´e symmetry may provide a guidance for establishing the
826
+ theory of an open quantum system with gravitating particles.
827
+ This paper has a potential to develop the theory of open quantum systems. To describe the
828
+ reduced dynamics of an open quantum system, a quantum master equation is often adopted. It
829
+ has been discussed how the quantum Markov dynamics given by the equation is consistent with
830
+ a relativistic theory [27, 28]. Applying the present approach, it will be possible to discuss the
831
+ quantum Markov dynamics with the Poincar´e symmetry.
832
+ It is hoped that this paper paves the way to understand a relativistic theory of open quantum
833
+ systems and to study the interplay between quantum theory and gravity.
834
+ Acknowledgments
835
+ We thank Y. Kuramochi for useful discussions and comments related to this paper. A.M. was
836
+ supported by 2022 Research Start Program 202203.
837
+ Appendix A: Derivation of Eqs.(54),(55),(56),(57),(58) and (59)
838
+ We present the transformation rules of Aℓ,ξ, Bℓ,ξ and Cℓ,ξ given in Eqs.(54),(55),(56),(57),(58)
839
+ and (59). Using the assumed form of the Kraus operators ˆEℓ,ξ defined by (53), we can compute
840
+ the right hand side of Eq.(47) as
841
+ ˆT †(a) ˆEℓ,ξ ˆT(a) = Aℓ,ξˆI +
842
+
843
+ d3p
844
+
845
+ σ
846
+ Bℓ,ξ(p, σ)e−ipµaµˆa(p, σ)
847
+ +
848
+
849
+ d3p′d3p
850
+
851
+ σ′,σ
852
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′µ−pµ)aµˆa†(p′, σ′)ˆa(p, σ).
853
+ From Eq.(47), we have
854
+ Aℓ,ξ = e−iℓµaµAℓ,ξ,
855
+ (A1)
856
+ Bℓ,ξ(p, σ)e−ipµaµ = Bℓ,ξ(p, σ)e−iℓµaµ
857
+ (A2)
858
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′µ−pµ)aµ = Cℓ,ξ(p′, σ′, p, σ)e−iℓµaµ.
859
+ (A3)
860
+ 14
861
+
862
+ The right hand side of Eq.(48) is evaluated as
863
+ ˆV †(W) ˆEℓ,ξ ˆV (W)
864
+ = Aℓ,ξˆI +
865
+
866
+ d3p
867
+
868
+ σ
869
+ Bℓ,ξ(p, σ)
870
+
871
+ EpW −1
872
+ Ep
873
+
874
+ σ′
875
+ D∗
876
+ σ′σ(Q(W −1, p))ˆa(pW −1, σ′)
877
+ +
878
+
879
+ d3p′d3p
880
+
881
+ σ′,σ
882
+ Cℓ,ξ(p′, σ′, p, σ)
883
+ ×
884
+
885
+ Ep′
886
+ W −1
887
+ Ep′
888
+
889
+ EpW −1
890
+ Ep
891
+
892
+ ¯σ,¯σ′
893
+ D¯σ′σ′(Q(W −1, p′))D∗
894
+ ¯σσ(Q(W −1, p))ˆa†(p′
895
+ W −1, ¯σ′)ˆa(pW −1, ¯σ)
896
+ = Aℓ,ξˆI +
897
+
898
+ d3p
899
+
900
+ σ
901
+ Bℓ,ξ(pW, σ)
902
+
903
+ EpW
904
+ Ep
905
+
906
+ σ′
907
+ D∗
908
+ σ′σ(Q(W −1, Wp))ˆa(p, σ′)
909
+ +
910
+
911
+ d3p′d3p
912
+
913
+ σ′,σ
914
+ Cℓ,ξ(p′
915
+ W, σ′, pW , σ)
916
+ ×
917
+
918
+ Ep′
919
+ W
920
+ Ep′
921
+
922
+ EpW
923
+ Ep
924
+
925
+ ¯σ,¯σ′
926
+ D¯σ′σ′(Q(W −1, Wp′))D∗
927
+ ¯σσ(Q(W −1, Wp))ˆa†(p′, ¯σ′)ˆa(p, ¯σ),
928
+ where note that the Lorentz invariant measure is d3p/Ep and hence f(p)d3p = Epf(p)d3p/Ep =
929
+ EpΛf(pΛ)d3p/Ep. From Eq.(48), we have
930
+ Aℓ,ξ =
931
+
932
+ ξ′
933
+ D∗
934
+ ξ′ξ(W −1)Aℓ,ξ′,
935
+ (A4)
936
+
937
+ EpW
938
+ Ep
939
+
940
+ σ
941
+ Bℓ,ξ(pW, σ)D∗
942
+ σ′σ(Q) =
943
+
944
+ ξ′
945
+ D∗
946
+ ξ′ξ(W −1)Bℓ,ξ′(p, σ′)
947
+ (A5)
948
+
949
+ Ep′
950
+ W EpW
951
+ Ep′Ep
952
+
953
+ σ′,σ
954
+ Cℓ,ξ(p′
955
+ W , σ′, pW, σ)D¯σ′σ′(Q′)D∗
956
+ ¯σσ(Q) =
957
+
958
+ ξ′
959
+ D∗
960
+ ξ′ξ(W −1)Cℓ,ξ′(p′, ¯σ′, p, ¯σ),
961
+ (A6)
962
+ where Q = Q(W −1, Wp) and Q′ = Q(W −1, Wp′).
963
+ Appendix B: Analysis of a massive particle
964
+ We assume that the spectrum of ˆP µ on any state |Ψ⟩ in the Hilbert space of one-particle states,
965
+ H1, satisfies
966
+ ˆP µ ˆPµ|Ψ⟩ = −m2|Ψ⟩,
967
+ ⟨Ψ| ˆP 0|Ψ⟩ > 0.
968
+ (B1)
969
+ The above equations are equivalent to the fact that the Hamiltonian ˆH = ˆP 0 has the form ˆH =
970
+
971
+ ˆPk ˆP k + m2, which implies that |Ψ⟩ is the state of a massive particle. In this appendix, we derive
972
+ the form of the dynamical map Et,s for a massive particle.
973
+ 15
974
+
975
+ Case (a) ℓµ = [M, 0, 0, 0], M > 0 or (b) ℓµ = [−M, 0, 0, 0], M > 0 : We focus on the spectrum
976
+ ℓµ = [±M, 0, 0, 0], M > 0. From Eq.(A1) for all aµ = [a, 0, 0, 0], we have
977
+ Aℓ,ξ = e±iMaAℓ,ξ
978
+
979
+ Aℓ,ξ = 0.
980
+ Eq.(A2) for all aµ = [0, a] leads to
981
+ Bℓ,ξ(p, σ)e−ip·a = Bℓ,ξ(p, σ)
982
+
983
+ Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p).
984
+ From Eq.(A2) for all aµ = [a, 0, 0, 0], we get
985
+ Bℓ,ξ(p, σ)eiEpa = Bℓ,ξ(p, σ)e±iMa,
986
+ and combined with Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p), we obtain
987
+ Bℓ,ξ(σ)eima = Bℓ,ξ(σ)e±iMa.
988
+ Since the mass m is positive, to get a nontrivial result, we should choose +M with M = m. Using
989
+ Eq.(A5) for Q = R ∈ SO(3) and adopting the result Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p), we find
990
+
991
+ σ
992
+ Bℓ,ξ(σ)D∗
993
+ σ′σ(R−1) =
994
+
995
+ ξ′
996
+ D∗
997
+ ξ′ξ(R−1)Bℓ,ξ′(σ′),
998
+ where note that Q = Q(W −1, Wp) = Q(R−1, Rℓ) = S−1
999
+ ℓ R−1SRℓ = R−1 for ℓµ = [m, 0, 0, 0]. Since
1000
+ the representations Dσ′σ and Dξ′ξ are irreducible and unitary, by Schur’s lemma we have
1001
+ Bℓ,ξ(σ) = Bℓ uξσ,
1002
+ where uξσ is a unitary matrix. From Eq.(A3) for all aµ = [0, a], we deduce
1003
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′−p)·a = Cℓ,ξ(p′, σ′, p, σ)
1004
+
1005
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p).
1006
+ Eq.(A3) for all aµ = [a, 0, 0, 0] leads to
1007
+ Cℓ,ξ(p′, σ′, p, σ)e−i(Ep′−Ep)a = Cℓ,ξ(p′, σ′, p, σ)e±iMa,
1008
+ and substituting Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p) into the above equation, we have
1009
+ Cℓ,ξ(p, σ′, σ) = Cℓ,ξ(p, σ′, σ)e±iMa
1010
+
1011
+ Cℓ,ξ(p, σ′, σ) = 0.
1012
+ The above results imply that the Kraus operator ˆEℓ,ξ with ℓµ = [m, 0, 0, 0] has the following form,
1013
+ ˆEℓ,ξ = Bℓ
1014
+
1015
+ σ
1016
+ uξσˆa(0, σ).
1017
+ 16
1018
+
1019
+ Eq.(46) tells us that
1020
+ ˆEq,ξ = N ∗
1021
+ q ˆV (Sq) ˆEℓ,ξ ˆV †(Sq) = N ∗
1022
+ q Bℓ
1023
+
1024
+ Eq
1025
+ m
1026
+
1027
+ σ
1028
+ uξσˆa(q, σ),
1029
+ where Eq = (Sq ℓ)0 and qi = (Sq ℓ)i. To determine the normalization Nq, the inner product v†
1030
+ q,ξvq,ξ
1031
+ is assumed to be
1032
+ v†
1033
+ q′,s′vq,ξ = δ3(q′ − q)δξ′ξ,
1034
+ which leads to Nq =
1035
+
1036
+ m/Eq up to a phase factor. For this normalization, the following complete-
1037
+ ness condition is given as
1038
+
1039
+ d3q
1040
+
1041
+ s
1042
+ vq,ξv†
1043
+ q,ξ = I.
1044
+ Under the completeness condition, we derive a part of the dynamical map Et,s as
1045
+ Et,s[ρ(s)] ⊃ |Bℓ|2
1046
+
1047
+ d3q
1048
+
1049
+ σ
1050
+ ˆa(q, σ)ρ(s)ˆa†(q, σ),
1051
+ (B2)
1052
+ where we used the fact that uξσ is the unitary matrix.
1053
+ Case (c) ℓµ = [κ, 0, 0, κ], κ > 0 or (d) ℓµ = [−κ, 0, 0, κ], κ > 0 : We consider the spectrum
1054
+ ℓµ = [±κ, 0, 0, κ], κ > 0. From Eq.(A1) for all aµ = [a, 0, 0, 0], we have
1055
+ Aℓ,ξ = e±iκaAℓ,ξ
1056
+
1057
+ Aℓ,ξ = 0.
1058
+ From Eq.(A2) for all aµ = [0, a], we get
1059
+ Bℓ,ξ(p, σ)e−ip·a = Bℓ,ξ(p, σ)e−iℓ·a
1060
+
1061
+ Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p − ℓ),
1062
+ where ℓ = [0, 0, κ]T. Eq.(A2) for all aµ = [a, 0, 0, 0] leads to
1063
+ Bℓ,ξ(p, σ)eiEpa = Bℓ,ξ(p, σ)e±iκa,
1064
+ and from the equation Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p − ℓ), we obtain
1065
+ Bℓ,ξ(σ)ei
1066
+
1067
+ κ2+m2a = Bℓ,ξ(σ)e±iκa
1068
+
1069
+ Bℓ,ξ(σ) = 0,
1070
+ where Eℓ =
1071
+
1072
+ ℓ2 + m2 =
1073
+
1074
+ κ2 + m2. Eq.(A3) for all aµ = [0, a] gives
1075
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′−p)·a = Cℓ,ξ(p′, σ′, p, σ)e−iℓ·a
1076
+
1077
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′−p+ℓ).
1078
+ Using Eq.(A3) for all aµ = [a, 0, 0, 0], we get
1079
+ Cℓ,ξ(p′, σ′, p, σ)e−i(Ep′−Ep)a = Cℓ,ξ(p′, σ′, p, σ)e±iκa,
1080
+ 17
1081
+
1082
+ and substituting Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p + ℓ) into the above equation, we have
1083
+ Cℓ,ξ(p, σ′, σ)e−i(Ep−ℓ−Ep)a = Cℓ,ξ(p, σ′, σ)e±iκa.
1084
+ Noticing the fact that Ep−ℓ − Ep ± κ ̸= 0, we get the result Cℓ,ξ(p, σ′, σ) = 0. Combined with the
1085
+ above analysis, the Kraus operator ˆEℓ,ξ vanishes:
1086
+ ˆEℓ,ξ = 0
1087
+
1088
+ ˆEq,ξ = Nq ˆV (Sq) ˆEℓ,ξ ˆV †(Sq) = 0.
1089
+ (B3)
1090
+ Case (e) ℓµ = [0, 0, 0, N], N 2 > 0 : We focus on the spectrum ℓµ = [0, 0, 0, N], N 2 > 0. From
1091
+ Eq.(A1) for all aµ = [0, a], we have
1092
+ Aℓ,ξ = e−iℓ·aAℓ,ξ
1093
+
1094
+ Aℓ,ξ = 0.
1095
+ Eq.(A2) for all aµ = [a, 0, 0, 0] leads to
1096
+ Bℓ,ξ(p, σ)eiEpa = Bℓ,ξ(p, σ)
1097
+
1098
+ Bℓ,ξ(p, σ) = 0,
1099
+ where note that Eq =
1100
+
1101
+ q2 + m2 ̸= 0. From Eq.(A3) for all aµ = [0, a], we deduce
1102
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′−p)·a = Cℓ,ξ(p′, σ′, p, σ)e−iℓ·a
1103
+
1104
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′−p+ℓ),
1105
+ where ℓ = [0, 0, N]T. From Eq.(A3) for all aµ = [a, 0, 0, 0], we get
1106
+ Cℓ,ξ(p′, σ′, p, σ)e−i(Ep′−Ep)a = Cℓ,ξ(p′, σ′, p, σ),
1107
+ and substituting Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p + ℓ) into the above equation, we have
1108
+ Cℓ,ξ(p, σ′, σ)e−i(Ep−ℓ−Ep)a = Cℓ,ξ(p, σ′, σ)
1109
+
1110
+ Cℓ,ξ(p, σ′, σ) = Cℓ,ξ(σ′, σ)δ3(p − ℓ/2).
1111
+ Combined with the above analysis, the function Cℓ,ξ(p′, σ′, p, σ) is
1112
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(σ′, σ)δ3(p′ + ℓ/2)δ3(p − ℓ/2),
1113
+ and the Kraus operator ˆEℓ,ξ is written as
1114
+ ˆEℓ,ξ =
1115
+
1116
+ σ′,σ
1117
+ Cℓ,ξ(σ′, σ)ˆa†(−ℓ/2, σ′)ˆa(ℓ/2, σ).
1118
+ By the completeness condition of the Kraus operators, Eq.(31), the above Kraus operator ˆEℓ,ξ
1119
+ should satisfy ˆE†
1120
+ ℓ,ξ ˆEℓ,ξ ≤ ˆI. Concretely, ˆE†
1121
+ ℓ,ξ ˆEℓ,ξ is evaluated as
1122
+ ˆE†
1123
+ ℓ,ξ ˆEℓ,ξ =
1124
+
1125
+ ¯σ′,¯σ
1126
+ C∗
1127
+ ℓ,ξ(¯σ′, ¯σ)ˆa†(ℓ/2, ¯σ)ˆa(−ℓ/2, ¯σ′)
1128
+
1129
+ σ′,σ
1130
+ Cℓ,ξ(σ′, σ)ˆa†(−ℓ/2, σ′)ˆa(ℓ/2, σ)
1131
+ = δ3(0)
1132
+
1133
+ σ′
1134
+ � �
1135
+ ¯σ
1136
+ Cℓ,ξ(σ′, ¯σ)ˆa(ℓ/2, ¯σ)
1137
+ �† �
1138
+ σ
1139
+ Cℓ,ξ(σ′, σ)ˆa(ℓ/2, σ),
1140
+ 18
1141
+
1142
+ where the term given by the linear combination of ˆa†ˆa†ˆaˆa vanishes on H0
1143
+ � H1.
1144
+ To satisfy
1145
+ ˆE†
1146
+ ℓ,ξ ˆEℓ,ξ ≤ ˆI, we find that
1147
+
1148
+ σ′
1149
+ � �
1150
+ ¯σ
1151
+ Cℓ,ξ(σ′, ¯σ)ˆa(ℓ/2, ¯σ)
1152
+ �† �
1153
+ σ
1154
+ Cℓ,ξ(σ′, σ)ˆa(ℓ/2, σ) = 0
1155
+
1156
+ Cℓ,ξ(σ′, σ) = 0
1157
+ The consequence of Cℓ,ξ(σ′, σ) = 0 is that the Kraus operator ˆEℓ,ξ vanishes as ⟨Φ| ˆEℓ,ξ|Ψ⟩ = 0 for
1158
+ all |Ψ⟩, |Φ⟩ ∈ H0
1159
+ � H1, and hence
1160
+ ˆEq,ξ = N ∗
1161
+ q ˆV (Sq) ˆEℓ,ξ ˆV †(Sq) = 0,
1162
+ (B4)
1163
+ on the Hilbert space H0
1164
+ � H1.
1165
+ Case (f) ℓµ = [0, 0, 0, 0] : We consider the case where ℓµ = [0, 0, 0, 0]. In the following, we drop
1166
+ the label ℓ. Eq.(A1) is identical for all aµ. Since the little group associated with ℓµ is SO(3, 1),
1167
+ Eq.(A4) for W = Λ ∈ SO(3, 1) is given as
1168
+ Aξ =
1169
+
1170
+ ξ′
1171
+ D∗
1172
+ ξ′ξ(Λ−1)Aξ′.
1173
+ (B5)
1174
+ Eq.(A2) for all aµ = [a, 0, 0, 0] gives the condition
1175
+ Bξ(p, σ)eiEpa = Bξ(p, σ)
1176
+
1177
+ Bξ(p, σ) = 0,
1178
+ where note that Eq =
1179
+
1180
+ q2 + m2 ̸= 0. From Eq.(A3) for all aµ, we obtain
1181
+ Cξ(p′, σ′, p, σ)ei(p′µ−pµ)aµ = Cξ(p′, σ′, p, σ)
1182
+
1183
+ Cξ(p′, σ′, p, σ) = Cξ(p, σ′, σ)δ3(p′ − p).
1184
+ Eq. (A6) for W = Λ ∈ SO(3, 1) is written as
1185
+
1186
+ Ep′
1187
+ ΛEpΛ
1188
+ Ep′Ep
1189
+
1190
+ σ′,σ
1191
+ Cξ(p′
1192
+ Λ, σ′, pΛ, σ)D¯σ′σ′(Q′)D∗
1193
+ ¯σσ(Q) =
1194
+
1195
+ ξ′
1196
+ D∗
1197
+ ξ′ξ(Λ−1)Cξ′(p′, ¯σ′, p, ¯σ),
1198
+ where Q
1199
+ =
1200
+ Q(Λ−1, Λp) and Q′
1201
+ =
1202
+ Q(Λ−1, Λp′).
1203
+ From the equation Cξ(p′, σ′, p, σ)
1204
+ =
1205
+ Cξ(p, σ′, σ)δ3(p′ − p) and noticing the fact that the invariant delta function is Epδ3(p − p′), we
1206
+ get the condition
1207
+
1208
+ σ′,σ
1209
+ Cξ(pΛ, σ′, σ)D¯σ′σ′(Q)D∗
1210
+ ¯σσ(Q) =
1211
+
1212
+ ξ′
1213
+ D∗
1214
+ ξ′ξ(Λ−1)Cξ′(p, ¯σ′, ¯σ),
1215
+ (B6)
1216
+ where Q′ = Q(Λ−1, Λp′) turns out to be Q = Q(Λ−1, Λp) by the presence of the delta function
1217
+ δ3(p − p′). It is known that the dimension of irreducible unitary representations Dξ′ξ of SO(3,1)
1218
+ 19
1219
+
1220
+ is one or infinite [29]. For the one-dimensional representation, dropping the label ξ, we find that
1221
+ Eq.(B5) trivially holds and that Eq.(B6) is reduced to
1222
+
1223
+ σ′,σ
1224
+ C(pΛ, σ′, σ)D¯σ′σ′(Q)D∗
1225
+ ¯σσ(Q) = C(p, ¯σ′, ¯σ).
1226
+ For p = 0 and Λ = R ∈ SO(3), we get
1227
+
1228
+ σ′,σ
1229
+ C(0, σ′, σ)D¯σ′σ′(R−1)D∗
1230
+ ¯σσ(R−1) = C(0, ¯σ′, ¯σ)
1231
+
1232
+ C(0, σ′, σ) = Cδσ′σ,
1233
+ where this holds by the Schur’s lemma. Choosing p = 0 and Λ = Sp with (Sp)µνkν = pµ for
1234
+ kµ = [m, 0, 0, 0], we have
1235
+ C(p, σ′, σ) = C(0, σ′, σ),
1236
+ where we used Q = Q(S−1
1237
+ p , p) = S−1
1238
+ k S−1
1239
+ p Sp = I and Dσ′σ(I) = δσ′σ. Hence C(p, σ′, σ) = Cδσ′σ.
1240
+ For the infinite dimensional representation, Eq.(B5) leads to Aℓ,ξ = 0, and Eq.(B6) for p = 0 and
1241
+ Λ = R ∈ SO(3) gives
1242
+
1243
+ σ′,σ
1244
+ Cξ(0, σ′, σ)D¯σ′σ′(R−1)D∗
1245
+ ¯σσ(R−1) =
1246
+
1247
+ ξ′
1248
+ D∗
1249
+ ξ′ξ(R−1)Cξ′(0, ¯σ′, ¯σ).
1250
+ Assuming that the massive particle has a finite spin and using the Schur’s lemma, we get
1251
+ Cξ′(0, ¯σ′, ¯σ) = 0. Eq.(B6) for p = 0 and Λ = Sp with (Sp)µνkν = pµ for kµ = [m, 0, 0, 0] pro-
1252
+ vides
1253
+ Cξ(p, σ′, σ) =
1254
+
1255
+ ξ′
1256
+ D∗
1257
+ ξ′ξ(S−1
1258
+ p )Cξ′(0, σ′, σ) = 0.
1259
+ The above analysis on ℓµ = [0, 0, 0, 0] tells us the following Kraus operator
1260
+ ˆE = AˆI + C ˆN,
1261
+ where ˆN is the number operator defined in (61). A part of the dynamical map Et,s is given as
1262
+ Et,s[ρ(s)] ⊃
1263
+
1264
+ AˆI + C ˆN
1265
+
1266
+ ρ(s)
1267
+
1268
+ AˆI + C ˆN
1269
+ �†
1270
+ .
1271
+ (B7)
1272
+ The above results given in Eqs.(B2), (B3), (B4) and (B7) provide the following form of Et,s:
1273
+ Et,s[ρ(s)] = |Bℓ|2
1274
+
1275
+ d3q
1276
+
1277
+ σ
1278
+ ˆa(q, σ)ρ(s)ˆa†(q, σ) +
1279
+
1280
+ AˆI + C ˆN
1281
+
1282
+ ρ(s)
1283
+
1284
+ AˆI + C ˆN
1285
+ �†
1286
+ .
1287
+ (B8)
1288
+ Recovering other degeneracies labeled by j differently from q and ξ, introducing �
1289
+ j and redefining
1290
+ the parameters as |A|2 = α(j)
1291
+ t,s , C/A = γ(j)
1292
+ t,s and |Bℓ|2 = β(j)
1293
+ t,s , we get the form of the dynamical map
1294
+ Et,s given in (60).
1295
+ 20
1296
+
1297
+ Appendix C: Analysis on a massless particle
1298
+ We assume that the spectrum of ˆP µ on any state |Ψ⟩ in the Hilbert space of one-particle states,
1299
+ H1, satisfies
1300
+ ˆP µ ˆPµ|Ψ⟩ = 0,
1301
+ ⟨Ψ| ˆP 0|Ψ⟩ > 0.
1302
+ (C1)
1303
+ The above equations leads to the fact that the Hamiltonian ˆH = ˆP 0 has the form ˆH =
1304
+
1305
+ ˆPk ˆP k,
1306
+ which means that |Ψ⟩ is the state of a massless particle. In this appendix, we derive the form of
1307
+ the dynamical map Et,s for a massless particle with nonzero momentum.
1308
+ Case (a) ℓµ = [M, 0, 0, 0], M > 0 or (b) ℓµ = [−M, 0, 0, 0], M > 0 : We focus on the spectrum
1309
+ ℓµ = [±M, 0, 0, 0], M > 0. Eq.(A1) for all aµ = [a, 0, 0, 0] gives
1310
+ Aℓ,ξ = e±iMaAℓ,ξ
1311
+
1312
+ Aℓ,ξ = 0.
1313
+ Eq.(A2) for all aµ = [0, a] leads to
1314
+ Bℓ,ξ(p, σ)e−ip·a = Bℓ,ξ(p, σ)
1315
+
1316
+ Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p).
1317
+ From Eq.(A2) for all aµ = [a, 0, 0, 0], we get
1318
+ Bℓ,ξ(p, σ)eiEpa = Bℓ,ξ(p, σ)e±iMa,
1319
+ and combined with Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p), we obtain
1320
+ Bℓ,ξ(σ) = Bℓ,ξ(σ)e±iMa
1321
+
1322
+ Bℓ,ξ(σ) = 0.
1323
+ Using Eq.(A3) for all aµ = [0, a], we deduce
1324
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′−p)·a = Cℓ,ξ(p′, σ′, p, σ)
1325
+
1326
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p).
1327
+ Eq.(A3) for all aµ = [a, 0, 0, 0] leads to
1328
+ Cℓ,ξ(p′, σ′, p, σ)e−i(Ep′−Ep)a = Cℓ,ξ(p′, σ′, p, σ)e±iMa,
1329
+ and substituting Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p) into the above equation, we have
1330
+ Cℓ,ξ(p, σ′, σ) = Cℓ,ξ(p, σ′, σ)e±iMa
1331
+
1332
+ Cℓ,ξ(p, σ′, σ) = 0.
1333
+ The above results imply that the Kraus operator ˆEℓ,ξ vanishes and has the following form,
1334
+ ˆEq,ξ = N ∗
1335
+ q ˆV (Sq) ˆEℓ,ξ ˆV †(Sq) = 0.
1336
+ (C2)
1337
+ 21
1338
+
1339
+ Case (c) ℓµ = [κ, 0, 0, κ], κ > 0 or (d) ℓµ = [−κ, 0, 0, κ], κ > 0 : We consider the spectrum
1340
+ ℓµ = [±κ, 0, 0, κ], κ > 0. From Eq.(A1) for all aµ = [a, 0, 0, 0], we have
1341
+ Aℓ,ξ = e±iκaAℓ,ξ
1342
+
1343
+ Aℓ,ξ = 0.
1344
+ Eq.(A2) for all aµ = [0, a] gives
1345
+ Bℓ,ξ(p, σ)e−ip·a = Bℓ,ξ(p, σ)e−iℓ·a
1346
+
1347
+ Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p − ℓ),
1348
+ where ℓ = [0, 0, κ]T. Eq.(A2) for all aµ = [a, 0, 0, 0] leads to
1349
+ Bℓ,ξ(p, σ)eiEpa = Bℓ,ξ(p, σ)e±iκa,
1350
+ and from the equation Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p − ℓ), we have
1351
+ Bℓ,ξ(σ)eiκa = Bℓ,ξ(σ)e±iκa,
1352
+ where Eℓ =
1353
+
1354
+ ℓ2 = κ.
1355
+ To get a nontrivial result, we should choose +κ.
1356
+ Using Eq.(A5) for
1357
+ Q = L ∈ ISO(2) and adopting the result Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p − ℓ), we find
1358
+
1359
+ σ
1360
+ Bℓ,ξ(σ)D∗
1361
+ σ′σ(L−1) =
1362
+
1363
+ ξ′
1364
+ D∗
1365
+ ξ′ξ(L−1)Bℓ,ξ′(σ′),
1366
+ where note that Q = Q(W −1, Wp) = Q(L−1, Lℓ) = S−1
1367
+ ℓ L−1SLℓ = L−1 for ℓµ = [κ, 0, 0, κ]. Since
1368
+ the representations Dσ′σ and Dξ′ξ are irreducible and unitary, by Schur’s lemma we get
1369
+ Bℓ,ξ(σ) = Bℓ uξσ,
1370
+ where uξσ is a unitary matrix. Using Eq.(A3) for all aµ = [0, a], we deduce
1371
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′−p)·a = Cℓ,ξ(p′, σ′, p, σ)e−iℓ·a
1372
+
1373
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′−p+ℓ).
1374
+ Eq.(A3) for all aµ = [a, 0, 0, 0] leads to
1375
+ Cℓ,ξ(p′, σ′, p, σ)e−i(Ep′−Ep)a = Cℓ,ξ(p′, σ′, p, σ)e±iκa,
1376
+ and substituting Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p + ℓ) into the above equation, we have
1377
+ Cℓ,ξ(p, σ′, σ)e−i(Ep−ℓ−Ep)a = Cℓ,ξ(p, σ′, σ)e±iκa.
1378
+ The condition of Ep−ℓ − Ep + κ = 0 is written by p⊥ = [p1, p2] = 0 and p3 ≥ κ, and the condition
1379
+ of Ep−ℓ − Ep − κ = 0 is given by p⊥ = 0 and p3 ≤ 0. Hence, the form of Cℓ,ξ(p, σ′, σ) is
1380
+ Cℓ,ξ(p, σ′, σ) =
1381
+
1382
+ C+
1383
+ ℓ,ξ(p3, σ′, σ)θ(p3 − κ) + C−
1384
+ ℓ,ξ(p3, σ′, σ)θ(−p3)
1385
+
1386
+ δ2(p⊥)
1387
+ 22
1388
+
1389
+ Combined with the above analysis, the Kraus operator ˆE+
1390
+ ℓ,ξ for +κ is
1391
+ ˆE+
1392
+ ℓ,ξ = Bℓ
1393
+
1394
+ σ
1395
+ uξσˆa(ℓ, σ) +
1396
+
1397
+ dp3
1398
+
1399
+ σ,σ′
1400
+ C+
1401
+ ℓ,ξ(p3, σ′, σ)θ(p3 − κ)ˆa†(0, p3 − κ, σ′)ˆa(0, p3, σ),
1402
+ and the Kraus operator ˆE−
1403
+ ℓ,ξ for −κ is
1404
+ ˆE−
1405
+ ℓ,ξ =
1406
+
1407
+ dp3
1408
+
1409
+ σ,σ′
1410
+ C−
1411
+ ℓ,ξ(p3, σ′, σ)θ(−p3)ˆa†(0, p3 − κ, σ′)ˆa(0, p3, σ).
1412
+ By the completeness condition of the Kraus operators, Eq.(31), the above Kraus operator ˆE±
1413
+ ℓ,ξ
1414
+ should satisfy ˆE±†
1415
+ ℓ,ξ ˆE±
1416
+ ℓ,ξ ≤ ˆI. Concretely, ˆE+†
1417
+ ℓ,ξ ˆE+
1418
+ ℓ,ξ is evaluated as
1419
+ ˆE+†
1420
+ ℓ,ξ ˆE+
1421
+ ℓ,ξ =
1422
+
1423
+ Bℓ
1424
+
1425
+ σ
1426
+ uξσˆa(ℓ, σ) +
1427
+
1428
+ dp3
1429
+
1430
+ σ,σ′
1431
+ C+
1432
+ ℓ,ξ(p3, σ′, σ)θ(p3 − κ)ˆa†(0, p3 − κ, σ′)ˆa(0, p3, σ)
1433
+ �†
1434
+ ×
1435
+
1436
+ Bℓ
1437
+
1438
+ σ
1439
+ uξσˆa(ℓ, σ) +
1440
+
1441
+ dp3
1442
+
1443
+ σ,σ′
1444
+ C+
1445
+ ℓ,ξ(p3, σ′, σ)θ(p3 − κ)ˆa†(0, p3 − κ, σ′)ˆa(0, p3, σ)
1446
+
1447
+ = |Bℓ|2 �
1448
+ σ
1449
+ u∗
1450
+ sσˆa†(ℓ, σ)
1451
+
1452
+ σ′
1453
+ usσ′ˆa(ℓ, σ′)
1454
+ + δ2(0)
1455
+
1456
+ dp3
1457
+
1458
+ σ′
1459
+
1460
+ σ,¯σ
1461
+ C+∗
1462
+ ℓ,ξ (p3, σ′, σ)C+
1463
+ ℓ,ξ(p3, σ′, ¯σ)θ(p3 − κ)ˆa†(0, p3, σ)ˆa(0, p3, ¯σ),
1464
+ where the term given by the linear combination of ˆa†ˆaˆa, ˆa†ˆa†ˆa, and ˆa†ˆa†ˆaˆa vanishes on H0
1465
+ � H1.
1466
+ To satisfy ˆE+†
1467
+ ℓ,ξ ˆE+
1468
+ ℓ,ξ ≤ ˆI, we find
1469
+
1470
+ dp3
1471
+
1472
+ σ′
1473
+
1474
+ σ,¯σ
1475
+ C+∗
1476
+ ℓ,ξ (p3, σ′, σ)C+
1477
+ ℓ,ξ(p3, σ′, ¯σ)θ(p3−κ)ˆa†(0, p3, σ)ˆa(0, p3, ¯σ) = 0
1478
+
1479
+ C+
1480
+ ℓ,ξ(p3, σ′, ¯σ) = 0
1481
+ In the same manner, we have
1482
+ ˆE−†
1483
+ ℓ,ξ ˆE−
1484
+ ℓ,ξ = δ2(0)
1485
+
1486
+ dp3
1487
+
1488
+ σ′
1489
+
1490
+ σ,¯σ
1491
+ C−∗
1492
+ ℓ,ξ (p3, σ′, σ)C−
1493
+ ℓ,ξ(p3, σ′, ¯σ)θ(−p3)ˆa†(0, p3, σ)ˆa(0, p3, ¯σ),
1494
+ and to satisfy ˆE−†
1495
+ ℓ,ξ ˆE−
1496
+ ℓ,ξ ≤ ˆI, we obtain
1497
+
1498
+ dp3
1499
+
1500
+ σ′
1501
+
1502
+ σ,¯σ
1503
+ C−∗
1504
+ ℓ,ξ (p3, σ′, σ)C−
1505
+ ℓ,ξ(p3, σ′, ¯σ)θ(−p3)ˆa†(0, p3, σ)ˆa(0, p3, ¯σ) = 0
1506
+
1507
+ C−
1508
+ ℓ,ξ(p3, σ′, ¯σ) = 0.
1509
+ These analyses give the following form of the Kraus operators,
1510
+ ˆE+
1511
+ ℓ,ξ = Bℓ
1512
+
1513
+ σ
1514
+ uξσˆa(ℓ, σ),
1515
+ ˆE−
1516
+ ℓ,ξ = 0,
1517
+ on the Hilbert space H0
1518
+ � H1. By Eq. (46), we get
1519
+ ˆE+
1520
+ q,ξ = N ∗
1521
+ q ˆV (Sq) ˆE+
1522
+ ℓ,ξ ˆV †(Sq) = N ∗
1523
+ q Bℓ
1524
+
1525
+ Eq
1526
+ κ
1527
+
1528
+ σ
1529
+ uξσˆa(q, σ),
1530
+ ˆE−
1531
+ q,ξ = N ∗
1532
+ q ˆV (Sq) ˆE−
1533
+ ℓ,ξ ˆV †(Sq) = 0.
1534
+ 23
1535
+
1536
+ Setting that the inner product v†
1537
+ q,ξvq,ξ is
1538
+ v†
1539
+ q′,s′vq,ξ = δ3(q′ − q)δξ′ξ,
1540
+ the normalization Nq is given as Nq =
1541
+
1542
+ κ/Eq up to a phase factor. For this normalization, we
1543
+ get the following completeness condition as
1544
+
1545
+ d3q
1546
+
1547
+ s
1548
+ vq,ξv†
1549
+ q,ξ = I.
1550
+ Taking account for the completeness, we can derive a part of the dynamical map Et,sas
1551
+ Et,s[ρ(s)] ⊃ |Bℓ|2
1552
+
1553
+ d3q
1554
+
1555
+ σ
1556
+ ˆa(q, σ)ρ(s)ˆa†(q, σ),
1557
+ (C3)
1558
+ where we used the fact that uξσ is the unitary matrix.
1559
+ Case (e) ℓµ = [0, 0, 0, N], N 2 > 0 : We focus on the spectrum ℓµ = [0, 0, 0, N], N 2 > 0. From
1560
+ Eq.(A1) for all aµ = [0, a], we have
1561
+ Aℓ,ξ = e−iℓ·aAℓ,ξ
1562
+
1563
+ Aℓ,ξ = 0.
1564
+ Eq.(A2) for all aµ = [0, a] leads to
1565
+ Bℓ,ξ(p, σ)e−ip·a = Bℓ,ξ(p, σ)e−iℓ·a
1566
+
1567
+ Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p − ℓ).
1568
+ Eq.(55) for all aµ = [a, 0, 0, 0] gives
1569
+ Bℓ,ξ(p, σ)eiEpa = Bℓ,ξ(p, σ),
1570
+ and then combined with Bℓ,ξ(p, σ) = Bℓ,ξ(σ)δ3(p − ℓ), we get
1571
+ Bℓ,ξ(σ)eiκa = Bℓ,ξ(σ)
1572
+
1573
+ Bℓ,ξ(σ) = 0
1574
+ where we used Eℓ =
1575
+
1576
+ ℓ2 = κ > 0. Adopting Eq.(A3) for all aµ = [0, a], we deduce
1577
+ Cℓ,ξ(p′, σ′, p, σ)ei(p′−p)·a = Cℓ,ξ(p′, σ′, p, σ)e−iℓ·a
1578
+
1579
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′−p+ℓ),
1580
+ where ℓ = [0, 0, N]T. From Eq.(A3) for all aµ = [a, 0, 0, 0], we get
1581
+ Cℓ,ξ(p′, σ′, p, σ)e−i(Ep′−Ep)a = Cℓ,ξ(p′, σ′, p, σ),
1582
+ and substituting Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(p, σ′, σ)δ3(p′ − p + ℓ) into the above equation, we have
1583
+ Cℓ,ξ(p, σ′, σ)e−i(Ep−ℓ−Ep)a = Cℓ,ξ(p, σ′, σ)
1584
+
1585
+ Cℓ,ξ(p, σ′, σ) = Cℓ,ξ(σ′, σ)δ3(p − ℓ/2).
1586
+ 24
1587
+
1588
+ Combined with the above analysis, the function Cℓ,ξ(p′, σ′, p, σ) is
1589
+ Cℓ,ξ(p′, σ′, p, σ) = Cℓ,ξ(σ′, σ)δ3(p′ + ℓ/2)δ3(p − ℓ/2),
1590
+ and the Kraus operator ˆEℓ,ξ is written as
1591
+ ˆEℓ,ξ =
1592
+
1593
+ σ′,σ
1594
+ Cℓ,ξ(σ′, σ)ˆa†(−ℓ/2, σ′)ˆa(ℓ/2, σ).
1595
+ By the completeness condition of the Kraus operators, Eq.(31), the above Kraus operator ˆEℓ,ξ
1596
+ should satisfy ˆE†
1597
+ ℓ,ξ ˆEℓ,ξ ≤ ˆI. Explicitly, ˆE†
1598
+ ℓ,ξ ˆEℓ,ξ is evaluated as
1599
+ ˆE†
1600
+ ℓ,ξ ˆEℓ,ξ =
1601
+
1602
+ ¯σ′,¯σ
1603
+ C∗
1604
+ ℓ,ξ(¯σ′, ¯σ)ˆa†(ℓ/2, ¯σ)ˆa(−ℓ/2, ¯σ′)
1605
+
1606
+ σ′,σ
1607
+ Cℓ,ξ(σ′, σ)ˆa†(−ℓ/2, σ′)ˆa(ℓ/2, σ)
1608
+ = δ3(0)
1609
+
1610
+ σ′
1611
+ � �
1612
+ ¯σ
1613
+ Cℓ,ξ(σ′, ¯σ)ˆa(ℓ/2, ¯σ)
1614
+ �† �
1615
+ σ
1616
+ Cℓ,ξ(σ′, σ)ˆa(ℓ/2, σ),
1617
+ where the term associated with the linear combination of ˆa†ˆa†ˆaˆa vanishes on H0
1618
+ � H1. To satisfy
1619
+ ˆE†
1620
+ ℓ,ξ ˆEℓ,ξ ≤ ˆI, we find that
1621
+
1622
+ σ′
1623
+ � �
1624
+ ¯σ
1625
+ Cℓ,ξ(σ′, ¯σ)ˆa(ℓ/2, ¯σ)
1626
+ �† �
1627
+ σ
1628
+ Cℓ,ξ(σ′, σ)ˆa(ℓ/2, σ) = 0
1629
+
1630
+ Cℓ,ξ(σ′, σ) = 0
1631
+ Hence, the Kraus operator ˆEℓ,ξ vanishes, and we have that
1632
+ ˆEq,ξ = N ∗
1633
+ q ˆV (Sq) ˆEℓ,ξ ˆV †(Sq) = 0,
1634
+ (C4)
1635
+ on the Hilbert space H0
1636
+ � H1.
1637
+ Case (f) ℓµ = [0, 0, 0, 0] : We focus on the spectrum ℓµ = [0, 0, 0, 0]. In the following, we do
1638
+ not write the label ℓ. Eq.(A1) is identical for all aµ. Since the little group associated with ℓµ is
1639
+ SO(3, 1), Eq.(A4) for W = Λ ∈ SO(3, 1) is given as
1640
+ Aξ =
1641
+
1642
+ ξ′
1643
+ D∗
1644
+ ξ′ξ(Λ−1)Aξ′.
1645
+ (C5)
1646
+ Eq.(A2) for all aµ = [0, a] gives the condition
1647
+ Bξ(p, σ)e−ip·a = Bξ(p, σ)
1648
+
1649
+ Bξ(p, σ) = Bξ(σ)δ3(p).
1650
+ This equation makes Eq.(A2) for all aµ = [a, 0, 0, 0] and Eq. (A5) for W = Λ ∈ SO(3, 1) trivial.
1651
+ This form Bξ(p, σ) = Bξ(σ)δ3(p) leads to ˆEℓ,ξ ⊃ �
1652
+ σ Bξ(σ)ˆa(0, σ). However, this operator vanishes
1653
+ on the Hilbert space of massless particles since we assumed that there are no states with zero
1654
+ momentum. Eq.(A3) for all aµ gives us the condition
1655
+ Cξ(p′, σ′, p, σ)ei(p′µ−pµ)aµ = Cξ(p′, σ′, p, σ)
1656
+
1657
+ Cξ(p′, σ′, p, σ) = Cξ(p, σ′, σ)δ3(p′ − p).
1658
+ 25
1659
+
1660
+ Eq. (A6) for W = Λ ∈ SO(3, 1) is written as
1661
+
1662
+ Ep′
1663
+ ΛEpΛ
1664
+ Ep′Ep
1665
+
1666
+ σ′,σ
1667
+ Cξ(p′
1668
+ Λ, σ′, pΛ, σ)D¯σ′σ′(Q′)D∗
1669
+ ¯σσ(Q) =
1670
+
1671
+ ξ′
1672
+ D∗
1673
+ ξ′ξ(Λ−1)Cξ′(p′, ¯σ′, p, ¯σ),
1674
+ where Q
1675
+ =
1676
+ Q(Λ−1, Λp) and Q′
1677
+ =
1678
+ Q(Λ−1, Λp′).
1679
+ From the equation Cξ(p′, σ′, p, σ)
1680
+ =
1681
+ Cξ(p, σ′, σ)δ3(p′ − p) and noticing the fact that the invariant delta function is Epδ3(p − p′), we
1682
+ get the condition
1683
+
1684
+ σ′,σ
1685
+ Cξ(pΛ, σ′, σ)D¯σ′σ′(Q)D∗
1686
+ ¯σσ(Q) =
1687
+
1688
+ ξ′
1689
+ D∗
1690
+ ξ′ξ(Λ−1)Cξ′(p, ¯σ′, ¯σ),
1691
+ (C6)
1692
+ where note that the delta function δ3(p − p′) leads to Q′ = Q(Λ−1, Λp′) = Q(Λ−1, Λp) = Q. The
1693
+ (proper orthochronous) Lorentz group SO(3, 1) has one and infinite dimensional unitary irreducible
1694
+ representations [29]. Choosing the one-dimensional representation of Dξ′,ξ and dropping the label
1695
+ ξ, we find that Eq.(C5) trivially holds and that Eq.(C6) is reduced to
1696
+
1697
+ σ′,σ
1698
+ C(pΛ, σ′, σ)D¯σ′σ′(Q)D∗
1699
+ ¯σσ(Q) = C(p, ¯σ′, ¯σ).
1700
+ For p = ℓ = [0, 0, κ] and Λ = L ∈ ISO(2), we get
1701
+
1702
+ σ′,σ
1703
+ C(ℓ, σ′, σ)D¯σ′σ′(L−1)D∗
1704
+ ¯σσ(L−1) = C(ℓ, ¯σ′, ¯σ)
1705
+
1706
+ C(ℓ, σ′, σ) = Cδσ′σ,
1707
+ where we used the Schur’s lemma. Choosing p = ℓ and Λ = Sp with (Sp)µνℓν = pµ for ℓµ =
1708
+ [κ, 0, 0, κ], we have
1709
+ C(p, σ′, σ) = C(ℓ, σ′, σ),
1710
+ where we used Q = Q(S−1
1711
+ p , p) = S−1
1712
+ k S−1
1713
+ p Sp = I and Dσ′σ(I) = δσ′σ. Hence C(p, σ′, σ) = Cδσ′σ.
1714
+ If we adopt the infinite dimensional representation of Dξ′ξ, Eq.(C5) leads to Aℓ,ξ = 0 and Eq.(C6)
1715
+ for p = ℓ and Λ = L ∈ ISO(2) gives
1716
+
1717
+ σ′,σ
1718
+ Cξ(ℓ, σ′, σ)D¯σ′σ′(L−1)D∗
1719
+ ¯σσ(L−1) =
1720
+
1721
+ ξ′
1722
+ D∗
1723
+ ξ′ξ(L−1)Cξ′(ℓ, ¯σ′, ¯σ).
1724
+ Assuming that the massless particle has a finite spin and using the Schur’s lemma, we get
1725
+ Cξ′(ℓ, ¯σ′, ¯σ) = 0. Eq.(C6) for p = ℓ and Λ = Sp with (Sp)µνℓν = pµ for ℓµ = [κ, 0, 0, κ] pro-
1726
+ vides
1727
+ Cξ(p, σ′, σ) =
1728
+
1729
+ ξ′
1730
+ D∗
1731
+ ξ′ξ(S−1
1732
+ p )Cξ′(ℓ, σ′, σ) = 0.
1733
+ 26
1734
+
1735
+ The above analysis tells us that the Kraus operator has the following form
1736
+ ˆE = AˆI + C ˆN,
1737
+ where ˆN is the number operator defined in (61).
1738
+ A part of the dynamical map Et,s with the
1739
+ Poincar´e symmetry is given as
1740
+ Et,s[ρ(s)] ⊃
1741
+
1742
+ AˆI + C ˆN
1743
+
1744
+ ρ(s)
1745
+
1746
+ AˆI + C ˆN
1747
+ �†
1748
+ .
1749
+ (C7)
1750
+ Gathering the above results (C2), (C3), (C4) and (C7), we have the following form of Et,s:
1751
+ Et,s[ρ(s)] = |Bℓ|2
1752
+
1753
+ d3q
1754
+
1755
+ σ
1756
+ ˆa(q, σ)ρ(s)ˆa†(q, σ) +
1757
+
1758
+ AˆI + C ˆN
1759
+
1760
+ ρ(s)
1761
+
1762
+ AˆI + C ˆN
1763
+ �†
1764
+ .
1765
+ (C8)
1766
+ In the same manner performed around (B8), we obtain the form of the dynamical map Et,s given
1767
+ in (60).
1768
+ [1] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-Markovian Dynamics in Open
1769
+ Quantum Systems”, Rev. Mod. Phys. 88, 021002 (2016).
1770
+ [2] H.-P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems” (Oxford University Press,
1771
+ New York, 2002).
1772
+ [3] R. P. Feynman and F. L. Vernon, “The theory of a general quantum system interacting with a linear
1773
+ dissipative system”, Ann. Phys. 24, 118 (1963).
1774
+ [4] A. O. Caldeira and A. J. Leggett, “Path integral approach to quantum Brownian motion”, Physica A
1775
+ 121, 587 (1983).
1776
+ [5] E. A. Calzetta and B. L. Hu, “Nonequilibrium Quantum Field Theory” (Cambridge University Press,
1777
+ Cambridge, England, 2008).
1778
+ [6] S. Weinberg, “The Quantum Theory of Fields, Vol. I” (Cambridge University Press, Cambridge, Eng-
1779
+ land, 1995).
1780
+ [7] C. Jones, T. Guaita, and A. Bassi, “Impossibility of extending the Ghirardi-Rimini-Weber model to
1781
+ relativistic particles”, Phys. Rev. A 103, 042216 (2021).
1782
+ [8] C. Jones, G. Gasbarri, and A. Bassi, “Mass-coupled relativistic spontaneous collapse models”, J. Phys.
1783
+ A 54, 295306 (2021).
1784
+ [9] D. Bedingham, D. D¨urr, G. Ghirardi, S. Goldstein, R. Tumulka, and N. Zangh`ı, “Matter Density and
1785
+ Relativistic Models of Wave Function Collapse”, J. Stat. Phys. 154, 623 (2014).
1786
+ [10] D. Bedingham and P. Pearle “Continuous-spontaneous-localization scalar-field relativistic collapse
1787
+ model”, Phys. Rev. Research 1, 033040 (2019).
1788
+ [11] P. Pearle, “Relativistic dynamical collapse model”, Phys. Rev. D 91, 105012 (2015).
1789
+ 27
1790
+
1791
+ [12] M. A. Kurkov and V. A. Franke, “Local Fields Without Restrictions on the Spectrum of 4-Momentum
1792
+ Operator and Relativistic Lindblad Equation”, Found. Phys. 41, 820 (2011).
1793
+ [13] P. Wang, “Relativistic quantum field theory of stochastic dynamics in the Hilbert space”, Phys. Rev.
1794
+ D 105, 115037 (2022).
1795
+ [14] D. Ahn, H. J. Lee, and S. W. Hwang, “Lorentz-covariant reduced-density-operator theory for
1796
+ relativistic-quantum-information processing”, Phys. Rev. A 67, 032309 (2003).
1797
+ [15] D. Kafri, J. M. Taylor, and G. J. Milburn, “A classical channel model for gravitational decoherence”,
1798
+ New J. Phys. 16, 065020 (2014).
1799
+ [16] L. Di´osi, “A universal master equation for the gravitational violation of quantum mechanics”, Phys.
1800
+ Lett. A. 120 377–381 (1987)
1801
+ [17] L. Di´osi, “Models for universal reduction of macroscopic quantum fluctuations”, Phys. Rev. A. 40,
1802
+ 1165 (1989).
1803
+ [18] R. Penrose, “On Gravity’s role in Quantum State Reduction”, Gen. Relativ. and Gravt. 28, 581–600
1804
+ (1996).
1805
+ [19] A. Tilloy and L. Di´osi, “Sourcing semiclassical gravity from spontaneously localized quantum matter”,
1806
+ Phys. Rev. D 93, 024026 (2016).
1807
+ [20] E. B. Davies, “Quantum Theory Of Open Systems” (Academic, New York, 1976).
1808
+ [21] A. S. Holevo, “Statistical Structure of Quantum Theory”, Lecture Notes in Physics Monographs
1809
+ (Springer-Verlag, Berlin, Heidelberg, 2001).
1810
+ [22] M. Keyl, “Fundamentals of quantum information theory”, Phys. Rep. 369, 431 (2002).
1811
+ [23] C. Cˆırstoiu, K. Korzekwa, and D. Jennings, “Robustness of Noether’s Principle: Maximal Disconnects
1812
+ between Conservation Laws and Symmetries in Quantum Theory”, Phys. Rev. X 10, 041035 (2020).
1813
+ [24] I. Marvian and R. W. Spekkens, “Extending Noether’s theorem by quantifying the asymmetry of
1814
+ quantum states”, Nat. Commun. 5, 3821 (2014).
1815
+ [25] M. Toroˇs, “Constraints on the spontaneous collapse mechanism:theory and experiments”, Ph.D thesis.
1816
+ [26] A. Peres and D. R. Terno, “Quantum information and relativity theory”, Rev. Mod. Phys. 76, 93
1817
+ (2004).
1818
+ [27] E. Alicki, M. Fannes, and A. Verbeure, “Unstable particles and the Poincare semigroup in quantum
1819
+ field theory”, J. Phys. A 19, 919 (1986)
1820
+ [28] L. Di´osi, “Is there a relativistic Gorini-Kossakowski-Lindblad-Sudarshan master equation?”, Phys. Rev.
1821
+ D 106, L051901 (2022).
1822
+ [29] V. Bargmann, “Irreducible Unitary Representations of the Lorentz Group”, Ann. Math. 48, 568 (1947).
1823
+ 28
1824
+
3dAzT4oBgHgl3EQffPzi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tE3T4oBgHgl3EQfPwn9/content/tmp_files/2301.04407v1.pdf.txt ADDED
@@ -0,0 +1,1588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Beyond-Standard-Model
2
+ Physics Associated with the
3
+ Top Quark
4
+ Roberto Franceschini
5
+ Università degli Studi and INFN Roma Tre, Via della Vasca Navale
6
+ 84, I-00146, Roma
7
8
+ xxxxxx 0000. 00:1–25
9
+ Copyright © 0000 by Annual Reviews.
10
+ All rights reserved
11
+ Keywords
12
+ top quark, beyond the standard model, hierarchy problem, flavor,
13
+ dark matter, new physics
14
+ Abstract
15
+ We review scenarios of physics beyond the Standard Model in which the
16
+ top quark plays a special role. Models that aim at the stabilization of
17
+ the weak scale are presented together with the specific phenomenology
18
+ of partner states that are characteristic of this type of model.
19
+ Fur-
20
+ ther, we present models of flavor in which the top quark is singled out
21
+ as a special flavor among the SM ones. The flavor and collider phe-
22
+ nomenology of these models is broadly presented. Finally, we discuss
23
+ the possibility that dark matter interacts preferably with the top quark
24
+ flavor and broadly present the dark matter phenomenology of these
25
+ scenarios, as well as collider and flavor signals.
26
+ 1
27
+ arXiv:2301.04407v1 [hep-ph] 11 Jan 2023
28
+
29
+ Contents
30
+ 1. Introduction .................................................................................................
31
+ 2
32
+ 2. Top quark and BSM related to the Higgs boson and the origin of the weak scale .........................
33
+ 3
34
+ 2.1. Supersymmetry..........................................................................................
35
+ 3
36
+ 2.2. Composite and pNGB/Little Higgs .....................................................................
37
+ 8
38
+ 3. EFT at current and future colliders..........................................................................
39
+ 11
40
+ 4. Top quark and BSM related to Flavor Dynamics or Dark Matter (or both)................................
41
+ 12
42
+ 4.1. Top quark and BSM related to flavor ..................................................................
43
+ 12
44
+ 4.2. Flavored dark matter models ...........................................................................
45
+ 15
46
+ 5. Conclusions ...................................................................................................
47
+ 18
48
+ 1. Introduction
49
+ The top quark is a singular object amidst the fermions of the Standard Model as it is the
50
+ heaviest among them. This entails several peculiar properties: in the domain of QCD it
51
+ stands out as it is the only quark never to be observed into a hadron, as its decay is much
52
+ faster than the hadron formation time; after the discovery of the Higgs boson, and for
53
+ all the time before in which the Higgs mechanism has dominated the landscape of model
54
+ building for the electroweak sector of the SM, the top quark stands out as the only one
55
+ with a “normal” size coupling with the Higgs boson. This latter property has made the top
56
+ quark very interesting both for the question about the origin of the structure of flavor in
57
+ the SM and for the origin of the electroweak scale itself. The special interest about top
58
+ flavor has to do with its strong preference to decay into bottom quarks, i.e not involving
59
+ other flavor families, which in the CKM picture results in Vtb = 1 up to small corrections,
60
+ and its large mass, which can possibly act as a magnifier of the effects of physics beyond
61
+ the Higgs boson as origin of flavor. For electroweak physics the top quark plays a crucial
62
+ role in that it affects the properties of the Higgs boson, and by the Higgs mechanism for
63
+ weak bosons mass generation, also in the physics of weak gauge bosons: its effect can be
64
+ seen in their masses and decay rates, which are sensitive to the strength of the top quark
65
+ gauge and Yukawa couplings and to its mass. Deviations of these properties from the SM
66
+ predictions can be signs of new physics related to the top quark. While the importance of
67
+ the top quark can be appreciated already from these general facts, the detailed role played
68
+ by the top quark can be better understood going closer to explicit new physics models,
69
+ which will pace the exposition of the greatest part of the following material.
70
+ In sections 2.1 and 2.2 we discuss models in which the top quark plays a special role for
71
+ the origin of the electroweak symmetry. The discussion is further extended in section 3 in a
72
+ more model independent direction using a flavor-conserving effective field theory of the top
73
+ quark sector, which also allow to discuss prospects for top quark physics at future colliders.
74
+ In section 4.1 we attack a different problem, that of the origin of the flavors of the SM. In
75
+ section 4.2 we extend the discussion to the possibility that SM flavor plays a part in the
76
+ stabilization of the dark matter in a way that makes the dark matter interact preferably
77
+ with the top quark flavor and discuss the phenomenology of dark matter in these scenarios.
78
+ Finally in section 5 we offer some conclusions.
79
+ Being the subjects list rather large, the discussion is necessarily kept free from some
80
+ details, which are available in the provided references. This review is conceived so that it
81
+ 2
82
+
83
+ can also be useful for younger graduate students seeking an high-level introduction to the
84
+ subject(s) discussed. Hopefully the readers can start here their own exploration on topics
85
+ that would otherwise require to go through a large stack of literature. References are kept
86
+ to a minimum of key works as to encourage the reader to actually study these selected
87
+ works.
88
+ 2. Top quark and BSM related to the Higgs boson and the origin of the weak
89
+ scale
90
+ 2.1. Supersymmetry
91
+ Supersymmetry has been proposed as a space-time symmetry involving fermionic genera-
92
+ tors. Unlike in gauge symmetries, this makes possible to involve spin and momentum in the
93
+ definition of the symmetry algebra, which, up to violations of the symmetry itself, would
94
+ require interactions and masses of bosonic and fermionic particles to be tightly related.
95
+ One such relation would require the electron to be accompanied by exactly mass degener-
96
+ ate states of spin-0, pretty much the same as Lorentz symmetry of space-time built-in the
97
+ Dirac equation implies the existence of exactly mass degenerate anti-particles of the elec-
98
+ tron. The absence of any evidence in experiments for spin-0 electron-like state motivates
99
+ to consider supersymmetry as an approximate symmetry, broken at some unknown scale so
100
+ that all the supersymmetric partners of the SM states are pushed beyond the mass scale
101
+ presently probed by experiments.
102
+ The mechanism for supersymmetry breaking is a subject for model building, which is
103
+ outside of the scope of this review. For our purpose it is key to recall that the supersym-
104
+ metry breaking top quark sector has the rather model-independent tendency to determine
105
+ the Higgs bosons mass and quartic coupling, thus leading to the identification of the su-
106
+ persymmetric top scalar quark, most often called “stop squark”, as the main player setting
107
+ the Higgs boson potential. In the Minimal Supersymmetric Standard Model (see (1) for an
108
+ extensive review) this is represented by equations for the constraints on the minimization
109
+ of the Higgs boson potential
110
+ m2
111
+ Z =
112
+ ��m2
113
+ Hd − m2
114
+ Hu
115
+ ��
116
+
117
+ 1 − sin2(2β)
118
+ − m2
119
+ Hu − m2
120
+ Hd − 2 |µ|2 ,
121
+ sin(2β) =
122
+ 2b
123
+ m2
124
+ Hu + m2
125
+ Hd + 2 |µ|2 ,
126
+ coupled with the 1-loop effect of the top quark and top squark on the bilinear terms of the
127
+ 2 Higgs doublets Hu and Hd . In particular, for the Higgs doublet Hu that interacts with
128
+ up-type quarks, hence feels the top quark sector, the RGE equations is
129
+ d
130
+ d log Qm2
131
+ Hu = 3Xt − 6g2 |M2|2 − 6
132
+ 5g2
133
+ 1 |M1|2 + 3
134
+ 5g2
135
+ 1S ,
136
+ 1.
137
+ where Xt = 2 |yt|2 �
138
+ m2
139
+ Hu + m2
140
+ Q3 + m2
141
+ ¯u3
142
+
143
+ + 2 |at|2, M1,2 are the U(1) and SU(2) gaugino
144
+ mass terms, and S = Tr[Yjm2
145
+ φj].
146
+ These equations naturally lead to possibility that the supersymmetry breaking stop
147
+ masses m2
148
+ Q3 and m2
149
+ ¯u3 or a large A-term |at| might induce a large Xt, which in turn drives
150
+ m2
151
+ Hu < 0 as log Q diminishes from some high-scale down to the weak scale. This possibility
152
+ has made the role of stop squarks a very central one in supersymmetric models. In essence,
153
+ www.annualreviews.org •
154
+ 3
155
+
156
+ the supersymmetric partner of the top quark is responsible for breaking the electroweak
157
+ symmetry, by making m2
158
+ Hu < 0 hence making the Higgs boson potential unstable at the
159
+ origin of the Hd, Hu fields space, and setting the value of the masses that set the weak scale,
160
+ e.g. mZ from the above equation or the mass of the Higgs boson that receives the above
161
+ mentioned large radiative corrections from the stop squark.
162
+ As a matter of fact, once the Higgs boson was discovered and its mass was known,
163
+ a number of works tried to determine the impact of this measurement on the properties
164
+ of the stop squark (e.g. see Ref. (2) for the MSSM and some extensions). In turn, the
165
+ necessity for peculiar supersymmetry breaking to accommodate the Higgs mass has spurred
166
+ investigations on the possible supersymmetry breaking models that can lead to such peculiar
167
+ stop squarks (see e.g. (3–8) for some examples of supersymmetry breaking models emerged
168
+ or re-emerged to address the null searches of supersymmetry and the Higgs discovery).
169
+ 2.1.1. Phenomenology. The phenomenology of the supersymmetric partners of the top quark
170
+ is largely dictated by one feature of the supersymmetric models: the existence of a conserved
171
+ quantum number that distinguishes SM states from their supersymmetric partners. The
172
+ standard choice for such quantity is called R-parity, a Z2 symmetry under which all SM
173
+ states are even and all partners states are odd. The conservation of this symmetry implies
174
+ that partners states can appear in interaction vertexes only in even number, e.g.
175
+ one
176
+ SM states can interact with two supersymmetric states and it is not possible for a single
177
+ supersymmetric state to interact with a pair of SM states. For particle colliders this implies
178
+ that the lowest order process to produce supersymmetric states in collisions is
179
+ SM SM → SUSY SUSY,
180
+ and the decay of supersymmetric particles to any number of SM states is forbidden unless
181
+ there is at least one supersymmetric particle (or an odd number of them), e.g.
182
+ SUSY → SUSY SM .
183
+ When R-parity is exact a most copious production mechanism for stop squarks at the LHC
184
+ is
185
+ gg → ˜ti˜t∗
186
+ j,
187
+ 2.
188
+ where we denoted ˜tk for k = 1, 2 the two stop squarks mass eigenstates 1. Other production
189
+ mechanisms are possible, e.g. in decays of supersymmetric partners heavier than the stops
190
+ or via production of stops in association with other supersymmetric states.
191
+ Once produced, the stop squark can decay in a number of possible channels, depending
192
+ on which supersymmetric states are lighter than the state ˜tk at hand. Most studied 2-body
193
+ decay modes are
194
+ ˜t → tχ0, ˜t → bχ+ ,
195
+ 3.
196
+ which feature fermions χ that are mixtures of supersymmetric partners of gauge bosons of
197
+ the electroweak interactions and of the Higgs bosons of the model. The motivation for the
198
+ 1The definition of mass eigenstate as “stops” assumes that flavor labels we give in the SM are
199
+ the same for the partners states. It must be stressed that the fate of flavor in the supersymmetric
200
+ partners sector is largely model dependent and it is possible to use flavor mixing to change the
201
+ phenomenology of stop squarks, see e.g.
202
+ (9).
203
+ See (1) for more details on the gauge and flavor
204
+ structure of the squark sector.
205
+ 4
206
+
207
+ prevalence of these decay modes is that, by the rules of unbroken supersymmetry, these
208
+ decays are mediated by couplings given by gauge and Yukawa couplings of the SM, hence
209
+ they are pretty much impossible to switch off unless m˜t − mχ < 0. As a matter of fact
210
+ the quantity m˜t − mχ plays a major role in determining the stop phenomenology. When
211
+ m˜t − mχ → 0 it becomes necessary to consider multi-body processes are also possible and
212
+ may be phenomenologically relevant, e.g.
213
+ ˜t → bW +χ0, ˜t → b ¯ff
214
+ ′χ0,
215
+ 4.
216
+ as well as possible flavor violating decays that may be induced at loop level, such as
217
+ ˜t → cχ0 .
218
+ 5.
219
+ In the above discussion the particle χ0 is considered as the lightest supersymmetric state
220
+ (LSP), so that, by the conservation of R-parity, it is absolutely stable. As χ0 is not elec-
221
+ trically charged and it is color neutral, pretty much like neutrinos it does not leave directly
222
+ observables traces in detectors. For this reason the presence of χ0 can be detected only as
223
+ momentum missing in the overall momentum conservation in each collision. As we cannot
224
+ reliably measure the fractions of the longitudinal momentum of the colliding protons taken
225
+ by the partons initiating the production of stops, e.g. the gluons entering in eq.(2), and
226
+ the fraction taken by the rest of the partons, the longitudinal momentum conservation is
227
+ usually not exploited in hadron colliders, therefore the presence of χ0 is usually sought for
228
+ as missing transverse momentum, most often (mis)named missing transverse energy mET.
229
+ Being an electrically neutral stable particle charged only under supersymmetric Yukawa
230
+ and electroweak gauge interactions, χ0 qualifies as perfect candidate for a WIMP Dark Mat-
231
+ ter. The possibility to have a Dark Matter candidate stemming out of supersymmetry has
232
+ given formidable motivation to pursue this scenario for the past decades. So much so, that
233
+ missing transverse energy searches have becomes synonymous of searches for supersymme-
234
+ try. It must be said, however, that the null searches of supersymmetric particles, as well as
235
+ WIMP Dark Matter in the mass range suitable for χ0(10), has put this idea under great
236
+ pressure lately (11,12).
237
+ Given these experimental results, and the vast range of possible models for supersym-
238
+ metry breaking, it must be recalled that in general it is possible to have other states than χ0
239
+ as lightest supersymmetric particles. For instance the supersymmetric partner of a neutrino
240
+ or even top sector squarks. The latter leads to peculiar phenomena due to the formation of
241
+ hadrons containing supersymmetric states(13)(14), but these models typically suffer from
242
+ quite stringent limits (15–17). Therefore the majority of the searches for supersymmetric
243
+ states in the top quark sector are carried out in the χ0 LSP setting.
244
+ Wholly alternative phenomenological scenarios for supersymmetric top quark partners
245
+ are possible and are actively pursued in experimental searches. The main possible alter-
246
+ native has to do with the non-conservation of R-parity (18).
247
+ With broken R-parity all
248
+ supersymmetric particles can in principle be produced singly and can decay into just SM
249
+ states, e.g.
250
+ SM SM → SUSY and SUSY → SM SM ,
251
+ are now possible processes. In this situation there is no longer an absolutely stable weak
252
+ scale particle to purse the idea of Dark Matter as a WIMP2 and the phenomenology of
253
+ 2Alternative DM candidates can be found in these models, see e.g. (19) for a possible gravitino
254
+ dark matter scenarios and issues related to this possibility.
255
+ www.annualreviews.org •
256
+ 5
257
+
258
+ supersymmetric states linked to the top quark is now greatly different from the picture
259
+ given above (20). For instance R-parity violating couplings, still respecting the full gauge
260
+ symmetry of the SM, allow, among other possibilities, the decays
261
+ ˜t → bs or ˜t → ℓd .
262
+ As the final states of stop decay can now be made entirely of SM particles it is possible
263
+ to detect stop squarks as resonances, a very powerful signature, that is not possible to
264
+ pursue when χ0 is forced to appear among the decay products. Furthermore these decays,
265
+ being mediated by R-parity breaking couplings, that need to be small for a number of
266
+ constraints (18), can lead to meta-stable supersymmetric states, which can live measurable
267
+ lengths in experiments.
268
+ 2.1.2. Experimental searches. In a detailed model it is possible to derive very specific signals
269
+ from top sector supersymmetric partners, including both signatures at collider experiments
270
+ and as well as low energy precision ones. The latter, however, turn out to be usually very
271
+ much dependent on the model considered for low energy precision experiments (21). A
272
+ similar issue exists with early universe physics, on top of the signals being quite difficult
273
+ to detect.
274
+ For this reason collider searches are the prime way to search for top sector
275
+ supersymmetric partners.
276
+ Before listing relevant searches it is necessary to clarify a point on their scope. The
277
+ above searches are sensitive in principle to any sign of new physics related to the top quark
278
+ sector involving mET or some kind of pair produced resonances.
279
+ Although the search
280
+ is optimized for supersymmetric partners, it can indeed be used to set bounds on other
281
+ models. The interested reader can refer for instance to Ref. (22) for an interpretation of the
282
+ “supersymmetry searches” in the context of fermionic top partners to be discussed in later
283
+ Section 2.2.2.
284
+ The searches for top sector supersymmetric partners can be divided into two main
285
+ categories:
286
+ • searches in large momentum transfer signals, which feature detector objects (jets,
287
+ leptons, photons, ...) with energy and transverse momentum greater than the typical
288
+ SM events;
289
+ • searches in low momentum transfer signal, in which the detector objects arising from
290
+ top sector supersymmetric partners production are not very different from that of
291
+ typical SM events.
292
+ The large momentum transfer ones are “classic” searches for new physics, and were envisaged
293
+ already at the time of design of the experiments (23,24). Currently these searches can probe
294
+ supersymmetric top partners up to a mass around 1.2 TeV, although not in full generality.
295
+ Indeed it is quite hard to probe in full generality even a model as “minimal” as one having the
296
+ full freedom to vary the branching ratios of decays eqs.(3)-(5). For a complete assessment is
297
+ then necessary to test very accurately a large number of searches at once, often relying on a
298
+ “phenomenological” incarnation of a sufficiently general supersymmetric model, as studied
299
+ for instance in Ref. (25).
300
+ The interpretation of these results is quite difficult, as many
301
+ constraints on the model are imposed at once, e.g. the top partners states are required to
302
+ “fix” the mass of the SM Higgs boson to its measured value by the dynamics of radiative
303
+ corrections embodied in eq.(1). This requirement, while being a sensible one in the context
304
+ of the specific model, can significantly alter the conclusion of that study.
305
+ Therefore it
306
+ 6
307
+
308
+ remains difficult to answer questions as simple as finding the lightest not excluded values
309
+ of the mass of stop-like top partners 3.
310
+ Further difficulties can arise and make nearly impossible to probe experimentally su-
311
+ persymmetric top partners, e.g when special kinematical configurations become the typical
312
+ configuration of top partners decay products. In these cases the search in low momentum
313
+ transfer signatures can help. Indeed, these searches have been developed to overcome the
314
+ difficulty that arise in the limit m˜t − mχ → 0. The shortcomings of the large momentum
315
+ transfer searches can be clearly seen in Figure 1, as the excluded stop mass for large m˜t−mχ
316
+ is much larger than for small values of this mass difference. In addition, when the stop-LSP
317
+ mass gap is small and the stop becomes lighter, its production and decay cannot be reliably
318
+ distinguished from other SM processes, e.g. the SM top quark production. This observa-
319
+ tion motivates a zoom inset in the figure to display how these peculiar cases are covered.
320
+ The most useful strategies to attack these difficult signatures have turned out to be the
321
+ studies of angular observables and fiducial rates of top-like final states (27–31). Especially
322
+ in angular observables there are modest, but persistent disagreement between the measure-
323
+ ments in the top quark sample (32) and theoretical predictions. These disagreement are
324
+ also accompanied by other disagreements of small entity, but persisting from Run1 LHC
325
+ through Run2, in the kinematics of the reconstructed top quarks e.g. in Refs. (33,34). The
326
+ possibility to see effects of BSM related to the top quark and the precision in measurements
327
+ afforded by the LHC and the HL-LHC has motivated the great improvement of predictions
328
+ for top quark SM observables, e.g. (35) for a seamless description of fixed NLO and PS cal-
329
+ culations of top quark resonant and non-resonant rates, (36,37) for specific NNLO and EW
330
+ corrections to the BSM sensitive rates and more in general drawing attention on possibly
331
+ BSM-sensitive high energy top quarks (see e.g. (38)) and other production modes which
332
+ may be of interest for both SM studies and BSM searches (see e.g. (39,40)).
333
+ The searches mentioned above, though motivated and sometimes optimized on super-
334
+ symmetry searches, are rather general. Thus it is important to stress that the observation
335
+ of an excess in one of these “supersymmetry searches” would not at all prove the supersym-
336
+ metric nature of the discovered state. A reliable statement on the supersymmetric nature
337
+ of the newly discovered object would require several measurements. For some proposal at
338
+ the LHC the interested reader can look for instance at (41). In general it is believed that a
339
+ machine cleaner than a hadron collider, e.g. an e+e− collider, capable of producing the new
340
+ particle would be needed to truly confer it the status of “supersymmetric partner” state of
341
+ some SM state.
342
+ At the time of writing there are no statistically significant and convincing signs of new
343
+ physics in searches for new physics, the searches for supersymmetric top partners being no
344
+ exception. Despite the absence of signals for top sector supersymmetric partners these are
345
+ still believed to one our best chances to find new physics. Looking at the glass as “half
346
+ full” one could even argue that in the minimal model of supersymmetry the relatively large
347
+ observed Higgs boson mass requires large loop level corrections from contributions of the
348
+ kind of eq.(1). These large loop corrections point towards a stop squarks mass scale at the
349
+ TeV or larger, thus perfectly compatible with the present limits and possibly awaiting us
350
+ for a next discovery at one of the next updates of the searches as more data is collected at
351
+ the LHC.
352
+ 3One possible answer in the context of (25) is offered in the supplementary material of that
353
+ analysis(26).
354
+ www.annualreviews.org •
355
+ 7
356
+
357
+ Observed limits
358
+ Expected limits
359
+
360
+ -1
361
+ = 13 TeV, 139 fb
362
+ s
363
+ Data 15-18,
364
+ 0
365
+ 1
366
+ χ∼
367
+ bff'
368
+
369
+
370
+ 1t~
371
+ monojet,
372
+ [2102.10874]
373
+ 0
374
+ 1
375
+ χ∼
376
+ bff'
377
+
378
+
379
+ 1t~
380
+ /
381
+ 0
382
+ 1
383
+ χ∼
384
+ bW
385
+
386
+
387
+ 1t~
388
+ /
389
+ 0
390
+ 1
391
+ χ∼
392
+ t
393
+
394
+
395
+ 1t~
396
+ 0L,
397
+ [2004.14060]
398
+ 0
399
+ 1
400
+ χ∼
401
+ bff'
402
+
403
+
404
+ 1t~
405
+ /
406
+ 0
407
+ 1
408
+ χ∼
409
+ bW
410
+
411
+
412
+ 1t~
413
+ /
414
+ 0
415
+ 1
416
+ χ∼
417
+ t
418
+
419
+
420
+ 1t~
421
+ 1L,
422
+ [2012.03799]
423
+ 0
424
+ 1
425
+ χ∼
426
+ bff'
427
+
428
+
429
+ 1t~
430
+ /
431
+ 0
432
+ 1
433
+ χ∼
434
+ bW
435
+
436
+
437
+ 1t~
438
+ /
439
+ 0
440
+ 1
441
+ χ∼
442
+ t
443
+
444
+
445
+ 1t~
446
+ 2L,
447
+ [2102.01444]
448
+
449
+ -1
450
+ = 13 TeV, 36.1 fb
451
+ s
452
+ Data 15-16,
453
+ 0
454
+ 1
455
+ χ∼
456
+ bff'
457
+
458
+
459
+ 1t~
460
+ /
461
+ 0
462
+ 1
463
+ χ∼
464
+ bW
465
+
466
+
467
+ 1t~
468
+ /
469
+ 0
470
+ 1
471
+ χ∼
472
+ t
473
+
474
+
475
+ 1t~
476
+ [1709.04183, 1711.11520,
477
+ 1708.03247, 1711.03301]
478
+ 0
479
+ 1
480
+ χ∼
481
+ t
482
+
483
+
484
+ 1t~
485
+ ,
486
+ tt
487
+ [1903.07570]
488
+
489
+ -1
490
+ = 8 TeV, 20.3 fb
491
+ s
492
+ Data 12,
493
+ 0
494
+ 1
495
+ χ∼
496
+ bff'
497
+
498
+
499
+ 1t~
500
+ /
501
+ 0
502
+ 1
503
+ χ∼
504
+ bW
505
+
506
+
507
+ 1t~
508
+ /
509
+ 0
510
+ 1
511
+ χ∼
512
+ t
513
+
514
+
515
+ 1t~
516
+ [1506.08616]
517
+ 200
518
+ 400
519
+ 600
520
+ 800
521
+ 1000 1200
522
+ ) [GeV]
523
+ 1
524
+ t~
525
+ m(
526
+ 100
527
+ 200
528
+ 300
529
+ 400
530
+ 500
531
+ 600
532
+ 700
533
+ 800
534
+ 900
535
+ ) [GeV]
536
+ 0
537
+ 1
538
+ χ∼
539
+ m(
540
+ -1
541
+ = 8,13 TeV, 20.3-139 fb
542
+ s
543
+ March 2021
544
+ ATLAS Preliminary
545
+ production
546
+ 1t~
547
+ 1t~
548
+ Limits at 95% CL
549
+ 180
550
+ 200
551
+ 220
552
+ 0
553
+ 10
554
+ 20
555
+ 30
556
+ 40
557
+ 50
558
+ 60
559
+ 70
560
+ ) = 0
561
+ 0
562
+ 1
563
+ χ∼
564
+ ,
565
+ 1t~
566
+ m(
567
+
568
+ W
569
+ + m
570
+ b
571
+ ) = m
572
+ 0
573
+ 1
574
+ χ∼
575
+ ,
576
+ 1t~
577
+ m(
578
+
579
+ t
580
+ ) = m
581
+ 0
582
+ 1
583
+ χ∼
584
+ ,
585
+ 1t~
586
+ m(
587
+
588
+ Figure 1
589
+ Searches for top sector supersymmetric partners in the Stop-LSP mass plane.
590
+ As the mass scale of top quark supersymmetric partners is not entirely fixed it often
591
+ considered that these particles may be too heavy for the LHC to discover them. Therefore
592
+ the discovery reach for these particles is often considered in the evaluation of the physics case
593
+ of future particle accelerators. Projections for a 100 TeV pp collider (42, 43) usually cover
594
+ a mass range 5-8 times larger than what can be probed at the LHC, while the expectation
595
+ for a high energy lepton collider, such as multi-TeV muon collider(44–48), is to probe the
596
+ existence of top partners up to the kinematic limits at √s/2.
597
+ 2.2. Composite and pNGB/Little Higgs
598
+ 2.2.1. Models . New physics associated to the top quark sector has been motivated also from
599
+ a series of model building activities aimed at explaining the origin of the electroweak scale
600
+ through the Goldstone boson nature of the agent of its breaking, resulting in theories of
601
+ the Higgs boson as a pseudo Nambu-Goldstone boson. From a low energy effective point of
602
+ view these theories can be put in the language of a composite Higgs boson, whose lightness
603
+ compared to its scale of compositeness is justified by its goldstonian nature. Models built
604
+ in this family are reviewed in Refs. (49–52) and they all share the need to enlarge the
605
+ symmetries of the SM by a new global symmetry, that is broken at some scale above the
606
+ TeV to a smaller symmetry, with the associated Nambu-Goldstone bosons, which will host
607
+ the yet smaller symmetry group of the SM at even lower energies. The minimal model of
608
+ this type (53) that is able to pass bounds from electroweak precision tests including Zb¯b
609
+ 8
610
+
611
+ couplings assumes an SO(5) global symmetry, broken to SO(4) ≃ SU(2) × SU(2) which
612
+ contain the weak interactions gauged SU(2).
613
+ The enlargement of the symmetry of the SM motivates appearance of matter repre-
614
+ sentations in multiplets that are necessarily larger than the usual doublets and singlets of
615
+ the SM. In particular, in order to obtain Yukawa interactions the constructions of pNGB
616
+ and little Higgs model converges in the existence of “partner” states for the top quark, the
617
+ bottom quark and in principle for all the fermions of the SM. The precise phenomenological
618
+ manifestation of the “partner” states is highly model dependent, as it depends on the choice
619
+ the new global symmetry group that one has in building this type of models, the repre-
620
+ sentation of this symmetry group that one chooses for the new matter and the imagined
621
+ mechanism to originate the SM fermion masses at the most microscopic level.
622
+ One possible limitation to the model building choices may comes from the requirement of
623
+ not introducing large deviations in well known couplings, e.g. the Zbb couplings (54), still a
624
+ large set of possibilities exists. For this review we focus on a unifying feature of many models,
625
+ that is the presence of “partner” states directly connected to the SM top quark sector via
626
+ Yukawa and gauge interactions with relatively universal decay patterns (55–57), although
627
+ other decay modes and more “exotic” partners may exist including possible couplings to
628
+ scalar states accompanying the Higgs boson in some models (58–60).
629
+ 2.2.2. Phenomenology. At the core of the experimental tests of the idea of fermion top part-
630
+ ners lies the assumption that the main interaction leading to the decay of these top partners
631
+ into SM states is the Yukawa of the top quark, in which the Higgs boson or longitudinal
632
+ components of the weak gauge bosons appear. For this reason the large majority of the
633
+ searches are presented in terms of exclusions for branching fractions of the top partners
634
+ states into the following pairs of SM states
635
+ T → tZ, th, Wb,
636
+ where T is a charge 2/3 top partner and
637
+ B → bZ, bh, Wt,
638
+ where B is a charge -1/3 partner of the bottom quark, whose existence is consequence of
639
+ the SU(2) weak isospin symmetry that must hold in the theory that supersedes the SM at
640
+ high energies. In models with a symmetry larger than SU(2), e.g. (54)(53), it is typical
641
+ to have further partners states that appear as necessary to furnish full representations of
642
+ the larger symmetry. A much studied case is the state of charge 5/3 that leads to a very
643
+ characteristic decay
644
+ X5/3 → W +t ,
645
+ which in turn gives a characteristic same-sign di-lepton signal (61). For little Higgs models
646
+ the appearance of this type of exotic partners requires the formulation of somewhat more
647
+ involved models, but it is definitively a possibility(58,62).
648
+ 2.2.3. Experimental searches at colliders. Experimental searches for new states are carried
649
+ out at the LHC exploiting the color charge of the top partners in processes such as
650
+ gg → TT ,
651
+ www.annualreviews.org •
652
+ 9
653
+
654
+ that are analogous to previous processes for supersymmetric partners and depend only on
655
+ the QCD charge of T. Unlike for supersymmetric partners, for which the conservation of
656
+ R-parity plays a crucial role, the single production of top partners
657
+ gq → q′Tb ,
658
+ is possible in the most minimal models and can in principle lead to a deeper understanding of
659
+ the BSM physics, as this process involves directly new physics couplings for the production
660
+ of the top partners state (63). For instance the rate of single production of top partners
661
+ states can be a discriminant with respect to so-called “vector-like” quarks, whose couplings
662
+ are not dictated by Goldstone property of the Higgs (see Ref. (64) for a more in-depth
663
+ discussion).
664
+ A great difference in the search for the partners discussed in this section is that they
665
+ can in principle give rise to resonant signals, e.g. in the invariant mass of an hadronic top
666
+ and one hadronic Higgs boson in the decay T → th and other signals discussed for instance
667
+ in the search of Ref.(65).
668
+ Another consequence of the top partner decaying in purely SM final states is that even
669
+ the “heavy” SM particles, such as t, Z, W, h, are produced with significant boost in the
670
+ majority of the events. This motivates the use of special experimental techniques for the
671
+ identification of those detector objects (66) as for instance in the search of Ref.(67).
672
+ The search strategies mentioned above are combined by the experimental collaborations,
673
+ that present results in a plane with axes spanning the possible values of two decays, e.g. if
674
+ figure 2 an example is shown for T → Ht and T → Wb. The underlying assumption of this
675
+ presentation of the results is that the top partner does not decay in any BSM states, hence
676
+ the branching ratio of T → Zt is determined by the two branching rations displayed. The
677
+ right panel of the same figure shows how the different searches have different sensitivity to
678
+ each decay mode and can be patched together to better exclude top partners of a given
679
+ mass. For more exotic signals from X5/3 searches are carried out as well, e.g. in Ref. (68).
680
+ Results of searches at LHC collected in figure 2 and newer results (67, 69) on the kinds of
681
+ top partners described so far put bounds on the top partners mass at around 1.2 TeV.
682
+ As mentioned above it is possible to have larger groups and larger representations in the
683
+ symmetry breaking pattern. For instance if the large global symmetry of which breaking
684
+ the Higgs is a pNGB is chosen to be SO(6) broken to SO(5) and top quark partners states
685
+ are chosen to furnish a 6-dimensional representation there is one extra top partners state
686
+ compared to the case of top quark partners in the 5 of SO(5) considered for the minimal
687
+ model of Ref. (54). If we call this new top partner state Ψ1, the name signals the fact
688
+ that it is a singlet under the remnant SO(5) symmetry, we can have new signals from
689
+ its production via QCD interactions and decay that do not fit into any of the previously
690
+ considered categories e.g.
691
+ Ψ1 → th, tZ, tη, Wb ,
692
+ where η is an extra pNGB that arises due to the larger number of broken generators in the
693
+ breaking SO(6) → SO(5) → SO(4) ≃ SU(2) × SU(2) .
694
+ In general the extensions of pNGB models can include possible FCNC of top quarks
695
+ with new physics states, e.g. Ref. (73) has considered decays of the SM top quark that
696
+ violate flavor
697
+ t → cη
698
+ as a consequence of underlying flavor-changing dynamics in the top partners by a coupling
699
+ Tcη which would also yield a new possible search channel for a top partner T → cη. Other
700
+ 10
701
+
702
+ Figure 2
703
+ Searches for top fermionic partners (70,71) in the plane BR(T → Ht) vs BR(T → Wb) with the
704
+ constraint B(bW) + B(th) + B(tZ) = 1. For reference, some model-dependent choices of the
705
+ branching ratios introduced in Ref.(72) are shown.
706
+ exotic possibilities are covered in the literature, e.g. T → tg, tγ, X5/3 → tφ+ and more
707
+ exotics ones are presented in Refs. (74–76) and can in principle lead to new signals for top
708
+ quark partners.
709
+ 3. EFT at current and future colliders
710
+ The previous sections dealt with explicit models of new physics giving rise to signals from
711
+ direct production of particles beyond those of the Standard Model. As these searches have
712
+ so far yield no evidence of new physics a growing interest and motivation have risen for
713
+ the description of new physics in Effective Field Theories. The effective character of these
714
+ theories is due to the fact that they arise by the removal of heavy states from a theory more
715
+ microscopic than the SM and they lead to a set of BSM interactions, that is usually in overlap
716
+ with the set generated by other microscopic theories. Therefore it has been done a great
717
+ work in identifying the most general sets of interactions under given assumptions (77,78),
718
+ so that new physics studies can be carried in a “model-independent” fashion, e.g. searching
719
+ for very characteristic interactions involving four top quarks (79–82) or other four-fermion
720
+ operators involving top quarks, or other kinds of contact interactions independently of their
721
+ microscopic origin.
722
+ The plus side of the EFT approach is that it is very comprehensive. The converse of
723
+ this comprehensiveness is the possible loss of contact with the microscopic origin of physics
724
+ beyond the Standard Model which gives rise to specific patterns and organization principles
725
+ for the size of each contact interaction. Thus it is necessary to strike a balance between a
726
+ fully general EFT and a “physically efficacious” effective theory. Where this balance lies is
727
+ very much dependent on the amount of data that one can use in constraining the couplings
728
+ of the effective interactions, as well as the theoretical prejudice on what effects are worth
729
+ being considered, e.g. pure top sector effects (78,83–87), or effects involving EW and Higgs
730
+ physics as well (88,89) or exploring flavor changing effects (90–95).
731
+ As the effect of BSM contact interactions from the EFT affects precision measurements
732
+ of SM processes, this enhanced attention towards signals of BSM associated to top quarks
733
+ www.annualreviews.org •
734
+ 11
735
+
736
+ (↑H
737
+ 1
738
+ m, = 800 Gev
739
+ m, = 900 GevV
740
+ ATLAS
741
+ 0.8
742
+ ATLAS Preliminary
743
+ 1420
744
+ Vs = 13 TeV, 36.1 fb-1
745
+ BR(T
746
+ 0.6
747
+ 0.9
748
+
749
+ ..Exp.exclusion Obs.exclusion
750
+ Vs = 13 TeV, 36.1 fb'
751
+ limit [
752
+ 0.
753
+ W(lv)b+X [arxiv:1707.03347]
754
+ 1400
755
+ 0.8
756
+ VLQ combination
757
+ 1400
758
+ 0.2
759
+ H(bb)+X [arxiv:1803.09678]
760
+ R
761
+ Z(vv)t+X [ariv:1705.10751]
762
+ B
763
+ 0.7
764
+ Observed limit
765
+ nass
766
+ m = 950 Gev
767
+ m = 1000 Gev
768
+ 1375
769
+ 0.8
770
+ Trilep./same-sign [CERN-EP-2018-171]
771
+ 0.6
772
+ Z(I)/b+X [arxiv:1806.10555]
773
+ 0.6
774
+ 1380
775
+ m
776
+ 0.4
777
+ All-had [CERN-EP-2018-176]
778
+ ★ SU(2) doublet
779
+ ★ sU(2) doublet ● sU(2) singlet
780
+ O sU(2) singlet
781
+ 1360
782
+ 95%
783
+ 1320
784
+ m = 1050 Gev
785
+ m = 1100 GeV
786
+ m = 1150 Gev
787
+ 0.4
788
+ 0.8F
789
+ 0.6
790
+ 0.3
791
+ 1340
792
+ 0.4
793
+ 0.2
794
+ 0.2
795
+ 1320
796
+ m = 1200 GeV ±
797
+ m = 1300 GeV
798
+ m, = 1400 GeV
799
+ 0.8
800
+ 0.1
801
+
802
+ 1300
803
+ 0.4
804
+ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
805
+ 0.2
806
+ .
807
+ BR(T → Wb)
808
+ 0.2 0.4 0.6 0.8
809
+ 00.2 0.4 0.6 0.8
810
+ 0.2 0.4 0.6 0.8
811
+ 0
812
+ BR(T →> Wb)Figure 3
813
+ Summary from Ref. (101,102) of the constraints on contact interactions involving the top quark.
814
+ The left panel shows the effect of HL-LHC compared to present constraints. The right panel
815
+ shows the effect of future e+e− machines. The taller (and lighted) bars for each case represent the
816
+ looser bounds that are obtained when the coupling of interest is bound while the others are
817
+ allowed to float, see (101,102) and references therein for details.
818
+ has produced activity on the improvement of the description of several processes that are
819
+ either backgrounds or serve as SM reference on top of which search for signs of BSM,
820
+ e.g. see recent Ref. (96) for four-top production, recent ttV results discussed in Refs. (97–
821
+ 99), tth results in Ref. (100) and references therein. For an up to date snapshot of the
822
+ characterization of the top quark electroweak interactions and possible BSM in deviations
823
+ from the SM we refer the reader to Refs. (83–87). The upshot of the work is that present
824
+ measurements, also thanks to the availability of differential measurements and trustable
825
+ computations in the same phase-space regions, can put bounds on generic new physics in
826
+ the top quark sector in the TeV ballpark.
827
+ The possibility to identify indirect signs of new physics in signatures related to the top
828
+ quark has become a commonly used benchmark in the evaluation of performances of future
829
+ colliders, especially clean e+e− machines, whose best chance to see new physics in the top
830
+ sector is through indirect effects. Works such as (101–104) have studied the outcome of
831
+ analyses to be carried out at future colliders and the interplay between present and future
832
+ colliders probes of new physics in top quark effective field theory. The results are summa-
833
+ rized in Figure 3, which shows the significant improvement that will be attained by the
834
+ HL-LHC, especially on single-couplings effects. The figure also shows the strong tightening
835
+ of the bounds with the addition of data from future e+e− data at the Zh threshold, the t¯t
836
+ threshold and above, which will make the global EFT constraints particularly robust by the
837
+ removal of possible flat directions in couplings-space and providing new data in channels
838
+ that can be probed best at clean e+e− machines.
839
+ 4. Top quark and BSM related to Flavor Dynamics or Dark Matter (or both)
840
+ 4.1. Top quark and BSM related to flavor
841
+ The top quark flavor remains a special one in the SM. Indeed the top quark is so heavy that
842
+ one can easily single out the third generation of quarks as a peculiars source of breaking of
843
+ 12
844
+
845
+ 102
846
+ FIT
847
+ I LHC Run 2 + Tevatron + LEP
848
+ +HL-LHC S2
849
+ HL-LHC +CEPC
850
+ HL-LHC + FCCee
851
+ HL-LHC +ILC
852
+ HL-LHC + CLIC
853
+ FIT
854
+ HEPfit
855
+ 101
856
+ HEPfit
857
+ 101
858
+ val (TeV-2)
859
+ 100
860
+ 100
861
+ 95% Interv
862
+ 10-1
863
+ 10-2
864
+ 10-2
865
+ c
866
+ 10-3
867
+ Ctw
868
+ Cot
869
+ CoQ
870
+ Ctz
871
+ Cb
872
+ Ctp
873
+ Ctw
874
+ Cot
875
+ Cpb
876
+ Ceb
877
+ CeQ
878
+ Clb
879
+ Cet
880
+ Cit
881
+ Cio
882
+ Operator Coefficients
883
+ Operator Coefficientsthe flavor symmetry
884
+ GF = U(3)qL × U(3)uR × U(3)dR
885
+ that the SM would enjoy if all quark masses were zero. A hierarchy of breaking dominated by
886
+ the third generation can be accommodated easily, thanks to the freedom about the possible
887
+ symmetry breaking patterns and possible mechanisms for breaking the flavor symmetry of
888
+ the SM that one can consider. In addition, this way of organizing the breaking of flavor
889
+ symmetry is most compatible with experimental bounds. In fact, bounds on first and second
890
+ generation flavor changing processes are the most tight, whereas there is a relative lack of
891
+ constraints on the third generation. If the sole breaking of the symmetry GF arises from
892
+ the Yukawa couplings of the SM, or new sources are aligned with the Yukawa matrices,
893
+ the breaking is said to comply with “Minimal Flavor Violation” (MFV) (105–107). In this
894
+ setting the bounds from flavor observables are most easily accommodated, but it is not the
895
+ only possibility to comply with observations. The fact that the top quark Yukawa coupling
896
+ is a possible large source of flavor symmetry breaking motivates to consider BSM related
897
+ to the top flavor, but this conclusion holds also in other settings.
898
+ A classification of possible states that can couple to quark bilinears charged under the
899
+ flavor symmetry, e.g. a new scalar coupled as φtutu, has proven useful in the past to assess
900
+ the possibility of flavorful signs of new physics. For a recent listing of the possible states
901
+ one can read tables on Ref. (108). From a phenomenological point of view these models
902
+ give rise to transitions in four-quark scatterings that do not conserve the flavor charge. For
903
+ instance the scattering
904
+ uu → tt
905
+ can arise via a t-channel exchange of a flavored boson. This can alter the kinematic of
906
+ top quark production as well as the net charge of the top quark sample at hadron colliders.
907
+ Indeed new flavorful boson of this kind were advocated in response to TeVatron experiments
908
+ claiming disagreements between the SM predictions and measured top quark properties,
909
+ such as the forward-backward asymmetry in the production of top quarks (109–111). In
910
+ addition these new flavored states coupled to the top quark can give rise to transitions
911
+ f ¯f → tφtjuj ,
912
+ that can be observed quite easily at e+e− colliders in multi-jet final states, the detailed
913
+ final state depending on the model-dependent decay of the flavored state φ.
914
+ The possibility that a flavored state connected to the top quark might be among the
915
+ lightest new states from the new physics sector has appeared also in models of gauged
916
+ flavor symmetries.
917
+ In these models the flavor symmetry GF is gauged, as to not have
918
+ to deal with unobserved massless Goldstone bosons.
919
+ For instance Refs. (112, 113) have
920
+ proposed a new set of states that would have the notable property to make the GF gauging
921
+ free from triangular anomalies by the addition of vector-like new quarks. In this kind of
922
+ models the new quarks are charged under the SM flavor symmetry and can be arranged as
923
+ to have top-flavor new states to be the lightest ones. Indeed in these models the masses of
924
+ the the SM quarks would be explained by a see-saw-like mechanism in which the lightest
925
+ SM fermions are mixed with a very heavy new state, whereas the heaviest SM states are
926
+ mixed with the lightest of the new physics states. In this case the SM top quark would be
927
+ the state coupled to the lightest of the new physics states, named t′, possibly accompanied
928
+ by a partner state for the bottom quark, named b′. Remarkably this type of model gives
929
+ www.annualreviews.org •
930
+ 13
931
+
932
+ Λ ��
933
+ (���)
934
+ �������� �����
935
+ ������
936
+ ��� ������
937
+ ������ �����
938
+ ��� ������
939
+ ������ �����
940
+ ��������
941
+ ��
942
+ ϵ�
943
+ �� → μ+μ-
944
+ ������� ���
945
+ �������� ���
946
+ μ → � γ
947
+ ��
948
+ ��
949
+ ��
950
+ ���
951
+
952
+
953
+ ��
954
+ ��
955
+ Figure 4: Lower bounds on ⇤IR on the various flavor scenarios. The first set of bounds corresponds
956
+ to our scenario with multiple flavor scales, the second and third sets assume partial compositeness
957
+ at ⇤IR for the whole third and second family respectively, while the last set gives the bounds for the
958
+ anarchic flavor scenario. To derive the numerical values we have taken g⇤ ' 3, xt ' xc ' 0.5, and
959
+ set all free ↵L,R parameters to one.
960
+ where
961
+ gij ⌘ Ytxt(V †
962
+ CKM)i3(VCKM)3j ,
963
+ (7.2)
964
+ and dLi denotes the left-handed down-type quark component in the i-th family. A remarkable
965
+ feature of these corrections is the fact that they automatically follow a MFV structure. The first
966
+ operator contributes to �F = 2 transitions and generates correlated e↵ects in the ✏K, �MBd and
967
+ �MBs observables, which are of the order of the present experimental sensitivity if we take ⇤IR ⇠
968
+ TeV and we allow for a slight reduction of the left-handed top compositeness, xt < 1. The second
969
+ operator of Eq. (7.1) gives flavor-changing Z-couplings. At present it only pushes the ⇤IR scale in
970
+ the few TeV range. In the future it can be seen either in deviations in the decays K ! µµ or
971
+ B ! (X)``. This contribution can however be significantly smaller if the strong sector is invariant
972
+ under a custodial PLR symmetry, which protects the down-type quark couplings to the Z boson [30].
973
+ Additional contributions to �F = 2 operators can also be generated at the scales ⇤c,s,d at
974
+ which the second and first family quarks get their masses. These corrections however only give
975
+ a sizable e↵ect on ✏K, that pushes the ⇤IR scale in the multi-TeV range (⇤IR & 6 TeV), which
976
+ is still a milder bound with respect to the anarchic one. It must however be stressed that these
977
+ bounds depend on the coe�cients of the e↵ective operators which are a↵ected by some degree
978
+ of uncertainty. These contributions to ✏K severely constrain the maximal dimension of the OH
979
+ operator, requiring dH . 2.
980
+ We also considered possible variations of the framework described above. For example, a more
981
+ economical scenario has been proposed in which each family is associated to a single flavor scale
982
+ at which the bilinear mass operators are generated. A few additional new-physics flavor e↵ects
983
+ 20
984
+ Figure 4
985
+ Lower bound on the scale of new physics related to the SM fermion mass generation in a composite Higgs scenario (117)
986
+ under different assumptions on the compositeness of SM fermions.
987
+ phenomenological signatures very similar to those of top partners states of composite and
988
+ little Higgs, e.g. the partner states can be produced by strong interactions and decay as
989
+ b′ → bh, bZ, tW
990
+ and
991
+ t′ → th, tZ, bW .
992
+ These ideas also lend themselves to be paired with supersymmetry. Although super-
993
+ symmetry is not necessary for the idea of gauged flavor symmetries in general, these models
994
+ can provide a setup to originate R-parity breaking with an underlying structure for the
995
+ flavor structure of the RPV couplings (114,115), that for instance would motivate
996
+ ˜t → bs
997
+ as the main channel to search RPV stops (116).
998
+ A solution with a hierarchy of flavored new physics scales inverted with respect to that of
999
+ the SM quarks has been proposed also for composite Higgs models (117–120), which would
1000
+ otherwise suffer from severe bounds from high-pT and flavor observables (see e.g. (121–123)),
1001
+ even in presence of some degree of model building (124–126) aimed at keeping all the new
1002
+ physics at a common low-scale and still survive flavor tests thanks to a friendly, possibly
1003
+ MFV-like structure, of the flavor origin in the microscopic completion of the composite
1004
+ Higgs model. As it can be appreciated in Fig. 4 the top quark sector emerges still as a less
1005
+ constrained one and further motivates to consider BSM physics related to the top quark,
1006
+ and possibly exclusively to the top quark or to the third generation of SM fermions.
1007
+ 14
1008
+
1009
+ Observables of interests include indirect probes such as electric dipoles moments (see
1010
+ e.g. (127)), meson oscillations and decays, and in principle rare Z and Higgs bosons flavor-
1011
+ violating decays which usually receive important contributions from the top quark sec-
1012
+ tor (117). In addition, it is possible to have phenomena more directly related to the top
1013
+ quark such as
1014
+ t → cV,
1015
+ where V = γ, Z, g(128,129) and deviations from Vtb = 1 in the CKM matrix (64,130–132).
1016
+ 4.2. Flavored dark matter models
1017
+ Given the strength of the bounds from direct searches of dark matter scattering on heavy
1018
+ nuclei it has become interesting to consider dark matter models in which the flavor of SM
1019
+ quarks and leptons plays a role, as the strongest bounds hinge on effective couplings of the
1020
+ dark matter to first and, to a slightly lesser extent, to second generation quarks and gluons.
1021
+ Rather interestingly the flavor puzzle of the SM comes equipped with a symmetry,
1022
+ which, though not exact, can be used to stabilize the dark matter if it is broken according to
1023
+ Minimal Flavor Violation (133,134) and even with more general patterns of flavor symmetry
1024
+ and its breaking (135). As a dark matter coupling sensitive to flavor could mediate flavor
1025
+ changing transitions the option of the MFV structure, or slight departures from it, has been
1026
+ so far been a main route in model building aimed at removing possible tensions with flavor
1027
+ observables.
1028
+ Among the possible flavor structures that the Dark Matter and the SM can fields can
1029
+ be cast in, for our work here we focus on the possibility that the top quark flavor has a
1030
+ special role. Explicit models have appeared in the context of possible explanations of the
1031
+ CDF AF B anomaly (109–111), e.g. see the model built in Ref. (136), but the idea stands
1032
+ out on itself even without anomalies in top quark physics. Indeed if one considers that the
1033
+ complexity of the SM may be replicated in the sector of dark matter it is natural to consider
1034
+ multiple species of dark matter, that are “flavors” of dark matter (137–139). These flavors
1035
+ can be separated from our own SM flavors or can be related to our species of fermions. In
1036
+ case some relation exists between flavors of the SM and of the dark sector the possibility
1037
+ that the top quark flavored dark matter is the lightest state is at least as probable as any
1038
+ other flavor assumption. For example, when Minimal Flavor Violation is advocated one can
1039
+ explicitly write a mass term for the dark-flavor fermion multiplet χ which in general has
1040
+ the form
1041
+ ¯χ (m0 + Υ(Y Y )) χ ,
1042
+ where Υ is a function of combinations of the Yukawa matrices of the SM that form singlets
1043
+ under the flavor group that is dominated by the piece proportional to Y †
1044
+ u Yu, hence the top
1045
+ quark flavor tends to be special just from the principle of MFV itself. In a concrete case
1046
+ we can have interactions of SM fermions u(i)
1047
+ R
1048
+ and mass terms for the dark matter flavor
1049
+ multiplet χ
1050
+ φ¯χ
1051
+
1052
+ g0 + g1Y †
1053
+ u Yu
1054
+
1055
+ u(i)
1056
+ R + h.c. + ¯χ
1057
+
1058
+ m0 + m1Y †
1059
+ u Yu + ...
1060
+
1061
+ χ ,
1062
+ 6.
1063
+ where φ is a suitable representation of GSM ⊗ GF .
1064
+ In Ref. (136) for instance φ ∼
1065
+ (3, 1, 2/3)SM ⊗ (1, 1, 1)F , χ ∼ (1, 1, 0)SM ⊗ (1, 3, 1)F and the Yukawa matrices, as in
1066
+ general in MFV, transform as spurions Yu ∼ (3, ¯3, 1)F and Yd ∼ (3, 1, ¯3)F . We see that
1067
+ it is possible to pick m1 as to partly cancel the flavor universal m0 term, making χt the
1068
+ www.annualreviews.org •
1069
+ 15
1070
+
1071
+ lightest particle of the χ multiplet while retaining full freedom to pick the combinations of
1072
+ g0 and g1 that corresponds to the couplings of the mass eigenstates χi.
1073
+ In absence of a field φ one can imagine contact operators to couple the Dark Matter
1074
+ and the SM flavors i and j, e.g. operators of the type
1075
+ (¯χΓSχ)
1076
+
1077
+ ¯ψ(i)ΓSψ(j)�
1078
+ 7.
1079
+ for some Lorentz structure ΓS have been considered as low energy remnants of flavored
1080
+ gauge bosons (137) or other heavy scalar and fermion states charged under a MFV-broken
1081
+ flavor symmetry or in a horizontal symmetry model (138). Operators involving the SM
1082
+ Higgs boson, e.g.
1083
+ � ¯Qχ
1084
+
1085
+ (χ∗Hu)
1086
+ have also been considered in (133) for a scalar χ ∼ (1, 1, 0)SM ⊗ (3, 1, 1)F . A variation of
1087
+ the model of Ref. (137) could lead to top quark flavor being singled out, the other referred
1088
+ works already consider the third generation, hence the top quark and/or the bottom quark,
1089
+ as special due to either the MFV structure or as a result of the horizontal symmetry.
1090
+ The phenomenology of top flavored dark matter is very rich as it comprises both possible
1091
+ signals in dark matter searches and in precision flavor observables as well as in high energy
1092
+ collider searches. Flavor observables put in general stringent bounds on flavored dark matter
1093
+ models, the case of top-flavored dark matter being significantly less constrained due to
1094
+ majority of data belonging to u, d, s, c, b quark systems. Dark matter direct detection is also
1095
+ in general suppressed because nucleons involved in dark matter scattering do not contain
1096
+ top flavor, hence the interactions are usually originated at loop level or via breaking of the
1097
+ flavor alignments, i.e. the dark matter interacts almost exclusively with top quark flavor,
1098
+ but it may have a small, though not completely negligible coupling to light flavors. The
1099
+ existence of such coupling depends on the model. A specific analysis for a case in which only
1100
+ top quark flavor interacts with the DM in the model eq.(6) is presented in Ref. (140) for both
1101
+ dark matter direct detection and collider prospects in a MFV scenario. The annihilation
1102
+ rate for the thermal freeze-out is set by the scattering
1103
+ χχ → tt
1104
+ 8.
1105
+ mediated by a mediator φ (other scatterings are discussed in detail for instance in (141)).
1106
+ In this specific case the direct detection scattering on nucleons
1107
+ χN → χN
1108
+ is mediated by a loop induced couplings of Z, γ to χ from a bubble loop of t and φ from
1109
+ eq.(6).
1110
+ Despite the smallness of these couplings the reach of current and future large
1111
+ exposure experiments, e.g.
1112
+ see (142), could probe such low level of scattering rates for
1113
+ exposure around 1 ton year, that means the model can be tested with presently available
1114
+ data (10).
1115
+ A more recent analysis (143) considered flavor, direct dark matter detection and collider
1116
+ searches for a model featuring a top-flavored dark matter χ and a new state φ. In this work
1117
+ a “Dark Minimal Flavor Violation” flavor structure that extends MFV, but can recover it as
1118
+ a limit, is considered and allows for a more generic structure in flavor space for the vertex
1119
+ λij ¯u(i)
1120
+ R φχ + h.c. .
1121
+ 16
1122
+
1123
+ In this context it is possible to delay the observation of χ in direct detection experiments,
1124
+ as new contributions to the direct detection rate appear compared to the MFV case and
1125
+ it is possible to arrange for cancellations among scattering amplitudes. It remains an open
1126
+ questions if it is going to be possible to claim an observation in spite of the so-called
1127
+ “neutrino fog” that future Xenon experiments (142) face when probing rates so small that
1128
+ neutrinos from the Sun, supernovae and other natural sources are expected to contribute
1129
+ an event rate comparable or larger than that of the dark matter.
1130
+ In principle it is possible to have mχ < mt so that the thermal freeze-out is controlled by
1131
+ other processes than the simple tree-level exchange of eq.(8). Reference (143) experimented
1132
+ with this possibility in Dark Minimal Flavor Violations, but it appears in tension with the
1133
+ direct detection experiments. This conclusion concurs with what can be extrapolated from
1134
+ the earlier MFV analysis of (136).
1135
+ The search for models with mediators, that are colored in all models considered so far,
1136
+ can be carried out very effectively at hadron colliders searching for signals
1137
+ pp → φφ → tχtχ ,
1138
+ that very much resemble the search for supersymmetric top partners. Depending on the
1139
+ model there can be more general combinations of flavors of quarks
1140
+ pp → φφ → qjχqiχ .
1141
+ Therefore it is in general useful to consider the whole list of squark searches to put bounds on
1142
+ this type of models. References (143,144) reports bounds in the TeV ballpark which inherit
1143
+ the strengths and weaknesses discussed for the search of supersymmetric quark partners.
1144
+ Other possible signals at hadron collider are the
1145
+ pp → tχχ
1146
+ scattering, which can arise from interactions such as eq.(7), studied in (138), or associated
1147
+ production φχ, followed by φ → tχ studied for instance in (144).
1148
+ It is also possible to consider models that go beyond what we have considered here
1149
+ starting from the notable feature that MFV and some extensions may render the DM
1150
+ stable. In a model of such “top-philic” dark matter model on can have (145) scalars that
1151
+ couple to tχ as well as to light quark bilinears, e.g. from RPV supersymmetry, so that they
1152
+ mediate scatterings of the type
1153
+ qi¯qj → Sij → tχ .
1154
+ Other potentially interesting signals possible flavored gauge bosons with couplings ρijqiqj
1155
+ can appear, replacing Sij with ρij in the above process. Further signals in this type of
1156
+ models arise, e.g.
1157
+ qig → tρti
1158
+ possibly followed by ρ → χt, and similarly for S. A model with a flavored gauge boson
1159
+ has been studied in (146) with the goal of pinning down the flavor of light quark that
1160
+ interacts with the top quark and the dark matter leveraging charm-tagging and lepton
1161
+ charge asymmetry at the LHC.
1162
+ Though many general issues follow the same path for scalar and fermionic dark matter
1163
+ it is worth mentioning that references (147, 148) contain a full study of the case in which
1164
+ the partner and the dark matter are a fermion and a scalar, respectively, at the converse of
1165
+ most of what we discussed above. Further studies of top and dark matter related matters
1166
+ can be found in the context of simplified models building (141,149,150).
1167
+ www.annualreviews.org •
1168
+ 17
1169
+
1170
+ 5. Conclusions
1171
+ The connection between new physics and the top quark sector is well established and has
1172
+ lead to a large amount of model building and phenomenological studies.
1173
+ Here we have
1174
+ presented supersymmetric top partners, motivated by supersymmetry as the symmetry that
1175
+ stabilizes the weak scale, and top partners states motivated by the possible compositeness
1176
+ and pseudo-Nambu-Goldstone boson nature of the Higgs boson.
1177
+ The phenomenological
1178
+ relevance of these incarnations of “BSM in the top quark sector” is tightly tied to the
1179
+ motivations of the models to which the top partners states belong.
1180
+ As the models in
1181
+ question are themselves in a “critical” phase at the moment, so is the situation for this
1182
+ type of new physics in the top quark sector. We say this in the sense that on one hand
1183
+ we have reached a point at which the expectation was to have already discovered signs
1184
+ of new physics, especially in the top quark sector in the mass range explored by current
1185
+ experiments, hence we should start to dismiss these ideas, while on the other hand we are
1186
+ still largely convinced of the validity of the arguments that lead to the formulation of these
1187
+ models. Furthermore no serious alternatives have appeared in the model building landscape
1188
+ and we still have plenty of evidence for the existence of physics beyond the Standard Model.
1189
+ Thus one can be lead to reconsider if the entire motivational construction for these models
1190
+ was somewhat wrong or at least biased towards a “close-by” and experimentally friendly
1191
+ solution.
1192
+ The way out of this crisis, in absence of experimental results changing the situation,
1193
+ is for everyone to decide. A possibility is to conclude that we need to update our beliefs
1194
+ about “where” (151) new physics can appear in the top quark sector and more in general
1195
+ in going beyond the SM. In this sense top partner searches are a gauge of our progress on
1196
+ testing well established ideas on new physics.
1197
+ It should be remarked that the top quark sector remains central also in the formulation
1198
+ of new physics models that try alternatives to the more well established ideas, see e.g.
1199
+ Refs. (152,153) on possible ways the top quark can lead the way to construct new physics
1200
+ models of a somewhat different kind that the two mainstream ideas discussed here.
1201
+ Given the absence of clear signs and directions in model building into which entrust our
1202
+ hopes for new physics we have discussed the power of general effective field theory analyses
1203
+ that can be used to search for new physics in precise SM measurements. These tools have
1204
+ become the weapon of choice in a post-LHC epoch for the so-called model-independent
1205
+ search of new physics. We have presented the power of current LHC and future HL-LHC
1206
+ analyses to see deviations from the SM due to top quark interactions. Overall the LHC
1207
+ has a chance to see deviation in some more friendly observables for a new physics scale in
1208
+ the TeV range. In order to secure this result and avoid possible blind-spots a new particle
1209
+ accelerator is needed, a most popular option being an e+e− capable of operating at or above
1210
+ the t¯t threshold with the luminosity to produce around 106 top quark pairs.
1211
+ Other great mysteries beyond the origin of the electroweak scale remain unsolved in
1212
+ the Standard Model. We have looked at possible solutions of the flavor puzzle in which
1213
+ the top quark flavor plays a special role. The phenomenology of models with lowest lying
1214
+ new physics states charged under top flavor has some similarity with that of top quark
1215
+ partners at colliders, but there is also the possibility to generate observable flavor violations
1216
+ as further distinctive experimental signatures.
1217
+ We have examined the possibility that the top quark may be a key to solve the mystery
1218
+ of dark matter of the Universe. We have presented scenarios in which the dark matter
1219
+ interacts predominantly or exclusively with the top quark flavor, possibly ascribing the
1220
+ 18
1221
+
1222
+ stability of the dark matter to the same flavor structure that makes the top quark flavor
1223
+ special among the SM flavors. Such possibility appears very well motivated as a way to
1224
+ reduce otherwise intolerably large couplings of dark matter with lighter generations and
1225
+ explain the stability of dark matter. The flavor dependence of the couplings has motivated
1226
+ efforts to build models for the realization of this idea in a coherent, though maybe still
1227
+ effective, theory of favor of which we have presented a few instances. We remarked how
1228
+ in these scenarios the dark matter phenomenology is quite different from other types of
1229
+ thermal dark matter and we have summarized dedicated analyses that have been carried
1230
+ out to identify the relevant bounds and constraints. The upshot is that idea can be broadly
1231
+ tested with current and future direct detection dark matter experiments. At the same time
1232
+ the new states associated with the dark matter may be observed on-shell at colliders, which
1233
+ can in principle also probe contact interactions that originate from off-shell states associated
1234
+ with the dark matter. Low energy flavor observables can also help to restrict the range of
1235
+ possible models of flavored dark matter leading to significant constraints both on MFV
1236
+ and non-MFV scenarios when a thermal relic abundance and a significant suppression of
1237
+ spin-dependent and spin-independent direct detection rates are required.
1238
+ Acknowledgments
1239
+ It is a pleasure to thank Kaustubh Agashe for discussions on top quark partners in composite
1240
+ Higgs models.
1241
+ References
1242
+ 1. S. P. Martin, A Supersymmetry Primer, in Perspectives on Supersymmetry (G. L. Kane,
1243
+ ed.), p. 1, 1998, arXiv:hep-ph/9709356.
1244
+ 2. L. J. Hall, D. Pinner and J. T. Ruderman, A Natural SUSY Higgs Near 125 GeV, ArXiv
1245
+ e-prints (2011) [1112.2703].
1246
+ 3. G. Larsen, Y. Nomura and H. L. L. Roberts, Supersymmetry with Light Stops, ArXiv
1247
+ e-prints (2012) [1202.6339].
1248
+ 4. F. Brümmer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM,
1249
+ 1204.5977v2.
1250
+ 5. N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, Journal of
1251
+ High Energy Physics 6 (2012) 46 [1203.1622].
1252
+ 6. N. Craig, M. McCullough and J. Thaler, The new flavor of Higgsed gauge mediation,
1253
+ Journal of High Energy Physics 3 (2012) 49 [1201.2179].
1254
+ 7. R. Auzzi, A. Giveon and S. B. Gudnason, Flavor of quiver-like realizations of effective
1255
+ supersymmetry, 1112.6261v2.
1256
+ 8. N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, 1203.0572v1.
1257
+ 9. M. Blanke, G. F. Giudice, P. Paradisi, G. Perez and J. Zupan, Flavoured Naturalness, ArXiv
1258
+ e-prints (2013) [1302.7232v2].
1259
+ 10. E. e. a. Aprile, Dark Matter Search Results from a One Tonne×Year Exposure of
1260
+ XENON1T, ArXiv e-prints (2018) [1805.12562].
1261
+ 11. N. Craig, The State of Supersymmetry after Run I of the LHC, ArXiv e-prints (2013)
1262
+ [1309.0528].
1263
+ 12. J. L. Feng, Naturalness and the Status of Supersymmetry, Ann.Rev.Nucl.Part.Sci. 63 (2013)
1264
+ 351 [1302.6587].
1265
+ 13. M. Fairbairn, A. C. Kraan, D. A. Milstead, T. Sjöstrand, P. Skands and T. Sloan, Stable
1266
+ massive particles at colliders, Physics Reports 438 (2007) 1 [hep-ph/0611040].
1267
+ www.annualreviews.org •
1268
+ 19
1269
+
1270
+ 14. U. Sarid and S. Thomas, Mesino-Antimesino Oscillations, Physical Review Letters 85
1271
+ (2000) 1178 [arXiv:hep-ph/9909349].
1272
+ 15. ATLAS collaboration, M. Aaboud et al., Search for heavy long-lived charged R-hadrons with
1273
+ the ATLAS detector in 3.2 fb−1 of proton–proton collision data at √s = 13 TeV, Phys. Lett.
1274
+ B 760 (2016) 647 [1606.05129].
1275
+ 16. ATLAS collaboration, G. Aad et al., Search for long-lived neutral particles produced in pp
1276
+ collisions at √s = 13 TeV decaying into displaced hadronic jets in the ATLAS inner
1277
+ detector and muon spectrometer, Phys. Rev. D 101 (2020) 052013 [1911.12575].
1278
+ 17. A. C. Kraan, J. B. Hansen and P. Nevski, Discovery potential of R-hadrons with the ATLAS
1279
+ detector, Eur. Phys. J. C 49 (2007) 623 [hep-ex/0511014].
1280
+ 18. R. Barbier, C. Bérat, M. Besançon, M. Chemtob, A. Deandrea, E. Dudas et al.,
1281
+ R-Parity-violating supersymmetry, Physics Reports 420 (2005) 1 [arXiv:hep-ph/0406039].
1282
+ 19. F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Physics Letters B
1283
+ 485 (2000) 388 [arXiv:hep-ph/0005214].
1284
+ 20. R. Franceschini, Status of LHC Searches for SUSY without R-Parity, Advances in High
1285
+ Energy Physics 581038 (2015) 16.
1286
+ 21. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and
1287
+ CP constraints in general SUSY extensions of the standard model, Nuclear Physics B 477
1288
+ (1996) 321 [arXiv:hep-ph/9604387].
1289
+ 22. S. Kraml, U. Laa, L. Panizzi and H. Prager, Scalar versus fermionic top partner
1290
+ interpretations of t¯t + emiss
1291
+ t
1292
+ searches at the lhc, 1607.02050v1.
1293
+ 23. CMS Collaboration, CMS Physics: Technical Design Report Volume 2: Physics
1294
+ Performance, J. Phys. G 34 (2007) 995.
1295
+ 24. ATLAS Collaboration, ATLAS: Detector and physics performance technical design report.
1296
+ Volume 2, CERN-LHCC-99-15, ATLAS-TDR-15 (1999) .
1297
+ 25. ATLAS Collaboration, Summary of the ATLAS experiment’s sensitivity to supersymmetry
1298
+ after LHC Run 1 - interpreted in the phenomenological MSSM, ArXiv e-prints (2015)
1299
+ [1508.06608].
1300
+ 26. ATLAS Collaboration, Fig 13 of SUSY-2014-08, .
1301
+ 27. R. M. Godbole, G. Mendiratta and S. Rindani, Looking for bSM physics using top-quark
1302
+ polarization and decay-lepton kinematic asymmetries, ArXiv e-prints (2015) [1506.07486].
1303
+ 28. M. Czakon, A. Mitov, M. Papucci, J. T. Ruderman and A. Weiler, Closing the stop gap,
1304
+ Phys. Rev. Lett. 113 (2014) 201803 [1407.1043].
1305
+ 29. Z. Han, A. Katz, D. Krohn and M. Reece, (Light) Stop Signs, JHEP 8 (2012) 083
1306
+ [1205.5808].
1307
+ 30. T. Martini and M. Schulze, Electroweak loops as a probe of new physics in t¯t production at
1308
+ the lhc, 1911.11244v1.
1309
+ 31. C. Englert, P. Galler and C. D. White, Effective field theory and scalar extensions of the top
1310
+ quark sector, arXiv e-prints (2019) [1908.05588].
1311
+ 32. ATLAS Collaboration, Measurements of top-quark pair spin correlations in the eµ channel
1312
+ at √s = 13 TeV using pp collisions in the ATLAS detector, arXiv e-prints (2019)
1313
+ arXiv:1903.07570 [1903.07570].
1314
+ 33. C. Collaboration, Measurement of differential tt production cross sections in the full
1315
+ kinematic range using lepton+jets events from proton-proton collisions at √s = 13 TeV,
1316
+ 2108.02803v2.
1317
+ 34. ATLAS Collaboration, Measurements of top-quark pair differential cross-sections in the
1318
+ lepton+jets channel in pp collisions at √s=13 TeV using the ATLAS detector, arXiv
1319
+ e-prints (2017) arXiv:1708.00727 [1708.00727].
1320
+ 35. T. Ježo, J. M. Lindert, P. Nason, C. Oleari and S. Pozzorini, An NLO+PS generator for t¯t
1321
+ and Wt production and decay including non-resonant and interference effects, ArXiv
1322
+ e-prints (2016) [1607.04538].
1323
+ 20
1324
+
1325
+ 36. A. Behring, M. Czakon, A. Mitov, R. Poncelet and A. S. Papanastasiou, Higher Order
1326
+ Corrections to Spin Correlations in Top Quark Pair Production at the LHC, Phys. Rev.
1327
+ Lett. 123 (2019) 082001 [1901.05407].
1328
+ 37. W. Bernreuther, D. Heisler and Z.-G. Si, A set of top quark spin correlation and polarization
1329
+ observables for the LHC: Standard Model predictions and new physics contributions, ArXiv
1330
+ e-prints (2015) [1508.05271].
1331
+ 38. F. Caola, F. A. Dreyer, R. W. McDonald and G. P. Salam, Framing energetic top-quark pair
1332
+ production at the LHC, 2101.06068v1.
1333
+ 39. J. Hermann and M. Worek, The impact of top-quark modelling on the exclusion limits in
1334
+ t¯t + DM searches at the LHC, 2108.01089v1.
1335
+ 40. G. Bevilacqua, H. Y. Bi, F. Febres Cordero, H. B. Hartanto, M. Kraus, J. Nasufi et al.,
1336
+ Modeling uncertainties of ttW ± multilepton signatures, Phys. Rev. D 105 (2022) 014018
1337
+ [2109.15181].
1338
+ 41. G. D. Kribs, A. Martin and T. S. Roy, Higgs boson discovery through top-partners decays
1339
+ using jet substructure, Phys. Rev. D 84 (2011) 095024 [1012.2866].
1340
+ 42. Mangano, M. et al., Future Circular Collider - Volume 1 - Physics Opportunities Conceptual
1341
+ Design Report, Eur. Phys. J. C 79 (2019) .
1342
+ 43. M. Benedikt, M. Capeans Garrido, F. Cerutti, B. Goddard, J. Gutleber, J. M. Jimenez
1343
+ et al., Future Circular Collider - The Hadron Collider (FCC-hh) - European Strategy Update
1344
+ Documents, Tech. Rep. CERN-ACC-2019-0005, CERN, Geneva, Jan, 2019.
1345
+ 44. K. M. Black, S. Jindariani, D. Li, F. Maltoni, P. Meade and Stratakis, D. et al., Muon
1346
+ Collider Forum Report, arXiv e-prints (2022) arXiv:2209.01318 [2209.01318].
1347
+ 45. De Blas, Jorge et al., The physics case of a 3 TeV muon collider stage, 2203.07261v1.
1348
+ 46. Jindariani, Sergo et al., Promising Technologies and R&D Directions for the Future Muon
1349
+ Collider Detectors, 2203.07224v1.
1350
+ 47. Bartosik, Nazar et al., Simulated Detector Performance at the Muon Collider, 2203.07964v1.
1351
+ 48. Stratakis, D. et al., A Muon Collider Facility for Physics Discovery, 2203.08033v1.
1352
+ 49. G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, ArXiv e-prints (2015)
1353
+ [1506.01961].
1354
+ 50. M. Perelstein, Little Higgs models and T parity, Pramana 67 (2006) 813
1355
+ [arXiv:hep-ph/0703138].
1356
+ 51. M. Perelstein, Little Higgs models and their phenomenology, Progress in Particle and
1357
+ Nuclear Physics 58 (2007) 247 [arXiv:hep-ph/0512128].
1358
+ 52. R. Contino, Tasi 2009 lectures: The Higgs as a Composite Nambu-Goldstone Boson, ArXiv
1359
+ e-prints (2010) [1005.4269].
1360
+ 53. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nuclear
1361
+ Physics B 719 (2005) 165 [arXiv:hep-ph/0412089].
1362
+ 54. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zb¯b, Physics
1363
+ Letters B 641 (2006) 62 [hep-ph/0605341].
1364
+ 55. A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunter’s
1365
+ guide, Journal of High Energy Physics 4 (2013) 4 [1211.5663].
1366
+ 56. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model Independent
1367
+ Framework for Searches of Top Partners, ArXiv e-prints (2013) [1305.4172].
1368
+ 57. M. Perelstein, M. E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in
1369
+ little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039].
1370
+ 58. J. Kearney, A. Pierce and J. Thaler, Exotic Top Partners and Little Higgs, ArXiv e-prints
1371
+ (2013) [1306.4314].
1372
+ 59. J. Serra, Beyond the minimal top partner decay, 1506.05110.
1373
+ 60. G. Cacciapaglia, T. Flacke, M. Park and M. Zhang, Exotic decays of top partners: mind the
1374
+ search gap, arXiv e-prints (2019) [1908.07524].
1375
+ 61. R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign
1376
+ www.annualreviews.org •
1377
+ 21
1378
+
1379
+ dilepton final states, Journal of High Energy Physics 2008 (2008) 026 [0801.1679].
1380
+ 62. J. Kearney, J. Thaler and A. Pierce, Top Partner Probes of Extended Higgs Sectors, ArXiv
1381
+ e-prints (2013) [1304.4233].
1382
+ 63. J. Mrazek and A. Wulzer, A strong sector at the LHC: Top partners in same-sign dileptons,
1383
+ Phys. Rev. D 81 (2010) 075006 [0909.3977].
1384
+ 64. O. Matsedonskyi, G. Panico and A. Wulzer, Top partners searches and composite Higgs
1385
+ models, Journal of High Energy Physics 2016 (2016) 3 [1512.04356].
1386
+ 65. ATLAS collaboration, M. Aaboud et al., Search for pair production of heavy vector-like
1387
+ quarks decaying into hadronic final states in pp collisions at √s = 13 TeV with the ATLAS
1388
+ detector, Phys. Rev. D 98 (2018) 092005 [1808.01771].
1389
+ 66. P. Maksimović, Searches for heavy resonances with substructure, Annual Review of Nuclear
1390
+ and Particle Science 72 (2022) 447
1391
+ [https://doi.org/10.1146/annurev-nucl-102419-055402].
1392
+ 67. ATLAS Collaboration, Search for pair-production of vector-like quarks in pp collision events
1393
+ at √s = 13 TeV with at least one leptonically decaying Z boson and a third-generation quark
1394
+ with the ATLAS detector, arXiv e-prints (2022) arXiv:2210.15413 [2210.15413].
1395
+ 68. CMS Collaboration, Search for top quark partners with charge 5/3 in the same-sign dilepton
1396
+ and single-lepton final states in proton-proton collisions at √s = 13 TeV, arXiv e-prints
1397
+ (2018) arXiv:1810.03188 [1810.03188].
1398
+ 69. The ATLAS collaboration, Search for the single production of vector-like T quarks decaying
1399
+ into tH or tZ with the ATLAS detector, CERN Note () [ATLAS-CONF-2021-040].
1400
+ 70. ATLAS Collaboration, Combination of the searches for pair-produced vector-like partners of
1401
+ the third-generation quarks at √s = 13 TeV with the ATLAS detector, arXiv e-prints (2018)
1402
+ arXiv:1808.02343 [1808.02343].
1403
+ 71. ATLAS Exotics summary plots, .
1404
+ 72. J. A. Aguilar–Saavedra, Identifying top partners at LHC, Journal of High Energy Physics
1405
+ 2009 (2009) 030 [0907.3155].
1406
+ 73. S. Banerjee, M. Chala and M. Spannowsky, Top quark FCNCs in extended Higgs sectors,
1407
+ ArXiv e-prints (2018) [1806.02836].
1408
+ 74. J. H. Kim, S. D. Lane, H.-S. Lee, I. M. Lewis and M. Sullivan, Searching for Dark Photons
1409
+ with Maverick Top Partners, 1904.05893v1.
1410
+ 75. J. H. Kim and I. M. Lewis, Loop induced single top partner production and decay at the
1411
+ LHC, Journal of High Energy Physics 2018 (2018) 95 [1803.06351].
1412
+ 76. N. Bizot, G. Cacciapaglia and T. Flacke, Common exotic decays of top partners, Journal of
1413
+ High Energy Physics 2018 (2018) 65 [1803.00021].
1414
+ 77. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the
1415
+ Standard Model Lagrangian, JHEP 10 (2010) 085 [1008.4884].
1416
+ 78. F. Maltoni, L. Mantani and K. Mimasu, Top-quark electroweak interactions at high energy,
1417
+ 1904.05637v1.
1418
+ 79. G. Banelli, E. Salvioni, J. Serra, T. Theil and A. Weiler, The Present and Future of Four
1419
+ Tops, 2010.05915v1.
1420
+ 80. M. Farina, C. Mondino, D. Pappadopulo and J. T. Ruderman, New Physics from High
1421
+ Energy Tops, ArXiv e-prints (2018) [1811.04084].
1422
+ 81. A. Pomarol and J. Serra, Top quark compositeness: Feasibility and implications, Phys. Rev.
1423
+ D 78 (2008) 074026 [0806.3247].
1424
+ 82. B. Lillie, J. Shu and T. M. P. Tait, Top compositeness at the Tevatron and LHC, Journal of
1425
+ High Energy Physics 4 (2008) 87 [0712.3057].
1426
+ 83. V. Miralles, M. M. López, M. M. Llácer, A. Peñuelas and M. P. y. M. Vos, The top quark
1427
+ electro-weak couplings after LHC Run 2, 2107.13917v1.
1428
+ 84. N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou et al., A Monte
1429
+ Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector,
1430
+ 22
1431
+
1432
+ arXiv e-prints (2019) [1901.05965].
1433
+ 85. I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E. Vryonidou et al., O new
1434
+ physics, where art thou? A global search in the top sector, arXiv e-prints (2019)
1435
+ [1910.03606].
1436
+ 86. A. Buckley, C. Englert, J. Ferrando, D. J. Miller, L. Moore, M. Russell et al., A global fit of
1437
+ top quark effective theory to data, ArXiv e-prints (2015) [1506.08845].
1438
+ 87. A. Buckley, C. Englert, J. Ferrando, D. J. Miller, L. Moore, M. Russell et al., Constraining
1439
+ top quark effective theory in the LHC Run II era, Journal of High Energy Physics 4 (2016)
1440
+ 15 [1512.03360].
1441
+ 88. J. J. Ethier, F. Maltoni, L. Mantani, E. R. Nocera, J. Rojo, E. Slade et al., Combined
1442
+ SMEFT interpretation of Higgs, diboson, and top quark data from the LHC, 2105.00006v1.
1443
+ 89. J. Ellis, M. Madigan, K. Mimasu, V. Sanz and T. You, Top, Higgs, Diboson and Electroweak
1444
+ Fit to the Standard Model Effective Field Theory, 2012.02779v1.
1445
+ 90. G. Durieux, F. Maltoni and C. Zhang, A global approach to top-quark flavor-changing
1446
+ interactions, ArXiv e-prints (2014) [1412.7166].
1447
+ 91. M. Chala, J. Santiago and M. Spannowsky, Constraining four-fermion operators using rare
1448
+ top decays, ArXiv e-prints (2018) [1809.09624].
1449
+ 92. J. F. Kamenik, A. Katz and D. Stolarski, On lepton flavor universality in top quark decays,
1450
+ 1808.00964v1.
1451
+ 93. CMS Collaboration, Search for new physics in top quark production with additional leptons
1452
+ in proton-proton collisions at √s = 13 TeV using effective field theory, arXiv e-prints
1453
+ (2020) arXiv:2012.04120 [2012.04120].
1454
+ 94. CMS collaboration, Using associated top quark production to probe for new physics within
1455
+ the framework of effective field theory, .
1456
+ 95. ATLAS collaboration, Search for charged lepton-flavour violation in top-quark decays at the
1457
+ LHC with the ATLAS detector, .
1458
+ 96. T. Ježo and M. Kraus, Hadroproduction of four top quarks in the POWHEG BOX, Phys.
1459
+ Rev. D 105 (2022) 114024 [2110.15159].
1460
+ 97. A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B. D. Pecjak and I. Tsinikos, Top-quark
1461
+ pair hadroproduction in association with a heavy boson at NLO+NNLL including EW
1462
+ corrections, Journal of High Energy Physics 2019 (2019) 39 [1907.04343].
1463
+ 98. G. Bevilacqua, H. B. Hartanto, M. Kraus, J. Nasufi and M. Worek, NLO QCD corrections to
1464
+ full off-shell production of t t Z including leptonic decays, Journal of High Energy Physics
1465
+ 2022 (2022) 60 [2203.15688].
1466
+ 99. G. Bevilacqua, H. B. Hartanto, M. Kraus, T. Weber and M. Worek, Hard photons in
1467
+ hadroproduction of top quarks with realistic final states, Journal of High Energy Physics
1468
+ 2018 (2018) 158 [1803.09916].
1469
+ 100. S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and C. Savoini, t¯tH production
1470
+ in NNLO QCD, arXiv e-prints (2022) arXiv:2210.07846 [2210.07846].
1471
+ 101. G. Durieux, A. Gutiérrez Camacho, L. Mantani, V. Miralles, M. Miralles López, M. Moreno
1472
+ Llácer et al., Snowmass White Paper: prospects for the measurement of top-quark couplings,
1473
+ arXiv e-prints (2022) arXiv:2205.02140 [2205.02140].
1474
+ 102. J. de Blas, Y. Du, C. Grojean, J. Gu, V. Miralles, M. E. Peskin et al., Global SMEFT Fits at
1475
+ Future Colliders, arXiv e-prints (2022) arXiv:2206.08326 [2206.08326].
1476
+ 103. G. Durieux, A. Irles, V. Miralles, A. Peñuelas, R. Pöschl, M. Perelló et al., The electro-weak
1477
+ couplings of the top and bottom quarks – global fit and future prospects, arXiv e-prints
1478
+ (2019) [1907.10619].
1479
+ 104. G. Durieux and O. Matsedonskyi, The top-quark window on compositeness at future lepton
1480
+ colliders, ArXiv e-prints (2018) [1807.10273].
1481
+ 105. G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: an
1482
+ effective field theory approach, Nuclear Physics B 645 (2002) 155 [hep-ph/0207036].
1483
+ www.annualreviews.org •
1484
+ 23
1485
+
1486
+ 106. A. J. Buras, P. Gambino, M. Gorbahn, S. Jäger and L. Silvestrini, Universal unitarity
1487
+ triangle and physics beyond the standard model, Physics Letters B 500 (2001) 161
1488
+ [hep-ph/0007085].
1489
+ 107. A. J. Buras, Minimal Flavour Violation, Acta Physica Polonica B 34 (2003) 5615
1490
+ [hep-ph/0310208].
1491
+ 108. B. Grinstein, A. L. Kagan, M. Trott and J. Zupan, Flavor symmetric sectors and collider
1492
+ physics, Journal of High Energy Physics 10 (2011) 72 [1108.4027].
1493
+ 109. Aaltonen, T. et al., Evidence for a mass dependent forward-backward asymmetry in top
1494
+ quark pair production, Phys. Rev. D 83 (2011) 112003 [1101.0034].
1495
+ 110. V. M. Abazov, B. Abbott, B. S. Acharya, M. Adams, T. Adams, G. D. Alexeev et al.,
1496
+ Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011)
1497
+ 112005 [1107.4995].
1498
+ 111. CDF Collaboration, T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Annovi et al.,
1499
+ Measurement of the top quark forward-backward production asymmetry and its dependence
1500
+ on event kinematic properties, arXiv e-prints (2012) arXiv:1211.1003 [1211.1003].
1501
+ 112. B. Grinstein, M. Redi and G. Villadoro, Low scale flavor gauge symmetries, Journal of High
1502
+ Energy Physics 11 (2010) 67 [1009.2049].
1503
+ 113. Z. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New
1504
+ Approach to Quark and Lepton Masses, Phys.Lett. B129 (1983) 99.
1505
+ 114. G. Krnjaic and D. Stolarski, Gauging the Way to MFV, ArXiv e-prints (2012) [1212.4860].
1506
+ 115. R. Franceschini and R. N. Mohapatra, New Patterns of Natural R-Parity Violation with
1507
+ Supersymmetric Gauged Flavor, JHEP 04 (2013) 098 [1301.3637].
1508
+ 116. R. Franceschini and R. Torre, RPV stops bump off the background, Eur.Phys.J. C 73 (2013)
1509
+ 2422 [1212.3622].
1510
+ 117. G. Panico and A. Pomarol, Flavor hierarchies from dynamical scales, 1603.06609v1.
1511
+ 118. L. Vecchi, A Flavor Sector for the Composite Higgs, 1206.4701v3.
1512
+ 119. G. Cacciapaglia, H. Cai, T. Flacke, S. J. Lee, A. Parolini and H. Serôdio, Anarchic Yukawas
1513
+ and top partial compositeness: the flavour of a successful marriage, Journal of High Energy
1514
+ Physics 2015 (2015) 85 [1501.03818].
1515
+ 120. O. Matsedonskyi, On flavour and naturalness of composite Higgs models, Journal of High
1516
+ Energy Physics 2015 (2015) 154 [1411.4638].
1517
+ 121. B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On
1518
+ Partial Compositeness and the CP asymmetry in charm decays, Nuclear Physics B 867
1519
+ (2013) 394 [1205.5803].
1520
+ 122. O. Dom‘enech, A. Pomarol and J. Serra, Probing the standard model with dijets at the LHC,
1521
+ Phys. Rev. D 85 (2012) 074030 [1201.6510].
1522
+ 123. M. Redi, V. Sanz, M. de Vries and A. Weiler, Strong Signatures of Right-Handed
1523
+ Compositeness, ArXiv e-prints (2013) [1305.3818].
1524
+ 124. M. Redi, Composite MFV and beyond, European Physical Journal C 72 (2012) 2030
1525
+ [1203.4220].
1526
+ 125. M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, Journal of High
1527
+ Energy Physics 2011 (2011) 108 [1106.6357].
1528
+ 126. C. Delaunay, T. Flacke, J. Gonzalez-Fraile, S. J. Lee, G. Panico and G. Perez, Light
1529
+ non-degenerate composite partners at the LHC, Journal of High Energy Physics 2014
1530
+ (2014) 55 [1311.2072].
1531
+ 127. G. Panico, M. Riembau and T. Vantalon, Probing light top partners with CP violation,
1532
+ 1712.06337v2.
1533
+ 128. K. Agashe, G. Perez and A. Soni, Collider signals of top quark flavor violation from a
1534
+ warped extra dimension, Phys. Rev. D 75 (2007) 015002 [hep-ph/0606293].
1535
+ 129. K. Agashe, G. Perez and A. Soni, Flavor Structure of Warped Extra Dimension Models,
1536
+ hep-ph/0408134v1.
1537
+ 24
1538
+
1539
+ 130. C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics,
1540
+ ArXiv e-prints (2013) [1306.4655].
1541
+ 131. F. del Aguila, J. Santiago and M. Pérez-Victoria, Observable contributions of new exotic
1542
+ quarks to quark mixing, Journal of High Energy Physics 2000 (2000) 011 [hep-ph/0007316].
1543
+ 132. J. A. Aguilar Saavedra and M. Pérez-Victoria, Top couplings and top partners, in Journal of
1544
+ Physics Conference Series, vol. 452 of Journal of Physics Conference Series, p. 012037, July,
1545
+ 2013, 1302.5634, DOI.
1546
+ 133. B. Batell, J. Pradler and M. Spannowsky, Dark Matter from Minimal Flavor Violation,
1547
+ 1105.1781v2.
1548
+ 134. J. Kile, Flavored Dark Matter: A Review, 1308.0584v1.
1549
+ 135. P. Agrawal, M. Blanke and K. Gemmler, Flavored dark matter beyond Minimal Flavor
1550
+ Violation, 1405.6709v2.
1551
+ 136. A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry,
1552
+ Phys. Rev. D 87 (2013) 095006 [1303.0332].
1553
+ 137. J. Kile and A. Soni, Flavored dark matter in direct detection experiments and at the LHC,
1554
+ Phys. Rev. D 84 (2011) 035016 [1104.5239].
1555
+ 138. J. F. Kamenik and J. Zupan, Discovering dark matter through flavor violation at the LHC,
1556
+ Phys. Rev. D 84 (2011) 111502 [1107.0623].
1557
+ 139. P. Agrawal, Z. Chacko, S. Blanchet and C. Kilic, Flavored dark matter, and its implications
1558
+ for direct detection and colliders, Phys. Rev. D 86 (2012) 055002 [1109.3516].
1559
+ 140. C. Kilic, M. D. Klimek and J.-H. Yu, Signatures of Top Flavored Dark Matter, ArXiv
1560
+ e-prints (2015) [1501.02202].
1561
+ 141. M. Garny, J. Heisig, M. Hufnagel and B. Lülf, Top-philic dark matter within and beyond the
1562
+ WIMP paradigm, ArXiv e-prints (2018) [1802.00814].
1563
+ 142. Aalbers, J. et al., A Next-Generation Liquid Xenon Observatory for Dark Matter and
1564
+ Neutrino Physics, 2203.02309v1.
1565
+ 143. M. Blanke and S. Kast, Top-Flavoured Dark Matter in Dark Minimal Flavour Violation,
1566
+ 1702.08457v2.
1567
+ 144. M. Blanke, P. Pani, G. Polesello and G. Rovelli, Single-top final states as a probe of
1568
+ top-flavoured dark matter models at the LHC, JHEP 01 (2021) 194 [2010.10530].
1569
+ 145. J. Andrea, B. Fuks and F. Maltoni, Monotops at the LHC, Phys. Rev. D 84 (2011) 074025
1570
+ [1106.6199].
1571
+ 146. J. D’Hondt, A. Mariotti, K. Mawatari, S. Moortgat, P. Tziveloglou and G. Van Onsem,
1572
+ Signatures of top flavour-changing dark matter, ArXiv e-prints (2015) [1511.07463].
1573
+ 147. S. Colucci, B. Fuks, F. Giacchino, L. L. Honorez, M. H. G. Tytgat and J. Vandecasteele,
1574
+ Top-philic vector-like portal to scalar dark matter, 1804.05068v1.
1575
+ 148. S. Baek, P. Ko and P. Wu, Heavy quark-philic scalar dark matter with a vector-like fermion
1576
+ portal, 1709.00697v5.
1577
+ 149. M. A. Gomez, C. B. Jackson and G. Shaughnessy, Dark Matter on Top, 1404.1918v2.
1578
+ 150. K. Cheung, K. Mawatari, E. Senaha, P.-Y. Tseng and T.-C. Yuan, The top window for dark
1579
+ matter, Journal of High Energy Physics 10 (2010) 81 [1009.0618].
1580
+ 151. N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural
1581
+ Supersymmetry, ArXiv e-prints (2012) [1212.6971].
1582
+ 152. A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa: An
1583
+ Alternative to Top Partner Solutions, arXiv e-prints (2022) arXiv:2211.17254 [2211.17254].
1584
+ 153. H. D. e. a. Kim, Running top yukawa for the naturalness, GGI Workshop "Beyond Standard
1585
+ Model: Where do we go from here?" .
1586
+ www.annualreviews.org •
1587
+ 25
1588
+
3tE3T4oBgHgl3EQfPwn9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tE4T4oBgHgl3EQfbQwY/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d539e2db51b85fe51308d46807e4fe0c68c191d15170b2b3ddc913740f57eaec
3
+ size 1769517
5NE4T4oBgHgl3EQfbwwx/content/2301.05076v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc62ed70624f0323f471f0e77e393541ec2f02788e80378a575c82f4de833690
3
+ size 282947
69AyT4oBgHgl3EQf2vl7/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:247c07939bc20cd819cf11260ce3a5522bc483f2888bd1fd129ef3a43bae21f9
3
+ size 3014701
69AyT4oBgHgl3EQf2vl7/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:458629c498a0ac3fde5c81e2f5438497e64fb713b567617cbf307e449d4c6450
3
+ size 114024
69E0T4oBgHgl3EQffAC0/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b726517fdcd47c0711d9db85c50e00dd6273e4fd74e21115ac5e65e2fea3a0
3
+ size 24444973
7NAzT4oBgHgl3EQf-f4D/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65761d0af48bca19c31fed322c48fd0943a1b4c44c8e29459e36ab4710577e1e
3
+ size 4587565
BNFQT4oBgHgl3EQfNDZv/content/2301.13270v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68a0537eb13fbeff6270268c9a3a73e891cc14c850f1d3fc9565652b682c30e9
3
+ size 1078251
BdAyT4oBgHgl3EQf4Ppc/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cdcfe53fc33cf2397053c8029243d502d215c3428ab69a585e29e88b73eda25
3
+ size 1703981
BtFIT4oBgHgl3EQf_yzx/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a531ebf09c5f31e9d378d194d7f271f6031cc3e63a75a80fac8b69f78c9bb1eb
3
+ size 2359341
CNE0T4oBgHgl3EQfQACa/content/2301.02187v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22225dca62111d91c0a984e0e13115d038bdab25f6cd073389eef824efcf4773
3
+ size 135552
CNE0T4oBgHgl3EQfQACa/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5755e235e26187543ab06a0e64b64a98a7859c9679aae0e8c3b95064ac35034f
3
+ size 1179693
CNE0T4oBgHgl3EQfQACa/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f708f3b1ecc830015c652054668c6f5774e6b55f836431bae702dc3498160ad
3
+ size 47059
DdE0T4oBgHgl3EQfygJ9/content/tmp_files/2301.02660v1.pdf.txt ADDED
@@ -0,0 +1,1583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Title: Decreased serum vitamin D level as a prognostic marker in patients with
2
+ COVID-19
3
+
4
+ Ruyi Qu 1#, Qiuji Yang 1#, Yingying Bi 2#, Jiajing Cheng 2, Mengna He 3, Xin Wei
5
+ 4, Yiqi Yuan 5, Yuxin Yang 6* and Jinlong Qin2*
6
+
7
+ 1 Department of Geriatrics, Shanghai Fourth People's Hospital, School of Medicine,
8
+ Tongji University, Shanghai 200434, China
9
+ 2 Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital,
10
+ School of Medicine, Tongji University, Shanghai 200434, China
11
+ 3 Information Department, Shanghai Fourth People's Hospital, School of Medicine,
12
+ Tongji University, Shanghai 200434, China
13
+ 4 Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine,
14
+ Tongji University, Shanghai 200434, China
15
+ 5 Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji
16
+ University, Shanghai 200434, China
17
+ 6 Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital,
18
+ School of Life and Sciences and Technology, Tongji University, Shanghai 200434,
19
+ China
20
+ * Correspondence: [email protected] (Yuxin Yang); [email protected]
21
+ (Jinlong Qin)
22
+ # These authors contributed equally to this work.
23
+
24
+
25
+
26
+
27
+ Abstract
28
+ Background: The corona virus disease 2019 (COVID-19) pandemic, which is caused
29
+ by severe acute respiratory syndrome coronavirus 2, is still localized outbreak and has
30
+ resulted in a high rate of infection and severe disease in older patients with
31
+ comorbidities. The vitamin D status of the population has been found to be an important
32
+ factor that could influence outcome of COVID-19. However, whether vitamin D can
33
+ lessen the symptoms or severity of COVID-19 still remains controversial.
34
+ Methods: A total of 719 patients with confirmed COVID-19 were enrolled
35
+ retrospectively in this study from April 13 to June 6, 2022 at Shanghai Forth People’s
36
+ Hospital. The circulating levels of 25(OH)D3, inflammatory factors, and clinical
37
+ parameters were assayed. Time to viral RNA clearance (TVRC), classification and
38
+ prognosis of COVID-19 were used to evaluate the severity of COVID-19 infection.
39
+ Results: The median age was 76 years (interquartile range, IQR, 64.5-84.6), 44.1% of
40
+ patients were male, and the TVRC was 11 days (IQR, 7-16) in this population. The
41
+ median level of 25(OH)D3 was 27.15 (IQR, 19.31-38.89) nmol/L. Patients with lower
42
+ serum 25(OH)D3 had prolonged time to viral clearance, more obvious inflammatory
43
+ response, more severe respiratory symptoms and higher risks of impaired hepatic and
44
+ renal function. Multiple regression analyses revealed that serum 25(OH)D3 level was
45
+ negatively associated with TVRC independently. ROC curve showed the serum
46
+ vitamin D level could predict the severity classification and prognosis of COVID-19
47
+ significantly.
48
+ Conclusions: Serum 25(OH)D3 level is independently associated with the severity of
49
+ COVID-19 in elderly, and it could be used as a predictor of the severity of COVID-19.
50
+ In addition, supplementation with vitamin D might provide beneficial effects in old
51
+ patients with COVID-19.
52
+
53
+ Keywords: COVID-19; vitamin D; time to viral RNA clearance; inflammatory
54
+ response
55
+
56
+
57
+
58
+ Introduction
59
+ As of 30 November 2022, the corona virus disease 2019 (COVID-19) pandemic
60
+ has resulted in more than 639 million confirmed cases with more than 6.6 million
61
+ deaths[1]. China has also experienced several waves of COVID-19 pandemic and has
62
+ explored various strategies to protect the susceptible people from infection, especially
63
+ the elderly and patients with comorbidities. Therefore, it is of great significance to
64
+ analyze the risk factors of COVID-19 and investigate inventions to reduce the risks of
65
+ infection or serious illness for the prevention and treatment of COVID-19 in China.
66
+ In addition to the injury of alveolar epithelial cells mediated by angiotensin-
67
+ converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-
68
+ CoV-2) could activate macrophages via ACE2 receptors [2, 3]. The interleukins 1 (IL-
69
+ 1), IL-6 and tumor necrosis factor (TNF-α) released by the activated macrophage could
70
+ further stimulate the neutrophils and T lymphocytes, followed by the release of a large
71
+ number of inflammatory factors. This inflammatory cascade and inflammation storm
72
+ are considered to be the main pathogenesis of acute respiratory distress syndrome in
73
+ COVID-19 [4, 5].
74
+ In addition to regulating calcium and phosphorus metabolism, vitamin D is also
75
+ closely related to immune regulation, cardiovascular diseases, metabolic syndrome,
76
+ obesity, diabetes, hypertension, cancer, infection and other diseases [6-10]. The
77
+ multiple effects of vitamin D are related to the wide distribution of the vitamin D
78
+ receptor (VDR). After binding with VDR, the activated vitamin D acts on the cis-acting
79
+ elements in the promoter of target genes and thus regulating the transcription of the
80
+ target genes. Most immune cells, including dendritic cells, T lymphocytes, and B
81
+ lymphocytes, have high levels of VDR that could modulate the cellular response to
82
+ viruses as binding with vitamin D [11, 12]. In addition, there are expressions of VDR
83
+ in the lung tissue, which are related with the severity of lung injury. Previous studies
84
+ showed that mice with VDR knockout had more serious lung injury induced by LPS
85
+ compared with WT mice [13, 14]. The histological study showed increased alveolar
86
+ permeability, pulmonary vascular exudation, neutrophil infiltration and inflammatory
87
+ factors in the lungs of VDR knockout mice [13, 14].
88
+
89
+ Although vitamin D has multiple beneficial effects, the nutritional status of
90
+ vitamin D in the population is unsatisfactory. An epidemiological study in more than
91
+ 40 countries conducted by Lips P et al. found that vitamin D deficiency was present in
92
+ more than 50% of the population, especially among nursing home residents (mainly
93
+ elderly) [15]. In Europe, approximately 40% of the population is vitamin D deficient
94
+ (< 20 nmol/L), as well as in USA (24%) and Canada (37%) [16, 17].
95
+ Previous study showed there was a close relationship between the risk of
96
+ respiratory tract infection and vitamin D [18]. Patients with daily or weekly vitamin D
97
+ supplementation, especially those with 25(OH)D3 < 10 nmol/L, were found to have a
98
+ reduced risk of respiratory tract infections [18]. Studies in patients with COVID-19 also
99
+ demonstrated that vitamin D levels were related with the infectious risk and severity of
100
+ COVID-19 [18-20]. A retrospective study by Angelidi et al. found that patients with
101
+ low serum 25(OH)D3 levels had increased mortality and risk of invasive mechanical
102
+ ventilation. The median 25(OH)D3 level in this population was 28 nmol/L. The
103
+ mortality in patients with 25(OH)D3 < 30 nmol/L was 25%, compared with the 9%
104
+ mortality in patients with > 30 nmol/L. The results were similar when the cutoff value
105
+ was adjusted as 20 nmol/L [19, 20]. Although treatment with vitamin D failed to
106
+ improve the survival in critically ill patients with COVID-19 [21], epidemiological
107
+ studies showed that patients with high vitamin D levels had low risks of infection with
108
+ COVID-19 [22], which demonstrated that vitamin D could prevent people from
109
+ COVID-19. Therefore, vitamin D levels have the potential to be a predictor of the risk
110
+ of infection and the severity of COVID-19. In addition, it is unclear whether some
111
+ subgroups of patients would benefit from treatment with vitamin D.
112
+ In this study, we aimed to assess vitamin D levels in patients with COVID-19
113
+ infection, and to investigate the relationship between vitamin D levels and time to
114
+ clearance of virus, the classification and progression of the disease, which might
115
+ provide evidence for identifying of high-risk patients for COVID-19, and protecting
116
+ these vulnerable patients from infection and critical illness of COVID-19.
117
+
118
+ Patients and Methods
119
+
120
+ Study Population
121
+ This is a retrospective cohort study of 719 patients aged 22 to 92 years with
122
+ confirmed COVID-19 pneumonia hospitalized at the Shanghai Fourth People's Hospital,
123
+ School of Medicine, Tongji University, Shanghai, China. All patients were diagnosed
124
+ with COVID-19 pneumonia according to World Health Organization interim guidance.
125
+ According to hospital data, patients were admitted from April 13 to June 6, 2022, the
126
+ final date of follow-up was June 20, 2022. The study was approved by the ethics
127
+ committee of Shanghai Fourth People’s Hospital (No. 2020012) and individual consent
128
+ for this retrospective analysis was waived.
129
+ Data Collection
130
+ The epidemiological, clinical evaluation and outcomes data of all participants
131
+ during hospitalization were collected from electronic medical records by a trained team
132
+ of physicians. The individual components of clinical outcomes were reviewed
133
+ independently and recorded into the computer data base by 2 authors (R.L. and Q.L).
134
+ The clinical outcomes (including the time to viral RNA clearance (TVRC), the
135
+ classification and progression of COVID-19) were monitored up to June 20, 2022, the
136
+ final date of follow-up. The Viral Nucleic Acid Kit (Health) was used to extract nucleic
137
+ acids from clinical throat swab samples obtained from all patients at admission. A 2019-
138
+ nCoV detection kit (Bioperfectus) was used to detect the ORF1ab gene (nCovORF1ab)
139
+ and the Ngene (nCoV-NP) according to the manufacturer’s instructions using real-time
140
+ reverse transcriptase–polymerase chain reaction (qPCR). COVID-19 infection was
141
+ considered laboratory-confirmed if both the nCovORF1ab and nCoV-NP tests showed
142
+ positive results. Liver and kidney function, lipids and electrolytes were measured by
143
+ CH930, Atellica Solution, Siemens, Germany. Cytokines were measured by Deflex,
144
+ Beckman flow cytometry. Blood Routine and C-reactive protein (CRP) were measured
145
+ by BC7500, Mindray, China. Serum 25 hydroxyvitamin D was determined by cobas
146
+ 8000, Roche.
147
+ Statistical Analysis
148
+ All statistical analyses were performed using IBM SPSS Statistics (Version 22.0,
149
+ 147 SPSS, IBM Corp., Armonk, New York, USA), GraphPad Prism 8.0.2 (GraphPad
150
+
151
+ Software, Inc., San Diego CA, USA) and R (version 3.4.1, R Foundation for Statistical
152
+ Computing, Vienna, Austria). Continuous variables were presented as mean ± Standard
153
+ Deviation (SD) or median (quartile), and categorical variables were summarized as
154
+ counts (frequency percentages). χ2 or Fisher exact test (for small cell counts) was
155
+ applied to compare categorical variables. For continuous variables, normal distribution
156
+ was evaluated with Kolmogorov-Smirnov test. Then One-way ANOVA (if
157
+ homogeneity of variances was assumed) or Wilcoxon-Mann-Whitney U test (if
158
+ homogeneity of variances was not met) was used. Furthermore, receiver operating
159
+ characteristics (ROC) curves were performed to investigate the value of serum vitamin
160
+ D level in predicting the severity classification and prognosis of COVID-19 in the
161
+ population.
162
+ All reported values were two-sided and P < 0.05 was considered as statistical
163
+ significance.
164
+
165
+
166
+ Results
167
+ 1. Clinical baseline characteristics of enrolled patients
168
+ A total of 719 patients with confirmed COVID-19 were enrolled retrospectively
169
+ in this study from April 13 to June 6, 2022 at Shanghai Forth People’s Hospital. In these
170
+ patients, the median age was 76 years (interquartile range, IQR, 64.5-84.6), 44.1% of
171
+ patients were male, and the TVRC was 11 days (IQR, 7-16). The median level of
172
+ 25(OH)D3 was 27.15 (IQR, 19.31-38.89) nmol/L in these patients. The body mass
173
+ index (BMI) was 23.08 ± 2.59 Kg/m2 in these patients. There were slightly increased
174
+ levels of mean systolic blood pressure (SBP, 140.85 ± 20.76 mmHg) and respiratory
175
+ rate (RR, 19.53 ± 1.39 bpm), but normal levels of mean diastolic blood pressure (DBP,
176
+ 79.85 ± 11.84 mmHg), heart rate (HR, 87.07 ± 15.11 bpm), temperature (Temp, 36.71
177
+ ± 0.47℃) and oxygen saturation (SaO2, 97.29 ± 3.54%). The fraction of inspiration O2
178
+ (FiO2) was 29 (21- 33) %. The CRP levels were 9.45 (3.39 - 27.9) mg/L, but almost
179
+ normal levels of white blood cells (WBC, 6.37 ± 3.1×10^9/L), red blood cell (RBC,
180
+ 4.05 ± 0.70×10^9/L) and hemoglobin (Hb, 121.61 ± 21.07g/L). In addition, the levels
181
+
182
+ of serum bilirubin (Bil), albumin (Alb), alanine aminotransferase (ALT),fasting
183
+ glucose (FBG) and renal function were in normal ranges (Table 1).
184
+
185
+ Table 1 Clinical baseline characteristics of enrolled patients.
186
+ Parameter
187
+ Value
188
+ Age (years)
189
+ 76.0 (64.5, 84.6)
190
+ Sex (M/F)
191
+ 317/402
192
+ TVRC (days)
193
+ 11 (7, 16)
194
+ 25(OH)D3 (nmol/L)
195
+ 27.15 (19.31, 38.89)
196
+ BMI (Kg/m2)
197
+ 23.08 ± 2.59
198
+ CRP (mg/L)
199
+ 9.45 (3.39, 27.9)
200
+ Temp (℃)
201
+ 36.71 ± 0.47
202
+ SBP (mmHg)
203
+ 140.85 ± 20.76
204
+ DBP (mmHg)
205
+ 79.85 ± 11.84
206
+ HR (bpm)
207
+ 87.07 ± 15.11
208
+ RR (bpm)
209
+ 19.53 ± 1.39
210
+ SaO2 (%)
211
+ 97.29 ± 3.54
212
+ FiO2 (%)
213
+ 29 (21, 33)
214
+ WBC (10^9/L)
215
+ 6.37 ± 3.1
216
+ RBC (10^12/L)
217
+ 4.05 ± 0.70
218
+ FBG (mmol/L)
219
+ 6.28 ± 2.57
220
+ Hb (g/L)
221
+ 121.61 ± 21.07
222
+ T-Bil (mmol/L)
223
+ 13.08 ± 7.89
224
+ ALT (U/L)
225
+ 19.96 (13.77, 30.87)
226
+ T-Pro (g/L)
227
+ 61.55 ± 6.11
228
+ Alb (g/L)
229
+ 39.57 (35.81, 42.64)
230
+ Pre-Alb (g/L)
231
+ 183.86 (136.10, 225.50)
232
+ BUN (mmol/L)
233
+ 5.77 (4.57, 7.81)
234
+ Cr (umol/L)
235
+ 57.9 (48.1, 73.7)
236
+ UA (umol/L)
237
+ 288.16 (225.48, 363.44)
238
+ Cystatin C (mg/mL)
239
+ 1.09 (0.91, 1.44)
240
+ Abbreviations: M: male; F: female; TVRC: time to viral RNA clearance; BMI: body mass index;
241
+ CRP: C-reaction protein; Temp: temperature; SBP: systolic blood pressure; DBP: diastolic blood
242
+ pressure; HR: heart rate; RR: respiration rate; SaO2: oxygen saturation; FiO2: fraction of inspiration
243
+ O2; WBC: white blood corpuscle; RBC: red blood corpuscle; FBG: fasting blood glucose; Hb:
244
+ hemoglobin; T-Bil: total bilirubin; ALT: alanine aminotransferase; T-Pro: total protein; Alb:
245
+ albumin; Pre-Alb: prealbumin; BUN: blood urea nitrogen; Cr: crea; UA: uric acid.
246
+
247
+ 2. Comparison of clinical baseline characteristics and comorbidities among
248
+ patients with different levels of vitamin D
249
+
250
+ The levels of serum vitamin D were measured in 609 patients with COVID-19.
251
+ Then patients were divided into 4 groups according to the quartile values of serum
252
+ vitamin D levels: Q1 < 13.14 (9.59, 16.56) nmol/L, 13.14 (9.59, 16.56) nmol/L < Q2 <
253
+ 23.1 (21.37, 25.13) nmol/L, 23.1 (21.37, 25.13) nmol/L < Q3 < 32.42 (29.9, 35.35)
254
+ nmol/L, and 32.42 (29.9, 35.35) nmol/L < Q4 < 49.29 (43.21, 63.29) nmol/L.
255
+ Table 2 showed the clinical baseline characteristics among the four groups.
256
+ Compared with patients with higher levels of serum vitamin D, patients in Q1 group
257
+ were older, and had more severe illness, which manifested as longer TVRC, lower
258
+ oxygen saturation, and FiO2. Patients in the Q1 group also had higher levels of
259
+ inflammation, which included higher levels of CRP and WBC. There was increased
260
+ percentage of neutrophil and decreased percentage of monocyte and lymphocyte.
261
+ Patients in Q1 group also had decreased levels of total protein (T-Pro), Alb, and
262
+ increased levels of lactate dehydrogenase (LDH), which indicated that patients with
263
+ low vitamin D levels had impaired hepatic synthetical function and nutritional state.
264
+ Although there was no significant difference in the blood urea nitrogen (BUN) and Crea
265
+ (Cr), patients in the Q1 group had increased levels of cystatin C, a biomarker of early
266
+ renal injury. In addition, there were decreased levels of serum magnesium in patients
267
+ with lower levels of vitamin D. However, there was no significant difference in male
268
+ proportion, BMI, basic vital signs, and other biochemical tests (Table 2).
269
+ The rates of comorbidities were high in this study. However, there was no
270
+ significant difference in comorbidities among patients with different levels of vitamin
271
+ D (Table 2).
272
+
273
+ Table 2 Comparison of clinical and biochemical characteristics and comorbidities
274
+ among patients with different levels of vitamin D
275
+
276
+ Q1 group
277
+ (n=162)
278
+ Q2 group
279
+ (n=164)
280
+ Q3 group
281
+ (n=164)
282
+ Q4 group
283
+ (n=165)
284
+ Age (years)
285
+ 86.0 (70.0, 89.0)
286
+ 75.6 (63.75, 87.0)a
287
+ 72.5 (63.75, 81.25)ab
288
+ 73.0 (64.0, 81.0)a
289
+ Sex (M/F)
290
+ 63/99
291
+ 71/93
292
+ 78/86
293
+ 82/83
294
+ TVRC (days)
295
+ 14 (8, 19)
296
+ 10 (6, 15)a
297
+ 10 (7.25, 15)a
298
+ 11 (7, 13)a
299
+ CVD, n (%)
300
+ 44 (27.16)
301
+ 37 (22.56)
302
+ 13 (7.93)
303
+ 28 (16.97)
304
+ HT, n (%)
305
+ 98 (60.49)
306
+ 84 (51.22)
307
+ 93 (56.71)
308
+ 89 (53.94)
309
+ T2DM, n (%)
310
+ 36 (22.22)
311
+ 36 (21.95)
312
+ 48 (29.27)
313
+ 50 (30.30)
314
+
315
+ Tumor, n (%)
316
+ 17 (10.49)
317
+ 15 (9.15)
318
+ 15 (9.15)
319
+ 14 (8.48)
320
+ BMI (Kg/m2)
321
+ 22.41 ± 3.62
322
+ 22.63 ± 3.57
323
+ 23.68 ± 36.66ab
324
+ 23.29 ± 3.60
325
+ CRP (mg/L)
326
+ 15.46 (5.32, 42.08)
327
+ 9.45 (3.87, 26.82) a
328
+ 6.77 (2.68, 19.31) ab
329
+ 6.29 (2.44, 18.33)a
330
+ Temp (℃)
331
+ 36.67 ± 0.46
332
+ 36.66 ± 0.45
333
+ 36.74 ± 0.49
334
+ 36.74 ± 0.49
335
+ SBP (mmHg)
336
+ 139.61±22.03
337
+ 140.87±22.43
338
+ 141.07±19.76
339
+ 142.95±19.03
340
+ DBP (mmHg)
341
+ 76.68 ± 12.55
342
+ 81.26 ± 12.43a
343
+ 80.95 ± 10.80a
344
+ 80.53 ± 10.90a
345
+ HR (bpm)
346
+ 85.41 ± 15.33
347
+ 86.81 ± 17.01
348
+ 89.55 ± 14.5
349
+ 87.24 ± 14.1
350
+ RR (bpm)
351
+ 19.47 ± 1.63
352
+ 19.66 ± 1.40
353
+ 19.50 ± 1.11
354
+ 19.45 ± 1.15
355
+ SaO2 (%)
356
+ 96.69 ± 3.40
357
+ 97.46 ± 1.78a
358
+ 97.52 ± 1.65a
359
+ 97.62 ± 1.13a
360
+ FiO2 (%)
361
+ 29 (29, 33)
362
+ 29 (21, 33) a
363
+ 21 (21, 33) ab
364
+ 21 (21, 29) ab
365
+ WBC (10^9/L) 7.14 ± 3.83
366
+ 6.12 ± 2.49a
367
+ 6.12 ± 2.69a
368
+ 5.95 ± 3.30a
369
+ Monocyte %
370
+ 7.45 ± 2.90
371
+ 8.29 ± 2.70a
372
+ 8.68 ± 3.31a
373
+ 8.02 ± 2.96
374
+ Lymphocyte % 21.36 ± 12.13
375
+ 25.60 ± 11.72a
376
+ 26.58 ± 11.46a
377
+ 28.76 ± 12.81ab
378
+ Neutrophil %
379
+ 69.48 ± 13.30
380
+ 63.84 ± 12.84a
381
+ 62.37 ± 12.48a
382
+ 61.10 ± 13.25a
383
+ PLT (10^9/L)
384
+ 208.73 ± 90.71
385
+ 211.61 ± 87.55
386
+ 206.95 ± 72.97
387
+ 189.82 ± 68.62a
388
+ RBC
389
+ (10^12/L)
390
+ 3.76 ± 0.76
391
+ 4.10 ± 0.63a
392
+ 4.19 ± 0.68a
393
+ 4.20 ± 0.61a
394
+ Hct (%)
395
+ 34.19 ± 6.97
396
+ 38.04 ± 5.87a
397
+ 39.03 ± 5.62a
398
+ 39.27 ± 5.29a
399
+ Hb (g/L)
400
+ 116.36 ± 24.47
401
+ 123.06 ± 19.16a
402
+ 126.55 ± 17.76a
403
+ 127.58 ± 17.93ab
404
+ T-Bil (umol/L)
405
+ 12.72 ± 7.38
406
+ 13.29 ± 6.60
407
+ 13.38 ± 5.95
408
+ 13.24 ± 10.94
409
+ ALT (U/L)
410
+ 16.47 (12.77, 28.15)
411
+ 22.34 (13.34, 33.24)
412
+ 20.14 (13.95, 28.42)
413
+ 20.00 (14.57, 32.89)
414
+ AST (U/L)
415
+ 24.83 (19.60, 37.41)
416
+ 24.38 (19.23, 32.94)
417
+ 23.5 (18.97, 31.12)
418
+ 24.59 (19.34, 34.13)
419
+ AKP (U/L)
420
+ 83.41 (67.57, 102.71)
421
+ 79.69 (67.88, 99.37)
422
+ 78.94 (70.42, 100.54)
423
+ 76.97 (61.96,
424
+ 95.47)a
425
+ T-Pro (g/L)
426
+ 58.17 ± 6.46
427
+ 61.74 ± 5.68a
428
+ 63.20 ± 5.40ab
429
+ 63.18 ± 5.78ab
430
+ Alb (g/L)
431
+ 35.71 ± 4.81
432
+ 39.10 ± 4.33a
433
+ 40.64 ± 4.16ab
434
+ 41.02 ± 4.26ab
435
+ Pre-Alb (g/L)
436
+ 149.02 (102.26,
437
+ 203.19)
438
+ 179.43 (136.11,
439
+ 227.65) a
440
+ 194.49 (162.13, 232.86)
441
+ ab
442
+ 190.31 (161,
443
+ 233.61)a
444
+ BUN (umol/L)
445
+ 6.35 (4.68, 9.10)
446
+ 5.66 (4.48, 7.16) a
447
+ 5.77 (4.69, 7.82)
448
+ 5.64 (4.57, 7.49)
449
+ Cr (umol/L)
450
+ 56.50 (45.85, 82.90)
451
+ 56.3 (48.7, 74.1)
452
+ 60.85 (49.35, 72.23)
453
+ 59.95 (49.3, 73.55)
454
+ UA (umol/L)
455
+ 251.43 (193.66,
456
+ 349.31)
457
+ 278.97 (239.34,
458
+ 373.91)
459
+ 325.84 (235.18, 372.76)
460
+ a
461
+ 295.65 (257.76,
462
+ 349.96)a
463
+ Cystatin C
464
+ (mg/mL)
465
+ 1.26 (0.98, 1.71)
466
+ 1.09 (0.93, 1.38) a
467
+ 1.05 (0.88, 1.37) a
468
+ 1.03 (0.89, 1.33)a
469
+ Lactate
470
+ (mmol/L)
471
+ 2.10 ± 0.93
472
+ 1.95 ± 0.76
473
+ 2.04 ± 0.80
474
+ 2.23 ± 1.06
475
+ FBG (mmol/L) 6.63 ± 3.28
476
+ 5.93 ± 2.66a
477
+ 6.65 ± 3.24b
478
+ 5.88 ± 2.24ac
479
+ LDH (U/L)
480
+ 232.76 ± 84.93
481
+ 209.88 ± 76.38a
482
+ 203.97 ± 56.08a
483
+ 201.54 ± 54.01a
484
+ K+ (mmol/L)
485
+ 3.90 ± 0.69
486
+ 3.76 ± 0.59a
487
+ 3.82 ± 0.50
488
+ 3.80 ± 0.50
489
+ Na+ (mmol/L)
490
+ 141.61 ± 5.77
491
+ 141.94 ± 5.23
492
+ 141.92 ± 3.97
493
+ 142.44 ± 3.55
494
+ Cl- (mmol/L)
495
+ 104.11 ± 5.86
496
+ 104.61± 4.83
497
+ 104.36 ± 3.77
498
+ 104.53 ± 3.61
499
+ Ca2+ (mmol/L)
500
+ 1.77 ± 0.46
501
+ 1.87 ± 0.48
502
+ 1.99 ± 0.43 ab
503
+ 2.05 ± 0.40 ab
504
+ Mg2+
505
+ (mmol/L)
506
+ 0.84 ± 0.11
507
+ 0.87 ± 0.09a
508
+ 0.88 ± 0.09a
509
+ 0.87 ± 0.10a
510
+
511
+ Phosphate
512
+ (mmol/L)
513
+ 1.08 ± 0.59
514
+ 1.09 ± 0.37
515
+ 1.14 ± 0.23
516
+ 1.15 ± 0.28
517
+ Abbreviations: CVD: cardiovascular disease; HT: hormone therapy; T2DM: diabetes mellitus type
518
+ 2; PLT: platelet count; Hct: red blood cell specific volume; AST: glutamic oxaloacetic transaminase;
519
+ AKP: alkaline phosphatase; LDH: lactate dehydrogenase.
520
+ a, p < 0.05 compared with Q1 group; b, p<0.05 compared with Q2 group; c, p < 0.05 compared
521
+ with Q3 group.
522
+
523
+ 3. Comparison of inflammatory factors among patients with different levels of
524
+ vitamin D
525
+ The increased levels of WBC and CRP in patients from Q1 group implicated that
526
+ patients with lower levels of serum vitamin D might had high inflammatory state.
527
+ Therefore, we measured the serum levels of inflammatory factors in patients from
528
+ different groups. However, there was no significant difference of inflammatory factors
529
+ among these groups except for lower levels of interferon-γ (IFN-γ) and TNF-α in
530
+ patients with lower levels vitamin D (Figure 1, Table S1).
531
+
532
+
533
+ Figure 1 Comparison of inflammatory factors among patients with different levels of vitamin D.**,
534
+ p < 0.01; ****, p < 0.0001. Abbreviations: IL: interleukins; IFN: interferon; TNF: tumor necrosis
535
+ factor.
536
+
537
+ 4. Association between serum vitamin D level and the severity of COVID-19
538
+
539
+ To further assess the association between serum vitamin D level and the severity
540
+ of COVID-19, patients were first divided into 4 groups according to the quartile of
541
+ TVRC, which was used as an indicator for the severity of COVID-19. Patients in the
542
+ longest TVRC group (TVRC-Q4) had significantly lower serum vitamin D levels
543
+ (23.19 [IQR, 14.46-33.77] nmol/L) compared with patients in shorter TVRC groups
544
+ (26.74 [IQR, 20.76-38.97] nmol/L in TVRC-Q1, p = 0.0075; 31.02 [IQR, 22.87-41.03]
545
+ nmol/L in TVRC-Q2, p < 0.0001; 26.19 [IQR, 18.08, 41.44] nmol/L in TVRC-Q3, p =
546
+ 0.0461) (Figure 2A). Patients were also grouped into mild, moderate, severe and
547
+ critical groups based on the severity classification of COVID-19 according to the
548
+ guideline for management of patients with COVID-19 (9th version). There were
549
+ significantly lower levels of serum vitamin D in patients with severe (19.53 [IQR,
550
+ 12.71-27.01] nmol/L) and critical (15.54 [IQR, 8.51-20.68] nmol/L) groups compared
551
+ with patients in the mild (31.10 [IQR, 22.73-42.01] nmol/L) and moderate (26.31 [IQR,
552
+ 17.98-36.51] nmol/L) groups (Figure 2B). Furthermore, patients were divided into 3
553
+ groups based on the prognosis of the disease according to the progression of the disease
554
+ changes of the severity classification of COVID-19 when the virus RNA was cleared,
555
+ and the relation between serum vitamin D levels and the prognosis was investigated.
556
+ Patients with good prognosis had significantly higher levels of serum vitamin D levels
557
+ (28.21 [IQR, 20.46-40.22] nmol/L) compared with patients with poor prognosis
558
+ (Prognosis-Q1, 19.53 [IQR, 12.11-27.44] nmol/L in Prognosis-Q2, p < 0.0001; 18.03
559
+ [IQR, 10.96-21.56] nmol/L in Prognosis-Q3, p = 0.016) (Figure 2C).
560
+
561
+
562
+ Figure 2 Association of vitamin D level with TVRC, classification and prognosis of COVID-19. (A)
563
+ Vitamin D levels in each group stratified by TVRC quartile 11 (IQR, 7-16). (B) Vitamin D levels
564
+ in each group divided by severity classification of COVID-19. (C) Vitamin D levels in patients with
565
+ different progression.
566
+
567
+ A
568
+ B
569
+ **
570
+ C
571
+ ****
572
+ 200
573
+ 200-
574
+ ***
575
+ **
576
+ 200-
577
+ ****
578
+ 150
579
+ 25(OH)D3 (nmol/L)
580
+ 150
581
+ 25(OH)D3 (
582
+ 100
583
+ 25(OH)D3 (
584
+ 100
585
+ 100
586
+ 50-
587
+ 50
588
+ 50
589
+ TVRC-Q4
590
+ Mild
591
+ Moderate
592
+ Severe
593
+ Critica
594
+ ROC curve showed the serum vitamin D level could predict the severity
595
+ classification and prognosis of COVID-19 significantly (the area under the curve [AUC]
596
+ = 0.695, 95% CI [0.627-0.764], p < 0.001, for severe and critical of COVID-19, Figure
597
+ 3A; AUC=0.728, 95% CI [0.585-0.872], p = 0.009, for the aggravation of COVID-19,
598
+ Figure 3B).
599
+
600
+ Figure 3 ROC curve to investigate the serum vitamin D level in predicting the severity classification
601
+ (A) and prognosis (B) of COVID-19. Abbreviations: AUC: the area under the curve; ROC: receiver
602
+ operating characteristics.
603
+
604
+ 5. Association between serum vitamin D levels and clinical parameters
605
+ In univariate analyses, serum vitamin D level was negatively associated with
606
+ TVRC, age, FiO2, prognosis, IL-10, cystatin C, alkaline phosphatase (AKP), LDH,
607
+ direct bilirubin (D-Bil), and CRP. However, BMI, SaO2, DBP, Alb, IL-4, TNF-α,
608
+ serum calcium (Ca) levels, indirect bilirubin (I-Bil), serum magnesium (Mg) level,
609
+ serum sodium (Na) level, uric acid (UA), pre-albumin (pre-Alb), LDH, Hb, red blood
610
+ cell specific volume (Hct) and T-Pro were positively associated with serum vitamin D
611
+ level (Table 3).
612
+
613
+ Table 3 Correlation between serum vitamin D and other variables
614
+ Parameter
615
+ r
616
+ p-Value
617
+ Age (years)
618
+ -0.239
619
+ < 0.001
620
+ TVRC (days)
621
+ -0.135
622
+ 0.001
623
+ BMI (Kg/m2)
624
+ 0.091
625
+ 0.048
626
+ CRP (mg/L)
627
+ -0.196
628
+ < 0.001
629
+ DBP (mmHg)
630
+ 0.096
631
+ 0.014
632
+ SaO2 (%)
633
+ 0.095
634
+ 0.016
635
+
636
+ A
637
+ B
638
+ 1.0
639
+ 1.0
640
+ 0.8
641
+ 8'0
642
+ Sensivity
643
+ 0.6
644
+ Sensivity
645
+ 0.6
646
+ AUC = 0.695
647
+ AUC = 0.728
648
+ p ≤ 0.001
649
+ p = 0.009
650
+ 0.4
651
+ 0.4
652
+ 0.2
653
+ 0.2
654
+ 0.0
655
+ 0.0
656
+ 0'0
657
+ 0.2
658
+ 0.4
659
+ 0.6
660
+ 0.8
661
+ 1.0
662
+ 0.0
663
+ 0.2
664
+ 0.4
665
+ 0.6
666
+ 0.8
667
+ 1.0
668
+ 1-Specifity
669
+ 1-SpecifityFiO2 (%)
670
+ -0.227
671
+ < 0.001
672
+ WBC (10^9/L)
673
+ -0.116
674
+ 0.003
675
+ Monocyte %
676
+ 0.078
677
+ 0.047
678
+ Lymphocyte %
679
+ 0.226
680
+ < 0.001
681
+ Neutrophil %
682
+ -0.23
683
+ < 0.001
684
+ Hct (%)
685
+ 0.294
686
+ < 0.001
687
+ Hb (g/L)
688
+ 0.298
689
+ < 0.001
690
+ D-Bil (mmol/L)
691
+ -0.112
692
+ 0.009
693
+ I-Bil (umol/L)
694
+ 0.102
695
+ 0.017
696
+ AKP (U/L)
697
+ -0.104
698
+ 0.035
699
+ T-Pro (g/L)
700
+ 0.3
701
+ < 0.001
702
+ Alb (g/L)
703
+ 0.405
704
+ < 0.001
705
+ Pre-Alb (g/L)
706
+ 0.24
707
+ < 0.001
708
+ UA (umol/L)
709
+ 0.144
710
+ 0.001
711
+ Cystatin C (umol/L)
712
+ -0.191
713
+ < 0.001
714
+ LDH (U/L)
715
+ -0.151
716
+ < 0.001
717
+ Na+ (mmol/L)
718
+ 0.087
719
+ 0.027
720
+ Ca2+ (mmol/L)
721
+ 0.343
722
+ < 0.001
723
+ Mg2+ (mmol/L)
724
+ 0.106
725
+ 0.015
726
+ Phosphate (mmol/L)
727
+ 0.211
728
+ < 0.001
729
+ IL-10
730
+ -0.109
731
+ 0.007
732
+ IL-4
733
+ 0.067
734
+ 0.01
735
+ TNF-α
736
+ 0.202
737
+ < 0.001
738
+ DSS
739
+ -0.242
740
+ < 0.001
741
+ Prognosis
742
+ -0.194
743
+ < 0.001
744
+ Abbreviations: D-Bil: direct Bilirubin; I-Bil: indirect bilirubin; DSS: disease severity score.
745
+
746
+ 6. Association between TVRC and clinical parameters
747
+ Spearman correlation coefficients were used to evaluate correlations between
748
+ TVRC and clinical parameters. The results showed that serum vitamin D level, BMI,
749
+ HR, ALB, TNF-α, serum calcium level, serum sodium level, serum phosphorus level,
750
+ serum chlorine level, uric acid, pre-Alb, T-Pro, Hb, hematocrit (Hct) and RBC were
751
+ negatively associated with TVRC. In addition, age, prognosis, IL-10, Il-12, IL-17, IL-
752
+ 2, WBC, CRP, Alb, LDH, ALT, glutamic oxaloacetic transaminase (AST), alkaline
753
+ phosphatase (AKP), BUN, cystatin C, creatinine, and serum potassium level were
754
+ positively associated with TVRC (Table 4). Multiple regression analyses revealed that
755
+ only serum vitamin D level was negatively associated with TVRC independently (Table
756
+ 5).
757
+
758
+
759
+ Table 4. Correlation between TVRC and other variables
760
+ Variables
761
+ Beta coefficient
762
+ p-Value
763
+ Age (years)
764
+ 0.253
765
+ < 0.001
766
+ 25(OH)D3 (nmol/L)
767
+ -0.135
768
+ 0.001
769
+ BMI (Kg/m2)
770
+ -0.164
771
+ < 0.001
772
+ CRP (mg/L)
773
+ 0.157
774
+ < 0.001
775
+ HR (bpm)
776
+ -0.074
777
+ 0.047
778
+ FiO2 (%)
779
+ 0.242
780
+ < 0.001
781
+ RBC (10^12/L)
782
+ -0.185
783
+ < 0.001
784
+ WBC (10^9/L)
785
+ 0.09
786
+ 0.016
787
+ Lymphocyte %
788
+ -0.159
789
+ < 0.001
790
+ Neutrophil %
791
+ 0.158
792
+ < 0.001
793
+ Hct (%)
794
+ -0.167
795
+ < 0.001
796
+ Hb (g/L)
797
+ -0.186
798
+ < 0.001
799
+ ALT (U/L)
800
+ 0.076
801
+ 0.048
802
+ AST (U/L)
803
+ 0.081
804
+ 0.03
805
+ AKP (U/L)
806
+ 0.148
807
+ 0.001
808
+ r-GT (U/L)
809
+ 0.074
810
+ 0.05
811
+ T-Pro (g/L)
812
+ -0.167
813
+ < 0.001
814
+ Alb (g/L)
815
+ -0.287
816
+ < 0.001
817
+ Pre-Alb (g/L)
818
+ -0.165
819
+ 0.001
820
+ BUN (umol/L)
821
+ 0.244
822
+ < 0.001
823
+ UA (umol/L)
824
+ -0.096
825
+ 0.026
826
+ Cystatin C (mg/mL)
827
+ 0.191
828
+ < 0.001
829
+ LDH (U/L)
830
+ 0.127
831
+ 0.002
832
+ Cr (umol/L)
833
+ 0.116
834
+ 0.002
835
+ K+ (mmol/L)
836
+ 0.207
837
+ < 0.001
838
+ Na+ (mmol/L)
839
+ -0.204
840
+ < 0.001
841
+ Cl- (mmol/L)
842
+ -0.109
843
+ 0.004
844
+ Ca2+ (mmol/L)
845
+ -0.119
846
+ 0.003
847
+ Phosphate (mmol/L)
848
+ -0.229
849
+ < 0.001
850
+ IL-10
851
+ 0.087
852
+ 0.025
853
+ IL-12
854
+ 0.08
855
+ 0.04
856
+ IL-17
857
+ 0.14
858
+ < 0.001
859
+ IL-1
860
+ 0.076
861
+ 0.05
862
+ IL-2
863
+ 0.124
864
+ 0.001
865
+ TNF-α
866
+ -0.095
867
+ 0.014
868
+ DSS
869
+ 0.235
870
+ < 0.001
871
+ Prognosis
872
+ 0.178
873
+ < 0.001
874
+ Abbreviations: r-GT: γ-glutamyl transpeptidase.
875
+
876
+ Table 5. Multivariate regression analyses of predictors of TVRC in patients with
877
+ COVID-19
878
+
879
+ Variables
880
+ Beta coefficient
881
+ p-Value
882
+ 95% CI
883
+ 25(OH)D3 (nmol/L)
884
+ -0.230
885
+ 0.016
886
+ -0.168 to -0.018
887
+
888
+ Discussion
889
+ As a kind of steroid hormone, vitamin D is tightly linked to a number of different
890
+ metabolic processes and immune regulation in the human body. Vitamin D activates
891
+ the innate immune system by binding with VDR in immune cells to defend the invasion
892
+ of foreign pathogenic microorganisms. For example, 1,25 dihydroxyvitamin D3 (1,25-
893
+ (OH)2-D3) could induce the generation of antimicrobial peptides in monocytes to clean
894
+ the Mycobacterium tuberculosis[23, 24]. 1,25-(OH)2-D3 also could tune the cellular
895
+ and humoral immunity by regulating the differentiation and proliferation of T and B
896
+ lymphocytes and the secretion of Th1/Th2 cytokines. In addition, 1,25-(OH)2-D3 could
897
+ inhibit the exaggerated inflammatory response via inducing the differentiation of
898
+ regulatory T cells (Treg), and have protective effects in inflammatory responses and
899
+ autoimmune diseases.
900
+ Considering that 25(OH)D3 is the main form of vitamin D in the body and its
901
+ stable concentration in circulation, serum 25(OH)D3 was used as an indicator to
902
+ evaluate the nutritional status of vitamin D. Presently, vitamin D deficiency,
903
+ insufficiency, normal, and sufficiency are defined as <25, 25 to 50, 51 to 75, and >
904
+ 75nmol/L, respectively[25]. Vitamin D deficiency was defined when the serum level
905
+ of 25(OH)D3 was less than 50nmol/L. An epidemiological study in East China showed
906
+ that the serum levels of 25(OH)D3 were 40.5 ± 12.5 nmol/L in the normal population,
907
+ and 80.3% of the population were vitamin D deficiency[26], which was significantly
908
+ higher than that in western countries[27, 28]. In addition, a study in elderly inpatients
909
+ showed that the vitamin D levels were 34.6 ± 16.2 nmol/L in the population, of which
910
+ 17.5% were severely deficient, 73.0% were mildly deficient, 7.5% were insufficient,
911
+ and only 2.0% were sufficient[29]. These data suggest that vitamin D deficiency may
912
+ be common in the Han population, especially in the elderly and bedridden patients.
913
+ This study enrolled 719 patients with COVID-19 and assessed the levels of serum
914
+ vitamin D, cytokines and other clinical indicators to investigate the relationship
915
+
916
+ between vitamin D levels and TVRC, the classification and prognosis of the disease.
917
+ Higher levels of vitamin D were associated with the higher levels of T-Pro, Alb, pre-
918
+ Alb, hemoglobin and BMI, which indicated that higher vitamin D levels were
919
+ associated with better protein synthesis ability of liver and better nutritional status of
920
+ patients. Conversely, the lower levels of vitamin D were associated with the longer
921
+ TVRC, higher levels of WBC and CRP, as well as worse oxygenation capacity of the
922
+ lung, suggesting that lower vitamin D was associated with severe conditions in these
923
+ patients. Meanwhile, lower levels of vitamin D were related with the biomarkers of
924
+ early hepatic and renal function impairments, such as lower levels of pre-Alb and higher
925
+ levels of cystatin C. In addition, there was positive relationship between vitamin D
926
+ levels and serum calcium and phosphorus concentrations. All these results
927
+ demonstrated that vitamin D had benefit effects on the clearance of the virus and
928
+ alleviating the condition in patients with COVID-19. Further investigation validated
929
+ that lower vitamin D levels were associated with longer TVRC, more severe disease
930
+ and worse prognosis. Therefore, serum vitamin D level is a predictor of the severity of
931
+ disease and prognosis in patients with COVID-19.
932
+ Previous studies have shown that the risks of severe infection and mortality were
933
+ increased in vulnerable groups (with comorbidities such as diabetes, hypertension,
934
+ coronary artery disease and tumors) in patients with COVID-19[29-32]. In this study,
935
+ we compared the comorbidities in patients with different vitamin D levels, and found
936
+ no significant difference in comorbidities among different groups. The results indicated
937
+ the association between vitamin D levels and the prognosis of the disease was less
938
+ affected by these chronic comorbidities. Further investigation showed that serum
939
+ vitamin D level was correlated with TVRC negatively, and serum vitamin D level was
940
+ an independent predictor of TVRC in patients with COVID-19, which further validated
941
+ the close relationship between vitamin D and the severity and prognosis of COVID-19.
942
+ Vitamin D deficiency is a common phenomenon in Chinese, especially in the
943
+ elderly. For its detrimental effects on the immune system, vitamin D deficiency would
944
+ impair the clearance of invasive pathogens. This concern is more obvious under the
945
+ current situation of the panic of COVID-19 and consistent virus variants. Therefore, it
946
+
947
+ is of great significance to investigate how to protect patients with high risk from
948
+ infection and improve the prognosis of these patients. Supplement with vitamin D
949
+ routinely in patients with COVID-19 is still in debate presently[33-35]. However, the
950
+ results of this study demonstrated that early supplement with vitamin D in patients with
951
+ COVID-19 and vitamin D deficiency could improve the ability of defensing the
952
+ infection of SARS-CoV-2, promoting the clearance of virus and improving the
953
+ prognosis in these high-risk patients. However, for the limitation of the observed study,
954
+ further prospective randomized controlled trails were needed to investigate the benefits
955
+ of supplement of vitamin D in these patients.
956
+ Limitations
957
+ There are several limitations of our study. Although our study implied that early
958
+ supplemented with vitamin D in patients with COVID-19 and vitamin D deficiency
959
+ might improve the prognosis of these patients. However, we did not give the therapy
960
+ with vitamin D in this population in this retrospective study. In addition, this
961
+ retrospective study has some disadvantages compared with prospective studies.
962
+ Therefore, further prospective studies are needed to validate the clinical value of serum
963
+ vitamin D levels in risk stratifications of patients with COVID-19.
964
+ Conclusion
965
+ This study demonstrated that serum 25(OH)D3 level was independently associated
966
+ with the severity of COVID-19 in elderly, and it could be used as a predictor of the
967
+ severity of COVID-19. In addition, supplementation with vitamin D might provide
968
+ beneficial effects in old patients with COVID-19.
969
+ Sources of Funding
970
+ This work was supported by Shanghai Committee of Science and Technology,
971
+ China (grant No. 22dz1202304 to Jiajing Cheng).
972
+ Author Contributions
973
+ Conceptualization, Ruyi Qu, Yuxin Yang and Jinlong Qin; Data curation, Ruyi
974
+ Qu, Qiuji Yang and Yingying Bi; Formal analysis, Ruyi Qu and Jinlong Qin; Funding
975
+ acquisition, Jiajing Cheng; Inves-tigation, Jiajing Cheng, Mengna He, Xin Wei and
976
+ Yiqi Yuan; Methodology, Ruyi Qu, Qiuji Yang, Yingying Bi, Jiajing Cheng, Yuxin
977
+
978
+ Yang and Jinlong Qin; Project administration, Jinlong Qin; Re-sources, Jiajing Cheng;
979
+ Software, Yingying Bi and Xin Wei; Supervision, Yuxin Yang and Jinlong Qin;
980
+ Validation, Qiuji Yang and Yingying Bi; Visualization, Yingying Bi, Mengna He and
981
+ Yiqi Yuan; Writing – original draft, Ruyi Qu, Qiuji Yang and Yuxin Yang; Writing –
982
+ review & editing, Yuxin Yang and Jinlong Qin.
983
+ Acknowledgments
984
+ The authors are grateful to all the participants in this study.
985
+ Conflicts of Interest
986
+ The authors declare no conflict of interest.
987
+
988
+
989
+ Reference
990
+ 1.
991
+ WHO Coronavirus (COVID-19) Dashboard. 30 Nov 2022; Available from:
992
+ https://covid19.who.int/.
993
+ 2.
994
+ Singh, S.P., et al., Microstructure, pathophysiology, and potential therapeutics of COVID-
995
+ 19: A comprehensive review. J Med Virol, 2021. 93(1): p. 275-299.
996
+ 3.
997
+ Perico, L., et al., Immunity, endothelial injury and complement-induced coagulopathy in
998
+ COVID-19. Nat Rev Nephrol, 2021. 17(1): p. 46-64.
999
+ 4.
1000
+ McGonagle, D., et al., The Role of Cytokines including Interleukin-6 in COVID-19 induced
1001
+ Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev, 2020.
1002
+ 19(6): p. 102537.
1003
+ 5.
1004
+ Jose, R.J. and A. Manuel, COVID-19 cytokine storm: the interplay between inflammation
1005
+ and coagulation. The Lancet Respiratory Medicine, 2020. 8(6): p. e46-e47.
1006
+ 6.
1007
+ Hossein-nezhad, A. and M.F. Holick, Vitamin D for health: a global perspective. Mayo
1008
+ Clin Proc, 2013. 88(7): p. 720-55.
1009
+ 7.
1010
+ Roy, A., et al., Independent association of severe vitamin D deficiency as a risk of acute
1011
+ myocardial infarction in Indians. Indian Heart J, 2015. 67(1): p. 27-32.
1012
+ 8.
1013
+ Mangin, M., R. Sinha, and K. Fincher, Inflammation and vitamin D: the infection
1014
+ connection. Inflamm Res, 2014. 63(10): p. 803-19.
1015
+ 9.
1016
+ Thacher, T.D. and B.L. Clarke, Vitamin D insufficiency. Mayo Clin Proc, 2011. 86(1): p.
1017
+ 50-60.
1018
+ 10.
1019
+ Heaney, R.P., Vitamin D in health and disease. Clin J Am Soc Nephrol, 2008. 3(5): p.
1020
+ 1535-41.
1021
+ 11.
1022
+ Pludowski, P., et al., Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol,
1023
+ 2018. 175: p. 125-135.
1024
+ 12.
1025
+ Laplana, M., J.L. Royo, and J. Fibla, Vitamin D Receptor polymorphisms and risk of
1026
+ enveloped virus infection: A meta-analysis. Gene, 2018. 678: p. 384-394.
1027
+
1028
+ 13.
1029
+ Shi, Y.Y., et al., Vitamin D/VDR signaling attenuates lipopolysaccharideinduced acute
1030
+ lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep,
1031
+ 2016. 13(2): p. 1186-94.
1032
+ 14.
1033
+ Jurutka, P.W., et al., The polymorphic N terminus in human vitamin D receptor isoforms
1034
+ influences transcriptional activity by modulating interaction with transcription factor IIB.
1035
+ Mol Endocrinol, 2000. 14(3): p. 20.
1036
+ 15.
1037
+ Lips, P., et al., Current vitamin D status in European and Middle East countries and
1038
+ strategies to prevent vitamin D deficiency: a position statement of the European Calcified
1039
+ Tissue Society. Eur J Endocrinol, 2019. 180(4): p. P23-P54.
1040
+ 16.
1041
+ Mitchell, F., Vitamin-D and COVID-19: do deficient risk a poorer outcome? The Lancet
1042
+ Diabetes & Endocrinology, 2020. 8(7).
1043
+ 17.
1044
+ Amrein, K., et al., Vitamin D deficiency 2.0: an update on the current status worldwide.
1045
+ Eur J Clin Nutr, 2020. 74(11): p. 1498-1513.
1046
+ 18.
1047
+ Martineau, A.R., et al., Vitamin D supplementation to prevent acute respiratory tract
1048
+ infections: systematic review and meta-analysis of individual participant data. BMJ, 2017.
1049
+ 356: p. i6583.
1050
+ 19.
1051
+ Szeto, B., et al., Vitamin D Status and COVID-19 Clinical Outcomes in Hospitalized
1052
+ Patients. Endocr Res, 2021. 46(2): p. 66-73.
1053
+ 20.
1054
+ Angelidi, A.M., et al., Vitamin D Status Is Associated With In-Hospital Mortality and
1055
+ Mechanical Ventilation: A Cohort of COVID-19 Hospitalized Patients. Mayo Clin Proc,
1056
+ 2021. 96(4): p. 875-886.
1057
+ 21.
1058
+ Rastogi, A., et al., Short term, high-dose vitamin D supplementation for COVID-19 disease:
1059
+ a randomised, placebo-controlled, study (SHADE study). Postgrad Med J, 2022. 98(1156):
1060
+ p. 87-90.
1061
+ 22.
1062
+ Kaufman, H.W., et al., SARS-CoV-2 positivity rates associated with circulating 25-
1063
+ hydroxyvitamin D levels. PLoS One, 2020. 15(9): p. e0239252.
1064
+ 23.
1065
+ Rook, G.A., et al., Vitamin D3, gamma interferon, and control of proliferation of
1066
+ Mycobacterium tuberculosis by human monocytes. Immunology, 1986. 57(1): p. 5.
1067
+ 24.
1068
+ Liu, P.T., et al., Toll-like receptor triggering of a vitamin D-mediated human antimicrobial
1069
+ response. Science, 2006. 311(5768): p. 4.
1070
+ 25.
1071
+ Holick, M.F., Vitamin D and sunlight: strategies for cancer prevention and other health
1072
+ benefits. Clin J Am Soc Nephrol, 2008. 3(5): p. 1548-54.
1073
+ 26.
1074
+ Zhen, C., et al., Serum vitamin D levels of the natural population in eastern China. Chinese
1075
+ Journal of Endocrinology and Metabolism, 2017. 33(9): p. 4.
1076
+ 27.
1077
+ Looker, A.C., et al., Serum 25-hydroxyvitamin D status of adolescents and adults in two
1078
+ seasonal subpopulations from NHANES III. Bone, 2002. 30(5): p. 7.
1079
+ 28.
1080
+ Wielen, R.P.v.d., et al., Serum vitamin D concentrations among elderly people in Europe.
1081
+ Lancet, 1995. 346(8969): p. 4.
1082
+ 29.
1083
+ Zhu, L., et al., Association of Blood Glucose Control and Outcomes in Patients with
1084
+ COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab, 2020. 31(6): p. 1068-1077 e3.
1085
+ 30.
1086
+ Pranata, R., et al., Hypertension is associated with increased mortality and severity of
1087
+ disease in COVID-19 pneumonia: A systematic review, meta-analysis and meta-regression.
1088
+ J Renin Angiotensin Aldosterone Syst, 2020. 21(2): p. 1470320320926899.
1089
+
1090
+ 31.
1091
+ Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with
1092
+ COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 2020. 395(10229):
1093
+ p. 1054-1062.
1094
+ 32.
1095
+ Liang, W., et al., Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China.
1096
+ The Lancet Oncology, 2020. 21(3): p. 335-337.
1097
+ 33.
1098
+ Gibbons, J.B., et al., Association between vitamin D supplementation and COVID-19
1099
+ infection and mortality. Sci Rep, 2022. 12(1): p. 19397.
1100
+ 34.
1101
+ Jolliffe, D.A., et al., Effect of a test-and-treat approach to vitamin D supplementation on
1102
+ risk of all cause acute respiratory tract infection and covid-19: phase 3 randomised
1103
+ controlled trial (CORONAVIT). BMJ, 2022. 378: p. e071230.
1104
+ 35.
1105
+ Bychinin, M.V., et al., Effect of vitamin D3 supplementation on cellular immunity and
1106
+ inflammatory markers in COVID-19 patients admitted to the ICU. Sci Rep, 2022. 12(1): p.
1107
+ 18604.
1108
+
1109
+ Supplemental data
1110
+
1111
+ Table 1. Comparison of inflammatory factors among patients with different levels of
1112
+ vitamin D
1113
+
1114
+ Q1 group
1115
+ (n=150)
1116
+ Q2 group
1117
+ (n=153)
1118
+ Q3 group
1119
+ (n=157)
1120
+ Q4 group
1121
+ (n=149)
1122
+ IL-1
1123
+ 0.80(0.16,1.69)
1124
+ 0.96(0.21,2.03)
1125
+ 0.89(0.37,2.07)
1126
+ 0.95(0.29,2.07)
1127
+ IL-2
1128
+ 0.08(0.05,0.82)
1129
+ 0.08(0.04,0.88)
1130
+ 0.08(0.04,0.77)
1131
+ 0.08(0.05,0.88)
1132
+ IL-4
1133
+ 0.44(0.07,1.90)
1134
+ 0.78(0.07,2.37)
1135
+ 0.98(0.08,5.47)
1136
+ 0.6(0.08,3.77)
1137
+ IL-5
1138
+ 0.07(0.03,0.14)
1139
+ 0.07(0.04,0.14)
1140
+ 0.07(0.03,0.21)
1141
+ 0.07(0.04,0.1)
1142
+ IL-6
1143
+ 80.44(21.22,204.04)
1144
+ 67.63(24.65,228.57)
1145
+ 107.85(26.4,312.4)
1146
+ 70.84(19.37,288.68)
1147
+ IL-8
1148
+ 101.77(32.25,229.92)
1149
+ 108.2(23.96,255.95)
1150
+ 122.3(44.53,242.43)
1151
+ 108.06(32.42,244.3)
1152
+ IL-10
1153
+ 4.88(2.79,9.32)
1154
+ 4.28(2.51,7.21)
1155
+ 4.26(2.53,8.01)
1156
+ 3.85(2.09,6.45)a
1157
+ IL-12
1158
+ 0.07(0.04,0.18)
1159
+ 0.07(0.04,0.62)
1160
+ 0.07(0.04,0.5)
1161
+ 0.08(0.04,0.4)
1162
+ IL-17
1163
+ 1.11(0.36,2.93)
1164
+ 0.91(0.26,2.37)
1165
+ 1.05(0.33,2.67)
1166
+ 1.05(0.32,2.31)
1167
+ IFN-α
1168
+ 0.07(0.04,0.10)
1169
+ 0.07(0.03,0.09)
1170
+ 0.07(0.04,0.1)
1171
+ 0.06(0.04,0.1)
1172
+ IFN-γ
1173
+ 1.27(0.38,3.79)
1174
+ 1.93(0.56,5)a
1175
+ 2.35(0.4,7.37)a
1176
+ 1.72(0.42,5.34)
1177
+ TNF-α
1178
+ 4.32(1.82,9.12)
1179
+ 6.29(2.91,11.04)a
1180
+ 7.38(3.52,12.74)a
1181
+ 8.78(3.39,17.19)ab
1182
+
1183
+
1184
+ Table 2. Comparison of clinical and biochemical characteristics among patients with
1185
+ different severity rating
1186
+
1187
+ Q1 group
1188
+ (n=330)
1189
+ Q2 group
1190
+ (n=309)
1191
+ Q3 group
1192
+ (n=71)
1193
+ Q4 group
1194
+ (n=9)
1195
+ Age (years)
1196
+ 68(59,78)
1197
+ 81(71,88) a
1198
+ 86(77,90) a
1199
+ 87(79.5,91) a
1200
+ Sex (M/F)
1201
+ 149/181
1202
+ 130/179
1203
+ 34/37
1204
+ 4/5
1205
+ TVRC (days)
1206
+ 9(6,13)
1207
+ 12(8,17) a
1208
+ 13(9,20.25) a
1209
+ 12(3.25,14.75)
1210
+ 25(OH)D3
1211
+ 31.10(22.73,42.01)
1212
+ 26.31(17.98,36.51) a
1213
+ 19.53(12.71,27.01) ab
1214
+ 15.54(8.51,20.68) ab
1215
+ BMI (Kg/m2)
1216
+ 23.42±3.59
1217
+ 22.74±3.61
1218
+ 21.73±3.18
1219
+ NA
1220
+ CRP (mg/L)
1221
+ 5.46(2.33,14.47)
1222
+ 10.27(4.38,27.91) a
1223
+ 36.65(19.13,76.31) ab
1224
+ 99.08(56.11,155.47) ab
1225
+
1226
+ Temp (℃)
1227
+ 36.74±0.48
1228
+ 36.68±0.46
1229
+ 36.70±0.50
1230
+ 37.00±0.41
1231
+ SBP (mmHg)
1232
+ 141.06±19.57
1233
+ 140.53±21.84
1234
+ 141.38±21.72
1235
+ 140.00±21.47
1236
+ DBP (mmHg)
1237
+ 81.42±11.06
1238
+ 78.75±12.02
1239
+ 77.87±13.31
1240
+ 76.11±15.60
1241
+ HR (bpm)
1242
+ 88.33±15.10
1243
+ 86.01±14.55
1244
+ 85.58±17.10
1245
+ 89.22±17.14
1246
+ RR (bpm)
1247
+ 19.41±1.24
1248
+ 19.58±1.23
1249
+ 19.69±2.14
1250
+ 20.78±2.99
1251
+ SaO2 (%)
1252
+ 97.72±1.21
1253
+ 97.38±1.49
1254
+ 95.57±3.22 ab
1255
+ 91.38±11.88 abc
1256
+ Fio2 (%)
1257
+ 21(21,29)
1258
+ 29(21,33) a
1259
+ 33(33,41) ab
1260
+ 61(29,141) ab
1261
+ RBC
1262
+ (10^12/L)
1263
+ 4.25±0.57
1264
+ 3.99±0.72 a
1265
+ 3.53±0.74 ab
1266
+ 3.20±0.71 abc
1267
+ WBC (10^9/L) 5.75±2.58
1268
+ 6.45±3.03 a
1269
+ 8.41±3.93 ab
1270
+ 10.49±5.51 abc
1271
+ Monocyte %
1272
+ 8.27±2.94
1273
+ 8.15±2.92
1274
+ 6.54±2.75
1275
+ 7.97±6.25
1276
+ Lymphocyte
1277
+ %
1278
+ 29.23±11.37
1279
+ 24.32±11.64 a
1280
+ 13.59±8.56 ab
1281
+ 8.78±5.00 abc
1282
+ Neutrophil %
1283
+ 60.23±11.98
1284
+ 65.46±12.49 a
1285
+ 78.03±10.61 ab
1286
+ 82.88±9.49 abc
1287
+ PLT (10^9/L)
1288
+ 196.96±65.99
1289
+ 210.42±86.97
1290
+ 221.68±94.84
1291
+ 252.33±159.25
1292
+ Hct (%)
1293
+ 39.35±5.35
1294
+ 36.91±6.27 a
1295
+ 32.64±6.81 ab
1296
+ 29.43±6.56 abc
1297
+ Hb (g/L)
1298
+ 127.60±18.05
1299
+ 118.93±20.43 a
1300
+ 107.37±26.52 ab
1301
+ 106.56±21.07 ab
1302
+ T-Bil (umol/L)
1303
+ 12.73±5.94
1304
+ 12.89±6.22
1305
+ 14.98±16.83
1306
+ 17.20±9.87
1307
+ ALT (U/L)
1308
+ 19.93(13.52,30.35)
1309
+ 20.20(13.91,31.77)
1310
+ 20.35(13.17,30.83)
1311
+ 19.02(14.79,30.27)
1312
+ AST (U/L)
1313
+ 22.71(18.48,29.55)
1314
+ 24.98(19.32,34.96) a
1315
+ 30.38(21.24,42.76) a
1316
+ 45.24(34.48,50.38) a
1317
+ AKP (U/L)
1318
+ 78.10(63.65,95.12)
1319
+ 83.77(69.13,99.65)
1320
+ 80.64(67.78,102.90)
1321
+ 84.03(67.08,112.51)
1322
+ T-Pro (g/L)
1323
+ 62.91±5.54
1324
+ 61.30±5.92
1325
+ 57.54±6.56 ab
1326
+ 52.45±7.15 abc
1327
+ Alb (g/L)
1328
+ 41.01±4.28
1329
+ 38.29±4.43 a
1330
+ 34.38±4.45 ab
1331
+ 31.75±4.24 abc
1332
+ Pre-Alb (g/L)
1333
+ 196.58(160.86,238.85)
1334
+ 181.60(127.98,291.55)
1335
+ a
1336
+ 98.48(80.37,148.75) ab
1337
+ 98.73(65.29,151.81) a
1338
+ BUN (umol/L)
1339
+ 5.43(4.39,6.79)
1340
+ 6.13(4.80,8.32) a
1341
+ 6.33(4.92,11.15) a
1342
+ 13.85(7.56,20.02) a
1343
+ Cr (umol/L)
1344
+ 57.50(48.80,71.28)
1345
+ 58.40(47.80,78.70)
1346
+ 54.20(37.70,80.60)
1347
+ 89.50(38.10,169.30)
1348
+ UA (umol/L)
1349
+ 299.76(243.44,359.89)
1350
+ 291.43(224.63,376.58)
1351
+ 242.34(142.73,319.98) ab
1352
+ 252.97(148.49,377.04)
1353
+ a
1354
+ Cystatin C
1355
+ (mg/mL)
1356
+ 0.98(0.86,1.21)
1357
+ 1.16(0.95,1.56) a
1358
+ 1.39(1.06,1.88) ab
1359
+ 1.60(1.16,2.55) a
1360
+ Lactate
1361
+ (mmol/L)
1362
+ 1.94±0.71
1363
+ 2.00±0.78
1364
+ 2.21±1.04
1365
+ 2.77±1.23
1366
+ FBG (mmol/L) 5.81±2.72
1367
+ 6.35±2.88 a
1368
+ 7.69±3.00 ab
1369
+ 8.07±1.25 abc
1370
+ LDH (U/L)
1371
+ 194.28±48.28
1372
+ 215.18±70.80 a
1373
+ 244.00±90.07 ab
1374
+ 358.20±107.77 abc
1375
+ K (mmol/L)
1376
+ 3.75±0.51
1377
+ 3.87±0.63
1378
+ 3.89±0.54
1379
+ 4.20±0.66
1380
+ Na(mmol/L)
1381
+ 142.95±3.54
1382
+ 141.19±5.27
1383
+ 140.75±6.28
1384
+ 139.56±7.09
1385
+ Cl (mmol/L)
1386
+ 105.00±3.52
1387
+ 103.94±5.25
1388
+ 103.75±6.22
1389
+ 102.33±7.35 ab
1390
+ Ca (mmol/L)
1391
+ 2.05±0.37
1392
+ 1.84±0.49 a
1393
+ 1.53±0.49 ab
1394
+ 1.68±0.44 ab
1395
+ Mg (mmol/L)
1396
+ 0.88±0.08
1397
+ 0.86±0.10
1398
+ 0.82±0.11 a
1399
+ 0.81±0.10 a
1400
+ P (mmol/L)
1401
+ 1.19±0.34
1402
+ 1.12±0.43
1403
+ 0.88±0.36 ab
1404
+ 0.72±0.37 abc
1405
+
1406
+
1407
+
1408
+ Table 3. Comparison of clinical and biochemical characteristics among patients with
1409
+ different prognosis
1410
+
1411
+ P1 group
1412
+ (n=638)
1413
+ P2 group
1414
+ (n=70)
1415
+ P3 group
1416
+ (n=11)
1417
+ Age (years)
1418
+ 74.5(64,86)
1419
+ 85.5(78.75,90.25) a
1420
+ 81(66,89)
1421
+ Sex (M/F)
1422
+ 277/361
1423
+ 34/36
1424
+ 6/5
1425
+ TVRC (days)
1426
+ 10(7,15)
1427
+ 14(9,23) a
1428
+ 18.5(14.75,22) a
1429
+ BMI (Kg/m2)
1430
+ 23.17±3.60
1431
+ 21.79±2.70
1432
+ 19.92±4.98
1433
+ 25(OH)D3
1434
+ 28.21(20.46,40.22)
1435
+ 19.53(12.11,27.44) a
1436
+ 18.03(10.96,21.56) a
1437
+ CRP (mg/L)
1438
+ 7.22(2.96,20.25)
1439
+ 45.98(22.03,93.56) a
1440
+ 69.08(17.99,105.47) a
1441
+ Temp (℃)
1442
+ 36.71±0.47
1443
+ 36.71±0.49
1444
+ 36.78±0.41
1445
+ SBP (mmHg)
1446
+ 140.69±20.61
1447
+ 142.04±22.37
1448
+ 142.55±20.86
1449
+ DBP (mmHg)
1450
+ 79.84±11.47
1451
+ 80.24±14.89
1452
+ 77.91±12.76
1453
+ HR (bpm)
1454
+ 87.47±14.69
1455
+ 83.21±17.82
1456
+ 88.45±18.97
1457
+ RR (bpm)
1458
+ 19.48±1.22
1459
+ 19.99±2.36 a
1460
+ 19.64±1.86
1461
+ SaO2 (%)
1462
+ 97.49±1.52
1463
+ 95.68±4.87 a
1464
+ 96.00±3.55
1465
+ Fio2 (%)
1466
+ 29(21,33)
1467
+ 33(29,41) a
1468
+ 41(37,53) a
1469
+ RBC (10^12/L)
1470
+ 4.12±0.65
1471
+ 3.47±0.80 a
1472
+ 3.72±0.64
1473
+ WBC (10^9/L)
1474
+ 6.09±2.84
1475
+ 8.35±3.54 a
1476
+ 10.12±6.57 a
1477
+ Monocyte %
1478
+ 8.21±2.94
1479
+ 6.95±2.83 a
1480
+ 5.48±5.14 a
1481
+ Lymphocyte %
1482
+ 26.83±11.81
1483
+ 13.69±7.76 a
1484
+ 11.76±11.01 a
1485
+ Neutrophil %
1486
+ 62.76±12.58
1487
+ 77.69±9.44 a
1488
+ 82.25±13.39 a
1489
+ PLT (10^9/L)
1490
+ 205.06±78.08
1491
+ 211.16±93.12
1492
+ 219.82±133.25
1493
+ Hct (%)
1494
+ 38.16±5.90
1495
+ 32.22±7.32 a
1496
+ 33.75±6.11
1497
+ Hb (g/L)
1498
+ 123.41±19.53
1499
+ 104.79±23.48 a
1500
+ 125.00±39.87 b
1501
+ T-Bil (umol/L)
1502
+ 12.80±6.08
1503
+ 15.83±17.02 a
1504
+ 11.66±6.80
1505
+ ALT (U/L)
1506
+ 20.08(13.79,30.75)
1507
+ 18.68(13.30,32.71) a
1508
+ 21.80(10.16,32.22) a
1509
+ AST (U/L)
1510
+ 23.58(18.86,32.43)
1511
+ 31.92(20.11,47.30) a
1512
+ 35.85(23.21,47.03)
1513
+ AKP (U/L)
1514
+ 79.99(65.62,95.93)
1515
+ 88.07(69.46,113.97)
1516
+ 80.64(65.92,98.15)
1517
+ T-Pro (g/L)
1518
+ 62.21±5.75
1519
+ 56.77±6.47 a
1520
+ 54.37±6.76 a
1521
+ Alb (g/L)
1522
+ 39.72±4.53
1523
+ 34.15±4.47 a
1524
+ 32.74±4.76 a
1525
+ Pre-Alb (g/L)
1526
+ 190.22(147.24,232.20)
1527
+ 100.75(81.27,146.45) a
1528
+ 129.31(82.19,197.08)
1529
+ BUN (umol/L)
1530
+ 5.65(4.51,7.43)
1531
+ 7.32(5.28,12.94) a
1532
+ 10.41(6.20,18.20) a
1533
+ Cr (umol/L)
1534
+ 57.80(48.20,72.48)
1535
+ 62.15(41.40,90.65)
1536
+ 67.20(32.10,129.40)
1537
+ UA (umol/L)
1538
+ 291.73(230.62,365.03)
1539
+ 275.16(171.31,363.57)
1540
+ 148.57(79.31,240.75) ab
1541
+ Cystatin C (mg/mL)
1542
+ 1.05(0.89,1.38)
1543
+ 1.47(1.23,2.15) a
1544
+ 1.20(1.01,2.35)
1545
+ Lactate (mmol/L)
1546
+ 1.96±0.74
1547
+ 2.24±1.07
1548
+ 2.89±1.09 a
1549
+ FBG (mmol/L)
1550
+ 6.00±2.67
1551
+ 8.07±3.41 a
1552
+ 9.64±3.43 a
1553
+ LDH (U/L)
1554
+ 203.50±58.94
1555
+ 251.11±97.54 a
1556
+ 334.63±115.47 ab
1557
+ K (mmol/L)
1558
+ 3.79±0.55
1559
+ 4.01±0.71 a
1560
+ 4.17±0.62
1561
+ Na(mmol/L)
1562
+ 142.20±4.30
1563
+ 139.64±6.25 a
1564
+ 140.82±12.58
1565
+ Cl (mmol/L)
1566
+ 104.46±4.39
1567
+ 103.93±5.77
1568
+ 102.91±11.60
1569
+ Ca (mmol/L)
1570
+ 1.93±0.45
1571
+ 1.67±0.50 a
1572
+ 1.29±0.39 ab
1573
+ Mg (mmol/L)
1574
+ 0.87±0.09
1575
+ 0.83±0.11 a
1576
+ 0.81±0.10
1577
+
1578
+ P (mmol/L)
1579
+ 1.15±0.39
1580
+ 0.95±0.37 a
1581
+ 0.63±0.19 ab
1582
+
1583
+
DdE0T4oBgHgl3EQfygJ9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdAyT4oBgHgl3EQf4vrl/content/2301.00794v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:318541fdc5b11462fc6daef13a41ddefde8513647be48216d673d014b2418462
3
+ size 3437071
EdAyT4oBgHgl3EQf4vrl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8866054766baa93cf05736e04d9d2820e3c3b9bd484eae121f828098f79ea9c
3
+ size 3473453
EdAyT4oBgHgl3EQf4vrl/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6f9059de795d561be0f5f4ad153b96433805bffb7a45aa0dd939400ebb64a4
3
+ size 133886
EtE4T4oBgHgl3EQfGgz2/content/tmp_files/2301.04896v1.pdf.txt ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Fabrication and characterization of iodine
2
+ photonic microcell for sub-Doppler
3
+ spectroscopy and laser stabilization
4
+ CLÉMENT GOÏCOECHÉA,1,2 THOMAS BILLOTTE,2 MATTHIEU CHAFER,1,2
5
+ MARTIN MAUREL,1,2 JENNY JOUIN,3 PHILIPPE THOMAS,3 DEVANG NAIK,2
6
+ FRÉDÉRIC GÉRÔME,1,2 BENOÎT DEBORD,1,2 AND FETAH BENABID1,2,*
7
+ 1GLOphotonics SAS, 123 avenue Albert Thomas, 87060 Limoges, France
8
+ 2GPPMM group, Xlim Research Institute, CNRS UMR 7252, University of Limoges, Limoges, France
9
+ 3IRCER UMR CNRS 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges, France
10
11
+ Abstract: We report on the development of all-fiber stand-alone Iodine-filled Photonic
12
+ Microcells demonstrating record absorption contrast at room temperature. The microcell’s fiber
13
+ is made of inhibited coupling guiding hollow-core photonic crystal fibers. The fiber-core
14
+ loading with Iodine was undertaken at 10-1-10-2mbar vapor pressure using a novel gas-manifold
15
+ based on metallic vacuum parts with ceramic coated inner surfaces for corrosion resistance.
16
+ The fiber is then sealed on the tips and mounted on FC/APC connectors for better integration
17
+ with standard fiber components. The stand-alone microcells display Doppler lines with
18
+ contrasts up to 73% in the 633nm wavelength range, and an insertion loss between 3 to 4dB.
19
+ Sub-Doppler spectroscopy based on saturable absorption has been carried out to resolve the
20
+ hyperfine structure of the P(33)6-3 lines at room temperature with a full-width at half maximum
21
+ of 24MHz on the b4 component with the help of lock-in amplification. Also, we demonstrate
22
+ distinguishable hyperfine components on the R(39)6-3 line at room temperature without any
23
+ recourse to signal-to-noise ratio amplification techniques.
24
+
25
+ 1. Introduction
26
+ In the last 20 years, efforts have been made towards the miniaturization of frequency standards
27
+ with the emergence of new technological devices, such as clocks based on
28
+ microelectromechanical systems (MEMS) [1], planar devices mounted on silicon chip,
29
+ using hollow-core anti-resonant reflecting optical waveguides (ARROW) [2], or compact
30
+ engineered circular multi-pass cells [3]. Amongst these devices, the hollow-core photonic
31
+ crystal fiber (HCPCF) technology appeared to be an excellent and promising alternative to
32
+ bulky cells for portable, small footprint applications by filling and sealing atomic or molecular
33
+ vapor inside its core [4], culminating in the form of the photonic microcell (PMC) an atom-
34
+ photonics component that can be integrated with small insertion loss while using existing fiber
35
+ connectors into any optical set-up [5]. By confining the atoms/molecules alongside light over
36
+ modal areas of as small as a few μm2, whilst keeping them in interaction over length scales a
37
+ million times longer than the Rayleigh range, the resulting enhanced atom-laser interaction
38
+ efficiency leads to strong absorption despite low gas density and low light-level, resulting in
39
+ an increased signal to noise ratio compared to other technologies. The unique optical properties
40
+ of HCPCF offer a large range of core sizes and lengths coupled with low loss, alongside
41
+ reduced power consumption and micro-structured cladding providing versatile modes
42
+ composition allowing transverse light structuring [6].
43
+
44
+ HCPCFs light guiding performances are continuously improving on a broad spectral range with
45
+ loss figures competing with standard solid-core fibers on telecom spectral ranges with loss
46
+ down to 0.174dB/km in the C-band [7]. Low-loss figures are also accessible in the visible range
47
+ down to 0.9dB/km at 558nm [8].
48
+ Since the advent of the PMC as a photonic component, a plethora of work has been carried out
49
+ on the types of enclosed gas and the sealing techniques. The evolution of the different
50
+ fabrication techniques of PMC has been mainly dictated by the type of fiber as gas-container
51
+ and by the nature of the gas. In fact, compatibility of the solid-core single mode fiber (SMF)
52
+ splicing technique with photonic bandgap (PBG) fibers [9,10] with its associated core diameter
53
+ range of 5-20µm is no longer viable with inhibited-coupling guiding HCPCF (IC-HCPCF)
54
+ because of their larger core sizes (typically between 20 and 100 µm), and thus implies a strong
55
+ mode mismatch induced loss. Therefore, mode-field adapters have been introduced to render
56
+ IC guiding fiber technology compatible with SMF, either by tapering HCPCF as reported by
57
+ Wheeler et al. [11] or by implementing graded-index fibers [12,13]. Another configuration has
58
+ been also reported based on glass cells glued on the tips of PBG HCPCF to manage gas filling
59
+ and proceed to gas-enclosing by collapsing a section of the glass cell [14]. All the different
60
+ techniques mentioned above suffer from drawbacks linked to the use of glue or exposition to
61
+ ambient air leading to gas contamination and degradation of PMC spectroscopic performances
62
+ on the long term. Recently, Billotte et al. introduced a novel PMC assembly process that no
63
+ longer requires helium buffer gas or gluing stage [5]. Based on a glass sleeve collapse, a 1.5dB
64
+ insertion loss microcell has been achieved with a 7m long IC-HCPCF filled with acetylene at
65
+ 80µbar pressure. Doppler-free spectroscopy showed constant linewidth and contrast over more
66
+ than 3 months, thus highlighting the quality/purity of the sealed-gas medium and the impact of
67
+ this contaminant-free technique for the creation of next-generation PMCs.
68
+ The above work on PMC assembly was chiefly motivated for frequency standards, which thus
69
+ far was limited to molecular gases, such as Acetylene (C2H2, 1550nm region) [4,5,11] or
70
+ Carbon Dioxide (CO2) [15–17]. The actual state-of-the-art for a sealed PMC is set by Triches
71
+ et al. and Billotte et al., each exhibiting an instability around 2.10-11 @1000s [14,18]. Both are
72
+ working with acetylene around the telecom wavelength band.
73
+ Extending PMC technology to atomic or molecular vapors, such as alkali vapors or molecular
74
+ halogen gas (such as iodine (I2)), have been very challenging because of their physio-chemical
75
+ reactivity and the required vacuum environment. This in turn limited the impact of PMC based
76
+ optical frequency references to a restricted number of spectral ranges. For example, in the green
77
+ and red spectral range, I2 is known for displaying a very dense Doppler-lines spectrum useful
78
+ for the development of visible broadband frequency references [19,20]. This is illustrated by
79
+ the fact that several I2 ro-vibrational absorption lines are among Bureau International des Poids
80
+ et Mesures (BIPM) recommended frequency references for the realization of the meter [21].
81
+ Also, I2 based frequency stabilization [22–26] proved to be valuable for several technological
82
+ applications [27–30]. Consequently, the advent of iodine filled PMC (I2-PMC) would be
83
+ extremely useful for applications like guiding star lasers [31], high resolution LIDAR [32], or
84
+ laser frequency stabilization [26], which requires these performances to be delivered in a
85
+ compact and mobile physical package. However, encapsulating iodine vapor into glass cells
86
+ carries specific challenges because of I2 physical and chemical properties. In particular, its high
87
+
88
+ reactivity and corrosion with metals [33,34] requires the use of complex glass-manifold filling
89
+ system. Consequently, the development of I2-PMC represents a technical challenge both in
90
+ vapor handling, loading and in-HCPCF sealing. Indeed, the use of common metallic vacuum
91
+ parts is inadequate for the I2-PMC assembly process, and the commonly used glass manifold
92
+ alternative for I2 cell manufacturing is too complex and expensive for scalable I2-PMC
93
+ fabrication. Within this context, we note the previous work on I2-filled HCPCF [24,35,36].
94
+ Lurie et al. have shown that the hollow-core fiber for I2-microcell development and saturated
95
+ absorption spectroscopy applications demonstrated a strong efficiency thanks to strong overlap
96
+ of pump and probe beams [35], and laser stabilization with fractional frequency stability of
97
+ 2.3×10-12 at 1s for a HCPCF mounted on a glass vacuum manifold was achieved [24]. Impact
98
+ of residual gases in the vacuum system alongside I2 pressure have been raised by the authors
99
+ as obstacles to reach transit limited sub-Doppler linewidths. This seminal work within the I2-
100
+ filled HCPCF framework has been followed up in 2015 by the first demonstration of a
101
+ hermetically sealed I2 Kagome HCPCF [36]. However, despite a demonstration of laser
102
+ stabilization with fractional frequency stabilities of 3.10-11 at 100s, the sealed HCPCF has been
103
+ marred by a strong 21.5dB insertion loss and cannot be coined PMC because the gas sealing
104
+ was achieved by fusion-collapsing a section of the fiber, thus eliminating its optical guidance
105
+ features at the collapsed section.
106
+ We report in this work on an I2-PMC development based on a scalable, corrosion resistant and
107
+ contamination free fabrication process [5]. For example, a 2.5 and 4 meter long patch-cord like
108
+ iodine PMC based on tubular IC-HCPCF [37] and an overall transmission efficiency as high
109
+ as 40% have been fabricated. These PMCs exhibit, at room temperature, high performances in
110
+ term of absorption contrast reaching respectively 60% and 53% on the P(33)6-3 transition - at
111
+ 632.991nm [38]. Furthermore, we demonstrate room temperature resolution of Iodine
112
+ hyperfine spectrum observation, over 10GHz spectral range around 633nm, of several sub-
113
+ Doppler spectral transparencies from different broadened lines, thanks to saturable absorption.
114
+ The exceptional lifetime of these microcells is demonstrated through the unaffected P(33)6-3
115
+ absorption contrast and Doppler linewidth of 4 year-old I2-PMC.
116
+ 2. Experimental set-up for I2-PMC fabrication
117
+ An IC-HCPCF based on tubular lattice cladding has been designed and fabricated for optimal
118
+ guidance on several hundred thousand hyperfine transitions of iodine in the green-to-red
119
+ spectral range (Fig. 1(a)) with loss below 30dB/km level between 530nm and 668nm. The fiber
120
+ (Fig. 1(a)) with an outer diameter of 200µm exhibits a core diameter of 30µm surrounded by 8
121
+ isolated tubes cladding. This fiber presents an excellent modal behavior with quasi single-mode
122
+ guidance as illustrated by the near-field intensity profile at 633nm (see Fig. 1(a)) measured at
123
+ the output of a 4m long fiber.
124
+
125
+
126
+ Fig. 1. (a) Measured loss spectrum of the experimental IC tubular fiber related to the
127
+ developed PMCs (see Fig. 2). On the right : micrograph picture of the fiber cross section and
128
+ near field intensity distribution at 633nm. (b) Overview of the experimental set-up for I2-filling
129
+ and fiber-sealing. The vacuum system is represented in gray with valves and the gauge
130
+ represented by yellow circles. The fiber is represented in dark blue. PBS: polarizing beam
131
+ splitter. Lock-in system is represented in blue color. AOM : acousto-optic modulator. (c)
132
+ Schematic of set-up for PMC characterization.
133
+ Two PMCs, PMC#1 and PMC#2, have been fabricated 3 years apart in 2017 and 2020
134
+ respectively from similar fibers using an in-house gas-vacuum manifold, represented
135
+ schematically in Fig. 1(b) and purposely designed for I2 loading into HCPCF and for I2-PMC
136
+ assembly.
137
+ The manifold is composed of three main compartments separated by vacuum valves. The
138
+ central part holds the HCPCF and acts as the fiber loading section. On the right side of the fiber
139
+ loading section, a turbo-molecular vacuum-pump is connected via a cryogenic trap to prevent
140
+ any contamination to the vacuum-pump during I2 releasing. The left side corresponds to the I2
141
+ dispenser. Here, iodine chips are placed in glass test-tube, which is hermetically connected to
142
+ the manifold via a metallic fitting. This section is under pressure and/or temperature regulation
143
+ for I2 sublimation and release into the fiber loading section. The fiber loading goes through the
144
+ following sequence. First, the fiber loading section is evacuated to a vacuum pressure of less
145
+ than 10-6mbar. Similarly, the iodine dispenser section is evacuated while ensuring the I2
146
+ remains solid by regulating the iodine chip temperature. The above ensures the leakproofness
147
+ of the manifold and high vacuum quality. Once this process is achieved, the I2 is sublimated by
148
+ increasing the temperature until a pressure of around 10-1 mbar is reached. Second, the I2 vapor
149
+ is released in the fiber loading section by opening the valve between the two sections and
150
+
151
+ W
152
+ Pump
153
+ WWclosing the valve to the vacuum pump section. During this loading process, we continuously
154
+ monitor the fiber transmission spectrum derived from a tunable external cavity diode laser
155
+ (TOPTICA DL-PRO, 631-635nm range) tuned to a frequency range corresponding to one of
156
+ the iodine rovibrational lines. A second beam from the same laser is sent to an Iodine
157
+ macroscopic gas cell and serves as a reference. The spectroscopic signature of the Iodine
158
+ absorption lines (spanning over a set of 3 lines around the P(33)6-3 transition) can be observed
159
+ after 10 minutes of loading. The loading is then kept on until the desired contrast is reached.
160
+ It is noteworthy, that the metallic parts of the whole manifold have been post-processed against
161
+ corrosion and chemical reaction with iodine by applying a ceramic coating on the inner metallic
162
+ surfaces. This allows an outstanding ease-of-use with several HCPCFs being loaded and
163
+ assembled over several years.
164
+ Before mounting and splicing the HCPCF (described in Fig. 1(a)), it was flushed with Helium
165
+ or Argon gas and heated for several hours in the oven at ~100°C to reduce any residual gas
166
+ inside the fiber. The fiber is then end-capped on one extremity by collapsing a borosilicate
167
+ capillary with an inner diameter fitting the outer diameter of the fiber, following the process
168
+ mentioned in [5]. The sealed and polished extremity is then mounted on a FC/APC optical
169
+ connector with a measured coupling loss in the range of 1 to 1.5dB at 633nm, 20dB lower than
170
+ the splicing loss obtained by collapsing the fiber on itself in [36].
171
+ The second extremity of the HCPCF is connected by borosilicate sleeve fusion splicing to a
172
+ 30cm piece of the same HCPCF. The second tip of 30cm long HCPCF is hermetically attached
173
+ to the loading compartment of the manifold via a home-made fiber-feedthrough (Fig. 1(a) of
174
+ [5]). The end-capped fiber is then evacuated by pumping the valve-controlled middle chamber
175
+ of the vacuum system down to the range of 10-6 mbar. Once the desired contrast is reached
176
+ (here around 60%), we hermetically seal the fiber by end-capping with a splicing machine
177
+ based on sleeve collapse around the tip of the HCPCF, as described in [5]. The tips of the
178
+ resulted PMC are then polished and mounted on FC/APC fiber connectors. Figure 2(a) shows
179
+ the photography of a typical FC/APC connectorized patch-cord like PMC in its final form.
180
+ Figure 2(b) shows the reconstructed near-field intensity profile of the transmitted light from
181
+ the developed I2-PMC. The measured transmission was in the range of 40-50%, corresponding
182
+ to an insertion loss of less than 4 dB, which is 17.5dB lower than the one measured in [36].
183
+ Figure 2(d) represents the normalized transmission spectra at the output of PMC#1 (red curve),
184
+ PMC#2 (orange curve) and the commercial macroscopic cell (black curve) measured
185
+ consecutively with the same laser configurations and room temperature conditions. The bottom
186
+ axis and the top axis of the graph give the frequency and the relative frequency from that of the
187
+ R(39)6-3 transition, respectively. The two PMCs exhibit contrast between 53% to 60% for the
188
+ P(33)6-3 line and 61% to 73% for the R(39)6-3. This is respectfully 5.9 to 6.7 and 5.1 to 6.1
189
+ times larger than the ones obtained with the 10cm long commercial I2 macroscopic gas cell
190
+ (resp. 9% & 12%) corresponding to 1.3.10-1 – 1.6.101 mbar of I2 vapor pressure specifications
191
+ given by manufacturer. These contrasts are 2.2 to 2.9 times larger than the one obtained at room
192
+ temperature in previously reported work [36], which is to our knowledge the only reported
193
+ work on low-loss I2-loaded sealed HCPCF.
194
+
195
+
196
+ Fig. 2. (a) Photography of I2 PMC#1 mounted on FC/APC connectors. (b) Measured near field
197
+ intensity profile at 633nm at the output of PMC#1. (c) Contrast evolution of the PMC#2 over 2
198
+ years. (d) Normalized transmission spectra through the fabricated PMCs (PMC#1 in red color,
199
+ PMC#2 in orange) and through a macroscopic commercial gas cell (black).
200
+ Finally, comparison of the shown transmission spectra with those recorded at the time of PMC
201
+ sealing and more recently on October 2022 (see Fig.2(c)) shows comparable contrasts. In fact,
202
+ evolution of the contrast of P(33)6-3 line through PMC#2 has been studied along 2 years since
203
+ its encapsulation at t0. The different measurements are summarized on table from Fig. 2(c). The
204
+ measured contrast of the P(33)6-3 line of I2 was found to remain constant within a range of
205
+ 8,5% around the extrema average value of 61%. Observed fluctuations have been attributed
206
+ to the different temperature conditions and laser diode ampereage setpoint, and corroborated
207
+ by an additional study using another PMC (based on the same fiber and fabrication process).
208
+ The result has shown that by considering the extreme experimental values of room temperature
209
+ (i.e. from 19 to 22.5°C) and laser diode ampereage, these two major contributions of contrast
210
+ change can lead to a variation of 9%.
211
+ The stability of the absorption contrast highlights the leak proofness of the PMCs, and the
212
+ reliability and repeatability of the developed process.
213
+ 3. Sub-Doppler spectroscopy with I2 PMC
214
+ The fabricated PMCs have shown their potential for sub-Doppler spectroscopy through the
215
+ resolution of the hyperfine structure of the P(33)6-3 line. To do so, Saturated Absorption
216
+
217
+ PMC#2ContrastevolutionofP(33)6-3
218
+ Deviation from
219
+ Acquisitiontime
220
+ Contrast
221
+ average (%)
222
+ to
223
+ 0.691
224
+ 10.6
225
+ to+5months
226
+ 0.527
227
+ 15.7
228
+ to+10 months
229
+ 0.658
230
+ 5.3Spectroscopy (SAS) measurements have been done following the set-up shown in Fig. 1(c).
231
+ The laser beam is separated into counter-propagating pump and probe beams with 4mW and
232
+ 40µW output power, respectively. The pump beam is obtained from the first order diffracted
233
+ beam off an acousto-optic modulator (AOM) operating at 64MHz frequency. This was
234
+ motivated so to avoid interference between the probe and back-reflected pump during the
235
+ propagation in the fiber. The spectroscopic transparency signal is obtained by redirecting the
236
+ PMC-transmitted probe beam on to a photodiode with the help of a polarizing cube. Half and
237
+ quarter waveplates are used to improve both the optical PMC transmission and the intensity of
238
+ the redirected probe beam on the photodetector.
239
+
240
+
241
+ Fig. 3. (a) Example of Iodine ro-vibrational hyperfine energy levels. This structure is usually
242
+ not observable through a simple macroscopic cell at room temperature. (b) Measured R(39)6-
243
+ 3 Doppler line at room temperature through PMC#1. (c) Hyperfine components structure of
244
+ the P(33)6-3 Doppler line obtained with a lock-in amplifier detection scheme. Measured peaks
245
+ (red) are compared with tabulated values components for P(33)6-3 & R(127)11-15
246
+ (respectively in blue and green). Data have been fitted with lorentzian multi-peak fit function.
247
+ Figure 3(b) shows the probe signal when the laser frequency is tuned in the vicinity of R(39)6-
248
+ 3 line and recorded directly by the photodetector at room temperature. In addition of the
249
+ Doppler-broadened absorption line, the trace shows the 21 hyperfine b-lines [39]. To our
250
+ knowledge, this is the first time that such Iodine transparencies are observed on a cell without
251
+ any means of signal-to-noise ratio (SNR) post-acquisition amplification such as lock-in
252
+
253
+ [(b)
254
+ 0.24
255
+ Signal input (a.u.)
256
+ 0.26
257
+ 0.28
258
+ -0.30
259
+ -25-20-15-10
260
+ -5
261
+ 0
262
+ 5
263
+ 10
264
+ 5
265
+ 20
266
+ 25
267
+ Acquisitiontime(ms)
268
+ PMC#1 Lock-inamplifier output (a.u.)
269
+ 6
270
+ PMC#1Lock-inamplifieroutput
271
+ Lorentzianmulti-fitpeak
272
+ P(33)6-3bcomponents(BIPMdatabase)
273
+ CumulativeFitPeak
274
+ R(127)11-15acomponents(BIPMdatabase)
275
+ D
276
+ 4
277
+ 2
278
+ -1000
279
+ -900
280
+ -800
281
+ -700
282
+ -600
283
+ -500
284
+ -400
285
+ -300
286
+ -200
287
+ -100
288
+ 0
289
+ 100
290
+ RelativefrequencyfromP(33)6-3b21component(MHz)detection. In order to improve the hyperfine structure resolution we used a lock-in amplification
291
+ detection scheme with a squared-modulated pump beam of 1MHz (amplitude modulation). The
292
+ spectrum obtained as output of the lock-in amplifier is shown in Fig. 3(c). The 21 hyperfine b-
293
+ components of the P(33)6-3 line (“b” energy level scheme shown in Fig.3(a)) have been
294
+ identified and are in good agreement with the optical frequencies tabulated by the BIPM in blue
295
+ [38]. One can notice some shift and/or additional peak, such as between b11 and b18, that could
296
+ be explained by the overlap between P(33)6-3 and R(127)11-5 absorption lines of I2. Hence,
297
+ additional weaker peaks could come from the SAS of R(127)11-5 line.
298
+ Figure 4 shows the b4 hyperfine component of the P(33)6-3 line, previously displayed in Fig.
299
+ 3(c), on which a Lorentzian fitting shows a FWHM of 21MHz for 4mW pump beam.
300
+ Contribution of broadening sources such as wall collisions and the natural linewidth can be
301
+ directly calculated [4] leading to 2.95MHz and 3.23MHz respectively (lifetime about 310ns
302
+ [40,41]). The laser linewidth provided by the manufacturer is about 0.20MHz. Considering the
303
+ pressure of I2 inside the PMC of around 10-2mbar, we can estimate a few 40kHz [42]
304
+ intermolecular collision broadening. Therefore, the minimum linewidth obtainable using this
305
+ setup is 6.42MHz. The larger measured linewidth of 21MHz is explained by power broadening
306
+ coming from the pump beam intensity of 10MW/m², 357 times bigger than saturation intensity
307
+ of 28kW/m² [43].
308
+
309
+ Fig. 4. Zoom-in on b4 component of the hyperfine structure displayed in Fig. 3(c). Lock-in
310
+ signal is displayed in red line. A 21MHz FWHM Lorentzian curve has been fitted in black
311
+ line.
312
+
313
+
314
+
315
+
316
+ 3.0
317
+ PMC#1Lock-inamplifieroutput
318
+ Lorentzianmulti-fitpeak
319
+ PMC#1 Lock-in amplifier output (a.u.)
320
+ 2.5
321
+ 2.0
322
+ 1.5
323
+ 1.0
324
+ 0.5
325
+ 0.0
326
+ -710
327
+ -700
328
+ -690
329
+ -680
330
+ -670
331
+ -660
332
+ -650
333
+ Relative frequency from P(33)6-3 b21 component (MHz)4. Conclusion
334
+ As a summary, we reported on the first fabrication of meter-long low-optical loss pure I2 PMCs
335
+ based on a new process for creating all-fibered stand-alone PMCs. Absorption contrasts up to
336
+ 73% have been measured at room temperature with PMC insertion loss of 4dB, 5.4 times lower
337
+ than the state-of-the-art. The good sealing quality is demonstrated by a PMC being still
338
+ functional after 4 years and the stable absorption measured throughout both PMCs, as well as
339
+ the performance of Doppler-free signal measurements for the first PMC on the P(33)6-3 line
340
+ of I2 at room temperature. The b4 component of this line shows a FWHM of 24MHz at 4mW
341
+ output pump beam power. By calculating the different broadening sources, we identify the
342
+ dominant one as power broadening. An optimization of I2 pressure, PMC length and pump
343
+ power should allow us to reduce this FWHM while keeping the same SA contrast. These results
344
+ are very promising for many compact sensing applications and laser stabilization.
345
+ Funding: Région Nouvelle-Aquitaine.
346
+ Disclosures: The authors declare no conflicts of interest.
347
+ References
348
+ 1.
349
+ S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, "A
350
+ microfabricated atomic clock," Appl. Phys. Lett. 85(9), 1460–1462 (2004).
351
+ 2.
352
+ W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip,"
353
+ Nature Photon 1(6), 331–335 (2007).
354
+ 3.
355
+ M. Graf, L. Emmenegger, and B. Tuzson, "Compact, circular, and optically stable multipass cell for mobile
356
+ laser absorption spectroscopy," Opt. Lett. 43(11), 2434 (2018).
357
+ 4.
358
+ F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre
359
+ gas cells using hollow-core photonic crystal fibres," Nature 434(7032), 488–491 (2005).
360
+ 5.
361
+ T. Billotte, M. Chafer, M. Maurel, F. Amrani, F. Gerome, B. Debord, and F. Benabid, "Contaminant-free
362
+ end-capped and single-mode acetylene photonic microcell for sub-Doppler spectroscopy," Opt. Lett. 46(3),
363
+ 456 (2021).
364
+ 6.
365
+ B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, "Hollow-Core Fiber Technology: The Rising
366
+ of “Gas Photonics,”" Fibers 7(2), 16 (2019).
367
+ 7.
368
+ G. T. Jasion, H. Sakr, J. R. Hayes, S. R. Sandoghchi, L. Hooper, E. N. Fokoua, A. Saljoghei, H. C. Mulvad,
369
+ M. Alonso, A. Taranta, T. D. Bradley, I. A. Davidson, Y. Chen, D. J. Richardson, and F. Poletti, "0.174
370
+ dB/km Hollow Core Double Nested Antiresonant Nodeless Fiber (DNANF)," 3 (2022).
371
+ 8.
372
+ J. Osório, F. Amrani, F. Delahaye, A. Dhaybi, K. Vasko, G. Tessier, F. Giovanardi, L. Vincetti, B. Debord,
373
+ F. Gérôme, F. Benabid: « Hollow-core fibers with reduced surface roughness and ultralow loss in the short-
374
+ wavelength range », ArXiv https://arxiv.org/abs/2207.11090, 2022.
375
+ 9.
376
+ F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, "Electromagnetically induced transparency and
377
+ saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Optics
378
+ Communications 263(1), 28–31 (2006).
379
+ 10.
380
+ P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene
381
+ cell based on hollow-core photonic crystal fiber," Opt. Lett. 31(17), 2538 (2006).
382
+ 11.
383
+ N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, "Large-core acetylene-
384
+ filled photonic microcells made by tapering a hollow-core photonic crystal fiber," Opt. Lett. 35(11), 1875
385
+ (2010).
386
+ 12.
387
+ M. D. Feit and J. A. Fleck, "Light propagation in graded-index optical fibers," Appl. Opt. 17(24), 3990
388
+ (1978).
389
+ 13.
390
+ C. Wang, Y. Zhang, J. Sun, J. Li, X. Luan, and A. Asundi, "High-Efficiency Coupling Method of the
391
+ Gradient-Index Fiber Probe and Hollow-Core Photonic Crystal Fiber," Applied Sciences 9(10), 2073 (2019).
392
+ 14.
393
+ M. Triches, A. Brusch, and J. Hald, "Portable optical frequency standard based on sealed gas-filled hollow-
394
+ core fiber using a novel encapsulation technique," Appl. Phys. B 121(3), 251–258 (2015).
395
+ 15.
396
+ E. A. Curtis, T. Bradley, G. P. Barwood, C. S. Edwards, N. V. Wheeler, R. Phelan, D. J. Richardson, M. N.
397
+ Petrovich, and P. Gill, "Laser frequency stabilization and spectroscopy at 2051 nm using a compact CO 2 -
398
+ filled Kagome hollow core fiber gas-cell system," Opt. Express 26(22), 28621 (2018).
399
+
400
+ 16.
401
+ I. Y. Poberezhskiy, P. Meras, D. H. Chang, and G. D. Spiers, "Compact and Robust Refilling and
402
+ Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells," in LEOS 2007 - IEEE Lasers
403
+ and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 568–569.
404
+ 17.
405
+ P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, "Frequency stabilization of a 2.05 μm laser
406
+ using hollow-core fiber CO 2 frequency reference cell," in A. Mendez, H. H. Du, A. Wang, E. Udd, and S. J.
407
+ Mihailov, eds. (2010), p. 767713.
408
+ 18.
409
+ T. Billotte, M. Chafer, M. Maurel, F. Amrani, F. Gerome, B. Debord, and F. Benabid, "Contaminant Free
410
+ End-Capped Acetylene PMC for Sub-Doppler Spectroscopy," in 2019 Conference on Lasers and Electro-
411
+ Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2019), pp. 1–1.
412
+ 19.
413
+ S. Gerstenkorn, P. Luc, J. Verges, and J. Chevillard, Atlas Du Spectre d’absorption de La Molécule d’iode,
414
+ Atlas Du Spectre d’absorption de La Molécule d’iode No. vol. 1 (Laboratoire Aimé Cotton, 1978).
415
+ 20.
416
+ H. Salami and A. J. Ross, "A molecular iodine atlas in ascii format," Journal of Molecular Spectroscopy
417
+ 233(1), 157–159 (2005).
418
+ 21.
419
+ F. Riehle, P. Gill, F. Arias, and L. Robertsson, "The CIPM list of recommended frequency standard values:
420
+ guidelines and procedures," Metrologia 55(2), 188–200 (2018).
421
+ 22.
422
+ J.-F. Cliche, A. Zarka, M. Tetu, and J.-M. Chartier, "Automatic locking of a 633 nm semiconductor laser on
423
+ iodine," IEEE Trans. Instrum. Meas. 48(2), 596–599 (1999).
424
+ 23.
425
+ M. Merimaa, P. Kokkonen, K. Nyholm, and E. Ikonen, "Portable frequency standard at 633 nm with compact
426
+ external-cavity diode laser," Metrologia 38(4), 311–318 (2001).
427
+ 24.
428
+ A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, "High-
429
+ performance iodine fiber frequency standard," Opt. Lett. 36(24), 4776 (2011).
430
+ 25.
431
+ C. Philippe, R. Le Targat, D. Holleville, M. Lours, Tuan Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and
432
+ O. Acef, "Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15
433
+ range," in 2016 European Frequency and Time Forum (EFTF) (IEEE, 2016), pp. 1–3.
434
+ 26.
435
+ J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P.-E. Pottie, P. Wolf, P.
436
+ Tuckey, O. Acef, F.-X. Esnault, and T. Leveque, "Compact and Transportable Iodine Frequency-stabilized
437
+ laser," in International Conference on Space Optics — ICSO 2018, N. Karafolas, Z. Sodnik, and B. Cugny,
438
+ eds. (SPIE, 2019), p. 28.
439
+ 27.
440
+ A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, "CW hollow-core
441
+ optically pumped I2 fiber gas laser," Opt. Lett., OL 40(4), 605–608 (2015).
442
+ 28.
443
+ S. N. Bagayev, V. I. Denisov, A. S. Dychkov, N. A. Koliada, B. N. Nyushkov, V. S. Pivtsov, S. A. Farnosov,
444
+ and A. A. Antropov, "Fiber-based femtosecond optical frequency comb stabilized to iodine frequency
445
+ standard," J. Phys.: Conf. Ser. 793, 012003 (2017).
446
+ 29.
447
+ V. Schkolnik, K. Döringshoff, F. B. Gutsch, M. Oswald, T. Schuldt, C. Braxmaier, M. Lezius, R. Holzwarth,
448
+ C. Kürbis, A. Bawamia, M. Krutzik, and A. Peters, "JOKARUS - design of a compact optical iodine
449
+ frequency reference for a sounding rocket mission," EPJ Quantum Technol. 4(1), 9 (2017).
450
+ 30.
451
+ K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis, M. Oswald, B. Pröbster, E. V. Kovalchuk, A.
452
+ Bawamia, R. Smol, T. Schuldt, M. Lezius, R. Holzwarth, A. Wicht, C. Braxmaier, M. Krutzik, and A. Peters,
453
+ "Iodine Frequency Reference on a Sounding Rocket," Phys. Rev. Applied 11(5), 054068 (2019).
454
+ 31.
455
+ D. Bonaccini Calia, Y. Feng, W. Hackenberg, R. Holzlöhner, L. Taylor, and S. Lewis, "Laser Development
456
+ for Sodium Laser Guide Stars at ESO," The Messenger 139, 12–19 (2010).
457
+ 32.
458
+ N. Wang, X. Shen, D. Xiao, I. Veselovskii, C. Zhao, F. Chen, C. Liu, Y. Rong, J. Ke, B. Wang, and D. Liu,
459
+ "Development of ZJU high-spectral-resolution lidar for aerosol and cloud: Feature detection and
460
+ classification," Journal of Quantitative Spectroscopy and Radiative Transfer 261, 107513 (2021).
461
+ 33.
462
+ H. Bouasse, Thermodynamique Générale : Gaz et Vapeurs, Bibliothèq (Librairie Delagrave, 1932).
463
+ 34.
464
+ J. Szabo, M. Robin, S. Paintal, B. Pote, V. Hruby, and C. Freeman, "Iodine Propellant Space Propulsion," in
465
+ IECP (2013).
466
+ 35.
467
+ A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, "Saturation
468
+ spectroscopy of iodine in hollow-core optical fiber," Opt. Express 20(11), 11906 (2012).
469
+ 36.
470
+ P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, "Hermetic optical-fiber iodine frequency standard,"
471
+ Opt. Lett. 40(12), 2703 (2015).
472
+ 37.
473
+ B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti,
474
+ F. Gérôme, and F. Benabid, "Ultralow transmission loss in inhibited-coupling guiding hollow fibers," Optica,
475
+ OPTICA 4(2), 209–217 (2017).
476
+ 38.
477
+ "[BIPM] Standard frequency: 474 THz (≈ 633 nm) – I2," (2003). https://www.bipm.org/
478
+ 39.
479
+ X. Chen, K. Zhang, E. J. Zang, Y. Akimoto, T. Kasahara, K. Sakamoto, and H. Inaba, "Frequency-stabilized
480
+ tunable diode laser and strong transition iodine hyperfine spectra at 633 nm," in Semiconductor Lasers III
481
+ (SPIE, 1998), 3547, pp. 194–202.
482
+ 40.
483
+ G. A. Capelle and H. P. Broida, "Lifetimes and quenching cross sections of I2(B 3ΠOu+)," The Journal of
484
+ Chemical Physics 58(10), 4212–4222 (1973).
485
+ 41.
486
+ K. C. Shotton and G. D. Chapman, "Lifetimes of 127 I 2 Molecules Excited by the 632.8 nm He/Ne Laser,"
487
+ The Journal of Chemical Physics 56(2), 1012–1013 (1972).
488
+ 42.
489
+ C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, "A 633 nm iodine-stabilized diode-laser
490
+ frequency standard," Metrologia 36(1), 41–45 (1999).
491
+
492
+ 43.
493
+ J. Hu, T. Ahola, E. Ikonen, and K. Riski, "Frequency shifts of iodine stabilized He-Ne lasers at higher
494
+ harmonic order stabilization," IEEE Trans. Instrum. Meas. 46(2), 186–190 (1997).
495
+
496
+
EtE4T4oBgHgl3EQfGgz2/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9AzT4oBgHgl3EQfHvt9/content/2301.01050v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382451d61f014b51a3d87717a22719c101b7573df47fb1820bdd930ba8c893c3
3
+ size 24006982
H9AzT4oBgHgl3EQfHvt9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a1f38e48cfe5504d549a18d6cd6c820135bcda5fef0b7e607dc0a53c94bfc3
3
+ size 5898285
IdE1T4oBgHgl3EQfYAQI/content/tmp_files/2301.03132v1.pdf.txt ADDED
@@ -0,0 +1,2578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03132v1 [math.AC] 9 Jan 2023
2
+ FREE DIVISORS, BLOWUP ALGEBRAS OF JACOBIAN IDEALS,
3
+ AND MAXIMAL ANALYTIC SPREAD
4
+ RICARDO BURITY, CLETO B. MIRANDA-NETO, AND ZAQUEU RAMOS
5
+ Abstract. Free divisors form a celebrated class of hypersurfaces which has been extensively studied
6
+ in the past fifteen years. Our main goal is to introduce four new families of homogeneous free divisors
7
+ and investigate central aspects of the blowup algebras of their Jacobian ideals.
8
+ For instance, for
9
+ all families the Rees algebra and its special fiber are shown to be Cohen-Macaulay – a desirable
10
+ feature in blowup algebra theory. Moreover, we raise the problem of when the analytic spread of the
11
+ Jacobian ideal of a (not necessarily free) polynomial is maximal, and we characterize this property
12
+ with tools ranging from cohomology to asymptotic depth. In addition, as an application, we give an
13
+ ideal-theoretic homological criterion for homaloidal divisors, i.e., hypersurfaces whose polar maps are
14
+ birational.
15
+ Dedicated with gratitude to the memory of Professor Wolmer V. Vasconcelos,
16
+ mentor of generations of commutative algebraists.
17
+ Introduction
18
+ The well-studied theory of free divisors – or free hypersurfaces – has its roots in the seminal work
19
+ of K. Saito [35], and in subsequent papers of H. Terao [43, 44, 45] mostly concerned with the case
20
+ of hyperplane arrangements. The original environment was the complex analytic setting, and the
21
+ motivation was the computation of Gauss-Manin connections for the universal unfolding of an isolated
22
+ singularity; for instance, it was proved that the discriminant in the parameter space of the universal
23
+ unfolding is a free divisor. Over time, different approaches, viewpoints, and interests have emerged,
24
+ including algebraic (and algebro-geometric) adaptations and even generalizations that have drawn
25
+ the attention of an increasing number of researchers over the last fifteen years. The list of references
26
+ is huge; see, e.g., Abe [1], Abe, Terao and Yoshinaga [2], Buchweitz and Conca [8], Buchweitz and
27
+ Mond [9], Calder´on-Moreno and Narv´aez-Macarro [12], Damon [15], Dimca [17, 18], Dimca and
28
+ Sticlaru [20], Miranda-Neto [31, 32], Schenck [37], Schenck, Terao and Yoshinaga [38], Schenck and
29
+ Tohˇaneanu [39], Simis and Tohˇaneanu [41], Tohˇaneanu [47], and Yoshinaga [51]. In particular, nice
30
+ references containing interesting open problems on the subject (including the celebrated Terao’s
31
+ Conjecture) are Dimca’s book [17] and Schenck’s survey [37].
32
+ In the present paper, the general goal is to present progress on the algebraic side of the theme,
33
+ by means of various techniques.
34
+ First, we explicitly describe four new families of homogeneous
35
+ free divisors in standard graded polynomial rings over a field k with char k = 0.
36
+ Second, and
37
+ in the same graded setup, we turn our angle to investigating blowup algebras of Jacobian ideals of
38
+ polynomials. More precisely, we prove that for our families the Rees algebra is Cohen-Macaulay – i.e.,
39
+ from a geometric point of view, blowing-up their singular loci yields arithmetically Cohen-Macaulay
40
+ schemes. Furthermore we characterize in various ways, via tools varying from (local) cohomology to
41
+ asymptotic depth, the maximality of the dimension of the special fiber ring for polynomials which
42
+ are no longer required to be free. The relevance of the latter lies in connections to the important
43
+ 2010 Mathematics Subject Classification. Primary: 14J70, 32S05, 13A30, 14E05, 14M05; Secondary: 13C15, 13H10,
44
+ 14E07, 32S22, 32S25.
45
+ Key words and phrases. Free divisor, Jacobian ideal, blowup algebra, Rees algebra, analytic spread, homaloidal
46
+ divisor.
47
+ Corresponding author: Cleto B. Miranda-Neto ([email protected]).
48
+ 1
49
+
50
+ 2
51
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
52
+ theory of homaloidal divisors, i.e., homogeneous polynomials f ∈ k[x1, . . . , xn] (where, typically, the
53
+ field k is assumed to be algebraically closed) for which the associated polar map
54
+ Pf =
55
+ � ∂f
56
+ ∂x1
57
+ : · · · :
58
+ ∂f
59
+ ∂xn
60
+
61
+ : Pn−1 ��� Pn−1
62
+ is birational – i.e., Pf is a Cremona transformation. In fact we provide, as an application, an ideal-
63
+ theoretic (also homological) homaloidness criterion. It is worth mentioning that the modern theory
64
+ about such polynomials began in Ein and Shepherd-Barron [23], where it was proved for instance
65
+ that the relative invariant of a regular prehomogeneous complex vector space is homaloidal. Another
66
+ classical reference is Dolgachev [21].
67
+ In order to introduce the other main concepts of interest to this paper, let k denote a field of
68
+ characteristic zero and, given n ≥ 3, let R = k[x1, . . . , xn] be a standard graded polynomial ring
69
+ over k.
70
+ Let R+ = (x1, . . . , xn) be the irrelevant ideal.
71
+ Given a non-zero reduced homogeneous
72
+ polynomial f ∈ R2
73
+ + (whose partial derivatives will be assumed, to avoid pathologies, to be k-linearly
74
+ independent), it is well-known that the property of f being a free divisor can be translated into saying
75
+ that the corresponding Jacobian ideal Jf = (∂f/∂x1, . . . , ∂f/∂x1) ⊂ R is perfect of codimension 2
76
+ – in particular, a free f must be highly singular in the sense that codim Sing V (f) = 2 regardless
77
+ of n.
78
+ Therefore, the intervention of Jf in the theory is (naturally) crucial, and as a bonus this
79
+ allows for an interesting link to the study of blowup algebras, particularly the traditional problem
80
+ of describing ideals for which such rings are Cohen-Macaulay. Here, we are especially interested in
81
+ the Rees algebra
82
+ R(Jf) = R
83
+ � ∂f
84
+ ∂x1
85
+ t, . . . , ∂f
86
+ ∂xn
87
+ t
88
+
89
+ ⊂ R[t]
90
+ and its special fiber ring F(Jf) = R(Jf) ⊗R k, which, as is well-known from blowup theory, encode
91
+ relevant geometric information. Recall that the analytic spread of Jf, denoted ℓ(Jf), is the Krull
92
+ dimension of F(Jf), which is bounded above by n. Saying that Jf has maximal analytic spread
93
+ means ℓ(Jf) = n.
94
+ Next we briefly describe the contents of each section of the paper.
95
+ Section 1 invokes the definitions that are central to this paper, such as the notions of free divisor
96
+ and blowup algebras of ideals, as well as a few auxiliary facts which will be used in some parts of
97
+ the paper. Also, some conventions are established.
98
+ In Section 2 we present our first family of free divisors in R, with n ≥ 4. They are reducible and,
99
+ in fact, linear in the sense that in addition the Jacobian ideal Jf is linearly presented, i.e., the entries
100
+ of the corresponding Hilbert-Burch matrix are (possibly zero) linear forms. We also determine the
101
+ defining equations of F(Jf) and compute the analytic spread as well as the reduction number of Jf.
102
+ Moreover, we prove that R(Jf) and F(Jf) are Cohen-Macaulay.
103
+ Section 3 describes our second family of free divisors, in an even number of at least 4 variables, and
104
+ again reducible and linear in the above sense. We exhibit a well-structured minimal set of generators
105
+ for the module of syzygies of Jf. In addition, as in the previous family – but via different methods
106
+ – we show that R(Jf) and F(Jf) are Cohen-Macaulay (the latter is in fact shown to be a generic
107
+ determinantal ring) and determine the analytic spread and the reduction number of Jf.
108
+ In Section 4, our third family is presented as a two-parameter family of (no longer linear) free
109
+ divisors f = fα,β in 3 variables and of degree αβ, where α, β ≥ 2. For the one-parameter family with
110
+ β = 2 (also for (α, β) = (2, 3)), we show that R(Jf) is Cohen-Macaulay and derive that F(Jf) is
111
+ isomorphic to a polynomial ring over k (so that Jf has reduction number zero). Also we prove that
112
+ f is reducible if k = C, and in case k ⊆ R we verify that f is reducible if β is odd and irreducible
113
+ otherwise. In addition, if β ≥ 3 is odd, we show how to derive yet another two-parameter family of
114
+ free divisors g = gα,β (of degree αβ − α) from fα,β; for the one-parameter family with β = 3, we
115
+ deduce that R(Jg) is Cohen-Macaulay.
116
+
117
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
118
+ 3
119
+ In Section 5 we introduce our fourth family of free divisors, in 3 variables. Such (reducible) divisors
120
+ have the linearity property – as in the two first families – and are constructed as the determinant of
121
+ the Jacobian matrix of a set of quadrics which we associate to 3 given suitable linear forms. This
122
+ family is in fact partially new, because if k = C then its members are recovered by the well-known
123
+ classification of linear free divisors in at most 4 variables, whereas on the other hand our (permanent)
124
+ assumption on k is that char k = 0. Furthermore, we show that Jf is of linear type – i.e., the canonical
125
+ epimorphism from the symmetric algebra of Jf onto R(Jf) is an isomorphism – and we derive that
126
+ R(Jf) is a complete intersection ring.
127
+ For f ∈ R belonging to any of the four (or five) families, we use a result from Miranda-Neto [31]
128
+ to easily determine the Castelnuovo-Mumford regularity of the graded module Derk(R/(f)) formed
129
+ by the k-derivations of the ring R/(f). Needless to say, the regularity is an important invariant
130
+ which controls the complexity of a module (being related to bounds on the degrees of syzygies),
131
+ whereas the derivation module is a classical object as it collects the tangent vector fields defined on
132
+ the hypersurface V (f) ⊂ Pn−1
133
+ k
134
+ .
135
+ We close the paper with Section 6, where we address the question as to when, for a (not necessarily
136
+ free) polynomial f ∈ R, the ideal Jf has maximal analytic spread – the relevance of this task is the
137
+ already mentioned connection to the theory of homaloidal divisors. We provide a number of charac-
138
+ terizations of when such maximality holds, including cohomological conditions on a suitable auxiliary
139
+ module as well as the asymptotic depth associated to both adic and integral closure filtrations of Jf.
140
+ We also point out that the main problems we raise in this paper appear in this section. This includes
141
+ a conjecture predicting that if f is linear free divisor satisfying ℓ(Jf) = n then Jf is of linear type
142
+ (the case of interest is n ≥ 5), as well as the question of whether the reduced Hessian determinant of
143
+ a homaloidal polynomial must necessarily be a (linear) free divisor. For all such problems we were
144
+ motivated and guided by several examples, and the computations were performed with the aid of
145
+ the program Macaulay of Bayer and Stillman [5].
146
+ 1. Preliminaries: Free divisors and blowup algebras
147
+ We begin by invoking some definitions and auxiliary facts.
148
+ First we establish the convention
149
+ that, throughout the entire paper, k denotes a field of characteristic zero. A few other conventions
150
+ (including notations) will be made in this section.
151
+ Let R = k[x1, . . . , xn] be a standard graded
152
+ polynomial ring in n ≥ 3 indeterminates x1, . . . , xn over k, and let R+ = (x1, . . . , xn) denote the
153
+ homogeneous maximal ideal of R.
154
+ 1.1. Free divisors. Fix a non-zero homogeneous polynomial f ∈ R2
155
+ +. A logarithmic derivation of
156
+ f is an operator θ = �n
157
+ i=1 gi∂/∂xi, for homogeneous polynomials g1, . . . , gn ∈ R satisfying
158
+ θ(f) =
159
+ n
160
+
161
+ i=1
162
+ gi
163
+ ∂f
164
+ ∂xi
165
+ ∈ (f).
166
+ Geometrically, θ can be interpreted as a vector field defined on Pn−1
167
+ k
168
+ that is tangent along the
169
+ (smooth part of the) hypersurface V (f). From now on we suppose f is reduced in the usual sense
170
+ that fred = f, that is, f is (at most) a product of distinct irreducible factors. In addition, we assume
171
+ throughout – with no further mention – that the partial derivatives of f are k-linearly independent
172
+ so as to prevent f from being a cone (recall that a polynomial g ∈ R is a cone if, after some linear
173
+ change of coordinates, g depends on at most n − 1 variables). Denote by TR/k(f) the R-module
174
+ formed by the logarithmic derivations of f, which is also called tangential idealizer (or Saito-Terao
175
+ module) of f, and commonly denoted Derlog(−V (f)). It is easy to see that TR/k(f) has (generic)
176
+ rank n as an R-module.
177
+ Definition 1.1. f is a free divisor if the R-module TR/k(f) is free.
178
+
179
+ 4
180
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
181
+ This concept, which originated in [35], has been shown to be of great significance to a variety of
182
+ branches in mathematics. We recall yet another classical object.
183
+ Definition 1.2. If fxi := ∂f/∂xi, i = 1, . . . , n, then the Jacobian ideal of f (also called gradient
184
+ ideal of f) is given by
185
+ Jf = (fx1, . . . , fxn) ⊂ R.
186
+ Note that, because f is not a cone, the ideal Jf is minimally generated by the n partial derivatives
187
+ of f. Also recall that the Euler derivation
188
+ εn :=
189
+ n
190
+
191
+ i=1
192
+ xi
193
+
194
+ ∂xi
195
+ is logarithmic for the homogeneous polynomial f by virtue of the well-known Euler’s identity
196
+ �n
197
+ i=1 xifxi = (deg f)f.
198
+ Now we remark that, since TR/k(f) decomposes into the direct sum of
199
+ the module of syzygies of Jf and the cyclic module Rεn (see [31, Lemma 2.2]), a free basis of TR/k(f)
200
+ if f is a free divisor consists of the derivations corresponding to the columns of a minimal syzygy
201
+ matrix of fx1, . . . , fxn together with εn.
202
+ Next we recall a useful characterization which is even adopted as the definition of free divisor by
203
+ some authors, and moreover highlights the central role that commutative algebra plays in the theory.
204
+ Lemma 1.3. ([31, Lemma 4.1]) f ∈ R is a free divisor if and only if Jf is a codimension 2 perfect
205
+ ideal (equivalently, the ideal Jf has projective dimension 1).
206
+ In other words, f is a free divisor if and only if R/Jf is a Cohen-Macaulay ring and ht Jf = 2,
207
+ where, here and in the entire paper, ht I stands for the height of an ideal I ⊂ R. It follows that the
208
+ classical Hilbert-Burch theorem plays a major role in the algebraic side of free divisor theory. It is
209
+ also worth mentioning that this fruitful interplay holds in a more general setting (see [32]).
210
+ Below we invoke a well-known and very useful criterion of freeness detected by Saito himself in
211
+ case k = C, but which is known to hold over any field of characteristic zero (see [8, Theorem 2.4]).
212
+ Lemma 1.4. ([35, Theorem 1.8(ii)], also [17, Theorem 8.1]) f ∈ R is a free divisor if and only if
213
+ there exist n vector fields θ1, . . . , θn ∈ TR/k(f) such that
214
+ det [θj(xi)]i,j=1,...,n = λf
215
+ for some non-zero λ ∈ k. In this case, the set {θ1, . . . , θn} is a free basis of TR/k(f).
216
+ As already pointed out, up to elementary operations in the columns of an n × (n − 1) syzygy
217
+ matrix ϕ of Jf, the derivations θj’s of the free basis above correspond to the columns of ϕ along with
218
+ the Euler vector field εn.
219
+ There is also the following important subclass introduced in [9].
220
+ Definition 1.5. f is a linear free divisor if f is a free divisor and the ideal Jf is linearly presented.
221
+ Stated differently, f is a linear free divisor if and only if Jf admits a minimal graded R-free
222
+ resolution of the form
223
+ 0 −→ R(−n)n−1 −→ R(−n + 1)n −→ Jf −→ 0.
224
+ In particular, the degree of a linear free divisor is necessarily equal to n (and thus has minimal
225
+ degree, since any free divisor is seen to have degree at least n).
226
+ Now let us provisionally consider a more general setup. Let S be any Noetherian commutative
227
+ ring containing k. A k-derivation of S is defined as an additive map ϑ: S → S which vanishes on
228
+ k and satisfies Leibniz’ rule: ϑ(uv) = uϑ(v) + vϑ(u), for all u, v ∈ S. Such objects are collected
229
+ in an S-module, denoted Derk(S). In particular, if again R = k[x1, . . . , xn], we get the R-module
230
+ Derk(R), which is free on the ∂/∂xi’s.
231
+ Now if f ∈ R2
232
+ + is as above, we can also consider the
233
+
234
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
235
+ 5
236
+ derivation module Derk(R/(f)), which can be graded as follows.
237
+ First, assume that Derk(R) is
238
+ given the grading inherited from the natural Z-grading of the Weyl algebra of R, so that each ∂/∂xi
239
+ has degree −1. We endow TR/k(f) with the induced grading from Derk(R), that is, a logarithmic
240
+ derivation �n
241
+ i=1 gi∂/∂xi ∈ TR/k(f) has degree δ if g1, . . . , gn ∈ R have degree δ + 1. For example,
242
+ εn ∈ [TR/k(f)]0. Finally recall that there is an identification (see, e.g., [31, Lemma 2.1])
243
+ Derk(R/(f)) = TR/k(f)/fDerk(R).
244
+ Then we let Derk(R/(f)) be graded with the grading induced from TR/k(f) by means of this quotient.
245
+ The next auxiliary lemma is concerned with the graded module Derk(R/(f)). Let us first recall
246
+ the concept of Castelnuovo-Mumford regularity of a finitely generated graded module E over the
247
+ graded polynomial ring R. Let 0 → Fp → . . . → F0 → E → 0 be a minimal graded R-free resolution
248
+ of E, where Fi := �bi
249
+ j=1 R(−ai,j), i = 0, . . . , p. Note that p is the projective dimension of E.
250
+ Definition 1.6. If mi := max{ai,j | 1 ≤ j ≤ bi}, i = 0, . . . , p, then the Castelnuovo-Mumford
251
+ regularity of E is defined as reg E = max{mi − i | 0 ≤ i ≤ p}.
252
+ This gives in some sense a numerical measure of the complexity of the module. There are more
253
+ general definitions given in terms of sheaf and local cohomologies (which in turn are related), but
254
+ the one given above suffices for our purposes in this paper. We refer, e.g., to [4] and [7, Chapter 15].
255
+ Lemma 1.7. ([31, Corollary 2.5(i)]) If f ∈ R is a free divisor of degree d, then reg Derk(R/(f)) =
256
+ d − 2. In particular, if f ∈ R is a linear free divisor then reg Derk(R/(f)) = n − 2.
257
+ It is worth mentioning that some authors have investigated the Castelnuovo-Mumford regularity
258
+ of other objects that are also “differentially related” to f, such as the Milnor algebra R/Jf (see [11])
259
+ and the module TR/k(f) itself (see [16, Theorem 5.5] and [36, Section 3]).
260
+ 1.2. Blowup algebras. We close the section with a brief review on blowup algebras and a few
261
+ closely related notions. We fix a homogeneous proper ideal I of R.
262
+ Definition 1.8. The Rees algebra of I is the graded ring
263
+ R(I) =
264
+
265
+ i≥0
266
+ Iiti ⊂ R[t],
267
+ where t is an indeterminate over R. This R-algebra defines the blowup along the subscheme corre-
268
+ sponding to I. The special fiber ring of I, sometimes dubbed fiber cone of I, is the special fiber of
269
+ R(I), i.e., the (standard) graded k-algebra
270
+ F(I) = R(I) ⊗R k ∼=
271
+
272
+ i≥0
273
+ Ii/R+Ii.
274
+ The analytic spread of I is ℓ(I) = dim F(I). There are bounds ht I ≤ ℓ(I) ≤ n.
275
+ Alternatively, R(I) can be realized as the quotient of the symmetric algebra SymRI (a basic
276
+ construct in algebra) by its R-torsion submodule, which is in fact an ideal. Thus there is a natural
277
+ R-algebra epimorphism SymRI → R(I). If this map is an isomorphism, I is said to be of linear type.
278
+ Since R is in particular a domain, this is tantamount to saying that SymRI is a domain as well. For
279
+ instance, any ideal generated by a regular sequence is of linear type.
280
+ Next we provide a useful formula for the computation of the analytic spread by means of a
281
+ Jacobian matrix (in characteristic zero, as we have permanently assumed). To this end we consider
282
+ an even more concrete description of the Rees algebra (hence of its special fiber), to wit, if we fix
283
+ generators I = (f1, . . . , fν) ⊂ R = k[x1, . . . , xn], then R(I) is just the R-subalgebra generated by
284
+ f1t, . . . , fνt ∈ R[t]. In the particular case where the fi’s are all homogeneous of the same degree
285
+ – e.g., the partial derivatives of a homogeneous polynomial – we can write the special fiber as
286
+ F(I) ∼= k[f1, . . . , fν] as a k-subalgebra of R.
287
+
288
+ 6
289
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
290
+ Lemma 1.9. ([40, Proposition 1.1]) Write I = (f1, . . . , fν) and suppose all the fi’s are homogeneous
291
+ of the same degree. Set Θ :=
292
+
293
+ ∂fi
294
+ ∂xj
295
+
296
+ , 1 ≤ i ≤ ν, 1 ≤ j ≤ n. Then ℓ(I) = rank Θ.
297
+ Finally recall that a subideal K ⊂ I is a reduction of I if the induced extension of Rees algebras
298
+ R(K) ⊂ R(I) is integral; equivalently, there exists r ≥ 0 such that Ir+1 = KIr. The minimal such
299
+ r is denoted rK(I). The reduction K is minimal if it is minimal with respect to inclusion. Now the
300
+ reduction number of I is defined as
301
+ r(I) = min{rK(I) | K is a minimal reduction of I}.
302
+ For instance, it is a standard fact (as k is infinite) that r(I) = 0 if and only if I can be generated by
303
+ ℓ(I) elements, which occurs if for example I is of linear type. More generally, the following basic result
304
+ gives a way to compute this number in the presence of a suitable condition on the standard graded
305
+ k-algebra F(I), which can be also regarded (for the purpose of reading the Castelnuovo-Mumford
306
+ regularity off a minimal graded free resolution) as a cyclic graded module over a polynomial ring
307
+ k[t1, . . . , tν] whenever I can be generated by ν forms in R.
308
+ Lemma 1.10. ([26, Proposition 1.2]) If F(I) is Cohen-Macaulay, then r(I) = reg F(I).
309
+ 2. First family: linear free divisors in Pn−1
310
+ Before presenting our first family of free divisors as well as properties of related blowup algebras,
311
+ let us record a couple of basic calculations which will be used without further mention in the proof
312
+ of Theorem 2.2 below.
313
+ Remark 2.1. Let S = k[w, u] be a standard graded polynomial ring in 2 variables w, u, and consider
314
+ the ideal n = (w, u). Given an integer r ≥ 2, the following facts are well-known and easy to see.
315
+ (a) The ideal nr = (wr, wr−1u, . . . , wur−1, ur) is a perfect ideal of codimension 2, having the
316
+ following (r + 1) × r syzygy matrix:
317
+ (1)
318
+ ϕr =
319
+
320
+ 
321
+ −w
322
+ 0
323
+ . . .
324
+ 0
325
+ u
326
+ −w
327
+ . . .
328
+ 0
329
+ 0
330
+ u
331
+ . . .
332
+ 0
333
+ ...
334
+ ...
335
+ ...
336
+ ...
337
+ 0
338
+ 0
339
+ . . .
340
+ −w
341
+ 0
342
+ 0
343
+ . . .
344
+ u
345
+
346
+ 
347
+ ;
348
+ (b) The presentation ideal of the Rees algebra R(nr), that is, the kernel of the surjective map of
349
+ S-algebras
350
+ S[y1, . . . , yr+1] ։ R(nr),
351
+ yi �→ wr−i+1ui−1,
352
+ is equal to Q = (I1(y · ϕr), I2(B)), where y =
353
+
354
+ y1
355
+ · · ·
356
+ yr+1
357
+
358
+ and B =
359
+
360
+ y1
361
+ · · ·
362
+ yr
363
+ y2
364
+ · · ·
365
+ yr+1
366
+
367
+ .
368
+ Theorem 2.2. Consider the standard graded polynomial ring R = k[x1, . . . , xn], where n ≥ 4.
369
+ Denote xn−1 = w and xn = u. Let
370
+ f = 2wn−1u +
371
+ n−2
372
+
373
+ i=1
374
+ xiwi−1un−i.
375
+ Then f is a linear free divisor.
376
+ Proof. First notice that
377
+ (2)
378
+ fxi = wi−1un−i
379
+ for each
380
+ 1 ≤ i ≤ n − 2,
381
+
382
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
383
+ 7
384
+ fw = 2(n − 1)wn−2u +
385
+ n−2
386
+
387
+ i=2
388
+ (i − 1)xiwi−2un−i
389
+ and
390
+ fu = 2wn−1 +
391
+ n−2
392
+
393
+ i=1
394
+ (n − i)xiwi−1un−(i+1).
395
+ In particular, the subideal (fx1, . . . , fxn−2) of Jf is equal to the ideal u2(w, u)n−3. Thus, if ϕn−3 is the
396
+ (n − 2) × (n − 3) syzygy matrix of the ideal (w, u)n−3 (see (1)), then the columns of the n × (n − 3)
397
+ matrix
398
+ η =
399
+ � ϕn−3
400
+ 0
401
+
402
+ are syzygies of the gradient ideal Jf. We also have the following equalities
403
+ (3)
404
+ ufw = 2(n − 1)wn−2u2 +
405
+ n−2
406
+
407
+ i=2
408
+ (i − 1)xiwi−2un−(i−1) = 2(n − 1)wfxn−2 +
409
+ n−2
410
+
411
+ i=2
412
+ (i − 1)xifxi−1
413
+ and
414
+ (4) (n − 1)ufu = 2(n − 1)wn−1u +
415
+ n−2
416
+
417
+ i=1
418
+ (n − 1)(n − i)xiwi−1un−i = wfw +
419
+ n−1
420
+
421
+ i=1
422
+ (n(n − i − 1) + 1)xifxi.
423
+ Now note that (3) and (4) yield two new (linear) syzygies of Jf, to wit,
424
+ δ1 =
425
+ � α2x2
426
+ α3x3
427
+ · · ·
428
+ αn−2xn−2
429
+ 2(n − 1)w
430
+ −u
431
+ 0 �t
432
+ and
433
+ δ2 =
434
+
435
+ β1x1
436
+ β2x2
437
+ · · ·
438
+ βn−2xn−2
439
+ w
440
+ −(n − 1)u
441
+ �t
442
+ where αi = i − 1 if 2 ≤ i ≤ n − 2, and βi = n(n − i − 1) + 1 whenever 1 ≤ i ≤ n − 2.
443
+ Claim 1. The minimal graded free resolution of Jf is
444
+ (5)
445
+ 0 → R(−n)n−1
446
+ ψ
447
+ −→ R(−n + 1)n → Jf → 0
448
+ where ψ =
449
+
450
+ η
451
+ δ1
452
+ δ2
453
+
454
+ .
455
+ From the discussion above, we already know that the sequence (5) is a complex. To prove that it
456
+ is in fact a minimal graded free resolution of Jf, it suffices to verify that ht In−1(ψ) ≥ 2. Note we
457
+ can write ψ in the form
458
+ ψ =
459
+ � ϕn−3
460
+
461
+ 0
462
+ Φ
463
+
464
+ where Φ =
465
+
466
+ −u
467
+ w
468
+ 0
469
+ −(n − 1)u
470
+
471
+ . Thus, det Φ · In−3(ϕn−3) = u2 · (w, u)n−3 ⊂ In−1(ψ). In particular,
472
+ un−1 ∈ In−1(ψ). On the other hand, if we specialize the entries of ψ via the k-algebra endomorphism
473
+ of R that fixes the variables w, u and maps the remaining ones to 0, we obtain the matrix
474
+ ψ =
475
+
476
+ 
477
+ −w
478
+ 0
479
+ . . .
480
+ 0
481
+ 0
482
+ 0
483
+ u
484
+ −w
485
+ . . .
486
+ 0
487
+ 0
488
+ 0
489
+ 0
490
+ u
491
+ . . .
492
+ 0
493
+ 0
494
+ 0
495
+ ...
496
+ ...
497
+ ...
498
+ ...
499
+ ...
500
+ ...
501
+ 0
502
+ 0
503
+ . . .
504
+ −w
505
+ 0
506
+ 0
507
+ 0
508
+ 0
509
+ . . .
510
+ u
511
+ 2(n − 1)w
512
+ 0
513
+ 0
514
+ 0
515
+ . . .
516
+ 0
517
+ −u
518
+ w
519
+ 0
520
+ 0
521
+ . . .
522
+ 0
523
+ 0
524
+ −(n − 1)u
525
+
526
+ 
527
+ .
528
+ The (n − 1)-minor of ψ obtained by omitting the last row is cwn−1 for a certain non-zero c ∈ k.
529
+ Therefore, the (n − 1)-minor of ψ obtained by omitting the last row has the shape cwn−1 + G, for a
530
+ suitable G ∈ (x1, . . . , xn−2). Hence, (un−1, cwn−1 + G) ⊂ In−1(ψ). Hence, ht In−1(ψ) ≥ 2 as desired.
531
+
532
+ 8
533
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
534
+ A computation shows that, in the first case covered by the theorem (i.e., n = 4), the Jacobian
535
+ ideal Jf is of linear type; in particular, ℓ(Jf) = 4 and r(Jf) = 0. The case n ≥ 5 is treated in
536
+ Proposition 2.3 below. As ingredients we consider the polynomial rings
537
+ T := k[y1, . . . , yn−2, s, t]
538
+ and
539
+ T ′ := k[y1, . . . , yn−2]
540
+ as well as the k-algebras
541
+ A := k[fx1, . . . , fxn−2, fw, fu]
542
+ and
543
+ A′ := k[fx1, . . . , fxn−2].
544
+ By factoring out u2 from the polynomials fx1, . . . , fxn−2 (see (2)), we see that
545
+ A′ ∼= A′′ := k[wn−3, wn−4u, . . . , un−3].
546
+ All these rings are related via the following commutative diagram of k-algebras:
547
+ (6)
548
+ T
549
+ � � A
550
+ T ′���
551
+
552
+ � � A′
553
+
554
+ =
555
+
556
+ ��
557
+
558
+ A′′
559
+ Proposition 2.3. Maintain the above notations, and let f ∈ R be as in Theorem 2.2, with n ≥ 5.
560
+ The following assertions hold:
561
+ (i) F(Jf) ∼= T/I2
562
+
563
+ y1
564
+ · · ·
565
+ yn−3
566
+ y2
567
+ · · ·
568
+ yn−2
569
+
570
+ as k-algebras. In particular, F(Jf) is Cohen-Macaulay;
571
+ (ii) ℓ(Jf) = 4;
572
+ (iii) r(Jf) = 1;
573
+ (iv) reg Derk(R/(f)) = n − 2 (also for n = 4).
574
+ Proof. (i) Since Jf is a homogeneous ideal generated in the same degree, there is an isomorphism
575
+ of graded k-algebras F(Jf) ∼= A, so that F(Jf) ∼= T/Q where Q := ker (T ։ A). By the diagram
576
+ (6), we get Q′T ⊂ Q, where Q′ := ker (T ′ ։ A′). From Remark 2.1(b) we have
577
+ Q′T = I2
578
+
579
+ y1
580
+ · · ·
581
+ yn−3
582
+ y2
583
+ · · ·
584
+ yn−2
585
+
586
+ .
587
+ Hence, ht Q ≥ ht Q′T = n−4. Thus, in order to prove that Q = I2
588
+
589
+ y1
590
+ · · ·
591
+ yn−3
592
+ y2
593
+ · · ·
594
+ yn−2
595
+
596
+ , we must show
597
+ ht Q ≤ n − 4, or equivalently, dim A ≥ 4. Now, on the other hand, Lemma 1.9 gives dim A = rank Θ,
598
+ where Θ is the Hessian matrix of f. Notice that the (Jacobian) matrix Θ can be written in blocks as
599
+ Θ =
600
+
601
+ 0
602
+ Θw,u
603
+ Θt
604
+ w,u
605
+
606
+
607
+ where Θw,u is the (n − 2) × 2 Jacobian matrix of fx1, . . . , fxn−2 with respect to w, u.
608
+ Clearly,
609
+ I2(Θw,u) ̸= 0. In particular, I4(Θ) ̸= 0 because I2(Θw,u)2 ⊂ I4(Θ). Hence rank Θ ≥ 4, so that
610
+ dim A = rank Θ ≥ 4, as needed. The Cohen-Macaulayness of F(Jf) will be confirmed below, in the
611
+ proof of item (iii).
612
+ (ii) Since ℓ(Jf) = dim F(Jf), the statement follows directly from the proof of (i).
613
+ (iii) It is well-known that I2
614
+
615
+ y1
616
+ · · ·
617
+ yn−3
618
+ y2
619
+ · · ·
620
+ yn−2
621
+
622
+ is a perfect ideal with linear resolution (in fact, this
623
+ ideal is resolved by the Eagon-Northcott complex). In particular, the ring F(Jf) ∼= T/Q is Cohen-
624
+ Macaulay and its Castelnuovo-Mumford regularity is 1. Thus, by Lemma 1.10, r(Jf) = reg F(Jf) =
625
+ 1.
626
+ (iv) By Theorem 2.2, f is a linear free divisor. Now the assertion follows from Lemma 1.7.
627
+
628
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
629
+ 9
630
+ Our next goal is to prove that, for f as above, R(Jf) is Cohen-Macaulay.
631
+ First, we need an
632
+ auxiliary lemma.
633
+ Lemma 2.4. Let k[z, v] = k[z1, . . . , zm, v1, . . . , vm] be a polynomial ring, with m ≥ 2. Consider
634
+ F = a1v1z1 + · · · + amvmzm,
635
+ where a1, . . . , an are non-zero elements of k. Let
636
+ M =
637
+
638
+ z1
639
+ z2
640
+ . . .
641
+ zm−1
642
+ z2
643
+ z3
644
+ . . .
645
+ zm
646
+
647
+ .
648
+ Then, k[z, v]/(I2(M), F) is a Cohen-Macaulay domain of codimension m − 1.
649
+ Proof. By [24, Section 4], we have that k[z, v]/I2(M) is a Cohen-Macaulay domain of codimension
650
+ m−2. In particular, since F /∈ I2(M), the ring k[z, v]/(I2(M), F) is Cohen-Macaulay of codimension
651
+ m − 1, and so it remains to show that it is a domain. Clearly, we can assume m ≥ 3.
652
+ Claim. z1 is a (k[z, v]/(I2(M), F))-regular element.
653
+ Suppose that z1 is not (k[z, v]/(I2(M), F))-regular. Then, z1 ∈ p for some associated prime p of
654
+ k[z, v]/(I2(M), F), and hence in particular (z1, I2(M), F) ⊂ p. Now let M1 be the matrix obtained
655
+ from M by deletion of its first column. Then it is easy to see that (z1, z2, I2(M1), F) ⊂ p. If M2 is the
656
+ matrix obtained by deletion of the first column of M1, then (z1, z2, z3, I2(M2), F) ⊂ p. Proceeding
657
+ in this way, we get
658
+ (z1, z2, . . . , zm−1, F) ⊂ p.
659
+ Since ht (z1, z2, . . . , zm−1, F) = m, it follows that ht p ≥ m. But, this is a contradiction because p
660
+ is a associated prime of the Cohen-Macaulay (hence unmixed) ring k[z, v]/(I2(M), F), which has
661
+ codimension m − 1. This proves the Claim.
662
+ Finally, localizing in z1 we deduce the isomorphism
663
+ k[z, v][z−1
664
+ 1 ]
665
+ (I2(M), F)k[z, v][z−1
666
+ 1 ]
667
+ ∼=
668
+ k[z, v2, . . . , vm][z−1
669
+ 1 ]
670
+ I2(M)k[z, v2, . . . , vm][z−1
671
+ 1 ].
672
+ But the ring on the right side of the isomorphism is a domain.
673
+ By the claim, it follows that
674
+ k[z, v]/(I2(M), F) is a domain.
675
+ Theorem 2.5. Let f ∈ R be as in Theorem 2.2. Then, R(Jf) is Cohen-Macaulay.
676
+ Proof. Consider the natural epimorphism
677
+ C := k[x1, . . . , xn−2, w, u, y1, . . . , yn−2, s, t] ։ R(Jf),
678
+ whose kernel we denote J . From the previous considerations (and notations), it follows that
679
+ K := (I1(γ · ψ), Q) ⊂ J
680
+ where γ =
681
+ � y1
682
+ · · ·
683
+ yn−2
684
+ s
685
+ t �
686
+ . Note we can rewrite the ideal K as
687
+ K = I2
688
+
689
+ u
690
+ y1
691
+ · · ·
692
+ yn−3
693
+ w
694
+ y2
695
+ · · ·
696
+ yn−2
697
+
698
+ + (G, H),
699
+ G = γ · δ1 = −su + 2(n − 1)yn−2w +
700
+ n−2
701
+
702
+ i=2
703
+ αiyi−1xi
704
+ and
705
+ H = γ · δ2 = −(n − 1)tu + sw +
706
+ n−2
707
+
708
+ i=1
709
+ βiyixi.
710
+ Claim 1. Let K1 := I2
711
+
712
+ u
713
+ y1
714
+ · · ·
715
+ yn−3
716
+ w
717
+ y2
718
+ · · ·
719
+ yn−2
720
+
721
+ +(H) ⊂ C. Then, C/K1 is a Cohen-Macaulay domain.
722
+ Denote K0 := I2
723
+
724
+ u
725
+ y1
726
+ · · ·
727
+ yn−3
728
+ w
729
+ y2
730
+ · · ·
731
+ yn−2
732
+
733
+ . It is well-known that C/K0 is a Cohen-Macaulay integral
734
+ domain of dimension n + 3. Moreover, since H /∈ K0, this polynomial must be C/K0-regular. Hence,
735
+
736
+ 10
737
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
738
+ the ring C/K1 = C/(K0, H) is Cohen-Macaulay of dimension n + 2. In particular, C/K1 satisfies
739
+ Serre’s condition S2 (see the definition in Subsection 6.1). We claim that, even more, the ring C/K1
740
+ is normal, from which its integrality will follow. In order to show that C/K1 is normal, it remains
741
+ to verify that it is locally regular in codimension 1. Note ht K1 = n − 2. By the classical Jacobian
742
+ criterion, it suffices to prove that
743
+ ht (K1, In−2(Θ)) ≥ n,
744
+ where Θ denotes the Jacobian matrix of K1. Notice that the matrix Θ, after a reordering of its
745
+ columns (which obviously does not affect ideals of minors), can be written in the format
746
+ Θ =
747
+ � Θ′
748
+ 0
749
+
750
+ Θ′′
751
+
752
+ .
753
+ Precisely, Θ′ is the Jacobian matrix of K0 with respect the variables w, u, y1, . . . , yn−2 and Θ′′ is the
754
+ (row) Jacobian matrix of H with respect to the variables x1, . . . , xn−2, s, t. In particular,
755
+ (K1, I1(Θ′′) · In−3(Θ′)) ⊂ (K1, In−2(Θ)).
756
+ Now pick a minimal prime q of (K1, In−2(Θ)). In particular, I1(Θ′′) · In−3(Θ′) ⊂ q, which yields
757
+ I1(Θ′′) ⊂ q or In−3(Θ′) ⊂ q. If I1(Θ′′) ⊂ q then ht q ≥ n because I1(Θ′′) = (y1, . . . , yn−2, w, u). On
758
+ the other hand, if In−3(Θ′) ⊂ q then (K0, In−3(Θ′)) ⊂ q. But it is well-known that
759
+ ht (K0, In−3(Θ′)) = n.
760
+ Therefore, ht q ≥ n in any case, and we get ht (K1, In−2(Θ)) ≥ n, as desired.
761
+ Claim 2. C/K is a Cohen-Macaulay domain of dimension n + 1.
762
+ By Claim 1 and its proof, C/K1 is a Cohen-Macaulay domain of dimension n + 2. Thus, since
763
+ G /∈ K1, the ring C/K = C/(K1, G) is Cohen-Macaulay of dimension n + 1. It remains to prove that
764
+ C/K is a domain. First we claim that u is C/K-regular. Suppose otherwise. Then u ∈ p for some
765
+ associated prime p of C/K, which gives
766
+ (u, wy1, . . . , wyn−3, I2(N), G, H) ⊂ p,
767
+ where
768
+ N :=
769
+
770
+ y1
771
+ · · ·
772
+ yn−3
773
+ y2
774
+ · · ·
775
+ yn−2
776
+
777
+ .
778
+ In particular,
779
+ (7)
780
+ Q1 := (u, w, I2(N), G, H) ⊂ p
781
+ or
782
+ Q2 := (u, y1, . . . , yn−3, G, H) ⊂ p.
783
+ We have
784
+ C/(u, w, I2(N), H) ∼= (k[x1, . . . , xn−2, y1, . . . , yn−2]/(I2(N), β1y1x1 + · · · + βn−2yn−2xn−2))[s, t].
785
+ From this isomorphism and Lemma 2.4, the ring C/(u, w, I2(N), H) is a Cohen-Macaulay domain
786
+ of dimension (n − 1) + 2 = n + 1.
787
+ Thus, since G /∈ (u, w, I2(N), H), we obtain that C/Q1 =
788
+ C/(u, w, I2(N), G, H) is a Cohen-Macaulay ring of dimension n. In particular, ht Q1 = n. On the
789
+ other hand,
790
+ C/Q2 ∼= k[x1, . . . , xn−2, w, yn−2, s, t]/(yn−2w, sw + βn−2yn−2xn−2)
791
+ is a Cohen-Macaulay ring of dimension n, which yields ht Q2 = n. It follows, by (7), that ht p ≥ n.
792
+ This is a contradiction, because p is an associated prime of C/K, which is Cohen-Macaulay of codi-
793
+ mension n−1. So, u is C/K-regular. Now, by localizing in u and setting D := k[x1, . . . , xn−2, w, u, y1, s, t],
794
+ routine calculations give
795
+ (C/K)[u−1] ∼= D[u−1]/(G, H)D[u−1] ∼= k[x1, . . . , xn−2, w, u, y1][u−1],
796
+ which is a domain. Hence, C/K is a domain, which proves Claim 2.
797
+ To conclude the proof of the theorem, we notice that since K ⊂ J are prime ideals of the same
798
+ codimension, then necessarily K = J . In particular, R(Jf) ∼= C/J is Cohen-Macaulay.
799
+
800
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
801
+ 11
802
+ 3. Second family: linear free divisors in P2n−1
803
+ In order to describe our second family of free divisors, consider the standard graded polynomial
804
+ ring R = k[x1, . . . , x2n−2, w, u] in 2n ≥ 4 indeterminates over k. Let
805
+ f = wuq,
806
+ q = (x1u − x2w)(x3u − x4w) · · · (x2(n−1)−1u − x2(n−1)w).
807
+ For every 1 ≤ i ≤ n − 1, denote qi = q/(x2i−1u − x2iw) ∈ R. Then,
808
+ (8)
809
+ fx2i−1 = u2wqi
810
+ and
811
+ fx2i = −w2uqi
812
+ (1 ≤ i ≤ n − 1),
813
+ (9)
814
+ fw = qu − wu
815
+ n−1
816
+
817
+ i=1
818
+ x2iqi
819
+ and
820
+ fu = qw + wu
821
+ n−1
822
+
823
+ i=1
824
+ x2i−1qi.
825
+ Using (8) and (9) we easily deduce the following relations:
826
+ (10)
827
+ det
828
+ � fx2i−1
829
+ fx2j−1
830
+ fx2i
831
+ fx2j
832
+
833
+ = 0
834
+ (1 ≤ i < j ≤ n − 1),
835
+ (11)
836
+ wfx2i−1 + ufx2i = 0
837
+ (1 ≤ i ≤ n − 1),
838
+ wfw + ufu = (n + 1)f,
839
+ (12)
840
+ x2i−1fx2i−1 + x2ifx2i = f
841
+ (1 ≤ i ≤ n − 1),
842
+ (13)
843
+ (n + 1)x2i−1fx2i−1 + (n + 1)x2ifx2i − ufu − wfw = 0
844
+ (1 ≤ i ≤ n − 1).
845
+ Set α = a1a2, β = b1b2 and γ = a1b2 + a2b1. In addition to the equalities above, we have
846
+ (n + 1)
847
+ n−1
848
+
849
+ i=1
850
+ x2ifx2i
851
+ =
852
+ −(n + 1)w2u
853
+ n−1
854
+
855
+ i=1
856
+ x2iqi
857
+ =
858
+ (n + 1)[w(fw − qu)]
859
+ =
860
+ nwfw − ufu + (ufu + wfw) − (n + 1)f
861
+ =
862
+ nwfw − ufu.
863
+ (14)
864
+ Now we are in a position to prove the first result of this section.
865
+ Theorem 3.1. Maintain the above notations. The following assertions hold:
866
+ (i) f is a linear free divisor;
867
+ (ii) The 2n × (2n − 1) matrix
868
+ (15)
869
+ ψn =
870
+
871
+ 
872
+ w (n + 1)x1
873
+ . . .
874
+ 0
875
+ 0
876
+ 0
877
+ u
878
+ (n + 1)x2
879
+ . . .
880
+ 0
881
+ 0
882
+ (n + 1)x2
883
+ ...
884
+ ...
885
+ ...
886
+ ...
887
+ ...
888
+ ...
889
+ 0
890
+ 0
891
+ · · ·
892
+ w (n + 1)x2n−3
893
+ 0
894
+ 0
895
+ 0
896
+ · · ·
897
+ u
898
+ (n + 1)x2n−2 (n + 1)x2n−2
899
+ 0
900
+ −w
901
+ · · ·
902
+ 0
903
+ −w
904
+ −nw
905
+ 0
906
+ −u
907
+ · · ·
908
+ 0
909
+ −u
910
+ u
911
+
912
+ 
913
+ is a syzygy matrix of Jf. Thus a free basis of TR/k(f) is {θ1, . . . , θ2n−1, ε2n}, where the θi’s
914
+ correspond to the columns of ψn;
915
+ (iii) reg Derk(R/(f)) = 2(n − 1).
916
+
917
+ 12
918
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
919
+ Proof. (i) Consider the 2n × 2n matrix
920
+ M =
921
+
922
+ 
923
+ w x1
924
+ . . .
925
+ 0
926
+ 0
927
+ 0
928
+ x1
929
+ u
930
+ x2
931
+ . . .
932
+ 0
933
+ 0
934
+ (n + 1)x2
935
+ x2
936
+ ...
937
+ ...
938
+ ...
939
+ ...
940
+ ...
941
+ ...
942
+ ...
943
+ 0
944
+ 0
945
+ · · ·
946
+ w x2n−3
947
+ 0
948
+ x2n−3
949
+ 0
950
+ 0
951
+ · · ·
952
+ u
953
+ x2n−2 (n + 1)x2n−2 x2n−2
954
+ 0
955
+ 0
956
+ · · ·
957
+ 0
958
+ 0
959
+ −nw
960
+ w
961
+ 0
962
+ 0
963
+ · · ·
964
+ 0
965
+ 0
966
+ u
967
+ u
968
+
969
+ 
970
+ .
971
+ Using (11), (12), (14), and the Euler relation, it is easy to see that
972
+ ∇f · M = [ 0
973
+ f
974
+ · · ·
975
+ 0
976
+ f
977
+ 0
978
+ 2nf ],
979
+ so that ∇f · M ≡ 0 mod f. Moreover, (n + 1)f = det M . Thus, by Lemma 1.4 (or, in this case, by
980
+ the version of Saito’s criterion stated in [8, Theorem 2.4]), we conclude that f is a linear free divisor.
981
+ (ii) For simplicity, write ψn = ψ. By (i) and Lemma 1.3, we know that Jf is a codimension 2
982
+ perfect ideal, so it suffices to prove that ∇f ·ψ = 0 and that ψ has maximal rank. The former follows
983
+ by (11), (13) and (14). Now denote by ∆ the (2n − 1)-minor of ψ obtained by omitting the 2n-th
984
+ row of ψ. It is easy to see that ∆ modulo w is given by (n + 1)nx1x3 · · · x2n−3un. In particular, ∆ is
985
+ non-zero as well. Hence, ψ has maximal rank.
986
+ (iii) By part (i), f is a linear free divisor (in 2n variables). Now we apply Lemma 1.7.
987
+ For the next results, we consider a set of 2n variables z1, . . . , z2n−2, s, t over R as well as the natural
988
+ epimorphism
989
+ S := k[x1, . . . , x2n−2, w, u, z1, . . . , z2n−2, s, t] ։ R(Jf)
990
+ whose kernel we denote J . By the equalities (10) we have an inclusion
991
+ I2
992
+
993
+ z1
994
+ z3
995
+ . . .
996
+ z2n−3
997
+ z2
998
+ z4
999
+ . . .
1000
+ z2n−2
1001
+
1002
+ ⊂ J .
1003
+ Therefore,
1004
+ K :=
1005
+
1006
+ I1(γ · ψn), I2
1007
+
1008
+ z1
1009
+ z3
1010
+ . . .
1011
+ z2n−3
1012
+ z2
1013
+ z4
1014
+ . . .
1015
+ z2n−2
1016
+ ��
1017
+ ⊂ J
1018
+ where γ =
1019
+
1020
+ z1
1021
+ . . .
1022
+ z2n−2
1023
+ s
1024
+ t
1025
+
1026
+ . The generators of I1(γ · ψn) are of three types:
1027
+ (16)
1028
+ wz2i−1 + uz2i
1029
+ (1 ≤ i ≤ n − 1),
1030
+ Fi := (n + 1)(x2i−1z2i−1 + x2iz2i) − ws − ut
1031
+ (1 ≤ i ≤ n − 1),
1032
+ G := (n + 1)
1033
+ n−1
1034
+
1035
+ i=1
1036
+ x2iz2i − nws + ut.
1037
+ We can use the generators of type (16) as well as the ideal I2
1038
+
1039
+ z1
1040
+ z3
1041
+ . . .
1042
+ z2n−3
1043
+ z2
1044
+ z4
1045
+ . . .
1046
+ z2n−2
1047
+
1048
+ to rewrite K as
1049
+ K =
1050
+
1051
+
1052
+
1053
+
1054
+ I2
1055
+
1056
+ z1
1057
+ z3
1058
+ . . .
1059
+ z2n−3
1060
+ −u
1061
+ z2
1062
+ z4
1063
+ . . .
1064
+ z2n−2
1065
+ w
1066
+
1067
+
1068
+ ��
1069
+
1070
+ =:K0
1071
+ , F1, . . . , Fn−1, G
1072
+
1073
+
1074
+
1075
+
1076
+
1077
+ With this, we have
1078
+ S/K ∼= A[x1, . . . , x2n−2, s, t]/(F1, . . . , Fn−1, G)A[x1, . . . , x2n−2, s, t]
1079
+
1080
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
1081
+ 13
1082
+ where A := k[z1, . . . , z2n−2, w, u]/K0. Now, consider the 2n × n matrix
1083
+ ζ =
1084
+
1085
+ 
1086
+ (n + 1)z1
1087
+ 0
1088
+ . . .
1089
+ 0
1090
+ 0
1091
+ (n + 1)z2
1092
+ 0
1093
+ . . .
1094
+ 0
1095
+ (n + 1)z2
1096
+ ...
1097
+ ...
1098
+ ...
1099
+ ...
1100
+ ...
1101
+ 0
1102
+ 0
1103
+ . . . (n + 1)z2n−3
1104
+ 0
1105
+ 0
1106
+ 0
1107
+ . . . (n + 1)z2n−2 (n + 1)z2n−2
1108
+ −w
1109
+ −w . . .
1110
+ −w
1111
+ −nw
1112
+ −u
1113
+ −u . . .
1114
+ −u
1115
+ u
1116
+
1117
+ 
1118
+ taken as a matrix with entries in the domain A. We denote by M the A-module defined as the
1119
+ cokernel of ζ.
1120
+ Proposition 3.2. Maintain the above notations. Then:
1121
+ (i) M is an A-module of projective dimension 1;
1122
+ (ii) The symmetric algebra SymAM is a Cohen-Macaulay domain of dimension 2n + 1.
1123
+ Proof. (i) Consider the complex
1124
+ (17)
1125
+ 0 −→ An
1126
+ ζ
1127
+ −→ A2n −→ M −→ 0.
1128
+ By the well-known Buchsbaum-Eisenbud acyclicity criterion, in order to show that (17) is exact it
1129
+ suffices to confirm that rank ζ = n. To this end, consider the following n × n submatrix of ζ:
1130
+ η :=
1131
+
1132
+ 
1133
+ (n + 1)z1
1134
+ · · ·
1135
+ 0
1136
+ 0
1137
+ ...
1138
+ ...
1139
+ ...
1140
+ ...
1141
+ 0
1142
+ . . .
1143
+ (n + 1)z2n−3
1144
+ 0
1145
+ −w
1146
+ . . .
1147
+ −w
1148
+ −nw
1149
+
1150
+  .
1151
+ We have det η = −n(n + 1)n−1z1 · · · z2n−3w ̸= 0 (modK0). Hence, ζ has rank n.
1152
+ (ii) In addition to the property given in (i), recall A is a Cohen-Macaulay domain and ht K0 = n−1.
1153
+ Then, because of [29, Theorem 1.1], it suffices to show that
1154
+ ht(It(ζ) + K0) ≥ 2n − t + 1
1155
+ for every 1 ≤ t ≤ n. For this note first that, by suitably permuting the rows of ζ, we obtain a matrix
1156
+ N of the form
1157
+ N =
1158
+
1159
+ 
1160
+ ∗z1 · · ·
1161
+ 0
1162
+ . . .
1163
+ 0
1164
+ 0
1165
+ ...
1166
+ ...
1167
+ ...
1168
+ . . .
1169
+ ...
1170
+ ...
1171
+ 0
1172
+ 0
1173
+ ∗z2i−1 . . .
1174
+ 0
1175
+ 0
1176
+ ...
1177
+ ...
1178
+ ...
1179
+ ...
1180
+ ...
1181
+ ...
1182
+ 0
1183
+ 0
1184
+ 0
1185
+ . . . ∗z2n−3
1186
+ 0
1187
+ −u −u
1188
+ −u
1189
+ . . .
1190
+ −u
1191
+ u
1192
+ ∗z2 · · ·
1193
+ 0
1194
+ . . .
1195
+ 0
1196
+ ∗z2
1197
+ ...
1198
+ ...
1199
+ ...
1200
+ · · ·
1201
+ ...
1202
+ ...
1203
+ 0
1204
+ · · ·
1205
+ ∗z2i
1206
+ . . .
1207
+ 0
1208
+ ∗z2i
1209
+ ...
1210
+ ...
1211
+ ...
1212
+ ...
1213
+ ...
1214
+ ...
1215
+ 0
1216
+ 0
1217
+ 0
1218
+ . . . ∗z2n−2 ∗z2n−2
1219
+ −w −w
1220
+ −w
1221
+ . . .
1222
+ −w
1223
+ −nw
1224
+
1225
+ 
1226
+ where all coefficients ∗ are equal to n + 1. Let us denote the top and bottom blocks of N by Nodd
1227
+ and Neven, respectively. Our goal is to prove ht(It(N) + K0) ≥ 2n − t + 1 whenever 1 ≤ t ≤ n, where
1228
+
1229
+ 14
1230
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
1231
+ as before
1232
+ K0 = I2
1233
+
1234
+ z1
1235
+ z3
1236
+ . . .
1237
+ z2n−3
1238
+ −u
1239
+ z2
1240
+ z4
1241
+ . . .
1242
+ z2n−2
1243
+ w
1244
+
1245
+ .
1246
+ Let P be a prime ideal containing It(N) + K0 and having the same codimension. From Nodd it is
1247
+ easy to see that the ideal Ct generated by the t-products of the set {z1, z3, . . . , z2n−3, z2n−1 := u} is
1248
+ contained in P. But, by [48, Section 2], the minimal primes of Ct are of the form (z2j1−1, . . . , z2jn−t+1−1)
1249
+ for certain 1 ≤ j1 < · · · < jn−t+1 ≤ n. Hence, we can suppose that (z2j1−1, . . . , z2jn−t+1−1) ⊂ P with
1250
+ 1 ≤ j1 < · · · < jn−t+1 ≤ n. Analogously, from Neven we can write (z2i1, . . . , z2in−t+1) ⊂ P for certain
1251
+ 1 ≤ i1 < · · · < in−t+1 ≤ n (we put z2n := w).
1252
+ Let us assume that the following condition takes place:
1253
+ (†)
1254
+ There exists j ∈ {1, . . . , n} such that {z2j−1, z2j} ∩ P = {z2j−1} or {z2j}.
1255
+ Suppose {z2j−1, z2j} ∩ P = {z2j−1}. Then, by the relations in K0, all the odd variables belong to
1256
+ P. Therefore, we have
1257
+ (n − t + 1)
1258
+
1259
+ ��
1260
+
1261
+ even variables
1262
+ +
1263
+ n
1264
+ ����
1265
+ odd variables
1266
+ = 2n − t + 1 variables in P,
1267
+ which gives ht(It(N) + K0) ≥ 2n − t + 1 for 1 ≤ t ≤ n. The argument for the case {z2j−1, z2j} ∩ P =
1268
+ {z2j} is similar.
1269
+ Now, suppose that (†) is not true. Without loss of generality, we may assume (j1, . . . , jn−t+1) =
1270
+ (1, . . . , n − t + 1). It follows that z1, z2, . . . , z2(n−t+1)−1, z2(n−t+1) ∈ P. Consider the following t × t
1271
+ submatrix of ζ:
1272
+
1273
+ 
1274
+ 0
1275
+ ∗z2(n−t+1)+1
1276
+ 0
1277
+ . . .
1278
+ 0
1279
+ 0
1280
+ 0
1281
+ 0
1282
+ ∗z2(n−t+2)+1 . . .
1283
+ 0
1284
+ 0
1285
+ ...
1286
+ ...
1287
+ ...
1288
+ ...
1289
+ ...
1290
+ ...
1291
+ 0
1292
+ 0
1293
+ 0
1294
+ . . . ∗z2n−3
1295
+ 0
1296
+ −u
1297
+ −u
1298
+ −u
1299
+ . . .
1300
+ −u
1301
+ u
1302
+ −w
1303
+ −w
1304
+ −w
1305
+ . . .
1306
+ −w
1307
+ −nw
1308
+
1309
+ 
1310
+ .
1311
+ The determinant of this matrix is cz2(n−t+1)+1 · · · z2n−3z2n−1z2n for some c ∈ k; in particular, this
1312
+ determinant lies in P and hence zs ∈ P for some s with 2(n − t + 1) + 1 ≤ s ≤ 2n. Therefore,
1313
+ since we are assuming that (†) does not hold, there exist two consecutive indices 2j − 1, 2j with
1314
+ 2(n − t + 1) + 1 ≤ 2j − 1, 2j ≤ 2n satisfying z2j−1, z2j ∈ P. Now we can suppose, without loss of
1315
+ generality, that 2j − 1 = 2(n − t + 1) + 1. We have
1316
+ (z1, z2, . . . , z2(n−t+1)−1, z2(n−t+1), z2(n−t+1)+1, z2(n−t+1)+2) + K0 ⊂ P.
1317
+ Hence, considering the subideal
1318
+ �K0 := I2
1319
+ � z2(n−t+2)+1
1320
+ z2(n−t+3)+1
1321
+ . . .
1322
+ z2n−3
1323
+ −u
1324
+ z2(n−t+3)
1325
+ z2(n−t+4)
1326
+ . . .
1327
+ z2n−2
1328
+ w
1329
+
1330
+ ⊂ K0,
1331
+ we observe that all the variables appearing in �K0 are different from the 2(n − t + 2) variables that
1332
+ already belong to P; since in addition ht �K0 = t − 3, we conclude
1333
+ ht(It(N) + K0) = ht P ≥ 2(n − t + 2) + (t − 3) = 2n − t + 1
1334
+ whenever 1 ≤ t ≤ n, as needed.
1335
+ So we have shown that SymAM is a Cohen-Macaulay domain. Note that M possesses a rank as
1336
+ an A-module (equal to n, by (17)). Now recall that the Rees algebra of the A-module M, denoted
1337
+ RA(M), can be defined as the quotient of SymAM by its A-torsion submodule (see [42] for the
1338
+ general theory). Consequently, since in this case A and SymAM are both domains, we can identify
1339
+ SymAM = RA(M); in particular, using [42, Proposition 2.2] (which gives a formula for the dimension
1340
+
1341
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
1342
+ 15
1343
+ of the Rees algebra of a module with rank) and noticing that dim A = 2n − (n − 1) = n + 1, we
1344
+ finally get
1345
+ dim SymAM = dim RA(M) = dim A + rankAM = (n + 1) + n = 2n + 1.
1346
+ Theorem 3.3. Maintain the above notations. Then:
1347
+ (i) K = J ;
1348
+ (ii) The Rees algebra R(Jf) is Cohen-Macaulay;
1349
+ (iii) Let T = k[z1, . . . , z2n−2, s, t], with n ≥ 3. Then,
1350
+ F(Jf) ∼= T/I2
1351
+
1352
+ z1
1353
+ z3
1354
+ . . .
1355
+ z2n−3
1356
+ z2
1357
+ z4
1358
+ . . .
1359
+ z2n−2
1360
+
1361
+ as k-algebras. In particular, F(Jf) is Cohen-Macaulay, ℓ(Jf) = n + 2, and r(Jf) = 1.
1362
+ Proof. We have a natural epimorphism
1363
+ SymAM ∼= S/K ։ S/J ∼= R(Jf).
1364
+ By Proposition 3.2, K is a prime ideal of S, and dim SymAM = 2n + 1 = dim R + 1 = dim R(Jf).
1365
+ So ht K = ht J , and then K = J .
1366
+ Using Proposition 3.2 once again, we obtain that R(Jf) is
1367
+ Cohen-Macaulay. This proves (i) and (ii).
1368
+ In order to prove (iii), let R+ be the homogeneous maximal ideal of R. We have
1369
+ F(Jf) ∼= R(Jf)/R+R(Jf) ∼= S/(R+S, K) ∼= T/I2
1370
+
1371
+ z1
1372
+ z3
1373
+ . . .
1374
+ z2n−3
1375
+ z2
1376
+ z4
1377
+ . . .
1378
+ z2n−2
1379
+
1380
+ ,
1381
+ which, as is well-known (being a generic determinantal ring), is Cohen-Macaulay of dimension n + 2
1382
+ and moreover has regularity 1. The latter, by Lemma 1.10, gives r(Jf) = 1.
1383
+ Remark 3.4. (a) The ideal Jf is of linear type if and only if n = 2 (i.e., the case where R is a
1384
+ polynomial ring in 4 variables). Indeed, by Theorem 3.3(iii), if n ≥ 3 then r(Jf) = 1 ̸= 0, hence Jf
1385
+ cannot be of linear type. Conversely, let n = 2, so that R = k[x1, x2, w, u]. We can check that the
1386
+ ideals of minors of ψ2 (see (15)) satisfy
1387
+ ht Is(ψ2) ≥ 5 − s = (2n − 1) + 2 − s
1388
+ for
1389
+ s = 1, 2, 3.
1390
+ It follows by [29, Theorem 1.1] that Jf is of linear type (in particular, r(Jf) = 0). Note in addition
1391
+ that SymRJf is a complete intersection, i.e., the polynomials
1392
+ L1 = 3x1z1 + 3x2z2 − ws − ut, L2 = wz1 + uz2, L3 = x2z1 + x1z2 + us + wt
1393
+ form an R[z1, z2, s, t]-sequence.
1394
+ It is also worth mentioning that, in 3 variables, if g ∈ k[x, y, z] defines a rank 3 central hyperplane
1395
+ arrangement, then it has been recently shown that Jg is of linear type and moreover that the property
1396
+ of the symmetric algebra of Jg being a complete intersection characterizes the freeness of g (see [10,
1397
+ Proposition 2.14 and Corollary 2.15]).
1398
+ (b) Let n = 3, i.e., R = k[x1, x2, x3, x4, w, u]. In this case, a computation shows that the entries of the
1399
+ product
1400
+
1401
+ z1
1402
+ · · ·
1403
+ z4
1404
+ s
1405
+ t
1406
+
1407
+ · ψ3 form a regular sequence, i.e., SymRJf is a complete intersection
1408
+ once again.
1409
+ Question 3.5. For an arbitrary n, is SymRJf a complete intersection ring?
1410
+
1411
+ 16
1412
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
1413
+ 4. Third family: non-linear free plane curves
1414
+ In this section we furnish our third family of free divisors and some of its properties. In fact, from
1415
+ such a family we will derive yet another one; see Remark 4.3. Similar examples (also in 3 variables)
1416
+ can be found, e.g., in [20] and [34].
1417
+ Theorem 4.1. Consider the two-parameter family of polynomials
1418
+ f = fα,β = (xα − yα−1z)β + yαβ ∈ R = k[x, y, z],
1419
+ for integers α, β ≥ 2. The following assertions hold:
1420
+ (i) f is a free divisor;
1421
+ (ii) R(Jf) is Cohen-Macaulay if (α, β) = (2, 3) or if α ≥ 2 and β = 2;
1422
+ (iii) Jf is not of linear type if α = 2 and β ≥ 3 or if α ≥ 3 and β = 2. In these cases, F(Jf) is
1423
+ a polynomial ring over k and then r(Jf) = 0;
1424
+ (iv) f is reducible over k = C. If k ⊆ R then f is reducible if β is odd and irreducible otherwise;
1425
+ (v) reg Derk(R/(f)) = αβ − 2.
1426
+ Proof. (i) We have
1427
+ fx = αβxα−1(xα−yα−1z)β−1,
1428
+ fy = αβyαβ−1−(α−1)βyα−2z(xα−yα−1z)β−1, fz = −βyα−1(xα−yα−1z)β−1
1429
+ Note that we can write fx, fy and fz as
1430
+ fx = αxα−1G,
1431
+ fy = xα−1P + yα−1Q,
1432
+ fz = −yα−1G
1433
+ for certain G, P, Q ∈ R. Thus,
1434
+ (18)
1435
+ Jf = I2
1436
+
1437
+
1438
+ yα−1
1439
+ −α−1P
1440
+ 0
1441
+ G
1442
+ αxα−1
1443
+ Q
1444
+
1445
+  .
1446
+ In particular, since Jf has codimension two, it follows by the Hilbert-Burch theorem that Jf is a
1447
+ perfect ideal. By Lemma 1.3, f is a free divisor.
1448
+ (ii) In the specific cases (α, β) = (2, 2) and (α, β) = (2, 3), the Cohen-Macaulayness of R(Jf) can
1449
+ be confirmed by a routine computation. Therefore, we may suppose α ≥ 3 and β = 2. Determining
1450
+ G, P, Q in this situation, we obtain from (18) that a syzygy matrix of Jf is
1451
+ ϕ =
1452
+
1453
+
1454
+ yα−1
1455
+ (α − 1)xyα−2z
1456
+ 0
1457
+ α(xα − yα−1z)
1458
+ αxα−1
1459
+ α2yα + α(α − 1)yα−2z2
1460
+
1461
+  .
1462
+ Let us denote by Q the (prime) ideal of k[x, y, z, s, t, u] = R[s, t, u] defining R(Jf). Notice that
1463
+ (19)
1464
+ I1
1465
+ �� s
1466
+ t
1467
+ u �
1468
+ · ϕ
1469
+
1470
+ = (syα−1 + αuxα−1, yα−2H + αxαt) ⊂ Q,
1471
+ where H := (α − 1)xzs + (α2y2 + α(α − 1)z2)u − αyzt. Clearly, we can rewrite I1([ s
1472
+ t
1473
+ u ] · ϕ) as
1474
+ I1
1475
+ �� yα−2
1476
+ xα−2 �
1477
+ ·
1478
+
1479
+ sy
1480
+ H
1481
+ αux
1482
+ αx2t
1483
+ ��
1484
+ .
1485
+ Now it follows from Cramer’s rule that
1486
+ (20)
1487
+ det
1488
+
1489
+ sy
1490
+ H
1491
+ αux
1492
+ αx2t
1493
+
1494
+ = αx2yst − αuxH = αx(xyst − uH) ∈ Q.
1495
+ From (19) and (20) we deduce an inclusion
1496
+ P := (syα−1 + αuxα−1, yα−2H + αxαt, xyst − uH) ⊂ Q.
1497
+ Claim 1. P is a perfect ideal of height 2.
1498
+
1499
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
1500
+ 17
1501
+ Clearly, ht P ≥ 2 and
1502
+ P = I2
1503
+
1504
+
1505
+ H
1506
+ −xt
1507
+ −ys
1508
+ u
1509
+ αxα−1
1510
+ yα−2
1511
+
1512
+
1513
+ Now, Claim 1 follows by the Hilbert-Burch theorem.
1514
+ Claim 2. P = Q.
1515
+ Since P ⊆ Q and ht P = ht Q = 2, it suffices to prove that the ideal P is prime. Note first that x is
1516
+ regular modulo P. To show this, suppose otherwise. Then we would have x ∈ p for some associated
1517
+ prime p of R[s, t, u]/P. In particular, (x, syα−1, yα−2H, uH) ⊂ p. Using the explicit format of H
1518
+ given above, it is easy to see that
1519
+ ht (x, syα−1, yα−2H, uH) ≥ 3.
1520
+ In particular, ht p ≥ 3. But this is a contradiction because, by Claim 1, P is perfect of height 2.
1521
+ Now, by inverting the element x we get
1522
+ D :=
1523
+ k[x, y, z, s, t, u][x−1]
1524
+ Pk[x, y, z, s, t, u][x−1]
1525
+ =
1526
+ k[x, y, z, s, t, u][x−1]
1527
+ (u + α−1x1−αyα−1s, xt + α−1x1−αyα−2H, xyst − uH)
1528
+ =
1529
+ k[x, y, z, s, t, u][x−1]
1530
+ (u + α−1x1−αyα−1s, xt + α−1x1−αyα−2H)
1531
+ ∼=
1532
+ k[x, y, z, s, t][x−1]
1533
+ (at + bs)
1534
+ ∼=
1535
+ k[x, y, z, x−1][s, t]
1536
+ (at + bs)
1537
+ where a := x(1 − x−αyα−1z)
1538
+ and
1539
+ b := x1−αyα−2[(α − 1)za + x1−αyα+1] are elements in the
1540
+ coefficient ring k[x, y, z, x−1]. Since a and b are easily seen to be relatively prime in this facto-
1541
+ rial domain, the element at + bs must be irreducible in k[x, y, z, x−1][s, t], so that the quotient
1542
+ k[x, y, z, x−1][s, t]/(at+bs) ∼= D is a domain. This means (as x is regular modulo P) that R[s, t, u]/P
1543
+ is a domain, as needed.
1544
+ Finally, by Claim 1 and Claim 2, we conclude that R(Jf) is Cohen-Macaulay.
1545
+ (iii) First, if α = 2, a simple inspection shows that the linear type property of Jf fails in case
1546
+ β ≥ 3 (and holds if β = 2), by analyzing the saturation of the ideal S of 2 linear forms defining
1547
+ SymRJf in R[s, t, u] by the ideal Jf. The resulting ideal – which thus defines R(Jf) (see, e.g., [31,
1548
+ Lemma 2.11]) – turns out to strictly contain S . In addition, it is contained in (x, y, z)R[s, t, u], so
1549
+ that F(Jf) ∼= k[s, t, u]. As to the case where α ≥ 3 and β = 2, we can use a previous calculation.
1550
+ Precisely, by the structure of the defining ideal Q = P ⊂ k[x, y, z, s, t, u] of R(Jf) as obtained in
1551
+ item (ii), we readily get that Jf is not of linear type. Moreover, by looking at the non-linear Rees
1552
+ equation
1553
+ xyst − uH ∈ (x, y, z)R[s, t, u]
1554
+ we conclude that, once again, F(Jf) ∼= k[s, t, u]. In either case, ℓ(Jf) = 3 and (by Lemma 1.10)
1555
+ r(Jf) = 0.
1556
+ (iv) Let k = C and assume first that β = 2m, m ≥ 1. We have f = (xα − yα−1z)2m + y2mα and
1557
+ hence, for i = √−1 and A := xα − yα−1z,
1558
+ (21)
1559
+ f = (iAm + ymα)(−iAm + ymα).
1560
+ Now, assume β ≥ 3 is odd. Write f = (xα − yα−1z + yα − yα)β + yαβ and set B := xα − yα−1z + yα.
1561
+ Thus we can rewrite
1562
+ f = (B − yα)β + yαβ = [Bg + (−1)βyαβ] + yαβ = Bg
1563
+
1564
+ 18
1565
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
1566
+ for a suitable g := gα,β ∈ R of degree α(β − 1). Of course, this also shows that if k ⊆ R and β is
1567
+ odd, then f is reducible over k.
1568
+ Finally, if k ⊆ R then the irreducibility of f over k for even β follows from the structure of the
1569
+ factors described in (21) over the unique factorization domain C[x, y, z].
1570
+ (v) According to item (i), f is a free divisor. Noticing that its degree is αβ, the assertion follows
1571
+ by Lemma 1.7.
1572
+ Remark 4.2. Computations strongly suggest that the cases described in item (ii) are precisely the
1573
+ ones where the Cohen-Macaulayness of R(Jf) takes place. Concerning the linear type property of
1574
+ Jf, computations also indicate that Jf is not of linear type if α, β ≥ 3 – cases not covered by part
1575
+ (iii). The (partially computer-assisted) conclusion is that Jf is of linear type if and only if α = β = 2.
1576
+ Remark 4.3. Here we want to point out that the form g = gα,β ∈ Rα(β−1) defined in the proof of
1577
+ item (iv) is also a free divisor provided that β ≥ 3 is odd. First, note that g is defined by means of
1578
+ Bg = (B − yα)β + yαβ, where B = xα − yα−1z + yα. Explicitly, from
1579
+ Bg = (B − yα)β + yαβ =
1580
+ β
1581
+
1582
+ j=0
1583
+ �β
1584
+ j
1585
+
1586
+ Bβ−j(−yα)j + yαβ = B ·
1587
+
1588
+
1589
+ β−1
1590
+
1591
+ j=0
1592
+ (−1)j
1593
+ �β
1594
+ j
1595
+
1596
+ Bβ−j−1yαj
1597
+
1598
+
1599
+ we get g =
1600
+ β−1
1601
+
1602
+ j=0
1603
+ (−1)j
1604
+ �β
1605
+ j
1606
+
1607
+ Bβ−j−1yαj. An elementary calculation shows that we can write gx, gy, gz
1608
+ as gx = αxα−1T, gy = xα−1U + yα−1V , gz = yα−1T, for certain T, U, V ∈ R. Thus,
1609
+ Jg = I2
1610
+
1611
+
1612
+ yα−1
1613
+ −α−1U
1614
+ 0
1615
+ T
1616
+ αxα−1
1617
+ V
1618
+
1619
+  .
1620
+ Since ht Jg = 2, the ideal Jg must be perfect by the Hilbert-Burch theorem. Therefore, g is a free
1621
+ divisor whenever β ≥ 3 is odd. In particular, by Lemma 1.7 we have reg Derk(R/(g)) = αβ − α − 2.
1622
+ We also observe that, for every odd β ≥ 3, the form g is reducible over k = C. Indeed, let
1623
+ Φ =
1624
+ β−1
1625
+
1626
+ j=0
1627
+ (−1)j
1628
+ �β
1629
+ j
1630
+
1631
+ Zβ−j−1W j ∈ C[Z, W],
1632
+ which then factors as a product of linear forms in Z and W. Now let σ: C[Z, W] → C[x, y, z] be the
1633
+ homomorphism given by Z �→ B and W �→ yα. Then, the form σ(Φ) = g is reducible in C[x, y, z].
1634
+ Finally, let us study the algebra R(Jgα,β) in the cases β = 3 and β = 5.
1635
+ If β = 3 then first as a matter of illustration we explicitly have
1636
+ gα,3 = B2 − 3Byα + 3y2α
1637
+ =
1638
+ (B − yα)2 − yα(B − 2yα) = (B − yα)2 − yα(B − yα) + y2α
1639
+ =
1640
+ (xα − yα−1z + yα)(xα − yα−1z − 2yα) + 3y2α
1641
+ =
1642
+ x2α − 2xαyα−1z − xαyα + y2α−2z2 + y2α−1z + y2α.
1643
+ Computations show that, for all α ≥ 2, the ring R(Jgα,3) is Cohen-Macaulay, r(Jgα,3) = 0, but Jf is
1644
+ of linear type if and only if α = 2; more precisely, if L (resp. Q) defines SymRJgα,3 (resp. R(Jgα,3))
1645
+ in the polynomial ring R[s, t, u], then we have found the relation
1646
+ L : Q = (xα−1, yα−2)R[s, t, u].
1647
+ If β = 5, then in the cases α = 2 and α = 3 we have confirmed that depth R(Jgα,5) = 3, i.e.,
1648
+ the ring R(Jgα,5) is almost Cohen-Macaulay in the sense that its depth is 1 less than its dimension.
1649
+ Also, we have r(Jgα,5) = 0. We strongly believe such properties hold for α ≥ 4 as well.
1650
+
1651
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
1652
+ 19
1653
+ Question 4.4. Let β ≥ 7 be odd. Is R(Jgα,β) almost Cohen-Macaulay? Is it true that r(Jgα,β) = 0 ?
1654
+ If k ⊆ R and β ≥ 3 is odd, is gα,β irreducible?
1655
+ 5. Fourth family: linear free plane curves
1656
+ In this section, we let R = k[x, y, z] and our objective is to exhibit our fourth family of free divisors,
1657
+ which as we shall prove have the linearity property as in two of the previous families. Although in
1658
+ [27, 6.4, p. 837] a classification of linear free divisors in at most 4 variables in the case k = C is
1659
+ given, the approach provided here describes concretely a recipe to detect some linear free divisors
1660
+ in 3 variables starting from a suitable 2 × 3 matrix L of linear forms (in fact, from only 3 linear
1661
+ forms, as we shall clarify), where, we recall, k is not required to be algebraically closed; in regard to
1662
+ this point, it should be mentioned that, even though most of the existing results in the literature are
1663
+ established over C, there has always been an interest in free divisor theory over arbitrary fields (see,
1664
+ e.g., [46] and [49]).
1665
+ We could start focusing on the case where the 6 entries of L are general linear forms, but there is in
1666
+ fact no need for this setting as we only suppose the forms in the first row to be linearly independent
1667
+ over k and, naturally, the rank of the matrix to be 2. Thus, after eventually a linear change of
1668
+ variables, we let
1669
+ L = L (L1, L2, L3) :=
1670
+
1671
+ x
1672
+ y
1673
+ z
1674
+ L1
1675
+ L2
1676
+ L3
1677
+
1678
+ ,
1679
+ for linear forms
1680
+ L1 = a1x + a2y + a3z, L2 = a4x + a5y + a6z, L3 = a7x + a8y + a9z,
1681
+ where at least one of the 2 × 2 minors
1682
+ Q1 = xL2 − yL1, Q2 = xL3 − zL1, Q3 = yL3 − zL2
1683
+ does not vanish. We also consider the Jacobian matrix of Q = {Q1, Q2, Q3},
1684
+ Θ = Θ(Q) =
1685
+
1686
+
1687
+ Q1x
1688
+ Q2x
1689
+ Q3x
1690
+ Q1y
1691
+ Q2y
1692
+ Q3y
1693
+ Q1z
1694
+ Q2z
1695
+ Q3z
1696
+
1697
+  =
1698
+
1699
+
1700
+ L2 − a4x − a1y
1701
+ L3 + a7x − a1z
1702
+ a7y − a4z
1703
+ a5x − L1 − a2y
1704
+ a8x − a2z
1705
+ L3 − a8y − a5z
1706
+ a6x − a3y
1707
+ a9x − L1 − a3z
1708
+ a9y − L2 − a6z
1709
+
1710
+  .
1711
+ Our result in this section is as follows.
1712
+ Theorem 5.1. Maintain the above notations. If the cubic f := det Θ is non-zero and reduced, then
1713
+ f is a linear free divisor. Precisely, a free basis of TR/k(f) is {θ1, θ2, ε3}, where ε3 is the Euler
1714
+ derivation, θ2 = L1 ∂
1715
+ ∂x + L2 ∂
1716
+ ∂y + L3 ∂
1717
+ ∂z, and
1718
+ θ1 = (a1L1 + a2L2 + a3L3) ∂
1719
+ ∂x + (a4L1 + a5L2 + a6L3) ∂
1720
+ ∂y + (a7L1 + a8L2 + a9L3) ∂
1721
+ ∂z .
1722
+ Proof. Routine calculations show that η1 and η2 below are syzygies of Jf,
1723
+ η1 =
1724
+
1725
+
1726
+ (2a1 − a5 − a9)x + 3a2y + 3a3z
1727
+ 3a4x + (2a5 − a1 − a9)y + 3a6z
1728
+ 3a7x + 3a8y + (2a9 − a1 − a5)z
1729
+
1730
+  =
1731
+
1732
+
1733
+ 3L1 − (a1 + a5 + a9)x
1734
+ 3L2 − (a1 + a5 + a9)y
1735
+ 3L3 − (a1 + a5 + a9)z
1736
+
1737
+
1738
+ 3×1
1739
+ and η2 being the 3 × 1 column-matrix given by
1740
+
1741
+
1742
+ (−3a5 − 3a9)L1 + 6a2L2 + 6a3L3 + (−4a6a8 − (a5 − a9)2 − 4a3a7 − 4a2a4 + 3a1(a5 + a9))x
1743
+ 6a4L1 + (−6a1 + 3a5 − 3a9)L2 + 6a6L3 + (−4a6a8 − (a5 − a9)2 − 4a3a7 − 4a2a4 + 3a1(a5 + a9))y
1744
+ 6a7L1 + 6a8L2 + (−6a1 − 3a5 + 3a9)L3 + (−4a6a8 − (a5 − a9)2 − 4a3a7 − 4a2a4 + 3a1(a5 + a9))z
1745
+
1746
+  .
1747
+ Now let
1748
+ A := a1 + a5 + a9,
1749
+ B := −4a6a8 − (a5 − a9)2 − 4a3a7 − 4a2a4 + 3a1(a5 + a9),
1750
+
1751
+ 20
1752
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
1753
+ so that the following is a submatrix of the matrix of syzygies of Jf:
1754
+
1755
+
1756
+ (−3a5 − 3a9)L1 + 6a2L2 + 6a3L3 + Bx
1757
+ 3L1 − Ax
1758
+ 6a4L1 + (−6a1 + 3a5 − 3a9)L2 + 6a6L3 + By
1759
+ 3L2 − Ay
1760
+ 6a7L1 + 6a8L2 + (−6a1 − 3a5 + 3a9)L3 + Bz
1761
+ 3L3 − Az
1762
+
1763
+
1764
+ 3×2
1765
+ .
1766
+ Multiplying the second column by C := a1 + A = 2a1 + a5 + a9 and adding it to the first column,
1767
+ we obtain an equivalent matrix
1768
+ ϕ =
1769
+
1770
+
1771
+ 6(a1L1 + a2L2 + a3L3) + (B − AC)x
1772
+ 3L1 − Ax
1773
+ 6(a4L1 + a5L2 + a6L3) + (B − AC)y
1774
+ 3L2 − Ay
1775
+ 6(a7L1 + a8L2 + a9L3) + (B − AC)z
1776
+ 3L3 − Az
1777
+
1778
+
1779
+ 3×2
1780
+ .
1781
+ Finally, attaching to ϕ a third column corresponding to the Euler derivation, the resulting 3 × 3
1782
+ matrix is easily seen to be equivalent to
1783
+ Φ =
1784
+
1785
+
1786
+ a1L1 + a2L2 + a3L3
1787
+ L1
1788
+ x
1789
+ a4L1 + a5L2 + a6L3
1790
+ L2
1791
+ y
1792
+ a7L1 + a8L2 + a9L3
1793
+ L3
1794
+ z
1795
+
1796
+
1797
+ 3×3
1798
+ and satisfies det Φ = 1
1799
+ 2f. Now the proposed assertions follow by Lemma 1.4.
1800
+ Numerous comments are in order.
1801
+ Remark 5.2. (a) Recall that, by definition, being reduced is a necessary condition for a polynomial
1802
+ to be free. Now we point out that, in general, it is possible for the cubic f := det Θ (with Θ as
1803
+ defined above) to be non-reduced. For instance, if we start with the matrix L (x−y, x+y +z, y +z),
1804
+ then f = −2(x + z)3.
1805
+ (b) Concerning the condition f ̸= 0, it means (since char k = 0) that the quadrics Q1, Q2, Q3 are
1806
+ algebraically independent, hence linearly independent. Clearly, this may not occur; for example, for
1807
+ L (y, x, z) we have f = 0 because Q3 = −Q2.
1808
+ (c) We remark that any f as in Theorem 5.1 is necessarily reducible at least if k = C. This follows
1809
+ by the fact that a complex irreducible free divisor in 3 variables must have degree at least 5 (see [20,
1810
+ Theorem 2.8]).
1811
+ (d) A linear free divisor f in our fourth family can have an irreducible quadratic factor, at least over
1812
+ k = R (or eventually a suitable finite field extension of Q). Indeed, starting for example with the
1813
+ matrix L (0, x + z, y + z), we obtain
1814
+ f = −2xq := −2x(x2 + xy − y2 + 3xz − yz + z2).
1815
+ Forcing q to be the product of two linear forms with real coefficients yields a contradiction, hence q
1816
+ is irreducible over R. However, it should be pointed out that q is reducible over C, as the rank of
1817
+ its associated matrix is non-maximal. In fact we believe (but have no proof) that if k = C then a
1818
+ free cubic f as in Theorem 5.1 must necessarily be a product of linear forms. This would imply that
1819
+ the complex linear free divisor z(xz + y2) does not belong to our fourth family, which we have been
1820
+ unable to prove.
1821
+ (e) Our method does not work for higher degrees in general. Taking for example any of the matrices
1822
+
1823
+ x2
1824
+ y
1825
+ z
1826
+ y2
1827
+ z
1828
+ x
1829
+
1830
+ ,
1831
+
1832
+ x
1833
+ y
1834
+ z
1835
+ z2
1836
+ x2
1837
+ y2
1838
+
1839
+ ,
1840
+
1841
+ x2
1842
+ y2
1843
+ z2
1844
+ z2
1845
+ x2
1846
+ y2
1847
+
1848
+ ,
1849
+ we are led (following the same recipe) to polynomials that are not free as their Jacobian ideals fail to
1850
+ be perfect. However, an interesting problem remains as to the possibility of producing free divisors
1851
+ by means of a similar technique, but with carefully chosen entries of higher degrees.
1852
+
1853
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
1854
+ 21
1855
+ (f) Our method does not work for higher dimensions in general.
1856
+ For example, over the ring
1857
+ k[x, y, z, w], consider the matrix
1858
+
1859
+
1860
+ x
1861
+ y
1862
+ z
1863
+ w
1864
+ x − y
1865
+ x + w
1866
+ y − z
1867
+ x + 3y
1868
+ 2y − z
1869
+ 3w
1870
+ x − w
1871
+ y + 2w
1872
+
1873
+  .
1874
+ The maximal minors are 4 cubics whose Jacobian matrix has a reduced determinant g ̸= 0.
1875
+ A
1876
+ computation shows that Jg is not perfect, so that g is not free.
1877
+ We also derive some additional features.
1878
+ Proposition 5.3. Let f be as in Theorem 5.1. The following assertions hold:
1879
+ (i) Jf is of linear type. In particular, r(Jf) = 0;
1880
+ (ii) R(Jf) (∼= SymRJf) is a complete intersection;
1881
+ (iii) reg Derk(R/(f)) = 1.
1882
+ Proof. (i) From the proof of the theorem, the 3 × 2 matrix ϕ is a minimal presentation matrix of Jf.
1883
+ It follows easily by the structure of ϕ – which in particular has only linear forms as entries – that
1884
+ the so-called G3 condition is satisfied (see the definition in the next section, right before Example
1885
+ 6.5). Moreover, it is clear that Jf has projective dimension 1 (see also Lemma 1.3). Now, applying
1886
+ [42, Proposition 4.11] we obtain that Jf is of linear type.
1887
+ (ii) By the previous item we have R(Jf) ∼= SymRJf, and the latter is the quotient of R[s, t, u]
1888
+ (where s, t, u are variables over R) by the ideal generated by 2 linear forms ξ1, ξ2 in s, t, u, which are
1889
+ the entries of the matrix product [s t u] · ϕ. Saying that ht (ξ1, ξ2) = 1 means precisely
1890
+ ξ2 = λξ1,
1891
+ for some non-zero
1892
+ λ ∈ k,
1893
+ which is equivalent to the first column of ϕ being λ times the second column. Following the proof of
1894
+ the theorem, this would yield det Φ = 0, a contradiction. Therefore, ht (ξ1, ξ2) = 2.
1895
+ (iii) Since f is a free cubic, this follows from Lemma 1.7.
1896
+ We close the section with a working example which is, on the other hand, somewhat degenerated
1897
+ in the sense that two of the Li’s are equal.
1898
+ Example 5.4. Taking L (y, x, x) yields the line arrangement
1899
+ 1
1900
+ 2f = −x2y + y3 + x2z − y2z = (x + y)(x − y)(z − y),
1901
+ which is then free by Theorem 5.1. In this case, writing down the syzygy matrix ϕ of Jf as in the
1902
+ proof of the theorem and multiplying their columns by suitable non-zero scalars, we get the following
1903
+ simpler presentation matrix for Jf:
1904
+
1905
+
1906
+ y
1907
+ x
1908
+ x
1909
+ y
1910
+ x
1911
+ 3y − 2z
1912
+
1913
+  .
1914
+ It follows by Proposition 5.3(ii) that the Rees algebra is the complete intersection ring
1915
+ R(Jf) ∼= R[s, t, u]/(ys + x(t + u), xs + yt + (3y − 2z)u).
1916
+ 6. Maximal analytic spread and an application to homaloidness
1917
+ Consider the standard graded polynomial ring R = k[x1, . . . , xn] = k ⊕ R+, n ≥ 3, and let f ∈ R
1918
+ be a non-zero reduced homogeneous polynomial of degree d ≥ 3. Recall that the Jacobian ideal Jf
1919
+ can be minimally generated by the derivatives fx1, . . . , fxn since by convention f is not allowed to
1920
+ be a cone. Moreover, ht Jf ≥ 2 as f is reduced.
1921
+
1922
+ 22
1923
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
1924
+ 6.1. When does the Jacobian ideal have maximal analytic spread? Our goal in this part is
1925
+ to answer this question by means of various characterizations. Recall that
1926
+ ht Jf ≤ ℓ(Jf) ≤ n,
1927
+ so here we are specifically interested in the property ℓ(Jf) = n, which holds if for example Jf is of
1928
+ linear type; indeed, in this case we can write F(Jf) = SymRJf/R+SymRJf ∼= Symk(Jf/R+Jf) ∼= R
1929
+ as k-algebras.
1930
+ Example 6.1. The Jacobian ideal of the (non-free) cubic
1931
+ f = xyz + w3 ∈ k[x, y, z, w]
1932
+ can be shown to be of linear type, and so ℓ(Jf) = 4.
1933
+ On the other hand, as we have seen in Proposition 2.3(2), even for linear free divisors in at least
1934
+ 5 variables the analytic spread of Jf can be arbitrarily smaller than the number n of variables.
1935
+ Some of the characterizations to be given here are of cohomological nature, and some rely on the
1936
+ asymptotic behavior of depth. One of the ingredients is a suitable auxiliary module, which we now
1937
+ introduce. As usual, we denote the gradient vector of a polynomial g ∈ R by ∇g = (gx1, . . . , gxn) ∈
1938
+ Rn. Given f as above, we set
1939
+ Cf := Rn/
1940
+ � n
1941
+
1942
+ i=1
1943
+ R ∇fxi
1944
+
1945
+ .
1946
+ A few preparatory concepts are in order before stating our result.
1947
+ Let E be a finitely generated module over a Noetherian ring A and let G Φ→ F → E → 0 be an
1948
+ A-free presentation of E. Consider the dual map HomA(Φ, A): F → G. The Auslander transpose
1949
+ (or Auslander dual) of E is the A-module
1950
+ Tr E = coker HomA(Φ, A),
1951
+ which is unique up to projective summands. We refer to [3].
1952
+ Now, suppose A = �
1953
+ i≥0 Ai is standard graded over a field A0 and let A+ = �
1954
+ i≥1 Ai be the
1955
+ homogeneous maximal ideal of A. Assume that the A-module E is graded as well. Then, given an
1956
+ integer j ≥ 0, the j-th local cohomology module of E is the limit
1957
+ Hj
1958
+ A+(E) = lim
1959
+ −→ Extj
1960
+ A(A/As
1961
+ +, E).
1962
+ Saying that E ∼= E′ as graded A-modules means, as usual, that there is a degree zero isomorphism
1963
+ between E and E′.
1964
+ Finally, given r ≥ 1, recall that the Noetherian ring A is said to satisfy (Serre’s) condition Sr if
1965
+ depth Ap ≥ min {r, ht p}
1966
+ for all
1967
+ p ∈ Spec A.
1968
+ This clearly holds (for all r) if A is Cohen-Macaulay.
1969
+ Back to the polynomial setup, our result here is as follows.
1970
+ Theorem 6.2. Given f ∈ R as before, the following assertions are equivalent:
1971
+ (i) ℓ(Jf) = n;
1972
+ (ii) dim Cf = n − 1;
1973
+ (iii) ∇fx1, . . . , ∇fxn are R-linearly independent;
1974
+ (iv) Ext1
1975
+ R(Cf, R) ∼= Cf(d − 2) as graded R-modules;
1976
+ (v) Hn−1
1977
+ R+ (Cf) ∼= HomR(Cf, k)(n − d + 2) as graded R-modules;
1978
+ (vi) depth R/Jm
1979
+ f = 0 for some m ≥ 1, where the bar denotes integral closure;
1980
+ (vii) depth R/Jm
1981
+ f = 0 for all m ≫ 0.
1982
+ Moreover, if R(Jf) satisfies the S2 condition, then these assertions are also equivalent to the following
1983
+ ones:
1984
+
1985
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
1986
+ 23
1987
+ (viii) depth R/Jm
1988
+ f = 0 for all m ≫ 0;
1989
+ (ix) depth R/Jm
1990
+ f = 0 for some m ≥ 1.
1991
+ Proof. Let H be the graded Hessian map of f, i.e. the degree zero homomorphism Rn(−(d − 2)) →
1992
+ Rn whose matrix in the canonical bases is the Hessian matrix of f. The image of H is the submodule
1993
+ of Rn generated by the homogeneous vectors ∇fx1, . . . , ∇fxn. Thus, Cf is the cokernel of H, i.e. it
1994
+ has a graded R-free presentation
1995
+ (22)
1996
+ Rn(−(d − 2))
1997
+ H
1998
+ −→ Rn −→ Cf −→ 0.
1999
+ Dualizing this sequence, and denoting by E∗ (resp. ϕ∗) the R-dual of an R-module E (resp. an
2000
+ R-module homomorphism ϕ), we get an exact sequence
2001
+ (23)
2002
+ 0 −→ C ∗
2003
+ f −→ Rn
2004
+ H∗
2005
+ −→ Rn(d − 2) −→ Cf(d − 2) −→ 0,
2006
+ where we observe that, since the Hessian matrix is symmetric, H∗ = H ⊗ 1R(d−2) so that, indeed,
2007
+ coker H∗ = (coker H)(d − 2) = Cf(d − 2).
2008
+ Now, ℓ(Jf) is the dimension of the special fiber ring F(Jf) = k[fx1, . . . , fxn], which by Lemma
2009
+ 1.9 can be computed as the rank of the Hessian matrix of f. Thus,
2010
+ ℓ(Jf) = rank H = rank H∗,
2011
+ and hence ℓ(Jf) = n if and only if H is injective (this is of course equivalent to Rn(−(d − 2)) ∼=
2012
+ �n
2013
+ i=1 R ∇fxi via H, which thus proves (i)⇔ (iii)), if and only if H∗ is injective. The latter property
2014
+ means C ∗
2015
+ f = 0.
2016
+ Therefore, in order to prove (i)⇔ (iv), it suffices to verify that C ∗
2017
+ f = 0 if and only if (iv) holds.
2018
+ Suppose C ∗
2019
+ f = 0. Then, as we have seen, H is injective. Dualizing (22) (which is now a short exact
2020
+ sequence) and comparing with (23), we obtain (iv). Conversely, assume that (iv) takes place. Thus
2021
+ Cf ∼= Ext1
2022
+ R(Cf, R)(2 − d) ∼= Ext1
2023
+ R(Cf(d − 2), R).
2024
+ Now recall that the R-torsion τR(Cf) of Cf coincides with the kernel of the canonical biduality map
2025
+ Cf → C ∗∗
2026
+ f , and so, by [3, Proposition 2.6(a)], we have
2027
+ τR(Cf) ∼= Ext1
2028
+ R(Tr Cf, R).
2029
+ But (23) gives Tr Cf = Cf(d − 2). Putting these facts together, we obtain
2030
+ C ∗
2031
+ f ∼= Ext1
2032
+ R(Cf(d − 2), R)∗ ∼= Ext1
2033
+ R(Tr Cf, R)∗ ∼= τR(Cf)∗ = 0.
2034
+ Next, let us prove that (iv)⇔ (v). The graded canonical module of the standard graded polynomial
2035
+ ring R is ωR = R(−n), so
2036
+ Ext1
2037
+ R(Cf, ωR) ∼= Ext1
2038
+ R(Cf, R)(−n).
2039
+ Also recall that, in the present setting, the Matlis duality functor is given by HomR(−, k). Thus, by
2040
+ graded local duality (see [7, Example 13.4.6]), we can write
2041
+ (24)
2042
+ Hn−1
2043
+ R+ (Cf) ∼= HomR(Ext1
2044
+ R(Cf, R)(−n), k) ∼= HomR(Ext1
2045
+ R(Cf, R), k)(n).
2046
+ If (iv) holds, then Hn−1
2047
+ R+ (Cf) ∼= HomR(Cf(d − 2), k)(n) ∼= HomR(Cf, k)(n − d + 2).
2048
+ Conversely,
2049
+ suppose (v). Using (24), we get
2050
+ HomR(Cf, k)(n − d + 2) ∼= HomR(Ext1
2051
+ R(Cf, R), k)(n),
2052
+ which is the same as an isomorphism HomR(Cf(−n + d − 2), k) ∼= HomR(Ext1
2053
+ R(Cf, R)(−n), k).
2054
+ Taking Matlis duals and tensoring with R(n), we obtain (iv).
2055
+ We proceed to show that (i)⇔(ii). First note that, by (22), the 0-th Fitting ideal of Cf is the
2056
+ principal ideal generated by the determinant h of the Hessian matrix of f, so we have
2057
+
2058
+ 0 :R Cf =
2059
+
2060
+ (h)
2061
+
2062
+ 24
2063
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
2064
+ and hence dim Cf = dim R/(h). It follows that dim Cf = n−1 if and only if h ̸= 0, i.e. H is injective,
2065
+ which as seen above is equivalent to (i).
2066
+ We clearly have ℓ(Jf) = ℓ((Jf)R+) and ht R+ = n. Thus, by the general characterization given in
2067
+ [30, Proposition 4.1], we have that ℓ(Jf) = n if and only if R+ ∈ AssRR/Jm
2068
+ f for all m ≫ 0, which is
2069
+ tantamount to saying that (vii) holds. This proves the equivalence (i)⇔(vii).
2070
+ Evidently, (vii)⇒(vi), and the converse follows once we recall the chain (see [30, Proposition 3.4])
2071
+ AssRR/Jf ⊂ AssRR/J2
2072
+ f ⊂ AssRR/J3
2073
+ f ⊂ . . .
2074
+ Thus, we have proved that the statements (i), . . . ,(vii) are equivalent.
2075
+ Now we point out that the implication (vii)⇒(viii) holds regardless of R(Jf) satisfying S2. Indeed,
2076
+ condition (vii) means that the irrelevant ideal R+ belongs to the limit value A
2077
+ ∗(Jf) of the function
2078
+ m �→ AssRR/Jm
2079
+ f ,
2080
+ which is known to eventually stabilize (see, e.g., [30, Proposition 3.4]). There is also the set A ∗(Jf)
2081
+ defined analogously as the stable set of asymptotic prime divisors with respect to the usual filtration
2082
+ given by the powers of Jf. By [30, Proposition 3.17], we have
2083
+ A
2084
+ ∗(Jf) ⊂ A ∗(Jf)
2085
+ and hence R+ ∈ A ∗(Jf), which gives (viii). Notice that (viii)⇒(ix) trivially.
2086
+ It remains to show (ix)⇒(i), under the hypothesis that R(Jf) satisfies S2. In this case, by [14,
2087
+ Remark 2.16], the extended Rees algebra
2088
+ R[Jft, t−1] =
2089
+
2090
+ i∈Z
2091
+ Iiti ⊂ R[t, t−1]
2092
+ (where, by convention, Ii = R whenever i ≤ 0) must satisfy S2 as well.
2093
+ Note that (ix) means
2094
+ R+ ∈ AssRR/Jm
2095
+ f
2096
+ for some m ≥ 1. Now we are in a position to apply [14, Proposition 4.1] in order
2097
+ to conclude that ℓ(Jf) = n, as needed.
2098
+ Remark 6.3. With the aid of [30, Proposition 3.26 and Proposition 3.20], the assertions (i), . . . ,(vii)
2099
+ of Theorem 6.2 are also seen to be equivalent to each of the following ones:
2100
+ (a) R+ ∈ A
2101
+ ∗(IJf) for any non-zero R-ideal I, i.e.,
2102
+ depth R/ImJm
2103
+ f
2104
+ = 0
2105
+ for all
2106
+ m ≫ 0;
2107
+ (b) For some j, the integral closure of R[fx1/fxj, . . . , fxn/fxj] ⊂ k(x1, . . . , xn) contains a prime
2108
+ Q of height 1 such that Q ∩ R = R+.
2109
+ While, in Theorem 6.2, the implication (ix)⇒(i) (and consequently the implication (viii)⇒(i))
2110
+ holds if the Rees ring R(Jf) satisfies S2, we do not know whether this hypothesis can be dropped.
2111
+ Thus the following question becomes natural (see also Question 6.17 in the next subsection).
2112
+ Question 6.4. Suppose depth R/Jm
2113
+ f = 0 for all m ≫ 0. Is it true that ℓ(Jf) = n ? Does this hold
2114
+ if we only assume that depth R/Jm
2115
+ f = 0 for some m ≥ 1 ?
2116
+ Now let f ∈ R be a linear free divisor. As we will see later, if n ≤ 4 then ℓ(Jf) = n. The converse
2117
+ is known to be false, and in Example 6.5 below we show in addition that there is a linear free divisor
2118
+ f such that ℓ(Jf) = n for any prescribed n.
2119
+ The following well-known notion will be useful (we state it over R). A non-zero homogeneous ideal
2120
+ I of R, minimally generated by ν elements, is said to satisfy the Gs condition for a given s ≥ 0 if
2121
+ ht Iν−j(ϕ) ≥ j + 1
2122
+ for
2123
+ j = 1, . . . , s − 1.
2124
+ Here, ϕ denotes a minimal presentation matrix (or syzygy matrix) of I, and note that there is no
2125
+ dependence on the choice of ϕ because each Iν−j(ϕ) is just a Fitting ideal of I.
2126
+
2127
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
2128
+ 25
2129
+ Example 6.5. Given an arbitrary n, consider the normal crossing divisor
2130
+ f = x1 · · · xn ∈ R = k[x1, . . . , xn],
2131
+ which is a well-known linear free divisor.
2132
+ The ideal Jf is simply the ideal generated by all the
2133
+ products of distinct n − 1 indeterminates, and satisfies
2134
+ depth R/Jm
2135
+ f
2136
+ = max {0, n − m − 1}
2137
+ for all
2138
+ m ≥ 1.
2139
+ In particular, depth R/Jm
2140
+ f
2141
+ = 0 for all m ≥ n − 1. We now claim that R(Jf) is Cohen-Macaulay
2142
+ (hence it has the S2 property). Notice first that a syzygy matrix of Jf is given by
2143
+ ϕ =
2144
+
2145
+ 
2146
+ x1
2147
+ 0
2148
+ . . .
2149
+ 0
2150
+ 0
2151
+ x2
2152
+ . . .
2153
+ 0
2154
+ ...
2155
+ ...
2156
+ ...
2157
+ ...
2158
+ 0
2159
+ 0
2160
+ . . .
2161
+ xn−1
2162
+ −xn
2163
+ −xn
2164
+ . . .
2165
+ −xn
2166
+
2167
+ 
2168
+ .
2169
+ Here we have
2170
+ ht In−j(ϕ) = j + 1
2171
+ for
2172
+ j = 1, . . . , n − 1,
2173
+ so that Jf satisfies the Gn property. Moreover, because f is free, Jf has projective dimension 1 over
2174
+ R (see Lemma 1.3). It follows by [42, Proposition 4.11] that R(Jf) is Cohen-Macaulay, as claimed.
2175
+ Now we are in a position to apply Theorem 6.2 to conclude that ℓ(Jf) = n.
2176
+ In addition, the theorem gives us that Cf has projective dimension 1 over R (because the gradient
2177
+ vectors of the natural generators of Jf generate a free module) and dimension n − 1, hence Cf is a
2178
+ Cohen-Macaulay module, which yields
2179
+ Hi
2180
+ R+(Cf) ∼=
2181
+
2182
+ HomR(Cf, k)(2), i = n − 1
2183
+ 0
2184
+ , i ̸= n − 1
2185
+ In Example 6.5, another way to confirm that ℓ(Jf) = n is by showing that the (monomial) ideal Jf
2186
+ is of linear type. This fact and lots of other experiments suggest a more restrictive question as well
2187
+ as a conjecture about the interplay between maximal analytic spread and the linear type property;
2188
+ as already seen, the latter implies the former.
2189
+ Question 6.6. For arbitrary n ≥ 3 (the number of variables), does there exist a free divisor f, with
2190
+ Jf not of linear type, such that ℓ(Jf) = n ?
2191
+ The case of interest is n ≥ 4. Indeed, if n = 3 then any member of the family of (non-linear) free
2192
+ divisors given in Section 4 yields an affirmative answer to this question.
2193
+ Conjecture 6.7. If f is a linear free divisor such that ℓ(Jf) = n, then Jf is of linear type.
2194
+ We have not been able to solve this conjecture for n ≥ 5. It is true in n ≤ 4 variables, as we can
2195
+ verify using the classification of linear free divisors given in [27, 6.4, p. 837].
2196
+ Next we furnish more examples.
2197
+ Example 6.8. Consider the so-called Gordan-Noether cubic
2198
+ f = xw2 + ytw + zt2 ∈ R = k[x, y, z, w, t].
2199
+ In this case, while the symmetric algebra SymRJf = B/S = R[t1, t2, t3, t4, t5]/S has dimension
2200
+ 6 and depth 5, a calculation shows that R(Jf) is Cohen-Macaulay (in particular, it has the S2
2201
+ condition). Indeed, if ϕ is a minimal presentation matrix of Jf, then the saturation
2202
+ S :B I4(ϕ)∞,
2203
+
2204
+ 26
2205
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
2206
+ which by [31, Lemma 2.11] defines R(Jf) in the ring B (note that I4(ϕ) defines the non-principal
2207
+ locus of Jf), is perfect of codimension 4. Now, further computations show that depth R/Jf = 2 and
2208
+ depth R/Jm
2209
+ f
2210
+ = 1
2211
+ for all
2212
+ m ≥ 2.
2213
+ Therefore, using Theorem 6.2, we conclude that ℓ(Jf) < 5. More precisely, the special fiber ring can
2214
+ be expressed as F(Jf) = k[t1, t2, t3, t4, t5]/(t2
2215
+ 2 − t1t3), which yields ℓ(Jf) = 4.
2216
+ Example 6.9. Consider the quintic
2217
+ f = 2w4u + xu4 + ywu3 + zw2u2 ∈ R = k[x, y, z, w, u].
2218
+ This is the case n = 5 of Theorem 2.2, hence f is a linear free divisor (here it should be mentioned,
2219
+ for completeness, that f/u is not free and its Jacobian ideal is not even linearly presented). By
2220
+ Proposition 2.3(ii), we have ℓ(Jf) = 4 < 5, and Theorem 2.5 ensures that R(Jf) is Cohen-Macaulay.
2221
+ Therefore, by Theorem 6.2, we conclude that
2222
+ depth R/Jm
2223
+ f
2224
+ > 0
2225
+ for all
2226
+ m ≥ 1.
2227
+ In fact, for such f it can be verified that depth R/Jf = 3, depth R/J2
2228
+ f = 2, and depth R/Jm
2229
+ f = 1 for
2230
+ all m ≥ 3. An interesting consequence of the non-vanishing of the asymptotic depth of Jf concerns
2231
+ the higher conormal modules Jm
2232
+ f /Jm+1
2233
+ f
2234
+ . Indeed, in this situation the (also well-defined) conormal
2235
+ asymptotic depth of Jf must be positive as well, since by [6] we can write
2236
+ lim
2237
+ m→∞ depth Jm
2238
+ f /Jm+1
2239
+ f
2240
+
2241
+ lim
2242
+ m→∞ depth R/Jm
2243
+ f
2244
+ > 0.
2245
+ It follows that R+ /∈ AssRJm
2246
+ f /Jm+1
2247
+ f
2248
+ for all m ≫ 0.
2249
+ Example 6.10. Consider the plane sextic
2250
+ f = x6 − 2x3y2z + y4z2 + y6 ∈ R = k[x, y, z].
2251
+ This is the case α = 3 and β = 2 of Theorem 4.1(i), hence f is a free divisor (which is no longer
2252
+ linear). By Theorem 4.1(ii), the ring R(Jf) is Cohen-Macaulay. It can be verified that
2253
+ depth R/Jm
2254
+ f
2255
+ = 0
2256
+ for all
2257
+ m ≥ 2.
2258
+ Applying Theorem 6.2 we obtain that ℓ(Jf) = 3. Now from Theorem 4.1(iii) we know that Jf cannot
2259
+ be of linear type. To see this explicitly, one of the minimal generators of the defining ideal of the
2260
+ Rees algebra in the ring R[t1, t2, t3] is the following polynomial which is not linear in the ti’s:
2261
+ 3xyt1t2 + 2xzt1t3 − 3yzt2t3 − 3y2t2
2262
+ 3 − 2z2t2
2263
+ 3.
2264
+ Furthermore, the theorem yields Ext1
2265
+ R(Cf, R) ∼= Cf(4) and
2266
+ Hj
2267
+ R+(Cf) ∼=
2268
+
2269
+ HomR(Cf, k)(−1), j = 2
2270
+ 0
2271
+ , j ̸= 2
2272
+ Example 6.11. Consider the quartic
2273
+ f = x4 − xyz2 + z3w ∈ R = k[x, y, z, w],
2274
+ which is not free as Jf is not perfect. Let us also mention that the ideal Jf is not of linear type,
2275
+ since the polynomial
2276
+ 4xt2
2277
+ 2 − 4zt1t4 − yt2
2278
+ 4 ∈ R[t1, t2, t3, t4]
2279
+ is one of the minimal generators of the defining ideal of R(Jf). On the other hand, it is not hard to
2280
+ verify that the associated graded ring of Jf – i.e. the graded algebra �
2281
+ s≥0 Js
2282
+ f/Js+1
2283
+ f
2284
+ – satisfies the
2285
+ S1 property; since in addition ht Jf ≥ 2, we get by [14, Remark 2.16] that R(Jf) satisfies S2 (it can
2286
+ be shown that in fact R(Jf) is Cohen-Macaulay). Furthermore, depth R/Ji
2287
+ f = 1 for i = 1, 2, 3, while
2288
+ depth R/Jm
2289
+ f
2290
+ = 0
2291
+ for all
2292
+ m ≥ 4.
2293
+
2294
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
2295
+ 27
2296
+ Applying Theorem 6.2, we conclude that ℓ(Jf) = 4. We also get Ext1
2297
+ R(Cf, R) ∼= Cf(2), and
2298
+ Hj
2299
+ R+(Cf) ∼=
2300
+
2301
+ HomR(Cf, k)(2), j = 3
2302
+ 0
2303
+ , j ̸= 3
2304
+ 6.2. Application: Criterion for homaloidness. As above let f ∈ R = k[x1, . . . , xn], n ≥ 3, be a
2305
+ non-zero reduced homogeneous polynomial. In this subsection, we assume additionally that the field
2306
+ k is algebraically closed. To the form f we can associate the rational map
2307
+ Pf = (fx1 : · · · : fxn) : Pn−1 ��� Pn−1,
2308
+ the so-called polar map defined by f. Thus the base locus of Pf is the singular locus of the projective
2309
+ hypersurface V (f) ⊂ Pn−1.
2310
+ Definition 6.12. ([21]) The polynomial f is homaloidal if Pf is birational (hence a Cremona
2311
+ transformation).
2312
+ Over k = C, this definition can be translated by saying that Pf has degree 1 (taking into account
2313
+ an appropriate notion of degree in this context), and according to [19, Corollary 2] the property of
2314
+ being homaloidal depends only on fred.
2315
+ The following is a preliminary fact connecting this class of polynomials to the class of free divisors.
2316
+ It can be also seen as a first source of examples of homaloidal divisors (examples in higher dimensions
2317
+ can be found, e.g., in [13] and [33]). Recall that in general the dimension of the image of the polar
2318
+ map Pf is given by ℓ(Jf) − 1 (see the proof of Proposition 6.14).
2319
+ Proposition 6.13. (k = C) If n ≤ 4 then every linear free divisor is homaloidal.
2320
+ Proof.
2321
+ Let f ∈ R be a linear free divisor.
2322
+ Recall we are supposing that f is not a cone (see
2323
+ Subsection 1.1). Thus, by [25, Proposition 2.4 and Proposition 2.5], f has a non-zero Hessian, so
2324
+ that ℓ(Jf) = n. Hence, the dimension of the image of Pf is n − 1. As the linear rank of the gradient
2325
+ ideal Jf is maximal, it follows by [22, Theorem 3.2] that Pf is birational.
2326
+ Notice that this proposition fails if n ≥ 5. Indeed, if in this case we take f as being a linear free
2327
+ divisor as described in Theorem 2.2, then by Proposition 2.3(ii) the analytic spread of Jf is 4, hence
2328
+ the image of Pf has dimension at most n − 2 and so this map cannot be birational.
2329
+ Our application regarding homaloidness is the following ideal-theoretic, also homological, version
2330
+ of the criterion given in [22, Theorem 3.2]. It is not as practical or effective as the original one, but
2331
+ in our view it adds some flavor to the classical – typically geometric – theory and, moreover, helps
2332
+ linking to different algebraic tools and invariants.
2333
+ Proposition 6.14. Given f ∈ R as before, let ϕ1 be the submatrix of a minimal syzygy matrix of
2334
+ the ideal Jf consisting of its linear syzygies, and suppose In−1(ϕ1) ̸= (0). Assume any one of the
2335
+ following situations:
2336
+ (i) projdim Jm
2337
+ f = n − 1 for some m ≥ 1;
2338
+ (ii) R(Jf) satisfies S2, and projdim Jm
2339
+ f = n − 1 for some m ≥ 1.
2340
+ Then f is homaloidal.
2341
+ Proof. First, in either case, our Theorem 6.2 (together with the Auslander-Buchsbaum formula)
2342
+ ensures that ℓ(Jf) = n. On the other hand,
2343
+ dim(image Pf) = dim Proj k[fx1, . . . , fxn] = dim Proj F(Jf) = ℓ(Jf) − 1 = n − 1.
2344
+ Now [22, Theorem 3.2] ensures that Pf is birational, as needed.
2345
+ Example 6.15. Let us first point out that not all homaloidal polynomials satisfy the condition
2346
+ In−1(ϕ1) ̸= (0). Indeed, consider the cubic
2347
+ f = xw2 + yzw + z3 ∈ k[x, y, z, w].
2348
+ Then it can be checked that:
2349
+
2350
+ 28
2351
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
2352
+ (a) f is an irreducible homaloidal polynomial. This is indeed the first member of the family of
2353
+ irreducible homaloidal hypersurfaces described in [28, p. 1264];
2354
+ (b) The Jacobian ideal Jf is not linearly presented, and moreover has not enough linear syzygies.
2355
+ More precisely, only 2 columns of a minimal presentation matrix ϕ are linear syzygies, and
2356
+ hence obviously I3(ϕ1) = (0);
2357
+ (c) Jf is not of linear type;
2358
+ (d) Quite interestingly, Jf satisfies the conditions present in part (ii) of our Proposition 6.14. In
2359
+ particular, it can be even shown that the Rees algebra of Jf is Cohen-Macaulay.
2360
+ We now remark that if f is a linear free divisor then the condition In−1(ϕ1) ̸= (0) is automatically
2361
+ satisfied as in this case ϕ1 = ϕ and In−1(ϕ) = Jf by the Hilbert-Burch theorem. We thus record the
2362
+ following corollary.
2363
+ Corollary 6.16. If f is a linear free divisor satisfying either condition (i) or (ii) of Proposition
2364
+ 6.14, then f is homaloidal.
2365
+ Before giving the first illustration, we raise the following question. We remark that the answer
2366
+ is yes if the second part of Question 6.4 has an affirmative answer as well.
2367
+ Also note that, by
2368
+ Proposition 6.13, the case of interest is n ≥ 5.
2369
+ Question 6.17. (n ≥ 5) Let f be a linear free divisor satisfying projdim Jm
2370
+ f = n−1 for some m ≥ 1.
2371
+ Must f be homaloidal?
2372
+ Example 6.18. The simplest example in arbitrary dimension is the normal crossing divisor f =
2373
+ x1 · · · xn ∈ R studied in Example 6.5. Then f is a linear free divisor and we have seen in particular
2374
+ that depth R/Jn−1
2375
+ f
2376
+ = 0, i.e., projdim Jn−1
2377
+ f
2378
+ = n − 1. Since Jf is the ideal generated by all squarefree
2379
+ monomials of degree n − 1, we get by [50, Proposition 7.4.5] that all powers of Jf are integrally
2380
+ closed; in particular,
2381
+ Jn−1
2382
+ f
2383
+ = Jn−1
2384
+ f
2385
+ .
2386
+ It follows by Corollary 6.16 (or Proposition 6.14(i)) that f is homaloidal, thus retrieving the well-
2387
+ known fact that the rational map Pn−1 ��� Pn−1 given by
2388
+ (x1 : . . . : xn) �→ (x2x3 · · · xn : x1x3 · · · xn : . . . : x1x2 · · · xn−1)
2389
+ is birational – the so-called Cremona involution on Pn−1.
2390
+ Below we illustrate Proposition 6.14 in the situation where f is not free, and in both reducible
2391
+ and irreducible cases.
2392
+ Example 6.19. (n = 6) Consider the hyperplane-quadric arrangement
2393
+ f = xw(yz + zt + tu) ∈ R = k[x, y, z, w, t, u].
2394
+ In this case, f is non-free because Jf is not perfect, while on the other hand this ideal (which is
2395
+ linearly presented, so that ϕ1 = ϕ) satisfies I5(ϕ1) ̸= (0) and
2396
+ projdim J3
2397
+ f = 5.
2398
+ Moreover, as in Example 6.11, the associated graded ring of Jf has the S1 property and hence R(Jf)
2399
+ satisfies S2. By Proposition 6.14(ii), f is homaloidal. i.e., the rational map P5 ��� P5 given by
2400
+ (x : y : z : w : t : u) �→ (w(yz + zt + tu) : xzw : xw(y + t) : x(yz + zt + tu) : xwu : xwt)
2401
+ is Cremona.
2402
+
2403
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
2404
+ 29
2405
+ Example 6.20. (n = 5) Consider the irreducible cubic
2406
+ f = xt2 + yzt + z3 + w2t ∈ R = k[x, y, z, w, t].
2407
+ The ideal Jf is perfect but f is non-free as ht Jf = 3. It also satisfies I4(ϕ1) ̸= (0) and
2408
+ projdim J3
2409
+ f = 4.
2410
+ Moreover, the associated graded ring of Jf is Cohen-Macaulay; in particular, R(Jf) satisfies S2. By
2411
+ Proposition 6.14(ii), f is homaloidal. Explicitly, the rational map P4 ��� P4 given by
2412
+ (x : y : z : w : t) �→ (t2 : zt : z2 + 1
2413
+ 3yt : wt : yz + w2 + 2xt)
2414
+ is Cremona.
2415
+ Next, we provide a couple of additional observations and questions that, in our view, are interesting
2416
+ and potentially motivating for future research. First, note that if we write the homaloidal quartic f
2417
+ of Example 6.19 as
2418
+ f = xg,
2419
+ g = w(yz + zt + tu),
2420
+ then a further calculation shows (using again our proposition) that g is homaloidal as well. This
2421
+ fact, among other examples, led us to suggest the following “addition-deletion” problem inspired by
2422
+ well-known investigations in free divisor theory (see [43], also [1] and [39]).
2423
+ Question 6.21. (Addition-deletion for homaloidal divisors.) For polynomials f, g ∈ R, with f homa-
2424
+ loidal, when is the product fg homaloidal? If fg is homaloidal, when is f or g homaloidal?
2425
+ Now let f ∈ R = k[x, y, z, w, t, u, v] stand for the 2-catalecticant determinant
2426
+ f = det
2427
+
2428
+
2429
+ x
2430
+ y
2431
+ z
2432
+ z
2433
+ w
2434
+ t
2435
+ t
2436
+ u
2437
+ v
2438
+
2439
+  .
2440
+ According to [33, Proposition 3.25(b)]), this cubic is homaloidal. Then, for such f, we have detected
2441
+ an intriguing, curious fact: the determinant h(f) of the Hessian matrix of f is a linear free divisor
2442
+ – in particular, h(f) is already reduced. In the situation where h(f) is not reduced, we naturally
2443
+ consider h(f)red, which likewise can be a linear free divisor. For example, let
2444
+ g = det
2445
+
2446
+ 
2447
+ x
2448
+ w
2449
+ z
2450
+ y
2451
+ y
2452
+ x
2453
+ w
2454
+ z
2455
+ w
2456
+ z
2457
+ y
2458
+ x
2459
+ z
2460
+ y
2461
+ x
2462
+ w
2463
+
2464
+ 
2465
+ in the ring R = k[x, y, z, w]. Note g is in fact a linear free divisor, and using Corollary 6.16 it is not
2466
+ hard to see that g is also homaloidal. Here,
2467
+ h(g) = λg2
2468
+ for some non-zero
2469
+ λ ∈ k,
2470
+ and therefore h(g)red is free.
2471
+ As expected, this phenomenon does not take place in general. For instance, if once again we take
2472
+ f as the homaloidal quartic of Example 6.19, then a calculation shows h(f) = 3x2w2f 2, so that
2473
+ h(f)red = 3f is not free.
2474
+ The facts above led us to raise the following question, which reconnects us to the central topic of
2475
+ freeness and closes the paper.
2476
+ Question 6.22. Let f be a homaloidal polynomial. When is h(f)red a (linear) free divisor? If h(f)
2477
+ is reduced and not a cone, must it be a (linear) free divisor?
2478
+
2479
+ 30
2480
+ R. BURITY, C. B. MIRANDA-NETO, AND Z. RAMOS
2481
+ Acknowledgements. The second-named author was supported by the CNPq grants 301029/2019-9
2482
+ and 406377/2021-9. The third-named author was supported by the CNPq grants 305860/2019-4 and
2483
+ 425752/2018-6.
2484
+ References
2485
+ [1] T. Abe, Divisionally free arrangements of hyperplanes, Invent. Math. 204 (2016) 317–346.
2486
+ [2] T. Abe, H. Terao, M. Yoshinaga, Totally free arrangements of hyperplanes, Proc. Amer. Math. Soc. 137 (2009)
2487
+ 1405–1410.
2488
+ [3] M. Auslander, M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94, 1969.
2489
+ [4] D. Bayer, D. Mumford, What can be computed in algebraic geometry? In: D. Eisenbud and L. Robbiano (eds.),
2490
+ Computational Algebraic Geometry and Commutative Algebra, Proceedings, Cortona (1991), Cambridge Univer-
2491
+ sity Press, 1–48 (1993).
2492
+ [5] D. Bayer, M. Stillman, Macaulay: a computer algebra system for algebraic geometry, Macaulay version 3.0 1994
2493
+ (Macaulay for Windows by Bernd Johannes Wuebben, 1996).
2494
+ [6] M. Brodmann, Some remarks on blow-up and conormal cones, Proc. Conf. Commutative Algebra (Trento, 1981),
2495
+ Lecture Notes in Pure and Appl. Math. 84, Dekker, New York, 1983.
2496
+ [7] M. Brodmann, R. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge
2497
+ Univ. Press, Cambridge, 1998.
2498
+ [8] R.-O. Buchweitz, A. Conca, New free divisors from old, J. Commut. Algebra 5 (2013) 17–47.
2499
+ [9] R.-O. Buchweitz, D. Mond, Linear free divisors and quiver representations, in Singularities and computer algebra,
2500
+ London Math. Soc. Lecture Note Ser., vol. 324 (Cambridge University Press, Cambridge, 2006), 41–77.
2501
+ [10] R. Burity, A. Simis, S. O. Tohˇaneanu, On the Jacobian ideal of an almost generic hyperplane arrangement, Proc.
2502
+ Amer. Math. Soc. 150 (2022) 4259–4276.
2503
+ [11] L. Bus´e, A. Dimca, H. Schenck, G. Sticlaru, The Hessian polynomial and the Jacobian ideal of a reduced hyper-
2504
+ surface in Pn, Adv. Math. 392 (2021) 108035.
2505
+ [12] F. J. Calder´on-Moreno, L. Narv´aez-Macarro, The module Df s for locally quasi-homogeneous free divisors, Compos.
2506
+ Math. 134 (2002) 59–74.
2507
+ [13] C. Ciliberto, F. Russo, A. Simis, Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian, Adv. Math.
2508
+ 218 (2008) 1759–1805.
2509
+ [14] C. Ciupercˇa, Asymptotic prime ideals of S2-filtrations, J. Algebra 503 (2018) 356–371.
2510
+ [15] J. Damon, On the legacy of free divisors: discriminants and Morse type singularities, Amer. J. Math. 120 (1998)
2511
+ 453–492.
2512
+ [16] H. Derksen, J. Sidman, Castelnuovo-Mumford regularity by approximation, Adv. Math. 188 (2004) 104–123.
2513
+ [17] A. Dimca, Hyperplane Arrangements: An Introduction, Universitext, Springer, 2017.
2514
+ [18] A. Dimca, Freeness versus maximal global Tjurina number for plane curves, Math. Proc. Cambridge Phil. Soc.
2515
+ 163 (2017) 161–172.
2516
+ [19] A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements,
2517
+ Ann. of Math. 158 (2003) 473–507.
2518
+ [20] A. Dimca, G. Sticlaru, Free divisors and rational cuspidal plane curves, Math. Res. Lett. 24 (2017) 1023–1042.
2519
+ [21] I. V. Dolgachev, Polar Cremona transformations, Michigan Math. J. 48 (2000) 191–202.
2520
+ [22] A. Doria, H. Hassanzadeh, A. Simis, A characteristic-free criterion of birationality, Adv. Math. 230 (2012) 390–413.
2521
+ [23] L. Ein, N. Shepherd-Barron, Some special Cremona transformations, Amer. J. Math. 111 (1989) 783–800.
2522
+ [24] D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988) 541–575.
2523
+ [25] A. Garbagnati, F. Repetto, A geometrical approach to Gordan-Noether’s and Franchetta’s contributions to a
2524
+ question posed by Hesse, Collect. Math. 60 (2009) 27–41.
2525
+ [26] M. Garrousian, A. Simis, S. O. Tohˇaneanu, A blowup algebra for hyperplane arrangements, Algebra Number
2526
+ Theory 12 (2018) 1401–1429.
2527
+ [27] M. Granger, D. Mond, A. Nieto-Reyes, M. Schulze, Linear free divisors and the global logarithmic comparison
2528
+ theorem, Ann. Inst. Fourier (Grenoble) 59 (2009) 811–850.
2529
+ [28] J. Huh, The maximum likelihood degree of a very affine variety, Compos. Math. 149 (2013) 1245–1266.
2530
+ [29] C. Huneke, On the symmetric algebra of a module, J. Algebra 69 (1981) 113–119.
2531
+ [30] S. McAdam, Asymptotic prime divisors, Lecture Notes in Math., vol. 1023, Springer-Verlag, Berlin, 1983.
2532
+ [31] C. B. Miranda-Neto, Graded derivation modules and algebraic free divisors, J. Pure Appl. Algebra 219 (2015)
2533
+ 5442–5466.
2534
+ [32] C. B. Miranda-Neto, Free logarithmic derivation modules over factorial domains, Math. Res. Lett. 24 (2017)
2535
+ 153–172.
2536
+ [33] M. Mostafazadehfard, A. Simis, Homaloidal determinants, J. Algebra 450 (2016) 59–101.
2537
+ [34] R. Nanduri, A family of irreducible free divisors in P2, J. Algebra Appl. 14 (2015) 1550105, 11pp.
2538
+
2539
+ FREE DIVISORS, BLOWUP ALGEBRAS, AND ANALYTIC SPREAD
2540
+ 31
2541
+ [35] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Math. 27
2542
+ (1980) 265–291.
2543
+ [36] H. Schenck, Elementary modifications and line configurations in P2. Comment. Math. Helv. 78 (2003) 447–462.
2544
+ [37] H. Schenck, Hyperplane arrangements: computations and conjectures, Arrangements of hyperplanes – Sapporo
2545
+ 2009, Adv. Stud. Pure Math. 62 (2012) 323–358.
2546
+ [38] H. Schenck, H. Terao, M. Yoshinaga, Logarithmic vector fields for curve configurations in P2 with quasihomoge-
2547
+ neous singularities, Math. Res. Lett. 25 (2018) 1977–1992.
2548
+ [39] H. Schenck, S. O. Tohˇaneanu, Freeness of conic-line arrangements in P2, Comment. Math. Helv. 84 (2009) 235–258.
2549
+ [40] A. Simis, Two differential themes in characteristic zero, Topics in algebraic and noncommutative geometry (Lu-
2550
+ miny/Annapolis, MD, 2001) 195–204, Contemp. Math. 324, Amer. Math. Soc., Providence, RI, 2003.
2551
+ [41] A. Simis, S. O. Tohˇaneanu, Homology of homogeneous divisors, Israel J. Math. 200 (2014) 449–487.
2552
+ [42] A. Simis, B. Ulrich, W. V. Vasconcelos, Rees algebras of modules, Proc. London Math. Soc. 87 (2003) 610–646.
2553
+ [43] H. Terao, Arrangements of hyperplanes and their freeness I, II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980)
2554
+ 293–320.
2555
+ [44] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula,
2556
+ Invent. Math. 63 (1981) 159–179.
2557
+ [45] H. Terao, The bifurcation set and logarithmic vector fields, Math. Ann. 263 (1983) 313–321.
2558
+ [46] H. Terao, Free arrangements of hyperplanes over an arbitrary field, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983)
2559
+ 301–303.
2560
+ [47] S. O. Tohˇaneanu, On freeness of divisors on P2, Comm. Algebra 41 (2013) 2916–2932.
2561
+ [48] S. O. Tohˇaneanu, On the De Boer-Pellikaan method for computing minimum distance, J. Symbolic Comput. 45
2562
+ (2010) 965–974.
2563
+ [49] M. Torielli, E. Palezzato, Free hyperplane arrangements over arbitrary fields, J. Algebraic Combin. 52 (2020)
2564
+ 237–249.
2565
+ [50] R. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure Appl. Math. 238, Marcel Dekker, New
2566
+ York, 2001.
2567
+ [51] M. Yoshinaga, Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. 23 (2014)
2568
+ 483–512.
2569
+ Departamento de Matem´atica, Universidade Federal da Para´ıba, 58051-900 Jo˜ao Pessoa, Para´ıba,
2570
+ Brazil.
2571
+ Email address: [email protected]
2572
+ Departamento de Matem´atica, Universidade Federal da Para´ıba, 58051-900 Jo˜ao Pessoa, Para´ıba,
2573
+ Brazil.
2574
+ Email address: [email protected]
2575
+ Departamento de Matem´atica, CCET, Universidade Federal de Sergipe, 49100-000 S˜ao Cristov˜ao,
2576
+ SE, Brazil.
2577
+ Email address: [email protected]
2578
+
IdE1T4oBgHgl3EQfYAQI/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
J9E2T4oBgHgl3EQfpQj_/content/2301.04028v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9017e57084bc0217eff0ba576b2c011b96fa72fcd767395dc8ff960b3a21d553
3
+ size 340783
J9E2T4oBgHgl3EQfpQj_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0137325ba17c5bb8c6196d00dda308d074aa17e88ffd96dab39ad1f22eb3858b
3
+ size 228245
J9E4T4oBgHgl3EQfhw2D/content/tmp_files/2301.05128v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
J9E4T4oBgHgl3EQfhw2D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
K9AzT4oBgHgl3EQfkP22/content/2301.01529v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26cbdd22f401666ca24201dcedf9a46ae57a11f427a668df711248cd9e49799e
3
+ size 445794
K9AzT4oBgHgl3EQfkP22/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:952b00a49ff4370cd8ae51b17f00e9af98ca8b4827d27921ada9c6d15bd49bdc
3
+ size 132280