jackkuo commited on
Commit
09082e5
·
verified ·
1 Parent(s): d7df988

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +6 -0
  2. 19E4T4oBgHgl3EQfaQyU/content/tmp_files/2301.05063v1.pdf.txt +981 -0
  3. 19E4T4oBgHgl3EQfaQyU/content/tmp_files/load_file.txt +0 -0
  4. 4NE1T4oBgHgl3EQfSgOT/content/2301.03067v1.pdf +3 -0
  5. 4dE3T4oBgHgl3EQfowpv/content/tmp_files/2301.04636v1.pdf.txt +650 -0
  6. 4dE3T4oBgHgl3EQfowpv/content/tmp_files/load_file.txt +0 -0
  7. 4tFAT4oBgHgl3EQfFByL/vector_store/index.pkl +3 -0
  8. 5NE0T4oBgHgl3EQfvgGE/content/tmp_files/2301.02619v1.pdf.txt +985 -0
  9. 5NE0T4oBgHgl3EQfvgGE/content/tmp_files/load_file.txt +500 -0
  10. 5tFKT4oBgHgl3EQf-i5C/content/tmp_files/2301.11958v1.pdf.txt +0 -0
  11. 5tFKT4oBgHgl3EQf-i5C/content/tmp_files/load_file.txt +0 -0
  12. 6tE1T4oBgHgl3EQf7AVi/content/tmp_files/2301.03529v1.pdf.txt +1174 -0
  13. 6tE1T4oBgHgl3EQf7AVi/content/tmp_files/load_file.txt +0 -0
  14. 8NE4T4oBgHgl3EQf2w06/content/2301.05300v1.pdf +3 -0
  15. 9NFPT4oBgHgl3EQfYjSJ/content/tmp_files/2301.13073v1.pdf.txt +2303 -0
  16. 9tAyT4oBgHgl3EQfqPjX/vector_store/index.faiss +3 -0
  17. CdA0T4oBgHgl3EQfAf80/content/tmp_files/2301.01962v1.pdf.txt +2239 -0
  18. CdA0T4oBgHgl3EQfAf80/content/tmp_files/load_file.txt +0 -0
  19. FdE4T4oBgHgl3EQffw1T/content/tmp_files/2301.05110v1.pdf.txt +1595 -0
  20. FdE4T4oBgHgl3EQffw1T/content/tmp_files/load_file.txt +0 -0
  21. FtE0T4oBgHgl3EQfhAHl/content/tmp_files/2301.02427v1.pdf.txt +883 -0
  22. FtE0T4oBgHgl3EQfhAHl/content/tmp_files/load_file.txt +492 -0
  23. G9AyT4oBgHgl3EQffPiq/content/tmp_files/2301.00337v1.pdf.txt +2065 -0
  24. G9AyT4oBgHgl3EQffPiq/content/tmp_files/load_file.txt +0 -0
  25. G9E4T4oBgHgl3EQfHwwY/content/tmp_files/2301.04905v1.pdf.txt +1494 -0
  26. G9E4T4oBgHgl3EQfHwwY/content/tmp_files/load_file.txt +0 -0
  27. GdAzT4oBgHgl3EQfxf4V/content/tmp_files/2301.01737v1.pdf.txt +802 -0
  28. GdAzT4oBgHgl3EQfxf4V/content/tmp_files/load_file.txt +478 -0
  29. I9FET4oBgHgl3EQfrCVC/content/tmp_files/2301.10089v1.pdf.txt +1170 -0
  30. I9FET4oBgHgl3EQfrCVC/content/tmp_files/load_file.txt +0 -0
  31. J9AyT4oBgHgl3EQf6Pof/content/tmp_files/2301.00817v1.pdf.txt +2286 -0
  32. J9AyT4oBgHgl3EQf6Pof/content/tmp_files/load_file.txt +0 -0
  33. JtAyT4oBgHgl3EQf5_rl/content/tmp_files/2301.00816v1.pdf.txt +515 -0
  34. JtAyT4oBgHgl3EQf5_rl/content/tmp_files/load_file.txt +0 -0
  35. L9FRT4oBgHgl3EQf2Ti5/content/tmp_files/2301.13660v1.pdf.txt +1059 -0
  36. L9FRT4oBgHgl3EQf2Ti5/content/tmp_files/load_file.txt +0 -0
  37. M9E3T4oBgHgl3EQfwgt2/content/tmp_files/2301.04703v1.pdf.txt +1191 -0
  38. M9E3T4oBgHgl3EQfwgt2/content/tmp_files/load_file.txt +0 -0
  39. MtE4T4oBgHgl3EQfKQyA/content/tmp_files/2301.04928v1.pdf.txt +2461 -0
  40. MtE4T4oBgHgl3EQfKQyA/content/tmp_files/load_file.txt +0 -0
  41. NNFOT4oBgHgl3EQf2DS3/content/tmp_files/2301.12941v1.pdf.txt +0 -0
  42. NNFOT4oBgHgl3EQf2DS3/content/tmp_files/load_file.txt +0 -0
  43. NdE2T4oBgHgl3EQfBgbQ/content/tmp_files/2301.03604v1.pdf.txt +1398 -0
  44. NdE2T4oBgHgl3EQfBgbQ/content/tmp_files/load_file.txt +0 -0
  45. Q9FRT4oBgHgl3EQfKjda/content/tmp_files/2301.13499v1.pdf.txt +994 -0
  46. Q9FRT4oBgHgl3EQfKjda/content/tmp_files/load_file.txt +0 -0
  47. R9AyT4oBgHgl3EQf7_qI/content/tmp_files/2301.00849v1.pdf.txt +574 -0
  48. R9AyT4oBgHgl3EQf7_qI/content/tmp_files/load_file.txt +262 -0
  49. R9FJT4oBgHgl3EQfLCxT/content/tmp_files/2301.11467v1.pdf.txt +1813 -0
  50. R9FJT4oBgHgl3EQfLCxT/content/tmp_files/load_file.txt +0 -0
.gitattributes CHANGED
@@ -147,3 +147,9 @@ gtE4T4oBgHgl3EQfrA2b/content/2301.05205v1.pdf filter=lfs diff=lfs merge=lfs -tex
147
  etE2T4oBgHgl3EQfGgZ8/content/2301.03658v1.pdf filter=lfs diff=lfs merge=lfs -text
148
  idFMT4oBgHgl3EQf4zEN/content/2301.12453v1.pdf filter=lfs diff=lfs merge=lfs -text
149
  ptAyT4oBgHgl3EQfl_gG/content/2301.00461v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
147
  etE2T4oBgHgl3EQfGgZ8/content/2301.03658v1.pdf filter=lfs diff=lfs merge=lfs -text
148
  idFMT4oBgHgl3EQf4zEN/content/2301.12453v1.pdf filter=lfs diff=lfs merge=lfs -text
149
  ptAyT4oBgHgl3EQfl_gG/content/2301.00461v1.pdf filter=lfs diff=lfs merge=lfs -text
150
+ U9E3T4oBgHgl3EQfawpi/content/2301.04509v1.pdf filter=lfs diff=lfs merge=lfs -text
151
+ 8NE4T4oBgHgl3EQf2w06/content/2301.05300v1.pdf filter=lfs diff=lfs merge=lfs -text
152
+ etE2T4oBgHgl3EQfGgZ8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
153
+ 4NE1T4oBgHgl3EQfSgOT/content/2301.03067v1.pdf filter=lfs diff=lfs merge=lfs -text
154
+ 9tAyT4oBgHgl3EQfqPjX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
155
+ n9E5T4oBgHgl3EQfjw-t/content/2301.05658v1.pdf filter=lfs diff=lfs merge=lfs -text
19E4T4oBgHgl3EQfaQyU/content/tmp_files/2301.05063v1.pdf.txt ADDED
@@ -0,0 +1,981 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Finite-size excess-entropy scaling for simple liquids
2
+ Mauricio Sevilla,1 Atreyee Banerjee,1 and Robinson Cortes-Huerto1, ∗
3
+ 1Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz
4
+ (Dated: January 13, 2023)
5
+ We introduce and validate a finite-size two-body excess entropy integral equation.
6
+ By using
7
+ analytical arguments and computer simulations of prototypical simple liquids, we show that the
8
+ excess entropy s2 exhibits a finite-size scaling with the inverse of the linear size of the simulation
9
+ box. Since the self-diffusivity coefficient D∗ displays a similar finite-size effect, we show that the
10
+ scaling entropy relation D∗ = A exp(αs2) also depends on the simulation box size. By extrapolating
11
+ to the thermodynamic limit, we report values for the coefficients A and α that agree well with values
12
+ available in the literature. Finally, we find a power law relation between the scaling coefficients for
13
+ D∗ and s2, suggesting a constant viscosity to entropy ratio.
14
+ I.
15
+ INTRODUCTION
16
+ Excess entropy (sexc), the difference between the en-
17
+ tropy of a system and its ideal gas counterpart at the
18
+ same temperature and density, is connected to the dy-
19
+ namical properties of simple liquids (See Ref. [1] for a
20
+ recent review). This observation was first reported by
21
+ Rosenfeld [2], who showed that, for simple model liq-
22
+ uids, reduced transport properties such as diffusivity,
23
+ viscosity and thermal conductivity scale with the excess
24
+ entropy as
25
+ X∗ = A exp (αsexc) ,
26
+ (1)
27
+ with X∗ a dimensionless transport property and A and
28
+ α parameters, independent of the thermodynamic state,
29
+ determined by the interparticle potential.
30
+ Following similar physical arguments and assuming that
31
+ the major contribution to sexc comes from two-body
32
+ terms, Dzugutov proposed a similar scaling relation be-
33
+ tween self-diffusivity and a two-body approximation to
34
+ the excess entropy s2, namely [3]
35
+ D∗ = A exp(αs2) ,
36
+ (2)
37
+ with D∗ =
38
+ D
39
+ Γσ2r where D is the self-diffusion coeffi-
40
+ cient, σr measures the linear size of the particles and
41
+ Γ = 4σ2g(σr)ρ
42
+
43
+ πkBT
44
+ m
45
+ the collision frequency given by
46
+ the Enskog theory [4] where g(σr) is the value of the ra-
47
+ dial distribution function at a distance σr. In this case,
48
+ a large variety of simple liquids satisfy Eq. (2) with the
49
+ universal choice of parameters A = 0.049 and α = 1 [3].
50
+ This excess entropy scaling has been widely validated for
51
+ a large variety of simple [5–11] and molecular liquids[12–
52
+ 15], including specially water [16–19]. We also highlight
53
+ that experimental studies have tested entropy scaling
54
+ in somewhat challenging scenarios [20, 21], and the fact
55
+ that Rosenfeld and Dzugutov relations are empirical but
56
+ have been justified on theoretical grounds [22, 23]. Fur-
57
+ thermore, the structure–dynamics connection in Eq. (2)
58
59
+ has been proposed as a tool to investigate the relation
60
+ between dynamical properties of computational models
61
+ at different resolutions, [24], which is now routinely con-
62
+ sidered in the context of coarse-grained models [25, 26].
63
+ Transport properties exhibit implicit size effects due
64
+ to the finite size of the simulation box and the use
65
+ of periodic boundary conditions (PBC) [27–29].
66
+ In
67
+ the particular case of the reduced self-diffusion coeffi-
68
+ cient D∗, given a cubic simulation box of linear size L,
69
+ D∗ ≡ D∗(L) takes the form [27, 30–33] (See Figure 1)
70
+ 0.025
71
+ 0.050
72
+ 0.075
73
+ 0.100
74
+ 0.125
75
+ 0.150
76
+ 0.175
77
+ 0.200
78
+ 1/L
79
+ 0.002
80
+ 0.004
81
+ 0.006
82
+ 0.008
83
+ 0.010
84
+ 0.012
85
+ D ∗
86
+ kBT = 0.7ϵ
87
+ kBT = 0.85ϵ
88
+ kBT = 1ϵ
89
+ kBT = 2ϵ
90
+ kBT = 3ϵ
91
+ kBT = 4ϵ
92
+ kBT = 5ϵ
93
+ kBT = 6ϵ
94
+ kBT = 7ϵ
95
+ Figure 1.
96
+ Reduced self-diffusion coefficient D∗ as a function
97
+ of the inverse of the box linear size 1/L for a Lennard-Jones
98
+ liquid with density ρσ3
99
+ LJ = 0.864 in the range of tempera-
100
+ tures kBT = [0.7ϵ, 7ϵ].
101
+ D∗(L) = D∗∞ − δ
102
+ L ,
103
+ (3)
104
+ with δ =
105
+ kBT ζ
106
+ 6πηΓσ2r with ζ ≈ 2.837297 and η the system’s
107
+ viscosity. In the thermodynamic limit (TL), namely, in
108
+ the limit L → ∞, the self-diffusion coefficient takes the
109
+ value D∗∞.
110
+ Given the finite-size scaling of D∗, we expect that
111
+ Eq. (2) also depends on the size of the simulation
112
+ box.
113
+ Recent computational studies investigating en-
114
+ tropy scaling for liquid water using ab initio molecu-
115
+ lar dynamics simulations [34] emphasise the relevance
116
+ of this remark. In this case, the systems under consid-
117
+ eration are rather small, and finite-size effects become
118
+ arXiv:2301.05063v1 [cond-mat.soft] 12 Jan 2023
119
+
120
+ 2
121
+ increasingly important.
122
+ In this paper, we investigate the finite-size scaling of
123
+ Eq. (2) by focusing on implicit and explicit finite-size
124
+ effects present on the two-body excess entropy s2. We
125
+ find that s2 obeys a finite-size scaling relation similar
126
+ to D∗, which implies that the universal parameters A
127
+ and α in Eq. (2) also depends on the size of the simu-
128
+ lation box. Finally, and perhaps more interestingly, our
129
+ results indicate that a power law relates the finite-size
130
+ scaling coefficients of D∗ and s2, suggesting a constant
131
+ viscosity/entropy ratio [35–38].
132
+ The paper is organised as follows:
133
+ In Section II we
134
+ present the model and computational details. We show
135
+ that s2 is ensemble invariant and that the only relevant
136
+ finite-size effect comes from using finite integration do-
137
+ mains in Section III. In Section IV, we introduce and
138
+ validate a finite-size version of s2. We then present the
139
+ finite-size scaling of the Dzugutov relation (Eq. (2)) in
140
+ Section V. Finally, we conclude and provide our outlook
141
+ in Section VI.
142
+ II.
143
+ COMPUTATIONAL DETAILS
144
+ We investigate the excess entropy scaling for liquids
145
+ whose potential energy is described by a 12–6 Lennard–
146
+ Jones potential truncated, with cutoff radius rc/σLJ =
147
+ 2.5, and shifted. The parameters ϵ, σLJ and m, define
148
+ the energy, length and mass units, respectively. All the
149
+ results are expressed in LJ units with time σLJ(m/ϵ)1/2,
150
+ temperature ϵ/kB and pressure ϵ/σ3
151
+ LJ.
152
+ In the follow-
153
+ ing, we identify σr of Eq. (3) with σLJ. We consider
154
+ cubic simulation boxes with linear sizes in the interval
155
+ L/σLJ = [5, 50], with fixed density ρσ3
156
+ LJ = 0.864. The
157
+ systems are equilibrated at temperatures in the interval
158
+ kBT = [0.7ϵ, 7.0ϵ], enforced with a Langevin thermostat
159
+ with damping coefficient γ(σ(m/ϵ)1/2) = 1.0. We equili-
160
+ brate the samples for 10×106 molecular dynamics (MD)
161
+ steps using a time step of δt/(σLJ(m/ϵ)1/2) = 10−3, fol-
162
+ lowed by additional 10 × 106 MD steps on the NVE
163
+ ensemble to verify that the temperature does not de-
164
+ viate substantially from the target value. Production
165
+ runs span 10 × 106 MD steps. All the simulations have
166
+ been performed with the LAMMPS simulation package
167
+ [39].
168
+ III.
169
+ IMPLICIT AND EXPLICIT FINITE-SIZE
170
+ EFFECTS
171
+ In this section, we identify which finite-size effects are
172
+ expected to affect the calculation of the excess entropy.
173
+ We start with the definition of excess entropy for an
174
+ N–particle system with respect to the ideal gas:
175
+ sexc = S − SIG
176
+ NkB
177
+ = S2 + S3 + · · ·
178
+ NkB
179
+ ,
180
+ (4)
181
+ with kB the Boltzmann constant. In the following, we
182
+ focus on two-body contributions, which mostly amount
183
+ to 80–90% of the overall value of the excess entropy for
184
+ simple liquids. [40, 41] In particular, we have [42, 43]
185
+ s2 = − ρ
186
+ 2V
187
+
188
+ V
189
+
190
+ V
191
+ dr1 dr2 [g(r) ln g(r) − (g(r) − 1)] ,
192
+ (5)
193
+ with s2 =
194
+ S2
195
+ NkB the two-body excess entropy per particle.
196
+ By taking the thermodynamic limit and assuming that
197
+ the liquid is homogeneous and isotropic, we obtain the
198
+ familiar expression
199
+ s∞
200
+ 2 = −2πρ
201
+ � ∞
202
+ 0
203
+ dr r2 [g(r) ln g(r) − (g(r) − 1)] .
204
+ (6)
205
+ When performing molecular dynamics simulations, we
206
+ usually consider systems with a finite number of parti-
207
+ cles, typically not large enough to reach the thermody-
208
+ namic limit. Furthermore, when evaluating the double
209
+ integral in Eq. (5) we need to consider that the volume V
210
+ is finite. For such a reason, and following the strategy
211
+ used to compute the compressibility equation [44, 45]
212
+ and the Kirkwood-Buff integrals [46–48] in computer
213
+ simulations, we define a finite–size two–body excess en-
214
+ tropy evaluated in a subvolume V of a system with a
215
+ total number of particles N0 and the volume V0
216
+ s2(V ; N0) = − ρ
217
+ 2V
218
+
219
+ V
220
+
221
+ V
222
+ dr1 dr2 [g(r; N0) ln g(r; N0)
223
+ −(g(r; N0) − 1)] ,
224
+ (7)
225
+ with g(r; N0) the finite-size RDF. The asymptotic cor-
226
+ rection to the finite-size RDF, given by the difference in
227
+ the thermodynamic ensemble, gives [49–54]
228
+ g(r; N0) = g(r) − χ∞
229
+ T
230
+ N0
231
+ (8)
232
+ with χ∞
233
+ T = ρkBTκT , and κT being the isothermal com-
234
+ pressibility in the thermodynamic limit. We write the
235
+ integrand in Eq. (7) as
236
+ g(r; N0) ln g(r; N0) ≈ g(r) ln g(r)
237
+ − χ∞
238
+ T
239
+ N0
240
+ (1 + ln g(r))
241
+ g(r; N0) − 1 = g(r) − 1 − χ∞
242
+ T
243
+ N0
244
+ ,
245
+ (9)
246
+ where in the first line in the previous expression, we
247
+ have neglected terms of the order O
248
+
249
+ 1
250
+ N 2
251
+ 0
252
+
253
+ .
254
+ The two
255
+ contributions χ∞
256
+ T
257
+ N0 cancel out exactly. The contribution
258
+ χ∞
259
+ T
260
+ N0 ln g(r) can be neglected by assuming a large number
261
+ of particles (there is no V/V0 contribution, only 1/V0,
262
+ hence, we can neglect it). This indicates that the two-
263
+ body excess entropy is ensemble invariant, consistent
264
+ with the result reported Ref. [55, 56]. We thus rewrite
265
+ Eq. (7) as
266
+ s2(V ) = − ρ
267
+ 2V
268
+
269
+ V
270
+
271
+ V
272
+ dr1 dr2 [g(r) ln g(r)
273
+ −(g(r) − 1)] .
274
+ (10)
275
+
276
+ 3
277
+ The volume V is finite and embedded into the vol-
278
+ ume V0.
279
+ The integration domains can be rearranged
280
+ as
281
+
282
+ V
283
+
284
+ V (· · · ) =
285
+
286
+ V
287
+
288
+ V0(· · · ) −
289
+
290
+ V
291
+
292
+ V0−V (· · · ).
293
+ Using
294
+ a similar argument as the one used to calculate the
295
+ finite-size compressibility [57] and Kirkwood-Buff inte-
296
+ grals [46], the term
297
+
298
+ V
299
+
300
+ V0(· · · ) gives s∞
301
+ 2
302
+ and the term
303
+
304
+ V
305
+
306
+ V0−V (· · · ) scales as 1/L with L = V 1/3 the linear
307
+ size of the cubic simulation box. Thus,
308
+ s2(L) = s∞
309
+ 2 + σ
310
+ L ,
311
+ (11)
312
+ with σ a constant that depends on intensive thermody-
313
+ namic quantities only. In the following section, we intro-
314
+ duce a method to compute s2(L) and verify its scaling
315
+ behaviour with the linear size of the simulation box.
316
+ To finish this section, we compare our results with
317
+ 0.0
318
+ 2.5
319
+ 5.0
320
+ 7.5
321
+ 10.0
322
+ 12.5
323
+ 15.0
324
+ 17.5
325
+ 20.0
326
+ R
327
+ 3.0
328
+ 2.5
329
+ 2.0
330
+ 1.5
331
+ 1.0
332
+ 0.5
333
+ 0.0
334
+ 0.5
335
+ sR
336
+ 2
337
+ Kirkwood-Buff
338
+ Information
339
+ sR
340
+ 2 Eq. 12
341
+ Figure 2.
342
+ Plot of the two contributions, Kirkwood-Buff
343
+ (g(r; N0) − 1) and Information (g(r; N0) ln g(r; N0)), to the
344
+ truncated integral sR
345
+ 2 for a system of linear size L/σLJ = 35
346
+ at kBT = 2.0ϵ. It is apparent that the two terms oscillate
347
+ out-of-phase for small values of R, and their sum converges
348
+ to s∞
349
+ 2
350
+ when R → ∞.
351
+ the usual truncation of Eq. (6) up to a cutoff radius R,
352
+ namely
353
+ sR
354
+ 2 = −2πρ
355
+ � R
356
+ 0
357
+ dr r2 [g(r; N0) ln g(r; N0)
358
+ −(g(r; N0) − 1)] .
359
+ (12)
360
+ We use this truncated integral to verify numerically
361
+ that ensemble finite-size contributions cancel out al-
362
+ most exactly. [11] For a system of size L/σLJ = 35 at
363
+ kBT = 2.0ϵ, we separate the g(r; N0) − 1, Kirkwood-
364
+ Buff, and the g(r; N0) ln g(r; N0), Information, contri-
365
+ butions and plot them as a function of the truncation
366
+ radius R (See Figure 2). Both integrals diverge for large
367
+ values of R, Kirkwood-Buff to infinity and Information
368
+ to minus infinity, which signals a clear ensemble finite-
369
+ size effect. However, these two finite-size contributions
370
+ balance each other, and the sum of the two integrals
371
+ converges to s∞
372
+ 2 for R >> 1. Due to this error cancella-
373
+ tion, the truncation Eq. (12) gives s∞
374
+ 2 even for relatively
375
+ small simulation boxes, and its finite-size dependence
376
+ has been commonly overlooked in the literature.
377
+ IV.
378
+ FINITE-VOLUME EXCESS ENTROPY
379
+ Based on previous work on finite-size isothermal com-
380
+ pressibility [58] and Kirkwood-Buff integrals [59], we de-
381
+ fine a finite-volume two-body excess entropy as follows.
382
+ s2(V ) = − ρ
383
+ 2V
384
+ � �
385
+ dr1 dr2 R(r1) R(r2) h(r) ,
386
+ (13)
387
+ with R(r) a step function that defines the finite integra-
388
+ tion subdomain, being equal to one inside and to zero
389
+ outside the volume V [58]. The function h(r) is defined
390
+ as
391
+ h(r) = g(r) ln g(r) − (g(r) − 1) .
392
+ (14)
393
+ We write the double integral of s2(V ) in Fourier space
394
+ and include the periodicity of the simulation of the box
395
+ in h(r) explicitly. Thus
396
+ s2(V ) = −
397
+ ρ
398
+ 2(2π)3V
399
+
400
+ dk ˜R(k) ˜R(−k) ˜hPBC(k) ,
401
+ (15)
402
+ where [58]
403
+ ˜hPBC(k) =
404
+
405
+ nx,ny,nz
406
+ e−k·snx,ny,nz ˜h(k) ,
407
+ (16)
408
+ with ˜h(k) the Fourier transform of h(r) and snx,ny,nz =
409
+ (nx Lx, ny Ly, nz Lx) a vector specifying the system’s
410
+ periodic images such that nx,y,z takes integer values. In
411
+ the following, we consider a cubic simulation box with
412
+ Lx = Ly = Lz = L. As before [59], we choose |nx| ≤ 1,
413
+ |ny| ≤ 1 and |nz| ≤ 1 to compute Eq. (16). Finally,
414
+ we assume a homogeneous and isotropic fluid such that
415
+ ˜h(k) = ˜h(k) with k =
416
+
417
+ k · k.
418
+ To validate our approach, we verify that Eqs (15) and
419
+ (12) converge to the same value in the thermodynamic
420
+ limit.
421
+ To this aim, we consider a system with linear
422
+ size L/σLJ = 50 at kBT = 2.0ϵ, compute the RDF and
423
+ evaluate the truncated integral Eq. (12). According to
424
+ Eq. (11), implicit finite-size effects are the most relevant
425
+ in this case. Hence, by considering a sufficiently large
426
+ simulation box, the large R limit of Eq. (12) converges
427
+ to the TL value. We present this result in Fig. 3 (black
428
+ solid curve). To evaluate Eq. (15), we take the RDF
429
+ from the simulation box with linear size L/σLJ = 20
430
+ and perform the Fourier transform procedure described
431
+ above to obtain ˜h(k). It is apparent, as expected, that
432
+ with explicit PBC, the finite-size s2 gives the TL value
433
+ (red dashed curve). Instead, by removing PBC, there
434
+ is a significant deviation from the TL value that we at-
435
+ tribute to the 1/L dependence in Eq. (11) (blue solid
436
+ curved).
437
+ We verify this 1/L dependence in the finite-size s2.
438
+ In Figure 4, we plot the result of sR
439
+ 2 , Eq. (12), as a
440
+
441
+ 4
442
+ 0.0
443
+ 0.2
444
+ 0.4
445
+ 0.6
446
+ 0.8
447
+ 1.0
448
+ R/L
449
+ 2.0
450
+ 1.5
451
+ 1.0
452
+ 0.5
453
+ 0.0
454
+ s2
455
+ Single Integral
456
+ Double Integral (No PBC)
457
+ Double Integral (PBC)
458
+ Figure 3. Running s2 as a function of the ratio R/L for the
459
+ case L/σLJ = 5 at kBT = 2.0ϵ. The black line corresponds
460
+ to the truncation Eq. 12, and the red and blue curves are the
461
+ result of Eq. (15) including (|nx| ≤ 1, |ny| ≤ 1 and |nz| ≤ 1)
462
+ and not including (|nx| = |ny| = |nz| = 0) PBC, respec-
463
+ tively. By including PBC, the integral Eq. (15) converges to
464
+ the thermodynamic limit.
465
+ 0.000
466
+ 0.025
467
+ 0.050
468
+ 0.075
469
+ 0.100
470
+ 0.125
471
+ 0.150
472
+ 0.175
473
+ 0.200
474
+ R/L
475
+ 2.4
476
+ 2.2
477
+ 2.0
478
+ 1.8
479
+ s2
480
+ Single integral
481
+ Double Integral (No PBC)
482
+ Double Integral
483
+ Figure 4. s2 as a function of the inverse of the simulation
484
+ box size L for systems at kBT = 2.0ϵ.
485
+ The black trian-
486
+ gles are calculated with the truncated integral (Eq. (12)),
487
+ the red triangles and blue squares were calculated with the
488
+ double integral (Eq. (15)) including and excluding PBC, re-
489
+ spectively.
490
+ function of 1/L (black inverted triangles). There, it is
491
+ apparent that the integral converges when the linear size
492
+ of the system is L/σLJ > 10. The result of using s2(V ),
493
+ Eq. (15), with explicit PBC, always converges to the
494
+ TL value (red triangles), regardless of the linear size of
495
+ the system. More interestingly, by removing PBC from
496
+ Eq. (15), we observe a clear linear dependence with 1/L
497
+ (blue squares). Furthermore, by extrapolating this be-
498
+ haviour (blue dashed line) to the axis 1/L = 0, we ob-
499
+ tain a linear extrapolation to s∞
500
+ 2 . This result completes
501
+ the validation of both, Eqs (11) and (15).
502
+ V.
503
+ FINITE-SIZE EXCESS-ENTROPY SCALING
504
+ 0.025
505
+ 0.050
506
+ 0.075
507
+ 0.100
508
+ 0.125
509
+ 0.150
510
+ 0.175
511
+ 0.200
512
+ 1/L
513
+ 1.0
514
+ 1.5
515
+ 2.0
516
+ 2.5
517
+ 3.0
518
+ 3.5
519
+ −s2
520
+ kbT = 0.7ϵ
521
+ kbT = 0.85ϵ
522
+ kbT = 1ϵ
523
+ kbT = 2ϵ
524
+ kbT = 3ϵ
525
+ kbT = 4ϵ
526
+ kbT = 5ϵ
527
+ kbT = 6ϵ
528
+ kbT = 7ϵ
529
+ Figure 5.
530
+ -s2 as a function of 1/L for a LJ system at
531
+ ρσ3
532
+ LJ = 0.864 and different temperatures. All data points
533
+ were obtained with the RDF for the system of linear size
534
+ L/σLJ = 20 and using Eq. (15) without PBC.
535
+ In this section, we investigate the finite-size effects of
536
+ the self-diffusivity entropy scaling, Eq. (2). To this aim,
537
+ we verify that the scaling of s2 with 1/L is valid in a
538
+ wide temperature range. We present these results for
539
+ a LJ system with density ρσ3
540
+ LJ = 0.864 in the range of
541
+ temperatures kBT = [0.7ϵ, 7ϵ]. The results in Figure 5
542
+ indicate that the 1/L scaling is apparent for all temper-
543
+ atures considered here.
544
+ We now collect all our data to investigate the scaling
545
+ of Eq. (2) with the simulation box size. The result is
546
+ presented in Figure 6 where the diffusion constant D∗
547
+ is plotted against −s2. A clear trend with system size
548
+ emerges, indicating that Eq. (2) remains valid even for
549
+ the smallest simulation boxes considered and showing
550
+ that the parameters A and α are also size dependent.
551
+ By extrapolating D∗ and −s2 to the limit 1/L → 0,
552
+ we obtain the TL values given by the black empty tri-
553
+ angles that well agree with the reference scaling pro-
554
+ vided by Eq. (2) (black dashed line). Indeed, we report
555
+ A∞ = 0.048 ± 0.001 and α∞ = 1.000 ± 0.013 in the TL,
556
+ in good agreement with the value originally estimated
557
+ in Ref. [3].
558
+ Finally, we investigate the relation between the coef-
559
+ ficients δ and σ of the finite-size scaling of D∗ and s2,
560
+ respectively. In Figure 7, we plot σ as a function of δ
561
+ and observe a power law relation of the form σ = aδb
562
+ with a = 1.256 ± 0.118 and b = −0.513 ± 0.020.
563
+ VI.
564
+ SUMMARY AND OUTLOOK
565
+ We define a finite-size two-body excess entropy s2(L)
566
+ integral equation with L the linear size of the simulation
567
+ box. Using analytical arguments and simulations of a
568
+ prototypical Lennard-Jones liquid at different densities
569
+ and temperatures, we show that s2(L) = s∞
570
+ 2 +σ/L with
571
+
572
+ 5
573
+ 1.0
574
+ 1.5
575
+ 2.0
576
+ 2.5
577
+ 3.0
578
+ 3.5
579
+ 4.0
580
+ −s2
581
+ 10-4
582
+ 10-3
583
+ 10-2
584
+ D ∗
585
+ Reference
586
+ 5.0σ
587
+ 10.0σ
588
+ 15.0σ
589
+ 20.0σ
590
+ 25.0σ
591
+ 30.0σ
592
+ 35.0σ
593
+ 40.0σ
594
+ 50.0σ
595
+ Figure 6.
596
+ Reduced self-diffusion coefficient D∗ as a func-
597
+ tion of −s2 for different system sizes and temperatures. The
598
+ empty black triangles show the thermodynamic limit values
599
+ for −s2 and D∗.
600
+ 10-2
601
+ 10-1
602
+ 100
603
+ δ
604
+ 100
605
+ 101
606
+ σ
607
+ fit
608
+ Data
609
+ Figure 7. Coefficients σ(T) as a function of δ(T) for all the
610
+ temperatures considered here. We used a power law σ = aδb
611
+ to fit the data.
612
+ σ a constant that depends on intensive thermodynamic
613
+ quantities.
614
+ Given the well-know finite-size scaling of
615
+ the self-diffusivity, D∗(L) = D∗∞ − δ/L, we show that
616
+ the universal scaling relation between entropy and
617
+ diffusion D∗ = A exp (αs2) also exhibits a finite-size
618
+ dependence and, by extrapolating to the TL, report
619
+ A = 0.048 ± 0.001 and α = 1.000 ± 0.013, in good
620
+ agreement with values reported in the literature.
621
+ Fi-
622
+ nally, and perhaps more interestingly, we show that the
623
+ scaling coefficients σ and δ of s2 and D∗, respectively,
624
+ are related by a somewhat simple power law σ = aδb
625
+ with a = 1.256 ± 0.118 and b = −0.513 ± 0.020.
626
+ The finite-size scaling of s2 can be rationalised in terms
627
+ of the thermodynamics of small systems [60, 61]. In par-
628
+ ticular, the statistical mechanics of a few model small
629
+ systems in confinement has been derived recently [62].
630
+ The authors have shown that given the high surface
631
+ area–to–volume ratio of small systems, thermodynamic
632
+ properties include surface contributions. In the case of
633
+ entropy, these contributions include 1/L terms with L,
634
+ the linear size of the system. In this context, we feel
635
+ that the finite-size entropy scaling investigated here
636
+ might play a role in understanding the non-equilibrium
637
+ thermodynamics of confined, small systems [63].
638
+ The power law relation between the scaling coeffi-
639
+ cients of self-diffusion and two-body excess entropy
640
+ is somewhat intriguing.
641
+ On the one hand, the size
642
+ scaling in the self-diffusion appears as a consequence
643
+ of the conservation of linear momentum [30]. On the
644
+ other hand, the finite-size scaling in the two-body
645
+ entropy results from a surface contribution due to the
646
+ confinement of the system [62]. Admittedly, we do not
647
+ have a satisfactory explanation for this connection.
648
+ Nevertheless, we point out that the ratio δb/σ = 1/a
649
+ might be related to a constant viscosity/entropy ratio.
650
+ Indeed, δ is inversely proportional to the system’s
651
+ viscosity, and a simple dimensional analysis tells us
652
+ that σ has units of entropy times length. Interestingly,
653
+ string theory methods have been used to conjecture
654
+ that, for fluids in equilibrium, the viscosity to entropy
655
+ density ratio has a lower bound at ℏ/4πkB [35] with
656
+ ℏ the reduced Planck constant.
657
+ This relation, tested
658
+ for various fluid systems [36–38], has been originally
659
+ derived by considering that the entropy density of a
660
+ black hole is proportional to the surface to volume
661
+ ratio of its event horizon, i.e. a 1/L contribution. We
662
+ find this connection fascinating, and, in our opinion, it
663
+ deserves further investigation.
664
+ ACKNOWLEDGMENTS
665
+ We are grateful to Kurt Kremer for his insightful dis-
666
+ cussions. We also thank Denis Andrienko for his critical
667
+ reading of the manuscript. R.C.-H. gratefully acknowl-
668
+ edges funding from SFB-TRR146 of the German Re-
669
+ search Foundation (DFG). Simulations have been per-
670
+ formed on the THINC cluster at the Max Planck Insti-
671
+ tute for Polymer Research and the COBRA cluster at
672
+ the Max Planck Computing and Data Facility.
673
+ [1] Jeppe C Dyre. Perspective: Excess-entropy scaling. The
674
+ Journal of chemical physics, 149(21):210901, 2018.
675
+ [2] Yaakov Rosenfeld. Relation between the transport coef-
676
+ ficients and the internal entropy of simple liquids. Phys.
677
+ Rev. A, 15(6):2545–2549, 1977.
678
+ Yaakov Rosenfeld.
679
+ A quasi-universal scaling law for
680
+ atomic transport in simple fluids. Journal of Physics:
681
+ Condensed Matter, 11(28):5415, 1999.
682
+
683
+ 6
684
+ [3] Mikhail Dzugutov. A universal scaling law for atomic
685
+ diffusion in condensed matter.
686
+ Nature, 381:137–139,
687
+ 1996.
688
+ [4] S. Chapman, T.G. Cowling, D. Burnett, and C. Cercig-
689
+ nani. The Mathematical Theory of Non-uniform Gases:
690
+ An Account of the Kinetic Theory of Viscosity, Thermal
691
+ Conduction and Diffusion in Gases. Cambridge Math-
692
+ ematical Library. Cambridge University Press, 1990.
693
+ [5] J. J. Hoyt, Mark Asta, and Babak Sadigh. Test of the
694
+ universal scaling law for the diffusion coefficient in liquid
695
+ metals. Phys. Rev. Lett., 85:594–597, Jul 2000.
696
+ [6] Jean-Louis Bretonnet. Self-diffusion coefficient of dense
697
+ fluids from the pair correlation function. The Journal
698
+ of Chemical Physics, 117(20):9370–9373, 2002.
699
+ [7] Sorin Bastea. Transport properties of dense fluid argon.
700
+ Phys. Rev. E, 68:031204, Sep 2003.
701
+ [8] G. X. Li, C. S. Liu, and Z. G. Zhu.
702
+ Scaling law for
703
+ diffusion coefficients in simple melts.
704
+ Phys. Rev. B,
705
+ 71:094209, Mar 2005.
706
+ [9] J. A. Armstrong and P. Ballone. Computational veri-
707
+ fication of two universal relations for simple ionic liq-
708
+ uids. kinetic properties of a model 2:1 molten salt. The
709
+ Journal of Physical Chemistry B, 115(17):4927–4938, 05
710
+ 2011.
711
+ [10] A. Banerjee, M. K. Nandi, and S. M. Bhattacharyya.
712
+ Validity of the rosenfeld relationship: A comparative
713
+ study of the network forming ntw model and other sim-
714
+ ple liquids. Journal of Chemical Sciences, 129(7):793–
715
+ 800, 2017.
716
+ [11] Michael Widom and Michael Gao. First principles cal-
717
+ culation of the entropy of liquid aluminum. Entropy,
718
+ 21(2):131, 2019.
719
+ [12] Teena Goel, Chandra Nath Patra, Tulsi Mukherjee, and
720
+ Charusita Chakravarty. Excess entropy scaling of trans-
721
+ port properties of lennard-jones chains. The Journal of
722
+ Chemical Physics, 129(16):164904, 2008.
723
+ [13] Marco Malvaldi and Cinzia Chiappe.
724
+ Excess entropy
725
+ scaling of diffusion in room-temperature ionic liquids.
726
+ The Journal of Chemical Physics, 132(24):244502, 2010.
727
+ [14] Ravi Chopra, Thomas M. Truskett, and Jeffrey R.
728
+ Errington. Excess entropy scaling of dynamic quantities
729
+ for fluids of dumbbell-shaped particles. The Journal of
730
+ Chemical Physics, 133(10):104506, 2010.
731
+ [15] Guillaume
732
+ Galliero,
733
+ Christian
734
+ Boned,
735
+ and
736
+ Josefa
737
+ Fern´andez. Scaling of the viscosity of the lennard-jones
738
+ chain fluid model, argon, and some normal alkanes. The
739
+ Journal of Chemical Physics, 134(6):064505, 2011.
740
+ [16] Ruchi
741
+ Sharma,
742
+ Manish
743
+ Agarwal,
744
+ and
745
+ Charusita
746
+ Chakravarty.
747
+ Estimating
748
+ the
749
+ entropy
750
+ of
751
+ liquids
752
+ from atom–atom radial distribution functions:
753
+ sil-
754
+ ica, beryllium fluoride and water. Molecular Physics,
755
+ 106(15):1925–1938, 2008.
756
+ [17] Manish Agarwal, Murari Singh, Ruchi Sharma, Moham-
757
+ mad Parvez Alam, and Charusita Chakravarty. Rela-
758
+ tionship between structure, entropy, and diffusivity in
759
+ water and water-like liquids. The Journal of Physical
760
+ Chemistry B, 114(20):6995–7001, 05 2010.
761
+ [18] Ravi Chopra, Thomas M Truskett, and Jeffrey R
762
+ Errington. On the use of excess entropy scaling to de-
763
+ scribe the dynamic properties of water. The Journal of
764
+ Physical Chemistry B, 114(32):10558–10566, 2010.
765
+ [19] Manish
766
+ Agarwal,
767
+ Mohammad
768
+ Parvez
769
+ Alam,
770
+ and
771
+ Charusita Chakravarty.
772
+ Thermodynamic, diffusional,
773
+ and structural anomalies in rigid-body water models.
774
+ The Journal of Physical Chemistry B, 115(21):6935–
775
+ 6945, 06 2011.
776
+ [20] Xiaoguang Ma, Wei Chen, Ziren Wang, Yuan Peng, Yi-
777
+ long Han, and Penger Tong. Test of the universal scal-
778
+ ing law of diffusion in colloidal monolayers. Phys. Rev.
779
+ Lett., 110:078302, Feb 2013.
780
+ [21] Florian Spieckermann, Daniel S¸opu, Viktor Soprun-
781
+ yuk, Michael B Kerber, Jozef Bednarˇc´ık, Alexander
782
+ Sch¨okel, Amir Rezvan, Sergey Ketov, Baran Sarac, Er-
783
+ hard Schafler, et al. Structure-dynamics relationships
784
+ in cryogenically deformed bulk metallic glass. Nature
785
+ communications, 13(1):1–9, 2022.
786
+ [22] Alok Samanta, Sk. Musharaf Ali, and Swapan K.
787
+ Ghosh. Universal scaling laws of diffusion in a binary
788
+ fluid mixture. Phys. Rev. Lett., 87:245901, Nov 2001.
789
+ [23] Kazuhiko Seki and Biman Bagchi. Relationship between
790
+ entropy and diffusion: A statistical mechanical deriva-
791
+ tion of rosenfeld expression for a rugged energy land-
792
+ scape. The Journal of chemical physics, 143(19):194110,
793
+ 2015.
794
+ [24] J. A. Armstrong, C. Chakravarty, and P. Ballone. Sta-
795
+ tistical mechanics of coarse graining: Estimating dy-
796
+ namical speedups from excess entropies. The Journal
797
+ of Chemical Physics, 136(12):124503, 2012.
798
+ [25] Gustavo G Rondina, Michael C B¨ohm, and Florian
799
+ M¨uller-Plathe.
800
+ Predicting the mobility increase of
801
+ coarse-grained polymer models from excess entropy dif-
802
+ ferences. Journal of Chemical Theory and Computation,
803
+ 16(3):1431–1447, 2020.
804
+ [26] Jaehyeok Jin, Kenneth S Schweizer, and Gregory A
805
+ Voth. Understanding dynamics in coarse-grained mod-
806
+ els:
807
+ I. universal excess entropy scaling relationship.
808
+ arXiv preprint arXiv:2208.00078, 2022.
809
+ [27] Burkhard D¨unweg and Kurt Kremer.
810
+ Molecular dy-
811
+ namics simulation of a polymer chain in solution. The
812
+ Journal of Chemical Physics, 99(9):6983–6997, 1993.
813
+ [28] Pascal Kordt, Thomas Speck, and Denis Andrienko.
814
+ Finite-size scaling of charge carrier mobility in disor-
815
+ dered organic semiconductors. Phys. Rev. B, 94:014208,
816
+ Jul 2016.
817
+ [29] Hayat Zaoui, Pier Luca Palla, Fabrizio Cleri, and Eve-
818
+ lyne Lampin. Length dependence of thermal conduc-
819
+ tivity by approach-to-equilibrium molecular dynamics.
820
+ Phys. Rev. B, 94:054304, Aug 2016.
821
+ [30] In-Chul Yeh and Gerhard Hummer.
822
+ System-size de-
823
+ pendence of diffusion coefficients and viscosities from
824
+ molecular dynamics simulations with periodic bound-
825
+ ary conditions. The Journal of Physical Chemistry B,
826
+ 108(40):15873–15879, 2004.
827
+ [31] Gota Kikugawa,
828
+ Shotaro Ando,
829
+ Jo Suzuki,
830
+ Yoichi
831
+ Naruke, Takeo Nakano, and Taku Ohara.
832
+ Effect of
833
+ the computational domain size and shape on the self-
834
+ diffusion coefficient in a Lennard-Jones liquid.
835
+ The
836
+ Journal of Chemical Physics, 142(2):024503, 2015.
837
+ [32] Gota Kikugawa, Takeo Nakano, and Taku Ohara. Hy-
838
+ drodynamic consideration of the finite size effect on the
839
+ self-diffusion coefficient in a periodic rectangular par-
840
+ allelepiped system. The Journal of Chemical Physics,
841
+ 143(2), 2015.
842
+ [33] Alexandru Botan, Virginie Marry, and Benjamin Roten-
843
+ berg.
844
+ Diffusion in bulk liquids:
845
+ finite-size effects
846
+ in anisotropic systems.
847
+ Molecular Physics, 113(17-
848
+ 18):2674–2679, 2015.
849
+
850
+ 7
851
+ [34] Cecilia Herrero, Michela Pauletti, Gabriele Tocci, Mar-
852
+ cella Iannuzzi, and Laurent Joly. Connection between
853
+ water’s dynamical and structural properties: Insights
854
+ from ab initio simulations. Proceedings of the National
855
+ Academy of Sciences, 119(21):e2121641119, 2022.
856
+ [35] P. K. Kovtun, D. T. Son, and A. O. Starinets.
857
+ Vis-
858
+ cosity in Strongly Interacting Quantum Field Theo-
859
+ ries from Black Hole Physics. Physical Review Letters,
860
+ 94(11):111601, 2005.
861
+ [36] G.G.N. Angilella, N.H. March, F.M.D. Pellegrino, and
862
+ R. Pucci. Proposed lower bound for the shear viscosity
863
+ to entropy density ratio in some dense liquids. Physics
864
+ Letters A, 373(10):992–998, 2009.
865
+ [37] G. Faussurier, S.B. Libby, and P.L. Silvestrelli.
866
+ The
867
+ viscosity to entropy ratio: From string theory motivated
868
+ bounds to warm dense matter transport. High Energy
869
+ Density Physics, 12:21–26, 2014.
870
+ [38] U. Hohm.
871
+ On the ratio of the shear viscosity to the
872
+ density of entropy of the rare gases and H2,N2,CH4,
873
+ and CF4. Chemical Physics, 444:39–42, 2014.
874
+ [39] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolin-
875
+ tineanu, W. M. Brown, P. S. Crozier, P. J. in ’t Veld,
876
+ A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
877
+ M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimp-
878
+ ton. LAMMPS - a flexible simulation tool for particle-
879
+ based materials modeling at the atomic, meso, and con-
880
+ tinuum scales. Comp. Phys. Comm., 271:108171, 2022.
881
+ [40] Istv´an Borzs´ak and Andr´as Baranyai. On the conver-
882
+ gence of green’s entropy expansion. Chemical physics,
883
+ 165(2-3):227–230, 1992.
884
+ [41] Atreyee Banerjee, Shiladitya Sengupta, Srikanth Sastry,
885
+ and Sarika Maitra Bhattacharyya. Role of structure and
886
+ entropy in determining differences in dynamics for glass
887
+ formers with different interaction potentials. Physical
888
+ review letters, 113(22):225701, 2014.
889
+ [42] Harold J. Ravech´e. Entropy and molecular correlation
890
+ functions in open systems. i. derivation. The Journal of
891
+ Chemical Physics, 55(5):2242–2250, 1971.
892
+ [43] Raymond D. Mountain and Harold J. Ravech´e. Entropy
893
+ and molecular correlation functions in open systems. ii
894
+ two- and three-body correlations. The Journal of Chem-
895
+ ical Physics, 55(5):2250–2255, 1971.
896
+ [44] F.L. Rom´an, J.A. White, A. Gonz´alez, and S. Ve-
897
+ lasco.
898
+ Theory and Simulation of Hard-Sphere Fluids
899
+ and Related Systems, chapter Ensemble Effects in Small
900
+ Systems, pages 343–381.
901
+ Springer Berlin Heidelberg,
902
+ Berlin, Heidelberg, 2008.
903
+ [45] Maziar Heidari, Kurt Kremer, Raffaello Potestio, and
904
+ Robinson Cortes-Huerto.
905
+ Fluctuations, finite-size ef-
906
+ fects and the thermodynamic limit in computer sim-
907
+ ulations: Revisiting the spatial block analysis method.
908
+ Entropy, 20(4), 2018.
909
+ [46] Peter Kr¨uger, Sondre K. Schnell, Dick Bedeaux, Signe
910
+ Kjelstrup, Thijs J. H. Vlugt, and Jean-Marc Simon.
911
+ Kirkwood-buff integrals for finite volumes.
912
+ J. Phys.
913
+ Chem. Lett., 4(2):235–238, 2013.
914
+ [47] R. Cortes-Huerto, K. Kremer, and R. Potestio. Com-
915
+ munication:
916
+ Kirkwood-buff
917
+ integrals
918
+ in
919
+ the
920
+ ther-
921
+ modynamic limit from small-sized molecular dynam-
922
+ ics simulations.
923
+ The Journal of Chemical Physics,
924
+ 145(14):141103, 2016.
925
+ [48] M. Heidari, K. Kremer, R. Potestio, and R. Cortes-
926
+ Huerto. Finite-size integral equations in the theory of
927
+ liquids and the thermodynamic limit in computer simu-
928
+ lations. Molecular Physics, 116(21-22):3301–3310, 2018.
929
+ [49] J. L. Lebowitz and J. K. Percus. Thermodynamic prop-
930
+ erties of small systems. Phys. Rev., 124:1673–1681, Dec
931
+ 1961.
932
+ [50] J. L. Lebowitz and J. K. Percus. Long-range correla-
933
+ tions in a closed system with applications to nonuniform
934
+ fluids. Phys. Rev., 122:1675–1691, Jun 1961.
935
+ [51] J. J. Salacuse, A. R. Denton, and P. A. Egelstaff.
936
+ Finite-size effects in molecular dynamics simulations:
937
+ Static structure factor and compressibility. i. theoret-
938
+ ical method. Phys. Rev. E, 53:2382–2389, Mar 1996.
939
+ [52] F L Rom´an, J A White, and S Velasco. Fluctuations in
940
+ an equilibrium hard-disk fluid: Explicit size effects. J.
941
+ Chem. Phys., 107:4635, 1997.
942
+ [53] Dario Villamaina and Emmanuel Trizac. Thinking out-
943
+ side the box: fluctuations and finite size effects. Eur. J.
944
+ Phys., 35(3):035011, 2014.
945
+ [54] F. L. Rom´an, A. Gonz´alez, J. A. White, and S. Velasco.
946
+ Fluctuations in the number of particles of the ideal gas:
947
+ A simple example of explicit finite-size effects. Am. J.
948
+ Phys., 67:1149, 1999.
949
+ [55] Duane C. Wallace. On the role of density fluctuations in
950
+ the entropy of a fluid. The Journal of Chemical Physics,
951
+ 87(4):2282–2284, 1987.
952
+ [56] Andras Baranyai and Denis J. Evans. Direct entropy
953
+ calculation from computer simulation of liquids. Phys.
954
+ Rev. A, 40:3817–3822, Oct 1989.
955
+ [57] M. Rovere, D. W. Hermann, and K. Binder. Block den-
956
+ sity distribution function analysis of two-dimensional
957
+ lennard-jones fluids. EPL, 6(7):585, 1988.
958
+ [58] F. L. Rom´an, J. A. White, A. Gonz´alez, and S. Ve-
959
+ lasco. Fluctuations in a small hard-disk system: Implicit
960
+ finite size effects.
961
+ The Journal of Chemical Physics,
962
+ 110(20):9821–9824, 1999.
963
+ [59] Mauricio Sevilla and Robinson Cortes-Huerto. Connect-
964
+ ing density fluctuations and kirkwood–buff integrals for
965
+ finite-size systems. The Journal of Chemical Physics,
966
+ 156(4):044502, 2022.
967
+ [60] T. L. Hill. Thermodynamics of Small Systems. Dover,
968
+ 1963.
969
+ [61] Andrea Puglisi,
970
+ Alessandro Sarracino,
971
+ and Angelo
972
+ Vulpiani. Thermodynamics and Statistical Mechanics
973
+ of Small Systems. Entropy, 20(6):392, 2018.
974
+ [62] Vilde Br˚aten, Dick Bedeaux, Øivind Wilhelmsen, and
975
+ Sondre Kvalv˚ag Schnell. Small size effects in open and
976
+ closed systems: What can we learn from ideal gases
977
+ about systems with interacting particles? The Journal
978
+ of Chemical Physics, 155(24):244504, 2021.
979
+ [63] D. Bedeaux, S. Kjelstrup, and S. K. Schnell. Nanother-
980
+ modynamics. General Theory. PoreLab Publisher, 2020.
981
+
19E4T4oBgHgl3EQfaQyU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE1T4oBgHgl3EQfSgOT/content/2301.03067v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d39dbd37de52f8dc6e7e9bc5df4975adee0885a06be6a663beddd0ca533c16
3
+ size 260167
4dE3T4oBgHgl3EQfowpv/content/tmp_files/2301.04636v1.pdf.txt ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04636v1 [math.CO] 11 Jan 2023
2
+ Unavoidable structures in infinite tournaments
3
+ Alistair Benford∗
4
+ Louis DeBiasio†
5
+ Paul Larson‡
6
+ January 12, 2023
7
+ Abstract
8
+ We prove a strong dichotomy result for countably-infinite oriented graphs; that
9
+ is, we prove that for all countably-infinite oriented graphs G, either (i) there is a
10
+ countably-infinite tournament K such that G ̸⊆ K, or (ii) every countably-infinite
11
+ tournament contains a spanning copy of G.
12
+ Our characterization implies a corre-
13
+ sponding result for transitive acyclic oriented graphs (i.e. strict partial orders). We
14
+ also consider an extension of the above result to uncountable oriented graphs. Finally,
15
+ we consider a problem of a slightly different nature; that is, which oriented graphs are
16
+ guaranteed to appear in tournaments on N with a sufficient density of forward edges.
17
+ 1
18
+ Introduction
19
+ An oriented graph G is an anti-symmetric directed graph (that is, if (u, v) ∈ E(G), then
20
+ (v, u) ̸∈ E(G)). For other standard terminology, see Section 1.2.
21
+ A finite oriented graph is unavoidable if there exists a positive integer N such that
22
+ G is subgraph of every tournament on at least N vertices. In the case of finite oriented
23
+ graphs G, it is easy to see that G is unavoidable if and only if G is acyclic. Indeed, an
24
+ oriented graph G on n vertices is acyclic if and only if G is a subgraph of the transitive
25
+ tournament on n vertices, and it is well-known (see [11]) that every tournament on at
26
+ least 2n−1 vertices contains a transitive tournament of order n. This leads to the following
27
+ natural definition. For a finite acyclic oriented graph G, let ⃗r(G) be the smallest integer
28
+ N such that every tournament on N vertices contains a copy of G. While there were some
29
+ earlier sporadic results, the systematic study of the quantitative problem of minimizing
30
+ ⃗r(G) began with [20] and [21]. A few of the major results are as follows: for the transitive
31
+ tournament ⃗Kn on n vertices, 2n/2 ≤ ⃗r( ⃗Kn) ≤ 2n−1 [11], for every oriented path P on
32
+ n ≥ 8 vertices, ⃗r(P) = n [16], and for every oriented tree T on n vertices (for sufficiently
33
+ large n), ⃗r(T) ≤ 2n − 2, and this is best possible for certain oriented trees T [18] (for a
34
+ refinement of this result, see [9], [4], [5]).
35
+ The goal of this paper is to extend the notion of unavoidability to infinite oriented
36
+ graphs. We say that a countably-infinite oriented graph G is unavoidable if G is a subgraph
37
+ of every countably-infinite tournament, otherwise we say that G is avoidable. It turns out
38
+ ∗School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK. [email protected]
39
+ †Department of Mathematics, Miami University, Oxford, OH. [email protected]. Research sup-
40
+ ported in part by NSF grant DMS-1954170.
41
+ ‡Department of Mathematics, Miami University, Oxford, OH. [email protected].
42
+ 1
43
+
44
+ that in the infinite case, it is not true that an oriented graph G is unavoidable if and only if
45
+ G is acyclic. So our first goal is to characterize which countably-infinite oriented graphs are
46
+ unavoidable. Having done that, the next goal is to get quantitative results for unavoidable
47
+ oriented graphs along the lines of the results mentioned above. For instance, motivated
48
+ by recent Ramsey-type results regarding monochromatic subgraphs in edge-colorings of
49
+ KN ([8], [7], [6], [19], [1]), it would be natural try to prove that there exists d > 0 such
50
+ that for every countably-infinite unavoidable oriented tree T and every tournament K on
51
+ N, there is an embedding φ : T → K such that φ(V (T)) ⊆ N has upper density at least d.
52
+ So it is perhaps surprising that we prove the following result which both character-
53
+ izes unavoidable oriented graphs and proves that all such countably-infinite unavoidable
54
+ oriented graphs are unavoidable in a very strong sense (in a way which makes the quan-
55
+ titative question mentioned above irrelevant). We say that an countably-infinite oriented
56
+ graph G is strongly unavoidable if G is a spanning subgraph of every countably-infinite
57
+ tournament.
58
+ Theorem 1.1. Let G be an countably-infinite oriented graph. The following are equiva-
59
+ lent:
60
+ (i) G is acyclic, locally-finite, and has no infinite directed paths.
61
+ (ii) G is unavoidable.
62
+ (iii) G is strongly unavoidable.
63
+ A strict partial order P = (V, ≺) is a relation ≺ on a set V which is anti-reflexive, anti-
64
+ symmetric, and transitive. Defined in this way, every strict partial order P = (V, ≺) is an
65
+ acyclic oriented graph. While it is not the case that every acyclic oriented graph is a strict
66
+ partial order, there is an equivalence relation on acyclic oriented graphs, where G ∼ F
67
+ if and only if the transitive closures of G and F are isomorphic, where the equivalence
68
+ classes correspond to strict partial orders. Note that if G is acyclic, locally-finite, and has
69
+ no infinite directed paths, then the transitive closure of G is a strict partial order in which
70
+ every element is comparable to finitely many others (note that we aren’t using the phrase
71
+ “locally-finite” in the context of partial orders since this seems to have a different meaning
72
+ in the literature) and every strict partial order in which every element is comparable to
73
+ finitely many others is acyclic, locally-finite, and has no infinite directed paths. So we
74
+ have the following corollary.
75
+ Corollary 1.2. Let P = (V, ≺) be an countably-infinite strict partial order. The following
76
+ are equivalent:
77
+ (i) Every element in P is comparable to finitely many others.
78
+ (ii) P is unavoidable.
79
+ (iii) P is strongly unavoidable.
80
+ 1.1
81
+ Organization of the paper
82
+ We will prove Theorem 1.1 (i)⇔(ii) in Section 2.1 and Theorem 1.1 (i)⇒(iii) in Section
83
+ 2.2 (note that Theorem 1.1 (iii)⇒(ii) just follows from the definition). In Section 3, we
84
+ will consider an extension of Theorem 1.1 to the uncountable case. In Section 4 we will
85
+ 2
86
+
87
+ consider a variant on the original problem where we ask if we can force a tournament K to
88
+ contain an infinite forward directed path (which is avoidable by Theorem 1.1) by requiring
89
+ that the lower density of forward edges in K is large enough.
90
+ Since the paper consists of three distinct parts each with a distinct proper subset of
91
+ authors, we point out that the results in Section 2 were obatined by Benford and DeBiasio,
92
+ the results in Section 3 were obtained by DeBiasio and Larson, and the results in Section
93
+ 4 were obtained by Benford.
94
+ 1.2
95
+ Notation
96
+ An (oriented) graph is locally-finite if every vertex is incident with finitely many edges.
97
+ A directed cycle on n vertices is the oriented graph ⃗Cn with V ( ⃗Cn) = {x1, . . . , xn} and
98
+ E( ⃗Cn) = {(x1, x2), . . . , (xn−1, xn), (xn, x1)}. Say that an oriented graph is acyclic if it
99
+ contains no directed cycles. A directed path is an orientation of a finite, one-way-infinite,
100
+ or two-way-infinite path having the property that there are no vertices of out-degree 2
101
+ or in-degree 2. The infinite directed path with exactly one vertex of in-degree 0 is called
102
+ the infinite forward directed path and the infinite directed path with exactly one vertex of
103
+ out-degree 0 is called the infinite backward directed path.
104
+ Say that an oriented graph G is weakly-connected if the underlying graph (i.e. the
105
+ symmetric closure of G) is connected.
106
+ Given oriented graphs H and G, an embedding of H into G, denoted φ : H → G is an
107
+ injection φ : V (H) → V (G) with the property that if (u, v) ∈ E(H), then (φ(u), φ(v)) ∈
108
+ E(G). We say H is a subgraph of G, denoted H ⊆ G, if there exists an embedding of H
109
+ into G. We say that H is a spanning subgraph of G if there exists a surjective embedding
110
+ of H into G.
111
+ Given an oriented graph G and S ⊆ V (G), we let G[S] be the subgraph induced by
112
+ S. Given v ∈ V (G), we let G − v = G[V (G) \ {v}], and more generally, given S ⊆ V (G),
113
+ we let G − S = G[V (G) \ S]. If G is an oriented graph and (u, v) ∈ E(G), then we say
114
+ that v is an out-neighbor of u, and that u is an in-neighbor of v. Given v ∈ V (G), the
115
+ out-neighborhood of v, written N +(v), is the set of out-neighbors of v in V (G), and the
116
+ in-neighborhood of v, written N −(v) is the set of in-neighbors of v in V (G). Throughout,
117
+ we use + and − interchangeably with ‘out’ and ‘in’ respectively. For each ⋄ ∈ {+, −}, the
118
+ ⋄-degree of v in G is d⋄(v) = |N ⋄(v)| and the common ⋄-neighborhood of a set X ⊆ V (G)
119
+ is N ⋄(X) = �
120
+ v∈X N ⋄(v).
121
+ Given an acyclic oriented graph G and u ∈ V (G), let
122
+ Γ+(u) = {v ∈ V (G) : there exists a directed path from u to v}
123
+ and let
124
+ Γ−(u) = {v ∈ V (G) : there exists a directed path from v to u}
125
+ (equivalently, Γ⋄(u) is the ⋄-neighborhood of u in the transitive, reflexive closure of G).
126
+ Given a strict total order τ = (V, ≺), let Kτ be the tournament on V where (u, v) ∈
127
+ E(Kτ) if and only if u ≺ v. We write τ ∗ to be the converse of τ; that is, τ ∗ = (V, ≻). We
128
+ say that Kτ and Kτ ∗ are the transitive tournaments of type-τ.
129
+ Throughout the paper, we assume the axiom of choice whenever necessary. We use
130
+ the von Neumann definition of ordinals where an ordinal is the strictly well-ordered set
131
+ 3
132
+
133
+ of all smaller ordinals. Thus, given an ordinal λ, the definition of Kλ and Kλ∗ is given
134
+ in the previous paragraph. As is standard, we let ω be the first infinite ordinal. Given a
135
+ cardinal κ, we view κ as the smallest ordinal of cardinality κ. We let κ+ be the smallest
136
+ cardinal greater than κ, and we let 2κ be the cardinality of the power set of κ.
137
+ We say that a cardinal κ is regular if it cannot be written as the union of fewer than
138
+ κ many sets each of cardinality less than κ. If κ is not regular, we say that it is singular.
139
+ Given an ordinal α, the cofinality of α, denote cof(α), is the smallest cardinality of a
140
+ cofinal subset of α (S ⊆ α is cofinal if for all x ∈ S, there exists a ∈ α such that x < a).
141
+ With this terminology, we may equivalently say that κ is singular if and only if cof(κ) < κ.
142
+ 2
143
+ Countably-infinite oriented graphs
144
+ 2.1
145
+ Characterizing unavoidable oriented graphs
146
+ The following lemma can essentially be found in [13, 2.15.1] (we give the more general
147
+ statement later as Lemma 3.7). However, since this special case is likely folklore and the
148
+ proof is straightforward, we give it here.
149
+ Lemma 2.1. Let G be a countably-infinite oriented graph. G is acyclic, locally-finite, and
150
+ has no infinite directed paths if and only if G ⊆ Kω and G ⊆ Kω∗.
151
+ Proof. First note that if G has a cycle, then G ̸⊆ Kω and G ̸⊆ Kω∗. If G has a vertex
152
+ of infinite in-degree, then G ̸⊆ Kω, and if G has a vertex of infinite out-degree, then
153
+ G ̸⊆ Kω∗. If G has an infinite directed path with the first vertex having out-degree 0,
154
+ then G ̸⊆ Kω, and if G has an infinite directed path with the first vertex having in-degree
155
+ 0, then G ̸⊆ Kω∗.
156
+ Now suppose G is acyclic, locally-finite, and has no infinite directed paths. Let (vi)i∈ω
157
+ be an enumeration of V (G). For all vi ∈ V (G), let f(vi) = max{j : vj ∈ Γ−(vi)} and note
158
+ that by the assumptions on degrees and the fact that there are no infinite directed paths
159
+ we have that f(vi) is finite.
160
+ We will produce an embedding φ : G → Kω as follows: Let i0 ∈ ω be minimum such
161
+ that vi0 has in-degree 0 in G and set φ(vi0) = 0. On step j ≥ 1, let ij ∈ ω be minimum
162
+ such that vij has in-degree 0 in G − {vi0, . . . , vij−1} and set φ(vij) = j.
163
+ In the resulting embedding we have the property that for all i ∈ ω, φ−1(i) has no
164
+ in-neighbors v with φ(v) > i and thus we have the desired embedding, provided that
165
+ V (G) = dom φ. However, this holds because for all v ∈ V (G), we will assign a value for
166
+ φ(v) by step f(vi).
167
+ The following lemma shows that it is possible to use a Ramsey-type result to get a
168
+ result about transitive tournaments.1 We state it in a form which is more general than
169
+ what is needed for this section because we will make reference to it again later in a more
170
+ general setting. While this folklore result surely appears in the literature, we include a
171
+ proof for completeness.
172
+ 1On the surface, it is strictly stronger because it is possible to order the vertices of the tournament K
173
+ and have a copy of Kτ or Kτ∗ which doesn’t obey the ordering.
174
+ 4
175
+
176
+ Lemma 2.2. Let σ = (S, <σ) be a strict total order. If for every 2-coloring of the pairs
177
+ of elements in S, there exists a monochromatic copy of the strict total order τ = (T, <τ),
178
+ then for every tournament K of cardinality |S| we have Kτ ⊆ K or Kτ ∗ ⊆ K.
179
+ Proof. Let K be a tournament of cardinality |S| and take an arbitrary bijection φ :
180
+ V (K) → S. For (u, v) ∈ E(K), if φ(u) <σ φ(v), color (u, v) red, and if φ(u) >σ φ(v),
181
+ color (u, v) blue. By the assumption, there is a monochromatic copy of τ. If the copy is
182
+ red, then we have Kτ ⊆ K, and if the copy is blue, then we have Kτ ∗ ⊆ K.
183
+ Theorem 2.3. Let G be a countable oriented graph. The following are equivalent:
184
+ (i) G is acyclic, locally-finite, and has no infinite directed paths.
185
+ (ii) G ⊆ Kω and G ⊆ Kω∗.
186
+ (iii) G is unavoidable.
187
+ Proof. (i)⇔(ii): This is Lemma 2.1.
188
+ (ii)⇒(iii): Suppose G ⊆ Kω and G ⊆ Kω∗ and let K be a countably-infinite tour-
189
+ nament. By Ramsey’s theorem and Lemma 2.2 (with σ = τ = ω) we have Kω ⊆ K or
190
+ Kω∗ ⊆ K. Either way, we have G ⊆ K.
191
+ (iii)⇒(ii): If G ̸⊆ Kω or G ̸⊆ Kω∗, then G is avoidable.
192
+ 2.2
193
+ Unavoidable oriented graphs are strongly unavoidable
194
+ Given an countably-infinite acyclic weakly-connected oriented graph G, a ±-partition of
195
+ G is a partition {Ci : i ∈ N} of V (G) such that the following properties hold:
196
+ A1 For all i ∈ N, Ci is finite and non-empty.
197
+ A2 For all (u, v) ∈ E(G), there exists i ∈ N such that {u, v} ⊆ Ci ∪ Ci+1.
198
+ A3 If i is odd, then every vertex in Ci has in-degree 0 to Ci−1 ∪ Ci+1, and if i is even,
199
+ then every vertex in Ci has out-degree 0 to Ci−1 ∪ Ci+1.
200
+ A4 If i is odd, then there exists a vertex in Ci with in-degree 0 in G, and if i is even
201
+ there exists a vertex in Ci with out-degree 0 in G.
202
+ If i is odd, we say that Ci has type +, and if i is odd, we say that Ci has type −.
203
+ Likewise one can define a ∓-partition by switching every instance of in/out in the
204
+ above definition. We note that a similar definition for finite oriented trees was given by
205
+ Dross and Havet [9].
206
+ Lemma 2.4. Let G be a countably-infinite oriented graph.
207
+ If G is weakly-connected,
208
+ acyclic, locally-finite, and has no infinite directed paths, then for every vertex v of in-
209
+ degree 0, G has a ±-partition with C1 = {v}, and for every vertex v of out-degree 0, G
210
+ has a ∓-partition with C1 = {v}.
211
+ Proof. Since G is acyclic and has no infinite directed paths, the set of vertices with in-
212
+ degree 0 is non-empty; let v be a vertex of in-degree 0 and set C1 = {v}. For even i ≥ 1,
213
+ let Ci =
214
+ ��
215
+ v∈Ci−1 Γ+(v)
216
+
217
+ \ (Ci−1 ∪ Ci−2), and for odd i ≥ 1, let Ci =
218
+ ��
219
+ v∈Ci−1 Γ−(v)
220
+
221
+ \
222
+ (Ci−1 ∪ Ci−2). Note that since G is locally-finite, and has no infinite directed paths, each
223
+ 5
224
+
225
+ Ci is finite. In addition, because G is weakly-connected, {Ci : i ∈ N} is a partition of
226
+ V (G), and each Ci is non-empty. Therefore, A1 holds.
227
+ Suppose, for some i < j, that (u, v) ∈ E(G) with u ∈ Ci and v ∈ Cj. Then, we must
228
+ have that i is odd (else v ∈ Ci) and j = i + 1. On the other hand, if (v, u) ∈ E(G) is such
229
+ that u ∈ Ci and v ∈ Cj for some i < j, then we must have that i is even (else v ∈ Ci) and
230
+ j = i + 1. Therefore, we deduce that A2 and A3 hold.
231
+ Finally, note that since Ci is finite and G is acyclic, G[Ci] has a vertex ui of in-degree
232
+ 0 in G[Ci] and a vertex vi of out-degree 0 in G[Ci]. Thus, by A3, if i is even, then vi has
233
+ out-degree 0 in G, and if i is odd, then ui has in-degree 0 in G. Therefore, A4 holds, and
234
+ {Ci : i ∈ N} is a ±-partition with C1 = {v}.
235
+ Likewise by switching every instance of in/out in the above proof, we get that for every
236
+ vertex v of out-degree 0, G has a ∓-partition with C1 = {v}.
237
+ Theorem 2.5. Let G be a countably-infinite oriented graph. If G is acyclic, locally-finite,
238
+ and has no infinite directed paths, then G is a spanning subgraph of every countably-infinite
239
+ tournament.
240
+ Proof of Theorem 2.5. Suppose G is acyclic, locally-finite, and has no infinite directed
241
+ paths.
242
+ If G is not weakly-connected, we can make it so while maintaining the three
243
+ properties (say by choosing a vertex vi from each component Hi of G and adding an anti-
244
+ directed path on v1, v2, . . . ). Let K be a countably-infinite tournament and let (ui)i∈N be
245
+ an enumeration of V (K). Define ∗1, ∗2, ∗3, . . . inductively by
246
+ ∗i =
247
+
248
+
249
+
250
+ +
251
+ if
252
+ ��i−1
253
+ j=1 N ∗j(uj)
254
+
255
+ ∩ N +(ui) is infinite,
256
+
257
+ otherwise.
258
+ Let V + = {ui ∈ V (K) : ∗i = +} and let V − = {ui ∈ V (K) : ∗i = −}. The key property
259
+ is that for all ⋄, ∗ ∈ {+, −} and all finite non-empty subsets X ⊆ V ⋄ and Y ⊆ V ∗,
260
+ N ⋄(X) ∩ N ∗(Y ) is infinite. (A more standard approach to assigning the ∗i would have
261
+ been to choose an ultrafilter on N and let ∗i = ⋄ iff N ⋄(ui) is in the ultrafilter. We note
262
+ that our assignment of ∗i without the use of ultrafilters is inspired by the proof of [19,
263
+ Lemma 3.4].)
264
+ If ∗1 = +, then we choose a vertex v1 ∈ V (G) with in-degree 0 and apply Lemma 2.4
265
+ to get a ±-partition {Ci : i ∈ N} of G with C1 = {v1}. If ∗1 = −, then we choose a vertex
266
+ v1 ∈ V (G) with out-degree 0 and apply Lemma 2.4 to get a ∓-partition {Ci : i ∈ N} of
267
+ G with C1 = {v1}. We may suppose without loss of generality that ∗1 = + and thus we
268
+ choose a vertex v1 ∈ V (G) with in-degree 0 and apply Lemma 2.4 to get a ±-partition
269
+ {Ci : i ∈ N} of G with C1 = {v1}. Finally, define
270
+ ⋄i =
271
+
272
+ +
273
+ if i is odd,
274
+
275
+ if i is even
276
+ and note that ⋄i simply describes the type of the set Ci.
277
+ We construct a sequence i1 ≤ i2 ≤ . . ., growing an embedding φ : G[∪i∈[ij]Ci] → K as
278
+ we do so, such that following properties hold for every j ∈ N.
279
+ B1 {u1, . . . , uj} ⊆ φ(∪i∈[ij]Ci), and
280
+ 6
281
+
282
+ B2 φ(Cij) ⊆ V ⋄ij .
283
+ If such a sequence exists, then by B1, the resulting embedding φ : G → K proves the
284
+ theorem.
285
+ We initially set i1 = 1 and φ(v1) = u1. Then, given ij−1 and φ : G[∪i∈[ij−1]Ci] → K
286
+ satisfying B1 and B2, we proceed as follows.
287
+ If uj ∈ φ(∪i∈[ij−1]Ci), then set ij = ij−1 (trivially, B1 and B2 are satisfied). Otherwise,
288
+ by B2 we have that Uj−1 := N ∗j(uj)∩N ⋄ij−1(φ(Cij−1)) is infinite. If Uj−1∩V + is infinite,
289
+ set ij to be the smallest integer at least ij−1 +5 with ⋄ij = + (i.e. the smallest odd integer
290
+ at least ij−1 + 5). Otherwise, Uj−1 ∩ V − is infinite and we set ij to be the smallest integer
291
+ at least ij−1 + 5 with ⋄ij = − (i.e.
292
+ the smallest even integer at least ij−1 + 5).
293
+ We
294
+ now embed the acyclic finite subgraph G[Cij−1+1 ∪ . . . ∪ Cij] into the infinite tournament
295
+ K[{uj} ∪ (Uj−1 ∩ V ⋄ij )] in such a way that if ∗j = ⋄ij−1, then we will choose a vertex
296
+ vj ∈ Cij−1+2 which only has ∗j-neighbors and embed vj to uj, and if ∗j ̸= ⋄ij−1, then we
297
+ will choose a vertex vj ∈ Cij−1+3 which only has ∗j-neighbors and embed vj to uj. Thus
298
+ B1 is satisfied. Also note that by construction, every vertex in Cij is embedded into V ⋄ij ,
299
+ so B2 is satisfied.2
300
+ 3
301
+ Uncountable oriented graphs
302
+ Let κ be a cardinal and let G be an oriented graph with |V (G)| ≤ κ. We say that G is
303
+ κ-unavoidable if G is contained in every tournament K with |V (K)| = κ, otherwise we
304
+ say that G is κ-avoidable. We say that G is strongly κ-unavoidable if G is a spanning
305
+ subgraph of every tournament K with |V (K)| = κ.
306
+ In Section 2.1 we determined that a countable acyclic oriented graph G is ℵ0-unavoidable
307
+ if and only every vertex in G has degree less than ℵ0 and G has no infinite directed paths.
308
+ If κ > ℵ0, it is natural to wonder if any acyclic oriented graphs G with vertices of infi-
309
+ nite degree or infinite directed paths are κ-unavoidable. As it turns out, we cannot relax
310
+ the condition on directed paths at all, but we can potentially relax the condition on the
311
+ degrees of the vertices relative to κ.
312
+ Observation 3.1. Let κ be an infinite cardinal and let G be an acyclic oriented graph.
313
+ If G has an infinite directed path or a vertex of degree κ, then G is κ-avoidable. More
314
+ specifically, we have the following:
315
+ (i) If G has a vertex of in-degree κ or an infinite backward directed path, then G ̸⊆ Kκ.
316
+ (ii) If G has a vertex of out-degree κ or an infinite forward directed path, then G ̸⊆ Kκ∗.
317
+ Proof. Suppose G has an infinite directed path or a vertex of degree κ. Note that Kκ
318
+ has no infinite backward directed paths and every vertex in Kκ has in-degree less than κ.
319
+ Likewise Kκ∗ has no infinite forward directed paths and every vertex in Kκ∗ has out-degree
320
+ less than κ. Thus G ̸⊆ Kκ or G ̸⊆ Kκ∗.
321
+ 2In the above paragraph, it is instructive to have a specific example, so suppose φ(Cij−1) ⊆ V + (i.e.
322
+ ij−1 is odd), uj ∈ V −, and (N −(uj)∩N +(φ(Cij−1))∩V − is infinite. In this case we would set ij = ij−1 +5
323
+ (note that ij is even), embed a vertex from Cij−1+3 (ij−1 + 3 is also even) with in-degree 0 to uj and
324
+ embed the rest of Cij−1+1 ∪ · · · ∪ Cij into (N −(uj) ∩ N +(φ(Cij−1)) ∩ V −. Note that since ij is even and
325
+ φ(Cij) ⊆ V −, B2 is satisfied.
326
+ 7
327
+
328
+ This leads to the following question which attempts to generalize Theorem 1.1.
329
+ Question 3.2 (Naive version). Let κ be an infinite cardinal and let G be an oriented graph
330
+ with |V (G)| = κ. Are the following equivalent?
331
+ (i) G is acyclic, has no infinite directed paths, and every vertex has degree less than κ.
332
+ (ii) G is κ-unavoidable.
333
+ (iii) G is strongly κ-unavoidable.
334
+ Note that (iii)⇒(ii) just holds by definition and Observation 3.1 proves (ii)⇒(i).
335
+ We answer Question 3.2 positively in the case when κ = ℵ1. In fact, we prove something
336
+ slightly more general.
337
+ Theorem 3.3. Let κ be an uncountable cardinal and let G be an acyclic oriented graph
338
+ with no infinite directed paths and |V (G)| = κ. If every vertex in G has degree at most
339
+ ℵ0, then G is strongly κ-unavoidable.
340
+ On the other hand, we answer Question 3.2((i)⇒(ii)) negatively in the case when κ is
341
+ a singular cardinal. Essentially, this boils down to the fact that if κ is a singular cardinal,
342
+ then it is possible for every vertex in G to have degree less than κ, but in the transitive
343
+ closure of G some vertex has degree κ.
344
+ Example 3.4. Let κ be a singular cardinal. There exists an acyclic oriented graph with
345
+ |V (G)| = κ such that G has no infinite directed paths and every vertex has degree less than
346
+ κ, but G ̸⊆ Kκ and G ̸⊆ Kκ∗.
347
+ Proof. Let ⟨λα : α < cof(κ)⟩ be an increasing cofinal sequence of regular cardinals less
348
+ than κ.
349
+ Let X = {xα : α < cof(κ)} be a set of vertices such that each xα has a unique set
350
+ of λα in-neighbors and let Z = {zα : α < cof(κ)} be a set of vertices such that each zα
351
+ has a unique set of λα out-neighbors. Then add a vertex y such that N −(y) = X and
352
+ N +(y) = Z. Call the resulting oriented graph G. Note that y has in-degree and out-degree
353
+ equal to cof(κ) < κ and every other vertex has in-degree and out-degree at most λα < κ
354
+ for some α < cof(κ). If say G ⊆ Kκ, then since Kκ is transitive, the transitive closure,
355
+ ⃗G, of G satisfies ⃗G ⊆ Kκ (likewise if G ⊆ Kκ∗). However, in ⃗G it is the case that y has
356
+ in-degree and out-degree equal to κ. So by Observation 3.1, we have that ⃗G ̸⊆ Kκ and
357
+ ⃗G ̸⊆ Kκ∗, a contradiction.
358
+ While Question 3.2 may still be true when restricted to regular cardinals or to transitive
359
+ acyclic oriented graphs (i.e. strict partial orders), Example 3.4 leads us to the following
360
+ refinement of Question 3.2.
361
+ Question 3.5 (Quantitative version). Let κ be an infinite cardinal and let G be an oriented
362
+ graph with |V (G)| = µ ≤ κ. For which cardinals λ < κ is the following true?
363
+ (i) If G is acyclic, has no infinite directed paths, and every vertex has degree at most λ,
364
+ then G is κ-unavoidable.
365
+ (ii) If µ = κ and G is acyclic, has no infinite directed paths, and every vertex has degree
366
+ at most λ, then G is strongly κ-unavoidable.
367
+ 8
368
+
369
+ 3.1
370
+ Embedding into transitive tournaments
371
+ To prepare for the proof of Theorem 3.3, we begin with a few preliminary results.
372
+ The first result is another variant on Szpilrajn’s extension theorem (see the comment
373
+ before Lemma 2.1) which is essentially equivalent to the fact that every well-founded
374
+ partial order of cardinality κ can be extended to a well-order of cardinality κ. A sketch
375
+ of a proof can be found in [13, 2.9.2], but we give a full proof for completeness.
376
+ Proposition 3.6. Let κ be an infinite cardinal and let G be an acyclic oriented graph
377
+ with |V (G)| ≤ κ. If G has no infinite backward directed paths, then there exists an ordinal
378
+ β of cardinality κ such that G ⊆ Kβ. Likewise if G has no infinite forward directed paths,
379
+ then there exists an ordinal β of cardinality κ such that G ⊆ Kβ∗.
380
+ Proof. We define a function h from G to the ordinals where h(x) = sup{h(w) + 1 : w ∈
381
+ Γ−(x)} for all x ∈ V (G). Given an ordinal α, let Vα = {x ∈ V (G) : h(x) = α}. Let
382
+ h(P) = {α : Vα ̸= ∅} (which is an ordinal) and set β = h(P). (Note that β = h(P) must
383
+ satisfy |β| ≤ κ, as otherwise G has more than κ-many non-empty levels, which means
384
+ |V (G)| > κ, a contradiction.)
385
+ Now for all α < β, let (vα
386
+ γ )γ<|Vα| be an enumeration of Vα. Then let φ : G → Kβ be
387
+ an injection such that φ(vα′
388
+ γ′ ) < φ(vα
389
+ γ ) if and only if α′ < α, or α′ = α and γ′ < γ.
390
+ The following lemma can essentially be found in [13, 2.15.1] (where it is attributed to
391
+ Milner and Pouzet).
392
+ Lemma 3.7. Let κ be an infinite cardinal and let G be an acyclic transitive oriented graph
393
+ (i.e. a strict partial order) with |V (G)| ≤ κ. G ⊆ Kκ and G ⊆ Kκ∗ if and only if G has
394
+ no infinite directed paths and every vertex in G has degree less than κ.
395
+ Now we have the following corollary which is a generalization of Lemma 2.1.
396
+ Corollary 3.8. Let λ < κ be infinite cardinals. Let G be an acyclic oriented graph with
397
+ no infinite directed paths and |V (G)| ≤ κ.
398
+ (i) If κ is a regular cardinal and every vertex in G has degree less than κ, then G ⊆ Kκ
399
+ and G ⊆ Kκ∗.
400
+ (ii) If every vertex in G has degree at most λ, then G ⊆ Kκ and G ⊆ Kκ∗.
401
+ Proof. Suppose first that κ is regular. If every vertex in G has degree less than κ, then
402
+ the transitive closure of G has the same property. Thus we can apply Lemma 3.7 to the
403
+ transitive closure of G.
404
+ Now let κ be a cardinal (regular or singular). If every vertex in G has degree at most
405
+ λ, then the transitive closure of G has the same property. Since λ < κ, we can apply
406
+ Lemma 3.7 to the transitive closure of G.
407
+ 3.2
408
+ Embedding into general tournaments
409
+ To give some context for the next result, note that it is known by a result of Laver (see
410
+ [15]) that there is a tournament of cardinality ℵ1 which doesn’t contain any transitive
411
+ subtournament of cardinality ℵ1. On the other hand a result of Baumgartner and Hajnal
412
+ 9
413
+
414
+ [2] shows that the next best thing is true; that is, for every countable ordinal α and every
415
+ 2-coloring of the pairs in ω1, there is a monochromatic copy of α, which by Lemma 2.2
416
+ implies that every tournament of cardinality ℵ1 contains Kα or Kα∗. (Note that while
417
+ Baumgartner and Hajnal use some deep set-theoretic ideas to establish their result in
418
+ ZFC, Galvin [14] later gave a direct combinatorial proof in ZFC.)
419
+ Theorem 3.9 (Baumgartner-Hajnal; Galvin). Let K be an uncountable tournament. For
420
+ every countable ordinal α we have Kα ⊆ K or Kα∗ ⊆ K.
421
+ We now use Proposition 3.6 and Theorem 3.9 to obtain the following key lemma.
422
+ Lemma 3.10. Let K be an uncountable tournament. If G is a countable acyclic oriented
423
+ graph with no infinite directed paths, then for all v ∈ V (K) there exists an embedding
424
+ φ : G → K such that v ∈ φ(V (G)).
425
+ Proof. Let v ∈ V (K).
426
+ Either v is incident with uncountably many out-edges or un-
427
+ countably many in-edges.
428
+ If it is the former, let u ∈ V (G) with in-degree 0 and set
429
+ K′ = K[N +(v)]. If it is the latter, let u ∈ V (G) with out-degree 0 and set K′ = K[N −(v)].
430
+ Now in either case set φ(u) = v. By Proposition 3.6, there exists a countable ordinal α
431
+ such that G − u ⊆ Kα and G − u ⊆ Kα∗. By Theorem 3.9, Kα ⊆ K′ or Kα∗ ⊆ K′
432
+ and thus we can embed G − u in K′ which gives us an embedding φ : G → K such that
433
+ v ∈ φ(V (G)).
434
+ Finally, we use Lemma 3.10 to obtain the main result.
435
+ Proof of Theorem 3.3. Suppose G is an acyclic oriented graph with |V (G)| = κ such that
436
+ G has no infinite directed paths and every vertex has degree at most ℵ0. Let K be a
437
+ tournament with |V (K)| = κ and let (vα)α∈κ be an enumeration of V (K). Note that
438
+ since every vertex in G has countable degree, G is not weakly-connected; in fact, every
439
+ weakly-connected component of G is countable (and thus there are κ-many components).
440
+ Let (Gα)α∈κ be an arbitrary κ-ordering of the components of G.
441
+ Now we construct a surjective embedding φ : G → K as follows. For all α ∈ κ, if
442
+ vα ̸∈ ran(φ), let K(α) = K − ran(φ) and apply Lemma 3.10 to embed Gα into K(α) such
443
+ that vα ∈ φ(V (Gα)). Since every vertex vα is eventually mapped to, this completes the
444
+ proof.
445
+ Finally, we wrap up this section with some comments regarding possible extensions
446
+ of Theorem 3.3. A classical result of Erd˝os [10] implies that for all infinite cardinals λ,
447
+ every tournament K of cardinality (2λ)+ contains Kλ+ or K(λ+)∗. So our above result
448
+ generalizes to give the following.
449
+ Theorem 3.11. Let κ and λ be infinite cardinals such that κ ≥ (2λ)+ and let G be an
450
+ acyclic oriented graph with no infinite directed paths and |V (G)| = κ. If every vertex of
451
+ G has degree at most λ, then G is strongly κ-unavoidable.
452
+ Proof. Every vertex in G having degree at most λ implies that every component of G has
453
+ cardinality at most λ. Thus every component of G embeds into Kβ and Kβ∗ for some
454
+ ordinal β < λ+ by Proposition 3.6. Now we complete the proof analogously to the proof
455
+ of Theorem 3.3 (using the result of Erd˝os mentioned above in place of Theorem 3.9).
456
+ 10
457
+
458
+ Note that under the generalized continuum hypothesis (GCH), Erd˝os’ result says that
459
+ for all infinite cardinals κ = λ+, every tournament K of cardinality κ contains Kλ or Kλ∗.
460
+ If it were true that that for every infinite cardinal κ and every ordinal β < κ, every tour-
461
+ nament K of cardinality κ contains Kβ or Kβ∗, this would answer Question 3.2 positively
462
+ in the case that κ is a successor cardinal. However, it is not the case that ZFC+GCH
463
+ implies that every infinite cardinal κ and every ordinal β < κ, every tournament K of
464
+ cardinality κ contains Kβ or Kβ∗ (see [12]). So as it stands, in ZFC+GCH, the best thing
465
+ we can say is that Theorem 3.11 implies that Question 3.5(ii) has a positive answer when
466
+ κ = λ++.
467
+ 4
468
+ Forward edge density
469
+ We saw in Section 2.1 that if we are given a countably-infinite oriented graph G such that G
470
+ is acyclic, locally-finite, and has no infinite directed paths, then for every countably-infinite
471
+ tournament K, we have G ⊆ K. However, if we drop one or more of these conditions on
472
+ G, what conditions could we impose on the tournament K to still ensure G ⊆ K? One
473
+ approach to this question is to consider the density of the forward (or backward) edges in
474
+ the tournament K.
475
+ For an infinite tournament K on N, define, for each n,
476
+ d+(K[n]) = |{(i, j) ∈ E(K) : 1 ≤ i < j ≤ n}|
477
+ �n
478
+ 2
479
+
480
+ ,
481
+ and define the forward density of K to be
482
+ d+(K) = lim inf
483
+ n→∞ d+(K[n]).
484
+ Given an oriented graph G, define −→ρ (G) to be the smallest ρ ∈ [0, 1] such every tournament
485
+ K on N with d+(K) > ρ contains a copy of G. By Theorem 2.3, we know that if G is
486
+ acyclic, locally-finite, and has no infinite directed paths, then −→ρ (G) = 0. On the other
487
+ hand, if G contains a cycle, a vertex of infinite in-degree, or a backward oriented infinite
488
+ path, then G does not appear in Kω, and so we have −→ρ (G) = 1. In addition, if G contains
489
+ a vertex of infinite out-degree, then we also have −→ρ (G) = 1, due to the existence of
490
+ tournaments with forward density 1 in which every vertex has finite out-degree (such as
491
+ the tournament on N with forward edges given by {(i, j) : j ≤ 2i}).
492
+ The only oriented graphs then left to consider are those which are acyclic, locally-finite,
493
+ and contain a forward oriented infinite path (but no backward oriented infinite path). A
494
+ natural case to consider then is to determine the value of −→ρ (P), where P is the forward
495
+ oriented infinite path. Notably, we have −→ρ (P) strictly between 0 and 1.
496
+ Proposition 4.1. Let P be the infinite forward directed path. Then, −→ρ (P) = 3/4.
497
+ Note that obtaining a lower bound of −→ρ (P) ≥ 1/2 is easy. Let Ik = [k!] \ [(k − 1)!]
498
+ for k ≥ 2, and let K be the tournament on N with all edges with both endpoints some Ik
499
+ oriented forward and all other edges oriented backward. Then, d+(K) = 1/2, but, because
500
+ K ∼= Kω∗, K contains no copy of P.
501
+ 11
502
+
503
+ Proving an upper bound strictly below 1, and also sharpening the lower bound, is more
504
+ involved. To do this, we will reduce the problem to finding the smallest possible forward
505
+ density of a large class of P-free tournaments on N, defined as follows. Given an ordinal
506
+ λ and an injection f : N → λ, define Kf∗ to be the tournament on N with
507
+ E(Kf∗) = {(i, j) : f(i) > f(j)}.
508
+ Because λ is well ordered, no tournament defined in this way contains a copy of P. In
509
+ addition, the forward density of Kf∗ can be easily related to the density of inversions of
510
+ f. Precisely, if we define, for sets A, B ⊆ N,
511
+ If[A, B] = |{(i, j) ∈ A × B : i < j and f(i) > f(j)}|
512
+ and also If[A] = If[A, A] and If[n] = If[[n]], then we have
513
+ d+(Kf∗) = lim inf
514
+ n→∞ If[n]/
515
+ �n
516
+ 2
517
+
518
+ .
519
+ (1)
520
+ The quantity lim infn→∞ If[n]/
521
+ �n
522
+ 2
523
+
524
+ can be thought of as an infinite analogue of the inversion
525
+ number of a permutation (see, for example, [17]), especially in the case where we have a
526
+ bijection f : N → ω.
527
+ We note that the earlier P-free tournament showing −→ρ (P) ≥ 1/2 can be realized as
528
+ Kf∗ for some appropriate f : N → ω. In fact, given any P-free tournament K on N, we
529
+ can construct an injection h : N → ω1 such that d+(Kh∗) ≥ d+(K). From this we obtain
530
+ the following correspondence.
531
+ Lemma 4.2. Define
532
+ C = sup
533
+
534
+ lim inf
535
+ n→∞ If[n]/
536
+ �n
537
+ 2
538
+
539
+ : f : N → ω1 is an injection
540
+
541
+ .
542
+ Then −→ρ (P) = C.
543
+ Proof. Because −→ρ (P) ≥ d+(Kf∗) for any injection f : N → ω1, we have, by (1), that
544
+ −→ρ (P) ≥ C. Therefore it is enough to show that for any P-free tournament K on N there
545
+ is an injection f : N → ω1 with d+(Kf∗) ≥ d+(K), and hence
546
+ −→ρ (P) = sup {d+(K) : K is P-free}
547
+ ≤ sup {d+(Kf∗) : f : N → ω1 is an injection}
548
+ (1)
549
+ = C.
550
+ So suppose K is a P-free tournament on N. For i, j ∈ N, say that j is a forward out-
551
+ neighbor of i if i < j and i →K j. Define A0 = ∅. Given an ordinal α, define Aα+1 ⊇ Aα
552
+ to be the set of x ∈ N such that every forward out-neighbor of x is in Aα. If α is a limit
553
+ ordinal, define Aα = ∪β<αAβ. Define ∂Aα = Aα+1 \ Aα. Let λ be the smallest ordinal
554
+ with ∂Aλ = ∅, and note that λ is well defined and λ < ω1 (because we can inject λ → N
555
+ by sending α < λ to the smallest x ∈ N with x ∈ ∂Aα). If Aλ ̸= N, then K contains a
556
+ copy of P (any xi /∈ Aλ has a forward out-neighbor xi+1 /∈ Aλ). Therefore, we have a
557
+ partition N = ∪α<λ∂Aα. Given i ∈ N, let α(i) < λ be the unique ordinal with i ∈ ∂Aα(i).
558
+ Define an injection f : N → ω · λ < ω1 by f(i) = (i, α(i)). Note that, if i < j and i →K j,
559
+ then α(i) > α(j), and hence f(i) > f(j). Therefore, d+(K) ≤ d+(Kf∗).
560
+ 12
561
+
562
+ With Lemma 4.2, determining the value of −→ρ (P) is now equivalent to this natural
563
+ question of what is the maximum ‘inversion density’ that can be attained by an injection
564
+ f : N → ω1. Thus, Proposition 4.1 is now an immediate consequence of the following
565
+ theorem.
566
+ We do not present the proof here as it involves some technical details, but
567
+ instead refer the reader to [3].
568
+ Theorem 4.3.
569
+ (i) If f : N → ω1 is an injection, then lim infn→∞ If[n]/
570
+ �n
571
+ 2
572
+
573
+ ≤ 3/4.
574
+ (ii) There is an injection g : N → ω such that lim infn→∞ Ig[n]/
575
+ �n
576
+ 2
577
+
578
+ = 3/4.
579
+ There are still other interesting problems regarding the forward density required to
580
+ ensure a copy of an infinite oriented graph.
581
+ Problem 4.4. Let G be the family of countably-infinite acyclic oriented graphs which are
582
+ locally-finite, have no infinite backward directed paths, but do have an infinite forward
583
+ directed path.
584
+ (i) Given G ∈ G, determine −→ρ (G).
585
+ (ii) For which d ∈ [3
586
+ 4, 1] does there exist G ∈ G with −→ρ (G) = d?
587
+ 5
588
+ Acknowledgements
589
+ We thank Trevor Wilson for pointing out the reference [2].
590
+ References
591
+ [1] J. Balogh and A. Lamaison. Ramsey upper density of infinite graph factors. arXiv
592
+ preprint arXiv:2010.13633, 2020.
593
+ [2] J. Baumgartner and A. Hajnal. A proof (involving Martin’s axiom) of a partition
594
+ relation. Fundamenta Mathematicae, 78(3):193–203, 1973.
595
+ [3] A. Benford. On the appearance of oriented trees in tournaments. PhD thesis, Uni-
596
+ versity of Birmingham, in preparation.
597
+ [4] A. Benford and R. Montgomery. Trees with few leaves in tournaments. Journal of
598
+ Combinatorial Theory, Series B, 155:141–170, 2022.
599
+ [5] A. Benford and R. Montgomery.
600
+ Trees with many leaves in tournaments.
601
+ arXiv
602
+ preprint arXiv:2207.06384, 2022.
603
+ [6] J. Corsten, L. DeBiasio, A. Lamaison, and R. Lang. Upper density of monochromatic
604
+ infinite paths. Advances in Combinatorics, page 10810, 2019.
605
+ [7] J. Corsten, L. DeBiasio, and P. McKenney. Density of monochromatic infinite sub-
606
+ graphs II. arXiv preprint arXiv:2007.14277, 2020.
607
+ [8] L. DeBiasio and P. McKenney. Density of monochromatic infinite subgraphs. Com-
608
+ binatorica, 39(4):847–878, 2019.
609
+ 13
610
+
611
+ [9] F. Dross and F. Havet. On the unavoidability of oriented trees. Electronic Notes in
612
+ Theoretical Computer Science, 346:425–436, 2019.
613
+ [10] P. Erd˝os. Some set-theoretical properties of graphs. Compositio Math, 2:463–470,
614
+ 1935.
615
+ [11] P. Erd˝os and J. W. Moon. On sets of consistent arcs in a tournament. Canadian
616
+ Mathematical Bulletin, 8(3):269–271, 1965.
617
+ [12] M. Foreman and A. Hajnal. A partition relation for successors of large cardinals.
618
+ Mathematische Annalen, 325(3):583–623, 2003.
619
+ [13] R. Fra¨ıss´e. Theory of relations, Revised edition, volume 145. North-Holland, Ams-
620
+ terdam, 2000.
621
+ [14] F. Galvin. On a partition theorem of Baumgartner and Hajnal. In Infinite and finite
622
+ sets (Colloq., Keszthely, 1973; dedicated to P. Erd˝os on his 60th birthday), Vol. II,
623
+ Colloq. Math. Soc. J´anos Bolyai, Vol. 10, pages 711–729. North-Holland, Amsterdam,
624
+ 1975.
625
+ [15] F. Galvin and S. Shelah. Some counterexamples in the partition calculus. Journal of
626
+ Combinatorial Theory, Series A, 15(2):167–174, 1973.
627
+ [16] F. Havet and S. Thomass´e. Oriented hamiltonian paths in tournaments: A proof of
628
+ Rosenfeld’s conjecture. Journal of Combinatorial Theory, Series B, 78(2):243–273,
629
+ 2000.
630
+ [17] D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
631
+ Searching. Addison Wesley Longman Publishing Co., Inc., USA, 1998.
632
+ [18] D. K¨uhn, R. Mycroft, and D. Osthus. A proof of Sumner’s universal tournament
633
+ conjecture for large tournaments.
634
+ Electronic Notes in Discrete Mathematics, 38,
635
+ 2010.
636
+ [19] A.
637
+ Lamaison.
638
+ Ramsey
639
+ upper density
640
+ of
641
+ infinite graphs.
642
+ arXiv preprint
643
+ arXiv:2003.06329, 2020.
644
+ [20] N. Linial, M. Saks, and V. S´os.
645
+ Largest digraphs contained in all tournaments.
646
+ Combinatorica, 3:101–104, 1983.
647
+ [21] M. Saks and V. S´os. On unavoidable subgraphs of tournaments. Proc. 6th Hung.
648
+ Comb. Coll. Eger, Coll. Math. Soc. J. Bolyai, 37, 1984.
649
+ 14
650
+
4dE3T4oBgHgl3EQfowpv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4tFAT4oBgHgl3EQfFByL/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb5c6c0ba14949a44d2059b0c536637036618030e049566c1f2ff22cd5146190
3
+ size 44555
5NE0T4oBgHgl3EQfvgGE/content/tmp_files/2301.02619v1.pdf.txt ADDED
@@ -0,0 +1,985 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02619v1 [cs.CR] 28 Oct 2022
2
+ Review of Cookie Synchronization Detection Methods
3
+ Jake Smith
4
+ University of California, Davis
5
6
+ January 9, 2023
7
+ 1
8
+ Abstract
9
+ The research community has deemed cookie syn-
10
+ chronization detection
11
+ an
12
+ inherently
13
+ challenging
14
+ task [1, 2, 3]. Studies aiming to identify cookie syn-
15
+ chronizations often share high-level design choices,
16
+ but
17
+ deviate
18
+ amongst
19
+ low-level
20
+ implementations.
21
+ For example, the majority of studies label a cookie
22
+ synchronization iff a user identifier is shared with a
23
+ third party; however, there is a lack of consistency
24
+ among implementations,
25
+ such as party relations
26
+ or identifier
27
+ value definitions,
28
+ or whether such
29
+ definitions are even included. This review intends to
30
+ provide a record of established methods and promote
31
+ standardization of methods choice in future work.
32
+ CCS
33
+ Concepts:
34
+ Web protocol security;
35
+ Net-
36
+ work privacy and anonymity; Surveillance.
37
+ Keywords: cookie synchronization; cookie match-
38
+ ing; tracking; cookies; methods.
39
+ 2
40
+ Introduction
41
+ The sharing of user browsing information is neces-
42
+ sary for the Internet advertising and tracking indus-
43
+ tries to serve targeted ads [4, 5, 6, 7], perform cross-
44
+ device tracking [8], and sell user information [6, 7,
45
+ 9]. Browser cookies are a standard container for user
46
+ browsing data, and the sharing of first party cookies
47
+ with third parties is restricted by the Same-Origin
48
+ policy [10] to protect user privacy [9, 11, 12]. Cookie
49
+ synchronization is used to bypass the Same-Origin
50
+ policy and share first party cookies with third par-
51
+ ties to support the advertising and tracking ecosys-
52
+ tem [9, 11, 13]. Cookie synchronization is defined by
53
+ a variety of terms in the research community, such as
54
+ cookie matching, cookie linking, cookie leaking, and
55
+ ID syncing.
56
+ 3
57
+ Background
58
+ 3.1
59
+ Browser Cookies and User Identi-
60
+ fiers
61
+ Cookies are key=value pairs set on a user’s browser
62
+ to bring state to the HTTP protocol and provide ses-
63
+ sion management, user personalization, and tracking
64
+ functionality.
65
+ Browser cookies can be set by the Set-Cookie
66
+ header of HTTP responses [12,
67
+ 14,
68
+ 15] or the
69
+ document.cookie operation of JavaScript embedded
70
+ in a visited website [16].
71
+ Cookie synchronization involves the sharing of
72
+ cookie values that can uniquely identify a user (i.e.
73
+ the cookie value is unique to one user). This review
74
+ defines such cookie values as identifiers.
75
+ Methods
76
+ used to define and label identifiers are discussed in
77
+ Section 7.2.
78
+ 3.2
79
+ Party Relations
80
+ First party cookies are set by a user requested do-
81
+ main, and third party cookies are set by an entity
82
+ (i.e. domain or parent organization) other than the
83
+ domain requested.
84
+ 1
85
+
86
+ 3.3
87
+ Cookie Synchronization
88
+ Cookie synchronization is defined as the sharing of a
89
+ first or third party identifier with another third party,
90
+ which can be initiated by an embedded third party
91
+ resource, third party redirect, or the first party itself
92
+ [13, 17, 9].
93
+ 3.4
94
+ How is Cookie Synchronization
95
+ Performed?
96
+ Assume
97
+ a
98
+ user
99
+ is
100
+ browsing
101
+ website1.com and
102
+ website2.com, and there exists tracking entities
103
+ tracker1.com and tracker2.com who both set iden-
104
+ tifiers on the user’s browser, ABC and 123, re-
105
+ spectively.
106
+ The user later visits website3.com,
107
+ which has an embedded resource from tracker1.com
108
+ that initiates a GET request to tracker1.com.
109
+ tracker1.com responds with a 3XX redirect in-
110
+ structing the user’s browser to issue another re-
111
+ quest to tracker2.com,
112
+ with the identifier for
113
+ tracker1.com (ABC), placed in the parameters of the
114
+ requested URL1. tracker2.com is now able to link its
115
+ identifier (123) with tracker1.com’s identifier (ABC)
116
+ [9, 11, 13].
117
+ 3.5
118
+ User Privacy Erosion
119
+ Cookie synchronization allows a third party to re-
120
+ construct portions of a user’s browsing history by re-
121
+ ceiving the visited first party site in the Referer field
122
+ of a GET request header [13, 18]. Websites visited
123
+ over TLS are not exempt from this history leakage, as
124
+ plaintext HTTP requests to third parties share URLs
125
+ requested using HTTPS [11, 13, 19].
126
+ As a tracker
127
+ learns more third party identifiers for a single user,
128
+ it can reconstruct a larger portion of her browsing
129
+ history [13].
130
+ Cookie respawning methods such as evercookie
131
+ [20] can enable third parties to re-identify users after
132
+ clearing browser cookies. A respawned identifier can
133
+ be re-synced with a tracker, effectively eliminating a
134
+ user’s ability to delete browser cookies. This enables
135
+ 1Additional locations to share identifiers are discussed in
136
+ Section 7.2.
137
+ third parties to track users and join browsing histories
138
+ across browser refreshes [13, 3].
139
+ Server-to-server user data merges are facilitated by
140
+ cookie synchronization. Separate tracker data-sets of
141
+ known user information can be combined by linking
142
+ respective identifiers for each tracker [13, 3].
143
+ 3.6
144
+ Cookie Synchronization and the
145
+ Advertising Industry
146
+ Advertising companies are motivated to collect as
147
+ much user information as possible in order to serve
148
+ the most targeted ads; Bashir et.
149
+ al.
150
+ [4] report
151
+ Demand-Side Platforms (DSPs) place higher bids to
152
+ serve users whom they have more information about.
153
+ Cookie synchronization enables this information ac-
154
+ quisition by sharing user browsing data and linking
155
+ tracker databases, which enables ad targeting based
156
+ on web history [13]. Papadopoulos et. al. [13] report
157
+ ad related domains are the most prevalent entities
158
+ involved in cookie synchronization, participating in
159
+ 75% of all synchronizations and acquiring as much as
160
+ 90% of all identifiers synced.
161
+ 4
162
+ Related Work
163
+ As early as 2014, Olejnik et. al. [6] showed how ad-
164
+ vertisers use cookie synchronization in real-time bid-
165
+ ding (RTB) to reconstruct and share browsing his-
166
+ tory.
167
+ HTTP traffic and browser cookies were col-
168
+ lected from 100 real users browsing more than 70 sites
169
+ each. After 70 site visits, a user experienced on av-
170
+ erage 100 cookie synchronizations with 30 domains
171
+ involved.
172
+ Acar
173
+ et.
174
+ al.
175
+ [3]
176
+ investigated
177
+ the
178
+ ef-
179
+ fect Firefox’s privacy settings {Allow Third Party
180
+ Cookies,
181
+ Allow All Cookies but Do Not Track,
182
+ Block Third-Party Cookies} have on the number
183
+ of cookie synchronization a user encounters. Multi-
184
+ ple crawls of the Alexa top 3,000 sites were performed
185
+ with browser cookies logged. When third party cook-
186
+ ies were allowed, 596 identifiers were synced over
187
+ 407 unique first parties, with 323 third parties in-
188
+ volved. Selecting Do Not Track only decreased the
189
+ number of domains involved in cookie synchroniza-
190
+ 2
191
+
192
+ tion by 2.9% and identifiers shared by 2.6%. When
193
+ third party cookies were blocked, this decreased the
194
+ number of identifiers synced to 353 over 321 first par-
195
+ ties, with 129 third parties involved. They report 3
196
+ instances of respawned cookies being synced over two
197
+ 3,000 site crawls.
198
+ Papadopoulos et. al. [13] investigated the preva-
199
+ lence of cookie synchronization events in mobile web
200
+ traffic. The study collected 850 mobile users HTTP
201
+ traffic for 12 months.
202
+ 263,635 cookie synchroniza-
203
+ tions were detected over 179M total requests, with
204
+ 22,329 identifiers shared; 91.996% of the shared iden-
205
+ tifiers were located in URL parameters, 3.705% in
206
+ the Referer URL, and 3.771% in the URL path. The
207
+ study reports 5% of identifiers set in TLS sessions be-
208
+ ing leaked over plain HTTP, as well as the websites
209
+ visited in the Referer field.
210
+ Brookman et.
211
+ al.
212
+ [8] examined the extent of
213
+ cross-device tracking visible to an end-user, includ-
214
+ ing cookie synchronizations. The study crawled the
215
+ Alexa top 100 websites four times each. They report
216
+ 106 unique third parties syncing identifiers with 210
217
+ other third parties.
218
+ Englehardt et. al. [2] performed an extensive anal-
219
+ ysis of online tracking using their open source crawler,
220
+ OpenWPM. They collected web traffic and browser
221
+ cookies from two crawls of the top 10K Alexa web-
222
+ sites. They report the majority of common third par-
223
+ ties embedded in websites participating in cookie syn-
224
+ chronization: 45 of the top 50, 85 of the top 100, and
225
+ 157 of the top 200.
226
+ Papadopoulos et.
227
+ al.
228
+ [11] investigated TLS pri-
229
+ vacy breaches facilitated by cookie synchronization,
230
+ specifically the sharing of websites visited and iden-
231
+ tifiers set over HTTPS. The top 12K Alexa websites
232
+ were crawled, with 440K HTTP(S) requests logged.
233
+ They report 89,479 HTTP(S) syncing requests (i.e.
234
+ HTTP redirects sharing an identifier) occurring from
235
+ 32% of the crawled domains; 17,171 unique iden-
236
+ tifiers were shared with 733 unique domains.
237
+ Of
238
+ the 8,398 websites visited over TLS, 2,317 websites
239
+ were involved in cookie synchronization. Most criti-
240
+ cally, these TLS websites conducted 2,879 cookie syn-
241
+ chronizations with non-TLS websites and leaked 174
242
+ HTTPS visits over plaintext.
243
+ They report 1 in 13
244
+ TLS-supported websites performing cookie synchro-
245
+ nization over HTTP.
246
+ Urban et. al. [21] performed a longitudinal study
247
+ documenting the effects of the General Data Pro-
248
+ tection Regulation (GDPR) on cookie synchroniza-
249
+ tion rates in the European Union (EU). 12 measure-
250
+ ments were performed, with one occurring a month
251
+ before the GDPR going into effect (May 2018), and
252
+ the rest performed each month after. Each measure-
253
+ ment instrumented 400 individual browsing profiles
254
+ (i.e. unique browsing instances). The measurements
255
+ each crawled an average of 8.5K domains, totalling
256
+ over 2.5M requests over the year. After the legisla-
257
+ tion’s passing in May 2018, they report an immediate
258
+ drop in the number of cookie synchronizations per
259
+ month (∼510) in relation to the pre-GDPR measure-
260
+ ment (898); a year later, this number decreased to
261
+ ∼480 cookie synchronization per month. The number
262
+ of third parties conducting cookie synchronizations
263
+ per month also decreased from ∼12K to ∼10.2K. The
264
+ number of involved third parties per month gradually
265
+ recovered over the year to ∼12K. The study claims
266
+ “cookie synchronization is still used in practice, but
267
+ its extent is significantly reduced and still declining”
268
+ in the EU [21]. This claim is not supported by the
269
+ results of later studies conducted in the EU by Fouad
270
+ et. al. [17] and Papadogiannakis et. al [9].
271
+ Fouad et. al. [17] investigated the role of 1x1 pixel
272
+ images and other embedded content types in initi-
273
+ ating cookie synchronization. They conducted two
274
+ crawls of the Alexa top 10k domains, and successfully
275
+ crawled 8,744 domains. They report 34.36% of track-
276
+ ing was initiated by scripts, 23.34% by pixels, 20.01%
277
+ by text/html, 8.54% by large images, and 4.32% by
278
+ application or JSON. Of the 8,744 websites crawled,
279
+ 67.96% were involved in cookie synchronization, with
280
+ 17,425 third parties involved. Third party identifiers
281
+ were shared with other third parties in 22.73% of web-
282
+ sites with 1,263 unique partners.
283
+ Sanchez-Rola et. al. [19] conducted a large scale
284
+ crawl of the Tranco top 1M most accessed domains
285
+ list to reconstruct the cookie ecosystem, clarifying
286
+ known roles and defining novel ones involved in the
287
+ creation and sharing of cookies.
288
+ They define the
289
+ ghost cookie, which is created by an embedded third
290
+ party script on a first party website that sets a first
291
+ party cookie.
292
+ The study claims the existence of a
293
+ 3
294
+
295
+ ghosted cookie decreases a first party’s control over
296
+ the cookies their web-page sets on a browser. They
297
+ report 8.97M cookie synchronization across 387K
298
+ websites, with the most common sender and receiver
299
+ relationship (48%) being the own sender to own re-
300
+ ceiver (i.e.
301
+ a first party ghost cookies shared with
302
+ the third party who embedded the script). 52.4% of
303
+ domains experience at least one cookie synchroniza-
304
+ tion or cookie value overwriting event. Reflecting the
305
+ results of Papadopoulos et. al. [11, 13], 37.71% of
306
+ cookies synchronized over HTTP were created in a
307
+ TLS session.
308
+ Papadogiannakis et. al. [9] investigated whether
309
+ third party trackers respect cookie consent banner
310
+ choices {No Action, Reject All Cookies, Accept
311
+ All Cookies}.
312
+ Their data-set was derived from
313
+ the Tranco top 850K sites and successfully crawled
314
+ 27,953
315
+ domains
316
+ containing
317
+ a
318
+ Consent
319
+ Manage-
320
+ ment Platform (CMP). They specify two types of
321
+ cookie synchronization relationships.
322
+ They define
323
+ a First-Party ID Leak if a first party identifier
324
+ is shared with a third party, and a Third-Party
325
+ ID Synchronization if a third party identifier is
326
+ shared with a third party. When the user takes No
327
+ Action, 52.88% and 24.03% of websites conduct
328
+ First-Party ID Leaking
329
+ and
330
+ Third-Party ID
331
+ Synchronization, respectively.
332
+ When Rejecting
333
+ All Cookies, 56.41% and 26.20% of websites con-
334
+ duct First-Party ID Leaking and Third-Party
335
+ ID Synchronization, respectively.
336
+ 5
337
+ Purpose
338
+ This review intends to document the variety of meth-
339
+ ods employed to detect cookie synchronization. All
340
+ studies under review must log HTTP data and label
341
+ cookie synchronizations from the collected network
342
+ traffic.
343
+ 6
344
+ Data-set Collection Methods
345
+ Crawled Data-set: Web crawlers instrumented in-
346
+ clude OpenWPM [8, 12, 21, 17, 2, 1], Chromium-
347
+ based crawlers [4,
348
+ 19,
349
+ 22,
350
+ 23],
351
+ Selenium-based
352
+ crawlers [11, 3, 24], or custom crawlers [9].
353
+ User Data Collection:
354
+ To collect the HTTP
355
+ traffic of real users, study-specific browser plugins are
356
+ installed on a user’s browser [6, 7, 13, 14].
357
+ Henceforth, the term user will refer to the browser
358
+ instance instrumented, regardless of whether the
359
+ study collected crawled or real user data.
360
+ 7
361
+ Labeling
362
+ Cookie
363
+ Synchro-
364
+ nizations by Shared Identi-
365
+ fiers
366
+ 7.1
367
+ Shared Identifier Heuristic
368
+ The majority of cookie synchronization detection
369
+ methods draw inspiration from the shared identi-
370
+ fier heuristic proposed by Olejnik et. al. [6]. This
371
+ method labels a cookie synchronization iff an identi-
372
+ fier is shared in a HTTP request’s URL parameters
373
+ to an entity other than the entity who set the cookie
374
+ (i.e. a third party) [6, 7, 17, 14]. An entity can be
375
+ defined as either a domain or the parent organization
376
+ of a domain.
377
+ Related methods build on this heuristic by addi-
378
+ tionally extracting identifiers shared with third par-
379
+ ties from the URL path of requests [9, 13, 25],
380
+ Referer URL of requests2 [9, 11, 13, 2, 25, 3], redi-
381
+ rect Location URL [3], nonstandard request and
382
+ redirect headers [12], or POST request bodies [9].
383
+ 7.2
384
+ Extracting
385
+ Identifiers
386
+ from
387
+ Browser Cookies
388
+ 7.2.1
389
+ What Defines an Identifier?
390
+ A cookie set on a user’s browser is an identifier iff
391
+ the cookie’s value can identify a specific user (i.e. the
392
+ value is mapped to only one user). These identifying
393
+ cookie values and the entities who set them are stored
394
+ to later detect instances of identifiers shared in HTTP
395
+ 2As
396
+ of
397
+ November
398
+ 2020,
399
+ the
400
+ HTTP
401
+ Referrer-Policy
402
+ default
403
+ directive
404
+ has
405
+ been
406
+ updated
407
+ to
408
+ strict-origin-when-cross-origin to only share the origin
409
+ of a request.
410
+ This prevents identifiers from being shared in
411
+ the path and querystring [26].
412
+ 4
413
+
414
+ traffic.
415
+ This method confirms that a cookie value
416
+ shared with a third party can uniquely identify the
417
+ user who initiated the third party request [7, 8, 9, 11,
418
+ 12, 13, 3, 21, 17, 19, 2, 14].
419
+ 7.2.2
420
+ Extracting Browser Cookies
421
+ To create the set of all cookies set on a user’s browser,
422
+ cookie values are extracted from the Set-Cookie
423
+ header of HTTP responses [12, 14, 15, 13] or Cookie
424
+ header of HTTP requests [12, 27].
425
+ Solomos
426
+ et.
427
+ al.
428
+ [1]
429
+ use
430
+ OpenWPM’s
431
+ javascript instrument [2] to log cookie values set
432
+ by JavaScript embedded in visited web pages.
433
+ 7.2.3
434
+ User Identifier Filtering
435
+ The following restrictions are used to filter identi-
436
+ fier cookie values from the original browser cookie set.
437
+ Value
438
+ Length
439
+ Restrictions:
440
+ Identifiers often
441
+ have minimum length requirements: cookie values
442
+ > 10 characters [6, 7, 13, 25], > 8 characters [12],
443
+ > 7 characters [21, 2, 14], and > 5 characters [9].
444
+ Of studies that provide identifier length restrictions,
445
+ only one provides an upper bound: ≤ 100 characters
446
+ [2].
447
+ Value Character Quality Restrictions:
448
+ Iden-
449
+ tifiers can be extracted based on character values.
450
+ Studies that set character value restrictions only
451
+ extract cookie values consisting of alphanumeric
452
+ characters and other common characters [2, 17, 12].
453
+ Common character values include [-,
454
+ , =], with =
455
+ indicating a key=value pair [2]. Fouad et. al. [17]
456
+ also consider the comma and period and exclude the
457
+ equals sign.
458
+ Delimiter
459
+ Parsing:
460
+ To
461
+ extract
462
+ consecutive
463
+ identifier strings bounded by known characters,
464
+ cookie values can be parsed (i.e. split) at these com-
465
+ mon delimiters. All studies that split consecutively
466
+ shared identifiers consider [&, ;] to be delimiters,
467
+ except Ghosh et.
468
+ al.
469
+ [5] who consider the colon
470
+ rather than semicolon [9, 12, 3, 21, 17, 2, 14, 25, 13].
471
+ Similarity
472
+ Measurement:
473
+ Identifiers
474
+ can
475
+ be
476
+ extracted by uniqueness.
477
+ All studies extracting
478
+ identifiers based on string entropy use the Rat-
479
+ cliff/Obershelp
480
+ Algorithm
481
+ [28]
482
+ with
483
+ a
484
+ provided
485
+ maximum similarity score: eliminate cookie values
486
+ > 66% similar to another cookie value [2], > 33%
487
+ similar [8, 3, 25], or not provided [21].
488
+ Multiple Values Set for a Key=Value Pair:
489
+ Falahraster et. al. [14] and Urban et. al. [21] ex-
490
+ clude any cookie value extracted from a key=value
491
+ pair containing more than one value.
492
+ Key=Value Pairs with Dynamic Values: Cookie
493
+ values can be eliminated if the key’s value changes
494
+ over the course of a crawl or user browsing session
495
+ [3, 2, 25].
496
+ Keyword
497
+ Filtering:
498
+ Papadogiannakis et.
499
+ al.
500
+ [9] use a manually curated list of keywords to elim-
501
+ inate cookie values containing dates, timestamps,
502
+ regions, locale, URLs, prevalent keywords, consent
503
+ information (e.g.
504
+ values of the keys euconsent,
505
+ eupubconsent,
506
+ cmpconsnent,
507
+ cmpiab), or end in
508
+ common file extensions.
509
+ Filtering Non-Unique
510
+ Strings:
511
+ Studies with
512
+ access to multiple cookie data-sets from multiple
513
+ crawls or user browsing sessions can eliminate cookie
514
+ values present for multiple crawls or users [13, 21,
515
+ 17, 14].
516
+ Session
517
+ Cookie
518
+ Values:
519
+ Session cookies are
520
+ deleted at the end of a browsing session and their
521
+ values can be eliminated [27]. Studies that eliminate
522
+ session cookies examine the Expires and Max-Age
523
+ attributes [27] and eliminate values associated with
524
+ cookies lacking an expiration date [11, 13] or expire
525
+ earlier than a specified future date: earlier than 90
526
+ days [2] or 30 days [3].
527
+ 5
528
+
529
+ 7.3
530
+ Detecting
531
+ Identifiers
532
+ Shared
533
+ in
534
+ HTTP Traffic
535
+ 7.3.1
536
+ Labeling Requests to First or Third
537
+ Parties
538
+ Studies that label the party relation of (referrer, re-
539
+ quest) pairs only label identifiers shared in requests
540
+ to third parties [6, 7, 8, 9, 11, 12, 13, 21, 17, 19, 2, 1,
541
+ 14, 25].
542
+ Parent Organization Mapping: Domain names
543
+ can be mapped to parent organizations using DNS
544
+ whois records and blacklists [11, 13, 14, 25] or the
545
+ WhoTracks.me database [19, 29].
546
+ To resolve do-
547
+ main names obfuscated by CNAME cloaking [30],
548
+ Sanchez et. al. [19] use the NextDNS blocklist [31]
549
+ to resolve these cloaked domains to known trackers;
550
+ tldExtract [32] is then used to determine the private
551
+ suffix of each domain; private suffixes are mapped
552
+ to parent organizations using the Disconnect [33],
553
+ WhoTracks.me [29], and webxray [34] lists.
554
+ String Matching: Domain name string matching
555
+ is also common, with matches indicating a first party
556
+ and mismatches indicating a third party [6, 7, 8, 9].
557
+ Englehardt et. al. Case Study: Englehardt et.
558
+ al. [2] label request party relations using the Mozilla
559
+ Public Suffix list [35]; iff the landing page’s domain
560
+ name and public suffix (not including subdomains)
561
+ do not match a request’s domain name and public
562
+ suffix, the request is labeled as to a third party.
563
+ 7.3.2
564
+ HTTP Identifier Sharing Locations
565
+ The research community has examined the following
566
+ HTTP elements for instances of shared identifiers
567
+ using exact string matching, with matches indicating
568
+ a cookie synchronization.
569
+ HTTP GET Requests: URL query parameters
570
+ [6, 3, 2, 8, 11, 17, 13, 25, 9, 12], URL path3 [3, 2, 8,
571
+ 11, 13, 25, 9, 12], Referer URL4 [2, 11, 13, 25, 9, 3],
572
+ 3Studies who report examining URLs–without specifying
573
+ which elements–are assumed to check both the path and
574
+ querystring.
575
+ 4As
576
+ of
577
+ November
578
+ 2020,
579
+ the
580
+ HTTP
581
+ Referrer-Policy
582
+ default
583
+ directive
584
+ has
585
+ been
586
+ updated
587
+ to
588
+ strict-origin-when-cross-origin to only share the origin
589
+ and non-standard headers [12].
590
+ HTTP Redirects: Location URL [3, 2, 25] and
591
+ non-standard headers [12].
592
+ HTTP POST Requests: Request bodies [9].
593
+ 7.3.3
594
+ Papadopoulos et. al. Shared Identifier
595
+ Labeling Case Study
596
+ Papadopoulos et. al. [13, 11] implemented a distinct
597
+ method of detecting instances of shared identifiers
598
+ over two cookie synchronization studies.
599
+ Rather than using string matching to label in-
600
+ stances of shared identifiers, they first extract all ID-
601
+ looking strings from GET request URL paths, query
602
+ parameters, and Referer headers.
603
+ An ID-looking
604
+ string is defined by the same qualities used for fil-
605
+ tering identifiers from browser cookies {Section 7.2}.
606
+ The study stores detected ID-looking strings in
607
+ a hashtable with the receiving domain.
608
+ If an ID-
609
+ looking string is seen for the first time in an HTTP
610
+ element, the string is added to the hashtable with the
611
+ requested domain. If an ID-looking string is seen for
612
+ at least the second time, all requests carrying it are
613
+ labeled as an ID-sharing event.
614
+ Cookie synchronizations are labeled from the ID-
615
+ sharing event set; iff an ID-looking string present in
616
+ an ID-sharing event matches a known identifier, the
617
+ ID-sharing event is labeled a cookie synchronization.
618
+ 8
619
+ Alternative Cookie Synchro-
620
+ nization Detection Methods
621
+ 8.1
622
+ Decision Tree Classifier
623
+ of En-
624
+ crypted
625
+ Identifier
626
+ Synchroniza-
627
+ tion
628
+ Papadopoulos et.
629
+ al.
630
+ [13] trained a decision tree
631
+ model to detect cookie synchronizations of encrypted
632
+ identifiers. The model does not consider the presence
633
+ of a shared, known identifier when classifying cookie
634
+ synchronizations.
635
+ of a request.
636
+ This prevents identifiers from being shared in
637
+ the path and querystring [26].
638
+ 6
639
+
640
+ The study assumes an equal distribution of HTTP
641
+ traffic feature variability between cookie synchro-
642
+ nization of non-encrypted and encrypted identi-
643
+ fiers.
644
+ The training and testing sets were labeled
645
+ by non-encrypted cookie synchronizations detected
646
+ using the study’s shared identifier heuristic.
647
+ The
648
+ features selected include requested entity name,
649
+ type of entity {Content, Social, Advertising,
650
+ Analytics, Other}, URL parameter names, loca-
651
+ tion of hashed identifier {URL parameter, URL
652
+ path, Referer URL parameter}, HTTP status code,
653
+ browser type, and number of parameters.
654
+ 8.2
655
+ Labeling Cookie Synchronizations
656
+ in Retargeted Ad Serving Infor-
657
+ mation Flows
658
+ Bashir et. al. [4] collect the resource inclusion chain
659
+ for all websites crawled.
660
+ At a high level, a cookie
661
+ synchronization is labeled iff an auction is held by the
662
+ publisher-side and requests between the Supply-
663
+ Side Platforms (SSP) of the chain directly include a
664
+ resource.
665
+ The
666
+ study
667
+ defines
668
+ the
669
+ following
670
+ terminology.
671
+ Personas are individually created to represent 90
672
+ unique categories of shoppers by browsing specific
673
+ products on e-commerce sites. These categories are
674
+ used to later compare with the qualities of retargeted
675
+ ads for each persona. A publisher-side resource
676
+ chain serves a retargeted ad to a user’s browser. pub
677
+ is the root node’s publisher domain. d is the last en-
678
+ tity in a chain and serves the ad. s denotes a SSP.
679
+ shop is the e-commerce site domain of the retargeted
680
+ ad.
681
+ Cookie synchronizations are labeled iff s and d are
682
+ adjacent at the end of a chain, d observes the persona
683
+ at shop, and a request from s to d (or d to s) is
684
+ present in a chain prior to the retargeted ad being
685
+ served [4].
686
+ 8.3
687
+ Labeling
688
+ Tracker
689
+ to
690
+ Tracker
691
+ Cookie
692
+ Synchronizations
693
+ with
694
+ Pre-Existing Data-sets
695
+ Bashir et.
696
+ al.
697
+ [22] and Solomos et.
698
+ al.
699
+ [1] la-
700
+ bel any (tracker, tracker) referrer-request pair as a
701
+ cookie synchronization iff the pair is present on a list
702
+ of known cookie synchronizing third parties [4, 13].
703
+ 9
704
+ Acknowledgements
705
+ The author would like to thank Dr. Zubair Shafiq and
706
+ Dr. Katie Rodger for their technical and expository
707
+ insights.
708
+ References
709
+ [1]
710
+ Konstantinos Solomos et al. “Clash of the
711
+ trackers: Measuring the evolution of the on-
712
+ line tracking ecosystem”. In: arXiv preprint
713
+ arXiv:1907.12860 (2019).
714
+ [2]
715
+ Steven Englehardt and Arvind Narayanan.
716
+ “Online tracking: A 1-million-site measurement
717
+ and analysis”. In: Proceedings of the 2016 ACM
718
+ SIGSAC conference on computer and commu-
719
+ nications security. 2016, pp. 1388–1401.
720
+ [3]
721
+ Gunes Acar et al. “The Web Never Forgets”. In:
722
+ Computer and Communications Security, ACM
723
+ (2014), pp. 674–689.
724
+ [4]
725
+ Muhammad Ahmad Bashir et al. “Tracing in-
726
+ formation flows between ad exchanges using re-
727
+ targeted ads”. In: 25th USENIX Security Sym-
728
+ posium (USENIX Security 16). 2016, pp. 481–
729
+ 496.
730
+ [5]
731
+ Arpita Ghosh et al. “To match or not to match:
732
+ Economics of cookie matching in online adver-
733
+ tising”. In: ACM Transactions on Economics
734
+ and Computation (TEAC) 3.2 (2015), pp. 1–
735
+ 18.
736
+ 7
737
+
738
+ [6]
739
+ Lukasz Olejnik, Minh-Dung Tran, and Claude
740
+ Castelluccia.
741
+ “Selling
742
+ off
743
+ privacy
744
+ at
745
+ auc-
746
+ tion”. In: Proceedings 2014 Network and Dis-
747
+ tributed System Security Symposium (2014).
748
+ doi: 10.14722/ndss.2014.23270.
749
+ [7]
750
+ Michalis Pachilakis et al. “YourAdvalue: Mea-
751
+ suring
752
+ advertising
753
+ price
754
+ dynamics
755
+ without
756
+ bankrupting user privacy”. In: Proceedings of
757
+ the ACM on Measurement and Analysis of
758
+ Computing Systems 5.3 (2021), pp. 1–26.
759
+ [8]
760
+ Justin Brookman et al. “Cross-Device Track-
761
+ ing: Measurement and Disclosures.” In: Proc.
762
+ Priv.
763
+ Enhancing
764
+ Technol.
765
+ 2017.2
766
+ (2017),
767
+ pp. 133–148.
768
+ [9]
769
+ Emmanouil
770
+ Papadogiannakis
771
+ et
772
+ al.
773
+ “User
774
+ tracking in the post-cookie era: How websites
775
+ bypass gdpr consent to track users”. In: Pro-
776
+ ceedings of the Web Conference 2021. 2021,
777
+ pp. 2130–2141.
778
+ [10]
779
+ Same
780
+ origin
781
+ policy.
782
+ 2010.
783
+ url:
784
+ https://www.w3.org/Security/wiki/Same_Origin_Policy.
785
+ [11]
786
+ Panagiotis Papadopoulos, Nicolas Kourtellis,
787
+ and Evangelos P Markatos. “Exclusive: How
788
+ the (synced) cookie monster breached my en-
789
+ crypted vpn session”. In: Proceedings of the
790
+ 11th European Workshop on Systems Security.
791
+ 2018, pp. 1–6.
792
+ [12]
793
+ Umar
794
+ Iqbal
795
+ et
796
+ al.
797
+ “Khaleesi:
798
+ Breaker
799
+ of
800
+ Advertising
801
+ and
802
+ Tracking
803
+ Request
804
+ Chains”.
805
+ In:
806
+ 31st
807
+ USENIX Security
808
+ Sym-
809
+ posium
810
+ (USENIX
811
+ Security
812
+ 22).
813
+ Boston,
814
+ MA:
815
+ USENIX
816
+ Association,
817
+ Aug.
818
+ 2022,
819
+ pp. 2911–2928. isbn: 978-1-939133-31-1. url:
820
+ https://www.usenix.org/conference/usenixsecurity22/presentation/iqbal.
821
+ [13]
822
+ Panagiotis Papadopoulos, Nicolas Kourtellis,
823
+ and Evangelos Markatos. “Cookie synchroniza-
824
+ tion: Everything you always wanted to know
825
+ but were afraid to ask”. In: The World Wide
826
+ Web Conference. 2019, pp. 1432–1442.
827
+ [14]
828
+ Marjan Falahrastegar et al. “Tracking personal
829
+ identifiers across the web”. In: International
830
+ conference on passive and active network mea-
831
+ surement. Springer. 2016, pp. 30–41.
832
+ [15]
833
+ Set-cookie - http: MDN. Aug. 2022. url:
834
+ https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie.
835
+ [16]
836
+ Document.cookie
837
+ -
838
+ web
839
+ apis:
840
+ MDN.
841
+ Sept.
842
+ 2022.
843
+ url:
844
+ https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie.
845
+ [17]
846
+ Imane Fouad et al. “Missed by filter lists:
847
+ Detecting
848
+ unknown
849
+ third-party
850
+ trackers
851
+ with
852
+ invisible
853
+ pixels”.
854
+ In:
855
+ arXiv
856
+ preprint
857
+ arXiv:1812.01514 (2018).
858
+ [18]
859
+ Referer
860
+ -
861
+ http:
862
+ MDN.
863
+ July
864
+ 2022.
865
+ url:
866
+ https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer.
867
+ [19]
868
+ Iskander Sanchez-Rola et al. “Journey to the
869
+ center of the cookie ecosystem: Unraveling ac-
870
+ tors’ roles and relationships”. In: IEEE Sympo-
871
+ sium on Security and Privacy. 2021.
872
+ [20]
873
+ Samy
874
+ Kamkar.
875
+ Evercookie.
876
+ 2010.
877
+ url:
878
+ https://samy.pl/evercookie/.
879
+ [21]
880
+ Tobias Urban et al. “Measuring the impact of
881
+ the gdpr on data sharing in ad networks”. In:
882
+ Proceedings of the 15th ACM Asia Conference
883
+ on Computer and Communications Security.
884
+ 2020, pp. 222–235.
885
+ [22]
886
+ Muhammad Ahmad Bashir and Christo Wil-
887
+ son. “Diffusion of User Tracking Data in the
888
+ Online Advertising Ecosystem.” In: Proc. Priv.
889
+ Enhancing Technol. 2018.4 (2018), pp. 85–103.
890
+ [23]
891
+ Eric
892
+ Bidelman.
893
+ Getting
894
+ started
895
+ with
896
+ headless
897
+ chrome.
898
+ 2018.
899
+ url:
900
+ https://developer.chrome.com/blog/headless-chrome/.
901
+ [24]
902
+ url: http://docs.seleniumhq.org/.
903
+ [25]
904
+ Pushkal Agarwal et al. “Stop tracking me bro!
905
+ differential tracking of user demographics on
906
+ hyper-partisan websites”. In: Proceedings of
907
+ The Web Conference 2020. 2020, pp. 1479–
908
+ 1490.
909
+ [26]
910
+ Referrer-policy - http: MDN. Sept. 2022. url:
911
+ https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy.
912
+ [27]
913
+ Using
914
+ HTTP
915
+ cookies
916
+ -
917
+ http:
918
+ MDN.
919
+ Sept.
920
+ 2022.
921
+ url:
922
+ https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies.
923
+ 8
924
+
925
+ [28]
926
+ Paul
927
+ Black.
928
+ Ratcliff/Obershelp
929
+ pattern
930
+ recognition.
931
+ 2021.
932
+ url:
933
+ https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html.
934
+ [29]
935
+ Bringing transparency to online tracking. url:
936
+ https://whotracks.me/.
937
+ [30]
938
+ Romain Cointepas. CNAME Cloaking, the dan-
939
+ gerous disguise of third-party trackers. 2019.
940
+ [31]
941
+ NextDNS.
942
+ url:
943
+ https://github.com/nextdns.
944
+ [32]
945
+ John-Kurkowski.
946
+ John-Kurkowski/tldextract:
947
+ Accurately
948
+ separates
949
+ a
950
+ URL’s
951
+ subdo-
952
+ main,
953
+ domain,
954
+ and
955
+ public
956
+ suffix,
957
+ us-
958
+ ing
959
+ the
960
+ public
961
+ suffix
962
+ list
963
+ (PSL).
964
+ url:
965
+ https://github.com/john-kurkowski/tldextract.
966
+ [33]
967
+ Disconnectme
968
+ -
969
+ Overview.
970
+ url:
971
+ https://github.com/disconnectme.
972
+ [34]
973
+ Tim Libert. Timlib/webxray: WebXray is a
974
+ tool for analyzing webpage traffic and con-
975
+ tent, extracting legal policies, and identifying
976
+ the companies which collect user data. url:
977
+ https://github.com/timlib/webXray.
978
+ [35]
979
+ Public
980
+ suffix
981
+ list.
982
+ url:
983
+ https://publicsuffix.org/.
984
+ 9
985
+
5NE0T4oBgHgl3EQfvgGE/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf,len=499
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
3
+ page_content='02619v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
4
+ page_content='CR] 28 Oct 2022 Review of Cookie Synchronization Detection Methods Jake Smith University of California, Davis Email: jsssmit@ucdavis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
5
+ page_content='edu January 9, 2023 1 Abstract The research community has deemed cookie syn- chronization detection an inherently challenging task [1, 2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
6
+ page_content=' Studies aiming to identify cookie syn- chronizations often share high-level design choices, but deviate amongst low-level implementations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
7
+ page_content=' For example, the majority of studies label a cookie synchronization iff a user identifier is shared with a third party;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
8
+ page_content=' however, there is a lack of consistency among implementations, such as party relations or identifier value definitions, or whether such definitions are even included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
9
+ page_content=' This review intends to provide a record of established methods and promote standardization of methods choice in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
10
+ page_content=' CCS Concepts: Web protocol security;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
11
+ page_content=' Net- work privacy and anonymity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
12
+ page_content=' Surveillance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
13
+ page_content=' Keywords: cookie synchronization;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
14
+ page_content=' cookie match- ing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
15
+ page_content=' tracking;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
16
+ page_content=' cookies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
17
+ page_content=' methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
18
+ page_content=' 2 Introduction The sharing of user browsing information is neces- sary for the Internet advertising and tracking indus- tries to serve targeted ads [4, 5, 6, 7], perform cross- device tracking [8], and sell user information [6, 7, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
19
+ page_content=' Browser cookies are a standard container for user browsing data, and the sharing of first party cookies with third parties is restricted by the Same-Origin policy [10] to protect user privacy [9, 11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
20
+ page_content=' Cookie synchronization is used to bypass the Same-Origin policy and share first party cookies with third par- ties to support the advertising and tracking ecosys- tem [9, 11, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
21
+ page_content=' Cookie synchronization is defined by a variety of terms in the research community, such as cookie matching, cookie linking, cookie leaking, and ID syncing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
22
+ page_content=' 3 Background 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
23
+ page_content='1 Browser Cookies and User Identi- fiers Cookies are key=value pairs set on a user’s browser to bring state to the HTTP protocol and provide ses- sion management, user personalization, and tracking functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
24
+ page_content=' Browser cookies can be set by the Set-Cookie header of HTTP responses [12, 14, 15] or the document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
25
+ page_content='cookie operation of JavaScript embedded in a visited website [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
26
+ page_content=' Cookie synchronization involves the sharing of cookie values that can uniquely identify a user (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
27
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
28
+ page_content=' the cookie value is unique to one user).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
29
+ page_content=' This review defines such cookie values as identifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
30
+ page_content=' Methods used to define and label identifiers are discussed in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
31
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
32
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
33
+ page_content='2 Party Relations First party cookies are set by a user requested do- main, and third party cookies are set by an entity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
34
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
35
+ page_content=' domain or parent organization) other than the domain requested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
36
+ page_content=' 1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
37
+ page_content='3 Cookie Synchronization Cookie synchronization is defined as the sharing of a first or third party identifier with another third party, which can be initiated by an embedded third party resource, third party redirect, or the first party itself [13, 17, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
38
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
39
+ page_content='4 How is Cookie Synchronization Performed?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
40
+ page_content=' Assume a user is browsing website1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
41
+ page_content='com and website2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
42
+ page_content='com, and there exists tracking entities tracker1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
43
+ page_content='com and tracker2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
44
+ page_content='com who both set iden- tifiers on the user’s browser, ABC and 123, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
45
+ page_content=' The user later visits website3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
46
+ page_content='com, which has an embedded resource from tracker1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
47
+ page_content='com that initiates a GET request to tracker1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
48
+ page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
49
+ page_content=' tracker1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
50
+ page_content='com responds with a 3XX redirect in- structing the user’s browser to issue another re- quest to tracker2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
51
+ page_content='com, with the identifier for tracker1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
52
+ page_content='com (ABC), placed in the parameters of the requested URL1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
53
+ page_content=' tracker2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
54
+ page_content='com is now able to link its identifier (123) with tracker1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
55
+ page_content='com’s identifier (ABC) [9, 11, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
56
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
57
+ page_content='5 User Privacy Erosion Cookie synchronization allows a third party to re- construct portions of a user’s browsing history by re- ceiving the visited first party site in the Referer field of a GET request header [13, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
58
+ page_content=' Websites visited over TLS are not exempt from this history leakage, as plaintext HTTP requests to third parties share URLs requested using HTTPS [11, 13, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
59
+ page_content=' As a tracker learns more third party identifiers for a single user, it can reconstruct a larger portion of her browsing history [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
60
+ page_content=' Cookie respawning methods such as evercookie [20] can enable third parties to re-identify users after clearing browser cookies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
61
+ page_content=' A respawned identifier can be re-synced with a tracker, effectively eliminating a user’s ability to delete browser cookies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
62
+ page_content=' This enables 1Additional locations to share identifiers are discussed in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
63
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
64
+ page_content=' third parties to track users and join browsing histories across browser refreshes [13, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
65
+ page_content=' Server-to-server user data merges are facilitated by cookie synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
66
+ page_content=' Separate tracker data-sets of known user information can be combined by linking respective identifiers for each tracker [13, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
67
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
68
+ page_content='6 Cookie Synchronization and the Advertising Industry Advertising companies are motivated to collect as much user information as possible in order to serve the most targeted ads;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
69
+ page_content=' Bashir et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
70
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
71
+ page_content=' [4] report Demand-Side Platforms (DSPs) place higher bids to serve users whom they have more information about.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
72
+ page_content=' Cookie synchronization enables this information ac- quisition by sharing user browsing data and linking tracker databases, which enables ad targeting based on web history [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
73
+ page_content=' Papadopoulos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
74
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
75
+ page_content=' [13] report ad related domains are the most prevalent entities involved in cookie synchronization, participating in 75% of all synchronizations and acquiring as much as 90% of all identifiers synced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
76
+ page_content=' 4 Related Work As early as 2014, Olejnik et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
77
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
78
+ page_content=' [6] showed how ad- vertisers use cookie synchronization in real-time bid- ding (RTB) to reconstruct and share browsing his- tory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
79
+ page_content=' HTTP traffic and browser cookies were col- lected from 100 real users browsing more than 70 sites each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
80
+ page_content=' After 70 site visits, a user experienced on av- erage 100 cookie synchronizations with 30 domains involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
81
+ page_content=' Acar et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
82
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
83
+ page_content=' [3] investigated the ef- fect Firefox’s privacy settings {Allow Third Party Cookies, Allow All Cookies but Do Not Track, Block Third-Party Cookies} have on the number of cookie synchronization a user encounters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
84
+ page_content=' Multi- ple crawls of the Alexa top 3,000 sites were performed with browser cookies logged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
85
+ page_content=' When third party cook- ies were allowed, 596 identifiers were synced over 407 unique first parties, with 323 third parties in- volved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
86
+ page_content=' Selecting Do Not Track only decreased the number of domains involved in cookie synchroniza- 2 tion by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
87
+ page_content='9% and identifiers shared by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
88
+ page_content='6%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
89
+ page_content=' When third party cookies were blocked, this decreased the number of identifiers synced to 353 over 321 first par- ties, with 129 third parties involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
90
+ page_content=' They report 3 instances of respawned cookies being synced over two 3,000 site crawls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
91
+ page_content=' Papadopoulos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
92
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
93
+ page_content=' [13] investigated the preva- lence of cookie synchronization events in mobile web traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
94
+ page_content=' The study collected 850 mobile users HTTP traffic for 12 months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
95
+ page_content=' 263,635 cookie synchroniza- tions were detected over 179M total requests, with 22,329 identifiers shared;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
96
+ page_content=' 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
97
+ page_content='996% of the shared iden- tifiers were located in URL parameters, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
98
+ page_content='705% in the Referer URL, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
99
+ page_content='771% in the URL path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
100
+ page_content=' The study reports 5% of identifiers set in TLS sessions be- ing leaked over plain HTTP, as well as the websites visited in the Referer field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
101
+ page_content=' Brookman et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
102
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
103
+ page_content=' [8] examined the extent of cross-device tracking visible to an end-user, includ- ing cookie synchronizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
104
+ page_content=' The study crawled the Alexa top 100 websites four times each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
105
+ page_content=' They report 106 unique third parties syncing identifiers with 210 other third parties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
106
+ page_content=' Englehardt et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
107
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
108
+ page_content=' [2] performed an extensive anal- ysis of online tracking using their open source crawler, OpenWPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
109
+ page_content=' They collected web traffic and browser cookies from two crawls of the top 10K Alexa web- sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
110
+ page_content=' They report the majority of common third par- ties embedded in websites participating in cookie syn- chronization: 45 of the top 50, 85 of the top 100, and 157 of the top 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
111
+ page_content=' Papadopoulos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
112
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
113
+ page_content=' [11] investigated TLS pri- vacy breaches facilitated by cookie synchronization, specifically the sharing of websites visited and iden- tifiers set over HTTPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
114
+ page_content=' The top 12K Alexa websites were crawled, with 440K HTTP(S) requests logged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
115
+ page_content=' They report 89,479 HTTP(S) syncing requests (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
116
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
117
+ page_content=' HTTP redirects sharing an identifier) occurring from 32% of the crawled domains;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
118
+ page_content=' 17,171 unique iden- tifiers were shared with 733 unique domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
119
+ page_content=' Of the 8,398 websites visited over TLS, 2,317 websites were involved in cookie synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
120
+ page_content=' Most criti- cally, these TLS websites conducted 2,879 cookie syn- chronizations with non-TLS websites and leaked 174 HTTPS visits over plaintext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
121
+ page_content=' They report 1 in 13 TLS-supported websites performing cookie synchro- nization over HTTP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
122
+ page_content=' Urban et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
123
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
124
+ page_content=' [21] performed a longitudinal study documenting the effects of the General Data Pro- tection Regulation (GDPR) on cookie synchroniza- tion rates in the European Union (EU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
125
+ page_content=' 12 measure- ments were performed, with one occurring a month before the GDPR going into effect (May 2018), and the rest performed each month after.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
126
+ page_content=' Each measure- ment instrumented 400 individual browsing profiles (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
127
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
128
+ page_content=' unique browsing instances).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
129
+ page_content=' The measurements each crawled an average of 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
130
+ page_content='5K domains, totalling over 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
131
+ page_content='5M requests over the year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
132
+ page_content=' After the legisla- tion’s passing in May 2018, they report an immediate drop in the number of cookie synchronizations per month (∼510) in relation to the pre-GDPR measure- ment (898);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
133
+ page_content=' a year later, this number decreased to ∼480 cookie synchronization per month.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
134
+ page_content=' The number of third parties conducting cookie synchronizations per month also decreased from ∼12K to ∼10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
135
+ page_content='2K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
136
+ page_content=' The number of involved third parties per month gradually recovered over the year to ∼12K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
137
+ page_content=' The study claims “cookie synchronization is still used in practice, but its extent is significantly reduced and still declining” in the EU [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
138
+ page_content=' This claim is not supported by the results of later studies conducted in the EU by Fouad et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
139
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
140
+ page_content=' [17] and Papadogiannakis et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
141
+ page_content=' al [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
142
+ page_content=' Fouad et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
143
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
144
+ page_content=' [17] investigated the role of 1x1 pixel images and other embedded content types in initi- ating cookie synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
145
+ page_content=' They conducted two crawls of the Alexa top 10k domains, and successfully crawled 8,744 domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
146
+ page_content=' They report 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
147
+ page_content='36% of track- ing was initiated by scripts, 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
148
+ page_content='34% by pixels, 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
149
+ page_content='01% by text/html, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
150
+ page_content='54% by large images, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
151
+ page_content='32% by application or JSON.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
152
+ page_content=' Of the 8,744 websites crawled, 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
153
+ page_content='96% were involved in cookie synchronization, with 17,425 third parties involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
154
+ page_content=' Third party identifiers were shared with other third parties in 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
155
+ page_content='73% of web- sites with 1,263 unique partners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
156
+ page_content=' Sanchez-Rola et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
157
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
158
+ page_content=' [19] conducted a large scale crawl of the Tranco top 1M most accessed domains list to reconstruct the cookie ecosystem, clarifying known roles and defining novel ones involved in the creation and sharing of cookies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
159
+ page_content=' They define the ghost cookie, which is created by an embedded third party script on a first party website that sets a first party cookie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
160
+ page_content=' The study claims the existence of a 3 ghosted cookie decreases a first party’s control over the cookies their web-page sets on a browser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
161
+ page_content=' They report 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
162
+ page_content='97M cookie synchronization across 387K websites, with the most common sender and receiver relationship (48%) being the own sender to own re- ceiver (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
163
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
164
+ page_content=' a first party ghost cookies shared with the third party who embedded the script).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
165
+ page_content=' 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
166
+ page_content='4% of domains experience at least one cookie synchroniza- tion or cookie value overwriting event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
167
+ page_content=' Reflecting the results of Papadopoulos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
168
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
169
+ page_content=' [11, 13], 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
170
+ page_content='71% of cookies synchronized over HTTP were created in a TLS session.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
171
+ page_content=' Papadogiannakis et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
172
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
173
+ page_content=' [9] investigated whether third party trackers respect cookie consent banner choices {No Action, Reject All Cookies, Accept All Cookies}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
174
+ page_content=' Their data-set was derived from the Tranco top 850K sites and successfully crawled 27,953 domains containing a Consent Manage- ment Platform (CMP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
175
+ page_content=' They specify two types of cookie synchronization relationships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
176
+ page_content=' They define a First-Party ID Leak if a first party identifier is shared with a third party, and a Third-Party ID Synchronization if a third party identifier is shared with a third party.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
177
+ page_content=' When the user takes No Action, 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
178
+ page_content='88% and 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
179
+ page_content='03% of websites conduct First-Party ID Leaking and Third-Party ID Synchronization, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
180
+ page_content=' When Rejecting All Cookies, 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
181
+ page_content='41% and 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
182
+ page_content='20% of websites con- duct First-Party ID Leaking and Third-Party ID Synchronization, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
183
+ page_content=' 5 Purpose This review intends to document the variety of meth- ods employed to detect cookie synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
184
+ page_content=' All studies under review must log HTTP data and label cookie synchronizations from the collected network traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
185
+ page_content=' 6 Data-set Collection Methods Crawled Data-set: Web crawlers instrumented in- clude OpenWPM [8, 12, 21, 17, 2, 1], Chromium- based crawlers [4, 19, 22, 23], Selenium-based crawlers [11, 3, 24], or custom crawlers [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
186
+ page_content=' User Data Collection: To collect the HTTP traffic of real users, study-specific browser plugins are installed on a user’s browser [6, 7, 13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
187
+ page_content=' Henceforth, the term user will refer to the browser instance instrumented, regardless of whether the study collected crawled or real user data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
188
+ page_content=' 7 Labeling Cookie Synchro- nizations by Shared Identi- fiers 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
189
+ page_content='1 Shared Identifier Heuristic The majority of cookie synchronization detection methods draw inspiration from the shared identi- fier heuristic proposed by Olejnik et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
190
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
191
+ page_content=' [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
192
+ page_content=' This method labels a cookie synchronization iff an identi- fier is shared in a HTTP request’s URL parameters to an entity other than the entity who set the cookie (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
193
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
194
+ page_content=' a third party) [6, 7, 17, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
195
+ page_content=' An entity can be defined as either a domain or the parent organization of a domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
196
+ page_content=' Related methods build on this heuristic by addi- tionally extracting identifiers shared with third par- ties from the URL path of requests [9, 13, 25], Referer URL of requests2 [9, 11, 13, 2, 25, 3], redi- rect Location URL [3], nonstandard request and redirect headers [12], or POST request bodies [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
197
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
198
+ page_content='2 Extracting Identifiers from Browser Cookies 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
199
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
200
+ page_content='1 What Defines an Identifier?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
201
+ page_content=' A cookie set on a user’s browser is an identifier iff the cookie’s value can identify a specific user (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
202
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
203
+ page_content=' the value is mapped to only one user).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
204
+ page_content=' These identifying cookie values and the entities who set them are stored to later detect instances of identifiers shared in HTTP 2As of November 2020, the HTTP Referrer-Policy default directive has been updated to strict-origin-when-cross-origin to only share the origin of a request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
205
+ page_content=' This prevents identifiers from being shared in the path and querystring [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
206
+ page_content=' 4 traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
207
+ page_content=' This method confirms that a cookie value shared with a third party can uniquely identify the user who initiated the third party request [7, 8, 9, 11, 12, 13, 3, 21, 17, 19, 2, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
208
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
209
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
210
+ page_content='2 Extracting Browser Cookies To create the set of all cookies set on a user’s browser, cookie values are extracted from the Set-Cookie header of HTTP responses [12, 14, 15, 13] or Cookie header of HTTP requests [12, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
211
+ page_content=' Solomos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
212
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
213
+ page_content=' [1] use OpenWPM’s javascript instrument [2] to log cookie values set by JavaScript embedded in visited web pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
214
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
215
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
216
+ page_content='3 User Identifier Filtering The following restrictions are used to filter identi- fier cookie values from the original browser cookie set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
217
+ page_content=' Value Length Restrictions: Identifiers often have minimum length requirements: cookie values > 10 characters [6, 7, 13, 25], > 8 characters [12], > 7 characters [21, 2, 14], and > 5 characters [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
218
+ page_content=' Of studies that provide identifier length restrictions, only one provides an upper bound: ≤ 100 characters [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
219
+ page_content=' Value Character Quality Restrictions: Iden- tifiers can be extracted based on character values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
220
+ page_content=' Studies that set character value restrictions only extract cookie values consisting of alphanumeric characters and other common characters [2, 17, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
221
+ page_content=' Common character values include [-, , =], with = indicating a key=value pair [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
222
+ page_content=' Fouad et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
223
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
224
+ page_content=' [17] also consider the comma and period and exclude the equals sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
225
+ page_content=' Delimiter Parsing: To extract consecutive identifier strings bounded by known characters, cookie values can be parsed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
226
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
227
+ page_content=' split) at these com- mon delimiters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
228
+ page_content=' All studies that split consecutively shared identifiers consider [&, ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
229
+ page_content='] to be delimiters, except Ghosh et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
230
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
231
+ page_content=' [5] who consider the colon rather than semicolon [9, 12, 3, 21, 17, 2, 14, 25, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
232
+ page_content=' Similarity Measurement: Identifiers can be extracted by uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
233
+ page_content=' All studies extracting identifiers based on string entropy use the Rat- cliff/Obershelp Algorithm [28] with a provided maximum similarity score: eliminate cookie values > 66% similar to another cookie value [2], > 33% similar [8, 3, 25], or not provided [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
234
+ page_content=' Multiple Values Set for a Key=Value Pair: Falahraster et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
235
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
236
+ page_content=' [14] and Urban et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
237
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
238
+ page_content=' [21] ex- clude any cookie value extracted from a key=value pair containing more than one value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
239
+ page_content=' Key=Value Pairs with Dynamic Values: Cookie values can be eliminated if the key’s value changes over the course of a crawl or user browsing session [3, 2, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
240
+ page_content=' Keyword Filtering: Papadogiannakis et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
241
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
242
+ page_content=' [9] use a manually curated list of keywords to elim- inate cookie values containing dates, timestamps, regions, locale, URLs, prevalent keywords, consent information (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
243
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
244
+ page_content=' values of the keys euconsent, eupubconsent, cmpconsnent, cmpiab), or end in common file extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
245
+ page_content=' Filtering Non-Unique Strings: Studies with access to multiple cookie data-sets from multiple crawls or user browsing sessions can eliminate cookie values present for multiple crawls or users [13, 21, 17, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
246
+ page_content=' Session Cookie Values: Session cookies are deleted at the end of a browsing session and their values can be eliminated [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
247
+ page_content=' Studies that eliminate session cookies examine the Expires and Max-Age attributes [27] and eliminate values associated with cookies lacking an expiration date [11, 13] or expire earlier than a specified future date: earlier than 90 days [2] or 30 days [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
248
+ page_content=' 5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
249
+ page_content='3 Detecting Identifiers Shared in HTTP Traffic 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
250
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
251
+ page_content='1 Labeling Requests to First or Third Parties Studies that label the party relation of (referrer, re- quest) pairs only label identifiers shared in requests to third parties [6, 7, 8, 9, 11, 12, 13, 21, 17, 19, 2, 1, 14, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
252
+ page_content=' Parent Organization Mapping: Domain names can be mapped to parent organizations using DNS whois records and blacklists [11, 13, 14, 25] or the WhoTracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
253
+ page_content='me database [19, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
254
+ page_content=' To resolve do- main names obfuscated by CNAME cloaking [30], Sanchez et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
255
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
256
+ page_content=' [19] use the NextDNS blocklist [31] to resolve these cloaked domains to known trackers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
257
+ page_content=' tldExtract [32] is then used to determine the private suffix of each domain;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
258
+ page_content=' private suffixes are mapped to parent organizations using the Disconnect [33], WhoTracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
259
+ page_content='me [29], and webxray [34] lists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
260
+ page_content=' String Matching: Domain name string matching is also common, with matches indicating a first party and mismatches indicating a third party [6, 7, 8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
261
+ page_content=' Englehardt et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
262
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
263
+ page_content=' Case Study: Englehardt et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
264
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
265
+ page_content=' [2] label request party relations using the Mozilla Public Suffix list [35];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
266
+ page_content=' iff the landing page’s domain name and public suffix (not including subdomains) do not match a request’s domain name and public suffix, the request is labeled as to a third party.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
267
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
268
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
269
+ page_content='2 HTTP Identifier Sharing Locations The research community has examined the following HTTP elements for instances of shared identifiers using exact string matching, with matches indicating a cookie synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
270
+ page_content=' HTTP GET Requests: URL query parameters [6, 3, 2, 8, 11, 17, 13, 25, 9, 12], URL path3 [3, 2, 8, 11, 13, 25, 9, 12], Referer URL4 [2, 11, 13, 25, 9, 3], 3Studies who report examining URLs–without specifying which elements–are assumed to check both the path and querystring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
271
+ page_content=' 4As of November 2020, the HTTP Referrer-Policy default directive has been updated to strict-origin-when-cross-origin to only share the origin and non-standard headers [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
272
+ page_content=' HTTP Redirects: Location URL [3, 2, 25] and non-standard headers [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
273
+ page_content=' HTTP POST Requests: Request bodies [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
274
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
275
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
276
+ page_content='3 Papadopoulos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
277
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
278
+ page_content=' Shared Identifier Labeling Case Study Papadopoulos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
279
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
280
+ page_content=' [13, 11] implemented a distinct method of detecting instances of shared identifiers over two cookie synchronization studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
281
+ page_content=' Rather than using string matching to label in- stances of shared identifiers, they first extract all ID- looking strings from GET request URL paths, query parameters, and Referer headers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
282
+ page_content=' An ID-looking string is defined by the same qualities used for fil- tering identifiers from browser cookies {Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
283
+ page_content='2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
284
+ page_content=' The study stores detected ID-looking strings in a hashtable with the receiving domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
285
+ page_content=' If an ID- looking string is seen for the first time in an HTTP element, the string is added to the hashtable with the requested domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
286
+ page_content=' If an ID-looking string is seen for at least the second time, all requests carrying it are labeled as an ID-sharing event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
287
+ page_content=' Cookie synchronizations are labeled from the ID- sharing event set;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
288
+ page_content=' iff an ID-looking string present in an ID-sharing event matches a known identifier, the ID-sharing event is labeled a cookie synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
289
+ page_content=' 8 Alternative Cookie Synchro- nization Detection Methods 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
290
+ page_content='1 Decision Tree Classifier of En- crypted Identifier Synchroniza- tion Papadopoulos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
291
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
292
+ page_content=' [13] trained a decision tree model to detect cookie synchronizations of encrypted identifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
293
+ page_content=' The model does not consider the presence of a shared, known identifier when classifying cookie synchronizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
294
+ page_content=' of a request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
295
+ page_content=' This prevents identifiers from being shared in the path and querystring [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
296
+ page_content=' 6 The study assumes an equal distribution of HTTP traffic feature variability between cookie synchro- nization of non-encrypted and encrypted identi- fiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
297
+ page_content=' The training and testing sets were labeled by non-encrypted cookie synchronizations detected using the study’s shared identifier heuristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
298
+ page_content=' The features selected include requested entity name, type of entity {Content, Social, Advertising, Analytics, Other}, URL parameter names, loca- tion of hashed identifier {URL parameter, URL path, Referer URL parameter}, HTTP status code, browser type, and number of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
299
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
300
+ page_content='2 Labeling Cookie Synchronizations in Retargeted Ad Serving Infor- mation Flows Bashir et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
301
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
302
+ page_content=' [4] collect the resource inclusion chain for all websites crawled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
303
+ page_content=' At a high level, a cookie synchronization is labeled iff an auction is held by the publisher-side and requests between the Supply- Side Platforms (SSP) of the chain directly include a resource.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
304
+ page_content=' The study defines the following terminology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
305
+ page_content=' Personas are individually created to represent 90 unique categories of shoppers by browsing specific products on e-commerce sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
306
+ page_content=' These categories are used to later compare with the qualities of retargeted ads for each persona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
307
+ page_content=' A publisher-side resource chain serves a retargeted ad to a user’s browser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
308
+ page_content=' pub is the root node’s publisher domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
309
+ page_content=' d is the last en- tity in a chain and serves the ad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
310
+ page_content=' s denotes a SSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
311
+ page_content=' shop is the e-commerce site domain of the retargeted ad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
312
+ page_content=' Cookie synchronizations are labeled iff s and d are adjacent at the end of a chain, d observes the persona at shop, and a request from s to d (or d to s) is present in a chain prior to the retargeted ad being served [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
313
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
314
+ page_content='3 Labeling Tracker to Tracker Cookie Synchronizations with Pre-Existing Data-sets Bashir et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
315
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
316
+ page_content=' [22] and Solomos et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
317
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
318
+ page_content=' [1] la- bel any (tracker, tracker) referrer-request pair as a cookie synchronization iff the pair is present on a list of known cookie synchronizing third parties [4, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
319
+ page_content=' 9 Acknowledgements The author would like to thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
320
+ page_content=' Zubair Shafiq and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
321
+ page_content=' Katie Rodger for their technical and expository insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
322
+ page_content=' References [1] Konstantinos Solomos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
323
+ page_content=' “Clash of the trackers: Measuring the evolution of the on- line tracking ecosystem”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
324
+ page_content=' In: arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
325
+ page_content='12860 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
326
+ page_content=' [2] Steven Englehardt and Arvind Narayanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
327
+ page_content=' “Online tracking: A 1-million-site measurement and analysis”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
328
+ page_content=' In: Proceedings of the 2016 ACM SIGSAC conference on computer and commu- nications security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
329
+ page_content=' 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
330
+ page_content=' 1388–1401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
331
+ page_content=' [3] Gunes Acar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
332
+ page_content=' “The Web Never Forgets”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
333
+ page_content=' In: Computer and Communications Security, ACM (2014), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
334
+ page_content=' 674–689.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
335
+ page_content=' [4] Muhammad Ahmad Bashir et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
336
+ page_content=' “Tracing in- formation flows between ad exchanges using re- targeted ads”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
337
+ page_content=' In: 25th USENIX Security Sym- posium (USENIX Security 16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
338
+ page_content=' 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
339
+ page_content=' 481– 496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
340
+ page_content=' [5] Arpita Ghosh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
341
+ page_content=' “To match or not to match: Economics of cookie matching in online adver- tising”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
342
+ page_content=' In: ACM Transactions on Economics and Computation (TEAC) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
343
+ page_content='2 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
344
+ page_content=' 1– 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
345
+ page_content=' 7 [6] Lukasz Olejnik, Minh-Dung Tran, and Claude Castelluccia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
346
+ page_content=' “Selling off privacy at auc- tion”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
347
+ page_content=' In: Proceedings 2014 Network and Dis- tributed System Security Symposium (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
348
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
349
+ page_content='14722/ndss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
350
+ page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
351
+ page_content='23270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
352
+ page_content=' [7] Michalis Pachilakis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
353
+ page_content=' “YourAdvalue: Mea- suring advertising price dynamics without bankrupting user privacy”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
354
+ page_content=' In: Proceedings of the ACM on Measurement and Analysis of Computing Systems 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
355
+ page_content='3 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
356
+ page_content=' 1–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
357
+ page_content=' [8] Justin Brookman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
358
+ page_content=' “Cross-Device Track- ing: Measurement and Disclosures.” In: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
359
+ page_content=' Priv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
360
+ page_content=' Enhancing Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
361
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
362
+ page_content='2 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
363
+ page_content=' 133–148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
364
+ page_content=' [9] Emmanouil Papadogiannakis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
365
+ page_content=' “User tracking in the post-cookie era: How websites bypass gdpr consent to track users”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
366
+ page_content=' In: Pro- ceedings of the Web Conference 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
367
+ page_content=' 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
368
+ page_content=' 2130–2141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
369
+ page_content=' [10] Same origin policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
370
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
371
+ page_content=' url: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
372
+ page_content='w3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
373
+ page_content='org/Security/wiki/Same_Origin_Policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
374
+ page_content=' [11] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P Markatos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
375
+ page_content=' “Exclusive: How the (synced) cookie monster breached my en- crypted vpn session”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
376
+ page_content=' In: Proceedings of the 11th European Workshop on Systems Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
377
+ page_content=' 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
378
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
379
+ page_content=' [12] Umar Iqbal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
380
+ page_content=' “Khaleesi: Breaker of Advertising and Tracking Request Chains”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
381
+ page_content=' In: 31st USENIX Security Sym- posium (USENIX Security 22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
382
+ page_content=' Boston, MA: USENIX Association, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
383
+ page_content=' 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
384
+ page_content=' 2911–2928.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
385
+ page_content=' isbn: 978-1-939133-31-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
386
+ page_content=' url: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
387
+ page_content='usenix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
388
+ page_content='org/conference/usenixsecurity22/presentation/iqbal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
389
+ page_content=' [13] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
390
+ page_content=' “Cookie synchroniza- tion: Everything you always wanted to know but were afraid to ask”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
391
+ page_content=' In: The World Wide Web Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
392
+ page_content=' 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
393
+ page_content=' 1432–1442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
394
+ page_content=' [14] Marjan Falahrastegar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
395
+ page_content=' “Tracking personal identifiers across the web”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
396
+ page_content=' In: International conference on passive and active network mea- surement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
397
+ page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
398
+ page_content=' 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
399
+ page_content=' 30–41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
400
+ page_content=' [15] Set-cookie - http: MDN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
401
+ page_content=' Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
402
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
403
+ page_content=' url: https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
404
+ page_content='mozilla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
405
+ page_content='org/en-US/docs/Web/HTTP/Headers/Set-Cookie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
406
+ page_content=' [16] Document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
407
+ page_content='cookie web apis: MDN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
408
+ page_content=' Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
409
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
410
+ page_content=' url: https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
411
+ page_content='mozilla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
412
+ page_content='org/en-US/docs/Web/API/Document/cookie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
413
+ page_content=' [17] Imane Fouad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
414
+ page_content=' “Missed by filter lists: Detecting unknown third-party trackers with invisible pixels”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
415
+ page_content=' In: arXiv preprint arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
416
+ page_content='01514 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
417
+ page_content=' [18] Referer http: MDN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
418
+ page_content=' July 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
419
+ page_content=' url: https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
420
+ page_content='mozilla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
421
+ page_content='org/en-US/docs/Web/HTTP/Headers/Referer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
422
+ page_content=' [19] Iskander Sanchez-Rola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
423
+ page_content=' “Journey to the center of the cookie ecosystem: Unraveling ac- tors’ roles and relationships”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
424
+ page_content=' In: IEEE Sympo- sium on Security and Privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
425
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
426
+ page_content=' [20] Samy Kamkar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
427
+ page_content=' Evercookie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
428
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
429
+ page_content=' url: https://samy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
430
+ page_content='pl/evercookie/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
431
+ page_content=' [21] Tobias Urban et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
432
+ page_content=' “Measuring the impact of the gdpr on data sharing in ad networks”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
433
+ page_content=' In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
434
+ page_content=' 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
435
+ page_content=' 222–235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
436
+ page_content=' [22] Muhammad Ahmad Bashir and Christo Wil- son.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
437
+ page_content=' “Diffusion of User Tracking Data in the Online Advertising Ecosystem.” In: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
438
+ page_content=' Priv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
439
+ page_content=' Enhancing Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
440
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
441
+ page_content='4 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
442
+ page_content=' 85–103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
443
+ page_content=' [23] Eric Bidelman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
444
+ page_content=' Getting started with headless chrome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
445
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
446
+ page_content=' url: https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
447
+ page_content='chrome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
448
+ page_content='com/blog/headless-chrome/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
449
+ page_content=' [24] url: http://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
450
+ page_content='seleniumhq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
451
+ page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
452
+ page_content=' [25] Pushkal Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
453
+ page_content=' “Stop tracking me bro!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
454
+ page_content=' differential tracking of user demographics on hyper-partisan websites”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
455
+ page_content=' In: Proceedings of The Web Conference 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
456
+ page_content=' 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
457
+ page_content=' 1479– 1490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
458
+ page_content=' [26] Referrer-policy - http: MDN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
459
+ page_content=' Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
460
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
461
+ page_content=' url: https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
462
+ page_content='mozilla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
463
+ page_content='org/en-US/docs/Web/HTTP/Headers/Referrer-Policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
464
+ page_content=' [27] Using HTTP cookies http: MDN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
465
+ page_content=' Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
466
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
467
+ page_content=' url: https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
468
+ page_content='mozilla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
469
+ page_content='org/en-US/docs/Web/HTTP/Cookies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
470
+ page_content=' 8 [28] Paul Black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
471
+ page_content=' Ratcliff/Obershelp pattern recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
472
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
473
+ page_content=' url: https://xlinux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
474
+ page_content='nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
475
+ page_content='gov/dads/HTML/ratcliffObershelp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
476
+ page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
477
+ page_content=' [29] Bringing transparency to online tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
478
+ page_content=' url: https://whotracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
479
+ page_content='me/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
480
+ page_content=' [30] Romain Cointepas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
481
+ page_content=' CNAME Cloaking, the dan- gerous disguise of third-party trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
482
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
483
+ page_content=' [31] NextDNS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
484
+ page_content=' url: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
485
+ page_content='com/nextdns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
486
+ page_content=' [32] John-Kurkowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
487
+ page_content=' John-Kurkowski/tldextract: Accurately separates a URL’s subdo- main, domain, and public suffix, us- ing the public suffix list (PSL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
488
+ page_content=' url: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
489
+ page_content='com/john-kurkowski/tldextract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
490
+ page_content=' [33] Disconnectme Overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
491
+ page_content=' url: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
492
+ page_content='com/disconnectme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
493
+ page_content=' [34] Tim Libert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
494
+ page_content=' Timlib/webxray: WebXray is a tool for analyzing webpage traffic and con- tent, extracting legal policies, and identifying the companies which collect user data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
495
+ page_content=' url: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
496
+ page_content='com/timlib/webXray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
497
+ page_content=' [35] Public suffix list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
498
+ page_content=' url: https://publicsuffix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
499
+ page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
500
+ page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf'}
5tFKT4oBgHgl3EQf-i5C/content/tmp_files/2301.11958v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tFKT4oBgHgl3EQf-i5C/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tE1T4oBgHgl3EQf7AVi/content/tmp_files/2301.03529v1.pdf.txt ADDED
@@ -0,0 +1,1174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ MIS: A Multi-Identifier Management and Resolution System Based on Consortium
4
+ Blockchain in Metaverse
5
+ Han Wang1, Hui Li1, Abla Smahi1, Yao Yao1, Shuo-Yen Robert Li2
6
+ 1 School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
7
+ 2 University of Electronic Science & Technology of China, Chengdu, 611731, China
8
+ As digital resources become diverse in the metaverse, a DNS-like system is necessary for management and resolution. However, the
9
+ legacy DNS for the TCP/IP architecture was designed with security vulnerabilities and trust risks due to centralized management issues.
10
+ Although there are several DNS alternatives based on the blockchain, manage only a single type of identifiers or separate identity and
11
+ other types of identifiers, making it impossible for sub-metaverses to coexist and interconnect. This paper proposes the first-ever
12
+ consortium blockchain System that simultaneously manages Multiple types of Identifiers (MIS) in the metaverse. We opt for a consortium
13
+ blockchain due to its efficiency, enhanced security and manageability properties. MIS is first portrayed as a four-tier architecture whereby
14
+ on-chain data is lightweight and compressed to save on storage while accelerating reading and writing operations. The resource data of
15
+ sub-metaverses exists heterogeneously in the storage tier to alleviate migration. Then we introduce the key functions of the multi-
16
+ identifiers comprising the registration, resolution, and inter-translation. Finally, MIS is implemented on two testbeds and is accessible
17
+ online as an open-source system. The first testbed consists of 4 physical servers located in the UK and Malaysia while the second is made
18
+ up of 200 virtual machines (VMs) spread over 26 countries across all 5 continents on Google Cloud. Experiments indicate that MIS
19
+ provides efficient reading and writing performance that meets the requirements of traditional legacy DNS. It also shows that the latency
20
+ of MIS outperforms public blockchain-based workarounds.
21
+ Additional Keywords and Phrases: Metaverse, Blockchain, Domain Name System, Identifier Management
22
+ 1 INTRODUCTION
23
+ Neil Stephenson proposed the concept of metaverse in his 1992 science fiction novel named Snow Crash [1]. A computer-
24
+ generated universe that exists side by side with the real world is what is meant when the prefix "meta" is added to the term
25
+ "universe" [2]. Since its inception, the term metaverse has been described in a variety of ways, such as a second life [3],
26
+ 3D virtual worlds [4], and life-logging [5]. The metaverse is now often seen as completely immersive, hyper spatiotemporal,
27
+ and self-sustaining virtual shared world [6]. As shown in Figure 1, users of the physical world access the metaverse as
28
+ avatars in the virtual world. Users can generate content, or mint Non-Fungible Tokens (NFTs), interact with other avatars
29
+ and link up with digital twins of real objects, virtual objects, applications, and other accessible things. The virtual world is
30
+ composed of a series of interconnected sub-metaverses [7]. The avatar of the user can access a variety of applications from
31
+ each sub-metaverse, like gaming, social dating, virtual museums, and concerts.
32
+ Driven by realistic demand and the development of emerging technologies, the metaverse is recognized as the evolving
33
+ paradigm for the ongoing development of the next-generation Internet [8], and has attracted global attention. In fact, there
34
+ are currently more than 160 pertinent projects, and according to Citi’s estimations, this industry can be worth $13 trillion
35
+ by 2030 [9]. Facebook, Microsoft, Tencent, Nvidia and many other tech behemoths have announced their foray into the
36
+ metaverse. In particular, Facebook has rebranded itself "meta" and is devoted to building the next large-scale service that
37
+ can be integrated into metaverse [10].
38
+ The metaverse is intended to connect everything in the world, including the digital twins of physical entities and systems,
39
+ the avatars of users, as well as the vast amounts of data that comes with them. Therefore, the resources in the metaverse
40
+ include various identities, contents, services and the data that goes with them, making up the key components of the virtual
41
+
42
+ 2
43
+ metaverse. We believe that in order to improve the user experience, a DNS-like system for managing and resolving
44
+ resources plays a vital role as the infrastructure of the metaverse.
45
+ The DNS was originally widely used to solve the problem that IP addresses on the conventional TCP/IP network
46
+ architectures are not human-friendly. The legacy DNS maintains the mapping between domain names and IP addresses
47
+ and provides users with resolution services. The root servers, top-level domain (TLD), and authoritative servers are all
48
+ arranged in a distributed and hierarchical manner (i.e., from top to bottom) in the traditional DNS. The distributed structure
49
+ solves the Single Point of Failure (SPoF) problem to some extent, and the hierarchical cache strategy speeds up the
50
+ resolution process.
51
+ DNS is a centralized system in terms of root zone administration even if DNS servers are distributed. In other words,
52
+ DNS servers operate in reference to a central authority. More precisely, the recursive resolution of domain names is
53
+ ultimately determined by the root zone, which is overseen by the Internet Assigned Numbers Authority (IANA) and the
54
+ Internet Corporation for Assigned Names and Numbers (ICANN). The legacy DNS, on the other hand, is susceptible to
55
+ Denial of Service (DDoS) attacks because of its centralized hierarchical structure. Therefore, in order to avoid
56
+ centralization risks in resolving massive resources, the architecture of DNS alternative system should be decentralized,
57
+ especially in the metaverse [11].
58
+
59
+ Figure 1: The architecture of the metaverse.
60
+
61
+ Infrastructure (network, computation, storage, blockchain platform, :..)
62
+ processingandmanagement
63
+ ofresourcedata
64
+ Virtual World
65
+ Sub-Metaverse 1
66
+ Sub-Metaverse 2
67
+ Sub-Metaverse 3
68
+ Content
69
+ Metaverse
70
+ Service
71
+ Avatar
72
+ Interaction
73
+ User3
74
+ Blockchain, the underlying technology of Bitcoin, is a popular decentralized technology [12]. With the advent of
75
+ blockchain platforms like Ethereum, blockchain applications have gone far beyond cryptocurrencies. In essence, a
76
+ blockchain is a distributed ledger. The technology is nowadays impacting a variety of applications such as the Internet of
77
+ Things (IoT) [13], intelligent manufacturing, supply chains etc.. There is a consensus that the blockchain is one of the core
78
+ technologies in the metaverse [14]. In regard to blockchain-enabled metaverse applications, the hash-chained blocks and
79
+ Merkle trees provide cryptographic assurance for identifiers of resources, such as identities, contents, services and IP
80
+ addresses, in append-only ledgers, preventing the original data records from being tampered with. In addition, consensus
81
+ protocols help to fairly generate and efficiently deliver ledger entries among multiple entities concurrently, thereby solving
82
+ the problems related to trusted third parties. Due to the properties of immutability, decentralization, and privacy protection
83
+ in trustless distributed environments, blockchain can be a promising solution to the DNS alternatives in the metaverse.
84
+ The first blockchain-based DNS system, Namecoin [15], supports registration, update, and ownership transfers similar
85
+ to traditional DNS but on a Bitcoin fork. It was designed to be a more general name-value system rather than an alternative
86
+ to legacy DNS. This was also the first Bitcoin-driven solution to square the Zooko’s triangle [16], long-standing and
87
+ persisting problem of creating a naming system that is simultaneously secure, decentralized, and human-friendly. On the
88
+ basis of Namecoin. Blockstack [17] integrates DNS and Public-Key Infrastructure (PKI) and develops the so-called
89
+ "virtualchain layer" to achieve good portability. The first actual naming system that is based directly on Bitcoin is said to
90
+ be Blockstack. However, the most functional system, to date, is Ethereum Name Service (ENS) [18]. Unlike Ethereum,
91
+ ENS places more of an emphasis on name resolution than identity management. Other initiatives, including DNSChain
92
+ [19] and Emercoin [20], were built on other underlying technologies that were comparable to Namecoin or Blockstack.
93
+ These initiatives have only enhanced social or economic aspects that are beyond the purview of this paper.
94
+ All of the aforementioned DNS alternative systems are built on top of public blockchains. However, although Bitcoin,
95
+ the first-generation public blockchain, is still the largest and most actively maintained blockchain application, many
96
+ challenges arise when implementing a secure and efficient DNS alternative system in metaverse:
97
+
98
+ First, the efficiency of public blockchains is low, especially those that adopt non-deterministic consensus such as
99
+ Nakamoto consensus. Increasing the number of transactions in a block or reducing the difficulty of mining can
100
+ lead to throughput gains, but also to security vulnerabilities [21].
101
+
102
+ Second, small public blockchains are vulnerable to attacks. DNS alternative systems that are based on such
103
+ blockchains should expand their network scales, or use technologies like virtualchain to switch to large public
104
+ blockchains. However, even on Bitcoin, attackers who have 25% of the computing power may be able to launch
105
+ a 51% attack that threatens the system security [22].
106
+
107
+ Last but not least, the compliance of identifiers is difficult to censor. The nodes of the public blockchain are
108
+ permissionless, so it is difficult to perform compliance checks on identifiers and their corresponding resource data
109
+ during consensus. Similarly, illegal identifiers and data are difficult to seize.
110
+ The consortium blockchain introduces constrained permission and authorization, weakening the public blockchain's
111
+ decentralized features while assuring that core nodes are regulated and trusted. The deterministic consensus algorithm is
112
+ usually used in the consortium blockchain to improve efficiency and reduce energy consumption. It is worth noting that,
113
+ unlike traditional centralized architectures, the core positions within the consortium blockchain are not administratively
114
+ specified. Such positions are obtained using the results of an election algorithm. Therefore, in our practice, adopting a
115
+ consortium blockchain is a promising approach for striking a compromise between efficiency and security.
116
+ Few works have attempted to integrate DNS with consortium blockchain. For instance, in order to obtain high
117
+ credibility of domain name resolution results, DNSTSM [23] maintains DNS cache resources on a consortium blockchain.
118
+
119
+ 4
120
+ Such systems merely provide incremental improvement on the legacy DNS framework without solving its centralization
121
+ problem. TD-Root [24] proposed a trustworthy decentralized DNS root management architecture based on a permissioned
122
+ blockchain [25]. Ho-Kyung Yang et al. [26] also proposed a solution to manage content identifiers in Named Data Network
123
+ (NDN) environment.
124
+ On the other hand, with the development of new ecology and application platforms, the metaverse gradually evolves
125
+ into a human-centric collection of sub-metaverse covering different types of resources [27]. Therefore, identity identifiers
126
+ that uniquely identify entities are the core of all identifiers. It has a tight bind with blockchain, which supports identity
127
+ management by default. By establishing trusted digital identity identifiers based on cryptographic means in the metaverse,
128
+ no matter how the resource data changes, it can be traced back to its associated encrypted address. That is, the only anchor
129
+ in the metaverse is the identities for all entities. As a result, combining the trusted identity and transactions on the
130
+ underlying stack, it is feasible to manage multiple types of identifiers (multi-identifiers) in the blockchain-based DNS
131
+ alternative system in the metaverse.
132
+ However, the majority of blockchain-based DNS alternative systems manage only a single type of identifiers, such as
133
+ ENS; or manage multi-identifiers separately. For example, Blockstack creates a new namespace in addition to domain
134
+ name services to provide PKI and identity management, which is arguably not enough. The relationship between these
135
+ multi-identifiers and how to manage them cohesively within a system must thus be considered by DNS alternative systems.
136
+ In this paper, we implemented MIS, a Multi-Identifier System based on the consortium blockchain, and made it publicly
137
+ available (i.e., open source) [28]. MIS is part of the application layer of Multi-Identifier Network (MIN) architecture, in
138
+ which the complete addressing and routing protocol stack of multi-identifiers has been developed on the network layer
139
+ [29]. MIS records a global state of multi-identifiers, including identity, content, service, space, IP address, and domain
140
+ names. Identity is the unique anchor for the various identifiers. Each individual and organization user (collectively referred
141
+ to as user in this paper) and network device, only when owning an identity identifier, is allowed to apply for other types of
142
+ identifiers. These users, for example, can apply for content identifiers that bind data to published media resources. They
143
+ can also register service identifiers to provide various services. The following is a summary of our contributions:
144
+
145
+ We are the first to suggest the MIS consortium blockchain, which concurrently manages multiple Identifiers
146
+ across several sub-metaverses. Similar to DNS, MIS offers registration, update, revocation, and resolution
147
+ services to metaverse applications for a single type of identifier.
148
+
149
+ We design unified data structure for different sorts of identifiers in the metaverse by integrating identifier types
150
+ in both present and future networks. Additionally, we build the identifier space that allows one or more identifier
151
+ types in order to enable the unified management of multi-identifiers in various sub-metaverses. The relationships
152
+ of identifier spaces are maintained to realize inter-translation between identifiers.
153
+
154
+ We present a lightweight scheme for on-chain data, so as to speed up reading and writing the append-only
155
+ operation logs of multi-identifiers.
156
+
157
+ To test the functionality and performance of MIS, we implemented MIS on two testbeds. By doing so, we set up
158
+ two testbeds, one with 80 nodes on four physical servers in the UK and Malaysia, and the other with 200 nodes
159
+ spread over 26 countries across all five continents using Google Cloud.
160
+ The remainder of this paper is organized as follows. In Section 2, we introduce related works of the blockchain-based
161
+ DNS alternatives in the metaverse. Then, the identifier and identifier space in MIS are formally defined in Section 3. We
162
+ give the design details of MIS in Section 4. Section 5 shows experiment results on two testbeds related to the performance
163
+ of reading and writing identifiers. Section 6 summarizes the differences between MIS and other existing DNS alternatives.
164
+ We conclude our work in Section 7.
165
+
166
+ 5
167
+ 2 RELATED WORK
168
+ This section outlines the work related to building a blockchain-based DNS alternative system in the metaverse. In this
169
+ paper, the term identifier means the identification information of various resource data in the network.
170
+ 2.1 Resource Management in Metaverse
171
+ Resources such as identities, contents and services are generated and exchanged in the metaverse to form a dynamic virtual
172
+ world. For example, users or avatars trade land parcels and equipment in the decentralized virtual world called
173
+ Decentraland [30]. They can also construct their own buildings and social games. In Cryptovoxels [31], users or avatars
174
+ are able to purchase land and build virtual shops and art galleries, where digital assets are displayed and traded. Sandbox
175
+ [32] developed a blockchain-based game system that maintains users' ownership of digital lands and contents. In these
176
+ projects, transaction details of resource data are recorded on the Ethereum blockchain to guarantee belonging identities.
177
+ As a result, the reliable identity and resource data are essential to the continued existence of virtual worlds.
178
+ 2.1.1 Management of Identity Identifiers
179
+ In the metaverse, a class of objects is mapped from the real world to the virtual world. For example, Haihan Duan et al.
180
+ [33] implemented the CUHKSZ Metaverse, a virtual copy of the physical campus of the Chinese University of Hong Kong,
181
+ Shenzhen. The consortium blockchain FISCO-BCOS is adopted as the underlying framework due to the low cost and
182
+ regulability. It is necessary to identify the objects so that they can be discovered, addressed and accessed on the network.
183
+ The other class of objects is produced natively in the virtual world, which also requires identity identifiers for management.
184
+ At present, identifiers are commonly adopted in the IoT field, including Bar Code, Quick Response (QR) Code, Radio
185
+ Frequency Identification (RFID), etc. Considering the inherent characteristics of immersion and interoperability in the
186
+ metaverse, identity identifiers can also combine biological, spatio-temporal and other attribute information [34].
187
+ Aleksandar Jovanović et al. [35] designed a multi-dimension authentication scheme based on facial recognition, fingerprint,
188
+ voice recognition, message, and mail. An access control system was then implemented in the metaverse platform VoRtex
189
+ for identity management. The identity data, however, was located on a cloud server with centralization risks. Zijian Bao et
190
+ al. [36] proposed a three-layer IoT security architecture based on blockchain to support functions of identity authentication,
191
+ access control and privacy protection, but with long read and write time. Mohammed Amine Bouras et al. [37] further
192
+ improved the efficiency of identity management in IoT systems and implemented it on the Hyperledger Fabric platform.
193
+ Yongjun Song et al. [38] proposed a smart city standard model that provides identity management services based on
194
+ blockchain, but this is only a rudimentary mode that lacks technical details.
195
+ 2.1.2 Data Storage and Management
196
+ A natural problem in the metaverse is how to protect data of users and avatars [39]. If ownership and provenance are not
197
+ determined, the data will not be protected as digital assets. On the other hand, the virtual world is essentially an enormous
198
+ amount of resource data. Due to the limited network ability, it is impossible to manage such giant data in a centralized
199
+ cloud server [40]. InterPlanetary File System (IPFS) [41] is a well-known decentralized data management solution. Each
200
+ data file is uniquely identified as content for addressing, preventing the same data files from being uploaded to the network.
201
+ Based on IPFS and blockchain cloud storage, GooDData developed an efficient and domain-aware decentralized storage
202
+ solution called GooDData File System (GDFS) [42]. However, the above solutions back up data multiple times. At the
203
+ macro level, storage costs have not decreased, and have even increased in total. Storj Decentralized Cloud Storage (DCS)
204
+
205
+ 6
206
+ [43], a blockchain-based data storage platform, uses erasure codes to store data, thereby reducing the overall storage space.
207
+ If a data chunk is unusable, modified or inaccessible, it can be reconstructed with other available chunks.
208
+ In order to save on-chain costs and improve scalability, the data storage of the metaverse system usually uses a
209
+ combination of on-chain and off-chain solutions. Blockchain nodes only store the necessary metadata and the index of off-
210
+ chain data, through which the associated data can be quickly located. Solutions for off-chain storage include centralized
211
+ data centers, decentralized cloud storage and edge storage, IPFS, etc. CryptoPunks stores the hash value of the metadata
212
+ and media data on the blockchain, as well as integrated NFT pictures on a centralized server [44]. The integrity and
213
+ reliability of pictures can be verified by comparing their hash values. However, the centralized server exposes this content
214
+ resource, that is, the NFT pictures, to security threats such as loss and DDoS attacks. In Decentraland, ownership and other
215
+ tradable information of NFTs are written on the Ethereum blockchain. At the same time, the user location and scenario
216
+ status for real-time interaction are stored on off-chain end devices or non-core edge servers [45]. Similarly, in Sandbox,
217
+ the transaction data of digital assets is stored on the Ethereum blockchain, while the associated media data and uncasted
218
+ digital assets are on IPFS and Amazon's S3 cloud servers, respectively [33].
219
+ From a data perspective, the above sub-metaverse projects balance cost, performance and reliability on their own.
220
+ Although the metadata of the resources are all stored on the Ethereum blockchain, it is difficult for these projects to
221
+ communicate due to their bidding relationships. In this paper, we propose MIS to manage resource data, which integrates
222
+ multiple sub-metaverses with different types of identifiers on the blockchain. In addition, the complete resource data is
223
+ still heterogeneously kept off-chain, which helps to solve the problem of sub-metaverses’ data migration.
224
+ 2.2 Blockchain-based DNS Alternatives
225
+ Blockchains are divided into public, private and consortium blockchains. This categorization is based on technical
226
+ characteristics of complete decentralization, centralization and partial decentralization/multi-decentralization, respectively.
227
+ Current research on blockchain-based DNS alternative systems is mainly considering public and consortium blockchains.
228
+ 2.2.1 Solutions Based on Public Blockchains
229
+ In DNS alternative systems, Bitcoin is now the most popular underlying public blockchain. On a fork of Bitcoin, Namecoin
230
+ [15] enables name-value storage and resolution. Therefore, a name can only be 64 characters long at most in order to
231
+ prevent the blockchain from growing rapidly. Instead of utilizing Namecoin, Blockstack [17] implements a virtualchain
232
+ on top of the Bitcoin main chain to expand storage capacity and improve security. D3NS [46] integrates a distributed hash
233
+ table and domain name ownership implementation based on Bitcoin. All of the aforementioned DNS alternative systems
234
+ adopted Nakamoto consensus and hence, they inherited a slow and expensive registration process. HandShake [47] adopts
235
+ Bitcoin-NG [21] to improve throughput.
236
+ Since adding new features to Bitcoin is challenging [17], Ethereum has been introduced as a programmable and flexible
237
+ solution that can extend new functions directly via smart contracts. ENS [18] is an extended smart contracts-enabled on-
238
+ chain DNS mapping human-readable names to machine-readable Ethereum addresses. Stacks 2.0 [48] also incorporates
239
+ general-purpose smart contracts into its original Blockstack, to overcome some of Bitcoin’s limitations. Additionally,
240
+ BlockZone’s [49] improved Practical Byzantine Fault Tolerance (PBFT) [50] consensus mechanism provides more
241
+ efficient name resolution.
242
+
243
+ 7
244
+ 2.2.2 Solutions Based on Consortium Blockchains
245
+ Researchers are motivated to work on the cache security of the legacy DNS since the core nodes of the consortium
246
+ blockchain are regarded as reliable. DNSTSM [23] implements a secure DNS cache to prevent cache poisoning attacks. It
247
+ also introduces identity-based access control to prevent potential threats from unknown nodes. Likewise, BlockDND [51],
248
+ DecDNS [52], and BlockONS [53] suggested generating a unique hash of the original data and storing it on the blockchain
249
+ to avert cache poisoning. TD-Root [24] introduced a trust value and penalty mechanism to eliminate the risks of cache
250
+ poisoning and trust risks.
251
+ A small number of studies concentrated on decentralizing the domain name servers leveraging consortium blockchain
252
+ in addition to incrementally optimizing the classic DNS cache. Yantao Shen et al. [54] provide DNS service on a
253
+ permissioned blockchain by building a TLDChain to save computing power. ConsortiumDNS [55] introduces a domain
254
+ name service based on a hierarchical consortium blockchain. To alleviate storage limitations of blockchain, a 3-tier
255
+ architecture was designed to separate the data and operation of domain name transactions. However, ConsortiumDNS
256
+ showed a very low throughput urging the need for a consensus algorithm with less data and higher efficiency, such as
257
+ Hotstuff [56] or Parallel Proof of Vote (PPoV) [57].
258
+ 3 FORMAL DEFINITIONS
259
+ Before designing the architecture of MIS, it is important to first define the unified form of MIS identifiers. Then, the formal
260
+ definition of the identifier space is given.
261
+ 3.1 MIS Identifier
262
+ According to current metaverse applications, the main resources are identity, content, service, space, and their associated
263
+ data. We analyze the identifier types in traditional and future networks. Just as IPv4 address works at the network layer of
264
+ traditional network architectures, identity, content, service, and space identifiers are meaningful in future networks [58-
265
+ 61]. In addition, the domain name is also considered as an identifier type in MIS. We define the MIS identifier as follows.
266
+ Definition 1: (Identifier). The identifier 𝑖𝑗 = 𝑡𝑦𝑝𝑒𝑗: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑒𝑟_𝑛𝑎𝑚𝑒 of a user or device is defined as a combination
267
+ of two string, where 𝑡𝑦𝑝𝑒𝑗(𝑗 = 0,1,2, … , 𝑘) represents the type of identifiers. The actual identifier is written in
268
+ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟_𝑛𝑎𝑚𝑒.
269
+ Table 1 compares the form of identifiers in their original network architectures with MIS, using random examples.
270
+ Table 1: Examples of MIS identifiers.
271
+ Identifier Type
272
+ Example
273
+ Original
274
+ MIS
275
+ Identity
276
+ e98a32e6175bbd375
277
+ type0:e98a32e6175bbd375
278
+ Content
279
+ /metaverse_sub1/002.mp4
280
+ type1:/metaverse_sub1/002.mp4
281
+ Service
282
+ /metaverse_sub2/web
283
+ type2:/metaverse_sub2/web
284
+ Geographical Location
285
+ (113.97,22.59)
286
+ type3:(113.97,22.59)
287
+ Hyperbolic Coordinate
288
+ (ln2,5π/6)
289
+ type4:(ln2,5π/6)
290
+ IPv4 Address
291
+ 192.168.234.1
292
+ type5:192.168.234.1
293
+ Domain Name
294
+ metaverse.sub3.com
295
+ type6:metaverse.sub3.com
296
+
297
+ 8
298
+ 3.2 Identifier Space
299
+ We construct an identifier space by considering identifiers and nodes. The formal definition of identifier space is given in
300
+ this section.
301
+ Definition 2: (Identifier Type Set). 𝐼 = {𝑖0, 𝑖1, 𝑖2, … } represents the set of all the identifier types in the network. Where,
302
+ 𝑖0 is the identity of users or devices, which is the most basic and indispensable identifier. {𝑖1, 𝑖2, … } optionally refer to
303
+ multi-identifiers such as content 𝑖1, service 𝑖2, geographic location 𝑖3, and IPv4 address 𝑖5. In particular, 𝐼𝑘 is a subset of 𝐼
304
+ and if we take k=2 as an example, then 𝐼2 = {𝑖0, 𝑖1}.
305
+ Definition 3: (Node Set). 𝑉 is the set of all nodes in the network, including end devices, hosts, routers, and switches.
306
+ Definition 4: (Identifier Space). 𝐶𝐼𝑘 = (𝐼𝑘, 𝑉𝐼𝑘) is a 2-tuple. 𝐼𝑘 represents the identifier type set in 𝐶𝐼𝑘, and 𝑉𝐼𝑘 is a
307
+ subset of node set 𝑉. 𝐶𝐼𝑘 constitutes an identifier space when the following conditions are met:
308
+ (1) The identifiers and nodes in 𝐶𝐼𝑘 are defined in the network. That is, 𝐼𝑘 ⊆ 𝐼 and 𝑉𝐼𝑘 ⊆ 𝑉.
309
+ (2) The identifier types set in 𝐶𝐼𝑘 must contain the identity. That is, 𝑖0 ∈ 𝐼𝑘.
310
+ (3) All nodes in 𝐶𝐼𝑘 own all the identifier types it contains. That is, ∀𝑣 ∈ 𝑉𝐼𝑘 and 𝑖𝑗 ∈ 𝐼𝑘, 𝑣 owns 𝑖𝑗.
311
+ (4) Any node owning all the identifier types in the set 𝐼𝑘 belongs to 𝐶𝐼𝑘. That is, if ∃𝑣 ∈ 𝑉 and ∀𝑖𝑗 ∈ 𝐼𝑘, 𝑣 owns 𝑖𝑗,
312
+ then 𝑣 ∈ 𝑉𝐼𝑘.
313
+ Figure 2 illustrates graphically how the identifier space is divided in the network. each circle indicates the node and its
314
+ identifier types. Identity (𝑖0) is the basic identifier that all nodes own, so the entire network is the identity identifier space.
315
+
316
+ Figure 2: A schematic diagram of identifier space division.
317
+
318
+ io,i1
319
+ io,
320
+ Content
321
+ i2,i3
322
+ io,i1
323
+ io,i1
324
+ Identifier Space
325
+ io,i2
326
+ io,
327
+ io,i1
328
+ 1
329
+ i2,i3
330
+ io,i1,
331
+ Geographic
332
+ i2,is
333
+ io,
334
+ io,i1,
335
+ Location
336
+ io,i1
337
+ 1
338
+ io,is
339
+ i2,i3
340
+ i2,i5
341
+ Identifier
342
+ IPv4 Address
343
+ 11
344
+ Identifier Space
345
+ Space
346
+ io,ji2
347
+ io,
348
+ io,i1
349
+ io,i1
350
+ i2,i3
351
+ 10?
352
+ 10?
353
+ i2,i5
354
+ io,is
355
+ i2,i5
356
+ io,i2
357
+ io,i2
358
+ io
359
+ io,i2
360
+ Service
361
+ io,
362
+ Identifier Space
363
+ i2,i3
364
+ io
365
+ io,i2
366
+ io,i2
367
+ L
368
+ Identity Identifier Space9
369
+ 4 DESIGN OF MIS
370
+ For the conditions of diverse sub-metaverses to coexist, MIS realizes the simultaneous management of identifiers and their
371
+ associated data from different sources on a consortium blockchain. This section describes the 4-tier architecture of MIS in
372
+ details. The managing and resolving functions of multi-identifiers are also implemented.
373
+ 4.1 MIS Tiers
374
+ MIS is designed based on the consortium blockchain to essentially maintain a global state of multi-identifiers and the
375
+ associated resource data among distributed nodes. As depicted in Figure 3, MIS has a 4-tier architecture. Candidate nodes
376
+ compete for the privilege related to the block generation process to become core nodes. The lightweight consensus
377
+ algorithm is run among core nodes, logging state changes of resources in the form of transactions. Meanwhile, the metadata
378
+ and complete data of resources are indexed hierarchically and eventually distributed off-chain. Such architecture provides
379
+ good extensibility, and a loosely-coupled relationship between the different tiers. Therefore, at some point in the future, it
380
+ will be feasible to upgrade only one tier without altering the the operating logic of the other tiers.
381
+
382
+ Figure 3: MIS’s 4-tier architecture.
383
+ 4.1.1 Tier 1: Network Tier for Blockchain Nodes
384
+ Consortium blockchain nodes occupy the lowest tier. Nodes responsible for managing the identifiers at the same level
385
+ constitute the core network. There are three rights in it, which require different processing of messages and can be permuted
386
+ and combined arbitrarily. That is, a core node has one or more rights.
387
+
388
+ Sub-Metaverse 1
389
+ Sub-Metaverse 2
390
+ Sub-Metaverse 3
391
+ Tier 4:
392
+ Metadata Servers
393
+ Storage Servers
394
+ Storage Tier
395
+ (4) Write metadata
396
+ with hash(X+i) as
397
+ address, where iis
398
+ MIS identifier
399
+ (3) Write resource data and return metadata
400
+ MIS
401
+ Username Table
402
+ MIS Identifier Table
403
+ Processor(2)Write global state tables
404
+ X
405
+ Identity Digest of resource data
406
+ Metadata for User
407
+ /hash(X+ldentity)
408
+ Information Table
409
+ Tier 3:
410
+ Index Tier
411
+ x
412
+ (1) Read operations in transactions
413
+ Y
414
+ OP
415
+ OP
416
+ COLD
417
+ h
418
+ h.+l
419
+ WARM
420
+ w+1
421
+ HOT
422
+ None blocks are cached by nodes.
423
+ I Blocks are cached by some nodes.
424
+ Blocks are cached by all nodes.
425
+ Tier 2:
426
+ Lightweight
427
+ Consensus Tier
428
+ block body
429
+ encode
430
+ data chunk 1
431
+ parity chunk 1
432
+ Each node stores a chunk.
433
+ None nodes store chunks.
434
+ data chunk 2
435
+ parity chunk 2
436
+ io,is
437
+ io,is
438
+ Tier 1:
439
+ Network Tier for
440
+ io,1s
441
+ Blockchain Nodes
442
+ io,is
443
+ iosis10
444
+ (1) Bookkeeping: The bookkeeper node has the right to write transactions. The bookkeeper receives the transaction
445
+ proposals and saves them into its local pool. After starting consensus round, the bookkeeper selects part of the transactions
446
+ as a set 𝑇𝑥_𝐿𝑖𝑠𝑡 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑡𝑜𝑡𝑎𝑙} and, together with the block height ℎ, timestamp 𝑇𝑠, and the hash of the previous
447
+ block 𝑃𝑟𝑒_𝐻𝑎𝑠ℎ, it generates the signed message 〈𝑃𝑟𝑒𝑝𝑎𝑟𝑒 − 𝑇𝑥_𝐿𝑖𝑠𝑡〉. The prepare message 〈𝑃𝑟𝑒𝑝𝑎𝑟𝑒 − 𝑇𝑥_𝐿𝑖𝑠𝑡〉 is
448
+ then broadcasted to the consortium blockchain network for collective voting. If approved, the set of transactions 𝑇𝑥_𝐿𝑖𝑠𝑡
449
+ will be appended in the highest block.
450
+ (2) Voting: The voter node has the right to vote. The voter votes on the transaction sets 𝑇𝑥_𝐿𝑖𝑠𝑡𝑠 from bookkeepers in
451
+ the consensus round. If some bookkeepers are malicious or crashed, the voter cannot collect all the sets. In this case, it
452
+ needs to wait for a threshold time before voting partially on the received sets. Specifically, the voter checks them one by
453
+ one, voting 1 for passed, −1 for failed, and 0 for unreceived. Further, the set of votes 𝑉𝑜𝑡𝑒_𝐿𝑖𝑠𝑡 of all the received
454
+ transaction sets is compressed into a long integer and signed, and is then sent to the aggregator together with the digests
455
+ 𝑇𝑋_𝐻𝑎𝑠ℎ as the vote message 〈𝑉𝑜𝑡𝑒〉.
456
+ (3) Aggregating: The aggregator node has the right to count votes. The aggregator collects and aggregates long integer
457
+ 𝑉𝑜𝑡𝑒_𝐿𝑖𝑠𝑡𝑠 from voters. Considering that both bookkeepers and voters are Byzantine, the aggregator similarly has a finite
458
+ wait. As soon as the threshold time is reached, the aggregator will start to count the received votes as 𝑉𝑜𝑡𝑒_𝑟𝑒𝑠𝑢𝑙𝑡. The
459
+ transaction set that gets approval or disapproval from more than 2/3 of all voters is considered to be determinably valid or
460
+ invalid. Otherwise, the aggregator will request missing votes. In addition, since all the original votes are signed by voters,
461
+ the aggregator compress the votes and signatures (Section 4.1.2). The commit message 〈𝐶𝑜𝑚𝑚𝑖𝑡〉, including 𝑉𝑜𝑡𝑒_𝑟𝑒𝑠𝑢𝑙𝑡,
462
+ compressed votes and aggregate signature, is then generated and broadcasted across the network.
463
+ Aggregation is the most important right of nodes in the network. Because only one node acts as the aggregator in a
464
+ consensus round, the system services will be seriously affected if the aggregator fails. Therefore, malicious nodes should
465
+ be prevented from having this privilege as much as possible. In our current implementation, the aggregator is periodically
466
+ chosen among good voters.
467
+ (4) No right: The ordinary node in the consortium blockchain network without rights do not participate in the consensus
468
+ process. This node has however the ability to request or receive the transaction set and the block header in a way similar
469
+ to the bookkeeper and the voter. When receiving a transaction set 𝑇𝑥_𝐿𝑖𝑠𝑡 from a bookkeeper, nodes need to check the
470
+ identifiers in it, as well as the bookkeeping right and the signature of the bookkeeper. When receiving the commit message
471
+ 〈𝐶𝑜𝑚𝑚𝑖𝑡〉 from the aggregator, nodes should check whether all the transaction sets 𝑇𝑥_𝐿𝑖𝑠𝑡𝑠 mentioned in the block
472
+ header 𝐵𝐻 have been received. The missing sets will be obtained by requesting them from the neighbors. Finally, they
473
+ assemble the complete block, and store it based on the timeline strategy (Section 4.1.2).
474
+ 4.1.2 Tier 2: Lightweight Consensus Tier
475
+ The lightweight consensus tier is located above the network tier for consortium blockchain nodes. MIS uses PPoV [57],
476
+ an efficient Byzantine Fault Tolerance (BFT) consensus algorithm, for writing and verifying operation transactions such
477
+ as registration, update, revocation, validity period extension, and ownership transfer to the blockchain. The consensus
478
+ process is described in Section 4.1.1. The advantage of using PPoV in a DNS alternative system is that blockchains are
479
+ increasingly seen as the underlying communication channel for announcing state changes. The consensus can only serve
480
+ for instrumental ordering. PPoV consensus separates a voting right to enable voters to vote for transactions in the
481
+ blockchain according to their own rules. As a result, the consensus results will be more reasonable.
482
+
483
+ 11
484
+ However, all votes and signatures are stored as proof in the block header, thus consuming a large amount of storage
485
+ space. Another consideration is that each bookkeeper signs its generated transaction set. We lightweight the PPoV
486
+ consensus algorithm in three aspects.
487
+ The first is, to solve the problem of large signatures, we use the Boneh-Lynn-Shacham (BLS) signature scheme [62]
488
+ instead of the Elliptic Curve Digital Signature Algorithm (ECDSA) to aggregate signatures. Another optimization is to
489
+ redesign the structure of PPoV blocks, as shown in Figure 4, to reduce the size of on-chain data.
490
+
491
+ Block Header
492
+ Height
493
+ Pre-hash
494
+ Timestamp
495
+ Vote_result
496
+ Votes
497
+ Voters’ Aggregate Signature
498
+ Bookkeepers’
499
+ Aggregate
500
+ Signature
501
+ Merkle Root_0+Tamestamp_0
502
+
503
+ Merkle Root_h+Tamestamp_h
504
+ Block Body
505
+ Tx_Lists{0,…,h}
506
+ Figure 4: Redesigned lightweight block structure of PPoV.
507
+ The third is to reduce redundancy. Generally speaking, each node has to store the full data, which causes storage stress
508
+ for the nodes. However, the frequency of querying old blocks is low. Assume that there are 𝑛 nodes in the consortium
509
+ blockchain, no more than 𝑓 of which are Byzantine. Given that data in the block header is accessed frequently by the nodes,
510
+ we only compress actual transactions in the block body using (𝑛 − 2𝑓, 2𝑓) Reed-Solomom (RS) code [63], an erasure
511
+ code. It has the advantage of recovering all the original data chunks with only (𝑛 − 2𝑓) chunks, which is suitable for
512
+ blockchain with Byzantine nodes.
513
+ Since transactions in the newly generated block are frequently accessed, compression of this part of the data will lead
514
+ to low query efficiency. Therefore, we propose a timeline strategy for lightweight storage. All blocks are divided by heights
515
+ into hot, warm, and cold states, with the newest block being hot and the oldest being cold.
516
+ (1) Hot blocks are frequently accessed, so each node should cache a copy. Let us take the length of hot space as 𝐿ℎ and
517
+ the latest block height as ℎ𝑚𝑎𝑥, then the blocks with the heights in the range of (ℎ𝑚𝑎𝑥 − 𝐿ℎ, ℎ𝑚𝑎𝑥] are in a hot state.
518
+ (2) Warm blocks are between hot and cold blocks, and they have a certain probability of being accessed. Let the length
519
+ of warm space be 𝐿𝑤, so that blocks with heights in the range of (ℎ𝑚𝑎𝑥 − 𝐿ℎ − 𝐿𝑤, ℎ𝑚𝑎𝑥 − 𝐿ℎ] are in a warm state. When
520
+ the state of a block changes from hot to warm, each node first encodes the warm block to (𝑛 − 2𝑓) data chunks {𝐶}𝑖=1
521
+ 𝑛−2𝑓
522
+ and 2𝑓 parity chunks {𝐶}𝑖=𝑛−2𝑓+1
523
+ 𝑛
524
+ . Then, the block header 𝐵𝐻 and one of the chunks are uniquely stored by the node. If
525
+ the chunk fails, the node can request other arbitrary (𝑛 − 2𝑓) chunks to decode to the original block.
526
+ In order to reduce the probability of decoding, we assign some nodes to cache the warm blocks. Suppose a block is
527
+ cached on 𝑛𝑤 nodes. The decoding process is triggered only when all the 𝑛𝑤 caches are down.
528
+ We believe that the probability of a warm block being accessed decreases over time, and therefore the number of caches
529
+ should decrease. The latest warm block is cached on (2𝑓 + 1) nodes, because the number of failed caches is no more than
530
+ 2𝑓, and transactions can be queried without decoding. The oldest warm block is cached only on one node to ensure that it
531
+ does not take up extra storage space. The relationship between cache quantity 𝑛𝑤 and block height ℎ is that 𝑛𝑤 (ℎ) =
532
+ ⌊(ℎ − ℎ𝑚𝑎𝑥 + 𝐿ℎ + 𝐿𝑤)
533
+ 𝐿𝑤
534
+ 2𝑓
535
+
536
+ ⌋ + 1.
537
+ (3) Cold blocks have a low probability of being accessed, and their heights belong to the range [0, ℎ𝑚𝑎𝑥 − 𝐿ℎ − 𝐿𝑤].
538
+ At this stage, nodes only hold block headers and chunks generated in the warm space and remove caches.
539
+
540
+ 12
541
+ 4.1.3 Tier 3: Index Tier
542
+ The index layer maintains the global state for MIS, including who owns which identifiers and how to find off-chain
543
+ resource data associated with these identifiers.
544
+ An object in the metaverse owns multiple identifiers, which are dynamically added, updated or deleted as the network
545
+ changes. We use a non-relational database that holds a username table and multiple MIS identifier tables by key-value
546
+ pairs. A username record corresponds to a MIS identifier table, including the binding records of multi-identifiers (only
547
+ identity is mandatory) as well as hashes for the username and identifier (as the metadata address for associated resources).
548
+ Using the user's identity identifier as an example, the user information table stores data associated with such an identifier.
549
+ The MIS processor first finds the identity registration operation of username 𝑋 in the blockchain. After that, it adds a
550
+ username record 𝑋 to the username table and creates a new MIS identifier table of 𝑋 with identifier record 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦. It
551
+ also stores the address of metadata as ℎ𝑎𝑠ℎ(𝑋 + 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦) and the digest information of resource data. Then the MIS
552
+ processor writes the user information table to the storage servers and the metadata into the metadata servers (Section 4.1.4),
553
+ so that the data separation of identity identifier and associated data can be achieved for fast indexing and verifying. Note
554
+ that for resource data that already exists in the sub-metaverse, only the metadata needs to be migrated.
555
+ In MIS, each object must have an identity identifier. An object’s identity is uniquely identified in the virtual world of
556
+ metaverse so that this identity plays the role of "passport number". In addition, for other types of identifiers, identity serves
557
+ as a unified base identifier and an anchor point.
558
+ 4.1.4 Tier 4: Storage Tier
559
+ The storage tier is the top-most, which stores the complete off-chain resource data associated with multi-identifiers.
560
+ Different storage systems, devices and replica strategies are applicable. For resources of different systems and
561
+ characteristics, the MIS processor stores and manages metadata uniformly in distributed metadata servers. The metadata
562
+ contains the storage location of the actual resources of data or services and some verification information. In this storage
563
+ mode, users are able to read off-chain metadata based on the address ℎ𝑎𝑠ℎ(𝑈𝑠𝑒𝑟𝑛𝑎𝑚𝑒 + 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟) to find all resources,
564
+ and verify it through the digest data in the global state tables. For large data resources, data blocks will be read
565
+ simultaneously to improve efficiency. In addition, the metadata servers should have all types of identifiers so that all users
566
+ are guaranteed access to it.
567
+ 4.2 Multi-Identifier Management and Resolution System
568
+ MIS uses its 4 tiers to implement a complete DNS alternative system of multi-identifiers. Its main functions are registration,
569
+ update and revocation. Resolution of a single type of identifiers and inter-translation across identification spaces are also
570
+ supported. In addition, MIS is compatible with the legacy DNS.
571
+ 4.2.1 Registration, Update, and Revocation
572
+ Identity is the basic identifier in MIS. The identity of the device is assigned, while the user needs to register. Before
573
+ registering an identity, the user first generates a pair of keys with appropriate strength. To register a public key as an
574
+ identity, a user initiates an identity registration request, which includes the username, identity, Time-to-Live (TTL),
575
+ registration fee, timestamp, signature, and other information listed in Table 2. It is then submitted to the bookkeeper of the
576
+ identifier space. The user can select any bookkeeper for such identifier type, because the entire network is an identity space.
577
+ In view of cybersquatting, an auction method is applied. When the bookkeeper receives the request, it checks the format
578
+ and content, including but not limited to checking whether duplicate valid identifiers already exist in the global state tables.
579
+
580
+ 13
581
+ If successful, the bookkeeper will preferentially encapsulate requests with high registration fees into transactions and put
582
+ them into the local pool for lightweight consensus. When the consensus is passed, the MIS processor will extract usernames
583
+ and other required fields of newly valid identities from registration transactions and write the global state tables. If the
584
+ AboutMe field is also filled out, it is also extracted and stored as an off-chain user information table.
585
+ After the user get an identity successfully, it can register other multi-identifiers, such as content and service. For the
586
+ identifiers within the validity period, only the owner can be allowed to operate on it, for example, update or revoke. Expired
587
+ or revoked identifiers can also be re-registered. The operation process is similar to identity registration. It is noted that all
588
+ operations are performed only after achieving the consensus in the consortium blockchain.
589
+ 4.2.2 Resolution
590
+ When the network holds only one identifier space, identifier resolution is the basic service provided by MIS as DNS. When
591
+ the identifier is resolved in this case, users can access the storage server or the associated resource. The specific resolution
592
+ process is as follows.
593
+ Step 1: The user queries the global state tables of MIS to obtain the address of metadata ℎ𝑎𝑠ℎ(𝑈𝑠𝑒𝑟𝑛𝑎𝑚𝑒 +
594
+ 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟) and digest information of the associated resource.
595
+ Step 2: According to the metadata address, the user accesses the metadata server and receives the metadata file as a
596
+ response. This file includes the location of storage servers and other metadata information.
597
+ Step 3: After receiving the metadata file, the user requests the specific resource associated with the identifier from the
598
+ network. The process of requesting resources includes push and pull methods, both of which have been integrated into
599
+ MIR. It is important to note that with pull transport, the user does not actually access the storage server location recorded
600
+ in the metadata file.
601
+ Table 2: Field in an identity registration request.
602
+ Field Name
603
+ Data Type
604
+ Description
605
+ Username
606
+ String
607
+ *Required.
608
+ Identity_
609
+ Identifier
610
+ String
611
+ *Required.
612
+ The format is “type0:”+“public key of user”
613
+ AboutMe
614
+ String
615
+ Optional, resource data.
616
+ Individual information includes the real name, phone number, ID/passport number,
617
+ and fingerprint/face/iris data.
618
+ Organization information includes the organization code, postal address, legal
619
+ representative, and bank account.
620
+ Device information includes the manufacturing plant and machine number.
621
+ Hash_Identity_Identifier
622
+ String
623
+ *Required, the address of the metadata.
624
+ Digest
625
+ String
626
+ Optional, digest of resource data.
627
+ TTL
628
+ Int
629
+ *Required, the valid period of the identity identifier.
630
+ Fee
631
+ Float
632
+ *Required. The registration fee can be zero.
633
+ Timestamp
634
+ Double
635
+ *Required, the generation time of the identity registration request.
636
+ Signature
637
+ String
638
+ *Required. The user signs with the private key.
639
+ .
640
+
641
+ 14
642
+ Step 4: When the user receives a resource associated with the identifier, it verifies the integrity according to the digest
643
+ information. If verified, the identifier will be considered to be resolved. Otherwise, return to Step 3 and continue the request.
644
+ Although IP address identifiers in MIS are different from IP addresses in the traditional network, MIS is still compatible
645
+ with legacy DNS. This is because the domain name is defined in MIS as an identifier type 6, which is bound to website
646
+ resources. The IP addresses mapped to domain names are stored in the associated metadata file. In addition, we register
647
+ the special usernames in the form of 𝐷𝑁𝑆_𝑐𝑎𝑐ℎ𝑒: 𝑖(𝑖 = 1,2,3, … ) in MIS to cache DNS resources.
648
+ When a user or device wants to resolve a domain name, it queries the MIS identifier table linked by the username record
649
+ (𝐷𝑁𝑆_𝑐𝑎𝑐ℎ𝑒: 𝑖). If the query fails, the MIS processor will forward the query request in a typical form to the DNS server
650
+ and cache the DNS response into the metadata file which is associated with the domain name identifier in the global state
651
+ tables for future queries.
652
+ Given that domain names are actually controlled by DNS servers rather than users or devices in MIS, the caching
653
+ process does not wait for consensus unlike the registration of identities and other identifiers. In other words, the credibility
654
+ of the resolution service for domain names depends on the DNS itself.
655
+ 4.2.3 Inter-translation
656
+ In addition to TCP/IP networks, there are many future networks with different types of identifiers (and corresponding
657
+ communication modes) to satisfy new functions or requirements. For example, content identifiers have advantage in the
658
+ acquisition of data resources, such as videos, page resources. Service identifiers improve the flexibility, loose coupling and
659
+ reusing properties of services. Identity and location identifiers are suitable for mobile devices that constantly switch
660
+ locations.
661
+ Therefore, resource providers in the metaverse are encouraged to apply for identifiers and publish resources as much
662
+ as possible to form multiple identifier spaces. Through the inter-translation service, MIS supports users to resolve all types
663
+ of identifiers and obtain resource data. Figure 5 illustrates the detailed process.
664
+ In Figure 5, we assume that the identity identifier space 𝐶0 holds identity (𝑖0). In addition to the basic identity (𝑖0), 𝐶1
665
+ also holds IPv4 address (𝑖5) and domain name (𝑖6), 𝐶2holds identity (𝑖0) and content (𝑖1). Metadata servers own all types
666
+ of identifiers (𝑖0, 𝑖1, 𝑖5, 𝑖6). A normal individual end user 𝐸 has only the required identity and is in the identifier space 𝐶0.
667
+ In case user 𝐸 wants to resolve the domain name (𝑡𝑦𝑝𝑒6:𝑚𝑒𝑡𝑎𝑣𝑒𝑟𝑠𝑒. 𝑠𝑢𝑏3. 𝑐𝑜𝑚) of the identifier space 𝐶1, it first
668
+ queries in the global state tables in MIS. If fails, the MIS processor will perform the resolution process (Section 4.2.2) and
669
+ response the user 𝐸 with the inter-translating result, including the username (𝐷𝑁𝑆_𝑐𝑎𝑐ℎ𝑒: 1) and its identity
670
+ (𝑡𝑦𝑝𝑒0: 04𝑑9806𝑒𝑐30𝑑𝑎𝑐7𝑒5). At this point, the domain name (𝑡𝑦𝑝𝑒6: 𝑚𝑒𝑡𝑎𝑣𝑒𝑟𝑠𝑒. 𝑠𝑢𝑏3. 𝑐𝑜𝑚) has a form that can be
671
+ recognized in the identifier space 𝐶0 . Then, the user 𝐸 requests the metadata server 𝑀 for the IPv4 address
672
+ (𝑡𝑦𝑝𝑒5: 142.251.42.228) in the metadata file. Finally, it communicates to the storage server 𝑆1 with the identity
673
+ (𝑡𝑦𝑝𝑒0: 04𝑑9806𝑒𝑐30𝑑𝑎𝑐7𝑒5) and IPv4 address (𝑡𝑦𝑝𝑒5:142.251.42.228) for routing, so as to obtain the associated
674
+ resource for the domain name (𝑡𝑦𝑝𝑒6:𝑚𝑒𝑡𝑎𝑣𝑒𝑟𝑠𝑒. 𝑠𝑢𝑏3. 𝑐𝑜𝑚).
675
+ Likewise, user 𝐸 can resolve the content (𝑡𝑦𝑝𝑒1:/𝑚𝑒𝑡𝑎𝑣𝑒𝑟𝑠𝑒_𝑠𝑢𝑏1/002. 𝑚𝑝4) of the identifier space 𝐶2 . The
676
+ difference between this process and IPv4 address of 𝐶1 is that the data of identity and IPv4 address is obtained in push
677
+ mode, while the data of content is obtained in pull mode. Therefore, the resolution process involves changing the
678
+ communication mode. MIN has realized a communication mode that supports both push and pull semantics in the protocol
679
+ stack. Simply speaking, one or more edge routers are set up in each identifier space, which are responsible for processing
680
+ packets sent to other identifier spaces, including recognizing identifier types and changing semantics.
681
+
682
+ 15
683
+ In conclusion, the inter-translation service enables the existence of the same resource data in multiple forms (identifiers)
684
+ and the accessibility for users of different identifier spaces.
685
+ 5 EXPERIMENT
686
+ We evaluate the performance of MIS to demonstrate that it can operate at competitive rates. The reading and writing time
687
+ of metadata and resource data depend on the off-chain storage system. The time cost becomes a deterministic load for MIS.
688
+ We implement MIS in Golang [28]. We also established a testbed for MIS on 4 physical servers located in UK and
689
+ Malaysia. Each server has two 8-core CPUs and 10 Gbps network bandwidth, and contains 20 consortium nodes. A
690
+ consortium node is simulated as representative of a country or top-level organization, and has bookkeeping and voting
691
+ rights. The aggregation permission is held by each node in turn. We encapsulate no more than 100,000 transactions into a
692
+ block. The bookkeepers sign all transactions and blocks using the BLS signature scheme.
693
+ The average response time for multi-identifier resolution requests is shown in Figure 6. For 20,000 registered identifiers,
694
+ the average time required to query one in MIS is only 34.035 milliseconds, and this meets the actual query performance of
695
+ the legacy DNS (48 milliseconds, according to the method in [64]).
696
+ In our experimental blockchain, users randomly send writing operation requests for registering, updating and revoking
697
+ multi-identifiers to consortium nodes at an average rate of 1,000 per second. The time spent in each phase of writing
698
+ operations is shown in Figure 7. We obtained an average latency of 349.79 milliseconds in total. The spikes at block heights
699
+
700
+ Figure 5: An example of inter-translation.
701
+ .
702
+
703
+ MIS
704
+ MIS Identifier Table
705
+ Username Table
706
+ type0:e98a32e6175bbd375
707
+ Digest of data
708
+ Metadata address
709
+ M
710
+ type5:142.251.42.228
711
+ .
712
+ .
713
+ xers
714
+ (3)DNS
715
+ LegacyDNS
716
+ S_1
717
+ type0:9a7678c2da4c4587b
718
+ .
719
+ .
720
+ response
721
+ S_2
722
+ type1:/metaverse_sub1/002.mp4
723
+ .
724
+ ...
725
+ DNS_cache:1
726
+ type0:04d9806ec30dac7e5
727
+ (2)Quer)
728
+ (4)
729
+ metaverse.sub3.com
730
+ type6:metaverse.sub3.com
731
+ ...
732
+ (1)Query
733
+ (5)Inter-traslate as
734
+ typeo:metaver
735
+ DNS cache;type0:
736
+ Co
737
+ se.sub3.com
738
+ 00000000000000000
739
+ (1)Query
740
+ (2)Inter-translate as
741
+ typel:/metaverse
742
+ S 2;type0:9a7678c2d
743
+ S1
744
+ sub1/002.mp4
745
+ a4c4587b
746
+ (associated with IPv4 addresses
747
+ Storage Servers
748
+ (7)Request and (S)Verify
749
+ E
750
+ (4)Request and (5)Verify
751
+ resources associated with
752
+ resources associated with
753
+ and domain names)
754
+ typeo:metaverse.sub3.com
755
+ typel:/metaverse_sub1/002.mp4
756
+ (oReguest
757
+ : (3)Request
758
+ metadata with
759
+ Imetadata with
760
+ DNS_cache;type6:
761
+ Is2;type0:9a76
762
+ (associated with contents)
763
+ metaverse.sub3.com
764
+ 78c2da4c4587b
765
+
766
+ C2
767
+ Metadata Servers
768
+ (associated with all types of identifiers)16
769
+ of 146, 169, 303, 361, 460, and 526 are caused by unstable bandwidth speeds between servers in different regions. In
770
+ addition, the main time cost is spent on storing blocks into the disc (presented as Storage Phase in Figure 7), in an average
771
+ of 284.23 milliseconds. This is limited by the speed at which the CPU reads and writes memory. The consensus phase,
772
+ including propose, vote and commit phases, takes only 65.56 milliseconds, accounting for 18.74% of the total latency. This
773
+
774
+ Figure 7: The writing performance of MIS on the 80-node testbed in UK and Malaysia.
775
+
776
+
777
+ Figure 6: The response time of resolving multi-identifiers.
778
+
779
+ 600
780
+ ProposePhase
781
+ VotePhase
782
+ CommitPhase
783
+ StoragePhase
784
+ X: 526
785
+ Y:597.8
786
+ X: 169
787
+ Y: 492.4
788
+ X: 361
789
+ 500
790
+ Y: 480.5
791
+ 400
792
+ Time (milliseconds)
793
+ 300
794
+ 200
795
+ X: 146
796
+ X: 303
797
+ X: 460
798
+ 100
799
+ Y: 81.45
800
+ Y: 82.92
801
+ Y: 80.69
802
+ 0
803
+ 100
804
+ 200
805
+ 300
806
+ 400
807
+ 500
808
+ Block Height35
809
+ 30
810
+ 34.035
811
+ 27.715
812
+ 25
813
+ 20
814
+ 20.006
815
+ 15
816
+ 11.237
817
+ 10
818
+ Average
819
+ 5
820
+ 3.759
821
+ 01000
822
+ 5000
823
+ 10000
824
+ 15000
825
+ 20000
826
+ Numberof Multi-identifiers17
827
+ is because, the communication bandwidth between nodes within the server was considered as infinite on the testbed.
828
+ However, performance will be largely network-bound in practice.
829
+ In order to verify the writing performance of MIS more realistically, we simulate a globally distributed deployment of
830
+ our MIS on the Google Cloud. There are 200 VMs located in 26 countries from 5 continents in our simulation environment,
831
+ guaranteeing that all countries can participate in the management of multiple identifier spaces. 6 to 9 VMs are deployed in
832
+ each country as TLD consortium blockchain nodes for MIS. In total, there are 16 VMs in North America, 64 in South
833
+ America, 58 in Europe, 46 in Asia and 16 in Oceania. Each VM is configured with 2 vCPUs and 4GB memory. In addition,
834
+ we use speedtest [65] to measure the bandwidths of VMs in each country. The average uplink bandwidth is 897.84Mbit/s
835
+ and the downlink is 1525.60Mbit/s. Other parameters are the same as the above 80-node testbed.
836
+ We evaluate the average latency in each phase of writing operations by gradually increasing the nodes number from 50,
837
+ 100, 150 and 200 respectively, as shown in Figure 8. Although it takes a little longer in the consensus phase as the number
838
+ of consortium nodes increases, the consensus time is still acceptable. This can be referred to the deterministic consensus
839
+ used in MIS. For example, the original Blockstack overlays Bitcoin with latency of 600 seconds, whereas MIS latency is
840
+ even less than 10 seconds.
841
+
842
+ Figure 8: The writing performance of MIS on the testbed located in 26 countries from 5 continents.
843
+ 6 COMPARATIVE DISCUSSION
844
+ In order to acquire decentralized DNS alternatives, public and consortium blockchains are two feasible means. Bitcoin is
845
+ the largest, most secure, and most actively maintained blockchain, and is the most suitable public blockchain for carrying
846
+ decentralized applications and services [17]. However, when used for identifier management, Bitcoin still poses several
847
+ challenges, as described below.
848
+ 6.1.1 Challenge 1: Limited Efficiency
849
+ The consensus algorithms of public blockchains face a serious efficiency barrier [66]. In Bitcoin, the time target for the
850
+ block generation interval is conservatively set at 10 minutes with a block size limit of 1MB. For typical transaction sizes
851
+ of 240 Bytes, only 7 transactions can be processed per second.
852
+ Essentially, the problem with the Nakamoto consensus is that the consensus process relies on transaction/block
853
+ synchronization. This encourages many proposals to adopt parallel block generation with synchronization. One idea is to
854
+ elect a leader or committee [21, 67-69] before generating blocks. Another is to recognize miners’ work on non-longest
855
+
856
+ 10000
857
+ ProposePhase
858
+ 9487.43
859
+ VotePhase
860
+ 8000
861
+ CommitPhase
862
+ 7794.22
863
+ Time (milliseconds)
864
+ StoragePhase
865
+ 6582.03
866
+ 6000
867
+ 4000
868
+ 2435.50
869
+ 2000
870
+ 0
871
+ 50
872
+ 100
873
+ 150
874
+ 200
875
+ NumberofNodes18
876
+ chains [70-72]. Consortium blockchain usually adopt deterministic consensus algorithms, most of which are derived from
877
+ the BFT algorithm. The validity of blocks relies on message exchange rather than nodes’ proof of work so that the
878
+ generation time is reduced. Although the BFT algorithm provides good performance for small-scale applications, it does
879
+ not suit large-scale applications due to its high communication cost and poor scalability. Speculative BFT [73] is proposed
880
+ to reduce the communication complexity to O(N) in the ideal case. However, it requires higher communication complexity
881
+ when replacing the leader, making it inapplicable to practical blockchain networks. Further, Proof of Vote (PoV) [57] and
882
+ Hotstuff are proposed with linear consensus decision and view change. Actually, all peers need to validate each transaction
883
+ in a decentralized system. Therefore, O(N) is the lower bound in terms of communication complexity. Although the leader
884
+ or committee election can optimize consensus in both public and consortium blockchain, the actual effects are different.
885
+ In a completely decentralized public blockchain, any node is free to join or leave the network. To ensure fairness, majority
886
+ of nodes needs to participate in the consensus. Therefore, the computing capacity and bandwidth requirement of nodes
887
+ should not be highly set. On the contrary, in a consortium blockchain, nodes are censored for access, thus the governing
888
+ agency is in a position to put forward higher requirements on them. For example, core nodes must use commercial servers
889
+ with strong computing and security capabilities, or be organized to a specific topology. Especially for DNS alternative
890
+ systems that provide identifier services, efficient consortium blockchains are more suitable than public blockchains. In
891
+ MIS's current implementation, the core TLD nodes are relatively stable even though they belong to different organizations.
892
+ In order to provide reliable service and reduce the probability of network partition, we adopt the extensible physical
893
+ connection mode of the multi-dimensional hypercube.
894
+ 6.1.2 Challenge 2: Final Consistency
895
+ Nakamoto consensus nodes that solve the puzzle can generate a subsequent of the same block, which leads to forks. The
896
+ longest chain rule is adopted to choose the main chain, so that only one of these conflicting blocks with the same height is
897
+ valid. However, forks can turn strong consistency to a final consistency over time.
898
+ Allowing forking is essentially a balance of three properties in the CAP (Consistency, Availability, and Partition
899
+ tolerance) trilemma [74]. Specifically, in the distributed theory, when the network topology is split into components by
900
+ missing or failed links, a partition happens such that nodes in one component (partition) cannot communicate with nodes
901
+ in another. Under this unfortunate circumstance, the distributed system designers are enforced to choose either availability
902
+ or consistency [75]. Andrew Lewis-Pye et al. [76] have further proved an analog of the CAP trilemma for blockchains
903
+ arguing that no system is both adaptive and has finality in the unsized and partially synchronous network. The BFT-based
904
+ algorithms used by consortium blockchains reach consensus without forks. More than 2/3 of core nodes deterministically
905
+ commit the block in a round through 2 or 3 phases of message exchange. Therefore, these algorithms satisfy strong
906
+ consistency, rather than final consistency as public blockchain consensus.
907
+ 6.1.3 Challenge 3: Limits on Storage Capacity
908
+ Nodes locally store a copy of all the on-chain data to independently process transactions and blocks. However, the endless
909
+ growth of blockchain poses a great challenge to the storage capacity of nodes. For example, by July 10, 2022, it requires
910
+ 406.05GB of disk space to copy all the Bitcoin data [77]. Bitcoin designs light nodes as a lightweight approach, which
911
+ only store block headers and verify transactions by downloading blocks from full nodes. Since nodes without sufficient
912
+ storage space can only become light nodes instead of full nodes, the decentralization and security of Bitcoin has been
913
+ objectively influenced.
914
+
915
+ 19
916
+ The EC-based cooperative storage schemes [78, 79], including MIS, use erasure code to encode and decode data.
917
+ Erasure code was originally a coding scheme for wireless channel transmission, and it was later used in distributed storage
918
+ system to reduce duplications. The EC-based cooperative schemes reduce the on-chain data stored on nodes in a fixed
919
+ proportion only by modifying the reading and writing processes of data incrementally. This makes such schemes suitable
920
+ for both public and consortium blockchains.
921
+ We conclude that these challenges have been solved by MIS using consortium blockchain technologies. Table 3 below
922
+ presents a comparative summary between MIS and different existing DNS alternative systems.
923
+ Table 3: Comparison between MIS and existing DNS alternatives.
924
+ DNS
925
+ Alternatives
926
+ Type of
927
+ Blockchain
928
+ Consensus
929
+ Consistency
930
+ Multi-identifier
931
+ Management
932
+ Compatibility of
933
+ Legacy DNS
934
+ Consensus
935
+ Latency (s)
936
+ Namecoin
937
+ Public
938
+ Nakamoto
939
+ Consensus
940
+ Final
941
+ No
942
+ No
943
+ 2400
944
+ Blockstack
945
+ Public
946
+ Nakamoto
947
+ Consensus
948
+ Final
949
+ No
950
+ No
951
+ 600
952
+ ENS
953
+ Public
954
+ Nakamoto
955
+ Consensus
956
+ Final
957
+ No
958
+ No
959
+ 13.38
960
+ DNSTSM
961
+ Consortium
962
+ Kafka
963
+ Final
964
+ No
965
+ Yes
966
+ 0.095
967
+ TD-Root
968
+ Consortium
969
+ C-RAND
970
+ Strong
971
+ No
972
+ Yes
973
+ <350
974
+ MIS (ours)
975
+ Consortium
976
+ PPoV
977
+ Strong
978
+ Yes
979
+ Yes
980
+ <10
981
+ 7 CONCLUSION
982
+ In this paper, we propose MIS, the first-ever multi-identifier management and resolution system of metaverse based on
983
+ consortium blockchain. In order to separate on-chain and off-chain data, MIS is designed as a 4-tier architecture with the
984
+ assumption that the future metaverse would continue to persistently evolve using a range of sub-metaverses and different
985
+ sorts of resources. Resource data can be stored heterogeneously off-chain, alleviating the problem of data migration of sub-
986
+ metaverses. As a DNS alternative, MIS eliminates the centralization of DNS management and resolution of the TCP/IP
987
+ architecture. Instead, it manages multiple identifier spaces and provides inter-translation services. Several innovative
988
+ improvements are also made to the size of data to reduce the storage pressure on consortium blockchain nodes. We have
989
+ deployed two testbeds in 26 countries from 5 continents worldwide. Our experimental results show that MIS outperforms
990
+ the legacy DNS and Blockstack in terms of latency. Finally, it should be mentioned that MIS has been released online as
991
+ an open-source management system for the MIN architecture.
992
+ ACKNOWLEDGMENTS
993
+ This work was supported by the Guangdong Province Research and Development Key Program [grant number
994
+ 2019B010137001]; Basic Research Enhancement Program of China [grant number 2021-JCJQ-JJ-0483]; Shenzhen
995
+ Research Programs [grant number GXWD20201231165807007-20200807164903001]; [JCYJ20210324122013036];
996
+ [JCYJ20190808155607340]; China Environment for Network Innovation (CENI) GJFGW No.[2020]386, SZFGW
997
+ [2019]261; the National Keystone Research and Development Program of China [grant number 2017YFB0803204]; ZTE
998
+ Funding [grant number 2019ZTE03-01] HuaWei Funding [grant number TC20201222002].
999
+
1000
+ 20
1001
+ REFERENCES
1002
+ [1]
1003
+ Lik-Hang Lee, Tristan Braud, Pengyuan Zhou, Lin Wang, Dianlei Xu, Zijun Lin, Abhishek Kumar, Carlos Bermejo, and Pan Hui. All One Needs to
1004
+ Know about Metaverse: A Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda. arXiv e-prints, (October 01
1005
+ 2021), arXiv:2110.05352.
1006
+ [2]
1007
+ Judy Joshua. Information Bodies: Computational Anxiety in Neal Stephenson's Snow Crash. Interdisciplinary Literary Studies, 19, 1 (2017), 17-47.
1008
+ [3]
1009
+ Joe Sanchez. Second Life: An Interactive Qualitative Analysis. In Proceedings of Society for Information Technology & Teacher Education
1010
+ International Conference 2007 (San Antonio, Texas, USA, 2007). Association for the Advancement of Computing in Education (AACE).
1011
+ [4]
1012
+ John David N. Dionisio, William G. Burns III, and Richard Gilbert. 3D Virtual worlds and the metaverse: Current status and future possibilities. ACM
1013
+ Comput. Surv., 45, 3 (2013), Article 34.
1014
+ [5]
1015
+ Anders Bruun, and Martin Lynge Stentoft. Lifelogging in the Wild: Participant Experiences of Using Lifelogging as a Research Tool. In Proceedings
1016
+ of Human-Computer Interaction – INTERACT 2019: 17th IFIP TC 13 International Conference (Cham, 2019). Springer International Publishing.
1017
+ [6]
1018
+ Huansheng Ning, Hang Wang, Yujia Lin, Wenxi Wang, Sahraoui Dhelim, Fadi Farha, Jianguo Ding, and Mahmoud Daneshmand. A Survey on
1019
+ Metaverse: the State-of-the-art, Technologies, Applications, and Challenges. arXiv e-prints, (November 01, 2021 2021), arXiv:2111.09673.
1020
+ [7]
1021
+ Kyoungro Yoon; Sang-Kyun Kim; Sangkwon Peter Jeong; Jeong-Hwan Choi. Interfacing Cyber and Physical Worlds: Introduction to IEEE 2888
1022
+ Standards. In Proceedings of 2021 IEEE International Conference on Intelligent Reality (ICIR) (12-13 May 2021, 2021).
1023
+ [8]
1024
+ David
1025
+ Grider.
1026
+ The
1027
+ Metaverse:
1028
+ Web
1029
+ 3.0
1030
+ Virtual
1031
+ Cloud
1032
+ Economies.
1033
+ 2021.
1034
+ https://www.digitalcapitalmanagement.com.au/wp-
1035
+ content/uploads/2022/02/Grayscale_Metaverse_Report_Nov2021.pdf.
1036
+ [9]
1037
+ Nisha Surendran Ronit Ghose, Sophia Bantanidis,Kaiwan Master,Ronak S Shah,Puneet Singhvi. Metaverse and Money. 2022.
1038
+ https://ir.citi.com/gps/x5%2BFQJT3BoHXVu9MsqVRoMdiws3RhL4yhF6Fr8us8oHaOe1W9smOy1%2B8aaAgT3SPuQVtwC5B2%2Fc%3D.
1039
+ [10] Meta. 2022. https://about.fb.com/.
1040
+ [11] Cong T. Nguyen, Dinh Thai Hoang, Diep N. Nguyen, and Eryk Dutkiewicz. MetaChain: A Novel Blockchain-based Framework for Metaverse
1041
+ Applications. arXiv e-prints, (December 01, 2021 2021), arXiv:2201.00759.
1042
+ [12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, (2008), 21260.
1043
+ [13] Yunmin Wang, Hui Li, Ting Huang, Xinchun Zhang, and Yongjie Bai. Scalable Identifier System for Industrial Internet Based on Multi-Identifier
1044
+ Network Architecture. IEEE Internet of Things Journal, (2021).
1045
+ [14] Hao Xu, Zihao Li, Zongyao Li, Xiaoshuai Zhang, Yao Sun, and Lei Zhang. Metaverse Native Communication: A Blockchain and Spectrum Prospective.
1046
+ arXiv e-prints, (March 01, 2022 2022), arXiv:2203.08355.
1047
+ [15] Namecoin. 2022. https://www.namecoin.org/.
1048
+ [16] Aaron Swartz Squaring the Triangle: Secure, Decentralized, Human-Readable Names. 2011. http://www.aaronsw.com/weblog/squarezooko.
1049
+ [17] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman. Blockstack: a Global naming and storage system secured by blockchains. In
1050
+ Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference (Denver, CO, USA, 2016). USENIX Association.
1051
+ [18] ENS Documentation. 2022. https://docs.ens.domains/.
1052
+ [19] Greg Slepak. Dnschain+ okturtles. Easy to use, state of the art security, for existing online communications, (2014).
1053
+ [20] EMERCOIN. 2022. https://emercoin.com/en/.
1054
+ [21] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-NG: a scalable blockchain protocol. In Proceedings of the 13th
1055
+ Usenix Conference on Networked Systems Design and Implementation (Santa Clara, CA, 2016). USENIX Association.
1056
+ [22] Ittay Eyal, and Emin Gün Sirer. Majority Is Not Enough: Bitcoin Mining Is Vulnerable. Communications of the ACM, 61, 7 (2014), 436-454.
1057
+ [23] Zhong Yu, Dong Xue, Jiulun Fan, and Chang Guo. DNSTSM: DNS cache resources trusted sharing model based on consortium blockchain. IEEE
1058
+ Access, 8, (2020), 13640-13650.
1059
+ [24] Guobiao He, Wei Su, Shuai Gao, and Jiarui Yue. TD-Root: A trustworthy decentralized DNS root management architecture based on permissioned
1060
+ blockchain. Future Generation Computer Systems, 102, (2020), 912-924.
1061
+ [25] Karl Wüst, and Arthur Gervais. Do you need a blockchain? In Proceedings of 2018 Crypto Valley Conference on Blockchain Technology (CVCBT)
1062
+ (2018). IEEE.
1063
+ [26] Ho-Kyung Yang, Hyun-Jong Cha, and You-Jin Song. Secure identifier management based on Blockchain technology in NDN environment. IEEE
1064
+ Access, 7, (2018), 6262-6268.
1065
+ [27] Lynne Heller; Lizbeth Goodman. What do avatars want now? Posthuman embodiment and the technological sublime. In Proceedings of 2016 22nd
1066
+ International Conference on Virtual System & Multimedia (VSMM) (17-21 Oct. 2016, 2016).
1067
+ [28] mis-blockchain. 2022. https://github.com/MIN-Group/mis.
1068
+ [29] Hui Li, Jiangxing Wu, Xin Yang, Han Wang, Julong Lan, Ke Xu, Hua Tan, Jinwu Wei, Wei Liang, and Fusheng Zhu. MIN: co-governing multi-
1069
+ identifier network architecture and its prototype on operator’s network. IEEE Access, 8, (2020), 36569-36581.
1070
+ [30] Welcome to Decentraland. 2022. https://decentraland.org/.
1071
+ [31] Cryptovoxels - a user owned virtual world. 2022. https://cryptowexels.com/.
1072
+ [32] The Sandbox Game — User-Generated Crypto. 2022. https://www.sandbox.game.
1073
+ [33] Haihan Duan, Jiaye Li, Sizheng Fan, Zhonghao Lin, Xiao Wu, and Wei Cai. Metaverse for Social Good: A University Campus Prototype. arXiv e-
1074
+
1075
+ 21
1076
+ prints, (August 01, 2021 2021), arXiv:2108.08985.
1077
+ [34] Sha Hu Huansheng Ning, Wei He, Qunyu Xu, Hong Liu and Weishi Chen. nID-based Internet of Things and .Its Application in Airport Aviation Risk
1078
+ Management. Chinese Journal of Electronics, 21, 2 (2012).
1079
+ [35] Aleksandar Jovanović, and Aleksandar Milosavljević. VoRtex Metaverse Platform for Gamified Collaborative Learning. Electronics, 11, 3 (2022), 317.
1080
+ [36] Zijian Bao, Wenbo Shi, Debiao He, and Kim-Kwang Raymond Chood. IoTChain: A Three-Tier Blockchain-based IoT Security Architecture. arXiv e-
1081
+ prints, (June 01, 2018 2018), arXiv:1806.02008.
1082
+ [37] Mohammed Amine Bouras, Qinghua Lu, Sahraoui Dhelim, and Huansheng Ning. A Lightweight Blockchain-Based IoT Identity Management
1083
+ Approach. Future Internet, 13, 2 (2021), 24.
1084
+ [38] Youngjun Song, and Sunghyuck Hong. Build a Secure Smart City by using Blockchain and Digital Twin. Int. J. Adv. Sci. Converg, 3, (2021), 9-13.
1085
+ [39] Thippa Reddy Gadekallu, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and
1086
+ Madhusanka Liyanage. Blockchain for the Metaverse: A Review. arXiv e-prints, (March 01, 2022 2022), arXiv:2203.09738.
1087
+ [40] Dianlei Xu; Yong Li; Xinlei Chen; Jianbo Li; Pan Hui; Sheng Chen; Jon Crowcroft. A Survey of Opportunistic Offloading. IEEE Communications
1088
+ Surveys & Tutorials, 20, 3 (2018), 2198-2236.
1089
+ [41] IPFS Powers the Distributed Web. 2022. https://ipfs.io.
1090
+ [42] GDFS: A New Solution for Decentralized Data Storage. 2022. https://medium.com/gooddatafound/gdfs-a-new-solution-for-decentralized-data-
1091
+ storage-13f70357a617.
1092
+ [43] Storj DCS. 2022. https://docs.storj.io.
1093
+ [44] Michael Dowling. Is non-fungible token pricing driven by cryptocurrencies? Finance Research Letters, 44, (2022/01/01/ 2022), 102097.
1094
+ [45] Catalina Goanta Selling LAND in Decentraland: The Regime of Non-fungible Tokens on the Ethereum Blockchain Under the Digital Content Directive.
1095
+ Springer International Publishing, Cham, 2020.
1096
+ [46] Brendan Benshoof, Andrew Rosen, Anu G Bourgeois, and Robert W Harrison. Distributed decentralized domain name service. In Proceedings of 2016
1097
+ IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2016). IEEE.
1098
+ [47] Handshake. 2022. https://hsd-dev.org/.
1099
+ [48] Muneeb
1100
+ Ali.
1101
+ Stacks
1102
+ 2.0:
1103
+ Apps
1104
+ and
1105
+ Smart
1106
+ Contracts
1107
+ for
1108
+ Bitcoin.
1109
+ 2020.
1110
+ https://gaia.blockstack.org/hub/1Eo6q4qLMcSSpkhoUADxRAGZhgUyjVEVcK/stacks-zh.pdf.
1111
+ [49] Wentong Wang, Ning Hu, and Xin Liu. BlockZone: A Blockchain-Based DNS Storage and Retrieval Scheme. In Proceedings of International
1112
+ Conference on Artificial Intelligence and Security (Cham, 2019). Springer International Publishing.
1113
+ [50] Miguel Castro, and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of OSDI '99: Proceedings of the third symposium on Operating
1114
+ systems design and implementation (1999).
1115
+ [51] Tong Jin, Xiang Zhang, Yirui Liu, and Kai Lei. BlockNDN: A bitcoin blockchain decentralized system over named data networking. In Proceedings
1116
+ of 2017 Ninth international conference on ubiquitous and future networks (ICUFN) (2017). IEEE.
1117
+ [52] Jingqiang Liu; Bin Li; Lizhang Chen; Meng Hou; Feiran Xiang; Peijun Wang. A Data Storage Method Based on Blockchain for Decentralization DNS.
1118
+ In Proceedings of 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC) (18-21 June 2018, 2018).
1119
+ [53] Wondeuk Yoon, Indal Choi, and Daeyoung Kim. BlockONS: Blockchain based object name service. In Proceedings of 2019 IEEE International
1120
+ Conference on Blockchain and Cryptocurrency (ICBC) (2019). IEEE.
1121
+ [54] Yantao Shen, Yang Lu, Zhili Wang, Xin Xv, Feng Qi, Ningzhe Xing, and Ziyu Zhao. Dns service model based on permissioned blockchain. Intelligent
1122
+ Automation and Soft Computing, 27, 1 (2021), 259-268.
1123
+ [55] Xiangui Wang, Kedan Li, Hui Li, Yinghui Li, and Zhiwei Liang. ConsortiumDNS: A distributed domain name service based on consortium chain. In
1124
+ Proceedings of 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference
1125
+ on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS) (2017). IEEE.
1126
+ [56] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff: BFT Consensus with Linearity and Responsiveness.
1127
+ In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (Toronto ON, Canada, 2019). Association for Computing
1128
+ Machinery.
1129
+ [57] Yongjie Bai, Yang Zhi, Hui Li, Han Wang, Ping Lu, and Chengtao Ma. On Parallel Mechanism of Consortium Blockchain: Take PoV as an example.
1130
+ In Proceedings of 2021 The 3rd International Conference on Blockchain Technology (Shanghai, China, 2021). Association for Computing Machinery.
1131
+ [58] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen, Daekyeong Moon, and Scott Shenker. Accountable internet protocol (aip).
1132
+ SIGCOMM Comput. Commun. Rev., 38, 4 (2008), 339–350.
1133
+ [59] Mahmud Hossain; Ragib Hasan. P-HIP: A Lightweight and Privacy-Aware Host Identity Protocol for Internet of Things. IEEE Internet of Things
1134
+ Journal, 8, 1 (2021), 555-571.
1135
+ [60] Boubakr Nour; Spyridon Mastorakis; Rehmat Ullah; Nicholas Stergiou. Information-Centric Networking in Wireless Environments: Security Risks
1136
+ and Challenges. IEEE Wireless Communications, 28, 2 (2021), 121-127.
1137
+ [61] P. Kanuch, D. Macko, and L. Hudec. HIP-Based Security in IoT Networks: A comparison. In Proceedings of 2020 18th International Conference on
1138
+ Emerging eLearning Technologies and Applications (ICETA) (12-13 Nov. 2020, 2020).
1139
+ [62] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Proceedings of International conference on the theory and
1140
+ application of cryptology and information security (2001). Springer.
1141
+ [63] Stephen B Wicker, and Vijay K Bhargava. Reed-Solomon codes and their applications. John Wiley & Sons, 1999.
1142
+
1143
+ 22
1144
+ [64] Jenni McKinnon How to Test DNS Server Response Time to Troubleshoot Site Speed. 2021. https://wp-rocket.me/blog/test-dns-server-response-time-
1145
+ troubleshoot-site-speed.
1146
+ [65] . https://www.speedtest.cn/.
1147
+ [66] Dodo Khan, Low Tang Jung, and Manzoor Ahmed Hashmani. Systematic Literature Review of Challenges in Blockchain Scalability. Applied Sciences,
1148
+ 11, 20 (2021), 9372.
1149
+ [67] Delegated Proof of Stake (DPOS). 2019. https://how.bitshares.works/en/master/technology/dpos.html.
1150
+ [68] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In
1151
+ Proceedings of Annual International Cryptology Conference (Cham, 2017). Springer International Publishing.
1152
+ [69] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.
1153
+ In Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai, China, 2017). Association for Computing Machinery.
1154
+ [70] Yonatan Sompolinsky, and Aviv Zohar. Secure High-Rate Transaction Processing in Bitcoin. In Proceedings of International Conference on Financial
1155
+ Cryptography and Data Security (Berlin, Heidelberg, 2015). Springer Berlin Heidelberg.
1156
+ [71] Chenxin Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Guang Yang, Wei Xu, Fan Long, and Andrew Chi-Chih Yao. A decentralized blockchain
1157
+ with high throughput and fast confirmation. In Proceedings of 2020 USENIX Annual Technical Conference (USENIX ATC 20) (2020).
1158
+ [72] Serguei Popov. The tangle. White paper, 1, 3 (2018).
1159
+ [73] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva: speculative byzantine fault tolerance. In Proceedings
1160
+ of twenty-first ACM SIGOPS symposium on Operating systems principles (Stevenson, Washington, USA, 2007). Association for Computing
1161
+ Machinery.
1162
+ [74] Seth Gilbert, and Nancy Lynch. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News, 33, 2
1163
+ (2002), 51–59.
1164
+ [75] Eric Brewer. CAP twelve years later: How the" rules" have changed. Computer, 45, 2 (2012), 23-29.
1165
+ [76] Andrew Lewis-Pye, and Tim Roughgarden. Resource pools and the cap theorem. arXiv preprint arXiv:2006.10698, (2020).
1166
+ [77] Size of the Bitcoin blockchain from January 2009 to July 11, 2022(in gigabytes). 2022. https://www.statista.com/statistics/647523/worldwide-bitcoin-
1167
+ blockchain-size/.
1168
+ [78] Doriane Perard, Jérôme Lacan, Yann Bachy, and Jonathan Detchart. Erasure code-based low storage blockchain node. In Proceedings of 2018 IEEE
1169
+ International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
1170
+ and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (2018). IEEE.
1171
+ [79] Xiaodong Qi, Zhao Zhang, Cheqing Jin, and Aoying Zhou. BFT-Store: Storage partition for permissioned blockchain via erasure coding. In Proceedings
1172
+ of 2020 IEEE 36th International Conference on Data Engineering (ICDE) (2020). IEEE.
1173
+
1174
+
6tE1T4oBgHgl3EQf7AVi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE4T4oBgHgl3EQf2w06/content/2301.05300v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2976950c5e1ace2c9bd63ad558ca730b52a1b67d2417f239b799b91794108b16
3
+ size 891127
9NFPT4oBgHgl3EQfYjSJ/content/tmp_files/2301.13073v1.pdf.txt ADDED
@@ -0,0 +1,2303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Photon Bose-Einstein condensation and lasing in semiconductor cavities
2
+ Aurelian Loirette-Pelous and Jean-Jacques Greffet
3
+ Universit´e Paris-Saclay, Institut d’Optique Graduate School,
4
+ CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
5
+ (Dated: January 31, 2023)
6
+ Photon Bose-Einstein condensation and photon thermalisation have been largely studied with
7
+ molecular gain media in optical cavities. Their observation with semiconductors has remained elusive
8
+ despite a large body of experimental results and a very well established theoretical framework. We
9
+ use this theoretical framework as a convenient platform to revisit photon Bose-Einstein condensation
10
+ in the driven dissipative regime and compare with the lasing regime. We discuss the thermalisation
11
+ figures of merit and the different experimental procedures to asses thermalization. We compare the
12
+ definitions of lasing and condensation thresholds. Finally, we explore the fluctuations of the system
13
+ and their relation to the different regimes.
14
+ I.
15
+ INTRODUCTION
16
+ In
17
+ 2010,
18
+ experiments
19
+ by
20
+ Klaers
21
+ et
22
+ al.
23
+ [1,
24
+ 2]
25
+ identified and demonstrated Bose-Einstein condensation
26
+ of photons, a new light emission regime.
27
+ While this
28
+ regime share with lasing the macroscopic occupation of
29
+ one mode, cavity photons are in near-thermodynamic
30
+ equilibrium.
31
+ As a direct consequence, cavity modes
32
+ occupation follow a Bose-Einstein (BE) distribution and
33
+ condensation is forced in the lowest energy cavity mode.
34
+ At first glance, Bose-Einstein condensation (BEC)
35
+ with photons seems to be impossible.
36
+ On the one
37
+ hand, lasers are usually thought to operate far from
38
+ equilibrium.
39
+ On the other hand,
40
+ in the so-called
41
+ blackbody radiation, equilibrium between photons is
42
+ reached due to walls acting as a reservoir, but the null
43
+ chemical potential precludes condensation. Actually, a
44
+ suitable gain material such as pumped dyes molecules or
45
+ semiconductors can act as a reservoir providing a photon
46
+ chemical potential [3]. Thermalization of the photon gas
47
+ with such a reservoir is made possible with a high-Q
48
+ cavity, when the number of absorption-emission cycles
49
+ made by a photon before leaving the cavity becomes
50
+ large.
51
+ Furthermore, the cavity introduces a band gap
52
+ in the photon dispersion relation so that a lowest energy
53
+ state can be defined for a given band. These ingredients
54
+ are sufficient to ensure BE condensation of photons at
55
+ room temperature in the weak coupling regime [2].
56
+ In the last decade, the pioneering experiments [1, 2]
57
+ in a dye-filled microcavity triggered a large amount of
58
+ works in similar devices in order to understand further
59
+ this new regime and its properties. An important issue
60
+ has been to clarify the similarities and differences with
61
+ the lasing regime. While the overall crossover from the
62
+ standard out-of-equilibrium lasing phase to the BEC one
63
+ has been shown to be quite smooth [4], some features
64
+ of BEC have appeared.
65
+ At equilibrium, the emission
66
+ spectrum follows a BE distribution, and condensation
67
+ occurs into the lowest energy cavity modes.
68
+ When
69
+ thermalization breaks down, major spectral alterations
70
+ have been observed, ranging from deformation of the
71
+ thermal tail [1] to lasing in excited modes and multimode
72
+ lasing [5–7]. Early experiments investigating the second-
73
+ order coherence in the BEC regime evidenced large
74
+ fluctuations g(2)(0) = 2 even far above the condensation
75
+ threshold [8]. This thermal behaviour suggests a closest
76
+ resemblance of a photon BEC to a pumped blackbody
77
+ than to a standard laser.
78
+ As a consequence, first
79
+ order temporal coherence is also delayed to above-
80
+ threshold excitation [9].
81
+ In recent years, the question
82
+ about the difference between BEC and lasing has been
83
+ renewed due to the emergence of nanostructured cavity
84
+ mirrors enabling to realize complex potentials for light
85
+ [10–14].
86
+ Indeed,
87
+ in these systems,
88
+ controlling the
89
+ thermalization enables, for example, the study of vortices
90
+ formation and annihilation [15–17], or to envision analog
91
+ simulation with synchronized arrays of out-of-equilibrium
92
+ condensates [18–20].
93
+ Still, in the quest for these new
94
+ applications, we observe that several aspects of the
95
+ problem have been overlooked so far.
96
+ We list several
97
+ of them in the next paragraphs.
98
+ We first note that BE condensation of photons
99
+ has
100
+ been
101
+ observed
102
+ in
103
+ dye-filled
104
+ microcavities
105
+ [2,
106
+ 6,
107
+ 21]
108
+ and
109
+ plasmonic
110
+ nanoparticles
111
+ arrays
112
+ [22],
113
+ and
114
+ erbium–ytterbium
115
+ co-doped
116
+ fiber
117
+ cavities
118
+ [23].
119
+ Alternatively, semiconductors have received much less
120
+ attention up to now, in spite of being a very common and
121
+ versatile active medium. In particular, photon BEC in
122
+ semiconductor-based devices is not fully recognized yet.
123
+ This is surprising in many respects. On the experimental
124
+ one, spectral signatures hinting at thermalization and
125
+ BEC of photons has been observed early in a VCSEL
126
+ designed for polariton physics [24, 25].
127
+ More recently,
128
+ similar features have been observed in a commercial
129
+ VCSEL [26], suggesting that BEC (or near-equilibrium
130
+ BEC) of photons could be more common than it is
131
+ usually thought.
132
+ A high absorption/emission cycles
133
+ number before cavity loss has also
134
+ been
135
+ reported
136
+ in a quantum-well photonic crystal laser [27], while
137
+ not interpreted as BEC. On the theoretical side, the
138
+ possibility of a chemical potential for photons has been
139
+ historically demonstrated on a semiconductor example
140
+ [3].
141
+ Furthermore, simple and accurate models of gain
142
+ and lasing in semiconductors are available so that this
143
+ system is a very good playground to explore the physics
144
+ of photon Bose-Einstein condensation and lasing.
145
+ arXiv:2301.13073v1 [cond-mat.quant-gas] 30 Jan 2023
146
+
147
+ 2
148
+ Second,
149
+ finding
150
+ a
151
+ clear
152
+ signature
153
+ of
154
+ photon
155
+ thermalization
156
+ is
157
+ not
158
+ an
159
+ obvious
160
+ task.
161
+ On
162
+ the
163
+ experimental side,
164
+ the analysis of emission spectra
165
+ is often compared with a Bose-Einstein function.
166
+ On
167
+ the theoretical side, a dimensionless number quantifying
168
+ the
169
+ degree
170
+ of
171
+ thermalization
172
+ has
173
+ been
174
+ introduced
175
+ theoretically by some authors.
176
+ A simple connection
177
+ between these two approaches is still lacking.
178
+ Third, the connection between lasing and condensation
179
+ is not fully understood.
180
+ While a clear threshold
181
+ is observed in both cases, its exact positions differs.
182
+ This may impact the interpretation of the observed
183
+ phenomena.
184
+ Hence, there is a need to compare the
185
+ definitions of thresholds from laser and from equilibrium
186
+ BE condensates physics.
187
+ Fourth,
188
+ intensity
189
+ correlations
190
+ are
191
+ often
192
+ used
193
+ to
194
+ distinguish coherent light from stochastic light.
195
+ It is
196
+ interesting to revisit condensation and lasing by studying
197
+ fluctuations. While many results have been reported, the
198
+ role of the degree of thermalization and the role of the
199
+ β-factor of the cavity have not been fully discussed so
200
+ that it is difficult to draw final conclusions.
201
+ In
202
+ this
203
+ paper,
204
+ we
205
+ take
206
+ advantage
207
+ of
208
+ the
209
+ well-
210
+ developped formalism to describe gain in semiconductors
211
+ to analyse all these issues.
212
+ In the next section, we
213
+ present a simple unified theory of equilibrium and non-
214
+ equilibrium condensation of photons in a semiconductor-
215
+ based cavity. While similar to the pioneering model by
216
+ Kirton and Keeling [28, 29] for dye-filled microcavities,
217
+ we show that our model provides a straightforward
218
+ interpretation of the photons chemical potential.
219
+ We
220
+ then
221
+ derive
222
+ a
223
+ generalized
224
+ BE
225
+ distribution
226
+ in
227
+ the
228
+ driven-dissipative regime and exhibit a dimensionless
229
+ number that characterizes quantitatively the degree of
230
+ thermalization.
231
+ We discuss some of its properties and
232
+ clarify the connection with other dimensionless numbers
233
+ such as cooperativity, Knudsen number and optical
234
+ thickness.
235
+ In this new framework, we show how to
236
+ revisit some lasing features such as gain clamping and
237
+ inversion, and discuss the selection of the lasing mode.
238
+ An extended definition of the equilibrium condensation
239
+ threshold is also introduced for nonequilibrium systems,
240
+ and compared to the standard lasing threshold definition.
241
+ In Section 3, we discuss several observables to evaluate
242
+ to which extent a device is thermalized.
243
+ Equipped
244
+ with the explicit form of the degree of thermalization
245
+ introduced in the previous section, we can revisit the
246
+ typical experimental situations. In particular, we show
247
+ that the most common practice, consisting in studying
248
+ the emission spectrum, should be used with caution.
249
+ We finally focus on the second-order coherence in
250
+ Section 4.
251
+ We tackle the thermalisation issue by
252
+ calculating analytically the intensity autocorrelation
253
+ function g(2)(0) as a function of the β-factor and the
254
+ degree of thermalization.
255
+ II.
256
+ EQUILIBRIUM AND NON-EQUILIBRIUM
257
+ CONDENSATION OF PHOTONS IN A
258
+ SEMICONDUCTOR-BASED CAVITY
259
+ In this section, we first summarize basic forms of
260
+ the emission and absorption rate in a semiconductor.
261
+ We then use this formalism to recover the equilibrium
262
+ number of photons per mode in a lossless cavity.
263
+ We
264
+ finally compare this case to the one of a lossy cavity with
265
+ gain operating in the so-called driven-dissipative regime.
266
+ This approach enables us to discuss in a very simple
267
+ framework (i) the thermalization regime, introducing a
268
+ degree of thermalization in a very systematic way, (ii)
269
+ the connection between condensation and lasing and (iii)
270
+ the definitions of their respective threshold.
271
+ A.
272
+ Model of semiconductor gain medium in a
273
+ cavity
274
+ Throughout this paper, we will focus on a piece of
275
+ semiconductor placed in a cavity.
276
+ We assume finite
277
+ extension of the cavity so that photonics modes are
278
+ spectrally discretized. We index them with l = 0, 1, 2...nc
279
+ corresponding to increasing energies.
280
+ The various
281
+ particle exchange pathways between the gain medium,
282
+ the modes and the environment are shown on Fig. 1 (a).
283
+ In the cavity, photons in the l-th mode can be created
284
+ or annihilated by the gain medium at the rates Rl
285
+ em
286
+ for spontaneous emission, Rl
287
+ emN l for stimulated emission
288
+ and Rl
289
+ absN l for absorption, where N l is the number of
290
+ photons in the mode l.
291
+ Alternatively, radiative cavity
292
+ losses occurs at the rate κlN l.
293
+ In the semiconductor,
294
+ excited electrons are created at the rate Rin through
295
+ pumping (indistinctly electrical or optical) Conversely,
296
+ relaxation can occur through the above-depicted emission
297
+ in the cavity modes, through spontaneous emission into
298
+ vacuum modes at the rate Rvac
299
+ em , or through non-radiative
300
+ relaxation pathways (for example Auger effect) at the
301
+ rate Rnr.
302
+ In contrast with dye molecules, explicit forms of Rl
303
+ em
304
+ and Rl
305
+ abs can be derived for semiconductors.
306
+ Here
307
+ we focus on an intrinsic direct bandgap semiconductor,
308
+ indifferently
309
+ 2
310
+ or
311
+ 3-dimensional,
312
+ and
313
+ follow
314
+ usual
315
+ approximations [30].
316
+ As sketched on Fig.
317
+ 1 (b),
318
+ the conduction and heavy-hole valence band [31] are
319
+ described by the isotropic dispersion Ec(k) and Ev(k)
320
+ respectively, were k stands for the wavevector modulus.
321
+ Assuming that only vertical interband transitions are
322
+ possible, a transition involving a photon in the mode l
323
+ with energy El requires an electron and a hole with the
324
+ same wavevector ⃗kl so that Ec(kl) − Ev(kl) = El. We
325
+ also assume that the ground cavity mode energy is higher
326
+ than the gap energy E0 > Egap.
327
+ Interestingly, conduction electrons and valence holes
328
+ close to the gap edges can be well described as free
329
+ particles with an effective mass m∗
330
+ c/v, which leads to
331
+ the simple parabolic band model Ec/v(k) = E0
332
+ c/v ±
333
+
334
+ 3
335
+ Gain medium
336
+ Cavity
337
+ mode 𝑙
338
+ 𝑅𝑖𝑛
339
+ 𝜅𝑙𝑁𝑙
340
+ 𝑅𝑎𝑏𝑠
341
+ 𝑙
342
+ 𝑁𝑙
343
+ 𝑅𝑒𝑚
344
+ 𝑙
345
+ 𝑁𝑙
346
+ 𝑅𝑒𝑚
347
+ 𝑙
348
+ 𝑅𝑒𝑚
349
+ 𝑣𝑎𝑐
350
+ Pumping
351
+ Cavity loss
352
+ Absorption
353
+ Stim.
354
+ emission
355
+ Spont.
356
+ emission
357
+ Spont.
358
+ emission into
359
+ vacuum modes
360
+ a)
361
+ 𝑅𝑛𝑟
362
+ Non-radiative
363
+ relaxation
364
+ 0
365
+ k l
366
+ k=|k|
367
+ E 0
368
+ v
369
+ E 0
370
+ c
371
+ Ec(k l)
372
+ Ev(k l)
373
+ E
374
+ E l
375
+ E gap
376
+ Ec(k)=E 0
377
+ c +
378
+ 2k 2
379
+ 2m *
380
+ c
381
+ Ev(k)=E 0
382
+ v
383
+ 2k 2
384
+ 2m *
385
+ v
386
+ b)
387
+ 0
388
+ 1
389
+ 2
390
+ 1 Occupation
391
+ probability
392
+ E
393
+ c
394
+ v
395
+ fFD(E,T,
396
+ c)
397
+ fFD(E,T,
398
+ v)
399
+ FIG. 1. Scheme of the system and notations. Panel (a): flux
400
+ of particles between the gain medium, the cavity, and the
401
+ environment. Panel (b): semiconductor band structure as a
402
+ function of the wavevector modulus (left) and distribution of
403
+ the electrons in each band (right). See the main text for a
404
+ detailed description.
405
+ ℏ2k2
406
+ 2m∗
407
+ c/v with E0
408
+ c/v the energy minimum/maximum of the
409
+ conduction/valence band and ℏ the Planck constant.
410
+ Analytical expressions for El(kl) can be derived, as well
411
+ as for the density of states in each band ρc/v(k) and
412
+ the joint density of state ρJ(k) associated to the vertical
413
+ transitions [30].
414
+ Next,
415
+ we
416
+ assume
417
+ that
418
+ the
419
+ bands
420
+ are
421
+ in
422
+ local
423
+ thermodynamic equilibrium characterized by a Fermi-
424
+ Dirac distribution with a common temperature T and
425
+ local chemical potentials µc and µv, the so-called quasi-
426
+ Fermi levels. In the case of electrical pumping, we have
427
+ µc − µv = eV where V is the applied voltage.
428
+ As
429
+ the voltage increases, µc increases (resp. µv decreases)
430
+ from the Fermi-level, so that their difference µc − µv is
431
+ controlled. It is also possible to define quasi-Fermi levels
432
+ under optical pumping.
433
+ In this context, the spontaneous emission, stimulated
434
+ emission and absorption rates for the mode l can be
435
+ written respectively as [30]:
436
+ Rl
437
+ em = glfF D(Ec(kl), T, µc)[1 − fF D(Ev(kl), T, µv)]
438
+ (1)
439
+ and
440
+ Rl
441
+ abs = glfF D(Ev(kl), T, µv)[1−fF D(Ec(kl), T, µc)], (2)
442
+ where gl is a pumping-independent transition rate
443
+ and fF D(E, T, µ) = 1/[exp ( E−µ
444
+ kBT ) + 1] is the Fermi-
445
+ Dirac distribution with E the electron or hole energy,
446
+ kB the Boltzmann constant and µ a quasi-Fermi levels.
447
+ The microscopic expression of gl is given in Appendix
448
+ A. The right hand side of Eq.
449
+ (1) expresses that
450
+ emission is proportional to the probability of finding an
451
+ electron at the right energy in the conduction band and
452
+ a corresponding hole in the valence band, and conversely
453
+ for absorption in Eq. (2).
454
+ Finally, we define the fraction of spontaneous emission
455
+ into the mode l through the generalized β-factor:
456
+ βl =
457
+ Rl
458
+ em
459
+ Rvac
460
+ em + �
461
+ j Rj
462
+ em
463
+ .
464
+ (3)
465
+ In a single cavity mode context, this dimensionless
466
+ number
467
+ characterizes
468
+ the
469
+ emission
470
+ regime.
471
+ A
472
+ macroscopic laser corresponds to β → 0 while a nanolaser
473
+ corresponds to β → 1.
474
+ Indeed due to large (resp.
475
+ small) mode volume, a macroscopic (resp. nano-) laser
476
+ is characterized by a low (resp.
477
+ high) Purcell factor,
478
+ so that spontaneous emission into the numerous vacuum
479
+ modes (the mode l) is dominant. Reducing the volume
480
+ further tends to reduce the cavity mode number. Still the
481
+ cavity modes spacing and number can also be adjusted
482
+ e.g.
483
+ through engineering of the mirrors curvature for
484
+ Fabry-Perot-like cavities. Hence the quantities Rvac
485
+ em and
486
+
487
+ l Rl
488
+ em can be partially tuned independently.
489
+ B.
490
+ Photon BEC in a lossless cavity with gain
491
+ Bose-Einstein
492
+ condensation
493
+ is
494
+ a
495
+ property
496
+ of
497
+ an
498
+ ensemble
499
+ of
500
+ bosons
501
+ in
502
+ thermodynamic
503
+ equilibrium.
504
+ Quantitatively, thermodynamic equilibrium means that
505
+ a state at energy E is occupied according to a Bose-
506
+ Einstein distribution 1/[exp( E−µ
507
+ kBT ) − 1] where µ is the
508
+ chemical potential. Condensation may occur when the
509
+ chemical potential approaches the ground state energy
510
+ µ → E0.
511
+ In
512
+ the
513
+ blackbody
514
+ radiation,
515
+ photons
516
+ reach
517
+ a
518
+ thermodynamic equilibrium due to walls acting as a
519
+ reservoir.
520
+ This equilibrium is characterized by a null
521
+ photon chemical potential. Remarkably, Wurfel showed
522
+ that it is possible to introduce a photon chemical
523
+ potential when dealing with stationary systems with gain
524
+ [3].
525
+ We reproduce here the reasoning for clarity.
526
+ We
527
+
528
+ 4
529
+ start by assuming a perfectly lossless cavity, i.e. κl = 0.
530
+ In the steady-state regime, the balance between the
531
+ spontaneous and stimulated emission processes and the
532
+ absorption in the l-th photonic mode yields:
533
+ Rl
534
+ em + Rl
535
+ emN l = Rl
536
+ absN l,
537
+ (4)
538
+ where N l is the number of photons in the l-th mode. It
539
+ is readily seen that the photon number only depends on
540
+ the ratio between the absorption rate and the emission
541
+ rate Rl
542
+ abs/Rl
543
+ em. Given Eqs. (1),(2) which assumes that
544
+ the gain medium is in local thermodynamic equilibrium,
545
+ simple algebra allows to recover the Van Roosbroeck-
546
+ Shockley relation [32]:
547
+ Rl
548
+ abs
549
+ Rlem
550
+ = exp
551
+ �El − µ
552
+ kBT
553
+
554
+ ,
555
+ (5)
556
+ where µ = µc − µv. From Eqs (4) and (5), it follows
557
+ that the photon number in the mode l is given by:
558
+ N l =
559
+ 1
560
+ exp
561
+ � El−µ
562
+ kBT
563
+
564
+ − 1
565
+ ,
566
+ (6)
567
+ namely a Bose-Einstein distribution with temperature
568
+ T and a chemical potential defined as the quasi-Fermi
569
+ levels splitting. In the absence of pumping, the chemical
570
+ potential is null and we recover the blackbody radiation
571
+ distribution with the temperature of the semiconductor
572
+ at equilibrium.
573
+ Finally, beyond the semiconductor model used here,
574
+ we emphasize the key role of local thermodynamic
575
+ equilibrium in each band under pumping to derive this
576
+ result. Indeed, this appears as a sufficient condition on
577
+ the gain medium to reach photons BEC. In particular,
578
+ this explains why eq.
579
+ (5) can be written similarly
580
+ for dyes molecules in terms of emission and absorption
581
+ cross sections, a formula known as the Kennard-Stepanov
582
+ relation [33–35] (sometimes also called the Neporent-
583
+ McCumber relation,
584
+ see Ref.
585
+ [36] and references
586
+ therein).
587
+ To summarize, the number of photons in
588
+ a non-lossy cavity filled with a gain medium in local
589
+ thermodynamic equilibrium can be described by a Bose-
590
+ Einstein distribution with a non-zero chemical potential.
591
+ C.
592
+ The driven-dissipative regime of a lossy cavity
593
+ with gain: Lasing or BEC ?
594
+ We now consider a cavity coupled to the environment
595
+ through the loss rates κl > 0. Such a system composed
596
+ of a gain medium and a cavity with radiative losses is
597
+ usually considered to be a laser.
598
+ A natural question
599
+ then arises: what is the difference between Bose-Einstein
600
+ condensation and lasing ?
601
+ We repeat the analysis of the previous section using
602
+ the same assumptions and notations, now accounting
603
+ for cavity losses so that the system is in the driven-
604
+ dissipative regime.
605
+ The balance equation (4) becomes
606
+ Rl
607
+ em +Rl
608
+ emN l = (Rl
609
+ abs +κl)N l. The steady-state photon
610
+ number in the mode l can then be cast in the form [30]:
611
+ N l =
612
+ Rl
613
+ em
614
+ κl − (Rlem − Rl
615
+ abs).
616
+ (7)
617
+ In this last equation, the quantity Rl
618
+ em −Rl
619
+ abs is better
620
+ known as the net gain rate of the mode l. Hence, this
621
+ simple model recovers that the mode l starts to lase as the
622
+ net gain compensates the radiative losses. So far, we have
623
+ isolated a mode and computed its occupation number by
624
+ expressing the balance between gain and losses.
625
+ This
626
+ approach is at first glance at odds with the study of
627
+ the population of different modes in an equilibrium
628
+ system.
629
+ Nevertheless, we now cast this laser equation
630
+ in a form that mimicks Eq.(6). Upon factorization by
631
+ Rl
632
+ em and inserting the relation (5) in eq. (7), we find the
633
+ alternative form [37]:
634
+ N l =
635
+ 1
636
+ exp
637
+
638
+ El−µ
639
+ kBT
640
+
641
+ [1 + Kln(T, µ)] − 1
642
+ ,
643
+ (8)
644
+ where
645
+ Kl
646
+ n(T, µ) =
647
+ κl
648
+ Rl
649
+ abs(T, µ)
650
+ (9)
651
+ is a dimensionless number often called Knudsen
652
+ number in the context of transport phenomena and
653
+ Boltzmann equation. The Knudsen number is given by
654
+ the ratio of the absorption time
655
+ 1
656
+ Rl
657
+ abs by a characteristic
658
+ time of the cavity, the residence time of a photon in
659
+ the cavity
660
+ 1
661
+ κl .
662
+ Hence, in the regime where a photon
663
+ undergoes a large number of absorption and emission
664
+ cycles during the residence time, the Knudsen number
665
+ is small and the distribution (8) approaches the BE
666
+ distribution of a non-lossy cavity. In other words, the
667
+ large number of absorption and emission events enables
668
+ the photons to thermalize with the semiconductor acting
669
+ as a reservoir.
670
+ The Knudsen number appears to be
671
+ the natural quantity that quantifies how thermalized is
672
+ a mode. Importantly, note that a Knudsen number is
673
+ associated to each mode, it is not a global quantity. We
674
+ stress that some modes may be thermalized while others
675
+ are not.
676
+ As a conclusion of this section, it is clear from eq.
677
+ (8) that Bose-Einstein condensation of photons is a
678
+ particular regime of lasing, in which (i) Eq. (5) is satisfied
679
+ for the gain medium and (ii) the Knudsen number is small
680
+ for all the modes to ensure that they are all thermalized.
681
+ In the remaining of this work, we will use ”lasing” to refer
682
+ indistinctly to Bose-Einstein condensation or standard
683
+ out-of-equilibrium lasing. In addition, Eq. (8) provides
684
+ an alternative point of view to interpret lasing. Indeed,
685
+
686
+ 5
687
+ while Eq. (7) provides a good description of single mode
688
+ lasing in a system with significant losses and gain, we
689
+ anticipate that Eq. (8) will be more suited to the study
690
+ of multimode phenomena in the thermalized regime.
691
+ D.
692
+ Knudsen number, thermalization degree,
693
+ optical thickness, cooperativity and photon number
694
+ at transparency
695
+ In the last section, we have introduced the Knudsen
696
+ number Kl
697
+ n of a mode l as the absorption time divided
698
+ by the residence time in the cavity.
699
+ It takes small
700
+ values in the thermalized regime.
701
+ Its inverse, that we
702
+ note Dl, was called thermalization degree in Ref. [6] or
703
+ thermalization coefficient in Ref.
704
+ [38].
705
+ Its key role in
706
+ photon Bose-Einstein condensation had been suggested
707
+ [1] and identified [39] in early papers.
708
+ Here, we have
709
+ shown how it appears naturally from laser rates equation
710
+ in the context of an equilibrium distribution perturbed
711
+ by the introduction of cavity losses. Let us now discuss
712
+ alternative physical interpretations of the thermalization
713
+ degree. We first note that it can be viewed as the effective
714
+ cavity length Ll = c/κl divided by the absorption mean
715
+ free path ll
716
+ abs = c/Rl
717
+ abs.
718
+ With this point of view,
719
+ which is often used to discriminate between diffusive
720
+ regime and ballistic regime in transport phenomena, we
721
+ identify the degree of thermalization with the optical
722
+ thickness Ll/ll
723
+ abs = Dl.
724
+ Second, we remind that the
725
+ optical thickness is proportional to the cooperativity
726
+ C(Na). This quantity had been initially introduced to
727
+ characterize the absorption of a photon by an ensemble of
728
+ Na atoms in a cavity in the context of non-linear optics in
729
+ a cavity [40]. It is currently used as a measure of the light-
730
+ matter interaction in cavity quantum electrodynamics
731
+ (CQED) [41]. Finally, the thermalization degree has been
732
+ interpreted historically in laser physics as the photon
733
+ number at transparency [42]. Here this follows from Eq.
734
+ (7) when Rl
735
+ em = Rl
736
+ abs.
737
+ Interestingly, this suggests to
738
+ reinterpret some experiments featuring a high photon
739
+ number at transparency as Bose-Einstein condensation
740
+ of photons, see for example Ref. [27] for a semiconductor
741
+ laser in a photonic crystal cavity.
742
+ E.
743
+ Lasing mode in the BEC picture
744
+ In the previous sections, we showed that the laser
745
+ equation (8) giving the mode photon number has the
746
+ structure of a Bose-Einstein distribution apart from a
747
+ correction term given by 1 + Kl
748
+ n(T, µ). Hence, we can
749
+ revisit the lasing transition in terms of Bose-Einstein
750
+ distribution.
751
+ We start with the laser point of view given by Eq. (7).
752
+ In this framework, lasing in the mode l occurs as the gain
753
+ rate saturates when it approaches the loss rate (Rl
754
+ em −
755
+ Rl
756
+ abs) → κl. This is called gain clamping. In addition,
757
+ finite losses require positive gain, that is, population
758
+ inversion of the corresponding transition [43].
759
+ We now place in the perspective of the generalized
760
+ Bose-Einstein distribution.
761
+ We start by writing (8) in
762
+ a slightly different form [37]:
763
+ N l =
764
+ 1
765
+ exp
766
+ � El−µl
767
+ eff (T,µ)
768
+ kBT
769
+
770
+ − 1
771
+ ,
772
+ (10)
773
+ where
774
+ we
775
+ have
776
+ introduced
777
+ an
778
+ effective
779
+ chemical
780
+ potential µl
781
+ eff(T, µ) = µ − kBT log[1 + Kl
782
+ n(T, µ)]. Here,
783
+ we stress that this form enables to use the Bose-
784
+ Einstein distribution which is an equilibrium concept
785
+ in the nonequilibrium driven-dissipative regime.
786
+ The
787
+ effective chemical potential is composed of a term µ
788
+ which accounts for the gain and a term −kBT log[1+Kn]
789
+ which accounts for the losses. The usual condition for
790
+ Bose-Einstein condensation in the mode l is then directly
791
+ generalized as:
792
+ µl
793
+ eff(T, µ) → El.
794
+ (11)
795
+ Here, the increase of the pump power is interpreted as
796
+ increasing the quasi-Fermi levels splitting. Therefore µ
797
+ converges toward a fixed value µclp defined as the solution
798
+ of the implicit equation:
799
+ µclp − kBT log[1 + Kl
800
+ n(T, µclp)] = El.
801
+ (12)
802
+ This saturation of µ corresponds to gain clamping
803
+ in the BEC point of view.
804
+ In this last equation,
805
+ the correction term is always negative.
806
+ Hence, the
807
+ quasi-Fermi levels splitting must exceed the transition
808
+ energy El to trigger lasing.
809
+ This corresponds to
810
+ population inversion.
811
+ It highlights the importance to
812
+ distinguish between the quasi-Fermi levels splitting and
813
+ the effective chemical potential, since only the latter can
814
+ be interpreted as the photon chemical potential.
815
+ We now focus on a multimode system. The usual laser
816
+ textbook picture is the following [30, 44, 45]: the gain
817
+ curve is taken to be a bell-shaped function of frequency,
818
+ while the frequency dependence of the mirrors losses is
819
+ neglected. Lasing is thus expected to occur in the cavity
820
+ mode with largest gain.
821
+ This picture is at odds with
822
+ the one of ideal Bose-Einstein condensation, which is
823
+ expected to occur in the ground cavity mode.
824
+ We now revisit this issue using the Bose-Einstein
825
+ picture given by Eq.
826
+ (12).
827
+ In the present multimode
828
+ situation, each mode l defines a different clamping
829
+ value of the quasi-Fermi levels splitting, that we note
830
+ µl
831
+ clp. Single mode lasing takes place in the mode with
832
+ the smallest µl
833
+ clp.
834
+ To gain further insight, we assume
835
+ Kl
836
+ n(µl
837
+ clp) ≈ Kl
838
+ n(El).
839
+ The clamped quasi-Fermi levels
840
+ splitting of each mode l is simply given by:
841
+ µl
842
+ clp ≈ El + kBT log[1 + Kl
843
+ n(T, El)].
844
+ (13)
845
+
846
+ 6
847
+ Interestingly,
848
+ this expression is composed of two
849
+ competing terms: on one hand, the mode energy favors
850
+ lasing in low energy modes;
851
+ on the other hand, it
852
+ depends on the Knudsen number and favors lasing
853
+ in highly thermalized modes.
854
+ Therefore, without the
855
+ second contribution coming from the cavity losses, we
856
+ would recover the usual condensation on the ground
857
+ mode. In practice, lasing in a mode above the ground
858
+ mode is thus the signature of a system in which the
859
+ modes have very different thermalization degrees. This
860
+ discussion highlights that thermalization is primarily a
861
+ modal property and not a system property. Indeed, as
862
+ explained in Sec. II B, thermalization occurs between a
863
+ mode and the reservoir, rather than between modes.
864
+ Finally, we note that some authors used lasing in
865
+ the ground mode versus an excited mode as a criterion
866
+ to distinguish between BE condensation and out-of-
867
+ equilibrium lasing [38, 46]. While lasing in an excited
868
+ mode is indeed a signature of nonequilibrium operation,
869
+ Eq. (13) shows that condensation in the ground mode is
870
+ only the signature of a Knudsen number slowly varying
871
+ from one mode to another, regardless of its absolute
872
+ amplitude.
873
+ F.
874
+ Condensation versus lasing threshold
875
+ In the previous section, we showed how to interpret
876
+ the
877
+ mode
878
+ selected
879
+ for
880
+ lasing
881
+ within
882
+ a
883
+ generalized
884
+ Bose-Einstein condensation approach,
885
+ stressing that
886
+ condensation and lasing are two faces of the same coin.
887
+ As a next step, it is natural to compare the definitions
888
+ used for lasing threshold and for condensation threshold.
889
+ We first remind the lasing threshold definition. Many
890
+ different criteria can be used to characterize lasing [47,
891
+ 48]. Here, we consider the widely used condition based
892
+ on an input/output curve. On Fig. 2 (a), the number
893
+ of photons N j in the cavity is plotted as a function of
894
+ the injection rate of excited carriers, that we note Rin.
895
+ On a linear scale, N j turns suddenly from sublinear to
896
+ linear on a small pumping range. The threshold is defined
897
+ as the input rate of excited carriers Rin,LAS when the
898
+ linear slope is continued down to 0 output rate (see the
899
+ dashed blue line on Fig. 2 (a)). This input rate is equal
900
+ to the value of the losses, evaluated at gain clamping.
901
+ Indeed, close to clamping, stimulated emission funnel
902
+ all additional photons in the lasing mode.
903
+ The losses
904
+ are due to different mechanisms: the leakage through
905
+ non-lasing cavity modes with rate �
906
+ l̸=j κlN l(µj
907
+ clp), the
908
+ emission into vacuum modes (Rvac
909
+ em (µj
910
+ clp)) and other non-
911
+ radiative charge carrier relaxation processes (Rnr(µj
912
+ clp)).
913
+ The lasing threshold is thus given by:
914
+ Rin,LAS = Rnr(µj
915
+ clp)+Rvac
916
+ em (µj
917
+ clp)+
918
+
919
+ l̸=j
920
+ κlN l(µj
921
+ clp). (14)
922
+ We now focus on the condensation threshold definition.
923
+ In the literature on BEC in thermodynamic equilibrium,
924
+ the BEC threshold is defined by the equality between
925
+ the total number of particles and the number of particles
926
+ in the excited states in the condensed phase [49]. First,
927
+ note that in photons BEC experiments, the number N l
928
+ of photons in a mode l cannot be measured directly. Still,
929
+ the driven-dissipative regime enables to derive it from the
930
+ measured flux κlN l and the knowledge of the loss rate κl.
931
+ Second, note that in essence, this definition relies on the
932
+ same idea as for a laser: beyond threshold, all additional
933
+ photons will go to the condensed phase. As shown on Fig.
934
+ 2 (b), the condensation threshold is extracted graphically
935
+ in a similar fashion as for the laser threshold when
936
+ plotting the number of photons in the condensed mode
937
+ versus the total number of photons in the cavity. The
938
+ total number of photons in the cavity at threshold is then
939
+ given by the sum of non-condensing modes population at
940
+ clamping, namely �
941
+ l̸=j N l(µj
942
+ clp) = N tot
943
+ BEC.
944
+ Still, this
945
+ procedure differs from the lasing threshold definition, as
946
+ it is based on a number of photons in a cavity and not
947
+ on a comparison of fluxes of input carriers and emitted
948
+ photons. In particular, the nonradiative losses and the
949
+ radiative losses into vacuum modes are not taken into
950
+ account. Hence, the BEC definition leads to a smaller
951
+ value of the threshold for the quasi-Fermi levels splitting
952
+ than the lasing condition.
953
+ The difference is not very
954
+ large when the β factor is close to 1 but may be very
955
+ large when emission into vacuum modes dominates. This
956
+ is illustrated in Figure 2 (c) where it is seen that the
957
+ thresholds can differ by orders of magnitude (in term of
958
+ photons in the lasing mode).
959
+ To conclude, the choice of using the BEC or laser
960
+ threshold has to be conducted carefully, as they can
961
+ take very different values.
962
+ To guide this choice, one
963
+ should note that for the lasing threshold, both the
964
+ input and emitted power must be monitored, while
965
+ the emitted power spectrum is sufficient to determine
966
+ the condensation one.
967
+ As already encountered in
968
+ the previous sections, this suggests that other than
969
+ making a real difference between BEC and lasing, the
970
+ ”condensation” point of view is a framework suited to the
971
+ study of the multimode character of the system, while the
972
+ ”lasing” one rather focus on its driven-dissipative aspect.
973
+ III.
974
+ EXPERIMENTAL ASSESSMENT OF
975
+ THERMALIZATION
976
+ In the previous section, we made a clear distinction
977
+ between BEC and lasing using the thermalization degree
978
+ of the modes. However, the thermalization degree cannot
979
+ be measured directly. Indeed, it is proportionnal to the
980
+ absorption rate Rl
981
+ abs, but only the net absorption rate
982
+ Rl
983
+ abs − Rl
984
+ em is given by a transmission measurement.
985
+ In this section, we aim at finding observable quantities
986
+ that depend sharply on the thermalization degree,
987
+ enabling its assessment. We first analyze the emission
988
+ spectrum under homogenenous pumping, which is the
989
+ most common experimental practice,
990
+ and find that
991
+
992
+ 7
993
+ Rin,LAS/ j
994
+ Rin/ j
995
+ 0
996
+ N j
997
+ LAS
998
+ N j
999
+ a)
1000
+ Laser input-ouput curve
1001
+ (Rin
1002
+ Rin,LAS)/ j fit
1003
+ N tot
1004
+ BEC
1005
+ N tot
1006
+ 0
1007
+ N j
1008
+ BEC
1009
+ N j
1010
+ b)
1011
+ Photon-Photon curve
1012
+ (N tot
1013
+ N tot
1014
+ BEC) fit
1015
+ 10
1016
+ 1
1017
+ 101
1018
+ 103
1019
+ 105
1020
+ 107
1021
+ 109
1022
+ Rin/ 0
1023
+ 10
1024
+ 1
1025
+ 101
1026
+ 103
1027
+ 105
1028
+ 107
1029
+ 109
1030
+ N 0
1031
+ c)
1032
+ R vac
1033
+ em /
1034
+ l
1035
+ j
1036
+ lN l =0
1037
+ 0 =2.5×10 2
1038
+ R vac
1039
+ em /
1040
+ l
1041
+ j
1042
+ lN l =2.4×102
1043
+ 0 =10 4
1044
+ R vac
1045
+ em /
1046
+ l
1047
+ j
1048
+ lN l =2.5×106
1049
+ 0 =10 8
1050
+ Condensation threshold
1051
+ Laser threshold
1052
+ FIG. 2. Panel (a): schematic input-output laser curve (red
1053
+ line) on a linear scale. The dashed blue line is a linear fit of
1054
+ the laser curve. Its intersection with the N j = 0 axis defines
1055
+ the laser pumping threshold Rin,LAS.
1056
+ The corresponding
1057
+ lasing mode photon number at threshold is noted N j
1058
+ LAS.
1059
+ Panel (b): schematic photon-photon curve of a multimode
1060
+ driven-dissipative BEC condensing in the mode j (red line)
1061
+ on a linear scale.
1062
+ N tot = �
1063
+ l N l is the total number of
1064
+ photons in the cavity.
1065
+ The dashed blue line is a linear fit
1066
+ of the BEC curve.
1067
+ Its intersection with the N j = 0 axis
1068
+ defines the BEC threshold N tot
1069
+ BEC. The corresponding lasing
1070
+ mode photon number at threshold is noted N j
1071
+ BEC.
1072
+ Panel
1073
+ (c): comparison of the lasing mode photon number at laser
1074
+ and BEC thresholds, on input-output curves corresponding to
1075
+ different rates of spontaneous emission into vacuum modes. A
1076
+ constant cavity modes spacing is assumed so that their energy
1077
+ reads El = E0(1 + 0.001 × l), with E0 = 1.271 eV. κl and gl
1078
+ are assumed constant over the modes, with a ratio gl/κl = 10.
1079
+ This enforces lasing in the ground mode. Non-radiative losses
1080
+ are neglected Rnr = 0.
1081
+ To help considering the value of
1082
+ Rvac
1083
+ em (µj
1084
+ clp)/ �
1085
+ l̸=j κlN l(µj
1086
+ clp), the corresponding value of β0
1087
+ is given in the legend.
1088
+ Other parameters are compiled in
1089
+ Appendix C.
1090
+ this method may not be reliable.
1091
+ We then discuss
1092
+ spectral and spatial measurements under inhomogeneous
1093
+ pumping. We finally discuss the influence of band-filling
1094
+ on the thermalization degree.
1095
+ A.
1096
+ Spectrum analysis
1097
+ In an ideally thermalized system, we saw in Section
1098
+ II B that the mode occupation follows a Bose-Einstein
1099
+ distribution N l = 1/[exp( El−µ
1100
+ kBT ) − 1]. At low occupation
1101
+ numbers,
1102
+ the classical regime is recovered,
1103
+ namely,
1104
+ the BE distribution reduces to a Maxwell-Boltzmann
1105
+ distribution N l
1106
+ ≈ exp(− El−µ
1107
+ kBT ).
1108
+ Hence, a common
1109
+ practice to prove thermalization consists in looking for
1110
+ a linear decay on a semilogarithmic plot of the spectrum
1111
+ [24, 26, 50, 51]. Here, we compare this approach with the
1112
+ characterization based on the Knudsen number.
1113
+ In the classical regime, the generalized BE distribution
1114
+ eq. (8) becomes:
1115
+ N l ≈
1116
+ exp(− El−µ
1117
+ kBT )
1118
+ 1 + Kln
1119
+ .
1120
+ (15)
1121
+ It is readily seen that an exponential decay of the
1122
+ cavity photons spectrum is observed in two cases: (i) the
1123
+ Knudsen number of all the modes is much lower than
1124
+ 1, and (ii) the Knudsen number is constant over the
1125
+ modes, whatever its value. In the second case, despite
1126
+ an exponential behaviour of the spectrum, the Knudsen
1127
+ number may take values ≳ 1 indicating a non thermalized
1128
+ system.
1129
+ Beyond the classical regime, it is noteworthy that this
1130
+ issue persists in the quantum degenerate regime. Indeed,
1131
+ according to Eq. (10), the generalized BE distribution
1132
+ with constant Knudsen number Kn simplifies in an
1133
+ equilibrium BE distribution with the effective chemical
1134
+ potential µeff
1135
+ = µ − kBT log[1 + Kn] [37].
1136
+ All in
1137
+ all, it means that spectrum analysis with homogeneous
1138
+ pumping in order to quantify the thermalization may
1139
+ not be reliable. In particular, we note in Appendix B
1140
+ that devices featuring a large, planar and homogeneously
1141
+ pumped cavity are likely to feature a nearly constant
1142
+ Knudsen number. This may explain the BE-like spectra
1143
+ observed in optically [24, 25] and electrically [26] pumped
1144
+ large area VCSELs.
1145
+ B.
1146
+ Inhomogeneous pumping
1147
+ An interesting signature of thermalization can be
1148
+ observed when using an inhomogeneous pumping with
1149
+ a beam or injection area much smaller than the cavity.
1150
+ Indeed, the pumped part of the gain medium emits
1151
+ photons isotropically through spontaneous emission.
1152
+ These photons can be reabsorbed efficiently everywhere
1153
+ in a thermalized system.
1154
+ As a consequence,
1155
+ the
1156
+ gain is homogeneous in the cavity despite a localized
1157
+ pumping.
1158
+ To describe this effect, it is necessary to
1159
+ include additional rate equations describing locally the
1160
+ gain medium population [38, 39, 52].
1161
+ While this goes
1162
+ far beyond the scope of the present work, we give a
1163
+ hint of the complexity of this case by writing how the
1164
+
1165
+ 8
1166
+ photon occupation number is modified.
1167
+ The balance
1168
+ equation (4) with the losses κl for a mode l has
1169
+ to be integrated over the gain medium volume (also
1170
+ called active volume) Vact, namely
1171
+
1172
+ Vact d3⃗r
1173
+
1174
+ Rl
1175
+ em(⃗r ) +
1176
+ Rl
1177
+ em(⃗r )N l�
1178
+ = N l �
1179
+ Vact d3⃗r
1180
+
1181
+ Rl
1182
+ abs(⃗r ) + κl/Vact
1183
+
1184
+ where the
1185
+ rates are now defined locally.
1186
+ In particular, the local
1187
+ Knudsen number is Kl
1188
+ n(⃗r) = κl/[Rl
1189
+ abs(⃗r )Vact].
1190
+ The
1191
+ photon number in the mode l then becomes:
1192
+ N l =
1193
+ 1
1194
+ exp(
1195
+ El
1196
+ kBT )
1197
+
1198
+ exp( µ(⃗r )
1199
+ kBT )
1200
+ �l
1201
+
1202
+ 1 +
1203
+
1204
+ Kln(⃗r )
1205
+ �l�
1206
+ − 1
1207
+ ,
1208
+ (16)
1209
+ where ⟨A(⃗r )⟩l =
1210
+
1211
+ Vact d3⃗r Rl
1212
+ abs(⃗r )A(⃗r )/
1213
+
1214
+ Vact d3⃗r Rl
1215
+ abs(⃗r )
1216
+ is a spatial average weighted and normalized by the
1217
+ absorption rate.
1218
+ While the global distribution still
1219
+ appears as a generalized BE distribution, additional
1220
+ complexity is brought by the spatial average.
1221
+ In
1222
+ particular,
1223
+ the
1224
+ weighting
1225
+ by
1226
+ the
1227
+ local
1228
+ absorption
1229
+ now gives a modal dependence to the quasi-Fermi
1230
+ levels splitting.
1231
+ An enhanced sensitivity to imperfect
1232
+ thermalization is thus expected. Experimentally, it was
1233
+ reported in Ref.
1234
+ [1] a departure from the ideal BE
1235
+ distribution of high energy modes occupation, while the
1236
+ thermalization degree was tuned down. Given the small
1237
+ extension of the optical pump used compared to the
1238
+ large extension of these high energy modes, this is in
1239
+ good qualitative agreement with our considerations. A
1240
+ similar observation has also been made in Ref. [22] for
1241
+ plasmon-polaritons.
1242
+ Beside spectrum analysis, we eventually mention two
1243
+ other types of measurements that reveal efficiently
1244
+ the thermalization of the system with inhomogeneous
1245
+ pumping. The first consists in measuring the size of the
1246
+ condensate as a function of the size of the pumping beam.
1247
+ When the system is well thermalized, the condensate
1248
+ size is invariant, while it follows the size of the spot in
1249
+ the opposite case. This type of measurement has been
1250
+ reported [53]. In the same fashion, the spatial position
1251
+ of the condensate in a trap can be compared with the
1252
+ position of the pump beam. As the pump is moved away
1253
+ from the center of the trap, the longer condensation keeps
1254
+ occurring in the center, the higher the thermalization
1255
+ rate. This measurement has been reported in Ref. [1, 4].
1256
+ C.
1257
+ Thermalization and saturation at high pumping
1258
+ In
1259
+ the
1260
+ last
1261
+ subsection,
1262
+ we
1263
+ discussed
1264
+ how
1265
+ the
1266
+ thermalization
1267
+ of
1268
+ a
1269
+ system
1270
+ can
1271
+ be
1272
+ probed
1273
+ with
1274
+ inhomogeneous pumping.
1275
+ Noteworthy, this has been
1276
+ done as if the thermalization of a mode was a general
1277
+ quantity, independent on the pumping strength. Here,
1278
+ we discuss how the thermalization evolves as the system
1279
+ is driven toward the degenerate regime through strong
1280
+ pumping.
1281
+ The key issue is simple:
1282
+ thermalization is
1283
+ ensured by absorption and reemission; if the gain medium
1284
+ is highly pumped and approaches saturation, absorption
1285
+ is reduced and hence thermalization decreases.
1286
+ 1.00
1287
+ 1.05
1288
+ 1.10
1289
+ 1.15
1290
+ 1.20
1291
+ 1.25
1292
+ 1.30
1293
+ 1.35
1294
+ (eV)
1295
+ 10
1296
+ 1
1297
+ 100
1298
+ 101
1299
+ 102
1300
+ 103
1301
+ D l
1302
+ gl/ l =1000
1303
+ gl/ l =100
1304
+ gl/ l =10
1305
+ gl/ l =2
1306
+ =E l
1307
+ ( clp,D l
1308
+ clp)
1309
+ FIG. 3.
1310
+ Variation of the thermalization degree Dl of a
1311
+ mode l as a function of the quasi-Fermi levels splitting µ,
1312
+ for various ratio gl/κl. The colored dots indicate clamping as
1313
+ defined in Eq. (12), at the quasi-Fermi levels splitting µclp
1314
+ and the thermalization degree Dl
1315
+ clp = Dl(µclp). The vertical
1316
+ dark dashed line indicates transparency, namely µ = El. The
1317
+ energy of the mode is El = 1.271 eV. Other parameters are
1318
+ compiled in Appendix C.
1319
+ Inserting Eq. (2) into Eq. (9), the dependence of the
1320
+ thermalization degree on the quasi-Fermi levels (that is
1321
+ pumping) reads:
1322
+ Dl = gl
1323
+ κl fF D(Ev(kl), T, µv)[1−fF D(Ec(kl), T, µc)]. (17)
1324
+ On Fig. 3, we show the evolution of the thermalization
1325
+ degree of a mode l as a function of the quasi-Fermi
1326
+ levels splitting µ [54] for various gl/κl.
1327
+ At low
1328
+ pumping, filling of the conduction band (and accordingly
1329
+ depletion of the valence band) is negligible so that Dl =
1330
+ gl/κl. When increasing the quasi-Fermi levels splitting,
1331
+ the thermalization degree decreases significantly.
1332
+ At
1333
+ clamping (colored dot), the fall is about a multiplication
1334
+ factor 1/5 at high gl/κl, and more than 1/10 at low gl/κl.
1335
+ In the first case, corresponding to a well thermalized
1336
+ mode, clamping occurs right over transparency (dark
1337
+ dashed vertical line). In a two-level system, transparency
1338
+ corresponds to an occupation probability of 1/2 of the
1339
+ upper and lower level, so that the product of the levels
1340
+ occupation is 1/4.
1341
+ Here, the slightly different value is
1342
+ due to the asymmetry of the bands of our semiconductor
1343
+ model (see Appendix C). In the low mode thermalization
1344
+ case, a large inversion population is needed for lasing,
1345
+ that occurs well above transparency.
1346
+ The occupation
1347
+ probability of the conduction band is then much greater
1348
+ than 1/2, and conversely for the valence band. Hence,
1349
+ the degree of thermalization is significantly decreased
1350
+ compared to the near-equilibrium case.
1351
+ In
1352
+ summary,
1353
+ reliable
1354
+ assessments
1355
+ of
1356
+ the
1357
+ system
1358
+ thermalization should be made in the degenerate regime
1359
+
1360
+ 9
1361
+ due to this dependence of the thermalization degree
1362
+ dependence on pumping.
1363
+ IV.
1364
+ INTENSITY FLUCTUATIONS: ARE THEY
1365
+ A BEC SIGNATURE ?
1366
+ In the previous part, we showed that the spectrum is a
1367
+ quantity that can reveal the thermalization of the system,
1368
+ but which needs to be analyzed and probed with care. In
1369
+ this section, we investigate the intensity fluctuations as
1370
+ an alternative observable to distinguish between the BEC
1371
+ and the out-of-equilibrium laser regimes.
1372
+ A.
1373
+ Context
1374
+ In the textbook picture of out-of-equilibrium lasing,
1375
+ coherence sets up right at the lasing threshold [30].
1376
+ Above threshold, the intensity fluctuations are ruled
1377
+ by Poissonian statistics resulting in a second order
1378
+ correlation function at zero-time delay g(2)(0) = 1. On
1379
+ the contrary, earlier works on intensity fluctuations in the
1380
+ BEC regime predicted [55] and then measured [8] super-
1381
+ Poissonian statistics for light well-above condensation
1382
+ threshold.
1383
+ This thermal regime,
1384
+ characterized by
1385
+ g(2)(0) = 2, was found to extend deeply in the condensed
1386
+ phase, before the crossover to the usual Poissonian light
1387
+ was recovered.
1388
+ This ask the question whether large
1389
+ fluctuations are a signature of BEC.
1390
+ While the picture described in the last paragraph
1391
+ suggests studying the fluctuations according to the
1392
+ thermalization degree,
1393
+ other parameter have to be
1394
+ taken
1395
+ into
1396
+ account.
1397
+ In
1398
+ Refs.
1399
+ [8,
1400
+ 55],
1401
+ it
1402
+ has
1403
+ been
1404
+ pointed
1405
+ out
1406
+ that
1407
+ the
1408
+ reservoir
1409
+ size
1410
+ has
1411
+ an
1412
+ important influence on fluctuations. For large reservoirs,
1413
+ the
1414
+ gain
1415
+ medium
1416
+ can
1417
+ be
1418
+ loosely
1419
+ thought
1420
+ as
1421
+ an
1422
+ infinite reservoir, recovering grand-canonical ensemble
1423
+ conditions. The large condensed mode photon number
1424
+ fluctuations, comparable to its mean value even above
1425
+ condensation threshold, are then identified to the so-
1426
+ called grand-canonical fluctuation catastrophe [56]. On
1427
+ the contrary, fluctuations become limited when the
1428
+ reservoir excitations number is smaller than the mean
1429
+ photon number.
1430
+ Besides the role of the volume, it has been shown that
1431
+ the β-factor has a strong influence on the fluctuations
1432
+ for micro- and nano-lasers [57, 58]. While macroscopic
1433
+ lasers with low β−factor show the usual steep crossover
1434
+ between thermal and Poissonian light at lasing threshold,
1435
+ in high-β devices the crossover is slow and occurs well
1436
+ above threshold. Knowing that the perfect equilibrium
1437
+ approach of Ref. [55] assumed a β = 1 cavity, this rather
1438
+ suggests that intensity fluctuations could be independent
1439
+ on the system thermalization, at least in the nanolaser
1440
+ limit.
1441
+ In summary, assessing the role of thermalization on
1442
+ fluctuations requires to carefully control both the effect of
1443
+ the size of the reservoir and the β-factor. With that many
1444
+ degrees of freedom, it is a theoretical challenging task.
1445
+ Methods to calculate the photon number distribution
1446
+ like master equations for the lasing mode photon number
1447
+ [29, 55, 59, 60] or stochastic rate equations [61–64] can
1448
+ hardly been solved numerically. In the next subsections,
1449
+ we proceed to a simpler investigation, focusing only on
1450
+ the second-order coherence at zero-time delay g(2)(0).
1451
+ We calculate this quantity by studying the small photon
1452
+ number deviations over the steady state in the Langevin
1453
+ approach. Interestingly, we note that for this quantity,
1454
+ this approach showed good agreement with a more
1455
+ rigorous stochastic rate equations model [61].
1456
+ Thus,
1457
+ this allows to get accurate and analytical insights for an
1458
+ observable easily accessible experimentally.
1459
+ B.
1460
+ Second-order coherence at zero delay time
1461
+ We base our investigation on the dynamical evolution
1462
+ equation of the photon number N j(t) in the cavity mode
1463
+ j that is lasing. For simplicity, we neglect the influence of
1464
+ other cavity modes on the system dynamics, and of non-
1465
+ radiative losses. Hereafter, we omit the mode superscript
1466
+ N j = N. Following the notations of Fig. 1 (a) for the
1467
+ various exchange pathways between the cavity, the gain
1468
+ medium and the environment, the dynamical evolution
1469
+ equation for N(t) is given by:
1470
+ dN
1471
+ dt = −κN +[Rem(Ne)−Rabs(Ne)]N +Rem(Ne), (18)
1472
+ where Ne(t) is the number of excited electrons in the
1473
+ gain medium.
1474
+ We switched from the variables µc and
1475
+ µv to Ne for simplicity. In semiconductors gain media,
1476
+ the excited electrons dynamics is usually commensurable
1477
+ with the one of the cavity photons [30].
1478
+ Hence the
1479
+ corresponding evolution equation of Ne(t) must be taken
1480
+ into account. According to Fig. 1, it yields:
1481
+ dNe
1482
+ dt
1483
+ = Rin −[Rem(Ne)−Rabs(Ne)]N − Rem(Ne)
1484
+ β
1485
+ , (19)
1486
+ where we used that Rvac
1487
+ em = (1/β − 1)Rem as follows
1488
+ from Eq. (3). In the following, β will be assumed to be
1489
+ independent on pumping, as usual in laser physics [30].
1490
+ All in all, these 2-coupled rate equations correspond to
1491
+ a standard class-B model broadly used to describe the
1492
+ dynamics of most semiconductor single mode lasers [30].
1493
+ We now note the steady-state solutions of equations
1494
+ (18),(19) as Nss, Ne,ss, respectively. We also introduce
1495
+ the small deviations δN(t), δNe(t), with |δN| ≪ Nss
1496
+ and |δNe| ≪ Ne,ss.
1497
+ We then linearize Eqs.
1498
+ (18),(19)
1499
+ to first order in these parameters. The noise due to the
1500
+ quantization of the emission, absorption, pumping and
1501
+ loss process is finally added to each equation through
1502
+ the respective stochastic terms Fp, Fe.
1503
+ We obtain the
1504
+ following coupled Langevin equations:
1505
+
1506
+ 10
1507
+ dδN
1508
+ dt
1509
+ = −γppδN + γpeδNe + Fp
1510
+ (20)
1511
+ and
1512
+ dδNe
1513
+ dt
1514
+ = −γepδN − γeeδNe + Fe,
1515
+ (21)
1516
+ where
1517
+ we
1518
+ have
1519
+ defined
1520
+ the
1521
+ short-hands
1522
+ γpp
1523
+ =
1524
+ −[Rem(Ne,ss) − Rabs(Ne,ss)] + κ, γpe = Nss∂Ne[Rem −
1525
+ Rabs](Ne,ss) + ∂NeRem(Ne,ss), γep
1526
+ =
1527
+ [Rem(Ne,ss) −
1528
+ Rabs(Ne,ss)],
1529
+ γee
1530
+ =
1531
+ Nss∂Ne[Rem − Rabs](Ne,ss) +
1532
+ (1/β)∂NeRem(Ne,ss). In addition, the stochastic terms
1533
+ verify the usual correlations properties ⟨Fx(t1)Fy(t2)⟩ =
1534
+ 2Sxyδ(t1 − t2) with x, y
1535
+
1536
+ (p, e) [30],
1537
+ where the
1538
+ expressions of the Sxy are given in Appendix D.
1539
+ In this linearized Langevin approach, the second-order
1540
+ intensity correlation g(2)(0) = ⟨N(0)[N(0) − 1]⟩/N 2
1541
+ ss is
1542
+ given by:
1543
+ g(2)(0) = 1 −
1544
+ 1
1545
+ Nss
1546
+ + ⟨δN(0)2⟩
1547
+ N 2ss
1548
+ .
1549
+ (22)
1550
+ A detailed expression is then obtained by Fourier
1551
+ transforming (20),(21), so that the problem can be
1552
+ reformulated into a matricial form which is easy to invert.
1553
+ The full result, well-known in the literature [30, 61, 65],
1554
+ is given in Appendix D. Simple asymptotic expressions
1555
+ can be written for limiting values of some parameters, as
1556
+ discussed in the next subsection.
1557
+ C.
1558
+ Results
1559
+ We first focus on the usual macroscopic laser limit
1560
+ β → 0. From the full expression in Appendix D, simple
1561
+ algebra show that the second-order coherence at zero
1562
+ delay time reduces to:
1563
+ g(2)(0) = 1 +
1564
+ 1
1565
+ 1 +
1566
+ � Nss
1567
+ NLAS
1568
+ �2 ,
1569
+ (23)
1570
+ where NLAS is the photon number at lasing threshold.
1571
+ The coherence threshold is defined at g(2)(0) = 1.5
1572
+ corresponding to N = NLAS. Going straight to the point,
1573
+ this equality between the coherence and laser thresholds
1574
+ does not allow for a distinction between standard laser
1575
+ and photons BEC in this limit. Indeed here the crossover
1576
+ from thermal to Poissonian statistics always occurs at
1577
+ lasing threshold, regardless of the thermalization degree.
1578
+ We now focus on the opposite, ”nanolaser” limit β →
1579
+ 1, where most of the spontaneous emission goes into the
1580
+ single cavity mode. The second-order coherence at zero
1581
+ delay time now follows the asymptotic behaviour [55, 57,
1582
+ 58, 63, 65]:
1583
+ g(2)(0) = 1 +
1584
+ 1
1585
+ 1 +
1586
+ � Nss
1587
+ NCO
1588
+ �2 ,
1589
+ (24)
1590
+ where the coherence threshold is now given by NCO ≈
1591
+
1592
+ Rem(Nss=∞)
1593
+ ∂Ne[Rem−Rabs](Nss=∞)
1594
+ �1/2
1595
+ . It is seen that NCO presents
1596
+ no explicit dependence on the thermalization degree.
1597
+ Coming back to our initial question, we conclude that
1598
+ the study of intensity fluctuations through the second-
1599
+ order coherence at zero delay time does not provide a
1600
+ mean to distinguish between the out-of-equilibrium laser
1601
+ and the BE condensation regimes.
1602
+ Finally, we discuss the consequence of this conclusion
1603
+ on the grand canonical fluctuation catastrophe. In the
1604
+ nanolaser limit, the coherence threshold is not given
1605
+ by the laser nor the BEC threshold. In particular, for
1606
+ realistic parameter values, the coherence threshold is
1607
+ shifted to much stronger pumping values than the laser
1608
+ threshold [57, 58, 65] and the BEC threshold [55]. Hence,
1609
+ there is a lasing/BEC regime with large fluctuations
1610
+ between these two thresholds. It is possible to attribute
1611
+ this regime to grand canonical fluctuations.
1612
+ Indeed,
1613
+ it has been shown [8] that the coherence threshold
1614
+ square N 2
1615
+ CO corresponds to an effective number of excited
1616
+ carriers in the gain medium.
1617
+ Therefore, in the range
1618
+ between the condensation and the coherence thresholds,
1619
+ the gain medium is large compared to the photon gas and
1620
+ can be considered to be an infinite reservoir. Remarkably,
1621
+ we find that the concept of grand canonical fluctuations
1622
+ is not restricted to equilibrium BE condensation but can
1623
+ be extended to non-equilibrium systems.
1624
+ V.
1625
+ CONCLUSION
1626
+ To summarize, we have explored the photon Bose-
1627
+ Einstein condensate regime for semiconductors in a
1628
+ cavity.
1629
+ Owing to the explicit form of the gain for
1630
+ semiconductors and the extensive body of knowledge for
1631
+ semiconductors lasers, this system is a very convenient
1632
+ playground which provides a theoretical framework to
1633
+ discuss both lasing and condensation.
1634
+ Using the
1635
+ Van Roosbroek-Schockley relation, we have shown that
1636
+ the photon Bose-Einstein condensation in the driven
1637
+ dissipative regime is a particular case of the lasing regime.
1638
+ The theoretical framework also enables to compare the
1639
+ definitions of threshold used either for condensation
1640
+ or for lasing.
1641
+ A Knudsen number emerges naturally
1642
+ from the analysis to characterize thermalization.
1643
+ We
1644
+ have discussed its close connection with other quantities
1645
+ introduced in different contexts such as thermalisation
1646
+ degree, optical thickness and cooperativity.
1647
+ Equipped
1648
+ with
1649
+ this
1650
+ theoretical
1651
+ figure
1652
+ of
1653
+ merit
1654
+ to
1655
+ quantify
1656
+ thermalization, we have analysed different experimental
1657
+ procedures to assess thermalization and put forward their
1658
+ strengths and limitations.
1659
+ Finally, we have explored
1660
+ the connection between the intensity fluctuations and
1661
+
1662
+ 11
1663
+ the emission regime.
1664
+ Large fluctuations are a priori
1665
+ expected to be a signature of the grand canonical regime
1666
+ typical of the equilibrium condensation. However, using
1667
+ a Langevin analytical model of the fluctuations in the
1668
+ driven-dissipative regime, we showed that the coherence
1669
+ threshold does not depend on the thermalization degree,
1670
+ both for large and small β-factors.
1671
+ In this paper, we have explored the stationary regime
1672
+ of a single BEC. The semiconductor platform appears to
1673
+ be a very fruitful playground to study BEC physics. An
1674
+ interesting direction for future work is to revisit in the
1675
+ BEC regime recent results obtained with semiconductor
1676
+ cavities such as topological lasers [66–68], chiral emission
1677
+ [69], nonlinearities [70] including superfluidity [71]. The
1678
+ platform is also well suited to further explore the
1679
+ dynamical behavior of BEC [72]. Also, the analysis of
1680
+ the fluctuations has revealed an interesting regime for
1681
+ micro and nanolasers above the lasing threshold and
1682
+ below the coherence threshold which can be viewed as
1683
+ grand-canonical fluctuations in non-equilibrium systems.
1684
+ This calls for more detailed studies of this phenomenon
1685
+ in the framework of open systems. It may provide new
1686
+ experimental platforms for the study of nonequilibrium
1687
+ statistical phenomena.
1688
+ ACKNOWLEDGMENTS
1689
+ We are grateful to Gian Luca Lippi for helpful
1690
+ discussions.
1691
+ This work is supported by the French
1692
+ National Agency (ANR) (ANR-17-CE24-0046). J.-J.G.
1693
+ acknowledges the support of Institut Universitaire de
1694
+ France (IUF).
1695
+ Appendix A: Microscopic expression of gl
1696
+ According to the Fermi golden rule, it is shown that gl
1697
+ can be cast into the form [30]:
1698
+ gl = 2π
1699
+ ℏ [ℏΩ]2ρJVactΓl,
1700
+ (A1)
1701
+ where ℏΩ is the projected light-matter coupling
1702
+ Hamiltonian between a single vertical transition and a
1703
+ plane wave, Vact is the volume of the gain medium (also
1704
+ called active medium) and Γl is the overlap integral
1705
+ between the gain medium and the cavity mode.
1706
+ The
1707
+ spatial structure of the mode electric field is thus fully
1708
+ contained in Γl which is thus mode dependent.
1709
+ Appendix B: Thermalization degree in devices
1710
+ featuring a large, planar and homogeneously
1711
+ pumped cavity
1712
+ Plugging Eq.
1713
+ (2) into Eq.
1714
+ (9), the thermalization
1715
+ degree has the form:
1716
+ Dl = gl
1717
+ κl fF D(Ev(kl), T, µv)[1 − fF D(Ec(kl), T, µc)],
1718
+ (B1)
1719
+ that is a pump-independent term gl/κl and a pump
1720
+ dependent term corresponding to the product of the
1721
+ Fermi-Dirac distributions.
1722
+ According to the Appendix A, the pump-independent
1723
+ term
1724
+ reads
1725
+ gl/κl
1726
+ =
1727
+
1728
+ ℏ [ℏΩ]2ρJVactΓl/κl.
1729
+ In
1730
+ semiconductor devices featuring a large and planar
1731
+ cavity, the measurable spectrum typically extends over
1732
+ ∼ 40 meV due to detection angle limitation and high
1733
+ refractive index material [26].
1734
+ The variations of the
1735
+ transition matrix element Ωl, the joint density of states
1736
+ ρJ and the mirror loss rate κl are negligible in this range
1737
+ [30]. Also, as the in-plane part of the modes is nearly a
1738
+ plane wave, the overlap integral Γl is constant. Hence,
1739
+ the pump-independent part of the thermalization degree
1740
+ gl/κl should thus be constant over the modes to a good
1741
+ approximation.
1742
+ We now focus on the pump dependent term, which
1743
+ describes the saturation of the absorption through
1744
+ pumping (see Section III C). Rigorously speaking, this
1745
+ term has always some dependence on the modes, since
1746
+ saturation of the absorption is greater for low energy
1747
+ modes.
1748
+ Still, it is showed on Fig.
1749
+ 4 that the impact
1750
+ of this dependence is almost unnoticeable on the emitted
1751
+ spectrum for values of g/κ as low as ∼ 4. Noting that
1752
+ lasing is prevented if g/κ < 1 [73], the range over which
1753
+ the absorption saturation term has significant influence is
1754
+ quite narrow. As a conclusion, devices featuring a large,
1755
+ planar and homogeneously pumped cavity are expected
1756
+ to be well described by a constant Knudsen number over
1757
+ the modes.
1758
+ 1.30
1759
+ 1.35
1760
+ 1.40
1761
+ 1.45
1762
+ 1.50
1763
+ E (eV)
1764
+ 100
1765
+ 101
1766
+ 102
1767
+ 103
1768
+ 104
1769
+ 105
1770
+ 106
1771
+ Normalized occupation
1772
+ Gen. BE dis. (E,
1773
+ =1.3073eV,g/ =4)
1774
+ Fit by BE dis. (E,
1775
+ fit =1.2709eV)
1776
+ FIG. 4. Best fit of a generalized BE distribution ( Eq. (8))
1777
+ by an ideal BE distribution ( Eq. (6)). The fit parameter
1778
+ of the ideal BE distribution is the quasi-Fermi levels splitting
1779
+ µfit.
1780
+ gl and κl are assumed constant over all modes with
1781
+ g/κ = 4.
1782
+ All curves are normalized to 1 at E = 1.50 eV.
1783
+ Other parameters are compiled in Appendix C.
1784
+
1785
+ 12
1786
+ Appendix C: Model parameters values in figures
1787
+ We take parameter values representative of the VCSEL
1788
+ used in Ref.
1789
+ [26].
1790
+ The semiconductor gain medium
1791
+ consists of InGaAs quantum wells. We take Egap = 1.215
1792
+ eV, m∗
1793
+ c = 0.059 × me, m∗
1794
+ v = 0.37 × me where me
1795
+ is the electron mass [30].
1796
+ The hole mass corresponds
1797
+ to the valence band heavy-hole mass.
1798
+ Contribution of
1799
+ transitions with other valence bands is neglected.
1800
+ We
1801
+ assume room temperature operation T = 300 K.
1802
+ Appendix D: Full expression of g(2)(0)
1803
+ According to the treatment and notations of Sec.
1804
+ IV B, the full expression of the second-order intensity
1805
+ correlations at zero-time delay writes [30, 61, 65]:
1806
+ g(2)(0) = 1 −
1807
+ 1
1808
+ Nss
1809
+ + γ2
1810
+ peSee + γpeγee(2Sp e) + (γpeγep + γppγee + γ2
1811
+ ee)Spp
1812
+ (γpp + γee)(γpeγep + γppγee)N 2ss
1813
+ ,
1814
+ (D1)
1815
+ where 2See = 2Spp = 2Rem[Nss + 1] and 2Sep =
1816
+ −Rem[2Nss + 1] + Nss[Rem − Rabs].
1817
+ This expression can be expanded more explicitely as
1818
+ g(2)(0) = 1 −
1819
+ 1
1820
+ Nss
1821
+ +
1822
+
1823
+ 1
1824
+ 1 + Nss/Nβ + N 2ss/N 2
1825
+ CO
1826
+
1827
+ ×
1828
+
1829
+ 1
1830
+ 1 + N 2ss/N 2
1831
+ LAS
1832
+
1833
+ ×
1834
+
1835
+ 1 +
1836
+ N 2
1837
+ ss
1838
+ N 2
1839
+ LAS
1840
+ + Nss
1841
+
1842
+ +
1843
+ � Nss
1844
+ NCO
1845
+ �2�
1846
+ ∂NeRem
1847
+ ∂Ne[Rem − Rabs] +
1848
+ Nss
1849
+ N 2
1850
+ LAS
1851
+ + κRem
1852
+ g
1853
+ ��
1854
+ (D2)
1855
+ where Nβ ≈
1856
+
1857
+ 1
1858
+ β − 1
1859
+ �−1
1860
+ Rem(Nss=∞)
1861
+ ∂NeRem(Nss=∞) and NCO ≈
1862
+
1863
+ Rem(Nss=∞)
1864
+ ∂Ne[Rem−Rabs](Nss=∞)
1865
+ �1/2
1866
+ .
1867
+ In the limit β → 1 (resp.
1868
+ β → 0), the first (resp. second) term between brackets
1869
+ dominates while the product of the other terms ≈ 1. The
1870
+ term 1/Nss is always negligible.
1871
+ [1] J. Klaers, F. Vewinger, and M. Weitz, Thermalization of
1872
+ a two-dimensional photonic gas in a ‘white wall’photon
1873
+ box, Nature Physics 6, 512 (2010).
1874
+ [2] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz,
1875
+ Bose-Einstein condensation of photons in an optical
1876
+ microcavity, Nature 468, 545 (2010).
1877
+ [3] P. Wurfel, The chemical potential of radiation, Journal
1878
+ of Physics C: Solid State Physics 15, 3967 (1982).
1879
+ [4] J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers,
1880
+ and M. Weitz, Thermalization kinetics of light: From
1881
+ laser dynamics to equilibrium condensation of photons,
1882
+ Physical Review A 92, 011602 (2015).
1883
+ [5] J.
1884
+ Marelic,
1885
+ L.
1886
+ F.
1887
+ Zajiczek,
1888
+ H.
1889
+ J.
1890
+ Hesten,
1891
+ K.
1892
+ H.
1893
+ Leung, E. Y. Ong, F. Mintert, and R. A. Nyman,
1894
+ Spatiotemporal coherence of non-equilibrium multimode
1895
+ photon condensates, New Journal of Physics 18, 103012
1896
+ (2016).
1897
+ [6] B. T. Walker, L. C. Flatten, H. J. Hesten, F. Mintert,
1898
+ D.
1899
+ Hunger,
1900
+ A.
1901
+ A.
1902
+ Trichet,
1903
+ J.
1904
+ M.
1905
+ Smith,
1906
+ and
1907
+ R. A. Nyman, Driven-dissipative non-equilibrium Bose-
1908
+ Einstein condensation of less than ten photons, Nature
1909
+ Physics 14, 1173 (2018).
1910
+ [7] J. D. Rodrigues, H. S. Dhar, B. T. Walker, J. M. Smith,
1911
+ R. F. Oulton, F. Mintert, and R. A. Nyman, Learning
1912
+ the fuzzy phases of small photonic condensates, Physical
1913
+ Review Letters 126, 150602 (2021).
1914
+ [8] J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers,
1915
+ and M. Weitz, Observation of grand-canonical number
1916
+ statistics in a photon Bose-Einstein condensate, Physical
1917
+ Review Letters 112, 030401 (2014).
1918
+ [9] J. Schmitt, T. Damm, D. Dung, C. Wahl, F. Vewinger,
1919
+ J. Klaers, and M. Weitz, Spontaneous symmetry breaking
1920
+ and phase coherence of a photon bose-einstein condensate
1921
+ coupled to a reservoir, Physical Review Letters 116,
1922
+ 033604 (2016).
1923
+ [10] D.
1924
+ Dung,
1925
+ C.
1926
+ Kurtscheid,
1927
+ T.
1928
+ Damm,
1929
+ J.
1930
+ Schmitt,
1931
+ F. Vewinger, M. Weitz, and J. Klaers, Variable potentials
1932
+ for thermalized light and coupled condensates, Nature
1933
+ Photonics 11, 565 (2017).
1934
+ [11] C. Kurtscheid,
1935
+ D. Dung,
1936
+ E. Busley,
1937
+ F. Vewinger,
1938
+ A. Rosch, and M. Weitz, Thermally condensing photons
1939
+ into a coherently split state of light, Science 366, 894
1940
+ (2019).
1941
+ [12] C. Kurtscheid,
1942
+ D. Dung,
1943
+ A. Redmann,
1944
+ E. Busley,
1945
+ J. Klaers, F. Vewinger, J. Schmitt, and M. Weitz,
1946
+ Realizing arbitrary trapping potentials for light via
1947
+ direct laser writing of mirror surface profiles (a), EPL
1948
+ (Europhysics Letters) 130, 54001 (2020).
1949
+ [13] E. Busley, L. E. Miranda, A. Redmann, C. Kurtscheid,
1950
+ K. K. Umesh, F. Vewinger, M. Weitz, and J. Schmitt,
1951
+ Compressibility and the equation of state of an optical
1952
+ quantum gas in a box, Science 375, 1403 (2022).
1953
+ [14] B. T. Walker, B. J. Ash, A. A. Trichet, J. M. Smith, and
1954
+ R. A. Nyman, Bespoke mirror fabrication for quantum
1955
+ simulation with light in open-access microcavities, Optics
1956
+ Express 29, 10800 (2021).
1957
+ [15] V.
1958
+ N.
1959
+ Gladilin
1960
+ and
1961
+ M.
1962
+ Wouters,
1963
+ Vortices
1964
+ in
1965
+ nonequilibrium photon condensates, Physical Review
1966
+ Letters 125, 215301 (2020).
1967
+ [16] V. N. Gladilin and M. Wouters, Vortex unbinding
1968
+ transition
1969
+ in
1970
+ nonequilibrium
1971
+ photon
1972
+ condensates,
1973
+ Physical Review A 104, 043516 (2021).
1974
+ [17] V. N. Gladilin and M. Wouters, Vortex-pair annihilation
1975
+ in arrays of photon cavities, Physical Review A 105,
1976
+ 013527 (2022).
1977
+ [18] M. Vretenar, C. Toebes, and J. Klaers, Modified bose-
1978
+ einstein condensation in an optical quantum gas, Nature
1979
+ communications 12, 1 (2021).
1980
+ [19] M. Vretenar, B. Kassenberg, S. Bissesar, C. Toebes, and
1981
+ J. Klaers, Controllable josephson junction for photon
1982
+
1983
+ 13
1984
+ bose-einstein condensates, Physical Review Research 3,
1985
+ 023167 (2021).
1986
+ [20] J. Bloch, I. Carusotto, and M. Wouters, Non-equilibrium
1987
+ bose–einstein condensation in photonic systems, Nature
1988
+ Reviews Physics 4, 470 (2022).
1989
+ [21] S. Greveling, K. Perrier, and D. van Oosten, Density
1990
+ distribution of a Bose-Einstein condensate of photons in
1991
+ a dye-filled microcavity, Physical Review A 98, 013810
1992
+ (2018).
1993
+ [22] T. K. Hakala, A. J. Moilanen, A. I. V¨akev¨ainen, R. Guo,
1994
+ J.-P. Martikainen,
1995
+ K. S. Daskalakis,
1996
+ H. T. Rekola,
1997
+ A. Julku, and P. T¨orm¨a, Bose–einstein condensation in
1998
+ a plasmonic lattice, Nature Physics 14, 739 (2018).
1999
+ [23] R. Weill, A. Bekker, B. Levit, and B. Fischer, Bose–
2000
+ einstein condensation of photons in an erbium–ytterbium
2001
+ co-doped fiber cavity, Nature communications 10, 1
2002
+ (2019).
2003
+ [24] D. Bajoni, P. Senellart, A. Lemaˆıtre, and J. Bloch,
2004
+ Photon lasing in gaas microcavity:
2005
+ Similarities with
2006
+ a polariton condensate, Physical Review B 76, 201305
2007
+ (2007).
2008
+ [25] E. Kammann, H. Ohadi, M. Maragkou, A. V. Kavokin,
2009
+ and P. G. Lagoudakis, Crossover from photon to exciton-
2010
+ polariton lasing, New Journal of Physics 14, 105003
2011
+ (2012).
2012
+ [26] S.
2013
+ Barland,
2014
+ P.
2015
+ Azam,
2016
+ G.
2017
+ Lippi,
2018
+ R.
2019
+ Nyman,
2020
+ and
2021
+ R. Kaiser, Photon thermalization and a condensation
2022
+ phase transition in an electrically pumped semiconductor
2023
+ microresonator, Optics Express 29, 8368 (2021).
2024
+ [27] N. Takemura, M. Takiguchi, E. Kuramochi, A. Shinya,
2025
+ T. Sato,
2026
+ K. Takeda,
2027
+ S. Matsuo, and M. Notomi,
2028
+ Lasing thresholds and photon statistics in high-β buried
2029
+ multiple
2030
+ quantum
2031
+ well
2032
+ photonic
2033
+ crystal
2034
+ nanocavity
2035
+ lasers, Physical Review A 99, 053820 (2019).
2036
+ [28] P. Kirton and J. Keeling, Nonequilibrium model of
2037
+ photon condensation, Physical Review Letters 111,
2038
+ 100404 (2013).
2039
+ [29] P. Kirton and J. Keeling, Thermalization and breakdown
2040
+ of thermalization in photon condensates, Physical Review
2041
+ A 91, 033826 (2015).
2042
+ [30] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch,
2043
+ Diode lasers and photonic integrated circuits, Vol. 218
2044
+ (John Wiley & Sons, 2012).
2045
+ [31] Transitions between the valence light-hole and split-off
2046
+ bands and the conduction band are neglected.
2047
+ [32] W. Van Roosbroeck and W. Shockley, Photon-radiative
2048
+ recombination of electrons and holes in germanium,
2049
+ Physical Review 94, 1558 (1954).
2050
+ [33] E. Kennard, On the thermodynamics of fluorescence,
2051
+ Physical Review 11, 29 (1918).
2052
+ [34] E. Kennard, On the interaction of radiation with matter
2053
+ and on fluorescent exciting power, Physical Review 28,
2054
+ 672 (1926).
2055
+ [35] B. Stepanov, Universal relation between the absorption
2056
+ spectra and luminescence spectra of complex molecules,
2057
+ Dokl. Akad. Nauk SSSR 112, 839 (1957).
2058
+ [36] Y. Band and D. Heller, Relationships between the
2059
+ absorption and emission of light in multilevel systems,
2060
+ Physical Review A 38, 1885 (1988).
2061
+ [37] J.-P.
2062
+ Martikainen,
2063
+ M.
2064
+ Heikkinen,
2065
+ and
2066
+ P.
2067
+ T¨orm¨a,
2068
+ Condensation
2069
+ phenomena
2070
+ in
2071
+ plasmonics,
2072
+ Physical
2073
+ Review A 90, 053604 (2014).
2074
+ [38] H.
2075
+ J.
2076
+ Hesten,
2077
+ R.
2078
+ A.
2079
+ Nyman,
2080
+ and
2081
+ F.
2082
+ Mintert,
2083
+ Decondensation in nonequilibrium photonic condensates:
2084
+ when less is more, Physical Review Letters 120, 040601
2085
+ (2018).
2086
+ [39] J.
2087
+ Keeling
2088
+ and
2089
+ P.
2090
+ Kirton,
2091
+ Spatial
2092
+ dynamics,
2093
+ thermalization,
2094
+ and
2095
+ gain
2096
+ clamping
2097
+ in
2098
+ a
2099
+ photon
2100
+ condensate, Physical Review A 93, 013829 (2016).
2101
+ [40] R. Bonifacio and L. Lugiato, Optical bistability and
2102
+ cooperative effects in resonance fluorescence, Physical
2103
+ Review A 18, 1129 (1978).
2104
+ [41] F. Marquier, C. Sauvan, and J.-J. Greffet, Revisiting
2105
+ quantum optics with surface plasmons and plasmonic
2106
+ resonators, ACS photonics 4, 2091 (2017).
2107
+ [42] G. Bjork and Y. Yamamoto, Analysis of semiconductor
2108
+ microcavity lasers using rate equations, IEEE Journal of
2109
+ Quantum Electronics 27, 2386 (1991).
2110
+ [43] Note that in contrast to a 2-level system, the sum of the
2111
+ valence and the conduction state occupation at a given
2112
+ wavevector is not necessarily unity, ie fF D(Ec(k), T, µc)+
2113
+ fF D(Ev(k), T, µv)
2114
+
2115
+ [0, 2]. This is due to effective
2116
+ mass imbalance between bands. Hence, transparency
2117
+ does not necessarily implies that fF D(Ec(k), T, µc) =
2118
+ fF D(Ev(k), T, µv) = 1
2119
+ 2.
2120
+ [44] P. W. Milonni and J. H. Eberly, Laser physics (John
2121
+ Wiley & Sons, 2010).
2122
+ [45] O. Svelto, Principles of lasers, Vol. 4 (Springer, 1998).
2123
+ [46] M. Vlaho, H. Leymann, D. Vorberg, and A. Eckardt,
2124
+ Controlled two-mode emission from the interplay of
2125
+ driving and thermalization in a dye-filled photonic cavity,
2126
+ Physical Review Research 1, 033191 (2019).
2127
+ [47] I. D. Samuel, E. B. Namdas, and G. A. Turnbull, How to
2128
+ recognize lasing, Nature Photonics 3, 546 (2009).
2129
+ [48] M. A. Carroll, G. D’alessandro, G. L. Lippi, G.-L. Oppo,
2130
+ and F. Papoff, Thermal, quantum antibunching and
2131
+ lasing thresholds from single emitters to macroscopic
2132
+ devices, Physical Review Letters 126, 063902 (2021).
2133
+ [49] L.
2134
+ Pitaevskii
2135
+ and
2136
+ S.
2137
+ Stringari,
2138
+ Bose-Einstein condensation and superfluidity,
2139
+ Vol.
2140
+ 164 (Oxford University Press, 2016).
2141
+ [50] J. Kasprzak, M. Richard, S. Kundermann, A. Baas,
2142
+ P.
2143
+ Jeambrun,
2144
+ J.
2145
+ M.
2146
+ J.
2147
+ Keeling,
2148
+ F.
2149
+ Marchetti,
2150
+ M. Szyma´nska, R. Andr´e, J. Staehli, et al., Bose–einstein
2151
+ condensation of exciton polaritons, Nature 443, 409
2152
+ (2006).
2153
+ [51] R. Weill,
2154
+ A. Bekker,
2155
+ B. Levit,
2156
+ M. Zhurahov, and
2157
+ B. Fischer, Thermalization of one-dimensional photon
2158
+ gas and thermal lasers in erbium-doped fibers, Optics
2159
+ express 25, 18963 (2017).
2160
+ [52] B. T. Walker, H. J. Hesten, R. A. Nyman, and F. Mintert,
2161
+ Collective
2162
+ excitation
2163
+ profiles
2164
+ and
2165
+ the
2166
+ dynamics
2167
+ of
2168
+ photonic condensates, Physical Review A 100, 053828
2169
+ (2019).
2170
+ [53] J. Marelic and R. Nyman, Experimental evidence for
2171
+ inhomogeneous pumping and energy-dependent effects in
2172
+ photon bose-einstein condensation, Physical Review A
2173
+ 91, 033813 (2015).
2174
+ [54] As in an intrinsic semiconductor µc and µv are uniquely
2175
+ related,
2176
+ so that µ can directly be used as control
2177
+ parameter.
2178
+ [55] J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and
2179
+ M. Weitz, Statistical physics of bose-einstein-condensed
2180
+ light in a dye microcavity, Physical Review Letters 108,
2181
+ 160403 (2012).
2182
+ [56] V. V. Kocharovsky, V. V. Kocharovsky, M. Holthaus,
2183
+ C. R. Ooi, A. Svidzinsky, W. Ketterle, and M. O.
2184
+ Scully,
2185
+ Fluctuations in
2186
+ ideal and
2187
+ interacting bose–
2188
+
2189
+ 14
2190
+ einstein condensates:
2191
+ From the laser phase transition
2192
+ analogy to squeezed states and bogoliubov quasiparticles,
2193
+ Advances in Atomic, Molecular, and Optical Physics 53,
2194
+ 291 (2006).
2195
+ [57] N. Van Druten, Y. Lien, C. Serrat, S. Oemrawsingh,
2196
+ M.
2197
+ Van
2198
+ Exter,
2199
+ and
2200
+ J.
2201
+ Woerdman,
2202
+ Laser
2203
+ with
2204
+ thresholdless intensity fluctuations, Physical Review A
2205
+ 62, 053808 (2000).
2206
+ [58] H. F. Hofmann and O. Hess, Thermal photon statistics
2207
+ in laser light above threshold, Physical Review A 62,
2208
+ 063807 (2000).
2209
+ [59] P. R. Rice and H. Carmichael, Photon statistics of
2210
+ a cavity-qed laser:
2211
+ A comment on the laser–phase-
2212
+ transition analogy, Physical Review A 50, 4318 (1994).
2213
+ [60] M. O. Scully and M. S. Zubairy, Quantum optics (1999).
2214
+ [61] J. Mork and G. Lippi, Rate equation description of
2215
+ quantum noise in nanolasers with few emitters, Applied
2216
+ Physics Letters 112, 141103 (2018).
2217
+ [62] E. C. Andr´e, J. Mørk, and M. Wubs, Efficient stochastic
2218
+ simulation of rate equations and photon statistics of
2219
+ nanolasers, Optics Express 28, 32632 (2020).
2220
+ [63] W. Verstraelen and M. Wouters, Temporal coherence of
2221
+ a photon condensate: A quantum trajectory description,
2222
+ Physical Review A 100, 013804 (2019).
2223
+ [64] B. T. Walker, J. D. Rodrigues, H. S. Dhar, R. F. Oulton,
2224
+ F. Mintert, and R. A. Nyman, Non-stationary statistics
2225
+ and formation jitter in transient photon condensation,
2226
+ Nature communications 11, 1 (2020).
2227
+ [65] A. A. Vyshnevyy and D. Y. Fedyanin, Lasing threshold of
2228
+ thresholdless and non-thresholdless metal-semiconductor
2229
+ nanolasers, Optics express 26, 33473 (2018).
2230
+ [66] B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman,
2231
+ and B. Kant´e, Nonreciprocal lasing in topological cavities
2232
+ of arbitrary geometries, Science 358, 636 (2017).
2233
+ [67] P.
2234
+ St-Jean,
2235
+ V.
2236
+ Goblot,
2237
+ E.
2238
+ Galopin,
2239
+ A.
2240
+ Lemaˆıtre,
2241
+ T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo,
2242
+ Lasing in topological edge states of a one-dimensional
2243
+ lattice, Nature Photonics 11, 651 (2017).
2244
+ [68] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A.
2245
+ Bandres, J. Ren, M. C. Rechtsman, M. Segev, D. N.
2246
+ Christodoulides, and M. Khajavikhan, Edge-mode lasing
2247
+ in 1d topological active arrays, Physical review letters
2248
+ 120, 113901 (2018).
2249
+ [69] N.
2250
+ Carlon
2251
+ Zambon,
2252
+ P.
2253
+ St-Jean,
2254
+ M.
2255
+ Mili´cevi´c,
2256
+ A. Lemaˆıtre,
2257
+ A. Harouri,
2258
+ L. Le Gratiet,
2259
+ O. Bleu,
2260
+ D. Solnyshkov, G. Malpuech, I. Sagnes, et al., Optically
2261
+ controlling the emission chirality of microlasers, Nature
2262
+ Photonics 13, 283 (2019).
2263
+ [70] P.
2264
+ Hamel,
2265
+ S.
2266
+ Haddadi,
2267
+ F.
2268
+ Raineri,
2269
+ P.
2270
+ Monnier,
2271
+ G. Beaudoin,
2272
+ I. Sagnes,
2273
+ A. Levenson, and A. M.
2274
+ Yacomotti, Spontaneous mirror-symmetry breaking in
2275
+ coupled photonic-crystal nanolasers, Nature Photonics 9,
2276
+ 311 (2015).
2277
+ [71] G. Keijsers, Z. Geng, K. Peters, M. Wouters, and
2278
+ S. Rodriguez, Steady-state superfluidity of light in a
2279
+ tunable cavity at room temperature, arXiv preprint
2280
+ arXiv:2012.13463 (2020).
2281
+ [72] V. N. Gladilin and M. Wouters, Classical field model for
2282
+ arrays of photon condensates, Physical Review A 101,
2283
+ 043814 (2020).
2284
+ [73] This
2285
+ follows
2286
+ from
2287
+ the
2288
+ gain
2289
+ clamping
2290
+ condition
2291
+ [Rl
2292
+ em(µclp) − Rl
2293
+ abs(µclp)]
2294
+ =
2295
+ κl. The left hand side
2296
+ of this expression is bounded by the full inversion value
2297
+ of the gain [Rl
2298
+ em(µclp → ∞) − Rl
2299
+ abs(µclp → ∞)] = gl.
2300
+ Losses that exceeds this bounds prevents gain clamping
2301
+ to occur, and thus lasing. Hence, the condition for lasing
2302
+ reformulates in gl/κl > 1.
2303
+
9tAyT4oBgHgl3EQfqPjX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:228037adb5680ae24a121dfc8258551d4a3837e0f38ea3d3ea3ac5665446d0a4
3
+ size 1114157
CdA0T4oBgHgl3EQfAf80/content/tmp_files/2301.01962v1.pdf.txt ADDED
@@ -0,0 +1,2239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. aanda
2
+ ©ESO 2023
3
+ January 6, 2023
4
+ Effect of stellar rotation on the development of post-shock
5
+ instabilities during core-collapse supernovae
6
+ A.-C. Buellet1, T. Foglizzo1, J. Guilet1, E. Abdikamalov2
7
+ 1 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191, Gif-sur-Yvette, France
8
+ 2Department of Physics and Energetic Cosmos Laboratory, Nazarbayev University, Astana 010000, Kazakhstan
9
+ e-mail: [email protected]
10
+ Received ??, 2022; accepted ??,2022
11
+ ABSTRACT
12
+ Context. The growth of hydrodynamical instabilities is key to trigger a core-collapse supernova explosion during the phase of stalled
13
+ accretion shock, immediately after the birth of a proto-neutron star (PNS). Stellar rotation is known to affect the standing accretion
14
+ shock instability (SASI) even for small rotation rates, but its effect on the onset of neutrino-driven convection is still poorly known.
15
+ Aims. In this paper, we assess the effect of stellar rotation on SASI when neutrino heating is taken into account, and the effect of
16
+ rotation on the convective instability when neutrino heating is higher. The interplay of rotation with these two instabilities affects the
17
+ frequency of the mode m = 2 which can be detected with gravitational waves at the onset of a supernova explosion.
18
+ Methods. We use a linear stability analysis to study the dynamics of the accreting gas in the equatorial plane between the surface of
19
+ the PNS and the stationary shock. We explore rotation effects on the relative strength of SASI and convection by considering a large
20
+ range of specific angular momenta, neutrino luminosities and mass accretion rates.
21
+ Results. The nature of the dominant non-axisymmetric instability developing in the equatorial postshock region depends on both
22
+ the convection parameter χ and the rotation rate. Equatorial convective modes with χ ≳ 5 are hampered by differential rotation. At
23
+ smaller χ, however, mixed SASI-convective modes with a large angular scale m = 1, 2, 3 can take advantage of rotation and become
24
+ dominant for relatively low rotation rates at which centrifugal effects are small. For rotation rates exceeding ∼ 30% of the Keplerian
25
+ rotation at the PNS surface, the growth rate of the dominant mode depends weakly on the rate of neutrino heating which highlights
26
+ the arising of a new instability regime. Similarly, the frequency of this mode is surprisingly independent of the heating rate, with a
27
+ strong prograde spiral m = 2 dominating over a large parameter range which is favourable to the production of gravitational waves.
28
+ For any heating rate, a simple linear relation exists between the oscillation frequency of the dominant mode and the specific angular
29
+ momentum of the accreted gas.
30
+ Conclusions. Three different regimes of postshock instabilities can be distinguished depending on the rotation rate. For small rotation
31
+ rates (less than 10% of the Keplerian rotation at the PNS surface), differential rotation has a quadratic stabilising or destabilising
32
+ effect on equatorial purely convective modes and a linear destabilising effect on SASI. Intermediate rotation rates (10 to 30% of the
33
+ Keplerian rotation) lead to the emergence of mixed SASI/convection/rotation modes involving large angular scales. Finally, strong
34
+ rotation erases the influence of the buoyancy and heating rate on the instability. This independency allows for a reduction of the
35
+ parameter space, which is valuable for gravitational wave analysis.
36
+ Key words. supernova – convection – rotation – hydrodynamics
37
+ 1. Introduction
38
+ The death of massive stars begins with the collapse of their inner
39
+ core, which forms a proto-neutron star (PNS). The outer core of
40
+ the star bounces off and creates a shock wave that propagates
41
+ outward, gradually losing energy, dissociating iron atoms until it
42
+ stalls. The development of multidimensional instabilities during
43
+ this phase of stalled shock impacts both the multimessenger sig-
44
+ nature and the revival of the shock (Herant et al. 1994; Janka &
45
+ Mueller 1996; Couch & O’Connor 2014; Takiwaki et al. 2016;
46
+ Janka et al. 2016; Müller 2020; Burrows & Vartanyan 2021).
47
+ Among them, the stationary accretion shock instability (SASI)
48
+ (Blondin et al. 2003; Blondin & Mezzacappa 2006) can gener-
49
+ ate shock oscillations and contribute to pushing the shock fur-
50
+ ther up (Scheck et al. 2008; Marek & Janka 2009; Hanke et al.
51
+ 2013). The magnitude of this effect depends on the concurrent
52
+ growth of the neutrino-driven convection, which can generate
53
+ turbulence in the post-shock region (Abdikamalov et al. 2015;
54
+ Radice et al. 2016). Different paths to explosions dominated ei-
55
+ ther by neutrino-driven convection or SASI may occur depend-
56
+ ing on the precise physical conditions determined by the progen-
57
+ itor structure (Müller et al. 2012; Murphy et al. 2013; Fernández
58
+ et al. 2014) and the magnitude of pre-collapse turbulence asym-
59
+ metries (Müller et al. 2017).
60
+ The development of neutrino-driven convection and/or SASI
61
+ leaves clear signatures in gravitational waves (Murphy et al.
62
+ 2009; Kuroda et al. 2016; Andresen et al. 2017). The eigenfre-
63
+ quencies deduced from the perturbative study of the accretion
64
+ flow can be recognised in the gravitational wave signal despite
65
+ the nonlinear development of instabilities (Torres-Forné et al.
66
+ 2018, 2019b) and can be used to reconstruct the flow struc-
67
+ ture (Torres-Forné et al. 2019a; Sotani & Takiwaki 2020; Sotani
68
+ et al. 2021). These asteroseismic properties can help constrain
69
+ the equation of state at nuclear densities (Kuroda et al. 2016;
70
+ Sotani et al. 2017).
71
+ The neutrino signal is also a precious messenger carrying
72
+ direct information on the frequency of large-scale shock oscilla-
73
+ Article number, page 1 of 16
74
+ arXiv:2301.01962v1 [astro-ph.HE] 5 Jan 2023
75
+
76
+ A&A proofs: manuscript no. aanda
77
+ tions induced by SASI, currently detectable for a galactic super-
78
+ nova (Tamborra et al. 2013).
79
+ The competition between SASI and convection seems to vary
80
+ from one numerical code to another (Hanke et al. 2013; Ott et al.
81
+ 2018; O’Connor et al. 2018; Glas et al. 2019). A detailed un-
82
+ derstanding of the instabilities mechanisms can help interpret
83
+ the results of numerical simulations and guide the exploration
84
+ of the parameter space. SASI results from the interaction of
85
+ pressure and advected perturbations of entropy and vorticity be-
86
+ tween the shock with the surface of the PNS (Foglizzo et al.
87
+ 2007; Foglizzo 2009; Fernández & Thompson 2009; Guilet &
88
+ Foglizzo 2012). The convective instability in the post-shock re-
89
+ gion is driven by neutrinos emitted by the cooling PNS: in the re-
90
+ gion where the absorption of neutrino energy exceeds the losses
91
+ by neutrino emission, the heating by neutrino absorption cre-
92
+ ates a negative entropy gradient favourable to convection (Bethe
93
+ 1990). The growth of this neutrino-driven convection requires a
94
+ strong enough neutrino heating such that the buoyancy timescale
95
+ is shorter than one third of the advection timescale across this re-
96
+ gion (Foglizzo et al. 2006). Above a critical heating rate, the fun-
97
+ damental oscillatory mode of SASI becomes the purely growing
98
+ convective instability that dominates the dynamics of the flow
99
+ (Yamasaki & Yamada 2007; Fernández et al. 2014).
100
+ Most core-collapse simulations and theoretical work neglect
101
+ the impact of rotation, which is therefore not well known (Suwa
102
+ et al. 2010; Chatzopoulos et al. 2016; Fujisawa et al. 2019; Pow-
103
+ ell & Müller 2020). Rotation is however thought to play an im-
104
+ portant role in at least a small fraction of core-collapse super-
105
+ novae with more extreme properties, such as superluminous su-
106
+ pernovae (Woosley 2010; Inserra et al. 2013) or hypernovae and
107
+ long gamma-ray bursts (Woosley 1993; Metzger et al. 2011). It
108
+ is furthermore possible that rotation plays a less extreme role in
109
+ a larger fraction of core-collapse supernovae. Theoretical mod-
110
+ els of stellar evolution constrained by the efficient transport of
111
+ angular momentum inferred from asteroseismic observations of
112
+ red giants (Cantiello et al. 2014), and the observations of pulsar
113
+ spins (Popov & Turolla 2012) suggest that the majority of su-
114
+ pernova explosions originate from slowly rotating stellar cores
115
+ (< 0.5 rad/s at 1000km).
116
+ Rotation rates up to 2 rad/s are more exceptional but com-
117
+ monly considered to explain extreme events such as hypernovae,
118
+ superluminous supernovae and GRBs. In this regime, the con-
119
+ vective dynamo (Thompson & Duncan 1993; Raynaud et al.
120
+ 2020, 2022; Masada et al. 2022; White et al. 2022) and the mag-
121
+ netorotational instability (Akiyama et al. 2003; Obergaulinger
122
+ et al. 2009; Guilet & Müller 2015; Guilet et al. 2022; Reboul-
123
+ Salze et al. 2021, 2022) are expected to amplify efficiently the
124
+ magnetic field of the PNS. Raynaud et al. (2020) predicted that
125
+ magnetar-like magnetic fields can be generated by the strong
126
+ field branch of the convective dynamo, which takes place for spe-
127
+ cific angular momentum larger than 4 × 1015 cm2/s. This thresh-
128
+ old corresponds to an angular frequency as low as 0.4 rad/s at
129
+ 1000 km in the progenitor. The extraction of rotational energy
130
+ with such a strong magnetic field can lead to strong magnetorota-
131
+ tional explosions (e.g. Burrows et al. 2007; Takiwaki et al. 2009;
132
+ Kuroda et al. 2020; Obergaulinger & Aloy 2021; Bugli et al.
133
+ 2021).
134
+ Beside the generation of magnetic fields, rotation can have
135
+ several other effects: the centrifugal force affects the shape of
136
+ the neutrinosphere; the differential rotation modifies the devel-
137
+ opment of SASI and convective instabilities; differential rotation
138
+ can also generate a new instability. These multiple effects are
139
+ often studied in the hydrodynamical approximation because the
140
+ dynamo timescale is uncertain.
141
+ The centrifugal force diminishes the action of gravity and
142
+ results in a larger radius of the neutrinosphere in the equatorial
143
+ plane. The equatorial decrease in neutrino luminosity and neu-
144
+ trino mean energy is not favourable to the explosion according
145
+ to axisymmetric simulations (Marek & Janka 2009). The lower
146
+ equatorial temperature favours neutrino heating in the polar re-
147
+ gion and a bipolar explosion (Suwa et al. 2010).
148
+ Stellar rotation can be favourable to the development of a
149
+ vigorous, prograde, spiral SASI mode dominated by large an-
150
+ gular scales l = 1, 2 when neutrino absorption is neglected
151
+ (Blondin & Mezzacappa 2007). This destabilising effect of dif-
152
+ ferential rotation exists even for slow rotation with a negligible
153
+ centrifugal contribution, as shown by perturbative analyses (Ya-
154
+ masaki & Foglizzo 2008; Walk et al. 2022) and confirmed by nu-
155
+ merical simulations (Kazeroni et al. 2017; Blondin et al. 2017).
156
+ However, the driving mechanism of this rotational destabilisa-
157
+ tion is not understood yet (Walk et al. 2022).
158
+ Classical studies of the effect of rotation on convection con-
159
+ sidered a rotation axis aligned with gravity. In a viscous fluid
160
+ with thermal diffusion, the critical Rayleigh number defining
161
+ the onset of thermal convection is increased by rotation (Chan-
162
+ drasekhar 1961; Rossby 1969; Wedi et al. 2021). The few stud-
163
+ ies that considered the impact of rotation in the equatorial plane
164
+ did not involve radial advection, which is crucial in the super-
165
+ nova case (Feudel & Feudel 2021). According to the Solberg-
166
+ Høiland criterion, the development of axisymmetric convection
167
+ can be stabilised by rotation if the specific angular momentum
168
+ increases outward (Endal & Sofia 1978). In axisymmetric simu-
169
+ lations of stellar core-collapse, this effect produces less vigorous
170
+ convective motions in the equatorial plane, and results in later-
171
+ time explosions which are weaker at the equator than at the poles
172
+ (Fryer & Heger 2000). These 2D results seemed to be confirmed
173
+ in 3D for the fastest spinning progenitors (Fryer & Warren 2004)
174
+ (Ω ∼ 4.1 rad/s at 1000 km), in a regime where centrifugal effects
175
+ can be dominant at reducing both the effective gravity and the
176
+ neutrino luminosity in the equatorial plane, and thus a reduced
177
+ buoyancy compared to the polar region.
178
+ Estimating the effect of modest rotation in the equatorial re-
179
+ gion of post-shock convection is less obvious when centrifugal
180
+ effects are small, remembering that inward accretion produces
181
+ a uniform profile of specific angular momentum. With a rota-
182
+ tion rate of Ω ∼ 1.3 rad/s at 1000 km, core-collapse simulations
183
+ showed an earlier onset of neutrino-driven convection that pro-
184
+ duced a stronger explosion in the equatorial plane, earlier than
185
+ the non-rotating case (Nakamura et al. 2014).
186
+ Even a modest amount of rotational kinetic energy T com-
187
+ pared to the potential energy |W| can trigger a spiral instability
188
+ known as “low-T/|W| instability” in the interior of isolated neu-
189
+ tron stars (Shibata et al. 2002; Watts et al. 2005; Passamonti &
190
+ Andersson 2015). The mechanism of this instability relies on
191
+ the extraction of energy and angular momentum from internal
192
+ regions rotating faster than the spiral pattern towards external re-
193
+ gion rotating slower (Cairns 1979; Saijo & Yoshida 2006). This
194
+ instability has been observed in 3D simulations of stellar core-
195
+ collapse, where it enhances the energy transport from the PNS
196
+ to the shock and can lead to stronger explosions (Ott et al. 2005;
197
+ Cerdá-Durán et al. 2007; Takiwaki et al. 2016, 2021).
198
+ The interplay of centrifugal effects, SASI, convection and the
199
+ low-T/|W| instability can be difficult to disentangle in numerical
200
+ simulations considering the diversity of progenitors and numer-
201
+ ical approximations (Ott et al. 2008). Our current understanding
202
+ relies on a very sparse sampling of this diversity. During the col-
203
+ lapse of a 27M⊙ progenitor, the dynamic of the shock is driven
204
+ by SASI and the convection for small rotation rates, and domi-
205
+ Article number, page 2 of 16
206
+
207
+ A.-C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov: Stellar rotation and post-shock instabilities during core-collapse
208
+ nated by the low-T/|W| instability for high enough rotation rates
209
+ (Ω = 2 rad/s) (Takiwaki et al. 2021). The enhancement of SASI
210
+ by differential rotation can compensate for the loss of neutrino
211
+ energy due to the centrifugal force during the collapse of a 15M⊙
212
+ progenitor (Summa et al. 2018). The gravitational wave (GW)
213
+ analysis of these simulations can help identify the physical pro-
214
+ cesses, such as the enhancement of SASI for high rotation rates
215
+ (Andresen et al. 2019). The 3D simulations of stationary accre-
216
+ tion by Iwakami et al. (2014) considered a range of rotation rates,
217
+ mass accretion rates, and neutrino luminosities. The structure of
218
+ the dominant instability and the observed patterns were classi-
219
+ fied according to three main categories: spiral, buoyant bubbles,
220
+ or spiral and buoyant bubbles. However, the simultaneous varia-
221
+ tion of both rotation and neutrino luminosity made it difficult to
222
+ disentangle their respective effects.
223
+ To have a better understanding of the effect of each parameter
224
+ on the growth of instabilities, we propose to use a linear analy-
225
+ sis, varying the rotation and the heating rate separately. Doing
226
+ this, we will be able to disentangle the effect of these parameters
227
+ in the linear regime. By focusing on the accretion region above
228
+ the surface of the PNS, we do not include the interaction with
229
+ the low-T/|W| instability developing inside the PNS. The aim of
230
+ this paper is thus to study the impact of rotation on the onset of
231
+ the convective instability and its interplay with SASI, when both
232
+ the neutrino heating and the rotation rate are varied. In Sect. 2,
233
+ we detail the numerical set-up and define the stationary and per-
234
+ turbed flows. We study in Sect. 3 the effect of rotation on SASI,
235
+ convection and their interplay. Finally, we focus in Sect. 4 on the
236
+ features that might be observable in a gravitational wave signal
237
+ coming from an exploding supernova.
238
+ 2. Methods
239
+ 2.1. Numerical setup
240
+ To study the growth of the convective and SASI instabilities, we
241
+ solve numerically the system of perturbed equations correspond-
242
+ ing to an idealised model of a perfect gas, in spherical geometry
243
+ restrained to the equatorial plane, using the coordinates (r, φ).
244
+ The parameters we vary are the reference shock radius rsh0 ob-
245
+ tained without neutrino heating, dissociation and rotation, the
246
+ rate ε of nuclear dissociation across the shock, the neutrino lumi-
247
+ nosity and the specific angular momentum J reaching the surface
248
+ of the PNS.
249
+ 2.1.1. Stationary flow
250
+ In spherical geometry, the system of stationary equations de-
251
+ scribing the conservation of mass, the entropy profile S (r) and
252
+ the profile of the Bernoulli parameter in the equatorial plane are:
253
+
254
+ ∂r
255
+
256
+ ρvr2�
257
+ =
258
+ 0,
259
+ (1)
260
+ ∂S
261
+ ∂r
262
+ =
263
+ L
264
+ Pv,
265
+ (2)
266
+
267
+ ∂r
268
+ �v2
269
+ 2 + J
270
+ 2r2 +
271
+ c2
272
+ γ − 1 − GM
273
+ r
274
+
275
+ =
276
+ L
277
+ ρv,
278
+ (3)
279
+ where G is the universal gravity constant and M is the mass of
280
+ the PNS, v the radial velocity and c the sound speed in the gas
281
+ with pressure P and density ρ. The self-gravity of the infalling
282
+ matter is neglected compared to that of the PNS. Non-adiabatic
283
+ heating and cooling processes are described by a local function
284
+ L ≡ Lh +Lc, as in Fernández et al. (2014). The cooling function
285
+ Lc used in Houck & Chevalier (1992) is a parametric function
286
+ of P and ρ:
287
+ Lc = −Ac ρβ−αPα.
288
+ (4)
289
+ We use α = 3/2 and β = 5/2 as in Blondin & Mezzacappa
290
+ (2006), Foglizzo et al. (2007), Yamasaki & Foglizzo (2008), Fer-
291
+ nández & Thompson (2009), Fernández et al. (2014), Guilet &
292
+ Foglizzo (2012) and Blondin et al. (2017). The normalisation
293
+ constant Ac describes the micro-physical processes responsible
294
+ for the cooling by neutrino emission. Its value is determined so
295
+ that the radial velocity vanishes at the surface rPNS of the PNS.
296
+ Using dimensional analysis, we express Ac as a function of the
297
+ PNS radius rPNS, the surface gravity GM/r2
298
+ PNS and the mass ac-
299
+ cretion rate ˙M:
300
+ Ac = ˜Ac × ˙M1−β
301
+ ������
302
+ GM
303
+ r2
304
+ PNS
305
+ ������
306
+ 1−α+ β
307
+ 2
308
+ r
309
+
310
+ 2 −2−α
311
+ PNS
312
+ ,
313
+ (5)
314
+ where ˜Ac is a dimensionless quantity. The value of ˜Ac sets the
315
+ value of the shock radius without dissociation, rotation, or heat-
316
+ ing. ˜Ac does not vary when these parameters are changed. The
317
+ heating function Lh is expressed as
318
+ Lh = Ah
319
+ ρ
320
+ r2 .
321
+ (6)
322
+ The normalisation constant Ah, which is proportional to the neu-
323
+ trino luminosities and the neutrino opacities per unit mass, is
324
+ varied as a free parameter in our model. The heating and cooling
325
+ functions are effective in the post-shock region and are turned
326
+ off above the shock, as in Fernández et al. (2014).
327
+ In order to study the influence of stellar rotation on the
328
+ growth of the instabilities, we assume a constant specific angular
329
+ momentum J. Its dimensionless measure j is defined using the
330
+ Keplerian specific angular momentum at the PNS surface
331
+ j ≡
332
+ J
333
+ (GMrPNS)1/2 .
334
+ (7)
335
+ We note that j2 measures the ratio of the centrifugal and gravita-
336
+ tional forces at the PNS radius:
337
+ J2
338
+ r3
339
+ PNS
340
+ r2
341
+ PNS
342
+ GM = j2.
343
+ (8)
344
+ In our analysis, we vary j from 0 to 0.5 which corresponds to
345
+ a maximum centrifugal force equal to 25% of the gravitational
346
+ force at the PNS boundary. The angular momentum at 50% of
347
+ the Keplerian rotation can be expressed as
348
+ J
349
+ 1.5 × 1016cm2/s
350
+ =
351
+ j
352
+ 0.5
353
+ � rPNS
354
+ 50km
355
+ M
356
+ 1.4M⊙
357
+ �1/2
358
+ ,
359
+ (9)
360
+ =
361
+
362
+ 1.5rad/s
363
+
364
+ r
365
+ 1000km
366
+ �2
367
+ ,
368
+ (10)
369
+ where Ω in the second equation is the angular frequency in the
370
+ progenitor at a reference radius r. For reference, the strong mag-
371
+ netic field mentioned in Raynaud et al. (2020) could be generated
372
+ for j ≳ 0.13. Our hydrodynamical study neglecting magnetic
373
+ fields assumes that dynamo processes are too slow to interfere.
374
+ Our input parameters and normalisation are similar to Fer-
375
+ nández et al. (2014), with the addition of stellar rotation. The
376
+ dissociation parameter ε corresponds to the fraction of kinetic
377
+ energy of the incoming matter that is used to photo-dissociate
378
+ Article number, page 3 of 16
379
+
380
+ A&A proofs: manuscript no. aanda
381
+ the iron nuclei. ε is expressed in units of the specific kinetic en-
382
+ ergy v2
383
+ ff0/2 associated to free-fall at the reference radius rsh0. The
384
+ Mach number is imposed so that M1 = 5 above the shock, with-
385
+ out heating, rotation, or dissociation. The Bernoulli parameter
386
+ is set to zero above the shock, and the adiabatic index is set to
387
+ γ = 4/3. The default values of the shock radius and the disso-
388
+ ciation rate are rsh0 = 5rPNS and ε = 0. For each figure, the
389
+ value rsh0 = 5rPNS is used and the only exception is the use of
390
+ rsh0 = 3.2rPNS for comparison in Figs. 1 and 5. The value of
391
+ rsh specified in each figure corresponds to the shock radius tak-
392
+ ing into account the parameters (Ah, ε, J). The shock radius de-
393
+ creases when dissociation increases. As the rotation or the heat-
394
+ ing rate Ah is increased, the shock radius increases (blue curve in
395
+ Fig. 1) and the corresponding Mach number immediately above
396
+ the shock decreases.
397
+ Distances are normalised with either the PNS radius rPNS or
398
+ the reference shock radius rsh0, densities with the density imme-
399
+ diately above the shock ρ10, and velocities with the free-fall ve-
400
+ locity vff0 at rff0. These units are chosen for (Ah, ε, J) = (0, 0, 0)
401
+ and they do not vary when (Ah, ε, J) are varied. With these units
402
+ Ah = ˜Ahv3
403
+ ff0rsh0,
404
+ (11)
405
+ where ˜Ah is a dimensionless parameter characterising the heating
406
+ rate. Another way to measure the heating rate is to use the χ
407
+ parameter defined in Foglizzo et al. (2006) as
408
+ χ ≡
409
+ � rsh
410
+ rg
411
+ N(r)dr
412
+ |v| ,
413
+ (12)
414
+ where rg is the gain radius above which absorption of neutrino
415
+ energy exceeds the losses by neutrino emission, and N(r) is the
416
+ local Brunt-Väisälä frequency:
417
+ N ≡
418
+ �γ − 1
419
+ γ
420
+ g∇S
421
+ � 1
422
+ 2
423
+ .
424
+ (13)
425
+ In this equation, the gravity term g was not corrected by the cen-
426
+ trifugal force for the sake of simplicity, which is acceptable be-
427
+ cause of the low value of the ratio j2 of those two forces. Indeed,
428
+ Eq. (8) shows that even for our rapid rotation rate, the ratio of
429
+ those forces ∼ 7% in the middle of the post-shock region.
430
+ Figure 1 indicates that the gain radius varies little with the
431
+ strength of neutrino heating or the dissociation rate when the
432
+ heating rate is high enough. The gain radius is located near the
433
+ shock for small values of χ, approaches twice the PNS radius
434
+ for χ ∼ 2 and remains constant for χ ≫ 2 while the radius of
435
+ the stationary shock is pushed further out by the strong heating
436
+ of the matter. For χ ≳ 2, the gain radius stalls at ∼ 2rPNS and
437
+ the size of the gain region increases proportionally to the shock
438
+ radius.
439
+ The stronger the dissociation, the lower the energy after the
440
+ shock. This leads to lower velocities of sound and matter than in
441
+ the case without dissociation. As a result, the integrated intensity
442
+ of the cooling function needed to decelerate across the shocked
443
+ region is reduced. As ˜Ac is determined with ε = 0, the size of the
444
+ shocked region decreases when the dissociation rate increases,
445
+ as observed in Fig. 1. The impact of rotation is barely visible in
446
+ this figure with j = 0.08 because of the quadratic dependence of
447
+ the centrifugal force with the rotation frequency (= j2 < 1%, see
448
+ Eq. (8)).
449
+ However, we will see in the next section that this modest
450
+ rotation is large enough to have significant effects on SASI and
451
+ the convective instability.
452
+ Fig. 1. Evolution of the shock (blue) and gain (red) radii as a function of
453
+ χ. Unless stated otherwise, the values of the parameters are rsh0 = 5rPNS,
454
+ ε = 0 and j = 0. For the moderate value of angular momentum j = 0.08,
455
+ the stationary flow is almost unaffected by rotation. The case (j, ε) =
456
+ (0, 0) for rsh0 = 3.2rPNS is plotted in dashed lines for comparison with
457
+ the case including dissociation. As expected, the shock radius increases
458
+ with χ and the introduction of rotation increases the shock radius when
459
+ the cooling normalisation Ac is conserved.
460
+ 2.1.2. Perturbed flow
461
+ For the perturbed system, we use the same set of perturbed vari-
462
+ ables as in Yamasaki & Foglizzo (2008). δ f, δh, δS , and δq are
463
+ defined as follows:
464
+ δ f
465
+
466
+ vδv + J
467
+ r δvφ +
468
+ 2c
469
+ γ − 1δc − δq,
470
+ (14)
471
+ δh
472
+
473
+ δv
474
+ v + δρ
475
+ ρ ,
476
+ (15)
477
+ δS
478
+
479
+ 2
480
+ γ − 1
481
+ δc
482
+ c − δρ
483
+ ρ ,
484
+ (16)
485
+ δq
486
+
487
+ δ
488
+ ��
489
+ L
490
+ ρvdr
491
+
492
+ .
493
+ (17)
494
+ The time and angular dependence of the perturbations are as-
495
+ sumed to follow the form exp (−iωt + imφ). Their radial depen-
496
+ dence is then governed by the same differential equations as
497
+ Eqs. (6-11) in Yamasaki & Foglizzo (2008) with kz = 0, despite
498
+ the different geometry and the inclusion of neutrino heating in
499
+ the local function L:
500
+ d
501
+ dr
502
+ δ f
503
+ ω
504
+ =
505
+ ic2
506
+ v �1 − M2�
507
+
508
+ M2
509
+
510
+ δh − ω′
511
+ c2
512
+ δ f
513
+ ω
514
+
515
+ (18)
516
+ +
517
+
518
+ 1 + (γ − 1) M2� δS
519
+ γ − δq
520
+ c2
521
+
522
+ ,
523
+ dδh
524
+ dr
525
+ =
526
+
527
+ v �1 − M2�
528
+
529
+ µ2 ω′
530
+ c2
531
+ δ f
532
+ ω − M2δh − δS + δq
533
+ c2
534
+
535
+ ,
536
+ (19)
537
+ dδS
538
+ dr
539
+ =
540
+ iω′
541
+ v δS + δ
542
+ � L
543
+ Pv
544
+
545
+ ,
546
+ (20)
547
+ dδq
548
+ dr
549
+ =
550
+ iω′
551
+ v δq + δ
552
+ � L
553
+ ρv
554
+
555
+ ,
556
+ (21)
557
+ where
558
+ ω′
559
+
560
+ ω − mJ
561
+ r2 ,
562
+ (22)
563
+ µ2
564
+
565
+ 1 − m2
566
+ r2
567
+ c2
568
+ ω′2
569
+
570
+ 1 − M2�
571
+ .
572
+ (23)
573
+ Article number, page 4 of 16
574
+
575
+ 10
576
+ j= O,ε=,rsho =5rpNS
577
+ shock radius
578
+ - j= 0.08
579
+ 8
580
+ -- j = 0.4
581
+ rsho=3.2rpNS
582
+ =0.3
583
+ 6
584
+ r[rpNs]
585
+ 4
586
+ 2
587
+ gain radius
588
+ 2
589
+ 4
590
+ 6
591
+ 8
592
+ 10
593
+ xA.-C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov: Stellar rotation and post-shock instabilities during core-collapse
594
+ In these equations ω′ corresponds to the Doppler shifted value
595
+ of ω and is thus a function of radius. Note that this effect of
596
+ rotation is linear with respect to Ω, whereas the centrifugal force
597
+ is proportional to Ω2 as discussed above. A linear dependence
598
+ allows for strong effects of rotation for slow rotation, as will be
599
+ discussed later.
600
+ The boundary conditions at the shock are expressed using
601
+ conservation laws across a perturbed shock:
602
+ δfsh
603
+ ω
604
+ =
605
+ iv1∆ζ
606
+
607
+ 1 − vsh
608
+ v1
609
+
610
+ ,
611
+ (24)
612
+ δhsh
613
+ =
614
+ −i ω′
615
+ vsh
616
+ ∆ζ
617
+
618
+ 1 − vsh
619
+ v1
620
+
621
+ ,
622
+ (25)
623
+ δS sh
624
+ =
625
+ iω′v1
626
+ c2
627
+ sh
628
+ ∆ζ
629
+
630
+ 1 − vsh
631
+ v1
632
+ �2
633
+ − Lsh − L1
634
+ ρshvsh
635
+ ∆ζ
636
+ c2
637
+ sh
638
+ (26)
639
+ +
640
+
641
+ 1 − vsh
642
+ v1
643
+ � ∆ζ
644
+ c2
645
+ sh
646
+ ������
647
+ 2v1vsh
648
+ rsh
649
+ + J2
650
+ r3
651
+ sh
652
+ + GM
653
+ r2
654
+ sh
655
+ ������ ,
656
+ δqsh
657
+ =
658
+ −Lsh − L1
659
+ ρshvsh
660
+ ∆ζ,
661
+ (27)
662
+ where ∆ζ is the shock displacement, the indices “1” and “sh”
663
+ refer to the values above and below the shock, respectively.
664
+ The only difference with the boundary conditions (12-15) in Ya-
665
+ masaki & Foglizzo (2008), who assumed a cylindrical symme-
666
+ try, is the factor 2 implied by our choice of spherical-equatorial
667
+ geometry, in the term 2v1vsh/rsh in Eq. (26).
668
+ We use the same lower boundary condition at the PNS sur-
669
+ face, where the radial velocity vanishes. We use the Newton-
670
+ Raphson method to find the eigenvalues of this system when ε,
671
+ M1, χ, and rsh (or ˜Ac) are given. This method determines the per-
672
+ turbation growth rate (ωi) and frequency (ωr) for each azimuthal
673
+ number m.
674
+ In order to identify the effect of the four parameters
675
+ (ε, rsh0, J, χ) on the growth of instabilities, we select a mode and
676
+ follow its evolution when the parameters are varied. For a given
677
+ value of m, we study the evolution of each harmonic without ro-
678
+ tation and select the overtone with the highest growth rate, which
679
+ happens to be the fundamental mode as obtained by Yamasaki &
680
+ Yamada (2007). We follow the properties of this fundamental
681
+ mode when parameters (ε, rsh0, J, χ) are varied. When rotation
682
+ exceeds j ∼ 0.15, we noticed that some higher harmonics can be
683
+ slightly more unstable than the fundamental mode, but this effect
684
+ is marginal.
685
+ 3. Results
686
+ 3.1. SASI and the convective instability without rotation
687
+ Figure 2 shows the effect of the heating parameter χ on the
688
+ growth rate and the frequency of the fundamental mode corre-
689
+ sponding to several azimuthal numbers m = 1 to 5. Similarly
690
+ to Yamasaki & Yamada (2007) and Fernández et al. (2014), for
691
+ each value of m, the instability is oscillatory (like SASI) for mod-
692
+ est heating and purely growing (like the convective instability)
693
+ for stronger heating. The most unstable perturbations in the os-
694
+ cillatory regime have a large angular scale corresponding to a
695
+ small azimuthal number m = 1, as expected for SASI. For each
696
+ mode, the SASI frequency decreases abruptly to zero when the
697
+ heating rate is increased. The transition to a mode with zero fre-
698
+ quency corresponds to a steep increase of the growth rate. The
699
+ azimuthal scale of the dominant convective modes is smaller (i.e.
700
+ Fig. 2. Evolution of the modes as a function of χ parameter. Two in-
701
+ stability domains can be identified: SASI (ωr �0) for modest neutrino
702
+ heating and the convective instability (ωr =0) for stronger heating.
703
+ larger m, here m = 4) than SASI modes. The heating rate corre-
704
+ sponding to the transition between SASI and convection is ∼7%
705
+ smaller than expected by Fernández et al. (2014). This may be
706
+ due to their use of an entropy cut-off in the heating/cooling func-
707
+ tion, exp − (S/S min)2, where S min is the entropy at the PNS sur-
708
+ face. Except for this small quantitative difference, the general
709
+ behaviour is the same as in Fernández et al. (2014).
710
+ To study the influence of the parameters ε and J on the
711
+ growth of the convective instability (Fig. 3), we fixed the value
712
+ of χ = 4 such that the dominant mode is convective for every
713
+ dissociation rates. We compare the value mnum corresponding to
714
+ the most unstable mode obtained numerically, to the expected
715
+ value estimated analytically by Foglizzo et al. (2006):
716
+ mana = π
717
+ 2
718
+ rsh + rg
719
+ rsh − rg
720
+ .
721
+ (28)
722
+ This geometric formula is based on the assumption that convec-
723
+ tive cells have a circular shape, radially centred in the gain re-
724
+ gion. It neglects the geometry of the star and the fact that the
725
+ local value of the Brunt-Väisälä frequency is highest near the
726
+ gain radius and the width of its radial profile is inferior to the
727
+ gain region size. As a result, the limiting scale for the convective
728
+ cells is smaller than the whole gain region and comparable to the
729
+ size of the most buoyant region, as can be seen in Fig. 10. This
730
+ may explain the offset between the blue triangles and the blue
731
+ curve in Fig. 3, indicating that mana over-estimates the angular
732
+ size of the dominant convective scale.
733
+ The magnitude of the increase of mnum with ε in Fig. 3 is
734
+ consistent with the increase predicted by Eq. (28) based on the
735
+ increase of the size of the gain region visible in Fig. 1.
736
+ We also varied rsh0 between 2 and 4.5 times the PNS radius
737
+ by changing the cooling intensity ˜Ac and adapting the pre-shock
738
+ Mach number M1 such that M1 = 5 for rsh = 5rPNS, ε = 0. For
739
+ this variable, the agreement between mnum and mana is similar to
740
+ the one obtained in Fig. 3 without dissociation.
741
+ Article number, page 5 of 16
742
+
743
+ E=0,j=0,rsho = 5rpNS
744
+ 4
745
+ [Vsh/rsh]
746
+ 2
747
+ 0
748
+ 3
749
+ -4
750
+ 5
751
+ m=1
752
+ 432
753
+ [Vsh/rsh]
754
+ m=2
755
+ m=3
756
+ m=4
757
+ m=5
758
+ 31
759
+ 0
760
+ 0
761
+ 1
762
+ 2
763
+ 3
764
+ 4
765
+ 5
766
+ 6
767
+ 7
768
+ XA&A proofs: manuscript no. aanda
769
+ Fig. 3. Influence of the dissociation on the azimuthal number of the
770
+ most unstable fundamental mode mnum (triangles) at χ = 4 for three
771
+ different values of the rotation rate. The numerical values of the most
772
+ unstable modes (triangle) are compared to the analytical predictions of
773
+ Eq. (28) (dashed lines) as a function of the dissociation rate. We al-
774
+ low for quarter-integer values of mnum for an easier comparison with
775
+ Eq. (28).
776
+ 3.2. Influence of stellar rotation
777
+ In this part, we characterise the dependence of the growth rate
778
+ ωi and the oscillation frequency ωr on the rotation rate for both
779
+ SASI and the convective instability.
780
+ 3.2.1. Effect of rotation and heating on SASI
781
+ The growth rate of SASI is expected to increase approximately
782
+ linearly with the rotation rate, and the angular scale of the dom-
783
+ inant mode is expected to diminish when the rotation rate in-
784
+ creases. The corotation radius, defined as
785
+ rcorot ≡
786
+ �mJ
787
+ ωr
788
+ �1/2
789
+ ,
790
+ (29)
791
+ is also expected to increase with the rotation rate. These re-
792
+ sults were obtained without neutrino heating using a perturbative
793
+ analysis and numerical simulations both in cylindrical geometry
794
+ (Yamasaki & Foglizzo 2008; Kazeroni et al. 2017) and in spher-
795
+ ical geometry (Blondin et al. 2017; Walk et al. 2022).
796
+ Our perturbative analysis in spherical equatorial geometry,
797
+ shown in Fig. 4, confirms these results for χ = 0 and measures
798
+ the impact of neutrino heating for χ = 2. The lower plot in Fig. 4
799
+ shows the same dependence of the corotation radius on the rota-
800
+ tion rate as in Yamasaki & Foglizzo (2008). We note that increas-
801
+ ing the rotation rate introduces a corotation radius rcorot > rPNS
802
+ associated to the mode m = 2 before the mode m = 1. This hier-
803
+ archy is conserved when neutrino heating is taken into account.
804
+ In addition, in Yamasaki & Foglizzo (2008), the frequencies for
805
+ which rcorot = rPNS are fp2 ∼ 0.15kHz and fp1 ∼ 0.25kHz for
806
+ m = 2 and m = 1, respectively. These values are very close to
807
+ our results, where fp2 ∼ 0.17kHz and fp1 ∼ 0.28kHz.
808
+ The growth rate of the mode m = 1, dominant without rota-
809
+ tion, becomes inferior to the growth rate of the mode m = 2 with
810
+ higher rotation rates. The slope of the m = 2 mode in the upper
811
+ plot in Fig. 4 is indeed steeper than that of the m = 1 mode. We
812
+ find that this behaviour is robust when neutrino heating is taken
813
+ into account, as demonstrated in Fig. 4 for χ = 2.
814
+ Fig. 4. Evolution of the growth rate ωi in units of vsh/rsh (top), and the
815
+ corotation radius in units of rPNS (bottom) as a function of the rotation
816
+ rate, measured as in Yamasaki & Foglizzo (2008) with fp, the pulsar
817
+ frequency at 10 km. The azimuthal numbers m = 1 (blue) and m = 2
818
+ (red) are displayed for χ = 0 (solid line), and χ = 2 (dash dotted line).
819
+ To allow for a comparison with Fig. 1 of Yamasaki & Foglizzo (2008),
820
+ we considered the same parameter rsh = 5rPNS with a strong adiabatic
821
+ shock.
822
+ In the absence of dissociation and heating (solid lines in
823
+ Fig. 4), the observed transition with the mode m = 2 dominat-
824
+ ing the instability for j ∈ [0.3, 0.5] is consistent with the results
825
+ of Blondin et al. (2017) where the mode m = 2 dominates for
826
+ j ∼ 0.36 (corresponding to h = 0.115 in their units). When neu-
827
+ trino heating is taken into account, Fig. 4 shows that the tran-
828
+ sition from m = 1 to m = 2 requires a slightly larger amount
829
+ of rotation. On the other hand, this transition requires a smaller
830
+ amount of rotation when the shock radius is smaller or when dis-
831
+ sociation is taken into account (Fig. 5). The influence of disso-
832
+ ciation can be explained by its effect on the advection timescale.
833
+ For a given shock radius (kept constant in Fig. 5), the mat-
834
+ ter velocity decreases with ε because of the larger compression
835
+ through the shock. As a consequence, the advection timescale
836
+ rsh/vsh increases with ε and the frequency of the SASI modes
837
+ decreases. A slower rotation is therefore sufficient to be compa-
838
+ rable to the SASI frequency, which may explain the steeper effect
839
+ of rotation. This interpretation is confirmed by the bottom panel
840
+ of Fig. 5 where the rotation rate has been normalised using the
841
+ advection timescale. This renormalisation indeed collapsed the
842
+ curves with and without dissociation, at least for the small rota-
843
+ tion rates. Note, however, that this argument cannot explain the
844
+ dependence on the shock radius, which remains mysterious.
845
+ 3.2.2. Effect of rotation on the convective instability
846
+ We consider in Fig. 6 the effect of the heating rate on the eigen-
847
+ frequency of the mode m = 4 for different rotation rates. The
848
+ mode m = 4 was chosen because it is the first mode to ex-
849
+ hibit a convective instability when j = 0. The most striking fea-
850
+ ture regarding the oscillation frequency (lower plot in Fig. 6),
851
+ compared to Fig. 2, is the loss of a sharp transition between an
852
+ oscillatory instability for modest neutrino-heating and a purely
853
+ Article number, page 6 of 16
854
+
855
+ 6
856
+ j=0
857
+ j=0.08
858
+ j=0.25
859
+ 5
860
+ analytical
861
+ 4
862
+ m
863
+ 3
864
+ 2
865
+ 0.1
866
+ 0.2
867
+ 0.3
868
+ 0.4
869
+ 0.5
870
+ 0.0j(%)
871
+ 0
872
+ 10
873
+ 20
874
+ 30
875
+ 40
876
+ 50
877
+ 2.5
878
+ W; [Vsh/rsh]
879
+ 2
880
+ m=1
881
+ 1.5
882
+ 1
883
+ m=2
884
+ 3 0.5
885
+ 0
886
+ X=0
887
+ 3
888
+ rcorot[rpNs]
889
+ X=2
890
+ 2
891
+ 1
892
+ 0
893
+ 0.0
894
+ 0.5
895
+ 1.0
896
+ 1.5
897
+ 2.0
898
+ fp (kHz)A.-C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov: Stellar rotation and post-shock instabilities during core-collapse
899
+ Fig. 5. Influence of rotation on the growth rate of SASI with dissoci-
900
+ ation (solid lines) and without dissociation (dashed lines). The bottom
901
+ panel presents the rotation rate normalised with a proxy for the advec-
902
+ tion timescale from the shock to the PNS calculated for (χ, j) = (0, 0).
903
+ Other parameters are χ = 0 and rsh (j = 0) = 3.2rPNS.
904
+ growing instability for strong enough neutrino-heating. This ef-
905
+ fect blurs the distinction between SASI and convection, which
906
+ becomes difficult for j ≳ 0.1 as will be discussed in the next
907
+ section. In this section, we focus on the regime of slow rotation
908
+ ( j ≲ 0.1), in which the two instabilities can be still be distin-
909
+ guished.
910
+ Even with modest angular momentum, the differential na-
911
+ ture of rotation implies that convective motions are going to be
912
+ sheared in addition to being entrained in rotation with a fre-
913
+ quency intermediate between the shock and PNS rotational fre-
914
+ quency. The region most unstable to buoyant motions, i.e. the
915
+ radius rBV corresponding to the largest Brunt-Väisälä frequency
916
+ N(r) (Eq. 13) is expected to contribute most to defining the phase
917
+ frequency of the convective mode, i.e. the rotation frequency of
918
+ the frame in which the convective pattern is stationary. We com-
919
+ pare in Fig. 7 rBV with the corotation radius rcorot defined by
920
+ Eq. (29). For small rotation rates ( j ≲ 0.1), we remark in Fig. 7
921
+ that rcorot is close to rBV as anticipated for a purely convective
922
+ mode.
923
+ Figure 8 illustrates the effect of rotation on the growth rate
924
+ of convective modes at χ = 6.5, which is significantly larger
925
+ than the marginal stability threshold of the most unstable mode
926
+ (χ = 3.5 − 4). For both dissociation rates (ε = 0 and ε = 0.3),
927
+ the differential rotation reduces the growth rate of the convec-
928
+ tive instability, in particular for the smaller scale modes. The ad-
929
+ verse effect on the convective instability is less abrupt for larger
930
+ Fig. 6. Evolution as a function of χ of the growth rate ωi (top) and
931
+ the frequency ωr (bottom) of the fundamental mode, with an azimuthal
932
+ number m = 4 for different values of the rotation rate.
933
+ scale modes, which might be interpreted by a smaller effect of
934
+ the shearing due to differential rotation between the shock and
935
+ the PNS. As a result, larger angular scales become dominant
936
+ for high rotation rates. At the largest scales (m = 1 for ϵ = 0,
937
+ m = 1 − 2 for ϵ = 0.3), rotation can on the contrary have a ben-
938
+ eficial effect on the growth rate, which will be discussed in the
939
+ next paragraph and section.
940
+ Fig. 9 shows the effect of rotation on the heating rate at
941
+ marginal stability, expressed in terms of χmarg. This threshold
942
+ for unstable convective modes decreases with rotation for all
943
+ m considered, thus showing a destabilising effect on convection
944
+ near its marginal stability. Such a destabilising effect is surpris-
945
+ ing and stands in striking contrast to the adverse effect of rota-
946
+ tion at χ = 6.5 discussed in the last paragraph. We propose that
947
+ this effect can be interpreted by the mixed nature of the modes
948
+ near the transition between SASI and convection. In this inter-
949
+ pretation, the destabilising effect of rotation on convection is a
950
+ remnant of the rotational destabilisation of SASI in the regime
951
+ where the convective mode retains some characteristics of SASI
952
+ near the transition between the two instabilities. The behaviour
953
+ of a mode with respect to rotation would then be expected to
954
+ depend on how close the heating rate is to the SASI/convection
955
+ transition. Indeed, Fig. 9 shows that the heating rate at marginal
956
+ stability χmarg decreases faster for smaller m when rotation is in-
957
+ creased. In the absence of rotation, when m increases, the transi-
958
+ tional χtrans from SASI to convection decreases (see Fig. 2) while
959
+ the marginal stability depends little on the azimuthal number.
960
+ As a result, the difference χtrans − χmarg increases with m, and
961
+ the residual effect of SASI decreases. This highlight the mixed
962
+ SASI/convection state of the modes near χtrans for small rotation
963
+ rates.
964
+ 3.2.3. Mixed SASI-convective mode induced by rotation
965
+ For intermediate rotation rates (0.1 < j < 0.3), the behaviour of
966
+ the modes is modified by rotation to such an extent that it be-
967
+ comes impossible to distinguish clearly between convective and
968
+ Article number, page 7 of 16
969
+
970
+ X=0.0
971
+ m=1
972
+ 3
973
+ m=2
974
+ m=3
975
+ 2
976
+ m=4
977
+ W; [Vsh/rsh]
978
+ 1
979
+ 0
980
+ -1
981
+ 0
982
+ 10
983
+ 20
984
+ 30
985
+ 40
986
+ 50
987
+ j(%)E=0,m=4,rsho = 5rpNS
988
+ 4
989
+ [4S1/S^] !
990
+ 2
991
+ 0
992
+ j= 0%
993
+ 3-2
994
+ j=10%
995
+ j= 2%
996
+ j=20%
997
+ j= 5%
998
+ j=30%
999
+ -4
1000
+ 10
1001
+ 8
1002
+ Wr [Vsh/rsh]
1003
+ 6
1004
+ 4
1005
+ 2
1006
+ 00
1007
+ 1
1008
+ 2
1009
+ 3
1010
+ 4
1011
+ 5
1012
+ 6
1013
+ 7
1014
+ XX=0.0
1015
+ =0.3
1016
+ 3
1017
+ m=0
1018
+ 2
1019
+ W; [Vsh/rsh]
1020
+ 1
1021
+ 0
1022
+ 0
1023
+ 0.3
1024
+ 0.6
1025
+ 0.9
1026
+ 1.2
1027
+ 1.5
1028
+ J [rsho * Vsho]A&A proofs: manuscript no. aanda
1029
+ Fig. 7. Evolution of the corotation radius rcorot as a function of the rota-
1030
+ tion rate for ε = 0 (top) and ε = 0.3 (bottom). The corotation radius of
1031
+ the most unstable mode is represented with a blue line (numbers above
1032
+ the line specify the corresponding azimuthal number m). For compari-
1033
+ son, grey lines show the PNS radius rPNS, the gain radius rgain, the radius
1034
+ of the Brunt-Väisälä frequency maximum rBV and the shock radius rsh.
1035
+ With both values of the dissociation, the corotation radius of the most
1036
+ unstable mode is close to rBV for slow rotation and moves away for
1037
+ higher rotation rates ( j > 30%).
1038
+ SASI modes. As will be described in this section, the modes in
1039
+ this regime retain characteristics of both instabilities and should
1040
+ be understood as mixed SASI/convection/rotation modes.
1041
+ In order to gain a deeper understanding of the transition be-
1042
+ tween the SASI dominated and the buoyancy dominated mode
1043
+ including rotation, we show in Fig. 10 the entropy structure of
1044
+ the eigenfunction for the modes m = 1, 2, 4, 5 for three values of
1045
+ the angular momentum j = 0, 0.1 and 0.4 and χ ∼ 6. When there
1046
+ is no rotation (first column in Fig. 10), the entropy structure of
1047
+ SASI (first line) is uniformly spread in the radial direction as a
1048
+ spiral pattern. It is clearly distinct from the structure of convec-
1049
+ tion, whose perturbations are more localised in the vicinity of the
1050
+ gain radius and do not display any spiral pattern. In the second
1051
+ column of this figure, we note that the m = 1 spiral SASI pattern
1052
+ is little affected by a moderate rotation with j = 0.1 (compare left
1053
+ and middle columns). This can be interpreted by the fact that for
1054
+ such moderate rotation, the corotation radius is close to the PNS
1055
+ surface. For the same rotation rate, the differential rotation shears
1056
+ the convective cells with m = 2 − 5. This leads to spiral struc-
1057
+ tures that are smaller but similar to a SASI pattern. However, the
1058
+ convective nature of the mode is still visible by the localisation
1059
+ Fig. 8. Growth rate evolution depending on the rotation rate for several
1060
+ modes at χ = 6.5 with ε = 0 (top panel) and ε = 0.3 (bottom panel). For
1061
+ j = 0, rsh(ε = 0) = 7.8rPNS and rsh(ε = 0.3) = 4.1rPNS. For this heating
1062
+ rate, non axisymmetric convective modes are quenched by rotation. In
1063
+ the absence of rotation, all modes are above the transition from SASI to
1064
+ convection, except for the mode m = 1 in the bottom panel.
1065
+ Fig. 9. Impact of rotation on the parameter χmarg characterising the ad-
1066
+ vective stabilisation of the convective mode. We consider several az-
1067
+ imuthal numbers m and ε = 0.3. The modes m = 1 and m = 2 are not
1068
+ convective in this region and are not shown. The curves are cut when the
1069
+ mode is unstable for all heating rates and χmarg does not exist anymore.
1070
+ Article number, page 8 of 16
1071
+
1072
+ X =6.5
1073
+ 4.0
1074
+ m=0
1075
+ 3.5
1076
+ 3.0
1077
+ 2.5
1078
+ 2.0
1079
+ 3
1080
+ 1.5
1081
+ 1.0
1082
+ m=1
1083
+ m=2
1084
+ 0.5
1085
+ m=3
1086
+ m=4
1087
+ 0.0
1088
+ 0
1089
+ 15
1090
+ 30
1091
+ 45
1092
+ j(%)= 0.3
1093
+ 4.0
1094
+ m=3
1095
+ m=4
1096
+ 3.5
1097
+ m=5
1098
+ 3.0
1099
+ m=6
1100
+ 2.5
1101
+ 2.0
1102
+ 1.5
1103
+ 1.0
1104
+ 0.5
1105
+ 0.0
1106
+ 0
1107
+ 5
1108
+ 10
1109
+ 15
1110
+ 20
1111
+ j(%)E=0, X=6.5
1112
+ rsh
1113
+ 8
1114
+ 6
1115
+ [rpNs]
1116
+ rcorot, m = 2
1117
+ rcorot, most unstable
1118
+ 4
1119
+ 1
1120
+ 4
1121
+ 3
1122
+ rBV.
1123
+ 2
1124
+ gain
1125
+ rpNS
1126
+ 0
1127
+ 0
1128
+ 10
1129
+ 20
1130
+ 30
1131
+ 40
1132
+ 50
1133
+ j(%)E=0.3, X=6.5
1134
+ rsh
1135
+ 4
1136
+ 3
1137
+ 3
1138
+ 2
1139
+ 4
1140
+ 3
1141
+ 5
1142
+ 2
1143
+ rBV
1144
+ rgain
1145
+ 1
1146
+ rpNS
1147
+ rcorot, m = 2
1148
+ rcorot, most unstable
1149
+ 0
1150
+ 0
1151
+ 10
1152
+ 20
1153
+ 30
1154
+ 40
1155
+ 50
1156
+ j(%)X =6.5
1157
+ 4.0
1158
+ 3.5
1159
+ 3.0
1160
+ 2.5
1161
+ 2.0
1162
+ E=0.3
1163
+ 1.5
1164
+ 3
1165
+ m=1
1166
+ 1.0
1167
+ m=2
1168
+ m=3
1169
+ 0.5
1170
+ m=4
1171
+ m=5
1172
+ 0.0
1173
+ 0
1174
+ 15
1175
+ 30
1176
+ 45
1177
+ j(%)A.-C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov: Stellar rotation and post-shock instabilities during core-collapse
1178
+ Fig. 10. Spatial structure of the eigenmode entropy perturbation in the equatorial plane, for ε = 0.3 and χ ∼ 6. Each row corresponds to a
1179
+ value of m = (1, 2, 4, 5) (from top to bottom) and each column to a rotation rate with j = (0, 0.1, 0.4) (from left to right). In magenta and cyan, we
1180
+ represented the gain and corotation radii, respectively. The diagonal sequence of framed plots corresponds to the most unstable modes. Coordinates
1181
+ x and y are expressed in rPNS unit. The deformation induced by rotation is stronger for smaller scale modes.
1182
+ of the perturbations near the gain radius. These similar structures
1183
+ can be explained if we consider that the mode is not purely con-
1184
+ vective, but becomes a mixed mode SASI/convection/rotation.
1185
+ A global panorama of the parameter space is shown in
1186
+ Fig. 11 where we vary χ and j for three values of the dissoci-
1187
+ ation parameter ε = 0, 0.3 and 0.5 (upper to lower rows). The
1188
+ four columns represent the growth rate and oscillation frequency
1189
+ of the most unstable mode, its azimuthal number m and the coro-
1190
+ tation radius rcorot. The main effect of dissociation is to diminish
1191
+ the radius of the stationary shock and thus the size of the gain
1192
+ region and the timescale of advection.
1193
+ For small values of j, we can see a sharp jump in frequency
1194
+ and m when neutrino heating exceeds the threshold χ ∼ 4 cor-
1195
+ responding to the transition from SASI to the convective insta-
1196
+ Article number, page 9 of 16
1197
+
1198
+ j=0%, X=6.0, m = 1.0
1199
+ i=40%, X=5.9, m = 1.0
1200
+ 4
1201
+ 4
1202
+ 4321
1203
+ 10°
1204
+
1205
+ 3
1206
+ 2
1207
+ 2
1208
+ 10-1
1209
+ gain
1210
+ 1
1211
+ 1
1212
+ y
1213
+ 0
1214
+ 0
1215
+ y
1216
+ 0
1217
+ y
1218
+ 0
1219
+ -1
1220
+ -1
1221
+ -1
1222
+ Fgain
1223
+ -2
1224
+ -2
1225
+ -2
1226
+ -10-1
1227
+ Tcorot
1228
+ -3
1229
+ -3
1230
+ -3
1231
+ -100
1232
+ -41
1233
+ ¥34
1234
+ -4-3-2-1 0 1 2 3
1235
+ 4
1236
+ x
1237
+ X
1238
+ X
1239
+ j=40%, x=5.9, m = 2.0
1240
+ j=0%, X=6.0, m = 2.0
1241
+ j=10%, X=6.0, m = 2.0
1242
+ 4
1243
+ 4
1244
+ 100
1245
+ 3
1246
+ 3
1247
+ 2
1248
+ 2
1249
+ 10-1
1250
+ gair
1251
+ 1
1252
+ 1
1253
+
1254
+ 0
1255
+ y
1256
+ 0
1257
+ y
1258
+ 0
1259
+ >
1260
+ -1
1261
+ -1
1262
+ Fgain
1263
+ Fgain
1264
+ -2
1265
+ -2
1266
+ Fcorot
1267
+ -10-1
1268
+ -3
1269
+ -3
1270
+ 73
1271
+ -10°
1272
+ F4-3 -2
1273
+ 12
1274
+ -1
1275
+ 1
1276
+ 2
1277
+ 3
1278
+ 4
1279
+ ¥34
1280
+ -4-3-2-1 0
1281
+ 12
1282
+ 4
1283
+ 0
1284
+ x
1285
+ X
1286
+ X
1287
+ j=0%, X=6.0, m = 4.0
1288
+ j=10%, X=6.0, m = 4.0
1289
+ j=40%, X=5.9, m = 4.0
1290
+ 41
1291
+ 4
1292
+ 10°
1293
+ 3
1294
+ 3
1295
+
1296
+ 2
1297
+ 2
1298
+ 21
1299
+ 10-1
1300
+ aai
1301
+ 1
1302
+ 1
1303
+ 0
1304
+ 0
1305
+ 0
1306
+ y
1307
+ y
1308
+ -1
1309
+ -1
1310
+ -1
1311
+ -2
1312
+ Fgain
1313
+ -2
1314
+ -10-1
1315
+ col
1316
+ -3
1317
+ -3
1318
+ -4
1319
+ -10°
1320
+ 4.
1321
+ 44-3-2-1 0
1322
+ 4-3-2-1 0
1323
+ -4-3-2-1 0 1 2
1324
+ 1
1325
+ 2
1326
+ 3
1327
+ ¥3
1328
+ 4
1329
+ X.
1330
+ x
1331
+ j=0%, X=6.0, m = 5.0
1332
+ j=40%, X=5.9, m = 5.0
1333
+ j=10%, X=6.0, m = 5.0
1334
+ 4
1335
+ 4
1336
+ 4
1337
+ 10°
1338
+
1339
+ 321
1340
+ 2
1341
+ 10-1
1342
+ gais
1343
+ 1
1344
+ 1
1345
+ 0
1346
+ 0
1347
+ y
1348
+ 0
1349
+ 0
1350
+ y
1351
+ y
1352
+ -1
1353
+ -1
1354
+ -1
1355
+ +gain
1356
+ -2
1357
+ -10-1
1358
+ -3
1359
+ -100
1360
+ 4
1361
+ 4
1362
+ 2
1363
+ 3
1364
+ =4 -3 -2-1
1365
+ 4
1366
+ 4-3-2
1367
+ -1
1368
+ -1
1369
+ 0
1370
+ 4
1371
+ 0
1372
+ 1
1373
+ 2
1374
+ 3
1375
+ 0
1376
+ 2
1377
+ 3
1378
+ 4
1379
+ X
1380
+ X
1381
+ XA&A proofs: manuscript no. aanda
1382
+ Fig. 11. From left to right, maps of the growth rate ωi, frequency ωr, azimuthal number m and corotation radius of the most unstable fundamental
1383
+ mode with three dissociation rates ε = 0 (top row), 0.3 (middle row) and 0.5 (bottom row). Above the magenta dashed line, the growth rate of
1384
+ equatorial perturbations decreases with rotation. In the two left columns, the white lines show where the corotation radius equals rPNS and rgain. In
1385
+ the two right columns, the black lines highlight the variation of the dominant azimuthal number m (numbers).
1386
+ Article number, page 10 of 16
1387
+
1388
+ = 0.0, rsh(j= 0,X= 0) = 5.00rpNS
1389
+ 8
1390
+ 4
1391
+ 4
1392
+ 7
1393
+ 6
1394
+ 1
1395
+ 1
1396
+ 3
1397
+ 3
1398
+ 5
1399
+
1400
+ 2
1401
+ 2
1402
+ X4
1403
+ 3
1404
+ rcorot-
1405
+ rot
1406
+ 2
1407
+ =rpNS
1408
+ 1
1409
+ =gain
1410
+ 1
1411
+ 2
1412
+ 2
1413
+ 0
1414
+ ε = 0.3, rshj= 0,X= 0) = 3.25rpNs
1415
+ 8
1416
+ 7
1417
+ 6
1418
+ 5
1419
+ 41
1420
+ 3
1421
+ 54
1422
+ 5
1423
+ 3
1424
+ X4
1425
+ 3
1426
+ Fcorot
1427
+ rcorot
1428
+ t = [pNS
1429
+ =rgain
1430
+ 1
1431
+ 2
1432
+ 1
1433
+ 2
1434
+ 2
1435
+
1436
+ 3
1437
+ 1
1438
+ 0.
1439
+ = 0.5, rsh(= 0,X= 0) = 2.76rpNS
1440
+ 8
1441
+ 7
1442
+ 6
1443
+ 5
1444
+ 5
1445
+ 4
1446
+ 6514
1447
+ 3
1448
+ 3
1449
+ X4
1450
+ 3
1451
+ Icorot =IpNS
1452
+ rcorot = fpNS
1453
+ 1
1454
+ 2
1455
+ 1
1456
+ Igain
1457
+ 2
1458
+ 2
1459
+ 1
1460
+ 25
1461
+ 50 0
1462
+ 25
1463
+ 50 0
1464
+ 25
1465
+ 50 0
1466
+ 25
1467
+ 50
1468
+ j(%)
1469
+ j(%)
1470
+ j(%)
1471
+ j(%)
1472
+ 012345
1473
+ 5
1474
+ 1015
1475
+ i2345
1476
+ 0
1477
+ 0
1478
+ 1
1479
+ 2
1480
+ W;[Vsh/rsh]
1481
+ Wr[Vsh/rsh]
1482
+ m
1483
+ rcorot[ rpNs]A.-C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov: Stellar rotation and post-shock instabilities during core-collapse
1484
+ bility as the most unstable mode. However, as rotation increases,
1485
+ the frequency of the convective instability increases until its fre-
1486
+ quency is similar to the SASI frequency. At angular momentum
1487
+ jcrit ∼ 0.08 − 0.12, the jump disappears and it becomes impos-
1488
+ sible to distinguish clearly convective from SASI modes: mixed
1489
+ modes appear.
1490
+ The appearance of mixed modes can also be recognised in
1491
+ the evolution of the corotation radius shown in Fig. 7. Above a
1492
+ critical rotation rate, the corotation radius indeed starts to move
1493
+ away from the Brunt-Väisälä radius, where it is located for a
1494
+ convective mode. We remark that rcorot starts to shift outwards
1495
+ for rotation rates exceeding j ∼ 10%, indicating a lower fre-
1496
+ quency than expected for a purely convective mode. This slower
1497
+ oscillation frequency compared to the rotation rate of the most
1498
+ buoyant layer suggests that some physical process associated to
1499
+ rotation and/or SASI contributes significantly to the instability
1500
+ mechanism. However, the change of the azimuthal number of
1501
+ the dominant mode (see below) keeps the corotation close to the
1502
+ Brunt-Väisälä radius, indicating that convection still plays a role
1503
+ in the instability mechanism.
1504
+ We remark in the 3rd column of Fig. 11 that the azimuthal
1505
+ number m of the most unstable mode decreases with the rotation
1506
+ rate for χ > 4, while it increases for χ < 4. The change of dom-
1507
+ inant convective scale induced by rotation is not predicted by
1508
+ Eq. (28): comparing the magenta and blue triangles in Fig. 3 in-
1509
+ dicates a shift to larger angular scales induced by a moderate an-
1510
+ gular momentum j = 0.08, despite a negligible change in the size
1511
+ of the gain region. For this small rotation rate, the shortcoming of
1512
+ Eq. (28) is not surprising when considering the rotation-induced
1513
+ distortion of the convective cells in Fig. 10 and the residual influ-
1514
+ ence of SASI. The rotational stabilisation of perturbations with
1515
+ a large azimuthal wave number m can be understood as a conse-
1516
+ quence of their strong shear (Eq. 22) which induces a short radial
1517
+ wavelength 2πv/ω′ for advected perturbations near the PNS, and
1518
+ thus a phase mixing particularly visible in the lower right corner
1519
+ of Fig. 10.
1520
+ Fig. 12. Evolution of the critical rotation rate jcrit depending on the dis-
1521
+ sociation using two methods. This critical rotation corresponds to the
1522
+ apparition of the mixed-modes. The higher the dissociation, the later
1523
+ the transition. For the blue points, we used the discontinuity end of the
1524
+ dominant m at χ ∼ 4. For the magenta points, we used the advection
1525
+ timescale τadv from the shock to the gain radius for m = 4 and χ ∼ 4.
1526
+ The third column of Fig. 11 can be used to better constrain
1527
+ the domain of existence of these mixed modes. For small rota-
1528
+ tion rates, the azimuthal number contours converge to a line at
1529
+ χ ∼ 4. It corresponds to the transition from purely SASI modes
1530
+ to purely convective modes, across which the azimuthal number
1531
+ and frequency of the dominant mode is discontinuous. Above
1532
+ this boundary, the high m modes dominate, and their frequency
1533
+ depends linearly on the rotation rate. However, this frontier dis-
1534
+ appears for higher rotation rates, and the transition from small
1535
+ m to higher m is continuous. The value of the rotation rate jcrit
1536
+ when the frontier disappears slightly increases when the disso-
1537
+ ciation rate increases (blue points in Fig. 12). This behaviour
1538
+ can be quantitatively reproduced if we assume that mixed modes
1539
+ appear when the frequency of the convective mode ≃ mΩ(rBV)
1540
+ matches the frequency of the corresponding SASI mode in the
1541
+ absence of rotation or heating ≃ 2π/τadv. This criterion defines a
1542
+ critical specific angular momentum
1543
+ Jmix = 2πr2
1544
+ BV
1545
+ mτadv
1546
+ ,
1547
+ (30)
1548
+ which reproduces remarkably well the variation of
1549
+ jcrit
1550
+ when considering the mode m
1551
+ =
1552
+ 4 (magenta points of
1553
+ Fig. 12). This is the signature of the growth of mixed modes
1554
+ SASI/convection/rotation.
1555
+ The first column in Fig. 11 shows the adverse effect of rota-
1556
+ tion on the growth rate of the convective instability for χ > 5, as
1557
+ discussed in Sect. 3.2.2. For each rotation rate, the magenta line
1558
+ highlights the value of χ above which the rotation has an adverse
1559
+ effect on the growth of convection in the equatorial plane. In this
1560
+ region, the dynamic of the flow will be dominated by axisym-
1561
+ metric convective modes in the plane (r, z), that are expected to
1562
+ be little affected by the rotation for j ∈ [0, 0.3]. This stands in
1563
+ contrast with the beneficial effect of rotation on the growth rate
1564
+ of SASI for χ < 3 − 4, as discussed in Sect. 3.2.1, where spiral
1565
+ modes are therefore expected to dominate the dynamics. Inter-
1566
+ estingly, rotation has a beneficial effect on the growth rate of
1567
+ the dominant non-axisymmetric convective modes for moderate
1568
+ convection parameters χ ≃ 4 − 5 (Fig. 11). The same behaviour
1569
+ can be observed for the m = 4 mode in the upper plot of Fig. 6,
1570
+ where the growth rate for χ ∼ 3 − 4 is significantly enhanced by
1571
+ rotation. It is also linked to the easier onset of convection with
1572
+ rotation shown by the decrease of χmarg in Fig. 9, as discussed
1573
+ in Sect. 3.2.2. All these observations suggest that the perturba-
1574
+ tion of the shock induced by the convective instability produces
1575
+ an advective-acoustic cycle favourable to enhance the convec-
1576
+ tive instability, as already suggested by the entropy structure in
1577
+ Fig. 10. The mode m = 1 in Fig. 8 calls for a particular attention,
1578
+ with a significant enhancement of the growth rate by rotation
1579
+ (this is also true for the m = 2 mode in the lower panel of the
1580
+ same figure) in a regime χ = 6.5 a priori dominated by convec-
1581
+ tion with an adverse effect of rotation. This peculiar behaviour
1582
+ of the m = 1−2 modes can also be explained by a mixed state of
1583
+ this mode with the advective-acoustic cycle interacting construc-
1584
+ tively with the convective mode. Indeed, for these low values of
1585
+ m the transition from SASI to convection takes place at a rather
1586
+ large value of χ (e.g. χ ≃ 6 for m = 1 in Fig. 2). As a conse-
1587
+ quence, mixed modes with a beneficial effect of rotation may be
1588
+ expected for larger values of χ close to this transition.
1589
+ Figs. 13 and 14 illustrate the effect of rotation on both insta-
1590
+ bilities in two configurations mainly differing by their shock ra-
1591
+ dius, induced by the dissociation parameter. The value χ = 4.5 is
1592
+ chosen in the region where the most unstable mode is convective
1593
+ and the growth rate increases with rotation (below the magenta
1594
+ line of the first column in Fig. 11). In the bottom panel of these
1595
+ figures, the oscillation frequency without rotation ( j = 0) reveals
1596
+ the convective (ωr = 0) or SASI (ωr � 0) nature of the modes.
1597
+ We can see that the convective frequency, enhanced by rotation,
1598
+ Article number, page 11 of 16
1599
+
1600
+ 13
1601
+ J = 2réy/(mTadv)
1602
+ 12
1603
+ jcrit
1604
+ linear fit
1605
+ 11
1606
+ 10
1607
+ 9
1608
+ 8
1609
+ 7
1610
+ 6
1611
+ 5
1612
+ 0.0
1613
+ 0.1
1614
+ 0.2
1615
+ 0.3
1616
+ 0.4
1617
+ 0.5
1618
+ EA&A proofs: manuscript no. aanda
1619
+ Fig. 13. Growth rate (top) and frequency (bottom) evolution of several
1620
+ modes depending on the rotation rate j, for χ = 4.5, ε = 0 and rsh( j =
1621
+ 0) = 6.8rPNS.
1622
+ Fig. 14. Same as Fig. 13 but for ε = 0.3 and rsh( j = 0) = 3.9rPNS.
1623
+ is similar to the SASI frequency for j ∈ [0.02, 0.08]. The top
1624
+ panels of this figure show that the effect of rotation varies de-
1625
+ pending on the nature of the instability. The growth rate of SASI
1626
+ modes is enhanced by the rotation, as in Yamasaki & Foglizzo
1627
+ (2008) and Blondin et al. (2017). For convective modes, the ef-
1628
+ fect of rotation depends on the proximity of χ to the transition
1629
+ value χtrans defining the transition of a mode between SASI and
1630
+ convection. Defining ∆χ ≡ χ − χtrans, the rotation can induce an
1631
+ increase of the growth rate, similar to the effect of rotation on
1632
+ SASI, if ∆χ < 1. Otherwise, the convective modes are quenched
1633
+ by rotation, as observed in Fig. 8. Comparing Figs. 13 and 14,
1634
+ the increase of the frequency and growth rate induced by rotation
1635
+ is stronger for ε = 0.3.
1636
+ Fig. 15. Evolution of the growth rate depending on the azimuthal num-
1637
+ ber m for several rotation rates and χ = 4.5.
1638
+ Figure 15 illustrates the complexity of the impact of rotation
1639
+ depending on the azimuthal number. The growth rate of SASI
1640
+ modes (m = 1, 2) is increased. However, the effect of rotation on
1641
+ convective modes depends on both the rotation and the azimuthal
1642
+ number. For m ∼ 3, the destabilising effect of rotation on the
1643
+ convective instability can be clearly seen by continuity with the
1644
+ increase of the SASI growth rate. For m ∈ [3, 5], the effect of
1645
+ rotation on the convection is similar to its effect on SASI, but
1646
+ with a smaller magnitude. For higher m ≳ 6 and low rotation
1647
+ rates, the rotation has an adverse effect and leads to a decrease
1648
+ of the growth rate. The effect changes for high rotation rates and
1649
+ will be discussed in Sect. 3.3.
1650
+ As a summary, the rotation smoothens the transition from
1651
+ SASI to convection, leading to a mixed mode phase. These
1652
+ mixed modes appear when the corotation radius moves away
1653
+ from the Brunt-Väisälä radius and exist up to j ∼ 30% where
1654
+ the properties of the modes starts to change.
1655
+ 3.3. Strong rotation-induced instability
1656
+ The mixed state of the modes seems to disappear when the
1657
+ rotation becomes too strong. When the rotation rate exceeds
1658
+ j ∼ 20%, Fig. 6 shows that both the frequency and the growth
1659
+ rate of m = 4 become strikingly insensitive with respect to the
1660
+ heating rate when expressed in units of vsh/rsh. Rotation also
1661
+ changes the behaviour of the dominating m as a function of heat-
1662
+ ing. While the dominant m increases with χ for small and inter-
1663
+ mediate rotations, it decreases slightly with heating for higher
1664
+ rotation rates. Also, when considering the most unstable mode,
1665
+ the rotation seems to lessen the influence of the parameter χ on
1666
+ the frequency and growth rate of the dominant mode for j ≳ 0.3
1667
+ (Fig. 11). This suggests that the mode loses its convective nature
1668
+ and that the buoyancy driven by the entropy gradient no longer
1669
+ plays an important role in the strong rotation regime. Another
1670
+ indication that the role of buoyancy in the instability mechanism
1671
+ has been erased by rotation comes from the fact that the corota-
1672
+ tion radius moves definitively away from the Brunt-Väisälä ra-
1673
+ dius for high rotation rate j ≳ 30% (Fig. 7).
1674
+ Article number, page 12 of 16
1675
+
1676
+ X =4.5, ε=0, rsho = 5rpNS
1677
+ 4
1678
+ m=1
1679
+ m=3
1680
+ [Vsh/rsh]
1681
+ m=2
1682
+ m=4
1683
+ 3
1684
+ 2
1685
+ 31
1686
+ 0
1687
+ 12
1688
+ Wr [Vsh/rsh]
1689
+ 8
1690
+ 4
1691
+ 0
1692
+ 0
1693
+ 10
1694
+ 20
1695
+ 30
1696
+ 40
1697
+ 50
1698
+ j(%)X =4.5, E=0.3, rsho = 5rpNS
1699
+ 4
1700
+ [Vsh/ rsh]
1701
+ 3
1702
+ m=1
1703
+ m=4
1704
+ 31
1705
+ m=2
1706
+ m=5
1707
+ m=3
1708
+ 0
1709
+ 12
1710
+ Wr [Vsh/rsh]
1711
+ 8
1712
+ 4
1713
+ 0
1714
+ 0
1715
+ 10
1716
+ 20
1717
+ 30
1718
+ 40
1719
+ 50
1720
+ j(%)E=0.3, X=4.0,rsho = 5rpNS
1721
+ 3
1722
+ W; [Vsh/rsh]
1723
+ 2
1724
+ 1
1725
+ j=0%
1726
+ j=10%
1727
+ 0
1728
+ j=2%
1729
+ j=15%
1730
+ j=4%
1731
+ j=20%
1732
+ j=6%
1733
+ j=30%
1734
+ j=8%
1735
+ j=50%
1736
+ -1
1737
+ 1
1738
+ 2
1739
+ 3
1740
+ 4
1741
+ 5
1742
+ 6
1743
+ 7
1744
+ mA.-C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov: Stellar rotation and post-shock instabilities during core-collapse
1745
+ The right column of Fig. 10 illustrates the structure of the
1746
+ modes in the strong rotation regime. The localisation around the
1747
+ Brunt-Väisälä radius, a characteristic of the convective instabil-
1748
+ ity that was still visible at intermediate rotation, is absent in this
1749
+ regime. The radial profile of entropy perturbations suggests that
1750
+ it is driven by the deformations of the shock rather than by the re-
1751
+ gion of maximum buoyancy. The spiral mode structure of SASI
1752
+ is also clearly perturbed by rotation due to the corotation radius,
1753
+ which is well inside the domain. The pattern is similar to the
1754
+ one obtained by Blondin et al. (2017) at high rotation rates with-
1755
+ out heating. In an adiabatic flow where entropy perturbations are
1756
+ simply advected, the entropy pattern would trace the flow lines
1757
+ and display a change of direction at the corotation radius since
1758
+ the pattern rotates faster than the outer flow and slower than the
1759
+ inner flow. In Fig. 10, a change of direction of the spiral pat-
1760
+ tern is clearly visible in the strong rotation case (right column).
1761
+ The radial location of the pattern extrema is, however, slightly
1762
+ above the corotation radius, which can be interpreted as due to
1763
+ the non-adiabatic heating/cooling functions.
1764
+ For these high rotation rates (j > 0.3), it seems that the
1765
+ modes are not mixed SASI/convection/rotation any more, but re-
1766
+ sult from a rotation-induced instability. Some characteristics of
1767
+ this instability can be inferred from the evolution of the growth
1768
+ rate. Comparing Figs. 13 and 14, we remark that when the modes
1769
+ properties do not depend on the heating rate, the dependence of
1770
+ the modes on the rotation rate seems to be stronger for increasing
1771
+ dissociation rates. In addition, the slope of this increase seems to
1772
+ be independent of the value of the azimuthal number. This be-
1773
+ haviour of the mode for high rotation rates can also be seen in
1774
+ Fig. 15. We notice that the rotation enhances the growth rate of
1775
+ every mode. In particular, for initially convective modes, this ef-
1776
+ fect is opposite to the rotation effect for low rotation rates.
1777
+ 4. Expected consequences on the gravitational
1778
+ wave signature
1779
+ The mode frequencies computed with a linear analysis have been
1780
+ shown to reproduce well the frequencies present in the gravi-
1781
+ tational waves spectra in non-linear numerical simulations. We
1782
+ first focus on the properties of the fundamental mode m = 2
1783
+ which has a direct impact on the production of gravitational
1784
+ waves according to the quadrupole formula. We include the ef-
1785
+ fect of dissociation with ε ∼ 0.3 (Huete et al. 2018) and consider
1786
+ the typical range of shock radius rsh ∼ (3 − 7)rPNS.
1787
+ Figure 7 (bottom) shows that the mode m = 2 is dominant
1788
+ in the high rotation regime j ∈ [0.2, 0.5] for χ = 6.5. The mode
1789
+ m = 2 is actually dominant over a large domain of the parameter
1790
+ space ( j, χ) according to Fig. 11 (third column with ϵ = 0.3).
1791
+ Fig. 16 shows the impact of rotation on the m = 2 mode
1792
+ frequency for different values of χ. In the case of SASI modes
1793
+ (χ = 0 and χ = 2), the frequency increases almost linearly with
1794
+ the rotation rate for j varying from 0 to 0.5. The convective
1795
+ mode corresponding to χ = 6 has a more complex behaviour.
1796
+ For small rotation (j ≲ 0.1), the frequency is approximately pro-
1797
+ portional to the rotation rate similarly to the convective modes
1798
+ in Fig. 13 and 14. This behaviour can be interpreted with an ap-
1799
+ proximately constant corotation radius located between the gain
1800
+ radius and the radius where the Brunt-Väisälä frequency is max-
1801
+ imum (Fig. 7), as expected for the convective instability and vi-
1802
+ sualised by the grey-shaded region in Fig. 16. At higher rotation
1803
+ rates j > 0.2, the frequency separates from this linear trend, cor-
1804
+ responding to the corotation radius moving to larger radii (Fig. 7)
1805
+ when the mode takes a mixed nature. At still higher rotation fre-
1806
+ quencies ( j ≳ 0.3), the frequencies expressed in units of vsh/rsh
1807
+ Fig. 16. Frequency of the m = 2 fundamental mode as a function of the
1808
+ specific angular momentum j for several values of χ. The grey-shaded
1809
+ region illustrates the frequency range corresponding to a corotation ra-
1810
+ dius located between the gain radius and the maximum of the Brunt-
1811
+ Väisälä frequency.
1812
+ converge toward a single linear trend that does not depend on the
1813
+ heating rate. The effect of heating has been erased by rotation.
1814
+ This behaviour is consistent with the behaviour of the dominant
1815
+ modes seen earlier.
1816
+ Fig. 17. Maps, for varying heating and rotation rates, of the growth rate,
1817
+ the frequency and the corotation radius of the most unstable fundamen-
1818
+ tal mode between modes m = 1 and m = 2. In the second panel, we
1819
+ plotted 2ωr when m = 1 is dominant to account for the doubled fre-
1820
+ quency expected in the gravitational wave signal. In the third panel, the
1821
+ black line illustrates the frontier between the modes.
1822
+ To account for the possible signature of a dominant mode
1823
+ m = 1 on the gravitational wave signal, we include in Fig. 17 the
1824
+ doubled frequency of the mode m = 1 when it is more unstable
1825
+ than the m = 2 mode. Note that this frequency is higher than
1826
+ the frequency of the m = 2 mode. This remarkable property can
1827
+ be deduced from Figs. 5 and 6 in Foglizzo et al. (2007) where
1828
+ the frequency of the SASI mode m = 2 is always smaller than
1829
+ twice the frequency of the mode m = 1. We observe that the
1830
+ region of the parameter space dominated by the mode m = 1 is
1831
+ limited to moderate heating rates χ < 5.2 and modest rotation
1832
+ rates j < 15%.
1833
+ In the regime j ≥ 30%, an analytical form of the linear de-
1834
+ pendence illustrated by Fig. 16 would be useful to directly trans-
1835
+ Article number, page 13 of 16
1836
+
1837
+ E = 0.3, rsh(j=0,X=0) = 3.2rpNS
1838
+ 10
1839
+ 8
1840
+ Wr[Vsh/ rsh]
1841
+ 6
1842
+ 4
1843
+ 2
1844
+ 0=X
1845
+ rotation freg. at gain radius
1846
+ X=2
1847
+ rotation freq. at Brunt-Vaisala radius
1848
+ X=6
1849
+ 0
1850
+ 0
1851
+ 10
1852
+ 20
1853
+ 30
1854
+ 40
1855
+ 50
1856
+ j(%) = 0.3, rsh(j=0,X=0) = 3.2rpNS
1857
+ 7
1858
+ 6
1859
+ 2
1860
+ 5
1861
+ rcorot
1862
+ ≥rPNS
1863
+ 3
1864
+ 2
1865
+ =rPNS
1866
+ 1
1867
+ 00
1868
+ 25
1869
+ 500
1870
+ 25
1871
+ 500
1872
+ 25
1873
+ 50
1874
+ j(%)
1875
+ j(%)
1876
+ j(%)
1877
+ 1234
1878
+ ¥36912
1879
+ 1
1880
+ 2
1881
+ W;[Vsh/rsh]
1882
+ Wr[Vsh/rsh]
1883
+ rcorot[rpNs]A&A proofs: manuscript no. aanda
1884
+ late the frequency observed in the gravitational wave signal into
1885
+ a relation between j and the advection frequency at the shock
1886
+ vsh/rsh.
1887
+ 5. Discussion and conclusion
1888
+ In this paper, we studied a spherical toy model where we consid-
1889
+ ered the dynamics of the equatorial plane between the shock and
1890
+ the surface of the PNS. Thanks to a linear analysis, we computed
1891
+ unstable non-axisymmetric modes for varying rotation and heat-
1892
+ ing rates and different dissociation energies through the shock.
1893
+ This led to several discoveries for the behaviour of the convective
1894
+ instability with rotation and its interplay with SASI and rotation-
1895
+ induced instabilities.
1896
+ Relatively slow rotation rates (less than 10% of the Keplerian
1897
+ rotation at the PNS radius), for which centrifugal effects are very
1898
+ small, can have a strong and complex influence on both SASI
1899
+ and the convection instability:
1900
+ – In the presence of rotation, convective modes have an oscilla-
1901
+ tion frequency that corresponds to a corotation radius located
1902
+ close to the maximum of the Brunt-Väisälä frequency, where
1903
+ the convective engine is expected to be most powerful. The
1904
+ appearance of this non-vanishing oscillation frequency blurs
1905
+ somewhat the abrupt transition between SASI and convec-
1906
+ tion.
1907
+ – For large values of the convection parameter χ ≳ 5, the ro-
1908
+ tation hampers the growth of non-axisymmetric convective
1909
+ modes. The decrease in growth rate is more pronounced for
1910
+ larger m modes, which can be interpreted by the larger sta-
1911
+ bilising effect of the shear due to differential rotation. In this
1912
+ regime, axisymmetric modes would be expected to dominate
1913
+ the dynamics, as they are expected to be only slightly af-
1914
+ fected by rotation.
1915
+ – By contrast, for χ ≲ 5, where the advection has a strong
1916
+ influence on the growth of convection, rotation increases
1917
+ the growth rate of both SASI and the convective instabil-
1918
+ ity. The increase in the SASI growth rate with rotation was
1919
+ well known in the absence of heating (Yamasaki & Foglizzo
1920
+ 2008; Kazeroni et al. 2017; Blondin et al. 2017) and is here
1921
+ shown to hold in the presence of neutrino heating. On the
1922
+ other hand, this behaviour was not expected for the convec-
1923
+ tive instability, which was generally thought to be hampered
1924
+ by rotation. The destabilising effect of rotation on convection
1925
+ in this regime leads to a decrease with rotation of the value
1926
+ of χ at marginal stability. We interpret this effect as a resid-
1927
+ ual influence of an advective-acoustic cycle which acts to
1928
+ reinforce convective motions close to the transition between
1929
+ convection and SASI.
1930
+ – We observe two different effects of rotation on the domi-
1931
+ nant scale, depending on the instability mechanism that dom-
1932
+ inates without rotation. For SASI, the dominant m increases
1933
+ with rotation (as in Yamasaki & Foglizzo 2008 and Blondin
1934
+ et al. 2017), while it decreases for the convective instabil-
1935
+ ity. The diminution of the dominant azimuthal number m as
1936
+ rotation is increased was not expected to occur as it does.
1937
+ Indeed, in our case, not only are large m disadvantaged by
1938
+ rotation, but there is a heating domain for which small m are
1939
+ advantaged by rotation.
1940
+ At moderate rotation rates (10 to 30% of the Keplerian ro-
1941
+ tation at the PNS surface), the modes are modified by rota-
1942
+ tion to such an extent that it becomes impossible to distinguish
1943
+ clearly between convective and SASI modes. When the heat-
1944
+ ing rate is increased, the frequency and azimuthal number of
1945
+ the most unstable mode change smoothly, with no clear tran-
1946
+ sition from one instability to another. Modes retain character-
1947
+ istics of both instabilities and should therefore be understood
1948
+ as mixed SASI/convection/rotation modes. The dominant mixed
1949
+ modes have a relatively large angular scale with m = 1 − 3 and
1950
+ their growth rate increases with faster rotation. This regime takes
1951
+ place above a critical angular momentum such that the frequency
1952
+ of a convective mode (corotating with the maximum of Brunt-
1953
+ Väisälä frequency) is comparable to the frequency of SASI. The
1954
+ non-oscillatory nature of convection and the low frequency as-
1955
+ sociated to SASI both allow for a significant effect of moderate
1956
+ differential rotation, with the introduction of a corotation radius
1957
+ in the structure of non-axisymmetric perturbations which may
1958
+ participate in the extraction of energy and angular momentum
1959
+ from the interior region rotating faster than the region exterior
1960
+ to the corotation (Cairns 1979; Yoshida & Saijo 2017; Saijo &
1961
+ Yoshida 2006). For a PNS radius of rPNS = 50km, the mixed
1962
+ mode regime corresponds to an interval of specific angular mo-
1963
+ mentum 3 − 9 × 1015 cm2/s. Extrapolated to the radius of a cold
1964
+ neutron star 12 km, this corresponds to relatively fast rotation
1965
+ periods of ∼ 1 − 3ms.
1966
+ For high rotation rates (more than 30% than the Keplerian
1967
+ frequency at the PNS surface, i.e. j ≳ 0.3), the frequency and
1968
+ growth rate are independent or weakly dependent on the heating
1969
+ rate, when they are expressed in terms of the advection timescale
1970
+ rsh/vsh. This, together with the significant deviation of the coro-
1971
+ tation radius from the most buoyant region, suggests that the in-
1972
+ stability is dominated by rotational rather than buoyancy effects.
1973
+ The study of Walk et al. (2022) without neutrino heating pointed
1974
+ out the existence of a similar instability regime where the fre-
1975
+ quency of the dominant mode depends too little on the advection
1976
+ time to be explained by an advective-acoustic cycle. Our results
1977
+ suggest that these results obtained without heating are still valid
1978
+ when heating is taken into account. We note that the regime of
1979
+ rapid rotation appears for j ∼ 0.3 which corresponds to a small
1980
+ ratio ∼ 0.03 of the centrifugal force to the gravity at the corota-
1981
+ tion radius, even though the centrifugal displacement of the sta-
1982
+ tionary shock is not negligible. A precise understanding of this
1983
+ strong rotation regime is still missing, but it seems probable that
1984
+ the corotation radius plays an important role in the instability
1985
+ mechanism.
1986
+ A future detection of gravitational waves is expected to
1987
+ give information on the physical phenomena during stellar core-
1988
+ collapse. Our identification of three different instability regimes
1989
+ depending on the rotation rate should help clarify the still poorly
1990
+ known influence of rotation on the gravitational wave signal.
1991
+ Non-axisymmetric convective modes become oscillatory in the
1992
+ presence of rotation. It may therefore become possible to iden-
1993
+ tify their frequency in the low-frequency part of the gravitational
1994
+ wave spectrum. For low/moderate rotations, the corotation ra-
1995
+ dius of the m = 2 convective/mixed mode is close to the gain or
1996
+ Brunt-Väisälä radius. The identification of the mode frequency
1997
+ would therefore give access to the rotation frequency at this ra-
1998
+ dius. Non-axisymmetric equatorial modes with a large angular
1999
+ scale m = 1, 2 are strongly destabilised by rotation and dominate
2000
+ the dynamics in a wide region of the parameter space in particu-
2001
+ lar for moderate to strong rotation, which should be favourable to
2002
+ a strong emission of gravitational waves. In the regime of strong
2003
+ rotation, the frequency of the m = 2 mode becomes independent
2004
+ of the heating rate and depends only on the advection timescale
2005
+ rsh/vsh and the angular momentum j. This reduction of the pa-
2006
+ rameter space should help extract physical information from the
2007
+ measure of the mode frequency. These modes should be incorpo-
2008
+ rated in future asteroseismic studies similar to Torres-Forné et al.
2009
+ Article number, page 14 of 16
2010
+
2011
+ A.-C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov: Stellar rotation and post-shock instabilities during core-collapse
2012
+ (2018, 2019b) where non-axisymmetric perturbations would be
2013
+ taken into account.
2014
+ Our results can be compared to previous numerical simula-
2015
+ tions of core-collapse supernovae, including rotation. Fryer &
2016
+ Heger (2000) and Fryer & Warren (2004) found that convec-
2017
+ tion was quenched by rotation, especially in the equatorial plane.
2018
+ For models A and B of Fryer & Warren (2004), this may be ex-
2019
+ plained by the strong centrifugal effects for such strong rotation
2020
+ ( j2 > 0.4). Convection in the slow rotating model C (j ∼ 0.03)
2021
+ does not seem to be confined to the poles, which is consistent
2022
+ with our study, where a purely convective instability can be ob-
2023
+ served in the equatorial plane up to j ∼ 0.1.
2024
+ The setup of Iwakami et al. (2014) is similar to ours in that
2025
+ it did not involve the interior of the PNS and considered a simi-
2026
+ lar range of rotation rates (corresponding to j = 0 − 0.33 in our
2027
+ units). If we focus on the structure in models D, E, and F as dis-
2028
+ played in Fig. 5 of their paper, we see that for higher rotation and
2029
+ smaller neutrino luminosity, the entropy structures are at larger
2030
+ scales and that buoyant patterns become spiral ones. This struc-
2031
+ ture change is consistent with our result that rotation favours
2032
+ larger-scale convection and transforms convective modes into
2033
+ mixed spiral modes for moderate rotation rates. The precise in-
2034
+ terpretation of their results is, however, complicated by the fact
2035
+ that both rotation and neutrino luminosity are changed such that
2036
+ it is difficult to disentangle their respective influence. In addi-
2037
+ tion, we note that they identified a pattern referred to as a spiral
2038
+ motion with buoyant-bubble (SPB), which may be related to the
2039
+ mixed SASI/convection/rotation modes we have identified for
2040
+ moderate rotation rates.
2041
+ To have a better understanding of the processes at work at the
2042
+ onset of the shock revival, a non-linear analysis of the dynamics
2043
+ of the fluid would be necessary. It would shed light on how ro-
2044
+ tation acts in the saturation mechanism (Guilet et al. 2010) and
2045
+ show how the system evolves from the linear phase to the explo-
2046
+ sion. This last part would give information on the signatures of
2047
+ linear phenomena that may remain in the explosion signal.
2048
+ One should keep in mind that our model is idealised in many
2049
+ respects. We assume a very simple equation of state of ideal gas
2050
+ with γ = 4/3, dissociation is taken into account as a fixed energy
2051
+ sink, neutrinos are parameterised through analytical cooling and
2052
+ heating terms. We also did not describe the equatorial swelling
2053
+ of the PNS due to the centrifugal force. This effect increases the
2054
+ neutrinosphere radius, leading to cooler neutrinos and a smaller
2055
+ heating rate in the equatorial plane. As discussed above, such a
2056
+ centrifugal effect is expected to be very small at low/intermediate
2057
+ rotation rates (j < 0.3) but can become significant for the fastest
2058
+ rotations considered in this analysis. Part of this complexity is
2059
+ avoided by displaying our results as a function of χ rather than
2060
+ the heating rate. Note that, when χ is kept constant and the ro-
2061
+ tation increased, the heating constant ˜Ah decreases, in a qualita-
2062
+ tively similar way to the expected impact of the neutrinosphere
2063
+ swelling.
2064
+ The centrifugal force induces a deformation with respect to
2065
+ the spherical symmetry, which is challenging to take into ac-
2066
+ count in our formalism because it would couple different spher-
2067
+ ical harmonics. To avoid such a complexity, we restrained our
2068
+ analysis to the equatorial plane while keeping the effect of con-
2069
+ vergence in spherical geometry. As a result, our conclusions are
2070
+ limited to modes with spherical harmonics indices m = ±l and
2071
+ cannot describe the dynamics outside the equatorial plane, such
2072
+ as convective motions along the polar axis. The equatorial non-
2073
+ axisymmetric modes described here are nonetheless expected to
2074
+ dominate the dynamics in most of the parameter space except at
2075
+ χ ≳ 5 − 5.5 and slow to moderate rotation, where axisymmetric
2076
+ convective modes are expected to be more unstable.
2077
+ The highest specific angular momentum considered in this
2078
+ study would be expected to be sufficient to allow for the develop-
2079
+ ment of the low-T/|W| instability inside the PNS (Takiwaki et al.
2080
+ 2021; Bugli et al. 2022). Since it is restricted to the post-shock
2081
+ region without including the PNS interior, our linear analysis
2082
+ cannot describe the low-T/|W| instability. It may therefore miss
2083
+ the most unstable mode in the regime of strong rotation. A linear
2084
+ stability analysis including both the post-shock region and the
2085
+ PNS interior is therefore an important next step. Previous linear
2086
+ mode calculations focused on the prediction of GW mode fre-
2087
+ quencies and included the post-shock region in addition to the
2088
+ PNS interior, but they were restricted to axisymmetric modes,
2089
+ and they assumed a hydrostatic equilibrium neglecting advection
2090
+ (Torres-Forné et al. 2018, 2019b). To describe all unstable mode
2091
+ and their possible interaction, a linear stability analysis will have
2092
+ to face the challenge of combining the PNS in approximate hy-
2093
+ drostatic equilibrium and the advection in the post-shock region.
2094
+ Finally, the magnetic field, which was neglected in this study,
2095
+ can be expected to play an important role for strong rotation. A
2096
+ strong magnetic field can quench the development of the low-
2097
+ T/|W| instability (Bugli et al. 2022). In the absence of rotation,
2098
+ the magnetic field can have a complex influence on the post-
2099
+ shock dynamics because of the propagation of vorticity through
2100
+ Alfvén waves (Guilet & Foglizzo 2010; Guilet et al. 2011) and a
2101
+ small-scale dynamo can amplify the magnetic field (Endeve et al.
2102
+ 2012; Müller & Varma 2020). It would be interesting to investi-
2103
+ gate further how the magnetic field would change the landscape
2104
+ of the post-shock instabilities in the presence of rotation.
2105
+ Acknowledgements
2106
+ JG acknowledges support from the European Research Coun-
2107
+ cil (MagBURST grant 715368). EA is supported by RK MES
2108
+ grant No. AP13067834 and NU Faculty Development Grant No.
2109
+ 11022021FD2912.
2110
+ References
2111
+ Abdikamalov, E., Ott, C. D., Radice, D., et al. 2015, ApJ, 808, 70
2112
+ Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I. 2003, ApJ, 584,
2113
+ 954
2114
+ Andresen, H., Müller, B., Müller, E., & Janka, H. T. 2017, MNRAS, 468, 2032
2115
+ Andresen, H., Müller, E., Janka, H. T., et al. 2019, MNRAS, 486, 2238
2116
+ Bethe, H. A. 1990, Reviews of Modern Physics, 62, 801
2117
+ Blondin, J. M., Gipson, E., Harris, S., & Mezzacappa, A. 2017, ApJ, 835, 170
2118
+ Blondin, J. M. & Mezzacappa, A. 2006, ApJ, 642, 401
2119
+ Blondin, J. M. & Mezzacappa, A. 2007, Nature, 445, 58
2120
+ Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, The Astrophysical Jour-
2121
+ nal, 584, 971
2122
+ Bugli, M., Guilet, J., Foglizzo, T., & Obergaulinger, M. 2022, arXiv e-prints,
2123
+ arXiv:2210.05012
2124
+ Bugli, M., Guilet, J., & Obergaulinger, M. 2021, MNRAS, 507, 443
2125
+ Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. 2007, ApJ, 664,
2126
+ 416
2127
+ Burrows, A. & Vartanyan, D. 2021, Nature, 589, 29
2128
+ Cairns, R. A. 1979, Journal of Fluid Mechanics, 92, 1
2129
+ Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J., & Paxton,
2130
+ B. 2014, ApJ, 788, 93
2131
+ Cerdá-Durán, P., Quilis, V., & Font, J. A. 2007, Computer Physics Communica-
2132
+ tions, 177, 288
2133
+ Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic stability
2134
+ Chatzopoulos, E., Couch, S. M., Arnett, W. D., & Timmes, F. X. 2016, ApJ, 822,
2135
+ 61
2136
+ Couch, S. M. & O’Connor, E. P. 2014, ApJ, 785, 123
2137
+ Endal, A. S. & Sofia, S. 1978, ApJ, 220, 279
2138
+ Endeve, E., Cardall, C. Y., Budiardja, R. D., et al. 2012, ApJ, 751, 26
2139
+ Article number, page 15 of 16
2140
+
2141
+ A&A proofs: manuscript no. aanda
2142
+ Fernández, R., Müller, B., Foglizzo, T., & Janka, H.-T. 2014, MNRAS, 440,
2143
+ 2763
2144
+ Fernández, R. & Thompson, C. 2009, ApJ, 703, 1464
2145
+ Feudel, F. & Feudel, U. 2021, Chaos, 31, 113112
2146
+ Foglizzo, T. 2009, ApJ, 694, 820
2147
+ Foglizzo, T., Galletti, P., Scheck, L., & Janka, H. T. 2007, ApJ, 654, 1006
2148
+ Foglizzo, T., Scheck, L., & Janka, H. T. 2006, ApJ, 652, 1436
2149
+ Fryer, C. L. & Heger, A. 2000, ApJ, 541, 1033
2150
+ Fryer, C. L. & Warren, M. S. 2004, ApJ, 601, 391
2151
+ Fujisawa, K., Okawa, H., Yamamoto, Y., & Yamada, S. 2019, ApJ, 872, 155
2152
+ Glas, R., Just, O., Janka, H. T., & Obergaulinger, M. 2019, ApJ, 873, 45
2153
+ Guilet, J. & Foglizzo, T. 2010, ApJ, 711, 99
2154
+ Guilet, J. & Foglizzo, T. 2012, MNRAS, 421, 546
2155
+ Guilet, J., Foglizzo, T., & Fromang, S. 2011, ApJ, 729, 71
2156
+ Guilet, J. & Müller, E. 2015, MNRAS, 450, 2153
2157
+ Guilet, J., Reboul-Salze, A., Raynaud, R., Bugli, M., & Gallet, B. 2022, MN-
2158
+ RAS, 516, 4346
2159
+ Guilet, J., Sato, J., & Foglizzo, T. 2010, ApJ, 713, 1350
2160
+ Hanke, F., Müller, B., Wongwathanarat, A., Marek, A., & Janka, H.-T. 2013,
2161
+ ApJ, 770, 66
2162
+ Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435,
2163
+ 339
2164
+ Houck, J. C. & Chevalier, R. A. 1992, ApJ, 395, 592
2165
+ Huete, C., Abdikamalov, E., & Radice, D. 2018, MNRAS, 475, 3305
2166
+ Inserra, C., Smartt, S. J., Jerkstrand, A., & et al. 2013, ApJ, 770, 128
2167
+ Iwakami, W., Nagakura, H., & Yamada, S. 2014, ApJ, 793, 5
2168
+ Janka, H.-T., Melson, T., & Summa, A. 2016, Annual Review of Nuclear and
2169
+ Particle Science, 66, 341
2170
+ Janka, H. T. & Mueller, E. 1996, A&A, 306, 167
2171
+ Kazeroni, R., Guilet, J., & Foglizzo, T. 2017, MNRAS, 471, 914
2172
+ Kuroda, T., Arcones, A., Takiwaki, T., & Kotake, K. 2020, ApJ, 896, 102
2173
+ Kuroda, T., Kotake, K., & Takiwaki, T. 2016, ApJ, 829, L14
2174
+ Marek, A. & Janka, H. T. 2009, ApJ, 694, 664
2175
+ Masada, Y., Takiwaki, T., & Kotake, K. 2022, ApJ, 924, 75
2176
+ Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E.
2177
+ 2011, MNRAS, 413, 2031
2178
+ Müller, B. 2020, Living Reviews in Computational Astrophysics, 6, 3
2179
+ Müller, B., Janka, H.-T., & Heger, A. 2012, ApJ, 761, 72
2180
+ Müller, B., Melson, T., Heger, A., & Janka, H.-T. 2017, MNRAS, 472, 491
2181
+ Murphy, J. W., Dolence, J. C., & Burrows, A. 2013, ApJ, 771, 52
2182
+ Murphy, J. W., Ott, C. D., & Burrows, A. 2009, ApJ, 707, 1173
2183
+ Müller, B. & Varma, V. 2020, Monthly Notices of the Royal Astronomical Soci-
2184
+ ety, 498, L109
2185
+ Nakamura, K., Kuroda, T., Takiwaki, T., & Kotake, K. 2014, ApJ, 793, 45
2186
+ Obergaulinger, M. & Aloy, M. Á. 2021, MNRAS, 503, 4942
2187
+ Obergaulinger, M., Cerdá-Durán, P., Müller, E., & Aloy, M. A. 2009, A&A, 498,
2188
+ 241
2189
+ O’Connor, E., Bollig, R., Burrows, A., et al. 2018, Journal of Physics G Nuclear
2190
+ Physics, 45, 104001
2191
+ Ott, C. D., Burrows, A., Dessart, L., & Livne, E. 2008, ApJ, 685, 1069
2192
+ Ott, C. D., Ou, S., Tohline, J. E., & Burrows, A. 2005, ApJ, 625, L119
2193
+ Ott, C. D., Roberts, L. F., da Silva Schneider, A., et al. 2018, ApJ, 855, L3
2194
+ Passamonti, A. & Andersson, N. 2015, MNRAS, 446, 555
2195
+ Popov, S. B. & Turolla, R. 2012, Ap&SS, 341, 457
2196
+ Powell, J. & Müller, B. 2020, MNRAS, 494, 4665
2197
+ Radice, D., Ott, C. D., Abdikamalov, E., et al. 2016, ApJ, 820, 76
2198
+ Raynaud, R., Cerdá-Durán, P., & Guilet, J. 2022, MNRAS, 509, 3410
2199
+ Raynaud, R., Guilet, J., Janka, H.-T., & Gastine, T. 2020, Science Advances, 6,
2200
+ eaay2732
2201
+ Reboul-Salze, A., Guilet, J., Raynaud, R., & Bugli, M. 2021, A&A, 645, A109
2202
+ Reboul-Salze, A., Guilet, J., Raynaud, R., & Bugli, M. 2022, A&A, 667, A94
2203
+ Rossby, H. T. 1969, Journal of Fluid Mechanics, 36, 309
2204
+ Saijo, M. & Yoshida, S. 2006, MNRAS, 368, 1429
2205
+ Scheck, L., Janka, H. T., Foglizzo, T., & Kifonidis, K. 2008, A&A, 477, 931
2206
+ Shibata, M., Karino, S., & Eriguchi, Y. 2002, MNRAS, 334, L27
2207
+ Sotani, H., Kuroda, T., Takiwaki, T., & Kotake, K. 2017, Phys. Rev. D, 96,
2208
+ 063005
2209
+ Sotani, H. & Takiwaki, T. 2020, Phys. Rev. D, 102, 063025
2210
+ Sotani, H., Takiwaki, T., & Togashi, H. 2021, Phys. Rev. D, 104, 123009
2211
+ Summa, A., Janka, H.-T., Melson, T., & Marek, A. 2018, ApJ, 852, 28
2212
+ Suwa, Y., Kotake, K., Takiwaki, T., et al. 2010, PASJ, 62, L49
2213
+ Takiwaki, T., Kotake, K., & Foglizzo, T. 2021, MNRAS, 508, 966
2214
+ Takiwaki, T., Kotake, K., & Sato, K. 2009, ApJ, 691, 1360
2215
+ Takiwaki, T., Kotake, K., & Suwa, Y. 2016, MNRAS, 461, L112
2216
+ Tamborra, I., Hanke, F., Müller, B., Janka, H.-T., & Raffelt, G. 2013,
2217
+ Phys. Rev. Lett., 111, 121104
2218
+ Thompson, C. & Duncan, R. C. 1993, ApJ, 408, 194
2219
+ Torres-Forné, A., Cerdá-Durán, P., Obergaulinger, M., Müller, B., & Font, J. A.
2220
+ 2019a, Phys. Rev. Lett., 123, 051102
2221
+ Torres-Forné, A., Cerdá-Durán, P., Passamonti, A., & Font, J. A. 2018, MNRAS,
2222
+ 474, 5272
2223
+ Torres-Forné, A., Cerdá-Durán, P., Passamonti, A., Obergaulinger, M., & Font,
2224
+ J. A. 2019b, MNRAS, 482, 3967
2225
+ Walk, L., Foglizzo, T., & Tamborra, I. 2022, arXiv e-prints, arXiv:2212.07467
2226
+ Watts, A. L., Andersson, N., & Jones, D. I. 2005, ApJ, 618, L37
2227
+ Wedi, M., van Gils, D. P., Bodenschatz, E., & Weiss, S. 2021, Journal of Fluid
2228
+ Mechanics, 912, A30
2229
+ White, C. J., Burrows, A., Coleman, M. S. B., & Vartanyan, D. 2022, ApJ, 926,
2230
+ 111
2231
+ Woosley, S. E. 1993, ApJ, 405, 273
2232
+ Woosley, S. E. 2010, ApJ, 719, L204
2233
+ Yamasaki, T. & Foglizzo, T. 2008, ApJ, 679, 607
2234
+ Yamasaki, T. & Yamada, S. 2007, in American Institute of Physics Conference
2235
+ Series, Vol. 937, Supernova 1987A: 20 Years After: Supernovae and Gamma-
2236
+ Ray Bursters, ed. S. Immler, K. Weiler, & R. McCray, 344–348
2237
+ Yoshida, S. & Saijo, M. 2017, MNRAS, 466, 600
2238
+ Article number, page 16 of 16
2239
+
CdA0T4oBgHgl3EQfAf80/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdE4T4oBgHgl3EQffw1T/content/tmp_files/2301.05110v1.pdf.txt ADDED
@@ -0,0 +1,1595 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Phonon-assisted optical absorption of SiC polytypes from first principles
2
+ Xiao Zhang and Emmanouil Kioupakis∗
3
+ The University of Michigan, Ann Arbor, Department of Materials Science and Engineering, Ann Arbor, 48109, USA
4
+ Silicon carbide (SiC) is an indirect-gap semiconductor material widely used in electronic and
5
+ optoelectronic applications. While experimental measurements of the phonon-assisted absorption
6
+ coefficient of SiC across its indirect gap have existed for more than fifty years, theoretical investi-
7
+ gations of phonon-assisted absorption have been hampered by their excessive computational cost.
8
+ In this work, we calculate the phonon-assisted temperature-dependent optical absorption spectra
9
+ of the commonly occurring SiC polytypes (3C, 2H, 4H and 6H), using first-principles approaches
10
+ based on density functional theory and related techniques. We show that our results agree with
11
+ experimentally determined absorption coefficients in the spectral region between the direct and in-
12
+ direct band gaps. The temperature dependence of the spectra can be well-predicted with taking the
13
+ temperature-dependence of the band gaps into account. Lastly, we compare the spectra obtained
14
+ with second-order perturbation theory to those determined by the special displacement method,
15
+ and we show that the full consideration of the electronic energy renormalization due to tempera-
16
+ ture is important to further improve the prediction of the phonon-assisted absorption in SiC. Our
17
+ insights can be applied to predict the optical spectra of the less common SiC polytypes and other
18
+ indirect-gap semiconductors in general.
19
+ I.
20
+ INTRODUCTION
21
+ Silicon carbide (SiC) is an indirect gap semiconduc-
22
+ tor material that has been well established and widely
23
+ used in many electronic and optoelectronic devices. It
24
+ has a variety of structural polytypes, including cubic 3C;
25
+ hexagonal 2H, 4H, 6H and several Rhombohedral struc-
26
+ tures (9R, 15R, etc.) [1–3], that enable a broad range
27
+ of applications. Its 6H polytype is one of the first to be
28
+ used to create blue light emitting diodes (LEDs) that en-
29
+ abled full color LEDs [4], though the indirect band gap
30
+ limits the efficiency.
31
+ Absorbing short-wavelength light
32
+ much more efficiently, the material is also used as UV-
33
+ sensitive diodes in flame sensors[4–6]. More recently, SiC
34
+ is widely used as substrate material for applications such
35
+ as extreme condition transistors [7–9], tunable photo-
36
+ detecting devices [10], and advanced UV-detectors[11–
37
+ 13]. Recent developments in crystal growth also allowed
38
+ novel structures such as thin films, nanoparticles, het-
39
+ erostructures, etc., for more advanced applications[14–
40
+ 17]. Due to its early discovery as well as the wide appli-
41
+ cations and interest, it is now one of the most well studied
42
+ semiconductor materials from both an experimental and
43
+ a theoretical point of view.
44
+ Understanding the similarities and differences between
45
+ the structural polytypes is crucial for practical applica-
46
+ tions. The most common SiC polytypes for application
47
+ purposes are the cubic structure (3C) and two hexagonal
48
+ structures with different stackings (4H and 6H). It has
49
+ been shown both by experimental and theoretical stud-
50
+ ies [18] that at low temperatures, SiC tends to form the
51
+ cubic 3C structure while at higher temperatures, 4H and
52
+ 6H become the more energetically favorable structures.
53
+ In addition to 4H and 6H, the 2H structure of SiC has also
54
55
+ been observed, although rarely due to being energetically
56
+ less favorable. Due to its rare occurrence, the optoelec-
57
+ tronic properties of the 2H polytype have not been stud-
58
+ ied thoroughly from either a theoretical or an experimen-
59
+ tal perspective, and previous studies are typically limited
60
+ to only structural properties and basic electronic prop-
61
+ erties such as the band gap. The rhombohedral struc-
62
+ ture of SiC is less commonly seen but can also be grown
63
+ on various temperatures and substrates [19–21], and has
64
+ been shown to demonstrate great potential in MOSFET
65
+ applications [19, 21]. Overall, the natural occurrence of
66
+ these different polytypes make it an important task to
67
+ study them consistently from a first-principles perspec-
68
+ tive consistently to understand the properties of the ma-
69
+ terial better, and potentially discover new opportunities
70
+ for applications.
71
+ Despite being well studied for many polytypes, the in-
72
+ direct optical properties of SiC, which are important con-
73
+ sidering its applications in optoelectronic devices, have
74
+ never been thoroughly studied with first principles tech-
75
+ niques. Experimental characterization of its indirect gap
76
+ and optical absorption in the spectral region between the
77
+ indirect and direct band gaps already exists ever since the
78
+ 1960s [22, 23]. There has also been a considerable num-
79
+ ber of theoretical calculations of optical properties for
80
+ both bulk SiC and nanostructures, however, always fo-
81
+ cusing on direct transitions [24–30]. The commonly used
82
+ theoretical spectroscopy approaches based on the density
83
+ functional theory lack descriptions of electron-phonon in-
84
+ teractions. As a result, momentum transfer is neglected
85
+ in considering optical absorption and such approaches
86
+ are only able to consider direct transitions. Yet indirect
87
+ optical absorption plays an important role in the appli-
88
+ cation of SiC as the difference between the direct gap
89
+ and the indirect gap can range from about 1 eV up to
90
+ more than 3 eV, depending on the polytype[2]. As an ex-
91
+ ample, although SiC was one of the first LED materials
92
+ for blue light mission, it can only emit visible light via
93
+ arXiv:2301.05110v1 [cond-mat.mes-hall] 10 Jan 2023
94
+
95
+ 2
96
+ phonon-assisted transitions across its indirect band gap.
97
+ Although being considerably weaker compared to direct
98
+ transitions, the phonon-assisted contribution enabled its
99
+ application in optoelectronic devices. Therefore, the lack
100
+ of theoretical studies on the indirect optical properties
101
+ of SiC significantly limits our ability to understand the
102
+ material and its further potential applications in opto-
103
+ electronic devices.
104
+ There are numerous computational challenges on eval-
105
+ uating phonon-assisted optical properties from a theo-
106
+ retical perspective, and tools to model them have only
107
+ emerged in recent years. One significantly challenge is the
108
+ necessity of dense sampling of the electronic states in the
109
+ first Brillouin zone, due to the broad energy range of pho-
110
+ ton frequencies, combined with the large number of pro-
111
+ cesses needed to be considered in second-order transition.
112
+ While the latter makes the problem more complicated
113
+ by nature, the task of studying electron-phonon prop-
114
+ erties with dense electronic and phonon Brillouin-zone
115
+ sampling grids can be overcome by the approach of max-
116
+ imally localized Wannier function interpolation.[31] The
117
+ Wannier interpolation starts from a coarse grid of elec-
118
+ tronic states, finds a set of maximally localized Wannier
119
+ functions to represent the electronic wave functions in the
120
+ real space, and utilize such set of Wannier functions to
121
+ construct the electronic wave functions in a dense grid of
122
+ the electronic states. It has been shown that Wannier in-
123
+ terpolation can result in accurate interpolations for both
124
+ the electronic structures and electron-phonon coupling
125
+ matrix elements in a broad range of materials[32]. It thus
126
+ becomes feasible to calculate electron-phonon properties
127
+ on coarse grid with reasonable computational cost, then
128
+ utilize Wannier interpolation to determine the phonon-
129
+ assisted optical absorption spectra with adequate spec-
130
+ tral resolution.
131
+ In this work, we perform first-principles calculations to
132
+ understand the phonon-assisted optical absorption spec-
133
+ tra for common SiC polytypes (3C, 2H, 4H, 6H, and
134
+ 15R). As in experimental measurements, the absorption
135
+ coefficients are mostly measured along the c-axis (E ⊥ c),
136
+ thus in our work we report and compare the calculated
137
+ absorption coefficient for the ordinary direction as well.
138
+ By combining standard first-principles approaches (DFT,
139
+ Many-body perturbation theory) for electronic structure
140
+ and direct optical properties along with Wannier inter-
141
+ polation for electron-phonon coupling, we show that our
142
+ calculated indirect optical spectra are in good agree-
143
+ ment with available experimental measurements. We fur-
144
+ ther predict the phonon-assisted spectra for polytypes for
145
+ which experimental data are lacking. Our approach well
146
+ predicts the temperature dependence of the indirect op-
147
+ tical spectra, which can benefit the applications of SiC in
148
+ extreme conditions. Further, by comparing to special dis-
149
+ placement method (SDM) [33–35], we show that to fur-
150
+ ther improve the predictions of indirect optical properties
151
+ s a function of temperature, both the effects of temper-
152
+ atures on the optical spectra due to changes in phonon
153
+ occupation factors and the effects of temperatures on the
154
+ electronic energy renormalization are important.
155
+ II.
156
+ COMPUTATIONAL APPROACH
157
+ To calculate the structural, electronic, and optical
158
+ properties of the SiC polytypes, we performed first-
159
+ principles calculations based on density functional the-
160
+ ory.
161
+ The calculation is carried out with the Quan-
162
+ tum Espresso[36, 37] package using the Perdew-Burke-
163
+ Ernzerhof (PBE)[38] approximation for the exchange-
164
+ correlation functional and the SG15 Optimized Norm-
165
+ Conserving Vanderbilt (ONCV) pseudopotentials.[39, 40]
166
+ The wave functions are expanded into plane waves up
167
+ to an energy cutoff of 60 Ry.
168
+ Structural relaxation is
169
+ done for all polytypes until all the components of the
170
+ forces on the atoms are smaller than 10−5 Ry/Bohr.
171
+ Converged ground-state calculations for each polytype
172
+ were performed with Brillouin-zone (BZ) sampling grids
173
+ of 8 × 8 × 8 for 3C, 12 × 12 × 8 for 2H, 12 × 12 × 4
174
+ for 4H, 10 × 10 × 2 for 6H, and 8 × 8 × 8 for 15R. In all
175
+ cases, the grid is shifted by half a grid spacing to improve
176
+ convergence.
177
+ To correct the underestimation of the band gap
178
+ by PBE, we calculated quasiparticle energies with the
179
+ one-shot GW method (G0W0) using the BerkeleyGW
180
+ package.[41, 42] The static dielectric matrix is evaluated
181
+ in the random phase approximation and extended to fi-
182
+ nite frequency with the generalized plasmon-pole model
183
+ by Hybertsen and Louie.[41] The static remainder ap-
184
+ proach is used to reduce the number of empty orbitals
185
+ required.[43] The GW calculations are performed with
186
+ BZ-sampling points grid of 6 × 6 × 6 for 3C, 6 × 6 × 4 for
187
+ 2H, 6 × 6 × 3 for 4H, 6 × 6 × 2 and 6 × 6 × 6 for 15R.
188
+ For all polytypes, the quasiparticle energies were inter-
189
+ polated with the maximally localized Wannier function
190
+ method[31] to obtain accurate quasiparticle band struc-
191
+ tures as well as velocity and electron-phonon coupling
192
+ matrix elements for fine BZ sampling grids in subsequent
193
+ optical property calculations.
194
+ Phonon-related properties are calculated with den-
195
+ sity functional perturbation theory[44] as implemented in
196
+ Quantum Espresso and interpolated to fine BZ-sampling
197
+ grids with the maximally localized Wannier function
198
+ method as implemented in the Electron-Phonon Wannier
199
+ (EPW) package. [45–48] The coarse phonon BZ-sampling
200
+ grids used for the different polytypes are 6 × 6 × 6 for
201
+ 3C, 6 × 6 × 4 for 2H, 6 × 6 × 3 for 4H, 6 × 6 × 2 for
202
+ 6H, and 6 × 6 × 6 for 15R. We note that the choices
203
+ of the coarse BZ samplings are made to ensure both
204
+ accurate Wannier interpolations as well as retain rea-
205
+ sonable computational cost.
206
+ Since SiC is a polar ma-
207
+ terial, the F¨ohlich interaction is considered analytically
208
+ via a long-range term when calculating the electron-
209
+ phonon matrix elements.[47] The phonon-assisted opti-
210
+ cal absorption spectra are determined with second-order
211
+ time-dependent perturbation theory.
212
+ Phonon-assisted
213
+ optical absorption processes are second-order processes
214
+
215
+ 3
216
+ in which electrons are not only excited vertically in a
217
+ band-structure diagram through energy transfer by pho-
218
+ ton absorption, but also horizontally through momen-
219
+ tum transfer with the emission or absorption of phonons.
220
+ The imaginary part of the dielectric function is derived
221
+ from second-order time-dependent perturbation theory
222
+ as[32, 48, 49]:
223
+ ε2(ω) =8π2e2
224
+ Ωω2
225
+ 1
226
+ NkNq
227
+
228
+ νijkq
229
+ |e · [S1,ijν(k, q) + S2,ijν(k, q)]|2
230
+ × Pij(k, q)δ(ϵj,k+q − ϵi,k − ℏω ± ℏωνq),
231
+ (1)
232
+ where the upper (lower) sign represents the phonon emis-
233
+ sion (absorption) process. Ω is the volume of the unit cell.
234
+ k and q are the electron and phonon wave-vectors. Nk
235
+ and Nq are the number of k and q points in the Bril-
236
+ louin zone sampling. i, j label the band indices and ν
237
+ labels phonon modes. ϵj,k+q and ϵi,k are the electronic
238
+ energies of state (j, k + q) and (i, k), respectively. The
239
+ generalized matrix elements for the two possible scatter-
240
+ ing process is described by the terms S1,ijν(k, q) (i.e.,
241
+ photon absorption from electronic state (i, k) to inter-
242
+ mediate state (m, k) followed by electron-phonon scatter-
243
+ ing from (m, k) to final state (j, k + q) and S2,ijν(k, q)
244
+ (i.e., electron-phonon scattering from (i, k) to (m, k + q)
245
+ followed by photon absorption from (m, k + q) to final
246
+ state (j, k + q). Mathematically, the two terms are given
247
+ by:[48, 49]
248
+ S1,ijν(k, q) =
249
+
250
+ m
251
+ vim(k)gmj,ν(k, q)
252
+ ϵm,k − ϵi,k − ℏω + iη ,
253
+ (2)
254
+ and
255
+ S2,ijν(k, q) =
256
+
257
+ m
258
+ gim,ν(k, q)vmj(k + q)
259
+ ϵm,k+q − ϵi,k ± ℏωνq + iη .
260
+ (3)
261
+ In the equations above, vij(k) represents the velocity
262
+ matrix element for the optical transition between bands
263
+ i and j at k, and gij,ν(k, q) represents the electron-
264
+ phonon matrix element describing the scattering process
265
+ from electronic state (i, k) to electronic state (j, k + q)
266
+ through phonon mode νq. In addition, the occupation
267
+ factor Pij(k, q) in Eq.(1) is given by combining the Bose-
268
+ Einstein occupation factor of the phonons nνq and the
269
+ Fermi occupation factor of the electrons fnk. Consider-
270
+ ing energy conservation, we obtain the occupation factor
271
+ for the phonon absorption Pa,ij(k, q) and phonon emis-
272
+ sion Pe,ij(k, q) process as:
273
+ Pa,ij(k, q) =nνq × fi,k × (1 − fj,k+q)
274
+ − (nνq + 1) × (1 − fi,k) × fj,k+q,
275
+ (4)
276
+ and
277
+ Pe,ij(k, q) =(nνq + 1) × fi,k × (1 − fj,k+q)
278
+ − nνq × (1 − fi,k) × fj,k+q.
279
+ (5)
280
+ In addition, η in Eq.(2) and Eq.(3) is a numerical broad-
281
+ ening parameter to prevent singularities induced by zeros
282
+ in the denominator that occurs when direct transitions
283
+ are allowed. In our work, we focus on the optical spectra
284
+ between the indirect band gap and the direct band gap
285
+ that are not affected by η.
286
+ Eq.(1) to (5) serve as the foundation of calculating
287
+ phonon-assisted optical properties from first principles
288
+ utilizing second-order perturbation theory. In this work,
289
+ we calculated ε2(ω) resulting from phonon-assisted op-
290
+ tical absorption using the maximally localized Wannier
291
+ function method to interpolate the quasiparticle ener-
292
+ gies, velocity matrix elements, phonon frequencies, and
293
+ electron-phonon-coupling matrix elements onto fine BZ-
294
+ sampling grids needed to converge the spectra. The fine
295
+ electronic k-point and phonon q-point sampling grids we
296
+ employed are 32 × 32 × 32 for 3C, 24 × 24 × 16 for 2H,
297
+ 24 × 24 × 12 for 4H, 24 × 24 × 8 for 6H and 24 × 24 × 24
298
+ for 15R. The delta function in Eq.(1) is approximated
299
+ by a Gaussian function with a broadening of 0.05 eV to
300
+ resolve fine features close to the absorption edge.
301
+ The direct part of the optical spectra is calculated in-
302
+ cluding electron-hole Coulomb interactions by solving the
303
+ Bethe-Salpeter equation for the optical polarization func-
304
+ tion, implemented in the BerkeleyGW package.[41, 42,
305
+ 50] The electron-hole interaction kernel is calculated on
306
+ homogeneous electronic k-grid as in the GW calculations,
307
+ and interpolated to the following finer grid through con-
308
+ sidering the wavefunction overlap between the fine grids
309
+ and coarse grids.[42] A small arbitrary shift is applied to
310
+ all of the fine grids to ensure smooth spectra: 12×12×12
311
+ for 3C, 8 × 8 × 6 for 2H, 8 × 8 × 3 for 4H, 9 × 9 × 3 for
312
+ 6H and 8 × 8 × 8 for 15R. For the direct part of the spec-
313
+ tra, a Gaussian function with a broadening of 0.15 eV
314
+ is used to model the delta function. The imaginary part
315
+ of the dielectric function is calculated for a total number
316
+ of bands of two times the number of valence bands for
317
+ each polytype (corresponds to a maximum energy of at
318
+ least 30 eV and ∼15 eV above valence band maximum),
319
+ and the real part of the dielectric function is evaluated
320
+ by summing the direct and phonon-assisted part of ε2(ω)
321
+ and utilizing the Kramers-Kronig relationship. The com-
322
+ bined real and imaginary parts of the dielectric function
323
+ are then used to evaluate the refractive indices (nr) and
324
+ absorption coefficients (See appendix section V A for the
325
+ comparison between the calculated nr and experimental
326
+ measurements). We mention that the imaginary part of
327
+ the dielectric function resulting from the phonon-assisted
328
+ process is typically a few orders of magnitude smaller
329
+ than that resulting from direct transitions.
330
+ As a re-
331
+ sult, the contribution of the phonon-assisted process to
332
+ the overall integral in the Kramers-Kronig relationship
333
+ is usually negligible, i.e., the difference between the re-
334
+ fractive index obtained with and without considering the
335
+ phonon-assisted contribution is small.
336
+ In addition to the approach derived above from second-
337
+ order perturbation theory, phonon-assisted optical prop-
338
+ erties can be obtained by properly displacing the atoms
339
+
340
+ 4
341
+ TABLE I. Lattice constants (in ˚A) of the investigated SiC polytypes as calculated in the present study and compared to
342
+ previous theoretical and experimental studies. For the 3C structure, the lattice parameters are also converted to the equivalent
343
+ 3H structure and shown in parentheses.
344
+ Our calculated values are in excellent agreement with experimental data for all
345
+ polytypes with a maximum difference of 0.8%.
346
+ This work
347
+ Previous theory
348
+ Experiment
349
+ Polymorph
350
+ Space group
351
+ a
352
+ c
353
+ a
354
+ c
355
+ a
356
+ c
357
+ 3C (3H)
358
+ F¯43m (206)
359
+ 4.382 (3.099)
360
+ -
361
+ 4.372 (3.091)[51]
362
+ -
363
+ 4.358 (3.082)[2]
364
+ -
365
+ 2H
366
+ P63mc (186)
367
+ 3.094
368
+ 5.077
369
+ 3.086[51]
370
+ 5.065[51]
371
+ 3.076[2]
372
+ 5.048[2]
373
+ 4H
374
+ P63mc (186)
375
+ 3.096
376
+ 10.135
377
+ 3.094[51]
378
+ 10.129[51]
379
+ 3.073[2]
380
+ 10.053[2]
381
+ 6H
382
+ P63mc (186)
383
+ 3.097
384
+ 15.194
385
+ 3.094[51]
386
+ 15.185[51]
387
+ 3.081[2]
388
+ 15.117[2]
389
+ 15R
390
+ R3m (160)
391
+ 3.090
392
+ 37.910
393
+ 3.082[52]
394
+ 37.796[52]
395
+ 3.07-3.08[53]
396
+ 37.30-37.80[53]
397
+ in supercells according to the eigenvalues and eigenmodes
398
+ of the dynamical matrix and calculating direct transi-
399
+ tions in the resulting distorted supercells, namely the
400
+ special displacement method (SDM).[33–35] The benefit
401
+ of the SDM approach is that the phonon-induced band
402
+ gap renormalization, as well as the temperature depen-
403
+ dence of the band structure, are taken into consideration
404
+ by nature with the construction of the specific supercell.
405
+ The SDM approach uses the vibrational eigenmodes and
406
+ eigenfrequencies obtained from density functional pertur-
407
+ bation theory to generate the optimal supercell.[33] In the
408
+ SDM, phonon-related effects are directly captured via the
409
+ construction of the supercell using the specific atomic
410
+ displacements, the indirect part of the optical spectra
411
+ can be directly calculated out using standard approaches
412
+ utilizing first-order Fermi’s Golden rule. In our work, we
413
+ adopted the SDM approach to construct 3×3×3, 4×4×4
414
+ and 6 × 6 × 6 supercells for the 3C polytype to compare
415
+ the SDM approach with the standard approach. We note
416
+ that in the SDM approach, due to the requirement of
417
+ calculations for large supercells, evaluating electron-hole
418
+ interactions via the BSE formalism becomes computa-
419
+ tionally expensive, thus our optical calculation is limited
420
+ to the independent-particle picture.
421
+ III.
422
+ RESULT AND DISCUSSION
423
+ A.
424
+ Structural, electronic and phonon properties
425
+ The calculated structural parameters for all polytypes
426
+ considered in this study are listed in Table I, and are
427
+ in good agreement with previously reported computa-
428
+ tional results and experimental measurements. Our re-
429
+ sults for the lattice constants of all polytypes agree well
430
+ with literature values using the same type of exchange-
431
+ correlation functional (PBE), with the maximum differ-
432
+ ence not exceeding 0.3%. For better comparison to the
433
+ hexagonal polytypes, we convert the cubic lattice param-
434
+ eter of the 3C structure to the equivalent hexagonal 3H
435
+ structure[2], i.e., a3H =
436
+ 1
437
+
438
+ 2a3C, which is shown in the
439
+ parentheses in I. For hexagonal structures, our calcula-
440
+ tions show a minor expansion of the a lattice constant
441
+ and a contraction of the c lattice constant as the number
442
+ of hexagonal layers increases. Their variation, however,
443
+ is on the order of the variation of the experimental lattice
444
+ constant reported by different authors.[2, 54–56] Overall,
445
+ the theoretical lattice constants are consistently overes-
446
+ timated in comparison to experiment, which is expected
447
+ for GGA-type of exchange-correlation functionals due to
448
+ its known underbinding of chemical bonds. However, the
449
+ calculated trend of the variation of lattice parameters
450
+ across different polytypes agrees well with experimen-
451
+ tal measurements. The maximum overestimation of the
452
+ calculated lattice constant compares to the experimen-
453
+ tal value is only 0.8%. The electronic band structures of
454
+ all investigated polytypes of SiC are shown in Figure 1.
455
+ From the figure it can be clearly seen that all polytypes
456
+ exhibit indirect band gaps that are much smaller than
457
+ their direct band gaps. Overall, we see that the band
458
+ structure of the 3C structures shows clearly the smallest
459
+ indirect band gap and the largest direct gap compared
460
+ to other polytypes. It is interesting to notice that the
461
+ 2H structure exhibits a different feature that the other
462
+ hexagonal structures (4H and 6H): whereas the conduc-
463
+ tion band minimum (CBM) of 4H and 6H SiC occurs at
464
+ the M point of the BZ, the CBM of 2H SiC occurs at
465
+ the K point, while the local minimum at M lies about
466
+ 0.4 eV higher in energy. Later, we show that this differ-
467
+ ence between the 2H structure and the other hexagonal
468
+ polytypes induce a unique double bump-like feature in its
469
+ indirect optical absorption as described in section III C.
470
+ We next show that our calculated electronic band gaps
471
+ agree well both with both experiment and with previ-
472
+ ous calculations for all SiC polytypes.
473
+ The calculated
474
+ band gaps of the different SiC polytypes are listed in
475
+ II. The PBE results exhibit the well-known underesti-
476
+ mation of the band gap for all polytypes. However, in-
477
+ cluding quasiparticle corrections with the GW approxi-
478
+ mation, the calculated band gap is in much better agree-
479
+ ment with experimental measurements, with the differ-
480
+ ences being within 0.15 eV. Our results exhibit a consis-
481
+ tent trend as other theoretical and experimental studies:
482
+ the indirect gap of the material decreases as the number
483
+ of hexagonal layers increase. Meanwhile, the 3C struc-
484
+ ture shows a band gap about 1 eV narrower than all
485
+ other polytypes, while the 15R structures show slightly
486
+ smaller band gap compared to the 6H structure. It can
487
+ be seen, however, that our calculated GW band gap does
488
+
489
+ 5
490
+ G
491
+ X
492
+ W
493
+ K
494
+ G
495
+ L
496
+ U
497
+ W
498
+ L
499
+ K|U X
500
+ -5
501
+ 0
502
+ 5
503
+ Energy (eV)
504
+ G
505
+ M
506
+ K
507
+ G
508
+ A
509
+ L
510
+ H
511
+ A|L
512
+ M|K
513
+ H
514
+ -5
515
+ 0
516
+ 5
517
+ Energy (eV)
518
+ G
519
+ M
520
+ K
521
+ G A
522
+ L
523
+ H
524
+ A|L M|K H
525
+ -5
526
+ 0
527
+ 5
528
+ Energy (eV)
529
+ G
530
+ M
531
+ K
532
+ G A
533
+ L
534
+ H
535
+ A|L
536
+ M|K
537
+ H
538
+ -5
539
+ 0
540
+ 5
541
+ Energy (eV)
542
+ G
543
+ L
544
+ B1|B
545
+ Z G
546
+ X|Q
547
+ F P1
548
+ Z|L P
549
+ -5
550
+ 0
551
+ 5
552
+ Energy (eV)
553
+ (a)
554
+ (b)
555
+ (c)
556
+ (d)
557
+ (e)
558
+ FIG. 1.
559
+ Quasiparticle band structures of the five investigated SiC polytypes: (a) 3C, (b) 2H, (c) 4H, (d) 6H and (e) 15R
560
+ calculated with the GW method and interpolated with the Maximally Localized Wannier Function method. All polytypes are
561
+ indirect-gap semiconductors (the indirect gap is marked with red arrows).
562
+ TABLE II. Calculated band gaps (in eV) of the five investigated SiC polytypes both within PBE and with the GW approxi-
563
+ mation, in comparison to previous theoretical and experimental results. Our data are in good agreement with previous work
564
+ with a maximum difference of 0.15 eV.
565
+ Polytype
566
+ This work, PBE
567
+ Previous theory, GGA
568
+ This work, GW
569
+ Previous theory, GW
570
+ Experiment
571
+ 3C
572
+ 1.373
573
+ 1.391[51],1.410[57]
574
+ 2.514
575
+ 2.38[58], 2.24[59], 2.59[60]
576
+ 2.360[61]
577
+ 2H
578
+ 2.335
579
+ 2.350[57]
580
+ 3.311
581
+ 3.33[58]
582
+ 3.330[62]
583
+ 4H
584
+ 2.244
585
+ 2.238[57]
586
+ 3.205
587
+ 3.26[58], 3.11[59]
588
+ 3.230[61]
589
+ 6H
590
+ 2.050
591
+ 2.034[51],2.031[57]
592
+ 3.127
593
+ 3.05[58]
594
+ 3.000[61]
595
+ 15R
596
+ 1.977
597
+ 2.16[63]
598
+ 3.062
599
+ -
600
+ 2.986[64]
601
+ not consistently overestimate or underestimate the exper-
602
+ imental gap. The difference between our GW result in
603
+ comparison to other literature values may result from the
604
+ plasmon-pole model, the different starting point due to
605
+ the exchange-correlation functional, etc. The difference
606
+ between the calculated value from the GW approxima-
607
+ tion and the experimentally measured value is attributed
608
+ in part to the lack of temperature-related renormalization
609
+ (∼ 0.03-0.05 eV[22]) of the band gap and the zero-point
610
+ motion. Nevertheless, the differences between our calcu-
611
+ lated GW band gap and experimental measurements are
612
+ in general within 0.15 eV, with the 3C structure being the
613
+ largest but not exceeding 7%. We note that fine tuning
614
+ the electronic-structure methodology to obtain a better
615
+ match of the gap to experiment is not the focus of this
616
+ work, thus we restrict our band-structure calculation to
617
+ the one-shot GW approximation.
618
+ We further show the calculated phonon band struc-
619
+ tures, and we show that the phonon frequencies agree
620
+ well with both experimental measurements as well as
621
+ theoretical studies. The calculated phonon band struc-
622
+ tures for all different SiC polytypes are shown in Fig-
623
+ ure 2.
624
+ The maximum phonon frequency at Γ is very
625
+ similar across all different polytypes, with a variation
626
+ within the range from 117.0 meV to 117.2 meV. Com-
627
+ pared to available experimental data (See marks for the
628
+ data and references in Figure 2), the differences are less
629
+ than 3%. We also compared the calculated phonon fre-
630
+ quencies to first-principles results[69] using ABINIT[70],
631
+ and the differences of the calculated phonon frequencies
632
+ are no larger than 2%. The calculated electron phonon
633
+ matrix elements are interpolated onto a fine q and k-
634
+ grid utilizing Wannier interpolation to obtain converged
635
+ phonon-assisted optical spectra that we show later in sec-
636
+ tion III C.
637
+
638
+ 6
639
+ G
640
+ X
641
+ W
642
+ K
643
+ G
644
+ L
645
+ U
646
+ W
647
+ L
648
+ K|U X
649
+ 0
650
+ 20
651
+ 40
652
+ 60
653
+ 80
654
+ 100
655
+ 120
656
+ Energy (meV)
657
+ G
658
+ M
659
+ K
660
+ G
661
+ A
662
+ L
663
+ H
664
+ A|L M|K K|H
665
+ 0
666
+ 20
667
+ 40
668
+ 60
669
+ 80
670
+ 100
671
+ 120
672
+ Energy (meV)
673
+ G
674
+ M
675
+ K
676
+ G A
677
+ L
678
+ H
679
+ 0
680
+ 20
681
+ 40
682
+ 60
683
+ 80
684
+ 100
685
+ 120
686
+ Energy (meV)
687
+ A|L M|K H
688
+ G
689
+ M
690
+ K
691
+ G A
692
+ L
693
+ H
694
+ 0
695
+ 20
696
+ 40
697
+ 60
698
+ 80
699
+ 100
700
+ 120
701
+ Energy (meV)
702
+ A|L M|K H
703
+ G
704
+ L
705
+ B1|B
706
+ Z G
707
+ X|Q
708
+ 0
709
+ 20
710
+ 40
711
+ 60
712
+ 80
713
+ 100
714
+ 120
715
+ Energy (meV)
716
+ F P1
717
+ Z|L P
718
+ (a)
719
+ (b)
720
+ (c)
721
+ (d)
722
+ (e)
723
+ FIG. 2. Calculated phonon dispersions of the investigated SiC polytypes (a) 3C, (b) 2H, (c) 4H, (d) 6H, and (e) 15R. Our
724
+ calculated phonon frequencies underestimate available experimental measurements by less than 3%. Experimental data are
725
+ plotted from: Ref. [65] (3C, purple X symbols), Ref. [66] (4H and 15R, red crosses), Ref. [67] (4H, orange circles) and Ref.[68]
726
+ (6H, blue upper triangles).
727
+ Compared to previous theoretical studies[69], we find very good agreement of the dispersion
728
+ compared to experiment, with maximum differences of the phonon frequencies on the order of 2%.
729
+ B.
730
+ Direct optical properties
731
+ We first report the calculated direct part of the absorp-
732
+ tion spectra and the dielectric constants, with excitonic
733
+ effects included.
734
+ The optical spectra shown in Figure
735
+ 3 (ordinary direction for the hexagonal structures) are
736
+ calculated with quasiparticle energies from the GW ap-
737
+ proximation and with electron-hole interaction from the
738
+ BSE approach. Our calculated optical spectra agree well
739
+ with literature[71] for the 3C, 2H and 6H structure, espe-
740
+ cially considering the relative height and position of the
741
+ main peak. Similar to Ref.[71] we observe a significant
742
+ shoulder close to the absorption onset (∼6 eV) that is
743
+ clearest for 3C SiC, while being less significant for 2H
744
+ and 6H. It is worthwhile to note that our spectra are no-
745
+ ticeably higher than in Ref.[71], which is due to the differ-
746
+ ent choice of broadening parameters used to approximate
747
+ the delta function (0.15 eV in this work versus 0.25 eV in
748
+ the reference). We report the calculated dielectric con-
749
+ stants in Table III. Our calculated dielectric constants are
750
+ higher than Ref.[71] and this can be affected by many fac-
751
+ tors, including possible different BSE energy cutoffs and
752
+ different quasiparticle band gaps, etc. Overall, the dif-
753
+ ferences between our calculated dielectric constant and
754
+ experimental values are within 5%. Since in the indirect
755
+ part of the spectra, the imaginary part of the dielectric
756
+ functions are orders of magnitudes smaller than the di-
757
+ rect part, it is reasonable to assume that the refractive
758
+ index is approximately proportional to the square root of
759
+ the real part of the dielectric function. As a result, in this
760
+ TABLE III. Dielectric constant for the ordinary polarization
761
+ (ε⊥
762
+ ∞) calculated with the BSE approach for the five SiC poly-
763
+ types.
764
+ Our calculated dielectric constants overestimate ex-
765
+ perimental values by less than 5%, resulting in less than 3%
766
+ overestimation for the refractive index.
767
+ Polytype
768
+ This work,
769
+ BSE
770
+ Theory,
771
+ BSE (Ref.[71])
772
+ Experiment
773
+ (Ref.[72])
774
+ 3C
775
+ 6.93
776
+ 6.36
777
+ 6.52
778
+ 2H
779
+ 6.89
780
+ 6.27
781
+ 6.51
782
+ 4H
783
+ 6.84
784
+ -
785
+ -
786
+ 6H
787
+ 6.79
788
+ 6.31
789
+ 6.52
790
+ 15R
791
+ 6.73
792
+ -
793
+ -
794
+ case the difference in the calculated direct spectra from
795
+ theory to experiment does not affect the calculated indi-
796
+ rect part of the spectra by more than 5%. Later in this
797
+ section, we show that this is a minor effect compared to
798
+ other factors, for example, the finite-temperature band-
799
+ gap renormalization, or the mere difference of the band
800
+ gap from GW approximation to experiment.
801
+ C.
802
+ Phonon-assisted optical properties from
803
+ second-order perturbation theory
804
+ Following the calculation of the direct spectra, we de-
805
+ termine the phonon-assisted indirect optical spectra of
806
+ the SiC polytypes, evaluated with the second-order time-
807
+ dependent perturbation theory. We find that our results
808
+
809
+ 7
810
+ 0
811
+ 10
812
+ 20
813
+ 30
814
+ 40
815
+ 0
816
+ 10
817
+ 20
818
+ 30
819
+ 40
820
+ 0
821
+ 10
822
+ 20
823
+ 30
824
+ 40
825
+ Im e(w)
826
+ 0
827
+ 10
828
+ 20
829
+ 30
830
+ 40
831
+ 2
832
+ 4
833
+ 6
834
+ 8
835
+ 10
836
+ 12
837
+ 14
838
+ Energy (eV)
839
+ 0
840
+ 10
841
+ 20
842
+ 30
843
+ 40
844
+ 3C
845
+ 2H
846
+ 4H
847
+ 6H
848
+ 15R
849
+ 3C
850
+ 2H
851
+ 4H
852
+ 6H
853
+ 15R
854
+ FIG. 3. Solid: Calculated direct part of the optical absorption
855
+ spectra (imaginary part of the complex dielectric function) for
856
+ the ordinary light polarization for the five different SiC poly-
857
+ types, including quasiparticle effects with the GW approxi-
858
+ mation and electron-hole interactions via the BSE equation.
859
+ Dashed: Theoretical BSE data from Ref.[71] for 3C, 2H and
860
+ 6H polytypes. We find very good agreement in terms of the
861
+ peak positions and shapes, with the height of the peak poten-
862
+ tially affected by the choice of the broadening parameters.
863
+ agree well with experiments for the most common poly-
864
+ types (3C, 4H and 6H), and we can predict the indirect
865
+ spectra for 2H and 15R polytypes. Figure 4 shows the
866
+ calculated absorption coefficient in the region of indirect
867
+ absorption for all polytypes. Additional rigid shifts ∆ are
868
+ applied to the quasiparticle energies from the GW ap-
869
+ proximation to match the indirect gap from experiment:
870
+ ∆ = −0.154 eV for 3C, ∆ = 0.019 eV for 2H, ∆ = 0.025
871
+ eV for 4H, ∆ = −0.126 eV for 6H and ∆ = −0.076 eV
872
+ for 15R. For the indirect part of the spectra, it is reason-
873
+ able to assume that the correction on the band gap can
874
+ be well represented with a rigid shift of the absorption
875
+ coefficient (i.e., no scaling of the spectra is needed).[33]
876
+ We compared the calculated absorption coefficient in the
877
+ indirect region of the 3C, 4H and 6H polytypes to ex-
878
+ perimental measurements, and we find a good agreement
879
+ with the experimental results.
880
+ For the 15R structure,
881
+ we observe that the absorption coefficient in the indi-
882
+ rect region is similar to the 6H structure. Such similar-
883
+ ity is expected due to the similarities in the electronic
884
+ band structure and phonon band structures.
885
+ Interest-
886
+ ingly, for the 2H structure, we observe two bump-like
887
+ features around photon energies of 3.45 eV and 3.75 eV.
888
+ We note that these two energies correspond to the en-
889
+ ergy difference between the valence band maximum at Γ
890
+ and the conduction band minimum at K, as well as the
891
+ second minimum at M, respectively. This is a unique
892
+ feature that we only observe in the 2H structure, as for
893
+ all other hexagonal structures, the CBM is located at M,
894
+ rather than K.
895
+ 2
896
+ 2.5
897
+ 3
898
+ 3.5
899
+ 4
900
+ Energy (eV)
901
+ 0.01
902
+ 0.1
903
+ 1
904
+ 10
905
+ 100
906
+ a(w)
907
+ 1/2 (cm
908
+ -1/2)
909
+ 3C
910
+ 6H
911
+ 15R
912
+ 2H
913
+ 4H
914
+ FIG. 4. Calculated optical absorption coefficient for the ordi-
915
+ nary direction (E⊥ c) at 300 K for the five investigated SiC
916
+ polytypes in the phonon-assisted spectral region between the
917
+ indirect and direct band gaps. The experimental results from
918
+ the literature are taken from Ref.[73] (3C, 4H and 6H, cross
919
+ mark), Ref.[74] (4H and 6H, dot marks) and Ref.[75] (4H and
920
+ 6H, upper triangle mark). A rigid shift has been applied to
921
+ each theoretical curve to correct the difference between the
922
+ GW-calculated gaps and the experimental values at 300 K
923
+ listed in Table II for each polytype. The calculated absorp-
924
+ tion spectra are in overall good agreement with experiment.
925
+ Stepping forward, our first-principles tools allow us to
926
+ investigate the temperature dependency of the indirect
927
+ optical properties to examine the factors that affect the
928
+ spectra as temperature changes. As a thermally stable
929
+ material, many of the novel optoelectronic applications
930
+ of SiC involve extreme conditions.[76–78] Therefore, be-
931
+ ing able to predict temperature-dependent optical prop-
932
+ erties from a first-principles perspective can provide cru-
933
+ cial information for novel applications.
934
+ We calculated
935
+ the temperature-dependent indirect optical spectra for
936
+ the 4H and 6H polytypes at three different temperatures
937
+ (300 K, 473 K and 573 K). The calculated temperature-
938
+ dependent absorption coefficients in the indirect region
939
+ are shown in Figure 5.
940
+ Additional rigid shifts are ap-
941
+ plied to match the calculated electronic band gap with
942
+ experimentally determined values.[61] It can be seen from
943
+ the figure that our calculation reproduces the relative
944
+ change in the indirect optical absorption due to temper-
945
+ ature changes very well after taking the band gap renor-
946
+ malization into account (See appendix section V B for
947
+
948
+ 8
949
+ 3
950
+ 3.5
951
+ 4
952
+ Energy (eV)
953
+ 0.1
954
+ 1
955
+ 10
956
+ 100
957
+ a(w)
958
+ 1/2 (cm
959
+ -1/2)
960
+ D573=-0.054 eV
961
+ D473=-0.023 eV
962
+ D300=0.025 eV
963
+ 3
964
+ 3.5
965
+ 4
966
+ Energy (eV)
967
+ 0.1
968
+ 1
969
+ 10
970
+ 100
971
+ a(w)
972
+ 1/2 (cm
973
+ -1/2)
974
+ D573=-0.207 eV
975
+ D473=-0.174 eV
976
+ D300=-0.127 eV
977
+ (a)
978
+ (b)
979
+ FIG. 5.
980
+ Calculated absorption coefficient for (a) 4H SiC and
981
+ (b) 6H SiC as a function of photon energy in the phonon-
982
+ assisted region (lines) for a temperature of 300 K (solid), 473
983
+ K (dashed), and 573 K (dotted), and compared to experimen-
984
+ tal measurements (data points) from Ref.[75] at 300 K (upper
985
+ triangle), 473 K (square) and 573 K (plus). The theoretical
986
+ curves have been rigidly shifted to match the temperature de-
987
+ pendence of the experimental band gap according to Ref.[61].
988
+ The change in the spectra with respect to temperature change
989
+ is well-predicted with the changes in band gaps included.
990
+ spectra without additional rigid shift). We conclude that
991
+ the effects of temperature on both the phonon occupa-
992
+ tion numbers as well as on the renormalization of the
993
+ band gap itself are important to obtain reliable predic-
994
+ tion of the indirect absorption spectra. However, for the
995
+ 6H polytype, we find that the simple rigid shift of the gap
996
+ does not accurately provide the correct positions of the
997
+ shoulder of the absorption curve. In the next section, we
998
+ examine an alternative route to calculate phonon-assisted
999
+ absorption that avoids the rigid-shift approach and con-
1000
+ siders implicitly the temperature renormalization of the
1001
+ band structure.
1002
+ 2
1003
+ 2.5
1004
+ 3
1005
+ 3.5
1006
+ 4
1007
+ Energy (eV)
1008
+ 0.01
1009
+ 0.1
1010
+ 1
1011
+ 10
1012
+ 100
1013
+ a
1014
+ 1/2(cm
1015
+ -1/2)
1016
+ SDM
1017
+ Second-order perturbation
1018
+ FIG. 6. Calculated absorption coefficient as a function of en-
1019
+ ergy for the 3C polytype with 6 × 6 × 6 supercell with the
1020
+ special displacement (SDM) approach[35] using a 4 × 4 × 4
1021
+ k-points grid (violet) and the perturbation approach (red
1022
+ solid) (32×32×32 k/q-points grid). Experimental data from
1023
+ Ref.[73] (black dots) and Ref.[74] (black cross) are shown for
1024
+ comparison. The same rigid shift is applied as in Figure 4 for
1025
+ the perturbation approach, while no rigid shift is applied for
1026
+ the SDM approach. The renormalization of the band gap due
1027
+ to temperature is physically included with the SDM approach.
1028
+ D.
1029
+ Phonon-assisted optical properties from the
1030
+ special displacement method (SDM)
1031
+ Next, we show that the effect of temperature-related
1032
+ renormalizations of the band gap on the optical absorp-
1033
+ tion spectra of SiC can be overcome by applying the spe-
1034
+ cial displacement method. Although the SDM approach
1035
+ only requires a single snapshot of the atomic displace-
1036
+ ment configuration,[33–35] the need to perform calcu-
1037
+ lations on relatively large supercells (approaching thou-
1038
+ sands of atoms) results in a drastic increase in the com-
1039
+ putational cost. As a result, we take quasiparticle cor-
1040
+ rections into account using a rigid increase of the gap
1041
+ (1.141 eV) to account for the difference between the PBE
1042
+ band gap and the GW band gap from unit cell calcula-
1043
+ tions. In Figure 6, we show the best converged results
1044
+ using the SDM approach compared to the perturbation
1045
+ approach for 3C SiC. The same rigid shift is applied for
1046
+ the perturbation approach as indicated in the previous
1047
+ sections. In the SDM approach, no artificial shifts are
1048
+ applied except for the indirect-band-gap correction from
1049
+ the PBE to the GW value. At energies beyond 3 eV, the
1050
+ SDM approach shows better agreement with experiment
1051
+ quantitatively compared to experimental data. This is
1052
+ because, by taking the renormalization of the band gap
1053
+ with respect to temperature into account, the SDM ap-
1054
+ proach is more physical in terms of predicting the correct
1055
+ position of the absorption peaks. However, below a pho-
1056
+ ton energy of 3 eV, the perturbation approach predicts
1057
+ the shape of the curve better. There are a few possible
1058
+ factors: First, it is straightforward to use the perturba-
1059
+
1060
+ 9
1061
+ tion approach utilizing Wannier interpolation to obtain
1062
+ matrix elements on the fine grid, which is important in
1063
+ order to obtain converged spectra near the absorption
1064
+ onset that require a fine sampling of the Brillouin zone.
1065
+ For the SDM approach, however, convergence with re-
1066
+ spect to supercell size is required. In our work, we find
1067
+ that under-converged supercell can incur significant error
1068
+ for the absorption onset, or incorrect absorption shoul-
1069
+ ders, and a 6 × 6 × 6 supercell is needed for converged
1070
+ phonon-assisted spectra (See appendix section V C). Sec-
1071
+ ond, the nature of the approach corresponds to neglecting
1072
+ the explicit phonon frequencies in the delta-function of
1073
+ calculating ε2(ω) in Eq.(1), thus, the absorption onset
1074
+ can be affected.[33–35]
1075
+ Overall, we show that although both the SDM ap-
1076
+ proach and the perturbation approach provide satisfy-
1077
+ ing results for predicting the phonon-assisted optical
1078
+ absorption properties for 3C SiC, the SDM approach
1079
+ clearly illustrates the importance of including the cor-
1080
+ rect temperature-dependent renormalization of the band
1081
+ gap to obtain higher quantitative accuracy. The special
1082
+ displacement approach also shows the potential of fur-
1083
+ ther investigations, e.g., excitonic effects on the indirect
1084
+ part of the optical spectra by performing BSE calcula-
1085
+ tions on properly converged supercells. However, fully
1086
+ converged BSE calculations on such large supercells is
1087
+ computationally challenging and is beyond the scope of
1088
+ this paper. Meanwhile, it is also clear that, to resolve the
1089
+ finer structures of the optical absorption around the ab-
1090
+ sorption edge, it is important to fully consider the effects
1091
+ of phonons including the phonon energies.
1092
+ IV.
1093
+ CONCLUSION
1094
+ In this work, we investigate the phonon-assisted opti-
1095
+ cal properties of five different SiC polytypes with first-
1096
+ principles calculations. We first calculate the structural
1097
+ properties of all polytypes with density functional theory,
1098
+ and electronic properties with the GW approximation,
1099
+ and we show that the calculated results agree well with
1100
+ both other theoretical studies and experimental measure-
1101
+ ments.
1102
+ We then utilize Wannier interpolation to ob-
1103
+ tain the electron-phonon coupling in dense electronic and
1104
+ phonon grids, and we use second-order time-dependent
1105
+ perturbation theory to obtain phonon-assisted optical
1106
+ spectra in the indirect gap region of all polytypes. We
1107
+ show that the simulated absorption coefficient in the indi-
1108
+ rect region agrees well with experimental measurements
1109
+ for the most common 3C, 4H and 6H polytypes, and pro-
1110
+ vides prediction for 15R and 2H polytypes. Further anal-
1111
+ ysis on the temperature-dependent indirect optical prop-
1112
+ erties shows that our theoretical simulation predicts the
1113
+ trend of the variation in optical properties with respect
1114
+ to temperature well, and we show that our simulations
1115
+ can be particularly useful in understanding the practical
1116
+ application of the material at various finite temperatures.
1117
+ However, our results shows that the renormalization of
1118
+ the band gaps due to temperature is important in pre-
1119
+ dicting the temperature-dependent spectra. Therefore,
1120
+ we further compare the conventional approach utilizing
1121
+ second-order perturbation theory to the method employ-
1122
+ ing special displacement of specific atoms in supercells,
1123
+ and we show that improvement of the predictions of
1124
+ the temperature dependency of the indirect optical spec-
1125
+ tra can be obtained by take the renormalization of the
1126
+ electronic energies implicitly due to temperature change
1127
+ into account. Our work shows that these methods en-
1128
+ able quantitively predictions of temperature-dependent
1129
+ phonon-assisted absorption spectra in indirect-gap semi-
1130
+ conductor materials.
1131
+ ACKNOWLEDGEMENT
1132
+ We thank Dr. Marios Zacharias for the fruitful dis-
1133
+ cussion about the SDM approach.
1134
+ The work is sup-
1135
+ ported as part of the Computational Materials Sciences
1136
+ Program funded by the U.S. Department of Energy, Of-
1137
+ fice of Science, Basic Energy Sciences, under Award No.
1138
+ DE-SC0020129. Computational resources were provided
1139
+ by the National Energy Research Scientific Computing
1140
+ Center, which is supported by the Office of Science of
1141
+ the U.S. Department of Energy under Contract No. DE-
1142
+ AC02-05CH11231.
1143
+ V.
1144
+ APPENDIX
1145
+ A.
1146
+ Refractive index
1147
+ 1 1.5
1148
+ 2
1149
+ 2.5
1150
+ 3
1151
+ 2.4
1152
+ 2.5
1153
+ 2.6
1154
+ 2.7
1155
+ 2.8
1156
+ 2.9
1157
+ Refractive index nr
1158
+ 1 1.5
1159
+ 2
1160
+ 2.5
1161
+ 3
1162
+ Photon energy (eV)
1163
+ 1 1.5
1164
+ 2
1165
+ 2.5
1166
+ 3
1167
+ FIG. 7. Calculated refractive index in the region close to the
1168
+ indirect band gap for 4H SiC (black solid), 3C SiC (red solid)
1169
+ and 6H SiC (green solid), as well as comparison to experi-
1170
+ mental curve (dashed) from Ref.[79] (4H and 6H) and Ref.[80]
1171
+ (3C).
1172
+ In this section we show the calculated refractive in-
1173
+ dex compared to experimental measurements. Figure 7
1174
+ shows that our calculated refractive index of 3C, 4H and
1175
+
1176
+ 10
1177
+ 6H polytypes agrees very well with experimental mea-
1178
+ surements, with the difference being an overestimation
1179
+ by less than 3%. These differences in the refractive in-
1180
+ dex from our calculation compared to experiments are
1181
+ a negligible source of error even compared to the mere
1182
+ difference of the band gaps themselves.
1183
+ B.
1184
+ Temperature dependent indirect spectra
1185
+ 3
1186
+ 3.5
1187
+ 4
1188
+ Energy (eV)
1189
+ 0.1
1190
+ 1
1191
+ 10
1192
+ 100
1193
+ a(w)
1194
+ 1/2 (cm
1195
+ -1/2)
1196
+ (a)
1197
+ 3
1198
+ 3.5
1199
+ 4
1200
+ Energy (eV)
1201
+ 0.01
1202
+ 0.1
1203
+ 1
1204
+ 10
1205
+ 100
1206
+ a(w)
1207
+ 1/2 (cm
1208
+ -1/2)
1209
+ (b)
1210
+ FIG. 8.
1211
+ Calculated absorption coefficient for 4H SiC (a)
1212
+ and 6H SiC (b) as a function of photon energy in the indi-
1213
+ rect region (lines) for a temperature of 300 K (solid), 473 K
1214
+ (dashed), and 573 K (dotted), and compared to experimental
1215
+ measurements (data points) from Ref.[75] at 300 K (upper tri-
1216
+ angle), 473 K (square) and 573 K (plus). The difference with
1217
+ Figure 5 is the omission of the correction to the band-gap
1218
+ value to match experiment.
1219
+ In this section, we demonstrate the temperature-
1220
+ dependent indirect spectra without including the ad-
1221
+ ditional rigid shifts to account for the temperature-
1222
+ dependent band-gap renormalization.
1223
+ In Figure 8, we
1224
+ show the calculated optical spectra without considering
1225
+ the difference between calculated band gap and exper-
1226
+ imentally measured band gap.
1227
+ It can be seen clearly
1228
+ that first, the effects of temperature on the indirect op-
1229
+ tical spectra itself is still clear, and this is mainly due
1230
+ to the change in Bose-Einstein occupation factor of the
1231
+ phonons. However, without considering the difference in
1232
+ band gap from theory and from experiment, especially in
1233
+ the 6H case, the onset of absorption is severely overes-
1234
+ timated, and more importantly in this context, the dif-
1235
+ ferences between the curves at different temperatures is
1236
+ underestimated.
1237
+ This clearly shows the importance of
1238
+ considering both the change in occupations due to tem-
1239
+ perature and the changes in band gap itself due to tem-
1240
+ perature change, as the change in spectra is clearly a
1241
+ combined effect of both.
1242
+ C.
1243
+ Convergence of the supercell approach
1244
+ 2
1245
+ 2.5
1246
+ 3
1247
+ 3.5
1248
+ 4
1249
+ Energy (eV)
1250
+ 0.01
1251
+ 0.1
1252
+ 1
1253
+ 10
1254
+ 100
1255
+ a
1256
+ 1/2(cm
1257
+ -1/2)
1258
+ 3´3´3 supercell
1259
+ 4´4´4 supercell
1260
+ 6´6´6 supercell
1261
+ FIG. 9.
1262
+ Calculated absorption coefficient using the special
1263
+ displacement approach[35] with three different supercell sizes:
1264
+ 3 × 3 × 3 (dotted), 4 × 4 × 4 (dashed) and 6 × 6 × 6 (solid).
1265
+ The k-points sampling are 8 × 8 × 8, 6 × 6 × 6 and 4 × 4 ×
1266
+ 4, respectively.
1267
+ All k-point grids are randomly shifted for
1268
+ better convergence. Convergence beyond 6×6×6 cell require
1269
+ supercells with more than 1000 atoms and is not tested due
1270
+ to the large computational cost.
1271
+ To test the convergence of the supercell approach ver-
1272
+ sus the supercell size, we calculated the indirect optical
1273
+ spectra with 3 × 3 × 3, 4 × 4 × 4 and 6 × 6 × 6 supercells.
1274
+ In this section we report the convergence behavior of the
1275
+ calculated spectra near the absorption onset in Figure
1276
+ 9. It can be seen from the figure that the two smaller
1277
+ supercells are not sufficient for converged optical spectra
1278
+ in the indirect region. The best converged results of the
1279
+ 6 × 6 × 6 supercell is reported in the main text.
1280
+ [1] F. R. Chien, S. R. Nutt, W. S. Yoo, T. Kimoto, and
1281
+ H. Matsunami, Terrace growth and polytype develop-
1282
+ ment in epitaxial β-SiC films on α-SiC (6H and 15R)
1283
+
1284
+ 11
1285
+ substrates, J. Mater. Res. 9, 940 (1994).
1286
+ [2] Z. C. Feng, SiC power materials: devices and applica-
1287
+ tions, Vol. 73 (Springer Science & Business Media, 2013).
1288
+ [3] A. Yaghoubi, R. Singh, and P. Melinon, Predicting
1289
+ the Primitive Form of Rhombohedral Silicon Carbide
1290
+ (9R-SiC): A Pathway toward Polytypic Heterojunctions,
1291
+ Cryst. Growth Des. 18, 7059 (2018).
1292
+ [4] J. Edmond,
1293
+ H. Kong,
1294
+ A. Suvorov,
1295
+ D. Waltz, and
1296
+ C. Carter, Jr, 6H-Silicon Carbide Light Emitting Diodes
1297
+ and UV Photodiodes, Phys. Status Solidi 162, 481
1298
+ (1997).
1299
+ [5] D. M. Brown, E. Downey, J. Kretchmer, G. Michon,
1300
+ Emily Shu, and D. Schneider, SiC flame sensors for gas
1301
+ turbine control systems, Solid State Electron. 42, 755
1302
+ (1998).
1303
+ [6] S. PRZYBYLKO, Developments in silicon carbide for
1304
+ aircraft propulsion system applications, in 29th Joint
1305
+ Propulsion Conference and Exhibit (1993) p. 2581.
1306
+ [7] H. Aida, T. Doi, H. Takeda, H. Katakura, S.-W. Kim,
1307
+ K. Koyama, T. Yamazaki, and M. Uneda, Ultrapreci-
1308
+ sion CMP for sapphire, GaN, and SiC for advanced op-
1309
+ toelectronics materials, Curr. Appl. Phys. 12, S41 (2012),
1310
+ proceedings of the Second International Symposium on
1311
+ Hybrid Materials and Processing Busan, Korea, 27-29
1312
+ October 2011.
1313
+ [8] H. Okumura, Present Status and Future Prospect of
1314
+ Widegap Semiconductor High-Power Devices, Japanese
1315
+ J. Appl. Phys. 45, 7565 (2006).
1316
+ [9] T. Kimoto, K. Fujihira, H. Shiomi, and H. Matsunami,
1317
+ High-Voltage 4H–SiC Schottky Barrier Diodes Fabri-
1318
+ cated on (0338) with Closed Micropipes, Japanese J.
1319
+ Appl. Phys. 42, L13 (2003).
1320
+ [10] W. Gao, F. Zhang, Z. Zheng, and J. Li, Unique and Tun-
1321
+ able Photodetecting Performance for Two-Dimensional
1322
+ Layered MoSe2/WSe2 p–n Junction on the 4H-SiC Sub-
1323
+ strate, ACS Appl. Mater. Interfaces 11, 19277 (2019).
1324
+ [11] Y. Liu, Y. Xu, B. Cao, Z. Li, E. Zhao, S. Yang,
1325
+ C. Wang, J. Wang, and K. Xu, Transferable GaN films
1326
+ on Graphene/SiC by van der Waals epitaxy for flexible
1327
+ devices, Phys. Status Solidi (a) 216, 1801027 (2019).
1328
+ [12] Highly preferred orientation of Ga2O3 films sputtered on
1329
+ SiC substrates for deep UV photodetector application,
1330
+ author=Li, MengQiu and Yang, Ni and Wang, GuiGen
1331
+ and Zhang, HuaYu and Han, JieCai, Appl. Surf. Sci. 471,
1332
+ 694 (2019).
1333
+ [13] C. Huang, H. Zhang, and H. Sun, Ultraviolet optoelec-
1334
+ tronic devices based on AlGaN-SiC platform: Towards
1335
+ monolithic photonics integration system, Nano Energy ,
1336
+ 105149 (2020).
1337
+ [14] M. Kim, J.-H. Seo, U. Singisetti, and Z. Ma, Recent
1338
+ advances in free-standing single crystalline wide band-
1339
+ gap semiconductors and their applications: GaN, SiC,
1340
+ ZnO, β-Ga2O3, and diamond, J. Mater. Chem. C 5, 8338
1341
+ (2017).
1342
+ [15] H. Mousa, M. A. Yildirim, and K. Teker, Performance
1343
+ enhancement of 3C-SiC thin film UV photodetector via
1344
+ gold nanoparticles, Semicond. Sci. Technol. 34, 095002
1345
+ (2019).
1346
+ [16] H. Ahmed, A. Hashim, and H. Abduljalil, Determina-
1347
+ tion of optical parameters of films Of PVA/TiO2/SiC
1348
+ and PVA/MgO/SiC nanocomposites for optoelectronics
1349
+ and UV-detectors, Ukr. J. Phys. 65, 533 (2020).
1350
+ [17] J. Bradford, M. Shafiei, J. MacLeod, and N. Motta, Syn-
1351
+ thesis and characterization of WS2/graphene/SiC van
1352
+ der Waals heterostructures via WO3−x thin film sulfu-
1353
+ rization, Sci. Rep. 10, 1 (2020).
1354
+ [18] E. Scalise, A. Marzegalli, F. Montalenti, and L. Miglio,
1355
+ Temperature-Dependent
1356
+ Stability
1357
+ of
1358
+ Polytypes
1359
+ and
1360
+ Stacking Faults in SiC: Reconciling Theory and Experi-
1361
+ ments, Phys. Rev. Appl. 12, 021002 (2019).
1362
+ [19] R. Schomer, P. Friedrichs, D. Peters, and D. Stephani,
1363
+ Significantly improved performance of MOSFETs on sil-
1364
+ icon carbide using the 15R-SiC polytype, IEEE Electron
1365
+ Device Lett. 20, 241 (1999).
1366
+ [20] S. Mourya, J. Jaiswal, G. Malik, B. Kumar, and R. Chan-
1367
+ dra, Structural and optical characteristics of in-situ sput-
1368
+ tered highly oriented 15R-SiC thin films on different sub-
1369
+ strates, J. Appl. Phys. 123, 023109 (2018).
1370
+ [21] H. Yano, T. Kimoto, H. Matsunami, M. Bassler, and
1371
+ G. Pensl, MOSFET performance of 4H-, 6H-, and 15R-
1372
+ SiC processed by dry and wet oxidation, in Materials
1373
+ Science Forum, Vol. 338 (Trans Tech Publications Ltd.,
1374
+ Zurich-Uetikon, Switzerland, 2000) pp. 1109–1112.
1375
+ [22] W. J. Choyke, Optical properties of polytypes of SiC: in-
1376
+ terband absorption, and luminescence of nitrogen-exciton
1377
+ complexes, in Silicon Carbide–1968 (Elsevier, 1969) pp.
1378
+ S141–S152.
1379
+ [23] J. R. O’Connor and J. Smiltens, Silicon Carbide, a High
1380
+ Temperature Semiconductor: Proceedings of the Confer-
1381
+ ence on Silicon Carbide (Pergamon P., 1960).
1382
+ [24] W.-H. Zhang, F.-C. Zhang, W.-B. Zhang, S.-L. Zhang,
1383
+ and W. Yang, First-principle study of the structural, elec-
1384
+ tronic, and optical properties of SiC nanowires, Chin.
1385
+ Phys. B 26, 057103 (2017).
1386
+ [25] S. Majidi, S. M. Elahi, A. Esmailian, and F. Kanjouri,
1387
+ First principle study of electronic and optical properties
1388
+ of planar GeC, SnC and SiC nanosheets, Prot. Met. Phys.
1389
+ Chem. Surf. 53, 773 (2017).
1390
+ [26] C. Xie, P. Xu, F. Xu, H. Pan, and Y. Li, First-principles
1391
+ studies of the electronic and optical properties of 6H–SiC,
1392
+ Phys. B: Condens. Matter 336, 284 (2003).
1393
+ [27] K.-H. Lee, C. Park, B.-H. Cheong, and K.-J. Chang,
1394
+ First-principles study of the optical properties of SiC,
1395
+ Solid State Commun. 92, 869 (1994).
1396
+ [28] Y. Niu, H. Hu, W. Zhang, J. Li, L. Qiao, N. Dong, and
1397
+ P. Han, First-principle study of electronic structure and
1398
+ optical properties of SiC nano films, Semicond. Sci. Tech-
1399
+ nol. 34, 115015 (2019).
1400
+ [29] J. Song, Y. Yang, and H. Liu, Electronic structures and
1401
+ optical properties of nitrogen-doped SiC nanotube, in
1402
+ 2009 IEEE International Conference of Electron Devices
1403
+ and Solid-State Circuits (EDSSC) (IEEE, 2009) pp. 509–
1404
+ 512.
1405
+ [30] Z. Xu, Y. Li, and Z. Liu, Controlling electronic and op-
1406
+ tical properties of layered SiC and GeC sheets by strain
1407
+ engineering, Mater. Des. 108, 333 (2016).
1408
+ [31] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and
1409
+ D. Vanderbilt, Maximally localized Wannier functions:
1410
+ Theory and applications, Rev. Mod. Phys. 84, 1419
1411
+ (2012).
1412
+ [32] F. Giustino, Electron-phonon interactions from first prin-
1413
+ ciples, Rev. Mod. Phys. 89, 015003 (2017).
1414
+ [33] M. Zacharias and F. Giustino, One-shot calculation
1415
+ of temperature-dependent optical spectra and phonon-
1416
+ induced band-gap renormalization, Phys. Rev. B 94,
1417
+ 075125 (2016).
1418
+ [34] M. Zacharias, C. E. Patrick, and F. Giustino, Stochas-
1419
+ tic approach to phonon-assisted optical absorption, Phys.
1420
+
1421
+ 12
1422
+ Rev. Lett. 115, 177401 (2015).
1423
+ [35] M. Zacharias and F. Giustino, Theory of the special dis-
1424
+ placement method for electronic structure calculations at
1425
+ finite temperature, Phys. Rev. Res. 2, 013357 (2020).
1426
+ [36] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
1427
+ C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
1428
+ cioni, I. Dabo, et al., QUANTUM ESPRESSO: a modu-
1429
+ lar and open-source software project for quantum simula-
1430
+ tions of materials, J. Phys. Condens. Matter. 21, 395502
1431
+ (2009).
1432
+ [37] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
1433
+ M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni,
1434
+ D. Ceresoli, M. Cococcioni, et al., Advanced capabili-
1435
+ ties for materials modelling with Quantum ESPRESSO,
1436
+ J. Phys. Condens. Matter. 29, 465901 (2017).
1437
+ [38] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
1438
+ Gradient Approximation Made Simple, Phys. Rev. Lett.
1439
+ 77, 3865 (1996).
1440
+ [39] D. R. Hamann, Optimized norm-conserving Vanderbilt
1441
+ pseudopotentials, Phys. Rev. B 88, 085117 (2013).
1442
+ [40] M. Schlipf and F. Gygi, Optimization algorithm for the
1443
+ generation of ONCV pseudopotentials, Comput. Phys.
1444
+ Commun 196, 36 (2015).
1445
+ [41] M. S. Hybertsen and S. G. Louie, Electron correlation in
1446
+ semiconductors and insulators: Band gaps and quasipar-
1447
+ ticle energies, Phys. Rev. B 34, 5390 (1986).
1448
+ [42] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain,
1449
+ M. L. Cohen, and S. G. Louie, BerkeleyGW: A massively
1450
+ parallel computer package for the calculation of the quasi-
1451
+ particle and optical properties of materials and nanos-
1452
+ tructures, Comput. Phys. Commun 183, 1269 (2012).
1453
+ [43] J. Deslippe, G. Samsonidze, M. Jain, M. L. Cohen, and
1454
+ S. G. Louie, Coulomb-hole summations and energies for
1455
+ GW calculations with limited number of empty orbitals:
1456
+ A modified static remainder approach, Phys. Rev. B 87,
1457
+ 165124 (2013).
1458
+ [44] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gi-
1459
+ annozzi, Phonons and related crystal properties from
1460
+ density-functional perturbation theory, Rev. Mod. Phys.
1461
+ 73, 515 (2001).
1462
+ [45] F. Giustino, M. L. Cohen, and S. G. Louie, Electron-
1463
+ phonon interaction using Wannier functions, Phys. Rev.
1464
+ B 76, 165108 (2007).
1465
+ [46] S. Ponc´e, E. Margine, C. Verdi, and F. Giustino, EPW:
1466
+ Electronˆaphonon coupling, transport and superconduct-
1467
+ ing properties using maximally localized Wannier func-
1468
+ tions, Comput. Phys. Commun. 209, 116 (2016).
1469
+ [47] C. Verdi and F. Giustino, Fr¨ohlich Electron-Phonon Ver-
1470
+ tex from First Principles, Phys. Rev. Lett. 115, 176401
1471
+ (2015).
1472
+ [48] J. Noffsinger, E. Kioupakis, C. G. Van de Walle, S. G.
1473
+ Louie, and M. L. Cohen, Phonon-Assisted Optical Ab-
1474
+ sorption in Silicon from First Principles, Phys. Rev. Lett.
1475
+ 108, 167402 (2012).
1476
+ [49] X. Zhang, G. Shi, J. A. Leveillee, F. Giustino, and
1477
+ E. Kioupakis, Ab initio theory of free-carrier absorption
1478
+ in semiconductors, Phys. Rev. B 106, 205203 (2022).
1479
+ [50] M. Rohlfing and S. G. Louie, Electron-hole excitations
1480
+ and optical spectra from first principles, Phys. Rev. B
1481
+ 62, 4927 (2000).
1482
+ [51] N. D. Alkhaldi, S. K. Barman, and M. N. Huda, Crys-
1483
+ tal structures and the electronic properties of silicon-rich
1484
+ silicon carbide materials by first principle calculations,
1485
+ Heliyon 5, e02908 (2019).
1486
+ [52] W. Ching, Y.-N. Xu, P. Rulis, and L. Ouyang, The elec-
1487
+ tronic structure and spectroscopic properties of 3C, 2H,
1488
+ 4H, 6H, 15R and 21R polymorphs of SiC, Mater. Sci.
1489
+ Eng. A 422, 147 (2006).
1490
+ [53] K. J¨arrendahl and R. F. Davis, Materials properties and
1491
+ characterization of SiC, in Semiconductors and Semimet-
1492
+ als, Vol. 52 (Elsevier, 1998) pp. 1–20.
1493
+ [54] C. H. Park, B.-H. Cheong, K.-H. Lee, and K. J. Chang,
1494
+ Structural and electronic properties of cubic, 2H, 4H, and
1495
+ 6H SiC, Phys. Rev. B 49, 4485 (1994).
1496
+ [55] M. Stockmeier, R. M¨uller, S. A. Sakwe, P. J. Wellmann,
1497
+ and A. Magerl, On the lattice parameters of silicon car-
1498
+ bide, J. Appl. Phys. 105, 033511 (2009).
1499
+ [56] O. Madelung, Semiconductors: group IV elements and
1500
+ III-V compounds (Springer Science \& Business Media,
1501
+ 2012).
1502
+ [57] Z. Huang, T.-Y. L¨u, H.-Q. Wang, and J.-C. Zheng, Ther-
1503
+ moelectric properties of the 3C, 2H, 4H, and 6H poly-
1504
+ types of the wide-band-gap semiconductors SiC, GaN,
1505
+ and ZnO, AIP Adv. 5, 097204 (2015).
1506
+ [58] V. N. Brudnyi and A. V. Kosobutsky, Electronic struc-
1507
+ ture and the local electroneutrality level of SiC polytypes
1508
+ from quasiparticle calculations within the GW approxi-
1509
+ mation, J. Exp. Theor. Phys. 114, 1037 (2012).
1510
+ [59] G. L. Zhao and D. Bagayoko, Electronic structure and
1511
+ charge transfer in 3C-and 4H-SiC, New J. Phys. 2, 16
1512
+ (2000).
1513
+ [60] B. Wenzien, P. K¨ackell, F. Bechstedt, and G. Cappellini,
1514
+ Quasiparticle band structure of silicon carbide polytypes,
1515
+ Phys. Rev. B 52, 10897 (1995).
1516
+ [61] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur,
1517
+ Properties of Advanced Semiconductor Materials: GaN,
1518
+ AIN, InN, BN, SiC, SiGe (John Wiley & Sons, 2001).
1519
+ [62] L. Patrick, D. Hamilton, and W. Choyke, Growth, lu-
1520
+ minescence, selection rules, and lattice sums of SiC with
1521
+ wurtzite structure, Phys. Rev. 143, 526 (1966).
1522
+ [63] F. C. Zhang, Y. Gao, H. W. Cui, X. X. Ruan, and W. H.
1523
+ Zhang, First-principles Study on electronic structure of
1524
+ 15R-SiC polytypes, in Adv. Mater. Res., Vol. 971 (Trans
1525
+ Tech Publ, 2014) pp. 77–80.
1526
+ [64] R. Humphreys, D. Bimberg, and W. Choyke, Wavelength
1527
+ modulated absorption in SiC, Solid State Commun. 39,
1528
+ 163 (1981).
1529
+ [65] H. Nienhaus, T. Kampen, and W. M¨onch, Phonons in
1530
+ 3C-, 4H-, and 6H-SiC, Surf. Sci. 324, L328 (1995).
1531
+ [66] D. W. Feldman, J. H. Parker, W. J. Choyke, and
1532
+ L. Patrick, Phonon Dispersion Curves by Raman Scat-
1533
+ tering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R,
1534
+ Phys. Rev. 173, 787 (1968).
1535
+ [67] S. Bai, Y. Ke, Y. Shishkin, O. Shigiltchoff, R. P. De-
1536
+ vaty, W. J. Choyke, D. Strauch, B. Stojetz, B. Dorner,
1537
+ D. Hobgood, et al., Four Current Examples of Charac-
1538
+ terization of Silicon Carbide, MRS Online Proceedings
1539
+ Library 742, 311 (2002).
1540
+ [68] D. W. Feldman, J. H. Parker, W. J. Choyke, and
1541
+ L. Patrick, Raman Scattering in 6H SiC, Phys. Rev. 170,
1542
+ 698 (1968).
1543
+ [69] G. Petretto, S. Dwaraknath, H. P. Miranda, D. Winston,
1544
+ M. Giantomassi, M. J. Van Setten, X. Gonze, K. A. Pers-
1545
+ son, G. Hautier, and G.-M. Rignanese, High-throughput
1546
+ density-functional perturbation theory phonons for inor-
1547
+ ganic materials, Sci. Data 5, 1 (2018).
1548
+ [70] X. Gonze,
1549
+ J.-M. Beuken,
1550
+ R. Caracas,
1551
+ F. Detraux,
1552
+ M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete,
1553
+
1554
+ 13
1555
+ G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami,
1556
+ P. Ghosez, J.-Y. Raty, and D. Allan, First-principles com-
1557
+ putation of material properties: the ABINIT software
1558
+ project, Comput. Mater. Sci. 25, 478 (2002).
1559
+ [71] M. Rohlfing and J. Pollmann, Dielectric function and re-
1560
+ flectivity spectrum of SiC polytypes, Phys. Rev. B 63,
1561
+ 125201 (2001).
1562
+ [72] G. L. Harris, Properties of silicon carbide, 13 (Iet, 1995).
1563
+ [73] P. ˇSˇcajev, M. Kato, and K. Jaraˇsi¯unas, A diffraction-
1564
+ based technique for determination of interband absorp-
1565
+ tion coefficients in bulk 3C-, 4H-and 6H-SiC crystals, J.
1566
+ Phys. D Appl. Phys. 44, 365402 (2011).
1567
+ [74] S. G. Sridhara, T. J. Eperjesi, R. P. Devaty, and W. J.
1568
+ Choyke, Penetration depths in the ultraviolet for 4H, 6H
1569
+ and 3C silicon carbide at seven common laser pumping
1570
+ wavelengths, Mater. Sci. Eng. B 61, 229 (1999).
1571
+ [75] N. Watanabe, T. Kimoto, and J. Suda, Temperature de-
1572
+ pendence of optical absorption coefficient of 4H-and 6H-
1573
+ SiC from room temperature to 300, Jpn. J. Appl. Phys.
1574
+ 53, 108003 (2014).
1575
+ [76] A. Lohrmann, B. C. Johnson, J. C. McCallum, and
1576
+ S. Castelletto, A review on single photon sources in sili-
1577
+ con carbide, Rep. Prog. Phys. 80, 034502 (2017).
1578
+ [77] M. V. Kazakova, V. A. Karachinov, I. G. Djerenov, and
1579
+ D. A. Evstigneev, Analysis of reflected radiation from a
1580
+ semitransparent mirror of silicon carbide, in IOP Conf.
1581
+ Ser.: Mater. Sci. Eng., Vol. 441 (IOP Publishing, 2018)
1582
+ p. 012023.
1583
+ [78] M. Ebrahimi, A. A. Schmidt, C. Kaplan, O. Schmitz, and
1584
+ P. Czermak, Innovative Optical-Sensing Technology for
1585
+ the Online Fouling Characterization of Silicon Carbide
1586
+ Membranes during the Treatment of Oily Water, Sens.
1587
+ 20, 1161 (2020).
1588
+ [79] S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu,
1589
+ C. Xu, Y. Liu, Z. Wei, and X. Chen, 4H-SiC: a new non-
1590
+ linear material for midinfrared lasers, Laser Photonics
1591
+ Rev. 7, 831 (2013).
1592
+ [80] P. T. B. Shaffer, Refractive index, dispersion, and bire-
1593
+ fringence of silicon carbide polytypes, Appl. Opt. 10,
1594
+ 1034 (1971).
1595
+
FdE4T4oBgHgl3EQffw1T/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FtE0T4oBgHgl3EQfhAHl/content/tmp_files/2301.02427v1.pdf.txt ADDED
@@ -0,0 +1,883 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mask-then-Fill: A Flexible and Effective Data Augmentation Framework
2
+ for Event Extraction
3
+ Jun Gao1,3∗ Changlong Yu4 Wei Wang5 Huan Zhao6 Ruifeng Xu1,2,3†
4
+ 1Harbin Institute of Technology (Shenzhen)
5
+ 2Peng Cheng Laboratory
6
+ 3Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies
7
8
9
+ 4HKUST, Hong Kong, China
10
+ 5Tsinghua University
11
+ 64Paradigm. Inc.
12
13
14
15
+ Abstract
16
+ We present Mask-then-Fill, a flexible and ef-
17
+ fective data augmentation framework for event
18
+ extraction. Our approach allows for more flex-
19
+ ible manipulation of text and thus can gener-
20
+ ate more diverse data while keeping the origi-
21
+ nal event structure unchanged as much as pos-
22
+ sible.
23
+ Specifically, it first randomly masks
24
+ out an adjunct sentence fragment and then in-
25
+ fills a variable-length text span with a fine-
26
+ tuned infilling model. The main advantage lies
27
+ in that it can replace a fragment of arbitrary
28
+ length in the text with another fragment of vari-
29
+ able length, compared to the existing methods
30
+ which can only replace a single word or a fixed-
31
+ length fragment. On trigger and argument ex-
32
+ traction tasks, the proposed framework is more
33
+ effective than baseline methods and it demon-
34
+ strates particularly strong results in the low-
35
+ resource setting. Our further analysis shows
36
+ that it achieves a good balance between diver-
37
+ sity and distributional similarity.
38
+ 1
39
+ Introduction
40
+ Event Extraction (EE), which aims to extract trig-
41
+ gers with specific types and their arguments from
42
+ unstructured texts, is an important yet challenging
43
+ task in natural language processing. In recent years,
44
+ deep learning methods have emerged as one of the
45
+ most prominent approaches for this task (Nguyen
46
+ and Nguyen, 2019; Lin et al., 2020; Du and Cardie,
47
+ 2020; Paolini et al., 2021; Lu et al., 2021; Lou et al.,
48
+ 2022). However, they are notorious for requiring
49
+ large labelled data, which limits the scalability of
50
+ EE models. Annotating data for EE is usually
51
+ costly and time-consuming, as it requires expert
52
+ knowledge. One possible solution is to leverage
53
+ data augmentation (DA) (Simard et al., 1998).
54
+ Existing DA methods for NLP can be broadly
55
+ classified into two types: (1) the first is to augment
56
+ ∗Work done when Jun Gao was interning at 4Paradigm
57
+ † Corresponding author
58
+ The police said Mike left this town yesterday.
59
+ Trigger
60
+ Event Type: Transport
61
+ Arg1
62
+ Role: Artifact
63
+ Arg2
64
+ Role: Origin
65
+ Arg3
66
+ Role: Time-Within
67
+ The cop said Mike left this town yesterday.
68
+ The police said Mike went away from this town yesterday.
69
+ The cop saw Mike left this town yesterday.
70
+ (1) BackTranslation
71
+ (2) Synonym Replacement
72
+ (3) BERT
73
+ Figure 1: Visualization of three different data aug-
74
+ mentation methods applied to a sentence containing a
75
+ “Transport” event. Spans marked with different colors
76
+ are event triggers and arguments. The parts of the aug-
77
+ mented sample that differ from the original are colored
78
+ in gray. Backtranslation (Xie et al., 2020) translates
79
+ the input sentence into another language and back to
80
+ the original. Synonym Replacement (Dai and Adel,
81
+ 2020) and BERT (Yang et al., 2019) replace words in
82
+ the sentence.
83
+ training data by modifying existing examples (Sen-
84
+ nrich et al., 2016; ¸Sahin and Steedman, 2018; Dai
85
+ and Adel, 2020; Wei and Zou, 2019), and (2) the
86
+ second is to generate new data by estimating a gen-
87
+ erative process and sample from it (Anaby-Tavor
88
+ et al., 2020; Quteineh et al., 2020; Yang et al., 2020;
89
+ Ye et al., 2022). Since the EE task requires DA
90
+ methods to generate augmented samples and token-
91
+ level labels jointly, the second type of DA method
92
+ is inapplicable here. In this study, we mainly focus
93
+ on the first type of method.
94
+ Applying existing DA methods to the EE task
95
+ is more challenging than to translation or classi-
96
+ fication tasks, because we need to augment train-
97
+ ing data while keeping the event structure (trigger
98
+ and arguments) unchanged. Figure 1 presents ex-
99
+ amples of three different DA methods applied to
100
+ a sentence containing a “Transport” event. The
101
+ event is triggered by word “left” and it has three
102
+ arguments with different roles (“Mike”, “this town”
103
+ arXiv:2301.02427v1 [cs.CL] 6 Jan 2023
104
+
105
+ and “yesterday”). As shown in Figure 1, it is in-
106
+ feasible to apply sentence-level DA methods such
107
+ as BackTranslation (Xie et al., 2020), because it
108
+ may change the event structure (change “left” to
109
+ “went away from”). Previous attempts on DA for
110
+ such tasks typically use heuristic rules such as
111
+ synonym replacement (Dai and Adel, 2020; Cai
112
+ et al., 2020) or context-based words substitution
113
+ with BERT (Yang et al., 2019). Their idea is to
114
+ replace adjunct tokens (the tokens in sentences ex-
115
+ cept triggers and arguments) with other tokens, and
116
+ thus can ensure the event structure is unchanged as
117
+ much as possible. However, recent studies (Ding
118
+ et al., 2020; Yang et al., 2020; Ye et al., 2022) find
119
+ that such methods provide limited data diversity.
120
+ In NLP, the diversity of data is mainly reflected
121
+ in two aspects: expression diversity and seman-
122
+ tic diversity (Zhao et al., 2019). The Synonym
123
+ Replacement and BackTranslation methods lack
124
+ semantic diversity, because they can only produce
125
+ samples with similar semantics. The BERT-based
126
+ method can only replace words and cannot change
127
+ the syntax, so it cannot generate samples with a
128
+ wide variety of expressions. The lack of sufficient
129
+ diversity may lead to greater overfitting or poor
130
+ performance through training on examples that are
131
+ not representative.
132
+ To this end, we present Mask-then-Fill, a flexi-
133
+ ble and effective data augmentation framework for
134
+ event extraction. Our approach allows for more
135
+ flexible manipulation of text and thus can generate
136
+ more diverse data while keeping the original event
137
+ structure unchanged as much as possible. Specif-
138
+ ically, we first define two types of text fragments
139
+ in a sentence: event-related fragments (trigger and
140
+ arguments) and adjunct fragments (e.g. “The po-
141
+ lice said”). Then, we model DA for the EE task
142
+ as a Mask-then-Fill process: we first randomly
143
+ masks out an adjunct sentence fragment and then
144
+ infills a variable-length text span with a fine-tuned
145
+ infilling model (T5) (Raffel et al., 2020). The main
146
+ advantage lies in that it can replace a fragment of
147
+ arbitrary length in the text with another fragment of
148
+ variable length, compared to the existing methods
149
+ which can only replace a single word or a fixed-
150
+ length fragment.
151
+ To the best of our knowledge, we are the first
152
+ to augment training data for event extraction via
153
+ text infilling. We empirically show that the Mask-
154
+ then-Fill framework improves performance for
155
+ both classification-based (EEQA) and generation-
156
+ The police said Mike left this town yesterday.
157
+ [MASK] Mike left this town yesterday.
158
+ Output1: The next door neighbor said
159
+ Output2: Because of a fight with his girlfriend,
160
+ Output3: Since he found a new job,
161
+
162
+ Infilling Model (T5)
163
+ ② Decoding by Sampling
164
+ [MASK] Mike left this town yesterday.
165
+ ① Mask out an adjunct fragment
166
+ ③ Fill in the blank
167
+ Figure 2: Overview of the proposed Mask-then-Fill
168
+ framework.
169
+ based (Text2Event) event extraction models on a
170
+ well-known EE benchmark dataset (ACE2005). Es-
171
+ pecially, it demonstrates strong results in the low
172
+ resource setting. We further investigate reasons for
173
+ its effectiveness by introducing two metrics, Affin-
174
+ ity and Diversity, and find that the data augmented
175
+ by our approach have better diversity with less dis-
176
+ tribution shifts, achieving a good balance between
177
+ diversity and distributional similarity.
178
+ 2
179
+ The Mask-then-Fill Framework
180
+ Figure 2 presents an overview of Mask-then-Fill
181
+ framework. The input sentence contains two types
182
+ of text fragments: event-related fragments (words
183
+ with colors) and adjunct fragments (underlined).
184
+ Our idea is to rewrite the whole adjunct fragment
185
+ instead of replacing some words, and the rewritten
186
+ sentence fragment should fit the context and should
187
+ not introduce new events. To this end, we model
188
+ DA for EE as a Mask-then-Fill process: we first
189
+ randomly mask out an adjunct sentence fragment
190
+ and then infills a variable-length text span with a
191
+ fine-tuned infilling model. In the following, we
192
+ describe in detail the Mask-then-Fill framework.
193
+ Mask out an adjunct fragment.
194
+ Given a pro-
195
+ totype sentence X = {x1, · · · , xL} of length L
196
+ from the training set, we first define an adjunct frag-
197
+ ment as a set of non-overlapping spans of x that
198
+ do not contain the event triggers and arguments.
199
+ We then replace one of the adjunct fragments with
200
+ a [MASK] symbol. The incomplete sentence ˆx
201
+
202
+ is a version of x with a fragment replaced with a
203
+ [MASK] symbol.
204
+ Blank Infilling Model.
205
+ We formulate our blank
206
+ infilling process as the task of predicting the miss-
207
+ ing span of text which is consistent with the preced-
208
+ ing and subsequent text. Figure 2 gives an example
209
+ with an incomplete input sentence �x, where the
210
+ [MASK] is a placeholder for a blank, which has
211
+ masked out multiple tokens. Our goal is to pre-
212
+ dict only the missing span y which will replace the
213
+ [MASK] token in �x. Therefore, the infilling task
214
+ can be cast as learning p(y|�x).
215
+ To train our infilling model, we fine-tune a pre-
216
+ trained sequence-to-sequence model T5 (Raffel
217
+ et al., 2020) on the Gigaword corpus (Graff et al.,
218
+ 2003), which is from similar domains as the event
219
+ extraction dataset ACE2005 adopted by our work.
220
+ Given a corpus consisting of plain sentences, we
221
+ first produce large pools of infilling examples and
222
+ then train the T5 model on these examples. For a
223
+ given complete sentence x from the training cor-
224
+ pus, we generate an infilling example �x with the
225
+ following procedure: (1) randomly sample a span
226
+ length l from the range of [1, min(10, l)]; (2) split
227
+ the sentence into l spans; (3) randomly select a
228
+ span to be replaced with a [MASK] symbol. The
229
+ replaced span is used as the target y. We then
230
+ fine-tune the T5 model on these infilling examples,
231
+ yielding the model of the form pθ(y|�x).
232
+ Fill in the blank.
233
+ Once trained, the infilling
234
+ model can be used to take the incomplete sentence
235
+ �x, containing one missing span, and return a pre-
236
+ dicted span y. We then replace the [MASK] token
237
+ in �x with the predicted span y to generate an aug-
238
+ mented example. Note that we can produce large
239
+ pools of augmented samples using top-k sampling.
240
+ 3
241
+ Experimental Setup
242
+ Dataset.
243
+ We empirically evaluate our proposed
244
+ data augmentation method for event extraction
245
+ on the ACE2005 corpus1 with the same train-
246
+ dev-test split and preprocessing step as previous
247
+ works (Zhang et al., 2019; Wadden et al., 2019).
248
+ We simulate a low-resource setting by randomly
249
+ sampling 1,000, 4,000 and 8,000 examples from
250
+ the training set to create the small, medium, and
251
+ large training sets (denoted as S, M, L in Table 1,
252
+ whereas the complete training set is denoted as F).
253
+ 1https://catalog.ldc.upenn.edu/LDC2006T06
254
+ We only augment the training data and keep the
255
+ dev set and test sets unchanged.
256
+ Evaluation Metrics.
257
+ Following the previous
258
+ works (Du and Cardie, 2020; Lu et al., 2021) on
259
+ event extraction, we adopt the same evaluation cri-
260
+ teria defined in Li et al. (2013): (i) An event trigger
261
+ is correctly identified and classified (Trig-ID+C) if
262
+ its offsets match a gold trigger and its event type is
263
+ also correct. (ii) An argument is correctly identified
264
+ and classified (Arg-ID+C) if its offsets and event
265
+ type match a gold argument and its event role is
266
+ also correct.
267
+ Event Extraction Models.
268
+ In our study, we con-
269
+ sider two representative models for event extrac-
270
+ tion:
271
+ • Text2Event (Lu et al., 2021) is a framework to
272
+ solve the event extraction task by casting it as
273
+ a SEQ2SEQ generation task. All triggers, argu-
274
+ ments, and their labels are generated as natural
275
+ language words.
276
+ • EEQA (Du and Cardie, 2020) formulates the
277
+ event extraction task as a question answering
278
+ task. They develop two BERT-based QA models
279
+ – one for event trigger detection and the other for
280
+ argument extraction.
281
+ Comparison Methods.
282
+ We compare our pro-
283
+ posed data augmentation method Ours (t5-small)
284
+ with three baselines: (1) Synonym Replacement
285
+ replaces adjunct tokens with one of their synonyms
286
+ retrieved from WordNet (Miller, 1992) at random;
287
+ (2) BERT replaces adjunct tokens with others ran-
288
+ domly drawn according to the pretrained BERT’s
289
+ distribution; (3) Span-BackTranslation: Inspired
290
+ by Yaseen and Langer (2021), we only “back trans-
291
+ late” randomly selected adjunct spans to prevent
292
+ the model from changing the event structure.
293
+ Hyperparameters.
294
+ For all data augmentation
295
+ methods, we tune the number of augmentation sam-
296
+ ples per training sample from a list of numbers:
297
+ {1, 3, 6, 10}.
298
+ 4
299
+ Results and Analysis
300
+ Main Results.
301
+ The main results are presented
302
+ in Table 1,
303
+ where we use two EE mod-
304
+ els (Text2EVent and EEQA) to test the perfor-
305
+ mance of different DA methods in both low-
306
+ resource (S, M and L) and normal (F) settings. As
307
+ shown in the table, we observe that Ours (t5-small)
308
+ achieves the best overall performance among all
309
+
310
+ EE Model
311
+ DA Method
312
+ Trig-ID+C (F1)
313
+ Arg-ID+C (F1)
314
+ S
315
+ M
316
+ L
317
+ F
318
+ S
319
+ M
320
+ L
321
+ F
322
+ Text2Event
323
+ No Augmentation
324
+ 45.44
325
+ 59.75
326
+ 63.55
327
+ 67.06
328
+ 22.05
329
+ 36.04
330
+ 40.35
331
+ 49.30
332
+ Synonym Replacement
333
+ 49.14
334
+ 61.96
335
+ 63.73
336
+ 69.09
337
+ 27.71
338
+ 39.64
339
+ 43.63
340
+ 48.95
341
+ BERT
342
+ 48.66
343
+ 60.75
344
+ 63.81
345
+ 68.33
346
+ 26.71
347
+ 38.75
348
+ 41.44
349
+ 48.41
350
+ Span-BackTranslation
351
+ 47.91
352
+ 61.54
353
+ 64.59
354
+ 67.58
355
+ 26.68
356
+ 38.18
357
+ 43.39
358
+ 47.93
359
+ Ours (t5-small)
360
+ 52.32
361
+ 63.38
362
+ 67.25
363
+ 69.03
364
+ 28.68
365
+ 39.79
366
+ 44.73
367
+ 50.29
368
+ EEQA
369
+ No Augmentation
370
+ 48.05
371
+ 64.20
372
+ 64.06
373
+ 67.13
374
+ 39.81
375
+ 56.30
376
+ 59.27
377
+ 61.93
378
+ Synonym Replacement
379
+ 54.86
380
+ 64.03
381
+ 65.71
382
+ 68.05
383
+ 42.99
384
+ 56.62
385
+ 56.40
386
+ 61.50
387
+ BERT
388
+ 53.61
389
+ 63.23
390
+ 65.90
391
+ 68.35
392
+ 38.80
393
+ 52.82
394
+ 59.49
395
+ 61.62
396
+ Span-BackTranslation
397
+ 53.26
398
+ 62.64
399
+ 65.46
400
+ 68.40
401
+ 42.47
402
+ 56.64
403
+ 55.87
404
+ 61.55
405
+ Ours (t5-small)
406
+ 54.80
407
+ 64.37
408
+ 67.33
409
+ 69.62
410
+ 47.67
411
+ 56.70
412
+ 58.52
413
+ 61.62
414
+ Table 1: Results on trigger extraction and argument extraction using different subsets of the training data. The best
415
+ results are marked in bold, and the second best is underlined.
416
+ DA methods on both trigger extraction (F1) and
417
+ argument extraction (F1). Using our DA method
418
+ gives the best results for the Text2event model on
419
+ 7 out of 8 datasets. For the EEQA model, our
420
+ method achieves the best results on 6 out of 8
421
+ datasets, where the difference between our method
422
+ and the best results on Trig-S and Arg-L is very
423
+ small, with only 0.06 and 0.97 points difference be-
424
+ tween them, respectively. Particularly, our methods
425
+ demonstrates strong results in the low-resource set-
426
+ ting. Using our DA gives the Text2Event model a
427
+ performance improvement of 15.14% and 30.07%
428
+ on Trig-S and Arg-S, respectively.
429
+ We also notice that as the amount of data in-
430
+ creases, the improvement from all DA method de-
431
+ creases, and in some cases (EEQA model on Arg-L
432
+ and Arg-F), there is even a slight decrease in per-
433
+ formance. In the case of more data, the model may
434
+ overfit if the augmented data are just some similar
435
+ samples rather than data with large variations.
436
+ DA Method
437
+ Affinity
438
+ Dist-1
439
+ Dist-2
440
+ Synonym Replacement
441
+ -0.118
442
+ 0.400
443
+ 0.523
444
+ BERT
445
+ -0.082
446
+ 0.374
447
+ 0.496
448
+ Span-BackTranslation
449
+ -0.155
450
+ 0.407
451
+ 0.513
452
+ Ours (t5-small)
453
+ -0.086
454
+ 0.488
455
+ 0.612
456
+ Table 2: Results on Affinity and Diversity. The best re-
457
+ sults are marked in bold. The second best is underlined.
458
+ Affinity and Diversity.
459
+ Inspired by Gontijo-
460
+ Lopes et al. (2020), we further investigate reasons
461
+ for its effectiveness by introducing two metrics,
462
+ Affinity and Diversity, where Affinity quantifies how
463
+ augmentation shifts data distribution and Diversity
464
+ measures the complexity of the augmented data.
465
+ We measure Affinity by computing the difference
466
+ between the loss of a model trained on the original
467
+ training set and tested on the original example, and
468
+ the loss of the same model tested on an augmented
469
+ example. We use the Dist-1/2 metric (Celikyilmaz
470
+ et al., 2020), commonly used in text generation, to
471
+ Furthermore , the United States supported him in the war against Iran.
472
+ In addition, the United States supported him in the war against Iran.
473
+ Furthermore, the United States supported him in the war against Iran.
474
+ Later, the united States supported him in the war against Iran .
475
+ Furthermore, the United States supported iraq in the war against iraq .
476
+ Moreover, the combine States supported him in the war against Iran.
477
+ What is more, the unify DoS supported him in the war against Iran.
478
+ He also called for an end to the war against Iran.
479
+ The U.S. military has been fighting a war against Iran.
480
+ Event Type: Attack | Trigger: war
481
+ (1) Synonym Replacement
482
+ (2) BERT
483
+ (3) Span-BackTranslation
484
+ (4) Ours (t5-small)
485
+ Figure 3: Augmented examples of four different DA
486
+ methods.
487
+ Given a sentence containing an “Attack”
488
+ event triggered by the word "war", we generate two
489
+ new samples for each DA method. The parts of the
490
+ new sample that differ from the original are colored in
491
+ gray.
492
+ assess the Diversity of the augmented data. For im-
493
+ plementation details of two metrics, see Appendix.
494
+ We first construct a new test set by generating a
495
+ new sample for each data in the test set. We then
496
+ calculate the Affinity and Dist-1/2 scores between
497
+ the new data set and the original data set, respec-
498
+ tively. As shown in Table 2, it is clear that the data
499
+ augmented by our DA method have better diversity
500
+ with less distribution shifts, obtaining a balance
501
+ between diversity and distributional similarity.
502
+ Case Study.
503
+ Figure 3 presents examples gener-
504
+ ated by different DA methods. Given a sentence
505
+ containing an “Attack” event triggered by the word
506
+ "war", we generated two new samples for each DA
507
+ method, and the parts of the new sample that differ
508
+ from the original are colored in gray. Obviously,
509
+ The synonym replacement based on WordNet can-
510
+ not avoid introducing some words that do not fit the
511
+ context (e.g “unify” and “DoS”), while the BERT-
512
+ based word replacement can consider the context
513
+
514
+ better. However, they both provide limited diver-
515
+ sity. BackTranslation method performs even worse
516
+ in terms of data diversity. Its generated data differs
517
+ very little from the original sentence. Finally, com-
518
+ pared with the original sentences, the new samples
519
+ generated by our method are more fluent and more
520
+ different in expression and semantics. Therefore, it
521
+ not only generates data that fits the context better,
522
+ but also provides better diversity.
523
+ 5
524
+ Conclusion
525
+ In this paper, we present Mask-then-Fill, a flexi-
526
+ ble and effective data augmentation framework for
527
+ event extraction. Our approach allows for more
528
+ flexible manipulation of text and thus can gen-
529
+ erate more diverse data while keeping the origi-
530
+ nal event structure unchanged. The main advan-
531
+ tage lies in that it can replace a fragment of ar-
532
+ bitrary length in the text with another fragment
533
+ of variable length. We empirically show that the
534
+ Mask-then-Fill framework improves performance
535
+ for both EEQA and Text2Event EE models on
536
+ the ACE2005 dataset. It demonstrates particularly
537
+ strong results in the low-resource setting. Our fur-
538
+ ther analysis shows that it achieves a good balance
539
+ between diversity and distributional similarity.
540
+ Limitations
541
+ This paper presents a flexible and effective data
542
+ augmentation framework for event extraction tasks.
543
+ Here, we note some of Mask-then-Fill frame-
544
+ work’s limitations. First, performance gains can
545
+ be marginal when data is sufficient. We believe
546
+ this approach has much room for improvement in
547
+ generating more diverse data. In this work, we
548
+ select only one adjunct fragment at a time for modi-
549
+ fication, and modifying multiple adjunct fragments
550
+ in an event mention can further enhance the diver-
551
+ sity of the generated data. Second, currently this
552
+ method can only replace one fragment at a time.
553
+ This makes it easier to control the properties of
554
+ the generated fragments, such as length or style.
555
+ It is possible to modify multiple fragments at the
556
+ same time using some existing techniques (Don-
557
+ ahue et al., 2020; Du et al., 2022; Chen et al., 2022).
558
+ This approach is more efficient, but it is prone to
559
+ generate incoherent augmented samples and thus
560
+ introduce more noise. A possible approach to solve
561
+ this problem is to design some sample selection
562
+ strategies.
563
+ Acknowledgements
564
+ This work was partially supported by the Na-
565
+ tional Natural Science Foundation of China
566
+ 62006062 and 62176076, Shenzhen Foundational
567
+ Research
568
+ Funding
569
+ JCYJ20200109113441941,
570
+ JCYJ20210324115614039,
571
+ The
572
+ Major
573
+ Key
574
+ Project of PCL2021A06, Guangdong Provincial
575
+ Key Laboratory of Novel Security Intelligence
576
+ Technologies 2022B1212010005.
577
+ References
578
+ Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
579
+ Amir Kantor, George Kour, Segev Shlomov, Naama
580
+ Tepper, and Naama Zwerdling. 2020. Do not have
581
+ enough data? deep learning to the rescue!
582
+ In The
583
+ Thirty-Fourth AAAI Conference on Artificial Intelli-
584
+ gence, AAAI 2020, The Thirty-Second Innovative Ap-
585
+ plications of Artificial Intelligence Conference, IAAI
586
+ 2020, The Tenth AAAI Symposium on Educational
587
+ Advances in Artificial Intelligence, EAAI 2020, New
588
+ York, NY, USA, February 7-12, 2020, pages 7383–
589
+ 7390. AAAI Press.
590
+ Udit Arora, William Huang, and He He. 2021. Types
591
+ of out-of-distribution texts and how to detect them.
592
+ In Proceedings of the 2021 Conference on Empiri-
593
+ cal Methods in Natural Language Processing, pages
594
+ 10687–10701, Online and Punta Cana, Dominican
595
+ Republic. Association for Computational Linguis-
596
+ tics.
597
+ Hengyi Cai, Hongshen Chen, Yonghao Song, Cheng
598
+ Zhang, Xiaofang Zhao, and Dawei Yin. 2020. Data
599
+ manipulation: Towards effective instance learning
600
+ for neural dialogue generation via learning to aug-
601
+ ment and reweight. In Proceedings of the 58th An-
602
+ nual Meeting of the Association for Computational
603
+ Linguistics, pages 6334–6343, Online. Association
604
+ for Computational Linguistics.
605
+ Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
606
+ 2020.
607
+ Evaluation of text generation:
608
+ A survey.
609
+ ArXiv preprint, abs/2006.14799.
610
+ Yi Chen, Haiyun Jiang, Lemao Liu, Rui Wang, Shum-
611
+ ing Shi, and Ruifeng Xu. 2022. Mcpg: A flexible
612
+ multi-level controllable framework for unsupervised
613
+ paraphrase generation. In Findings of the Associa-
614
+ tion for Computational Linguistics: EMNLP 2022.
615
+ Xiang Dai and Heike Adel. 2020.
616
+ An analysis of
617
+ simple data augmentation for named entity recogni-
618
+ tion. In Proceedings of the 28th International Con-
619
+ ference on Computational Linguistics, pages 3861–
620
+ 3867, Barcelona, Spain (Online). International Com-
621
+ mittee on Computational Linguistics.
622
+ Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru-
623
+ engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and
624
+ Chunyan Miao. 2020. DAGA: Data augmentation
625
+
626
+ with a generation approach for low-resource tagging
627
+ tasks.
628
+ In Proceedings of the 2020 Conference on
629
+ Empirical Methods in Natural Language Process-
630
+ ing (EMNLP), pages 6045–6057, Online. Associa-
631
+ tion for Computational Linguistics.
632
+ Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
633
+ abling language models to fill in the blanks. In Pro-
634
+ ceedings of the 58th Annual Meeting of the Asso-
635
+ ciation for Computational Linguistics, pages 2492–
636
+ 2501, Online. Association for Computational Lin-
637
+ guistics.
638
+ Xinya Du and Claire Cardie. 2020.
639
+ Event extrac-
640
+ tion by answering (almost) natural questions.
641
+ In
642
+ Proceedings of the 2020 Conference on Empirical
643
+ Methods in Natural Language Processing (EMNLP),
644
+ pages 671–683, Online. Association for Computa-
645
+ tional Linguistics.
646
+ Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
647
+ Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
648
+ General language model pretraining with autoregres-
649
+ sive blank infilling. In Proceedings of the 60th An-
650
+ nual Meeting of the Association for Computational
651
+ Linguistics (Volume 1: Long Papers), pages 320–
652
+ 335.
653
+ Raphael Gontijo-Lopes, Sylvia J Smullin, Ekin D
654
+ Cubuk, and Ethan Dyer. 2020. Affinity and diver-
655
+ sity: Quantifying mechanisms of data augmentation.
656
+ ArXiv preprint, abs/2002.08973.
657
+ David Graff, Junbo Kong, Ke Chen, and Kazuaki
658
+ Maeda. 2003. English gigaword. Linguistic Data
659
+ Consortium, Philadelphia, 4(1):34.
660
+ Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
661
+ extraction via structured prediction with global fea-
662
+ tures. In Proceedings of the 51st Annual Meeting of
663
+ the Association for Computational Linguistics (Vol-
664
+ ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
665
+ Association for Computational Linguistics.
666
+ Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
667
+ A joint neural model for information extraction with
668
+ global features. In Proceedings of the 58th Annual
669
+ Meeting of the Association for Computational Lin-
670
+ guistics, pages 7999–8009, Online. Association for
671
+ Computational Linguistics.
672
+ Chenwei Lou, Jun Gao, Changlong Yu, Wei Wang,
673
+ Huan Zhao, Weiwei Tu, and Ruifeng Xu. 2022.
674
+ Translation-based implicit annotation projection for
675
+ zero-shot cross-lingual event argument extraction.
676
+ In Proceedings of the 45th International ACM SIGIR
677
+ Conference on Research and Development in Infor-
678
+ mation Retrieval, pages 2076–2081.
679
+ Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
680
+ Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
681
+ Chen. 2021. Text2Event: Controllable sequence-to-
682
+ structure generation for end-to-end event extraction.
683
+ In Proceedings of the 59th Annual Meeting of the
684
+ Association for Computational Linguistics and the
685
+ 11th International Joint Conference on Natural Lan-
686
+ guage Processing (Volume 1: Long Papers), pages
687
+ 2795–2806, Online. Association for Computational
688
+ Linguistics.
689
+ George A. Miller. 1992. WordNet: A lexical database
690
+ for English. In Speech and Natural Language: Pro-
691
+ ceedings of a Workshop Held at Harriman, New
692
+ York, February 23-26, 1992.
693
+ Trung Minh Nguyen and Thien Huu Nguyen. 2019.
694
+ One for all: Neural joint modeling of entities and
695
+ events. In The Thirty-Third AAAI Conference on Ar-
696
+ tificial Intelligence, AAAI 2019, The Thirty-First In-
697
+ novative Applications of Artificial Intelligence Con-
698
+ ference, IAAI 2019, The Ninth AAAI Symposium
699
+ on Educational Advances in Artificial Intelligence,
700
+ EAAI 2019, Honolulu, Hawaii, USA, January 27 -
701
+ February 1, 2019, pages 6851–6858. AAAI Press.
702
+ Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
703
+ Jie Ma,
704
+ Alessandro Achille,
705
+ Rishita Anubhai,
706
+ Cícero Nogueira dos Santos, Bing Xiang, and Ste-
707
+ fano Soatto. 2021. Structured prediction as transla-
708
+ tion between augmented natural languages. In 9th
709
+ International Conference on Learning Representa-
710
+ tions, ICLR 2021, Virtual Event, Austria, May 3-7,
711
+ 2021. OpenReview.net.
712
+ Husam Quteineh, Spyridon Samothrakis, and Richard
713
+ Sutcliffe. 2020. Textual data augmentation for effi-
714
+ cient active learning on tiny datasets. In Proceed-
715
+ ings of the 2020 Conference on Empirical Methods
716
+ in Natural Language Processing (EMNLP), pages
717
+ 7400–7410, Online. Association for Computational
718
+ Linguistics.
719
+ Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
720
+ Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
721
+ Wei Li, Peter J Liu, et al. 2020. Exploring the limits
722
+ of transfer learning with a unified text-to-text trans-
723
+ former. J. Mach. Learn. Res., 21(140):1–67.
724
+ Gözde Gül ¸Sahin and Mark Steedman. 2018. Data aug-
725
+ mentation via dependency tree morphing for low-
726
+ resource languages.
727
+ In Proceedings of the 2018
728
+ Conference on Empirical Methods in Natural Lan-
729
+ guage Processing, pages 5004–5009, Brussels, Bel-
730
+ gium. Association for Computational Linguistics.
731
+ Rico Sennrich, Barry Haddow, and Alexandra Birch.
732
+ 2016. Improving neural machine translation mod-
733
+ els with monolingual data.
734
+ In Proceedings of the
735
+ 54th Annual Meeting of the Association for Compu-
736
+ tational Linguistics (Volume 1: Long Papers), pages
737
+ 86–96, Berlin, Germany. Association for Computa-
738
+ tional Linguistics.
739
+ Patrice Y Simard, Yann A LeCun, John S Denker, and
740
+ Bernard Victorri. 1998. Transformation invariance
741
+ in pattern recognition—tangent distance and tangent
742
+ propagation. In Neural networks: tricks of the trade,
743
+ pages 239–274. Springer.
744
+
745
+ David Wadden, Ulme Wennberg, Yi Luan, and Han-
746
+ naneh Hajishirzi. 2019. Entity, relation, and event
747
+ extraction with contextualized span representations.
748
+ In Proceedings of the 2019 Conference on Empirical
749
+ Methods in Natural Language Processing and the
750
+ 9th International Joint Conference on Natural Lan-
751
+ guage Processing (EMNLP-IJCNLP), pages 5784–
752
+ 5789, Hong Kong, China. Association for Computa-
753
+ tional Linguistics.
754
+ Jason Wei and Kai Zou. 2019. EDA: Easy data aug-
755
+ mentation techniques for boosting performance on
756
+ text classification tasks.
757
+ In Proceedings of the
758
+ 2019 Conference on Empirical Methods in Natu-
759
+ ral Language Processing and the 9th International
760
+ Joint Conference on Natural Language Processing
761
+ (EMNLP-IJCNLP), pages 6382–6388, Hong Kong,
762
+ China. Association for Computational Linguistics.
763
+ Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong,
764
+ and Quoc Le. 2020. Unsupervised data augmenta-
765
+ tion for consistency training. In Advances in Neural
766
+ Information Processing Systems 33: Annual Con-
767
+ ference on Neural Information Processing Systems
768
+ 2020, NeurIPS 2020, December 6-12, 2020, virtual.
769
+ Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan,
770
+ and Dongsheng Li. 2019. Exploring pre-trained lan-
771
+ guage models for event extraction and generation.
772
+ In Proceedings of the 57th Annual Meeting of the
773
+ Association for Computational Linguistics, pages
774
+ 5284–5294, Florence, Italy. Association for Compu-
775
+ tational Linguistics.
776
+ Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
777
+ Swabha Swayamdipta, Ronan Le Bras, Ji-Ping
778
+ Wang, Chandra Bhagavatula, Yejin Choi, and Doug
779
+ Downey. 2020.
780
+ Generative data augmentation for
781
+ commonsense reasoning. In Findings of the Associ-
782
+ ation for Computational Linguistics: EMNLP 2020,
783
+ pages 1008–1025, Online. Association for Computa-
784
+ tional Linguistics.
785
+ Usama Yaseen and Stefan Langer. 2021.
786
+ Data aug-
787
+ mentation for low-resource named entity recog-
788
+ nition using backtranslation.
789
+ ArXiv preprint,
790
+ abs/2108.11703.
791
+ Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiang-
792
+ tao Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
793
+ 2022.
794
+ Zerogen: Efficient zero-shot learning via
795
+ dataset generation. ArXiv, abs/2202.07922.
796
+ Tongtao Zhang, Heng Ji, and Avirup Sil. 2019. Joint
797
+ entity and event extraction with generative adversar-
798
+ ial imitation learning.
799
+ Data Intelligence, 1(2):99–
800
+ 120.
801
+ Zijian Zhao, Su Zhu, and Kai Yu. 2019. Data augmen-
802
+ tation with atomic templates for spoken language
803
+ understanding. In Proceedings of the 2019 Confer-
804
+ ence on Empirical Methods in Natural Language
805
+ Processing and the 9th International Joint Confer-
806
+ ence on Natural Language Processing (EMNLP-
807
+ IJCNLP), pages 3637–3643, Hong Kong, China. As-
808
+ sociation for Computational Linguistics.
809
+ A
810
+ Affinity and Diversity
811
+ Inspired by Gontijo-Lopes et al. (2020) and Arora
812
+ et al. (2021), we proposed to use a calibration
813
+ method to quantify how augmentation shifts data.
814
+ They all note that a trained model is often sensitive
815
+ to the distribution of the training data.
816
+ Given the original example x and one of its aug-
817
+ mented example x+, we measure distribution shifts
818
+ by computing the difference between the loss of a
819
+ model trained on the original training set and tested
820
+ on the original example, and the loss of the same
821
+ model tested on an augmented example:
822
+ τα = ℓ(M, x) − ℓ(M, x+),
823
+ (1)
824
+ where M is an EE model trained on the original
825
+ training set and ℓ(M, x+) denotes the model’s val-
826
+ idation loss when evaluated on the augmented ex-
827
+ ample y.
828
+ We use the Dist-1/2 metric (Celikyilmaz et al.,
829
+ 2020), commonly used in text generation, to assess
830
+ the Diversity of the augmented data.
831
+ B
832
+ Implementation Details
833
+ Parameter
834
+ Value
835
+ Training Epochs
836
+ 3
837
+ Optimizer
838
+ AdamW
839
+ Batch Size
840
+ 64
841
+ Learning rate
842
+ 1e-5
843
+ Seed
844
+ 1024
845
+ Top-k
846
+ 100
847
+ Top-p
848
+ 0.7
849
+ Beam Size
850
+ 5
851
+ Table 3:
852
+ Implementation details of our infilling
853
+ model (t5-small).
854
+ Parameter
855
+ Value
856
+ Training Epochs
857
+ 30
858
+ Optimizer
859
+ AdamW
860
+ Batch Size
861
+ 64
862
+ Learning rate
863
+ 5e-5
864
+ Seed
865
+ 1024
866
+ Table 4: Implementation details of Text2Event.
867
+
868
+ Parameter
869
+ Value
870
+ Training Epochs
871
+ 30
872
+ Optimizer
873
+ AdamW
874
+ Batch Size
875
+ 64
876
+ Learning rate
877
+ 4e-5
878
+ Seed
879
+ 1024
880
+ nth query
881
+ 5
882
+ Table 5: Implementation details of EEQA.
883
+
FtE0T4oBgHgl3EQfhAHl/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf,len=491
2
+ page_content='Mask-then-Fill: A Flexible and Effective Data Augmentation Framework for Event Extraction Jun Gao1,3∗ Changlong Yu4 Wei Wang5 Huan Zhao6 Ruifeng Xu1,2,3† 1Harbin Institute of Technology (Shenzhen) 2Peng Cheng Laboratory 3Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies imgaojun@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
3
+ page_content='com xuruifeng@hit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
4
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
5
+ page_content='cn 4HKUST, Hong Kong, China 5Tsinghua University 64Paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
6
+ page_content=' Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
7
+ page_content=' cyuaq@cse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
8
+ page_content='ust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
9
+ page_content='hk weiwangorg@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
10
+ page_content='com zhaohuan@4paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
11
+ page_content='com Abstract We present Mask-then-Fill, a flexible and ef- fective data augmentation framework for event extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
12
+ page_content=' Our approach allows for more flex- ible manipulation of text and thus can gener- ate more diverse data while keeping the origi- nal event structure unchanged as much as pos- sible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
13
+ page_content=' Specifically, it first randomly masks out an adjunct sentence fragment and then in- fills a variable-length text span with a fine- tuned infilling model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
14
+ page_content=' The main advantage lies in that it can replace a fragment of arbitrary length in the text with another fragment of vari- able length, compared to the existing methods which can only replace a single word or a fixed- length fragment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
15
+ page_content=' On trigger and argument ex- traction tasks, the proposed framework is more effective than baseline methods and it demon- strates particularly strong results in the low- resource setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
16
+ page_content=' Our further analysis shows that it achieves a good balance between diver- sity and distributional similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
17
+ page_content=' 1 Introduction Event Extraction (EE), which aims to extract trig- gers with specific types and their arguments from unstructured texts, is an important yet challenging task in natural language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
18
+ page_content=' In recent years, deep learning methods have emerged as one of the most prominent approaches for this task (Nguyen and Nguyen, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
19
+ page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
20
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
21
+ page_content=' Du and Cardie, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
22
+ page_content=' Paolini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
23
+ page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
24
+ page_content=' Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
25
+ page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
26
+ page_content=' Lou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
27
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
28
+ page_content=' However, they are notorious for requiring large labelled data, which limits the scalability of EE models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
29
+ page_content=' Annotating data for EE is usually costly and time-consuming, as it requires expert knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
30
+ page_content=' One possible solution is to leverage data augmentation (DA) (Simard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
31
+ page_content=', 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
32
+ page_content=' Existing DA methods for NLP can be broadly classified into two types: (1) the first is to augment ∗Work done when Jun Gao was interning at 4Paradigm † Corresponding author The police said Mike left this town yesterday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
33
+ page_content=' Trigger Event Type: Transport Arg1 Role: Artifact Arg2 Role: Origin Arg3 Role: Time-Within The cop said Mike left this town yesterday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
34
+ page_content=' The police said Mike went away from this town yesterday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
35
+ page_content=' The cop saw Mike left this town yesterday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
36
+ page_content=' (1) BackTranslation (2) Synonym Replacement (3) BERT Figure 1: Visualization of three different data aug- mentation methods applied to a sentence containing a “Transport” event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
37
+ page_content=' Spans marked with different colors are event triggers and arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
38
+ page_content=' The parts of the aug- mented sample that differ from the original are colored in gray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
39
+ page_content=' Backtranslation (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
40
+ page_content=', 2020) translates the input sentence into another language and back to the original.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
41
+ page_content=' Synonym Replacement (Dai and Adel, 2020) and BERT (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
42
+ page_content=', 2019) replace words in the sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
43
+ page_content=' training data by modifying existing examples (Sen- nrich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
44
+ page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
45
+ page_content=' ¸Sahin and Steedman, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
46
+ page_content=' Dai and Adel, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
47
+ page_content=' Wei and Zou, 2019), and (2) the second is to generate new data by estimating a gen- erative process and sample from it (Anaby-Tavor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
48
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
49
+ page_content=' Quteineh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
50
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
51
+ page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
52
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
53
+ page_content=' Ye et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
54
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
55
+ page_content=' Since the EE task requires DA methods to generate augmented samples and token- level labels jointly, the second type of DA method is inapplicable here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
56
+ page_content=' In this study, we mainly focus on the first type of method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
57
+ page_content=' Applying existing DA methods to the EE task is more challenging than to translation or classi- fication tasks, because we need to augment train- ing data while keeping the event structure (trigger and arguments) unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
58
+ page_content=' Figure 1 presents ex- amples of three different DA methods applied to a sentence containing a “Transport” event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
59
+ page_content=' The event is triggered by word “left” and it has three arguments with different roles (“Mike”, “this town” arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
60
+ page_content='02427v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
61
+ page_content='CL] 6 Jan 2023 and “yesterday”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
62
+ page_content=' As shown in Figure 1, it is in- feasible to apply sentence-level DA methods such as BackTranslation (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
63
+ page_content=', 2020), because it may change the event structure (change “left” to “went away from”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
64
+ page_content=' Previous attempts on DA for such tasks typically use heuristic rules such as synonym replacement (Dai and Adel, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
65
+ page_content=' Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
66
+ page_content=', 2020) or context-based words substitution with BERT (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
67
+ page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
68
+ page_content=' Their idea is to replace adjunct tokens (the tokens in sentences ex- cept triggers and arguments) with other tokens, and thus can ensure the event structure is unchanged as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
69
+ page_content=' However, recent studies (Ding et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
70
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
71
+ page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
72
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
73
+ page_content=' Ye et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
74
+ page_content=', 2022) find that such methods provide limited data diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
75
+ page_content=' In NLP, the diversity of data is mainly reflected in two aspects: expression diversity and seman- tic diversity (Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
76
+ page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
77
+ page_content=' The Synonym Replacement and BackTranslation methods lack semantic diversity, because they can only produce samples with similar semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
78
+ page_content=' The BERT-based method can only replace words and cannot change the syntax, so it cannot generate samples with a wide variety of expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
79
+ page_content=' The lack of sufficient diversity may lead to greater overfitting or poor performance through training on examples that are not representative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
80
+ page_content=' To this end, we present Mask-then-Fill, a flexi- ble and effective data augmentation framework for event extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
81
+ page_content=' Our approach allows for more flexible manipulation of text and thus can generate more diverse data while keeping the original event structure unchanged as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
82
+ page_content=' Specif- ically, we first define two types of text fragments in a sentence: event-related fragments (trigger and arguments) and adjunct fragments (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
83
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
84
+ page_content=' “The po- lice said”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
85
+ page_content=' Then, we model DA for the EE task as a Mask-then-Fill process: we first randomly masks out an adjunct sentence fragment and then infills a variable-length text span with a fine-tuned infilling model (T5) (Raffel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
86
+ page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
87
+ page_content=' The main advantage lies in that it can replace a fragment of arbitrary length in the text with another fragment of variable length, compared to the existing methods which can only replace a single word or a fixed- length fragment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
88
+ page_content=' To the best of our knowledge, we are the first to augment training data for event extraction via text infilling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
89
+ page_content=' We empirically show that the Mask- then-Fill framework improves performance for both classification-based (EEQA) and generation- The police said Mike left this town yesterday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
90
+ page_content=' [MASK] Mike left this town yesterday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
91
+ page_content=' Output1: The next door neighbor said Output2: Because of a fight with his girlfriend, Output3: Since he found a new job, … Infilling Model (T5) ② Decoding by Sampling [MASK] Mike left this town yesterday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
92
+ page_content=' ① Mask out an adjunct fragment ③ Fill in the blank Figure 2: Overview of the proposed Mask-then-Fill framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
93
+ page_content=' based (Text2Event) event extraction models on a well-known EE benchmark dataset (ACE2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
94
+ page_content=' Es- pecially, it demonstrates strong results in the low resource setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
95
+ page_content=' We further investigate reasons for its effectiveness by introducing two metrics, Affin- ity and Diversity, and find that the data augmented by our approach have better diversity with less dis- tribution shifts, achieving a good balance between diversity and distributional similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
96
+ page_content=' 2 The Mask-then-Fill Framework Figure 2 presents an overview of Mask-then-Fill framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
97
+ page_content=' The input sentence contains two types of text fragments: event-related fragments (words with colors) and adjunct fragments (underlined).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
98
+ page_content=' Our idea is to rewrite the whole adjunct fragment instead of replacing some words, and the rewritten sentence fragment should fit the context and should not introduce new events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
99
+ page_content=' To this end, we model DA for EE as a Mask-then-Fill process: we first randomly mask out an adjunct sentence fragment and then infills a variable-length text span with a fine-tuned infilling model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
100
+ page_content=' In the following, we describe in detail the Mask-then-Fill framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
101
+ page_content=' Mask out an adjunct fragment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
102
+ page_content=' Given a pro- totype sentence X = {x1, · · · , xL} of length L from the training set, we first define an adjunct frag- ment as a set of non-overlapping spans of x that do not contain the event triggers and arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
103
+ page_content=' We then replace one of the adjunct fragments with a [MASK] symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
104
+ page_content=' The incomplete sentence ˆx is a version of x with a fragment replaced with a [MASK] symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
105
+ page_content=' Blank Infilling Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
106
+ page_content=' We formulate our blank infilling process as the task of predicting the miss- ing span of text which is consistent with the preced- ing and subsequent text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
107
+ page_content=' Figure 2 gives an example with an incomplete input sentence �x, where the [MASK] is a placeholder for a blank, which has masked out multiple tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
108
+ page_content=' Our goal is to pre- dict only the missing span y which will replace the [MASK] token in �x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
109
+ page_content=' Therefore, the infilling task can be cast as learning p(y|�x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
110
+ page_content=' To train our infilling model, we fine-tune a pre- trained sequence-to-sequence model T5 (Raffel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
111
+ page_content=', 2020) on the Gigaword corpus (Graff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
112
+ page_content=', 2003), which is from similar domains as the event extraction dataset ACE2005 adopted by our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
113
+ page_content=' Given a corpus consisting of plain sentences, we first produce large pools of infilling examples and then train the T5 model on these examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
114
+ page_content=' For a given complete sentence x from the training cor- pus, we generate an infilling example �x with the following procedure: (1) randomly sample a span length l from the range of [1, min(10, l)];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
115
+ page_content=' (2) split the sentence into l spans;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
116
+ page_content=' (3) randomly select a span to be replaced with a [MASK] symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
117
+ page_content=' The replaced span is used as the target y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
118
+ page_content=' We then fine-tune the T5 model on these infilling examples, yielding the model of the form pθ(y|�x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
119
+ page_content=' Fill in the blank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
120
+ page_content=' Once trained, the infilling model can be used to take the incomplete sentence �x, containing one missing span, and return a pre- dicted span y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
121
+ page_content=' We then replace the [MASK] token in �x with the predicted span y to generate an aug- mented example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
122
+ page_content=' Note that we can produce large pools of augmented samples using top-k sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
123
+ page_content=' 3 Experimental Setup Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
124
+ page_content=' We empirically evaluate our proposed data augmentation method for event extraction on the ACE2005 corpus1 with the same train- dev-test split and preprocessing step as previous works (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
125
+ page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
126
+ page_content=' Wadden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
127
+ page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
128
+ page_content=' We simulate a low-resource setting by randomly sampling 1,000, 4,000 and 8,000 examples from the training set to create the small, medium, and large training sets (denoted as S, M, L in Table 1, whereas the complete training set is denoted as F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
129
+ page_content=' 1https://catalog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
130
+ page_content='ldc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
131
+ page_content='upenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
132
+ page_content='edu/LDC2006T06 We only augment the training data and keep the dev set and test sets unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
133
+ page_content=' Evaluation Metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
134
+ page_content=' Following the previous works (Du and Cardie, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
135
+ page_content=' Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
136
+ page_content=', 2021) on event extraction, we adopt the same evaluation cri- teria defined in Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
137
+ page_content=' (2013): (i) An event trigger is correctly identified and classified (Trig-ID+C) if its offsets match a gold trigger and its event type is also correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
138
+ page_content=' (ii) An argument is correctly identified and classified (Arg-ID+C) if its offsets and event type match a gold argument and its event role is also correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
139
+ page_content=' Event Extraction Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
140
+ page_content=' In our study, we con- sider two representative models for event extrac- tion: Text2Event (Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
141
+ page_content=', 2021) is a framework to solve the event extraction task by casting it as a SEQ2SEQ generation task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
142
+ page_content=' All triggers, argu- ments, and their labels are generated as natural language words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
143
+ page_content=' EEQA (Du and Cardie, 2020) formulates the event extraction task as a question answering task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
144
+ page_content=' They develop two BERT-based QA models – one for event trigger detection and the other for argument extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
145
+ page_content=' Comparison Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
146
+ page_content=' We compare our pro- posed data augmentation method Ours (t5-small) with three baselines: (1) Synonym Replacement replaces adjunct tokens with one of their synonyms retrieved from WordNet (Miller, 1992) at random;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
147
+ page_content=' (2) BERT replaces adjunct tokens with others ran- domly drawn according to the pretrained BERT’s distribution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
148
+ page_content=' (3) Span-BackTranslation: Inspired by Yaseen and Langer (2021), we only “back trans- late” randomly selected adjunct spans to prevent the model from changing the event structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
149
+ page_content=' Hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
150
+ page_content=' For all data augmentation methods, we tune the number of augmentation sam- ples per training sample from a list of numbers: {1, 3, 6, 10}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
151
+ page_content=' 4 Results and Analysis Main Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
152
+ page_content=' The main results are presented in Table 1, where we use two EE mod- els (Text2EVent and EEQA) to test the perfor- mance of different DA methods in both low- resource (S, M and L) and normal (F) settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
153
+ page_content=' As shown in the table, we observe that Ours (t5-small) achieves the best overall performance among all EE Model DA Method Trig-ID+C (F1) Arg-ID+C (F1) S M L F S M L F Text2Event No Augmentation 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
154
+ page_content='44 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
155
+ page_content='75 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
156
+ page_content='55 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
157
+ page_content='06 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
158
+ page_content='05 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
159
+ page_content='04 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
160
+ page_content='35 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
161
+ page_content='30 Synonym Replacement 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
162
+ page_content='14 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
163
+ page_content='96 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
164
+ page_content='73 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
165
+ page_content='09 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
166
+ page_content='71 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
167
+ page_content='64 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
168
+ page_content='63 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
169
+ page_content='95 BERT 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
170
+ page_content='66 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
171
+ page_content='75 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
172
+ page_content='81 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
173
+ page_content='33 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
174
+ page_content='71 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
175
+ page_content='75 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
176
+ page_content='44 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
177
+ page_content='41 Span-BackTranslation 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
178
+ page_content='91 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
179
+ page_content='54 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
180
+ page_content='59 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
181
+ page_content='58 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
182
+ page_content='68 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
183
+ page_content='18 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
184
+ page_content='39 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
185
+ page_content='93 Ours (t5-small) 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
186
+ page_content='32 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
187
+ page_content='38 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
188
+ page_content='25 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
189
+ page_content='03 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
190
+ page_content='68 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
191
+ page_content='79 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
192
+ page_content='73 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
193
+ page_content='29 EEQA No Augmentation 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
194
+ page_content='05 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
195
+ page_content='20 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
196
+ page_content='06 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
197
+ page_content='13 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
198
+ page_content='81 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
199
+ page_content='30 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
200
+ page_content='27 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
201
+ page_content='93 Synonym Replacement 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
202
+ page_content='86 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
203
+ page_content='03 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
204
+ page_content='71 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
205
+ page_content='05 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
206
+ page_content='99 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
207
+ page_content='62 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
208
+ page_content='40 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
209
+ page_content='50 BERT 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
210
+ page_content='61 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
211
+ page_content='23 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
212
+ page_content='90 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
213
+ page_content='35 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
214
+ page_content='80 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
215
+ page_content='82 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
216
+ page_content='49 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
217
+ page_content='62 Span-BackTranslation 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
218
+ page_content='26 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
219
+ page_content='64 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
220
+ page_content='46 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
221
+ page_content='40 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
222
+ page_content='47 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
223
+ page_content='64 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
224
+ page_content='87 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
225
+ page_content='55 Ours (t5-small) 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
226
+ page_content='80 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
227
+ page_content='37 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
228
+ page_content='33 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
229
+ page_content='62 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
230
+ page_content='67 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
231
+ page_content='70 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
232
+ page_content='52 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
233
+ page_content='62 Table 1: Results on trigger extraction and argument extraction using different subsets of the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
234
+ page_content=' The best results are marked in bold, and the second best is underlined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
235
+ page_content=' DA methods on both trigger extraction (F1) and argument extraction (F1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
236
+ page_content=' Using our DA method gives the best results for the Text2event model on 7 out of 8 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
237
+ page_content=' For the EEQA model, our method achieves the best results on 6 out of 8 datasets, where the difference between our method and the best results on Trig-S and Arg-L is very small, with only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
238
+ page_content='06 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
239
+ page_content='97 points difference be- tween them, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
240
+ page_content=' Particularly, our methods demonstrates strong results in the low-resource set- ting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
241
+ page_content=' Using our DA gives the Text2Event model a performance improvement of 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
242
+ page_content='14% and 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
243
+ page_content='07% on Trig-S and Arg-S, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
244
+ page_content=' We also notice that as the amount of data in- creases, the improvement from all DA method de- creases, and in some cases (EEQA model on Arg-L and Arg-F), there is even a slight decrease in per- formance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
245
+ page_content=' In the case of more data, the model may overfit if the augmented data are just some similar samples rather than data with large variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
246
+ page_content=' DA Method Affinity Dist-1 Dist-2 Synonym Replacement 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
247
+ page_content='118 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
248
+ page_content='400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
249
+ page_content='523 BERT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
250
+ page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
251
+ page_content='374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
252
+ page_content='496 Span-BackTranslation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
253
+ page_content='155 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
254
+ page_content='407 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
255
+ page_content='513 Ours (t5-small) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
256
+ page_content='086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
257
+ page_content='488 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
258
+ page_content='612 Table 2: Results on Affinity and Diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
259
+ page_content=' The best re- sults are marked in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
260
+ page_content=' The second best is underlined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
261
+ page_content=' Affinity and Diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
262
+ page_content=' Inspired by Gontijo- Lopes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
263
+ page_content=' (2020), we further investigate reasons for its effectiveness by introducing two metrics, Affinity and Diversity, where Affinity quantifies how augmentation shifts data distribution and Diversity measures the complexity of the augmented data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
264
+ page_content=' We measure Affinity by computing the difference between the loss of a model trained on the original training set and tested on the original example, and the loss of the same model tested on an augmented example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
265
+ page_content=' We use the Dist-1/2 metric (Celikyilmaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
266
+ page_content=', 2020), commonly used in text generation, to Furthermore , the United States supported him in the war against Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
267
+ page_content=' In addition, the United States supported him in the war against Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
268
+ page_content=' Furthermore, the United States supported him in the war against Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
269
+ page_content=' Later, the united States supported him in the war against Iran .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
270
+ page_content=' Furthermore, the United States supported iraq in the war against iraq .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
271
+ page_content=' Moreover, the combine States supported him in the war against Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
272
+ page_content=' What is more, the unify DoS supported him in the war against Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
273
+ page_content=' He also called for an end to the war against Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
274
+ page_content=' The U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
275
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
276
+ page_content=' military has been fighting a war against Iran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
277
+ page_content=' Event Type: Attack | Trigger: war (1) Synonym Replacement (2) BERT (3) Span-BackTranslation (4) Ours (t5-small) Figure 3: Augmented examples of four different DA methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
278
+ page_content=' Given a sentence containing an “Attack” event triggered by the word "war", we generate two new samples for each DA method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
279
+ page_content=' The parts of the new sample that differ from the original are colored in gray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
280
+ page_content=' assess the Diversity of the augmented data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
281
+ page_content=' For im- plementation details of two metrics, see Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
282
+ page_content=' We first construct a new test set by generating a new sample for each data in the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
283
+ page_content=' We then calculate the Affinity and Dist-1/2 scores between the new data set and the original data set, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
284
+ page_content=' As shown in Table 2, it is clear that the data augmented by our DA method have better diversity with less distribution shifts, obtaining a balance between diversity and distributional similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
285
+ page_content=' Case Study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
286
+ page_content=' Figure 3 presents examples gener- ated by different DA methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
287
+ page_content=' Given a sentence containing an “Attack” event triggered by the word "war", we generated two new samples for each DA method, and the parts of the new sample that differ from the original are colored in gray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
288
+ page_content=' Obviously, The synonym replacement based on WordNet can- not avoid introducing some words that do not fit the context (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
289
+ page_content='g “unify” and “DoS”), while the BERT- based word replacement can consider the context better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
290
+ page_content=' However, they both provide limited diver- sity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
291
+ page_content=' BackTranslation method performs even worse in terms of data diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
292
+ page_content=' Its generated data differs very little from the original sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
293
+ page_content=' Finally, com- pared with the original sentences, the new samples generated by our method are more fluent and more different in expression and semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
294
+ page_content=' Therefore, it not only generates data that fits the context better, but also provides better diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
295
+ page_content=' 5 Conclusion In this paper, we present Mask-then-Fill, a flexi- ble and effective data augmentation framework for event extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
296
+ page_content=' Our approach allows for more flexible manipulation of text and thus can gen- erate more diverse data while keeping the origi- nal event structure unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
297
+ page_content=' The main advan- tage lies in that it can replace a fragment of ar- bitrary length in the text with another fragment of variable length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
298
+ page_content=' We empirically show that the Mask-then-Fill framework improves performance for both EEQA and Text2Event EE models on the ACE2005 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
299
+ page_content=' It demonstrates particularly strong results in the low-resource setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
300
+ page_content=' Our fur- ther analysis shows that it achieves a good balance between diversity and distributional similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
301
+ page_content=' Limitations This paper presents a flexible and effective data augmentation framework for event extraction tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
302
+ page_content=' Here, we note some of Mask-then-Fill frame- work’s limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
303
+ page_content=' First, performance gains can be marginal when data is sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
304
+ page_content=' We believe this approach has much room for improvement in generating more diverse data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
305
+ page_content=' In this work, we select only one adjunct fragment at a time for modi- fication, and modifying multiple adjunct fragments in an event mention can further enhance the diver- sity of the generated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
306
+ page_content=' Second, currently this method can only replace one fragment at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
307
+ page_content=' This makes it easier to control the properties of the generated fragments, such as length or style.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
308
+ page_content=' It is possible to modify multiple fragments at the same time using some existing techniques (Don- ahue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
309
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
310
+ page_content=' Du et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
311
+ page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
312
+ page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
313
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
314
+ page_content=' This approach is more efficient, but it is prone to generate incoherent augmented samples and thus introduce more noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
315
+ page_content=' A possible approach to solve this problem is to design some sample selection strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
316
+ page_content=' Acknowledgements This work was partially supported by the Na- tional Natural Science Foundation of China 62006062 and 62176076, Shenzhen Foundational Research Funding JCYJ20200109113441941, JCYJ20210324115614039, The Major Key Project of PCL2021A06, Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies 2022B1212010005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
317
+ page_content=' References Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour, Segev Shlomov, Naama Tepper, and Naama Zwerdling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
318
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
319
+ page_content=' Do not have enough data?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
320
+ page_content=' deep learning to the rescue!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
321
+ page_content=' In The Thirty-Fourth AAAI Conference on Artificial Intelli- gence, AAAI 2020, The Thirty-Second Innovative Ap- plications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7383– 7390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
322
+ page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
323
+ page_content=' Udit Arora, William Huang, and He He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
324
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
325
+ page_content=' Types of out-of-distribution texts and how to detect them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
326
+ page_content=' In Proceedings of the 2021 Conference on Empiri- cal Methods in Natural Language Processing, pages 10687–10701, Online and Punta Cana, Dominican Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
327
+ page_content=' Association for Computational Linguis- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
328
+ page_content=' Hengyi Cai, Hongshen Chen, Yonghao Song, Cheng Zhang, Xiaofang Zhao, and Dawei Yin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
329
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
330
+ page_content=' Data manipulation: Towards effective instance learning for neural dialogue generation via learning to aug- ment and reweight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
331
+ page_content=' In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 6334–6343, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
332
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
333
+ page_content=' Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
334
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
335
+ page_content=' Evaluation of text generation: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
336
+ page_content=' ArXiv preprint, abs/2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
337
+ page_content='14799.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
338
+ page_content=' Yi Chen, Haiyun Jiang, Lemao Liu, Rui Wang, Shum- ing Shi, and Ruifeng Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
339
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
340
+ page_content=' Mcpg: A flexible multi-level controllable framework for unsupervised paraphrase generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
341
+ page_content=' In Findings of the Associa- tion for Computational Linguistics: EMNLP 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
342
+ page_content=' Xiang Dai and Heike Adel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
343
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
344
+ page_content=' An analysis of simple data augmentation for named entity recogni- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
345
+ page_content=' In Proceedings of the 28th International Con- ference on Computational Linguistics, pages 3861– 3867, Barcelona, Spain (Online).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
346
+ page_content=' International Com- mittee on Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
347
+ page_content=' Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru- engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and Chunyan Miao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
348
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
349
+ page_content=' DAGA: Data augmentation with a generation approach for low-resource tagging tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
350
+ page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 6045–6057, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
351
+ page_content=' Associa- tion for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
352
+ page_content=' Chris Donahue, Mina Lee, and Percy Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
353
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
354
+ page_content=' En- abling language models to fill in the blanks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
355
+ page_content=' In Pro- ceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 2492– 2501, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
356
+ page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
357
+ page_content=' Xinya Du and Claire Cardie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
358
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
359
+ page_content=' Event extrac- tion by answering (almost) natural questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
360
+ page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 671–683, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
361
+ page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
362
+ page_content=' Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
363
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
364
+ page_content=' Glm: General language model pretraining with autoregres- sive blank infilling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
365
+ page_content=' In Proceedings of the 60th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 320– 335.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
366
+ page_content=' Raphael Gontijo-Lopes, Sylvia J Smullin, Ekin D Cubuk, and Ethan Dyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
367
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
368
+ page_content=' Affinity and diver- sity: Quantifying mechanisms of data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
369
+ page_content=' ArXiv preprint, abs/2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
370
+ page_content='08973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
371
+ page_content=' David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
372
+ page_content=' 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
373
+ page_content=' English gigaword.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
374
+ page_content=' Linguistic Data Consortium, Philadelphia, 4(1):34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
375
+ page_content=' Qi Li, Heng Ji, and Liang Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
376
+ page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
377
+ page_content=' Joint event extraction via structured prediction with global fea- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
378
+ page_content=' In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
379
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
380
+ page_content=' Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
381
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
382
+ page_content=' A joint neural model for information extraction with global features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
383
+ page_content=' In Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, pages 7999–8009, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
384
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
385
+ page_content=' Chenwei Lou, Jun Gao, Changlong Yu, Wei Wang, Huan Zhao, Weiwei Tu, and Ruifeng Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
386
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
387
+ page_content=' Translation-based implicit annotation projection for zero-shot cross-lingual event argument extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
388
+ page_content=' In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval, pages 2076–2081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
389
+ page_content=' Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
390
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
391
+ page_content=' Text2Event: Controllable sequence-to- structure generation for end-to-end event extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
392
+ page_content=' In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 2795–2806, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
393
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
394
+ page_content=' George A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
395
+ page_content=' Miller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
396
+ page_content=' 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
397
+ page_content=' WordNet: A lexical database for English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
398
+ page_content=' In Speech and Natural Language: Pro- ceedings of a Workshop Held at Harriman, New York, February 23-26, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
399
+ page_content=' Trung Minh Nguyen and Thien Huu Nguyen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
400
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
401
+ page_content=' One for all: Neural joint modeling of entities and events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
402
+ page_content=' In The Thirty-Third AAAI Conference on Ar- tificial Intelligence, AAAI 2019, The Thirty-First In- novative Applications of Artificial Intelligence Con- ference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 6851–6858.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
403
+ page_content=' AAAI Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
404
+ page_content=' Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille, Rishita Anubhai, Cícero Nogueira dos Santos, Bing Xiang, and Ste- fano Soatto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
405
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
406
+ page_content=' Structured prediction as transla- tion between augmented natural languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
407
+ page_content=' In 9th International Conference on Learning Representa- tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
408
+ page_content=' OpenReview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
409
+ page_content='net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
410
+ page_content=' Husam Quteineh, Spyridon Samothrakis, and Richard Sutcliffe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
411
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
412
+ page_content=' Textual data augmentation for effi- cient active learning on tiny datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
413
+ page_content=' In Proceed- ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7400–7410, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
414
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
415
+ page_content=' Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
416
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
417
+ page_content=' Exploring the limits of transfer learning with a unified text-to-text trans- former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
418
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
419
+ page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
420
+ page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
421
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
422
+ page_content=', 21(140):1–67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
423
+ page_content=' Gözde Gül ¸Sahin and Mark Steedman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
424
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
425
+ page_content=' Data aug- mentation via dependency tree morphing for low- resource languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
426
+ page_content=' In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan- guage Processing, pages 5004–5009, Brussels, Bel- gium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
427
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
428
+ page_content=' Rico Sennrich, Barry Haddow, and Alexandra Birch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
429
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
430
+ page_content=' Improving neural machine translation mod- els with monolingual data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
431
+ page_content=' In Proceedings of the 54th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 86–96, Berlin, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
432
+ page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
433
+ page_content=' Patrice Y Simard, Yann A LeCun, John S Denker, and Bernard Victorri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
434
+ page_content=' 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
435
+ page_content=' Transformation invariance in pattern recognition—tangent distance and tangent propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
436
+ page_content=' In Neural networks: tricks of the trade, pages 239–274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
437
+ page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
438
+ page_content=' David Wadden, Ulme Wennberg, Yi Luan, and Han- naneh Hajishirzi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
439
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
440
+ page_content=' Entity, relation, and event extraction with contextualized span representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
441
+ page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 5784– 5789, Hong Kong, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
442
+ page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
443
+ page_content=' Jason Wei and Kai Zou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
444
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
445
+ page_content=' EDA: Easy data aug- mentation techniques for boosting performance on text classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
446
+ page_content=' In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6382–6388, Hong Kong, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
447
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
448
+ page_content=' Qizhe Xie, Zihang Dai, Eduard H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
449
+ page_content=' Hovy, Thang Luong, and Quoc Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
450
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
451
+ page_content=' Unsupervised data augmenta- tion for consistency training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
452
+ page_content=' In Advances in Neural Information Processing Systems 33: Annual Con- ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
453
+ page_content=' Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and Dongsheng Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
454
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
455
+ page_content=' Exploring pre-trained lan- guage models for event extraction and generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
456
+ page_content=' In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5284–5294, Florence, Italy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
457
+ page_content=' Association for Compu- tational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
458
+ page_content=' Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug Downey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
459
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
460
+ page_content=' Generative data augmentation for commonsense reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
461
+ page_content=' In Findings of the Associ- ation for Computational Linguistics: EMNLP 2020, pages 1008–1025, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
462
+ page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
463
+ page_content=' Usama Yaseen and Stefan Langer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
464
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
465
+ page_content=' Data aug- mentation for low-resource named entity recog- nition using backtranslation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
466
+ page_content=' ArXiv preprint, abs/2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
467
+ page_content='11703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
468
+ page_content=' Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiang- tao Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
469
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
470
+ page_content=' Zerogen: Efficient zero-shot learning via dataset generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
471
+ page_content=' ArXiv, abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
472
+ page_content='07922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
473
+ page_content=' Tongtao Zhang, Heng Ji, and Avirup Sil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
474
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
475
+ page_content=' Joint entity and event extraction with generative adversar- ial imitation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
476
+ page_content=' Data Intelligence, 1(2):99– 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
477
+ page_content=' Zijian Zhao, Su Zhu, and Kai Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
478
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
479
+ page_content=' Data augmen- tation with atomic templates for spoken language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
480
+ page_content=' In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 3637–3643, Hong Kong, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
481
+ page_content=' As- sociation for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
482
+ page_content=' A Affinity and Diversity Inspired by Gontijo-Lopes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
483
+ page_content=' (2020) and Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
484
+ page_content=' (2021), we proposed to use a calibration method to quantify how augmentation shifts data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
485
+ page_content=' They all note that a trained model is often sensitive to the distribution of the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
486
+ page_content=' Given the original example x and one of its aug- mented example x+, we measure distribution shifts by computing the difference between the loss of a model trained on the original training set and tested on the original example, and the loss of the same model tested on an augmented example: τα = ℓ(M, x) − ℓ(M, x+), (1) where M is an EE model trained on the original training set and ℓ(M, x+) denotes the model’s val- idation loss when evaluated on the augmented ex- ample y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
487
+ page_content=' We use the Dist-1/2 metric (Celikyilmaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
488
+ page_content=', 2020), commonly used in text generation, to assess the Diversity of the augmented data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
489
+ page_content=' B Implementation Details Parameter Value Training Epochs 3 Optimizer AdamW Batch Size 64 Learning rate 1e-5 Seed 1024 Top-k 100 Top-p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
490
+ page_content='7 Beam Size 5 Table 3: Implementation details of our infilling model (t5-small).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
491
+ page_content=' Parameter Value Training Epochs 30 Optimizer AdamW Batch Size 64 Learning rate 5e-5 Seed 1024 Table 4: Implementation details of Text2Event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
492
+ page_content=' Parameter Value Training Epochs 30 Optimizer AdamW Batch Size 64 Learning rate 4e-5 Seed 1024 nth query 5 Table 5: Implementation details of EEQA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf'}
G9AyT4oBgHgl3EQffPiq/content/tmp_files/2301.00337v1.pdf.txt ADDED
@@ -0,0 +1,2065 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Design, Modeling, and Evaluation of Separable
2
+ Tendon-Driven Robotic Manipulator with Long,
3
+ Passive, Flexible Proximal Section
4
+ Christian DeBuys
5
+ Texas A&M University
6
+ Mechanical Engineering
7
+ College Station, TX, USA
8
9
+ Florin C. Ghesu
10
+ Siemens Healthineers
11
+ Digital Technology & Innovation
12
+ Princeton, NJ, USA
13
+ Email: fl[email protected]
14
+ Jagadeesan Jayender
15
+ Surgical Planning Laboratory
16
+ Brigham and Women’s Hospital
17
+ Harvard Medical School, Boston, USA
18
19
+ Reza Langari
20
+ Texas A&M University
21
+ Mechanical Engineering
22
+ College Station, TX, USA
23
24
+ Young-Ho Kim
25
+ Siemens Healthineers
26
+ Digital Technology & Innovation
27
+ Princeton, NJ, USA
28
29
+ The purpose of this work was to tackle practical issues
30
+ which arise when using a tendon-driven robotic manip-
31
+ ulator with a long, passive, flexible proximal section in
32
+ medical applications. A separable robot which overcomes
33
+ difficulties in actuation and sterilization is introduced, in
34
+ which the body containing the electronics is reusable and
35
+ the remainder is disposable. A control input which re-
36
+ solves the redundancy in the kinematics and a physical
37
+ interpretation of this redundancy are provided. The effect
38
+ of a static change in the proximal section angle on bend-
39
+ ing angle error was explored under four testing conditions
40
+ for a sinusoidal input. Bending angle error increased for
41
+ increasing proximal section angle for all testing condi-
42
+ tions with an average error reduction of 41.48% for re-
43
+ tension, 4.28% for hysteresis, and 52.35% for re-tension
44
+ + hysteresis compensation relative to the baseline case.
45
+ Two major sources of error in tracking the bending angle
46
+ were identified: time delay from hysteresis and DC off-
47
+ set from the proximal section angle. Examination of these
48
+ error sources revealed that the simple hysteresis compen-
49
+ sation was most effective for removing time delay and
50
+ re-tension compensation for removing DC offset, which
51
+ was the primary source of increasing error. The re-tension
52
+ compensation was also tested for dynamic changes in the
53
+ proximal section and reduced error in the final configura-
54
+ tion of the tip by 89.14% relative to the baseline case.
55
+ 1
56
+ INTRODUCTION
57
+ Tendon-driven robotic manipulators (TDRM) have
58
+ been used in many fields for various applications, such
59
+ as remote inspection and maintenance in aerospace, min-
60
+ imally invasive surgery in medicine, and general search
61
+ and rescue. They are preferred in these areas for their abil-
62
+ ity to maneuver in tight spaces in a compliant and safe
63
+ manner. Many devices have been developed in the medi-
64
+ cal domain for cardiac catheterization [1, 2, 3] and bron-
65
+ choscopy [4, 5, 6]. Some of these devices are “flexible-
66
+ arXiv:2301.00337v1 [cs.RO] 1 Jan 2023
67
+
68
+ steerable” as classified by Dupont at al. [7], meaning they
69
+ are comprised of a steerable articulation section and a
70
+ long, passive proximal section between the articulation
71
+ section and the actuators. Such devices are particularly
72
+ difficult to model and control accurately, and the prox-
73
+ imal section is not included in the state-of-the-art kine-
74
+ matic and dynamic models. Devices with sensors at the
75
+ distal tip using Electromagnetic (EM) sensor (e.g., [6]) or
76
+ Fiber bragg grating (FBG) based shape sensors(e.g., [5])
77
+ can circumvent the unmodeled behavior of the proximal
78
+ section via closed-loop control. However, some devices,
79
+ such as heart catheters, are one-time or limited-time use,
80
+ meaning that it would be too costly to implement such
81
+ sensors and that the unmodeled behavior cannot be com-
82
+ pensated as with the aforementioned devices.
83
+ We introduce a separable TDRM for a practical set-
84
+ ting. The separable design tackles the issue of reusability
85
+ that is common among medical devices, where the part
86
+ which interacts with the anatomy is disposable and the
87
+ part containing the actuators is reusable. In addition, we
88
+ utilize a practical model and calibration method for our
89
+ proposed mechanism so that the four tendons are actu-
90
+ ated simultaneously, allowing for precise tip control and
91
+ mitigating issues with conventional devices, such as dead-
92
+ zone and hysteresis, with simple linear compensation. We
93
+ consider an open-loop controller since many available de-
94
+ vices [2, 8] are used without position-tracking sensors at
95
+ the tip due to costs and single use. We analyze the effect
96
+ of the shape of the passive proximal section for different
97
+ compensation types and offer insight on how this behav-
98
+ ior might be accounted for in open and closed-loop sys-
99
+ tems.
100
+ 2
101
+ RELATED WORKS
102
+ The tendon-sheath mechanism facilitates maneuver-
103
+ ability and compliance in highly constrained anatomies
104
+ by allowing for a long, thin, flexible, proximal tail-like
105
+ structure. Thus, the TDRM is an actuation method that
106
+ has been used in many therapeutic [9, 10, 11, 12, 13] and
107
+ real-time diagnostic (e.g., endoscope [14, 15, 16, 17, 18],
108
+ and Intracardiac echocardiography (ICE) [19, 20, 21])
109
+ manipulators. The increased compliance of tendon-driven
110
+ manipulators is not without drawbacks. Much work has
111
+ gone into accurately modeling the kinematics; accounting
112
+ for phenomena such as hysteresis, deadzone, and slack;
113
+ and overcoming the redundancy in the control input.
114
+ With respect to forward kinematics, many publica-
115
+ tions have presented a lumped-parameter approach with
116
+ the constant curvature model (CCM) [20, 22, 23]. Re-
117
+ views for modeling tendon-driven continuum manipula-
118
+ tors have been given [24, 25], but the shape of the passive
119
+ proximal section–which can be very long for devices such
120
+ as catheters–is not included in these kinematic models.
121
+ Shape sensing is possible and has been reviewed [26, 27],
122
+ but the sensors necessary (e.g. FBG or EM) would be pro-
123
+ hibitively expensive for a disposable device or disposable
124
+ portion of a device. We take first steps to characterize the
125
+ effect of the proximal section on bending angle error of
126
+ the articulation/bending section.
127
+ Hysteresis has been addressed for TDRM via com-
128
+ pensation methods [28, 29, 30, 31] and modeling ap-
129
+ proaches [28, 32, 33]. Since the modeling approaches in-
130
+ volve many hyper-parameters, which themselves require
131
+ a complicated identification process, Lee et al. [8] pro-
132
+ vided a simplified hysteresis model which included dead-
133
+ zone and backlash. Kim et al. [34] proposed a practical
134
+ shape-adaptive hysteresis compensation based on dead-
135
+ zone detection using motor current, where compensation
136
+ is adjusted based on arbitrary shape change of the proxi-
137
+ mal shaft. We implement a simple hysteresis compensa-
138
+ tion which does not require hyper-parameters and a re-
139
+ dundant control input which removes deadzone.
140
+ Redundant control strategies for tendon-driven de-
141
+ vices have been implemented for cable driven parallel
142
+ robots [35], dexterous robot hands [36], and continuum
143
+ manipulators [37]. Fang et al. [35] handled platform and
144
+ cable dynamics, provided a redundant control input with
145
+ tension and actuator constraints to prevent slack, and
146
+ solved an optimization real-time to determine the control
147
+ input. However, due to their different application, their
148
+ tendons were free floating and thus did not have tendon-
149
+ sheath friction. Abdallah et al. [36] handled multi-joint
150
+ finger and cable dynamics with an optimization and con-
151
+ straints similar to [35], but with the addition of tendon-
152
+ sheath friction. Camarillo et al [37] gave a redundant con-
153
+ trol scheme for quasi-static motion of a catheter with two
154
+ articulation sections that decoupled the inverse kinemat-
155
+ ics. Their constraints and optimization were similar to
156
+ [35, 36] except the solution allowed for slack tendons
157
+ to be present (as long as they contribute no force). We
158
+ propose a redundant control input which prevents slack
159
+ tendons as in [35, 36] but does not require an optimiza-
160
+ tion and which yields a physical interpretation of the re-
161
+ dundancy. Unlike [35, 36], the state transition matrix (C
162
+ in this paper) is not dependent on the configuration of
163
+ the manipulator, resulting in a single solution to the in-
164
+ verse kinematics for a given desired configuration. We
165
+ also present simplified kinematics for an incompressible
166
+ articulation section.
167
+
168
+ Fig. 1: An overview of the catheter robot.
169
+ 3
170
+ MATERIALS & METHODS
171
+ The following subsections will cover the design of
172
+ the robot (Section 3.1), the derivation of the redundant
173
+ control scheme and determination of its parameters (Sec-
174
+ tion 3.2), and the simple hysteresis and re-tension com-
175
+ pensations (Section 3.3).
176
+ 3.1
177
+ Design of Separable Tendon-Driven Robotic Ma-
178
+ nipulator
179
+ The proposed robotic system shown in Fig. 1 consists
180
+ of two parts: the back portion or reusable portion contains
181
+ four Faulhaber linear motors (LM 1483-080-11-C) with
182
+ motor drivers mounted to a plastic core. The plastic core
183
+ contains a channel along its central axis for an ultrasound
184
+ (US) cable or for any other sensor cables, which is shown
185
+ in blue in Fig. 1(a). The front portion or disposable por-
186
+ tion contains all of the tendons and includes the catheter’s
187
+ passive, proximal section and articulation section. The in-
188
+ terface from one tendon in the disposable portion shown
189
+ in Fig. 2 to its respective linear motor is as follows: 1)
190
+ the tendon (green) from the catheter is bent 90 degrees
191
+ around a low-friction roller and is wrapped around and
192
+ fastened to the small radius of the spool, 2) a separate
193
+ tendon (red) is wrapped around and fastened to the large
194
+ radius of the spool and then attached to the tendon anchor,
195
+ and 3) the tendon anchor is held in place by the fan lock
196
+ until the catheter is clipped together and the motor rod
197
+ Fig. 2: Disposable portion of the robot.
198
+ has connected to the tendon anchor via magnetic force.
199
+ The spools serve to increase the pulling force of the mo-
200
+ tors with a pulley ratio of R:r, where R is the larger radius
201
+ and r is the smaller radius; and in our case the ratio is
202
+ 3:1. The wave-disc spring serves to push the front portion
203
+ against a locking mechanism consisting of plastic hooks
204
+ in the back portion after the system has been clamped.
205
+
206
+ The back portion (i.e., reusable)
207
+ The front portion
208
+ (i.e., disposable)
209
+ motor driver
210
+ linear motor
211
+ O
212
+ ww 99
213
+ channel for sensor cables
214
+ motor rod
215
+ (a)
216
+ 298 mm
217
+ bending section
218
+ Existing device with passive,
219
+ flexible, proximal section (ACUSON
220
+ Conjoined front and back
221
+ AcuNavTM, Siemens Healthineers)
222
+ portions of the real robot
223
+ (b)
224
+ (c)fan lock
225
+ spool
226
+ tendons
227
+ slider
228
+ wave disc spring
229
+ tendon anchor
230
+ magnetFig. 3: Reusable portion of the robot.
231
+ The proposed design has several advantages:
232
+ 1) Direct actuation of the tendons via linear motors fa-
233
+ cilitates a more transparent control input and gives a
234
+ reliable measure of tendon tension via motor current.
235
+ This prevents the need for additional tension sensors
236
+ and reduces the complexity of hysteresis phenomena
237
+ compared to [8], simplifying the control problem.
238
+ 2) The reusable portion contains no tendons, meaning
239
+ that the issue of tendon wear present in many devices
240
+ is avoided. The disposable portion (Fig. 2) can be un-
241
+ clipped and reclipped indefinitely, since the fan lock
242
+ mechanism can clamp the tendons in place when the
243
+ disposable portion is not attached and since the inter-
244
+ face between the motor rods and the tendon anchors is
245
+ magnetic (it does not involve a single use fastener).
246
+ 3) The clipping system has a closing mechanism simi-
247
+ lar to that of a child-proof medicine bottle: the front
248
+ portion is pushed into the body until it makes contact,
249
+ pushed slightly farther and twisted, then released. Af-
250
+ ter releasing, the front is locked, the motors move their
251
+ rods toward the front until their magnets make con-
252
+ tact with the magnets on the tendon anchors, the slid-
253
+ ers are pushed away from each other to manually open
254
+ the fan-lock, and the motors are free to pull on the ten-
255
+ dons.
256
+ 3.2
257
+ Derivation of redundant control
258
+ 3.2.1
259
+ Moment balance equation
260
+ We borrow nomenclature from [37] and define the
261
+ robot’s configuration for a compressible bending section
262
+ as q = [κx,κz,εa]T, where curvature about the x-axis κx
263
+ [1/mm] corresponds to bending in the yz-plane, curva-
264
+ ture about the z-axis κz [1/mm] corresponds to bending
265
+ in the xy-plane, and axial strain εa [unitless] corresponds
266
+ to compression along the y-axis. Just as in [37], curvature
267
+ is chosen rather than bending angle for the configuration
268
+ variables to obtain linear kinematic and static equations.
269
+ First, we write the moment balance equation for a com-
270
+ pressible bending section and n tendons:
271
+
272
+
273
+ Kb
274
+ 0
275
+ 0
276
+ 0 Kb 0
277
+ 0
278
+ 0 Ka
279
+
280
+
281
+
282
+
283
+ κx
284
+ κz
285
+ εa
286
+
287
+ � =
288
+
289
+
290
+ dz1
291
+ dz2 ···
292
+ dzn
293
+ −dx1 −dx2 ···−dxn
294
+ 1
295
+ 1 ···
296
+ 1
297
+
298
+
299
+
300
+ ����
301
+ T1
302
+ T2
303
+ ...
304
+ Tn
305
+
306
+ ����,
307
+ (1)
308
+ where the matrix K is a stiffness matrix containing Kb
309
+ [N·mm2], which is bending stiffness with respect to cur-
310
+ vature κ, and Ka [N], which is axial stiffness with respect
311
+ to strain εa. The matrix D results from the cross prod-
312
+ uct of the tendon locations (dxi,dzi) [mm] with the tendon
313
+ tensions Ti [N] where i ∈ 1,2,...,n. A conceptual side-
314
+ view of the xy-plane and cross-section of the xz-plane are
315
+ shown in Fig. 4.
316
+ If the bending section undergoes negligible compres-
317
+ sion, we can deviate from Eq. (1) and reduce the robot’s
318
+ configuration to q = [κx,κz]T. The corresponding moment
319
+
320
+ sensorcable
321
+ motor rod
322
+ linear motor
323
+ motor
324
+ driverFig. 4: Conceptual side-view and cross-section. θz, κz,
325
+ and rz are the bending angle, curvature, and radius of cur-
326
+ vature about the z-axis (in the xy-plane). (dxi,dzi) are the
327
+ coordinates of tendon i relative to the central axis (y-axis)
328
+ of the robot.
329
+ balance for an incompressible bending section is:
330
+
331
+ Kb 0
332
+ 0 Kb
333
+ ��
334
+ κx
335
+ κz
336
+
337
+ =
338
+
339
+ dz1
340
+ dz2 ···
341
+ dzn
342
+ −dx1 −dx2 ···−dxn
343
+
344
+
345
+ ����
346
+ T1
347
+ T2
348
+ ...
349
+ Tn
350
+
351
+ ����.
352
+ (2)
353
+ We can write Eq. (1) or Eq. (2) in matrix form:
354
+ Kq = Dτ.
355
+ (3)
356
+ The relation in Eq. (3) describes the static equilibrium,
357
+ where the tendon tensions must balance against each
358
+ other and the spring-like forces inherent to the bending
359
+ of the catheter.
360
+ Let dim(τ) = m and dim(q) = n. When m > n, the
361
+ system is redundant since there are more inputs m than
362
+ outputs n. This means, for a given desired configuration
363
+ qd, there are infinitely many solutions τ to Eq. (3). It is
364
+ possible to solve this redundancy by minimizing the con-
365
+ trol effort via real-time optimization, but this will not
366
+ solve the issue of slack tendons. We could include the
367
+ constraint τ ≥ 0 in the optimization, but we can develop a
368
+ control scheme which resolves the redundancy and avoids
369
+ real-time optimization. Derivation of the control scheme
370
+ is handled for both the compressible and incompressible
371
+ cases.
372
+ 3.2.2
373
+ Compressible bending section (n=3, m=4)
374
+ Suppose we have four tendons located at 90 degree
375
+ increments around the central axis of the beam. If the
376
+ bending section is compressible, then we are using Eq. (1)
377
+ and have three outputs. With one more input than output,
378
+ we have one dimension of redundancy. Thus, the family
379
+ of solutions for a given desired output can be parameter-
380
+ ized along one vector, namely the vector which spans the
381
+ nullspace of the map from the input to the output. We re-
382
+ organize Eq. (1) and define C = K−1D, which is the map
383
+ from the input τ to the output q:
384
+ q = Cτ.
385
+ (4)
386
+ For a fully controllable system, rank(C) = n, and the lo-
387
+ cations of the tendons in this system render it fully con-
388
+ trollable (even if tendons can only pull, i.e., even if τ ≥ 0).
389
+ If we label the last tendon as redundant, we can partition
390
+ C into a full rank portion B, which is square, and a re-
391
+ dundant portion h, which is a column vector, as in [35]:
392
+ q = [B h]τ.
393
+ (5)
394
+ Given a desired output qd, the control input τ is:
395
+ τ =
396
+
397
+ −B−1h
398
+ 1
399
+
400
+ µ +
401
+
402
+ B−1qd
403
+ 0
404
+
405
+ ,
406
+ (6)
407
+ where the desired output with a scalable parameter µ has
408
+ no affect on the output. In other words, our family of so-
409
+ lutions is parameterized by µ along the direction of the
410
+ null space vector n = [−B−1h 1]T. The variable µ does
411
+ not affect the output because n is in the null space of C:
412
+ Cn = [B h]
413
+
414
+ −B−1h
415
+ 1
416
+
417
+ = 0.
418
+ (7)
419
+ The problems of redundancy and preventing tendon slack
420
+ are solved with Eq. (6) and an appropriate choice of µ. An
421
+ obvious choice for µ is the one that minimizes the control
422
+ effort [38, 39] as follows:
423
+ min
424
+ µ
425
+ 1
426
+ 2
427
+ n
428
+
429
+ i=1
430
+ T 2
431
+ i ,
432
+ s.t.
433
+ Ti ≥ 0,
434
+ (8)
435
+ where the constraints on Ti (no slack) and the bottom row
436
+ of Eq. (6) imply that µ ≥ 0. The choice of control input
437
+ in Eq. (6) allows us to directly calculate µmin instead of
438
+
439
+ y
440
+ Z
441
+ 4
442
+ 1
443
+ Bending
444
+ 1
445
+ Section
446
+ d
447
+ Kz
448
+ Z,4
449
+ d
450
+ z,1
451
+ 0z
452
+ x
453
+ d
454
+ dz,2
455
+ Z,3
456
+ Passive
457
+ Proximal
458
+ 3
459
+ 2
460
+ Section
461
+ x,2solving this optimization computationally. In the uncon-
462
+ strained case, the minimum is found as follows:
463
+ n
464
+
465
+ i=1
466
+ Ti
467
+ ∂Ti
468
+ ∂µ = 0.
469
+ (9)
470
+ If the solution to Eq. (9) does not violate the constraints
471
+ in Eq. (8), then that minimum is sufficient. If it does vi-
472
+ olate those constraints, then we simply pick the smallest
473
+ µ which satisfies all of the constraints. To highlight, let
474
+ the rows of B−1 be denoted by βi where i ∈ 1,2,3 such
475
+ that B−1 = [β1 β2 β3]T. Then we can write the constraints
476
+ from Eq. (8) for tension in each tendon:
477
+ Ti = −βihµ +βiqd ≥ 0 for i ∈ 1,2,3 ,
478
+ µ ≥ 0,
479
+ (10)
480
+ where we can see that every term in the equations except
481
+ for µ is determined by the structure of the robot (βi and
482
+ h) and the desired configuration (qd). The strength of this
483
+ controller is that, as long as the structure of the robot in C
484
+ does not vary explicitly with configuration or time, we can
485
+ choose a constant value for µ and achieve a control input
486
+ for any desired state qd without real-time optimization.
487
+ We elaborate on the previous statement and note the
488
+ limitations of the analysis so far. In our case, the choice
489
+ the redundant tendon and thus the redundant column of
490
+ C was arbitrary; we could choose any tendon and get the
491
+ same result. This is because the locations of the tendons
492
+ relative to the central axis do not depend on the system
493
+ configuration, which means that B is independent from
494
+ the input. In other robots [35], it is possible for B to
495
+ become ill-conditioned with changing configuration, in
496
+ which case an algorithm is required to ensure that an ap-
497
+ propriate tendon is chosen.
498
+ To summarize, a redundant control scheme is used
499
+ with a constant curvature assumption to resolve and take
500
+ advantage of this redundancy, in which the control ef-
501
+ fort is minimized while respecting feasibility constraints
502
+ (such as requiring a minimum tension for all tendons) as
503
+ in [35] but with two key differences. The first difference
504
+ is that the minimum is easily found analytically since µ
505
+ is the only unknown, and so there is no need to optimize
506
+ in real-time. The second difference is that the axial po-
507
+ sitions of the tendons do not change appreciably during
508
+ actuation, meaning that we will not encounter a singular
509
+ configuration and will not need to reconstruct B as in [35].
510
+ 3.2.3
511
+ Incompressible bending section (n=2, m=4)
512
+ In this case, the compression of the bending section is
513
+ negligible compared to the magnitude of bending. There-
514
+ fore, we can use Eq. (2) and will have two outputs. This
515
+ results in two dimensions of redundancy and a family of
516
+ solutions which can be parameterized by two scalars, µ1
517
+ and µ2, along the directions of two vectors, n1 and n2,
518
+ which span the null space of C. We arbitrarily label the
519
+ last two tendons as redundant and partition C into a full
520
+ rank portion B, which is square, and two redundant por-
521
+ tions h1 and h2, which are both column vectors. For a
522
+ given desired output qd, the control input τ as follows:
523
+ τ =
524
+
525
+
526
+ −B−1h1
527
+ 1
528
+ 0
529
+
530
+ �µ1 +
531
+
532
+
533
+ −B−1h2
534
+ 0
535
+ 1
536
+
537
+ �µ2 +
538
+
539
+
540
+ B−1qd
541
+ 0
542
+ 0
543
+
544
+ �, (11)
545
+ where µ1 and µ2 are the desired output with two scal-
546
+ able parameters. As before, adjusting µ1 or µ2 has no
547
+ affect on the output since n1 = [−B−1h1
548
+ 1
549
+ 0]T and
550
+ n2 = [−B−1h2 0 1]T lie in the null space of C:
551
+ Cn1 = [B h1 h2]
552
+
553
+
554
+ −B−1h1
555
+ 1
556
+ 0
557
+
558
+ � = 0,
559
+ Cn2 = [B h1 h2]
560
+
561
+
562
+ −B−1h2
563
+ 0
564
+ 1
565
+
566
+ � = 0.
567
+ (12)
568
+ If the tendons are located equidistant from each other
569
+ about the central axis, the assumption of incompressibil-
570
+ ity decouples the bending caused by one pair of tendons
571
+ (1 and 3) from the bending caused by the other pair of
572
+ tendons (2 and 4). In other words, n1 = [1 0 1 0]T and
573
+ n2 = [0 1 0 1]T, which means µ1 and µ2 do not appear in
574
+ the same tension equation. Thus, the minimum µ1 and µ2
575
+ can be determined independently, in a procedure similar
576
+ to the compressible case via Eq. (8) and Eq. (9). If we de-
577
+ note the rows of B by βi such that B = [β1 β2]T, we can
578
+ write as follows:
579
+ Ti = −βihµi +βiqd ≥ 0 for i ∈ 1,2 ,
580
+ µ1 ≥ 0,
581
+ µ2 ≥ 0,
582
+ (13)
583
+ where we can see that µ1 and µ2 are the only unknowns
584
+ and can be chosen independently. Again we see that we
585
+ need only pick µ1 and µ2 to obtain feasible tensions with-
586
+ out real-time optimization. For a minimum allowable ten-
587
+ sion of 0 (i.e., no slack condition), µ1 = µ2 = 0, but the
588
+ constraint τ ≥ 0 is generally not strict enough to ensure
589
+ that no slack occurs. Therefore, small constants should be
590
+
591
+ found experimentally for µ1 and µ2 to ensure a low pre-
592
+ tension which prevents slack tendons. Why this is referred
593
+ to as ”pre-tension” will be addressed in the discussion.
594
+ With µ1 and µ2 discussed, we move on to the kinematics
595
+ and summarize the procedure for determining the control
596
+ input.
597
+ 3.2.4
598
+ Kinematics
599
+ The preceding discussion dealt with determining the
600
+ force input (tendon tensions) for our redundant system.
601
+ However, it is often preferred and more stable to com-
602
+ mand actuator positions (tendon displacements). To con-
603
+ vert our control input from actuator forces τ to actuator
604
+ displacements y, we consider the conservation of strain
605
+ equation [37]:
606
+ y = DTL0q+LtK−1
607
+ t
608
+ τ,
609
+ (14)
610
+ where L0, Lt, and Kt are diagonal matrices containing the
611
+ undeformed bending section length L0, the unstretched
612
+ tendon lengths lt,i, and the length-normalized tendon stiff-
613
+ nesses kt,i, respectively. For instance, tendon 1 would
614
+ have unstretched length lt,1 located in row 1 and column 1
615
+ of Lt. The moment balance in Eq. (3) along with Eq. (14)
616
+ define a planar spring model in which the moments and
617
+ forces exerted by the tendons balance against the inherent
618
+ bending and axial stiffness of the articulation section. An
619
+ example for a two-tendon planar spring model is given in
620
+ Fig. 5. Using Eq. (3) we can finally obtain a direct relation
621
+ between y and τ:
622
+ y = (DTL0K−1D+LtK−1
623
+ t
624
+ )τ.
625
+ (15)
626
+ If the actuators pulled the tendons directly, Eq. (15)
627
+ would be sufficient. Since our system uses pulleys to in-
628
+ crease the effective pulling force of the actuators, we have
629
+ additional steps. The force felt by the motors τm is given
630
+ by:
631
+ τm = R−1τ,
632
+ (16)
633
+ where R is a diagonal matrix containing the pulley ratio.
634
+ Then, the displacement of the motors ym, which de-
635
+ pends on the displacement of the catheter tendons y and
636
+ the deflection of the additional tendons due to the motor
637
+ force τm, is as follows:
638
+ ym = Ry+LmK−1
639
+ t
640
+ τm,
641
+ (17)
642
+ Fig. 5: Planar spring model for two tendons: L0, Ka, and
643
+ Kb are the length, axial stiffness, and bending stiffness of
644
+ the articulation section; lt,i, kt,i, di, and yi are the unde-
645
+ formed length, stiffness, distance from the central axis,
646
+ and displacement of tendon i.
647
+ where Lm is a diagonal matrix containing the undeformed
648
+ lengths of the additional tendons lm,i, which are shown in
649
+ red in Fig. 2. Substituting Eq. (15) into Eq. (17) yields:
650
+ ym = R(DTL0K−1D+LtK−1
651
+ t
652
+ )τ +LmK−1
653
+ t
654
+ τm,
655
+ (18)
656
+ and replacing τ with τm using Eq. (16), we can rewrite
657
+ Eq. (17) in terms of the displacement of the actuators ym
658
+ and forces felt by the actuators τm:
659
+ ym = (R2(DTL0K−1D+LtK−1
660
+ t
661
+ )+LmK−1
662
+ t
663
+ )τm.
664
+ (19)
665
+ Now that we have Eq. (19), the process of determining the
666
+ control input can be summarized.
667
+ 3.2.5
668
+ Redundant control summary
669
+ The scalars µ1 and µ2 are found experimentally and
670
+ are chosen such that tendons remain in tension. Since
671
+ these values can effect parameter estimates, it is best to
672
+ leave them constant once they are chosen. Given µ1 and
673
+ µ2, the tendon tensions in τ which correspond to the
674
+ desired configuration qd are computed using Eq. (6) or
675
+ Eq. (11), depending on whether the manipulator is com-
676
+ pressible. The tensions in τ are converted into tendon dis-
677
+
678
+ Bending
679
+ Section
680
+ Passive
681
+ Proximal
682
+ Sectionplacements in y using Eq. (15). This method gives a sin-
683
+ gle vector y for any desired configuration qd, resolving
684
+ the redundancy while preventing slack tendons. The re-
685
+ dundant control input is considered the baseline input for
686
+ the remainder of this work.
687
+ Prior works have included τ ≥ 0 as a constraint in an
688
+ optimization which solves for minimum τ in cable-driven
689
+ platform [35] and dexterous hand applications [36]. Ca-
690
+ marillo et. al. [37] developed an algorithm which opti-
691
+ mizes τ while allowing slack tendons (as long as they
692
+ contribute no force) for a continuum manipulator. We dif-
693
+ fer from these works in that we leverage the structure
694
+ of the constant curvature kinematics to get an analytical
695
+ solution and avoid real-time optimization altogether. We
696
+ also differ from [37] since our method does not permit
697
+ slack tendons. With the baseline control input established,
698
+ we move on to the compensation methods.
699
+ 3.3
700
+ Practical Compensation methods
701
+ 3.3.1
702
+ Preliminaries: Time-shift and DC Offset
703
+ Before introducing the compensation methods, we
704
+ must mention the two phenomena which they will com-
705
+ pensate. In the presence of unmodeled hysteresis, an out-
706
+ put will tend to lag an input in an open-loop system each
707
+ time the direction of the input changes, due to backlash
708
+ from the hysteresis. For a periodic input, this lag mani-
709
+ fests as an obvious phase lag or time-shift as idealized in
710
+ Fig. 6a. We hypothesize that hysteresis compensation can
711
+ reduce this phenomena and thereby reduce error.
712
+ Bending of the passive proximal section will natu-
713
+ rally occur during operation of such flexible-steerable de-
714
+ vices, for instance in traversing blood vessels to reach the
715
+ heart in catheter applications, and this behavior is typi-
716
+ cally unmodeled. We found that introducing an angle in
717
+ the proximal section in one direction causes the articula-
718
+ tion section to bend in the other direction, as visible when
719
+ comparing Fig. 8a with 8b. We guess that this is caused
720
+ by the increased stretching and thus increased tension in
721
+ the outer tendon(s) and decreased tension in the inner ten-
722
+ don(s). This change in tensions causes an offset of the
723
+ unbent configuration of the articulation section, which re-
724
+ sults in an offset of the output. For a sinusoidal input in
725
+ the same plane as the proximal section deformation, the
726
+ offset in the output would manifest as a DC offset of the
727
+ sinusoid as shown in Fig. 6b.
728
+ We further predict that these two sources of error are,
729
+ for the most part, independent. For a sinusoidal input xin
730
+ with amplitude A and frequency ω, we would expect the
731
+ output xout to be shifted in time due to hysteresis by some
732
+ amount ts and offset due to the passive proximal section
733
+ 0
734
+ 0.2
735
+ 0.4
736
+ 0.6
737
+ 0.8
738
+ 1
739
+ time
740
+ -1.5
741
+ -1
742
+ -0.5
743
+ 0
744
+ 0.5
745
+ 1
746
+ 1.5
747
+ amplitude
748
+ baseline
749
+ shifted
750
+ (a) Idealized time-shift due to hysteresis
751
+ 0
752
+ 0.2
753
+ 0.4
754
+ 0.6
755
+ 0.8
756
+ 1
757
+ time
758
+ -1.5
759
+ -1
760
+ -0.5
761
+ 0
762
+ 0.5
763
+ 1
764
+ 1.5
765
+ amplitude
766
+ baseline
767
+ offset
768
+ (b) Idealized DC offset due to proximal section angle
769
+ Fig. 6: Phenomena in need of compensation.
770
+ angle by some amount As, as follows:
771
+ xin = Asin(ωt),
772
+ xout = Asin(ω(t −ts))+As.
773
+ (20)
774
+ 3.3.2
775
+ Simple hysteresis compensation for time-shift
776
+ The design of the robot and the control scheme result
777
+ in a hysteresis curve, shown in Fig. 7, which is very lin-
778
+ ear and has approximately no deadzone. The simplicity
779
+ of this hysteresis curve allows us to implement a simpli-
780
+ fied hysteresis compensation on top of the control scheme
781
+ which does not rely on extra sensors or tuning a large
782
+ number of parameters; however, those methods are com-
783
+ patible with the control scheme and could still be imple-
784
+ mented in future works.
785
+ The simple hysteresis compensation consists of a
786
+ constant value added to the desired input depending on
787
+
788
+ Fig. 7: Hysteresis curve with width w.
789
+ the direction of motion. This constant value is based on
790
+ the width w of the hysteresis curve, also shown in Fig. 7,
791
+ which can be determined from the input-output map of a
792
+ continuum manipulator and is device dependent. The in-
793
+ put and output are given as angles in degrees since bend-
794
+ ing angle is easier to conceptualize than curvature, and
795
+ the compensation equation is also given as an angle:
796
+ θd,h = θd + w
797
+ 2 .
798
+ (21)
799
+ This desired angle with hysteresis compensation θd,h
800
+ is converted into a desired curvature using the usual equa-
801
+ tion for constant curvature in the incompressible case:
802
+ κd,h = θd,h
803
+ L0
804
+ .
805
+ (22)
806
+ This additional compensation involves an adjustment
807
+ of the input configuration in order to achieve the configu-
808
+ ration which is truly desired, and thus it completely com-
809
+ patible with the previously described control scheme.
810
+ 3.3.3
811
+ Re-tension compensation for DC offset
812
+ The re-tension compensation aims to remove error
813
+ introduced by the passive proximal section angle, which
814
+ manifests as a DC offset for a sinusoidal input. This angle
815
+ can come about naturally in medical applications, such as
816
+ in the tortuous path of a catheter from the incision point to
817
+ the heart. In the baseline case, the robot is initialized, and
818
+ the passive proximal section angle is introduced with no
819
+ movement of the actuators. That is, the motors are pow-
820
+ ered and holding their positions under the assumption that
821
+ (a) Straight passive proximal section
822
+ (b) passive proximal section bent to 45◦ angle
823
+ Fig. 8: Experimental setup: testbed of robot has outer
824
+ cover removed; device is clipped a few centimeters proxi-
825
+ mal to the articulation section; and black tape marks prox-
826
+ imal section angles.
827
+ the proximal section is straight. This is not unreasonable,
828
+ as current kinematic and dynamic representations of con-
829
+ tinuum robots with bending sections make the assumption
830
+ that the passive proximal section is straight. In the case
831
+ with re-tension compensation, the robot is given approx-
832
+ imately 3-5 seconds to re-tension the tendons to the de-
833
+ sired pre-tension (0.25 N) after the passive proximal sec-
834
+ tion angle has been introduced but before data for the si-
835
+ nusoidal input is collected. Motor current is filtered using
836
+ a 3rd order Butterworth filter to remove high frequency
837
+ noise, and this filtered motor current is used along with
838
+ the force constant from the manufacturer to get a measure
839
+ of motor force and thus of tendon tension. It is anticipated
840
+ that re-tensioning the tendons will remove some of the er-
841
+ ror from the passive proximal section angle.
842
+ 4
843
+ EXPERIMENTS AND RESULTS
844
+ 4.1
845
+ Equipment and setup
846
+ The experimental setup is shown in Fig. 8. The pro-
847
+ totype was laid on a table, and the proximal section was
848
+ lightly clamped just proximal to the bending section using
849
+ a vise. A protractor was used to measure the angles for the
850
+
851
+ PNLMGREN
852
+ USB-to-CAN60
853
+ 40
854
+ [6ap] a]bue ndino
855
+ 20
856
+ 0
857
+ W
858
+ 20
859
+ -40
860
+ -60
861
+ -50
862
+ 0
863
+ 50
864
+ input angle [deg]PNLMGRENcatheter body, and tape was used to mark the locations on
865
+ the table. Special care was taken to keep the curve of the
866
+ proximal section tangent to the axis of the catheter body
867
+ and of the vise at all angles. Bending angle was measured
868
+ using an EM sensor (3D Guidance trakSTAR 2) for vali-
869
+ dation purposes only, meaning that the EM measurement
870
+ was not used in the control loop and that the control was
871
+ performed entirely using the kinematics.
872
+ 4.2
873
+ Parameter identification
874
+ Since compression of our articulation section is neg-
875
+ ligible, we use the equations and associated parameters
876
+ for an incompressible device. All parameters in the equa-
877
+ tions must be determined empirically. L0, Lt, Lm, R, and
878
+ Kt can be measured directly. µ1 and µ2 are determined
879
+ heuristically; they are chosen as the smallest constants
880
+ which result in no slack tendons–as measured from motor
881
+ current–for a few test inputs. K and D can be approx-
882
+ imated by the following parameter identification proce-
883
+ dure:
884
+ 1. Make initial guess for parameters.
885
+ 2. Input motor position trajectories which should
886
+ achieve desired bending angle as calculated from in-
887
+ verse kinematics and redundant control input.
888
+ 3. Update parameter guesses based on difference be-
889
+ tween desired and measured bending angle.
890
+ 4. Repeat steps 2 and 3 until parameter values converge.
891
+ This procedure is also rather heuristic, but it achieved
892
+ consistent values for K and D with a bisection search.
893
+ Parameter values are listed in Table 1. The tendon loca-
894
+ tions di, as seen in Fig. 4, are given as coordinates (x,z).
895
+ For simplicity, the tendon locations were assumed to be at
896
+ 90◦ increments around the central axis, but this assump-
897
+ tion is not necessary to complete the parameter identifi-
898
+ cation. For values which were not measured (i.e., Kb and
899
+ di), resolution refers to the smallest step of the bisection
900
+ used to identify the value.
901
+ 4.3
902
+ Experiments
903
+ The robot was tested under three scenarios of valida-
904
+ tion which are listed here in brief and explained in detail
905
+ in the subsections to follow.
906
+ 1. Straight Condition – sinusoidal input; no passive
907
+ proximal section angle; baseline and hysteresis com-
908
+ pensation
909
+ 2. Curved Condition – sinusoidal input; various passive
910
+ proximal section angles; baseline, re-tension, hys-
911
+ teresis, and re-tension + hysteresis (both) compensa-
912
+ tion
913
+ Table 1: Kinematic Parameters
914
+ Parameter
915
+ Value
916
+ Resolution
917
+ Units
918
+ d1
919
+ (0.492, -0.0868)
920
+ 0.00625
921
+ mm
922
+ d2
923
+ (0.0868, 0.492)
924
+ 0.00625
925
+ mm
926
+ d3
927
+ (-0.492, 0.0868)
928
+ 0.00625
929
+ mm
930
+ d4
931
+ (-0.0868, -0.492)
932
+ 0.00625
933
+ mm
934
+ Kb
935
+ 360.0
936
+ 3.125
937
+ N·mm2
938
+ kt
939
+ 1080
940
+ 5.0
941
+ N
942
+ L0
943
+ 60
944
+ 0.5
945
+ mm
946
+ lm,1
947
+ 20
948
+ 0.5
949
+ mm
950
+ lm,2
951
+ 25
952
+ 0.5
953
+ mm
954
+ lm,3
955
+ 20
956
+ 0.5
957
+ mm
958
+ lm,4
959
+ 30
960
+ 0.5
961
+ mm
962
+ lt,1
963
+ 775
964
+ 0.5
965
+ mm
966
+ lt,2
967
+ 785
968
+ 0.5
969
+ mm
970
+ lt,3
971
+ 775
972
+ 0.5
973
+ mm
974
+ lt,4
975
+ 785
976
+ 0.5
977
+ mm
978
+ R
979
+ 3.0
980
+ 0.1
981
+ unitless
982
+ µ1
983
+ 0.25
984
+ N/A
985
+ unitless
986
+ µ2
987
+ 0.25
988
+ N/A
989
+ unitless
990
+ 3. Dynamic Condition – re-tension compensation is
991
+ tested while passive proximal section angle is in-
992
+ creased dynamically
993
+ 4.3.1
994
+ First Scenario: Straight Condition
995
+ The first scenario tests the robot and the redundant
996
+ controller under the default condition of a straight pas-
997
+ sive proximal section. The proposed controller was val-
998
+ idated for the straight condition with three trials on a
999
+ test bed by following a desired sinusoidal input for bend-
1000
+ ing angle in one dimension. For each trial, the robot fol-
1001
+ lowed two cycles of the sinusoid, and the ground truth
1002
+ output angle was measured with an EM sensor, which was
1003
+ only used to evaluate performance.Tip position and bend-
1004
+ ing angle errors were described as mean absolute error
1005
+ (MAE) and standard deviation (StD). Performance was
1006
+ evaluated without and with simple hysteresis compensa-
1007
+ tion. The simple hysteresis compensation involved adjust-
1008
+ ing the input angle by a constant ± 10 degrees depending
1009
+ on the direction of motion as described in Eq. (21). The
1010
+ backlash width or width of the hysteresis curve (20◦) was
1011
+
1012
+ obtained based on the unique physical properties of the
1013
+ catheter [8].
1014
+ 4.3.2
1015
+ Second Scenario: Curved Condition
1016
+ We hypothesized that the shape of the passive prox-
1017
+ imal section affects the accuracy of the kinematics by al-
1018
+ tering the tensions in the tendons and that any increase
1019
+ in error would be caused by these changes tension. We
1020
+ implemented two types of compensation–one targeted at
1021
+ hysteresis and the other targeted at pre-tension errors
1022
+ caused by the passive proximal section angle–and hypoth-
1023
+ esized that these are two separate sources of error that
1024
+ would both require compensation. Data were collected
1025
+ using a test-bed of the prototype under various conditions
1026
+ for two periods of a sinusoidal input with an amplitude of
1027
+ 45◦ and a frequency of 0.1 Hz. Note that the input refers
1028
+ to bending angle, which is then converted to curvature for
1029
+ use in the kinematics. For baseline and re-tension com-
1030
+ pensation, trials were gathered for six passive proximal
1031
+ section angles (15, 30, 45, 60, 75, and 90 degrees) and
1032
+ two bending planes (yz and xy). For hysteresis compensa-
1033
+ tion and re-tension + hysteresis compensation, trials were
1034
+ gathered for three passive proximal section angles (30, 60,
1035
+ and 90 degrees) and two bending planes (yz and xy). Two
1036
+ bending planes are tested to confirm that error introduced
1037
+ by the passive proximal section angle is independent of
1038
+ the input plane.
1039
+ 4.3.3
1040
+ Third Scenario: Dynamic Condition
1041
+ Where the previous scenario examines the effect of
1042
+ the re-tension compensation on the output under static
1043
+ conditions, this scenario examines the re-tension compen-
1044
+ sation itself under dynamic conditions. In the previous
1045
+ cases, the re-tension compensation involved giving the
1046
+ robot a few seconds to recover the desired minimum ten-
1047
+ sions, which was followed by a desired input trajectory; in
1048
+ this case, the controller attempts to maintain the desired
1049
+ minimum tensions for all 30 seconds of each trial, and
1050
+ there is no trajectory input (only the re-tension compen-
1051
+ sation). The robot is moved manually for approximately
1052
+ 20 seconds to change the passive proximal section angle
1053
+ from 0 to 60 degrees and then allowed to settle for an ad-
1054
+ ditional 10 seconds. Data were collected for three trials,
1055
+ both without and with re-tension compensation. It was ex-
1056
+ pected that a large mismatch between the measured angle
1057
+ and the desired angle of 0 degrees would develop without
1058
+ re-tension compensation.
1059
+ Table 2: Bending angle error
1060
+ Angle
1061
+ Compensation
1062
+ Error ± StDev
1063
+ % Reduction
1064
+ 0◦
1065
+ baseline
1066
+ 6.11◦ ± 4.03◦
1067
+ N/A
1068
+ hysteresis
1069
+ 3.26◦ ± 2.90◦
1070
+ 46.6
1071
+ Fig. 9: One result for yz-plane bending: (a) Time ver-
1072
+ sus output angle without compensation (b) Time versus
1073
+ output angle with hysteresis compensation (c)(d) The in-
1074
+ put angle versus the output angle without/with hysteresis
1075
+ compensation.
1076
+ 4.4
1077
+ Results
1078
+ 4.4.1
1079
+ First Scenario: Straight Condition Results
1080
+ Fig. 9 shows bending angle without and with the sim-
1081
+ ple hysteresis compensation. The control of all tendons
1082
+ simultaneously allowed the removal of tendon slack and
1083
+ thereby deadzone present in conventional catheters. The
1084
+ overall performance evaluation is described in Table 2.
1085
+ The tip pose error (MAE) is reported as 6.1◦. With hys-
1086
+ teresis compensation, the position and orientation errors
1087
+ are improved 31% and 47%, respectively. Bending angle
1088
+ error is reduced by including the simple hysteresis com-
1089
+ pensation. We also see from Fig. 9c and 9d that hysteresis
1090
+ is reduced noticeably even with simple compensation.
1091
+ 4.4.2
1092
+ Second Scenario: Curved Condition Results
1093
+ For the xy-plane input, bending occurs in the same
1094
+ plane as the passive proximal section angle, since the pas-
1095
+ sive proximal section angle is created by moving the body
1096
+ to the right. Error bars denote the standard deviation over
1097
+ the three trials at that data point. Fig. 10 shows bending
1098
+ angle error for the six proximal section angles and four
1099
+ compensation types in the xy-plane and yz-plane, respec-
1100
+
1101
+ 80
1102
+ Input angle
1103
+ 80
1104
+ Inputangle
1105
+ 60
1106
+ Outputangle
1107
+ 60
1108
+ Outputangle
1109
+ [deg]
1110
+ 40
1111
+ 40
1112
+ e
1113
+ 20
1114
+ 20
1115
+ angl
1116
+ bending
1117
+ -20
1118
+ 20
1119
+ -40
1120
+ -40
1121
+ -60
1122
+ (a)
1123
+ 60
1124
+ (b)
1125
+ -80
1126
+ 20
1127
+ 40
1128
+ 60
1129
+ 80
1130
+ 100
1131
+ 120
1132
+ -80
1133
+ 0
1134
+ time [s]
1135
+ 20
1136
+ 40
1137
+ time [s]
1138
+ 60
1139
+ 80
1140
+ 100
1141
+ 120
1142
+ 80
1143
+ 80
1144
+ 60
1145
+ 60
1146
+ [deg]
1147
+ 40
1148
+ output angle [deg]
1149
+ 40
1150
+ 20
1151
+ output angle
1152
+ 0
1153
+ -20
1154
+ -20
1155
+ -40
1156
+ -40
1157
+ -60
1158
+ (c)
1159
+ 60
1160
+ (d)
1161
+ -80
1162
+ -80
1163
+ -60
1164
+ -40
1165
+ -20
1166
+ 0
1167
+ 20
1168
+ 40
1169
+ 60
1170
+ -60
1171
+ -40
1172
+ -20
1173
+ 0
1174
+ 20
1175
+ 40
1176
+ 60
1177
+ input angle[deg]
1178
+ input angle [deg]tively. From Fig. 10a it is clear that bending angle error in
1179
+ 15
1180
+ 30
1181
+ 45
1182
+ 60
1183
+ 75
1184
+ 90
1185
+ tail angle [deg]
1186
+ -5
1187
+ 0
1188
+ 5
1189
+ 10
1190
+ 15
1191
+ 20
1192
+ 25
1193
+ 30
1194
+ 35
1195
+ 40
1196
+ bending angle error [deg]
1197
+ baseline
1198
+ re-tension
1199
+ hysteresis
1200
+ re-tension + hysteresis
1201
+ (a) xy-plane bending angle error
1202
+ 15
1203
+ 30
1204
+ 45
1205
+ 60
1206
+ 75
1207
+ 90
1208
+ tail angle [deg]
1209
+ -5
1210
+ 0
1211
+ 5
1212
+ 10
1213
+ 15
1214
+ 20
1215
+ 25
1216
+ 30
1217
+ 35
1218
+ 40
1219
+ bending angle error [deg]
1220
+ baseline
1221
+ re-tension
1222
+ hysteresis
1223
+ re-tension + hysteresis
1224
+ (b) yz-plane bending angle error
1225
+ Fig. 10: Bending angle error for different compensation
1226
+ types and proximal section angles.
1227
+ the xy-plane increases with increasing proximal section
1228
+ angle for all compensation types; however, both compen-
1229
+ sations with re-tension were less susceptible to this error
1230
+ increase. Error in the yz-plane is unaffected because the
1231
+ passive proximal section is bent in the xy-plane. The er-
1232
+ ror values (RMSE), standard deviations, and percent re-
1233
+ duction in error relative to the baseline case are given in
1234
+ Table 3, and the averages for the proximal section angles
1235
+ with all compensation types are in Table 4.
1236
+ To give a closer look at how error increases with
1237
+ proximal section angle, bending angle for 30, 60, and 90
1238
+ degrees is shown in Fig. 11, where shaded regions denote
1239
+ the standard deviation of the trajectory for its correspond-
1240
+ ing color.
1241
+ Table 3: xy-plane bending angle error
1242
+ Angle
1243
+ Compensation
1244
+ Error ± StDev
1245
+ % Reduction
1246
+ 15◦
1247
+ baseline
1248
+ 8.52◦ ± 3.62◦
1249
+ N/A
1250
+ re-tension
1251
+ 8.66◦ ± 2.43◦
1252
+ -1.62
1253
+ hysteresis
1254
+
1255
+
1256
+ both
1257
+
1258
+
1259
+ 30◦
1260
+ baseline
1261
+ 13.54◦ ± 3.52◦
1262
+ N/A
1263
+ re-tension
1264
+ 9.26◦ ± 2.64◦
1265
+ 31.64
1266
+ hysteresis
1267
+ 8.17◦ ± 1.23◦
1268
+ 39.66
1269
+ both
1270
+ 4.66◦ ± 1.65◦
1271
+ 65.55
1272
+ 45◦
1273
+ baseline
1274
+ 16.98◦ ± 2.90◦
1275
+ N/A
1276
+ re-tension
1277
+ 9.12◦ ± 1.79◦
1278
+ 46.28
1279
+ hysteresis
1280
+
1281
+
1282
+ both
1283
+
1284
+
1285
+ 60◦
1286
+ baseline
1287
+ 19.37◦ ± 3.38◦
1288
+ N/A
1289
+ re-tension
1290
+ 11.50◦ ± 4.14◦
1291
+ 40.62
1292
+ hysteresis
1293
+ 24.76◦ ± 1.43◦
1294
+ -27.86
1295
+ both
1296
+ 11.17◦ ± 4.25◦
1297
+ 42.31
1298
+ 75◦
1299
+ baseline
1300
+ 27.53◦ ± 5.98◦
1301
+ N/A
1302
+ re-tension
1303
+ 12.39◦ ± 4.45◦
1304
+ 55.00
1305
+ hysteresis
1306
+
1307
+
1308
+ both
1309
+
1310
+
1311
+ 90◦
1312
+ baseline
1313
+ 32.79◦ ± 6.17◦
1314
+ N/A
1315
+ re-tension
1316
+ 15.68◦ ± 5.18◦
1317
+ 52.19
1318
+ hysteresis
1319
+ 32.45◦ ± 1.91◦
1320
+ 1.03
1321
+ both
1322
+ 16.66◦ ± 1.54◦
1323
+ 49.19
1324
+ Table 4: Average xy-plane bending angle error, average
1325
+ standard deviation, and average % error reduction for the
1326
+ 30◦, 60◦, and 90◦ trials
1327
+ Compensation
1328
+ Error ± StDev
1329
+ % Reduction
1330
+ baseline
1331
+ 21.90◦ ± 4.36◦
1332
+ N/A
1333
+ re-tension
1334
+ 12.15◦ ± 3.99◦
1335
+ 41.48
1336
+ hysteresis
1337
+ 21.79◦ ± 2.48◦
1338
+ 4.28
1339
+ both
1340
+ 10.83◦ ± 1.54◦
1341
+ 52.35
1342
+
1343
+ 0
1344
+ 5
1345
+ 10
1346
+ 15
1347
+ 20
1348
+ time [s]
1349
+ -80
1350
+ -60
1351
+ -40
1352
+ -20
1353
+ 0
1354
+ 20
1355
+ 40
1356
+ 60
1357
+ 80
1358
+ bending angle [deg]
1359
+ baseline
1360
+ re-tension
1361
+ hysteresis
1362
+ both
1363
+ desired
1364
+ (a) xy-plane angle at 30◦ proximal section angle
1365
+ 0
1366
+ 5
1367
+ 10
1368
+ 15
1369
+ 20
1370
+ time [s]
1371
+ -80
1372
+ -60
1373
+ -40
1374
+ -20
1375
+ 0
1376
+ 20
1377
+ 40
1378
+ 60
1379
+ 80
1380
+ bending angle [deg]
1381
+ baseline
1382
+ re-tension
1383
+ hysteresis
1384
+ both
1385
+ desired
1386
+ (b) xy-plane angle at 60◦ proximal section angle
1387
+ 0
1388
+ 5
1389
+ 10
1390
+ 15
1391
+ 20
1392
+ time [s]
1393
+ -80
1394
+ -60
1395
+ -40
1396
+ -20
1397
+ 0
1398
+ 20
1399
+ 40
1400
+ 60
1401
+ 80
1402
+ bending angle [deg]
1403
+ baseline
1404
+ re-tension
1405
+ hysteresis
1406
+ both
1407
+ desired
1408
+ (c) xy-plane angle at 90◦ proximal section angle
1409
+ Fig. 11: Bending angle for different compensation types
1410
+ at three proximal section angles.
1411
+ 15
1412
+ 30
1413
+ 45
1414
+ 60
1415
+ 75
1416
+ 90
1417
+ tail angle [deg]
1418
+ -40
1419
+ -35
1420
+ -30
1421
+ -25
1422
+ -20
1423
+ -15
1424
+ -10
1425
+ -5
1426
+ 0
1427
+ 5
1428
+ DC offset [deg]
1429
+ baseline
1430
+ re-tension
1431
+ hysteresis
1432
+ both
1433
+ Fig. 12: Bending angle offset for different compensation
1434
+ types and proximal section angles.
1435
+ Going from Fig. 11a to 11b and from Fig. 11b to 11c,
1436
+ the source of the increasing error becomes more obvious:
1437
+ increases in passive proximal section angle caused an in-
1438
+ crease in the offset or bias error of the catheter tip. This
1439
+ phenomenon was visible in the bending section during ex-
1440
+ perimentation, and can be seen when comparing the tip in
1441
+ Fig. 8a to the tip in Fig. 8b. Also of note, the quality of the
1442
+ output angle degrades as the offset increases; this can be
1443
+ seen by examining the baseline or hysteresis compensated
1444
+ angle as the offset gets large and may be due to increased
1445
+ friction in the tendon sheath mechanism.
1446
+ To better show how the re-tension and hysteresis
1447
+ compensation reduce error from different sources, we ex-
1448
+ amine the DC offset and the time delay of the bending
1449
+ angle in Fig. 12 and Fig. 13, respectively. Time delay was
1450
+ computed by filtering the output (low pass, cutoff 2 Hz)
1451
+ and finding the cross-correlation between each output and
1452
+ the input. DC offset is the distance of the mean of each fil-
1453
+ tered output from zero.
1454
+ The increasing DC offset for increasing proximal
1455
+ section angle in Fig. 13 reflects the increasing error seen
1456
+ in Fig. 10a. It also mirrors Fig. 10a in that the re-tension
1457
+ and re-tension + hysteresis compensation trials are less af-
1458
+ fected by the offset, just as these compensations both had
1459
+ lower error for increasing proximal section angle. This
1460
+ strongly suggests that this offset is the primary source
1461
+ of error, and it is caused by the passive proximal section
1462
+ angle. From Fig. 13, it is clear that the simple hysteresis
1463
+ compensation reduces the time delay from hysteresis by
1464
+ half. However, Fig. 10a shows that the reduction in hys-
1465
+ teresis does not reduce the error substantially for increas-
1466
+ ing proximal section angle, relative to the error reduction
1467
+ from the re-tension compensation. This furthers the idea
1468
+
1469
+ 15
1470
+ 30
1471
+ 45
1472
+ 60
1473
+ 75
1474
+ 90
1475
+ tail angle [deg]
1476
+ 0
1477
+ 0.1
1478
+ 0.2
1479
+ 0.3
1480
+ 0.4
1481
+ 0.5
1482
+ 0.6
1483
+ time delay [seconds]
1484
+ baseline
1485
+ re-tension
1486
+ hysteresis
1487
+ both
1488
+ Fig. 13: Bending angle time delay for different compen-
1489
+ sation types and proximal section angles.
1490
+ that the DC offset caused by the passive proximal sec-
1491
+ tion angle is the larger source of error, especially at higher
1492
+ proximal section angles, and that the effect of the proxi-
1493
+ mal section angle on the bending section should not be
1494
+ ignored.
1495
+ For the yz-plane input, bending occurs perpendicular
1496
+ to the plane in which the passive proximal section is bent.
1497
+ Fig. 14 shows that the error in the xy-plane still increases
1498
+ with proximal section angle, even though the input is in
1499
+ the yz-plane. The trials with re-tension compensation still
1500
+ exhibit less error for increasing proximal section angle as
1501
+ well. There is no data for trials with hysteresis compensa-
1502
+ tion at 60 degrees.
1503
+ We again see the trend on increasing error in the xy-
1504
+ plane reflected in the DC offset of the output in the xy-
1505
+ plane in Fig. 15, although it is less pronounced than in
1506
+ the xy-input case. The trials with re-tension compensa-
1507
+ tion have lower offset at 90 degrees compared to those
1508
+ without, but it is difficult to say for certain whether the
1509
+ overall trend from the xy-input case is preserved with the
1510
+ lower offset numbers and missing 60 degree hysteresis
1511
+ data. Fig. 16 shows that the hysteresis compensation re-
1512
+ duced the time delay by half as expected from the xy-
1513
+ input case.
1514
+ 4.4.3
1515
+ Third Scenario: Dynamic Condition Results
1516
+ The effect of introducing the passive proximal sec-
1517
+ tion angle in a dynamic scenario is shown in Fig. 17. If
1518
+ the passive proximal section angle had no effect on the
1519
+ kinematics, we would expect to see θx,EM and θz,EM both
1520
+ remain close to 0 for the duration of the trial in Fig. 17a.
1521
+ However, in Fig. 17a we instead see the consequence of
1522
+ increasing the passive proximal section angle from 0 to
1523
+ 15
1524
+ 30
1525
+ 45
1526
+ 60
1527
+ 75
1528
+ 90
1529
+ tail angle [deg]
1530
+ -5
1531
+ 0
1532
+ 5
1533
+ 10
1534
+ 15
1535
+ 20
1536
+ 25
1537
+ 30
1538
+ 35
1539
+ 40
1540
+ bending angle error [deg]
1541
+ baseline
1542
+ re-tension
1543
+ hysteresis
1544
+ re-tension + hysteresis
1545
+ (a) xy-plane bending angle error
1546
+ 15
1547
+ 30
1548
+ 45
1549
+ 60
1550
+ 75
1551
+ 90
1552
+ tail angle [deg]
1553
+ -5
1554
+ 0
1555
+ 5
1556
+ 10
1557
+ 15
1558
+ 20
1559
+ 25
1560
+ 30
1561
+ 35
1562
+ 40
1563
+ bending angle error [deg]
1564
+ baseline
1565
+ re-tension
1566
+ hysteresis
1567
+ re-tension + hysteresis
1568
+ (b) yz-plane bending angle error
1569
+ Fig. 14: Bending angle error for different compensation
1570
+ types and proximal section angles (yz-plane input).
1571
+ 15
1572
+ 30
1573
+ 45
1574
+ 60
1575
+ 75
1576
+ 90
1577
+ tail angle [deg]
1578
+ -40
1579
+ -30
1580
+ -20
1581
+ -10
1582
+ 0
1583
+ 10
1584
+ 20
1585
+ 30
1586
+ 40
1587
+ DC offset [deg]
1588
+ baseline
1589
+ re-tension
1590
+ hysteresis
1591
+ both
1592
+ Fig. 15: Bending angle offset for different compensation
1593
+ types and proximal section angles (yz-plane input).
1594
+
1595
+ 15
1596
+ 30
1597
+ 45
1598
+ 60
1599
+ 75
1600
+ 90
1601
+ tail angle [deg]
1602
+ -0.1
1603
+ 0
1604
+ 0.1
1605
+ 0.2
1606
+ 0.3
1607
+ 0.4
1608
+ 0.5
1609
+ 0.6
1610
+ time delay [seconds]
1611
+ baseline
1612
+ re-tension
1613
+ hysteresis
1614
+ both
1615
+ Fig. 16: Bending angle time delay for different compen-
1616
+ sation types and proximal section angles (yz-plane input).
1617
+ 0
1618
+ 5
1619
+ 10
1620
+ 15
1621
+ 20
1622
+ 25
1623
+ 30
1624
+ time [s]
1625
+ -5
1626
+ 0
1627
+ 5
1628
+ 10
1629
+ 15
1630
+ 20
1631
+ 25
1632
+ angle [deg]
1633
+ x
1634
+ z
1635
+ x,EM
1636
+ z,EM
1637
+ (a) baseline (no re-tension compensation)
1638
+ 0
1639
+ 5
1640
+ 10
1641
+ 15
1642
+ 20
1643
+ 25
1644
+ 30
1645
+ time [s]
1646
+ -40
1647
+ -30
1648
+ -20
1649
+ -10
1650
+ 0
1651
+ 10
1652
+ 20
1653
+ angle [deg]
1654
+ x
1655
+ z
1656
+ x,EM
1657
+ z,EM
1658
+ (b) re-tension compensation
1659
+ Fig. 17: Dynamic tests with re-tension compensation:
1660
+ dashed lines are angles according to the kinematics, and
1661
+ solid lines are measured by the EM sensor.
1662
+ Table 5: Configuration error after introduction of proxi-
1663
+ mal section angle
1664
+ Angle
1665
+ Compensation
1666
+ Error ± StDev
1667
+ % Reduction
1668
+ θx,EM
1669
+ baseline
1670
+ -1.69◦ ± 0.12◦
1671
+ N/A
1672
+ re-tension
1673
+ -0.47◦ ± 0.82◦
1674
+ 72.29
1675
+ θz,EM
1676
+ baseline
1677
+ 20.94◦ ± 1.09◦
1678
+ N/A
1679
+ re-tension
1680
+ -2.27◦ ± 0.89◦
1681
+ 89.14
1682
+ 60 degrees in the xy-plane without compensation is that
1683
+ the measured angle θz,EM accumulates over 20 degrees of
1684
+ error (over a 20 degree offset from 0). This agrees closely
1685
+ with the mean error for the baseline trial in the static case
1686
+ in Fig. 10a, further supporting that most of the error in the
1687
+ static case comes from this offset error. We also see that
1688
+ this behavior is not captured well by the kinematics, since
1689
+ θx and θz only deviate by a few degrees.
1690
+ In Fig. 17b, the re-tension compensation succeeds in
1691
+ bringing θx,EM and θz,EM back to 0 by the end of the trial.
1692
+ There is a trade-off visible in the trajectory for θz,EM in
1693
+ Fig. 17b. If the sensitivity of the controller is increased,
1694
+ the trajectory will be held closer to 0, but the oscillations
1695
+ in the trajectory will increase. Table 5 gives the measured
1696
+ error in the configuration–in this case deviation from the
1697
+ starting configuration (0,0) by the end of the trial–along
1698
+ with the reduction in error due to the re-tension compen-
1699
+ sation.
1700
+ 5
1701
+ DISCUSSION
1702
+ The design of the robot allowed for the easy imple-
1703
+ mentation of the redundant controller and additional com-
1704
+ pensation methods. The current actuators are not strong
1705
+ enough to exceed the breaking force of the magnets, but
1706
+ if more powerful actuators were used, this could become
1707
+ an issue. A good addition to the design to overcome this
1708
+ would be a rail structure which contains the tendon an-
1709
+ chors without obstructing the tendons; this rail structure
1710
+ would allow the motors to reestablish contact with the
1711
+ tendon anchors after a disconnect.
1712
+ During the procedure for determining µ1 and µ2 in
1713
+ the methods section, we referred to these values as “pre-
1714
+ tension”. This is because mathematical redundancy in real
1715
+ systems often points to a physical phenomenon, in this
1716
+ case the magnitude of pre-tension or co-contraction of
1717
+ opposing tendons. If we assume the four tendons are at
1718
+ 90 degree increments and incompressibility (as were both
1719
+ the case with our experiments), the redundancy represents
1720
+ the co-contraction or simultaneous pulling of opposing
1721
+
1722
+ tendons, such as tendons 1 and 3 or tendons 2 and 4,
1723
+ just as opposing tendons are pulled in muscle contrac-
1724
+ tions. Furthermore, the magnitude of this co-contraction
1725
+ is determined by µ1 and µ2. In theory, µ1 and µ2 could
1726
+ be any positive value without affecting the configuration
1727
+ of the manipulator. In practice, large values of µ1 or µ2
1728
+ could cause compression of the “incompressible” bend-
1729
+ ing section, buckling of the passive proximal section, and
1730
+ changes in the stiffness estimates. Thus, it is best to use
1731
+ small values of µ1 and µ2 as a method for preventing slack
1732
+ tendons in that any µ1 or µ2 value above zero effectively
1733
+ enforces a pre-tension in the corresponding tendons equal
1734
+ to the magnitude of µ1 or µ2. We also suggested keeping
1735
+ the scalable redundant parameters µ1 and µ2 constant to
1736
+ avoid affecting other parameter estimates such as bend-
1737
+ ing stiffness. There is room for future experimentation in
1738
+ which these parameters are intentionally varied in order
1739
+ to obtain variable stiffness behavior, akin to impedance
1740
+ control.
1741
+ The deflection of the passive proximal section to the
1742
+ right caused an offset of the bending section to the left,
1743
+ irrespective of the plane of the input. This offset was the
1744
+ primary source of bending angle error and increased with
1745
+ increasing passive proximal section deflection. Simple
1746
+ hysteresis compensation alone did not substantially re-
1747
+ duce bending angle error, although it did reduce the phase
1748
+ lag of the output. Re-tension compensation reduced DC
1749
+ offset and bending angle error, both alone and with hys-
1750
+ teresis compensation. Compensation methods were kept
1751
+ simple so that the sources of error were not obscured and
1752
+ so that they can be implemented in the absence of a tip
1753
+ sensor; however, there is room for future work involv-
1754
+ ing more complex re-tension or hysteresis compensations,
1755
+ perhaps relying on additional sensors.
1756
+ The trials with re-tension compensation had reduced
1757
+ error at all angles in the passive proximal section relative
1758
+ to trials without. By adjusting the tendon tensions to their
1759
+ minimum values, the compensation can be seen as get-
1760
+ ting much closer to a neutral, unstretched state which the
1761
+ proximal section is assumed to have by kinematics mod-
1762
+ els in the state of the art. However, even for trials with
1763
+ re-tension compensation, error still increases for increas-
1764
+ ing proximal section angle. That is likely because, even
1765
+ with the tendon tensions adjusted, the proximal section
1766
+ is still deformed, deforming the tendon sheaths and the
1767
+ outer casing of the proximal section and articulation sec-
1768
+ tion. These deformations are not fully compensated by the
1769
+ re-tension compensation and should be investigated in fu-
1770
+ ture works.
1771
+ The amount of time the re-tension compensation was
1772
+ given to reach the desired tension was arbitrary. Since the
1773
+ re-tension occurs before the trial in the second scenario,
1774
+ the time spent re-tensioning does not affect the controller
1775
+ during the trial. This compensation is useful for any appli-
1776
+ cation where the proximal shape will remain unchanged
1777
+ for a long period of time, such as after insertion of a heart
1778
+ catheter. For the dynamic case in the third scenario, the re-
1779
+ tension occurs while the proximal section shape is chang-
1780
+ ing. This type of compensation would be useful for ap-
1781
+ plications where the shape is changing over time, such as
1782
+ during insertion of a catheter.
1783
+ The trials with hysteresis compensation tended to
1784
+ have lower error than those without for the lower prox-
1785
+ imal section angles, and the same or slightly higher er-
1786
+ ror for the higher angles. That hysteresis compensation is
1787
+ less helpful at higher angles is unsurprising, as we would
1788
+ expect errors from the proximal section angle to be the
1789
+ dominant source of error at higher angles. It is a little sur-
1790
+ prising that hysteresis compensation would cause a slight
1791
+ increase in error at some of the higher angles, and this
1792
+ would suggest that the two sources of error, proximal sec-
1793
+ tion angle and hysteresis, are not entirely decoupled. That
1794
+ said, the data presented regarding DC offset and time-
1795
+ shift and the fact the error increase is small both suggest
1796
+ that the phenomena are mostly independent.
1797
+ The amount of hysteresis compensation was based
1798
+ on the width of the hysteresis curve. This curve was rel-
1799
+ atively constant for different input amplitudes but not ex-
1800
+ actly constant. There is room for future work in augment-
1801
+ ing this simple hysteresis compensation by varying the
1802
+ magnitude slightly based on the input amplitude or some
1803
+ other factor.
1804
+ The passive proximal section angle affects the accu-
1805
+ racy of the kinematics, and the magnitude of this effect
1806
+ should not be ignored. How it is included depends on
1807
+ whether a sensor is present at the tip of the continuum
1808
+ manipulator. With a tip sensor for closed-loop control, the
1809
+ deviation between the desired output and the measured
1810
+ output can be used to update the kinematics or dynamics
1811
+ to account for the proximal section angle, whether it up-
1812
+ dates the system parameters directly or simply adds an ad-
1813
+ ditional term to the equations. Without a tip sensor there
1814
+ is no way to update the kinematics or dynamics real-time
1815
+ without first measuring the behavior for different passive
1816
+ proximal section angles off-line, and so they should be
1817
+ adjusted off-line based on the behavior of the system at
1818
+ different expected configurations of the passive proximal
1819
+ section.
1820
+ A strength of this study is that a one-dimensional an-
1821
+ gle in the passive proximal section causes a clear one-
1822
+ dimensional change in the bending section, but this is also
1823
+ its limitation. The effect of multiple bends in different di-
1824
+ rections, such as two bends in an S-shaped curve, of the
1825
+ passive proximal section should be investigated in future
1826
+
1827
+ work, though the relationship between the passive proxi-
1828
+ mal section shape and the bending section may not be as
1829
+ simple to characterize.
1830
+ 6
1831
+ CONCLUSION
1832
+ We introduced a separable tendon-driven robot ma-
1833
+ nipulator which addresses practical issues in actuation
1834
+ and sterilization. The separable design allows for reuse of
1835
+ all electromechanical components and does not use ten-
1836
+ dons in the reusable portion, avoiding mechanical wear.
1837
+ The interface between the actuators and the tendons is
1838
+ very transparent and all tendons are actuated, allowing
1839
+ for easier mitigation of backlash and deadzone. The fan-
1840
+ lock and magnetic interface allow for un-clipping and re-
1841
+ clipping.
1842
+ We presented a control scheme which utilizes the
1843
+ simplicity of constant curvature to yield a single solution
1844
+ to the inverse kinematics without the need for real-time
1845
+ optimization. The control scheme can be used without a
1846
+ tip sensor and does not require high fidelity knowledge
1847
+ of system parameters a priori, which is frequently lacking
1848
+ for mass-produced medical devices.
1849
+ The control scheme was validated along with addi-
1850
+ tional re-tension compensation for proximal section an-
1851
+ gle and hysteresis compensation. On average, error was
1852
+ reduced by 41.48% for re-tension, 4.28% for hysteresis,
1853
+ and 52.35% for re-tension + hysteresis compensation rel-
1854
+ ative to the baseline case. The re-tension compensation
1855
+ was tested for dynamic changes in the proximal section.
1856
+ The error in the final configuration of the tip was reduced
1857
+ by 89.14% relative to the baseline case
1858
+ 7
1859
+ DISCLAIMER
1860
+ The concepts and information presented in this paper
1861
+ are based on research results that are not commercially
1862
+ available. Future availability cannot be guaranteed.
1863
+ 8
1864
+ ACKNOWLEDGEMENT
1865
+ Research reported in this publication was supported
1866
+ in part by the National Institute of Biomedical Imaging
1867
+ and Bioengineering of the National Institutes of Health
1868
+ under award number R01EB028278. The content is solely
1869
+ the responsibility of the authors and does not necessarily
1870
+ represent the official views of the National Institutes of
1871
+ Health.
1872
+ REFERENCES
1873
+ [1] Stereotaxis, 2020, Stereotaxis v-drive robotic navigation
1874
+ system, Feb. http://www.stereotaxis.com/products/vdrive.
1875
+ [2] Kim, Y.-H., Collins, J., Li, Z., Chinnadurai, P., Kapoor,
1876
+ A., Lin, C. H., and Mansi, T., 2022, “Automated catheter
1877
+ tip repositioning for intra-cardiac echocardiography,” In-
1878
+ ternational Journal of Computer Assisted Radiology and
1879
+ Surgery, 17, p. 1409–1417.
1880
+ [3] Reddy, MD, V. Y., Neuzil, MD, P., Malchano, BS, Z. J., Vi-
1881
+ jaykumar, BS, R., Cury, MD, R., Abbara, MD, S., Weichet,
1882
+ MD, J., McPherson, BS, C. D., and Ruskin, MD, J. N.,
1883
+ 2007, “View-Synchronized Robotic Image-Guided Ther-
1884
+ apy for Atrial Fibrillation Ablation,” Circulation, 115(21),
1885
+ May, pp. 2705–2714.
1886
+ [4] Agrawal, A., Hogarth, D. K., and Murgu, S., 2020,
1887
+ “Robotic bronchoscopy for pulmonary lesions: a review
1888
+ of existing technologies and clinical data,” Journal of Tho-
1889
+ racic Disease, 12(6), June, pp. 3279–3286.
1890
+ [5] Intuitive Surgical, 2022, Ion platform - robotic-assisted
1891
+ bronchoscopy https://www.intuitive.com/en-us/products-
1892
+ and-services/ion.
1893
+ [6] Johnson
1894
+ &
1895
+ Johnson
1896
+ ,
1897
+ 2022,
1898
+ Monarch
1899
+ platform
1900
+ https://www.jnjmedtech.com/en-US/product/monarch-
1901
+ bronchoscopy.
1902
+ [7] Dupont, P. E., Simaan, N., Choset, H., and Rucker, C.,
1903
+ 2022,
1904
+ “Continuum Robots for Medical Interventions,”
1905
+ Proceedings of the IEEE, 110(7), July, pp. 847–870.
1906
+ [8] Lee, D.-H., Kim, Y.-H., Collins, J., Kapoor, A., Kwon, D.-
1907
+ S., and Mansi, T., 2021, “Non-linear hysteresis compensa-
1908
+ tion of a tendon-sheath-driven robotic manipulator using
1909
+ motor current,” IEEE Robotics and Automation Letters,
1910
+ 6(2), pp. 1224–1231.
1911
+ [9] Daoud, E. G., Kalbfletsch, S. J., and Hummel, J. D., 1999,
1912
+ “Intracardiac Echocardiography to Guide Transseptal Left
1913
+ Heart Catheterization for Radiofrequency Catheter Abla-
1914
+ tion,” Journal of Cardiovascular Electrophysiology, 10(3),
1915
+ Mar., pp. 358–363.
1916
+ [10] Khoshnam, M., Khalaji, I., and Patel, R. V., 2015,
1917
+ “A
1918
+ robotics-assisted catheter manipulation system for car-
1919
+ diac ablation with real-time force estimation,”
1920
+ In 2015
1921
+ IEEE/RSJ International Conference on Intelligent Robots
1922
+ and Systems (IROS), pp. 3202–3207.
1923
+ [11] Khoshnam, M., and Patel, R. V., 2017, “Robotics-Assisted
1924
+ Control of Steerable Ablation Catheters Based on the
1925
+ Analysis of Tendon-Sheath Transmission Mechanisms,”
1926
+ IEEE/ASME Transactions on Mechatronics, 22(3), June,
1927
+ pp. 1473–1484.
1928
+ [12] Bai, R., Di Biase, L., Valderrabano, M., Lorgat, F., Ml-
1929
+ cochova, H., Tilz, R., Meyerfeldt, U., Hranitzky, P. M.,
1930
+ Wazni, O., Kanagaratnam, P., Doshi, R. N., Gibson, D.,
1931
+ Pisapia, A., Mohanty, P., Saliba, W., Ouyang, F., Kautzner,
1932
+ J., Gallinghouse, G. J., and Natale, A., 2012,
1933
+ “World-
1934
+ wide Experience with the Robotic Navigation System in
1935
+ Catheter Ablation of Atrial Fibrillation: Methodology, Ef-
1936
+ ficacy and Safety,”
1937
+ Journal of Cardiovascular Electro-
1938
+ physiology, 23(8), pp. 820–826.
1939
+
1940
+ [13] Khan, E. M., Frumkin, W., Ng, G. A., Neelagaru, S.,
1941
+ Abi-Samra, F. M., Lee, J., Giudici, M., Gohn, D., Win-
1942
+ kle, R. A., Sussman, J., Knight, B. P., Berman, A., and
1943
+ Calkins, H., 2013, “First experience with a novel robotic
1944
+ remote catheter system: Amigo™ mapping trial,” Journal
1945
+ of Interventional Cardiac Electrophysiology, 37(2), Aug.,
1946
+ pp. 121–129.
1947
+ [14] Ott, L., Nageotte, F., Zanne, P., and de Mathelin, M.,
1948
+ 2011,
1949
+ “Robotic Assistance to Flexible Endoscopy by
1950
+ Physiological-Motion Tracking,” IEEE Transactions on
1951
+ Robotics, 27(2), Apr., pp. 346–359.
1952
+ [15] Le, H. M., Do, T. N., and Phee, S. J., 2016, “A survey on
1953
+ actuators-driven surgical robots,” Sensors and Actuators
1954
+ A: Physical, 247, Aug., pp. 323–354.
1955
+ [16] Dario, P., and Mosse, C., 2003, “Review of locomotion
1956
+ techniques for robotic colonoscopy,”
1957
+ In IEEE Interna-
1958
+ tional Conference on Robotics and Automation, Vol. 1,
1959
+ pp. 1086–1091 vol.1.
1960
+ [17] Phee, S., Ng, W., Chen, I., Seow-Choen, F., and Davies, B.,
1961
+ 1997, “Locomotion and steering aspects in automation of
1962
+ colonoscopy. I. A literature review,” IEEE Engineering in
1963
+ Medicine and Biology Magazine, 16(6), Nov., pp. 85–96.
1964
+ [18] Lee, D.-H., Cheon, B., Kim, J., and Kwon, D.-S., 2021,
1965
+ “easyEndo robotic endoscopy system: Development and
1966
+ usability test in a randomized controlled trial with novices
1967
+ and physicians,”
1968
+ The International Journal of Medical
1969
+ Robotics and Computer Assisted Surgery, 17(1).
1970
+ [19] Loschak, P. M., Brattain, L. J., and Howe, R. D., 2017,
1971
+ “Algorithms for Automatically Pointing Ultrasound Imag-
1972
+ ing Catheters,”
1973
+ IEEE Transactions on Robotics, 33(1),
1974
+ Feb., pp. 81–91.
1975
+ [20] Kim, Y.-H., Collins, J., Li, Z., Chinnadurai, P., Kapoor,
1976
+ A., Lin, C. H., and Mansi, T., 2021, Towards Automatic
1977
+ Manipulation of Intra-cardiac Echocardiography Catheter,
1978
+ Jan. arXiv:2009.05859 [cs].
1979
+ [21] Li, Z., Collins, J., Kim, Y.-H., Chinnadurai, P., Mansi, T.,
1980
+ and Lin, C. H., 2021, “Zero-fluoroscopy transseptal punc-
1981
+ ture guided by intelligent intracardiac echocardiography
1982
+ robotics,” Journal of the American College of Cardiology,
1983
+ 77(18 Supplement 1), pp. 970–970.
1984
+ [22] Camarillo, D. B., Milne, C. F., Carlson, C. R., Zinn, M. R.,
1985
+ and Salisbury, J. K., 2008,
1986
+ “Mechanics Modeling of
1987
+ Tendon-Driven Continuum Manipulators,” IEEE Trans-
1988
+ actions on Robotics, 24(6), Dec., pp. 1262–1273.
1989
+ [23] Xu, K., and Simaan, N., 2008, “An Investigation of the In-
1990
+ trinsic Force Sensing Capabilities of Continuum Robots,”
1991
+ IEEE Transactions on Robotics, 24(3), June, pp. 576–587.
1992
+ [24] Rao, P., Peyron, Q., Lilge, S., and Burgner-Kahrs, J.,
1993
+ 2021, “How to model tendon-driven continuum robots and
1994
+ benchmark modelling performance,” Frontiers in Robotics
1995
+ and AI, 7.
1996
+ [25] Webster, R. J., and Jones, B. A., 2010,
1997
+ “Design and
1998
+ Kinematic Modeling of Constant Curvature Continuum
1999
+ Robots: A Review,” The International Journal of Robotics
2000
+ Research, 29(13), Nov., pp. 1661–1683.
2001
+ [26] Shi, C., Luo, X., Qi, P., Li, T., Song, S., Najdovski,
2002
+ Z., Fukuda, T., and Ren, H., 2017,
2003
+ “Shape Sensing
2004
+ Techniques for Continuum Robots in Minimally Invasive
2005
+ Surgery: A Survey,”
2006
+ IEEE Transactions on Biomedical
2007
+ Engineering, 64(8), Aug., pp. 1665–1678.
2008
+ [27] Amanzadeh, M., Aminossadati, S. M., Kizil, M. S., and
2009
+ Raki´c, A. D., 2018, “Recent developments in fibre optic
2010
+ shape sensing,” Measurement, 128, Nov., pp. 119–137.
2011
+ [28] Do, T., Tjahjowidodo, T., Lau, M., Yamamoto, T., and
2012
+ Phee, S., 2014, “Hysteresis modeling and position control
2013
+ of tendon-sheath mechanism in flexible endoscopic sys-
2014
+ tems,” Mechatronics, 24(1), Feb., pp. 12–22.
2015
+ [29] Xu, W., Poon, C. C. Y., Yam, Y., and Chiu, P. W. Y.,
2016
+ 2016,
2017
+ “Motion compensated controller for a tendon-
2018
+ sheath-driven flexible endoscopic robot,”
2019
+ The Interna-
2020
+ tional Journal of Medical Robotics and Computer Assisted
2021
+ Surgery, 13.
2022
+ [30] Wang, X., Bie, D., Han, J., and Fang, Y., 2020,
2023
+ “Ac-
2024
+ tive Modeling and Compensation for the Hysteresis of
2025
+ a Robotic Flexible Ureteroscopy,”
2026
+ IEEE Access, 8,
2027
+ pp. 100620–100630.
2028
+ [31] Kato, T., Okumura, I., Kose, H., Takagi, K., and Hata,
2029
+ N., 2014, “Extended kinematic mapping of tendon-driven
2030
+ continuum robot for neuroendoscopy,” In IEEE/RSJ In-
2031
+ ternational Conference on Intelligent Robots and Systems,
2032
+ pp. 1997–2002.
2033
+ [32] Zglimbea, R., Finca, V., Greaban, E., and Constantin, M.,
2034
+ 2009, “Identification of Systems with Friction via Dis-
2035
+ tributions using the Modified Friction LuGre Model,” In
2036
+ the 13th WSEAS international conference on Systems,
2037
+ pp. 576–584.
2038
+ [33] Hassani, V., and Tjahjowidodo, T., 2013, “Structural re-
2039
+ sponse investigation of a triangular-based piezoelectric
2040
+ drive mechanism to hysteresis effect of the piezoelectric
2041
+ actuator,”
2042
+ Mechanical Systems and Signal Processing,
2043
+ 36(1), Mar., pp. 210–223.
2044
+ [34] Kim, Y.-H., and Mansi, T., 2021, Shape-adaptive Hystere-
2045
+ sis Compensation for Tendon-driven Continuum Manipu-
2046
+ lators, Sept. arXiv:2109.06907 [cs].
2047
+ [35] Fang, S., Franitza, D., Torlo, M., Bekes, F., and Hiller, M.,
2048
+ 2004, “Motion control of a tendon-based parallel manip-
2049
+ ulator using optimal tension distribution,”
2050
+ IEEE/ASME
2051
+ Transactions on Mechatronics, 9(3), pp. 561–568.
2052
+ [36] Abdallah, M., Platt Jr, R., and Wampler, C. W., 2013, “De-
2053
+ coupled torque control of tendon-driven fingers with ten-
2054
+ sion management,” The International Journal of Robotics
2055
+ Research, 32(2), Feb., pp. 247–258.
2056
+ [37] Camarillo, D. B., Carlson, C. R., and Salisbury, J. K.,
2057
+ 2009, “Configuration tracking for continuum manipula-
2058
+ tors with coupled tendon drive,” IEEE Transactions on
2059
+ Robotics, 25(4), pp. 798–808.
2060
+ [38] Kirk, D. E., 2004, Optimal Control Theory: An Introduc-
2061
+ tion Dover Publications, Mineola, New York.
2062
+ [39] Liberzon, D., 2012, Calculus of Variations and Optimal
2063
+ Control Theory: A Concise Introduction Princeton Uni-
2064
+ versity Press.
2065
+
G9AyT4oBgHgl3EQffPiq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
G9E4T4oBgHgl3EQfHwwY/content/tmp_files/2301.04905v1.pdf.txt ADDED
@@ -0,0 +1,1494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04905v1 [math.DS] 12 Jan 2023
2
+ GENERICITY OF TRIVIAL LYAPUNOV SPECTRUM FOR Lp-COCYCLES DERIVED
3
+ FROM SECOND ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS
4
+ DINIS AMARO, MÁRIO BESSA†, AND HELDER VILARINHO
5
+ CENTRO DE MATEMÁTICA E APLICAÇÕES (CMA-UBI)
6
+ UNIVERSIDADE DA BEIRA INTERIOR
7
+ RUA MARQUÊS D’ÁVILA E BOLAMA, 6201-001, COVILHÃ, PORTUGAL.
8
+ A�������. Given an ergodic flow ϕt : M → M defined on a probability space M we study a family of
9
+ continuous-time kinetic linear cocycles associated to the solutions of the second order linear homo-
10
+ geneous differential equations ¨x + α(ϕt(ω))˙x + β(ϕt(ω))x = 0, where the parameters α, β evolve along
11
+ the ϕt-orbit of ω ∈ M. Our main result states that for a generic subset of kinetic continuous-time
12
+ linear cocycles, where generic means a Baire second category with respect to an Lp-like topology on
13
+ the infinitesimal generator, the Lyapunov spectrum is trivial.
14
+ 1. I�����������
15
+ We know, since the first half of nineteenth-century and by Liouville’s theorem, that serious
16
+ restrictions are present when we try to apply analytic methods to integrate most functions. This
17
+ result can be seen as a kind of differential Galois theory and represent a deep obstacle in solving
18
+ differential equations explicitly. The way we bypass this inevitable fact is twofold: in one hand
19
+ powerful numerical methods were developed to approximate the solutions and on the other hand
20
+ a qualitative theory of differential equations emerged from the pioneering works of Poincaré and
21
+ Lyapunov. We will be interested in following the last mentioned approach.
22
+ With the study that we carry out we intend to understand the asymptotic behavior of the so-
23
+ lutions of the second order homogeneous linear differential equations with coefficients displaying
24
+ Lp regularity, varying in time and allowing an Lp-small perturbation. Namely, to describe its Lya-
25
+ punov spectrum under Lp-generic conditions of its coefficients. Families of this type of equations
26
+ will be considered indexed in a flow which keep invariant the probability measure in a measure
27
+ space M.
28
+ We have as motivation in the first instance a family of equations that describe the
29
+ motion of the simple damped pendulum free from external forces, of type
30
+ ¨x(t) + α(ϕt(ω))˙x(t) + β(ϕt(ω))x(t) = 0,
31
+ (1)
32
+ where α and β are functions depending on ω ∈ M evolving along a flow ϕt : M → M for t ∈ R.
33
+ Clearly, if α and β are first integrals related with ϕt (i.e. constant along the ϕt-orbits) the equation
34
+ (1) is easily solved by elementary methods of a first course on differential equations. When the
35
+ parameters vary in time, explicit solutions are hard to get. This is the case when the frictional
36
+ force α and the frequency of the oscillator β change over time.
37
+ In [8] the second author deal with a similar case but with periodic coefficients along periodic
38
+ closed orbits and proved that small C0-perturbations on the parameters allows us to obtain that
39
+ asymptotic unstable solutions are precisely the uniformly hyperbolic saddle-type ones.
40
+ In the
41
+ Date: January 13, 2023.
42
+ Key words and phrases. Kinetic cocycles; Linear cocycles; Linear differential systems; Multiplicative ergodic theorem;
43
+ Lyapunov exponents; Random dynamical systems.
44
+ †Corresponding author: [email protected].
45
+ 2020 Mathematics Subject Classification: Primary: 34D08, 37H15, Secondary: 34A30, 37A20.
46
+ 1
47
+
48
+ present paper we intend to focus on a perturbative theory with a coarser topology, namely allowing
49
+ perturbations in an Lp-type topology and with random (non-periodic) base dynamics.
50
+ Differential equations like (1) are ubiquitous in physics, engineering, biology and numerous
51
+ applications of mathematics like, e.g., solid state physics, structural stability, wave propagation in
52
+ one-dimensions, stability of synchronous electrical machines, etc. Fixing position and momentum
53
+ (x(0), ˙x(0)) we intend to study the asymptotic behavior when t → ∞ of the pair (x(t), ˙x(t)), namely
54
+ the asymptotic exponential growth rate given by the Lyapunov exponent.
55
+ The literature on the
56
+ subject with more or less similar nuances is substantial (see [3, 4, 8, 15, 19] and the references
57
+ therein). The literature on the broader matter of Lyapunov exponents had a substantial grown in
58
+ the last decade as it can be seen by several books published lately [6, 12, 16, 26, 28].
59
+ The Lp-generic point of view on quite general linear differential systems was studied in [9]
60
+ by two of the authors and after Arbieto-Bochi [1] (see also the references therein). In [9] was
61
+ proved that the class of accesible (aka twisting) linear differential systems, a wider class that
62
+ includes cocycles that evolve in GL(d, R), SL(d, R) and Sp(d, R), have a trivial Lyapunov spectrum
63
+ Lp-genericaly. When considering the sharper C0-norm it is known since Millionshchikov’s work in
64
+ the late sixties that the generic behaviour changes (see [22]). A complete treatment on the C0-case
65
+ was done in [7, 8] after the discrete approach done in [10, 11]. The question of knowing the C0-
66
+ generic asymptotic behaviour of linear differential systems arising from equations like (1) is a work
67
+ in progress. There as been recently a growing interest in understanding the discrete ‘dynamical
68
+ cocycle’ from an Lp-perturbative viewpoint and Lp-generic properties [5, 13, 14]. Since perturbing
69
+ the cocycle given by the derivative depends on a perturbation of the map, these dynamical cocycles
70
+ tend to drag several other difficulties.
71
+ When we intend to change all the Lyapunov exponents in order them to become equal the
72
+ naive idea is to distribute expansion/contraction rates equally for all directions.
73
+ This can be
74
+ made by rotating directions in a convenient way to have, at the end of the day, those tax rates
75
+ identically scattered. Indeed, rotating in a systematic way, is a crucial idea which was developed
76
+ in certain contexts in the Sovietic literature of the 1970s (see [23]) and in the 1980s by Mañé
77
+ [20, 21]. Issues related with the continuity of Lyapunov exponents are much more complicated
78
+ within feeble topologies like the Lp one. Here, we dedicate a substantial effort understanding the
79
+ Lp-continuous dependence on the Lyapunov exponents as our arguments are supported on this
80
+ assumption.
81
+ Moreover, and also related with continuity, we know that typically squeezing the
82
+ distance between vector fields implies in a decrease of the distance between its flows trajectories
83
+ on compact times. Here, and once again, the Lp topology creates additional difficulties.
84
+ In overall, the main result in the present paper (Theorem 1) can be summarized in the following
85
+ way:
86
+ For an Lp-generic choice of a kinetic linear differential system (as in (1)) and for almost every driving
87
+ realization, no matter what position and momentum (x(0), ˙x(0)) we chose as initial conditions, the asymptotic
88
+ exponential behaviour of the solutions will be the same.
89
+ This paper is organized as follows: in §2 we will present the basic definitions and state our
90
+ main result (Theorem 1); section §3 is devoted to the perturbation framework; in section §4 we
91
+ will deal with continuity issues of the Lyapunov exponents with respecto to an Lp distance and,
92
+ finally, in §5 we prove Theorem 1.
93
+ 2. D���������� ��� ���� ������
94
+ 2.1. Linear cocycles. In this section we present some definitions that will be useful for the
95
+ development of this work. Let (M, M, µ) be a probability space and let ϕ: R × M → M be a metric
96
+ dynamical system (or flow) in the sense that is a measurable map and
97
+ (1) ϕt : M → M given by ϕt(ω) = ϕ(t, ω) preserves the measure µ for all t ∈ R;
98
+ (2) ϕ0 = IdM and ϕt+s = ϕt ◦ ϕs for all t, s ∈ R.
99
+ 2
100
+
101
+ Unless stated otherwise we will consider in the sequel that the flow is ergodic in the usual sense
102
+ that there exist no invariant sets except null sets and their complements.
103
+ Let B(X) be the Borel σ-algebra of a topological space X. A (continuous-time) linear random
104
+ dynamical system (RDS) on (R2, B(R2)), or a (continuous-time) linear cocycle, over ϕ is a (B(R) ×
105
+ M/B(GL(2, R))-measurable map
106
+ Φ : R × M → GL(2, R)
107
+ such that the mappings Φ(t, ω) forms a cocycle over ϕ, i.e.,
108
+ (1) Φ(0, ω) = Id for all ω ∈ M;
109
+ (2) Φ(t + s, ω) = Φ(t, ϕs(ω)) ◦ Φ(s, ω), for all s, t ∈ R and ω ∈ M,
110
+ and t �→ Φ(t, ω) is continuous for all ω ∈ M. We recall that having ω �→ Φ(t, ω) measurable for
111
+ each t ∈ R and t �→ Φ(t, ω) continuous for all ω ∈ M implies that Φ is measurable in the product
112
+ measure space. These objects are also called linear differential systems in the literature (see §2.2).
113
+ 2.2. Kinetic Linear Differential Systems. We begin by considering as motivation the non-
114
+ autonomous linear differential equation, which describes a motion of the damped harmonic oscil-
115
+ lator as the ‘simple pendulum’ along the path (ϕt(ω))t∈R, with ω ∈ M described by the flow ϕ. Let
116
+ K ⊂ R2×2 be the set of matrices 2 × 2 of type
117
+ A =
118
+
119
+ 0
120
+ 1
121
+ b
122
+ a
123
+
124
+ for real numbers a, b, and denote by G the set of measurable applications A : M → R2×2 and
125
+ by K ⊂ G the set of kinetic measurable applications A : M → K.
126
+ As usual we identify two
127
+ applications on G that coincide on a µ full measure subset of M.
128
+ Consider measurable maps
129
+ α: M → R and β: M → R. Take the random differential equation given by (1) and defined by:
130
+ ¨x(t) + α(ϕt(ω))˙x(t) + β(ϕt(ω))x(t) = 0.
131
+ Considering the change of variables y(t) = ˙x(t) we may rewrite (1) as the following vectorial linear
132
+ system
133
+ ˙X = A(ϕt(ω)) · X,
134
+ (2)
135
+ where X = X(t) = (x(t), y(t))T = (x(t), ˙x(t))T and A ∈ K is given by
136
+ A(ω) =
137
+
138
+ 0
139
+ 1
140
+ −β(ω)
141
+ −α(ω)
142
+
143
+ .
144
+ It follows from [2, Thm. 2.2.2] (see also Lemma 2.2.5 and Example 2.2.8 in this reference) that if
145
+ A ∈ G1 =: G ∩ L1(µ), i.e.
146
+
147
+ M ∥A∥ dµ < ∞, generates a unique (up to indistinguishability) linear RDS
148
+ ΦA satisfying
149
+ ΦA(t, ω) = Id +
150
+ � t
151
+ 0
152
+ A(ϕs(ω))ΦA(s, ω) ds.
153
+ (3)
154
+ The solution ΦA(t, ω) defined in (3) is called the Carathéodory solution or weak solution. Given
155
+ an initial condition X(0) = v ∈ R2, we say that t �→ ΦA(t, ω)v solves or is a solution of the Random
156
+ Differential Equation (RDE) (2), or that the RDE (2) generates ΦA(t, ω). Note that ΦA(0, ω)v = v
157
+ for all ω ∈ M and v ∈ R2. If the solution (3) is differentiable in time (i.e. with respect to t) and
158
+ satisfies for all t
159
+ d
160
+ dtΦA(t, ω)v = A(ϕt(ω))ΦA(t, ω)v
161
+ and
162
+ ΦA(0, ω)v = v,
163
+ (4)
164
+ then it is called a classical solution of RDE (2).
165
+ Of course that t �→ ΦA(t, ω)v is continuous for all ω and v. Due to (4) we call A : M → K
166
+ a (kinetic) ‘infinitesimal generator’ of ΦA. Sometimes, due to the relation between A and ΦA, we
167
+ refer to both A and ΦA as a kinetic linear cocyle/RDS/differential system.
168
+ If the RDE (2) has
169
+ initial condition X(0) = v then ΦA(0, ω)v = v and X(t) = ΦA(t, ω)v.
170
+ 3
171
+
172
+ 2.3. The Lp topology. We begin by defining an Lp-like topology generated by a metric that com-
173
+ pares the infinitesimal generators on G.By a standard use of Grönwall’s inequality arguments it
174
+ is usual to obtain the approximation of flows (on compact times) by assuming the approximation
175
+ of the corresponding infinitesimal generators. However, Lp-estimates, 1 ≤ p < ∞, are more de-
176
+ manding and it is not clear if such Lp-continuous dependence holds (cf. Lemma 4.3). Related to
177
+ this problem see e.g. [25] where these issues are treated for L1-approximation on initial conditions
178
+ in quasilinear elliptic-parabolic equations. With this in mind we define now the distance we are
179
+ going to consider along this work. Given 1 ≤ p < ∞ and A, B ∈ G we set
180
+ ˆσp(A, B) :=
181
+ 
182
+ ��
183
+ M
184
+ ∥A(ω) − B(ω)∥p dµ(ω)
185
+ � 1
186
+ p
187
+ ,
188
+ ∞ if the above integral does not exists,
189
+ and define
190
+ σp(A, B) :=
191
+ 
192
+ ˆσp(ΦA,ΦB)
193
+ 1+ ˆσp(ΦA,ΦB),
194
+ if ˆσp(A, B) < ∞
195
+ 1,
196
+ if ˆσp(A, B) = ∞ .
197
+ Clearly, σp is a distance in G.
198
+ Proposition 2.1. Consider 1 ≤ p < ∞. Then:
199
+ (i) σp(A, B) ≤ σq(A, B) for all q ≥ p and all A, B ∈ G.
200
+ (ii) If A ∈ G1 then for any B ∈ G satisfying σp(A, B) < 1 we have B ∈ G1.
201
+ Therefore,
202
+ sup
203
+ 0≤t≤1
204
+ log+ ∥ΦB(t, ω)±1∥ ∈ L1(µ).
205
+ Proof. (i) For all 1 ≤ p ≤ q < ∞ it is a standard result on Lebesgue spaces that Lq-norms are
206
+ thinner than Lp ones. So, we have ˆσp(A, B) ≤ ˆσq(A, B). Hence, σp(A, B) ≤ σq(A, B).
207
+ (ii) Pick any 1 ≤ p < ∞ and let A ∈ G1 and B ∈ G satisfying σp(A, B) < 1.
208
+ By (i) we have
209
+ σ1(A, B) < 1, thus ˆσ1(A, B) < ∞, and we also have that ∥B(ω)∥ ≤ ∥A(ω)∥ + ∥B(ω) − A(ω)∥ for all
210
+ ω ∈ M. Therefore, B ∈ L1(µ). The last statement follows from (5).
211
+
212
+ The following result will be used to prove that the kinetic subspace of linear cocycles is a Baire
213
+ space.
214
+ Lemma 2.2. (K1, σp) is closed, for all 1 ≤ p < ∞.
215
+ Proof. Given any sequence (An)n in K1, with An
216
+ σp
217
+ −→ A∗, for some A∗ ∈ G we must prove that
218
+ A∗ ∈ K1. As (An)n ∈ K1 we get
219
+ An(ω) =
220
+
221
+ 0
222
+ 1
223
+ −βn(ω)
224
+ −αn(ω)
225
+
226
+ and
227
+ A∗ =
228
+
229
+ a(ω)
230
+ b(ω)
231
+ −β(ω)
232
+ −α(ω)
233
+
234
+ for maps αn, βn ∈ L1(µ) and measurable maps a, b, α and β. From (i) in Proposition 2.1 we have
235
+ An
236
+ σ1
237
+ −→ A∗. From (ii) in Proposition 2.1 we have that a, b, α and β are also L1 maps, i.e. A∗ ∈ G1.
238
+ Hence,
239
+
240
+ M |a(ω)| dµ(ω) = 0 and
241
+
242
+ M |b(ω) − 1| dµ(ω) = 0, which implies a(ω) = 0 and b(ω) = 1 for µ
243
+ almost every ω. Therefore, A∗ ∈ K. In conclusion, A∗ ∈ G1 ∩ K = K1.
244
+
245
+ Since for all 1 ≤ p < ∞, the metric space (G1, σp) is complete and K1 ⊂ G1 is σp-closed, we
246
+ conclude the following.
247
+ Corollary 2.3. For all 1 ≤ p < ∞, (K1, σp) is a complete metric space and, therefore, a Baire space.
248
+ 2.4. Lyapunov exponents. Let K1 = K ∩ L1(µ) ⊂ G1. Observe that if A ∈ K1 then the cocycle ΦA
249
+ satisfies the following integrability condition
250
+ sup
251
+ 0≤t≤1
252
+ log+ ∥ΦA(t, ω)±1∥ ∈ L1(µ),
253
+ (5)
254
+ 4
255
+
256
+ where f + = max{0, f}. Indeed, consider ω in the full measure ϕt-invariant subset of M where
257
+ t �→ A(ϕt(ω)) is locally integrable. By (3) we get
258
+ ∥ΦA(t, ω)±1∥ ≤ 1 +
259
+ � t
260
+ 0
261
+ ���A(ϕs(ω))
262
+ ���
263
+ ���ΦA(s, ω)±1��� ds.
264
+ By Grönwall’s inequality (see [2]) we have
265
+ ΦA(t, ω)±1∥ ≤ exp
266
+ �� t
267
+ 0
268
+ ∥A(ϕs(ω))∥ ds
269
+
270
+ (6)
271
+ that is, for all t ≥ 0 we have log+ ∥ΦA(t, ω)±1∥ ≤
272
+ � t
273
+ 0 ∥A(ϕs(ω))∥ ds. Therefore
274
+ sup
275
+ 0≤t≤T
276
+ log+ ∥ΦA(t, ω)±1∥ ≤
277
+ � T
278
+ 0
279
+ ∥A(ϕs(ω))∥ ds =: ψ(ω, T).
280
+ (7)
281
+ By [2, Lemma 2.2.5] we have ψ(·, T) ∈ L1(µ). Thus sup
282
+ 0≤t≤1
283
+ log+ ∥ΦA(t, ω)±1∥ ∈ L1(µ), getting the claim.
284
+ Moreover, Fubini’s theorem allow us to obtain
285
+
286
+ M
287
+ log+ ∥ΦA(t, ω)±1∥ dµ(ω) ≤
288
+
289
+ M
290
+ � t
291
+ 0
292
+ ∥A(ϕs(ω))∥ ds dµ(ω)
293
+ =
294
+ � t
295
+ 0
296
+
297
+ M
298
+ ∥A(ϕs(ω))∥ dµ(ω) ds = t∥A∥1.
299
+ If A ∈ G1 then the integrability condition (5) holds and Oseledets theorem (see e.g.
300
+ [24, 2])
301
+ guarantees that for µ almost every ω ∈ M, there exists a ��A-invariant splitting called Oseledets
302
+ splitting of the fiber R2
303
+ ω = E1
304
+ ω⊕E2
305
+ ω and real numbers called Lyapunov exponents λ1(A, ω) ≥ λ2(A, ω),
306
+ such that:
307
+ lim
308
+ t→±∞
309
+ 1
310
+ t log ∥ΦA(t, ω)vi∥ = λi(A, ω),
311
+ for any vi ∈ Ei
312
+ ω \ {⃗0} and i = 1, 2. Moreover, given any of these subspaces E1
313
+ ω and E2
314
+ ω, the angle
315
+ between them along the orbit has subexponential growth, meaning that
316
+ lim
317
+ t→±∞
318
+ 1
319
+ t log sin
320
+
321
+ ∡(E1
322
+ ϕt(ω), E2
323
+ ϕt(ω))
324
+
325
+ = 0.
326
+ (8)
327
+ If the flow ϕt is ergodic, then the Lyapunov exponents and the dimensions of the associated
328
+ subbundles are constant µ almost everywhere and we refer to them as λ1(A) and as λ2(A), with
329
+ λ1(A) ≥ λ2(A). We say that A has one-point Lyapunov spectrum or trivial Lyapunov spectrum if for
330
+ µ a.e. ω ∈ M, λ1(A, ω) = λ2(A, ω). Otherwise we say A has simple Lyapunov spectrum. For details
331
+ on these results on linear differential systems see [2] (in particular, Example 3.4.15). See also [17].
332
+ 2.5. Statement of the main result. We are now in position to state our main contribution. In
333
+ the present paper we establish the existence of a σp-residual of K1 displaying one-point spectrum.
334
+ More precisely we prove the following:
335
+ Theorem 1. For all 1 ≤ p < ∞ there exists a σp-residual subset R ∈ K1 such that any A ∈ R has
336
+ one-point spectrum.
337
+ 3. I������������ O��������’ ����������
338
+ In this section we build up the fundamental perturbation tool which allows us to interchange
339
+ Oseledets directions. First, we will discuss some topics about the perturbations that we will be
340
+ tailor-made to our purpose.
341
+ 5
342
+
343
+ 3.1. Perturbations supported in compact sets. Take A ∈ G and a non-periodic orbit ω ∈ M.
344
+ We will consider a perturbation Bω of A only along a segment of the orbit of ω with extremes ω
345
+ and ϕ1(ω). Let P ∈ G be given and define B: M → R2×2 such that B( ˆω) = A( ˆω) for all ˆω outside
346
+ ϕ[0,1](ω) = {ϕs(ω) : s ∈ [0, 1]} and B( ˆω) = P( ˆω) otherwise. The map B is called a perturbation of A
347
+ by P supported on ϕ[0,1](ω).
348
+ Lemma 3.1. Given ω ∈ M, u, v ∈ R2 \ {0}, A ∈ K1, there is γ � 0, and a perturbation Bω ∈ K1 of A
349
+ supported on ϕ[0,1](ω) such that:
350
+ (i) ∥Bω( ˆω)∥ ≤ 4π2 for all ˆω on ϕ[0,1](ω) and
351
+ (ii) ΦBω(1, ω)u = γ v.
352
+ Proof. Let θ = ∡(Ru, Rv) ∈ [π, 2π] measured clockwise.
353
+ Set a constant infinitesimal generator
354
+ P: M → R2×2 given by
355
+ P =
356
+
357
+ 0
358
+ 1
359
+ −θ2
360
+ 0
361
+
362
+ .
363
+ (9)
364
+ We consider the perturbation Bω ∈ K1 of A by P supported on ϕ[0,1](ω). The infinitesimal generator
365
+ in (9) generates a linear differential system with fundamental classical solution (4) given, for all
366
+ ˆω ∈ M and t ∈ R by the ‘clockwise elliptical rotation’ defined by:
367
+ ΦP(t, ω) =
368
+
369
+ cos(θt)
370
+ θ−1 sin(θt)
371
+ −θ sin(θt)
372
+ cos(θt)
373
+
374
+ ,
375
+ and such that ΦBω(1, ω)u = ΦP(1, ω)u = γv, for some γ � 0 fulfilling (ii).
376
+
377
+ Remark 3.1. In the application of Lemma 3.1 further ahead we will consider u and v such that
378
+ Ru = E1
379
+ ω and Rv = E2
380
+ ϕ1(ω) where Ei are the Oseledets directions associated to A. In particular,
381
+ ΦBω(1, ω)E1
382
+ ω = E2
383
+ ϕ1(ω). Morever, as the canonic norm and the maximum norm are equivalent item (i)
384
+ of Lemma 3.1 and (6) impies ∥ΦBω(1, ω)∥max ≤ C∥ΦBω(1, ω)∥ ≤ Ce4π2.
385
+ 3.2. Special flows. Consider a measure space Σ, a map T : Σ → Σ, a T -invariant probability
386
+ measure ˜µ defined in Σ and a roof function h: Σ → R+ satisfying h(ω) ≥ H > 0, for some H > 0
387
+ and all ω ∈ Σ, and
388
+
389
+ Σ h(ω)d˜µ(ω) < ∞.
390
+ Define the space Mh ⊆ Σ × R+ by
391
+ Mh = {(ω, t) ∈ Σ × R+ : 0 ≤ t ≤ h(ω)}
392
+ with the identification between the pairs (ω, h(ω)) and (T (ω), 0). The semiflow defined on Mh by
393
+ S s(ω, r) = (T n(ω), r + s − �n−1
394
+ i=0 h(T i(ω))), where n ∈ N is uniquely defined by
395
+ n−1
396
+
397
+ i=0
398
+ h(T i(ω)) ≤ r + s <
399
+ n
400
+
401
+ i=0
402
+ h(T i(ω))
403
+ is called a suspension semiflow. If T is invertible then (S t)t is a flow. Furthermore, if ℓ denotes
404
+ the one dimensional Lebesgue measure the measure µ = (˜µ × ℓ)/
405
+
406
+ h d˜µ defined on Mh by
407
+
408
+ g dµ =
409
+ 1
410
+
411
+ h d˜µ
412
+ � �� h(ω)
413
+ 0
414
+ g(ω, t)dt
415
+
416
+ d˜µ(ω),
417
+ ∀g ∈ C0(Mh)
418
+ is a probability measure and it is invariant by the suspension semiflow (S t)t. Flows with such
419
+ representation are called special flows.
420
+ Next result, despite simple, will be the key step to prove second part of Proposition 3.3. We fix
421
+ a special flow described by the quadruple (ϕt, Σ, T , h) endowed with product measure ˜µ × ℓ, Σ0 ⊆ Σ
422
+ with ˜µ(Σ0) > 0. Moreover, for b > a > 0 we define the set
423
+ ϕ[a,b](Σ0) = {ϕt(ω): ω ∈ Σ0, t ∈ [a, b]}.
424
+ 6
425
+
426
+ Given A ∈ G1, P ∈ G, Σ0 ⊆ Σ and a > 0, we may extend the perturbation of A by P to be supported
427
+ on the flowbox ϕ[a,a+1](Σ0) in the following way: for ω ∈ ϕ[a,a+1](Σ0) we project ω in ˜ω ∈ Σ0 and
428
+ let B ˜ω be perturbation of A by P supported on ϕ[0,1](ϕa(ω)), and define
429
+ B(ω) :=
430
+ � A(ω),
431
+ if ω � ϕ[a,a+1](Σ0)
432
+ B ˜ω(ω),
433
+ if ω ∈ ϕ[a,a+1](Σ0) .
434
+ (10)
435
+ To distinguish the situations we refer for B(ω) as a global perturbation of A by P supported in
436
+ ϕ[a,a+1](Σ0).
437
+ Lemma 3.2. For all A ∈ G1, a > 0 and ε ∈]0, 1[, there exists a measurable set Σ0 ⊂ Σ with
438
+ ˜µ(Σ0) > 0 such that for any global perturbation B ∈ G1 of A supported in the flowbox ϕ[a,b](Σ0) with
439
+ ∥B(ϕt(ω))∥ ≤ 4π2 for all ω ∈ Σ0 and t ∈ [a, b], we have that σ1(A, B) < ε.
440
+ Proof. Let A ∈ G1, b > a > 0 and ε ∈]0, 1[ be fixed.
441
+ Since A ∈ G1 we let L > 0 be such that
442
+
443
+ M ∥A(ω)∥ dµ(ω) < L. For any Σ0 ⊂ Σ we have µ(ϕ[a,b](Σ0)) = (b − a)˜µ(Σ0). Let ε′ =
444
+ ε
445
+ 1−ε and choose
446
+ a measurable set Σ0 ⊂ Σ satisfying
447
+ ˜µ(Σ0) ∈
448
+
449
+ 0,
450
+ ε′
451
+ (b − a)(L + 4π2)
452
+
453
+ .
454
+ (11)
455
+ Finally, we will check that σ1(A, B) < ε. Indeed, from (11) we get:
456
+ ˆσ1(A, B)
457
+ =
458
+
459
+ M
460
+ ∥A(ω) − B(ω)∥ dµ(ω) =
461
+
462
+ ϕ[a,b](Σ0)
463
+ ∥A(ω) − B(ω)∥ dµ(ω)
464
+
465
+
466
+ ϕ[a,b](Σ0)
467
+ ∥A(ω)∥ + ∥B(ω)∥ dµ(ω) ≤ µ(ϕ[a,b](Σ0))(L + 4π2)
468
+ =
469
+ (b − a)(L + 4π2)˜µ(Σ0) < ε′,
470
+ which implies σ1(A, B) < ε.
471
+
472
+ 3.3. Lowering the maximal Lyapunov exponent. The next result asserts that is possible to
473
+ lower the maximal Lyapunov exponent of a kinetic cocycle with simple spectrum by a σp-small
474
+ perturbation.
475
+ Proposition 3.3. Given A ∈ K1 and ε, δ > 0, there exists B ∈ K1 such that σ1(A, B) < ε and
476
+ λ1(B) ≤ λ1(A) + λ2(A)
477
+ 2
478
+ + δ.
479
+ (12)
480
+ Proof. Let A ∈ K1 and ε, δ > 0 be given.
481
+ We assume that A has simple spectrum, otherwise
482
+ the conclusion is trivial. We are going to perform perturbations supported on a segment of size
483
+ 1 (cf.
484
+ Lemma 3.1) in points ω of a subset Σ0 of positive measure, with the perturbation to be
485
+ taken approximately at ϕN0/2(ω), where N0 is large enough to fulfill the asymptotic properties of
486
+ Oseletets’ theorem, up to some given accuracy η, both for ω and ϕ
487
+ N0
488
+ 2 +1(ω). To avoid unpleasant
489
+ overlapping situations, we codify ϕ by a special flow along a Kakutani castle with a finite roof
490
+ function.
491
+ For a better understanding and since the flow ϕ is ergodic a simple application of
492
+ Rudolph’s two symbol code representation (see [27]) allows us to consider a special flow S t with
493
+ basis Σ ⊂ M and a roof function h: Σ → {N0 +1, N0 +q}, for some large N0 and some 1 < q ∈ R\Q.
494
+ We recall that Rudolph’s theorem gives a step function of irrationally independent high levels, and
495
+ we need time enough to see the Lyapunov exponent in time N0/2 (with accuracy η), to perform
496
+ the perturbation in time less than 1, and so see again the Lyapunov exponent in time N0/2 before
497
+ the return to the basis. In this way we prevent overlaps of the perturbations. Moreover, we have
498
+ a decomposition of µ = ˜µ × ℓ, where ℓ is the time length and ˜µ is a measure on Σ invariat by the
499
+ return map. By abuse of notation in the following we still denote the special flow by ϕt. Up to
500
+ 7
501
+
502
+ some rearrangement of the castle, given η > 0 there is N ∈ N (N ≥ N0) such that by the Oseledets
503
+ theorem there is a subset ˜Σ ⊆ Σ, with ˜µ(˜Σ) > 0, such that for every ω ∈ ˜Σ we have:
504
+ �����λi − 1
505
+ t log
506
+ ���ΦA(t, ω)|Eiω
507
+ ���
508
+ ����� < η/8 < η
509
+ (13)
510
+ for i = 1, 2 and t ≥ N/2. Notice that from the cocycle property, by taking N larger if necessary, for
511
+ ω ∈ ˜Σ and setting ω′ = ϕN/2+1(ω), we also have
512
+ �����λi −
513
+ 1
514
+ N/2 − 1 log
515
+ ����ΦA(N/2 − 1, ω′)|Ei
516
+ ω′
517
+ ����
518
+ ����� < η.
519
+ (14)
520
+ Indeed, to obtain (14) we notice that
521
+ �����λi −
522
+ 1
523
+ N/2 − 1 log
524
+ ����ΦA(N/2 − 1, ω′)|Ei
525
+ ω′
526
+ ����
527
+ ����� =
528
+ �����λi −
529
+ 1
530
+ N/2 − 1 log
531
+ ����ΦA(N, ω)|EiωΦA(−(N/2 + 1), ω′)|Ei
532
+ ω′
533
+ ����
534
+ �����
535
+
536
+ �����2λi −
537
+ N
538
+ N/2 − 1
539
+ 1
540
+ N log
541
+ ���ΦA(N, ω)|Eiω
542
+ ���
543
+ �����
544
+ +
545
+ �����−λi − N/2 + 1
546
+ N/2 − 1
547
+ 1
548
+ N/2 + 1 log
549
+ ����ΦA(N/2 + 1, ω)−1|Ei
550
+ ω′
551
+ ����
552
+ ����� .
553
+ The first term is less or equal than
554
+ �����2 −
555
+ N
556
+ N/2 − 1
557
+ ����� |λi| +
558
+ �����λi − 1
559
+ N log ∥ΦA(N, ω)|Eiω
560
+ �����
561
+ �����
562
+ N
563
+ N/2 − 1
564
+ ����� ,
565
+ which can be made smaller than η/2 for sufficiently large N, as well the second term because is
566
+ less or equal than
567
+ �����1 − N/2 + 1
568
+ N/2 − 1
569
+ ����� |λi| +
570
+ �����λi −
571
+ 1
572
+ N/2 + 1 log ∥ΦA(N/2 + 1, ω)|Eiω
573
+ �����
574
+ �����
575
+ N/2 + 1
576
+ N/2 − 1
577
+ ����� .
578
+ since
579
+ �����−λi −
580
+ 1
581
+ N/2 − 1 log ∥ΦA(N/2 + 1, ω)−1|Ei
582
+ ω′ ∥
583
+ ����� =
584
+ �����−λi +
585
+ 1
586
+ N/2 − 1 log
587
+ ����ΦA(N/2 + 1, ω)|Ei
588
+ ω′
589
+ ����
590
+ ����� .
591
+ For every ˜ω ∈ ˜Σ let B ˜ω be the perturbation of A by P, depending on Ru = E1
592
+ ϕN/2( ˜ω) and
593
+ Rv = E2
594
+ ϕ1+N/2( ˜ω), as in (9) given by Lemma 3.1 supported on ϕ[N/2,N/2+1]( ˜ω) such that we have
595
+ ΦB ˜ω(1, ϕN/2( ˜ω))E1
596
+ ϕN/2( ˜ω) = E2
597
+ ϕ1+N/2( ˜ω).
598
+ We may consider now a global perturbation B of A supported on the flowbox ϕ[N/2,N/2+1](˜Σ) as
599
+ before: for ω ∈ ϕ[N/2,N/2+1](˜Σ) we project ω in ˜ω ∈ ˜Σ and define
600
+ B(ω) :=
601
+
602
+ A(ω),
603
+ if ω � ϕ[N/2,N/2+1](˜Σ)
604
+ B ˜ω(ω),
605
+ if ω ∈ ϕ[N/2,N/2+1](˜Σ) .
606
+ Notice that we have B ∈ K1. By passing to a subset of ˜Σ if necessary, from Lemma 3.2 we may
607
+ assume that σ1(A, B) < ε.
608
+ We will see that we may choose a large N depending on η (depending on δ) such that for all
609
+ ω ∈ ˜Σ we have
610
+ λ1(B, ω) ≤ λ1(A, ω) + λ2(A, ω)
611
+ 2
612
+ + δ.
613
+ (15)
614
+ Having ˜µ(˜Σ) > 0 implies that (15) holds for all ω in a subset ˜M ⊆ Mh with µ( ˜M) > 0, and since
615
+ we are assuming that the flow ϕt is µ-ergodic, we have
616
+ λ1(B) ≤ λ1(A) + λ2(A)
617
+ 2
618
+ + δ
619
+ as required in (12). Let us explain the effect of mixing Oseledets’ directions on the decay of the
620
+ Lyapunov exponents.
621
+ Fiz η > 0 to be choosed later and take ω ∈ ˜Σ with Oseledets directions
622
+ E1
623
+ ω ⊕ E2
624
+ ω and N > 0 sufficiently large in order to have (13) and (14) for ω′ = ϕN/2+1(ω), that is
625
+ ΦA (N/2, ω) · v1
626
+ ω ≈ eλ1 N
627
+ 2 , ΦA (N/2, ω) · v2
628
+ ω ≈ eλ2 N
629
+ 2 ,
630
+ (16)
631
+ 8
632
+
633
+ and
634
+ ΦA
635
+ �N/2 − 1, ω′� · v1
636
+ ω′ ≈ eλ1( N
637
+ 2 −1), ΦA
638
+ �N/2 − 1, ω′� · v2
639
+ ω′ ≈ eλ2( N
640
+ 2 −1),
641
+ (17)
642
+ where λ1 = λ1(A) and λ2 = λ2(A) are the Lyapunov exponents of A, vi
643
+ ω ∈ Ei
644
+ ω and vi
645
+ ω′ ∈ Ei
646
+ ω′ are
647
+ unitary vectors, and ≈ means η-close as in (13) and (14).
648
+ Notice that, for all ω ∈ ˜Σ we have:
649
+ ΦB(N, ω) = ΦA
650
+ �N/2 − 1, ω′� · ΦBω(1, ϕN/2(ω)) · ΦA (N/2, ω) .
651
+ (18)
652
+ So, for all ω ∈ ˜Σ, we may decompose the action of the map ΦB(N, ω) in three pieces:
653
+ • The first, between ω and ϕN/2(ω), and the third, between ω′ and ϕN(ω), that, using the
654
+ basis induced by the Oseledets directions with respect to the splitting E1 ⊕ E2, may be
655
+ writen as
656
+ ΦA (N/2, ω) =
657
+
658
+ φ1,1 (N/2, ω)
659
+ 0
660
+ 0
661
+ φ2,2 (N/2, ω)
662
+
663
+ and
664
+ ΦA
665
+ �N/2, ω′� =
666
+
667
+ φ1,1 (N/2 − 1, ω′)
668
+ 0
669
+ 0
670
+ φ2,2 (N/2 − 1, ω′)
671
+
672
+ .
673
+ Using (16) and (17) we get that ΦA (N/2, ω) is an operator that can be represented approxi-
674
+ mately (with
675
+ ����φ1,1 − e
676
+ λ1
677
+ 2 N���� < η and
678
+ ����φ2,2 − e
679
+ λ2
680
+ 2 N���� < η) by the matrix
681
+ 
682
+ e
683
+ λ1
684
+ 2 N
685
+ 0
686
+ 0
687
+ e
688
+ λ2
689
+ 2 N
690
+ 
691
+ (19)
692
+ written, as usual, in the Oseledets basis {v1
693
+ ω, v2
694
+ ω}. Similarly, ΦA(N/2, ω′) can be represented
695
+ approximately (with
696
+ ���φ1,1 − eλ1(N/2−1)��� < η and
697
+ ���φ2,2 − eλ2(N/2−1)��� < η) by the matrix
698
+
699
+ eλ1(N/2−1)
700
+ 0
701
+ 0
702
+ eλ2(N/2−1)
703
+
704
+ (20)
705
+ in the Oseledets basis
706
+
707
+ v1
708
+ ω′, v2
709
+ ω′
710
+
711
+ .
712
+ • The second piece, between ϕN/2(ω) and ω′, with matrix in the basis induced by the Oseledets
713
+ directions with respect to the splitting E1
714
+ ϕN/2(ω) ⊕ E2
715
+ ϕN/2(ω) which we denote by:
716
+ ΦBω(1, ϕN/2(ω)) =
717
+
718
+ 0
719
+ a1,2
720
+ a2,1
721
+ a2,2
722
+
723
+ .
724
+ (21)
725
+ With this interchange of directions the largest grow for ΦA(N, ω) (given by eλ1N) can never be
726
+ achieved for the perturbation ΦB(N, ω). Indeed, the entries of ΦB(N, ω) are bounded by:
727
+ max
728
+
729
+ eλ1(N/2−1)e
730
+ λ2
731
+ 2 N, eλ2(N/2−1)e
732
+ λ1
733
+ 2 N, e
734
+ λ2
735
+ 2 Neλ2(N/2−1)�
736
+ × max �a1,2, a2,1, a2,2
737
+
738
+ We now estimate
739
+ 1
740
+ N log ∥ΦB(N, ω)∥.
741
+ By (18) we know that ΦB(N, ω) is the composition of the
742
+ matrices (19), (21) and (20).
743
+ For the sake of simplicity of presentation we estimate ∥ΦB(N, ω)∥
744
+ using these three matrices which are in Oseledets basis. However, since the angle between the
745
+ Oseledets fibers has subexponential decay as in (8), estimating ∥ΦB(N, ω)∥ by considering the
746
+ canonical basis only increases the technicalities which we avoid in the sequel. Taking this into
747
+ consideration and also Remark 3.1 we can ensure that:
748
+ ∥ΦB(N, ω)∥ ≤ max
749
+
750
+ e
751
+ λ1+λ2
752
+ 2
753
+ N−λ1, e
754
+ λ1+λ2
755
+ 2
756
+ N−λ2
757
+
758
+ Ce4π2.
759
+ Therefore,
760
+ 1
761
+ N log ∥ΦB(N, ω)∥ ≤ max
762
+ �λ1 + λ2
763
+ 2
764
+ − λ1
765
+ N , λ1 + λ2
766
+ 2
767
+ − λ2
768
+ N
769
+
770
+ + logCe4π2
771
+ N
772
+ .
773
+ Finally, taking N sufficiently large we obtain
774
+ 1
775
+ N log ∥ΦB(N, ω)∥ ≤ λ1(A, ω) + λ2(A, ω)
776
+ 2
777
+ + δ.
778
+ 9
779
+
780
+ By (28) we have
781
+ λ1(B, ω) = lim
782
+ t→∞
783
+ 1
784
+ t log ∥ΦB(t, ω)∥ = lim
785
+ n→∞
786
+ 1
787
+ n log ∥ΦB(n, ω)∥ = inf
788
+ n
789
+ 1
790
+ n log ∥ΦB(n, ω)∥
791
+ ≤ 1
792
+ N log ∥ΦB(N, ω)∥ ≤ λ1(A, ω) + λ2(A, ω)
793
+ 2
794
+ + δ
795
+ and (15) is proved.
796
+
797
+ 4. U���� ����-���������� ��� ��� ��� L������� ��������
798
+ 4.1. On L1-continuous dependence results. In this subsection we provide some preliminary
799
+ results to achieve the upper-semicontinuity for the top Lyapunov exponent. We start with a basic
800
+ measure-theoretical result that will be instrumental.
801
+ Lemma 4.1. Let f ∈ L1(µ), f ≥ 0. For all η > 0 exists K > 0 such that for all h ∈ L1(µ) with h ≥ 0
802
+ and ∥h − f∥1 < η, we have
803
+
804
+ {h>K}
805
+ h dµ(ω) < 2η
806
+ and
807
+ µ({h > K}) < 2η
808
+ K .
809
+ Proof. [1, Lemma 5].
810
+
811
+ Throghout this subsection we consider A, B ∈ G1, ǫ > 0 and T ∈ N. Let us define
812
+ f(ω) =
813
+ � 1
814
+ 0
815
+ ∥A(ϕs(ω))∥ ds
816
+ and
817
+ g(ω) =
818
+ � 1
819
+ 0
820
+ ∥B(ϕs(ω))∥ ds.
821
+ (22)
822
+ As we already said, by [2, Lemma 2.2.5] we have that f, g ∈ L1(µ). We set η = ε/(16(T + 2)) and
823
+ fix B satisfying ˆσp(A, B) < η, which also implies ∥f − g∥1 < η. We use now Lemma 4.1 for f and
824
+ h = g which gives us K > 0 (depending on η and A). Let
825
+ E f = { f ≤ K}
826
+ and
827
+ Eg = {g ≤ K}.
828
+ (23)
829
+ Then Lemma 4.1 gives that
830
+
831
+ Ec
832
+ h
833
+ h dµ(ω) < 2η
834
+ and
835
+ µ(Ec
836
+ h) < 2η
837
+ K ,
838
+ for
839
+ h = f, g.
840
+ (24)
841
+ Set
842
+ G =
843
+ T−1
844
+
845
+ i=0
846
+ ϕ−i(E f ∩ Eg).
847
+ (25)
848
+ Then Gc has small measure:
849
+ µ(Gc) ≤
850
+ T
851
+
852
+ i=0
853
+ µ(ϕ−i(E f ∪ Eg)c) ≤ Tµ(E f ∪ Eg)c ≤ T 4η
854
+ K < ε
855
+ 4K .
856
+ (26)
857
+ Elements belonging to the set G defined in (25) have nice estimates. Indeed we have:
858
+ Lemma 4.2. If ω ∈ G, then for C = A, B we have
859
+ � T
860
+ 0 ∥C(ϕs(ω))∥ ds ≤ TK and ∥ΦC(T, ω)∥ ≤ eT K.
861
+ Proof. Once ω ∈ G we have ϕi(ω) ∈ E f for all i = 0, . . . , T, and
862
+ � T
863
+ 0
864
+ ∥A(ϕs(ω))∥ ds =
865
+ T−1
866
+
867
+ i=0
868
+ � 1
869
+ 0
870
+ ∥A(ϕs+i(ω))∥ ds ≤ TK.
871
+ By (7) we get log+ ∥ΦA(T, ω)∥ ≤
872
+ � T
873
+ 0 ∥B(ϕs(ω))∥ ds and we are done. The other case is similar.
874
+
875
+ 10
876
+
877
+ Next result gives us a ‘weak form’ of continuous dependence of the solutions on its infinitesimal
878
+ generator which will be enough for our purposes. The dependence will have an Lp flavour in the
879
+ sense that the estimate on the separation of the two solutions will be on a set, despite huge in
880
+ measure, not exactly the whole M and the reason we call ‘weak’.
881
+ Lemma 4.3. For all 1 ≤ p < ∞,
882
+ ��
883
+ G
884
+ ∥ΦA(1, ω) − ΦB(1, ω)∥p dµ(ω)
885
+ � 1
886
+ p
887
+ ≤ e2Kp ˆσp(A, B).
888
+ Proof. For ω ∈ G we have
889
+ ∥ΦA(1, ω) − ΦB(1, ω)∥
890
+
891
+ 1
892
+
893
+ 0
894
+ ∥A(ϕs(ω)∥
895
+ ����������������
896
+ β(s)
897
+ ∥ΦA(s, ω) − ΦB(s, ω)∥ds
898
+ +
899
+ 1
900
+
901
+ 0
902
+ ���A(ϕs(ω)) − B(ϕs(ω))
903
+ ��� ∥ΦB(s, ω)∥ds
904
+ ��������������������������������������������������������������������������������������������������
905
+ α(t)
906
+ .
907
+ Taking u(t) = ∥ΦA(t, ω) − ΦB(t, ω)∥, we get u(t) ≤
908
+ � t
909
+ 0 β(s)u(s) ds + α(t). Using Grönwall’s inequality
910
+ we get u(t) ≤ α(t) exp
911
+ �� t
912
+ 0 β(s) ds
913
+
914
+ , which by Lemma 4.2 implies
915
+ ∥ΦA(1, ω) − ΦB(1, ω)∥ ≤
916
+ 1
917
+
918
+ 0
919
+ ���A(ϕs(ω)) − B(ϕs(ω))
920
+ ��� ∥ΦB(s, ω)∥ ds eK.
921
+ Since by Lemma 4.2 we have ∥ΦB(s, ω)∥ ≤ esK, using Jensen’s inequality we get
922
+ ∥ΦA(1, ω) − ΦB(1, ω)∥p
923
+
924
+ 
925
+ 1
926
+
927
+ 0
928
+ ���A(ϕs(ω)) − B(ϕs(ω))
929
+ ��� ∥ΦB(s, ω)∥ ds eK
930
+ 
931
+ p
932
+
933
+ 1
934
+
935
+ 0
936
+ ���A(ϕs(ω)) − B(ϕs(ω))
937
+ ���p ds e2Kp.
938
+ Integrating in both sides and using Fubini and change of coordinates (recalling that ϕs preserves
939
+ µ) we get:
940
+
941
+ G
942
+ ∥ΦA(1, ω) − ΦB(1, ω)∥p dµ(ω)
943
+
944
+ e2Kp
945
+
946
+ G
947
+ 1
948
+
949
+ 0
950
+ ���A(ϕs(ω)) − B(ϕs(ω))
951
+ ���p ds dµ(ω)
952
+
953
+ e2Kp
954
+ 1
955
+
956
+ 0
957
+
958
+ G
959
+ ���A(ϕs(ω)) − B(ϕs(ω))
960
+ ���p dµ(ω) ds
961
+ =
962
+ e2Kp
963
+ 1
964
+
965
+ 0
966
+
967
+ ϕs(G)
968
+ ∥A(ω) − B(ω)∥p dµ(ω) ds
969
+
970
+ e2Kp
971
+
972
+ M
973
+ ∥A(ω) − B(ω)∥p dµ(ω)
974
+ =
975
+ e2Kp ˆσp(A, B).
976
+
977
+ 11
978
+
979
+ 4.2. On the upper semi-continuity of the top Lyapunov exponent function. In this entire
980
+ subsection we do not assume that the flow ϕt is ergodic. We define the function
981
+ L :
982
+ (G1, σp)
983
+ −→
984
+ R
985
+ A
986
+ �−→
987
+
988
+ M λ1(A, ω) dµ(ω).
989
+ Notice that under the ergodic hypothesis over the flow ϕt we have L (A) = λ1(A).
990
+ In order to
991
+ prove that L is upper semi-continuous when G1 is endowed with the σp metric defined in §2.3,
992
+ we begin by given a preliminary result.
993
+ Lemma 4.4. For all t ∈ R, ω ∈ M and A, B ∈ G1, we have
994
+ log+ ∥ΦB(t, ω)∥ ≤ log+ ∥ΦA(t, ω)∥ + ∥ΦB(t, ω) − ΦA(t, ω)∥.
995
+ Proof. The proof follows straightforwardly from the triangular inequality
996
+ ∥ΦB(t, ω)∥ ≤ ∥ΦA(t, ω)∥ + ∥ΦB(t, ω) − ΦA(t, ω)∥.
997
+ and the fact that log+(x + y) ≤ log+(x) + y for all x, y ≥ 0.
998
+
999
+ In the next result the reader will find similarities with the arguments in [1, Theorem 2]. Nev-
1000
+ ertheless, we present novelties namely (i) the topology is planted in the infinitesimal generator of
1001
+ the object which provide the Lyapunov exponent (ii) this point brings several continuity depen-
1002
+ dency issues to be treated using §4.1 and (iii) as we will notice the arguments entail often the
1003
+ idiosyncrasies of the flows and so several adaptations are done accordingly.
1004
+ Proposition 4.5. For all 1 ≤ p < ∞, the function L is upper semicontinuous when we endow G1
1005
+ with the σp-topology, that is, for all A ∈ G1 and ε > 0 there is δ > 0 such that σp(A, B) < δ implies
1006
+ L (B) < L (A) + ε .
1007
+ Proof. By Proposition 2.1 we have σ1(A, B) ≤ σp(A, B), for all 1 ≤ p < ∞, thus it is enough to
1008
+ consider p = 1. Let A ∈ G1 and ε > 0 be given. We assume first that for µ almost every ω ∈ M we
1009
+ have
1010
+ λ1(A, ω) ≥ 0.
1011
+ (27)
1012
+ From the subadditive ergodic theorem, we know that the limit
1013
+ λ1(A, ω) = lim
1014
+ t→+∞
1015
+ 1
1016
+ t log ∥ΦA(t, ω)∥
1017
+ holds almost everywhere and also in L1. Hence, using (27), we get
1018
+ lim
1019
+ t→+∞
1020
+ 1
1021
+ t
1022
+
1023
+ M
1024
+ log− ∥ΦA(t, ω)∥ dµ(ω) = 0,
1025
+ where f − := min{ f, 0}. Notice that
1026
+ L (A)
1027
+ =
1028
+ lim
1029
+ t→+∞
1030
+ 1
1031
+ t
1032
+
1033
+ M
1034
+ log ∥ΦA(t, ω)∥ dµ(ω) = lim
1035
+ n→+∞
1036
+ 1
1037
+ n
1038
+
1039
+ M
1040
+ log ∥ΦA(n, ω)∥ dµ(ω)
1041
+ =
1042
+ inf
1043
+ n∈N
1044
+ 1
1045
+ n
1046
+
1047
+ M
1048
+ log ∥ΦA(n, ω)∥ dµ(ω)
1049
+ (28)
1050
+ so that it is possible to find T ∈ N large enough in order to have
1051
+ 1
1052
+ T
1053
+
1054
+ M
1055
+ log− ∥ΦA(T, ω)∥ dµ(ω) > −ε
1056
+ 8
1057
+ and
1058
+ 1
1059
+ T
1060
+
1061
+ M
1062
+ log ∥ΦA(T, ω)∥ dµ(ω) < L (A) + ε
1063
+ 8
1064
+ and therefore, since f = f − + f +,
1065
+ 1
1066
+ T
1067
+
1068
+ M
1069
+ log+ ∥ΦA(T, ω)∥ dµ(ω) ≤ L (A) + ε
1070
+ 4.
1071
+ (29)
1072
+ We apply Lemma 4.1 to f as in (22) and η = ε/(16(T + 2)), giving us K as in the statement. Set
1073
+ δ′ = min
1074
+
1075
+ η, ηTe−K(T+2))
1076
+
1077
+ and δ = δ′/(1 + δ′).
1078
+ Fix B ∈ G1 satisfying σ1(A, B) < δ, which implies
1079
+ 12
1080
+
1081
+ ˆσ1(A, B) < δ′ ≤ η. We use K, T, η and B to define the sets E f , Eg and G as in (23) and (25)
1082
+ respectively. We are going to bound the expression
1083
+ 1
1084
+ T
1085
+
1086
+ M
1087
+ log+ ∥ΦB(T, ω)∥dµ(ω) = (I) + (II),
1088
+ where
1089
+ (I) = 1
1090
+ T
1091
+
1092
+ Gc log+ ∥ΦB(T, ω)∥dµ(ω)
1093
+ and
1094
+ (II) = 1
1095
+ T
1096
+
1097
+ G
1098
+ log+ ∥ΦB(T, ω)∥dµ(ω).
1099
+ For the first part (I), and by (7) we have
1100
+ 1
1101
+ T
1102
+
1103
+ Gc log+ ∥ΦB(T, ω)∥ dµ(ω)
1104
+
1105
+ 1
1106
+ T
1107
+
1108
+ Gc
1109
+ � T
1110
+ 0
1111
+ ∥B(ϕs(ω))∥ ds dµ(ω) ≤ 1
1112
+ T
1113
+
1114
+ Gc
1115
+ T−1
1116
+
1117
+ i=0
1118
+ g(ϕi(ω)) dµ(ω)
1119
+ =
1120
+ 1
1121
+ T
1122
+ T−1
1123
+
1124
+ i=0
1125
+
1126
+ Gc g(ϕi(ω)) dµ(ω) = 1
1127
+ T
1128
+ T−1
1129
+
1130
+ i=0
1131
+
1132
+ ϕi(Gc)
1133
+ g(ω) dµ(ω).
1134
+ For each i = 0, . . . , T − 1 we have, by (24) and relation (26),
1135
+
1136
+ ϕi(Gc)
1137
+ g dµ(ω) ≤
1138
+
1139
+ Ecg
1140
+ g dµ(ω) +
1141
+
1142
+ Eg∩ϕi(Gc)
1143
+ g dµ(ω) < 2η + Kµ(Eg ∩ ϕi(Gc)) ≤ ε
1144
+ 8 + Kµ(Gc) ≤ ε
1145
+ 2.
1146
+ Putting all together we get
1147
+ (I) = 1
1148
+ T
1149
+
1150
+ Gc log+ ∥ΦB(T, ω)∥dµ(ω) ≤ ε
1151
+ 2.
1152
+ (30)
1153
+ Next we estimate the second part (II). Using Lemma 4.4 and (29) we have
1154
+ (II) ≤ 1
1155
+ T
1156
+
1157
+ G
1158
+ log+ ∥ΦA(T, ω)∥dµ(ω) + 1
1159
+ T
1160
+
1161
+ G
1162
+ ∥ΦB(T, ω) − ΦA(T, ω)∥dµ(ω)
1163
+ ≤ L (A) + ε
1164
+ 4 + 1
1165
+ T
1166
+
1167
+ G
1168
+ ∥ΦB(T, ω) − ΦA(T, ω)∥dµ(ω).
1169
+ (31)
1170
+ To estimate the integral on the right hand side, we proceed as follows. Using the cocycle properties
1171
+ and Lemma 4.2 we have for all ω ∈ G and i = 1, . . . , T − 1:
1172
+ ∥ΦB(i + 1, ω) − ΦA(i + 1, ω)∥ ≤ ∥ΦB(1, ϕi(ω))ΦB(i, ω) − ΦA(1, ϕi(ω))ΦA(i, ω)∥
1173
+ ≤ ∥ΦB(1, ϕi(ω))∥∥ΦB(i, ω) − ΦA(i, ω)∥+
1174
+ + ∥ΦB(1, ϕi(ω)) − ΦA(1, ϕi(ω))∥∥ΦA(i, ω)∥
1175
+ ≤ eK∥ΦB(i, ω) − ΦA(i, ω)∥ + eKi∥ΦB(1, ϕi(ω)) − ΦA(1, ϕi(ω))∥.
1176
+ Integrating over G we get by Lemma 4.3 with p = 1 that
1177
+
1178
+ G
1179
+ ∥ΦB(i + 1, ω) − ΦA(i + 1, ω)∥dµ(ω) ≤ eK
1180
+
1181
+ G
1182
+ ∥ΦB(i, ω) − ΦA(i, ω)∥dµ(ω) + eKi+2Kδ′
1183
+ By induction, we obtain for all i = 1, . . . , T
1184
+
1185
+ G
1186
+ ∥ΦB(i, ω) − ΦA(i, ω)∥dµ(ω) ≤ (i + 2)eK(i+2)δ′.
1187
+ In particular if we take i = T we get
1188
+
1189
+ G
1190
+ ∥ΦB(T, ω) − ΦA(T, ω)∥dµ(ω) ≤ (T + 2)eK(T+2)δ′ ≤ ε
1191
+ 4T.
1192
+ (32)
1193
+ Finally, from (31) and (32) we get
1194
+ (II) = 1
1195
+ T
1196
+
1197
+ G
1198
+ log+ ∥ΦA(T, ω)∥dµ(ω) ≤ L (A) + ε
1199
+ 2.
1200
+ (33)
1201
+ 13
1202
+
1203
+ To complete we consider (30) and (33) to conclude that
1204
+ L (B) ≤ 1
1205
+ T
1206
+
1207
+ M
1208
+ log ∥ΦB(T, ω)∥dµ(ω)
1209
+ = 1
1210
+ T
1211
+
1212
+ Gc log+ ∥ΦB(T, ω)∥dµ(ω) + 1
1213
+ T
1214
+
1215
+ G
1216
+ log+ ∥ΦB(T, ω)∥dµ(ω)
1217
+ ≤ ε
1218
+ 2 +
1219
+
1220
+ L (A) + ε
1221
+ 2
1222
+
1223
+ + = L (A) + ε.
1224
+ Let us prove now the general case. Again, let A ∈ G1 and ε > 0 be given. For α > 0 we define the
1225
+ ϕt-invariant set
1226
+ Lα = {ω ∈ M : λ1(A, ω) < −α}.
1227
+ Consider α large enough such that
1228
+
1229
+
1230
+ log+ ∥ΦA(1, ω)∥ dµ(ω) < ε
1231
+ 8
1232
+ and
1233
+
1234
+
1235
+ λ1(A, ω) dµ(ω) > −ε
1236
+ 4.
1237
+ (34)
1238
+ In particular we get
1239
+
1240
+ Lcα
1241
+ λ1(A, ω) dµ(ω) < L (A) + ε
1242
+ 4.
1243
+ (35)
1244
+ Consider the (non kinetic) infinitesimal generator defined by A + αId. We claim that the weak
1245
+ solution of (3) considering the generator A + αId is given by ΦA+αId = eαtΦA(t, ω).
1246
+ Indeed, it
1247
+ suffices to prove that
1248
+ eαtΦA(t, ω) = Id +
1249
+ � t
1250
+ 0
1251
+ (A + αId)(ϕs(ω))eαsΦA(s, ω)ds
1252
+ (36)
1253
+ that is
1254
+ eαtΦA(t, ω) = Id +
1255
+ � t
1256
+ 0
1257
+ eαsA(ϕs(ω))ΦA(s, ω)ds + α
1258
+ � t
1259
+ 0
1260
+ eαsΦA(s, ω)ds.
1261
+ Using integrating by parts u = eαs, dv = A(ϕs(ω))ΦA(s, ω) ds, du = αeαt ds and v = ΦA(s, ω) we get
1262
+ eαtΦA(t, ω) = Id + eαtΦA(t, ω) − Id −
1263
+ � t
1264
+ 0
1265
+ αeαsΦA(s, ω) ds + α
1266
+ � t
1267
+ 0
1268
+ eαsΦA(s, ω) ds,
1269
+ and the claim (36) proved. Now, we define its ‘maximal Lyapunov exponent’ by
1270
+ λ1(A + αId, ω) := lim
1271
+ t→∞
1272
+ 1
1273
+ t log+ ∥eαtΦA(t, ω)∥.
1274
+ Notice that λ1(A + αId, ω) = λ1(A, ω) + α and if ω ∈ Lc
1275
+ α we have λ1(A + αId, ω) ≥ 0. Define now
1276
+ ˜
1277
+ L :
1278
+ (G1 , σp)
1279
+ −→
1280
+ R
1281
+ A
1282
+ �−→
1283
+
1284
+ M λ1(A + αId, ω)dµ(ω).
1285
+ Proceeding similarly to the previous computations for L , we have that
1286
+ ˜
1287
+ L is upper semicontinuous
1288
+ if we restrict A + αId to Lc
1289
+ α. For this, notice also that Lemma 4.3 also holds if we replace ΦA and
1290
+ ΦB by the corresponding eαΦA and eαΦB. Hence there is δ > 0 such that if σp((A + αId)|Lcα, (B +
1291
+ αId)|Lcα) < δ we have
1292
+
1293
+ Lcα
1294
+ λ1(B + αId, ω)dµ(ω) ≤
1295
+
1296
+ Lcα
1297
+ λ1(A + αId, ω)dµ(ω) + ε
1298
+ 4,
1299
+ that is,
1300
+
1301
+ Lcα
1302
+ λ1(B, ω)dµ(ω) ≤
1303
+
1304
+ Lcα
1305
+ λ1(A, ω)dµ(ω) + ε
1306
+ 4.
1307
+ (37)
1308
+ On the other hand, since Lα is invariant, we have
1309
+
1310
+ La
1311
+ λ1(ΦB, ω) dµ(ω) = inf
1312
+ n
1313
+ 1
1314
+ n
1315
+
1316
+ La
1317
+ log+ ∥ΦB(n, ω)∥ dµ(ω) ≤
1318
+
1319
+ La
1320
+ log+ ∥ΦB(1, ω)∥ dµ(ω)
1321
+ (38)
1322
+ 14
1323
+
1324
+ Consider T = 1 and η, K and G as before, and replace η by η′ = η/4. From Lemma 4.4, (34) and
1325
+ (32) we get
1326
+
1327
+ Lα∩G
1328
+ log+ ∥ΦB(1, ω)∥ dµ(ω)
1329
+
1330
+
1331
+ Lα∩G
1332
+ log+ ∥ΦA(1, ω)∥ dµ(ω) +
1333
+
1334
+ Lα∩G
1335
+ ∥ΦB(1, ω) − ΦA(1, ω)∥ dµ(ω)
1336
+
1337
+ ε
1338
+ 16 + ε
1339
+ 16
1340
+ =
1341
+ ε
1342
+ 8.
1343
+ (39)
1344
+ Similarly as to (30), we obtain
1345
+
1346
+ Lα∩Gc log+ ∥ΦB(1, ω)∥ dµ(ω)
1347
+ ≤ ε
1348
+ 8,
1349
+ which together with (39) leads to
1350
+
1351
+
1352
+ log+ ∥ΦB(1, ω)∥ dµ(ω)
1353
+ ≤ ε
1354
+ 4,
1355
+ (40)
1356
+ Finally, from (37), (38), (35) and (40) we have
1357
+ L (B) =
1358
+
1359
+
1360
+ λ1(B, ω)dµ(ω) +
1361
+
1362
+ Lcα
1363
+ λ1(B, ω)dµ(ω)
1364
+
1365
+
1366
+
1367
+ λ1(A, ω)dµ(ω) + ε
1368
+ 4 +
1369
+
1370
+
1371
+ log+ ∥ΦB(T, ω)∥dµ(ω)
1372
+
1373
+
1374
+ L (A) + ε
1375
+ 2
1376
+
1377
+ + ε
1378
+ 4 + ε
1379
+ 4 = L (A) + ε.
1380
+
1381
+ 5. P���� �� T������ �
1382
+ The strategy applied in C0 cocycles endowed with the C0 norm (or essential bounded cocycles
1383
+ endowed with the L∞ norm) developed in [10, 11, 7, 8] to diminish Lyapunov exponents cannot
1384
+ be used in our context. Indeed, Lp norms catch information on a neighborhood of a segment of
1385
+ orbit and, contrary to the C0 norm, not from the segment itself. For this reason we must follow
1386
+ a different approach.
1387
+ We recall that since we are assuming that ϕt is ergodic, the Lyapunov exponents of a given
1388
+ A ∈ K1 are constant µ almost everywhere and referred as λ1(A) ≥ λ2(A). We define the jump map
1389
+ by:
1390
+ J :
1391
+ (K1 , σp)
1392
+ −→
1393
+ R
1394
+ A
1395
+ �−→
1396
+ λ1(A)−λ2(A)
1397
+ 2
1398
+ .
1399
+ Next result is a straightforward consequence of Proposition 3.3 and is crucial to obtain the
1400
+ proof of Theorem 1.
1401
+ Lemma 5.1. Consider 1 ≤ p < ∞ and let A ∈ K1 and ε, δ > 0 be given. There exists B ∈ K1 with
1402
+ σp(A, B) < ε such that
1403
+ L (B) < δ − J (A) + L (A).
1404
+ Proof. From (i) in Proposition 2.1 and Proposition 3.3 there is B ∈ K1 with σ1(A, B) ≤ σp(A, B) < ε
1405
+ such that
1406
+ L (B) < λ1(A) + λ2(A)
1407
+ 2
1408
+ + δ = δ − J (A) + L (A).
1409
+
1410
+ 15
1411
+
1412
+ Theorem 5.2. Consider 1 ≤ p < ∞ and the complete metric space (K1, σp). If A ∈ K1 is a continuity
1413
+ point of L , then J (A) = 0.
1414
+ Proof. We take a sequence of kinetic linear differential systems An ∈ K1 converging to A ∈ K1
1415
+ in the σp-sense. Since A is a continuity point we must have lim L (An) = L (A). By Lemma 5.1,
1416
+ given εn → 0 and δ > 0, there exists Bn ∈ K1, with σp(An, Bn) < εn, such that
1417
+ L (Bn) < δ − J (An) + L (An).
1418
+ Considering limits on n we get
1419
+ lim
1420
+ n→∞L (Bn) < δ − lim
1421
+ n→∞J (An) + L (A).
1422
+ Since A is a continuity point of L we obtain that J (An) = 0 for all n sufficiently large and thus
1423
+ J (A) = 0.
1424
+
1425
+ We are now in codition to finish the proof of our main result.
1426
+ Proof. (of Theorem 1) By Proposition 4.5 the function L is upper semicontinuous and by Theo-
1427
+ rem 5.2 the continuity points of L have trivial spectrum (jump equal to zero). It is well-known
1428
+ that the set of points of continuity of an upper semicontinuous function is a residual subset (see
1429
+ [18]). Thus, there exists an σp-residual subset R ⊂ K1 such that if A ⊂ R, then J (A) = 0, that is
1430
+ λ1(A) = λ2(A).
1431
+
1432
+ From Corollary 2.3 we have that (K1, σp) is a Baire space, hence a σp-residual is σp-dense.
1433
+ Therefore, we obtain a σp-prevalence of trivial Lyapunov spectrum among kinetic systems.
1434
+ Acknowledgements: The authors were partially supported by FCT - ‘Fundação para a Ciên-
1435
+ cia e a Tecnologia’, through Centro de Matemática e Aplicações (CMA-UBI), Universidade da
1436
+ Beira Interior, project UID/00212/2020. MB also like to thank CMUP for providing the necessary
1437
+ conditions in which this work was developed.
1438
+ R���������
1439
+ [1] A. Arbieto, J. Bochi, Lp-generic cocycles have one-point Lyapunov spectrum, Stochastics and Dynamics 3 (2003)
1440
+ 73–81. Corrigendum. ibid, 3 (2003) 419–420.
1441
+ [2] L. Arnold, Random Dynamical Systems, Springer Verlag, 1998.
1442
+ [3] L. Arnold, H. Crauel, J.-P. Eckmann, editors Lyapunov Exponents. Proceedings, Oberwolfach 1990, volume 1486
1443
+ of Springer Lecture Notes in Math. Springer-Verlag, Berlin Heidelberg New York, 1991.
1444
+ [4] L. Arnold, V. Wihstutz, editors, Lyapunov Exponents. Proceedings, Bremen 1984, volume 1186 of Springer Lecture
1445
+ Notes in Mathematics. SpringerVerlag, Berlin Heidelberg New York, 1986.
1446
+ [5] A. Azevedo, D. Azevedo, M. Bessa and M. J. Torres, The closing lemma and the planar general density theorem for
1447
+ Sobolev maps, Proc. Amer. Math. Soc.,149 (2021), 1687–1696.
1448
+ [6] L. Barreira, Lyapunov Exponents, Birkhauser Verlag, 2017.
1449
+ [7] M. Bessa, Dynamics of generic 2-dimensional linear differential systems, J. Differential Equations 228 (2) (2006)
1450
+ 685–706.
1451
+ [8] M. Bessa, Perturbations of Mathieu equations with parametric excitation of large period Advances in Dynamical
1452
+ Systems and Applications, 7, 1, (2012) 17–30.
1453
+ [9] M. Bessa, H. Vilarinho, Fine properties of Lp-cocycles which allows abundance of simple and trivial spectrum. J.
1454
+ Differential Equations, 256, 7 (2014) 2337–2367.
1455
+ [10] J. Bochi, Genericity of zero Lyapunov exponents, Ergod. Th. & Dynam. Sys. 22 (2002) 1667–1696.
1456
+ [11] J. Bochi, M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. of Math. 161
1457
+ (3) (2005) 1423–1485.
1458
+ [12] P. Duarte, S. Klein, Lyapunov exponents of linear cocycles. Continuity via large deviations. Atlantis Studies in
1459
+ Dynamical Systems, 3. Atlantis Press, Paris, 2016.
1460
+ 16
1461
+
1462
+ [13] Edson de Faria, Peter Hazard, Charles Tresser, Infinite entropy is generic in Hölder and Sobolev spaces, C. R. Acad.
1463
+ Sci. Paris, Ser. I, 355(11) (2017), 1185–1189.
1464
+ [14] E. de Faria, P. Hazard and C. Tresser, Genericity of infinite entropy for maps with low regularity, Ann. Sc. Norm.
1465
+ Super. Pisa Cl. Sci. (5) XXII (2021), 601–664.
1466
+ [15] X. Feng, K. Loparo, Almost sure instability of the random harmonic oscillator, SIAM J. Appl. Math. 50, 3, (1990)
1467
+ 744–759.
1468
+ [16] N. A. Izobov, Lyapunov exponents and stability. Stability, Oscillations and Optimization of Systems, 6. Cambridge
1469
+ Scientific Publishers, Cambridge, 2012.
1470
+ [17] R. Johnson, K. Palmer, G. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal. 18 (1987) 1–33.
1471
+ [18] K. Kuratowski, Topology, vol. 1, Academic Press, 1966.
1472
+ [19] A. Leizarowitz, On the Lyapunov exponent of a harmonic oscillator driven by a finite-state Markov process, SIAM
1473
+ J. Appl. Math., 49, 2, (1989) 404–419.
1474
+ [20] R. Mañé, Oseledec’s theorem from generic viewpoint, Proceedings of the international Congress of Mathematicians,
1475
+ Warszawa vol. 2 (1983) 1259–1276.
1476
+ [21] R. Mañé, The Lyapunov exponents of generic area preserving diffeomorphisms, International Conference on Dy-
1477
+ namical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser. 362 (1996) 110–119.
1478
+ [22] V. M. Millionshchikov, Systems with integral separateness which are dense in the set of all linear systems of
1479
+ differential equations, Differential Equations 5 (1969) 850–852.
1480
+ [23] V. L. Novikov, Almost reducible systems with almost periodic coefficients, Mat. Zametki 16 (1974) 789–799.
1481
+ [24] V. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Transl.
1482
+ Moscow Math. Soc. 19 (1968) 197-231.
1483
+ [25] F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131
1484
+ (1996) 20–38.
1485
+ [26] A. Pikovsky, A. Politi, Lyapunov exponents. A tool to explore complex dynamics. Cambridge University Press,
1486
+ Cambridge, 2016.
1487
+ [27] D. Rudolph, A Two-Valued Step Coding for Ergodie Flows, Math. Z. 150 (1976) 201–220.
1488
+ [28] M. Viana, Lectures on Lyapunov exponents. Cambridge Studies in Advanced Mathematics, 145. Cambridge Uni-
1489
+ versity Press, Cambridge, 2014.
1490
+ Email address: [email protected]
1491
+ Email address: [email protected]
1492
+ Email address: [email protected]
1493
+ 17
1494
+
G9E4T4oBgHgl3EQfHwwY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GdAzT4oBgHgl3EQfxf4V/content/tmp_files/2301.01737v1.pdf.txt ADDED
@@ -0,0 +1,802 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Episodes Discovery Recommendation with Multi-Source
2
+ Augmentations
3
+ Ziwei Fan∗
4
5
+ University of Illinois Chicago
6
+ USA
7
+ Alice Wang, Zahra Nazari
8
+ {alicew,zahran}@spotify.com
9
+ Spotify Research
10
+ USA
11
+ ABSTRACT
12
+ Recommender systems (RS) commonly retrieve potential candidate
13
+ items for users from a massive number of items by modeling users’
14
+ interests based on historical interactions. However, historical in-
15
+ teraction data is highly sparse, and most items are long-tail items,
16
+ which limits the representation learning for item discovery. This
17
+ problem is further augmented by the discovery of novel or cold-start
18
+ items. For example, after a user displays interest in bitcoin financial
19
+ investment shows in the podcast space, a recommender system
20
+ may want to suggest e.g., a newly released blockchain episode from
21
+ a more technical show. Episode correlations help the discovery,
22
+ especially when interaction data of episodes is limited. Accordingly,
23
+ we build upon the classical Two-Tower model and introduce the
24
+ novel Multi-Source Augmentations using a Contrastive Learning
25
+ framework (MSACL) to enhance episodes embedding learning by in-
26
+ corporating positive episodes from numerous correlated semantics.
27
+ Extensive experiments on a real-world podcast recommendation
28
+ dataset from a large audio streaming platform demonstrate the ef-
29
+ fectiveness of the proposed framework for user podcast exploration
30
+ and cold-start episode recommendation.
31
+ ACM Reference Format:
32
+ Ziwei Fan and Alice Wang, Zahra Nazari. 2018. Episodes Discovery Rec-
33
+ ommendation with Multi-Source Augmentations. In Woodstock ’18: ACM
34
+ Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM,
35
+ New York, NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456
36
+ 1
37
+ INTRODUCTION
38
+ Recommender Systems (RS) have been widely applied to numerous
39
+ web [19, 20] applications to retrieve relevant information. Collabo-
40
+ rative filtering (CF), as the most commonly used RS [14, 18, 23, 36],
41
+ assumes that users with similar interests prefer similar items. The
42
+ users’ interests are typically modeled and optimized by historical
43
+ interactions [8, 17, 26, 33]. However, as CF-based RS models interest
44
+ based on historical interactions, these methods can only capture in-
45
+ terests observed in training data and fails to explore topics that users
46
+ might be interested in but may never know. Therefore, a significant
47
+ challenge for RS is to facilitate user exploration [3]. Exploration is
48
+ ∗Work is done during the internship in Spotify Research.
49
+ Permission to make digital or hard copies of all or part of this work for personal or
50
+ classroom use is granted without fee provided that copies are not made or distributed
51
+ for profit or commercial advantage and that copies bear this notice and the full citation
52
+ on the first page. Copyrights for components of this work owned by others than ACM
53
+ must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
54
+ to post on servers or to redistribute to lists, requires prior specific permission and/or a
55
+ fee. Request permissions from [email protected].
56
+ Woodstock ’18, June 03–05, 2018, Woodstock, NY
57
+ © 2018 Association for Computing Machinery.
58
+ ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
59
+ https://doi.org/10.1145/1122445.1122456
60
+ increasingly becoming a critical problem in RS, as existing RS meth-
61
+ ods can cause echo chambers and filter bubbles as users increasingly
62
+ engage with RS [11]. These two coined terms [1, 27] introduce a
63
+ phenomenon where users’ interests become self-reinforced, as only
64
+ items matching with users’ past interests are exposed to users by RS.
65
+ This phenomenon optimizes short-term user interests and fails to
66
+ drive long-term user engagement. Moreover, the lack of diversity of
67
+ recommended items also potentially reduces user satisfaction. We
68
+ build an RS for podcast recommendation that promotes exploration
69
+ and podcast discovery here.
70
+ In recent years, podcast listening [24] has shown a tremendous
71
+ increase in popularity1. This growth in user interest, as well as a
72
+ relatively low barrier to creation compared to other media such
73
+ as music or movies, has created an explosion of podcast creation.
74
+ Therefore, new and diverse podcast content is increasingly and
75
+ continuously being created. We argue that the bottleneck of the
76
+ user podcast exploration problem for RS consists of two challenges,
77
+ including feature sparsity and interaction sparsity [5, 7]. These two
78
+ challenges come from the data sparsity problem in RS [12, 21],
79
+ where limited interaction data is available for representing users
80
+ and items. The reason for feature sparsity is that many podcast
81
+ contents are cold-start items with few user interactions. Moreover,
82
+ in the problem of user exploration, there is a lack of user-item
83
+ interaction training data.
84
+ To resolve these challenges, we propose a novel framework with
85
+ interaction-level data augmentations from multi-sources episodes
86
+ correlation semantics [22] in contrastive learning (MSACL), build-
87
+ ing upon the classical backbone of various recommender systems,
88
+ Two-Tower architecture [15]. Data augmentation [30, 31, 35] en-
89
+ riches data with different views of similar items for learning item
90
+ embeddings, and contrastive learning [16, 28, 37] acts as a bridge
91
+ connecting augmented items and positively interacted items. The
92
+ proposed MSACL framework proposes the discovery item augmen-
93
+ tation and the discovery contrastive regularization to alleviate the
94
+ two challenges. For the discovery item augmentation, we incorpo-
95
+ rate similar items from different semantic item relationships [6, 29]
96
+ as positive items to enrich scarce user-item interactions. The dis-
97
+ covery contrastive regularization further connects the user-item
98
+ predictions with the similarity between discovery item and positive
99
+ item. Our contributions are summarized as follows:
100
+ • A novel data augmentation framework MSACL is proposed to
101
+ alleviate data sparsity in user exploration and recommendation
102
+ for episode discovery from two perspectives: (1). discovery aug-
103
+ mentation of different semantic similarities, and (2). discovery
104
+ contrastive regularization for alleviating user-item explorative
105
+ interactions sparsity with augmented discovery items.
106
+ 1https://www.edisonresearch.com/the-infinite-dial-2021-2/
107
+ arXiv:2301.01737v1 [cs.IR] 4 Jan 2023
108
+
109
+ Woodstock ’18, June 03–05, 2018, Woodstock, NY
110
+ Trovato and Tobin, et al.
111
+ • Extensive experiments on a large, real-world podcast recommen-
112
+ dation dataset demonstrate the effectiveness of the proposed
113
+ framework MSACL for episode explorative recommendation, es-
114
+ pecially for cold episodes.
115
+ 2
116
+ MSACL
117
+ 2.1
118
+ Problem Definition
119
+ In RS, we denote the user set and episode set as U and I, in which
120
+ each user and episode are denoted as 𝑢 and 𝑖. For an episode 𝑖, it
121
+ belongs to one podcast show 𝑝 but one podcast show has multiple
122
+ episodes {𝑖 ∈ 𝑝}, where 𝑝 ∈ P and P denotes the set of podcast
123
+ shows. The interactions between users and episodes are represented
124
+ as a set {𝑟𝑢𝑖 ∈ R}, where 𝑟𝑢𝑖 is binary indicating whether the user
125
+ 𝑢 has listened to the episode 𝑖 with more than 30 seconds. For
126
+ each user and episode, we also have feature vectors 𝑓𝑢 ∈ R𝑑𝑓𝑢
127
+ and 𝑓𝑖 ∈ R𝑑𝑓𝑖 , where 𝑑𝑓𝑢 and 𝑑𝑓𝑖 are dimension sizes of the user
128
+ input feature vector and the episode feature vector. The episode
129
+ exploration recommendation is predicting the preference score of
130
+ the user 𝑢 to an episode 𝑖 that is out of user 𝑢’s historical interests,
131
+ i.e., 𝑖 ∉ {𝑝|𝑟𝑢𝑗 = 1, 𝑗 ∈ 𝑝, for all 𝑗 ∈ I}:
132
+ ^
133
+ 𝑟𝑢𝑖 = 𝐹u(𝑓𝑢)⊤𝐹i(𝑓𝑖),
134
+ (1)
135
+ where 𝐹u and 𝐹i are neural networks for learning user embeddings
136
+ and episode embeddings. We generate the episode exploration rec-
137
+ ommendation list by ranking the scores 𝑟𝑢𝑖 on all episodes in de-
138
+ scending order.
139
+ 2.2
140
+ Two-Tower Model for Recommendation
141
+ The Eq. (1) describes the standard Two-Tower architecture for rec-
142
+ ommendation [15], which comprises of the user tower (𝐹u) and the
143
+ episode tower (𝐹i). To be specific, the 𝐿-th layers fully connected
144
+ neural network output embeddings of user 𝑢 and episode 𝑖 are as
145
+ follows:
146
+ 𝐹𝐿
147
+ u = ReLU(𝐹𝐿−1
148
+ u
149
+ 𝑊 𝐿
150
+ 1 + 𝑏𝐿
151
+ 1 )
152
+ 𝐹𝐿
153
+ i = ReLU(𝐹𝐿−1
154
+ i
155
+ 𝑊 𝐿
156
+ 2 + 𝑏𝐿
157
+ 2 ),
158
+ (2)
159
+ where ReLU(·) refers to the ReLU activation function, the 0-th layer
160
+ of each tower is the input feature vector of 𝑓𝑢 or 𝑓𝑖, respectively,
161
+ 𝑊 𝐿∗ ∈ R𝑑𝐿−1×𝑑𝐿 are linear transformations and 𝑏𝐿∗ ∈ R𝑑𝐿 are bias.
162
+ The last layer’s output embeddings will be used to make predictions
163
+ as in Eq. (1).
164
+ 2.3
165
+ Discovery Items Augmentation
166
+ The scarcity of user-episode interactions is a significant issue of
167
+ recommendation for discovery and exploration. The Two-Tower
168
+ architecture in Eq. (1) demands feature interactions to generalize to
169
+ unseen user-episode discovery recommendations. However, feature
170
+ interactions based on only training interaction data are limited
171
+ due to the data scarcity of user-episode interactions. To alleviate
172
+ this issue, we extract more positive episodes from additional item
173
+ similarity semantic relationships, including episodes with similar
174
+ text content and episodes with similar knowledge information. We
175
+ assume that a user will be more likely to explore novel episodes
176
+ with similar content or correlated knowledge to items they have
177
+ interacted with in the past. Note that discovery items may have
178
+ similar semantics in knowledge and contents but are not signifi-
179
+ cant in feature interactions. Each item has a large number of fea-
180
+ tures in practical scenarios, and semantic information is diminished.
181
+ Comparing directly using content and knowledge embeddings as
182
+ features, augmenting similar episodes from different semantics pro-
183
+ vides more information as augmented episodes have other features
184
+ and also enrich feature interactions in the Two-Tower architecture.
185
+ Specifically, for each episode 𝑖, we have pre-trained content em-
186
+ beddings [25] and knowledge embeddings [32] as side information.
187
+ The content embeddings are pre-trained with the episode script
188
+ and title text, and the knowledge embeddings are pre-trained from
189
+ the episode knowledge graph data. We adopt the Approximate
190
+ Nearest Neighbors lookup with Annoy to extract the top-K sim-
191
+ ilar episodes from each semantic relationship, which we denote
192
+ them as 𝑆content(𝑖) = {𝑗 ∈ Annoycontent(𝐾)}, and 𝑆kg(𝑖) = {𝑗 ∈
193
+ Annoykg(𝐾)}. We extract the top-K similar episodes by ranking
194
+ the top-K episodes with smallest L2 distances on content embed-
195
+ dings or knowledge embeddings, respectively. We use top-10 for
196
+ simplicity.
197
+ 2.4
198
+ Discovery Contrastive Regularization
199
+ With the augmented discovery episodes from multiple sources of
200
+ semantics, we introduce the contrastive learning loss for enriching
201
+ feature interactions and alleviating the data sparsity in both features
202
+ and instances. We can create ‘positive’ episodes 𝑖 from similar
203
+ semantic relationships ({𝑖+ ∈ 𝑆content(𝑖)} or {𝑖+ ∈ 𝑆kg(𝑖)}), even
204
+ the combination of both augmentations. To be specific, given a
205
+ minibatch of 𝑁 user-episode exploration interactions {(𝑢𝑘,𝑖𝑘)}𝑁
206
+ 𝑘=1,
207
+ we augment one ‘positive’ episode (augmented episode) 𝑖𝑢𝑘
208
+ + for the
209
+ 𝑘-th interaction. In total, we have 2𝑁 episodes and we reindex all
210
+ episodes, we obtain:
211
+ {𝑖𝑢1
212
+ 𝑎 ,𝑖𝑢1
213
+ 𝑏 ,𝑖𝑢2
214
+ 𝑎 ,𝑖𝑢2
215
+ 𝑏 , · · · ,𝑖𝑢𝑁
216
+ 𝑎 ,𝑖𝑢𝑁
217
+ 𝑎 , },
218
+ (3)
219
+ and the (𝑖𝑢𝑘
220
+ 𝑎 ,𝑖𝑢𝑘
221
+ 𝑏 ) is the positive pair of the user 𝑘, 𝑎 and𝑏 subscripts
222
+ denote the positive item 𝑎 and the semantically similar item 𝑏 for
223
+ the user 𝑘, and other 2𝑁 − 1 pairs are considered as negative pairs.
224
+ For each episode pair (𝑖𝑢𝑘
225
+ 𝑎 ,𝑖𝑢𝑘
226
+ 𝑏 ), their features are (𝑓𝑖
227
+ 𝑢𝑘
228
+ 𝑎 , 𝑓𝑖
229
+ 𝑢𝑘
230
+ 𝑏 ), we
231
+ obtain the learned embeddings 𝐹𝐿
232
+ 𝑖
233
+ 𝑢𝑘
234
+ 𝑎 , 𝐹𝐿
235
+ 𝑖
236
+ 𝑢𝑘
237
+ 𝑏
238
+ , and the learned user
239
+ embedding 𝐹𝐿𝑢𝑘 after 𝐿-layers of episode tower layer defined in
240
+ Eq. (1). We adopt the NT-Xent loss [4, 9, 10, 13] for optimization as
241
+ follows:
242
+ L𝐶𝐿 = − log
243
+ exp
244
+
245
+ 𝐹𝐿
246
+ 𝑖
247
+ 𝑢𝑘
248
+ 𝑎
249
+ ⊤𝐹𝐿
250
+ 𝑖
251
+ 𝑢𝑘
252
+ 𝑏
253
+
254
+ �2𝑁 −1
255
+ 𝑚=1 exp
256
+
257
+ 𝐹𝐿
258
+ 𝑖
259
+ 𝑢𝑘
260
+ 𝑎
261
+ ⊤𝐹𝐿
262
+ 𝑖𝑚
263
+ � .
264
+ (4)
265
+ Note that we maximize dot product between the positive and aug-
266
+ mented episodes (𝐹𝐿
267
+ 𝑖
268
+ 𝑢𝑘
269
+ 𝑎 , 𝐹𝐿
270
+ 𝑖
271
+ 𝑢𝑘
272
+ 𝑏
273
+ ), which matches with the user-episode
274
+ exploration prediction defined in Eq. (1). With the combination of
275
+ the dot product between the positive and augmented episodes in
276
+ Eq. (5) and the dot product between the user and episode interac-
277
+ tion prediction in Eq. (1), we can conclude that it is equivalent to
278
+ augment user-episode interactions with more ‘positive’ (𝑢𝑘,𝑖𝑢𝑘
279
+ 𝑏 )
280
+ interactions.
281
+
282
+ Episodes Discovery Recommendation with Multi-Source Augmentations
283
+ Woodstock ’18, June 03–05, 2018, Woodstock, NY
284
+ With different variants of augmentations, we investigate sev-
285
+ eral models in this framework, including the model with only fea-
286
+ ture dropout TT-FD, the content similar augmentation MSACL
287
+ (Content), the knowledge similar augmentation MSACL (KG), and
288
+ also the combination of feature dropout and knowledge similar
289
+ augmentation MSACL (KG-FD). We adopt the sampled softmax
290
+ cross-entropy loss function with 𝑘 sampled negative items as the
291
+ user-episode interactions optimization and also incorporate the
292
+ contrastive loss as follows:
293
+ L = −
294
+ ∑︁
295
+ (𝑢,𝑖) ∈R
296
+ [log(𝜎( ^
297
+ 𝑟𝑢𝑖)) +
298
+ 𝑘
299
+ ∑︁
300
+ 𝑗=1
301
+ log(1 − ^
302
+ 𝑟𝑢𝑗)] + 𝜆L𝐶𝐿,
303
+ (5)
304
+ where 𝜆 is a hyper-parameter for controlling the contribution from
305
+ L𝐶𝐿.
306
+ Note that we maximize dot product between the positive and aug-
307
+ mented episodes (𝐹𝐿
308
+ 𝑖
309
+ 𝑢𝑘
310
+ 𝑎 , 𝐹𝐿
311
+ 𝑖
312
+ 𝑢𝑘
313
+ 𝑏
314
+ ), which matches with the user-episode
315
+ exploration prediction defined in Eq. (1). With the combination of
316
+ the dot product between the positive and augmented episodes in
317
+ Eq. (5) and the dot product between the user and episode interac-
318
+ tion prediction in Eq. (1), we can conclude that it is equivalent to
319
+ augment user-episode interactions with more ‘positive’ (𝑢𝑘,𝑖𝑢𝑘
320
+ 𝑏 )
321
+ interactions.
322
+ With different variants of augmentations, we investigate sev-
323
+ eral models in this framework, including the model with only
324
+ feature dropout (TT-FD), the content similar augmentation (TT-
325
+ Corr(Content)), the knowledge similar augmentation (TT-Corr(KG)),
326
+ and also the combination of feature dropout and knowledge similar
327
+ augmentation (TT-FD-Corr(KG)).
328
+ 2.5
329
+ Loss and Optimization
330
+ We adopt the sampled softmax cross-entropy loss function as the
331
+ user-episode exploration interaction optimization and also incor-
332
+ porate the NT-Xent contrastive loss as regularization, which are
333
+ summarized as follows:
334
+ L = −
335
+ ∑︁
336
+ (𝑢,𝑖) ∈R
337
+ [log(𝜎( ^
338
+ 𝑟𝑢𝑖)) +
339
+ 𝑘
340
+ ∑︁
341
+ 𝑗=1
342
+ log(1 − ^
343
+ 𝑟𝑢𝑗)] + 𝜆L𝐶𝐿,
344
+ (6)
345
+ where we sample 𝑘 negative items in interactions optimization.
346
+ 3
347
+ EXPERIMENTS
348
+ In this section, we present the experimental settings and results to
349
+ demonstrate the effectiveness of MSACL. We answer the following
350
+ Research Questions (RQs):
351
+ • RQ1: Is MSACL effective in episode exploration recommenda-
352
+ tion?
353
+ • RQ2: How does each correlation relationship contribute to the
354
+ performance?
355
+ • RQ3: Does MSACL achieve better performance in cold items?
356
+ 3.1
357
+ Dataset Statistics and Preprocessing
358
+ We conduct experiments on data collected from a large audio
359
+ streaming platform. In this dataset, users are recommended pod-
360
+ cast episodes. Here, our work focuses on exploration. We define
361
+ discovery as user-episode interactions from podcast shows the user
362
+ has never interacted with. Note that each podcast show may have
363
+ Table 1: Dataset Statistics After Preprocessing
364
+ Data Part
365
+ #users
366
+ #episodes
367
+ #interactions
368
+ Train
369
+ 65,756
370
+ 78,103
371
+ 77,003
372
+ Validation
373
+ 8,230
374
+ 17,381
375
+ 9,642
376
+ Test
377
+ 8,248
378
+ 17,758
379
+ 9,551
380
+ multiple episodes, but we impose a stringent definition of discovery;
381
+ user interactions with novel episodes from familiar shows are not
382
+ considered discovery. We define positive interactions to be episode
383
+ listening of at least 30 seconds. To this end, the dataset contains
384
+ a sample of 82,234 users on 113,242 episodes with 96,196 user ex-
385
+ ploration interactions, and the density is 0.001%. We separate users
386
+ into training, validation, and test sets via the split ratio of 8:1:1 as
387
+ users and items have features as inputs. Detailed data statistics are
388
+ listed in Table 1. The features we used for the user tower includes
389
+ gender, age, country, podcast topics liked in previous 90 days, user
390
+ language, pre-trained collaborative filtering embedding vector, the
391
+ user embedding pre-trained with podcast interactions, and aver-
392
+ aged streaming time. For episodes, we use features including topics,
393
+ country, collaborative filtering pre-trained embeddings, and pre-
394
+ trained semantic embeddings of the podcast. We use two different
395
+ pre-trained semantic embeddings, which we call KG (knowledge
396
+ graph) and Content. The KG embeddings are learned by apply-
397
+ ing a common KG embedding method, DistMult [32], on a graph
398
+ that contains available metadata on the podcasts such as episode,
399
+ topic, licensor, and publisher nodes. Edges are created between
400
+ episode-licensor, episode-topic, episode-publisher, and topic-topic.
401
+ The Content embeddings are obtained from using pre-trained BERT
402
+ embeddings on the podcast titles and descriptions [25]. For discrete
403
+ features, we encode them as one-hot or multi-hot vectors. For con-
404
+ tinuous features, such as pre-trained embedding vectors, we directly
405
+ use them as inputs. After encoding, we concatenate all features of
406
+ users and items, respectively.
407
+ 3.2
408
+ Baselines
409
+ As the proposed framework MSACL builds upon a Two-Tower
410
+ model, we compare with two groups of baselines, standard popularity-
411
+ based methods and two-tower based methods. We use three popularity-
412
+ based methods. One is Pop method, which ranks items based on the
413
+ number of positive interactions. The other two popularity-based
414
+ methods are Pop-Country and Pop-Age-Country, which rank items’
415
+ number of interactions conditioned on the users’ country and the
416
+ combination of age and country, respectively. For Two-Tower-based
417
+ methods, the first baseline is the standard Two-Tower (TT) model
418
+ with the full feature set. The second is the Two-Tower method with
419
+ feature dropout (TT-FD) proposed by [34]. For parameter setting,
420
+ we search the number of layers of Two-tower models from {1, 2, 3},
421
+ the dropout probability from {0.1, 0.3, 0.5, 0.7}.
422
+ 3.3
423
+ Evaluation Metrics
424
+ We evaluate the proposed MSACL on standard ranking metrics for
425
+ top-N recommendation, including Recall@N, NDCG@N, and MRR.
426
+ Recall@N measures the percentage of positive items being recom-
427
+ mended in top-N ranking lists. NDCG@N considers the positions
428
+
429
+ Woodstock ’18, June 03–05, 2018, Woodstock, NY
430
+ Trovato and Tobin, et al.
431
+ Table 2: Performance Comparison in Recall@10, NDCG@10,
432
+ Recall@20, NDCG@20, and MRR. The best and second-best
433
+ results are boldfaced and underlined, respectively.
434
+ Model
435
+ Recall@10
436
+ NDCG@10
437
+ Recall@20
438
+ NDCG@20
439
+ MRR
440
+ Pop
441
+ 0.02349
442
+ 0.01325
443
+ 0.03618
444
+ 0.01681
445
+ 0.01220
446
+ Pop-Country
447
+ 0.03115
448
+ 0.01839
449
+ 0.05239
450
+ 0.02430
451
+ 0.01727
452
+ Pop-Age-Country
453
+ 0.02898
454
+ 0.01701
455
+ 0.04707
456
+ 0.02198
457
+ 0.01560
458
+ TT
459
+ 0.06068
460
+ 0.04039
461
+ 0.08594
462
+ 0.04726
463
+ 0.03732
464
+ TT-FD
465
+ 0.06153
466
+ 0.04131
467
+ 0.08548
468
+ 0.04816
469
+ 0.03784
470
+ MSACL
471
+ 0.06609
472
+ 0.04336
473
+ 0.09062
474
+ 0.05018
475
+ 0.03966
476
+ Improv vs TT
477
+ +8.92%
478
+ +7.36%
479
+ +5.45%
480
+ +6.18%
481
+ +6.28%
482
+ Improv vs 2nd-best
483
+ +7.41%
484
+ +4.96%
485
+ +5.45%
486
+ +4.19%
487
+ +4.81%
488
+ of correctly ranked positive items in top-N recommendation lists.
489
+ Mean Reciprocal Rank (MRR) is similar to NDCG@N with also the
490
+ consideration of ranking positions but in the entire ranking list. We
491
+ report the averaged evaluation metrics over all test users.
492
+ 3.4
493
+ Overall Comparison (RQ1)
494
+ We report the overall results with all baselines in Table 2. We have
495
+ the following observations:
496
+ • The proposed method MSACL achieves the best performance
497
+ over the second best baseline from 4.19% to 7.41% on all metrics.
498
+ Compared with TT, the improvements are from 5.45% to 8.92%.
499
+ These observations demonstrate the superiority of MSACL for
500
+ episode exploration and recommendation. The reasons for the
501
+ improvements are twofold: (1). the feature and instance level
502
+ data augmentation alleviates the features and interactions data
503
+ sparsity problem for episode exploration and recommendation;
504
+ (2). the incorporation of additional positive items from multiple
505
+ semantics of item similarities.
506
+ • Among TT-based methods, we can see that MSACL performs the
507
+ best. TT-FD [34] achieves the second best performance in most
508
+ metrics. TT-FD outperforms TT model, therefore demonstrating
509
+ the utility of contrastive learning in episodes recommendation.
510
+ We also observe that MSACL achieves better performance than
511
+ TT-FD. This observation supports the superiority of instance
512
+ augmentation in contrastive learning.
513
+ • We can also see that the TT baseline method significantly out-
514
+ performs the popularity baselines, which demonstrates the ef-
515
+ fectiveness of incorporating features into the users and items
516
+ modeling.
517
+ • Among popularity-based baselines, we can observe that the base-
518
+ line using users’ country information achieves the best perfor-
519
+ mance. The second-best one is using both age and country in-
520
+ formation. The reason why using age information degrades the
521
+ performance is that the combination of age and country will sep-
522
+ arate users’ interactions in extremely fine-grain buckets, where
523
+ most items have no interaction.
524
+ Table 3: Performance Comparisons for Different Item Simi-
525
+ larity Semantics. The best and second-best results are bold-
526
+ faced and underlined, respectively.
527
+ Model
528
+ Recall@10
529
+ NDCG@10
530
+ Recall@20
531
+ NDCG@20
532
+ MRR
533
+ TT-FD
534
+ 0.06153
535
+ 0.04131
536
+ 0.08548
537
+ 0.04816
538
+ 0.03784
539
+ MSACL (Content)
540
+ 0.06088
541
+ 0.04045
542
+ 0.08430
543
+ 0.04721
544
+ 0.03708
545
+ MSACL (KG)
546
+ 0.06385
547
+ 0.04272
548
+ 0.08792
549
+ 0.04952
550
+ 0.03909
551
+ MSACL (FD-KG)
552
+ 0.06609
553
+ 0.04336
554
+ 0.09062
555
+ 0.05018
556
+ 0.03966
557
+ ≤3
558
+ (3, 7]
559
+ (7, 20]
560
+ Episodes Popularity Interval
561
+ 0
562
+ 250
563
+ 500
564
+ 750
565
+ 1000
566
+ 1250
567
+ 1500
568
+ 1750
569
+ 2000
570
+ Count
571
+ 1752
572
+ 1021
573
+ 1336
574
+ 0.015
575
+ 0.020
576
+ 0.025
577
+ 0.030
578
+ 0.035
579
+ 0.040
580
+ NDCG@20
581
+ TT
582
+ MSACL(KG-FD)
583
+ TT-FD
584
+ MSACL(Content)
585
+ MSACL(KG)
586
+ (a) Cold Episodes
587
+ (7, 20]
588
+ (20, 50]
589
+ ≥50
590
+ Episodes Popularity Interval
591
+ 0
592
+ 250
593
+ 500
594
+ 750
595
+ 1000
596
+ 1250
597
+ 1500
598
+ 1750
599
+ 2000
600
+ Count
601
+ 1336
602
+ 700
603
+ 355
604
+ 0.03
605
+ 0.04
606
+ 0.05
607
+ 0.06
608
+ 0.07
609
+ 0.08
610
+ 0.09
611
+ 0.10
612
+ NDCG@20
613
+ TT
614
+ MSACL(KG-FD)
615
+ TT-FD
616
+ MSACL(Content)
617
+ MSACL(KG)
618
+ (b) Popular Episodes
619
+ Figure 1: The NDCG@20 performance on items with differ-
620
+ ent popularity.
621
+ 3.5
622
+ Effects of Different Correlations (RQ2)
623
+ We incorporate positive episodes from different correlation seman-
624
+ tics in MSACL to enhance the instance augmentation. We investi-
625
+ gate different types of correlations, including two ways of comput-
626
+ ing semantic similarity between episodes (one is content-based sim-
627
+ ilarity and another is knowledge-based similarity [2]). The feature
628
+ dropout also creates a noisy version of positive episodes, providing
629
+ an alternative view of episodes, which can also be viewed as similar
630
+ episodes. We show the performance results of different correlations
631
+ in Table 3. We obtain the following observations:
632
+ • The combination of feature dropout and knowledge graph-based
633
+ instance augmentation perform the best among all variants. We
634
+ can conclude that both feature level and instance level augmenta-
635
+ tions are necessary for the episodes exploration recommendation.
636
+ • Comparing MSACL (KG) and MSACL (Content), we can observe
637
+ that knowledge graph-based similar correlations identify more
638
+ informative positive episodes for matching users’ interests in ex-
639
+ ploration. This is reasonable that knowledge embeddings encode
640
+ more heterogeneous episodes relationships while content-similar
641
+ episodes might bring limited unexpected episodes to users that
642
+ are also of interest.
643
+ 3.6
644
+ Cold Start Items Performance (RQ3)
645
+ A major performance bottleneck for the episode exploration and
646
+ recommendation problem is due to data sparsity, which our frame-
647
+ work MSACL can alleviate. We separate episodes into groups based
648
+ on popularity and visualize the average performance of each group,
649
+ as shown in Figure 1. We visualize cold items in Figure 1a and
650
+ popular items in Figure 1b. We can first observe that cold episodes
651
+ comprise the majority while popular episodes are in the minority.
652
+ Next, we have additional two observations:
653
+
654
+ Episodes Discovery Recommendation with Multi-Source Augmentations
655
+ Woodstock ’18, June 03–05, 2018, Woodstock, NY
656
+ • For cold episodes recommendation, all variants of the proposed
657
+ framework MSACL obtain significant improvements on extremely
658
+ cold episodes (with no more than three interactions). It demon-
659
+ strates the superiority of the proposed model MSACL with con-
660
+ trastive learning and hierarchical augmentations for user ex-
661
+ ploration recommendation. The MSACL (KG-FD) achieves the
662
+ most consistent improvements in all cold episodes group, which
663
+ indicates the necessity of both feature level and instance level
664
+ augmentations.
665
+ • Regarding popular episodes, we can see that all methods, in-
666
+ cluding the baseline method, have the same trend, which is that
667
+ performance increases as popularity increases and that all meth-
668
+ ods achieve similar performance on the most popular episodes.
669
+ 4
670
+ CONCLUSION
671
+ In this work, we propose a novel data augmentation framework to
672
+ solve a podcast exploration recommendation problem. To alleviate
673
+ challenges regarding feature and instance sparsity, we propose a
674
+ contrastive learning framework using feature and instance augmen-
675
+ tations and achieve improvements over state-of-the-art baselines
676
+ under the Two-Tower architecture. We also demonstrate the effec-
677
+ tiveness of the proposed framework for cold episode recommenda-
678
+ tion in the increasingly influential domain of podcasts.
679
+ REFERENCES
680
+ [1] David Paul Allen, Henry Jacob Wheeler-Mackta, and Jeremy R Campo. 2017.
681
+ The effects of music recommendation engines on the filter bubble phenomenon.
682
+ Interactive Qualifying Projects (2017).
683
+ [2] Maryam Aziz, Alice Wang, Aasish Pappu, Hugues Bouchard, Yu Zhao, Benjamin
684
+ Carterette, and Mounia Lalmas. 2021. Leveraging Semantic Information to Facilitate
685
+ the Discovery of Underserved Podcasts. Association for Computing Machinery,
686
+ New York, NY, USA, 3707–3716. https://doi.org/10.1145/3459637.3481934
687
+ [3] Minmin Chen, Yuyan Wang, Can Xu, Ya Le, Mohit Sharma, Lee Richardson, Su-
688
+ Lin Wu, and Ed Chi. 2021. Values of User Exploration in Recommender Systems.
689
+ In Fifteenth ACM Conference on Recommender Systems. 85–95.
690
+ [4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
691
+ simple framework for contrastive learning of visual representations. In Interna-
692
+ tional conference on machine learning. PMLR, 1597–1607.
693
+ [5] Ziwei Fan, Zhiwei Liu, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, and
694
+ Philip S Yu. 2022. Sequential Recommendation via Stochastic Self-Attention. In
695
+ Proceedings of the ACM Web Conference 2022. 2036–2047.
696
+ [6] Ziwei Fan, Zhiwei Liu, Chen Wang, Peijie Huang, Hao Peng, and Philip S Yu.
697
+ 2022. Sequential Recommendation with Auxiliary Item Relationships via Multi-
698
+ Relational Transformer. arXiv preprint arXiv:2210.13572 (2022).
699
+ [7] Ziwei Fan, Zhiwei Liu, Shen Wang, Lei Zheng, and Philip S. Yu. 2021. Modeling
700
+ Sequences as Distributions with Uncertainty for Sequential Recommendation. In
701
+ Proceedings of the 30th ACM International Conference on Information & Knowledge
702
+ Management (Virtual Event, Queensland, Australia) (CIKM ’21). Association for
703
+ Computing Machinery, New York, NY, USA, 3019–3023. https://doi.org/10.1145/
704
+ 3459637.3482145
705
+ [8] Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S. Yu. 2021.
706
+ Continuous-Time Sequential Recommendation with Temporal Graph Collaborative
707
+ Transformer. Association for Computing Machinery, New York, NY, USA, 433–442.
708
+ https://doi.org/10.1145/3459637.3482242
709
+ [9] Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan Ding, and Pengtao Xie. 2020.
710
+ Cert: Contrastive self-supervised learning for language understanding. arXiv
711
+ preprint arXiv:2005.12766 (2020).
712
+ [10] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive
713
+ learning of sentence embeddings. arXiv preprint arXiv:2104.08821.
714
+ [11] Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua Pei, Fei Sun, Wenwu Ou,
715
+ and Yongfeng Zhang. 2020. Understanding echo chambers in e-commerce recom-
716
+ mender systems. In Proceedings of the 43rd international ACM SIGIR conference
717
+ on research and development in information retrieval. 2261–2270.
718
+ [12] Miha Grčar, Dunja Mladenič, Blaž Fortuna, and Marko Grobelnik. 2005. Data
719
+ sparsity issues in the collaborative filtering framework. In International workshop
720
+ on knowledge discovery on the web. Springer, 58–76.
721
+ [13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
722
+ mentum contrast for unsupervised visual representation learning. In Proceedings
723
+ of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.
724
+ [14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
725
+ Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
726
+ conference on world wide web. 173–182.
727
+ [15] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
728
+ Heck. 2013. Learning deep structured semantic models for web search using
729
+ clickthrough data. In Proceedings of the 22nd ACM international conference on
730
+ Information & Knowledge Management. 2333–2338.
731
+ [16] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
732
+ Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
733
+ learning. Advances in Neural Information Processing Systems 33 (2020), 18661–
734
+ 18673.
735
+ [17] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
736
+ niques for recommender systems. Computer 42, 8 (2009), 30–37.
737
+ [18] Yehuda Koren, Steffen Rendle, and Robert Bell. 2022. Advances in collaborative
738
+ filtering. Recommender systems handbook (2022), 91–142.
739
+ [19] Xu Lin, Panagiotis Ilia, and Jason Polakis. 2020. Fill in the blanks: Empirical
740
+ analysis of the privacy threats of browser form autofill. In Proceedings of the 2020
741
+ ACM SIGSAC Conference on Computer and Communications Security. 507–519.
742
+ [20] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis. 2022. Phish in Sheep’s
743
+ Clothing: Exploring the Authentication Pitfalls of Browser Fingerprinting. In 31st
744
+ USENIX Security Symposium (USENIX Security 22). 1651–1668.
745
+ [21] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S. Yu. 2021. Augmenting Sequential
746
+ Recommendation with Pseudo-Prior Items via Reversely Pre-Training Transformer.
747
+ Association for Computing Machinery, New York, NY, USA, 1608–1612. https:
748
+ //doi.org/10.1145/3404835.3463036
749
+ [22] Zhiwei Liu, Xiaohan Li, Ziwei Fan, Stephen Guo, Kannan Achan, and S Yu Philip.
750
+ 2020. Basket recommendation with multi-intent translation graph neural network.
751
+ In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 728–737.
752
+ [23] Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, and Philip S Yu. 2022. Feder-
753
+ ated social recommendation with graph neural network. ACM Transactions on
754
+ Intelligent Systems and Technology (TIST) 13, 4, 1–24.
755
+ [24] Zahra Nazari, Christophe Charbuillet, Johan Pages, Martin Laurent, Denis Char-
756
+ rier, Briana Vecchione, and Ben Carterette. 2020. Recommending Podcasts for
757
+ Cold-Start Users Based on Music Listening and Taste. In Proceedings of the 43rd
758
+ International ACM SIGIR Conference on Research and Development in Information
759
+ Retrieval. 1041–1050.
760
+ [25] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
761
+ using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).
762
+ [26] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
763
+ on data mining. IEEE, 995–1000.
764
+ [27] Fred Rowland. 2011. The filter bubble: what the internet is hiding from you.
765
+ portal: Libraries and the Academy 11, 4 (2011), 1009–1011.
766
+ [28] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip
767
+ Isola. 2020. What makes for good views for contrastive learning? Advances in
768
+ Neural Information Processing Systems 33 (2020), 6827–6839.
769
+ [29] Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, and Philip S. Yu. 2021. DSKReG:
770
+ Differentiable Sampling on Knowledge Graph for Recommendation with Relational
771
+ GNN. Association for Computing Machinery, New York, NY, USA, 3513–3517.
772
+ https://doi.org/10.1145/3459637.3482092
773
+ [30] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng
774
+ Chua. 2021. Contrastive learning for cold-start recommendation. In Proceedings
775
+ of the 29th ACM International Conference on Multimedia. 5382–5390.
776
+ [31] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
777
+ Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation.
778
+ In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE,
779
+ 1259–1273.
780
+ [32] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
781
+ bedding entities and relations for learning and inference in knowledge bases.
782
+ arXiv preprint arXiv:1412.6575 (2014).
783
+ [33] Liangwei Yang, Zhiwei Liu, Yu Wang, Chen Wang, Ziwei Fan, and Philip S Yu.
784
+ 2022. Large-scale Personalized Video Game Recommendation via Social-aware
785
+ Contextualized Graph Neural Network. In Proceedings of the ACM Web Conference
786
+ 2022. 3376–3386.
787
+ [34] Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix Yu, Ting Chen, Aditya
788
+ Menon, Lichan Hong, Ed H Chi, Steve Tjoa, Jieqi Kang, et al. 2021. Self-supervised
789
+ Learning for Large-scale Item Recommendations. In Proceedings of the 30th ACM
790
+ International Conference on Information & Knowledge Management. 4321–4330.
791
+ [35] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
792
+ Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive
793
+ learning for recommendation. In Proceedings of the 45th International ACM SIGIR
794
+ Conference on Research and Development in Information Retrieval. 1294–1303.
795
+ [36] Lei Zheng, Ziwei Fan, Chun-Ta Lu, Jiawei Zhang, and Philip S Yu. 2019. Gated
796
+ Spectral Units: Modeling Co-evolving Patterns for Sequential Recommendation.
797
+ In Proceedings of the 42nd International ACM SIGIR Conference on Research and
798
+ Development in Information Retrieval. 1077–1080.
799
+ [37] Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and
800
+ Wieland Brendel. 2021. Contrastive learning inverts the data generating process.
801
+ In International Conference on Machine Learning. PMLR, 12979–12990.
802
+
GdAzT4oBgHgl3EQfxf4V/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf,len=477
2
+ page_content='Episodes Discovery Recommendation with Multi-Source Augmentations Ziwei Fan∗ zfan20@uic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
3
+ page_content='edu University of Illinois Chicago USA Alice Wang, Zahra Nazari {alicew,zahran}@spotify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
4
+ page_content='com Spotify Research USA ABSTRACT Recommender systems (RS) commonly retrieve potential candidate items for users from a massive number of items by modeling users’ interests based on historical interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
5
+ page_content=' However, historical in- teraction data is highly sparse, and most items are long-tail items, which limits the representation learning for item discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
6
+ page_content=' This problem is further augmented by the discovery of novel or cold-start items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
7
+ page_content=' For example, after a user displays interest in bitcoin financial investment shows in the podcast space, a recommender system may want to suggest e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
8
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
9
+ page_content=', a newly released blockchain episode from a more technical show.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
10
+ page_content=' Episode correlations help the discovery, especially when interaction data of episodes is limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
11
+ page_content=' Accordingly, we build upon the classical Two-Tower model and introduce the novel Multi-Source Augmentations using a Contrastive Learning framework (MSACL) to enhance episodes embedding learning by in- corporating positive episodes from numerous correlated semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
12
+ page_content=' Extensive experiments on a real-world podcast recommendation dataset from a large audio streaming platform demonstrate the ef- fectiveness of the proposed framework for user podcast exploration and cold-start episode recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
13
+ page_content=' ACM Reference Format: Ziwei Fan and Alice Wang, Zahra Nazari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
14
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
15
+ page_content=' Episodes Discovery Rec- ommendation with Multi-Source Augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
16
+ page_content=' In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
17
+ page_content=' ACM, New York, NY, USA, 5 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
18
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
19
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
20
+ page_content='1145/1122445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
21
+ page_content='1122456 1 INTRODUCTION Recommender Systems (RS) have been widely applied to numerous web [19, 20] applications to retrieve relevant information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
22
+ page_content=' Collabo- rative filtering (CF), as the most commonly used RS [14, 18, 23, 36], assumes that users with similar interests prefer similar items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
23
+ page_content=' The users’ interests are typically modeled and optimized by historical interactions [8, 17, 26, 33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
24
+ page_content=' However, as CF-based RS models interest based on historical interactions, these methods can only capture in- terests observed in training data and fails to explore topics that users might be interested in but may never know.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
25
+ page_content=' Therefore, a significant challenge for RS is to facilitate user exploration [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
26
+ page_content=' Exploration is ∗Work is done during the internship in Spotify Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
27
+ page_content=' Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
28
+ page_content=' Copyrights for components of this work owned by others than ACM must be honored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
29
+ page_content=' Abstracting with credit is permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
30
+ page_content=' To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
31
+ page_content=' Request permissions from permissions@acm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
32
+ page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
33
+ page_content=' Woodstock ’18, June 03–05, 2018, Woodstock, NY © 2018 Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
34
+ page_content=' ACM ISBN 978-1-4503-XXXX-X/18/06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
35
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
36
+ page_content='$15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
37
+ page_content='00 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
38
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
39
+ page_content='1145/1122445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
40
+ page_content='1122456 increasingly becoming a critical problem in RS, as existing RS meth- ods can cause echo chambers and filter bubbles as users increasingly engage with RS [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
41
+ page_content=' These two coined terms [1, 27] introduce a phenomenon where users’ interests become self-reinforced, as only items matching with users’ past interests are exposed to users by RS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
42
+ page_content=' This phenomenon optimizes short-term user interests and fails to drive long-term user engagement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
43
+ page_content=' Moreover, the lack of diversity of recommended items also potentially reduces user satisfaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
44
+ page_content=' We build an RS for podcast recommendation that promotes exploration and podcast discovery here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
45
+ page_content=' In recent years, podcast listening [24] has shown a tremendous increase in popularity1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
46
+ page_content=' This growth in user interest, as well as a relatively low barrier to creation compared to other media such as music or movies, has created an explosion of podcast creation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
47
+ page_content=' Therefore, new and diverse podcast content is increasingly and continuously being created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
48
+ page_content=' We argue that the bottleneck of the user podcast exploration problem for RS consists of two challenges, including feature sparsity and interaction sparsity [5, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
49
+ page_content=' These two challenges come from the data sparsity problem in RS [12, 21], where limited interaction data is available for representing users and items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
50
+ page_content=' The reason for feature sparsity is that many podcast contents are cold-start items with few user interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
51
+ page_content=' Moreover, in the problem of user exploration, there is a lack of user-item interaction training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
52
+ page_content=' To resolve these challenges, we propose a novel framework with interaction-level data augmentations from multi-sources episodes correlation semantics [22] in contrastive learning (MSACL), build- ing upon the classical backbone of various recommender systems, Two-Tower architecture [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
53
+ page_content=' Data augmentation [30, 31, 35] en- riches data with different views of similar items for learning item embeddings, and contrastive learning [16, 28, 37] acts as a bridge connecting augmented items and positively interacted items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
54
+ page_content=' The proposed MSACL framework proposes the discovery item augmen- tation and the discovery contrastive regularization to alleviate the two challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
55
+ page_content=' For the discovery item augmentation, we incorpo- rate similar items from different semantic item relationships [6, 29] as positive items to enrich scarce user-item interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
56
+ page_content=' The dis- covery contrastive regularization further connects the user-item predictions with the similarity between discovery item and positive item.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
57
+ page_content=' Our contributions are summarized as follows: A novel data augmentation framework MSACL is proposed to alleviate data sparsity in user exploration and recommendation for episode discovery from two perspectives: (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
58
+ page_content=' discovery aug- mentation of different semantic similarities, and (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
59
+ page_content=' discovery contrastive regularization for alleviating user-item explorative interactions sparsity with augmented discovery items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
60
+ page_content=' 1https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
61
+ page_content='edisonresearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
62
+ page_content='com/the-infinite-dial-2021-2/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
63
+ page_content='01737v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
64
+ page_content='IR] 4 Jan 2023 Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
65
+ page_content=' Extensive experiments on a large, real-world podcast recommen- dation dataset demonstrate the effectiveness of the proposed framework MSACL for episode explorative recommendation, es- pecially for cold episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
66
+ page_content=' 2 MSACL 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
67
+ page_content='1 Problem Definition In RS, we denote the user set and episode set as U and I, in which each user and episode are denoted as 𝑢 and 𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
68
+ page_content=' For an episode 𝑖, it belongs to one podcast show 𝑝 but one podcast show has multiple episodes {𝑖 ∈ 𝑝}, where 𝑝 ∈ P and P denotes the set of podcast shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
69
+ page_content=' The interactions between users and episodes are represented as a set {𝑟𝑢𝑖 ∈ R}, where 𝑟𝑢𝑖 is binary indicating whether the user 𝑢 has listened to the episode 𝑖 with more than 30 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
70
+ page_content=' For each user and episode, we also have feature vectors 𝑓𝑢 ∈ R𝑑𝑓𝑢 and 𝑓𝑖 ∈ R𝑑𝑓𝑖 , where 𝑑𝑓𝑢 and 𝑑𝑓𝑖 are dimension sizes of the user input feature vector and the episode feature vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
71
+ page_content=' The episode exploration recommendation is predicting the preference score of the user 𝑢 to an episode 𝑖 that is out of user 𝑢’s historical interests, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
72
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
73
+ page_content=', 𝑖 ∉ {𝑝|𝑟𝑢𝑗 = 1, 𝑗 ∈ 𝑝, for all 𝑗 ∈ I}: ^ 𝑟𝑢𝑖 = 𝐹u(𝑓𝑢)⊤𝐹i(𝑓𝑖), (1) where 𝐹u and 𝐹i are neural networks for learning user embeddings and episode embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
74
+ page_content=' We generate the episode exploration rec- ommendation list by ranking the scores 𝑟𝑢𝑖 on all episodes in de- scending order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
75
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
76
+ page_content='2 Two-Tower Model for Recommendation The Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
77
+ page_content=' (1) describes the standard Two-Tower architecture for rec- ommendation [15], which comprises of the user tower (𝐹u) and the episode tower (𝐹i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
78
+ page_content=' To be specific, the 𝐿-th layers fully connected neural network output embeddings of user 𝑢 and episode 𝑖 are as follows: 𝐹𝐿 u = ReLU(𝐹𝐿−1 u 𝑊 𝐿 1 + 𝑏𝐿 1 ) 𝐹𝐿 i = ReLU(𝐹𝐿−1 i 𝑊 𝐿 2 + 𝑏𝐿 2 ), (2) where ReLU(·) refers to the ReLU activation function, the 0-th layer of each tower is the input feature vector of 𝑓𝑢 or 𝑓𝑖, respectively, 𝑊 𝐿∗ ∈ R𝑑𝐿−1×𝑑𝐿 are linear transformations and 𝑏𝐿∗ ∈ R𝑑𝐿 are bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
79
+ page_content=' The last layer’s output embeddings will be used to make predictions as in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
80
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
81
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
82
+ page_content='3 Discovery Items Augmentation The scarcity of user-episode interactions is a significant issue of recommendation for discovery and exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
83
+ page_content=' The Two-Tower architecture in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
84
+ page_content=' (1) demands feature interactions to generalize to unseen user-episode discovery recommendations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
85
+ page_content=' However, feature interactions based on only training interaction data are limited due to the data scarcity of user-episode interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
86
+ page_content=' To alleviate this issue, we extract more positive episodes from additional item similarity semantic relationships, including episodes with similar text content and episodes with similar knowledge information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
87
+ page_content=' We assume that a user will be more likely to explore novel episodes with similar content or correlated knowledge to items they have interacted with in the past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
88
+ page_content=' Note that discovery items may have similar semantics in knowledge and contents but are not signifi- cant in feature interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
89
+ page_content=' Each item has a large number of fea- tures in practical scenarios, and semantic information is diminished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
90
+ page_content=' Comparing directly using content and knowledge embeddings as features, augmenting similar episodes from different semantics pro- vides more information as augmented episodes have other features and also enrich feature interactions in the Two-Tower architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
91
+ page_content=' Specifically, for each episode 𝑖, we have pre-trained content em- beddings [25] and knowledge embeddings [32] as side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
92
+ page_content=' The content embeddings are pre-trained with the episode script and title text, and the knowledge embeddings are pre-trained from the episode knowledge graph data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
93
+ page_content=' We adopt the Approximate Nearest Neighbors lookup with Annoy to extract the top-K sim- ilar episodes from each semantic relationship, which we denote them as 𝑆content(𝑖) = {𝑗 ∈ Annoycontent(𝐾)}, and 𝑆kg(𝑖) = {𝑗 ∈ Annoykg(𝐾)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
94
+ page_content=' We extract the top-K similar episodes by ranking the top-K episodes with smallest L2 distances on content embed- dings or knowledge embeddings, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
95
+ page_content=' We use top-10 for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
96
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
97
+ page_content='4 Discovery Contrastive Regularization With the augmented discovery episodes from multiple sources of semantics, we introduce the contrastive learning loss for enriching feature interactions and alleviating the data sparsity in both features and instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
98
+ page_content=' We can create ‘positive’ episodes 𝑖 from similar semantic relationships ({𝑖+ ∈ 𝑆content(𝑖)} or {𝑖+ ∈ 𝑆kg(𝑖)}), even the combination of both augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
99
+ page_content=' To be specific, given a minibatch of 𝑁 user-episode exploration interactions {(𝑢𝑘,𝑖𝑘)}𝑁 𝑘=1, we augment one ‘positive’ episode (augmented episode) 𝑖𝑢𝑘 + for the 𝑘-th interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
100
+ page_content=' In total, we have 2𝑁 episodes and we reindex all episodes, we obtain: {𝑖𝑢1 𝑎 ,𝑖𝑢1 𝑏 ,𝑖𝑢2 𝑎 ,𝑖𝑢2 𝑏 , · · · ,𝑖𝑢𝑁 𝑎 ,𝑖𝑢𝑁 𝑎 , }, (3) and the (𝑖𝑢𝑘 𝑎 ,𝑖𝑢𝑘 𝑏 ) is the positive pair of the user 𝑘, 𝑎 and𝑏 subscripts denote the positive item 𝑎 and the semantically similar item 𝑏 for the user 𝑘, and other 2𝑁 − 1 pairs are considered as negative pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
101
+ page_content=' For each episode pair (𝑖𝑢𝑘 𝑎 ,𝑖𝑢𝑘 𝑏 ), their features are (𝑓𝑖 𝑢𝑘 𝑎 , 𝑓𝑖 𝑢𝑘 𝑏 ), we obtain the learned embeddings ����𝐿 𝑖 𝑢𝑘 𝑎 , 𝐹𝐿 𝑖 𝑢𝑘 𝑏 , and the learned user embedding 𝐹𝐿𝑢𝑘 after 𝐿-layers of episode tower layer defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
102
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
103
+ page_content=' We adopt the NT-Xent loss [4, 9, 10, 13] for optimization as follows: L𝐶𝐿 = − log exp � 𝐹𝐿 𝑖 𝑢𝑘 𝑎 ⊤𝐹𝐿 𝑖 𝑢𝑘 𝑏 � �2𝑁 −1 𝑚=1 exp � 𝐹𝐿 𝑖 𝑢𝑘 𝑎 ⊤𝐹𝐿 𝑖𝑚 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
104
+ page_content=' (4) Note that we maximize dot product between the positive and aug- mented episodes (𝐹𝐿 𝑖 𝑢𝑘 𝑎 , 𝐹𝐿 𝑖 𝑢𝑘 𝑏 ), which matches with the user-episode exploration prediction defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
105
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
106
+ page_content=' With the combination of the dot product between the positive and augmented episodes in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
107
+ page_content=' (5) and the dot product between the user and episode interac- tion prediction in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
108
+ page_content=' (1), we can conclude that it is equivalent to augment user-episode interactions with more ‘positive’ (𝑢𝑘,𝑖𝑢𝑘 𝑏 ) interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
109
+ page_content=' Episodes Discovery Recommendation with Multi-Source Augmentations Woodstock ’18, June 03–05, 2018, Woodstock, NY With different variants of augmentations, we investigate sev- eral models in this framework, including the model with only fea- ture dropout TT-FD, the content similar augmentation MSACL (Content), the knowledge similar augmentation MSACL (KG), and also the combination of feature dropout and knowledge similar augmentation MSACL (KG-FD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
110
+ page_content=' We adopt the sampled softmax cross-entropy loss function with 𝑘 sampled negative items as the user-episode interactions optimization and also incorporate the contrastive loss as follows: L = − ∑︁ (𝑢,𝑖) ∈R [log(𝜎( ^ 𝑟𝑢𝑖)) + 𝑘 ∑︁ 𝑗=1 log(1 − ^ 𝑟𝑢𝑗)] + 𝜆L𝐶𝐿, (5) where 𝜆 is a hyper-parameter for controlling the contribution from L𝐶𝐿.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
111
+ page_content=' Note that we maximize dot product between the positive and aug- mented episodes (𝐹𝐿 𝑖 𝑢𝑘 𝑎 , 𝐹𝐿 𝑖 𝑢𝑘 𝑏 ), which matches with the user-episode exploration prediction defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
112
+ page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
113
+ page_content=' With the combination of the dot product between the positive and augmented episodes in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
114
+ page_content=' (5) and the dot product between the user and episode interac- tion prediction in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
115
+ page_content=' (1), we can conclude that it is equivalent to augment user-episode interactions with more ‘positive’ (𝑢𝑘,𝑖𝑢𝑘 𝑏 ) interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
116
+ page_content=' With different variants of augmentations, we investigate sev- eral models in this framework, including the model with only feature dropout (TT-FD), the content similar augmentation (TT- Corr(Content)), the knowledge similar augmentation (TT-Corr(KG)), and also the combination of feature dropout and knowledge similar augmentation (TT-FD-Corr(KG)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
117
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
118
+ page_content='5 Loss and Optimization We adopt the sampled softmax cross-entropy loss function as the user-episode exploration interaction optimization and also incor- porate the NT-Xent contrastive loss as regularization, which are summarized as follows: L = − ∑︁ (𝑢,𝑖) ∈R [log(𝜎( ^ 𝑟𝑢𝑖)) + 𝑘 ∑︁ 𝑗=1 log(1 − ^ 𝑟𝑢𝑗)] + 𝜆L𝐶𝐿, (6) where we sample 𝑘 negative items in interactions optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
119
+ page_content=' 3 EXPERIMENTS In this section, we present the experimental settings and results to demonstrate the effectiveness of MSACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
120
+ page_content=' We answer the following Research Questions (RQs): RQ1: Is MSACL effective in episode exploration recommenda- tion?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
121
+ page_content=' RQ2: How does each correlation relationship contribute to the performance?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
122
+ page_content=' RQ3: Does MSACL achieve better performance in cold items?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
123
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
124
+ page_content='1 Dataset Statistics and Preprocessing We conduct experiments on data collected from a large audio streaming platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
125
+ page_content=' In this dataset, users are recommended pod- cast episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
126
+ page_content=' Here, our work focuses on exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
127
+ page_content=' We define discovery as user-episode interactions from podcast shows the user has never interacted with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
128
+ page_content=' Note that each podcast show may have Table 1: Dataset Statistics After Preprocessing Data Part #users #episodes #interactions Train 65,756 78,103 77,003 Validation 8,230 17,381 9,642 Test 8,248 17,758 9,551 multiple episodes, but we impose a stringent definition of discovery;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
129
+ page_content=' user interactions with novel episodes from familiar shows are not considered discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
130
+ page_content=' We define positive interactions to be episode listening of at least 30 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
131
+ page_content=' To this end, the dataset contains a sample of 82,234 users on 113,242 episodes with 96,196 user ex- ploration interactions, and the density is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
132
+ page_content='001%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
133
+ page_content=' We separate users into training, validation, and test sets via the split ratio of 8:1:1 as users and items have features as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
134
+ page_content=' Detailed data statistics are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
135
+ page_content=' The features we used for the user tower includes gender, age, country, podcast topics liked in previous 90 days, user language, pre-trained collaborative filtering embedding vector, the user embedding pre-trained with podcast interactions, and aver- aged streaming time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
136
+ page_content=' For episodes, we use features including topics, country, collaborative filtering pre-trained embeddings, and pre- trained semantic embeddings of the podcast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
137
+ page_content=' We use two different pre-trained semantic embeddings, which we call KG (knowledge graph) and Content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
138
+ page_content=' The KG embeddings are learned by apply- ing a common KG embedding method, DistMult [32], on a graph that contains available metadata on the podcasts such as episode, topic, licensor, and publisher nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
139
+ page_content=' Edges are created between episode-licensor, episode-topic, episode-publisher, and topic-topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
140
+ page_content=' The Content embeddings are obtained from using pre-trained BERT embeddings on the podcast titles and descriptions [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
141
+ page_content=' For discrete features, we encode them as one-hot or multi-hot vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
142
+ page_content=' For con- tinuous features, such as pre-trained embedding vectors, we directly use them as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
143
+ page_content=' After encoding, we concatenate all features of users and items, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
144
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
145
+ page_content='2 Baselines As the proposed framework MSACL builds upon a Two-Tower model, we compare with two groups of baselines, standard popularity- based methods and two-tower based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
146
+ page_content=' We use three popularity- based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
147
+ page_content=' One is Pop method, which ranks items based on the number of positive interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
148
+ page_content=' The other two popularity-based methods are Pop-Country and Pop-Age-Country, which rank items’ number of interactions conditioned on the users’ country and the combination of age and country, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
149
+ page_content=' For Two-Tower-based methods, the first baseline is the standard Two-Tower (TT) model with the full feature set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
150
+ page_content=' The second is the Two-Tower method with feature dropout (TT-FD) proposed by [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
151
+ page_content=' For parameter setting, we search the number of layers of Two-tower models from {1, 2, 3}, the dropout probability from {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
152
+ page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
153
+ page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
154
+ page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
155
+ page_content='7}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
156
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
157
+ page_content='3 Evaluation Metrics We evaluate the proposed MSACL on standard ranking metrics for top-N recommendation, including Recall@N, NDCG@N, and MRR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
158
+ page_content=' Recall@N measures the percentage of positive items being recom- mended in top-N ranking lists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
159
+ page_content=' NDCG@N considers the positions Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
160
+ page_content=' Table 2: Performance Comparison in Recall@10, NDCG@10, Recall@20, NDCG@20, and MRR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
161
+ page_content=' The best and second-best results are boldfaced and underlined, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
162
+ page_content=' Model Recall@10 NDCG@10 Recall@20 NDCG@20 MRR Pop 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
163
+ page_content='02349 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
164
+ page_content='01325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
165
+ page_content='03618 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
166
+ page_content='01681 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
167
+ page_content='01220 Pop-Country 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
168
+ page_content='03115 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
169
+ page_content='01839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
170
+ page_content='05239 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
171
+ page_content='02430 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
172
+ page_content='01727 Pop-Age-Country 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
173
+ page_content='02898 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
174
+ page_content='01701 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
175
+ page_content='04707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
176
+ page_content='02198 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
177
+ page_content='01560 TT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
178
+ page_content='06068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
179
+ page_content='04039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
180
+ page_content='08594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
181
+ page_content='04726 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
182
+ page_content='03732 TT-FD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
183
+ page_content='06153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
184
+ page_content='04131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
185
+ page_content='08548 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
186
+ page_content='04816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
187
+ page_content='03784 MSACL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
188
+ page_content='06609 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
189
+ page_content='04336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
190
+ page_content='09062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
191
+ page_content='05018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
192
+ page_content='03966 Improv vs TT +8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
193
+ page_content='92% +7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
194
+ page_content='36% +5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
195
+ page_content='45% +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
196
+ page_content='18% +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
197
+ page_content='28% Improv vs 2nd-best +7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
198
+ page_content='41% +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
199
+ page_content='96% +5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
200
+ page_content='45% +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
201
+ page_content='19% +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
202
+ page_content='81% of correctly ranked positive items in top-N recommendation lists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
203
+ page_content=' Mean Reciprocal Rank (MRR) is similar to NDCG@N with also the consideration of ranking positions but in the entire ranking list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
204
+ page_content=' We report the averaged evaluation metrics over all test users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
205
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
206
+ page_content='4 Overall Comparison (RQ1) We report the overall results with all baselines in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
207
+ page_content=' We have the following observations: The proposed method MSACL achieves the best performance over the second best baseline from 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
208
+ page_content='19% to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
209
+ page_content='41% on all metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
210
+ page_content=' Compared with TT, the improvements are from 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
211
+ page_content='45% to 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
212
+ page_content='92%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
213
+ page_content=' These observations demonstrate the superiority of MSACL for episode exploration and recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
214
+ page_content=' The reasons for the improvements are twofold: (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
215
+ page_content=' the feature and instance level data augmentation alleviates the features and interactions data sparsity problem for episode exploration and recommendation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
216
+ page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
217
+ page_content=' the incorporation of additional positive items from multiple semantics of item similarities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
218
+ page_content=' Among TT-based methods, we can see that MSACL performs the best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
219
+ page_content=' TT-FD [34] achieves the second best performance in most metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
220
+ page_content=' TT-FD outperforms TT model, therefore demonstrating the utility of contrastive learning in episodes recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
221
+ page_content=' We also observe that MSACL achieves better performance than TT-FD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
222
+ page_content=' This observation supports the superiority of instance augmentation in contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
223
+ page_content=' We can also see that the TT baseline method significantly out- performs the popularity baselines, which demonstrates the ef- fectiveness of incorporating features into the users and items modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
224
+ page_content=' Among popularity-based baselines, we can observe that the base- line using users’ country information achieves the best perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
225
+ page_content=' The second-best one is using both age and country in- formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
226
+ page_content=' The reason why using age information degrades the performance is that the combination of age and country will sep- arate users’ interactions in extremely fine-grain buckets, where most items have no interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
227
+ page_content=' Table 3: Performance Comparisons for Different Item Simi- larity Semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
228
+ page_content=' The best and second-best results are bold- faced and underlined, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
229
+ page_content=' Model Recall@10 NDCG@10 Recall@20 NDCG@20 MRR TT-FD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
230
+ page_content='06153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
231
+ page_content='04131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
232
+ page_content='08548 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
233
+ page_content='04816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
234
+ page_content='03784 MSACL (Content) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
235
+ page_content='06088 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
236
+ page_content='04045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
237
+ page_content='08430 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
238
+ page_content='04721 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
239
+ page_content='03708 MSACL (KG) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
240
+ page_content='06385 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
241
+ page_content='04272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
242
+ page_content='08792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
243
+ page_content='04952 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
244
+ page_content='03909 MSACL (FD-KG) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
245
+ page_content='06609 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
246
+ page_content='04336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
247
+ page_content='09062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
248
+ page_content='05018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
249
+ page_content='03966 ≤3 (3, 7] (7, 20] Episodes Popularity Interval 0 250 500 750 1000 1250 1500 1750 2000 Count 1752 1021 1336 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
250
+ page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
251
+ page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
252
+ page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
253
+ page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
254
+ page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
255
+ page_content='040 NDCG@20 TT MSACL(KG-FD) TT-FD MSACL(Content) MSACL(KG) (a) Cold Episodes (7, 20] (20, 50] ≥50 Episodes Popularity Interval 0 250 500 750 1000 1250 1500 1750 2000 Count 1336 700 355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
256
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
257
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
258
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
259
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
260
+ page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
261
+ page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
262
+ page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
263
+ page_content='10 NDCG@20 TT MSACL(KG-FD) TT-FD MSACL(Content) MSACL(KG) (b) Popular Episodes Figure 1: The NDCG@20 performance on items with differ- ent popularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
264
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
265
+ page_content='5 Effects of Different Correlations (RQ2) We incorporate positive episodes from different correlation seman- tics in MSACL to enhance the instance augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
266
+ page_content=' We investi- gate different types of correlations, including two ways of comput- ing semantic similarity between episodes (one is content-based sim- ilarity and another is knowledge-based similarity [2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
267
+ page_content=' The feature dropout also creates a noisy version of positive episodes, providing an alternative view of episodes, which can also be viewed as similar episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
268
+ page_content=' We show the performance results of different correlations in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
269
+ page_content=' We obtain the following observations: The combination of feature dropout and knowledge graph-based instance augmentation perform the best among all variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
270
+ page_content=' We can conclude that both feature level and instance level augmenta- tions are necessary for the episodes exploration recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
271
+ page_content=' Comparing MSACL (KG) and MSACL (Content), we can observe that knowledge graph-based similar correlations identify more informative positive episodes for matching users’ interests in ex- ploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
272
+ page_content=' This is reasonable that knowledge embeddings encode more heterogeneous episodes relationships while content-similar episodes might bring limited unexpected episodes to users that are also of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
273
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
274
+ page_content='6 Cold Start Items Performance (RQ3) A major performance bottleneck for the episode exploration and recommendation problem is due to data sparsity, which our frame- work MSACL can alleviate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
275
+ page_content=' We separate episodes into groups based on popularity and visualize the average performance of each group, as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
276
+ page_content=' We visualize cold items in Figure 1a and popular items in Figure 1b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
277
+ page_content=' We can first observe that cold episodes comprise the majority while popular episodes are in the minority.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
278
+ page_content=' Next, we have additional two observations: Episodes Discovery Recommendation with Multi-Source Augmentations Woodstock ’18, June 03–05, 2018, Woodstock, NY For cold episodes recommendation, all variants of the proposed framework MSACL obtain significant improvements on extremely cold episodes (with no more than three interactions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
279
+ page_content=' It demon- strates the superiority of the proposed model MSACL with con- trastive learning and hierarchical augmentations for user ex- ploration recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
280
+ page_content=' The MSACL (KG-FD) achieves the most consistent improvements in all cold episodes group, which indicates the necessity of both feature level and instance level augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
281
+ page_content=' Regarding popular episodes, we can see that all methods, in- cluding the baseline method, have the same trend, which is that performance increases as popularity increases and that all meth- ods achieve similar performance on the most popular episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
282
+ page_content=' 4 CONCLUSION In this work, we propose a novel data augmentation framework to solve a podcast exploration recommendation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
283
+ page_content=' To alleviate challenges regarding feature and instance sparsity, we propose a contrastive learning framework using feature and instance augmen- tations and achieve improvements over state-of-the-art baselines under the Two-Tower architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
284
+ page_content=' We also demonstrate the effec- tiveness of the proposed framework for cold episode recommenda- tion in the increasingly influential domain of podcasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
285
+ page_content=' REFERENCES [1] David Paul Allen, Henry Jacob Wheeler-Mackta, and Jeremy R Campo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
286
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
287
+ page_content=' The effects of music recommendation engines on the filter bubble phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
288
+ page_content=' Interactive Qualifying Projects (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
289
+ page_content=' [2] Maryam Aziz, Alice Wang, Aasish Pappu, Hugues Bouchard, Yu Zhao, Benjamin Carterette, and Mounia Lalmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
290
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
291
+ page_content=' Leveraging Semantic Information to Facilitate the Discovery of Underserved Podcasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
292
+ page_content=' Association for Computing Machinery, New York, NY, USA, 3707–3716.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
293
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
294
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
295
+ page_content='1145/3459637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
296
+ page_content='3481934 [3] Minmin Chen, Yuyan Wang, Can Xu, Ya Le, Mohit Sharma, Lee Richardson, Su- Lin Wu, and Ed Chi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
297
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
298
+ page_content=' Values of User Exploration in Recommender Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
299
+ page_content=' In Fifteenth ACM Conference on Recommender Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
300
+ page_content=' 85–95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
301
+ page_content=' [4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
302
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
303
+ page_content=' A simple framework for contrastive learning of visual representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
304
+ page_content=' In Interna- tional conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
305
+ page_content=' PMLR, 1597–1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
306
+ page_content=' [5] Ziwei Fan, Zhiwei Liu, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, and Philip S Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
307
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
308
+ page_content=' Sequential Recommendation via Stochastic Self-Attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
309
+ page_content=' In Proceedings of the ACM Web Conference 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
310
+ page_content=' 2036–2047.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
311
+ page_content=' [6] Ziwei Fan, Zhiwei Liu, Chen Wang, Peijie Huang, Hao Peng, and Philip S Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
312
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
313
+ page_content=' Sequential Recommendation with Auxiliary Item Relationships via Multi- Relational Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
314
+ page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
315
+ page_content='13572 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
316
+ page_content=' [7] Ziwei Fan, Zhiwei Liu, Shen Wang, Lei Zheng, and Philip S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
317
+ page_content=' Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
318
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
319
+ page_content=' Modeling Sequences as Distributions with Uncertainty for Sequential Recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
320
+ page_content=' In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (Virtual Event, Queensland, Australia) (CIKM ’21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
321
+ page_content=' Association for Computing Machinery, New York, NY, USA, 3019–3023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
322
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
323
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
324
+ page_content='1145/ 3459637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
325
+ page_content='3482145 [8] Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
326
+ page_content=' Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
327
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
328
+ page_content=' Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
329
+ page_content=' Association for Computing Machinery, New York, NY, USA, 433–442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
330
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
331
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
332
+ page_content='1145/3459637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
333
+ page_content='3482242 [9] Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan Ding, and Pengtao Xie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
334
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
335
+ page_content=' Cert: Contrastive self-supervised learning for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
336
+ page_content=' arXiv preprint arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
337
+ page_content='12766 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
338
+ page_content=' [10] Tianyu Gao, Xingcheng Yao, and Danqi Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
339
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
340
+ page_content=' Simcse: Simple contrastive learning of sentence embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
341
+ page_content=' arXiv preprint arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
342
+ page_content='08821.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
343
+ page_content=' [11] Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua Pei, Fei Sun, Wenwu Ou, and Yongfeng Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
344
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
345
+ page_content=' Understanding echo chambers in e-commerce recom- mender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
346
+ page_content=' In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
347
+ page_content=' 2261–2270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
348
+ page_content=' [12] Miha Grčar, Dunja Mladenič, Blaž Fortuna, and Marko Grobelnik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
349
+ page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
350
+ page_content=' Data sparsity issues in the collaborative filtering framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
351
+ page_content=' In International workshop on knowledge discovery on the web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
352
+ page_content=' Springer, 58–76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
353
+ page_content=' [13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
354
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
355
+ page_content=' Mo- mentum contrast for unsupervised visual representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
356
+ page_content=' In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
357
+ page_content=' 9729–9738.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
358
+ page_content=' [14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
359
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
360
+ page_content=' Neural collaborative filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
361
+ page_content=' In Proceedings of the 26th international conference on world wide web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
362
+ page_content=' 173–182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
363
+ page_content=' [15] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
364
+ page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
365
+ page_content=' Learning deep structured semantic models for web search using clickthrough data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
366
+ page_content=' In Proceedings of the 22nd ACM international conference on Information & Knowledge Management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
367
+ page_content=' 2333–2338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
368
+ page_content=' [16] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
369
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
370
+ page_content=' Supervised contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
371
+ page_content=' Advances in Neural Information Processing Systems 33 (2020), 18661– 18673.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
372
+ page_content=' [17] Yehuda Koren, Robert Bell, and Chris Volinsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
373
+ page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
374
+ page_content=' Matrix factorization tech- niques for recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
375
+ page_content=' Computer 42, 8 (2009), 30–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
376
+ page_content=' [18] Yehuda Koren, Steffen Rendle, and Robert Bell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
377
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
378
+ page_content=' Advances in collaborative filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
379
+ page_content=' Recommender systems handbook (2022), 91–142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
380
+ page_content=' [19] Xu Lin, Panagiotis Ilia, and Jason Polakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
381
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
382
+ page_content=' Fill in the blanks: Empirical analysis of the privacy threats of browser form autofill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
383
+ page_content=' In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
384
+ page_content=' 507–519.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
385
+ page_content=' [20] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
386
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
387
+ page_content=' Phish in Sheep’s Clothing: Exploring the Authentication Pitfalls of Browser Fingerprinting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
388
+ page_content=' In 31st USENIX Security Symposium (USENIX Security 22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
389
+ page_content=' 1651–1668.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
390
+ page_content=' [21] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
391
+ page_content=' Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
392
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
393
+ page_content=' Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-Training Transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
394
+ page_content=' Association for Computing Machinery, New York, NY, USA, 1608–1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
395
+ page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
396
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
397
+ page_content='1145/3404835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
398
+ page_content='3463036 [22] Zhiwei Liu, Xiaohan Li, Ziwei Fan, Stephen Guo, Kannan Achan, and S Yu Philip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
399
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
400
+ page_content=' Basket recommendation with multi-intent translation graph neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
401
+ page_content=' In 2020 IEEE International Conference on Big Data (Big Data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
402
+ page_content=' IEEE, 728–737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
403
+ page_content=' [23] Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, and Philip S Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
404
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
405
+ page_content=' Feder- ated social recommendation with graph neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
406
+ page_content=' ACM Transactions on Intelligent Systems and Technology (TIST) 13, 4, 1–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
407
+ page_content=' [24] Zahra Nazari, Christophe Charbuillet, Johan Pages, Martin Laurent, Denis Char- rier, Briana Vecchione, and Ben Carterette.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
408
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
409
+ page_content=' Recommending Podcasts for Cold-Start Users Based on Music Listening and Taste.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
410
+ page_content=' In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
411
+ page_content=' 1041–1050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
412
+ page_content=' [25] Nils Reimers and Iryna Gurevych.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
413
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
414
+ page_content=' Sentence-bert: Sentence embeddings using siamese bert-networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
415
+ page_content=' arXiv preprint arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
416
+ page_content='10084 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
417
+ page_content=' [26] Steffen Rendle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
418
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
419
+ page_content=' Factorization machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
420
+ page_content=' In 2010 IEEE International conference on data mining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
421
+ page_content=' IEEE, 995–1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
422
+ page_content=' [27] Fred Rowland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
423
+ page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
424
+ page_content=' The filter bubble: what the internet is hiding from you.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
425
+ page_content=' portal: Libraries and the Academy 11, 4 (2011), 1009–1011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
426
+ page_content=' [28] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
427
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
428
+ page_content=' What makes for good views for contrastive learning?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
429
+ page_content=' Advances in Neural Information Processing Systems 33 (2020), 6827–6839.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
430
+ page_content=' [29] Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, and Philip S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
431
+ page_content=' Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
432
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
433
+ page_content=' DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
434
+ page_content=' Association for Computing Machinery, New York, NY, USA, 3513–3517.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
435
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
436
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
437
+ page_content='1145/3459637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
438
+ page_content='3482092 [30] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng Chua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
439
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
440
+ page_content=' Contrastive learning for cold-start recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
441
+ page_content=' In Proceedings of the 29th ACM International Conference on Multimedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
442
+ page_content=' 5382–5390.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
443
+ page_content=' [31] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and Bin Cui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
444
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
445
+ page_content=' Contrastive learning for sequential recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
446
+ page_content=' In 2022 IEEE 38th International Conference on Data Engineering (ICDE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
447
+ page_content=' IEEE, 1259–1273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
448
+ page_content=' [32] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
449
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
450
+ page_content=' Em- bedding entities and relations for learning and inference in knowledge bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
451
+ page_content=' arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
452
+ page_content='6575 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
453
+ page_content=' [33] Liangwei Yang, Zhiwei Liu, Yu Wang, Chen Wang, Ziwei Fan, and Philip S Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
454
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
455
+ page_content=' Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
456
+ page_content=' In Proceedings of the ACM Web Conference 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
457
+ page_content=' 3376–3386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
458
+ page_content=' [34] Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix Yu, Ting Chen, Aditya Menon, Lichan Hong, Ed H Chi, Steve Tjoa, Jieqi Kang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
459
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
460
+ page_content=' Self-supervised Learning for Large-scale Item Recommendations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
461
+ page_content=' In Proceedings of the 30th ACM International Conference on Information & Knowledge Management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
462
+ page_content=' 4321–4330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
463
+ page_content=' [35] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
464
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
465
+ page_content=' Are graph augmentations necessary?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
466
+ page_content=' simple graph contrastive learning for recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
467
+ page_content=' In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
468
+ page_content=' 1294–1303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
469
+ page_content=' [36] Lei Zheng, Ziwei Fan, Chun-Ta Lu, Jiawei Zhang, and Philip S Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
470
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
471
+ page_content=' Gated Spectral Units: Modeling Co-evolving Patterns for Sequential Recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
472
+ page_content=' In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
473
+ page_content=' 1077–1080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
474
+ page_content=' [37] Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
475
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
476
+ page_content=' Contrastive learning inverts the data generating process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
477
+ page_content=' In International Conference on Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
478
+ page_content=' PMLR, 12979–12990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf'}
I9FET4oBgHgl3EQfrCVC/content/tmp_files/2301.10089v1.pdf.txt ADDED
@@ -0,0 +1,1170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.10089v1 [math.AP] 24 Jan 2023
2
+ FLAT FLOW SOLUTION TO THE MEAN CURVATURE
3
+ FLOW WITH VOLUME CONSTRAINT
4
+ VESA JULIN
5
+ Abstract. In this paper I will revisit the construction of a global weak
6
+ solution to the volume preserving mean curvature flow via discrete min-
7
+ imizing movement scheme by Mugnai-Seis-Spadaro [19]. This method
8
+ is based on the gradient flow approach due to Almgren-Taylor-Wang
9
+ [3] and Luckhaus-Str¨urzenhecker [14] and my aim is to replace the vol-
10
+ ume penalization by implementing the volume constraint directly in the
11
+ discrete scheme, which from practical point of view is perhaps more nat-
12
+ ural. A technical novelty is the proof of the density estimate which is
13
+ based on the second variation condition of the energy.
14
+ 1. Introduction
15
+ A smooth family of set (Et)t≥0 is said to evolve according to volume
16
+ preserving mean curvature flow if the normal velocity Vt is proportional to
17
+ the mean curvature HEt as
18
+ Vt = −(HEt − ¯HEt)
19
+ on ∂Et,
20
+ (1.1)
21
+ where ¯HEt =
22
+
23
+ ∂Et HEt dHn. Such a geometric equation has been proposed
24
+ in the physical literature to model coarsening phenomena, where the system
25
+ consisting on several subdomains evolve such that it decreases the interfacial
26
+ area while keeping the total volume unchanged [7, 18]. From purely math-
27
+ ematical point of view the equation (1.1) can be seen as the L2-gradient
28
+ flow of the surface area under the volume constraint [18]. One has to be
29
+ careful in this interpration as the Riemannian distance between two sets is
30
+ in general degenerate [16]. In order to overcome this one may use the idea
31
+ due to Almgren-Taylor-Wang [3] and Luckhaus-Str¨urzenhecker [14] and to
32
+ view (1.1) as the gradient flow of the surface area with respect to a differ-
33
+ ent, non-degerate, distance. Using the gradient flow structure, one may then
34
+ construct a discrete-in-time approximation to the solution of (1.1) via the
35
+ Euler implicit method, also known as the minimizing movements scheme.
36
+ By letting the time step to zero, one then obtains a candidate for a weak
37
+ solution of (1.1) called flat flow, as the convergence is measured in terms of
38
+ ”flat norm”. This method is implemented to the volme preserving setting
39
+ in [19].
40
+ In [19] the authors observe that from technical point of view it is easier
41
+ to replace the volume constraint of the problem with a volume penaliza-
42
+ tion, as this simplifies certain regularity issues at the level of the discrete
43
+ approximation. My aim here is to show that one may construct the flat flow
44
+ Date: January 25, 2023.
45
+ 1
46
+
47
+ 2
48
+ JULIN
49
+ solution to (1.1) by implementing the volume constraint in the minimizing
50
+ movements scheme directly and thus avoid the volume penalization.
51
+ Let me quickly recall the discrete minimizing movements scheme for (1.1).
52
+ One defines a sequence of sets (Eh
53
+ k )k, with fixed time step h > 0, iteratively
54
+ such that Eh
55
+ 0 = E0, where E0 is the given initial set, and Eh
56
+ k+1 is a minimizer
57
+ of the functional
58
+ P(E) + 1
59
+ h ∫E
60
+ ¯dEh
61
+ k dx
62
+ under the constraint ∣E∣ = ∣Eh
63
+ k ∣.
64
+ Here P(E) denotes the perimeter (generalized surface area) of the set E
65
+ and ¯dF is the signed distance function of the set F (see next section). One
66
+ then defined an approximative flat flow solution to (1.1) (Eh
67
+ t )t≥0 from the
68
+ previous sequence by Eh
69
+ t = Eh
70
+ k for t ∈ [kh,(k + 1)h). Any cluster point of
71
+ (Eh
72
+ t )t≥0 is then defined as flat flow solution to (1.1). The advantage is that
73
+ such a solution is defined for all times and for rough initial data. The main
74
+ result in the paper is the existence of a flat flow solution.
75
+ Theorem 1. Assume that E0 ⊂ Rn+1 is an open and bounded set with finite
76
+ perimeter and let (Eh
77
+ t )t≥0 be an approximative flat flow solution to (1.1)
78
+ stating from E0 (see Definition 2.1). Then there exists a family of bounded
79
+ sets of finite perimeter (Et)t≥0 and a subsequence hk → 0 such that
80
+ lim
81
+ hk→0 ∣Ehk
82
+ t ∆Et∣ = 0
83
+ for a.e. t ≥ 0
84
+ and for every 0 < t < s it holds ∣Et∣ = ∣E0∣, P(Et) ≤ P(E0) and
85
+ ∣Et∆Es∣ ≤ C
86
+
87
+ s − t,
88
+ where C depends on the dimension and on E0. Moreover, if the initial set
89
+ E0 is C1,1-regular, then any such limit flow (Et)t≥0 agrees with the unique
90
+ classical solution of (1.1) as long as the latter exists.
91
+ The above theorem thus provides the existence of a flat flow solution and
92
+ guarantees that this notion is consistence with the classical solution when the
93
+ initial set is regular enough. The disadvantage of the flat flow is that it is not
94
+ clear if it provides a solution to the original equation (1.1) in any weak sense.
95
+ However, the conditional result in the spirit of Luckhaus-Str¨urzenhecker [14]
96
+ holds also in this case.
97
+ Theorem 2. Let (Eh
98
+ t )t≥0 be an approximative flat flow solution to (1.1) and
99
+ let (Ehk
100
+ t )t≥0 be the converging subsequence in Theorem 1. Assume further
101
+ that it holds
102
+ lim
103
+ hk→0P(Ehk
104
+ t ) = P(Et)
105
+ for a.e. t ≥ 0.
106
+ Then for n ≤ 6 the flat flow (Et)t≥0 is a distributional solution to (1.1) (see
107
+ Definition 4.5).
108
+ One may also try to view the equation (1.1) as a mean curvature flow
109
+ with forcing, where the forcing term depends on the flow itself. In this way
110
+ one may try use different methods to construct a solution to the equation
111
+ see e.g. [5, 6] . I also refer the recent work [13] for a weak-strong uniqueness
112
+ result related to (1.1).
113
+
114
+ FLAT FLOW
115
+ 3
116
+ As I already mentioned, the flat flow is defined for all times and one may
117
+ study its asymptotical behavior. Indeed, by using the metods from [10, 11]
118
+ one may deduce the convergence of the flow in low dimensions.
119
+ Remark 1.1. Assume that E0 ⊂ Rn+1, with n ≤ 2, is as in Theorem 1 and
120
+ let (Et)t≥0 be a limit flat flow. When n = 1, the flow Et converges to a union
121
+ of disjoint balls exponentially fast and when n = 2 the flow converges to a
122
+ union of disjoint balls up to a possible translation of the components.
123
+ The main technical challenge in proving Theorem 1 is to obtain the sharp
124
+ density estimate for the discrete flow. This is also the main technical nov-
125
+ elty of this paper. There are several techniques to deal with the volume
126
+ constraint in variational problems, e.g. by using the argument from [2] (see
127
+ also [15, Lemma 17.21]) or from [8] (see also [4, 9]). However, due to the
128
+ presence of the dissipation term in the energy it is not obvious how to apply
129
+ these arguments in order to obtain sharp density estimates in terms of the
130
+ time step h. I will use an argument which is based on the second varia-
131
+ tion condition of the energy to prove the density estimate in Proposition
132
+ 3.1. After this the proof of Theorem 1 follows exactly as in [14, 19] and the
133
+ consistency follows almost directly using the argument in [12]. The proof
134
+ also provides the dissipation inequality and therefore the results in [10, 11]
135
+ hold and one obtains the result stated in Remark 1.1. Finally I would like
136
+ to point out that this article is not self-consistence as several arguments are
137
+ well-known, in particular, in Section 4.
138
+ 2. Preliminaries
139
+ In this section I will briefly introduce the notation, the definition of the
140
+ flat flow solution and recall some of its basic properties.
141
+ Given a set E ⊂ Rn+1 the distance function dist(⋅,E) ∶ Rn+1 → [0,∞) is
142
+ defined, as usual, as dist(x,E) ∶= infy∈E ∣x−y∣ and denote the signed distance
143
+ function by ¯dE ∶ Rn+1 → R,
144
+ ¯dE(x) ∶=
145
+ ⎧⎪⎪⎨⎪⎪⎩
146
+ −dist(x,∂E),
147
+ for x ∈ E
148
+ dist(x,∂E),
149
+ for x ∈ Rn+1 ∖ E.
150
+ Then clearly it holds dist(⋅,∂E) = ∣ ¯dE∣.
151
+ I denote the ball with radius r
152
+ centered at x by Br(x) and by Br if it is centered at the origin.
153
+ For a measurable set E ⊂ Rn+1 the perimeter in an open set U ⊂ Rn+1 is
154
+ defined by
155
+ P(E,U) ∶= sup{∫E div X dx ∶ X ∈ C1
156
+ 0(U,Rn+1), ∥X∥L∞ ≤ 1}
157
+ and write P(E) = P(E,Rn+1). If P(E) < ∞, then E is called a set of finite
158
+ perimeter. For an introduction to the topic I refer to [15]. The reduced
159
+ boundary of a set of finite perimeter E is denoted by ∂∗E and the generalized
160
+ unit outer normal by νE. Note that it holds P(E,U) = Hn(∂∗E∩U) for open
161
+ sets U. Recall also that if E is regular enough, say with Lipschitz boundary,
162
+ then P(E) = Hn(∂E). For a given vector field X ∈ C1(Rn+1,Rn+1) and a set
163
+ of finite perimeter E denote the tangential divergence on ∂E∗ as divτ X =
164
+ div X − ⟨DXνE,νE⟩. The distributional mean curvature HE ∈ L1(∂∗E,R)
165
+
166
+ 4
167
+ JULIN
168
+ is defined via the divergence thereon such that for every test vector field
169
+ X ∈ C1
170
+ 0(Rn+1,Rn+1) it holds
171
+ ∫∂∗E divτ X dHn = ∫∂∗E HE⟨X,νE⟩ dHn.
172
+ I will consider a flat flow solution to (1.1) in the spirit of Almgren-Taylor-
173
+ Wang [3] and Luckhaus-St¨urzenhecker [14].
174
+ To this this aim for a fixed
175
+ h ∈ (0,1) and a given (open) set F ⊂ Rn+1 I define the functional
176
+ Fh(E,F) = P(E) + 1
177
+ h ∫E
178
+ ¯dF dx.
179
+ (2.1)
180
+ The flat flow solution is defined analogously as in [19].
181
+ Definition 2.1. Let E0 ⊂ Rn+1 be an open and bounded set of finite perime-
182
+ ter and fix h ∈ (0,1).
183
+ Define the sequence of sets (Eh
184
+ k)∞
185
+ k=0 iteratively as
186
+ Eh
187
+ 0 = E0 and Eh
188
+ k+1 is a minimizer of the problem
189
+ min{Fh(E,Eh
190
+ k ) ∶ ∣E∣ = ∣E0∣}.
191
+ Moreover, define an approximative flat flow (Eh
192
+ t )t≥0 for (1.1) starting from
193
+ E0 as
194
+ Eh
195
+ t = Eh
196
+ k
197
+ for t ∈ [kh,(k + 1)h).
198
+ One has to be carefull in the definition of the functional (2.1) if the set
199
+ F is merely a set of finite perimeter as its value depends on the choice
200
+ of the representative of F. One may overcome this by choosing a proper
201
+ representative of the set F. In my case this is not necessary, as the regularity
202
+ theorem below implies that one may in fact assume the sets Eh
203
+ k to be open.
204
+ The difference in the Definition 2.1 to the scheme in [19] is that here the
205
+ minimizing problem is under volume constraint. On one hand this makes
206
+ the minimization problem more natural, but on the other hand, it makes
207
+ the quantitative density estimates more difficult to prove.
208
+ For a given open and bounded set F ⊂ Rn+1 consider the minimization
209
+ problem
210
+ min{Fh(E,F) ∶ ∣E∣ = ∣F∣},
211
+ (2.2)
212
+ where Fh(��,F) is defined in (2.1). One may use an argument similar to [9]
213
+ or [15, Lemma 17.21] to get rid of the volume constraint in (2.2) and deduce
214
+ that a minimizer of (2.2) is a minimizer also for
215
+ min{Fh(E,F) + ˜Λ∣∣E∣ − ∣F∣∣},
216
+ (2.3)
217
+ when ˜Λ is chosen large.
218
+ Note that the constant ˜Λ may have unoptimal
219
+ dependence on E and on h. However, the property (2.3) is enough deduce
220
+ qualitative regularity properties since it implies that the minimizer inherits
221
+ the regularity from the theory of the perimeter minimizers [15]. One may
222
+ also write the Euler-Lagrange equation and by standard calculations (see e.g.
223
+ [1]) we have the second variation condition. We state this in the following
224
+ proposition.
225
+ Proposition 2.2. Let F ⊂ Rn+1 be an open and bounded set, fix h ∈ (0,1)
226
+ and let E be a minimizer of (2.2). Then E can be chosen to be open, which
227
+ topological boundary is C2,α-regular up to a relatively closed singular set
228
+
229
+ FLAT FLOW
230
+ 5
231
+ which Hausdorff dimension is at most n − 7. In fact, the regular part is
232
+ exactly the reduced boundary ∂∗E.
233
+ The Euler-Lagrange equation
234
+ dF
235
+ h = −HE + λ,
236
+ (2.4)
237
+ where λ ∈ R is the Lagrange-multiplier, holds point wise on ∂∗E and in
238
+ a distributional sense on ∂E. The quadratic form associated with the sec-
239
+ ond variation of the energy is non-negative, i.e., for all ϕ ∈ H1(∂∗E) with
240
+ ∫∂∗E ϕdHn = 0 it holds
241
+ ∫∂∗E ∣∇τϕ∣2 − ∣BE∣2ϕ2 dHn + 1
242
+ h ∫∂∗E⟨∇ ¯dF ,νE⟩ϕ2 dHn ≥ 0,
243
+ (2.5)
244
+ where BE(x) denotes the second fundamental form at x ∈ ∂∗E.
245
+ Proof. Since the argument is standard, I will only give the outline. As I
246
+ already mentioned, the minimizer E is also a minimizer of the problem (2.3)
247
+ for some large constant ˜Λ, which depend on h and on E itself. This implies
248
+ that the set E is a Λ-minimizer of the perimeter and thus the reduced bound-
249
+ ary ∂∗E is relatively open, C1,α-regular hypersurface and the singular set
250
+ ∂E ∖∂∗E has dimension at most n−7 [15]. The C2,α-regularity then follows
251
+ from the Euler-Lagrange equation and from standard Schauder-estimates
252
+ for elliptic PDEs.
253
+ One may obtain the second variation condition (2.5) by using the argu-
254
+ ment from [1]. Indeed, given a function ϕ ∈ C1
255
+ 0(∂∗E) with ∫∂∗E ϕdHn = 0, we
256
+ may construct a family of diffeomorphisms Φt such that Φ0 = id, ∣Φt(E)∣ = ∣E∣
257
+ and ∂
258
+ ∂t∣t=0Φt(x)⋅ νE = ϕ. Then the inequality follows from the minimality of
259
+ E as
260
+ ∂2
261
+ ∂t2 ∣t=0Fh(Φt(E),F) ≥ 0
262
+ and following the standard calculation of the second variation (see e.g. [1]).
263
+ Finally one obtains (2.5) for all ϕ ∈ H1(∂∗E) by approximation argument
264
+ and by the fact that the singular set has zero capacity.
265
+
266
+ 3. Density estimates
267
+ This section is the theoretical core of the paper. The aim is to prove the
268
+ following density estimate.
269
+ Proposition 3.1. Let F ⊂ Rn+1 be an open and bounded set of finite perime-
270
+ ter, fix h ∈ (0,1) and let E be a minimizer of (2.2). Then there is a constant
271
+ c > 0, which depends on the dimension n, ∣F∣ and on P(F) such that for all
272
+ r ≤
273
+
274
+ h and all x ∈ ∂E it holds
275
+ min{∣E ∩ Br(x)∣,∣Br(x) ∖ E∣} ≥ crn+1
276
+ and for all r ≤ C0
277
+
278
+ h, where C0 ≥ 1, it holds
279
+ crn ≤ P(E,Br(x)) ≤ C1rn,
280
+ where C1 depends also on C0. Moreover, the following holds
281
+ ∥HE∥L∞(∂∗E) ≤
282
+ 1
283
+ c
284
+
285
+ h
286
+ and
287
+ ∥ ¯dF ∥L∞(∂E) ≤ c−1√
288
+ h.
289
+
290
+ 6
291
+ JULIN
292
+ It is interesting that in [19, Corollary 3.3] the authors obtain similar result
293
+ for their scheme for a constant which is independent of P(F).
294
+ I need several lemmas in order to prove Proposition 3.1 and therefore I
295
+ postpone its proof to the end of the section. Before proceeding to technical
296
+ details, I state a useful consequence of Proposition 3.1.
297
+ Proposition 3.2. Let F,E ⊂ Rn+1 be as in Proposition 3.1. Then there are
298
+ constants C ≥ 1,c > 0 and h0 > 0, depending on the dimension, ∣F∣ and P(F)
299
+ such that E is (Λ,r)- minimizer of the perimeter for Λ =
300
+ C
301
+
302
+ h, r = c
303
+
304
+ h and
305
+ for h < h0. To be more precise, for sets G ⊂ Rn+1 with E∆G ⊂ Bc
306
+
307
+ h(x0) it
308
+ holds
309
+ P(E) ≤ P(G) + C
310
+
311
+ h
312
+ ∣E∆G∣.
313
+ Proof. The argument is standard but I recall it for the reader’s convenience.
314
+ Let me first show that there is x ∈ E and ˜c > 0 such that for ρ = ˜c
315
+
316
+ h it holds
317
+ Bρ(x) ⊂ E. Fix ρ and apply Besicovich covering theorem to find disjoint
318
+ balls {Bρ(xi)}N
319
+ i=1 such that xi ∈ E and
320
+ N
321
+
322
+ i=1
323
+ ∣Bρ(xi)∣ = N∣B1∣ρn+1 ≥ c∣E∣.
324
+ (3.1)
325
+ I claim that for some i = 1,2,... ,N it holds Bρ/2(xi) ⊂ E. Indeed, if this is
326
+ not the case then Proposition 3.1 implies
327
+ P(E,Bρ(xi)) ≥ cρn
328
+ for all i. Since the balls are disjoint, one has by the above and by (3.1)
329
+ P(E) ≥
330
+ N
331
+
332
+ i=1
333
+ P(E,Bρ(xi)) ≥ cN ρn ≥ c∣E∣
334
+ ρ ≥
335
+ c
336
+
337
+ h
338
+ .
339
+ This is a contradiction when h is small enough.
340
+ Fix x0 ∈ ∂E and G as in the claim. Note that in general the set G does not
341
+ have the same measure as E and one needs to modify it to ˜G with ∣ ˜G∣ = ∣E∣
342
+ e.g. by using the argument from [9] as follows. Assume that ∣G∣ < ∣E∣ (the
343
+ case ∣G∣ > ∣E∣ follows from similar argument). Since Bρ(x) ⊂ E, then by
344
+ decreasing ρ and r if needed, it holds Bρ(x) ⊂ G. By continuity there is
345
+ z ∈ Rn+1 such that ∣z − x0∣ ≥ 2ρ and ∣G ∪ Bρ(z)∣ = ∣E∣. Define ˜G = G ∪ Bρ(z).
346
+ Then by the minimality of E and Proposition 3.1 it holds
347
+ P(E) ≤ P( ˜G) + C
348
+
349
+ h
350
+ ∣ ˜G∆E∣.
351
+ Arguing as in [9] one then deduces
352
+ P( ˜G) − P(G) ≤ Hn(∂Bρ(z) ∖ G) − Hn(∂G ∩ Bρ(z))
353
+ ≤ C
354
+ ρ ∣Bρ(z) ∖ G∣ ≤ C
355
+
356
+ h
357
+ ∣ ˜G∆E∣
358
+ and the claim follows as ∣ ˜G∆E∣ ≤ 2∣G∆E∣ .
359
+
360
+ The first technical result which I need is the classical density estimate
361
+ which can be found e.g. in [20].
362
+
363
+ FLAT FLOW
364
+ 7
365
+ Lemma 3.3. Assume E ⊂ Rn+1 is a set of finite perimeter with distribu-
366
+ tional mean curvature HE which satisfies ∥HE∥L∞(B2R(x0)) ≤ Λ. Then for
367
+ all x ∈ BR(x0) and r ≤ min{R,Λ−1} it holds
368
+ P(E,Br(x)) ≥ cnrn,
369
+ for a dimensional constant cn > 0.
370
+ For a minimizer of (2.2) it holds the inverse of the isoperimetric inequality.
371
+ Lemma 3.4. Let F and E be as in Proposition 3.1. Then for all x ∈ ∂E
372
+ and r ≤ C0
373
+
374
+ h it holds
375
+ P(E,Br(x)) ≤ C
376
+ r min{∣E ∩ B2r(x)∣,∣B2r(x) ∖ E∣},
377
+ for a constant which depends on the dimension and on C0 > 0. In, particular
378
+ it holds P(E,Br(x)) ≤ Crn.
379
+ Proof. Fix h ∈ (0,1), x and r > 0 as in the claim and without loss of generality
380
+ assume that x = 0. One may also consider only the case ∣E ∩ B2r∣ ≤ ∣B2r ∖ E∣
381
+ as the other case is similar. In particular, then it holds ∣E ∩ B2r∣ ≤ 1
382
+ 2∣B2r∣.
383
+ Since
384
+
385
+ 2r
386
+ 0
387
+ Hn(∂Bρ ∩ E) = ∣E ∩ B2r∣,
388
+ there is ρ ∈ (r,2r) such that
389
+ Hn(∂Bρ ∩ E) ≤ Cn
390
+ ∣E ∩ B2r∣
391
+ r
392
+ and
393
+ ∣Bρ∣ ≥ 2
394
+ 3∣B2r∣.
395
+ (3.2)
396
+ Consider first the set E1 = E ∖ ¯Bρ. In order to have a competing set with
397
+ the volume of E, define ˜ρ < ρ to be a radius such that ∣B˜ρ∣ = ∣E ∩ Bρ∣ and
398
+ define E2 = E1 ∪ B˜ρ. Then it holds by construction that ∣E2∣ = ∣E∣. By the
399
+ minimality of E we have
400
+ P(E) + 1
401
+ h ∫E
402
+ ¯dF dx ≤ P(E2) + 1
403
+ h ∫E2
404
+ ¯dF dx.
405
+ Estimate the perimeter of E2 using (3.2) as
406
+ P(E2) ≤ P(E,Rn+1 ∖ Bρ) + Hn(∂Bρ ∩ E) + Hn(∂B˜ρ)
407
+ ≤ P(E,Rn+1 ∖ Bρ) + Cn
408
+ ∣E ∩ B2r∣
409
+ r
410
+ .
411
+ Use then E∆E2 ⊂ B2r, ∣E∣ = ∣E2∣ and the fact that the signed distance
412
+ function is 1-Lipschitz to estimate
413
+ ∣∫E
414
+ ¯dF dx − ∫E2
415
+ ¯dF ∣ ≤ 4r∣E ∩ Bρ∣ ≤ 4r∣E ∩ B2r∣.
416
+ Therefore one obtains by combining the three above inequalities and r ≤
417
+ C0
418
+
419
+ h
420
+ P(E,Br) ≤ P(E,Bρ) ≤ Cn
421
+ ∣E ∩ B2r∣
422
+ r
423
+ + 4r
424
+ h ∣E ∩ B2r∣ ≤ C ∣E ∩ B2r∣
425
+ r
426
+ .
427
+
428
+
429
+ 8
430
+ JULIN
431
+ By Lemma 3.3 and Lemma 3.4 it is clear that for Proposition 3.1 it is
432
+ crucial to prove the curvature estimate ∥HE∥L∞ ≤
433
+ C
434
+
435
+ h. The next lemma is a
436
+ step towards this.
437
+ Lemma 3.5. Let F,E and h be as in Proposition 3.1. Then it holds
438
+ ∥HE∥L2(∂∗E) ≤ C1
439
+
440
+ h
441
+ ,
442
+ where the constant C1 depends on the dimension and on ∣F∣ and P(F).
443
+ Proof. The proof relies on the second variation inequality in Proposition
444
+ 2.2. I would like to point out that in the case of the mean curvature flow,
445
+ when there is no volume constraint, the proof is considerable easier as one
446
+ could choose constant function in (2.5). In the volume preserving case I will
447
+ choose a cut-off function for a test function.
448
+ To this aim use first [11, Proposition 2.3] (see also [17, Lemma 2.1]) to
449
+ find a point x0 ∈ Rn+1 and a radius r ∈ (c,1), where c = c(n,∣F∣,P(F)), such
450
+ that
451
+ ∣E ∩ Br(x0)∣ = 1
452
+ 2∣Br∣.
453
+ Note that the minimality of E yields P(E) ≤ P(F) ≤ C.
454
+ Moreover, by
455
+ the isoperimetric inequality it holds P(E) ≥ cn∣E∣
456
+ n
457
+ n+1 = cn∣F∣
458
+ n
459
+ n+1 ≥ c. These
460
+ estimates are used repeatedly from now on without mentioning. Without
461
+ loss of generality assume that x0 = 0. Choose ρ < r such that ∣Br∖Bρ∣ = 1
462
+ 4∣Br∣.
463
+ Note that then r − ρ ≥ cn > 0 and
464
+ 3
465
+ 4∣Bρ∣ ≥ ∣E ∩ Bρ∣ ≥ 1
466
+ 4∣Bρ∣.
467
+ (3.3)
468
+ Define first a cut-off function ζ ∈ C1
469
+ 0(Rn+1) such that 0 ≤ ζ ≤ 1, ζ = 1 in Bρ,
470
+ ζ = 0 outside Br and ∣∇ζ∣ ≤ Cn. Choose then ϕ = ζ − ¯ζ, where ¯ζ =
471
+
472
+ ∂∗E ζ dHn,
473
+ as a test function in (2.5), use ∣⟨∇ ¯dF ,νE⟩∣ ≤ 1 and ∣ϕ∣ ≤ 1, and obtain
474
+ ∫∂∗E ∣BE∣2(ζ − ¯ζ)2 dHn ≤ ∫∂∗E ∣∇τζ∣2 dHn + P(E)
475
+ h
476
+ .
477
+ (3.4)
478
+ Since HE = Trace(BE), it holds point wise on ∂∗E
479
+ ∣BE∣2 ≥ H2
480
+ E
481
+ n .
482
+ (3.5)
483
+ Recall that 0 ≤ ζ ≤ 1. Moreover, by the isoperimetric inequality and by (3.3)
484
+ it holds P(E,Bρ) ≥ cn∣E ∩Bρ∣
485
+ n
486
+ n+1 ≥ c. Therefore ¯ζ ≥ c for c = c(n,∣F∣,P(F)).
487
+ In particular, it holds ∣ζ(x)− ¯ζ∣ ≥ c for x ∈ ∂∗E ∖Br. Hence, we have by (3.4)
488
+ ∫∂∗E∖Br
489
+ ∣HE∣2 dHn ≤ C
490
+ h P(F).
491
+ We repeat the same argument by defining a cut-off function ζ ∈ C1(Rn+1)
492
+ as ζ = 0 in Br, ζ = 1 outside BR and ∣∇ζ∣ ≤ Cn, where R > r is such that
493
+ ∣BR ∖ Br∣ = 1
494
+ 4∣Br∣. Using ϕ = ζ − ¯ζ in (2.5) and arguing as above yields
495
+ ∫∂∗E∩Br
496
+ ∣HE∣2 dHn ≤ C
497
+ h P(F)
498
+ and the claim follows.
499
+
500
+
501
+ FLAT FLOW
502
+ 9
503
+ The last lemma I need is a bound on the Lagrange multiplier in the Euler-
504
+ Lagrange equation (2.4).
505
+ Lemma 3.6. Let F,E and h be as in Proposition 3.1. Then for the Lagrange
506
+ multiplier in (2.4), i.e.,
507
+ ¯dF
508
+ h = −HE + λ
509
+ on ∂∗E
510
+ it holds
511
+ ∣λ∣ ≤ C2
512
+
513
+ h
514
+ ,
515
+ where the constant C2 depends on the dimension, on ∣F∣ and on P(F).
516
+ Proof. Let Λ ≥ 0 be such that ∣λ∣ =
517
+ Λ
518
+
519
+ h. Below all the constant depend on
520
+ n,∣F∣ and P(F). I only treat the case when λ is positive as in the negative
521
+ case the proof is the similar. Define the set
522
+ Σ = {x ∈ ∂∗E ∶ ∣HE(x)∣ <
523
+ ˆC
524
+
525
+ h
526
+ }.
527
+ I claim that we may choose ˆC > 2 such that it depends on n,∣F∣,P(F) and
528
+ on C1 from Lemma 3.5 and it holds
529
+ Hn(Σ) ≥ P(E)
530
+ 2
531
+ .
532
+ (3.6)
533
+ Indeed, by the Euler-Lagrange equation (2.4) , by Lemma 3.5 and by ˆC > 2
534
+ it holds
535
+ ˆC2
536
+ h Hn(∂∗E ∖ Σ) ≤ ∫∂∗E∖Σ H2
537
+ E dHn ≤ ∫∂∗E H2
538
+ E dHn ≤ C1
539
+ h .
540
+ By choosing ˆC large enough one then obtains Hn(∂∗E ∖ Σ) < P(E)/2 and
541
+ (3.6) follows.
542
+ By Besikovich covering theorem one finds disjoint balls of radius
543
+
544
+ h,
545
+ denote them {B√
546
+ h(xi)}N
547
+ i=1, with xi ∈ Σ such that
548
+ N
549
+
550
+ i=1
551
+ P(E,B√
552
+ h(xi)) ≥ cnHn(Σ) ≥ cP(E).
553
+ (3.7)
554
+ By the Euler-Lagrange equation (2.4) and by the definition of the set Σ it
555
+ holds for all x ∈ ∂∗E ∩ B√
556
+ h(xi) with xi ∈ Σ that
557
+ ∣HE(x)∣ ≤ ∣
558
+ ¯dF(x)
559
+ h
560
+ λ∣ ≤ ∣ ¯dF (x) − ¯dF (xi)∣
561
+ h
562
+ + ∣
563
+ ¯dF (xi)
564
+ h
565
+ − λ∣
566
+
567
+ 1
568
+
569
+ h
570
+ + ∣HE(xi)∣ ≤ 2 ˆC
571
+
572
+ h
573
+ .
574
+ (3.8)
575
+ Therefore by Lemma 3.3 it holds
576
+ P(E,B√
577
+ h/2(xi)) ≥ P(E,B√
578
+ h/2 ˆC(xi)) ≥ chn/2.
579
+ On the other hand applying Lemma 3.4 first with r =
580
+
581
+ h/2 yields
582
+ ∣E ∪ B√
583
+ h(xi)∣ ≥ c
584
+
585
+ hP(E,B√
586
+ h/2(xi))
587
+
588
+ 10
589
+ JULIN
590
+ and then with r =
591
+
592
+ h yields h
593
+ n+1
594
+ 2 ≥ cP(E,B√
595
+ h(xi)). In conclusion it holds
596
+ ∣E ∪ B√
597
+ h(xi)∣ ≥ c
598
+
599
+ hP(E,B√
600
+ h(xi))
601
+ (3.9)
602
+ for all balls in the cover.
603
+ The minimality of E implies
604
+ 1
605
+ h ∫E∖F
606
+ ¯dF dx ≤ P(E) + 1
607
+ h ∫E∆F ∣ ¯dF ∣ dx ≤ P(F).
608
+ (3.10)
609
+ Note that by (3.8), by λ =
610
+ Λ
611
+
612
+ h and by the Euler-Lagrange equation (2.4) we
613
+ have for all x ∈ B√
614
+ h(xi) that
615
+ ¯dF (x) ≥ λh − ∣H(x)∣h ≥ (Λ − 2 ˆC)
616
+
617
+ h.
618
+ Therefore either Λ ≤ 4 ˆC, in which case the claim follows trivially, or
619
+ ¯dF (x) ≥ Λ
620
+ 2
621
+
622
+ h.
623
+ I assume the latter and show that even in this case Λ is bounded. Indeed, by
624
+ the above discussion the balls B√
625
+ h(xi) are in the exterior of F. Therefore
626
+ we estimate by (3.7) and (3.9) that
627
+ 1
628
+ h ∫E∖F
629
+ ¯dF dx ≥ 1
630
+ h
631
+ N
632
+
633
+ i=1∫E∩B√
634
+ h(xi)
635
+ ¯dF dx
636
+ ≥ 1
637
+ h
638
+ N
639
+
640
+ i=1
641
+
642
+ 2
643
+
644
+ h∣E ∩ B√
645
+ h(xi)∣)
646
+ ≥ cΛ
647
+ N
648
+
649
+ i=1
650
+ P(E,B√
651
+ h(xi))
652
+ ≥ cΛHn(Σ) ≥ cΛP(E).
653
+ Since P(E) ≥ cn∣E∣
654
+ n
655
+ n+1 = cn∣F∣
656
+ n
657
+ n+1 , the above and (3.10) gives a bound for Λ
658
+ and the claim follows.
659
+
660
+ Here is the proof of the density estimate.
661
+ Proof of Proposition 3.1. By Lemma 3.3, Lemma 3.4, Lemma 3.6 and
662
+ by the Euler-Lagrange equation (2.4) it is enough to prove
663
+ ∥ ¯dF ∥L∞(∂∗E) ≤ C
664
+
665
+ h.
666
+ (3.11)
667
+ Argue by contradiction and assume that there is x0 ∈ ∂∗E such that
668
+ ∣ ¯dF (x0)∣ = Λ
669
+
670
+ h
671
+ for large Λ >> 1. Without loss of generality assume that x0 = 0 and consider
672
+ only the case ¯dF (x0) > 0 as the other case is similar.
673
+ By the Euler-Lagrange equation (2.4), by Lemma 3.3 and Lemma 3.6 it
674
+ holds for r0 =
675
+
676
+ h
677
+ 2Λ that
678
+ P(E,Br0) ≥ crn
679
+ 0 .
680
+ (3.12)
681
+ Define radii rk = k
682
+
683
+ h + r0 for k = 0,1,... ,n + 1. For every k = 0,1,... ,n + 1
684
+ choose a cut-off function ζk ∈ C1
685
+ 0(Rn+1) such that 0 ≤ ζ ≤ 1, ζk = 1 in
686
+ Brk, ζk+1 = 0 in Rn+1 ∖ Brk+1 and ∣∇ζk∣ ≤
687
+ 2
688
+
689
+ h. Choose ϕ = ζk − ¯ζk, where
690
+
691
+ FLAT FLOW
692
+ 11
693
+ ¯ζk =
694
+
695
+ ∂∗E ζk dHn, as a test function in the second variation condition (2.5),
696
+ use ∣⟨∇ ¯dF ,νE⟩∣ ≤ 1 and (3.5), and obtain
697
+ 1
698
+ n ∫∂∗E ∣HE∣2(ζk − ¯ζk)2 dHn ≤ 1
699
+ h ∫∂∗E(ζk − ¯ζk)2 dHn + ∫∂∗E ∣∇τζk∣2 dHn.
700
+ (3.13)
701
+ Since ζk = 0 outside Brk+1, one may estimate
702
+ ∫∂∗E ∣∇τζk∣2 dHn ≤ 4
703
+ hP(E,Brk+1).
704
+ Moreover, since 0 ≤ ζk ≤ 1 it holds
705
+ ∫∂∗E(ζk − ¯ζk)2 dHn = ∫∂∗E ζ2
706
+ k − ¯ζ2
707
+ k dHn ≤ ∫∂∗E ζ2
708
+ k dHn ≤ P(E,Brk+1).
709
+ When Λ is large enough, then for all x ∈ ∂∗E ∩Brk+1 and all k ≤ n+1 it holds
710
+ ¯dF (x) ≥ Λ
711
+ 2
712
+
713
+ h. Then one may deduce from (3.6) that P(E,Brk+1) ≤ 1
714
+ 2P(E)
715
+ when Λ is large enough. This yields
716
+ 0 ≤ ¯ζk ≤ 1
717
+ 2.
718
+ Also by the Euler-Lagrange equation (2.4), by ¯dF (x) ≥ Λ
719
+ 2
720
+
721
+ h, and by Lemma
722
+ 3.6 it holds ∣HE∣ ≥
723
+ Λ
724
+ 4
725
+
726
+ h on ∂∗E ∩ Brk, when Λ is large. Therefore it holds
727
+ 1
728
+ n ∫∂∗E ∣HE∣2(ζk − ¯ζk)2 dHn ≥ 1
729
+ n ∫∂∗E∩Brk
730
+ ∣HE∣2(1 − ¯ζk)2 dHn
731
+ ≥ cn
732
+ Λ2
733
+ h P(E,Brk).
734
+ Combining the three above estimates with (3.13) yields
735
+ cn
736
+ Λ2
737
+ h P(E,Brk) ≤ 5
738
+ hP(E,Brk+1).
739
+ For Λ large enough this implies
740
+ ΛP(E,Brk) ≤ P(E,Brk+1).
741
+ (3.14)
742
+ Use (3.14) (n + 1)-times from k = 0 to k = n, use then (3.12) and recall
743
+ that r0 =
744
+
745
+ h
746
+ 2Λ and obtain finally that
747
+ P(E,Brn+1) ≥ Λn+1P(E,Br0) ≥ cΛn+1rn
748
+ 0 = cΛn+1 (
749
+
750
+ h
751
+ 2Λ )
752
+ n
753
+ = cΛhn/2.
754
+ (3.15)
755
+ But now since rn+1 = (n + 1)
756
+
757
+ h + r0 ≤ 2(n + 1)
758
+
759
+ h, one obtains from Lemma
760
+ 3.4 with r = 2(n + 1)
761
+
762
+ h that
763
+ P(E,Brn+1) ≤ P(E,Br) ≤ Chn/2,
764
+ which contradicts (3.15) when Λ is large.
765
+
766
+
767
+ 12
768
+ JULIN
769
+ 4. Existence of the flat flow
770
+ Now that the density estimates are proven the proof of Theorem 1 follows
771
+ from the arguments from [14, 19] without major changes. In this section
772
+ I consider the approximative flat flow (Eh
773
+ t )t≥0 and the associated sequence
774
+ (Eh
775
+ k)k≥0 as in the Definition 2.1 starting from an open and bounded set of
776
+ finite perimeter E0. The proof for the following ”interpolation” result can
777
+ be found in [14, Lemma 1.5].
778
+ Lemma 4.1. Let (Eh
779
+ t )t≥0 be an approximative flat flow starting from E0
780
+ and fix h ∈ (0,1) and t > h. Then for all l ≤
781
+
782
+ h it holds
783
+ ∣Eh
784
+ t ∆Eh
785
+ t−h∣ ≤ C (l P(Eh
786
+ t−h) + 1
787
+ l ∫Eh
788
+ t ∆Eh
789
+ t−h
790
+ ∣ ¯dEh
791
+ t−h∣dx)
792
+ By the regularity result stated in Proposition 2.2 the Euler-Lagrange
793
+ equation
794
+ ¯dEh
795
+ t−h
796
+ h
797
+ = −HEh
798
+ t + λt,h
799
+ (4.1)
800
+ holds point wise on ∂∗Eh
801
+ t and in a distributional sense on ∂Eh
802
+ t . Here λt,h is
803
+ the Lagrange multiplier. Using the minimality of Eh
804
+ t against the previous
805
+ set Eh
806
+ t−h one obtains the important inequality
807
+ P(Eh
808
+ t ) + 1
809
+ h ∫Eh
810
+ t ∆Eh
811
+ t−h
812
+ ∣ ¯dEh
813
+ t−h∣dx ≤ P(Eh
814
+ t−h).
815
+ (4.2)
816
+ Using (4.2) and the argument [14, Lemma 2.1] (see also [19, Lemma 3.6])
817
+ one obtains the following dissipation inequality.
818
+ Lemma 4.2. Let (Eh
819
+ t )t≥0 be an approximative flat flow starting from E0
820
+ and fix h ∈ (0,1). Then for all T2 > T1 ≥ h it holds
821
+
822
+ T2
823
+ T1
824
+ ∥HEh
825
+ t − λt,h∥2
826
+ L2(∂∗Eh
827
+ t ) dt ≤ C(P(ET1−h) − P(ET2)).
828
+ Moreover, it holds
829
+
830
+ T2
831
+ T1
832
+ (∥HEh
833
+ t ∥2
834
+ L2(∂∗Eh
835
+ t ) + λ2
836
+ t,h)dt ≤ C(1 + T2 − T1).
837
+ The constant depends on the dimension, ∣E0∣ and P(E0).
838
+ Proof. I will only sketch the proof. Let (Eh
839
+ k) be the sequence of sets associ-
840
+ ated with (Eh
841
+ t )t≥0. For l ∈ Z with 2l ≤ 2Ch− 1
842
+ 2 set
843
+ K(l) = {x ∈ Rn+1 ∶ 2lh < ∣ ¯dEh
844
+ t−h∣ ≤ 2l+1h}.
845
+ Here C is such that ∣ ¯dEh
846
+ t−h∣ ≤ Ch on ∂Eh
847
+ t . Proposition 3.1 yields that for
848
+ every x ∈ ∂Eh
849
+ t
850
+ ∣Eh
851
+ t ∩ B2lh(x)∣ ≥ c(2lh)n+1
852
+ and
853
+ Hn(∂Eh
854
+ t ∩ B2lh(x)) ≤ C(2lh)n.
855
+ Therefore for all x ∈ ∂Eh
856
+ t ∩ K(l) it holds
857
+ ∫B2lh(x)∩Eh
858
+ t ∆Eh
859
+ t−h
860
+ ∣ ¯dEh
861
+ t−h∣dx ≥ c(2lh)n+2
862
+ and
863
+ ∫B2lh(x)∩∂Eh
864
+ t
865
+ ¯d2
866
+ Eh
867
+ t−h dHn ≤ C(2lh)n+2.
868
+
869
+ FLAT FLOW
870
+ 13
871
+ Combing these two yields
872
+ ∫B2lh(x)∩∂Eh
873
+ t
874
+ ¯d2
875
+ Eh
876
+ t−h dHn ≤ C ∫B2lh(x)∩Eh
877
+ t ∆Eh
878
+ t−h
879
+ ∣ ¯dEh
880
+ t−h∣dx.
881
+ By applying Besicovitch covering theorem and summing over l ∈ Z (see [19,
882
+ Lemma 3.6] for details) yields
883
+ ∫∂Eh
884
+ t
885
+ ¯d2
886
+ Eh
887
+ t−h dHn ≤ ∫Eh
888
+ t ∆Eh
889
+ t−h
890
+ ∣ ¯dEh
891
+ t−h∣dx
892
+ which by combining with (4.1) and (4.2) implies
893
+ h∫∂Eh
894
+ t
895
+ (HEh
896
+ t − λt,h)2 dHn ≤ C(P(Eh
897
+ t−h) − P(Eh
898
+ t )).
899
+ The first inequality then follows by iterating the above.
900
+ By [11, Lemma 2.4] it holds
901
+ ∣λt,h∣ ≤ C(1 + ∥HEh
902
+ t − λt,h∥L1(∂∗Eh
903
+ t ))
904
+ for a constant that depends on the dimension and on ∣E0∣ and P(E0). Note
905
+ that then
906
+ ∥HEh
907
+ t ∥2
908
+ L2 + λ2
909
+ t,h ≤ C(1 + ∥HEh
910
+ t − λt,h∥2
911
+ L2).
912
+ Therefore by the first inequality one obtains
913
+
914
+ T2
915
+ T1
916
+ (∥HEh
917
+ t ∥2
918
+ L2 + λ2
919
+ t,h)dt ≤ C ∫
920
+ T2
921
+ T1
922
+ (1 + ∥HEh
923
+ t − λt,h∥2
924
+ L2)dt ≤ C(1 + T2 − T1).
925
+
926
+ The third lemma we need is a quantitative bound on the diameter of the
927
+ sets (Eh
928
+ t ), which is essentially the same as [19, Lemma 3.8].
929
+ Lemma 4.3. Let (Eh
930
+ t )t≥0 be an approximative flat flow starting from E0
931
+ for h ∈ (0,1). Then for all T > 0 there is RT , which depends on T, on the
932
+ dimension and on the diameter of the initial set E0, such that Eh
933
+ t ⊂ BRT for
934
+ all t ≤ T.
935
+ Proof. As in [19, Lemma 3.8] define rt for all t ≤ T as
936
+ rt ∶= inf{r > 0 ∶ Eh
937
+ t ⊂ Br}.
938
+ Arguing as in [19, Lemma 3.8] one deduces that at the point y ∈ ∂Brt ∩ ∂Eh
939
+ t
940
+ it holds HEh
941
+ t (y) ≥ 0 and therefore by (4.1)
942
+ rt ≤ rt−h + h∣λt,h∣.
943
+ Iterating this and using Lemma 4.2 yields
944
+ RT − R0 ≤ ∫
945
+ T
946
+ 0
947
+ ∣λt,h∣dt ≤ ∫
948
+ T
949
+ 0 (1 + λ2
950
+ t,h)dt ≤ C(1 + T).
951
+
952
+ Proof of Theorem 1. Let (Eh
953
+ t )t≥0 be an approximative flat flow starting
954
+ from E0 for h ∈ (0,1) and fix T ≥ 1. Then by (4.2) it holds P(Eh
955
+ t ) ≤ P(E0)
956
+ and by Lemma 4.3 it holds Eh
957
+ t ⊂ BRT for all t ≤ T. I claim that for 0 < t < s
958
+ with s − t ≥ h it holds
959
+ ∣Eh
960
+ t ∆Eh
961
+ s ∣ ≤ C
962
+
963
+ t − s.
964
+ (4.3)
965
+
966
+ 14
967
+ JULIN
968
+ Once (4.3) is obtained, then the convergence of a subsequence Ehk
969
+ t
970
+ → Et in
971
+ measure follows as in [14, 19].
972
+ Let j,k be such that s ∈ [jh,(j +1)h) and t ∈ [(j +k)h,(j +k +1)h). Then
973
+ by applying Lemma 4.1 for l =
974
+ h
975
+
976
+ s−t and by (4.2) one obtains
977
+ ∣Eh
978
+ t ∆Eh
979
+ s ∣ ≤
980
+ j+k
981
+
982
+ m=j
983
+ ∣Eh
984
+ mh∆Eh
985
+ (m+1)h∣
986
+ ≤ C
987
+ j+k
988
+
989
+ m=j
990
+ (
991
+ h
992
+
993
+ s − t
994
+ P(Eh
995
+ mh) +
996
+
997
+ s − t
998
+ h
999
+ ∫Eh
1000
+ (m+1)h∆Eh
1001
+ mh
1002
+ ∣ ¯dEh
1003
+ mh∣dx)
1004
+ ≤ C
1005
+ j+k
1006
+
1007
+ m=j
1008
+ h
1009
+
1010
+ s − t
1011
+ P(E0) + C
1012
+
1013
+ s − t
1014
+ j+k
1015
+
1016
+ m=j
1017
+ (P(Eh
1018
+ mh) − P(Eh
1019
+ (m+1)h))
1020
+ ≤ C
1021
+ kh
1022
+
1023
+ s − t
1024
+ P(E0) + C
1025
+
1026
+ s − tP(E0).
1027
+ Since kh ≤ 2(s − t), one obtains (4.3).
1028
+ The proof of the consistency principle for C1,1-regular initial sets follows
1029
+ using the arguments in [12]. The volume penalization is used only in [12,
1030
+ Lemma 3.2], but one may overcome this by using the lemma below.
1031
+
1032
+ Lemma 4.4. Let F ⊂ Rn+1 be an open and bounded set which satisfies inte-
1033
+ rior and exterior ball condition with radius r0 > 0 and let E be a minimizer
1034
+ of (2.2). There are ρ0 and h0 with the property that if G is a set of finite
1035
+ perimeter such that
1036
+ G∆E ⊂ Bρ(x) ∩ NC0h(∂F),
1037
+ for ρ ≤ ρ0 and h ≤ h0 where NC0h(∂F) = {x ∶ dist(x,∂F) < C0h}, then it
1038
+ holds
1039
+ P(E) ≤ P(G) + Cρn+1.
1040
+ Above the constant depends on the dimension, on r0,C0,∣F∣ and P(F).
1041
+ Proof. By approximation one may assume G to be smooth. Since F satisfies
1042
+ interior and exterior ball condition, then by [12, Lemma 3.1] it holds
1043
+ max
1044
+ x∈E∆F dist(x,∂F) ≤ Ch
1045
+ (4.4)
1046
+ when h ≤ h0. As in the proof of Proposition 3.2 the set G does not have
1047
+ the same measure as E and modifies it to ˜G with ∣ ˜G∣ = ∣E∣. Assume again
1048
+ that ∣G∣ < ∣E∣. Since F satisfies interior ball condition with radius r0, there
1049
+ is y ∈ G such that Br0/2(y) ⊂ G. By continuity there is z ∈ Rn+1 such that
1050
+ ∣z−x∣ ≥ 2ρ0 and ∣G∪Br0/2(z)∣ = ∣E∣ when ρ0 is small. Define ˜G = G∪Br0/2(z).
1051
+ Then by the minimality of E and by (4.4) and by the assumption G∆E ⊂
1052
+ Bρ(x) ∩ NC0h(∂F) it holds
1053
+ P(E) ≤ P( ˜G) + C∣ ˜G∆E∣ ≤ P( ˜G) + Cρn+1.
1054
+
1055
+ FLAT FLOW
1056
+ 15
1057
+ Arguing as in [9] one then deduces
1058
+ P( ˜G) − P(G) ≤ Hn(∂Br0/2(z) ∖ G) − Hn(∂G ∩ Br0/2(z))
1059
+ ≤ 2(n + 1)∣B1∣
1060
+ r0
1061
+ ∣Br0/2(z) ∖ G∣
1062
+ ≤ C∣ ˜G∆E∣ ≤ Cρn+1.
1063
+ and the claim follows.
1064
+
1065
+ The paper concludes with Theorem 2. To this aim I recall the definition
1066
+ of a distributional solution of (1.1) from [14].
1067
+ Definition 4.5. Family of sets of finite perimeter (Et)t≥0 is a distributional
1068
+ solution to (1.1) starting from E0 ⊂ Rn+1 if the following holds:
1069
+ (1) for almost every t > 0 the set Et has mean curvature HEt in a dis-
1070
+ tributional sense and for every T > 0
1071
+
1072
+ T
1073
+ 0
1074
+ ∥HEt∥2
1075
+ L2(∂∗Et) dt < ∞.
1076
+ (2) There exists v ∶ Rn+1 × (0,∞) → R with v ∈ L2(0,T;L2(∂∗Et)) such
1077
+ that for every φ ∈ C1
1078
+ 0(Rn+1 × [0,∞)) it holds
1079
+ − ∫
1080
+ T
1081
+ 0
1082
+ ∫∂∗Et
1083
+ vφdHn dt = ∫
1084
+ T
1085
+ 0
1086
+ ∫∂∗Et
1087
+ (HEt − ¯HEt)φdHn dt,
1088
+
1089
+ T
1090
+ 0
1091
+ ∫Et
1092
+ ∂tφdxdt + ∫E0
1093
+ φ(⋅,0)dx = −∫
1094
+ T
1095
+ 0
1096
+ ∫∂∗Et
1097
+ vφdHn dt.
1098
+ Proof of Theorem 2. The proof is exactly the same as [19, Theorem 2.3].
1099
+ Note that Proposition 3.2 implies that the sets Eh
1100
+ t are (Ch−1/2,c
1101
+
1102
+ h)-minimizers
1103
+ of the perimeter, i.e., for every F with F∆Eh
1104
+ t ⊂ Bc
1105
+
1106
+ h(x0) it holds
1107
+ P(Eh
1108
+ t ) ≤ P(F) + C
1109
+
1110
+ h
1111
+ ∣Eh
1112
+ t ∆F∣.
1113
+ (4.5)
1114
+
1115
+ Acknowledgments
1116
+ The author is supported by the Academy of Finland grants 314227 and
1117
+ 347550.
1118
+ References
1119
+ [1] E. Acerbi, N. Fusco, M. Morini. Minimality via second variation for a nonlocal
1120
+ isoperimetric problem. Comm. Math. Phys. 322 (2013), 515–557.
1121
+ [2] F. Almgren, Existence and regularity almost everywhere of solutions to elliptic vari-
1122
+ ational problems with constraints. Mem. Amer. Math. Soc. 4(165):viii+199p, (1976).
1123
+ [3] F. Almgren, J.E. Taylor, L. Wang, Curvature-driven flows: a variational ap-
1124
+ proach. SIAM J. Control Optim. 31(2), 387–438 (1993).
1125
+ [4] G. Antonelli, E. Pasqualetto, M. Pozzetta, Isoperimetric sets in spaces with
1126
+ lower bounds on the Ricci curvature. Nonlinear Anal. 220 (2022), Paper No. 112839,
1127
+ 59 pp.
1128
+ [5] G. Bellettini, V. Caselles, A. Chambolle, M. Novaga, The volume preserving
1129
+ crystalline mean curvature flow of convex sets in RN. J. Math. Pures Appl. (9) 92
1130
+ (2009), 499–527.
1131
+
1132
+ 16
1133
+ JULIN
1134
+ [6] L. Bronsard, B. Stoth, Volume-preserving mean curvature flow as a limit of a
1135
+ nonlocal Ginzburg-Landau equation. SIAM J. Math. Anal. 28 (1997), 769–807
1136
+ [7] W. Carter, A. Roosen, J. Cahn, J. Taylor. Shape evolution by surface diffusion
1137
+ and surface attachment limited kinetics on completely faceted surfaces. Acta Metal-
1138
+ lurgica et Materialia 43 (1995), 4309–4323.
1139
+ [8] E. Gonzales, U. Massari, I. Tamanini, On the regularity of boundaries of sets
1140
+ minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32 (1983),
1141
+ 25–37.
1142
+ [9] M. Gr¨uter, Boundary regularity for solutions of a partitioning problem. Arch. Ra-
1143
+ tional Mech. Anal. 97 (1987), 261–270.
1144
+ [10] V. Julin, M. Morini, M. Ponsiglione, E. Spadaro, The Asymptotics of the Area-
1145
+ Preserving Mean Curvature and the Mullins-Sekerka Flow in Two Dimensions, Math.
1146
+ Ann., (2022), Early online. https://doi.org/10.1007/s00208-022-02497-3.
1147
+ [11] V. Julin, J. Niinikoski, Quantitative Alexandrov Theorem and asymptotic behavior
1148
+ of the volume preserving mean curvature flow. Preprint 2020.
1149
+ [12] V. Julin, J. Niinikoski, Consistency of the flat flow solution to the volume preserving
1150
+ mean curvature flow. Preprint 2022, arXiv:2206.05002.
1151
+ [13] T. Laux, Weak-strong uniqueness for volume-preserving mean curvature flow.
1152
+ Preprint arXiv:2205.13040.
1153
+ [14] S. Luckhaus, T. St¨urzenhecker, Implicit time discretization for the mean curva-
1154
+ ture flow equation. Calc. Var. Partial. Diff. Eq. 3 (1995), 253–271.
1155
+ [15] F. Maggi, Sets of finite perimeter and geometric variational problems. An introduc-
1156
+ tion to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135.
1157
+ Cambridge University Press, Cambridge (2012).
1158
+ [16] P.W. Michor, D. Mumford, Riemannian geometries on spaces on planar curves.
1159
+ J. Eur. Mat. Soc. 8(1), 2006, 1–28.
1160
+ [17] M. Morini, M. Ponsiglione, E. Spadaro, Long time behaviour of discrete volume
1161
+ preserving mean curvature flows. J. Reine Angew. Math. 784 (2022), 27-51.
1162
+ [18] L. Mugnai, C. Seis, On the coarsening rates for attachment-limited kinetics. SIAM
1163
+ J. Math. Anal. 45 (2013), 324–344.
1164
+ [19] L. Mugnai, C. Seis, E. Spadaro, Global solutions to the volume-preserving mean-
1165
+ curvature flow. Calc. Var. Partial. Diff. Eq. 55 (2016), Art. 18, 23 pp.
1166
+ [20] L. Simon Introduction to Geometric Measure Theory. Tsinghua Lectures (2014).
1167
+ Vesa Julin, Department of Mathematics and Statistics, University of Jyv¨askyl¨a,
1168
+ P.O. Box 35, 40014 Jyv¨askyl¨a, Finland
1169
+ Email address: [email protected]
1170
+
I9FET4oBgHgl3EQfrCVC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
J9AyT4oBgHgl3EQf6Pof/content/tmp_files/2301.00817v1.pdf.txt ADDED
@@ -0,0 +1,2286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Computational Performance of a LES Solver for
2
+ Supersonic Jet Flow Applications
3
+ Carlos Junqueira-Junior∗ and
4
+ Jo˜ao Luiz F. Azevedo†
5
+ Instituto de Aeron´autica e Espa¸co, 12228-904 S˜ao Jos´e dos Campos, SP, Brazil
6
+ Sami Yamouni‡
7
+ Instituto Tecnol´ogico de Aeron´autica, 12228-900 S˜ao Jos´e dos Campos, SP, Brazil
8
+ William R. Wolf §
9
+ Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
10
+ Abstract
11
+ An in-house large eddy simulation tool is developed in order to reproduce high fidelity
12
+ results of compressible jet flows. The large eddy simulation formulation is written using
13
+ the finite difference approach, with an explicit time integration and using a second order
14
+ spatial discretization. The energy equation is carefully discretized in order to model the
15
+ energy equation of the filtered Navier-Stokes formulation. Such numerical studies are very
16
+ expensive and demand high performance computing. Message passage interface protocols
17
+ are implemented into the code in order to perform parallel computations. The present work
18
+ addresses the computational performance of the solver running on up to 400 processors in
19
+ parallel. Different mesh configurations, whose size varies from approximately 5.9 million
20
+ points to approximately 1.0 billion points, are evaluate in the current paper. Speedup and
21
+ efficiency curves are evaluated in order to assess the strong scalability of the solver.
22
+ I.
23
+ Introduction
24
+ Solid structure of different parts of launch vehicles and experimental apparatus on board can be da-
25
+ maged during the take off and also during the transonic flight of such vehicles due to vibrational acoustic
26
+ stress resulted from pressure fluctuations. Such fluctuations are originated from the complex interaction
27
+ between the high-temperature/high-velocity exhaustion gases from the rocket engines. The acoustic design
28
+ constraints of launch vehicles have encouraged the studies of aeroacoustic fields around compressible jet flows
29
+ for aerospace applications. Instituto de Aeronautica e Espa¸co (IAE) has been using large eddy simulations
30
+ (LES)1,2 coupled with the Ffowcs Williams and Hawkings approach3 in order to study the aeroacoustic of
31
+ supersonic jet flow configurations. The LES studies are very expensive in the computational context and
32
+ strongly demand parallel computing. The present work addresses the computational performance of the
33
+ solver using up to 400 processors in parallel. The speedup and computational efficiency of the solver are
34
+ measured using different mesh and partition configurations and different number of computational cores.
35
+ ∗Postdoctoral
36
+ Research
37
+ Fellow,
38
+ Aerodynamics
39
+ Division,
40
+ Departamento
41
+ de
42
+ Ciˆencia
43
+ e
44
+ Tecnologia
45
+ Aeroespacial,
46
+ DCTA/IAE/ALA; E-mail: [email protected].
47
+ †Senior Research Engineer, Aerodynamics Division, Departamento de Ciˆencia e Tecnologia Aeroespacial, DCTA/IAE/ALA;
48
+ E-mail: [email protected]. AIAA Fellow.
49
+ ‡Postdoctoral Reasearch Fellow, Graduate Program on Computer Sciences and Electrical Engineering, Departamento de
50
+ Ciˆencia e Tecnologia Aeroespacial, DCTA/ITA; E-mail: [email protected].
51
+ §Assistant Professor, Faculty of Mechanical Engineering; E-mail: [email protected]. AIAA Member
52
+ 1 of 25
53
+ arXiv:2301.00817v1 [physics.flu-dyn] 2 Jan 2023
54
+
55
+ JAZzY1 is the LES solver which is used in the present work.
56
+ It is an in-house computational tool
57
+ developed regarding the study of unsteady turbulent supersonic jet flow configurations. The formulation is
58
+ written using the finite difference approach. Inviscid numerical fluxes are calculated using a second order
59
+ accurate centered scheme with the explicit addition of artificial dissipation. A five steps second order accurate
60
+ Runge-Kutta is the chosen time marching method. A formulation based on the System I set of equations4
61
+ is used here in order to model the filtered terms of the energy equation. Numerical simulation of perfectly
62
+ expanded jets are performed and compared with numerical5 and experimental6 data.
63
+ The code is written using the FORTRAN 90 standards. It uses the HDF5 7,8 and the CGNS 9–11 libraries
64
+ for the I/O operations. The mesh is partitioned into the axial and azimuthal directions. Two layer ghost
65
+ points are created at the surroundings of the local domain in order to carry neighbor partitions data. The
66
+ data exchange between partitions is performed through message passing interface (MPI) protocols.12
67
+ Simulations of a perfectly expanded jet are performed using different mesh partitioning and different
68
+ number of processors in order to evaluate the computational performance of the code. In the present nine
69
+ meshes are are studied running on up to 400 processors in parallel. The size of the mesh starts with 5.8
70
+ million points and scales to 1.0 billion points. The speedup and computational efficiency curves are presented
71
+ and compared in order to study the strong scalability of the code.
72
+ II.
73
+ Large Eddy Simulation Filtering
74
+ The large eddy simulation is based on the principle of scale separation, which is addressed as a filtering
75
+ procedure in a mathematical formalism. A modified version of the the System I filtering approach4 is used
76
+ in present work which is given by
77
+ ∂ρ
78
+ ∂t +
79
+
80
+ ∂xj
81
+ (ρ �uj) = 0 ,
82
+
83
+ ∂t (ρ �ui) +
84
+
85
+ ∂xj
86
+ (ρ �ui �uj) + ∂p
87
+ ∂xi
88
+ − ∂τij
89
+ ∂xj
90
+ + 1
91
+ 3
92
+
93
+ ∂xj
94
+ (δijσii) = 0 ,
95
+ ∂e
96
+ ∂t +
97
+
98
+ ∂xj
99
+ [(e + p) �uj] −
100
+
101
+ ∂xj
102
+ (τij �ui) + 1
103
+ 3
104
+
105
+ ∂xj
106
+ [(δijσii) �ui] + ∂qj
107
+ ∂xj
108
+ = 0 ,
109
+ (1)
110
+ in which t and xi are independent variables representing time and spatial coordinates of a Cartesian coor-
111
+ dinate system x, respectively. The components of the velocity vector u are written as ui, and i = 1, 2, 3.
112
+ Density, pressure and total energy per mass unit are denoted by ρ, p and e, respectively. The (·) and (˜·)
113
+ operators are used in order to represent filtered and Favre averaged properties, respectively. The System I
114
+ formulation neglects the double correlation term and the total energy per mass unit is written as
115
+ e =
116
+ p
117
+ γ − 1 + 1
118
+ 2ρ�ui�ui .
119
+ (2)
120
+ The heat flux, qj, is given by
121
+ qj = (κ + κsgs) ∂ �T
122
+ ∂xj
123
+ .
124
+ (3)
125
+ where T is the static temperature and κ is the thermal conductivity, which can by expressed by
126
+ κ = µCp
127
+ Pr ,
128
+ (4)
129
+ The thermal conductivity is a function of the specific heat at constant pressure, Cp, of the Prandtl number,
130
+ Pr, which is equal to 0.72 for air, and of the dynamic viscosity, µ. The SGS thermal conductivity, κsgs, is
131
+ written as
132
+ κsgs = µsgsCp
133
+ Prsgs
134
+ ,
135
+ (5)
136
+ where Prsgs is the SGS Prandtl number, which is equal to 0.9 for static SGS models and µsgs is the eddy
137
+ viscosity which is calculated by the SGS closure. The dynamic viscosity, µ, can be calculated using the
138
+ Sutherland law,
139
+ µ
140
+
141
+ �T
142
+
143
+ = µ∞
144
+ � �T
145
+ �T∞
146
+ � 3
147
+ 2 �T0 + S1
148
+ �T + S1
149
+ with S1 = 110.4K .
150
+ (6)
151
+ 2 of 25
152
+
153
+ Density, static pressure and static temperature are correlated by the equation of state given by
154
+ p = ρR �T ,
155
+ (7)
156
+ where R is the gas constant, written as
157
+ R = Cp − Cv ,
158
+ (8)
159
+ and Cv is the specific heat at constant volume. The shear-stress tensor, τij, is written according to the
160
+ Stokes hypothesis and includes the eddy viscosity, µsgs,
161
+ τij = 2 (µ + µsgs)
162
+
163
+ ˜Sij − 1
164
+ 3δij ˜Skk
165
+
166
+ (9)
167
+ in which ˜Sij, components of rate-of-strain tensor, are given by
168
+ ˜Sij = 1
169
+ 2
170
+ � ∂˜ui
171
+ ∂xj
172
+ + ∂˜uj
173
+ ∂xi
174
+
175
+ .
176
+ (10)
177
+ The SGS stress tensor components are written using the eddy viscosity,13
178
+ σij = −2µsgs
179
+
180
+ ˜Sij − 1
181
+ 3
182
+ ˜Skk
183
+
184
+ + 1
185
+ 3δijσkk .
186
+ (11)
187
+ The eddy viscosity, µsgs, and the components of the isotropic part of the SGS stress tensor, σkk, are modeled
188
+ by the SGS closure.
189
+ III.
190
+ Subgrid Scale Modeling
191
+ The theoretical formulation of subgrid scales closures included in the present work is discussed in the
192
+ present section. The closure models presented here are founded on the homogeneous turbulence theory, which
193
+ is usually developed in the spectral space as an attempt to quantify the interaction between the different
194
+ scales of turbulence.
195
+ III.A.
196
+ Smagorinky Model
197
+ The Smagorinsky model14 is one of the simplest algebric models for the deviatory part of the SGS tensor
198
+ used in large-eddy simulations. The isotropic part of the SGS tensor is neglected for Smagorinsky model in
199
+ the current work. This SGS closure is a classical model based the large scales properties and is written as
200
+ µsgs = (ρCs∆)2 |�S| ,
201
+ (12)
202
+ where
203
+ | ˜S| =
204
+
205
+ 2 ˜Sij ˜Sij
206
+ � 1
207
+ 2 ,
208
+ (13)
209
+ ∆ is the filter size and Cs is the Smagorinsky constant. Several attempts can be found in the literature
210
+ regarding the evaluation of the Smagorinsky constant. The value of this constant is adjusted to improve
211
+ the results of different flow configurations. In pratical terms, the Smagorinsky subgrid model has a flow
212
+ dependency of the constant which takes value ranging from 0.1 to 0.2 depending on the flow. The suggestion
213
+ of Lilly,15 Cs = 0.148, is used in the current work.
214
+ This model is generally over-dissipative in regions of large mean strain. This is particularly true in the
215
+ transitional region between laminar and turbulent flows. Moreover, the limiting behavior near the wall is
216
+ not correct, and the model predictions correlate poorly with the exact subgrid scale tensor.16 However, it is
217
+ a very simple model and, with the use of damping function and good calibration, can be successfully applied
218
+ on large-eddy simulations.
219
+ 3 of 25
220
+
221
+ III.B.
222
+ Vreman Model
223
+ Vreman17 proposed a turbulence model that can correctly predict inhomogeneous turbulent flows.
224
+ For
225
+ such flows, the eddy viscosity should become small in laminar and transitional regions. This requirement
226
+ is unfortunately not satisfied by existing simple eddy-viscosity closures such as the classic Smagorinsky
227
+ model.14,18,19 The Vreman SGS model is very simple and is given by
228
+ µsgs = ρ c
229
+
230
+
231
+ αijαij
232
+ ,
233
+ (14)
234
+ with
235
+ αij = ∂˜uj
236
+ ∂xi
237
+ ,
238
+ (15)
239
+ βij = ∆2
240
+ mαmiαmj
241
+ (16)
242
+ and
243
+ Bβ = β11β22 − β2
244
+ 12 + β11β33 − β2
245
+ 13 + β22β33 − β2
246
+ 23 .
247
+ (17)
248
+ The constant c is related to the Smagorinsky constant, Cs, and it is given by
249
+ c = 2.5 C2
250
+ s ,
251
+ (18)
252
+ and ∆m is the filter width in each direction. In the present work, the isotropic part of the SGS tensor is
253
+ neglected for the Vreman model. The α symbol represents the matrix of first order derivatives of the filtered
254
+ components of velocity, ˜ui. The SGS eddy-viscosity is defined as zero when αijαij equals zero. Vreman17
255
+ affirms that the tensor β is proportional to the gradient model20,21 in its general anisotropic form.22
256
+ The Vreman model can be classified as very simple model because it is expressed in first-order derivatives
257
+ and it dos not involves explicit filtering, averaging, clipping procedures and is rotationally invariant for
258
+ isotropic filter widths. The model is originally created for incompressible flows and it has presented good
259
+ results for two incompressible flows configurations: the transitional and turbulent mixing layer at high
260
+ Reynolds number and the turbulent channel flow.22 In both cases, the Vreman model is found to be more
261
+ accurate than the classical Smagorinsky model and as good as the dynamic Smagorinsky model.
262
+ III.C.
263
+ Dynamic Smagorinsky Model
264
+ Germano et al.23 developed a dynamic SGS model in order to overcome the issues of the classical Smagorinsky
265
+ closure. The model uses the strain rate fields at two different scales and thus extracts spectral information
266
+ in the large-scale field to extrapolate the small stresses.24
267
+ The coefficients of the model are computed
268
+ instantaneously in the dynamic model. They are function of the positioning in space and time rather than
269
+ being specified a priori. Moin et al.24 extended the work of Germano for compressible flows. The dynamic
270
+ Smagorinsky model for compressible flow configurations is detailed in the present section.
271
+ The Dynamic model introduces the test filter, �
272
+ (·), which has a larger filter width, �∆, than the one of the
273
+ resolved grid filter, (·). The use of test filters generates a second field with larger scales than the resolved
274
+ field. The Yoshizawa model25 is used for the isotropic portion of the SGS tensor and it is written as
275
+ σll = 2CIρ∆2| ˜S|2 ,
276
+ (19)
277
+ where CI is defined by
278
+ CI =
279
+
280
+
281
+ ρ˜ul˜ul −
282
+
283
+
284
+ ρ˜ul �
285
+ ρ˜ul/�ρ
286
+ ��
287
+
288
+ 2�∆2�ρ|�S|2 − 2∆2 �
289
+ ρ|S|2
290
+ � .
291
+ (20)
292
+ A volume averaging, here indicated by ⟨ ⟩, is suggest by Moin et al24 and by Garnier et al in order to avoid
293
+ numerical issues. The eddy viscosity, µsgs, is calculated using the same approach used by static Smagorinsky
294
+ model,
295
+ µsgs = (ρCds∆)2 | ˜S| ,
296
+ (21)
297
+ 4 of 25
298
+
299
+ where
300
+ | ˜S| =
301
+
302
+ 2 ˜Sij ˜Sij
303
+ � 1
304
+ 2 ,
305
+ (22)
306
+ and Cds is the dynamic constant of the model, which is given by
307
+ Cds =
308
+ ��
309
+
310
+ ρ˜ui˜uj −
311
+
312
+
313
+ ρ˜ui�
314
+ ρ˜uj/�ρ
315
+ ��
316
+ ˜Sij − 1
317
+ 3 ˜Smm (Tll − �σll)
318
+
319
+
320
+ 2∆2
321
+
322
+
323
+ ρ| ˜S| ˜Sij ˜Sij − 1
324
+ 3
325
+
326
+ ρ| ˜S| ˜Smm
327
+ �� ˜Sll
328
+
329
+ − 2�∆2
330
+
331
+ �ρ|�˜S|�˜Sij ˜Sij − 1
332
+ 3�ρ|�˜S|�˜Smm ˜Sll
333
+ �� .
334
+ (23)
335
+ The SGS Prandtl number is computed using the dynamic constant, Cds, and written as
336
+ Prsgs = Cds
337
+
338
+ ∆2
339
+
340
+ ρ| ˜S| ∂
341
+
342
+ T
343
+ ∂xj
344
+ ��
345
+
346
+
347
+ T
348
+ ∂xj − �∆2�ρ|�˜S| ∂
349
+
350
+ T
351
+ ∂xj
352
+
353
+
354
+ T
355
+ ∂xj
356
+
357
+ ��
358
+
359
+ ρ˜uj
360
+
361
+ T −
362
+
363
+
364
+ ρ ˜uj
365
+
366
+ ρ
367
+
368
+ T
369
+
370
+ /�ρ
371
+
372
+
373
+
374
+ T
375
+ ∂xj
376
+
377
+ .
378
+ (24)
379
+ IV.
380
+ Transformation of Coordinates
381
+ The formulation is written in the a general curvilinear coordinate system in order to facilitate the im-
382
+ plementation and add more generality for the CFD tool. Hence, the filtered Navier-Stokes equations can be
383
+ written in strong conservation form for a 3-D general curvilinear coordinate system as
384
+ ∂ ˆQ
385
+ ∂t + ∂
386
+ ∂ξ
387
+
388
+ ˆ
389
+ Ee − ˆ
390
+ Ev
391
+
392
+ + ∂
393
+ ∂η
394
+
395
+ ˆ
396
+ Fe − ˆ
397
+ Fv
398
+
399
+ + ∂
400
+ ∂ζ
401
+
402
+ ˆ
403
+ Ge − ˆ
404
+ Gv
405
+
406
+ = 0 .
407
+ (25)
408
+ In the present work, the chosen general coordinate transformation is given by
409
+ ξ
410
+ =
411
+ ξ (x, y, z, t) ,
412
+ η
413
+ =
414
+ η (x, y, z, t) ,
415
+ (26)
416
+ ζ
417
+ =
418
+ ζ (x, y, z, t) .
419
+ In the jet flow configuration, ξ is the axial jet flow direction, η is the radial direction and ζ is the azimuthal
420
+ direction. The vector of conserved properties is written as
421
+ ˆQ = J−1 [ρ
422
+ ρ˜u
423
+ ρ˜v
424
+ ρ ˜w
425
+ e]T
426
+ ,
427
+ (27)
428
+ where the Jacobian of the transformation, J, is given by
429
+ J = (xξyηzζ + xηyζzξ + xζyξzη − xξyζzη − xηyξzζ − xζyηzξ)−1 ,
430
+ (28)
431
+ and
432
+ xξ = ∂x
433
+ ∂ξ ,
434
+ xη = ∂x
435
+ ∂η ,
436
+ xζ = ∂x
437
+ ∂ζ ,
438
+ yξ = ∂y
439
+ ∂ξ ,
440
+ yη = ∂y
441
+ ∂η ,
442
+ yζ = ∂y
443
+ ∂ζ ,
444
+ (29)
445
+ zξ = ∂z
446
+ ∂ξ ,
447
+ zη = ∂z
448
+ ∂η ,
449
+ zζ = ∂z
450
+ ∂ζ .
451
+ The inviscid flux vectors, ˆEe, ˆFe and ˆGe, are given by
452
+ ˆEe = J−1
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+ ρU
469
+ ρ˜uU + pξx
470
+ ρ˜vU + pξy
471
+ ρ ˜wU + pξz
472
+ (e + p) U − pξt
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+ ,
489
+ ˆFe = J−1
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+
503
+
504
+
505
+ ρV
506
+ ρ˜uV + pηx
507
+ ρ˜vV + pηy
508
+ ρ ˜wV + pηz
509
+ (e + p) V − pηt
510
+
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+ ,
526
+ ˆGe = J−1
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+ ρW
543
+ ρ˜uW + pζx
544
+ ρ˜vW + pζy
545
+ ρ ˜wW + pζz
546
+ (e + p) W − pζt
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+ .
563
+ (30)
564
+ 5 of 25
565
+
566
+ The contravariant velocity components, U, V and W, are calculated as
567
+ U = ξxu + ξyv + ξzw ,
568
+ V = ηxu + ηyv + ηzw ,
569
+ (31)
570
+ W = ζxu + ζyv + ζzw .
571
+ The metric terms are given by
572
+ ξx = J (yηzζ − yζzη) ,
573
+ ξy = J (zηxζ − zζxη) ,
574
+ ξz = J (xηyζ − xζyη) ,
575
+ ηx = J (yηzξ − yξzη) ,
576
+ ηy = J (zηxξ − zξxη) ,
577
+ ηz = J (xηyξ − xξyη) ,
578
+ (32)
579
+ ζx = J (yξzη − yηzξ) ,
580
+ ζy = J (zξxη − zηxξ) ,
581
+ ζz = J (xξyη − xηyξ) .
582
+ (33)
583
+ The viscous flux vectors, ˆEv, ˆFv and ˆGv, are written as
584
+ ˆEv = J−1
585
+
586
+
587
+
588
+
589
+
590
+
591
+
592
+
593
+
594
+
595
+
596
+
597
+
598
+ 0
599
+ ξxτxx + ξyτxy + ξzτxz
600
+ ξxτxy + ξyτyy + ξzτyz
601
+ ξxτxz + ξyτyz + ξzτzz
602
+ ξxβx + ξyβy + ξzβz
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+ ,
617
+ (34)
618
+ ˆFv = J−1
619
+
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+
631
+
632
+ 0
633
+ ηxτxx + ηyτxy + ηzτxz
634
+ ηxτxy + ηyτyy + ηzτyz
635
+ ηxτxz + ηyτyz + ηzτzz
636
+ ηxβx + ηyβy + ηzβz
637
+
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+
646
+
647
+
648
+
649
+
650
+ ,
651
+ (35)
652
+ ˆGv = J−1
653
+
654
+
655
+
656
+
657
+
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+ 0
667
+ ζxτxx + ζyτxy + ζzτxz
668
+ ζxτxy + ζyτyy + ζzτyz
669
+ ζxτxz + ζyτyz + ζzτzz
670
+ ζxβx + ζyβy + ζzβz
671
+
672
+
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+ ,
685
+ (36)
686
+ where βx, βy and βz are defined as
687
+ βx = τxx˜u + τxy˜v + τxz ˜w − qx ,
688
+ βy = τxy˜u + τyy˜v + τyz ˜w − qy ,
689
+ (37)
690
+ βz = τxz˜u + τyz˜v + τzz ˜w − qz.
691
+ V.
692
+ Dimensionless Formulation
693
+ A convenient nondimensionalization is necessary in to order to achieve a consistent implementation of
694
+ the governing equations of motion.
695
+ Dimensionless formulation yields to a more general numerical tool.
696
+ There is no need to change the formulation for each configuration intended to be simulated. Moreover,
697
+ dimensionless formulation scales all the necessary properties to the same order of magnitude which is a
698
+ computational advantage.26 Dimensionless variables are presented in the present section in order perform
699
+ the nondimensionalization of Eq. (25)
700
+ The dimensionless time, t, is written as function of the speed of sound of the jet at the inlet, aj, and of
701
+ a reference lenght, l,
702
+ t = taj
703
+ l .
704
+ (38)
705
+ The dimensionless velocity components are obtained using the speed of sound of the jet at the inlet,
706
+ u = u
707
+ aj
708
+ .
709
+ (39)
710
+ 6 of 25
711
+
712
+ Dimensionless pressure and energy are calculated using density and speed of the sound of the jet at the inlet
713
+ as
714
+ p =
715
+ p
716
+ ρja2
717
+ j
718
+ ,
719
+ (40)
720
+ E =
721
+ E
722
+ ρja2
723
+ j
724
+ .
725
+ (41)
726
+ Dimensionless density, ρ, temperature, T and viscosity, µ, are calculated using freestream properties
727
+ ρ = ρ
728
+ ρj
729
+ .
730
+ (42)
731
+ One can use the dimensionless properties described above in order to write the dimensionless form of the
732
+ RANS equations as
733
+ ∂Q
734
+ ∂t + ∂Ee
735
+ ∂ξ + ∂Fe
736
+ ∂η + ∂Ge
737
+ ∂ζ
738
+ = Mj
739
+ Re
740
+ �∂Ev
741
+ ∂ξ + ∂Fv
742
+ ∂η + ∂Gv
743
+ ∂ζ
744
+
745
+ ,
746
+ (43)
747
+ where the underlined terms are calculated using dimensionless properties. The Mach number of the jet, Mj,
748
+ and the Reynolds number are based on the mean inlet velocity of the jet, Uj, diamenter of the inlet, D, and
749
+ freestream properties such as speed of sound, a∞, density, ρ∞ and viscosity, µ∞,
750
+ Mj = Uj
751
+ a∞
752
+ and
753
+ Re = ρjUjD
754
+ µj
755
+ .
756
+ (44)
757
+ VI.
758
+ Numerical Formulation
759
+ The governing equations previously described are discretized in a structured finite difference context for
760
+ general curvilinear coordinate system.26 The numerical flux is calculated through a central difference scheme
761
+ with the explicit addition of the anisotropic scalar artificial dissipation of Turkel and Vatsa.27 The time
762
+ integration is performed by an explicit, 2nd-order, 5-stage Runge-Kutta scheme.28,29 Conserved properties
763
+ and artificial dissipation terms are properly treated near boundaries in order to assure the physical correctness
764
+ of the numerical formulation.
765
+ VI.A.
766
+ Spatial Discretization
767
+ For the sake of simplicity the formulation discussed in the present section is no longer written using bars.
768
+ However, the reader should notice that the equations are dimensionless and filtered. The Navier-Stokes
769
+ equations, presented in Eq. (43), are discretized in space in a finite difference fashion and, then, rewritten as
770
+ �∂Q
771
+ ∂t
772
+
773
+ i,j,k
774
+ = −RHSi,j,k ,
775
+ (45)
776
+ where RHS is the right hand side of the equation and it is written as function of the numerical flux vectors
777
+ at the interfaces between grid points,
778
+ RHSi,j,k
779
+ =
780
+ 1
781
+ ∆ξ
782
+
783
+ Ee(i+ 1
784
+ 2 ,j,k) − Ee(i− 1
785
+ 2 ,j,k) − Ev(i+ 1
786
+ 2 ,j,k) + Ev(i− 1
787
+ 2 ,j,k)
788
+
789
+ 1
790
+ ∆η
791
+
792
+ Fe(i,j+ 1
793
+ 2 ,k) − Fe(i,j− 1
794
+ 2 ,k) − Fv(i,j+ 1
795
+ 2 ,k) + Fv(i,j− 1
796
+ 2 ,k)
797
+
798
+ (46)
799
+ 1
800
+ ∆ζ
801
+
802
+ Ge(i,j,k+ 1
803
+ 2 ) − Ge(i,j,k− 1
804
+ 2 ) − Gv(i,j,k+ 1
805
+ 2 ) + Gv(i,j,k− 1
806
+ 2 )
807
+
808
+ .
809
+ For the general curvilinear coordinate case ∆ξ = ∆η = ∆ζ = 1. The anisotropic scalar artificial dissipation
810
+ method of Turkel and Vatsa27 is implemented through the modification of the inviscid flux vectors, Ee, Fe
811
+ and Ge. The numerical scheme is nonlinear and allows the selection between artificial dissipation terms of
812
+ second and fourth differences, which is very important for capturing discontinuities in the flow. The numerical
813
+ fluxes are calculated at interfaces in order to reduce the size of the calculation cell and, therefore, facilitate
814
+ the implementation of second derivatives since the the concept of numerical fluxes vectors is used for flux
815
+ 7 of 25
816
+
817
+ differencing. Only internal interfaces receive the corresponding artificial dissipation terms, and differences
818
+ of the viscous flux vectors use two neighboring points of the interface.
819
+ The inviscid flux vectors, with the addition of the artificial dissipation contribution, can be written as
820
+ Ee(i± 1
821
+ 2 ,j,k) = 1
822
+ 2
823
+
824
+ Ee(i,j,k) + Ee(i±1,j,k)
825
+
826
+ − J−1d(i± 1
827
+ 2 ,j,k) ,
828
+ Fe(i,j± 1
829
+ 2 ,k) = 1
830
+ 2
831
+
832
+ Fe(i,j,k) + Fe(i,j±1,k)
833
+
834
+ − J−1d(i,j± 1
835
+ 2 ,k) ,
836
+ (47)
837
+ Ge(i,j,k± 1
838
+ 2 ) = 1
839
+ 2
840
+
841
+ Ge(i,j,k) + Ge(i,j,k±1)
842
+
843
+ − J−1d(i,j,k± 1
844
+ 2 ) ,
845
+ in which the d(i±1,j,k),d(i,j±1,k) and d(i,j,k±1) terms are the Turkel and Vatsa27 artificial dissipation terms
846
+ in the i, j, and k directions respectively. The scaling of the artificial dissipation operator in each coordinate
847
+ direction is weighted by its own spectral radius of the corresponding flux Jacobian matrix, which gives the
848
+ non-isotropic characteristics of the method.26 The artificial dissipation contribution in the ξ direction is
849
+ given by
850
+ d(i+ 1
851
+ 2 ,j,k)
852
+ =
853
+ λ(i+ 1
854
+ 2 ,j,k)
855
+
856
+ ϵ(2)
857
+ (i+ 1
858
+ 2 ,j,k)
859
+
860
+ W(i+1,j,k) − W(i,j,k)
861
+
862
+ (48)
863
+ ϵ(4)
864
+ (i+ 1
865
+ 2 ,j,k)
866
+
867
+ W(i+2,j,k) − 3W(i+1,j,k) + 3W(i,j,k) − W(i−1,j,k)
868
+
869
+ ] ,
870
+ in which
871
+ ϵ(2)
872
+ (i+ 1
873
+ 2 ,j,k)
874
+ =
875
+ k(2)max
876
+
877
+ νd
878
+ (i+1,j,k), νd
879
+ (i,j,k)
880
+
881
+ ,
882
+ (49)
883
+ ϵ(4)
884
+ (i+ 1
885
+ 2 ,j,k)
886
+ =
887
+ max
888
+
889
+ 0, k(4) − ϵ(2)
890
+ (i+ 1
891
+ 2 ,j,k)
892
+
893
+ .
894
+ (50)
895
+ The original article27 recomends using k(2) = 0.25 and k(4) = 0.016 for the dissipation artificial constants.
896
+ The pressure gradient sensor, νd
897
+ (i,j,k), for the ξ direction is written as
898
+ νd
899
+ (i,j,k) = |p(i+1,j,k) − 2p(i,j,k) + p(i−1,j,k)|
900
+ p(i+1,j,k) − 2p(i,j,k) + p(i−1,j,k)
901
+ .
902
+ (51)
903
+ The W vector from Eq. (48) is calculated as a function of the conserved variable vector, ˆQ, written in Eq.
904
+ (27). The formulation intends to keep the total enthalpy constant in the final converged solution, which is
905
+ the correct result for the Navier-Stokes equations with Re → ∞. This approach is also valid for the viscous
906
+ formulation because the dissipation terms are added to the inviscid flux terms, in which they are really
907
+ necessary to avoid nonlinear instabilities of the numerical formulation. The W vector is given by
908
+ W = ˆQ + [0 0 0 0 p]T .
909
+ (52)
910
+ The spectral radius-based scaling factor, λ, for the i − th direction is written
911
+ λ(i+ 1
912
+ 2 ,j,k) = 1
913
+ 2
914
+ ��
915
+ λξ
916
+
917
+ (i,j,k) +
918
+
919
+ λξ
920
+
921
+ (i+1,j,k)
922
+
923
+ ,
924
+ (53)
925
+ where
926
+ λξ(i,j,k) = λξ
927
+
928
+ 1 +
929
+ �λη
930
+ λξ
931
+ �0.5
932
+ +
933
+ �λζ
934
+ λξ
935
+ �0.5�
936
+ .
937
+ (54)
938
+ The spectral radii, λξ, λη and λζ are given by
939
+ λξ
940
+ =
941
+ |U| + a
942
+
943
+ ξ2x + η2y + ζ2z ,
944
+ λξ
945
+ =
946
+ |V | + a
947
+
948
+ ξ2x + η2y + ζ2z ,
949
+ (55)
950
+ λξ
951
+ =
952
+ |W| + a
953
+
954
+ ξ2x + η2y + ζ2z ,
955
+ 8 of 25
956
+
957
+ in which, U, V and W are the contravariants velocities in the ξ, η and ζ, previously written in Eq. (32), and
958
+ a is the local speed of sound, which can be written as
959
+ a =
960
+ �γp
961
+ ρ .
962
+ (56)
963
+ The calculation of artificial dissipation terms for the other coordinate directions are completely similar and,
964
+ therefore, they are not discussed in the present work.
965
+ VI.B.
966
+ Time Marching Method
967
+ The time marching method used in the present work is a 2nd-order, 5-step Runge-Kutta scheme based on
968
+ the work of Jameson.28,29 The time integration can be written as
969
+ Q(0)
970
+ (i,jk,)
971
+ =
972
+ Q(n)
973
+ (i,jk,) ,
974
+ Q(l)
975
+ (i,jk,)
976
+ =
977
+ Q(0)
978
+ (i,jk,)−
979
+ αl∆t(i,j,k)RHS(l−1)
980
+ (i,j,k)
981
+ l = 1, 2 · · · 5,
982
+ Q(n+1)
983
+ (i,jk,)
984
+ =
985
+ Q(5)
986
+ (i,jk,) ,
987
+ (57)
988
+ in which ∆t is the time step and n and n + 1 indicate the property values at the current and at the next
989
+ time step, respectively. The literature28,29 recommends
990
+ α1 = 1
991
+ 4 ,
992
+ α2 = 1
993
+ 6 ,
994
+ α3 = 3
995
+ 8 ,
996
+ α4 = 1
997
+ 2 ,
998
+ α5 = 1 ,
999
+ (58)
1000
+ in order to improve the numerical stability of the time integration. The present scheme is theoretically stable
1001
+ for CFL ≤ 2
1002
+
1003
+ 2, under a linear analysis.26
1004
+ VII.
1005
+ Boundary Conditions
1006
+ The geometry used in the present work presents a cylindrical shape which is gererated by the rotation
1007
+ of a 2-D plan around a centerline. Figure 1 presents a lateral view and a frontal view of the computational
1008
+ domain used in the present work and the positioning of the entrance, exit, centerline, far field and periodic
1009
+ boundary conditions. A discussion on all boundary conditions is performed in the following subsections.
1010
+ (a) Lateral view of boundary conditions.
1011
+ (b) Frontal view of boundary conditions.
1012
+ Figure 1.
1013
+ Lateral and frontal views of the computational domain indicating boundary conditions.
1014
+ VII.A.
1015
+ Far Field Boundary
1016
+ Riemann invariants30 are used to implement far field boundary conditions. They are derived from the char-
1017
+ acteristic relations for the Euler equations. At the interface of the outer boundary, the following expressions
1018
+ apply
1019
+ R− = R−
1020
+
1021
+ =
1022
+ qn∞ −
1023
+ 2
1024
+ γ − 1a∞ ,
1025
+ (59)
1026
+ R+ = R+
1027
+ e
1028
+ =
1029
+ qne −
1030
+ 2
1031
+ γ − 1ae ,
1032
+ (60)
1033
+ 9 of 25
1034
+
1035
+ FARFIELD
1036
+ FARFIELD
1037
+ EXIT
1038
+ ENTRANCE
1039
+ ===
1040
+ CENTERLINE: PERIODICITY
1041
+ CENTERLINEwhere ∞ and e indexes stand for the property in the freestream and in the internal region, respectively. qn
1042
+ is the velocity component normal to the outer surface, defined as
1043
+ qn = u · ⃗n ,
1044
+ (61)
1045
+ and ⃗n is the unit outward normal vector
1046
+ ⃗n =
1047
+ 1
1048
+
1049
+ η2x + η2y + η2z
1050
+ [ηx ηy ηz]T .
1051
+ (62)
1052
+ Equation (61) assumes that the η direction is pointing from the jet to the external boundary. Solving for qn
1053
+ and a, one can obtain
1054
+ qnf = R+ + R−
1055
+ 2
1056
+ ,
1057
+ af = γ − 1
1058
+ 4
1059
+ (R+ − R−) .
1060
+ (63)
1061
+ The index f is linked to the property at the boundary surface and will be used to update the solution at this
1062
+ boundary. For a subsonic exit boundary, 0 < qne/ae < 1, the velocity components are derived from internal
1063
+ properties as
1064
+ uf
1065
+ =
1066
+ ue + (qnf − qne)ηx ,
1067
+ vf
1068
+ =
1069
+ ve + (qnf − qne)ηy ,
1070
+ (64)
1071
+ wf
1072
+ =
1073
+ we + (qnf − qne)ηz .
1074
+ Density and pressure properties are obtained by extrapolating the entropy from the adjacent grid node,
1075
+ ρf =
1076
+
1077
+ ργ
1078
+ ea2
1079
+ f
1080
+ γpe
1081
+
1082
+ 1
1083
+ γ−1
1084
+ ,
1085
+ pf =
1086
+ ρfa2
1087
+ f
1088
+ γ
1089
+ .
1090
+ For a subsonic entrance, −1 < qne/ae < 0, properties are obtained similarly from the freestream variables as
1091
+ uf
1092
+ =
1093
+ u∞ + (qnf − qn∞)ηx ,
1094
+ vf
1095
+ =
1096
+ v∞ + (qnf − qn∞)ηy ,
1097
+ (65)
1098
+ wf
1099
+ =
1100
+ w∞ + (qnf − qn∞)ηz ,
1101
+ ρf =
1102
+
1103
+ ργ
1104
+ ∞a2
1105
+ f
1106
+ γp∞
1107
+
1108
+ 1
1109
+ γ−1
1110
+ .
1111
+ (66)
1112
+ For a supersonic exit boundary, qne/ae > 1, the properties are extrapolated from the interior of the domain
1113
+ as
1114
+ ρf
1115
+ =
1116
+ ρe ,
1117
+ uf
1118
+ =
1119
+ ue ,
1120
+ vf
1121
+ =
1122
+ ve ,
1123
+ (67)
1124
+ wf
1125
+ =
1126
+ we ,
1127
+ ef
1128
+ =
1129
+ ee ,
1130
+ and for a supersonic entrance, qne/ae < −1, the properties are extrapolated from the freestream variables as
1131
+ ρf
1132
+ =
1133
+ ρ∞ ,
1134
+ uf
1135
+ =
1136
+ u∞ ,
1137
+ vf
1138
+ =
1139
+ v∞ ,
1140
+ (68)
1141
+ wf
1142
+ =
1143
+ w∞ ,
1144
+ ef
1145
+ =
1146
+ e∞ .
1147
+ 10 of 25
1148
+
1149
+ VII.B.
1150
+ Entrance Boundary
1151
+ For a jet-like configuration, the entrance boundary is divided in two areas: the jet and the area above it.
1152
+ The jet entrance boundary condition is implemented through the use of the 1-D characteristic relations for
1153
+ the 3-D Euler equations for a flat velocity profile. The set of properties then determined is computed from
1154
+ within and from outside the computational domain. For the subsonic entrance, the v and w components of
1155
+ the velocity are extrapolated by a zero-order extrapolation from inside the computational domain and the
1156
+ angle of flow entrance is assumed fixed. The rest of the properties are obtained as a function of the jet Mach
1157
+ number, which is a known variable.
1158
+ (u)1,j,k
1159
+ =
1160
+ uj ,
1161
+ (v)1,j,k
1162
+ =
1163
+ (v)2,j,k ,
1164
+ (69)
1165
+ (w)1,j,k
1166
+ =
1167
+ (w)2,j,k .
1168
+ The dimensionless total temperature and total pressure are defined with the isentropic relations:
1169
+ Tt = 1 + 1
1170
+ 2(γ − 1)M 2
1171
+
1172
+ and
1173
+ Pt = 1
1174
+ γ (Tt)
1175
+ γ
1176
+ γ−1 .
1177
+ (70)
1178
+ The dimensionless static temperature and pressure are deduced from Eq. (70), resulting in
1179
+ (T)1,j,k =
1180
+ Tt
1181
+ 1 + 1
1182
+ 2(γ − 1)(u2 + v2 + w2)1,j,k
1183
+ and
1184
+ (p)1,j,k = 1
1185
+ γ (T)
1186
+ γ
1187
+ γ−1
1188
+ 1,j,k .
1189
+ (71)
1190
+ For the supersonic case, all conserved variables receive jet property values.
1191
+ The far field boundary conditions are implemented outside of the jet area in order to correctly propagate
1192
+ information comming from the inner domain of the flow to the outter region of the simulation. However,
1193
+ in the present case, ξ, instead of η, as presented in the previous subsection, is the normal direction used to
1194
+ define the Riemann invariants.
1195
+ VII.C.
1196
+ Exit Boundary Condition
1197
+ At the exit plane, the same reasoning of the jet entrance boundary is applied. This time, for a subsonic exit,
1198
+ the pressure is obtained from the outside and all other variables are extrapolated from the interior of the
1199
+ computational domain by a zero-order extrapolation. The conserved variables are obtained as
1200
+ (ρ)IMAX,j,k
1201
+ =
1202
+ (p)IMAX,j,k
1203
+ (γ − 1)(e)IMAX−1,j,k
1204
+ ,
1205
+ (72)
1206
+ (⃗u)IMAX,j,k
1207
+ =
1208
+ (⃗u)IMAX−1,j,k,
1209
+ (73)
1210
+ (ei)IMAX,j,k
1211
+ =
1212
+ (ρ)IMAX,j,k
1213
+
1214
+ (e)IMAX−1,j,k + 1
1215
+ 2(⃗u)IMAX,j,k · (⃗u)IMAX,j,k
1216
+
1217
+ ,
1218
+ (74)
1219
+ in which IMAX stands for the last point of the mesh in the axial direction. For the supersonic exit, all
1220
+ properties are extrapolated from the interior domain.
1221
+ VII.D.
1222
+ Centerline Boundary Condition
1223
+ The centerline boundary is a singularity of the coordinate transformation, and, hence, an adequate treatment
1224
+ of this boundary must be provided. The conserved properties are extrapolated from the ajacent longitudinal
1225
+ plane and are averaged in the azimuthal direction in order to define the updated properties at the centerline
1226
+ of the jet.
1227
+ The fourth-difference terms of the artificial dissipation scheme, used in the present work, are carefully
1228
+ treated in order to avoid the five-point difference stencils at the centerline singularity. If one considers the
1229
+ flux balance at one grid point near the centerline boundary in a certain coordinate direction, let wj denote
1230
+ a component of the W vector from Eq. (52) and dj denote the corresponding artificial dissipation term at
1231
+ the mesh point j. In the present example, (∆w)j+ 1
1232
+ 2 stands for the difference between the solution at the
1233
+ interface for the points j+1 and j. The fouth-difference of the dissipative fluxes from Eq. (48) can be written
1234
+ as
1235
+ dj+ 1
1236
+ 2 = (∆w)j+ 3
1237
+ 2 − 2 (∆w)j+ 1
1238
+ 2 + (∆w)j− 1
1239
+ 2 .
1240
+ (75)
1241
+ 11 of 25
1242
+
1243
+ Considering the centerline and the point j = 1, as presented in Fig. 2, the calculation of d1+ 1
1244
+ 2 demands
1245
+ the (∆w) 1
1246
+ 2 term, which is unknown since it is outside the computation domain.
1247
+ In the present work a
1248
+ extrapolation is performed and given by
1249
+ (∆w) 1
1250
+ 2 = − (∆w)1+ 1
1251
+ 2 .
1252
+ (76)
1253
+ This extrapolation modifies the calculation of d1+ 1
1254
+ 2 that can be written as
1255
+ dj+ 1
1256
+ 2 = (∆w)j+ 3
1257
+ 2 − 3 (∆w)j+ 1
1258
+ 2 .
1259
+ (77)
1260
+ The approach is plausible since the centerline region is smooth and does not have high gradient of properties.
1261
+ Figure 2.
1262
+ Boundary points dissipation.26
1263
+ VII.E.
1264
+ Periodic Boundary Condition
1265
+ A periodic condition is implemented between the first (K = 1) and the last point in the azimutal direction
1266
+ (K = KMAX) in order to close the 3-D computational domain. There are no boundaries in this direction,
1267
+ since all the points are inside the domain. The first and the last points, in the azimuthal direction, are
1268
+ superposed in order to facilitate the boundary condition implementation which is given by
1269
+ (ρ)i,j,KMAX
1270
+ =
1271
+ (ρ)i,j,1 ,
1272
+ (u)i,j,KMAX
1273
+ =
1274
+ (u)i,j,1 ,
1275
+ (v)i,j,KMAX
1276
+ =
1277
+ (v)i,j,1 ,
1278
+ (78)
1279
+ (w)i,j,KMAX
1280
+ =
1281
+ (w)i,j,1 ,
1282
+ (e)i,j,KMAX
1283
+ =
1284
+ (e)i,j,1 .
1285
+ VIII.
1286
+ High Performance Computing
1287
+ The current section presents an overview of the LES solver and discusses the high performance computing
1288
+ implementations introduced into the code. A study on the parallel performance of JAZzY using multiple
1289
+ processors is presented and discussed in the end of the section.
1290
+ VIII.A.
1291
+ Mesh Generation
1292
+ The LES solver presents a parallel-IO feature in which each MPI partition reads its correspondent portion of
1293
+ the mesh. Therefore, a 3-D grid generator is developed in order to provide partitioned CGNS mesh files to
1294
+ 12 of 25
1295
+
1296
+ j=4
1297
+ j=3+1/2
1298
+ j=3
1299
+ j=2+1/2
1300
+ j=2
1301
+ j=1+1/2
1302
+ j=1
1303
+ 12
1304
+ grid node
1305
+ X
1306
+ interfacethe LES solver. The CGNS standard9–11 is build on the HDF5 library.7,8 This library is a general scientific
1307
+ format adaptable to virtually any scientific or engineering application. It provides tools to efficiently read
1308
+ and write data structured in a binary tree fashion. This data structure can handle many types of queries
1309
+ very efficiently31,32 such as time-dependent CFD solution.
1310
+ Figure 3(a) illustrates the segmentation of the domain into the axial and azimuthal directions while Fig.
1311
+ 3(b) presents the mapping of the domain. The index of each partition, indicated in Fig. 3(b), is based
1312
+ on a matrix index system in which the rows represent the position in the axial direction and the columns
1313
+ represent the position in the azimuthal direction. The partition index starts at zero to be consistent with
1314
+ the message passing interface standard. NPX and NPZ denote the number of partitions in the axial and
1315
+ azimuthal directions, respectively.
1316
+ (a) 2-D partitioning in the axial and azimuthal direction.
1317
+ (b) Mapping of the 2-D partitioning.
1318
+ Figure 3.
1319
+ 2-D partitioning and mapping.
1320
+ Table 1 presents the algorithm of the mesh generator. The user can provide geometry and mesh point
1321
+ distribution parameters so the grid generator can create a 2-D mesh. A complete 2-D grid, from a different
1322
+ mesh generator, can also be provided by the user to the mesh generator. In the sequence, the 2-D grid is
1323
+ partitioned in the axial direction. After the partitioning in the axial direction, each portion of the mesh is
1324
+ 13 of 25
1325
+
1326
+ 0
1327
+ NPZ-1
1328
+ 1
1329
+ 0
1330
+ NPZ-2
1331
+ NPX-2
1332
+ NPX-10
1333
+ NPZ
1334
+ 2*NPZ
1335
+ 1
1336
+ NPZ+1
1337
+ 2*NPZ+1
1338
+ *(NPZ)+i
1339
+ NPZ-2
1340
+ NPZ+NPZ-2
1341
+ 2*NPZ+NPZ-2
1342
+ NPZ-1
1343
+ NPZ+NPZ-1
1344
+ 2*NPZ+NPZ-1
1345
+ NPX*NPZ-1extruded in the azimuthal direction respecting the positioning of the MPI partitions. Each portion of the
1346
+ mesh is written using the CGNS standard.
1347
+ Table 1.
1348
+ Mesh generator overview.
1349
+ 1
1350
+ BEGIN
1351
+ 2
1352
+ Read input data
1353
+ 3
1354
+ Read mesh or create 2-D mesh
1355
+ 4
1356
+ Perform balanced partitioning in axial direction
1357
+ 5
1358
+ Perform balanced partitioning in azimuthal direction
1359
+ 6
1360
+ Rotate the mesh partition in the azimuthal direction
1361
+ 7
1362
+ Write a CGNS mesh file for each partition
1363
+ 8
1364
+ END
1365
+ The division of the mesh in the axial and azimuthal directions is performed towards a well balanced
1366
+ distribution of points. Firstly, the total number of grid points in one direction is divided by the number of
1367
+ domains in the same direction. The remaining points are spread among the partitions in the case which the
1368
+ division is not exact. Figure 4 illustrates the balancing procedure performed in each direction during the
1369
+ partitioning of the computational grid.
1370
+ Figure 4.
1371
+ Balancing procedure performed during the patitioning of the mesh.
1372
+ VIII.B.
1373
+ JAZzY Overview
1374
+ JAZzY is the LES solver presented in the current work. Table 2 presents a brief overview of JAZzY. In the
1375
+ beginning of the calculation every MPI partition reads the same ASCII file which provides input data such
1376
+ as flow configurations and simulation settings. In the sequence, each MPI partition reads its correspondent
1377
+ CGNS mesh file. The Jacobian and the metric terms are calculated after the I-O procedure. Then, each
1378
+ processor sets the initial conditions defined in the input data and it performs an asynchronous communication
1379
+ before starting iterations in order to solve the compressible LES equations.
1380
+ The first operation, which is performed in the iteration loop, is the computation of the inviscid flux
1381
+ vectors. Then, the artificial dissipation operator is calculated. Asynchronous communications are performed
1382
+ during this computation. After the data exchange, the inviscid terms of the LES formulation is calculated
1383
+ using the convective operator and the artificial dissipation terms.
1384
+ The viscous terms are calculated in
1385
+ sequence and their contributions are added to the right-hand side of the LES equations.
1386
+ The time integration is performed using a five step Runge-Kutta time integration scheme after the
1387
+ calculation of the numerical fluxes. This time marching scheme calculates the inviscid and viscous terms
1388
+ recursively through the inner steps. Therefore, multiple communications are performed during the time
1389
+ integration. The solution, boundary conditions and fluid viscosity are updated after the time marching.
1390
+ Asynchronous communications are performed for the periodicity condition. Blocking communications are
1391
+ performed in order to calculate properties at the centerline singularity. After the updates, neighbor partitions
1392
+ 14 of 25
1393
+
1394
+ n
1395
+ n
1396
+ n
1397
+ m
1398
+ n+1n+1n+1n+1n
1399
+ nTable 2.
1400
+ The JAZzY code overview.
1401
+ 1
1402
+ Read input data
1403
+ 2
1404
+ Read mesh
1405
+ 3
1406
+ Calculate Jacobian
1407
+ 4
1408
+ Calculate metric terms
1409
+ 5
1410
+ Set up initial conditions
1411
+ 6
1412
+ Asynchronous communication
1413
+ 7
1414
+ WHILE (it. < max nb it.)
1415
+ Compute inviscid flux vectors
1416
+ Compute artificial dissipation operator
1417
+ Calculate inviscid flux contributions to the residue
1418
+ Compute viscous flux vectors and SGS viscosity
1419
+ Calculate viscous flux contributions to the residue
1420
+ Calculate time step
1421
+ Perform multi-step explicit time integration
1422
+ Update the solution and boundary conditions
1423
+ 8
1424
+ END WHILE
1425
+ 9
1426
+ Output results
1427
+ 10
1428
+ END
1429
+ exchange data using non blocking MPI routines. The SGS viscosity is calculated in the end of the iteration
1430
+ loop. The Vreman and the static Smagorinsky models does not request the use of communications. The
1431
+ calculation of the dynamic Smagorinsky SGS viscosity is performed using blocking data exchange in order
1432
+ to calculate properties on the second level filtering. Finally, when the requested number of iterations is
1433
+ achieved, each MPI partition appends the solution to the output CGNS file.
1434
+ VIII.C.
1435
+ Communication
1436
+ Numerical data exchange between the partitions is necessary in order to perform parallel computation. Ghost
1437
+ points are added to the boundaries of local partition mesh at the main flow direction and at the azimuthal
1438
+ direction in order to carry information of the neighbor points. The artificial dissipation scheme implemented
1439
+ in the code28 uses a five points stencil which demands information of the two neighbors of a given mesh
1440
+ point. Hence, a two layer ghost points is created at the beginning and at the end of each partition. Figure 5
1441
+ presents the layer of ghost points used in the present code. The yellow and black layers represent the axial
1442
+ and azimuthal ghost points respectively. The green region is the partition mesh.
1443
+ After the ghost points creation, each processor performs the computation. Communication between neigh-
1444
+ bor partitions are performed in order to allow data information pass through the computational domain.
1445
+ Blocking and non-blocking communications are used in the present work. In the blocking communication ap-
1446
+ proach, the partition which sends the information only restarts the computation after the neighbor partition,
1447
+ which is the receiver, has finished to read the data. The same does not occur for non-blocking communica-
1448
+ tions. The partition which has sent data does not need to wait a signal from the receiver. The developer is
1449
+ responsible to assure that data is communicated before being accessed through the use of MPI wait functions
1450
+ along the code. Most of the data exchange are performed using non-blocking MPI communication routines
1451
+ in the current research. Only the centerline boundary condition and the communications for the dynamic
1452
+ Smagorinky model24,33 are performed using blocking MPI communication routines. The first is performed in
1453
+ order to assure reproducibility of the solver. The second is performed using blocking communication because
1454
+ it represents only a small portion of the code.
1455
+ The meshes used in the current research have a singularity at the centerline. It is necessary to correctly
1456
+ treat this region for the sake of data consistency. Therefore, properties are extrapolated to the singularity in
1457
+ radial direction and, in the sequence, the master partition collects all data from the partitions that share the
1458
+ 15 of 25
1459
+
1460
+ Figure 5.
1461
+ Ghost points creation procedure.
1462
+ same singularity point and allocates into one single vector. After the allocation, the properties are averaged in
1463
+ a sequential fashion and the result is spread to the neighbors in the azimuthal direction. Figure 6 illustrates
1464
+ the singularity treatment for a configuration with 16 points in the azimuthal direction. The yellow, red,
1465
+ blue and green colors represent the four partitions in the azimuthal direction. Such procedure does not use
1466
+ collective communications in order to preserve the commutative property during the averaging. This blocking
1467
+ communication is very important in order to achieve the binary reproducibility of the computational tool.34
1468
+ The use of such communication is motivated by the work of Arteaga et. al.35
1469
+ Figure 6.
1470
+ Singularity averaging in parallel.
1471
+ Non-blocking communication is not available for the communication performed by the dynamic Smagorin-
1472
+ sky model. Only blocking communication are implemented because it represents only a small portion of the
1473
+ code. This data exchange is firstly performed in the azimuthal direction and in the sequence in the axial
1474
+ direction. The azimuthal communication is performed in four blocking steps as Figs. 7(a) and 7(b) demon-
1475
+ strate. Initially, the communication is performed in the forward direction. Even partitions send information
1476
+ of their two last local layers to the ghost points at the left of odd partitions. If the last partition is even,
1477
+ it does not share information in this step. In the sequence, odd partitions send information of their two
1478
+ last local layers to the ghost points at the left of even partitions. If the last partition is odd, it does not
1479
+ share information in this step. The third and the fourth steps are backward communications. First, odd
1480
+ 16 of 25
1481
+
1482
+ AXIALGHOST
1483
+ LAYER
1484
+ AZIMUTHAL
1485
+ GHOSTLAYER
1486
+ PARTITION3
1487
+ 2
1488
+ 1+2+3+4+1-2+3+4+1+2+3+4+1-2+3+4
1489
+ 2
1490
+ 3
1491
+ 16
1492
+ 4
1493
+ 3
1494
+ 2
1495
+ 1partitions send data of their two first local layers to the ghost points at the right of even partitions. Finally,
1496
+ all even partitions, but the first, send data of their two first local layers to the ghost points at the right of
1497
+ odd partitions. Communication in the axial direction are performed using the same approach.
1498
+ (a) Forward communication between partitions.
1499
+ (b) Backward Communication between partitions.
1500
+ Figure 7.
1501
+ Forward and Backward communication schemes used in order to exchange information between neighbor
1502
+ partitions
1503
+ VIII.D.
1504
+ Computational Resources
1505
+ The current work is included into a national project know as CEPID-CeMEAI.36 This project provides
1506
+ access to a SGI cluster. The machine has 104 computational nodes and each one has two deca-core 2.8 GHz
1507
+ Intel Xeon®
1508
+ E52680v2 processors and 128 Gb DDR3 1866MHz random access memory. The entire cluster
1509
+ has 2080 computational cores available for the project members. The storage can be performed using the
1510
+ network file system (NFS) or the Lustre® file system.37 Both storage system have 175 Tb available for the
1511
+ users. The network communication is performed using Infiniband and Gigabit Ethernet. The Operational
1512
+ system is the Red Hat Enterprise Linux38 and the job scheduler is the Altair PBS Pro.39
1513
+ The Intel Composer XE Update 2 compiler, version 15.0.2.164 is used in the present work. The code
1514
+ is compiled using optimization flags in order to achieve the best computational performance.
1515
+ The best
1516
+ compilation flags were tested in the present work. The flags which provided the best results are:
1517
+ • O3: enables aggressive optimization such as global code scheduling, software pipelining, predication
1518
+ and speculation, prefetching, scalar replacement and loop transformations;
1519
+ • xHost: tells the compiler to generate instructions for the highest instruction set available on the
1520
+ compilation host processor;
1521
+ • ipo: automatic, multi-step process that allows the compiler to analyze the code and determine where
1522
+ you can benefit from specific optimizations;
1523
+ • no-prec-div: enables optimizations that give slightly less precise results than full division;
1524
+ • assume buffered io : tells the compiler to accumulate records in a buffer;
1525
+ • override-limits: deals with very large, complex functions and loops.
1526
+ VIII.E.
1527
+ Computational Performance
1528
+ Parallel computation can largely decrease the time of CFD simulations. However, the parallel upgrade of a
1529
+ serial solver must be carefully performed. The communication between partitions is not free and can affect
1530
+ the computational performance in parallel. The partitioning of the computational domain increases the
1531
+ number of communication between processors. When the number of points of a partitions becomes smaller
1532
+ 17 of 25
1533
+
1534
+ First Step Backward
1535
+ Second Step Backward
1536
+ GhostCellsFirst Step Forward
1537
+ Second Step Forward
1538
+ 1111
1539
+ hostCellssimulation spend less time computing and more time performing communications. Consequently, the parallel
1540
+ performance of the solver is deteriorated.
1541
+ The speedup is one of the most common figures for the performance evaluation of parallel algorithms and
1542
+ architectures40 and it is used in the present work in order to measure the computational performance of the
1543
+ parallel solver and compare with the ideal case. Different approaches are used by the scientific community
1544
+ in order to calculate the speedup.41,42 In the present work the speedup, SpN, is given by
1545
+ SpN = Ts
1546
+ TN
1547
+ .
1548
+ (79)
1549
+ in which TN and Ts stand for the time spent to perform one thousand iterations using N processors and
1550
+ one single processor, respectively. The efficiency as function of the number of processors, ηN, is written
1551
+ considering Amdahl’s law43 as
1552
+ ηN = SpN
1553
+ N
1554
+ .
1555
+ (80)
1556
+ The performance of the solver is evaluated for a large-eddy simulation of a isothermic perfectly expanded
1557
+ turbulent jet flow without any SGS model. The impact of SGS models on the parallel performance of the
1558
+ code is evaluated in the work of Junqueira-Junior.1 Different parameters such as mesh size, partitioning
1559
+ configurations and number of processors are used to study the parallel behavior of the code in the current
1560
+ article.
1561
+ Table 3 presents the different grid configurations used in the current work. There are nine meshes whose
1562
+ total number of points doubles every time. The first column presents the name of the mesh. The second, third
1563
+ and fourth columns present the number of points in the axial, radial and azimuthal directions, respectively.
1564
+ The last column indicates the total number of points of the mesh. The grid point distribution in the azimuthal
1565
+ direction is fixed and it is equals to 361. The smallest grid, named as Mesh A, has approximately 5.9 million
1566
+ points while the biggest grid presents approximately 1.0 billion points.
1567
+ Table 3.
1568
+ Configuration of computational meshes used in the current study.
1569
+ Mesh
1570
+ No. Pt. Axial Direct.
1571
+ No. Pt. Radial Direct.
1572
+ No. Pt. Azimut. Direct.
1573
+ No. Pt.
1574
+ A
1575
+ 128
1576
+ 128
1577
+ 361
1578
+ 5.9M
1579
+ B
1580
+ 256
1581
+ 128
1582
+ 361
1583
+ 11.8M
1584
+ C
1585
+ 256
1586
+ 256
1587
+ 361
1588
+ 23.7M
1589
+ D
1590
+ 512
1591
+ 256
1592
+ 361
1593
+ 47.3M
1594
+ E
1595
+ 512
1596
+ 512
1597
+ 361
1598
+ 94.6M
1599
+ F
1600
+ 1024
1601
+ 512
1602
+ 361
1603
+ 189.3M
1604
+ G
1605
+ 1024
1606
+ 1024
1607
+ 361
1608
+ 378.5M
1609
+ H
1610
+ 2048
1611
+ 1024
1612
+ 361
1613
+ 757.1M
1614
+ I
1615
+ 1700
1616
+ 1700
1617
+ 361
1618
+ 1.0B
1619
+ The strong scalability test is used in the present paper in order to evaluate the parallel performance
1620
+ of the code. This test is a measure of the evolution of speedup and efficiency of a given problem, with
1621
+ a fixed size, as the number of processors increases. Simulations are performed using up to 400 processors
1622
+ in the present paper. Different partitioning configurations are used in order to measure its effects on the
1623
+ parallel computational efficiency.
1624
+ Table 4 presents the number of partitions in the azimuthal direction
1625
+ for each number of processors used to study the scalability of the solver. The first column indicates the
1626
+ computational resource while the second columns indicates the number of zones in the azimuthal direction
1627
+ used to evaluate the effects of the partitioning on the computation.
1628
+ Isothermic perfectly expanded jet flow simulations are performed using different grid sizes and different
1629
+ partition configurations. The Reynolds number of the jet is 1.5744 × 106 for the present simulations and
1630
+ a flat-hat profile with Mach number of 1.4 is imposed at the entrance of the computational domain. A
1631
+ stagnated flow is used as initial condition for the simulations. The time increment is 2.5 × 10−4 seconds
1632
+ for the tests performed. Numerical results of such configuration using the same code are presented in the
1633
+ work described in Ref. [2, 44]. In the present article each simulation performs 1000 iterations or 24 hours
1634
+ 18 of 25
1635
+
1636
+ Table 4.
1637
+ Number of partitions in the azimuthal direction for a given number of processors.
1638
+ No. Proc.
1639
+ No. of Part. in the Azimuthal Dir.
1640
+ 1
1641
+ 1
1642
+ 2
1643
+ 1
1644
+ 2
1645
+ 5
1646
+ 1
1647
+ 5
1648
+ 10
1649
+ 1
1650
+ 2
1651
+ 5
1652
+ 10
1653
+ 20
1654
+ 1
1655
+ 2
1656
+ 4
1657
+ 5
1658
+ 10
1659
+ 20
1660
+ 40
1661
+ 1
1662
+ 2
1663
+ 4
1664
+ 5
1665
+ 8
1666
+ 10
1667
+ 20
1668
+ 40
1669
+ 80
1670
+ 2
1671
+ 4
1672
+ 5
1673
+ 8
1674
+ 10
1675
+ 20
1676
+ 40
1677
+ 100
1678
+ 2
1679
+ 4
1680
+ 5
1681
+ 10
1682
+ 20
1683
+ 25
1684
+ 200
1685
+ 4
1686
+ 8
1687
+ 10
1688
+ 20
1689
+ 25
1690
+ 50
1691
+ 400
1692
+ 8
1693
+ 16
1694
+ 20
1695
+ 25
1696
+ 50
1697
+ of computation. An average of the CPU time per iteration through the simulations is measured in order to
1698
+ calculate and compare computational cost, speed-up and efficiency of the solver.
1699
+ Tables 5 to 13 present, for a given number of processors, the partitioning configuration which provides
1700
+ the best averaged CPU time per iteration, its correspondent speedup and its correspondent computational
1701
+ efficiency for meshes A to I respectively. One can notice that meshes F,G,H and I are too big and cannot fit
1702
+ into one single node of the computational cluster used in the current paper. The scalability study started
1703
+ with 40 processors for mesh F, 80 processors for mesh G, and 200 processors for mesh H and mesh I. The
1704
+ efficiency of the solver is considered 100% at the starting point in order to have a reference for the cases in
1705
+ which is not possible to perform a simulation using one single computational core.
1706
+ Table 5.
1707
+ Computational performance of Mesh A.
1708
+ No. Proc.
1709
+ Av. CPU time
1710
+ Speedup
1711
+ Efficiency
1712
+ No. Azim. Part.
1713
+ 1
1714
+ 2.97E+01
1715
+ 1.00E+00
1716
+ 1.00E+00
1717
+ 1
1718
+ 2
1719
+ 1.14E+01
1720
+ 2.61E+00
1721
+ 1.31E+00
1722
+ 1
1723
+ 5
1724
+ 3.96E+00
1725
+ 7.49E+00
1726
+ 1.50E+00
1727
+ 1
1728
+ 10
1729
+ 2.27E+00
1730
+ 1.31E+01
1731
+ 1.31E+00
1732
+ 2
1733
+ 20
1734
+ 1.57E+00
1735
+ 1.89E+01
1736
+ 9.43E-01
1737
+ 5
1738
+ 40
1739
+ 8.32E-01
1740
+ 3.57E+01
1741
+ 8.91E-01
1742
+ 20
1743
+ 80
1744
+ 4.60E-01
1745
+ 6.45E+01
1746
+ 8.07E-01
1747
+ 20
1748
+ 100
1749
+ 3.80E-01
1750
+ 7.81E+01
1751
+ 7.81E-01
1752
+ 20
1753
+ 200
1754
+ 2.37E-01
1755
+ 1.25E+02
1756
+ 6.26E-01
1757
+ 50
1758
+ 400
1759
+ 1.77E-01
1760
+ 1.67E+02
1761
+ 4.19E-01
1762
+ 50
1763
+ The evolution of speedup and efficiency as function of the number of processors for all computational
1764
+ grids used in the current work are presented in Figs. 8 and 9. The code presents a good scalability, with
1765
+ an efficiency bigger than 75%, for grids which have more than 50 million points. Mesh E presented an
1766
+ efficiency of ≈ 100% and speedup of 400 when running on 400 processors. Such performance is equivalent to
1767
+ the theoretical speedup. One can notice a super linear scalability for the cases which the speedup reference
1768
+ is the sequential computation and also for mesh I. The first can be explained by the fact that there is
1769
+ not a serial version of the solver. There is only a parallel version which can run simulations using a single
1770
+ computational core. Moreover, cache memory can be the bottleneck of a simulation using a given mesh and a
1771
+ given number of processors.45 Such limitation can explain the super linear speedup of mesh I. The bottleneck
1772
+ can deteriorate the performance of the solver. When the number of processors is increased and mesh size
1773
+ conserved, the cache memory can become no longer a limitation. This effect can generate super-scalability
1774
+ which can be interpreted as computational efficiency greater than 100%.
1775
+ 19 of 25
1776
+
1777
+ Table 6.
1778
+ Computational performance of Mesh B.
1779
+ No. Proc.
1780
+ Av. CPU time
1781
+ Speedup
1782
+ Efficiency
1783
+ No. Azim. Part.
1784
+ 1
1785
+ 5.78E+01
1786
+ 1.00E+00
1787
+ 1.00E+02
1788
+ 1
1789
+ 2
1790
+ 2.60E+01
1791
+ 2.23E+00
1792
+ 1.11E+02
1793
+ 2
1794
+ 5
1795
+ 7.56E+00
1796
+ 7.65E+00
1797
+ 1.53E+02
1798
+ 1
1799
+ 10
1800
+ 4.38E+00
1801
+ 1.32E+01
1802
+ 1.32E+02
1803
+ 2
1804
+ 20
1805
+ 3.09E+00
1806
+ 1.87E+01
1807
+ 9.36E+01
1808
+ 4
1809
+ 40
1810
+ 1.61E+00
1811
+ 3.59E+01
1812
+ 8.98E+01
1813
+ 8
1814
+ 80
1815
+ 8.43E-01
1816
+ 6.86E+01
1817
+ 8.58E+01
1818
+ 10
1819
+ 100
1820
+ 7.25E-01
1821
+ 7.98E+01
1822
+ 7.98E+01
1823
+ 25
1824
+ 200
1825
+ 3.92E-01
1826
+ 1.48E+02
1827
+ 7.38E+01
1828
+ 25
1829
+ 400
1830
+ 2.60E-01
1831
+ 2.23E+02
1832
+ 5.57E+01
1833
+ 25
1834
+ Table 7.
1835
+ Computational performance of Mesh C.
1836
+ No. Proc.
1837
+ Av. CPU time
1838
+ Speedup
1839
+ Efficiency
1840
+ No. Azim. Part.
1841
+ 1
1842
+ 1.18E+02
1843
+ 1.00E+00
1844
+ 1.00E+02
1845
+ 1
1846
+ 2
1847
+ 5.18E+01
1848
+ 2.28E+00
1849
+ 1.14E+02
1850
+ 1
1851
+ 5
1852
+ 1.68E+01
1853
+ 7.03E+00
1854
+ 1.41E+02
1855
+ 1
1856
+ 10
1857
+ 9.15E+00
1858
+ 1.29E+01
1859
+ 1.29E+02
1860
+ 2
1861
+ 20
1862
+ 6.31E+00
1863
+ 1.87E+01
1864
+ 9.35E+01
1865
+ 4
1866
+ 40
1867
+ 3.27E+00
1868
+ 3.61E+01
1869
+ 9.03E+01
1870
+ 8
1871
+ 80
1872
+ 1.77E+00
1873
+ 6.66E+01
1874
+ 8.33E+01
1875
+ 10
1876
+ 100
1877
+ 1.47E+00
1878
+ 8.05E+01
1879
+ 8.05E+01
1880
+ 20
1881
+ 200
1882
+ 7.89E-01
1883
+ 1.50E+02
1884
+ 7.48E+01
1885
+ 25
1886
+ 400
1887
+ 5.07E-01
1888
+ 2.33E+02
1889
+ 5.82E+01
1890
+ 50
1891
+ Table 8.
1892
+ Computational performance of Mesh D.
1893
+ No. Proc.
1894
+ Av. CPU time
1895
+ Speedup
1896
+ Efficiency
1897
+ No. Azim. Part.
1898
+ 1
1899
+ 2.67E+02
1900
+ 1.00E+00
1901
+ 1.00E+02
1902
+ 1
1903
+ 2
1904
+ 1.04E+02
1905
+ 2.56E+00
1906
+ 1.28E+02
1907
+ 1
1908
+ 5
1909
+ 3.28E+01
1910
+ 8.14E+00
1911
+ 1.63E+02
1912
+ 1
1913
+ 10
1914
+ 1.74E+01
1915
+ 1.54E+01
1916
+ 1.54E+02
1917
+ 2
1918
+ 20
1919
+ 1.21E+01
1920
+ 2.20E+01
1921
+ 1.10E+02
1922
+ 4
1923
+ 40
1924
+ 6.31E+00
1925
+ 4.23E+01
1926
+ 1.06E+02
1927
+ 8
1928
+ 80
1929
+ 3.27E+00
1930
+ 8.17E+01
1931
+ 1.02E+02
1932
+ 8
1933
+ 100
1934
+ 2.73E+00
1935
+ 9.79E+01
1936
+ 9.79E+01
1937
+ 20
1938
+ 200
1939
+ 1.49E+00
1940
+ 1.78E+02
1941
+ 8.92E+01
1942
+ 20
1943
+ 400
1944
+ 8.93E-01
1945
+ 2.99E+02
1946
+ 7.47E+01
1947
+ 25
1948
+ 20 of 25
1949
+
1950
+ Table 9.
1951
+ Computational performance of Mesh E.
1952
+ No. Proc.
1953
+ Av. CPU time
1954
+ Speedup
1955
+ Efficiency
1956
+ No. Azim. Part.
1957
+ 1
1958
+ 7.02E+02
1959
+ 1.00E+00
1960
+ 1.00E+02
1961
+ 1
1962
+ 2
1963
+ 2.18E+02
1964
+ 3.22E+00
1965
+ 1.61E+02
1966
+ 1
1967
+ 5
1968
+ 7.33E+01
1969
+ 9.58E+00
1970
+ 1.92E+02
1971
+ 1
1972
+ 10
1973
+ 3.68E+01
1974
+ 1.91E+01
1975
+ 1.91E+02
1976
+ 2
1977
+ 20
1978
+ 2.85E+01
1979
+ 2.46E+01
1980
+ 1.23E+02
1981
+ 2
1982
+ 40
1983
+ 1.27E+01
1984
+ 5.53E+01
1985
+ 1.38E+02
1986
+ 8
1987
+ 80
1988
+ 6.67E+00
1989
+ 1.05E+02
1990
+ 1.32E+02
1991
+ 2
1992
+ 100
1993
+ 5.54E+00
1994
+ 1.27E+02
1995
+ 1.27E+02
1996
+ 20
1997
+ 200
1998
+ 3.02E+00
1999
+ 2.33E+02
2000
+ 1.16E+02
2001
+ 20
2002
+ 400
2003
+ 1.70E+00
2004
+ 4.14E+02
2005
+ 1.03E+02
2006
+ 16
2007
+ Table 10.
2008
+ Computational performance of Mesh F.
2009
+ No. Proc.
2010
+ Av. CPU time
2011
+ Speedup
2012
+ Efficiency
2013
+ No. Azim. Part.
2014
+ 40
2015
+ 2.47E+01
2016
+ 4.00E+01
2017
+ 1.00E+02
2018
+ 4
2019
+ 80
2020
+ 1.44E+01
2021
+ 6.87E+01
2022
+ 8.58E+01
2023
+ 8
2024
+ 100
2025
+ 1.04E+01
2026
+ 9.54E+01
2027
+ 9.54E+01
2028
+ 10
2029
+ 200
2030
+ 5.47E+00
2031
+ 1.81E+02
2032
+ 9.04E+01
2033
+ 8
2034
+ 400
2035
+ 3.12E+00
2036
+ 3.17E+02
2037
+ 7.92E+01
2038
+ 8
2039
+ Table 11.
2040
+ Computational performance of Mesh G.
2041
+ No. Proc.
2042
+ Av. CPU time
2043
+ Speedup
2044
+ Efficiency
2045
+ No. Azim. Part.
2046
+ 80
2047
+ 2.61E+01
2048
+ 8.00E+01
2049
+ 1.00E+02
2050
+ 8
2051
+ 100
2052
+ 2.17E+01
2053
+ 9.63E+01
2054
+ 9.63E+01
2055
+ 10
2056
+ 200
2057
+ 1.17E+01
2058
+ 1.78E+02
2059
+ 8.92E+01
2060
+ 8
2061
+ 400
2062
+ 6.76E+00
2063
+ 3.09E+02
2064
+ 7.72E+01
2065
+ 20
2066
+ Table 12.
2067
+ Computational performance of Mesh H.
2068
+ No. Proc.
2069
+ Av. CPU time
2070
+ Speedup
2071
+ Efficiency
2072
+ No. Azim. Part.
2073
+ 200
2074
+ 2.13E+01
2075
+ 2.00E+02
2076
+ 1.00E+02
2077
+ 8
2078
+ 400
2079
+ 1.13E+01
2080
+ 3.75E+02
2081
+ 9.37E+01
2082
+ 16
2083
+ Table 13.
2084
+ Computational performance of Mesh I.
2085
+ No. Proc.
2086
+ Av. CPU time
2087
+ Speedup
2088
+ Efficiency
2089
+ No. Azim. Part.
2090
+ 200
2091
+ 4.09E+01
2092
+ 2.00E+02
2093
+ 1.00E+02
2094
+ 4
2095
+ 400
2096
+ 1.52E+01
2097
+ 5.39E+02
2098
+ 1.35E+02
2099
+ 16
2100
+ 21 of 25
2101
+
2102
+ Figure 8.
2103
+ Speedup curve of the LES solver for different mesh sizes.
2104
+ Figure 9.
2105
+ Parallel efficiency of the LES solver for different mesh sizes.
2106
+ 22 of 25
2107
+
2108
+ 500
2109
+ A-5.9M
2110
+ B-11.8M
2111
+ C-23.7M
2112
+ 400
2113
+ D-47.3M
2114
+ E-94.6M
2115
+ F-189.3M
2116
+ G-378.5M
2117
+ Speedup
2118
+ 300
2119
+ H-757.1M
2120
+ I-1B
2121
+ 200
2122
+ 100
2123
+ 100
2124
+ 200
2125
+ 300
2126
+ 400
2127
+ NpA-5.9M
2128
+ B-11.8M
2129
+ C-23.7M
2130
+ D-47.3M
2131
+ E-94.6M
2132
+ 150
2133
+ F-189.3M
2134
+ G-378.5M
2135
+ Efficiency [%]
2136
+ H-757.1M
2137
+ I-1B
2138
+ 100
2139
+ 50
2140
+ 100
2141
+ 200
2142
+ 300
2143
+ 400
2144
+ NpIncreasing the size of a computational problem can generate a better scalability study. The time spent
2145
+ with computation becomes more significant when compared to the time spent with communication with the
2146
+ growth of a problem. One can notice such effect for meshes A, B, C, D and E. The speedup and the efficiency
2147
+ increase with with the growth of the mesh size. However, such scalability improvement does not happen
2148
+ from mesh E to meshes F, G, H and I. This behavior is originated because the reference used to calculate
2149
+ speedup and efficiency is not the same for all grid configurations. The studies performed using meshes F, G,
2150
+ H and I does not use the serial computation as a reference, which is not the case for the scalability studies
2151
+ performed in the current paper using mesh A, B, C, D and E.
2152
+ IX.
2153
+ Concluding Remarks
2154
+ The current work is a computational performance study of a large eddy simulation solver for supersonic
2155
+ jet flow configurations. Nine strong scalability studies are performed using meshes whose size grows from
2156
+ approximately 5.9 million points to approximately 1.0 billion points. Different partitioning configurations
2157
+ are used to evaluate its effects on the computational performance of the solver. Simulations are run on one
2158
+ processor up to 400 computational cores. The speedup and the computational efficiency are calculated for
2159
+ every study performed in the present article.
2160
+ The filtered compressible large eddy simulation formulation is written using a finite-difference centered
2161
+ second-order spatial discretization with the explicit addition of artificial dissipation. The time integration is
2162
+ performed using a five-steps second order Runge-Kutta scheme. Three subgrid scale models are implemented
2163
+ into the solver. Message passing interface protocols are used in order to perform the computation in parallel.
2164
+ The code presents parallel-IO features. Each MPI partition reads its portion of the mesh. A mesh generator
2165
+ is created in order to provide balanced CGNS mesh partitions.
2166
+ The solver creates two layers of ghost
2167
+ points in the axial and in azimuthal direction for each partition in order to exchange data with neighbor
2168
+ zones. Communication between partitions are performed using non blocking data exchange towards the best
2169
+ computational performance.
2170
+ The code presented a good scalability for the calculations run in the current paper.
2171
+ The averaged
2172
+ CPU time per iteration decays with the increase of number of processors in parallel for all computation
2173
+ performed by the large eddy simulation solver evaluated in the present work. Meshes with more than 50
2174
+ million points indicated an efficiency greater than 75%. The problem with approximately 100 million points
2175
+ presented speedup of 400 and efficiency of 100% when running on 400 computational cores in parallel. Such
2176
+ performance is equivalent to theoretical behavior in parallel. It is important to remark the ability of the
2177
+ parallel solver to treat very dense meshes as the one tested in the present paper with approximately 1.0
2178
+ billion points. Large eddy simulation demand very refined grids in order to have a well representation of the
2179
+ physical problem of interest. Therefore, it is important to perform simulations of such configuration with a
2180
+ good computation efficiency. One can notice the presence of super-linear speedup in the current study. Such
2181
+ behavior can be explained by cache limitations when running simulations with low amount of computational
2182
+ resources. Moreover, there is no serial version of the code. The sequential study is a parallel version running
2183
+ on one single processor.
2184
+ Acknowledgments
2185
+ The authors gratefully acknowledge the partial support for this research provided by Conselho Nacional
2186
+ de Desenvolvimento Cient´ıfico e Tecnol´ogico, CNPq, under the Research Grants No. 309985/2013-7, No.
2187
+ 400844/2014-1, No. 443839/2014-0 and No. 150551/2017-1. The authors are also indebted to the partial
2188
+ financial support received from Funda¸c˜ao de Amparo `a Pesquisa do Estado de S˜ao Paulo, FAPESP, under
2189
+ the Research Grants No. 2013/07375-0 and No. 2013/21535-0.
2190
+ 23 of 25
2191
+
2192
+ References
2193
+ 1Junqueira-Junior, C. A., Development of a Parallel Solver for Large Eddy Simulation of Supersonic Jet Flow, Ph.D.
2194
+ thesis, Instituto Tecno´ogico de Aeron´autica, S˜ao Jos´e dos Campos, SP, Brazil, 2016.
2195
+ 2Junqueira-Junior, C., Yamouni, S., ao Luiz F. Azevedo, J., and Wolf, W. R., “Influence of Different Subgrid Scale Models
2196
+ in LES of Supersonic Jet Flows,” AIAA Paper No. 2016-4093, 46th AIAA Fuid Dynamics Conference, AIAA Aviation Forum,
2197
+ Washington, D.C., Jun. 2016.
2198
+ 3Wolf, W. R., Azevedo, J. L. F., and Lele, S. K., “Convective Effects and the Role of Quadrupole Sources for Aerofoil
2199
+ Aeroacoustics,” Journal of Fluid Mechanics, Vol. 708, 2012, pp. 502–538.
2200
+ 4Vreman, A. W., Direct and Large-Eddy Simulation of the Comperssible Turbulent Mixing Layer, Ph.D. thesis, Universiteit
2201
+ Twente, 1995.
2202
+ 5Mendez, S., Shoeybi, M., Sharma, A., Ham, F. E., Lele, S. K., and Moin, P., “Large-Eddy Simulations of Perfectly-
2203
+ Expanded Supersonic Jets: Quality Assessment and Validation,” AIAA Paper No. 2010–0271, January 2010.
2204
+ 6Bridges, J. and Wernet, M. P., “Turbulence Associated with Broadband Shock Noise in Hot Jets,” AIAA paper, Vol. 2834,
2205
+ 2008, pp. 2008.
2206
+ 7Folk, M., Cheng, A., and Yates, K., “HDF5: A File Format and I/O Library for High Performance Computing Applica-
2207
+ tions,” Proceedings of Supercomputing, Vol. 99, 1999, pp. 5–33.
2208
+ 8Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D., “An Overview of the HDF5 Technology Suite and its
2209
+ Applications,” Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases, ACM, 2011, pp. 36–47.
2210
+ 9Poirier, D. and Enomoto, F. Y., “The CGNS System,” AIAA Paper No. 98-3007, Proceedings of 29th AIAA Fluid
2211
+ Dynamics Conference, Albuquerque, NM, June 1998.
2212
+ 10Poirier, D. M. A., Bush, R. H., Cosner, R. R., Rumsey, C. L., and McCarthy, D. R., “Advances in the CGNS Database
2213
+ Standard for Aerodynamics and CFD,” AIAA Paper No. 2000-0681, 38th AIAA Aerospace Sciences Meeting & Exhibit, Reno,
2214
+ NV, Jan. 2000.
2215
+ 11Legensky, S. M., Edwards, D. E., Bush, R. H., and Poirier, D., “CFD General Notation System (CGNS) - Status and
2216
+ Future Directions,” AIAA Paper No. 2002-0752, Proceedings of 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV,
2217
+ Jan. 2002.
2218
+ 12Dongarra, J. J., Otto, S. W., Snir, M., and Walker, D., “An Introduction to the MPI Standard,” Tech. rep., Knoxville,
2219
+ TN, USA, 1995.
2220
+ 13Sagaut, P., Large Eddy Simulation for Incompressible Flows, Springer, 2002.
2221
+ 14Smagorinsky, J., “General Circulation Experiments with the Primitive Equations: I. The Basic Experiment,” Monthly
2222
+ Weather Review, Vol. 91, No. 3, March 1963, pp. 99–164.
2223
+ 15Lilly, D. K., “The Representation of Small-Scale Turbulence in Numerical Simulation Experiments,” IBM Form No. 320-
2224
+ 1951, Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, N.Y., 1967, pp.
2225
+ 195–210.
2226
+ 16Garnier, E., Adams, N., and Sagaut, P., Large Eddy Simulation for Compressible Flows, Springer, 2009.
2227
+ 17Vreman, A. W., “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications,”
2228
+ Physics of Fluids, Vol. 16, No. 10, October 2004.
2229
+ 18Lilly, D. K., “On the Computational Stability of Numerical Solutions of Time- Dependent Non-Linear Geophysical Fluid
2230
+ Dynamics Problems,” Monthly Weather Review, Vol. 93, No. 1, January 1965, pp. 11–25.
2231
+ 19Deardorff, J. W., “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers,”
2232
+ Journal of Fluid Mechanics, Vol. 41, part 2, 1970, pp. 453–480.
2233
+ 20Leonard, A., “Energy Cascade in Large Eddy Simulations of Turbulent Fluid Flows,” Adv. Geophys., Vol. A18, 1974,
2234
+ pp. 237–48.
2235
+ 21Clark, R. A., Ferziger, J. Z., and Reynolds, W. C., “Evaluation of Subgrid-Scale Models Using an Accurately Simulated
2236
+ Turbulent Flow,” Journal of Fluid Mechanics, Vol. 91, 1979, pp. 1–16.
2237
+ 22Vreman, B., Geurts, B., and Kuerten, H., “Large-Eddy Simulation of the Turbulent Mixing Layer Using the Clarck
2238
+ Model,” Theoretical Computational Fluid Dynamics, Vol. 8, No. 4, 1996, pp. 309–324.
2239
+ 23Germano, M., “Averaging Invariance of the Turbulent Equations and Similar Subgrid Scale Modeling,” Center for
2240
+ Turbulence Research Manuscript 116, Stanford University and NASA - Ames Research Center, 1990.
2241
+ 24Moin, P., Squires, K., Cabot, W., and Lee, S., “A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar
2242
+ Transport,” Physics of Fluids A: Fluid Dynamics (1989-1993), Vol. 3, No. 11, 1991, pp. 2746–2757.
2243
+ 25Yoshizawa, A., “Statistical Theory for Compressible Turbulent Shear Flows, with the Application to Subgrid Modeling,”
2244
+ Physics of Fluids, Vol. 29, No. 7, July 1986.
2245
+ 26Bigarella, E. D. V., Three-Dimensional Turbulent Flow Over Aerospace Configurations, M.Sc. Thesis, Instituto Tec-
2246
+ nol´ogico de Aeron´autica, S˜ao Jos´e dos Campos, SP, Brasil, 2002.
2247
+ 27Turkel, E. and Vatsa, V. N., “Effect of Artificial Viscosity on Three-Dimensional Flow Solutions,” AIAA Journal, Vol. 32,
2248
+ No. 1, 1994, pp. 39–45.
2249
+ 28Jameson, A. and Mavriplis, D., “Finite Volume Solution of the Two-Dimensional Euler Equations on a Regular Triangular
2250
+ Mesh,” AIAA Journal, Vol. 24, No. 4, Apr. 1986, pp. 611–618.
2251
+ 29Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the Euler Equations by Finite Volume Methods
2252
+ Using Runge-Kutta Time-Stepping Schemes,” AIAA Paper 81–1259, Proceedings of the AIAA 14th Fluid and Plasma Dynamic
2253
+ Conference, Palo Alto, Californa, USA, June 1981.
2254
+ 30Long, L. N., Khan, M., and Sharp, H. T., “A Massively Parallel Three-Dimensional Euler/Navier-Stokes Method,” AIAA
2255
+ Journal, Vol. 29, No. 5, 1991, pp. 657–666.
2256
+ 31Bentley, J. L., “Multidimensional Binary Search Trees Used for Associative Searching,” Communications of the ACM,
2257
+ Vol. 18, No. 9, 9 1975, pp. 509–517.
2258
+ 24 of 25
2259
+
2260
+ 32Bentley, J., “Multidimensional Binary Search Trees in Database Applications,” IEEE Transactions on Software Engi-
2261
+ neering, Vol. SE-5, No. 4, 1979, pp. 0–340.
2262
+ 33Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., “A Dynamic Subgridscale Eddy Viscosity Model,” Physics of
2263
+ Fluids A: Fluid Dynamics, Vol. 3, No. 7, July 1991.
2264
+ 34Balaji, P. and Kimpe, D., “On the Reproducibility of MPI Reduction Operations,” 2013 IEEE 10th International Con-
2265
+ ference on High Performance Computing and Communications & IEEE International Conference on Embedded and Ubiquitous
2266
+ Computing (HPCC EUC), IEEE, 2013, pp. 407–414.
2267
+ 35Arteaga, A., Fuhrer, O., and Hoefler, T., “Desingning a Bit-Reproducible Portable High-Performance Applications,”
2268
+ Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, Phoenix, AZ, USA, May 2014, pp. 1235–1244.
2269
+ 36CEPID-CeMEAI, “Centro de Ciˆencias Aplicadas a Ind´ustria. http://www.cemeai.icmc.usp.br/,” .
2270
+ 37Lustre ®, “http://www.lustre.org/,” .
2271
+ 38RedHat, “http://www.redhat.com/,” .
2272
+ 39Altair - PBS WorksTM, “http://www.pbsworks.com/,” .
2273
+ 40Ertel, W., “On the Definition of Speedup,” PARLE’94 Parallel Architectures and Languages Europe, Springer, Berlin,
2274
+ 1994, pp. 289–300.
2275
+ 41Gustafson, J. L., “Reevaluating Amdahl’s Law,” Communications of the ACM, Vol. 31, No. 5, 1988, pp. 532–533.
2276
+ 42Sun, X.-H. and Chen, Y., “Reevaluating Amdahl’s Law in Multicore Era,” J. Parallel Distrib. Comput., Vol. 70, No. 2,
2277
+ Feb. 2010, pp. 183–188.
2278
+ 43Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities,” AFIPS
2279
+ Conference Proceedings, Vol. 30, ACM, Atlantic City, N.J., USA, Apr. 1967, pp. 483–485.
2280
+ 44Junqueira-Junior, C., Yamouni, S., Azevedo, J. L. F., and Wolf, W. R., “Large Eddy Simulations of Supersonic Jet Flows
2281
+ for Aeroacoustic Applications,” AIAA Paper No. 2015-3306, Proceedings of the 33rd AIAA Applied Aerodynamics Conference,
2282
+ Dallas, TX, June 2015.
2283
+ 45Benzi, J. and Damodaran, M., “Parallel Three Dimensional Direct Simulation Monte Carlo for Simulating Micro Flows,”
2284
+ Parallel Computational Fluid Dynamics 2007, Springer, 2009, pp. 91–98.
2285
+ 25 of 25
2286
+
J9AyT4oBgHgl3EQf6Pof/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JtAyT4oBgHgl3EQf5_rl/content/tmp_files/2301.00816v1.pdf.txt ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ 1
4
+
5
+ Thermo-optic phase shifter based on hydrogen-doped indium oxide microheater
6
+
7
+ Weiyu Tong, Erqi Yang, Yu Pang, Haobo Yang, Xin Qian, Ronggui Yang, Bin Hu*, Jianji
8
+ Dong* and Xinliang Zhang
9
+
10
+ W. Tong, E. Yang, B. Hu, J. Dong, X. Zhang
11
+ Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and
12
+ Technology, Wuhan 430074, China
13
14
+ Y. Pang, H. Yang, X. Qian, R. Yang
15
+ School of Energy and Power Engineering, Huazhong University of Science and Technology,
16
+ Wuhan 430074, China
17
+
18
+ Keywords: silicon photonics, thermo-optic, phase shifter, transparent conductive oxide,
19
+ hydrogen-doped indium oxide
20
+
21
+ Thermo-optic (TO) phase shifters are very fundamental units in large-scale active silicon
22
+ photonic integrated circuits (PICs). However, due to the limitation of microheater materials
23
+ with a trade-off between heating efficiency and absorption loss, designs reported so far typically
24
+ suffer from slow response time, high power consumption, low yields, and so on. Here, we
25
+ demonstrate an energy-efficient, fast-response, and low-loss TO phase shifter by introducing
26
+ hydrogen-doped indium oxide (IHO) films as microheater, and the optimized electron
27
+ concentration with enhanced mobility endows the IHO high conductivity as well as high near-
28
+ infrared (NIR) transparency, which allow it to directly contact the silicon waveguide without
29
+ any insulating layer for efficient tuning and fast response. The TO phase shifter achieves a sub-
30
+ microsecond response time (970 ns/980 ns) with a π phase shift power consumption of 9.6 mW.
31
+ And the insertion loss introduced by the IHO microheater is ~ 0.5 dB. The proposed IHO-based
32
+ microheaters with compatible processing technology illustrate the great potential of such
33
+ material in the application of large-scale silicon PICs.
34
+
35
+ 1. Introduction
36
+
37
+ Silicon photonic integrated circuits (PICs) trend to lie at the heart of the communications
38
+ revolution owing to the low power consumption, high speed, large bandwidth and
39
+
40
+
41
+
42
+ 2
43
+
44
+ complementary metal-oxide semiconductor (CMOS) compatibility. Recently, emerging
45
+ applications of PICs such as optical phased arrays (OPAs),[1-3] optical neural networks
46
+ (ONNs),[4-6] integrated photonic quantum,[7, 8] and so on are also attracting increased interest.
47
+ The phase shifter is an indispensable fundamental photonic device for its phase tuning
48
+ capability, and its large-scale integration is in demand in the above various applications. Due
49
+ to the high thermo-optic (TO) coefficient (1.84 × 10−4 K−1) of silicon,[9] phase tuning of silicon
50
+ waveguide can be achieved easily by heating using a microheater, and such TO tuning as an
51
+ efficient way in phase shifter has been widely used in large-scale silicon PICs by virtue of the
52
+ advantages of simple design, easy fabrication, low cost and compactness.[10-13] Unfortunately,
53
+ the conventional metal-based microheaters for TO tuning require a thick insulating layer (i.e.,
54
+ SiO2 layer) to avoid large absorption loss but would result in high power consumption and slow
55
+ response speed, which become an obstacle in the application scenarios desiring fast-response
56
+ TO tuning, such as fast beam scanning of OPAs and fast switching of neurons in ONNs.
57
+ Recently, designs by placing the metal quite close to the waveguide have been proposed, which
58
+ can realize low-loss devices based on non-Hermitian system theory, thereby improving the
59
+ efficiency and speed of TO tuning.[14, 15] However, this approach requires a high-precision
60
+ fabrication process, having difficulties in large-scale PIC applications. To remove the insulating
61
+ layer, emerging two-dimension (2D) materials, such as graphene,[16-18] phosphorene,[19, 20]
62
+ MXenes,[21] and so forth, have been demonstrated to directly overlay waveguides as the
63
+ microheaters and contribute excellent performances in TO tuning, but the sophisticated
64
+ preparation and transfer processes of 2D materials also face the difficulties in practical PIC
65
+ applications due to the low yield. Doped-silicon microheaters can directly generate heat inside
66
+ the waveguide to achieve high-speed TO tuning,[22-25] but the loss induced by free carriers turns
67
+ into a challenging issue.
68
+ Transparent conductive oxides (TCOs) can be the alternative materials for microheaters, and
69
+ their mature and reliable mass-production processes provide the practical application in large-
70
+ scale silicon PICs. So far, the dominant TCO known as tin-doped indium oxide (ITO) has been
71
+ widely used in optoelectronic devices such as photovoltaic cells, displays, touch screens, etc.[26,
72
+ 27] Most of TCOs with relatively high free carrier concentration (n > 5 × 1020 cm-3) can be
73
+ transparent in the visible spectral range but always show a strong absorption due to the plasma
74
+ oscillations in the near-infrared (NIR) waveband,[28] which increases the insertion loss of the
75
+ phase shifter. Although such an issue can be alleviated by decreasing the doping amount in
76
+ TCOs for lower n, the enhanced NIR transmittance would accompany the decrease of electrical
77
+ conductivity (σ) of TCOs which may weaken the heating performance. Fortunately, the
78
+
79
+
80
+
81
+ 3
82
+
83
+ conductivity is determined by both carrier concentration and carrier mobility (μ) and can be
84
+ expressed as σ = enμ (e is the elemental charge). Therefore, enhancing μ but lowering the n can
85
+ be an effective way to balance the conductivity and NIR transparency. Nowadays, researchers
86
+ have demonstrated to replace the tin doped in ITO with other metals for higher μ, such as
87
+ titanium,[29, 30] tungsten,[31, 32], and molybdenum,[33-35] and prove that the TCO films possess the
88
+ higher transparency in the NIR waveband and can maintain the comparable σ simultaneously.
89
+ Nevertheless, the growth temperatures of these TCOs require relatively high (> 300 ℃), which
90
+ exceeds the melting point of photoresists for micro-pattern manufacturing.
91
+ In this paper, we propose and experimentally demonstrate a TO phase shifter based on
92
+ hydrogen-doped indium oxide (IHO) microheater. We fabricate an IHO microheater for phase
93
+ shifter through room-temperature magnetron sputtering with high-temperature post-annealing
94
+ treatment. The deposited IHO films possess high µ and moderate n, thus can achieve
95
+ appropriate sheet resistance and high NIR transparency simultaneously. The compatible
96
+ fabrication process makes the IHO more suitable for patterning by mature lift-off process and
97
+ exhibits great potential for on-chip applications. The IHO microheater is designed to directly
98
+ contact the silicon waveguide without any insulating layer for efficient TO tuning and fast
99
+ response. The high NIR transparency of IHO ensures low insertion loss of the phase shifter. We
100
+ measure the TO tuning performance of the proposed phase shifter through the conventional
101
+ Mach–Zehnder interferometer (MZI) structure. Its fastest response time is 970 ns in rising time
102
+ and 980 ns in falling time, with a π phase shift power consumption of 9.6 mW, and the insertion
103
+ loss introduced by the corresponding IHO microheater is about 0.5 dB. Our work illustrates the
104
+ great potential of IHO to be a novel microheater material for large-scale silicon PICs.
105
+
106
+ 2. Results
107
+
108
+ 2.1. Chip Design and Fabrication
109
+
110
+ A phase shifter based on IHO microheater is designed on a silicon-on-insulator (SOI) substrate
111
+ with a top silicon thickness of 220 nm. Figure 1a exhibits the details of the complete fabrication
112
+ process of the phase shifter. First, we use electron beam lithography (EBL) and inductively
113
+ coupled plasma (ICP) etching to fabricate the MZI structure. The strip waveguide width is 550
114
+ nm and the thickness is 220 nm. Then, the IHO microheaters are directly deposited on the
115
+ waveguide through magnetron sputtering and the geomtery of the pattern can be well controlled
116
+
117
+
118
+
119
+ 4
120
+
121
+ through lift-off process. The entire device is fabricated under standard silicon photonics
122
+ fabrication processes (no air-trench or undercut process).
123
+
124
+ Figure 1. a) The schematic of the device fabrication process. b) The microscope image of the
125
+ fabricated MZI structure. Insets: the zoom-in images of the IHO films. c) The SEM image of
126
+ the cross-section of the phase shifter. IHO film is false-colored. d)The thickness measurement
127
+ result of the IHO film.
128
+
129
+ Figure 1b exhibits a microscope image of the fabricated MZI structure. The insets show the
130
+ zoom-in images of the IHO films on the waveguides. Both arms of the MZI structure are
131
+ covered with IHO films to balance the loss, and two additional IHO pads are deposited on both
132
+ sides of the MZI tuning arm for contact with the probes. The length of the IHO film covering
133
+ on the waveguide is 10 μm along the light transmission direction. A pair of grating couplers
134
+ designed for TE polarization are used coupling to the input/output fibers. Figure 1c presents the
135
+ scanning electron microscope (SEM) image of the cross-section of the phase shifter. The
136
+ thickness of the IHO film is measured to be 66 nm with an atomic force microscope (AFM), as
137
+ shown in Figure 1d.
138
+
139
+ 2.2. Chip Characterization and Measurements
140
+
141
+
142
+ Si
143
+ Si
144
+ Si
145
+ SiO2
146
+ siO2
147
+ SiO2
148
+ SiSubstrate
149
+ SiSubstrate
150
+ SiSubstrate
151
+ Si
152
+ si02
153
+ siO2
154
+ SiO2
155
+ SiSubstrate
156
+ SiSubstrate
157
+ SiSubstrate
158
+ (b)
159
+ 10μm
160
+ (c)
161
+ 10um
162
+ 100μm
163
+ 10.0
164
+ 20.0
165
+ um
166
+
167
+ 5
168
+
169
+
170
+ Figure 2. a) Comparison of transmittance between IHO and ITO. b) Normalized transmission
171
+ spectra for the MZI with and without IHO. Insets: the zoom-in images around 1550 nm.c)
172
+ Simulated optical E field distribution for the fundamental mode at a wavelength of 1550 nm. d)
173
+ Simulated temperature distribution at a heating power of 9.6 mW.
174
+
175
+ Figure 2a compares the transmittance of the prepared IHO film and commercial ITO film. It
176
+ can be seen that the IHO possesses significantly higher transmittance than ITO in the NIR
177
+ waveband under same sheet resistance. In particular, for a 66 nm thick IHO film (corresponding
178
+ to the solid orange line), it shows a transmittance over 97% in the C+L band (1530 nm - 1565
179
+ nm and 1565 nm - 1625 nm). The measured transmission spectra of the fabricated MZI structure
180
+ with and without IHO microheater are depicted in Figure 2b (orange line and blue line,
181
+ respectively). The results are normalized to the reference strip waveguide to exclude the
182
+ coupling loss of the grating couplers. The IHO microheater introduces an excess loss of about
183
+ 0.5 dB (as shown in the insect) and has little effect on the extinction ratio of the MZI structure.
184
+ Figure 2c, d present the simulated images of the optical E field distribution and temperature
185
+ distribution in a cross-section of the phase shifter based on the finite element method (FEM),
186
+ respectively.
187
+
188
+
189
+ 100
190
+ Without IHO -
191
+ -With IHO
192
+ (dB
193
+ 80
194
+ 5
195
+ 60
196
+ L-band
197
+ 10
198
+ C-band
199
+ 40
200
+ 15
201
+ —IHO 80 Q/sq
202
+ 3
203
+ - -ITO 80 Q/sq
204
+ 20
205
+ IHO 15 Q/sq
206
+ 20
207
+ -ITO 15 Q/sq
208
+ 1549.9
209
+ 1550
210
+ 1550.1
211
+ 25
212
+ 500
213
+ 1000
214
+ 1500
215
+ 2000
216
+ 2500
217
+ 1549
218
+ 1550
219
+ 1551
220
+ Wavelength (nm)
221
+ Wavelength(nm)
222
+ Electric Field (V/m)
223
+ ×107
224
+ TemperaturefK
225
+ IHO
226
+ 335
227
+ 5
228
+ 330
229
+ SiO2
230
+ 325
231
+ 4
232
+ 320
233
+ 3
234
+ 315
235
+ 310
236
+ 2
237
+ 305
238
+ 1
239
+ 300
240
+ Si Substrate
241
+ 295
242
+
243
+ 6
244
+
245
+
246
+ Figure 3. a) The transmission spectra at different heating powers. b) The waveform of the
247
+ driving signal (orange line) and corresponding output signal (blue line).
248
+
249
+ In order to measure the spectral responses, different driving power are applied to the IHO
250
+ microheater. The measured spectra are presented in Figure 3a. The shift of the interference dip
251
+ at approximately 1550.48 nm reaches 1/2 free spectral range (FSR) with a tuning power of 9.6
252
+ mW. The response time of the device is further characterized by driving the IHO heater with a
253
+ square waveform electrical signal while the input wavelength is fixed at 1550.47 nm. The
254
+ frequency of the driving signal is set to 50 kHz with a peak-to-peak voltage (Vpp) of 6.0 V. The
255
+ Vpp of 6.0 V corresponds to an applied heating power of 9.6 mW. The waveform of the output
256
+ signal is measured via a photodetector followed by an oscilloscope. The driving signal and
257
+ corresponding output signal are shown in Figure 3b. The 10–90% rising and falling times are
258
+ measured to be 970 and 980 ns, respectively.
259
+
260
+ 2.3. Performance Comparison
261
+ We compared the performance of our proposed phase shifter with the state-of-art TO
262
+ modulation devices in recent years,[14-16, 18, 20, 22-25, 36-39] as shown in Figure 4. The lower π phase
263
+ shift power consumption (Pπ) of the phase shifter is more beneficial to reduce the overall power
264
+ consumption of the large-scale PICs, and the shorter response time stands for better system
265
+ performance. As a comparison, we focus on the cases of MZI structures, and there is no air-
266
+ trench or undercut process during device fabrication, just as our work. Besides, the response
267
+ time is estimated by τ = 0.35/BW if thus parameters were not offered.[24] Compared with
268
+ other schemes, our work achieves both low power consumption and fast response, second only
269
+ to 2D material-based microheaters in terms of overall modulation performance. Furthermore,
270
+
271
+ Voltage (V)
272
+ NormalizedPower (dB)
273
+ Voltage (a.u.)
274
+ 970 ns
275
+ 980 ns
276
+ 25
277
+ 0mW
278
+ -----2.1 mW -----6
279
+ 6.0mW
280
+ -0.8mW ---.-4.0mW
281
+ 9.6mW
282
+ 30
283
+ 1549
284
+ 1550
285
+ 1551
286
+ 5
287
+ 10
288
+ 15
289
+ 20
290
+ Wavelength(nm)
291
+ Time (μs
292
+
293
+ 7
294
+
295
+ the proposed device structure is simple to fabricate and has great potential for use in large-scale
296
+ PIC applications.
297
+
298
+
299
+ Figure 4. Performance comparison of the state-of-art TO modulation devices.
300
+
301
+ 3. Conclusion
302
+ In conclusion, we propose and experimentally demonstrate a TO phase shifter based on IHO
303
+ microheater directly overlaying on the silicon waveguide. The phase shifter has an insertion
304
+ loss as low as about 0.5 dB. Based on the MZI structure, it exhibits a low π phase shift power
305
+ consumption of 9.6 mW, and a fast response of 970 ns in rising time and 980 ns in falling time.
306
+ Besides, the IHO film is easy to be patterned on chips. Therefore, our work not only
307
+ demonstrates an efficient, fast-response, and low-loss TO phase shifter, but also provides a
308
+ novel design route for optical modulation devices in large-scale PICs.
309
+
310
+ 4. Experimental Section
311
+ Materials: IHO film deposited by magnetron sputtering. Firstly, a high-purity ceramic In2O3
312
+ target (99.99% purity, Zhongnuo Advanced Material Technology Co., Ltd) is used as a
313
+ sputtering target. The target is put into radio frequency (RF) magnetron sputtering system
314
+ (Beijing Technol Science Co., Ltd). When the base pressure is less than 10-4 Pa, the gas that
315
+ both argon and hydrogen argon mixture (95%Ar and 5%H2) is introduced to the system and
316
+ various Ar and Ar/H2. After the gas pressure stabilizes at 0.16 Pa, the sputtering power was set
317
+ at 150 W for 210 seconds at room temperature (300 K). Finally, the as-deposited IHO films
318
+
319
+ [39]
320
+ [20]
321
+ 2DMaterials
322
+ TCOs
323
+ DopedSilicon
324
+ Metals
325
+ 10
326
+ [38]
327
+ Response time
328
+ [36]
329
+ [37]
330
+ .
331
+ [18]
332
+ [25]
333
+ [22]
334
+ [24][23]
335
+ 14]
336
+ [15]+
337
+ 100
338
+ Thiswork
339
+ [16]
340
+ 1020
341
+ 30
342
+ 4050
343
+ 60
344
+ (mw)
345
+
346
+ 8
347
+
348
+ were annealed at 250 ℃ for 150 seconds in N2 atmosphere, respectively. All the ITO films was
349
+ brought by Foshan Shi Yuan Jing Mei Glass Co.,Ltd.
350
+ Device characterization: We use an amplified spontaneous emission (OS8143) optical
351
+ source to generate a C-band broadband signal, and a power supply (Rohde&Schwarz
352
+ HMP4040) to provide a static electrical signal, and finally record the spectral response of the
353
+ MZI structures by an optical spectrum analyzer (Yokokawa AQ6319). When we measure the
354
+ dynamic response, the power supply is replaced by an arbitrary waveform generator (RIGOL
355
+ DG4202), and the input light is emitted from a tunable laser source (ID-Photonics CoBriteDX4).
356
+ The output signal is measured via a photodetector (Discovery DSC40S) followed by the
357
+ oscilloscope (RIGOL DG4022). A polarization controller is used to select the TE polarization
358
+ state of the input light before it is injected into the chip. All the measurements are performed
359
+ under room temperature in ambient conditions. The specular transmittance of the samples
360
+ (range from 0.3 μm to 2.5 μm) was characterized by the UV-Vis-NIR spectrophotometer
361
+ (Shimadzu UV-3600 Plus). .
362
+
363
+ Acknowledgements
364
+ This research is supported by the Natural Science Foundation of China (U21A20511,
365
+ 62274071),
366
+ the
367
+ National
368
+ Key
369
+ Research
370
+ and
371
+ Development
372
+ Program
373
+ of
374
+ China
375
+ (2022YFB2804200), and the Innovation Project of Optics Valley Laboratory (Grant No.
376
+ OVL2021BG001). The authors thank the Optoelectronic Micro&Nano Fabrication and
377
+ Characterizing Facility of Wuhan National Laboratory for Optoelectronics for the support in
378
+ device fabrication. Weiyu Tong and Erqi Yang contributed equally to this work.
379
+
380
+ Conflict of Interest
381
+ The authors declare no conflict of interest.
382
+
383
+ Data Availability Statement
384
+ The data that support the findings of this study are available from the corresponding author
385
+ upon reasonable request.
386
+
387
+ References
388
+ [1]
389
+ J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, Nature 2013, 493,
390
+ 195.
391
+ [2]
392
+ D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A.
393
+ Feshali, H. Rong, Optica 2016, 3, 887.
394
+
395
+
396
+
397
+ 9
398
+
399
+ [3]
400
+ C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, M. R.
401
+ Watts, Opt. Lett. 2017, 42, 4091.
402
+ [4]
403
+ Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S.
404
+ Zhao, H. Larochelle, D. Englund, M. Soljačić, Nat. Photonics 2017, 11, 441.
405
+ [5]
406
+ N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M.
407
+ L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, D. Englund, Optica 2018, 5, 1623.
408
+ [6]
409
+ W. Bogaerts, D. Pérez, J. Capmany, D. A. B. Miller, J. Poon, D. Englund, F.
410
+ Morichetti, A. Melloni, Nature 2020, 586, 207.
411
+ [7]
412
+ J. W. Wang, S. Paesani, Y. H. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J.
413
+ Tura, R. Augusiak, L. Mancinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. H. Gong, A.
414
+ Acin, K. Rottwitt, L. K. Oxenlowe, J. L. O'Brien, A. Laing, M. G. Thompson, Science 2018,
415
+ 360, 285.
416
+ [8]
417
+ X. Chen, Y. Deng, S. Liu, T. Pramanik, J. Mao, J. Bao, C. Zhai, T. Dai, H. Yuan, J.
418
+ Guo, S.-M. Fei, M. Huber, B. Tang, Y. Yang, Z. Li, Q. He, Q. Gong, J. Wang, Nat. Commun.
419
+ 2021, 12, 2712.
420
+ [9]
421
+ R. L. Espinola, M. C. Tsai, J. T. Yardley, R. M. Osgood, IEEE Photon. Technol. Lett.
422
+ 2003, 15, 1366.
423
+ [10]
424
+ H. L. Zhou, Y. H. Zhao, Y. X. Wei, F. Li, J. J. Dong, X. L. Zhang, Nanophotonics
425
+ 2019, 8, 2257.
426
+ [11]
427
+ H. L. Zhou, Y. H. Zhao, X. Wang, D. S. Gao, J. J. Dong, X. L. Zhang, ACS Photonics
428
+ 2020, 7, 792.
429
+ [12]
430
+ H. L. Zhou, Y. H. Zhao, G. X. Xu, X. Wang, Z. P. Tan, J. J. Dong, X. L. Zhang, IEEE
431
+ J. Sel. Top. Quantum Electron. 2020, 26, 8300910.
432
+ [13]
433
+ J. W. Cheng, W. K. Zhang, W. T. Gu, H. L. Zhou, J. J. Dong, X. L. Zhang, ACS
434
+ Photonics 2022.
435
+ [14]
436
+ W. Y. Tong, Y. X. Wei, H. L. Zhou, J. J. Dong, X. L. Zhang, Photonics 2022, 9, 447.
437
+ [15]
438
+ Y. X. Wei, J. W. Cheng, Y. L. Wang, H. L. Zhou, J. J. Dong, D. M. Huang, F. Li, M.
439
+ Li, P. K. A. Wai, X. L. Zhang, Advanced Photonics Research 2022, 3, 2200120.
440
+ [16]
441
+ S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, Y. Ding, Nat.
442
+ Commun. 2017, 8, 14411.
443
+ [17]
444
+ C. Y. Qiu, Y. X. Yang, C. Li, Y. F. Wang, K. Wu, J. P. Chen, Scientific Reports 2017,
445
+ 7, 17046.
446
+ [18]
447
+ C. Y. Zhong, Z. B. Zhang, H. Ma, M. L. Wei, Y. T. Ye, J. H. Wu, B. Tang, P. Zhang,
448
+ R. N. Liu, J. Y. Li, L. Li, X. Y. Hu, K. H. Liu, H. T. Lin, Nanomaterials 2022, 12, 1083.
449
+ [19]
450
+ Z. Cheng, R. Cao, J. Guo, Y. Yao, K. Wei, S. Gao, Y. Wang, J. Dong, H. Zhang,
451
+ Nanophotonics 2020, 9, 1973.
452
+ [20]
453
+ Y. J. Liu, H. D. Wang, S. Wang, Y. J. Wang, Y. Z. Wang, Z. N. Guo, S. M. Xiao, Y.
454
+ Yao, Q. H. Song, H. Zhang, K. Xu, Adv. Opt. Mater. 2020, 8, 1901526.
455
+ [21]
456
+ Y. H. Yao, X. F. Xia, Z. Cheng, K. K. Wei, X. T. Jiang, J. J. Dong, H. Zhang, IEEE J.
457
+ Sel. Top. Quantum Electron. 2020, 26, 5900306.
458
+ [22]
459
+ M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, Opt. Lett.
460
+ 2013, 38, 733.
461
+ [23]
462
+ N. C. Harris, Y. J. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, C.
463
+ Galland, Opt. Express 2014, 22, 10487.
464
+ [24]
465
+ M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, D. V. Plant, Opt. Express 2019,
466
+ 27, 10456.
467
+ [25]
468
+ C. Zhong, H. Ma, C. Sun, M. Wei, Y. Ye, B. Tang, P. Zhang, R. Liu, J. Li, L. Li, H.
469
+ Lin, Opt. Express 2021, 29, 23508.
470
+ [26]
471
+ D. S. Hecht, L. B. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
472
+ [27]
473
+ K. Ellmer, Nat. Photonics 2012, 6, 809.
474
+
475
+
476
+
477
+ 10
478
+
479
+ [28]
480
+ D. S. Ginley, J. D. Perkins, in Handbook of Transparent Conductors, (Ed: D. S.
481
+ Ginley), Springer US, Boston, MA 2011.
482
+ [29]
483
+ M. F. A. M. van Hest, M. S. Dabney, J. D. Perkins, D. S. Ginley, M. P. Taylor, Appl.
484
+ Phys. Lett. 2005, 87.
485
+ [30]
486
+ Y. Abe, N. Ishiyama, Journal of Materials Science 2006, 41, 7580.
487
+ [31]
488
+ P. F. Newhouse, C. H. Park, D. A. Keszler, J. Tate, P. S. Nyholm, Appl. Phys. Lett.
489
+ 2005, 87.
490
+ [32]
491
+ X. F. Li, Q. Zhang, W. N. Miao, L. Huang, Z. J. Zhang, Thin Solid Films 2006, 515,
492
+ 2471.
493
+ [33]
494
+ Y. Meng, X. L. Yang, H. X. Chen, J. Shen, Y. M. Jiang, Z. J. Zhang, Z. Y. Hua, Thin
495
+ Solid Films 2001, 394, 219.
496
+ [34]
497
+ S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E.
498
+ Fortunato, R. Ganesan, Sol. Energy Mater. Sol. Cells 2009, 93, 92.
499
+ [35]
500
+ J. E. N. Swallow, B. A. D. Williamson, S. Sathasivam, M. Birkett, T. J. Featherstone,
501
+ P. A. E. Murgatroyd, H. J. Edwards, Z. W. Lebens-Higgins, D. A. Duncan, M. Farnworth, P.
502
+ Warren, N. H. Peng, T. L. Lee, L. F. J. Piper, A. Regoutz, C. J. Carmalt, I. P. Parkin, V. R.
503
+ Dhanak, D. O. Scanlon, T. D. Veal, Mater. Horiz. 2020, 7, 236.
504
+ [36]
505
+ J. Parra, J. Hurtado, A. Griol, P. Sanchis, Opt. Express 2020, 28, 9393.
506
+ [37]
507
+ S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern,
508
+ X. Ji, A. Mohanty, O. A. Jimenez Gordillo, U. D. Dave, M. Lipson, Optica 2020, 7, 3.
509
+ [38]
510
+ H. Qiu, Y. Liu, C. Luan, D. Kong, X. Guan, Y. Ding, H. Hu, Opt. Lett. 2020, 45,
511
+ 4806.
512
+ [39]
513
+ H. Nejadriahi, S. Pappert, Y. Fainman, P. Yu, Opt. Lett. 2021, 46, 4646.
514
+
515
+
JtAyT4oBgHgl3EQf5_rl/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
L9FRT4oBgHgl3EQf2Ti5/content/tmp_files/2301.13660v1.pdf.txt ADDED
@@ -0,0 +1,1059 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Non-Hermitian Z2 Photonic Topological Insulators
2
+ Rodrigo P. Câmara,1 Tatiana G. Rappoport,1, 2 and Mário G. Silveirinha1
3
+ 1Instituto Superior Técnico and Instituto de Telecomunicações,
4
+ University of Lisbon, Avenida Rovisco Pais 1, Lisboa, 1049001 Portugal
5
+ 2Instituto de Física, Universidade Federal do Rio de Janeiro,
6
+ C.P. 68528, 21941-972 Rio de Janeiro RJ, Brazil
7
+ (Dated: February 1, 2023)
8
+ Photonic platforms invariant under the action of parity, time-reversal, and duality (P · T · D)
9
+ operators may host topological phases that are the counterpart of those supported by time-reversal
10
+ invariant Z2 electronic systems. Here, we uncover the robustness of the Z2 photonic phases to non-
11
+ Hermitian effects, e.g., to material dissipation. In particular, it is shown that non-Hermitian PD
12
+ reciprocal photonic insulators may be split into two classes of topologically inequivalent materials,
13
+ whose interfaces may support spin-polarized states. To illustrate our theory, we study in detail
14
+ how the non-Hermitian effects may sculpt the topology of a PD symmetric parallel-plate waveguide
15
+ (PPW). We find that there is a critical level for the plates loss that separates two different topological
16
+ phases. We identify the phases by their spin Chern numbers and analyze the transition.
17
+ Topological photonics1,2 determines a rather unique
18
+ paradigm to create unidirectional channels immune to
19
+ back-scattering.
20
+ The topological protection of Chern
21
+ insulators originates from an electromagnetic “quan-
22
+ tum Hall effect” rooted in the time-reversal symmetry
23
+ breaking3,4. In analogy with the quantum spin Hall effect
24
+ in electronic systems5, time-reversal invariant photonic
25
+ structures may also host topological phases6–16.
26
+ How-
27
+ ever, due to the different nature of fermionic and bosonic
28
+ particles, additional symmetries must be enforced on a
29
+ system to guarantee the Z2 topological protection, most
30
+ notably a duality symmetry that ensures balanced elec-
31
+ tric and magnetic responses10.
32
+ To our best knowledge, the most general symmetry
33
+ transformation that enables the Z2 topological protection
34
+ in photonic systems is determined by a combination of
35
+ the parity (P), time-reversal (T ) and duality (D) opera-
36
+ tors, ˜T = PT D10,17–19. The ˜T operator may be regarded
37
+ as a pseudo-time-reversal operator, as it is anti-linear and
38
+ satisfies ˜T 2 = −1. Such a property guarantees that the
39
+ photonic states of a PT D-symmetric system are degen-
40
+ erate (Kramers theorem)10,17 and that there is a suitable
41
+ basis in which the scattering matrix is anti-symmetric17.
42
+ The latter property implies that when a PT D-symmetric
43
+ system supports an odd number of bi-directional chan-
44
+ nels, it is feasible to have bi-directional transport of light
45
+ without any back-reflections17.
46
+ Previous studies on PT D-symmetric systems dealt
47
+ exclusively with energy conserving (Hermitian) plat-
48
+ forms.
49
+ The study of topological phases was recently
50
+ extended to non-Hermitian systems through a gen-
51
+ eralization of the notion of band gaps to complex
52
+ spectra20,21.
53
+ As a result, topological properties with
54
+ no counterpart in nonreciprocal3,4,22–27 and time-reversal
55
+ invariant6–15 closed systems have been found21,28,28–38.
56
+ Exceptional points (parameter space points where ener-
57
+ gies and associated modes coalesce simultaneously)39–43)
58
+ are linked to exotic effects44–50 and unprecedented phases
59
+ of matter21,31–38.
60
+ Here, we study the impact of non-Hermitian effects,
61
+ Figure 1:
62
+ Structure of the PD-symmetric parallel-plate
63
+ waveguide with a dielectric block (air) of width a in between
64
+ two impedance surfaces.
65
+ notably material dissipation, on the topological phases
66
+ of PT D symmetric systems. We find that the Z2 topo-
67
+ logical index is highly robust to the presence of material
68
+ absorption, and most interestingly we identify a topo-
69
+ logical phase transition controlled by the loss parameter
70
+ strength.
71
+ Amongst the different Z2 photonic topological insula-
72
+ tors considered in previous works18,19,51–53, we are in-
73
+ terested in a generalization of a structure introduced in
74
+ Ref.
75
+ 18.
76
+ It is a parallel-plate waveguide (PPW) [see
77
+ Fig. 1] with the electromagnetic response of the top and
78
+ bottom plates linked by electromagnetic duality. Each
79
+ plate is modeled through an impedance (Leontovitch)
80
+ boundary condition such that Ziˆn × H = Etan with ˆn
81
+ the unit normal vector to the plate (directed towards
82
+ the dielectric), Etan = E − ˆn (ˆn · E) is tangential electric
83
+ field, and Zi is the surface impedance of the i = +, −
84
+ (top/bottom, respectively) plate. In order that the sys-
85
+ tem is parity-duality PD symmetric it is necessary that
86
+ Z+Z− = Z2
87
+ 0 with Z0 the vacuum impedance.
88
+ Similar
89
+ to Ref.17, we define the parity transformation such that
90
+ (x, y, z) → (x, y, −z) and the duality transformation such
91
+ that D : (E, H) → (HZ0, −E/Z0) [see Supplementary
92
+ Material 54]. The parity transformation exchanges the
93
+ position of the two plates, whereas the duality mapping
94
+ transforms Z+ → Z− and vice-versa.
95
+ Thus, the PD
96
+ transformation leaves the system invariant when the re-
97
+ gion in between the plates is filled with air. The condition
98
+ Z+Z− = Z2
99
+ 0 implies that the impedances of the plates are
100
+ arXiv:2301.13660v1 [physics.optics] 31 Jan 2023
101
+
102
+ Z+ = Zopeis
103
+ +a/2
104
+ air
105
+ Z_ = Zop-le-i
106
+ 22
107
+ of the type Z+ = Z0ρeiφ and Z− = Z0ρ−1e−iφ, with ρ
108
+ and φ dimensionless parameters.
109
+ Thus, when the top
110
+ plate has an inductive response (φ < 0, for a time vari-
111
+ ation e−iωt) then the bottom plate has a capacitive re-
112
+ sponse φ > 0, and vice-versa. In the limit ρ → 0 the top
113
+ (bottom) plate behaves as a perfect electric (magnetic)
114
+ conductor, i.e., a PEC (PMC). For simplicity, to avoid
115
+ complications related to material dispersion, in this Let-
116
+ ter we shall suppose that the surface impedances Z± are
117
+ real-valued (φ = 0) and frequency independent. Then,
118
+ for 0 < ρ < ∞ the waveguide is non-Hermitian as both
119
+ the top and bottom plates absorb the fields propagating
120
+ in the dielectric. The system is time-reversal invariant
121
+ (and PT D-symmetric) only when ρ = 0, i.e., for PEC
122
+ and PMC walls. For generality, we shall also consider
123
+ the case of a negative resistivity, ρ < 0, which models the
124
+ case of “gainy” (active) plates. Even though the propaga-
125
+ tion of spin-polarized edge modes in related guides was
126
+ discussed in different works18,55, this type of system still
127
+ lacks of an appropriate topological classification, even in
128
+ the Hermitian case.
129
+ For PD symmetric reciprocal
130
+ systems,
131
+ such that
132
+ ε(x, y, z) = µ(x, y, −z), the frequency-domain (source-
133
+ free) Maxwell equations can be split into two independent
134
+ sets of equations18
135
+ ±
136
+ ic
137
+ ε(z)
138
+
139
+
140
+ 0
141
+ ∂z
142
+ ∂y
143
+ −∂z
144
+ 0
145
+ −∂x
146
+ ∂y
147
+ −∂x
148
+ 0
149
+
150
+ � Ψ±(−z) = ωΨ±(z),
151
+ (1)
152
+ that are formally equivalent to
153
+ ˆH±Ψ±(z) ≡ ωΨ±(z)
154
+ with
155
+ the
156
+ pseudospinors
157
+ Ψ±
158
+ written
159
+ in
160
+ terms
161
+ of
162
+ the
163
+ electric
164
+ and
165
+ magnetic
166
+ fields
167
+ E
168
+ and
169
+ H
170
+ as
171
+ Ψ±(z)
172
+ =
173
+ (Ex(z) ∓ Z0Hx(−z), Ey(z) ∓ Z0Hy(−z),
174
+ Ez(z) ± Z0Hz(−z))⊺18.
175
+ Here, c denotes the speed of
176
+ light in vacuum and ω is the oscillation frequency. For
177
+ conciseness we denote a generic point of space (x, y, z) as
178
+ (z), and the mirror-symmetric point (x, y, −z) as (−z).
179
+ As E = 1
180
+ 2 (Ψ+ + Ψ−), the dynamics of a generic electric
181
+ field distribution is fully controlled by the dynamics of
182
+ the two pseudospinors [Eq. (1)]. Notably, different from
183
+ the original Maxwell’s equations the dynamics of the
184
+ pseudo-spinors is strongly nonlocal, as the two sides
185
+ of Eq.
186
+ (1) are evaluated at mirror-symmetric points.
187
+ Interestingly, the pseudospinor decomposition holds true
188
+ even when the dielectric response is lossy (e.g., if ε is
189
+ frequency dependent and complex-valued) or when the
190
+ plate walls have a non-Hermitian response.
191
+ In the Hermitian case, when the dielectric and the
192
+ plates are lossless, the class of eigenstates with pseu-
193
+ dospin “+” can be transformed into eigenstates with pseu-
194
+ dospin “-” using the time-reversal operator. Even though
195
+ such a construction is not feasible in the non-Hermitian
196
+ case, the key observation is that the electromagnetic reci-
197
+ procity of the system guarantees that the total topologi-
198
+ cal charge is zero20, similar to the fermionic case case56.
199
+ Thereby the topological charge of the operators ˆH± in
200
+ Eq. (1) must be exactly symmetric: C+ + C− = 0. Here,
201
+ C± are the spin Chern numbers associated with a band
202
+ gap of interest. Therefore, PD symmetric reciprocal sys-
203
+ tems may host nontrivial topological phases determined
204
+ by the invariant C+ = −C−. In the following, we apply
205
+ the non-Hermitian topological band theory to determine
206
+ the topological phase diagram21.
207
+ The dielectric in Fig. 1 is taken as air (ϵ = µ = 1),
208
+ so that non-Hermitian effects arise exclusively due to
209
+ the plates.
210
+ As the system is invariant under continu-
211
+ ous translations in the xoy plane, the pseudospin states
212
+ can be factorized as Ψ±(r, t) = Ψ±
213
+ k (z)e−iωteik·r, where
214
+ k is the in-plane real-valued wave vector (k · ˆz = 0) with
215
+ magnitude k. The eigenstates are found by solving the
216
+ Maxwell’s equations subject to the appropriate boundary
217
+ conditions in the original guide, followed by a projection
218
+ onto the two pseudospinor subspaces54. As the guide is
219
+ invariant under arbitrary rotations around the z-axis it
220
+ is convenient to write a generic eigenstate in terms of
221
+ the vectors (ˆk, ˆz × ˆk, ˆz). The coordinates of a generic
222
+ pseudospin state with eigenfrequency ωn = ωn(k) in this
223
+ basis are:
224
+ Ψ±
225
+ k,n(z) →
226
+
227
+
228
+
229
+
230
+ e−iκnz + hneiκnz�
231
+ − ωn
232
+ cκn
233
+
234
+ eiκnz − hne−iκnz�
235
+ ∓ k
236
+ κn
237
+
238
+ e−iκnz − hneiκnz�
239
+
240
+
241
+ (2)
242
+ where hn ≡ eiκna ωn−cρκn
243
+ ωn+cρκn , κn = κ′
244
+ n+iκ′′
245
+ n is the transverse
246
+ wavenumber, and the label n = 1, 2, ... identifies the dif-
247
+ ferent modes. For each k real-valued, the allowed values
248
+ for κn can be found by solving the modal condition
249
+ e2iκna = ωn + cρκn
250
+ ωn − cρκn
251
+ ρωn + cκn
252
+ ρωn − cκn
253
+ .
254
+ (3)
255
+ where ωn = ω′
256
+ n + iω′′
257
+ n = s × c
258
+
259
+ k2 + κ2n with the square
260
+ root branch determined by s = ±. The dispersion ω(+)
261
+ n
262
+ of
263
+ the branches with positive frequencies (s = +) is linked
264
+ to the dispersion ω(−)
265
+ n
266
+ of the branches with negative fre-
267
+ quencies (s = −) as ω(+)
268
+ n
269
+ = −ω(−)∗
270
+ n
271
+ . This property is
272
+ a consequence of the reality of the electromagnetic field
273
+ (particle-hole symmetry). Both κn and ωn are functions
274
+ of the in-plane momentum k and of the resistivity ρ.
275
+ Moreover, one can always assume that Re {κn} > 0. The
276
+ modal equation is independent of the pseudospin, and
277
+ thereby the spectrum of the operators ˆH± is identical.
278
+ Albeit Eq.(3) is transcendental, its solutions for k = 0
279
+ can be analytically determined as κn = (2n − 1)π/2a −
280
+ s × iF(ρ)/a54 with s = ± as before and F(ρ) =
281
+ sgn(ρ) ln
282
+ ��� |ρ|+1
283
+ |ρ|−1
284
+ ���. The profiles κn (k) for k ̸= 0 are ob-
285
+ tained from a numerical continuation of the k = 0 solu-
286
+ tions via a Nelder-Mead minimization scheme57.
287
+ Figures 2(a) and 2(b) show the real and imaginary
288
+ parts of κn(k) for the first few guided modes for a sys-
289
+ tem with ρ = 0 (dashed lines) and ρ = 0.6 (solid lines).
290
+ The corresponding oscillation frequencies ωn(k) are de-
291
+ picted in Figs. 2(c) and 2(d). When the system is con-
292
+ servative (ρ = 0), the modal equation (3) reduces to
293
+ e2iκna = −1.
294
+ Its solutions κn = (2n − 1)π/2a with
295
+
296
+ 3
297
+ Figure 2:
298
+ Dispersion diagrams for a PD-symmetric waveg-
299
+ uide with the top wall characterized by ρ = 0 (dashed curves)
300
+ or by ρ = 0.6 (solid curves). (a) Real κ′
301
+ n and (b) imaginary κ′′
302
+ n
303
+ parts of the modal transverse wavenumber as functions of k
304
+ for the modes with n = 1, 2, 3. (c) Real ω′
305
+ n and (d) imaginary
306
+ ω′′
307
+ n parts of the corresponding frequency bands ω(+)
308
+ n
309
+ (k). The
310
+ imaginary parts in (b) and (d) are normalized to the func-
311
+ tion F(ρ) sketched in panel (f). (e) Projected band structure
312
+ in the complex plane for the case ρ = 0.6. The red and blue
313
+ curves represent the positive and negative frequency branches
314
+ ω(+)
315
+ n
316
+ (k) and ω(−)
317
+ n
318
+ (k), respectively. The frequencies associated
319
+ with k = 0 are represented by the solid dots.
320
+ n = 1, 2, ... are real-valued and independent of the in-
321
+ plane momentum k. Thus, as expected, the oscillation
322
+ frequencies ω(±)
323
+ n
324
+ = ±c
325
+
326
+ k2 + κ2n are real-valued in this
327
+ case.
328
+ In contrast, in the dissipative (non-Hermitian) case
329
+ (ρ = 0.6), both κn and ωn are complex-valued.
330
+ Fur-
331
+ thermore, as seen in Fig. 2(a), for lossy plates the real
332
+ part of κn acquires a positive offset of π/2a as k ap-
333
+ proaches infinity. In fact, when k → ∞ with ρ ̸= 0 the
334
+ modal equation reduces to e2iκna = 1 (the terms involv-
335
+ ing κn are negligible compared to the terms involving ωn
336
+ in Eq. (3), which yields κn(∞) = 2nπ/2a. Moreover, in
337
+ the k → ∞ limit the in-plane wavelength becomes much
338
+ shorter than the plates distance a, and thereby the dis-
339
+ persion of the modes approaches asymptotically that of
340
+ the dielectric so that ωn(k) ≈ ck [see Figs. 2(c) and 2(d)].
341
+ The imaginary part of the complex frequency ωn de-
342
+ termines the decay rate (in time) of the mode, which is
343
+ a clear fingerprint of the non-Hermitian dynamics. In-
344
+ terestingly, the decay rate is boosted for ρ ∼ ±1, which
345
+ correspond to the singularities of the function F(ρ) [see
346
+ Fig. 2(f)]. Heuristically, this happens because for ρ ∼ 1
347
+ there is an impedance match between the plates and the
348
+ dielectric region. Defining δ = 1 − |ρ| as the offset of |ρ|
349
+ from a critical point, the logarithmic nature of the singu-
350
+ larities κn ≈ ±ia−1 ln |δ/2| and ωn ≈ ±ica−1 ln |δ/2| is
351
+ unravelled for |δ| ≪ 1 with ρ → ±1, at k = 0. This corre-
352
+ sponds to a time variation of the type |δ/2|±ct/a so that
353
+ both pseudospins are either rapidly suppressed or ampli-
354
+ fied in these resonant conditions (ρ = ±1 for lossy/gainy
355
+ walls). It is useful to note that for ρ = ±1 the top and
356
+ bottom plates are identical.
357
+ In fact, replacing ρ with
358
+ 1/ρ is equivalent to interchange the the top and bottom
359
+ plates due to the PD symmetry of the system.
360
+ Figure 2(e) represents the projected band structure (lo-
361
+ cus of ω(±)
362
+ n
363
+ (k) for all k real-valued) for ρ = 0.6. The fig-
364
+ ure shows both the positive frequency ω(+)
365
+ n
366
+ (k) and neg-
367
+ ative frequency ω(−)
368
+ n
369
+ (k) branches. As seen, a band gap
370
+ separates the positive and negative frequency parts of the
371
+ spectrum (beige rectangular region centered at ω = 0).
372
+ Similar band structures are obtained for other values of
373
+ ρ, provided ρ is not near the critical points ±1. The pro-
374
+ jected band structure lies in the lower-half (upper-half)
375
+ frequency plane for ρ > 0 (ρ < 0), i.e., for lossy (gainy)
376
+ plates. Furthermore, due to the particle-hole symmetry
377
+ (ω(+)
378
+ n
379
+ = −ω(−)∗
380
+ n
381
+ ) there is a mirror symmetry about the
382
+ imaginary frequency axis. Typically, different branches
383
+ of the projected band structure are disjoint and there
384
+ are no intersections (or self-intersections). However, as
385
+ further discussed below, for ρ ∼ ±1 the band gap cen-
386
+ tered about the imaginary axis can close and the different
387
+ branches can exchange topological charge.
388
+ The
389
+ topological
390
+ classification
391
+ of
392
+ a
393
+ generic
394
+ non-
395
+ Hermitian operator
396
+ ˆH ̸=
397
+ ˆH† requires considering a
398
+ biorthogonal basis of left φL
399
+ n and right φR
400
+ n eigenstates
401
+ such that ˆH†φL
402
+ n = E∗
403
+ nφL
404
+ n and ˆHφR
405
+ n = EnφR
406
+ n, with En
407
+ the eigenvalues of ˆH. The left and right eigenstates are
408
+ normalized as
409
+
410
+ φL
411
+ n|φR
412
+ m
413
+
414
+ = δnm. In our system, switch-
415
+ ing loss into gain is equivalent to switch the sign of ρ.
416
+ Thus, the operator ˆH† models a PPW with resistivity
417
+ −ρ. This means that ΨL
418
+ n(z; ρ) = ΨR
419
+ n(z; −ρ). The eigen-
420
+ functions of the adjoint operator can then be obtained
421
+ from Eq. (2) using the rule ρ → −ρ (the same rule is
422
+ applied to the dispersion equation (3); in particular, we
423
+ have ωn(−ρ) = ω∗
424
+ n(ρ) and κn(−ρ) = κ∗
425
+ n(ρ)).
426
+ We use the non-Hermitian topological band theory21
427
+ to determine the Chern numbers C±
428
+ n associated with the
429
+ photonic branches of the operator ˆH±.
430
+ As previously
431
+ noted, for ρ not too close from the the singularities ±1
432
+ the branches are well separated and hence their individ-
433
+ ual topological charge is well defined. We introduce the
434
+ Berry potential A±
435
+ k,n = i ⟨Ψ±
436
+ k,n(−ρ)|∇kΨ±
437
+ k,n(ρ)⟩ con-
438
+ structed from normalized versions Ψ±
439
+ k,n of the pseu-
440
+ dospinors in Eq.(2) satisfying ⟨Ψ±
441
+ k,n(−ρ)|Ψ±
442
+ k,n(ρ)⟩ = 121.
443
+ The inner product of two vectors F and Q is defined
444
+ as ⟨F (z)|Q(z)⟩ =
445
+ � a/2
446
+ −a/2 dz F †(z) · Q(z).
447
+ In our sys-
448
+ tem, the wave vector k is unbounded in the Euclidean
449
+ plane but the latter may be compactified into the Rie-
450
+ mann sphere, following Ref.58.
451
+ The topology is thus
452
+ well-defined because the eigenfunctions in Eq.(2) are ei-
453
+ ther real-valued or pure-imaginary in the limit k = ∞,
454
+
455
+ 0
456
+ (二/) /uy
457
+ (d)1/0uy
458
+ 5
459
+ 3
460
+ (a)
461
+ (b)
462
+ 1
463
+ (/ )0 /0um
464
+ (d)10 /pum
465
+ 11
466
+ (c)
467
+ 975
468
+ S
469
+ n
470
+ 3
471
+ (d)
472
+ 2
473
+ 3
474
+ 1
475
+ 0
476
+ 5
477
+ 10
478
+ 15
479
+ 20
480
+ 0
481
+ 10
482
+ 20
483
+ 30
484
+ 40
485
+ ka
486
+ ka
487
+ 0
488
+ (d)10 /0"m
489
+ 5
490
+ 8
491
+ 0
492
+
493
+ L
494
+ (e)
495
+ (f)
496
+ k
497
+ -20 -10
498
+ 10
499
+ 20
500
+ 0
501
+ 1
502
+ 0
503
+ 1
504
+ p4
505
+ rendering A±
506
+ k,n null in that gauge.
507
+ In other words,
508
+ the Hamiltonian ˆH± is well-behaved at k = ∞58. For
509
+ the same gauge, the Berry potential is smooth in the
510
+ entire momentum space, except possibly at k = 0.
511
+ Then, applying the Stokes’ theorem one sees that the
512
+ Chern number of the n-th branch is given by C±
513
+ n
514
+ =
515
+ (2π)−1 [limk→∞ − limk→0+] k
516
+ � 2π
517
+ 0
518
+ dφ A±
519
+ k,n · ˆφ58.
520
+ Here,
521
+ (k, φ) ∈ [0, ∞[ × [0, 2π[ determine a system of polar co-
522
+ ordinates in the k-space. The azimuthal component of
523
+ the Berry potential A±
524
+ φ,n = A±
525
+ k,n · ˆφ is independent of
526
+ the orientation of the wave vector k, as the waveguide
527
+ is unchanged under arbitrary rotations about the z-axis.
528
+ Taking into account that A±
529
+ k,n vanishes at infinity, we
530
+ conclude that C±
531
+ n = − limk→0+ k A±
532
+ φ,n(k). A detailed cal-
533
+ culation shows that54
534
+ C+
535
+ n = s × (−1)n+1sgn(δ)
536
+ with
537
+ δ = 1 − |ρ| ,
538
+ (4)
539
+ where the s = ± sign is determined by the frequency
540
+ branch (ω(s=±)
541
+ n
542
+ ). As previously noted, due to reciprocity
543
+ C−
544
+ n = −C+
545
+ n . Remarkably, the different topological phases
546
+ are separated by the critical values ρ = ±1.
547
+ Figures 3(a) and 3(b) illustrate how higher-order pho-
548
+ tonic branches (n = 2, 3, ...) remain disconnected in
549
+ the vicinity of ρ = 1.
550
+ They also hint the divergences
551
+ ω′′
552
+ n → −∞ at k = 0 and ρ = 1, by approaching the
553
+ singularity as δ varies from 10−3 to 10−6.
554
+ In particu-
555
+ lar, these properties explain why the topological charge
556
+ determined by Eq. (4) changes at the critical resistivity
557
+ ρ = 1, as the band gap closes when the branches touch
558
+ at the divergence point.
559
+ Importantly, the band gap that separates the posi-
560
+ tive and negative frequency spectra [see Fig. 3(c)] closes
561
+ for any value of the normalized resistivity in the range
562
+ 0.9434 < |ρ| < 0.9434−1 [see Figs. 3(d) and 3(e)]. In
563
+ fact, it turns out that the n = 1 bands, ω(+)
564
+ 1
565
+ and ω(−)
566
+ 1
567
+ ,
568
+ may intersect for ρ near the singularity. Depending on
569
+ the value of |ρ|, the intersection may be an isolated point
570
+ (Fig. 3(d)) or correspond to a line degeneracy over the
571
+ imaginary frequency axis (Fig. 3(e)). In the former case,
572
+ the intersection occurs for a in-plane momentum on the
573
+ order of k ≈ 1.36/a. It is relevant to note that the range
574
+ of ρ for which the n = 1 bands intersect is determined
575
+ uniquely by the geometry of the problem, and is totally
576
+ independent of the plate width a54.
577
+ Evidently, for 0.9434 < |ρ| < 0.9434−1 the topological
578
+ charge of the n = 1 bands is undefined. This range of
579
+ ρ links the gapped phases through an intermediate col-
580
+ lection of exceptional points (EPs). For ρ slightly larger
581
+ than 0.9434 there is an isolated EP which unfolds into
582
+ a line for larger values of ρ and then collapses into an
583
+ isolated EP again as ρ approaches 0.9434−1.
584
+ At the
585
+ EPs, the eigenvectors of the n = 1 spinors coalesce as
586
+ Ψ±
587
+ k,1 ∥ Ψ±
588
+ k,−1.
589
+ The modal equation (3) is invariant under the trans-
590
+ formation ρ → ρ−1 when ρ ̸= 0. This implies that the
591
+ band structure remains the same under the transforma-
592
+ tion ρ → ρ−1, i.e., ωn(k; ρ) = ωn(k; ρ−1). Due to this
593
+ symmetry, the projected band structure near the singu-
594
+ larity ρ = 1 is to a good approximation only a function
595
+ of |δ|. Thus, the plots in Figs. 3(c), 3(d) and 3(e) can be
596
+ readily extended to negative values of δ. Furthermore,
597
+ taking into account that ωn(−ρ) = ω∗
598
+ n(ρ) it is clear that
599
+ the topological phase transitions develop in similar way
600
+ around the points ρ = ±1 where energy is resonantly
601
+ dissipated or absorbed.
602
+ The closing and reopening of the gap mediates the ex-
603
+ change of topological charge between the negative and
604
+ positive frequency parts of the spectrum. At the phase
605
+ transition, each and every band flips the sign of its spin
606
+ Chern number as predicted by Eq.(4).
607
+ The exchange
608
+ of topological charge between negative and positive fre-
609
+ quencies has been discussed previously for nonreciprocal
610
+ Chern insulators59,60.
611
+ Figure 3(f) presents the detailed topological phase di-
612
+ agram of C+
613
+ n . Interestingly, for a fixed ρ the Chern num-
614
+ bers of the different bands alternate between +1 and −1.
615
+ This implies that, while the topology of the individual
616
+ bands is well-defined, the topology of the band gap itself
617
+ is not. For instance, the gap Chern number for the pseu-
618
+ dospin “+” and for |ρ| ≪ 1 is determined by the series
619
+ C+
620
+ gap = −1 + 1 − 1 + ..., which is non-convergent. The
621
+ origin of the ill-defined topology is rooted in the particle-
622
+ hole symmetry of photonic systems61. In principle, this
623
+ problem may be fixed with a suitable dispersive model
624
+ for the plates that ensures that in the ω → ∞ limit their
625
+ electromagnetic response approaches that of the vacuum,
626
+ so modes with sufficiently large n have a trivial topo-
627
+ logical charge61. In the Supplementary Material 54, we
628
+ show that in the dispersive case it is reasonable to assume
629
+ that the topological phase transition is governed by the
630
+ exchange of the topological charge of the n = 1 bands.
631
+ Notably,
632
+ a
633
+ parity
634
+ inversion
635
+ PI
636
+ :
637
+ (x, y, z)
638
+
639
+ (−x, −y, −z) exchanges the positions of the top and bot-
640
+ tom plates.
641
+ Since the electric and magnetic fields are
642
+ odd/even under a parity inversion, it also exchanges the
643
+ spin of the modes and the Chern numbers transform as
644
+ [C±
645
+ n ]PI = C∓
646
+ n = −C±
647
+ n . This result holds true for a com-
648
+ pletely arbitrary (e.g., dispersive and inhomogeneous)
649
+ PD-reciprocal waveguide. In particular, it justifies why
650
+ for our geometry exchanging the position of the plates
651
+ (ρ → 1/ρ) flips all the Chern number signs54. Moreover,
652
+ it indicates that the modes identified in18,55 that prop-
653
+ agate at the boundary of a guide with PEC-PMC walls
654
+ and the corresponding PI transformed guide with PMC-
655
+ PEC walls may be understood as topologically protected
656
+ edge states.
657
+ The difference between the Chern numbers of a guide
658
+ and its PI transformed counterpart is always even, mean-
659
+ ing there is an even number of protected unidirectional
660
+ states at the interface. In our specific system, we expect
661
+ two edge states per pseudospin. For a fixed pseudospin,
662
+ the edge states can be visualized as waves attached ei-
663
+ ther to the top or to the bottom plates62.
664
+ While for
665
+ conventional insulators, it is not possible to guarantee
666
+ protection against back-scattering when C+ − [C+]PI is
667
+
668
+ 5
669
+ Figure 3: (a, b) Projected band structure in the complex plane for the first few higher-order bands ωn (n = 2, 3) with
670
+ δ = 1 − |ρ| = 10−3 and δ = 10−6, respectively. The frequencies associated with k = 0 are represented by the solid dots. (c, d,
671
+ e) Illustration of the topological phase transition. The band gap between the positive and negative frequency branches with
672
+ n = 1 shown in (c) in beige closes at an isolated point k ≈ 1.36/a when δ reaches δ ≈ 57 × 10−3, as depicted in (d). In panel
673
+ (e) the degeneracy widens to a line when the resistivity gets closer to the critical point ρ = 1 (δ = 15 × 10−3). (f) Topological
674
+ phase diagram for the PPW in Fig. 1. The spin Chern numbers C+
675
+ n [Eq. (4)] are indicated for the range of ρ for which the
676
+ band gap is open.
677
+ an even number, in the case of PD-symmetric systems
678
+ the protection against back-scattering is always guaran-
679
+ teed by the fact that the system Hamiltonian is a direct
680
+ sum of the (uncoupled) ˆH± Hamiltonians.
681
+ In summary, we uncovered the topological proper-
682
+ ties of non-Hermitian PD-symmetric and reciprocal pho-
683
+ tonic systems.
684
+ We found that the Maxwell’s equa-
685
+ tions can be split into two decoupled sets of spin-up
686
+ and spin-down states, connected by the PD-symmetry,
687
+ even in non-Hermitian materials. By focusing on PD-
688
+ symmetric parallel-plate guides, we discovered a robust
689
+ zero-frequency band gap that separates the positive and
690
+ negative frequency parts of the spectrum.
691
+ Through the use of non-Hermitian topological band
692
+ theory, we determined the spin Chern numbers of the
693
+ individual bands and observed a phase transition near
694
+ ρ = ±1, separating two distinct topological phases. At
695
+ the transition, the positive and negative frequency spec-
696
+ tra merge creating either isolated exceptional points or a
697
+ continuum of EPs in the form of a line segment.
698
+ Our findings reveal that the bulk topologies of these
699
+ PD-symmetric photonic structures are highly resilient to
700
+ non-Hermitian effects and explain the presence of pro-
701
+ tected edge modes at the interfaces of different PD-
702
+ symmetric guides.
703
+ Acknowledgments
704
+ This work is partially supported by the IET under
705
+ the A F Harvey Engineering Research Prize, by the
706
+ Simons Foundation under the award 733700 (Simons
707
+ Collaboration in Mathematics and Physics, “Harnessing
708
+ Universal Symmetry Concepts for Extreme Wave Phe-
709
+ nomena”), and by Fundação para a Ciência e a Tec-
710
+ nologia and Instituto de Telecomunicações under project
711
+ UIDB/50008/2020.
712
+ 1 L. Lu, J. D. Joannopoulos, and M. Soljačić, Nature Pho-
713
+ tonics 8, 821 (2014), ISSN 17494893.
714
+ 2 M. Kim,
715
+ Z. Jacob,
716
+ and J. Rho,
717
+ Light:
718
+ Science &
719
+ Applications 9 (2020), URL https://doi.org/10.1038/
720
+ s41377-020-0331-y.
721
+ 3 F. D. M. Haldane and S. Raghu,
722
+ Phys. Rev. Lett.
723
+ 100, 013904 (2008), URL https://link.aps.org/doi/
724
+ 10.1103/PhysRevLett.100.013904.
725
+ 4 S.
726
+ Raghu
727
+ and
728
+ F.
729
+ D.
730
+ M.
731
+ Haldane,
732
+ Phys.
733
+ Rev.
734
+ A
735
+ 78, 033834 (2008), URL https://link.aps.org/doi/10.
736
+ 1103/PhysRevA.78.033834.
737
+ 5 C. L. Kane and E. J. Mele,
738
+ Phys. Rev. Lett. 95,
739
+ 226801
740
+ (2005),
741
+ URL
742
+ https://link.aps.org/doi/10.
743
+ 1103/PhysRevLett.95.226801.
744
+ 6 F. Liu and J. Li, Phys. Rev. Lett. 114, 103902 (2015),
745
+ URL https://link.aps.org/doi/10.1103/PhysRevLett.
746
+ 114.103902.
747
+ 7 K. Y. Bliokh, D. Smirnova, and F. Nori, Science 348,
748
+ 1448 (2015), URL https://doi.org/10.1126/science.
749
+ aaa9519.
750
+ 8 M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
751
+ D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
752
+ meit, Nature 496, 196 (2013), URL https://doi.org/10.
753
+ 1038/nature12066.
754
+ 9 W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri,
755
+ J. Li, and S. Zhang, Phys. Rev. Lett. 114, 037402 (2015),
756
+ URL https://link.aps.org/doi/10.1103/PhysRevLett.
757
+ 114.037402.
758
+ 10 A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,
759
+ A. H. MacDonald, and G. Shvets, Nature Materials 12, 233
760
+ (2012), URL https://doi.org/10.1038/nmat3520.
761
+ 11 T. Ma, A. B. Khanikaev, S. H. Mousavi, and G. Shvets,
762
+ Phys. Rev. Lett. 114, 127401 (2015), URL https://link.
763
+ aps.org/doi/10.1103/PhysRevLett.114.127401.
764
+ 12 W.-J. Chen, S.-J. Jiang, X.-D. Chen, B. Zhu, L. Zhou,
765
+ J.-W. Dong, and C. T. Chan, Nature Communications 5
766
+
767
+ (×10-3)
768
+ (×10-3)
769
+ 0.001
770
+ 85
771
+ 57
772
+ 15
773
+ (f)
774
+ OE
775
+ 0
776
+ positive
777
+ square root branch
778
+ order n increases.
779
+ (a)
780
+ No
781
+ (b)
782
+ Point
783
+ Line
784
+ Degeneracy
785
+ Degeneracy
786
+ Degeneracy
787
+ +
788
+ s
789
+ 8
790
+ +n
791
+ I
792
+ k=0
793
+ 2
794
+ +
795
+ 13
796
+ (c)
797
+ (d)
798
+ (e)
799
+ +
800
+ +
801
+ -15
802
+ -50
803
+ -5
804
+ -3
805
+ -3
806
+ -3
807
+ 3
808
+ 5
809
+ 0
810
+ 3
811
+ 0
812
+ 3
813
+ -1
814
+ 0
815
+ 1
816
+ 8
817
+ 0
818
+ 8
819
+ p
820
+ wna/c(π /2)
821
+ wna/c(π/2)6
822
+ (2014), URL https://doi.org/10.1038/ncomms6782.
823
+ 13 A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S.
824
+ Kivshar, and A. B. Khanikaev, Nature Photonics 11, 130
825
+ (2016), URL https://doi.org/10.1038/nphoton.2016.
826
+ 253.
827
+ 14 X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack,
828
+ and A. B. Khanikaev, Nature Materials 15, 542 (2016),
829
+ URL https://doi.org/10.1038/nmat4573.
830
+ 15 C. He, X.-C. Sun, X.-P. Liu, M.-H. Lu, Y. Chen, L. Feng,
831
+ and Y.-F. Chen, Proceedings of the National Academy
832
+ of Sciences 113, 4924 (2016), URL https://doi.org/10.
833
+ 1073/pnas.1525502113.
834
+ 16 M. G. Silveirinha, Phys. Rev. B 93, 075110 (2016),
835
+ URL https://link.aps.org/doi/10.1103/PhysRevB.93.
836
+ 075110.
837
+ 17 M. G. Silveirinha, Physical Review B 95 (2017), URL
838
+ https://doi.org/10.1103/physrevb.95.035153.
839
+ 18 W.-J. Chen, Z.-Q. Zhang, J.-W. Dong, and C. T. Chan,
840
+ Nature Communications 6 (2015), URL https://doi.
841
+ org/10.1038/ncomms9183.
842
+ 19 S.
843
+ Lannebère
844
+ and
845
+ M.
846
+ G.
847
+ Silveirinha,
848
+ Nanophoton-
849
+ ics 8,
850
+ 1387 (2019),
851
+ URL https://doi.org/10.1515/
852
+ nanoph-2019-0037.
853
+ 20 M. G. Silveirinha, Physical Review B 99 (2019), URL
854
+ https://doi.org/10.1103/physrevb.99.125155.
855
+ 21 H. Shen, B. Zhen, and L. Fu, Physical Review Letters 120
856
+ (2018),
857
+ URL
858
+ https://doi.org/10.1103/physrevlett.
859
+ 120.146402.
860
+ 22 Z. Yu, G. Veronis, Z. Wang, and S. Fan, Phys. Rev. Lett.
861
+ 100, 023902 (2008), URL https://link.aps.org/doi/
862
+ 10.1103/PhysRevLett.100.023902.
863
+ 23 Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
864
+ Nature 461, 772 (2009), URL https://doi.org/10.1038/
865
+ nature08293.
866
+ 24 Y. Poo, R.-x. Wu, Z. Lin, Y. Yang, and C. T. Chan, Phys.
867
+ Rev. Lett. 106, 093903 (2011), URL https://link.aps.
868
+ org/doi/10.1103/PhysRevLett.106.093903.
869
+ 25 D. A. Jacobs, A. E. Miroshnichenko, Y. S. Kivshar, and
870
+ A. B. Khanikaev, New Journal of Physics 17, 125015
871
+ (2015), URL https://doi.org/10.1088/1367-2630/17/
872
+ 12/125015.
873
+ 26 R. Fleury, A. B. Khanikaev, and A. Alù, Nature Com-
874
+ munications 7 (2016), URL https://doi.org/10.1038/
875
+ ncomms11744.
876
+ 27 M. G. Silveirinha, Phys. Rev. B 94, 205105 (2016),
877
+ URL https://link.aps.org/doi/10.1103/PhysRevB.94.
878
+ 205105.
879
+ 28 B. Midya,
880
+ H. Zhao,
881
+ and L. Feng,
882
+ Nature Commu-
883
+ nications
884
+ 9
885
+ (2018),
886
+ URL
887
+ https://doi.org/10.1038/
888
+ s41467-018-05175-8.
889
+ 29 C. Poli,
890
+ M. Bellec,
891
+ U. Kuhl,
892
+ F. Mortessagne,
893
+ and
894
+ H. Schomerus, Nature Communications 6 (2015), URL
895
+ https://doi.org/10.1038/ncomms7710.
896
+ 30 M. Pan, H. Zhao, P. Miao, S. Longhi, and L. Feng, Na-
897
+ ture Communications 9 (2018), URL https://doi.org/
898
+ 10.1038/s41467-018-03822-8.
899
+ 31 C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D.
900
+ Heiss, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 86,
901
+ 787 (2001), URL https://link.aps.org/doi/10.1103/
902
+ PhysRevLett.86.787.
903
+ 32 H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Na-
904
+ ture 537, 80 (2016), URL https://doi.org/10.1038/
905
+ nature18604.
906
+ 33 D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and
907
+ F. Nori, Phys. Rev. Lett. 118, 040401 (2017), URL https:
908
+ //link.aps.org/doi/10.1103/PhysRevLett.118.040401.
909
+ 34 K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Phys.
910
+ Rev. B 84, 205128 (2011), URL https://link.aps.org/
911
+ doi/10.1103/PhysRevB.84.205128.
912
+ 35 S.-D.
913
+ Liang
914
+ and
915
+ G.-Y.
916
+ Huang,
917
+ Phys.
918
+ Rev.
919
+ A
920
+ 87,
921
+ 012118
922
+ (2013),
923
+ URL
924
+ https://link.aps.org/doi/10.
925
+ 1103/PhysRevA.87.012118.
926
+ 36 T.
927
+ E.
928
+ Lee,
929
+ Phys.
930
+ Rev.
931
+ Lett.
932
+ 116,
933
+ 133903
934
+ (2016),
935
+ URL https://link.aps.org/doi/10.1103/PhysRevLett.
936
+ 116.133903.
937
+ 37 H.
938
+ Menke
939
+ and
940
+ M.
941
+ M.
942
+ Hirschmann,
943
+ Phys.
944
+ Rev.
945
+ B
946
+ 95, 174506 (2017), URL https://link.aps.org/doi/10.
947
+ 1103/PhysRevB.95.174506.
948
+ 38 H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson,
949
+ L. Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen, Sci-
950
+ ence 359, 1009 (2018), URL https://doi.org/10.1126/
951
+ science.aap9859.
952
+ 39 M.-A. Miri and A. Alù, Science 363 (2019), URL https:
953
+ //doi.org/10.1126/science.aar7709.
954
+ 40 M.
955
+ Berry,
956
+ Czechoslovak
957
+ Journal
958
+ of
959
+ Physics
960
+ 54,
961
+ 1039
962
+ (2004),
963
+ URL
964
+ https://doi.org/10.1023/b:
965
+ cjop.0000044002.05657.04.
966
+ 41 M.
967
+ V.
968
+ Keldysh,
969
+ Russian
970
+ Mathematical
971
+ Surveys
972
+ 26,
973
+ 15
974
+ (1971),
975
+ URL
976
+ https://doi.org/10.1070/
977
+ rm1971v026n04abeh003985.
978
+ 42 T. Kato, Perturbation theory for linear operators, vol. 132
979
+ (Springer Science & Business Media, 2013).
980
+ 43 N. Moiseyev, Non-Hermitian quantum mechanics (Cam-
981
+ bridge University Press, 2011).
982
+ 44 R. Uzdin, A. Mailybaev, and N. Moiseyev, Journal of
983
+ Physics A: Mathematical and Theoretical 44, 435302
984
+ (2011), URL https://doi.org/10.1088/1751-8113/44/
985
+ 43/435302.
986
+ 45 M. Berry and R. Uzdin, Journal of Physics A: Math-
987
+ ematical
988
+ and
989
+ Theoretical
990
+ 44,
991
+ 435303
992
+ (2011),
993
+ ISSN
994
+ 17518113,
995
+ URL
996
+ http://search.ebscohost.com/
997
+ login.aspx?direct=true&db=edselc&AN=edselc.2-52.
998
+ 0-80054076926&site=eds-live.
999
+ 46 M. V. Berry, Journal of Optics 13, 115701 (2011), URL
1000
+ https://doi.org/10.1088/2040-8978/13/11/115701.
1001
+ 47 I. Gilary, A. A. Mailybaev, and N. Moiseyev, Phys. Rev. A
1002
+ 88, 010102 (2013), URL https://link.aps.org/doi/10.
1003
+ 1103/PhysRevA.88.010102.
1004
+ 48 E.-M. Graefe, A. A. Mailybaev, and N. Moiseyev, Phys.
1005
+ Rev. A 88, 033842 (2013), URL https://link.aps.org/
1006
+ doi/10.1103/PhysRevA.88.033842.
1007
+ 49 T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan,
1008
+ S. Rotter, and P. Rabl, Phys. Rev. A 92, 052124 (2015),
1009
+ URL https://link.aps.org/doi/10.1103/PhysRevA.92.
1010
+ 052124.
1011
+ 50 J.
1012
+ Doppler,
1013
+ A.
1014
+ A.
1015
+ Mailybaev,
1016
+ J.
1017
+ Böhm,
1018
+ U.
1019
+ Kuhl,
1020
+ A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moi-
1021
+ seyev, and S. Rotter, Nature 537, 76 (2016), URL https:
1022
+ //doi.org/10.1038/nature18605.
1023
+ 51 D. E. Fernandes and M. G. Silveirinha, Phys. Rev. Applied
1024
+ 12, 014021 (2019), URL https://link.aps.org/doi/10.
1025
+ 1103/PhysRevApplied.12.014021.
1026
+ 52 D. J. Bisharat and D. F. Sievenpiper, Phys. Rev. Lett.
1027
+ 119, 106802 (2017), URL https://link.aps.org/doi/
1028
+ 10.1103/PhysRevLett.119.106802.
1029
+ 53 D. J. Bisharat and D. F. Sievenpiper, Laser & Photonics
1030
+ Reviews 13, 1900126 (2019).
1031
+ 54 Supplementary material with: (I) Symmetry-Induced De-
1032
+
1033
+ 7
1034
+ coupling of Maxwell’s Equations. (II) Boundary conditions
1035
+ in the PPW. (III) Bulk Modes. (IV) Spin Chern numbers
1036
+ for the pseudospin states. (V) Band structure near phase
1037
+ transition. (VI) Useful limits and symmetries.
1038
+ 55 E. Martini, M. G. Silveirinha, and S. Maci, IEEE Transac-
1039
+ tions on Antennas and Propagation 67, 1035 (2019), URL
1040
+ https://doi.org/10.1109/tap.2018.2880091.
1041
+ 56 D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane,
1042
+ Phys. Rev. Lett. 97, 036808 (2006), URL https://link.
1043
+ aps.org/doi/10.1103/PhysRevLett.97.036808.
1044
+ 57 J. A. Nelder and R. Mead, The Computer Journal 7, 308
1045
+ (1965), URL https://doi.org/10.1093/comjnl/7.4.308.
1046
+ 58 M. G. Silveirinha, Physical Review B 92 (2015), URL
1047
+ https://doi.org/10.1103/physrevb.92.125153.
1048
+ 59 D. Jin, L. Lu, Z. Wang, C. Fang, J. D. Joannopou-
1049
+ los, M. Soljačić, L. Fu, and N. X. Fang, Nature Com-
1050
+ munications 7 (2016), URL https://doi.org/10.1038/
1051
+ ncomms13486.
1052
+ 60 S. Lannebère and M. G. Silveirinha, Phys. Rev. B 97,
1053
+ 165128 (2018).
1054
+ 61 F. R. Prudêncio and M. G. Silveirinha, Phys. Rev. Lett.
1055
+ 129, 133903 (2022).
1056
+ 62 N. Mohammadi Estakhri, N. Engheta, and R. Kastner,
1057
+ Phys. Rev. Lett. 124, 033901 (2020), URL https://link.
1058
+ aps.org/doi/10.1103/PhysRevLett.124.033901.
1059
+
L9FRT4oBgHgl3EQf2Ti5/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
M9E3T4oBgHgl3EQfwgt2/content/tmp_files/2301.04703v1.pdf.txt ADDED
@@ -0,0 +1,1191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Anomalous flux state in higher-order topological superconductors
2
+ Yizhi You
3
+ Department of Physics, Northeastern University, MA, 02115 USA
4
+ (Dated: January 13, 2023)
5
+ We investigate the anomalous flux state of interacting higher-order topological superconduc-
6
+ tors (HOTSC) protected by rotation symmetries. By introducing a π superconducting flux in 2D
7
+ HOTSC, we demonstrate the existence of a robust zero mode trapped at the flux center. Remark-
8
+ ably, the rotation symmetry and fermion parity display projective representation inside the π flux
9
+ with N = 2 supersymmetry algebra. A similar gapless flux pattern also exists in 3D HOTSCs, the
10
+ flux lines of which carry anomalous helical modes that cannot be realized on purely one-dimensional
11
+ lattice models. Notably, these exotic phenomena can be manifested in a 2D frustrated quantum mag-
12
+ net whose low energy excitation characterizes emergent Majoranas with HOTSC band structure and
13
+ the Z2 flux exhibiting supersymmetries.
14
+ I.
15
+ INTRODUCTION
16
+ Higher-order topological superconductors (HOTSC)
17
+ are novel forms of gapped quantum matter that host
18
+ gappable surfaces but gapless corners or hinges in-
19
+ between[1, 2]. Since their initial discovery, HOTSC and
20
+ their descendants have been discussed extensively and
21
+ have become an active area of theoretical and experien-
22
+ tial research. Recent progress has included topological
23
+ classifications[3–8], topological field theories[8, 9], and
24
+ experimental realization of various classes of HOTSC[10–
25
+ 19].
26
+ Despite the rapid progress in the understanding of
27
+ higher-order topological superconductors from a band
28
+ structure perspective [20–31], experimentally accessible
29
+ fingerprints for observing HOTSC still remain challeng-
30
+ ing in strongly correlated systems.
31
+ Notably, the ob-
32
+ servation of gapless Majorana modes at the corners
33
+ or hinges does not fully guarantee that the bulk is a
34
+ higher-order topological superconductor (HOTSC), as
35
+ some of these gapless modes can potentially be anni-
36
+ hilated via surface gap closing, even if the bulk spec-
37
+ trum remains gapped[30, 32]. Alternatively, some higher-
38
+ order topological superconductors (HOTSCs) can ex-
39
+ hibit fully gappable boundaries, including corners and
40
+ hinges [30], while still exhibiting a non-trivial entan-
41
+ glement structure that distinguishes them from trivial
42
+ superconductors. Previous works have established that
43
+ higher-order topological insulators and superconductors
44
+ can be probed by their geometric responses, such as the
45
+ creation of lattice defects like dislocations or disclina-
46
+ tions.
47
+ By creating these defects, one can observe Ma-
48
+ jorana zero modes inside the disclination point in two
49
+ dimensions or chiral fermion modes localized at the dislo-
50
+ cation/disclination lines in three dimensions[9, 33–39]. In
51
+ contrast to these approaches, which are primarily based
52
+ on the non-interacting limit, we aim to identify the uni-
53
+ versal fingerprints and topological responses specifically
54
+ for strongly interacting higher-order topological super-
55
+ conductor (HOTSC) phases.
56
+ In this work, we seek to unravel the nature of super-
57
+ conducting π flux and their corresponding topological re-
58
+ sponse features in 2D and 3D HOTSC. First, we begin
59
+ with the 2D HOTSC model on a square lattice proposed
60
+ in Eq. [40] protected by C4 symmetry. We demonstrate
61
+ that creating a π superconducting flux engenders a pro-
62
+ jective symmetry between C4 and fermion parity P, so
63
+ the resultant flux state contains a protected two-fold de-
64
+ generacy. Remarkably, this projective symmetry within
65
+ the flux uniquely generates the N = 2 supersymmetry
66
+ (SUSY) algebra in quantum mechanics[41].
67
+ Motivated by these observations, we extend our hori-
68
+ zon into frustrated spin systems whose emergent quasi-
69
+ particles and flux excitations exactly reproduce the topo-
70
+ logical feature of HOTSC[42]. Namely, we construct a
71
+ bosonic spin- 3
72
+ 2 model whose low-energy excitations con-
73
+ tain emergent Majoranas coupling with a Z2 gauge field.
74
+ The Majorana forms a superconducting band akin to the
75
+ 2D HOTSC, while the Z2 gauge flux excitation carries
76
+ N = 2 SUSY structure.
77
+ In sectionIII, we examine the role of superconducting
78
+ π flux in 3D HOTSC with CT
79
+ 4 symmetry. One of our
80
+ main findings is that the flux lines inside the HOTSC
81
+ trap 1D helical Majorana modes with an intrinsic quan-
82
+ tum anomaly. In particular, the gapless modes inside the
83
+ flux line are anomalous in the sense that the CT
84
+ 4 sym-
85
+ metry will inevitably be broken if we gauge the fermion
86
+ parity inside the flux line. Under this observation, the
87
+ helical Majorana modes inside the flux exhibit global
88
+ anomaly, signaling the impossibility of realizing them on
89
+ an isolated one-dimensional lattice model. Notably, such
90
+ quantum anomaly manifested by ‘conflict of the symme-
91
+ tries’ had been widely observed in the surface theory of
92
+ symmetry-protected topological phase[43, 44].
93
+ Our result provides a new route to detect HOTSC in
94
+ numerical simulations via flux responses. The projective
95
+ symmetry in the 2D HOTSC flux state can be detected
96
+ from the shift of the entanglement spectrum upon flux in-
97
+ sertion. Suppose one creates a rotational symmetric cut
98
+ of the ground state wave function after π flux insertion;
99
+ the entanglement spectrum will display a robust two-fold
100
+ degeneracy in all spectrum levels. This degeneracy per-
101
+ sists even for small system sizes, where finite-size effects
102
+ are inevitable. More precisely, the whole entanglement
103
+ Hamiltonian develops a projective symmetry under rota-
104
+ tion and fermion parity after flux insertion, which results
105
+ arXiv:2301.04703v1 [cond-mat.supr-con] 11 Jan 2023
106
+
107
+ 2
108
+ in a degenerate spectrum in the entanglement Hamilto-
109
+ nian for both the ground state and highly excited states.
110
+ Notably, this degeneracy in the entanglement spectrum
111
+ is not a manifestation of the corner mode, but a conse-
112
+ quence of the projective symmetry due to the anomalous
113
+ flux. Our result suggests that the entanglement features
114
+ of HOTSC also reveal unique properties of topological
115
+ flux responses, and that the projective symmetry in the
116
+ anomalous flux state can be observed from the entangle-
117
+ ment Hamiltonian. This paves the way for a new promis-
118
+ ing route for exploring HOTSC in numerical simulations.
119
+ II.
120
+ PROJECTIVE SYMMETRY IN THE
121
+ SUPERCONDUCTING FLUX OF 2D HOTSC
122
+ This section investigates the topological feature of π
123
+ flux inside a 2D higher-order topological superconductor
124
+ (HOTSC) protected by C4 and fermion parity symme-
125
+ try. The motivation comes from the expectation that for
126
+ a topological quantum phase protected by symmetry G,
127
+ one can detect its topological feature by observing the
128
+ anomalous symmetry structure inside the symmetry de-
129
+ fect (e.g., the gauge flux for G symmetry)[43, 45, 46].
130
+ For instance, in a 2D p+ip superconductor with fermion
131
+ parity symmetry, the superconducting vortex contains a
132
+ Majorana zero mode[47]. In 3D T -invariant topological
133
+ superconductor, the π flux line carries a 1D chiral Majo-
134
+ rana mode with c = 1/2 central charge[48]. For a gen-
135
+ eral G symmetry-protected topological phase, once we
136
+ gauge the symmetry G, the symmetry flux either carries
137
+ a fractional quantum number of G or contains anoma-
138
+ lous gapless modes.
139
+ This aspect provides an alterna-
140
+ tive way to visualize the underlying quantum structure of
141
+ the symmetry-protected topological phases. In addition,
142
+ exploring symmetry flux offers a feasible way to detect
143
+ topological responses via numerical simulations or exper-
144
+ imental measurements.
145
+ To set the stage, we begin with the 2D higher-order
146
+ TSC proposed in Ref. [40]. The model contains four Ma-
147
+ joranas (two complex fermions) living inside each unit
148
+ cell on a square lattice as shown schematically in Fig. 1.
149
+ The four Majoranas at the corners of the square mainly
150
+ tunnel with its nearest neighbor within the plaquette
151
+ with π flux per square. The resultant superconducting
152
+ state is fully gapped inside the bulk and on the smooth
153
+ edges, while the corner intersecting two boundaries con-
154
+ tains a Majorana zero mode(MZM).
155
+ Our model contains a plaquette-centered C4 rotation
156
+ symmetry in addition to the fermion parity conservation
157
+ P.
158
+ The non-interacting Hamiltonian in the Majorana
159
+ basis is,
160
+ H = ηT (t + cos(kx))Γ3 + (t + cos(ky))Γ1
161
+ + sin(kx)Γ4 + sin(ky)Γ2)η
162
+ Γ1 = −σy ⊗ τ x, Γ2 = σy ⊗ τ y, Γ3 = σy ⊗ τ z,
163
+ Γ4 = σx ⊗ I.
164
+ (1)
165
+ Figure 1: The HOTSC on the square lattice with four
166
+ Majoranas per site. In the zero-correlation length limit,
167
+ the four Majoranas on the four corners of the square
168
+ hybridize within the plaquette (solid lines). The ground
169
+ state Hamiltonian contains π flux per plaquette. By
170
+ inserting a superconducting π flux in the center, the
171
+ central plaquette becomes Φ = 0.
172
+ With ηT = (η1, η2, η3, η4) being the four Majoranas on
173
+ each site. t is the strength for intra-site Majorana cou-
174
+ pling. For |t| < 1, the system is in the HOTSC phase.
175
+ When t = 0, the model returns to the zero-correlation
176
+ length limit that the four Majoranas on the four corners
177
+ of each square only hybridize within the plaquette. The
178
+ C4 rotation acts on η as,
179
+ C4 :
180
+
181
+ 0
182
+ τ z
183
+ τ x
184
+ 0
185
+
186
+ (2)
187
+ This model was widely explored in various works of
188
+ literature for weak and strongly interacting systems[1, 7,
189
+ 40]. The π flux inside each plaquette is essential to ac-
190
+ quire a fully gapped bulk spectrum and the resultant C4
191
+ symmetry has the structure with (C4)4 = −1 due to the
192
+ π flux. In particular, the Majorana zero mode localized
193
+ at the corner is robust against any interaction provided
194
+ the C4 symmetry is unbroken and the SC bulk is gapped.
195
+ It was pointed out that if one develops a symmetry de-
196
+ fect of the C4 symmetry, namely, a π/2 disclination by
197
+ removing a quadrant and reconnecting the disclination
198
+ branch cut, there exists a Majorana zero mode localized
199
+ at the disclination core[24, 36].
200
+ Now we consider the symmetry flux of the fermion par-
201
+ ity P by inserting an additional π flux to the center of the
202
+ plaquette as Fig. 1. As the pairing Hamiltonian already
203
+ contains a π flux in each plaquette, the additional flux
204
+ insertion erases it and makes the central plaquette flux
205
+ free Φ = 0. In the limit t = 0 in Eq.1, the flux insertion
206
+ only changes the four Majorana coupling at the central
207
+ plaquette, leaving a two-fold degeneracy at the center.
208
+ Here and after, we will demonstrate that this degeneracy
209
+ is robust against any interaction or coupling due to the
210
+ projective symmetry.
211
+
212
+
213
+
214
+ 4
215
+
216
+
217
+
218
+ 2
219
+ 3
220
+ 元3
221
+ To demonstrate, we begin with the particular case with
222
+ t = 0, but our demonstration is adaptive to more general
223
+ circumstances, as we will elaborate on later. In this zero
224
+ correlation-length limit, the four Majoranas at the cor-
225
+ ners of the central plaquette coupled like a 1D ring with
226
+ four Majoranas on four sites. The ground state contain-
227
+ ing π flux inside the plaquette imposes an anti-periodic
228
+ boundary condition for the 1D ring.
229
+ The plaquette-
230
+ centered C4 rotation symmetry performs as a ‘translation
231
+ symmetry’ that permutes between the four Majoranas on
232
+ the ring. Due to the π flux at the center, the C4 symme-
233
+ try permutes the four Majorana as,
234
+ C4(π) : γ1 → γ2, γ2 → γ3, γ3 → γ4, γ4 → −γ1
235
+ (3)
236
+ So (C4)4 = −1.
237
+ If we perform this rotation to the
238
+ fermion-parity symmetry operator P = η1η2η3η4,
239
+ C4(π)PC−1
240
+ 4 (π) = −η2η3η4η1 = η1η2η3η4 = P
241
+ (4)
242
+ The fermion parity and C4 rotation commute.
243
+ However, once we insert an additional flux in the cen-
244
+ ter, the ‘net flux plaquette’ can be viewed as a ring of
245
+ four Majoranas with periodic boundary conditions. The
246
+ C4 symmetry is now defined as,
247
+ C4(0) : γ1 → γ2, γ2 → γ3, γ3 → γ4, γ4 → γ1
248
+ (5)
249
+ Inside the superconducting flux, the C4 symmetry anti-
250
+ commutes with the fermion parity operator.
251
+ C4(0)PC−1
252
+ 4 (0) = η2η3η4η1 = −P
253
+ (6)
254
+ This anti-commutation relation guarantees an additional
255
+ zero mode at the flux center.
256
+ To this end, we demonstrate that adding a π flux at
257
+ the rotation center engenders a projective symmetry such
258
+ that the fermion parity and C4 symmetry anti-commute
259
+ in the flux center.
260
+ As a result, the flux would trap
261
+ two degenerate modes with different fermion parity con-
262
+ nected by a C4 rotation operation. We can label these
263
+ degenerate modes as the even(odd) fermion parity state
264
+ |Ψ⟩a
265
+ 0(|Ψ⟩b
266
+ 0) that is related by C4.
267
+ C4|Ψ⟩a
268
+ 0 = |Ψ⟩b
269
+ 0
270
+ (7)
271
+ Our demonstration above is based on the zero-
272
+ correlation limit in the absence of interaction. Now and
273
+ after, we will extend this argument to a more general
274
+ case with additional symmetry-preserving coupling and
275
+ interaction. If the correlation length is finite, the four
276
+ Majoranas in the central plaquette with net flux would
277
+ unavoidably be coupled with the rest of the system. As
278
+ long as there is no gap closing in the bulk, the flux state
279
+ wave function |Ψ⟩ can be connected to the aforemen-
280
+ tioned zero-correlation length limit wave function by a
281
+ set of finite depth local unitary circuit U[49] that com-
282
+ mutes with the C4 symmetry and fermion parity.
283
+ U|Ψ⟩a
284
+ 0 = |Ψ⟩a, U|Ψ⟩b
285
+ 0 = |Ψ⟩b,
286
+ (8)
287
+ As the unitary operator commutes with all symmetries,
288
+ the new degenerate states |Ψ⟩a, |Ψ⟩b carrying different
289
+ fermion parity are still related by a C4 rotation. This
290
+ concludes that the C4 symmetry and fermion parity al-
291
+ ways anti-commute inside the flux regardless of the cor-
292
+ relation length or additional interaction. Thus, due to
293
+ the projective symmetry structure inside the flux, there
294
+ is no consistent way to hybridize or lift the degeneracy
295
+ that preserves both rotation and fermion parity.
296
+ To summarize, we elucidate that the insertion of π flux
297
+ in a higher-order topological superconductor engenders a
298
+ projective symmetry between C4 and fermion parity so
299
+ the resultant flux state contains a localized zero mode.
300
+ In particular, inserting a gauge flux is expected to en-
301
+ gender a projective symmetry of C2nP. Our argument
302
+ can be generalized to other 2D higher-order topological
303
+ superconductors with C2n symmetries[38].
304
+ A.
305
+ Emergent supersymmetry (SUSY) inside the
306
+ flux
307
+ There had been growing interest in realizing supersym-
308
+ metry in solid-state systems, which is a highly appeal-
309
+ ing concept from particle physics, relating bosonic and
310
+ fermionic modes. In this section, we establish a general
311
+ theorem that all 2D HOTSC exhibit N=2 SUSY algebra
312
+ inside the superconducting flux. As is demonstrated in
313
+ Sec. II, adding a flux to HOTSC creates a projective sym-
314
+ metry between fermion parity and rotation. We will show
315
+ that all flux states in HOTSC have an underlying N = 2
316
+ supersymmetry and explicitly construct the generator of
317
+ the supersymmetry[41].
318
+ To set the stage, we first shift all the eigenvalues of
319
+ the Hamiltonian by a constant so that they are all non-
320
+ negative. Then we define the following fermionic, non-
321
+ Hermitian operator based on C4 and P,
322
+ Q =
323
+
324
+ H
325
+ 2 C4(1 + P), Q† =
326
+
327
+ H
328
+ 2 (1 + P)(C4)−1.
329
+ (9)
330
+ Q† commutes with the HOTSC Hamiltonian [H, Q†] = 0.
331
+ Most importantly, due to the projective symmetry inside
332
+ the flux, the Q, Q† obeys the algebra:
333
+ (Q)2 = 0, (Q†)2 = 0, QQ† + Q†Q = 2H
334
+ (10)
335
+ Therefore, Q is the generator of an N = 2 supersymme-
336
+ try. Such supersymmetry naturally explains the degener-
337
+ ate modes inside the flux. By adding a flux to HOTSC, all
338
+ energy levels are doubly degenerate, and the correspond-
339
+ ing eigenstates can be chosen as fermion parity eigen-
340
+ states with different parity. Q, Q† operators, assisted by
341
+ spatial rotation, play a role of exchanging between these
342
+ fermion parity sectors. Notably, while a wide range of
343
+ emergent supersymmetry in condensed matter typically
344
+ requires fine-tuned Hamiltonians or critical points[50],
345
+ the N = 2 SUSY in HOTSC flux is guaranteed by the
346
+ projective symmetry of C4P, and thus robust against
347
+ perturbations.
348
+
349
+ 4
350
+ B.
351
+ Detecting flux responses from the entanglement
352
+ Hamiltonian
353
+ In this section, we show that the topological flux re-
354
+ sponse in the higher-order topological superconductor
355
+ can be assessed using a quantum information perspec-
356
+ tive by examining the entanglement Hamiltonian. This
357
+ method not only enables the detection of the higher-order
358
+ topological superconductor numerically but also suggests
359
+ that the hidden topological structure, including the topo-
360
+ logical flux response, can be understood through an en-
361
+ tanglement viewpoint.
362
+ Figure 2: Tracing out the central block of the
363
+ wavefunction arrives at the reduced density matrix ρA
364
+ that resembles a 1D Majorana chain along the square
365
+ cut. Each quadrant of ρA contains odd number of
366
+ Majoranas.
367
+ To begin with, we trace out the system’s central block
368
+ with a size larger than the correlation length but still fi-
369
+ nite compared to the thermal dynamical limit. The resul-
370
+ tant reduced density matrix ρA = e−βHe can be viewed
371
+ as a partition function of an entanglement Hamiltonian
372
+ He that resembles a 1D ‘square frame’ along with the
373
+ cut in Fig. 2. Such a cut contains four corners, with each
374
+ quadrant carrying an odd number of Majoranas.
375
+ The
376
+ C4 rotation operator performs as a translation operator
377
+ TL/4 on the 1D entanglement Hamiltonian that shifts the
378
+ fermion by a quarter of the cut size.
379
+ In the thermal
380
+ dynamical limit, the four Majoranas at the corners of
381
+ the ‘square frame’ generate four Majorana zero modes in
382
+ the entanglement Hamiltonian He. However, these zero
383
+ modes could be hybridized with finite-size cuts. Suppose
384
+ we choose the length of the 1D entanglement Hamiltonian
385
+ being L, the coupling strength between the four corner
386
+ Majoranas in the entanglement spectrum scales as e−ξ/L
387
+ so the Majorana zero-mode hybridization is inevitable
388
+ for a finite-size system. In addition, the correspondence
389
+ between the ‘ground state of the entanglement Hamilto-
390
+ nian’ and the wave function correlation cannot be taken
391
+ too literally. Since the reduced density matrix is the par-
392
+ tition function of the entanglement Hamiltonian(EH) at
393
+ finite temperatures, the high energy modes in the entan-
394
+ glement spectrum(ES) also contribute to the entangled
395
+ features of the ground state. In particular, the low-lying
396
+ states of the ES may undergo a phase transition while
397
+ the bulk phase remains unchanged [51].
398
+ In terms of the ground state wave function, the central
399
+ block in the reduced density matrix (with an odd number
400
+ of plaquettes) contains a total π flux. The entanglement
401
+ Hamiltonian defined on the ring with π flux inside has
402
+ an anti-periodic boundary condition. The resultant C4
403
+ symmetry operator of the 1D entanglement Hamiltonian
404
+ can be defined as,
405
+ C4(π) : γi → γN+i, γN+i → γ2N+i, γ2N+i → γ3N+i,
406
+ γ3N+i → −γi
407
+ (11)
408
+ Here i labels the Majorana on each quadrant, with 4N
409
+ being the total number of Majoranas in the effective 1D
410
+ entanglement Hamiltonian He. It is not hard to check
411
+ that the C4 rotation and fermion parity commute for the
412
+ entanglement Hamiltonian He. This also agrees with the
413
+ fact that the entanglement Hamiltonian can have a fully
414
+ gapped spectrum for a finite-size system.
415
+ To visualize the projective symmetry and zero modes
416
+ inside the π superconducting flux from the entanglement
417
+ Hamiltonian, we look into the wave function with an ad-
418
+ ditional π flux in the center (so the central plaquette
419
+ has net flux) and trace out the center block to get the
420
+ entanglement Hamiltonian Hflux
421
+ e
422
+ . Due to the additional
423
+ flux insertion, the 1D entanglement Hamiltonian Hflux
424
+ e
425
+ has net flux inside the ring with periodic boundary con-
426
+ ditions. The resultant C4 symmetry operator of the en-
427
+ tanglement Hamiltonian can be defined as,
428
+ C4(0) : γi → γN+i, γN+i → γ2N+i,
429
+ γ2N+i → γ3N+i, γ3N+i → γi
430
+ (12)
431
+ N is an odd number since each quadrant contains an odd
432
+ number of Majoranas.
433
+ After some simple algebra, we
434
+ find that C4 rotation and fermion parity anti-commute
435
+ C4P = −PC4 for the entanglement Hamiltonian Hflux
436
+ e
437
+ .
438
+ This indicates that these two symmetries act projectively
439
+ on Hflux
440
+ e
441
+ so the full entanglement spectrum should dis-
442
+ play a robust two-fold degeneracy for all eigenstates. It is
443
+ notable for emphasizing that this degeneracy has nothing
444
+ to do with the corner zero modes in the original Hamil-
445
+ tonian that can be gapped due to the finite-size effect.
446
+ The projective symmetry-enforced degeneracy can sur-
447
+ vive even for finite-size cuts and is robust against any
448
+ interaction or perturbation.
449
+ III.
450
+ 3D FLUX LINES IN HOTSC
451
+ This section extends our discussion on anomalous flux
452
+ states to interacting HOTSC in 3D. We begin with the
453
+ 3D HOTSC that supports chiral Majorana hinge modes
454
+
455
+ BH.
456
+ A5
457
+ proposed in Ref. [1, 5, 40, 52],
458
+ H = ηT [(1 − m cos kz + cos(kx))Γ3 + (1 − m cos kz
459
+ + cos(ky))Γ1 + sin(kx)Γ4 + sin(ky)Γ2 − m sin kzΓ0]η
460
+ Γ1 = −σy ⊗ τ x, Γ2 = σy ⊗ τ y, Γ3 = σy ⊗ τ z,
461
+ Γ4 = σx ⊗ I, Γ0 = σz ⊗ I.
462
+ (13)
463
+ For −2 < m < 0, the model is in the HOTSC phase[3].
464
+ This model exhibit a special CT
465
+ 4 symmetry that rotates
466
+ the x-y plane along with the time-reversal operation. The
467
+ CT
468
+ 4 acts on the Majorana field η as,
469
+ K
470
+
471
+ 0
472
+ −τ z
473
+ τ x
474
+ 0
475
+
476
+ (14)
477
+ Notably, if we implement a dimension-reduction view
478
+ by fixing the momentum kz, the momentum layer with
479
+ kz = π resembles the aforementioned 2D HOTSC with
480
+ C4 symmetry while the kz = 0 layer corresponds to the
481
+ trivial one. (CT
482
+ 4 )2 = −1 indicates that the Hamiltonian
483
+ has a π flux penetrating each tube along the z-direction
484
+ illustrated as Fig. 3.
485
+ Consider inserting an additional π flux along the z-
486
+ direction, the corresponding center tube contains net
487
+ flux. Now and after, we will demonstrate that such flux
488
+ insertion will engender a gapless 1D mode that is anoma-
489
+ lous and cannot be manifested in pure lower-dimensional
490
+ systems.
491
+ To warm up, recall our discussion in Sec. II, adding π
492
+ flux to 2D HOTSC give rise to a projective representa-
493
+ tion between C4 and P. Our 3D model can be treated as
494
+ layers of 2D superconductors with fixed kz momentum so
495
+ that we can treat different kz layers independently. We
496
+ consider two special momentum slices kz = 0, π which
497
+ resemble the 2D trivial superconductor and higher-order
498
+ topological superconductor. Based on our discussion in
499
+ Sec. II, it is clear that implementing a CT
500
+ 4 symmetry
501
+ would change the fermion parity number P(π) = (−1)nπ
502
+ inside the flux line that carries momentum kz = π. Like-
503
+ wise, the fermion parity P(0) = (−1)n0 that carries mo-
504
+ mentum kz = 0 is not affected. Based on this argument,
505
+ we conclude that the algebra between CT
506
+ 4 and fermion
507
+ parity inside the flux line has the form,
508
+ CT
509
+ 4 P(π) = −P(π)CT
510
+ 4 ,
511
+ (15)
512
+ Unfortunately, the above argument relies on the fact that
513
+ the fermion parity number in each momentum layer (with
514
+ fixed kz) is a well-defined quantum number. However, as
515
+ our HOTSC does not require a translation symmetry,
516
+ one can add disorder along the z-direction and the corre-
517
+ sponding kz is no longer a good quantum number. Fur-
518
+ ther, in the presence of strong interaction, fermions with
519
+ distinct momentum kz can hybridize and interact.
520
+ In
521
+ this sense, nπ again becomes ill-defined when the single-
522
+ particle picture breaks down.
523
+ A.
524
+ Conflict of symmetry and quantum anomaly
525
+ Here we provide a more detailed and systematic study
526
+ of the flux state based on the symmetry anomaly argu-
527
+ ment. For concreteness, we will demonstrate that the flux
528
+ line inside the HOTSC displays a quantum anomaly that
529
+ can be manifested as a ‘conflict of symmetry.’ If the 1D
530
+ flux line is invariant under two independent symmetries
531
+ G1 and G2, the theory is anomalous if gauging G1 would
532
+ break the symmetry of G2 or vice versa[53]. Applying
533
+ this ‘conflict of symmetry’ criteria to our case, we will
534
+ demonstrate that after gauging the fermion parity inside
535
+ the flux line, one observes that a fermion parity gauge
536
+ transformation inside the flux will automatically break
537
+ the CT
538
+ 4 symmetry.
539
+ This conflict of symmetry alterna-
540
+ tively suggests that the symmetry assignment of CT
541
+ 4 and
542
+ P are incompatible with open boundaries so the corre-
543
+ sponding 1D theory does not render a lattice realization.
544
+ In the zero correlation length limit, the HOTSC model
545
+ in Eq. 13 has a coupled wire construction[52]. We can
546
+ decompose the complex fermions along each z-row into
547
+ two up-moving and two down-moving chiral Majoranas.
548
+ Treat the z-tube as an elementary building block; it con-
549
+ tains four chiral Majoranas living at the four hinges of
550
+ the tube illustrated in Fig. 3.
551
+ Htube = ηT (kz)σ30η
552
+ (16)
553
+ We consider the general case where the four hinges along
554
+ each z-tube with counter-propagating Majorana modes
555
+ are coupled in a CT
556
+ 4 symmetric way. After inserting an
557
+ additional π flux to the central plaquette, the CT
558
+ 4 sym-
559
+ metry permutes the four components of the 1D Majorana
560
+ modes in the central tube as,
561
+ C4 : K
562
+
563
+ 0
564
+ I
565
+ τ x 0
566
+
567
+ (17)
568
+ with (CT
569
+ 4 )4 = 1 provided there is net flux inside the tube
570
+ center[54]. The possible gapping terms for each z-tube
571
+ as of Eq. 16 are:
572
+ m1 = σ20, m2 = σ21, m3 = σ23, m4 = σ12,
573
+ CT
574
+ 4 :m1 → m2, m2 → m1,
575
+ m3 → m4, m4 → −m3,
576
+ (18)
577
+ The mass terms m3, m4 are also odd under C2 symmetry,
578
+ so they cannot appear as a fermion bilinear mass. To
579
+ make the theory compatible with CT
580
+ 4 , we require m1 =
581
+ m2 and the resultant 1D flux line always remains gapless
582
+ regardless of the strength of m. Thus, no band mass can
583
+ fully gap out the helical modes inside the flux. This in-
584
+ gappable condition can be generalized to the interacting
585
+ case due to the existence of an anomalous symmetry.
586
+ Now and after, we will demonstrate that the helical
587
+ modes in Eq. 16 are anomalous and cannot exist in pure
588
+ 1D lattice models. This further suggests that the helical
589
+ modes cannot be trivially gapped unless we break the CT
590
+ 4
591
+
592
+ 6
593
+ Figure 3: A) 3D HOTSC top-down view from the x-y
594
+ plane. An additional π flux penetrates the central
595
+ plaquette so the total flux in the central plaquette is
596
+ zero. B) Treat the z-tube as an elementary building
597
+ block; it contains up-moving/down-moving chiral
598
+ Majoranas living at the four hinges of the tube along
599
+ the z-direction.
600
+ symmetry. We would elaborate on this point by gauging
601
+ the fermion parity symmetry inside the flux line and ex-
602
+ amining the role of CT
603
+ 4 under such gauge transformation.
604
+ Central to our discussion below is based on the
605
+ bosonization picture of helical Majoranas in Eq. 16.
606
+ Ψ†
607
+ L = ηL
608
+ 1 + iηL
609
+ 3 = eiθ+iφ+iπ/4,
610
+ Ψ†
611
+ R = ηR
612
+ 2 + iηR
613
+ 4 = e−iθ+iφ+iπ/4
614
+ ˆn = ∂zθ
615
+ π
616
+ (19)
617
+ Here θ, φ are bosonic fields and the fermion charge den-
618
+ sity ˆn is only defined modulo 2. [55]. The CT
619
+ 4 symmetry
620
+ acts as,
621
+ Ψ†
622
+ L → ΨR, Ψ†
623
+ R → −iΨ†
624
+ L
625
+ θ → φ, φ → −θ
626
+ (20)
627
+ The possible interactions that do not break CT
628
+ 4
629
+ are
630
+ cos(2θ)+cos(2φ) or their higher order descendants. Pre-
631
+ cisely, the CT
632
+ 4
633
+ symmetry exchange the role between
634
+ particle-hole channel tunneling term cos(2θ) and particle-
635
+ particle channel pairing term cos(2φ) by enforcing them
636
+ with the same strength. These terms cannot symmetri-
637
+ cally gap out the helical modes, so the resultant theory
638
+ is either gapless or symmetry-breaking.
639
+ If we apply a gauge transformation of P along the
640
+ string from −∞ to z,
641
+ G(z) = ei
642
+ � z
643
+ −∞ dz′πn(z′) = eiθ(z)
644
+ (21)
645
+ Such a gauge transformation can be viewed as the
646
+ fermion parity operator defined on an open string with its
647
+ half-end terminated at z. The CT
648
+ 4 symmetry transforms
649
+ G(z) as,
650
+ CT
651
+ 4 eiθ(z)(CT
652
+ 4 )−1 = e−iφ(z) = −G(z)e−iθ(z)−iφ(z)
653
+ (22)
654
+ Such gauge transformation, equivalent to the fermion
655
+ parity defined on an open chain, is not invariant un-
656
+ der the CT
657
+ 4 symmetry. Notably,e−iθ(z)−iφ(z) is a fermion
658
+ operator, so the CT
659
+ 4
660
+ transformation creates additional
661
+ fermion at the end of the fermion parity string.
662
+ Such
663
+ conflict of symmetry indicates that the theory cannot be
664
+ placed on an open 1D chain as the fermion parity oper-
665
+ ator on the open chain is not invariant under CT
666
+ 4 . As
667
+ a result, the helical modes inside the flux line cannot
668
+ be realized in isolated 1D lattice models with the same
669
+ symmetry assignment.
670
+ It is noteworthy mentioning that the conflict of sym-
671
+ metry was widely explored as a signature of anomalous
672
+ surface states in symmetry-protected topological phases.
673
+ In Ref. [53, 56], it was convinced that the conflict of the
674
+ symmetries at the boundary of the SPT surfaces signals
675
+ that the edge theory can never be realized as a purely
676
+ lower dimensional lattice model. Our argument can be
677
+ treated as a complement theorem signaling that the flux
678
+ state inside the HOTSC also contains a gapless mode
679
+ with anomalous symmetry action.
680
+ IV.
681
+ EMERGENT HOTSC FROM KITAEV SPIN
682
+ LIQUIDS
683
+ We conclude our discussion by extending our horizon
684
+ into frustrated spin systems whose emergent quasiparti-
685
+ cle excitations exactly reproduce the topological features
686
+ of HOTSC discussed in Sec. II. Namely, we begin with a
687
+ bosonic spin model on a honeycomb lattice. Intriguingly,
688
+ the low energy excitations of such a bosonic system con-
689
+ tain emergent Majoranas coupling with an emergent Z2
690
+ gauge field. The Majoranas form a superconductor rem-
691
+ iniscent of the 2D HOTSC in Sec. II while the emergent
692
+ flux excitation carries N = 2 SUSY structure.
693
+ To continue, we focus on a specific solvable honeycomb
694
+ lattice model. However, it is worth mentioning that the
695
+ protocol and strategy we developed here can be applied
696
+ to a wider class of lattice models, as we will elaborate
697
+ on later. We begin with a spin 3
698
+ 2 honeycomb model with
699
+ strong bond anisotropy.
700
+ H =
701
+
702
+ i∈A,j∈B
703
+ [
704
+
705
+ ij∈green
706
+ (Γi
707
+ 1Γj
708
+ 1 − Γi
709
+ 4Γi
710
+ 1Γj
711
+ 4Γj
712
+ 1) −
713
+
714
+ ij∈blue
715
+ (Γi
716
+ 3Γi
717
+ 4Γj
718
+ 3Γj
719
+ 4 + Γi
720
+ 5Γi
721
+ 3Γj
722
+ 5Γj
723
+ 3) +
724
+
725
+ ij∈red
726
+ (Γi
727
+ 2Γj
728
+ 2 − Γi
729
+ 5Γi
730
+ 2Γj
731
+ 5Γj
732
+ 2) ]
733
+ (23)
734
+
735
+ A)
736
+
737
+ n2
738
+ B)
739
+
740
+ T
741
+ O
742
+ m4
743
+ n3
744
+
745
+ 元7
746
+ Here Γa(a = 1, ..5) are the 4 × 4 Gamma matrices with
747
+ −i �a=5
748
+ a=1 Γa = 1. At each A/B site on the hexagon lattice,
749
+ we color three directional bonds with red/green/blue as
750
+ Fig. 4. Each spin only interacts with its nearest neighbor
751
+ across the red/green/blue bond, and each colored bond
752
+ has two preferred spin bilinear interactions.
753
+ Figure 4: The spin 3
754
+ 2 degree of freedom and its
755
+ Majorana representation on the A/B sublattice. The πi
756
+ Majoranas are the itinerary fermions that only
757
+ hybridized with their nearest neighbor within the
758
+ hexagon (illustrated as the red dashed line.) The ηi
759
+ Majorana plays the role of the emergent Z2 gauge
760
+ potential. The Hamiltonian commutes with the flux
761
+ operator defined on the blue hexagon.
762
+ Albeit the model is non-integrable, it renders an exact
763
+ solvable solution inherited from the spirit of the origi-
764
+ nal Kitaev model[57]. In terms of parton construction,
765
+ we can fermionized the spin-3/2 operator by introduc-
766
+ ing six Majoranas π1, π2, π3, η1, η2, η3 per site as Fig. 4.
767
+ We restricted our Hilbert space with fixed onsite parity
768
+ iπ1π2π3η1η2η3 = 1 so the six Majoranas with even parity
769
+ generate a four-level system per site akin to the spin-3/2
770
+ degree of freedom.
771
+ The spin Gamma matrices can be
772
+ expressed as,
773
+ Γ1 = iπ1η1, Γ2 = iπ1η2, Γ3 = iπ1η3, Γ4 = iπ2π1,
774
+ Γ5 = iπ3π1
775
+ (24)
776
+ So the Clifford algebra is automatically satisfied. We can
777
+ express the spin operators in the Hamiltonian as,
778
+ Γ1 = iπ1η1, iΓ4Γ1 = −iπ2η1, Γ2 = iπ1η2,
779
+ iΓ5Γ2 = −iπ3η2, iΓ3Γ4 = −iη3π2, iΓ5Γ3 = iη3π3 (25)
780
+ The model displays a special C′
781
+ 6 symmetry that hybrid
782
+ hexagon-centered C6 rotation with S3 spin rotation as
783
+ C′
784
+ 6 = C6 × S3. Under the Majorana representation, the
785
+ spin rotation becomes the S3 permutation between Ma-
786
+ jorana flavors,
787
+ π3 → π1, π1 → π2, π2 → π3,
788
+ η3 → η2, η2 → η1, η1 → η3,
789
+ (26)
790
+ It is not hard to find a locally conserved hexagon op-
791
+ erator illustrated in Fig .4 that commutes with all spin
792
+ interactions in the Hamiltonian. This enables us to treat
793
+ the ηi fermion bilinear as the gauge potential on the link,
794
+ exp{iπAij∈green} = iηi
795
+ 1ηj
796
+ 1,
797
+ exp{iπAij∈red} = iηi
798
+ 2ηj
799
+ 2,
800
+ exp{iπAij∈blue} = iηi
801
+ 3ηj
802
+ 3
803
+ (27)
804
+ Aij denotes the Z2 gauge potential on the link between
805
+ i-j sites (with i(j) belongs to the A(B) sublattice). The
806
+ Z2 potential on tricolored links can be written as the
807
+ Majorana fermion bilinears iηi
808
+ aηj
809
+ a(a = 1, 2, 3) that cross
810
+ between the links.
811
+ As a result, the total flux in each
812
+ hexagon
813
+ � ⃗Ad⃗l = Φ is manifested by the product of Ma-
814
+ jorana bilinears defined in Eq. 27 across the six links
815
+ along the hexagon loop, which returns to the hexagon
816
+ operator in Fig. 4.
817
+ Our argument makes it clear that, under the Majorana
818
+ representation of spin operators, the η fermion plays a
819
+ role as the Z2 gauge potential akin to the original Ki-
820
+ taev model.
821
+ Likewise, the πa(a = 1, 2, 3) fermion can
822
+ be treated as the itinerary Majoranas that hop between
823
+ nearest sites with minimal coupling to the gauge poten-
824
+ tial Aij on the link. To manifest, we can decompose the
825
+ spin interactions as
826
+
827
+ ij∈green
828
+ Γi
829
+ 1Γj
830
+ 1 = −
831
+
832
+ ij∈green
833
+ πi
834
+ 1ηi
835
+ 1πj
836
+ 1ηj
837
+ 1
838
+
839
+ ij∈green
840
+ Γi
841
+ 4Γi
842
+ 1Γj
843
+ 4Γj
844
+ 1 =
845
+
846
+ ij∈green
847
+ πi
848
+ 2ηi
849
+ 1πj
850
+ 2ηj
851
+ 1
852
+
853
+ ij∈blue
854
+ Γi
855
+ 3Γi
856
+ 4Γj
857
+ 3Γj
858
+ 4 =
859
+
860
+ ij∈blue
861
+ πi
862
+ 2ηi
863
+ 3πj
864
+ 2ηj
865
+ 3
866
+
867
+ ij∈blue
868
+ Γi
869
+ 5Γi
870
+ 3Γj
871
+ 5Γj
872
+ 3 =
873
+
874
+ ij∈blue
875
+ πi
876
+ 3ηi
877
+ 3πj
878
+ 3ηj
879
+ 3
880
+
881
+ ij∈red
882
+ Γi
883
+ 2Γj
884
+ 2 = −
885
+
886
+ ij∈red
887
+ πi
888
+ 1ηi
889
+ 2πj
890
+ 1ηj
891
+ 2
892
+
893
+ ij∈red
894
+ Γi
895
+ 5Γi
896
+ 2Γj
897
+ 5Γj
898
+ 2 =
899
+
900
+ ij∈red
901
+ πi
902
+ 3ηi
903
+ 2πj
904
+ 3ηj
905
+ 2
906
+ (28)
907
+ In the Majorana representation, it is clear that all bond
908
+ interactions in Equation 23 can be treated as Majorana
909
+ hopping between nearest sites, with minimal coupling to
910
+ the gauge potential Aij represented by the η fermion
911
+ bilinears.
912
+ Since the flux operators commute with the
913
+ Hamiltonian, we can fix the flux sector Φ when focusing
914
+ on the ground state manifold and treat Aij as a constant.
915
+ For net flux conditions, we can simply take Aij = 0 and
916
+ the permutation symmetry of the π Majorana fermions
917
+ will still hold. With π flux patterns, any specific gauge
918
+ choice of Aij will break the permutation symmetry of the
919
+ η Majorana fermions.
920
+
921
+ n1
922
+ T1
923
+ T2
924
+ M2
925
+ m3
926
+ 元3
927
+ T3
928
+ 元1
929
+ T2
930
+ 2
931
+ T1
932
+ 元3
933
+ T3
934
+ Y3
935
+ n2
936
+ T23
937
+ T2
938
+ Ti2
939
+ T1
940
+ IiT3
941
+ n1
942
+ IiT3
943
+ IiI2
944
+ I2I38
945
+ From the Majorana construction perspective, the effec-
946
+ tive Hamiltonian becomes a free Majorana model with
947
+ three orbitals π1, π2, π3 persite.
948
+ Each orbital is only
949
+ hybridized with one of the three adjacent hexagons as
950
+ Fig. 4. Consequently, the fermion model is decomposed
951
+ of non-overlap clusters from all hexagons. Each hexagon
952
+ contains six Majoranas hybridized with their nearest
953
+ neighbor that resembles higher-order topological super-
954
+ conductors on the honeycomb lattice[38]. In particular,
955
+ one can easily check that the lowest energy state re-
956
+ quires Φ = π flux per plaquette and the ground state
957
+ is in the π-flux sector. The effective band structure for
958
+ the itinerary Majoranas π1, π2, π3 is reminiscent of the
959
+ higher-order topological superconductor on the honey-
960
+ comb lattice. Remarkably, such HOTSC may not exhibit
961
+ protected corner mode for sharp corners with 2π/3 an-
962
+ gles.
963
+ Nonetheless, the topological response still holds.
964
+ By creating an additional π flux excitation in the center,
965
+ the C′
966
+ 6 symmetry and fermion parity anti-commute so the
967
+ flux excitations display a projective symmetry. As both
968
+ the itinerary Majorana and the Z2 flux excitation origi-
969
+ nate from spin models as fractionalized excitations, the
970
+ Z2 flux should be treated as an intrinsic excitation rather
971
+ than an external field that characterizes and probes the
972
+ response. In particular, the flux excitation in this spin
973
+ model contains the N=2 SUSY structure we explored in
974
+ Eq. 9.
975
+ Finally, the construction we adopt here can be gener-
976
+ alized to spin models on other 2D lattices. The essence
977
+ relies on the fact that for any HOTSC, we can introduce
978
+ a Z2 gauge potential on the link and express them as a
979
+ pair of ’auxiliary’ Majorana fermion bilinears across the
980
+ link. After onsite fermion parity projection, the resultant
981
+ onsite degree of freedom becomes a hyper-spin operator,
982
+ and the fermion hopping term minimal coupling to the Z2
983
+ gauge potential can be written in terms of spin-bilinear
984
+ interactions.
985
+ Following this protocol, one can build a
986
+ zoology of ‘Kitaev spin liquids’ whose low energy excita-
987
+ tion can constitute Majoranas with HOTSC band struc-
988
+ ture and emergent Z2 gauge field. The flux excitations in
989
+ these Kitaev-type models carry exotic SUSY structures
990
+ with projective symmetry between spatial rotation and
991
+ fermion parity.
992
+ ACKNOWLEDGMENTS
993
+ Y.Y was supported by Gordon and Betty Moore
994
+ Foundation
995
+ through
996
+ Grant
997
+ GBMF8685
998
+ and
999
+ Marie
1000
+ Sklodowska-Curie Actions under the new Horizon 2020.
1001
+ Y.Y acknowledges informative discussions with Taylor
1002
+ Hughes and Rui-Xing Zhang.
1003
+ [1] W. A. Benalcazar, B. A. Bernevig,
1004
+ and T. L. Hughes,
1005
+ Science 357, 61 (2017).
1006
+ [2] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang,
1007
+ S. S. Parkin, B. A. Bernevig,
1008
+ and T. Neupert, Science
1009
+ advances 4, eaat0346 (2018).
1010
+ [3] W. A. Benalcazar, B. A. Bernevig,
1011
+ and T. L. Hughes,
1012
+ Physical Review B 96, 245115 (2017).
1013
+ [4] Z. Song, Z. Fang,
1014
+ and C. Fang, Physical review letters
1015
+ 119, 246402 (2017).
1016
+ [5] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen,
1017
+ and P. W. Brouwer, Physical review letters 119, 246401
1018
+ (2017).
1019
+ [6] E. Khalaf, Physical Review B 97, 205136 (2018).
1020
+ [7] W. A. Benalcazar, T. Li,
1021
+ and T. L. Hughes, Physical
1022
+ Review B 99, 245151 (2019).
1023
+ [8] Y. You, F. Burnell, and T. L. Hughes, Physical Review
1024
+ B 103, 245128 (2021).
1025
+ [9] J.
1026
+ May-Mann
1027
+ and
1028
+ T.
1029
+ L.
1030
+ Hughes,
1031
+ arXiv
1032
+ preprint
1033
+ arXiv:2108.00008 (2021).
1034
+ [10] J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P.
1035
+ Chen, T. L. Hughes, and M. C. Rechtsman, Nature Pho-
1036
+ tonics 12, 408 (2018).
1037
+ [11] M. Serra-Garcia, V. Peri, R. S¨usstrunk, O. R. Bilal,
1038
+ T. Larsen, L. G. Villanueva,
1039
+ and S. D. Huber, Nature
1040
+ 555, 342 (2018).
1041
+ [12] C. W. Peterson, W. A. Benalcazar, T. L. Hughes,
1042
+ and
1043
+ G. Bahl, Nature 555, 346 (2018).
1044
+ [13] S. Imhof,
1045
+ C. Berger,
1046
+ F. Bayer,
1047
+ J. Brehm,
1048
+ L. W.
1049
+ Molenkamp, T. Kiessling, F. Schindler, C. H. Lee,
1050
+ M. Greiter, T. Neupert, et al., Nature Physics 14, 925
1051
+ (2018).
1052
+ [14] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook,
1053
+ A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock,
1054
+ S. Jeon, I. Drozdov, et al., Nature physics 14, 918 (2018).
1055
+ [15] H. Xue, Y. Yang, F. Gao, Y. Chong,
1056
+ and B. Zhang,
1057
+ Nature materials 18, 108 (2019).
1058
+ [16] X. Zhang, H.-X. Wang, Z.-K. Lin, Y. Tian, B. Xie, M.-H.
1059
+ Lu, Y.-F. Chen, and J.-H. Jiang, Nature Physics 15, 582
1060
+ (2019).
1061
+ [17] X. Ni, M. Weiner, A. Alu, and A. B. Khanikaev, Nature
1062
+ materials 18, 113 (2019).
1063
+ [18] R. Noguchi, M. Kobayashi, Z. Jiang, K. Kuroda, T. Taka-
1064
+ hashi, Z. Xu, D. Lee, M. Hirayama, M. Ochi, T. Shira-
1065
+ sawa, et al., Nature Materials 20, 473 (2021).
1066
+ [19] L. Aggarwal, P. Zhu, T. L. Hughes, and V. Madhavan,
1067
+ Nature communications 12, 1 (2021).
1068
+ [20] H. Isobe and L. Fu, Physical Review B 92, 081304 (2015).
1069
+ [21] S.-J. Huang, H. Song, Y.-P. Huang,
1070
+ and M. Hermele,
1071
+ Physical Review B 96, 205106 (2017).
1072
+ [22] X.-Y. Song and A. P. Schnyder, Physical Review B 95,
1073
+ 195108 (2017).
1074
+ [23] H. Song, S.-J. Huang, L. Fu, and M. Hermele, Physical
1075
+ Review X 7, 011020 (2017).
1076
+ [24] Y. You, D. Litinski, and F. von Oppen, arXiv preprint
1077
+ arXiv:1810.10556 (2018).
1078
+ [25] A.
1079
+ Rasmussen
1080
+ and
1081
+ Y.-M.
1082
+ Lu,
1083
+ arXiv
1084
+ preprint
1085
+ arXiv:1810.12317 (2018).
1086
+ [26] A.
1087
+ Rasmussen
1088
+ and
1089
+ Y.-M.
1090
+ Lu,
1091
+ arXiv
1092
+ preprint
1093
+ arXiv:1809.07325 (2018).
1094
+ [27] R. Thorngren and D. V. Else, Physical Review X 8,
1095
+ 011040 (2018).
1096
+
1097
+ 9
1098
+ [28] W. A. Benalcazar, T. Li,
1099
+ and T. L. Hughes, arXiv
1100
+ preprint arXiv:1809.02142 (2018).
1101
+ [29] J.-H. Zhang, Q.-R. Wang, S. Yang, Y. Qi, and Z.-C. Gu,
1102
+ arXiv preprint arXiv:1909.05519 (2019).
1103
+ [30] A.
1104
+ Tiwari,
1105
+ M.-H.
1106
+ Li,
1107
+ B.
1108
+ Bernevig,
1109
+ T.
1110
+ Neupert,
1111
+ and S. Parameswaran, arXiv preprint arXiv:1905.11421
1112
+ (2019).
1113
+ [31] S. Jiang, M. Cheng, Y. Qi, and Y.-M. Lu, arXiv preprint
1114
+ arXiv:1907.08596 (2019).
1115
+ [32] Y. You, F. Burnell,
1116
+ and T. L. Hughes, arXiv preprint
1117
+ arXiv:1909.05868 (2019).
1118
+ [33] S. Liu, A. Vishwanath, and E. Khalaf, Physical Review
1119
+ X 9, 031003 (2019).
1120
+ [34] Y. You, T. Devakul, F. J. Burnell,
1121
+ and T. Neupert,
1122
+ Physical Review B 98, 235102 (2018).
1123
+ [35] J.
1124
+ C.
1125
+ Teo
1126
+ and
1127
+ T.
1128
+ L.
1129
+ Hughes,
1130
+ arXiv
1131
+ preprint
1132
+ arXiv:1208.6303 (2012).
1133
+ [36] T. Li, P. Zhu, W. A. Benalcazar,
1134
+ and T. L. Hughes,
1135
+ Physical Review B 101, 115115 (2020).
1136
+ [37] R. Queiroz, I. C. Fulga, N. Avraham, H. Beidenkopf, and
1137
+ J. Cano, Physical Review Letters 123, 266802 (2019).
1138
+ [38] R.-X. Zhang, arXiv preprint arXiv:2208.01652 (2022).
1139
+ [39] F.
1140
+ Schindler,
1141
+ S.
1142
+ S.
1143
+ Tsirkin,
1144
+ T.
1145
+ Neupert,
1146
+ B.
1147
+ An-
1148
+ drei Bernevig, and B. J. Wieder, Nature communications
1149
+ 13, 1 (2022).
1150
+ [40] Y. Wang, M. Lin,
1151
+ and T. L. Hughes, arXiv preprint
1152
+ arXiv:1804.01531 (2018).
1153
+ [41] T. H. Hsieh, G. B. Hal´asz, and T. Grover, Physical re-
1154
+ view letters 117, 166802 (2016).
1155
+ [42] V. Dwivedi, C. Hickey, T. Eschmann,
1156
+ and S. Trebst,
1157
+ Physical Review B 98, 054432 (2018).
1158
+ [43] S. Ryu, Physica Scripta 2015, 014009 (2015).
1159
+ [44] G. Y. Cho, K. Shiozaki, S. Ryu,
1160
+ and A. W. Ludwig,
1161
+ Journal of Physics A: Mathematical and Theoretical 50,
1162
+ 304002 (2017).
1163
+ [45] M. Levin and Z.-C. Gu, Physical Review B 86, 115109
1164
+ (2012).
1165
+ [46] X. Chen, Reviews in Physics 2, 3 (2017).
1166
+ [47] N. Read, Physical Review B 79, 045308 (2009).
1167
+ [48] X.-L. Qi, T. L. Hughes, S. Raghu,
1168
+ and S.-C. Zhang,
1169
+ Physical review letters 102, 187001 (2009).
1170
+ [49] X. Chen, Z.-C. Gu,
1171
+ and X.-G. Wen, Physical review b
1172
+ 82, 155138 (2010).
1173
+ [50] T. Grover, D. Sheng, and A. Vishwanath, Science 344,
1174
+ 280 (2014).
1175
+ [51] A. Chandran, V. Khemani, and S. L. Sondhi, Physical
1176
+ review letters 113, 060501 (2014).
1177
+ [52] J. May-Mann, Y. You, T. L. Hughes, and Z. Bi, arXiv
1178
+ preprint arXiv:2202.01231 (2022).
1179
+ [53] G. Y. Cho, J. C. Teo,
1180
+ and S. Ryu, Physical Review B
1181
+ 89, 235103 (2014).
1182
+ [54] The π flux from the Hamiltonian and the additional π
1183
+ we insert cancels.
1184
+ [55] Here we add an additional iπ/4 phase factor as a gauge
1185
+ choice that will simplify the CT
1186
+ 4 symmetry transforma-
1187
+ tion in the bosonization language.
1188
+ [56] A. Kapustin and R. Thorngren, Physical review letters
1189
+ 112, 231602 (2014).
1190
+ [57] A. Kitaev, Annals of Physics 321, 2 (2006).
1191
+
M9E3T4oBgHgl3EQfwgt2/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtE4T4oBgHgl3EQfKQyA/content/tmp_files/2301.04928v1.pdf.txt ADDED
@@ -0,0 +1,2461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04928v1 [math.AP] 12 Jan 2023
2
+ Nodal bubble tower solutions to slightly subcritical
3
+ elliptic problems with Hardy terms
4
+ Thomas Bartsch∗, Qianqiao Guo†
5
+ Dedicated to the 85th Birthday of Professor Dajun Guo.
6
+ Abstract We study the possible blow-up behavior of solutions to the slightly subcritical elliptic problem
7
+ with Hardy term
8
+
9
+
10
+
11
+
12
+
13
+ −∆u − µ u
14
+ |x|2 = |u|2∗−2−εu
15
+ in Ω,
16
+ u = 0
17
+ on ∂Ω,
18
+ in a bounded domain Ω ⊂ RN(N ≥ 7) with 0 ∈ Ω, as µ, ǫ → 0+. In [6], we obtained the existence of
19
+ nodal solutions that blow up positively at the origin and negatively at a different point as µ = O(ǫα)
20
+ with α > N−4
21
+ N−2, ǫ → 0+. Here we prove the existence of nodal bubble tower solutions, i.e. superpositions
22
+ of bubbles of different signs, all blowing up at the origin but with different blow-up order, as µ = O(ǫ),
23
+ ǫ → 0+.
24
+ 2010 Mathematics Subject Classification 35B44, 35B33, 35J60.
25
+ Key words Hardy term; Critical exponent; Slightly subcritical problems; Nodal solutions; Bubble towers;
26
+ Singular perturbation methods.
27
+ 1
28
+ Introduction
29
+ We continue to study the possible blow-up behavior of solutions to the slightly subcritical elliptic
30
+ problem with Hardy term
31
+
32
+
33
+
34
+
35
+
36
+ −∆u − µ u
37
+ |x|2 = |u|2∗−2−εu
38
+ in Ω,
39
+ u = 0
40
+ on ∂Ω,
41
+ (1.1)
42
+ where Ω ⊂ RN, N ≥ 7, is a smooth bounded domain with 0 ∈ Ω; 2∗ :=
43
+ 2N
44
+ N−2 is the critical Sobolev
45
+ exponent. In [6], for fixed α > N−4
46
+ N−2 and µ0 > 0, we obtain the existence of nodal solutions that blow up
47
+ positively at the origin and negatively at a different point with µ = µ0ǫα, ǫ → 0+. In this paper we want
48
+ to study the existence of nodal bubble tower solutions, i.e. superpositions of bubbles of different signs,
49
+ ∗Mathematisches
50
+ Institut,
51
+ Justus-Liebig-Universit¨at Giessen,
52
+ Arndtstr.
53
+ 2,
54
+ 35392
55
+ Giessen,
56
+ Germany;
57
+ E-mail:
58
59
+ †School of Mathematics and Statistics, Northwestern Polytechnical University, 710129 Xi’an, China; E-mail: gqian-
60
61
+ 1
62
+
63
+ all blowing up at the origin but with different blow-up order. For that, we need to assume α = 1, that
64
+ is, µ = µ0ǫ.
65
+ The blow-up phenomenon for positive and for nodal solutions to problem (1.1) for µ = 0 has been
66
+ studied extensively, see e.g. [2, 3, 4, 5, 8, 12, 17, 21, 23, 26, 28, 29, 30, 31] and the references therein.
67
+ However, it is well known that if µ ̸= 0, the Hardy potential
68
+ 1
69
+ |x|2 cannot be regarded as a lower order per-
70
+ turbation since it has the same homogeneity as the Laplace operator. This makes the analysis interesting
71
+ and more complicated compared with the case µ = 0. The existence of positive and nodal solutions to
72
+ the problem with Hardy type potentials and critical exponents has been studied in a number of papers,
73
+ see e.g. [9, 10, 13, 16, 18, 19, 20, 22, 24, 32, 33, 35] and the references therein. However, few results are
74
+ known concerning blow-up solutions. The only results we are aware of are related to the problem
75
+
76
+
77
+
78
+
79
+
80
+ − ∆u −
81
+ µ
82
+ |x|2 u = k(x)u2∗−1,
83
+ u ∈ D1,2(RN),
84
+ u > 0 in RN \ {0};
85
+ here D1,2(RN) := {u ∈ L2∗(RN) : |∇u| ∈ L2(RN)}; see [14, 15, 27].
86
+ In order to state the main results of this paper, we first introduce some notations.
87
+ By Hardy’s
88
+ inequality, the norm
89
+ ∥u∥µ :=
90
+ ��
91
+
92
+ (|∇u|2 − µ u2
93
+ |x|2 )dx
94
+ � 1
95
+ 2
96
+ is equivalent to the norm ∥u∥0 =
97
+ ��
98
+ Ω |∇u|2dx
99
+ �1/2 on H1
100
+ 0(Ω) provided 0 ≤ µ < µ := (N−2)2
101
+ 4
102
+ . This will
103
+ of course be the case for µ = µ0εα with ε > 0 small. As in [16] we write Hµ(Ω) for the Hilbert space
104
+ consisting of H1
105
+ 0(Ω) functions with the inner product
106
+ (u, v) :=
107
+
108
+
109
+
110
+ ∇u∇v − µ uv
111
+ |x|2
112
+
113
+ dx.
114
+ It is known that the nonzero critical points of the energy functional
115
+ Jε(u) := 1
116
+ 2
117
+
118
+
119
+
120
+ |∇u|2 − µ u2
121
+ |x|2
122
+
123
+ dx −
124
+ 1
125
+ 2∗ − ε
126
+
127
+
128
+ |u|2∗−εdx
129
+ defined on Hµ(Ω) are precisely the nontrivial weak solutions to problem (1.1).
130
+ We need to recall the ground states of two problems that appear as limiting problems. The ground
131
+ states of
132
+
133
+
134
+
135
+ −∆u = |u|2∗−2u
136
+ in RN,
137
+ u → 0
138
+ as |x| → ∞
139
+ (1.2)
140
+ are the instantons
141
+ Uδ,ξ := C0
142
+
143
+ δ
144
+ δ2 + |x − ξ|2
145
+ � N−2
146
+ 2
147
+ with δ > 0, ξ ∈ RN and C0 := (N(N − 2))
148
+ N−2
149
+ 4 ; see [1, 34]. These are the minimizers of
150
+ S0 :=
151
+ min
152
+ u∈D1,2(RN )\{0}
153
+
154
+ RN |∇u|2dx
155
+ (
156
+
157
+ RN |u|2∗dx)2/2∗
158
+ and they satisfy
159
+
160
+ RN |∇Uδ,ξ|2dx =
161
+
162
+ RN |Uδ,ξ|2∗dx = S
163
+ N
164
+ 2
165
+ 0 .
166
+ 2
167
+
168
+ Secondly, if 0 < µ < µ then all positive solutions to
169
+
170
+
171
+
172
+
173
+
174
+ −∆u − µ u
175
+ |x|2 = |u|2∗−2u
176
+ in RN,
177
+ u → 0
178
+ as |x| → ∞
179
+ (1.3)
180
+ are given by
181
+ Vσ = Cµ
182
+
183
+ σ
184
+ σ2|x|β1 + |x|β2
185
+ � N−2
186
+ 2
187
+ with σ > 0, β1 := (√µ − √µ − µ)/√µ, β2 := (√µ + √µ − µ)/√µ, and Cµ :=
188
+
189
+ 4N(µ−µ)
190
+ N−2
191
+ � N−2
192
+ 4 ; see [11, 35].
193
+ These solutions minimize
194
+ Sµ :=
195
+ min
196
+ u∈D1,2(RN)\{0}
197
+
198
+ RN (|∇u|2 − µ u2
199
+ |x|2 )dx
200
+ (�
201
+ RN |u|2���dx)2/2∗
202
+ and there holds
203
+
204
+ RN
205
+
206
+ |∇Vσ|2 − µ|Vσ|2
207
+ |x|2
208
+
209
+ dx =
210
+
211
+ RN |Vσ|2∗dx = S
212
+ N
213
+ 2
214
+ µ .
215
+ The Green’s function of the Dirichlet Laplacian is given by G(x, y) =
216
+ 1
217
+ |x−y|N−2 −H(x, y), for x, y ∈ Ω,
218
+ where H is the regular part. These functions are symmetric: G(x, y) = G(y, x) and H(x, y) = H(y, x).
219
+ Now we state our main result about the existence of nodal solutions that are towers of bubbles
220
+ concentrating at the origin.
221
+ Theorem 1.1. Let µ = µ0ε with µ0 > 0 fixed. For any given integer k ≥ 0 there exists ε0 > 0 such that
222
+ for any ε ∈ (0, ε0), there exists a pair of solutions ±uε to problem (1.1) satisfying
223
+ uε(x) = Cµ(−1)k
224
+
225
+ σε
226
+ (σε)2|x|β1 + |x|β2
227
+ � N−2
228
+ 2
229
+ + C0
230
+ k
231
+
232
+ i=1
233
+ (−1)i−1
234
+
235
+ δε
236
+ i
237
+ (δε
238
+ i )2 + |x − ξε
239
+ i |2
240
+ � N−2
241
+ 2
242
+ + o(1) as ε → 0.
243
+ Here the constants σε, δε
244
+ i > 0 and ξε
245
+ i ∈ RN are determined as follows.
246
+ There exist λε
247
+ i , λ
248
+ ε > 0 and
249
+ ζε
250
+ i ∈ RN, i = 1, . . . , k, with η < λε
251
+ i , λ
252
+ ε < 1
253
+ η and |ζε
254
+ i | ≤ 1
255
+ η for some η > 0 small, so that: σε = λ
256
+ εε
257
+ 2(k+1)−1
258
+ N−2
259
+ ,
260
+ δε
261
+ i = λε
262
+ i ε
263
+ 2i−1
264
+ N−2 , ξε
265
+ i = δε
266
+ i ζε
267
+ i for i = 1, 2, . . . , k.
268
+ The paper is organized as follows. In Section 2, we collect some notations and preliminary results.
269
+ Section 3 is devoted to the proof of Theorem 1.1. Some useful technical lemmas are deferred to the
270
+ appendices.
271
+ Throughout this paper, positive constants are denoted by C, c and may vary from line to line.
272
+ 2
273
+ Notations and preliminary results
274
+ Here we collect some results from [6]. Let ι∗
275
+ µ : L2N/(N+2)(Ω) → Hµ(Ω) be the adjoint operator of the
276
+ inclusion ιµ : Hµ(Ω) → L2N/(N−2)(Ω) as in [14], that is,
277
+ ι∗
278
+ µ(u) = v
279
+ ⇐⇒
280
+ (v, φ) =
281
+
282
+
283
+ u(x)φ(x)dx,
284
+ for all φ ∈ Hµ(Ω).
285
+ This is continuous, so there exists c > 0 such that
286
+ ∥ι∗
287
+ µ(u)∥µ ≤ c∥u∥2N/(N+2).
288
+ (2.1)
289
+ 3
290
+
291
+ Now the problem (1.1) is equivalent to the fixed point problem
292
+ u = ι∗
293
+ µ(fε(u)), u ∈ Hµ(Ω),
294
+ (2.2)
295
+ where fε(s) = |s|2∗−2−εs.
296
+ Let P : H1(RN) → H1
297
+ 0(Ω) be the projection defined by ∆Pu = ∆u in Ω, Pu = 0 on ∂Ω. We need
298
+ the following two propositions and one remark from [6].
299
+ Proposition 2.1. Let 0 < µ < µ be fixed, and let Λi, i = 1, 2, . . . , be the eigenvalues of
300
+
301
+
302
+
303
+
304
+
305
+ −∆u − µ u
306
+ |x|2 = Λ|Vσ|2∗−2u
307
+ in RN,
308
+ |u| → 0
309
+ as |x| → +∞,
310
+ in increasing order. Then Λ1 = 1 with eigenfunction Vσ and Λ2 = 2∗ − 1 with eigenfunction ∂Vσ
311
+ ∂σ .
312
+ Setting dinf := inf{|x| : x ∈ ∂Ω} and dsup := sup{|x| : x ∈ ∂Ω} we have
313
+ Proposition 2.2. Let 0 < µ < µ be fixed. Then for σ > 0 the function ϕσ := Vσ − PVσ satisfies
314
+ 0 ≤ ϕσ ≤ Vσ
315
+ and ϕσ(x) = Cµ(d(x))
316
+ √µ−√µ−µH(0, x)σ
317
+ N−2
318
+ 2
319
+ + ℏσ(x);
320
+ with
321
+ dinf ≤ d ≤ dsup and ℏσ = O(σ
322
+ N+2
323
+ 2 ),
324
+ ∂ℏσ
325
+ ∂σ = O(σ
326
+ N
327
+ 2 ) as σ → 0.
328
+ Remark 2.3.
329
+ a) If µ → 0+, then
330
+ ϕσ(x) = C0H(0, x)σ
331
+ N−2
332
+ 2
333
+ + O(µσ
334
+ N−2
335
+ 2 ) + ℏµ,σ(x),
336
+ (2.3)
337
+ where ℏµ,σ satisfies ℏµ,σ(x) = O(σ
338
+ N+2
339
+ 2 ), ∂ℏµ,σ(x)
340
+ ∂σ
341
+ = O(σ
342
+ N
343
+ 2 ) as σ → 0.
344
+ b) Let us recall the similar results for Uδ,ξ obtained in [30], that is
345
+ 0 ≤ ϕδ,ξ := Uδ,ξ − PUδ,ξ ≤ Uδ,ξ, ϕδ,ξ = C0H(ξ, ·)δ
346
+ N−2
347
+ 2
348
+ + O(δ
349
+ N+2
350
+ 2 ),
351
+ (2.4)
352
+ as δ → 0, uniformly in compact subsets of Ω.
353
+ 3
354
+ Solutions with tower of bubbles concentrating at the origin
355
+ 3.1
356
+ The finite-dimensional reduction
357
+ Let the integer k ≥ 0 be fixed. For ε > 0 small, λ = (λ1, . . . , λk, λ) ∈ Rk+1
358
+ +
359
+ and ζ = (ζ1, . . . , ζk) ∈
360
+ (RN)k we set σ := λε
361
+ 2(k+1)−1
362
+ N−2
363
+ , δi := λiε
364
+ 2i−1
365
+ N−2 ,
366
+ ξ = (ξ1, . . . , ξk) := (δ1ζ1, . . . , δkζk) ∈ Ωk,
367
+ and define
368
+ Wε,λ,ζ :=
369
+ k
370
+
371
+ i=1
372
+ Ker
373
+
374
+ −∆ − (2∗ − 1)U 2∗−2
375
+ δi,ξi
376
+
377
+ + Ker
378
+
379
+ −∆ −
380
+ µ
381
+ |x|2 − (2∗ − 1)V 2∗−2
382
+ σ
383
+
384
+ .
385
+ 4
386
+
387
+ By Proposition 2.1 and [7] we know
388
+ Wε,λ,ζ = span
389
+
390
+ Ψ, Ψ0
391
+ i , Ψj
392
+ i : i = 1, 2, . . ., k, j = 1, 2, . . ., N
393
+
394
+ ,
395
+ where for i = 1, 2, . . . , k and j = 1, 2, . . . , N:
396
+ Ψj
397
+ i := ∂Uδi,ξi
398
+ ∂ξi,j
399
+ ,
400
+ Ψ0
401
+ i := ∂Uδi,ξi
402
+ ∂δi
403
+ ,
404
+ Ψ := ∂Vσ
405
+ ∂σ
406
+ (3.1)
407
+ with ξi,j the j−th component of ξi.
408
+ We also need the spaces
409
+ Kε,λ,ζ := PWε,λ,ζ,
410
+ and
411
+ K⊥
412
+ ε,λ,ζ := {φ ∈ Hµ(Ω) : (φ, PΨ) = 0, for all Ψ ∈ Wε,λ,ζ},
413
+ as well as the (·, ·)µ-orthogonal projections
414
+ Πε,λ,ζ : Hµ(Ω) → Kε,λ,ζ,
415
+ and
416
+ Π⊥
417
+ ε,λ,ζ := Id − Πε,λ,ζ : Hµ(Ω) → K⊥
418
+ ε,λ,ζ.
419
+ For ε > 0 small we want to find solutions of (1.1) close to
420
+ Vε,λ,ζ :=
421
+ k
422
+
423
+ i=1
424
+ (−1)i−1PUδi,ξi + (−1)kPVσ,
425
+ where
426
+ (λ, ζ) ∈ Oη :=
427
+
428
+ (λ, ζ) ∈ Rk+1
429
+ +
430
+ × (RN)k : λi ∈ (η, η−1), λ ∈ (η, η−1), |ζi| ≤ 1
431
+ η , i = 1, . . . , k
432
+
433
+ for some η ∈ (0, 1).
434
+ This is equivalent to finding η > 0, (λ, ζ) ∈ Oη and φε,λ,ζ ∈ K⊥
435
+ ε,λ,ζ such that
436
+ Vε,λ,ζ + φε,λ,ζ solves (2.2), hence
437
+ Π⊥
438
+ ε,λ,ζ
439
+
440
+ Vε,λ,ζ + φε,λ,ζ − ι∗
441
+ µ(fε(Vε,��,ζ + φε,λ,ζ))
442
+
443
+ = 0
444
+ (3.2)
445
+ and
446
+ Πε,λ,ζ
447
+
448
+ Vε,λ,ζ + φε,λ,ζ − ι∗
449
+ µ(fε(Vε,λ,ζ + φε,λ,ζ))
450
+
451
+ = 0.
452
+ Now we solve (3.2) first for φε,λ,ζ. Let us introduce the operator Lε,λ,ζ : K⊥
453
+ ε,λ,ζ → K⊥
454
+ ε,λ,ζ defined by
455
+ Lε,λ,ζ(φ) = φ − Π⊥
456
+ ε,λ,ζι∗
457
+ µ(f ′
458
+ 0(Vε,λ,ζ)φ).
459
+ Take ρ > 0 small enough and let
460
+ Ak+1 := B(0,
461
+
462
+ δk+1δk),
463
+ Ai := B(0,
464
+
465
+ δiδi−1) \ B(0,
466
+
467
+ δiδi+1) for i = 1, . . . , k;
468
+ here δ0 = ρ2
469
+ δ1 , δk+1 = σ; cf. [26].
470
+ Proposition 3.1. For any η ∈ (0, 1), there exist ε0 > 0 and c > 0 such that for every (λ, ζ) ∈ Oη and
471
+ for every ε ∈ (0, ε0),
472
+ ∥Lε,λ,ζ(φ)∥µ ≥ c∥φ∥µ
473
+ for all φ ∈ K⊥
474
+ ε,λ,ζ.
475
+ In particular, Lε,λ,ζ is invertible with continuous inverse.
476
+ 5
477
+
478
+ Proof. Following the same line as in [25] we argue by contradiction. Suppose that there exist η > 0,
479
+ sequences εn > 0, (λn, ζn) ∈ Oη, φn ∈ Hµ(Ω) satisfying
480
+ εn → 0, λn
481
+ i → λi, λ
482
+ n → λ, ζn
483
+ i → ζi,
484
+ as n → ∞, and such that
485
+ φn ∈ K⊥
486
+ εn,λn,ζn,
487
+ ∥φn∥µ = 1,
488
+ and
489
+ Lεn,λn,ζn(φn) = hn with ∥hn∥µ → 0;
490
+ (3.3)
491
+ here λn = (λn
492
+ 1 , . . . , λn
493
+ k, λ
494
+ n), ζn = (ζn
495
+ 1 , . . . , ζn
496
+ k ), and for ε > 0 small: σn = λ
497
+
498
+ 2(k+1)−1
499
+ N−2
500
+ , ξn = (ξn
501
+ 1 , . . . , ξn
502
+ k ) =
503
+ (δn
504
+ 1 ζn
505
+ 1 , δn
506
+ 2 ζn
507
+ 2 , . . . , δn
508
+ k ζn
509
+ k ) ∈ Ωk, δn
510
+ i = λn
511
+ i ε
512
+ 2i−1
513
+ N−2 for i = 1, 2, . . ., k. Consider the sets
514
+ An
515
+ k+1 := B
516
+
517
+ 0, �δn
518
+ k+1δn
519
+ k
520
+
521
+ ,
522
+ An
523
+ i := B
524
+
525
+ 0, �δn
526
+ i δn
527
+ i−1
528
+
529
+ \ B
530
+
531
+ 0, �δn
532
+ i δn
533
+ i+1
534
+
535
+ , i = 1, 2, . . ., k,
536
+ where δn
537
+ 0 := ρ2
538
+ δn
539
+ 1 and δn
540
+ k+1 := σn. Thus we have:
541
+ φn − ι∗
542
+ µ (f ′
543
+ 0(Vεn,λn,ζn)φn) = hn − Πεn,λn,ξn �
544
+ ι∗
545
+ µ(f ′
546
+ 0(Vεn,λn,ξn)φn)
547
+
548
+ .
549
+ (3.4)
550
+ As in the proof of [6, Proposition 4.1], we obtain
551
+ wn := −Πεn,λn,ξn(ι∗
552
+ µ(f ′
553
+ 0(Vεn,λn,ξn)φn)) =
554
+ k
555
+
556
+ i=1
557
+ N
558
+
559
+ j=0
560
+ cn
561
+ i,jP(Ψj
562
+ i)n + cn
563
+ 0P(Ψ)n
564
+ for some coefficients cn
565
+ i,j, cn
566
+ 0, where (Ψj
567
+ i)n, j = 1, . . . , N, (Ψ0
568
+ i )n, and (Ψ)n are defined analogously to (3.1).
569
+ We argue in three steps.
570
+ Step 1. We claim that
571
+ lim
572
+ n→∞ ∥wn∥µ = 0.
573
+ (3.5)
574
+ Multiplying (3.4) by ∆P(Ψh
575
+ l )n + µ P (Ψh
576
+ l )n
577
+ |x|2
578
+ , using Lemma B.1, Lemma A.1, Lemma B.2, and arguing as
579
+ in the proof of [6, Proposition 4.1], we deduce cn
580
+ l,h → 0, for l = 1, . . . , k, h = 0, 1, . . . , N, and cn
581
+ 0 → 0, as
582
+ n → ∞. Thus the claim lim
583
+ n→∞ ∥wn∥µ = 0 follows.
584
+ Step 2. As in [26] we use cut-off functions χn
585
+ i , i = 1, . . . , k + 1, with the properties
586
+
587
+
588
+
589
+
590
+
591
+
592
+
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+
601
+
602
+
603
+ χn
604
+ i (x) = 1
605
+ if
606
+
607
+ δn
608
+ i δn
609
+ i+1 ≤ |x| ≤
610
+
611
+ δn
612
+ i δn
613
+ i−1;
614
+ χn
615
+ i (x) = 0
616
+ if |x| ≤
617
+ �δn
618
+ i δn
619
+ i+1
620
+ 2
621
+ or |x| ≥ 2
622
+
623
+ δn
624
+ i δn
625
+ i−1;
626
+ |∇χn
627
+ i (x)| ≤
628
+ 1
629
+ �δn
630
+ i δn
631
+ i−1
632
+ and|∇2χn
633
+ i (x)| ≤
634
+ 4
635
+ δn
636
+ i δn
637
+ i−1
638
+ ,
639
+ for i = 1, . . . , k, and
640
+
641
+
642
+
643
+
644
+
645
+
646
+
647
+
648
+
649
+
650
+
651
+
652
+
653
+
654
+
655
+ χn
656
+ k+1(x) = 1,
657
+ if |x| ≤
658
+
659
+ δn
660
+ k+1δn
661
+ k ;
662
+ χn
663
+ k+1(x) = 0,
664
+ if |x| ≥ 2
665
+
666
+ δn
667
+ k+1δn
668
+ k ;
669
+ |∇χn
670
+ k+1(x)| ≤
671
+ 1
672
+ �δn
673
+ k+1δn
674
+ k
675
+ ,
676
+ and
677
+ |∇2χn
678
+ k+1(x)| ≤
679
+ 4
680
+ δn
681
+ k+1δn
682
+ k
683
+ .
684
+ 6
685
+
686
+ The functions φn
687
+ i defined by
688
+ φn
689
+ i (y) := (δn
690
+ i )
691
+ N−2
692
+ 2 φn(δn
693
+ i y)χn
694
+ i (δn
695
+ i y),
696
+ for y ∈ Ωn
697
+ i := Ω
698
+ δn
699
+ i
700
+ , i = 1, . . . , k + 1.
701
+ are bounded in D1,2(RN). Therefore we may assume, up to a subsequence,
702
+ φn
703
+ i ⇀ φ∞
704
+ i
705
+ weakly in D1,2(RN), i = 1, 2, . . ., k + 1.
706
+ Now we prove
707
+ φ∞
708
+ i
709
+ = 0
710
+ for i = 1, . . . , k + 1.
711
+ (3.6)
712
+ Again as in the proof of Proposition 4.1 in [6], using (3.4), (3.3) and (3.5), we obtain for any ψ ∈ C∞
713
+ 0 (RN)
714
+ and i = 1, . . . , k:
715
+
716
+ Ωn
717
+ i
718
+ ∇φn
719
+ i (y)∇ψ(y) = (δn
720
+ i )
721
+ 2−N
722
+ 2
723
+
724
+
725
+ ∇ι∗
726
+ µ (f ′
727
+ 0(Vεn,λn,ζn(x))φn(x)) ∇
728
+
729
+ χn
730
+ i (x)ψ
731
+ � x
732
+ δn
733
+ i
734
+ ��
735
+ + o(1)
736
+ = (δn
737
+ i )
738
+ 2−N
739
+ 2
740
+
741
+
742
+ f ′
743
+ 0 (Vεn,λn,ζn(x)) φn(x)χn
744
+ i (x)ψ
745
+ � x
746
+ δn
747
+ i
748
+
749
+ + o(1)
750
+ = (δn
751
+ i )2
752
+
753
+ Ωn
754
+ i
755
+ f ′
756
+ 0 (Vεn,λn,ζn(δn
757
+ i y)) φn
758
+ i (y)ψ(y) + o(1)
759
+ =
760
+
761
+ RN f ′
762
+ 0 (U1,ζi(y)) φ∞
763
+ i (y)ψ(y) + o(1).
764
+ Hence φ∞
765
+ i
766
+ is a weak solution to
767
+ −∆φ∞
768
+ i
769
+ = f ′
770
+ 0(U1,ζi)φ∞
771
+ i , in D1,2(RN).
772
+ Setting Ψj
773
+ 1,ζi :=
774
+ ∂U1,ζi
775
+ ∂ζi,j , for j = 1, . . . , N, and Ψ0
776
+ 1,ζi :=
777
+ ∂Uδ,ζi
778
+ ∂δ
779
+ |δ=1, we deduce as in [26, Lemma 3.1]:
780
+
781
+ RN ∇φ∞
782
+ i (x)∇Ψj
783
+ 1,ζi(x) = 0,
784
+ j = 0, 1, 2, . . ., N, i = 1, 2, . . . , k.
785
+ Consequently (3.6) holds for i = 1, . . . , k. The proof of φ∞
786
+ k+1 = 0 is similar.
787
+ Step 3. A contradiction arises as in the proof of [6, Proposition 4.1] and [25].
788
+
789
+ Proposition 3.2. For every η ∈ (0, 1), there exist ε0 > 0, c0 > 0 such that for every (λ, ζ) ∈ Oη and
790
+ every ε ∈ (0, ε0), there exists a unique solution φε,λ,ζ ∈ K⊥
791
+ ε,λ,ζ of equation (3.2) satisfying
792
+ ∥φε,λ,ζ∥µ ≤ c0(ε
793
+ N+2
794
+ 2(N−2) + ε
795
+ 2k+3
796
+ 4 ).
797
+ Moreover, the map Φε : Oη → K⊥
798
+ ε,λ,ζ defined by Φε(λ, ζ) := φε,λ,ζ is of class C1.
799
+ Proof. As in [3], solving (3.2) is equivalent to finding a fixed point of the operator Tε,λ,ζ : K⊥
800
+ ε,λ,ζ → K⊥
801
+ ε,λ,ζ
802
+ defined by
803
+ Tε,λ,ζ(φ) = L−1
804
+ ε,λ,ζΠ⊥
805
+ ε,λ,ζ(ι∗
806
+ µ(fε(Vε,λ,ζ + φ) − f ′
807
+ 0(Vε,λ,ζ)φ) − Vε,λ,ζ).
808
+ Now we prove that Tε,λ,ζ is a contraction mapping. As in the proof of [6, Proposition 4.2], using Propo-
809
+ 7
810
+
811
+ sition 3.1, (2.1) and Lemma B.3 we have
812
+ ∥Tε,λ,ζ(φ)∥µ ≤ C∥fε(Vε,λ,ζ + φ) − fε(Vε,λ,ζ) − f ′
813
+ ε(Vε,λ,ζ)φ∥2N/(N+2)
814
+ + C∥(f ′
815
+ ε(Vε,λ,ζ) − f ′
816
+ 0(Vε,λ,ζ))φ∥2N/(N+2)
817
+ + C∥fε(Vε,λ,ζ) − f0(Vε,λ,ζ)∥2N/(N+2)
818
+ + C
819
+ �����f0(Vε,λ,ζ) −
820
+ � k
821
+
822
+ i=1
823
+ (−1)i−1f0(Uδi,ξi) + (−1)kf0(Vσ)
824
+ ������
825
+ 2N/(N+2)
826
+ +
827
+ k
828
+
829
+ i=1
830
+ O(µδi) + O
831
+ ��
832
+ µσ
833
+ N−2
834
+ 2
835
+ � 1
836
+ 2 �
837
+ .
838
+ Using Lemma B.4 and observing that
839
+ ∥fε(Vε,λ,ζ + φ) − fε(Vε,λ,ζ) − f ′
840
+ ε(Vε,λ,ζ)φ∥2N/(N+2) ≤ C∥φ∥2∗−1
841
+ µ
842
+ ,
843
+ we have
844
+ ∥Tε,λ,ζ(φ)∥µ ≤ C∥φ∥2∗−1
845
+ µ
846
+ + Cε∥φ∥µ + Cε + O
847
+
848
+ ε
849
+ N+2
850
+ 2(N−2)
851
+
852
+ +
853
+ k
854
+
855
+ i=1
856
+ O(µδi) + O
857
+ ��
858
+ µσ
859
+ N−2
860
+ 2
861
+ � 1
862
+ 2 �
863
+ = C∥φ∥2∗−1
864
+ µ
865
+ + Cε∥φ∥µ + O
866
+
867
+ ε
868
+ N+2
869
+ 2(N−2)
870
+
871
+ + O
872
+
873
+ ε
874
+ 2k+3
875
+ 4
876
+
877
+ .
878
+ The remaining part of the argument is standard and will therefore be left to the reader.
879
+
880
+ For λ = (λ1, . . . , λk, λ) and ζ = (ζ1, . . . , ζk) we now consider the reduced functional
881
+ Iε(λ, ζ) = Jε(Vε,λ,ζ + φε,λ,ζ).
882
+ Proposition 3.3. If (λ, ζ) ∈ Oη is a critical point of Iε then Vε,λ,ζ + φε,λ,ζ is a solution of problem (1.1)
883
+ for ǫ > 0 small.
884
+ Proof. We omit it since it is similar to the proof of [6, Proposition 4.3].
885
+
886
+ 3.2
887
+ Proof of Theorem 1.1
888
+ We assume µ = µ0ǫ with µ0 > 0 fixed, and use the following notations from the above subsection.
889
+ For
890
+ ε > 0 small, λ = (λ1, . . . , λk, λ) ∈ Rk+1
891
+ +
892
+ , ζ = (ζ1, . . . , ζk) ∈ (Rn)k,
893
+ we set
894
+ σ = λε
895
+ 2(k+1)−1
896
+ N−2
897
+ , δi = λiε
898
+ 2i−1
899
+ N−2 , ξ = (ξ1, . . . , ξk) = (δ1ζ1, . . . , δkζk), i = 1, . . . , k.
900
+ For convenience, we denote λk+1 := λ in this subsection.
901
+ Lemma 3.4. For ε → 0+, there holds
902
+ Iε(λ, ζ)
903
+ =
904
+ a1 + a2ε − a3ε ln ε + ψ(λ, ζ)ε + o(ε)
905
+ (3.7)
906
+ C1-uniformly with respect to (λ, ζ) in compact sets of Oη. The constants are given by
907
+ a1 = k + 1
908
+ N
909
+ S
910
+ N
911
+ 2
912
+ 0 , a2 = (k + 1)
913
+ 2∗
914
+
915
+ RN U 2∗
916
+ 1,0 ln U1,0 − k + 1
917
+ (2∗)2 S
918
+ N
919
+ 2
920
+ 0 − 1
921
+ 2S
922
+ N−2
923
+ 2
924
+ 0
925
+ Sµ0, a3 = (k + 1)2
926
+ 2 · 2∗
927
+
928
+ RN U 2∗
929
+ 1,0.
930
+ 8
931
+
932
+ The function ψ is given by
933
+ ψ(λ, ζ) = b1λN−2
934
+ 1
935
+ +
936
+ k
937
+
938
+ i=1
939
+ b2(λi+1
940
+ λi
941
+ )
942
+ N−2
943
+ 2 h1(ζi) −
944
+ k
945
+
946
+ i=1
947
+ b3h2(ζi) − b4 ln(λ1 . . . λk+1)
948
+ N−2
949
+ 2
950
+ with
951
+ b1 = 1
952
+ 2C0
953
+
954
+ RN U 2∗−1
955
+ 1,0
956
+ , b2 = C2∗
957
+ 0 , b3 = 1
958
+ 2C2
959
+ 0µ0, b4 = 1
960
+ 2∗
961
+
962
+ RN U 2∗
963
+ 1,0,
964
+ and
965
+ h1(ζi) =
966
+
967
+ RN
968
+ 1
969
+ |y + ζi|N−2(1 + |y|2)
970
+ N+2
971
+ 2
972
+ ,
973
+ h2(ζi) =
974
+
975
+ RN
976
+ 1
977
+ |y + ζi|2(1 + |y|2)N−2 .
978
+ Proof. Observe that
979
+ Jε(Vε,λ,ζ) = 1
980
+ 2
981
+
982
+
983
+
984
+ |∇Vε,λ,ζ|2 − µ|Vε,λ,ζ|2
985
+ |x|2
986
+
987
+ − 1
988
+ 2∗
989
+
990
+
991
+ |Vε,λ,ζ|2∗
992
+ +
993
+ � 1
994
+ 2∗
995
+
996
+
997
+ |Vε,λ,ζ|2∗ −
998
+ 1
999
+ 2∗ − ε
1000
+
1001
+
1002
+ |Vε,λ,ζ|2∗−ε
1003
+
1004
+ = (I) + (II) + (III).
1005
+ For k ≥ 1, Lemma B.5 and Lemma A.4 yield:
1006
+ (I) = 1
1007
+ 2(k + 1)S
1008
+ N
1009
+ 2
1010
+ 0 − N
1011
+ 4 S
1012
+ N−2
1013
+ 2
1014
+ 0
1015
+ Sµ0ε − 1
1016
+ 2C2∗
1017
+ 0 H(0, 0)λN−2
1018
+ 1
1019
+
1020
+ RN
1021
+ 1
1022
+ (1 + |z|2)
1023
+ N+2
1024
+ 2
1025
+ · ε
1026
+ − 1
1027
+ 2
1028
+ k
1029
+
1030
+ i=1
1031
+ µ0C2
1032
+ 0
1033
+
1034
+ RN
1035
+ 1
1036
+ |y|2(1 + |y − ζi|2)N−2 · ε
1037
+ − C2∗
1038
+ 0
1039
+ �λk+1
1040
+ λk
1041
+ � N−2
1042
+ 2
1043
+
1044
+ RN
1045
+ 1
1046
+ (1 + |y|2)
1047
+ N+2
1048
+ 2
1049
+ ·
1050
+ 1
1051
+ (1 + |ζk|2)
1052
+ N−2
1053
+ 2
1054
+ · ε
1055
+
1056
+ k−1
1057
+
1058
+ i=1
1059
+ C2∗
1060
+ 0
1061
+ �λi+1
1062
+ λi
1063
+ � N−2
1064
+ 2
1065
+
1066
+ RN
1067
+ 1
1068
+ (1 + |y|2)
1069
+ N+2
1070
+ 2
1071
+ ·
1072
+ 1
1073
+ (1 + |ζi|2)
1074
+ N−2
1075
+ 2
1076
+ · ε + o(ε).
1077
+ (3.8)
1078
+ By Lemma B.6 and Lemma A.4, we obtain:
1079
+ (II) = − 1
1080
+ 2∗ (k + 1)S
1081
+ N
1082
+ 2
1083
+ 0 + N − 2
1084
+ 4
1085
+ S
1086
+ N−2
1087
+ 2
1088
+ 0
1089
+ Sµ0ε + C2∗
1090
+ 0 H(0, 0)λN−2
1091
+ 1
1092
+
1093
+ RN
1094
+ 1
1095
+ (1 + |z|2)
1096
+ N+2
1097
+ 2
1098
+ · ε
1099
+ + C2∗
1100
+ 0
1101
+ k
1102
+
1103
+ i=1
1104
+ �λi+1
1105
+ λi
1106
+ � N−2
1107
+ 2
1108
+
1109
+ RN
1110
+ 1
1111
+ |y|N−2(1 + |y − ζi|2)
1112
+ N+2
1113
+ 2
1114
+ · ε
1115
+ + C2∗
1116
+ 0
1117
+ k
1118
+
1119
+ i=1
1120
+ (λi+1
1121
+ λi
1122
+ )
1123
+ N−2
1124
+ 2
1125
+
1126
+ RN
1127
+ 1
1128
+ (1 + |y|2)
1129
+ N+2
1130
+ 2
1131
+ 1
1132
+ (1 + |ζi|2)
1133
+ N−2
1134
+ 2
1135
+ · ε + o(ε).
1136
+ (3.9)
1137
+ Finally, Lemma B.7 and Lemma A.4 imply:
1138
+ (III) = −
1139
+ ε
1140
+ (2∗)2 (k + 1)S
1141
+ N
1142
+ 2
1143
+ 0 − (N − 2)ε
1144
+ 2 · 2∗
1145
+
1146
+ RN U 2∗
1147
+ 1,0 · ln(δ1 . . . δkσ)
1148
+ + (k + 1)ε
1149
+ 2∗
1150
+
1151
+ RN U 2∗
1152
+ 1,0 ln U1,0 + o(ε)
1153
+ = −
1154
+ ε
1155
+ (2∗)2 (k + 1)S
1156
+ N
1157
+ 2
1158
+ 0 − (N − 2)ε
1159
+ 2 · 2∗
1160
+
1161
+ RN U 2∗
1162
+ 1,0 · ln(λ1 . . . λkλ)
1163
+ − (k + 1)2
1164
+ 2 · 2∗
1165
+
1166
+ RN U 2∗
1167
+ 1,0 · ε ln ε + (k + 1)
1168
+ 2∗
1169
+
1170
+ RN U 2∗
1171
+ 1,0 ln U1,0 · ε + o(ε).
1172
+ (3.10)
1173
+ 9
1174
+
1175
+ On the other hand, we deduce from Proposition 3.2, (2.3), (2.4), and Lemma B.4 that
1176
+ Jε(Vε,λ,ζ + φε,λ,ζ) − Jε(Vε,λ,ζ) = o(ε).
1177
+ (3.11)
1178
+ Now for k ≥ 1, (3.8), (3.9), (3.10) and (3.11) imply (3.7).
1179
+ The case k = 0 can be easily dealt with by using Lemma A.2, Lemma A.3 and (3.11). That (3.7)
1180
+ holds C1-uniformly with respect to (λ, ζ) in compact sets of Oη can be seen as in [26, Lemma 7.1]. We
1181
+ omit the details here.
1182
+
1183
+ As a corollary of Lemma 3.4 we obtain the following.
1184
+ Corollary 3.5. If (λ, ζ) is a stable (e.g. non-degenerate) critical point of ψ(λ, ζ), then Iǫ has for ǫ > 0
1185
+ small a critical point (λǫ, ζǫ) that converges towards (λ, ζ) as ǫ → 0.
1186
+ Proof. The proof is standard.
1187
+
1188
+ Proof of Theorem 1.1. By the change of variables
1189
+ λ
1190
+ N−2
1191
+ 2
1192
+ 1
1193
+ = s1,
1194
+ �λ2
1195
+ λ1
1196
+ � N−2
1197
+ 2
1198
+ = s2, . . . ,
1199
+ �λk+1
1200
+ λk
1201
+ � N−2
1202
+ 2
1203
+ = sk+1,
1204
+ ψ(λ, ζ) can be rewritten as
1205
+ �ψ(s, ζ) = b1s2
1206
+ 1 +
1207
+ k
1208
+
1209
+ i=1
1210
+ b2si+1h1(ζi) −
1211
+ k
1212
+
1213
+ i=1
1214
+ b3h2(ζi) − b4 ln(sk+1
1215
+ 1
1216
+ sk
1217
+ 2 . . . sk+1),
1218
+ where s = (s1, s2, . . . , sk+1).
1219
+ For fixed ζ the equation ∇s �ψ(s, ζ) = 0 has the unique solution �s(ζ) = (�s1(ζ), . . . , �sk+1(ζ)) with
1220
+ �s1 =
1221
+
1222
+ (k + 1)b4
1223
+ 2b1
1224
+ ,
1225
+ �s2 =
1226
+ kb4
1227
+ b2h1(ζ1), . . . , �sk+1 =
1228
+ b4
1229
+ b2h1(ζk).
1230
+ It is easy to see that �s(ζ) is non-degenerate. Plugging it into �ψ(s, ζ) gives
1231
+ �ψ(�s(ζ), ζ) = (k + 1)2b4
1232
+ 2
1233
+
1234
+ k
1235
+
1236
+ i=1
1237
+ b3h2(ζi) − b4(k + 1
1238
+ 2
1239
+ ln (k + 1)b4
1240
+ 2b1
1241
+ +
1242
+ k
1243
+
1244
+ i=1
1245
+ i ln ib4
1246
+ b2
1247
+ ) +
1248
+ k
1249
+
1250
+ i=1
1251
+ b4(k + 1 − i) ln h1(ζi)
1252
+ = C1 +
1253
+ k
1254
+
1255
+ i=1
1256
+ gi(ζi),
1257
+ where
1258
+ C1 = (k + 1)2b4
1259
+ 2
1260
+ − b4
1261
+
1262
+ k + 1
1263
+ 2
1264
+ ln (k + 1)b4
1265
+ 2b1
1266
+ +
1267
+ k
1268
+
1269
+ i=1
1270
+ i ln ib4
1271
+ b2
1272
+
1273
+ ,
1274
+ and
1275
+ gi(ζi) = b4(k + 1 − i) ln
1276
+
1277
+ RN
1278
+ 1
1279
+ |y + ζi|N−2(1 + |y|2)
1280
+ N+2
1281
+ 2
1282
+ − b3
1283
+
1284
+ RN
1285
+ 1
1286
+ |y + ζi|2(1 + |y|2)N−2 .
1287
+ A direct computation shows that ζi = 0 is a critical point of gi(ζi) such that
1288
+ ∂2gi(ζi)
1289
+ ∂ζi,j∂ζi,l
1290
+ ���
1291
+ ζi=0 = 0
1292
+ if j ̸= l;
1293
+ 10
1294
+
1295
+ and
1296
+ ∂2gi(ζi)
1297
+ ∂(ζi,j)2
1298
+ ���
1299
+ ζi=0 = 2N − 8
1300
+ N
1301
+
1302
+ RN
1303
+ b3
1304
+ |y|4(1 + |y|2)N−2 > 0.
1305
+ Consequently ζi = 0 is a nondegenerate local minimum of gi. Hence ζ = 0 is a C1-stable critical point of
1306
+ �ψ(�s(ζ), ζ). Thus we conclude by Corollary 3.5 and Proposition 3.3.
1307
+
1308
+ A
1309
+ Some lemmas from [6]
1310
+ In this part we collect some lemmas from [6]. We define for η ∈ (0, 1):
1311
+ Tη :=
1312
+
1313
+ (λ, ξ) ∈ Rk+1
1314
+ +
1315
+ × Ωk : λi ∈ (η, η−1), λ ∈ (η, η−1), dist(ξi, ∂Ω) > η,
1316
+ |ξi| > η, |ξi1 − ξi2| > η, i, i1, i2 = 1, 2, . . ., k, i1 ̸= i2
1317
+
1318
+ .
1319
+ Lemma A.1. (i) For i = 1, 2, . . . , k, and j = 0, 1, . . . , N, there holds
1320
+ ∥PΨj
1321
+ i − Ψj
1322
+ i∥2N/(N−2) =
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+ O
1329
+
1330
+ δ
1331
+ N−2
1332
+ 2
1333
+ i
1334
+
1335
+ if j = 1, 2, . . ., N,
1336
+ O
1337
+
1338
+ δ
1339
+ N−4
1340
+ 2
1341
+ i
1342
+
1343
+ if j = 0
1344
+ as δi → 0 uniformly for ξi in a compact subset of Ω.
1345
+ (ii) There holds
1346
+ ∥PΨ − Ψ∥2N/(N−2) = O
1347
+
1348
+ σ
1349
+ N−4
1350
+ 2
1351
+
1352
+ as σ → 0, uniformly for 0 < µ < µ.
1353
+ Lemma A.2. For i = 1, 2, · · · , k, the following estimates hold uniformly for (λ, ξ) ∈ Tη:
1354
+ (i) For µ, σ → 0:
1355
+
1356
+
1357
+ |∇PVσ|2 − µ|PVσ|2
1358
+ |x|2
1359
+ = S
1360
+ N
1361
+ 2
1362
+ µ − C0C2∗−1
1363
+ µ
1364
+ H(0, 0)σN−2
1365
+
1366
+ RN
1367
+ 1
1368
+ (|z|β1 + |z|β2)
1369
+ N+2
1370
+ 2
1371
+ + O(µσN−2) + O(σN).
1372
+ (ii) For δi, σ → 0:
1373
+
1374
+
1375
+ |∇PUδi,ξi|2 = S
1376
+ N
1377
+ 2
1378
+ 0 − C2∗
1379
+ 0 H(ξi, ξi)δN−2
1380
+ i
1381
+
1382
+ RN
1383
+ 1
1384
+ (1 + |z|2)
1385
+ N+2
1386
+ 2
1387
+ + o(δN−2
1388
+ i
1389
+ ).
1390
+ Lemma A.3. For µ, σ → 0 there holds
1391
+
1392
+
1393
+ |PVσ|2∗ = S
1394
+ N
1395
+ 2
1396
+ µ − 2∗C0C2∗−1
1397
+ µ
1398
+ H(0, 0)σN−2
1399
+
1400
+ RN
1401
+ 1
1402
+ (|z|β1 + |z|β2)
1403
+ N+2
1404
+ 2
1405
+ + O(µσN−2) + O(σN ).
1406
+ Lemma A.4. For µ → 0+ there holds
1407
+
1408
+ RN V p
1409
+ 1 =
1410
+
1411
+ RN U p
1412
+ 1,0 + o(1) and
1413
+
1414
+ RN V p
1415
+ 1 ln V1 =
1416
+
1417
+ RN U p
1418
+ 1,0 ln U1,0 + o(1)
1419
+ for p > 1 as well as
1420
+ Cµ = C0 −
1421
+ C0
1422
+ N − 2µ + O(µ2) and Sµ = S0 − Sµ + O(µ2),
1423
+ for some positive constant S independent of µ.
1424
+ 11
1425
+
1426
+ B
1427
+ Proof of the lemmas from Section 3
1428
+ Lemma B.1. For i, l = 1, 2, . . ., k, and j, h = 0, 1, . . . , N, with i ̸= l or j ̸= h, there are constants
1429
+ �c0 > 0, �ci,j > 0 such that the following estimates hold uniformly for 0 < µ < µ:
1430
+ (PΨ, PΨ)µ = �c0
1431
+ 1
1432
+ σ2 + o(σ−2) as σ → 0,
1433
+ (PΨ, PΨj
1434
+ i)µ = o(σ−2)o(δ−2
1435
+ i
1436
+ ) as σ → 0, δi → 0, uniformly for ξi in a compact subset of Ω,
1437
+ (PΨj
1438
+ i, PΨj
1439
+ i)µ = �ci,j
1440
+ 1
1441
+ δ2
1442
+ i
1443
+ + o(δ−2
1444
+ i
1445
+ ) as δi → 0, uniformly for ξi in a compact subset of Ω,
1446
+ (PΨj
1447
+ i, PΨh
1448
+ l )µ = o(δ−2
1449
+ i
1450
+ ) as δi → 0, uniformly for ξi, ξl in a compact subset of Ω.
1451
+ Proof. We omit the proof since it is similar to [6, Lemma A.1].
1452
+
1453
+ Lemma B.2. (i) For i, l = 1, 2, · · · , k there holds
1454
+ �����
1455
+
1456
+ f ′
1457
+ 0
1458
+ � k
1459
+
1460
+ i=1
1461
+ (−1)i−1PUδi,ξi + (−1)kPVσ
1462
+
1463
+ − f ′
1464
+ 0(Uδl,ξl)
1465
+
1466
+ Ψh
1467
+ l
1468
+ �����
1469
+ 2N/(N+2)
1470
+ = o
1471
+
1472
+ δ
1473
+ − 2N
1474
+ N+2
1475
+ l
1476
+
1477
+ as σ, δi, δl → 0 uniformly for 0 < µ < µ and ξi in a compact subset of Ω.
1478
+ (ii) There holds
1479
+ �����
1480
+
1481
+ f ′
1482
+ 0
1483
+ � k
1484
+
1485
+ i=1
1486
+ (−1)i−1PUδi,ξi + (−1)kPVσ
1487
+
1488
+ − f ′
1489
+ 0(Vσ)
1490
+
1491
+ Ψ
1492
+ �����
1493
+ 2N/(N+2)
1494
+ = o
1495
+
1496
+ σ− 2N
1497
+ N+2
1498
+
1499
+ as σ, δi → 0 uniformly for 0 < µ < µ and ξi in a compact subset of Ω.
1500
+ Proof. We only prove (i) for h ̸= 0.
1501
+
1502
+
1503
+ |(f ′
1504
+ 0(
1505
+ k
1506
+
1507
+ i=1
1508
+ (−1)i−1PUδi,ξi + (−1)kPVσ) − f ′
1509
+ 0(Uδl,ξl))Ψh
1510
+ l |2N/(N+2)
1511
+ =
1512
+ k+1
1513
+
1514
+ i=1
1515
+
1516
+ Ai
1517
+ |(f ′
1518
+ 0(
1519
+ k
1520
+
1521
+ i=1
1522
+ (−1)i−1PUδi,ξi + (−1)kPVσ) − f ′
1523
+ 0(Uδl,ξl))Ψh
1524
+ l |2N/(N+2)
1525
+ +
1526
+
1527
+ Ω\B(0,ρ)
1528
+ |(f ′
1529
+ 0(
1530
+ k
1531
+
1532
+ i=1
1533
+ (−1)i−1PUδi,ξi + (−1)kPVσ) − f ′
1534
+ 0(Uδl,ξl))Ψh
1535
+ l |2N/(N+2).
1536
+ As in [26, Lemma A.3], by (2.3) and (2.4) we have
1537
+
1538
+ Al
1539
+ |(f ′
1540
+ 0(
1541
+ k
1542
+
1543
+ i=1
1544
+ (−1)i−1PUδi,ξi + (−1)kPVσ) − f ′
1545
+ 0(Uδl,ξl))Ψh
1546
+ l |2N/(N+2)
1547
+ ≤ C
1548
+
1549
+ Al
1550
+ |U 2∗−3
1551
+ δl,ξl ϕδl,ξlΨh
1552
+ l |2N/(N+2) + C
1553
+
1554
+ i̸=l
1555
+
1556
+ Al
1557
+ |U 2∗−3
1558
+ δl,ξl Uδi,ξiΨh
1559
+ l |2N/(N+2)
1560
+ + C
1561
+
1562
+ Al
1563
+ |U 2∗−3
1564
+ δl,ξl VσΨh
1565
+ l |2N/(N+2)
1566
+ ≤ o
1567
+
1568
+ δ
1569
+ − 2N
1570
+ N+2
1571
+ l
1572
+
1573
+ ,
1574
+ (B.1)
1575
+ where we use
1576
+
1577
+ Al
1578
+ |U 2∗−3
1579
+ δl,ξl ϕδl,ξlΨh
1580
+ l |2N/(N+2) ≤ C
1581
+
1582
+ Al
1583
+ | δ
1584
+ N+2
1585
+ 2
1586
+ l
1587
+ (xh − ξh
1588
+ l )
1589
+ (δ2
1590
+ l + |x − ξl|2)3 |2N/(N+2) = O
1591
+
1592
+ δ
1593
+ 2N(N−3)
1594
+ N+2
1595
+ l
1596
+
1597
+ ,
1598
+ 12
1599
+
1600
+ for i ̸= l,
1601
+
1602
+ Al
1603
+ |U 2∗−3
1604
+ δl,ξl Uδi,ξiΨh
1605
+ l |2N/(N+2) = C
1606
+
1607
+ Al
1608
+ |
1609
+ δ2
1610
+ l (xh − ξh
1611
+ l )
1612
+ (δ2
1613
+ l + |x − ξl|2)3
1614
+ δ
1615
+ N−2
1616
+ 2
1617
+ i
1618
+ (δ2
1619
+ i + |x − ξi|2)
1620
+ N−2
1621
+ 2
1622
+ |2N/(N+2)
1623
+ ≤ C(
1624
+
1625
+ Al
1626
+ |
1627
+ δ2
1628
+ l (xh − ξh
1629
+ l )
1630
+ (δ2
1631
+ l + |x − ξl|2)3 |
1632
+ N
1633
+ 2 )
1634
+ 4
1635
+ N+2 (
1636
+
1637
+ Al
1638
+ |
1639
+ δ
1640
+ N−2
1641
+ 2
1642
+ i
1643
+ (δ2
1644
+ i + |x − ξi|2)
1645
+ N−2
1646
+ 2
1647
+ |2N/(N−2))
1648
+ N−2
1649
+ N+2 = o
1650
+
1651
+ δ
1652
+ − 2N
1653
+ N+2
1654
+ l
1655
+
1656
+ ,
1657
+ and similarly,
1658
+
1659
+ Al
1660
+ |U 2∗−3
1661
+ δl,ξl VσΨh
1662
+ l |2N/(N+2) = o
1663
+
1664
+ δ
1665
+ − 2N
1666
+ N+2
1667
+ l
1668
+
1669
+ .
1670
+ The same arguments as for (B.1) yield for i ̸= l:
1671
+
1672
+ Ai
1673
+ �����
1674
+
1675
+ f ′
1676
+ 0(
1677
+ k
1678
+
1679
+ i=1
1680
+ (−1)i−1PUδi,ξi + (−1)kPVσ) − f ′
1681
+ 0(Uδl,ξl)
1682
+
1683
+ Ψh
1684
+ l
1685
+ �����
1686
+ 2N/(N+2)
1687
+ = o
1688
+
1689
+ δ
1690
+ − 2N
1691
+ N+2
1692
+ l
1693
+
1694
+ .
1695
+ Finally,
1696
+
1697
+ Ω\B(0,ρ)
1698
+ �����
1699
+
1700
+ f ′
1701
+ 0(
1702
+ k
1703
+
1704
+ i=1
1705
+ (−1)i−1PUδi,ξi + (−1)kPVσ) − f ′
1706
+ 0(Uδl,ξl)
1707
+
1708
+ Ψh
1709
+ l
1710
+ �����
1711
+ 2N
1712
+ (N+2)
1713
+ =
1714
+
1715
+
1716
+
1717
+
1718
+
1719
+
1720
+
1721
+ O
1722
+
1723
+ δ
1724
+ N(N−2)
1725
+ N+2
1726
+ l
1727
+ � �
1728
+ O
1729
+
1730
+ σ
1731
+ 4N
1732
+ N+2
1733
+
1734
+ +
1735
+ k�
1736
+ i=1
1737
+ O
1738
+
1739
+ δ
1740
+ 4N
1741
+ N+2
1742
+ i
1743
+ ��
1744
+ if h = 1, 2, . . . , N,
1745
+ O
1746
+
1747
+ δ
1748
+ N(N−4)
1749
+ N+2
1750
+ l
1751
+ � �
1752
+ O
1753
+
1754
+ σ
1755
+ 4N
1756
+ N+2
1757
+
1758
+ +
1759
+ k�
1760
+ i=1
1761
+ O
1762
+
1763
+ δ
1764
+ 4N
1765
+ N+2
1766
+ i
1767
+ ��
1768
+ if h = 0.
1769
+ Then (i) follows.
1770
+
1771
+ Lemma B.3. There holds
1772
+ �����ι∗
1773
+ µ
1774
+ � k
1775
+
1776
+ i=1
1777
+ (−1)i−1f0(Uδi,ξi) + (−1)kf0(Vσ)
1778
+
1779
+ − Vε,λ,ζ
1780
+ �����
1781
+ µ
1782
+
1783
+ k
1784
+
1785
+ i=1
1786
+ O(µδi) + O
1787
+ ��
1788
+ µσ
1789
+ N−2
1790
+ 2
1791
+ � 1
1792
+ 2 �
1793
+ as µ, σ, δi → 0 uniformly for ξi in a compact subset of Ω.
1794
+ Proof. It is similar to [6, Lemma A.4].
1795
+
1796
+ Lemma B.4. For ǫ → 0, the following estimates hold uniformly for 0 < µ < µ and (λ, ζ) ∈ Oη:
1797
+ ∥(f ′
1798
+ ε(Vε,λ,ζ) − f ′
1799
+ 0(Vε,λ,ζ))φ∥2N/(N+2) = O(ε)∥φ∥µ,
1800
+ ∥fε(Vε,λ,ζ) − f0(Vε,λ,ζ)∥2N/(N+2) = O(ε),
1801
+ ∥f0(Vε,λ,ζ) − (
1802
+ k
1803
+
1804
+ i=1
1805
+ (−1)i−1f0(Uδi,ξi) + (−1)kf0(Vσ))∥2N/(N+2) = O
1806
+
1807
+ ε
1808
+ N+2
1809
+ 2(N−2)
1810
+
1811
+ .
1812
+ Proof. The first two are from [3]. The last one can be proved as (4.5) in [26].
1813
+
1814
+ Lemma B.5. Let k ≥ 1. Assume without loss of generality that 1 ≤ i < j ≤ k. Then the following
1815
+ estimates hold uniformly for (λ, ζ) ∈ Oη:
1816
+ (i) For ǫ → 0:
1817
+
1818
+
1819
+ |∇PVσ|2 − µ|PVσ|2
1820
+ |x|2
1821
+ = S
1822
+ N
1823
+ 2
1824
+ µ + o(ε).
1825
+ 13
1826
+
1827
+ (ii) For ǫ → 0:
1828
+
1829
+
1830
+ ∇PVσ∇PUδi,ξi − µPVσPUδi,ξi
1831
+ |x|2
1832
+ =
1833
+
1834
+
1835
+
1836
+
1837
+
1838
+ C2∗
1839
+ 0 ( λ
1840
+ λk )
1841
+ N−2
1842
+ 2
1843
+
1844
+ RN
1845
+ 1
1846
+ (1+|y|2)
1847
+ N+2
1848
+ 2
1849
+ 1
1850
+ (1+|ζk|2)
1851
+ N−2
1852
+ 2
1853
+ · ε + o(ε)
1854
+ if i = k,
1855
+ o(ε)
1856
+ if i ̸= k.
1857
+ (iii) For ǫ → 0:
1858
+ µ
1859
+
1860
+
1861
+ |PUδi,ξi|2
1862
+ |x|2
1863
+ = µC2
1864
+ 0
1865
+
1866
+ RN
1867
+ 1
1868
+ |y|2(1 + |y − ζi|2)N−2 + o(ε).
1869
+ (iv) For ǫ → 0:
1870
+ µ
1871
+
1872
+
1873
+ PUδi,ξiPUδj,ξj
1874
+ |x|2
1875
+ = o(ε),
1876
+ i ̸= j.
1877
+ (v) For ǫ → 0:
1878
+
1879
+
1880
+ |∇PUδi,ξi|2 =
1881
+
1882
+
1883
+
1884
+
1885
+
1886
+ S
1887
+ N
1888
+ 2
1889
+ 0 − C2∗
1890
+ 0 H(0, 0)λN−2
1891
+ 1
1892
+
1893
+ RN
1894
+ 1
1895
+ (1+|z|2)
1896
+ N+2
1897
+ 2
1898
+ · ε + o(ε)
1899
+ if i = 1,
1900
+ S
1901
+ N
1902
+ 2
1903
+ 0 + o(ε)
1904
+ if i ̸= 1.
1905
+ (vi) For ǫ → 0:
1906
+
1907
+
1908
+ ∇PUδi,ξi∇PUδj,ξj =
1909
+
1910
+
1911
+
1912
+
1913
+
1914
+ C2∗
1915
+ 0 ( λi+1
1916
+ λi )
1917
+ N−2
1918
+ 2
1919
+
1920
+ RN
1921
+ 1
1922
+ (1+|y|2)
1923
+ N+2
1924
+ 2
1925
+ 1
1926
+ (1+|ζi|2)
1927
+ N−2
1928
+ 2
1929
+ · ε + o(ε)
1930
+ if j = i + 1,
1931
+ o(ε)
1932
+ otherwise.
1933
+ Proof. (i) and (v) follow from Lemma A.2.
1934
+ Now we prove (ii). Using (2.4), integration by parts yields
1935
+
1936
+
1937
+ ∇PVσ∇PUδi,ξi − µPVσPUδi,ξi
1938
+ |x|2
1939
+ =
1940
+
1941
+
1942
+ V 2∗−1
1943
+ σ
1944
+ (Uδi,ξi − ϕδi,ξi) + µ
1945
+
1946
+
1947
+ ϕσ(Uδi,ξi − ϕδi,ξi)
1948
+ |x|2
1949
+ .
1950
+ (B.2)
1951
+ It is easy to show, using (2.3) and (2.4), that
1952
+
1953
+
1954
+ V 2∗−1
1955
+ σ
1956
+ ϕδi,ξi ≤ Cδ
1957
+ N−2
1958
+ 2
1959
+ i
1960
+
1961
+
1962
+ σ
1963
+ N+2
1964
+ 2
1965
+ (σ2|x|β1 + |x|β2)
1966
+ N+2
1967
+ 2
1968
+ ≤ Cσ
1969
+ µ
1970
+ √µ−µ δ
1971
+ N−2
1972
+ 2
1973
+ i
1974
+
1975
+ RN
1976
+ 1
1977
+ (|y|β1 + |y|β2)
1978
+ N+2
1979
+ 2
1980
+ = O(σ
1981
+ N−2
1982
+ 2 δ
1983
+ N−2
1984
+ 2
1985
+ i
1986
+ ),
1987
+ (B.3)
1988
+ and
1989
+ µ
1990
+
1991
+
1992
+ ϕσ(Uδi,ξi − ϕδi,ξi)
1993
+ |x|2
1994
+ ≤ µ
1995
+
1996
+
1997
+ ϕσUδi,ξi
1998
+ |x|2
1999
+ ≤ O(µσ
2000
+ N−2
2001
+ 2 ).
2002
+ (B.4)
2003
+ On the other hand,
2004
+
2005
+
2006
+ V 2∗−1
2007
+ σ
2008
+ Uδi,ξi =
2009
+ k+1
2010
+
2011
+ j=1
2012
+
2013
+ Aj
2014
+ V 2∗−1
2015
+ σ
2016
+ Uδi,ξi + O(σ
2017
+ N+2
2018
+ 2 δ
2019
+ N−2
2020
+ 2
2021
+ i
2022
+ ).
2023
+ (B.5)
2024
+ If i = k, j = k + 1, then
2025
+
2026
+ Ak+1
2027
+ V 2∗−1
2028
+ σ
2029
+ Uδk,ξk = C2∗−1
2030
+ µ
2031
+ C0σ
2032
+ N+2
2033
+ 2 δ
2034
+ N−2
2035
+ 2
2036
+ k
2037
+
2038
+ Ak+1
2039
+ 1
2040
+ (σ2|x|β1 + |x|β2)
2041
+ N+2
2042
+ 2
2043
+ 1
2044
+ (δ2
2045
+ k + |x − ξk|2)
2046
+ N−2
2047
+ 2
2048
+ = C2∗−1
2049
+ µ
2050
+ C0
2051
+ σ
2052
+ µ
2053
+ √µ−µ
2054
+ δ
2055
+ N−2
2056
+ 2
2057
+ k
2058
+
2059
+ Ak+1
2060
+ σ
2061
+ õ
2062
+ √µ−µ
2063
+ 1
2064
+ (|y|β1 + |y|β2)
2065
+ N+2
2066
+ 2
2067
+ 1
2068
+ (1 + | σ
2069
+ õ
2070
+ √µ−µ
2071
+ δk
2072
+ y − ζk|2)
2073
+ N−2
2074
+ 2
2075
+ = C2∗
2076
+ 0 ( λ
2077
+ λk
2078
+ )
2079
+ N−2
2080
+ 2
2081
+
2082
+ RN
2083
+ 1
2084
+ (1 + |y|2)
2085
+ N+2
2086
+ 2
2087
+ 1
2088
+ (1 + |ζk|2)
2089
+ N−2
2090
+ 2
2091
+ · ε + o(ε).
2092
+ (B.6)
2093
+ 14
2094
+
2095
+ If i ̸= k or j ̸= k + 1, then similar arguments as for (B.6) yield
2096
+
2097
+ Aj
2098
+ V 2∗−1
2099
+ σ
2100
+ Uδi,ξi = o(ε).
2101
+ (B.7)
2102
+ Then we conclude by (B.2)-(B.7).
2103
+ Next (iii) follows from:
2104
+ µ
2105
+
2106
+
2107
+ |PUδi,ξi|2
2108
+ |x|2
2109
+ = µ
2110
+
2111
+
2112
+ |Uδi,ξi|2
2113
+ |x|2
2114
+ + O(µδN−2
2115
+ i
2116
+ )
2117
+ = µC2
2118
+ 0
2119
+
2120
+
2121
+ δi
2122
+ 1
2123
+ |y|2(1 + |y − ζi|2)N−2 + O(µδN−2
2124
+ i
2125
+ )
2126
+ = µC2
2127
+ 0
2128
+
2129
+ RN
2130
+ 1
2131
+ |y|2(1 + |y − ζi|2)N−2 + o(ε).
2132
+ Similar arguments imply (iv).
2133
+ For the proof of (vi), without loss of generality let 1 ≤ i < j ≤ k. Then
2134
+
2135
+
2136
+ ∇PUδi,ξi∇PUδj,ξj =
2137
+
2138
+
2139
+ U 2∗−1
2140
+ δj,ξj Uδi,ξi + o(ε)
2141
+ =
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+ C2∗
2148
+ 0 ( λi+1
2149
+ λi )
2150
+ N−2
2151
+ 2
2152
+
2153
+ RN
2154
+ 1
2155
+ (1+|y|2)
2156
+ N+2
2157
+ 2
2158
+ 1
2159
+ (1+|ζi|2)
2160
+ N−2
2161
+ 2
2162
+ · ε + o(ε)
2163
+ if j = i + 1,
2164
+ o(ε)
2165
+ otherwise.
2166
+ (B.8)
2167
+
2168
+ Lemma B.6. Let k ≥ 1. For ǫ → 0 there holds, uniformly for (λ, ζ) ∈ Oη, setting λk+1 = λ:
2169
+
2170
+
2171
+ �����
2172
+ k
2173
+
2174
+ i=1
2175
+ (−1)i−1PUδi,ξi + (−1)kPVσ
2176
+ �����
2177
+ 2∗
2178
+ = kS
2179
+ N
2180
+ 2
2181
+ 0 + S
2182
+ N
2183
+ 2
2184
+ µ − 2∗C2∗
2185
+ 0 H(0, 0)λN−2
2186
+ 1
2187
+
2188
+ RN
2189
+ 1
2190
+ (1 + |z|2)
2191
+ N+2
2192
+ 2
2193
+ · ε
2194
+ − 2∗C2∗
2195
+ 0
2196
+ k
2197
+
2198
+ i=1
2199
+ (λi+1
2200
+ λi
2201
+ )
2202
+ N−2
2203
+ 2
2204
+
2205
+ RN
2206
+ 1
2207
+ |y|N−2(1 + |y − ζi|2)
2208
+ N+2
2209
+ 2
2210
+ · ε
2211
+ − 2∗C2∗
2212
+ 0
2213
+ k
2214
+
2215
+ i=1
2216
+ (λi+1
2217
+ λi
2218
+ )
2219
+ N−2
2220
+ 2
2221
+
2222
+ RN
2223
+ 1
2224
+ (1 + |y|2)
2225
+ N+2
2226
+ 2
2227
+ 1
2228
+ (1 + |ζi|2)
2229
+ N−2
2230
+ 2
2231
+ · ε + o(ε),
2232
+ Proof. It is easy to see that
2233
+
2234
+
2235
+ �����
2236
+ k
2237
+
2238
+ i=1
2239
+ (−1)i−1PUδi,ξi + (−1)kPVσ
2240
+ �����
2241
+ 2∗
2242
+ =
2243
+ k+1
2244
+
2245
+ j=1
2246
+
2247
+ Aj
2248
+ |
2249
+ k
2250
+
2251
+ i=1
2252
+ (−1)i−1PUδi,ξi + (−1)kPVσ|2∗ + O(δN
2253
+ 1 ).
2254
+ Observe that
2255
+
2256
+ Ak
2257
+ VσU 2∗−1
2258
+ δk,ξk = CµC2∗−1
2259
+ 0
2260
+ σ
2261
+ N−2
2262
+ 2 δ
2263
+ N+2
2264
+ 2
2265
+ k
2266
+
2267
+ Ak
2268
+ 1
2269
+ (σ2|x|β1 + |x|β2)
2270
+ N−2
2271
+ 2
2272
+ 1
2273
+ (δ2
2274
+ k + |x − ξk|2)
2275
+ N+2
2276
+ 2
2277
+ = CµC2∗−1
2278
+ 0
2279
+ σ
2280
+ N−2
2281
+ 2
2282
+ δ
2283
+ √µ−µ
2284
+ k
2285
+
2286
+ Ak
2287
+ δk
2288
+ 1
2289
+ (( σ
2290
+ δk )2|y|β1 + |y|β2)
2291
+ N−2
2292
+ 2
2293
+ 1
2294
+ (1 + |y − ζk|2)
2295
+ N+2
2296
+ 2
2297
+ = C2∗
2298
+ 0 ( λ
2299
+ λk
2300
+ )
2301
+ N−2
2302
+ 2
2303
+
2304
+ RN
2305
+ 1
2306
+ |y|N−2(1 + |y − ζk|2)
2307
+ N+2
2308
+ 2
2309
+ · ε + o(ε),
2310
+ 15
2311
+
2312
+ and
2313
+
2314
+ Aj
2315
+ VσU 2∗−1
2316
+ δi,ξi = o(ε), if i ̸= k, or j ̸= k.
2317
+ From [26], for 1 ≤ i < j ≤ k we also have
2318
+
2319
+ Al
2320
+ Uδj,ξjU 2∗−1
2321
+ δi,ξi + o(ε) =
2322
+
2323
+
2324
+
2325
+
2326
+
2327
+ C2∗
2328
+ 0 ( λi+1
2329
+ λi )
2330
+ N−2
2331
+ 2
2332
+
2333
+ RN
2334
+ 1
2335
+ |y|N−2(1+|y−ζi|2)
2336
+ N+2
2337
+ 2
2338
+ · ε + o(ε)
2339
+ if j = i + 1, i = l,
2340
+ o(ε)
2341
+ otherwise.
2342
+ Using (B.6), (B.8) and the above three equalities, the proof of (B.9) is contained in Lemma 6.2 in [26].
2343
+
2344
+ Lemma B.7. For µ, σ, δi → 0 there holds, uniformly in compact subsets of Ω,
2345
+
2346
+
2347
+ |
2348
+ k
2349
+
2350
+ i=1
2351
+ (−1)i−1PUδi,ξi + (−1)kPVσ|2∗ ln |
2352
+ k
2353
+
2354
+ i=1
2355
+ (−1)i−1PUδi,ξi + (−1)kPVσ|
2356
+ = −N − 2
2357
+ 2
2358
+ ln σ ·
2359
+
2360
+ RN V 2∗
2361
+ 1
2362
+ − N − 2
2363
+ 2
2364
+ ln(δ1δ2 . . . δk) ·
2365
+
2366
+ RN U 2∗
2367
+ 1,0
2368
+ +
2369
+
2370
+ RN V 2∗
2371
+ 1
2372
+ ln V1 + k
2373
+
2374
+ RN U 2∗
2375
+ 1,0 ln U1,0 + o(1).
2376
+ Proof. The proof is similar to the one of [6, Lemma A.9].
2377
+
2378
+ Acknowledgements: The authors would like to thank Professor Daomin Cao for many helpful discus-
2379
+ sions during the preparation of this paper. This work was carried out while Qianqiao Guo was visiting
2380
+ Justus-Liebig-Universit¨at Gießen, to which he would like to express his gratitude for their warm hospi-
2381
+ tality.
2382
+ Funding: Qianqiao Guo was supported by the National Natural Science Foundation of China (Grant
2383
+ No. 11971385) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.
2384
+ 2019JM275).
2385
+ References
2386
+ [1] Th. Aubin: Probl`emes isop´erim´etriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-
2387
+ 598.
2388
+ [2] A. Bahri, Y. Li, O. Rey: On a variational problem with lack of compactness: the topological effect of
2389
+ the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67-93.
2390
+ [3] T. Bartsch, A. Micheletti, A. Pistoia: On the existence and the profile of nodal solutions of elliptic
2391
+ equations involving critical growth, Calc. Var. Partial Differential Equations 26 (2006), 265-282.
2392
+ [4] T. Bartsch, T. D’Aprile, A. Pistoia: Multi-bubble nodal solutions for slightly subcritical elliptic
2393
+ problems in domains with symmetries, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 30 (2013), 1027-
2394
+ 1047.
2395
+ [5] T. Bartsch, T. D’Aprile, A. Pistoia: On the profile of sign-changing solutions of an almost critical
2396
+ problem in the ball, Bull. Lond. Math. Soc. 45 (2013), 1246-1258.
2397
+ 16
2398
+
2399
+ [6] T. Bartsch, Q. Guo: Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-
2400
+ critical term, Adv. Nonlinear Stud. 17 (2017), 55-85.
2401
+ [7] G. Bianchi, H. Egnell: A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), 18-24.
2402
+ [8] H. Br´ezis, L.A. Peletier: Asymptotics for elliptic equations involving critical growth, Partial differ-
2403
+ ential equations and the calculus of variations, vol. I, Progr. Nonlinear Diff. Equ. Appl. Birkh¨auser,
2404
+ Boston, MA 1 (1989), 149-192.
2405
+ [9] D. Cao, P. Han: Solutions for semilinear elliptic equations with critical exponents and Hardy potential,
2406
+ J. Differential Equations 205 (2004), 521-537.
2407
+ [10] D. Cao, S. Peng: A note on the sign-changing solutions to elliptic problems with critical Sobolev
2408
+ and Hardy terms, J. Differential Equations 193 (2003), 424-434.
2409
+ [11] F. Catrina, Z.-Q. Wang: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence
2410
+ (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), 229-
2411
+ 258.
2412
+ [12] M. del Pino, J. Dolbeault, M. Musso: “Bubble-tower” radial solutions in the slightly supercritical
2413
+ Brezis-Nirenberg problem, J. Differential Equations 193(2) (2003), 280-306.
2414
+ [13] I. Ekeland, N. Ghoussoub: Selected new aspects of the calculus of variations in the large, Bull. Amer.
2415
+ Math. Soc. (N.S.) 39(2) (2002), 207-265.
2416
+ [14] V. Felli, A. Pistoia: Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy
2417
+ potential and critical growth, Comm. Partial Differential Equations 31 (2006), 21-56.
2418
+ [15] V. Felli, S. Terracini: Fountain-like solutions for nonlinear elliptic equations with critical growth and
2419
+ Hardy potential, Commun. Contemp. Math. 7 (2005), 867-904.
2420
+ [16] A. Ferrero, F. Gazzola: Existence of solutions for singular critical growth semilinear elliptic equations,
2421
+ J. Differential Equations 177 (2001), 494-522.
2422
+ [17] M. Flucher, J. Wei: Semilinear Dirichlet problem with nearly critical exponent, asymptotic location
2423
+ of hot spots, Manuscripta Math. 94 (1997), 337-346.
2424
+ [18] N. Ghoussoub, F. Robert: Sobolev inequalities for the Hardy-Schr¨odinger operator: extremals and
2425
+ critical dimensions, Bull. Amer. Math. Soc. 6 (2016), 89-144.
2426
+ [19] N. Ghoussoub, F. Robert: The Hardy-Schr¨odinger operator with interior singularity: the remaining
2427
+ cases, Calc. Var. Partial Differential Equations 56 (2017), Paper No. 149, 54 pp.
2428
+ [20] N. Ghoussoub, C. Yuan: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and
2429
+ Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), 5703-5743.
2430
+ [21] M. Grossi, F. Takahashi: Nonexistence of multi-bubble solutions to some elliptic equations on convex
2431
+ domains, J. Funct. Anal. 259 (2010), 904-917.
2432
+ 17
2433
+
2434
+ [22] Q. Guo, P. Niu: Nodal and positive solutions for singular semilinear elliptic equations with critical
2435
+ exponents in symmetric domains, J. Differential Equations 245 (2008), 3974-3985.
2436
+ [23] Z.-C. Han: Asymptotic approach to singular solutions for nonlinear elliptic equations involving
2437
+ critical Sobolev exponent, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 8 (1991), 159-174.
2438
+ [24] E. Jannelli: The role played by space dimension in elliptic critical problems, J. Differential Equations
2439
+ 156 (1999), 407-426.
2440
+ [25] M. Musso, A. Pistoia: Multispike solutions for a nonlinear elliptic problem involving critical Sobolev
2441
+ exponent, Indiana Univ. Math. J. (5) (2002), 541-579.
2442
+ [26] M. Musso, A. Pistoia: Tower of bubbles for almost critical problems in general domains, J. Math.
2443
+ Pures Appl. 93 (2010), 1-40.
2444
+ [27] M. Musso, J. Wei: Nonradial solutions to critical elliptic equations of Caffarelli-Kohn-Nirenberg
2445
+ type, Int. Math. Res. Not. 18 (2012), 4120-4162.
2446
+ [28] A. Pistoia, T. Weth: Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet
2447
+ problem, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 24 (2007), 325-340.
2448
+ [29] O. Rey: Proof of two conjectures of H. Br´ezis and L.A. Peletier, Manuscripta Math. 65 (1989), 19-37.
2449
+ [30] O. Rey: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev
2450
+ exponent, J. Funct. Anal. 89 (1990), 1-52.
2451
+ [31] O. Rey: Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential
2452
+ Integral Equations 4 (1991), 1155-1167.
2453
+ [32] D. Ruiz, M. Willem: Elliptic problems with critical exponents and Hardy potentials, J. Differential
2454
+ Equations 190 (2003), 524-538.
2455
+ [33] D. Smets: Nonlinear Schr¨odinger equations with Hardy potential and critical nonlinearities, Trans.
2456
+ Amer. Math. Soc. 357 (2005), 2909-2938.
2457
+ [34] G. Talenti: Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
2458
+ [35] S. Terracini: On positive entire solutions to a class of equations with a singular coefficient and critical
2459
+ exponent, Adv. Differential Equations 2 (1996), 241-264.
2460
+ 18
2461
+
MtE4T4oBgHgl3EQfKQyA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NNFOT4oBgHgl3EQf2DS3/content/tmp_files/2301.12941v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
NNFOT4oBgHgl3EQf2DS3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NdE2T4oBgHgl3EQfBgbQ/content/tmp_files/2301.03604v1.pdf.txt ADDED
@@ -0,0 +1,1398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03604v1 [astro-ph.GA] 9 Jan 2023
2
+ MNRAS 000, 000–000 (2022)
3
+ Preprint 11 January 2023
4
+ Compiled using MNRAS LATEX style file v3.0
5
+ PISN-explorer: hunting the descendants of very massive first stars⋆
6
+ D. S. Aguado1,2,5†, S. Salvadori1,2, Á. Skúladóttir1,2, E. Caffau3, P. Bonifacio3,
7
+ I. Vanni1,2, V. Gelli1,2, I. Koutsouridou1,2, and A. M. Amarsi4
8
+ 1Dipartimento di Fisica e Astronomia, Universit á degli Studi di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
9
+ 2INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
10
+ 3GEPI, Observatoire de Paris, Université PSL, CNRS, 5 Place Jules Janssen, 92190 Meudon, France.
11
+ 4Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
12
+ 5Instituto de Astrofísica de Canarias, Vía Láctea, 38205 La Laguna, Tenerife, Spain
13
+ Accepted XXX. Received YYY; in original form ZZZ
14
+ ABSTRACT
15
+ The very massive first stars (m > 100 M⊙) were fundamental to the early phases of reion-
16
+ ization, metal enrichment, and super-massive black hole formation. Among them, those with
17
+ 140 ≤ m/M⊙ ≤ 260 are predicted to evolve as Pair Instability Supernovae (PISN) leaving a
18
+ unique chemical signature in their chemical yields. Still, despite long searches, the stellar de-
19
+ scendants of PISN remain elusive. Here we propose a new methodology,the PISN-explorer,
20
+ to identify candidates for stars with a dominant PISN enrichment. The PISN-explorer is
21
+ based on a combination of physically driven models, and the FERRE code; and applied to data
22
+ from large spectroscopic surveys (APOGEE, GALAH, GES, MINCE, and the JINA database).
23
+ We looked into more than 1.4 million objects and built a catalogue with 166 candidates of PISN
24
+ descendants. One of which, 2M13593064+3241036, was observed with UVES at VLT and
25
+ full chemical signature was derived, including the killing elements, Cu and Zn. We find that
26
+ our proposed methodology is efficient in selecting PISN candidates from both the Milky Way
27
+ and dwarf satellite galaxies such as Sextans or Draco. Further high-resolution observations
28
+ are highly required to confirm our best selected candidates, therefore allowing us to probe the
29
+ existence and properties of the very massive First Stars.
30
+ Key words: stars: abundances – stars: Population III – stars: Population II– Galaxy: halo–
31
+ cosmology: early universe
32
+ 1
33
+ INTRODUCTION
34
+ The first (Pop III) stars formed out of primordial composition gas,
35
+ i.e. in environments where the fragmentation process was less ef-
36
+ ficient then in local star-forming regions, thus enabling the for-
37
+ mation of more massive stars than those that we observe today:
38
+ from a few tens, up to thousands of solar masses (e.g. Susa et al.
39
+ 2014; Hirano et al. 2015). Their characteristic mass, furthermore,
40
+ was likely ≥ 10 M⊙ (e.g. Bromm 2013). These theoretical findings
41
+ have strong physical grounds and have been reported across decades
42
+ by means of different analytical calculations (see e.g. Silk 1977;
43
+ McKee & Tan 2008), numerical simulations (see e.g. Abel et al.
44
+ 2002; Hosokawa et al. 2011), and studies of stellar archaeology
45
+ (e.g. Ishigaki et al. 2018; Rossi et al. 2021). According to cosmo-
46
+ logical models, these primitive stars were likely hosted by the bulge
47
+ and the stellar halo of the Milky Way (see e.g. Tumlinson 2010;
48
+ ⋆ Based on observations made with the ESO Very Large Telescope at the
49
+ La Silla Paranal Observatory under program ID 108.23N5.001
50
+ † E-mail: david.aguado@unifi.it
51
+ Salvadori et al. 2010; Starkenburg et al. 2017a) and by Local group
52
+ dwarf galaxies (e.g. Salvadori et al. 2015). From an observational
53
+ point of view, however, we are still lacking key probes of first stars in
54
+ the high-mass regime (m∗ > 140 M⊙) very recently some indirect
55
+ hints have been provided (Pagnini et al. sumbitted).
56
+ Very massive first stars, 140 ≤ m∗/M⊙ ≤ 260, are predicted
57
+ to end their lives as energetic Pair Instability Supernovae (PISN),
58
+ which inject 50% of their mass in the form of metals into the in-
59
+ terstellar medium (ISM). Thus, a single PISN will strongly enrich
60
+ the primordial gas with a probability distribution function peak-
61
+ ing at [Fe/H] ≈ −2.0 (Karlsson et al. 2008; de Bennassuti et al.
62
+ 2017; Salvadori et al. 2019), leaving a unique chemical signa-
63
+ ture with a strong odd-even effect (e.g. Heger & Woosley 2002;
64
+ Takahashi et al. 2018). Unfortunately, pure PISN descendants are
65
+ predicted to be extremely rare: even at the peak metallicities,
66
+ [Fe/H] ≈ −2.0, they are thought to represent < 0.1% of Milky
67
+ Way stars (de Bennassuti et al. 2017). The traditional approach of
68
+ searching only for stars showing 100% PISN enrichment has thus
69
+ not proven successful. Rather, a large fraction of PISN descendants
70
+ are expected to also have a significant contribution from normal
71
+ © 2022 The Authors
72
+
73
+ 2
74
+ D. Aguado et al.
75
+ Pop II stars, which can form early on in the Pop III-enriched ISM
76
+ and then evolve as core-collapse supernovae (CCSN).
77
+ The abundances of the so-called killing elements Cu and Zn
78
+ (Salvadori et al. 2019) may be the smoking gun for a true PISN
79
+ descendant. These elements are barely produced by PISNe, but
80
+ yielded by all other supernovae (see also Vanni et al. in prep). The
81
+ extreme sub-solar abundances of Zn and Cu with respect to Fe from
82
+ PISNe, persist even in environments polluted by other sources up
83
+ to a 50% level (Salvadori et al. 2019). But given the rarity of such
84
+ stars, until now, only two descendants of PISN have been reported
85
+ (Aoki et al. 2014; Salvadori et al. 2019). We are thus in the situation
86
+ where even a few more identified PISN descendants would greatly
87
+ advance the field.
88
+ In the recent years there has been a breakthrough in large
89
+ spectroscopic surveys targeting stars in and around the Milky
90
+ Way (e.g. Gaia, APOGEE, GALAH, GES). Millions of stars
91
+ have been observed with intermediate- to high-resolution spectra
92
+ (R ≳ 10, 000), and these numbers will further increase with two
93
+ large upcoming spectroscopic surveys, starting operations in the
94
+ next two years: WEAVE in the Northern hemisphere (Dalton et al.
95
+ 2016), and 4MOST in the South (de Jong et al. 2019). For the first
96
+ time, we are thus able to have the statistics to identify and charac-
97
+ terise rare populations, such as PISN descendants.
98
+ Searching through such large databases, however, requires a
99
+ focused and dedicated effort, and with this goal in mind we have
100
+ developed an innovative methodology, the PISN-explorer. With
101
+ a combination of theoretical models (Salvadori et al. 2019), and
102
+ the FERRE code (Allende Prieto et al. 2006), the PISN-explorer
103
+ exploits all the chemical abundances measured by large surveys
104
+ (e.g. APOGEE, GALAH, GES, or MINCE) to identify stars that
105
+ have likely been dominantly enriched by PISN (≳ 50%). Here we
106
+ present this new method, allowing us for the first time to use large
107
+ databases of chemical abundances to systematically search for the
108
+ elusive PISN descendants.
109
+ 2
110
+ THE THEORETICAL MODELS
111
+ The models used by the PISN-explorer are adopted from the
112
+ general parametric study presented in Salvadori et al. (2019). This
113
+ study provides predictions for the chemical properties of an ISM
114
+ predominantly imprinted by very massive first stars exploding as
115
+ PISNe, i.e. where the PISNe products account for ≥ 50% of metals
116
+ in the ISM. The model is general because it condenses the un-
117
+ known physical processes related to early cosmic star-formation,
118
+ metal diffusion, and mixing, into three free parameters: 1) the star
119
+ formation efficiency, f∗, which provides the fraction of ISM gas
120
+ condensed into stars; 2) the dilution factor, fdil, which parametrises
121
+ the amounts of metals effectively retained into the ISM; 3) and the
122
+ mass fraction of ISM metals contributed by PISNe, fPISN. Predic-
123
+ tions for a PISN-imprinted ISM are provided by exploring the full
124
+ parameter space. Hence the predictions are general and essentially
125
+ model independent.
126
+ The ansatz of this approach is to assume that a single very
127
+ massive first star exploding as PISN can form in the primordial
128
+ star-forming (mini-)haloes. This assumption is strongly supported
129
+ by the results of hydrodynamical cosmological simulations follow-
130
+ ing the formation of the first stars (e.g. Hirano et al. 2014). The
131
+ chemical enrichment of the ISM is evaluated after the injection of
132
+ metals by a single PISN (fPISN = 100%) with different progeni-
133
+ tor masses, mPISN = [140 − 260]M⊙. It turns out that the final
134
+ metallicity (or [Fe/H]) of the ISM is settled by the PISN mass and
135
+ by the ratio between the star-formation efficiency and the dilution
136
+ factor, f∗/fdil. Furthermore, it is always ZISM > 10−3Z⊙, which
137
+ implies that “normal” Pop II stars can form out of this medium and
138
+ thus contribute to the subsequent ISM enrichment (see Fig. 2 of
139
+ Salvadori et al. 2019).
140
+ The abundance ratios of each element X (from C to Zn)
141
+ with respect to iron, are computed by varying the relative con-
142
+ tribution of PISN and Pop II stars to the chemical enrichment
143
+ (fPISN = [50 − 100]%) and by assuming that Pop II stars form
144
+ according to a standard Larson Initial Mass Function (IMF):
145
+ φ(m⋆) = m−2.35
146
+
147
+ exp(−mch/m⋆) with mch = 0.35M⊙ (Larson
148
+ 1998). The calculations are made by adopting the yields by
149
+ Heger & Woosley (2002) for very massive first stars exploding
150
+ as PISNe, YPISN
151
+ X
152
+ (mPISN), and of Woosley & Weaver (1995) for
153
+ Pop II stars with initial masses m∗ = [8−40]M⊙ and metallicities,
154
+ Z∗ = [10−4; 1]Z⊙, which explode as CCSN, YXII(m∗, Z∗). Ac-
155
+ cording to Woosley & Weaver (1995) we assume that stars between
156
+ 40 and 140 M⊙ collapse directly into a black hole thus not contribut-
157
+ ing to the chemical enrichment. Note that since we are integrating
158
+ over the entire Pop II IMF the derived yields are not so different from
159
+ those obtained with models assuming that m∗ > 20M⊙ stars pro-
160
+ duce a negligible amount of heavy elements (e.g. Limongi & Chieffi
161
+ 2018). Salvadori et al. (2019) demonstrated that the ISM abundance
162
+ ratios, [X/Fe], or the chemical abundance pattern of the stars formed
163
+ out of it, depend upon fPISN, the yields of PISN and of Pop II stars;
164
+ but they are not directly affected by f∗/fdil although this ratio
165
+ controls the metallicity of the Pop II stars contributing to the ISM
166
+ enrichment.
167
+ 3
168
+ EXPLOITED DATASETS
169
+ The goal of this work is to efficiently select candidates for PISN
170
+ descendants from existing and publicly available data. Suitable
171
+ databases should provide reliable elemental abundances for FGK
172
+ stars together with stellar parameters: effective temperature, sur-
173
+ face gravity, and metallicity (Teff, log g, and [Fe/H]). From the
174
+ available spectroscopic surveys, we restrict our selection to the
175
+ large surveys that have the best chemical abundances information
176
+ (APOGEE, GALAH, Gaia-ESO, and the MINCE survey). In ad-
177
+ dition, we exploit high-quality literature data available through the
178
+ JINA database. Here, we will mainly focus on elements from C to
179
+ Zn but sometimes abundances of heavier elements (Ba, Ce) could be
180
+ also used to impact the selection, since these are expected to be low
181
+ in PISN descendants. Finally, in the following we assumed the solar
182
+ abundances each survey used at that time. Future -improved- mea-
183
+ surements of solar abundances are easily applicable to our method-
184
+ ology.
185
+ 3.1
186
+ APOGEE
187
+ The Apache Point Observatory Galactic Evolution Experiment 2
188
+ (APOGEE-2; Majewski et al. 2017) is a near-infrared high-
189
+ resolution survey in the H-band (1.514-1.696 µm at R ∼ 22, 500)
190
+ that provides stellar parameters (Teff, log g , [Fe/H]), radial veloc-
191
+ ities, and elemental abundances. Solar abundances are those from
192
+ Asplund et al. (2005). The high quality of APOGEE measurements
193
+ at metallicities down to [Fe/H] ∼ −2 clearly recommends the use
194
+ of this spectroscopic survey. For our purpose, we use the final all-
195
+ Star catalogue of APOGEE Data Release (DR) 17 (Abdurro’uf et al.
196
+ 2022) which includes up to 20 elemental abundances (C, N, O, Na,
197
+ Mg, Al, Si, P, S, K, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ce) for
198
+ MNRAS 000, 000–000 (2022)
199
+
200
+ 3
201
+ Figure 1. Example of the PISN-explorer analysis performed on an APOGEE star.
202
+ (a) The measured chemical signature of 2M13593064+3241036 from
203
+ APOGEE (blue dots) together with the best fit to a PISN model computed
204
+ with the PISN-explorer (red line). Derived PISN parameters and main
205
+ stellar parameters are also shown. Finally, for comparison we show interpo-
206
+ lated models with ±20M⊙ of PISN mass (dotted lines) and ±15% of PISN
207
+ contamination (dashed lines).
208
+ (b) fPISN−mPISN space of solutions when applying and MCMC algorithm
209
+ computed with FERRE over the chemical signature of 2M13593064+3241036
210
+ including 10 chains of 50,000 experiments each. Color bar represents the
211
+ likelihood of each solution.
212
+ 879,437 spectra (733,901 objects)1. Following the recommendation
213
+ of the APOGEE team, we discard both Ti i and Ti ii from further
214
+ analysis. Unfortunately, the Cu absorption lines in the infrared are
215
+ extremely week and therefore only detectable for metal-rich stars,
216
+ [Fe/H] > −1.
217
+ 3.2
218
+ GALAH
219
+ The
220
+ GALactic
221
+ Archaeology
222
+ with
223
+ HERMES
224
+ (GALAH,
225
+ De Silva et al. 2015) survey is a large spectroscopic survey
226
+ in the optical at a resolving power R ∼ 28, 000, covering four
227
+ wavelength windows within 4713 to 7887 Å. The third data
228
+ release (DR3; Buder et al. 2021), including the main_allspec_v2
229
+ catalogue2, provides for 588,571 stars: stellar parameters, radial
230
+ velocities, and chemical abundances for up to 30 elements (Li, O,
231
+ C, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Rb,
232
+ Sr, Y, Zr, Mo, Ru, Ba, La, Ce, Nd, Sm, Eu). GALAH provides
233
+ chemical abundances at [Fe/H] ≳ −2, but not all elements are
234
+ available at the lowest metallicities. Solar abundances are from
235
+ Grevesse et al. (2007).
236
+ 3.3
237
+ Gaia-ESO
238
+ The Gaia-ESO Survey (GES, Gilmore et al. 2012, 2022) has ob-
239
+ served 115,000 stars from the main components of the Milky Way,
240
+ including star clusters, using FLAMES at the VLT. The employed
241
+ instruments (GIRAFFE and UVES) provide high-resolution spec-
242
+ tra, 16, 200 < R < 47, 000, covering various wavelength ranges,
243
+ depending on the configuration. We retrieved3 the latest available
244
+ DR5 (Randich et al. 2022) with 114,324 stars. The solar abundances
245
+ 1 The
246
+ APOGEE
247
+ catalogue
248
+ can
249
+ be
250
+ retrived
251
+ here:
252
+ https://www.sdss.org/dr17/irspec/spectro_data/
253
+ 2 GALAH catalogue:https://cloud.datacentral.org.au/teamdata/GALAH/
254
+ 3 Gaia-ESO catalogue:https://www.eso.org/qi/catalogQuery/index/393
255
+ used for this survey are those from Asplund et al. (2009). A signif-
256
+ icant fraction of GES pointings is dominated by metal-rich stars
257
+ [Fe/H] > −1, which are less likely to be PISN descendants. These
258
+ fields can, however, also contain some metal-poor stars, so we in-
259
+ cluded the entire dataset. Including the entire GES sample also
260
+ ensures that our search is as unbiased as possible. The GES DR5
261
+ dataset includes stellar parameters, radial velocities, and chemical
262
+ abundances for up to 31 elements (He, Li, C, N, O, Na, Mg, Al, Si,
263
+ S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Ba, La, Ce,
264
+ Pr, Nd, Sm, Eu)
265
+ 3.4
266
+ MINCE
267
+ Measuring at Intermediate metallicity Neutron-Capture Elements
268
+ (MINCE, Cescutti et al. 2022) is a project aiming to study abun-
269
+ dances for neutron-capture elements using different facilities such
270
+ as HARPS, UVES, or FIES. Conveniently, the targets selection
271
+ is designed to observe intermediate and very metal-poor stars
272
+ (−0.7 ≳ [Fe/H] ≳ −2.5). For this work we employed the first
273
+ year sample including 43 stellar targets and high quality elemental
274
+ abundances O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu,
275
+ Zn. The employed solar abundances are those from Lodders et al.
276
+ (2009) and Caffau et al. (2011) for O and S. The following data
277
+ releases in subsequent years will be a valuable source of PISN
278
+ descendant candidates.
279
+ 3.5
280
+ JINA
281
+ The Joint Institute for Nuclear Astrophysics (JINA) database
282
+ (Abohalima & Frebel 2018) is a collection of literature papers with
283
+ high-resolution analysis of 1658 metal-poor stars [Fe/H] < −2,
284
+ including a variable range of elemental abundances (from Li to U).
285
+ We downloaded the whole database4, set the solar abundances to
286
+ 4 JINA database: https://jinabase.pythonanywhere.com/
287
+ MNRAS 000, 000–000 (2022)
288
+
289
+ LOW
290
+ HIGH
291
+ likelihood
292
+ 210
293
+ 205
294
+ [Ma]
295
+ 200
296
+ 195
297
+ 190
298
+ 50
299
+ 56
300
+ 62
301
+ 69
302
+ 75
303
+ fpisn [%]4
304
+ D. Aguado et al.
305
+ Figure 2. Metallicity distribution functions for the 1.4 million stars anal-
306
+ ysed (blue), and the 166 PISN selected candidates (red). Note that the red
307
+ distribution has been arbitrarily scaled for easier comparison.
308
+ Asplund et al. (2009), and treat each entry in the same way regard-
309
+ less of its origin (e.g. halo, bulge, or dwarf galaxy members).
310
+ 4
311
+ METHODOLOGY
312
+ We have developed the PISN-explorer, a systematic methodology
313
+ to efficiently select PISN-polluted candidates from observational
314
+ data (Sec. 3) using the FERRE code5 from Allende Prieto et al.
315
+ (2006) and theoretical predictions from Salvadori et al. (2019)
316
+ (Sec. 2). FERRE is a FORTRAN code optimised for spectral analysis
317
+ (e.g. Allende Prieto et al. 2014; Aguado et al. 2017) but capable of
318
+ performing fitting of any class of data to a rectangular grid of theo-
319
+ retical models. The PISN-explorer methodology implies several
320
+ steps:
321
+ (i) Packaging of models: A grid of theoretical predictions for
322
+ the chemical abundances of PISN descendants (50-100% PISN
323
+ pollution) is created with a FERRE-friendly header. Key information
324
+ included in the header: a) the number and label for each free
325
+ parameter included in the models (fPISN, log10 (f∗/fdil), and
326
+ mPISN); b) the minimum value for each parameter (0.5, -4, and
327
+ 140 M⊙ respectively); c) the steps for each parameter (0.1, 1,
328
+ 9M⊙, respectively); d) the number of elements (“pixels”) within
329
+ the models (25, counting from C to Zn), and their atomic numbers
330
+ (“λ-array”). Finally, the grid is complete with the predictions
331
+ ([Xi=6,30/Fe]) in rows just below the header. Here, as explained
332
+ in Sec. 2, we use Pop II yields from (Woosley & Weaver 1995) to
333
+ be fully consistent with Salvadori et al. (2019). However, if the
334
+ potential user of PISN-explorer wishes to use a different set
335
+ of models (e.g. Nomoto et al. 2013; Limongi & Chieffi 2018, or
336
+ any other that can be published in the future) the grid has to be
337
+ re-computed as explained along these lines.
338
+ (ii) Preparing the data: Following the recommendation of
339
+ each survey, we discard stars with suboptimal flags, STAR_BAD
340
+ ASPCAPFLAG for APOGEE and flag_sp̸= 0 for GALAH, while
341
+ all the sample was taken from Gaia-ESO, MINCE, and JINA.
342
+ Additionally, we only considered elemental abundances with
343
+ 5 FERREis availablefrom http://github.com/callendeprieto/ferre
344
+ x_fe_flag = 0 in both APOGEE and GALAH, meaning that
345
+ only reliable values are considered. For each star in our sample we
346
+ prepared three different files with 25-columns length each: 1) the
347
+ measured chemical ratios ([Xi=6,30/Fe]obs) from C to Zn; 2) the
348
+ uncertainties (σ[Xi=6,30/Fe]obs); and 3) the weight we gave to each
349
+ measurement (ω[Xi=6,30/Fe]obs). The ω values are equal to 0 if
350
+ there is no measurement for element X, 1 for Cu and Zn, and 0.5
351
+ for the rest. Thus, we give double weight to the killing elements
352
+ since they are the smoking gun of PISN pollution. This tuning
353
+ implies that the χ2
354
+ 0 will heavily depend on the Cu and Zn if they
355
+ are available but no effect otherwise.
356
+ (iii) Launching the code: FERRE is able to look for the best
357
+ fit by interpolating between the nodes of the grid. We used
358
+ quadratic interpolation and Nash’s truncated Newton algorithm
359
+ (Nash & Sofer 1990). After the minimum χ20 is found, the code
360
+ produces the set of best parameters with errors, along with an
361
+ interpolated model. In Fig. 1a we show an example of a fit with the
362
+ observed values ([Xi=6,30/Fe]obs, blue dots) from the literature for
363
+ a single APOGEE object, and the best fit ([Xi=6,30/Fe]fit, red line)
364
+ derived with FERRE, giving a set of parameters: fPISN = 66.1%;
365
+ f∗/fdil = 10−3.1; and mPISN = 193.8M⊙. We also calculated
366
+ a reduced χ2 as χ2 = χ2
367
+ ◦/(N − M), where χ2
368
+ ◦ is the one
369
+ defined in Equation 14 of Salvadori et al. (2019), N the number of
370
+ fitting points, and M the number of free parameters of the model.
371
+ Therefore, we will have reduced χ2 values > 0. In the following
372
+ we will refer to this reduced χ2.
373
+ (iv) Interpreting the results and caveats: The results of the
374
+ PISN-explorer are interpreted, i.e. the best set of parameters
375
+ (fPISN, log10 (f∗/fdil), and mPISN), and an interpolated model
376
+ ([Xi=6,30/Fe]fit). When a star’s chemical signature is very far from
377
+ the theoretical predictions (the vast majority of the cases), the code
378
+ will not be able to find a good fit and will usually end up on a
379
+ solution with a high χ2 at the limit of the grid (mPISN = 140 M⊙,
380
+ for example). This is because the code is trying to find something
381
+ beyond the ranges of the grid, and should therefore be interpreted
382
+ as a non-reliable solution. Unless the quality of the fit is very
383
+ high, solutions with fPISN and mPISN close to the limit of the
384
+ grid are discouraged. However, the log10 (f∗/fdil) parameter is
385
+ less sensitive to model-to-model variations because the predicted
386
+ abundance patterns do not directly depend upon this quantity
387
+ (see Sec. 2). Therefore good fits can appear at the limits of the
388
+ log10 (f∗/fdil) range. Objects with a very low number of derived
389
+ elemental abundances (≤ 5) lead to no recommended solutions.
390
+ Additionally, there are some elements that are more affected by
391
+ stellar processes in evolved stars. C, for instance, is converted into
392
+ N during the CN cycle, and brought to the surface during the red
393
+ giant branch phase. Thus, it is highly recommended to correct
394
+ for these stellar evolutionary effects (see, e.g. Placco et al. 2014).
395
+ Finally, any available corrections due to inhomogeneities in the
396
+ three-dimensional (3D) stellar atmosphere and the non-local ther-
397
+ modynamic equilibrium (NLTE) state of the matter for elemental
398
+ abundances will significantly improve the results of the analysis.
399
+ (v) Looking for asymmetric signatures: The well known
400
+ odd-even bias is a remarkable feature of measured stellar chemical
401
+ compositions (see, e.g. Payne 1925; Russell 1941). Elements with
402
+ an even atomic number (C, O, Mg, Si, Ca, Ti) are more easily
403
+ detected in the atmospheres of metal-poor stars and therefore most
404
+ of the surveys are able to provide them for a large number of
405
+ objects with good precision. Consequently, the available chemical
406
+ MNRAS 000, 000–000 (2022)
407
+
408
+ 5
409
+ signatures are asymmetric, i.e. biased towards even-elements. This
410
+ is unfortunate, since a stark contrast between the abundances of
411
+ odd and even elements is a key signature of PISN yields (see
412
+ e.g. 1a). Therefore, the higher is the number of available odd
413
+ elemental abundances the better performance can be obtained with
414
+ this methodology.
415
+ (vi) MCMC validation: To ensure that degeneracy in the pa-
416
+ rameters determination is not affecting our methodology we used
417
+ a Markov-Chain Monte-Carlo (MCMC) analysis based on self-
418
+ adaptive randomised subspace sampling (Vrug et al. 2009). This
419
+ algorithm is also implemented in the FERRE code and can help to
420
+ understand the solution space, and offer a statistical validation for
421
+ the evaluation of uncertainties. We launched 10 chains of 50,000
422
+ experiments each and let the code burn up to 500 experiments in
423
+ each chain. In Fig. 1b we show the likelihood in the fPISN −mPISN
424
+ space of solutions. Although the employed algorithm looking for
425
+ the best solution is different, unsurprisingly the best solution is
426
+ compatible within the uncertainties with the one shown in Fig. 1a
427
+ (fPISN = 65%; f∗/fdil = 10−3.1; and mPISN = 195.3 M⊙). The
428
+ likelihood distribution (Fig. 1b) shows solution areas with similar
429
+ probability that are smaller than the step of the grid. Furthermore,
430
+ the smooth behaviour of the likelihood distribution shows that no
431
+ evident degeneracies are playing a critical role in our calculations.
432
+ Therefore, this MCMC test demonstrates that the solution FERRE is
433
+ finding is stable and the nodes corresponding to the space parame-
434
+ ters are small enough to account for the required sensitivity.
435
+ 5
436
+ TARGET SELECTION
437
+ Our sample mainly consists of nearby stars from the disk, the bulge,
438
+ and the halo of the Milky Way (Sec. 3). We analyzed 1,438,497 stars
439
+ following the methodology explained in Sec. 4 with no further cuts
440
+ applied at this stage. In Fig. 2 we show in blue the metallicity distri-
441
+ bution function of the whole sample, including GALAH, APOGEE,
442
+ GES, andJINAstarswithavailablemeasurementsofchemical abun-
443
+ dances. The target selection based on the PISN-explorer analysis
444
+ is a two step procedure based first on hard cuts applied blindly
445
+ over the entire sample, systematic selection, and secondly on more
446
+ specific and survey-dependent selection, individual selection. We
447
+ finally end up with our golden catalogue of candidates for further
448
+ high-resolution follow-up. The three stages are detailed below:
449
+ • Systematic Selection. The MDF for the entire considered sam-
450
+ ple is shown in red in Fig. 2. Following the known caveats (discussed
451
+ in Sec. 4), we discarded objects with less than 5 available chemical
452
+ abundances. In addition, since we focus on FGK type metal-poor
453
+ stars we only include stars with 4000 K<Teff < 7000 K and [Fe/H]
454
+ < −0.7. Hotter stars have much weaker metallic absorption lines,
455
+ and it is in general not possible to derive a complete chemical sig-
456
+ nature. On the other hand, the early M type stars are dominated
457
+ by molecular bands, and thus cooler stars would also prevent from
458
+ determining accurate chemical abundances. The remaining sample
459
+ of 385202 stars is run through the PISN-explorer. Subsequently,
460
+ we discard fits with χ2 > 0.35 and remove out after inspection
461
+ solutions with mPISN < 145M⊙ and/or fPISN < 55% since they
462
+ are close to the limit of the grid.
463
+ • Individual Selection. Hard cuts themselves do not guaranty
464
+ an optimal selection. First of all, the killing elements, Cu and Zn
465
+ are important guidelines and, if available, we discard objects with
466
+ [Cu, Zn/Fe] > 0. In addition, we maximised, when possible, odd-
467
+ even effect by selecting objects with [Mg/Al] > 0.7. We also
468
+ preferred objects with [Mg/Ca] < 0.0 that is also a desirable
469
+ sign according to our models. After applying all of this criteria we
470
+ end-up in a catalogue of 166 candidates from all included surveys
471
+ (Sec. 3). In Fig. 2 we also show in red our selection. It is quite clear
472
+ that different datasets contribute in a different manner. While the
473
+ most metal-poor bump ([Fe/H] ≲ −2.5) is mainly from the JINA
474
+ database, the most metal-rich peak ([Fe/H] ≈ −1) is dominated
475
+ by GES stars. However, the bulk of our selection based on GALAH
476
+ and APOGEE is peaked at [Fe/H] = −1.7, close to the most likely
477
+ metallicity region where PISN descendants are predicted to live
478
+ (e.g. Karlsson et al. 2008; Salvadori et al. 2019). We note that the
479
+ red MDF showed in Fig. 2 is, at first order, independent of the
480
+ selection criteria we applied.
481
+ • Golden catalogue We included extra criteria before consider
482
+ any star for future follow-up. At this stage more careful direct in-
483
+ spection is recommended, analysing the suitability of each can-
484
+ didate individually. Therefore, we included two objects that did
485
+ not completely achieve the general criteria χ2 < 0.35 but have
486
+ [Zn/Fe] < −0.8. In addition to it, we removed objects with clear
487
+ s-process enrichment (Ba or Ce) to discard possible contribution
488
+ from AGB stars. In addition to it, to select objects with large num-
489
+ ber of abundances (N≥ 10) is obviously a desirable strategy so we
490
+ prioritise those to others with better fit but less complete chemi-
491
+ cal information. Finally, we also include suitable observability cuts
492
+ (Vmag ≤ 16) ending up in a 45 objects golden catalogue that
493
+ contains the most promising candidates to be enriched by PISN
494
+ pollution.
495
+ Following the selection criteria described in this section we
496
+ ended up with our golden catalogue of 45 objects6. One of the most
497
+ promising candidates, 2M13593064+3241036 from APOGEE, is
498
+ shown in Fig. 1a. For this object the quality of the fit is re-
499
+ markable: measurements for two odd elements were available (Al
500
+ and K), and the odd-even effect is clear, [Mg/Al] = +0.92,
501
+ [Mg/Ca] < −0.18, and [Ca/K] < +0.75 . APOGEE does pro-
502
+ vide NLTE corrections for Mg, K, and Ca (Osorio et al. 2020).
503
+ Unfortunately, APOGEE does not measure Zn and provides very
504
+ few Cu abundance measurements. Thus, the smoking gun of PISN
505
+ pollution is missing for this interesting star. Therefore, we applied
506
+ for an ESO-DDT proposal of one hour to try to accurately measure
507
+ both killing elements, Zn and Cu.
508
+ 6
509
+ OBSERVATIONS AND ANALYSIS
510
+ 6.1
511
+ UVES observations
512
+ Our target, 2M13593064+3241036, was observed with UVES at
513
+ the 8.2 m VLT Kueyen Telescope in a single observing block (OB)
514
+ of one hour in service mode, during the night of the 28th of March
515
+ 2022, under program ID 108.23N5.001. A 1.′′2 slit was used with
516
+ 1 × 1 binning in grey sky conditions and an airmass of ∼ 2.0.
517
+ The seeing was 1.′′2 after corrected by airmass. Our settings used
518
+ dichroic #Dic1 (390 + 564) and provided a spectral coverage be-
519
+ tween 330 and 660 nm. We corrected each spectrum for the barycen-
520
+ tric velocity. The signal-to-noise ratio (SNR) per pixel in the spectra
521
+ was ∼19 at 390 nm, 48 at 510 nm, and 55 at 660 nm. The resolving
522
+ power for this set up is R∼ 45, 000 for the blue part of the spectrum
523
+ (330 − 452 nm) and R∼ 41, 500 for the red (480 − 680 nm). The
524
+ 6 The catalogue will be published in a forthcoming paper including a set of
525
+ new high-resolution observations.
526
+ MNRAS 000, 000–000 (2022)
527
+
528
+ 6
529
+ D. Aguado et al.
530
+ data were reduced using the REFLEX environment (Freudling et al.
531
+ 2013) within the ESO Common Pipeline Library.
532
+ 6.2
533
+ Stellar Parameters
534
+ APOGEE analysis pipeline (ASPCAP; García Pérez et al. 2016)
535
+ used spectral profile fitting to derive for 2M13593064+3241036:
536
+ Teff =5106 K, log g =2.60, and [Fe/H] = −1.79 (Majewski et al.
537
+ 2017). We perform a similar analysis for our UVES optical spec-
538
+ trum by fitting the data with the FERRE. FERRE is able to match
539
+ observations with a library of stellar models by interpolating be-
540
+ tween the nodes of the grid for different parameters. The synthetic
541
+ models were computed originally by Aguado et al. (2021), covering
542
+ the following range of parameters:
543
+ • 4500 K < Teff < 7000 K, ∆Teff = 250 K
544
+ • 1.0 < log g < 5.0, ∆ log g = 0.5
545
+ • −4.0 < [Fe/H] < +1.0, ∆[Fe/H] = 0.5
546
+ • −1.0 < [C/Fe] < +3.0, ∆[C/Fe] = 1.0
547
+ The models were computed in one dimension local thermody-
548
+ namical equilibrium (1D-LTE) with the ASSET code and the AT-
549
+ LAS12 stellar atmospheres (Sbordone et al. 2007; Kurucz 2005).
550
+ The atomic and molecular data were taken from Kurucz webpage7
551
+ and enriched with the literature as explained in (Allende Prieto et al.
552
+ 2018). For the analysis we first smoothed and resampled the models
553
+ to the UVES resolution and performed a running-mean normal-
554
+ ization with a 150-pixel window. Then we also normalised the
555
+ data accordingly and launched the code with the Nash’s truncate
556
+ Newton search algorithm (Nash & Sofer 1990), and cubic order
557
+ interpolation. Thus we derived for 2M13593064+3241036: Teff
558
+ = 5036 ± 105 K, log g = 2.59 ± 0.20, [Fe/H] = −2.29 ± 0.10,
559
+ and [C/Fe]= +0.05 ± 0.15. Atmospheric parameters are in ex-
560
+ cellent agreement with those derived from the H-band, however,
561
+ the measured [Fe/H] is 0.5 dex lower than the ASPCAP value.
562
+ This discrepancy is certainly unusual and cannot be easily ex-
563
+ plained since the APOGEE spectrum is of high quality (SNR∼130).
564
+ We re-analysed the APOGEE spectrum with consistent models
565
+ from Allende Prieto et al. (2018) and found compatible metallicity
566
+ [Fe/H] ∼ −1.9. Therefore, we attribute the discrepancy to a prob-
567
+ lem that could be related with a problem to the sky or background
568
+ subtraction in the APOGEE spectrum. Additionally, we found per-
569
+ sisting_high flag (residual signal in the detector) within AS-
570
+ PCAP documentation that, in principle, giving the brightness of
571
+ this object should not be a problem. Yet, we argue that it could
572
+ possibly play a role and contribute to explain such a difference. Un-
573
+ fortunately, the impact of this metallicity discrepancy significantly
574
+ influences the abundances, [X/Fe], derived by APOGEE for this
575
+ star, as is shown in the following Sec. 6.3. Thus, for sake of caution
576
+ we will not use APOGEE abundances for this object.
577
+ As sanity check, we compared our stellar parameters
578
+ from spectroscopy with the ones we derived with the Gaia
579
+ colours (Gaia Collaboration et al. 2021), applying the calibration
580
+ by Mucciarelli et al. (2021) and assuming [Fe/H] = −2.3, Teff
581
+ = 5144 ± 100 K and log g = 2.5 ± 0.2. Both set of parameters are
582
+ in good agreement also with the APOGEE ones. Furthermore, we
583
+ note that in different visits APOGEE finds different radial veloci-
584
+ ties: MJD 56389: -15.6
585
+ ,km s−1; MJD 56405: -9.3 km s−1; and MJD 56412 -8.8 km s−1
586
+ with S/N > 30 for all visits. In addition, Gaia RVS (Cropper et al.
587
+ 7 http://kurucz.harvard.edu/
588
+ Figure 3. UVES spectrum (black lines) of the star 2M13593064+3241036,
589
+ around the absorption lines: Cu i at 5105 Å (top); and Zn i at 4810 Å (bot-
590
+ tom). Two models at different elemental abundances are also shown (blue
591
+ and red lines). Other metallic absorption lines in the spectra are also labelled.
592
+ 2018) is giving vrad = −13.5 ± 3.2 km s−1 with 38 transits.
593
+ Finally, from the UVES spectrum we derive vrad = −15.8 ±
594
+ 1.2 km s−1. Therefore we cannot exclude that this star is a binary
595
+ system.
596
+ 6.3
597
+ Elemental abundances
598
+ Detailed chemical abundances analysis has also been performed
599
+ taking advantage of the FERRE code. First, we identified all the re-
600
+ solved lines present in the UVES spectrum and measure their central
601
+ wavelength by using splot routine within IRAF8 (Tody 1993). Sec-
602
+ ondly, we built for each chemical species a FERRE-readable mask
603
+ that includes all the observed lines. These spectral windows include
604
+ the vast majority of the information of each elemental abundance.
605
+ Thirdly, we fixed the stellar parameters to the values derived in the
606
+ Sec. 6.2 and launched FERRE again leaving only as a free parame-
607
+ ter the chemical abundances. The code calculates and averages the
608
+ abundance of each element and gives the associated uncertainty.
609
+ The result of this analysis is presented in Table 1, and summarised
610
+ in the following subsections.
611
+ 6.3.1
612
+ CNO-elements
613
+ The carbon abundance is derived, as explained in Sec. 6.2, by using
614
+ specific models with C as a free parameter. The CH features are
615
+ clear, resolved, and spread all over the UVES spectrum, especially
616
+ around the G-band at 4385 Å. The obtained abundance ratio is al-
617
+ most solar [C/Fe] = +0.05 ± 0.11, and no significant correction
618
+ is needed to account for the star’s evolutionary stage (0.01 dex ac-
619
+ cording to Placco et al. 2014). However, for nitrogen we are only
620
+ able to provide an upper limit from the CN molecular band at
621
+ 3885 Å. Finally, since we do not have access to the oxygen triplet
622
+ at ∼ 7775 Å we directly take the APOGEE value from the H-band.
623
+ 8 IRAF is distributed by the National Optical Astronomy Observatory,
624
+ which is operated by the Association of Universities for Research in As-
625
+ tronomy (AURA) under cooperative agreement with the National Science
626
+ Foundation
627
+ MNRAS 000, 000–000 (2022)
628
+
629
+ 7
630
+ Table 1. Stellar parameters, abundances, ratios, errors and number of de-
631
+ tected lines for individual species derived in 2M13593064+3241036 from
632
+ UVES and APOGEE data.
633
+ Gaia DR2 id 1457695618046140800
634
+ RA(deg) = 209.877547, DEC(deg) = 32.684315
635
+ vrad = −13.45 km s−1, Teff = 5035 K, log g =2.59
636
+ Species log ǫ (X)1
637
+ ⊙ log ǫ (X) [X/Fe]2 σ[X/Fe]
638
+ N
639
+ [X/Fe]NLTE
640
+ C (CH)
641
+ 8.39
642
+ 0.05
643
+ 0.11
644
+
645
+ N (CN)
646
+ 7.78
647
+ <0.10
648
+
649
+
650
+ O i
651
+ 8.66
652
+ 1.103
653
+ 0.15
654
+ 2
655
+ Na i
656
+ 6.17
657
+ 4.22
658
+ 0.36
659
+ 0.12
660
+ 2
661
+ −0.13
662
+ Mg i
663
+ 7.53
664
+ 5.77
665
+ 0.28
666
+ 0.09
667
+ 9
668
+ 0.28
669
+ Al i
670
+ 6.37
671
+ 3.86
672
+ −0.20
673
+ 0.11
674
+ 2
675
+ 0.06
676
+ Si i
677
+ 7.51
678
+ 5.48
679
+ 0.40
680
+ 0.10
681
+ 1
682
+ 0.34
683
+ K i
684
+ 5.08
685
+ 5.08
686
+ 0.243
687
+ 0.10
688
+ 1
689
+ Ca i
690
+ 6.31
691
+ 4.53
692
+ 0.39
693
+ 0.12
694
+ 12
695
+ 0.49
696
+ Sc ii
697
+ 3.05
698
+ 0.87
699
+ −0.07
700
+ 0.08
701
+ 3
702
+ Ti i
703
+ 4.90
704
+ 3.10
705
+ −0.19
706
+ 0.23
707
+ 4
708
+ Tiii
709
+ 4.90
710
+ 3.01
711
+ −0.05
712
+ 0.08
713
+ 16
714
+ −0.12
715
+ V i
716
+ 4.00
717
+ 1.85
718
+ −0.02
719
+ 0.08
720
+ 8
721
+ Cr i
722
+ 5.64
723
+ 3.23
724
+ −0.27
725
+ 0.11
726
+ 6
727
+ Mn i
728
+ 5.39
729
+ 2.68
730
+ −0.25
731
+ 0.08
732
+ 3
733
+ Fe i
734
+ 7.45
735
+ 5.31
736
+ −2.314
737
+ 0.06
738
+ 231
739
+ −2.27
740
+ Fe ii
741
+ 7.45
742
+ 5.16
743
+ −2.385
744
+ 0.09
745
+ 7
746
+ Co i
747
+ 4.92
748
+ 2.83
749
+ 0.08
750
+ 0.12
751
+ 6
752
+ Ni i
753
+ 6.23
754
+ 3.84
755
+ −0.37
756
+ 0.13
757
+ 5
758
+ Cu i
759
+ 4.21
760
+
761
+ <−0.40
762
+
763
+
764
+ Zn i
765
+ 4.60
766
+ 3.84
767
+ 0.17
768
+ 0.13
769
+ 2
770
+ Sr ii
771
+ 2.92
772
+ 0.12
773
+ 0.12
774
+ 0.09
775
+ 2
776
+ Y ii
777
+ 2.21
778
+ 0.63
779
+ −0.63
780
+ 0.09
781
+ 4
782
+ Zr ii
783
+ 2.59
784
+ 0.24
785
+ 0.24
786
+ 0.09
787
+ 3
788
+ Ba ii
789
+ 2.17
790
+ 0.13
791
+ 0.13
792
+ 0.10
793
+ 3
794
+ Eu ii
795
+ 0.52
796
+ 0.55
797
+ 0.03
798
+ 0.10
799
+ 2
800
+ 1Solar abundances adopted from Asplund et al. (2005)
801
+ 2LTE and NLTE ratios are referred to [Fe/H]LTE and [Fe/H]NLTE.
802
+ 3Abundance derived from the APOGEE spectrum and not used here.
803
+ 4[Fe/H] from Fe i is given instead of [X/Fe]
804
+ 4[Fe/H] from Fe ii is given instead of [X/Fe]
805
+ Taking into account the metallicity from iron lines was off in the AS-
806
+ PCAP calculation we corrected the oxygen ratio accordingly, from
807
+ [O/Fe]apogee = 0.57 to [O/Fe]assumed = 1.10. Unfortunately, the
808
+ forbidden oxygen lines at 6300 and 6363 Å are dominated by strong
809
+ sky lines in the UVES spectra so we could not check this high oxy-
810
+ gen value. Therefore, we consider [O/Fe]assumed only tentatively
811
+ and not used in the following analysis.
812
+ 6.3.2
813
+ Odd elements: Na, Al, Sc, and K
814
+ Absorption lines from odd elements are well resolved in the UVES
815
+ spectrum, and FERRE provides a good fit for Na (2 lines), Al (2
816
+ lines), and Sc (3 lines). We detect several features from interstellar
817
+ Na around ∼ 5985 Å. Luckily, they are well separated from the
818
+ stellar component and we are able to provide an accurate [Na/Fe]
819
+ value. The strongest K lines are outside of the range of the available
820
+ UVES spectrum, so we use the corrected value from the H-band in
821
+ APOGEE, [K/Fe]apogee = −0.24 to [K/Fe]assumed = 0.24. We
822
+ consider this value cautiously for a number of reasons: a) K lines
823
+ in the H-band are weak in this metallicity regime; b) K is derived
824
+ by ASPCAP with the metallicity as a free parameter which could
825
+ potentially introduce some deviation since we know that [Fe/H] was
826
+ overestimated. Therefore, as explained in Sec. 6.1 we do not use K
827
+ in our analysis (i.e. we give weight equal zero).
828
+ 6.3.3
829
+ Alpha-elements: Mg, Si, S, Ca, and Ti
830
+ The α−elements show strong absorptions, even in very metal-poor
831
+ stars. In particular, we detect 9, 1, 14, and 20 lines for Mg, Si,
832
+ Ca, and Ti, respectively. We do not use the saturated Ca ii lines at
833
+ 3933 Å and 3968 Å since the size of the spectral window would be
834
+ gigantic and many other lines actually do live in their wings. We
835
+ included two ionised states of titanium, Ti i and Ti ii, with 4 and 16
836
+ detected lines respectively. The measured abundances of the two Ti
837
+ species agreed with in errors, and the assumed value in our fits is
838
+ the average of the two (See Table 1). Finally, we discard the infrared
839
+ sulphur measurement from APOGEE, plotted in Fig. 1a, since no
840
+ appropriate line is available in the APOGEE spectrum and no strong
841
+ absorption lines populate the optical spectrum.
842
+ 6.3.4
843
+ Iron peak-elements: V, Cr, Mn, Fe, Co, and Ni
844
+ The relatively high SNR and resolution of the UVES spectrum al-
845
+ lowed us to derive iron peak-elements with high accuracy (number
846
+ of lines): V (8), Cr (6), Mn (3), Co (6), and Ni (5). For Fe i we iden-
847
+ tified up to 231 lines with a mean metallicity of [Fe i/H] = −2.31,
848
+ and we adopted this as the metallicity of 2M13593064+3241036.
849
+ On the other hand, we obtained [Fe ii/H] = −2.38 from 7 isolated
850
+ lines.
851
+ 6.3.5
852
+ Killing elements: Cu and Zn
853
+ As previously explained, Cu and Zn are key elements for our PISN
854
+ analysis. Thus the required SNR in the UVES spectrum was based
855
+ on these two elements, so that a minimum detection threshold of
856
+ [Cu/Fe] = −0.40 and [Zn/Fe] = −0.70 could be potentially
857
+ detected from the Cu i (5105 Å) and Zn i (4810 Å) lines. In Fig. 3
858
+ the targeted lines for Cu and Zn, and their derived values are shown.
859
+ 6.3.6
860
+ Neutron-capture elements: Sr, Y, Zr, Ba, and Eu
861
+ We also derived ionised species for neutron-capture elements from
862
+ the UVES spectrum. We detect several of the typical s-process
863
+ elements (number of lines): Sr (2), Y (4), Zr (3), and Ba (3). Addi-
864
+ tionally, corresponding to a r-process production, the strongest Eu
865
+ lines (4129 Å and 4205 Å) were detected and measured.
866
+ 6.4
867
+ NLTE corrections
868
+ We note that the way we derived elemental abundances with spec-
869
+ tral windows does not allow direct NLTE corrections since we are
870
+ fitting several lines at the same time. However, we estimated an
871
+ overall NLTE correction by averaging the individual corrections
872
+ over the relevant lines. We employed NLTE corrections provided in
873
+ the literature:
874
+ • Mashonkina et al. (2016)9 to calculate both Fe i and Ti ii. The
875
+ average Fe i NLTE correction is 0.04 dex and the dispersion line
876
+ to line is also low with the majority of the lines between 0.02-
877
+ 0.05 dex. Ti ii corrections go in the other way but are also small
878
+ with an average of −0.03 dex.
879
+ 9 http://spectrum.inasan.ru/nLTE/
880
+ MNRAS 000, 000–000 (2022)
881
+
882
+ 8
883
+ D. Aguado et al.
884
+ • (b) Lind et al. (2012)10 for Na. The lines/individual corrections
885
+ are 5889 Å/−0.42 dex and 5895 Å/−0.45 dex, giving a final value
886
+ of 0.44 dex. These are, as expected, the largest in this giant star.
887
+ • Mashonkina et al. (2007); Bergemann et al. (2013, 2017)11
888
+ for Ca i, Si i, and Mg i, respectively. Ca i are comparatively large
889
+ (0.13 dex), while Si i, and Mg i are small and at the level of −0.02
890
+ and 0.04, respectively. This is not surprising for a very metal-poor
891
+ K type star (e.g. Alexeeva et al. 2018).
892
+ • We also applied a +0.30 dex correction for Al based on NLTE
893
+ calculations by Nordlander & Lind (2017).
894
+ 7
895
+ PISN DESCENDANTS CANDIDATES
896
+ 7.1
897
+ Our observed candidate: 2M13593064+3241036
898
+ In Sec. 4 we reanalysed with FERRE the chemical signature
899
+ of our PISN candidate. As explained in Sec. 6.2 the fact that
900
+ 2M13593064+3241036 is more metal-poor than previously pub-
901
+ lished with APOGEE has a direct impact on the analysis and makes
902
+ the killing ratios [Cu/Fe] and [Zn/Fe] higher than expected, with
903
+ catastrophic consequences. Additionally, we consider the K mea-
904
+ surement as tentative with lower weight in the analysis (see Sec.
905
+ 6.3). Furthermore, the [Mg/Al] ratio has dramatically increased by
906
+ 0.69 dex which clearly attenuates the odd-even effect. Still some key
907
+ features remain, such as high [Si/Fe] value, and [Ca/Mg] > 0, but
908
+ the importance of those is relatively smaller when identifying PISN
909
+ descendants.
910
+ In Fig. 4a we show the elemental abundances from Table 6.1
911
+ together with the best PISN-explorer fit and parameters. The best
912
+ fit gives significantly different results than the original analysis:
913
+ mPISN = 204.0 M⊙ (prev. 193.8 M⊙), and fPISN = 50% (prev.
914
+ 66%), and f∗/fdil = 10−2.1 (prev. 10−2). The quality of the fit
915
+ is now worse (See Fig. 1a), in particular the killing element Zn
916
+ is not anymore well reproduced by the models. Additionally, the
917
+ odd-even effect is attenuated and the best fit (red line) is unable
918
+ to reproduce it which is far from we could expect from a PISN
919
+ descendant. That is consistent with the fact that now the best fit is
920
+ giving a fPISN value that is in the limit of the grid, which could be
921
+ an indication of even lower PISN contribution. Three key results
922
+ therefore forced us to be cautious on reaching strong conclusions
923
+ on whether 2M13593064+3241036 is a PISN descendant: (a) the
924
+ quality of the fit has significantly decreased with the analysis of
925
+ the higher quality UVES spectrum; (b) the odd-even effect is now
926
+ clearly reduced; and (c) the high Zn value does not allow us to
927
+ clearly identify the smoking gun of PISN production. The candi-
928
+ date 2M13593064+3241036 could therefore still be a regular halo
929
+ star. The following is an additional test we propose to verify this
930
+ hypothesis.
931
+ The authors in Cayrel et al. (2004b) derived precise elemental
932
+ abundances for 35 very metal-poor halo stars, considered chem-
933
+ ically unmixed (Spite et al. 2005). These abundances adequately
934
+ averaged and NLTE corrected by Andrievsky et al. (2010) can be
935
+ understood as the mean chemical signature for a regular (C-normal)
936
+ giant halo star polluted almost exclusively by CCSN. This “repre-
937
+ sentative” abundance pattern is not polluted by PISN at the 99.9%
938
+ level, and is therefore useful as a comparison sample to test our
939
+ methodology. Thus, following the methodology described in Sec.
940
+ 4, we analyzed this average abundance pattern for a regular giant
941
+ 10 http://www.inspect-stars.com/
942
+ 11 https://nlte.mpia.de/gui-siuAC_secE.php
943
+ halo star having as result fPISN = 50%; f∗/fdil = 10−2.0; and
944
+ mPISN = 231M⊙. In Fig. 4b we show the comparison between
945
+ 2M13593064+3241036 and the regular giant halo star pattern. As
946
+ in the case of our candidate we obtained the minimum value of PISN
947
+ contribution while the mass of the progenitor is slightly higher. In
948
+ fact, both objects and their best fits seem similar. Main differences
949
+ are concentrated in lighter elements such us the CNO family where
950
+ the regular halo star pattern shows smother trend. In addition to it,
951
+ the odd-even effect is even less clear in 2M13593064+3241036 in
952
+ the Na-Mg-Al-Si range. Furthermore, the super solar Zn abundance
953
+ in the regular halo star pattern (as in our APOGEE candidate) is a
954
+ strong indication of no PISN contribution. The super-solar [Zn/Fe]
955
+ makes it difficult to establish an unambiguous difference between
956
+ this star and the average halo star. Therefore we could conclude that
957
+ 2M13593064+3241036 is likely like other halo stars with no major
958
+ contribution from PISN pollution.
959
+ 7.2
960
+ Previously reported candidates
961
+ In the literature, two stars have been reported as being probable
962
+ descendants of PISNe: BD+80◦245 (Salvadori et al. 2019), and
963
+ SDSS J0018−0939 (Aoki et al. 2014). To verify our methods, and
964
+ compare our approach to their published results, we also analysed
965
+ these stars with the PISN-explorer, and the result is shown in
966
+ Figs 4d and 4c.
967
+ The star BD+80◦245 (Carney et al. 1997; Fulbright et al.
968
+ 2010; Ivans et al. 2003; Roederer et al. 2014), is a low-α halo
969
+ star (Fig. 4c), which was initially proposed as a PISN descendant
970
+ (Salvadori et al. 2019) based on the low abundance of the killing
971
+ elements (Cu and Zn). Their originally derived PISN parameters
972
+ were fPISN = 50%; f∗/fdil = 10−4.0; and mPISN = 223M⊙.
973
+ Our analysis, as explained, is based on the same set of models
974
+ (Heger & Woosley 2002; Salvadori et al. 2019) but the way we fit
975
+ the data with FERRE is different (see Sec. 4). The best solution we
976
+ get is fPISN = 50%; f∗/fdil = 10−2.0; and mPISN = 213.8M⊙
977
+ with a χ2 = 0.17, which is in good agreement with Salvadori et al.
978
+ (2019). Interestingly, the f∗/fdil factor is significantly different in
979
+ the two analysis while the quality of the fit is similar. The reason
980
+ for that is that f∗/fdil is the least sensitive parameter (see Sec. 2)
981
+ within the models and the FERRE code tends to go to the limit of the
982
+ grid.
983
+ SDSS J0018−0939 is another interesting star that was pro-
984
+ posed to be a PISN descendant by Aoki et al. (2014). This star has
985
+ remarkably low α-abundances ([Mg/Fe] = −0.52, [Ca/Fe] =
986
+ −0.26), see Fig. 4d. The authors excluded that the peculiar chem-
987
+ ical pattern could not be produced by CCSN or SN Ia. They con-
988
+ cluded that the most likely origin is PISN and they attribute a
989
+ fPISN = 100%value. Unfortunately, noinformative upperlimitsfor
990
+ Cu and Zn were measured in this star. We used the PISN-explorer
991
+ to derive PISN parameters from the measured abundances by
992
+ Aoki et al. (2014) and found fPISN = 50%; f∗/fdil = 10−2.0;
993
+ and mPISN = 256M⊙ with χ2 = 0.44. Although the χ2 is ele-
994
+ vated, we are able to reproduce the chemical signature of lighter
995
+ elements (See Fig. 4d) but the models failed for iron-peak elements.
996
+ The low α ratios lead to high mass of the progenitor (256M⊙)
997
+ in agreement to what was claimed by Aoki et al. (2014). However,
998
+ the fPISN = 50% value suggests that this star could be polluted
999
+ by PISN but a higher contribution should be attributed to normal
1000
+ Pop II stars exploding as CCSN. Further observations in order to
1001
+ detect and measure killing elements is highly required to confirm
1002
+ the percentage of PISN contamination we see in this star.
1003
+ The Pristine survey (Starkenburg et al. 2017b) derives metal-
1004
+ MNRAS 000, 000–000 (2022)
1005
+
1006
+ 9
1007
+ (a) 2M13593064+3241036
1008
+ (b) Halo abundance pattern
1009
+ (c) BD+80◦245
1010
+ (d) SDSS J0018−0939
1011
+ (e) TYC 4267-2023-1
1012
+ (f) BD −07 3523
1013
+ (g) Sextans S58
1014
+ (h) Draco 361
1015
+ Figure 4. Results of the PISN-explorer analysis. Points are measured chemical abundances while lines are best fits. Listed on the plot are parameters of the
1016
+ fit, along with Teff, log g, and [Fe/H]. Top row: Our new analysis is presented (blue filled circles) and compared to the APOGEE results (a, blue open circles);
1017
+ and the average abundance pattern and the best fit of the Cayrel et al. (2004a) sample (b, green open diamonds). Second row: Previously published candidates
1018
+ for dominant PISN enrichment (green squares), SDSS J0018−0939 (c; Aoki et al. 2014) and BD+80◦245 (d; Salvadori et al. 2019). Third row: Candidates
1019
+ selected from the MINCE survey (e and f; Cescutti et al. 2022). Bottom row: Promising candidates for PISN descendants (green star symbols) in the Sextans
1020
+ (g; Shetrone et al. 2001) and Draco (h; Cohen & Huang 2009) dwarf spheroidal galaxies.
1021
+ MNRAS 000, 000–000 (2022)
1022
+
1023
+ 10
1024
+ D. Aguado et al.
1025
+ licities for halo stars based on narrow band filter photometry. In this
1026
+ context, there is also a remarkable observational effort to derive Cu
1027
+ and Zn in metal-poor stars (Caffau et al. 2022). The authors found,
1028
+ among others, three interesting candidates to be polluted by PISN
1029
+ production using also the PISN-explorer. In particular, in their
1030
+ Fig. 12, they show the chemical pattern of TYC1118-595-1, a very
1031
+ metal-poor star with [Fe/H] = −2.12, and derived fPISN = 50%;
1032
+ f∗/fdil = 10−2.3; and mPISN = 193M⊙. TYC 2207–992–1 and
1033
+ TYC1194–507–1 are also reported together with a best fit that sug-
1034
+ gested that they could be enriched by PISN up to fPISN = 83%
1035
+ and 90%, respectively. However, the probability of such is signifi-
1036
+ cantly smaller than for TYC1118-595-1 due to the lower quality of
1037
+ the fit. According to what is explained in Sec. 4, we consider that
1038
+ TYC1118-595-1 is likely reflecting the theoretical predictions in
1039
+ their chemical pattern in a percentage that could be to the order of
1040
+ fPISN = 50% or slightly smaller. TYC 2207–992–1 is also a very
1041
+ promising candidate with a progenitor mass mPISN = 170M⊙
1042
+ while TYC1194–507–1 has more uncertain origin due to the low
1043
+ quality of the fit.
1044
+ We also mined the bibliography including high-resolution
1045
+ analysis of halo stars looking for interesting candidates. We found
1046
+ that the vast majority of interesting stars published before 2018 are
1047
+ already included in the JINA database. However, Xing et al. (2019)
1048
+ found an interesting star, J1124+4535, with [Fe/H] = −1.27 and
1049
+ [Zn/Fe] = −0.37. We also analyzed its chemical signature with
1050
+ the PISN-explorer and found fPISN = 50%; f∗/fdil = 10−2.4;
1051
+ and mPISN = 231M⊙. The quality of the fit is relatively good
1052
+ (χ2 = 0.29) but the absence of Cu measurement or upper limit pre-
1053
+ vent us to conclude this object is polluted by PISN. We propose to
1054
+ re-observe this interesting object with peculiar chemistry to confirm
1055
+ its origin.
1056
+ 7.3
1057
+ PISN candidates in classical dwarf galaxies
1058
+ It is commonly accepted that the classical dwarf spheroidal galaxies
1059
+ are massive enough to retain the chemical products of PISN explo-
1060
+ sions (see e.g. Bromm & Loeb 2003; Salvadori et al. 2008). How-
1061
+ ever, their total number of stars is much lower compared to more
1062
+ massive systems. Consequently, the expected fraction of PISN de-
1063
+ scendants in classical dwarf galaxies is expected to be significantly
1064
+ higher than in the Milky Way. Therefore, classical dwarf galax-
1065
+ ies are interesting places to search for PISN descendants. Luckily,
1066
+ within the JINA database there are ∼ 50 stars from Fornax, Sex-
1067
+ tans, Draco, and other dwarf satellites. In Figs. 4g and 4h two
1068
+ interesting examples of the FERRE analysis are shown, Sextans S58
1069
+ (Shetrone et al. 2001) and Draco 361 (Cohen & Huang 2009). The
1070
+ quality of both fits are remarkably high with χ2 = 0.10, 0.20, re-
1071
+ spectively. Additionally, the killing element Zn, is largely subsolar
1072
+ in the atmosphere of the two stars [Zn/Fe] ∼ −0.45. Actually, the
1073
+ case of Sextans S58 with fPISN = 55% suggests that the majority
1074
+ of the material this star formed from was polluted mostly by PISN
1075
+ with a mass of mPISN = 253 M⊙.
1076
+ Finally, we also identified another star from JINA database,
1077
+ Draco 3053 (Cohen & Huang 2009). This star is also Zn-poor with
1078
+ [Zn/Fe] = −0.3 and the best set of parameters derived with
1079
+ the PISN-explorer are fPISN = 50%; f∗/fdil = 10−2.0; and
1080
+ mPISN = 218M⊙; and χ2 = 0.19. In this case, the high quality of
1081
+ the fit and the low value of Zn suggest that this star could be indeed
1082
+ polluted by PISN in a percentage close to fPISN = 50%. Further
1083
+ observations of all of the three candidates in Draco and Sextans
1084
+ galaxies are required.
1085
+ 8
1086
+ DISCUSSION
1087
+ In the previous sections we have validated and applied our proposed
1088
+ PISN-explorer methodology to find PISN descendants. Although
1089
+ the 2M13593064+3241036 candidate seems not to be as interesting
1090
+ as expected (mostly due to the initial overestimation of metallicity in
1091
+ APOGEE), its study was useful to understand the capabilities of our
1092
+ methodology. As shown, its chemical signature, and in particular
1093
+ the killing elements Cu and Zn, is not significantly different from
1094
+ that of an average pattern for regular giant halo stars. Indeed, when
1095
+ the contribution of Pop II stars exploding as normal CCSN becomes
1096
+ > 50%, the peculiar chemical signatures left by different Pop III star
1097
+ progenitors are essentially lost (Vanni et al. in prep.)
1098
+ A different situation is presented for BD+80◦245, shown
1099
+ in Fig. 4c. For this star we confirm the result provided by
1100
+ Salvadori et al. (2019) and we conclude that it is at least par-
1101
+ tially (but genuinely) polluted by PISN. The clearly low value of
1102
+ the killing elements that this stars shows is indeed the smoking
1103
+ gun of PISN contamination. On the other hand, the analysis of
1104
+ SDSS J0018−0939 shows that while very different from a regular
1105
+ halo star (see Sec. 7.1), the percentage of material produced by PISN
1106
+ may not be as high as originally suggested by Aoki et al. (2014). In
1107
+ any case, some further high-resolution observations of this interest-
1108
+ ing star are needed to better constrain the amount of Cu and Zn and
1109
+ shed light over the exact amount of material that effectively come
1110
+ from PISN production. At this point we propose using facilities that
1111
+ will be available in the next generation of 30 m telescopes. More-
1112
+ over, the agreement of our analysis with previous works suggests
1113
+ that the PISN-explorer is efficient in characterising candidates.
1114
+ A very challenging issue when identifying the descendants of
1115
+ the very massive first stars is how to discriminate between them and a
1116
+ regular halo star (mostly polluted by Pop II exploding as CCSN). By
1117
+ comparing Fig. 4b with 4c, 4d, 4g, and 4h it is clear that the chemical
1118
+ signatures that correspond to good fits in this work (χ2 ≲ 0.20) are
1119
+ very different than the mean abundance pattern for a regular giant
1120
+ halo star (Cayrel et al. 2004b). The much higher CNO abundances
1121
+ together with high α’s (i.e. Mg, Ti) led to a significantly higher
1122
+ χ2. Obviously, this is deeply related with the fact that the regular
1123
+ halo star pattern is not Zn-poor, which is the most robust indicator.
1124
+ Additionally, as shown in Fig. 4b, the odd-even effect is clearly lost
1125
+ for atomic numbers higher than Z=19, i.e. for most of the iron-
1126
+ peak elements. According to our novel PISN-explorer, the most
1127
+ efficient way to separate PISN candidates from other halo field stars
1128
+ is a combination of all the criteria presented in Sec. 5, low values of
1129
+ χ2, and the killing elements deficiency [Cu, Zn/Fe] < 0. In Figs.
1130
+ 4e and 4f two interesting examples of promising candidates from
1131
+ MINCE survey with subsolar Cu and Zn abundances are shown.
1132
+ Moreover, the PISN-explorer allowed us to successfully
1133
+ identify very interesting PISN descendants candidates in classi-
1134
+ cal dwarf galaxies (see Fig. 2). Note that none of them are found
1135
+ in the less massive ultra-faint dwarf galaxies. These systems, which
1136
+ are smaller and thus have lower binding energy than classical dSph
1137
+ galaxies, are probably not able to retain the chemical products of
1138
+ energetic PISN (Rossi et al. in prep). Unfortunately, since those
1139
+ from classical dwarfs are typically distant and therefore faint, the
1140
+ next generation of 30 m class telescopes will be required to derive
1141
+ systematically their killing elements.
1142
+ A final remark concerns the MDF of our 166 selected can-
1143
+ didates shown in Fig. 2. It is indeed extremely interesting to see
1144
+ that its main peak is located at [Fe/H] = −1.7, i.e. exactly at the
1145
+ level predicted by the cosmological models for the MW formation
1146
+ of de Bennassuti et al. (2017) (see their Fig. 9) and close to the
1147
+ MNRAS 000, 000–000 (2022)
1148
+
1149
+ 11
1150
+ Figure 5. Our catalogue of 166 candidate PISN descendants, shown in the fPISN − mPISN plane, colour-coded by metallicity. Histograms of the candidates
1151
+ are also shown on top and right side panels.
1152
+ values provided by the parametric study of Salvadori et al. (2019),
1153
+ [Fe/H] ≈ −2, and by the inhomogeneous chemical enrichment
1154
+ model by Karlsson et al. (2008), [Fe/H] ≈ −2.5. This result is
1155
+ quite remarkable since the PISN-explorer does not use the iron
1156
+ abundance to select PISN candidates. As explained in Sec. 5, indeed,
1157
+ our selection is solely based on the predicted chemical abundance
1158
+ ratios, [X/Fe]. We should also note that it is very likely that our
1159
+ sample, and thus our selected candidates, are biased towards higher
1160
+ [Fe/H]. In fact, both APOGEE and GALAH rapidly decrease in ac-
1161
+ curacy in the very metal-poor regime, which is possibly the origin
1162
+ of the second peak at higher [Fe/H]≈ −1. Finally, we recall that
1163
+ the iron abundances of PISN descendants is expected to vary in a
1164
+ broad range, −5 < [Fe/H] < 0.5 (see Fig. 7 of Salvadori et al.
1165
+ 2019). Therefore, it is quite normal that in our MDF we find a
1166
+ second and smaller peak at [Fe/H] = −3.0. This peak is indeed
1167
+ made by PISN candidates selected from the JINA database, which
1168
+ is naturally biased towards Fe-poor stars.
1169
+ In Fig. 5 we display the fPISN − mPISN distribution for our
1170
+ 166 selected candidates colour coded by metallicity. While the his-
1171
+ tograms of fPISN are peaked at lower contribution and monoton-
1172
+ ically decreases, which is expected, the distribution of mPISN is
1173
+ more condensed around 200 M⊙. We also see a more metal-poor
1174
+ population lying at fPISN = 50%. As explained in Sec. 5 the vast
1175
+ majority of those values should be avoided when selecting candi-
1176
+ dates. However, as we pointed out, after visual inspection we could
1177
+ consider them as a candidates whether they show a remarkably good
1178
+ fit and Cu and Zn abundances are subsolar. This population was se-
1179
+ lected following this approach and some of them (due its visibility
1180
+ and/or special features) are included in our golden sample. How-
1181
+ ever, some others are quite faint and we propose to observe at higher
1182
+ SNR when possible with the future high-resolution spectrographs.
1183
+ 9
1184
+ CONCLUSIONS
1185
+ We have presented a new methodology to identify candidates that
1186
+ have been significantly polluted by PISN in the early Universe. We
1187
+ mined different datasets in order to find chemical patterns that match
1188
+ with what is expected to find if significant PISN production took
1189
+ place. We summarise here the main conclusions of this work:
1190
+ • Current and upcoming large spectroscopic surveys (APOGEE,
1191
+ GALAH, GES, 4MOST, WEAVE), and existing databases such as
1192
+ JINA, are an invaluable tool to unveil the origin and characteristics
1193
+ of the very massive first stars, which exploded as PISN.
1194
+ • The PISN-explorer, using the FERRE code in combination
1195
+ withtheoretical predictions(Salvadori et al. 2019), isaveryefficient
1196
+ methodology when selecting PISN descendant candidates in large
1197
+ databases.
1198
+ • The MDF of the selected candidates is a confirmation of
1199
+ the predicted peak in PISN production at [Fe/H]
1200
+
1201
+ −1.7
1202
+ (de Bennassuti et al. 2017).
1203
+ • killing elements (Cu and Zn), low values of α-elements (Mg
1204
+ and Ti), and clear odd-even effect (e.g. high [Mg/Na], and/or high
1205
+ [Mg/Al]), are indicators of PISN production. Therefore, they could
1206
+ be used to efficiently select candidates.
1207
+ • It is possible that 2M13593064+3241036 was mostly polluted
1208
+ by PISN production but the presence of Zn on its atmosphere does
1209
+ not allow us to confirm this hypothesis. BD+80◦245 contains sig-
1210
+ nificant material that was formed during a PISN event. The fPISN =
1211
+ value previously reported for SDSS J0018−0939 (100%) could be
1212
+ significantly lower according to its chemical signature.
1213
+ • Sextans S58 is the most promising candidate and maybe mostly
1214
+ formed out of PISN material. To confirm this hypothesis further
1215
+ high-resolution follow-up is needed to complete the chemical sig-
1216
+ MNRAS 000, 000–000 (2022)
1217
+
1218
+ 12
1219
+ D. Aguado et al.
1220
+ nature already reported in the literature. Draco 361 and Draco 3053
1221
+ are also excellent candidates selected from classical dwarf galaxies.
1222
+ • From our selected 166 candidates we propose 45 of them as
1223
+ a golden catalogue with the most promising and visible stars for
1224
+ future follow-up.
1225
+ Future high-resolution facilities mounted in the Extremely
1226
+ Large Telescope such as ANDES (Marconi et al. 2022) and other
1227
+ facilities will provide and unbeatable opportunity to observe stars
1228
+ in dwarf satellites, where it is more likely to find PISN descendants.
1229
+ In addition to it, the next generation of large spectroscopic surveys
1230
+ such as WEAVE (Jin et al., in press) and 4MOST (de Jong et al.
1231
+ 2019) with high resolution observations will be an unbeatable place
1232
+ to test the PISN-explorer and finally finding the descendants of
1233
+ the very massive first stars.
1234
+ 10
1235
+ DATA AVAILABILITY AND ONLINE MATERIAL
1236
+ All the spectroscopic data reduced and analyzed for the present
1237
+ article are fully available under request to the corresponding au-
1238
+ thor12. A table with the detected lines in the UVES spectrum of
1239
+ 2M13593064+3241036 is included as online material.
1240
+ ACKNOWLEDGEMENTS
1241
+ We thanks the anonymous referee for positive and constructive com-
1242
+ ments. The authors of this work really thank Carlos Allende Pri-
1243
+ eto (Instituto de Astroísica de Canarias) for insightful discussion
1244
+ about the capabilities of the FERRE code. We warmly thank all
1245
+ the members of the NEFERTITI group of the University of Flo-
1246
+ rence for insightful discussions. We also thank the streams group at
1247
+ the University of Cambridge for fruitful interactions. These results
1248
+ are based on VLT/UVES observations collected at the European
1249
+ Organisation for Astronomical Research (ESO) in the Southern
1250
+ Hemisphere under program ESO ID 108.23N5.001. This project
1251
+ has received funding from the European Research Council (ERC)
1252
+ under the European Union’s Horizon 2020 research and innovation
1253
+ program (grant agreement No. 804240). DA, SS, AS, IV, VG and IK
1254
+ acknowledge support from the European Research Council (ERC)
1255
+ Starting Grant NEFERTITI H2020/808240. SS acknowledges sup-
1256
+ port from the PRIN-MIUR2017, prot. n. 2017T4ARJ5. EC and PB
1257
+ gratefully acknowledge support from the French National Research
1258
+ Agency (ANR) funded project “Pristine” (ANR-18-CE31-0017).
1259
+ AMA acknowledges support from the Swedish Research Council
1260
+ (VR 2020-03940).
1261
+ REFERENCES
1262
+ Abdurro’uf et al., 2022, ApJS, 259, 35
1263
+ Abel T., Bryan G. L., Norman M. L., 2002, Science, 295, 93
1264
+ Abohalima A., Frebel A., 2018, ApJS, 238, 36
1265
+ Aguado D. S., González Hernández J. I., Allende Prieto C., Rebolo R., 2017,
1266
+ A&A, 605, A40
1267
+ Aguado D. S., et al., 2021, MNRAS, 500, 889
1268
+ Alexeeva S., Ryabchikova T., Mashonkina L., Hu S., 2018, ApJ, 866, 153
1269
+ Allende Prieto C., Beers T. C., Wilhelm R., Newberg H. J., Rockosi C. M.,
1270
+ Yanny B., Lee Y. S., 2006, ApJ, 636, 804
1271
+ Allende Prieto C., et al., 2014, A&A, 568, A7
1272
+ 12 david.aguado@unifi.it
1273
+ Allende Prieto C., Koesterke L., Hubeny I., Bautista M. A., Barklem P. S.,
1274
+ Nahar S. N., 2018, A&A, 618, A25
1275
+ Andrievsky S. M., Spite M., Korotin S. A., Spite F., Bonifacio P., Cayrel R.,
1276
+ François P., Hill V., 2010, A&A, 509, A88
1277
+ Aoki W., Tominaga N., Beers T. C., Honda S., Lee Y. S., 2014, Science,
1278
+ 345, 912
1279
+ Asplund M., Grevesse N., Sauval A. J., 2005, in Barnes III T. G., Bash F. N.,
1280
+ eds, Astronomical Society of the Pacific Conference Series Vol. 336,
1281
+ Cosmic Abundances as Records of Stellar Evolution and Nucleosynthe-
1282
+ sis. p. 25
1283
+ Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
1284
+ Bergemann M., Kudritzki R.-P., Würl M., Plez B., Davies B., Gazak Z.,
1285
+ 2013, ApJ, 764, 115
1286
+ Bergemann M., Collet R., Amarsi A. M., Kovalev M., Ruchti G., Magic Z.,
1287
+ 2017, ApJ, 847, 15
1288
+ Bromm V., 2013, Reports on Progress in Physics, 76, 112901
1289
+ Bromm V., Loeb A., 2003, Nature, 425, 812
1290
+ Buder S., et al., 2021, MNRAS, 506, 150
1291
+ Caffau E., Ludwig H. G., Steffen M., Freytag B., Bonifacio P., 2011,
1292
+ Sol. Phys., 268, 255
1293
+ Caffau E., et al., 2022, MNRAS,
1294
+ Carney B. W., Wright J. S., Sneden C., Laird J. B., Aguilar L. A., Latham
1295
+ D. W., 1997, AJ, 114, 363
1296
+ Cayrel R., et al., 2004a, A&A, 416, 1117
1297
+ Cayrel R., et al., 2004b, A&A, 416, 1117
1298
+ Cescutti G., et al., 2022, arXiv e-prints, p. arXiv:2211.06086
1299
+ Cohen J. G., Huang W., 2009, ApJ, 701, 1053
1300
+ Cropper M., et al., 2018, A&A, 616, A5
1301
+ Dalton G., et al., 2016, in Evans C. J., Simard L., Takami H., eds, Society
1302
+ of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
1303
+ Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy
1304
+ VI. p. 99081G, doi:10.1117/12.2231078
1305
+ De Silva G. M., et al., 2015, MNRAS, 449, 2604
1306
+ Freudling W., Romaniello M., Bramich D. M., Ballester P., Forchi V., García-
1307
+ Dabló C. E., Moehler S., Neeser M. J., 2013, A&A, 559, A96
1308
+ Fulbright J. P., et al., 2010, ApJ, 724, L104
1309
+ Gaia Collaboration et al., 2021, A&A, 649, A1
1310
+ García Pérez A. E., et al., 2016, AJ, 151, 144
1311
+ Gilmore G., et al., 2012, The Messenger, 147, 25
1312
+ Gilmore G., et al., 2022, A&A, 666, A120
1313
+ Grevesse N., Asplund M., Sauval A. J., 2007, Space Sci. Rev., 130, 105
1314
+ Heger A., Woosley S. E., 2002, ApJ, 567, 532
1315
+ Hirano S., Hosokawa T., Yoshida N., Umeda H., Omukai K., Chiaki G.,
1316
+ Yorke H. W., 2014, ApJ, 781, 60
1317
+ Hirano S., Hosokawa T., Yoshida N., Omukai K., Yorke H. W., 2015,
1318
+ MNRAS, 448, 568
1319
+ Hosokawa T., Omukai K., Yoshida N., Yorke H. W., 2011, Science,
1320
+ 334, 1250
1321
+ Ishigaki M. N., Tominaga N., Kobayashi C., Nomoto K., 2018, The Astro-
1322
+ physical Journal, 857, 46
1323
+ Ivans I. I., Sneden C., James C. R., Preston G. W., Fulbright J. P., Höflich
1324
+ P. A., Carney B. W., Wheeler J. C., 2003, ApJ, 592, 906
1325
+ Karlsson T., Johnson J. L., Bromm V., 2008, ApJ, 679, 6
1326
+ Kurucz R. L., 2005, Memorie della Societa Astronomica Italiana Supple-
1327
+ menti, 8, 14
1328
+ Larson P. L., 1998, Gaia, 15, 389
1329
+ Limongi
1330
+ M.,
1331
+ Chieffi
1332
+ A.,
1333
+ 2018,
1334
+ VizieR
1335
+ Online
1336
+ Data
1337
+ Catalog,
1338
+ p. J/ApJS/237/13
1339
+ Lind K., Bergemann M., Asplund M., 2012, MNRAS, 427, 50
1340
+ Lodders K., Palme H., Gail H.-P., 2009, Landolt Börnstein,
1341
+ Majewski S. R., et al., 2017, AJ, 154, 94
1342
+ MarconiA., etal., 2022, inEvans C. J., BryantJ. J., MotoharaK., eds, Society
1343
+ of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
1344
+ Vol. 12184, Ground-based and Airborne Instrumentation for Astronomy
1345
+ IX. p. 1218424, doi:10.1117/12.2628689
1346
+ Mashonkina L., Korn A. J., Przybilla N., 2007, A&A, 461, 261
1347
+ Mashonkina L. I., Sitnova T. N., Pakhomov Y. V., 2016, Astronomy Letters,
1348
+ 42, 606
1349
+ MNRAS 000, 000–000 (2022)
1350
+
1351
+ 13
1352
+ McKee C. F., Tan J. C., 2008, ApJ, 681, 771
1353
+ Mucciarelli A., Bellazzini M., Massari D., 2021, A&A, 653, A90
1354
+ Nash S. G., Sofer A., 1990, Operations Research Letters, 9, 219
1355
+ Nomoto K., Kobayashi C., Tominaga N., 2013, ARA&A, 51, 457
1356
+ Nordlander T., Lind K., 2017, A&A, 607, A75
1357
+ Osorio Y., Allende Prieto C., Hubeny I., Mészáros S., Shetrone M., 2020,
1358
+ A&A, 637, A80
1359
+ Payne C. H., 1925, PhD thesis, RADCLIFFE COLLEGE.
1360
+ Placco V. M., Frebel A., Beers T. C., Christlieb N., Lee Y. S., Kennedy C. R.,
1361
+ Rossi S., Santucci R. M., 2014, ApJ, 781, 40
1362
+ Randich S., et al., 2022, arXiv e-prints, p. arXiv:2206.02901
1363
+ Roederer I. U., Preston G. W., Thompson I. B., Shectman S. A., Sneden C.,
1364
+ Burley G. S., Kelson D. D., 2014, AJ, 147, 136
1365
+ Rossi M., Salvadori S., Skúladóttir Á., 2021, MNRAS, 503, 6026
1366
+ Russell H. N., 1941, Science, 94, 375
1367
+ Salvadori S., Ferrara A., Schneider R., 2008, MNRAS, 386, 348
1368
+ Salvadori S., Ferrara A., Schneider R., Scannapieco E., Kawata D., 2010,
1369
+ MNRAS, 401, L5
1370
+ Salvadori S., Skúladóttir Á., Tolstoy E., 2015, MNRAS, 454, 1320
1371
+ Salvadori S., Bonifacio P., Caffau E., Korotin S., Andreevsky S., Spite M.,
1372
+ Skúladóttir Á., 2019, MNRAS, 487, 4261
1373
+ Sbordone L., Bonifacio P., Castelli F., 2007, in Kupka F., Roxburgh I., Chan
1374
+ K. L., eds, 2007 International Astronomical Unio Vol. 239, Convection
1375
+ in Astrophysics. pp 71–73, doi:10.1017/S1743921307000142
1376
+ Shetrone M. D., Côté P., Sargent W. L. W., 2001, ApJ, 548, 592
1377
+ Silk J., 1977, ApJ, 211, 638
1378
+ Spite M., et al., 2005, A&A, 430, 655
1379
+ Starkenburg E., Oman K. A., Navarro J. F., Crain R. A., Fattahi A., Frenk
1380
+ C. S., Sawala T., Schaye J., 2017a, MNRAS, 465, 2212
1381
+ Starkenburg E., et al., 2017b, MNRAS, 471, 2587
1382
+ Susa H., Hasegawa K., Tominaga N., 2014, ApJ, 792, 32
1383
+ Takahashi K., Yoshida T., Umeda H., 2018, ApJ, 857, 111
1384
+ Tody D., 1993, in Hanisch R. J., Brissenden R. J. V., Barnes J., eds, Astro-
1385
+ nomical Society of the Pacific Conference Series Vol. 52, Astronomical
1386
+ Data Analysis Software and Systems II. p. 173
1387
+ Tumlinson J., 2010, ApJ, 708, 1398
1388
+ Vrug A., ter Braak C., Dicks C., Robinson B., Hyman J., Higdon D., 2009,
1389
+ International Journal of Nonlinear Sciences & Numerical Simulation,
1390
+ 10, 273:290
1391
+ Woosley S. E., Weaver T. A., 1995, ApJS, 101, 181
1392
+ Xing Q.-F., Zhao G., Aoki W., Honda S., Li H.-N., Ishigaki M. N., Matsuno
1393
+ T., 2019, Nature Astronomy, 3, 631
1394
+ de Bennassuti M., Salvadori S., Schneider R., Valiante R., Omukai K., 2017,
1395
+ MNRAS, 465, 926
1396
+ de Jong R. S., et al., 2019, The Messenger, 175, 3
1397
+ MNRAS 000, 000–000 (2022)
1398
+
NdE2T4oBgHgl3EQfBgbQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
Q9FRT4oBgHgl3EQfKjda/content/tmp_files/2301.13499v1.pdf.txt ADDED
@@ -0,0 +1,994 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Leveraging the SCION Internet Architecture to
2
+ Accelerate File Transfers over BitTorrent
3
+ Marten Gartner
4
+ Otto-von-Guericke University
5
+ Magdeburg, Germany
6
7
+ Thorben Kr¨uger
8
+ Otto-von-Guericke University
9
+ Magdeburg, Germany
10
11
+ David Hausheer
12
+ Otto-von-Guericke University
13
+ Magdeburg, Germany
14
15
+ Abstract—As the needs of Internet users and applications
16
+ significantly changed over the last decade, inter-domain routing
17
+ became more important to fulfill these needs. The ways how
18
+ data flows over the Internet are still completely in the hand of
19
+ network operators, who optimize traffic according to their own,
20
+ local view of the network. We observe two potential limitations
21
+ from this: Optimizing according to the local view may a) result in
22
+ unused capacities in the global network and b) not meet the actual
23
+ needs of users and applications. To identify and overcome these
24
+ limitations, we present our BitTorrent over SCION approach,
25
+ which enables multipath communication and intelligent path
26
+ selection for endhosts in global torrent networks. We compare
27
+ our implementation against BitTorrent over BGP and BGP-M in
28
+ a small-scale Internet topology, observing an increase in goodput
29
+ of 48% through multipathing compared to BitTorrent over BGP
30
+ and 33% compared to the BGP-M candidate. Furthermore, we
31
+ show that our proposed disjoint path selection algorithm is able
32
+ to improve traffic flow in the network with a low number of
33
+ outgoing connections to unchoked peers.
34
+ Index Terms—Peer-to-Peer, Path-aware networking, Path Se-
35
+ lection, SCION, BitTorrent
36
+ I. INTRODUCTION
37
+ The Internet was designed decades ago, and some of the
38
+ original design decisions have had unfortunate side-effects and
39
+ security implications that persist to this day. So far, from
40
+ the perspective of a mere host, there has been no general
41
+ mechanism for splitting traffic across multiple different paths
42
+ to a specific destination, which would be beneficial bandwidth-
43
+ intensive applications.
44
+ As the de facto standard protocol for inter-domain routing,
45
+ BGP [32] is used to disseminate routes between Autonomous
46
+ Systems (ASes), forming the Internet as we know it today.
47
+ Within each AS on a given path through the Internet, packet
48
+ forwarding is affected by (sometimes highly complex) local
49
+ traffic engineering preferences and policies. In general how-
50
+ ever, there is just a single packet forwarding path between
51
+ two hosts in a BGP-based Internet. To also add support for
52
+ multiple forwarding paths, BGP-M [24] was proposed, which
53
+ adds support for load sharing across multiple inter-domain
54
+ links, subject to configurable preferences. However, BGP-M is
55
+ does little to help optimizing traffic flow in the global Internet:
56
+ Firstly, it’s impact is necessarily of limited, local scope.
57
+ Secondly, BGP-M is not adaptive and can not dynamically
58
+ react to changing network conditions. Given these limitations
59
+ and given the existence of alternative inter-domain paths in the
60
+ Internet [2], we hypothesize that the current Internet still has
61
+ unused capacities that cannot be exploited entirely by using
62
+ BGP or BGP-M as the inter-domain routing protocol.
63
+ Path-aware networking architectures promise to overcome
64
+ these limitations by offering deeper insight into and better
65
+ control over packet forwarding in the network. Different
66
+ approaches to enable path-control in networks have been
67
+ proposed. Some try to work within the limits of the current In-
68
+ ternet architecture [18], [41], other attempts involve a complete
69
+ redesign of the Internet architecture from scratch. While there
70
+ are a number of path-aware approaches [34], [42] with their
71
+ own merits, our work focuses on the (arguably) most mature
72
+ and most widely-deployed open-source SCION architecture
73
+ [7], [44].
74
+ To leverage unused capacities in the network, especially in
75
+ the backbone, Peer-to-Peer (P2P) applications promise unique
76
+ opportunities through their globally distributed nature [8], [36],
77
+ [39]. As the most well-researched and understood protocol,
78
+ we selected BitTorrent as the foundation of our work, adding
79
+ support for active endhost-based path-selection via SCION.
80
+ We compare our augmented BitTorrent implementation with a
81
+ non path-aware BitTorrent implementation in comparable BGP
82
+ and BGP-M-based inter-domain network topologies.
83
+ We anticipate that any achieved improvements will easily
84
+ translate to other P2P networks, e.g. IPFS [38]. While BitTor-
85
+ rent itself is famous for improving bandwidth utilization on the
86
+ last mile, we hypothesize that in combination with SCION, it
87
+ could also unlock unused capacities in the network at large.
88
+ To this end, we contribute the following:
89
+ • We discuss the existence of unused capacities in the
90
+ backbone with BGP or BGP-M as utilized inter-domain
91
+ routing protocol
92
+ • We show why path-aware networking is able to unlock
93
+ these capacities and discuss the impact of host-based path
94
+ selection
95
+ • We present our BitTorrent over SCION design intro-
96
+ ducing the notion of path-level peers and propose an
97
+ algorithm for disjoint path selection
98
+ • Finally, we analyze the performance improvements of
99
+ BitTorrent over SCION aggregating unused capacities in
100
+ the network compared to BitTorrent over BGP and
101
+ BGP-M
102
+ arXiv:2301.13499v1 [cs.NI] 31 Jan 2023
103
+
104
+ The remainder of this work is structured as follows: In
105
+ Section II we provide background for SCION and BitTorrent,
106
+ followed by a discussion about limitations of BGP-based de-
107
+ ployments and impacts of host-based path selection in Section
108
+ III. We present the design and implementation of multipath
109
+ support for BitTorrent over SCION in Section IV, followed
110
+ by a presentation of our disjoint path selection algorithm.
111
+ Afterwards, we show our virtualized Internet-scale testbed in
112
+ Section V and the experimental results of comparing Multipath
113
+ BitTorrent over SCION against an unmodified implementation
114
+ in BGP and BGP-M-based scenarios in Section VI. Finally,
115
+ we discuss related work in Section VII, conclude and provide
116
+ outlook for future work in Section VIII.
117
+ II. BACKGROUND
118
+ In the following, we provide a brief overview on BGP, BGP-
119
+ M and the SCION architecture as well as on BitTorrent.
120
+ A. BGP and BGP-M
121
+ BGP plays a unique role in the current Internet. While
122
+ it can also enable in intra-domain routing (iBGP), we will
123
+ exclusively refer to BGP’s more important role as the Internet’s
124
+ predominant inter-domain routing protocol in the rest of this
125
+ work. The principle task of a BGP border router is to inform
126
+ and update its neighbours about specific IP address ranges
127
+ (i.e., IP prefixes), to which the router’s AS is able to forward
128
+ traffic to. The router announces the prefixes that its AS has
129
+ learned from its other neighbors. Routing loops are prevented
130
+ by means of the AS PATH, a list of hops to which each
131
+ router prepends its own AS Number (ASN) before sending
132
+ it on as part of a route announcement. BGP routers maintain
133
+ the respective AS PATHs as well as the announced prefixes
134
+ in a routing table. The forwarding destination is determined
135
+ by referencing this table based on the destination address of
136
+ an incomping packet. By default, BGP selects a single path
137
+ for each match in the routing table according to configurable
138
+ policies. These policies may reflect e.g., local forwarding
139
+ preferences, filters constraining the number of exported routes,
140
+ etc.
141
+ To account for the fact that there often are multiple matching
142
+ paths to a particular destination, multipath BGP (BGP-M) [15]
143
+ was introduced. For certain cases, BGP-M adds support for
144
+ traffic load splitting1 over multiple outgoing AS links. In the
145
+ most simple case, if several possible forwarding AS PATHs
146
+ are of the same length, Equal-Cost Multipath Routing (ECMP)
147
+ can be applied, with a configurable maximum number of
148
+ parallel paths2. In Addition, BGP-M also allows for more
149
+ advanced policies on how to combine multiple paths, e.g.,
150
+ some Cisco routers offer Unequal-Cost Load Sharing [21],
151
+ which allows load splitting over paths with different length by
152
+ using a dedicated configurable weight.
153
+ 1Load splitting is based on flow hashes of the 5 tuple (src address, dst
154
+ address, src port, dst port, layer 4 protocol).
155
+ 2In some border router implementations, the relevant settings are: a) bgp
156
+ bestpath as-path multipath-relax to enable load splitting for
157
+ equal length paths, and b) maximum-paths to set the maximum number of
158
+ paths over which load splitting will be performed.
159
+ B. SCION
160
+ The SCION architecture [44] has been designed to over-
161
+ come the limitations of BGP and BGP-M in the future
162
+ Internet, addressing modern threat models at the fundamental
163
+ protocol level and endeavouring to avoid many current issues
164
+ with hijacking attacks and single roots of trust. SCION also
165
+ promises communication guarantees and path control capa-
166
+ bilities, allowing applications to use two or more paths in
167
+ parallel to a given destination, generally enabling multipath
168
+ communication.
169
+ For traditional multipath approaches like MPTCP [29] and
170
+ MPQUIC [9] to work as intended, a host must provide multiple
171
+ network interfaces. With these protocols, multipath communi-
172
+ cation implies sending data over multiple interfaces in parallel,
173
+ beyond which no further influence on the data forwarding
174
+ paths is possible. SCION on the other hand is based around
175
+ ”packet carried forwarding state” (PCFS), where every packet
176
+ contains the complete inter-AS path to the intended destination
177
+ (in the form of hop fields) in its packet header. Packets can
178
+ thereby be easily directed via different paths, by changing the
179
+ SCION header alone. Our work heavily relies upon this precise
180
+ path awareness property of the SCION architecture.
181
+ Unlike the flatter organizational hierarchy of today’s BGP-
182
+ based Internet, in SCION, collections of ASes are combined
183
+ into Isolation Domains, (ISDs), which are envisioned to corre-
184
+ spond to, e.g., geographical regions or legislative domains (like
185
+ a single country), but can also be made up of company or re-
186
+ search networks. One or multiple ASes in an ISD form the ISD
187
+ Core, which collectively manages a cryptographic trust root
188
+ (TRC) on behalf of the other ISD members, enabling service
189
+ authentication and other cryptographic functions within the
190
+ ISD, simultaneously avoiding many of the notorious problems
191
+ that plague globally centralized cryptographic trust systems
192
+ with single points of failure that are beyond the control of
193
+ the ISD. The ISD Core also manages the exchange of path
194
+ information with other ISDs, while independent peering is also
195
+ possible among non-Core ASes of different ISDs.
196
+ C. BitTorrent
197
+ The BitTorrent protocol specifies file transfer as a distributed
198
+ mechanism between peers without the need for any central
199
+ coordination. Some initial way to exchange network addresses
200
+ among peers is nevertheless required, e.g., by means of a
201
+ tracker or, alternatively, a distributed hash table (DHT). In
202
+ BitTorrent, files are typically not transferred in the usual
203
+ form of a single, continuous byte stream that contains the
204
+ complete file. Instead, large files are split into equal-sized
205
+ pieces (typically with a size between 32KB and 256KB). It
206
+ is a key feature of BitTorrent that exchange of these pieces
207
+ can be easily parallelized. BitTorrent peers that already have
208
+ a complete local copy of a file are referred to as seeders, as
209
+ opposed to leechers, which still have to obtain some or all of
210
+ the constituent pieces of the file from other peers. For each
211
+ new file uploaded to the BitTorrent network, there must be at
212
+ least one seeding peer that initiates the distribution of the file.
213
+
214
+ III. HOST-BASED PATH SELECTION
215
+ A. Limitations of the BGP-Based Inter-Domain
216
+ Generally, two critical aspects of BGP and BGP-M for inter-
217
+ domain routing may lead to unused capacities in the global
218
+ Internet: Firstly, AS operators inherently only have limited
219
+ insight into network conditions beyond their local network and
220
+ can also only manage traffic locally. Secondly, BGP and BGP-
221
+ M do not provide features to dynamically adapt routing to
222
+ different needs. In this section, we further characterize these
223
+ limitations before discussing possible improvements that path-
224
+ aware networking could bring to the table.
225
+ Despite the large benefits of traffic engineering of AS-
226
+ operators on intra-domain level, the potential of optimizing
227
+ inter-domain routing is limited in the current Internet. Each
228
+ operator can only optimize the traffic flow in their own AS
229
+ until it reaches its local destination or the neighbour AS. This
230
+ may especially impact performance for flows that traverse
231
+ multiple hops before they reach their destination, since each
232
+ hop performs its own, local optimization. In case one of the
233
+ first hops performs a non-optimal routing decision for the
234
+ flow (e.g. routing to particular neighbour interfaces that are
235
+ already under heavy load), the overall performance of the flow
236
+ is affected.
237
+ As discussed in Section II, BGP-M provides several options
238
+ to perform load sharing on multiple links. However, these
239
+ options need to be configured statically in the network. Conse-
240
+ quently, the network can not always fulfill the varying needs of
241
+ different participants, e.g., endhosts who prefer to optimize for
242
+ different criteria. BGP-M reflects the anticipated needs of AS
243
+ operators, not the actual needs that endhosts have, which may
244
+ differ significantly from those anticipated by the AS operators.
245
+ Path-aware networking promises to overcome many of these
246
+ limitations and their impacts on performance, and, (in the case
247
+ of SCION,) gives endhosts the opportunity to freely choose
248
+ suitable inter-domain paths for their traffic.
249
+ B. Implications of Host-Based Path Selection
250
+ Traffic engineering on the Internet is performed by network
251
+ operators attempting to locally optimize data flows for various
252
+ factors. With host-based path selection, operators hand over
253
+ this control to endhosts. While this promises to help endhosts
254
+ to optimize their traffic, it comes with potential implications
255
+ for network operators and may be at odds with their own
256
+ interests, especially with respect to the inter-domain. Operators
257
+ tend to prefer the use of peering links over that of transit links
258
+ to avoid costs, while endhosts do not have such an incentive
259
+ to avoid transit links. Additionally, host-based path selection
260
+ ideally requires up-to-date insight into network conditions on
261
+ all hosts. It also needs to ensure that hosts do not change paths
262
+ too often, which could result in undesirable oscillation. In
263
+ simulation, Scherrer et al. show that the impact of oscillation
264
+ through host-based path selection is low [37]. Moreover, in
265
+ SCION, endhosts can only dictate the ingress and egress router
266
+ interfaces of ASes, allowing network operators to still optimize
267
+ their internal traffic within these constraints. Overall, while
268
+ Piece 1
269
+ Piece 2
270
+ Piece 3
271
+ Piece 4
272
+ Piece 5
273
+ Piece 6
274
+ 1
275
+ 0
276
+ 1
277
+ 0
278
+ 0
279
+ 0
280
+ Connection 1
281
+ (peer1, path1)
282
+ Connection 2
283
+ (peer1, path2)
284
+ Torrent
285
+ Feedback which
286
+ pieces to download
287
+ next
288
+ Piece assigned
289
+ Piece downloaded
290
+ Result
291
+ Bitmap
292
+ Fig. 1.
293
+ Multipath implementation by downloading a torrent file over multiple
294
+ paths (connections).
295
+ the benefits, drawbacks and trade-offs of path-awareness are
296
+ certainly not yet fully understood, there is significant potential
297
+ for it in the the future Internet.
298
+ IV. DESIGN AND IMPLEMENTATION OF BITTORRENT OVER
299
+ SCION
300
+ In this section, we present our approach of path-level
301
+ peers to enable multipath support for BitTorrent over SCION,
302
+ followed by our disjoint path selection algorithm.
303
+ A. Multipath through Path-Level Peers
304
+ As one of its features, SCION provides path control for
305
+ inter-AS traffic while guaranteeing that the traffic flows along
306
+ the chosen paths. This opens up the potential to aggregate
307
+ capacities in the network, enabling applications to leverage
308
+ multipath communication and parallel data processing to in-
309
+ crease performance. In this work, we choose BitTorrent as
310
+ a suitable, already parallelized application as a foundation
311
+ for our experiments on bandwidth aggregation via multiple
312
+ SCION paths.
313
+ By default, a BitTorrent peer is identified solely by its
314
+ network address and port. This address could be either an
315
+ IPv4, IPv6 or, in our case, a SCION address. We will refer
316
+ to peers that are only described by their address as address-
317
+ level peers for the rest of this work. To distinguish between
318
+ multiple SCION paths to a particular peer, we introduce a new
319
+ representation that we will refer to as a path-level peer. They
320
+ are represented by the tuple (addr, path), consisting of the
321
+ peer’s SCION address (including the port), together with one
322
+ possible path to this address.
323
+ We introduce this notion of path-level peers to a path-aware
324
+ BitTorrent implementation which we will henceforth refer to
325
+ as BitTorrent over SCION, and which treats different paths to
326
+ the same peer as several distinct, path-level peers.
327
+ Generally, peers that are returned from a tracker or that are
328
+ added via static bootstrapping3 to BitTorrent are address-level
329
+ 3I.e., providing a list of peer addresses as arguments to the client binary.
330
+
331
+ peers, since they may not be SCION peers to begin with and
332
+ may not have path information associated with them. Thus,
333
+ to generate path-level peers from a given SCION address, an
334
+ additional path lookup is required. For a resulting number of
335
+ possible paths that are available to a peer, the same number
336
+ of corresponding path-level peers can be generated.
337
+ BitTorrent over SCION is configured with an upper bound
338
+ for the number of different path-level peers, as the default
339
+ BitTorrent client is, too. Path-level peers are obtained from
340
+ address-level peers through a path selection algorithm.
341
+ After this obtaining of path-level peers, the usual BitTorrent
342
+ P2P algorithms operate over each path independently. For each
343
+ path-level peer, a QUIC4 [23] connection is established to
344
+ ensure reliable transfer of data. Figure 1 shows the piece
345
+ download of a particular file. Each successfully established
346
+ connection fetches piece information from a queue and re-
347
+ quests the particular piece by sending request messages and
348
+ wait for peers sending back the requested pieces. After each
349
+ received piece, its integrity is verified. For this, a hash is
350
+ computed and verified against the one referenced in the torrent
351
+ file for that piece. Retrieved pieces are stored in main memory
352
+ until the file is downloaded completely.
353
+ Since requests and retrievals of pieces over different con-
354
+ nections are handled in their own dedicated threads, pieces
355
+ can easily be downloaded concurrently, which speeds up the
356
+ process and improves the overall download bandwidth. It is
357
+ the responsibility of the main thread to iteratively check the
358
+ result bitmap for missing pieces. Once all pieces are retrieved,
359
+ the main thread closes all connections to all still connected
360
+ peers that serve pieces of the current torrent and assembles
361
+ the complete file to disk.
362
+ B. Upload-based Disjoint Path Selection
363
+ Although BitTorrent over SCION may simply use all avail-
364
+ able paths to each connected peer, there are reasons to limit
365
+ the number of path-level peers. When this limit is set suit-
366
+ ably high, all available paths to each peer are considered.
367
+ However, multiple paths may share the same bottleneck,
368
+ making it pointless to aggregate them in hope of increasing
369
+ overall performance. Since each BitTorrent peer has an upper
370
+ limit of outgoing connections to neighbours, a performance
371
+ increase could also be expected by simply increasing this
372
+ upper limit to exchange pieces with more peers. Consequently,
373
+ using the shortest path or simply aggregating all paths does
374
+ not promise to have significant impacts on BitTorrent over
375
+ SCION’s performance compared to path-unaware BitTorrent
376
+ implementations. To address this, we use built-in SCION
377
+ capabilities to implement an improved, disjoint path selection
378
+ strategy, aiming to avoid such shared bottlenecks.
379
+ In BitTorrent over SCION, our improved path selection
380
+ strategy relies on two core assumptions: 1) Different paths
381
+ that share the same hop may also share a bottleneck at this
382
+ hop and 2) Peers that offer pieces to others are in a good
383
+ 4We choose QUIC, because TCP is currently not yet implemented for
384
+ SCION.
385
+ AS1
386
+ AS2
387
+ AS3
388
+ 1
389
+ 2
390
+ 3
391
+ 4
392
+ AS1-1
393
+ AS2-2
394
+ AS2-3
395
+ AS3-4
396
+ List-based
397
+ Representation
398
+ Visual
399
+ Representation
400
+ Fig. 2. List-based representation of hop interfaces using unique ids to perform
401
+ conflict detection.
402
+ position for path selection decisions with knowledge about all
403
+ downloading peers, allowing them to strategically distribute
404
+ their outgoing traffic via disjoint paths.
405
+ We implement a disjoint path selection strategy by searching
406
+ for overlaps in all paths and discard all but one of the paths that
407
+ share the same hops, following assumption 1). With respect
408
+ to assumption 2), we decide to delegate path selection exclu-
409
+ sively to the uploading peer. Both in combination promise to
410
+ outperform na¨ıve path selection approaches.
411
+ As presented in Section II, a SCION path consists of
412
+ multiple hops. Each hop contains ingress and egress interfaces
413
+ of the respective AS. In SCION, the interfaces are represented
414
+ as numeric IDs, that are unique within the given AS. The
415
+ combination of the AS identifier with the interface number
416
+ results in a globally unique interface ID. In Figure 2, we show
417
+ an intuitive mapping of a visual representation of hops and
418
+ their interfaces to a list of such interface IDs. The interface IDs
419
+ are used to determine disjointness between paths by counting
420
+ the number of identical interface IDs.
421
+ Data: peers, maxOutgoingConns
422
+ Result: pathLevelPeers ← [ ];
423
+ allPaths ← [ ];
424
+ for p ∈ peers do
425
+ paths ← lookupPaths(peer);
426
+ allPaths ← append(allPaths, paths);
427
+ end
428
+ for path1 ∈ allPaths do
429
+ for path2 ∈ allPaths do
430
+ if path1! = path2 then
431
+ confs ← numConflicts(path1, path2);
432
+ path.conflicts+ = confs;
433
+ end
434
+ end
435
+ end
436
+ allPaths ← sortByConflictsAndHops(allPaths)
437
+ i ← 0;
438
+ while i ≤ maxOutgoingConns do
439
+ pathLevelPeer ← fromPath(allPaths[i])
440
+ pathLevelPeers ←
441
+ append(pathLevelPeers, pathLevelPeer);
442
+ i ← i + 1
443
+ end
444
+ Algorithm 1: Disjoint path selection
445
+
446
+ Based on the interface IDs in the SCION paths, the up-
447
+ loading peer is able to perform disjoint path selection to all
448
+ connected peers. To achieve this, an interested peer connects
449
+ over the first available path to the uploading peer and waits for
450
+ it to connect back. The uploading peer now applies its disjoint
451
+ path selection and connects back to the interested peer over
452
+ the selected path set. Algorithm 1 depicts the procedure of
453
+ finding the least disjoint paths to all connected address-level
454
+ peers and returning a proper list of path-level peers. At first,
455
+ the paths to each address-level peers are determined in a loop
456
+ and aggregated in the allPaths variable. Afterwards, each path
457
+ in allPaths is checked against all other paths calculating the
458
+ number of conflicts (i.e. conflicting interface IDs), which is
459
+ saved in the path. Next, the allPath list is sorted in ascending
460
+ order by the number of conflicts and the number of hops.
461
+ Finally, until the number of maxOutgoingConns is reached,
462
+ the algorithm iterates over allPaths and transforms each path
463
+ into a path-level peer, which is stored in the return variable
464
+ pathLevelPeers.
465
+ V. BENCHMARK SETUP: A REPRESENTATIVE
466
+ SMALL-SCALE INTERNET TESTBED
467
+ To compare our BitTorrent over SCION implementation
468
+ against a BGP-based setup, we choose to run a virtualized
469
+ network of multiple ASes that reflects the topology of the
470
+ current Internet in a small-scale setup. Figure 3 shows the
471
+ designed topology that we used to evaluate BitTorrent over
472
+ SCION.
473
+ The topology consists of two core layers which represent
474
+ Tier-1 and Tier-2 ASes in the Internet, connected via peering
475
+ and transit links. With the growing popularity of IXPs, the
476
+ number of Tier-3 ASes decreased significantly over time. Con-
477
+ sequently, our testbed does not contain any Tier-3 ASes. The
478
+ topology design follows actual AS and peering data, obtained
479
+ from CAIDA data [4]–[6] and peeringdb [28], with random-
480
+ ized AS numbers. We limit the network link capacities to 15
481
+ Mbit/s for Tier-1 links and 10 Mbit/s for all remaining links
482
+ to make all candidates network bound. Otherwise, the CPU
483
+ could limit candidates resulting in potentially biased results.
484
+ We derive two torrent networks from our proposed topology:
485
+ The first network 5ASes consists of the 5 ASes marked dark
486
+ green (AS102, AS1002, AS1004, AS103, AS1006) and the
487
+ second network consists of the 10 ASes marked dark and light
488
+ green (AS102, AS1002, AS1004, AS103, AS1006, AS1001,
489
+ AS101, AS04, AS105, AS1009). ASes are connected either
490
+ with transit or peering links. Our topology follows the valley-
491
+ free routing [30]. Consequently, peering links can only be used
492
+ by the peering neighbours and their customers. In BGP and
493
+ BGP-M, this is implemented with prefix lists on each AS that
494
+ has peering links. Since filtering support of peering links in
495
+ SCION is currently in progress, we apply a static path filter
496
+ to each AS to filter out valley-free violations. Since ISD’s are
497
+ a concept exclusively for SCION, we locate all SCION ASes
498
+ in the same ISD, to achieve better comparability.
499
+ In our evaluations, we run three different BitTorrent candi-
500
+ dates: The first one is BitTorrent over BGP, which is a usual
501
+ BitTorrent client implemented in Go based on inter-domain
502
+ routing performed by BGP. The second candidate is BitTorrent
503
+ over BGP-M, which uses the same BitTorrent client but with
504
+ configured load splitting in BGP in each AS. Despite other
505
+ interesting approaches for load splitting, we apply ECMP-
506
+ based load splitting for BGP-M in our testbed, since it is
507
+ the most deployed approach in the current Internet. Our third
508
+ candidate is BitTorrent over SCION, which implements the
509
+ disjoint path selection based on the presented idea of path-
510
+ level peers.
511
+ The complete topology is running on a bare-metal server
512
+ in a virtualized environment based on Docker. Each AS runs
513
+ one or more containers (routers, hosts). Multiple ASes are
514
+ connected via Docker Bridge Networks [13]. The server is
515
+ running an Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz
516
+ with 36 threads and 500GB of main memory.
517
+ VI. EVALUATION
518
+ After presenting our virtualized Internet topology, we eval-
519
+ uate our BitTorrent over SCION approach in this section.
520
+ A. Terminology
521
+ The following parameters are used to create and evaluate
522
+ different BitTorrent experiments:
523
+ • MaxPeers: Number of available peers in the torrent
524
+ • OutgoingConns: Number of outgoing connections (to
525
+ peers) that each peer instantiates
526
+ • NumASes: Number of involved ASes in the experiment
527
+ To design our experiments, we stick to findings from Hamra
528
+ et al. [19] measuring BitTorrent’s performance in real-world
529
+ torrents. In most cases, MaxPeers is significantly higher than
530
+ OutgoingConns, meaning each peer exchanges pieces with
531
+ a subset of all availables peers. Hamra et al. show that
532
+ setting OutgoingConns to the half of MaxPeers is a good
533
+ tradeoff. Furthermore, the MaxPeers parameter changes over
534
+ time in real-world torrents. This number increases often at
535
+ the beginning of the torrent when many peers are interested
536
+ in downloading the file and decreases after the majority of
537
+ peers finished downloading and leave the torrent. We adapt
538
+ this behaviour for our experiments.
539
+ In the following, we present the results of our two exper-
540
+ iments: At first, we evaluate how heavy multipathing imple-
541
+ mented in BitTorrent over SCION can aggregate bandwidth in
542
+ the network that is not available for BitTorrent over BGP/BGP-
543
+ M. Afterwards, we compare BitTorrent over SCION against
544
+ BitTorrent over BGP/BGP-M with a varying number of Out-
545
+ goingConns to evaluate the effect of our disjoint path selection
546
+ approach.
547
+ B. Bandwidth Aggregation
548
+ In our first experiment, we run 20 BitTorrent peers in the
549
+ torrent networks 5ASes and 10ASes exchanging a 100Mbyte
550
+ file. By choosing 2 different torrent network sizes with a
551
+ fixed-size topology, we can evaluate the impact of density
552
+
553
+ AS103
554
+ AS101
555
+ AS102
556
+ Tier 1
557
+ Networks
558
+ AS1001
559
+ AS1002
560
+ AS1003
561
+ Tier 2
562
+ Networks
563
+ AS1004
564
+ AS104
565
+ AS105
566
+ AS1005
567
+ AS1007
568
+ AS1008
569
+ AS1009
570
+ AS1010
571
+ Light green + Green: 10 AS experiment
572
+ Green: 5 AS Experiment
573
+ Peering Link
574
+ Transit Link
575
+ AS1006
576
+ Fig. 3.
577
+ Virtualized testbed of a representative Internet topology
578
+ of peers and the number of additional ASes that are not
579
+ participating in the torrent, and consequently may provide
580
+ additional capacities. We set the OutgoingConns parameter to
581
+ infinity in this experiment (in detail it is set to the maximum
582
+ number of path-level peers that one peer can connect to) to
583
+ evaluate the maximum possible goodput that all candidates can
584
+ achieve.
585
+ Figure 4a) shows the aggregated goodput in percent of all
586
+ peers for the three candidates, while BGP serves as baseline
587
+ with 100%. We decide to compare the goodput instead of the
588
+ overall bandwidth, since SCION packets have a larger header
589
+ than plain IP packets.
590
+ For the torrent network 5ASes, we observe an aggregated
591
+ goodput of 111% for BGP-M compared to BGP, while SCION
592
+ achieves 148% compared to BGP. From these results, we
593
+ observe that enabling multipath BGP via ECMP increases
594
+ the overall goodput by 11%. We conclude that in the 5ASes
595
+ torrent network, the number of equal length BGP paths are
596
+ comparatively low, leading to a small increase of goodput.
597
+ However with BitTorrent over SCION’s approach of path-
598
+ level peers, a 48% increase of goodput is achieved compared
599
+ to BGP and a 33% increase compared to BGP-M. In the
600
+ 10ASes torrent network, we observe an increase of goodput
601
+ for BitTorrent over SCION of still 38% compared to BitTor-
602
+ rent over BGP, despite that the 10AS torrent network has a
603
+ smaller number of not participating ASes that may provide
604
+ additional network capacities. Consequently, BitTorrent over
605
+ SCION is able to aggregate also heterogeneous paths and we
606
+ confirm our hypothesis of BitTorrent over SCION’s capability
607
+ of aggregating bandwidth in the network that is unused in
608
+ BGP/BGP-M.
609
+ To verify that increased goodput has a direct impact on
610
+ the actual download time of peers, we measure the average
611
+ download time of all peers in the 5ASes and 10ASes torrent
612
+ networks, shown in Figure 4b). Reflected by the lowest overall
613
+ goodput, we observe the highest average download time for
614
+ peers in BitTorrent over BGP, which is our baseline at 100%.
615
+ BitTorrent over BGP-M results in 91% average download time
616
+ for the 5ASes torrent network. In BitTorrent over SCION, the
617
+ average download time is around 69%. Also for the 10ASes
618
+ torrent network, we observe that the goodput reflects the
619
+ average download times, resulting in 73% for BitTorrent over
620
+ SCION and 88% for BitTorrent over BGP-M. As expected,
621
+ the increased goodput through aggregating unused capacities
622
+ in the network directly translates into lower download times
623
+ for peers, increasing the overall performance of the system.
624
+ In addition to the goodput and download times, we also
625
+ measure the overall CPU usage of all candidates running the
626
+ 5ASes and 10ASes torrent network, shown in Figure 4c). Since
627
+ we observed an equal distribution of load over all threads,
628
+ we present the CPU usage as average CPU usage per thread.
629
+ While BitTorrent over BGP and BGP-M only use 5% and
630
+ 8%, respectively, BitTorrent over SCION uses around 31%
631
+ of the available CPU usage for the 5ASes torrent network.
632
+ We observe an expectable increase of resource usage of all
633
+ candidates running 10ASes, with SCION using around 47%
634
+ of each thread. Despite the higher throughput, BitTorrent over
635
+ SCION achieves, the increase of CPU usage is not inreasing in
636
+ the same amount. We reason this increase by the open-source
637
+ SCION stack [26] (there also exists a closed-source SCION
638
+ stack optimized for performance [1]). Especially the SCION
639
+ Border Router implementation has potential to be optimized
640
+ for performance, while the framework to route BGP and BGP-
641
+ M (frrouter [25]) is heavily tuned. Consequently, we assume
642
+ that using the closed-source SCION stack, we can decrease
643
+ the CPU usage to a level comparable to BGP and BGP-M.
644
+ From this experiment, we confirm our hypothesis that
645
+ BitTorrent over SCION can aggregate otherwise unused ca-
646
+ pacities in the network through multipath usage. We observe
647
+ a significantly higher CPU usage for BitTorrent over SCION,
648
+ which can potentially be strongly reduced by using the high-
649
+ performance SCION stack, which is closed source.
650
+
651
+ 5
652
+ 10
653
+ 80
654
+ 100
655
+ 120
656
+ 140
657
+ 160
658
+ Number of ASes
659
+ Relative Goodput over all peers [%]
660
+ a)
661
+ BGP (baseline)
662
+ BGP-M
663
+ SCION
664
+ 5
665
+ 10
666
+ 40
667
+ 60
668
+ 80
669
+ 100
670
+ Number of ASes
671
+ Relative Download time [%]
672
+ b)
673
+ BGP (baseline)
674
+ BGP-M
675
+ SCION
676
+ 5
677
+ 10
678
+ 0
679
+ 20
680
+ 40
681
+ 60
682
+ 80
683
+ 100
684
+ Number of ASes
685
+ Average CPU usage per thread [%]
686
+ c)
687
+ BGP
688
+ BGP-M
689
+ SCION
690
+ Fig. 4. Comparison of BitTorrent over BGP/BGP-M and SCION in the 5AS and 10AS torrent network with 4 peers per AS. a) shows the aggregated goodput
691
+ of all peers in % with BGP as 100% baseline, b) shows the download time in % with BGP as 100% and c) the aggregated CPU usage of all threads in %
692
+ C. Peer Selection
693
+ Always setting the OutgoingConns parameter sufficiently
694
+ high may create unfair advantages for BitTorrent over SCION.
695
+ Therefore, we compare all 3 candidates with a varying upper
696
+ limit of OutgoingConns in this experiment. We again run 20
697
+ peers exchanging pieces of a 100Mbyte file in our 5ASes
698
+ and 10ASes torrent network. As discussed before, setting
699
+ OutgoingConns to the half of MaxPeers is a good tradeoff,
700
+ we decide to vary OutgoingConns between 3 and 10. We
701
+ expect that BitTorrent over BGP and BGP-M stagnates with a
702
+ low number of OutgoingConns, meaning simply adding more
703
+ connected peers to BitTorrent over BGP and BGP-M does
704
+ not directly lead to improved performance, while BitTorrent
705
+ over SCION handles an increasing number of OutgoingConns
706
+ better.
707
+ Figure 5 shows the average download time of all peers with
708
+ a varying number of OutgoingConns for the 5ASes torrent
709
+ network. We observe that BitTorrent over BGP and BGP-M
710
+ start to stagnate after 5 OutgoingConns, while BitTorrent over
711
+ SCION results in decreased download times until 8 Outgoing-
712
+ Conns. With OutgoingConns greater than 7, the results are
713
+ matching the ones presented in the bandwidth aggregation
714
+ experiment.
715
+ We conclude that between 3 and 7 OutgoingConns, Bit-
716
+ Torrent over SCION is still able to find disjoint paths between
717
+ peers, while with more than 7 OutgoingConns, the additionally
718
+ used path-level peers share bottlenecks. However, we assume
719
+ that in real-world, Internet-scale torrent networks, the number
720
+ of disjoint paths is significantly higher, leading to better results
721
+ for higher numbers of OutgoingConns.
722
+ In Figure 6, we show the average download time of all
723
+ peers with a varying number of OutgoingConns for the 10ASes
724
+ torrent network. We observe a high decrease of download
725
+ times with less than 5 OutgoingConns for all candidates, while
726
+ BitTorrent over SCION is still able to decrease the download
727
+ time for up to 7 OutgoingConns. All three candidates have
728
+ reached their minmum download times for greater than 7
729
+ OutgoingConns, in contrast to 5 OutgoingConns for the 5ASes
730
+ 3
731
+ 4
732
+ 5
733
+ 6
734
+ 7
735
+ 8
736
+ 9
737
+ 10
738
+ 80
739
+ 100
740
+ 120
741
+ 140
742
+ 160
743
+ 180
744
+ 200
745
+ Number of OutgoingConns
746
+ Average Download Time [s]
747
+ BGP
748
+ BGP-M
749
+ SCION
750
+ Fig. 5.
751
+ Average download time in seconds for BitTorrent over BGP, BGP-M
752
+ and SCION in the 5ASes torrent network.
753
+ torrent network. This is reasoned by the higher percentage of
754
+ participating ASes in the torrent compared to the total number
755
+ of ASes, and for BitTorrent over SCION especially by the
756
+ lower number of additional network capacities.
757
+ From this experiment, we observe that BitTorrent over
758
+ SCION also outperforms BitTorrent over BGP and BGP-M
759
+ with a limited number of connected peers, disproving the
760
+ intuitive argument that the path-level peer approach only works
761
+ for a sufficiently high number of OutgoingConns.
762
+ VII. RELATED WORK
763
+ The mature P2P mechanisms behind BitTorrent have made
764
+ the protocol an attractive target for networking research in the
765
+ past. Ren et al. present TopBt [33], an adaption of BitTorrent
766
+ that uses proximities in addition to transmission rates to detect
767
+ peers to collaborate with. Catro et al. propose BestPeer [3],
768
+
769
+ 3
770
+ 4
771
+ 5
772
+ 6
773
+ 7
774
+ 8
775
+ 9
776
+ 10
777
+ 40
778
+ 60
779
+ 80
780
+ 100
781
+ 120
782
+ Number of OutgoingConns
783
+ Average Download Time [s]
784
+ BGP
785
+ BGP-M
786
+ SCION
787
+ Fig. 6.
788
+ Average download time in seconds for BitTorrent over BGP, BGP-M
789
+ and SCION in the 10ASes torrent network.
790
+ a peer selection algorithm that supports multipath in a multi-
791
+ radio, multi-channel wireless mesh network.
792
+ Recent works cover analyses of BitTorrent’s locality [8],
793
+ [36], [39], concluding that the majority of BitTorrent’s traffic
794
+ is still running globally. Furthermore, Decker et al. analyze
795
+ behavioral patterns and topologies in existing torrent networks
796
+ [10], while Cuevas et al. [8] analyze how BitTorrent’s locality
797
+ impacts transit costs in existing networks.
798
+ A lot of research investigates IP multicast as an efficient
799
+ way to distribute content to multiple peers without duplicating
800
+ the traffic [11]. Since IP multicast requires expensive dedicated
801
+ support in network equipment, it has so far only seen localized
802
+ deployment [12], [31]. As an alternative to IP multicast,
803
+ overlay approaches are considered: Bullet by Kosti´c et al
804
+ [22] is an overlay approach to efficiently distribute files from
805
+ a single source to a large number of receivers. Also IPFS
806
+ [38] shares similarities with BitTorrent through its P2P based
807
+ nature. Finally, Fujinoki et al. provide an approach to unlock
808
+ private peering links for inter-domain routing in the Internet
809
+ [16], which provides interesting potential for our multipath
810
+ approach.
811
+ Next to SCION, several other approaches to enable path
812
+ control on the host exist. PathLet Routing by Godfrey et al.
813
+ [17] is an approach based on segmentation of inter-domain
814
+ routes into path fragments. Establishing multipath data transfer
815
+ can also be realized completely on the application level: Yu
816
+ et al. proposed mpath [41], an algorithm and implementation
817
+ to leverage proxies to create multiple paths to a particular end
818
+ host.
819
+ To detect shared bottlenecks, different approaches have been
820
+ proposed for MPTCP, some via active measurements [14],
821
+ [40], others via passive shared bottleneck detection [20]. These
822
+ approaches are constrained by an inherent lack of information
823
+ about the actual path that the data uses through the Internet.
824
+ With Espresso [43], Google presented a BGP-based approach
825
+ for traffic distribution and bottleneck avoidance at the edge of
826
+ their network, rather than on the endhosts.
827
+ Finally, demonstrating SCION’s high-performance capabil-
828
+ ities, Neukom et al. propose Hercules [27], a protocol for very
829
+ high performance bulk data transfer over SCION and de Ruiter
830
+ et al. present a SCION Border Router implementation in P4
831
+ [35].
832
+ VIII. CONCLUSIONS AND FUTURE WORK
833
+ In this work, we developed the notion of path-level peers,
834
+ which allowed us to enhance BitTorrent with SCION support
835
+ to add multipath features, with minimal modifications to the
836
+ underlying file-sharing algorithms. Furthermore, we propose
837
+ an algorithm for disjoint selection of path-level peers to im-
838
+ prove the usage of network capacities. We evaluate BitTorrent
839
+ over SCION in a virtualized inter-domain testbed comparing
840
+ it to BitTorrent over BGP and BGP-M. We observe a 48% im-
841
+ provement of goodput for BitTorrent over SCION compared to
842
+ BGP and 38% compared to BGP-M, which reflects in smaller
843
+ average download times for participating peers. Furthermore,
844
+ we show that our proposed disjoint path selection algorithm is
845
+ able to improve traffic flow in the network with a low number
846
+ of outgoing connections to unchoked peers. Consequently, we
847
+ confirm our hypothesis that BitTorrent over SCION is capable
848
+ of aggregating capacities in the network that are unused when
849
+ BGP or BGP-M is utilized for inter-domain routing.
850
+ As future improvement for BitTorrent over SCION, we plan
851
+ to extend the tracker implementation to pre-select particular
852
+ path-level peers. Peers may actively communicate their se-
853
+ lected path sets to the tracker, which can improve the location
854
+ of shared bottlenecks based on the knowledge about path usage
855
+ of all known peers.
856
+ Furthermore, we plan to evaluate the impact of peers
857
+ actively communicating the selected path set to other peers.
858
+ We assume that peers can improve the location and avoidance
859
+ of shared bottlenecks with this approach.
860
+ Finally, we plan to extend our disjoint path selection to
861
+ allow multiple peers to reuse the same hops without creating
862
+ shared bottlenecks, by observing variation in bandwidth to
863
+ all connected peers when adding new paths containing shared
864
+ hops.
865
+ REFERENCES
866
+ [1] Anapaya systems, https://www.anapaya.net/, accessed 2022-09-12
867
+ [2] Bakhshaliyev, K., Canbaz, M.A., Gunes, M.H.: Investigating characteris-
868
+ tics of internet paths. ACM Transactions on Modeling and Performance
869
+ Evaluation of Computing Systems (TOMPECS) 4(3), 1–24 (2019)
870
+ [3] Castro, M., Kassler, A., Avallone, S.: Bestpeer-a load-aware multi-path
871
+ peer selection for wireless mesh networks. In: 2012 IEEE International
872
+ Symposium on a World of Wireless, Mobile and Multimedia Networks
873
+ (WoWMoM). pp. 1–6. IEEE (2012)
874
+ [4] Center for Applied Internet Data Analysis: Caida as-rank, https://asrank.
875
+ caida.org/, accessed 2022-09-17
876
+ [5] Center for Applied Internet Data Analysis: Caida as-relationships, https:
877
+ //www.caida.org/data/as-relationships/, accessed 2022-09-17
878
+ [6] Center for Applied Internet Data Analysis: Caida geolocation data, https:
879
+ //www.caida.org/data/as-relationships-geo/, accessed 2022-09-18
880
+ [7] Chuat, L., Legner, M., Basin, D.A., Hausheer, D., Hitz, S., M¨uller, P.,
881
+ Perrig, A.: The complete guide to scion-from design principles to formal
882
+ verification (2022)
883
+
884
+ [8] Cuevas, R., Laoutaris, N., Yang, X., Siganos, G., Rodriguez, P.: Bittor-
885
+ rent locality and transit trafficreduction: When, why, and at what cost?
886
+ IEEE Transactions on Parallel and Distributed Systems 25(5), 1177–
887
+ 1189 (2013)
888
+ [9] De Coninck, Q., Bonaventure, O.: Multipath quic: Design and evalua-
889
+ tion. In: Proceedings of the 13th international conference on emerging
890
+ networking experiments and technologies. pp. 160–166 (2017)
891
+ [10] Decker, C., Eidenbenz, R., Wattenhofer, R.: Exploring and improving
892
+ bittorrent topologies. In: IEEE P2P 2013 Proceedings. pp. 1–10. IEEE
893
+ (2013)
894
+ [11] Deering, S.E.: Rfc1112: Host extensions for ip multicasting (1989)
895
+ [12] Diot, C., Levine, B.N., Lyles, B., Kassem, H., Balensiefen, D.: Deploy-
896
+ ment issues for the ip multicast service and architecture. IEEE network
897
+ 14(1), 78–88 (2000)
898
+ [13] Dua, R., Kohli, V., Konduri, S.K.: Learning Docker Networking. Packt
899
+ Publishing (2016)
900
+ [14] Ferlin, S., Alay, ¨O., Dreibholz, T., Hayes, D.A., Welzl, M.: Revisiting
901
+ congestion control for multipath tcp with shared bottleneck detection. In:
902
+ IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
903
+ on Computer Communications. pp. 1–9. IEEE (2016)
904
+ [15] Fujinoki, H.: Multi-path bgp (mbgp): A solution for improving network
905
+ bandwidth utilization and defense against link failures in inter-domain
906
+ routing. In: 2008 16th IEEE International Conference on Networks. pp.
907
+ 1–6. IEEE (2008)
908
+ [16] Fujinoki, H.: Beyond-right bgp for utilizing hidden private peering
909
+ links in the inter-domain routing in the internet. In: 2019 2nd World
910
+ Symposium on Communication Engineering (WSCE). pp. 68–73. IEEE
911
+ (2019)
912
+ [17] Godfrey, P.B., Ganichev, I., Shenker, S., Stoica, I.: Pathlet routing. ACM
913
+ SIGCOMM Computer Communication Review 39(4), 111–122 (2009)
914
+ [18] Gvozdiev, N., Vissicchio, S., Karp, B., Handley, M.: On low-latency-
915
+ capable topologies, and their impact on the design of intra-domain
916
+ routing. In: Proceedings of the 2018 Conference of the ACM Special
917
+ Interest Group on Data Communication. pp. 88–102 (2018)
918
+ [19] Hamra, A.A., Legout, A., Barakat, C.: Understanding the properties of
919
+ the bittorrent overlay. arXiv preprint arXiv:0707.1820 (2007)
920
+ [20] Hayes, D.A., Ferlin, S., Welzl, M.: Practical passive shared bottleneck
921
+ detection using shape summary statistics. In: 39th Annual IEEE Con-
922
+ ference on Local Computer Networks. pp. 150–158. IEEE (2014)
923
+ [21] Jerome Tissieres: Bgp load sharing and unequal cost load sharing, https:
924
+ //aboutnetworks.net/bgp-load-sharing/, accessed 2022-09-26
925
+ [22] Kosti´c, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: High band-
926
+ width data dissemination using an overlay mesh. In: Proceedings of the
927
+ nineteenth ACM symposium on Operating systems principles. pp. 282–
928
+ 297 (2003)
929
+ [23] Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang, D.,
930
+ Yang, F., Kouranov, F., Swett, I., Iyengar, J., et al.: The quic transport
931
+ protocol: Design and internet-scale deployment. In: Proceedings of the
932
+ Conference of the ACM Special Interest Group on Data Communication.
933
+ pp. 183–196 (2017)
934
+ [24] Li, J., Giotsas, V., Wang, Y., Zhou, S.: Bgp-multipath routing in the
935
+ internet. IEEE Transactions on Network and Service Management (2022)
936
+ [25] Linux Foundation: Frrouting project, https://frrouting.org/, accessed
937
+ 2022-08-30
938
+ [26] Network Security Group, ETH Zurich, Anapaya Systems: Scion internet
939
+ architecture, https://github.com/scionproto/scion, accessed 2022-08-24
940
+ [27] Neukom, C.: High-Performance File Transfer in SCION. Master’s thesis,
941
+ ETH Zurich (2020)
942
+ [28] PeeringDB: Peeringdb, https://www.peeringdb.com/, accessed 2022-09-
943
+ 18
944
+ [29] Peng, Q., Walid, A., Hwang, J., Low, S.H.: Multipath tcp: Analysis,
945
+ design, and implementation. IEEE/ACM Transactions on networking
946
+ 24(1), 596–609 (2014)
947
+ [30] Qiu, S.Y., McDaniel, P.D., Monrose, F.: Toward valley-free inter-domain
948
+ routing. In: 2007 IEEE International Conference on Communications.
949
+ pp. 2009–2016. IEEE (2007)
950
+ [31] Ratnasamy, S., Ermolinskiy, A., Shenker, S.: Revisiting ip multicast.
951
+ In: Proceedings of the 2006 conference on Applications, technologies,
952
+ architectures, and protocols for computer communications. pp. 15–26
953
+ (2006)
954
+ [32] Rekhter, Y., Li, T.: Rfc1771: A border gateway protocol 4 (bgp-4) (1995)
955
+ [33] Ren, S., Tan, E., Luo, T., Chen, S., Guo, L., Zhang, X.: Topbt: A
956
+ topology-aware and infrastructure-independent bittorrent client. In: 2010
957
+ Proceedings IEEE INFOCOM. pp. 1–9. IEEE (2010)
958
+ [34] Rothenberger, B., Roos, D., Legner, M., Perrig, A.: Piskes: Pragmatic
959
+ internet-scale key-establishment system. In: Proceedings of the 15th
960
+ ACM Asia Conference on Computer and Communications Security
961
+ (ASIA CCS’20) (2020)
962
+ [35] de Ruiter, J., Schutijser, C.: Next-generation internet at terabit speed:
963
+ Scion in p4. In: Proceedings of the 17th International Conference
964
+ on emerging Networking EXperiments and Technologies. pp. 119–125
965
+ (2021)
966
+ [36] Rumin, R.C., Laoutaris, N., Yang, X., Siganos, G., Rodriguez, P.: Deep
967
+ diving into bittorrent locality. In: 2011 Proceedings IEEE INFOCOM.
968
+ pp. 963–971. IEEE (2011)
969
+ [37] Scherrer, S., Legner, M., Perrig, A., Schmid, S.: An axiomatic per-
970
+ spective on the performance effects of end-host path selection. ACM
971
+ SIGMETRICS Performance Evaluation Review 49(3), 16–17 (2022)
972
+ [38] Trautwein, D., Raman, A., Tyson, G., Castro, I., Scott, W., Schubotz,
973
+ M., Gipp, B., Psaras, Y.: Design and evaluation of ipfs: a storage layer
974
+ for the decentralized web (2022)
975
+ [39] Wang, H., Liu, J., Xu, K.: On the locality of bittorrent-based video file
976
+ swarming. In: IPTPS. p. 12 (2009)
977
+ [40] Wei, W., Wang, Y., Xue, K., Wei, D.S., Han, J., Hong, P.: Shared
978
+ bottleneck detection based on congestion interval variance measurement.
979
+ IEEE Communications Letters 22(12), 2467–2470 (2018)
980
+ [41] Xu, Y., Leong, B., Seah, D., Razeen, A.: mpath: High-bandwidth data
981
+ transfers with massively multipath source routing. IEEE Transactions on
982
+ Parallel and Distributed Systems 24(10), 2046–2059 (2012)
983
+ [42] Yang, X.: Nira: A new internet routing architecture. ACM SIGCOMM
984
+ Computer Communication Review 33(4), 301–312 (2003)
985
+ [43] Yap, K.K., Motiwala, M., Rahe, J., Padgett, S., Holliman, M., Baldus, G.,
986
+ Hines, M., Kim, T., Narayanan, A., Jain, A., et al.: Taking the edge off
987
+ with espresso: Scale, reliability and programmability for global internet
988
+ peering. In: Proceedings of the Conference of the ACM Special Interest
989
+ Group on Data Communication. pp. 432–445 (2017)
990
+ [44] Zhang, X., Hsiao, H.C., Hasker, G., Chan, H., Perrig, A., Andersen,
991
+ D.G.: Scion: Scalability, control, and isolation on next-generation net-
992
+ works. In: 2011 IEEE Symposium on Security and Privacy. pp. 212–227.
993
+ IEEE (2011)
994
+
Q9FRT4oBgHgl3EQfKjda/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
R9AyT4oBgHgl3EQf7_qI/content/tmp_files/2301.00849v1.pdf.txt ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00849v1 [cs.SI] 2 Jan 2023
2
+ Small-World Formation via Local Information
3
+ Soroush Alamdari
4
5
+ Abstract
6
+ It is observed that in a society almost anyone is acquainted with almost anyone else through
7
+ only a few intermediary links. This is known as the small-world phenomenon. In this paper
8
+ we investigate this observation from a theoretical stand-point by imagining each individual as a
9
+ greedy agent satisfying a drive for knowledge by acquiring links that cost to maintain. We show
10
+ that in such a setting small-world properties emerge naturally.∗
11
+ ∗The results in this paper were initially announced in 35th ACM SIGACT-SIGOPS Symposium on Principles of
12
+ Distributed Computing (PODC 2016).
13
+ 1
14
+
15
+ 1
16
+ The small-world phenomenon
17
+ The drives that move us towards each other are far more complicated than to be mathematically
18
+ understandable, and yet, there could be clues that may help us paint an abstract picture. For
19
+ this, we focus on one particular observation, that is, the small-world phenomenon: The idea that
20
+ any two people know each other through only a few links.
21
+ The small-world phenomenon was confirmed in an experiment carried by Milgram [3], where
22
+ randomly selected individuals in Nebraska and Kansas received an information packet with in-
23
+ struction asking them to help the packet reach a certain individual in Boston Massachusetts. In
24
+ case they did not know the target individual personally, the recipients were instructed to pass the
25
+ packet on to someone they knew personally who was most likely to personally know the target.
26
+ So each initial recipient started a chain of correspondence, some of which ended before reaching
27
+ the target due to lack of participation. Among the chains that reached the target, the average
28
+ length of a chain was just bellow six. An observation we have been trying to understand since.
29
+ Explaining this observation is challenging, particularly because. Consider the network whose
30
+ nodes are residents of united states at the time of the experiment, and where there is a link from a
31
+ node v to a node u, if v has the address of u and claims to personally know them. Minus oddities,
32
+ the experiment essentially shows that in this network any two nodes are connected via a short
33
+ chain of links. This is particularly fascinating as each individual only knows a very small group
34
+ of others compared to the total population. Satisfying these two constraints simultaneously is a
35
+ challenge even in an abstract mathematical setting:
36
+ 1. Degree: The number of others that any node has links to, that is the degree of that node,
37
+ is small relative to the total population.
38
+ 2. Diameter: For any recipient and any target, the length of the shortest chain of links that
39
+ starts from the recipient and ends in the target is very small. The length of the longest
40
+ such chain in a network is referred to as the diameter of that network.
41
+ To address this, Watts and Strogatz [5] showed that in a society with a population of n that
42
+ are sitting around a ring, if each individual has links to the nε others that are sitting on each side
43
+ of it plus nε random other nodes, then each pair of nodes are connected via a chain of expected
44
+ length smaller than 1/ε. While this simple model satisfies both Constraints 1 and 2, it does
45
+ not explain how such a chain is actually found by the forwarded packages in the experiment.
46
+ There each recipient is unaware of the structure of this network and cannot decide who among
47
+ the people it has a link to is on the shortest chain to the target. The fact that such a short
48
+ chains are actually observed by the experiment implies a much more restricting constraint than
49
+ Constraint 2. This observation allows us to strengthen Constraint 2:
50
+ 3. Limited information: Each node is unaware of the links maintained by other nodes. We
51
+ refer to this condition as the limited information constraint.
52
+ 4. Greedy diameter: For any recipient and any target, a very short chain connecting the
53
+ recipient to the target can be found if each recipient chooses who to forward the packet to
54
+ based on similarity with the target. We refer to the length of the longest such chain in a
55
+ network as the greedy diameter of that network.
56
+ Closer analysis of the experiment has shown that participants favor geographical information
57
+ when deciding the next recipient [4]. Kleinberg [2] argues that such information is sufficient
58
+ for satisfying Constraint 4 by showing that in a population that is distributed homogeneously
59
+ over the plane, if each node has a link to a node of geographical distance l with probability
60
+ 1/lα, then iteratively choosing the next recipient based on geographical proximity to the target
61
+ almost always produces a short chain. Particularly, when α = 2, both the expected length of the
62
+ 2
63
+
64
+ α < d + 1
65
+ α = d + 1
66
+ d + 1 < α
67
+ Maximum degree
68
+ o(n1−δ
69
+ α
70
+ d+1 log log n)
71
+ O(log n)
72
+ O(log
73
+ α
74
+ d+1 log n) for d = 1
75
+ Observable diameter
76
+ O(log d+1
77
+ α log n)
78
+ O(log n)
79
+ o(n1−
80
+ δ
81
+ α−d log log n)
82
+ Table 1: The bounds on maximum degree and observable diameter at stability, for different values of
83
+ α relative to the dimension d. Here δ can be any constant smaller than 1.
84
+ chain that is found and the expected number of links that each node creates can be bounded by
85
+ O(log n).
86
+ Although Kleinberg’s model satisfies all of the constraints with a natural explanation, it does
87
+ so by reducing the behavior of the individuals to a random process. It remains curious whether
88
+ the small-world phenomenon exists by coincidence, or if it is designed by our collective minds.
89
+ While it is possible that our social experience is dominated by random encounters, it seems
90
+ more plausible that a selfish drive connects us in this particular way. And so we add one more
91
+ constraint, although it is not immediately verifiable:
92
+ 5. Strategic choice: Each node create links by making choices in order to satisfy some
93
+ objective.
94
+ To address this, researchers have been trying to find the right game-theoretic model that
95
+ would be able to explain the astonishing properties of our social networks. However, by consid-
96
+ ering a game-theoretic model where individuals make choices strategically based on the choices of
97
+ others, the limited information constraint is immediately violated. However, if a game-theoretic
98
+ model that reproduces the small-world properties is established based on the correct objective
99
+ function, then the small-world properties should persist even when the full information assump-
100
+ tion is relaxed.
101
+ Among various game-theoretic models of network formation, our result highlights the work
102
+ of Even-Dar and Kearns [1], where the population is distributed uniformly on the plane and
103
+ each agent v chooses its links in order to minimize the total cost of maintaining the links plus
104
+ the average distance to other nodes through the network. In their model, a link to a node of
105
+ geographical distance l induces a cost of lα. Particularly, they show that in this model when
106
+ α < 2, the diameter can be bounded by a constant.
107
+ When attempting to derandomize the work of Kleinberg [2] at the critical point where loga-
108
+ rithmic bounds appear on the expected degrees and greedy diameter, we come upon a strategic
109
+ model of network creation that achieves similar bounds and satisfies all of our constraints. When
110
+ analyzing the objective function that gives this we see a natural interpretation that hints towards
111
+ the role of curiosity in emergence of small-world phenomenon.
112
+ In Section 2 we present the model in details and discuss the components of the cost function
113
+ that the agents are trying to minimize. In Section 3 we analyze the model on a d-dimensional
114
+ grid†.We focus on a notion of equilibrium where agents cannot further improve their cost by
115
+ adding or deleting a link, showing that α = d + 1 is a threshold where the upper bounds on the
116
+ performance of the greedy routing and maximum degree match to O(log n). We also analyze
117
+ the maximum degree and the performance of greedy routing for other values of α, particularly
118
+ showing that when α < d + 1 the number of iterations that are required for greedy routing to
119
+ find its destination can be bounded by O(log d+1
120
+ α log(n)). We conclude in Section 4 by discussing
121
+ the implications of our results.
122
+ †Throughout the paper we assume that d is a constant.
123
+ 3
124
+
125
+ 2
126
+ The Model
127
+ Consider a d-dimensional circular grid of n nodes representing the underlying structure upon
128
+ which the network is formed. For nodes u and v we use d(u, v) to refer to the distance‡ of u and
129
+ v. Also, for a node u and a set of nodes V we use d(u, V ) to refer to the distance of u to its
130
+ closest member in V , that is, d(u, V ) = minv∈V d(u, v).
131
+ A network N assigns to each node v a set N(v) of nodes that v has a links to. To model
132
+ the creation of such a network we introduce a cost that each agent incurs at a given setting.
133
+ Let cN(v) be such a function that calculates the cost induced to a node v in N. There are two
134
+ components to this cost function; the cost of maintaining the links that v has to other nodes and
135
+ the cost induced by the information that v is missing regarding the nodes that it does not have
136
+ a link to. For a node u, let lN(v, u) be the former and sN(v, u) be the latter. We have
137
+ cN(v) =
138
+
139
+ u∈N(v)
140
+ lN(v, u) +
141
+
142
+ u/∈N(v)
143
+ sN(v, u).
144
+ For the cost that v incurs for maintaining a link to an agent at distance d(v, u), it is natural
145
+ to assume a dependence between this cost and distance. Let us define lN(v, u) = dα(v, u) for
146
+ some number α ∈ R. The exact choice of α is discussed in section 3. We will refer to this cost
147
+ as the link-cost.
148
+ It remains to define sN(v, u), that is, the cost that v pays for what it does not know about
149
+ u. We capture this by assuming that each node u induces a cost to v that is proportional to the
150
+ distance between u and the node closest to u that v has a link to, that is, d(u, N(v)). We refer
151
+ to this as the curiosity-cost.
152
+ We are ready to express our cost function cN(v) such that it only depends on N(v) and the
153
+ position of the nodes on the underlying grid:
154
+ cN(v) = β
155
+
156
+ u∈N(v)
157
+ dα(v, u) +
158
+
159
+ u/∈N(v)
160
+ d(u, N(v)).
161
+ (1)
162
+ 3
163
+ Analysis
164
+ In this section we analyze the network constructed by agents who seek to reduce their costs
165
+ by adding and deleting links to other nodes. In particular, we discuss the trade-off between
166
+ the greedy routing diameter of the network and the maximum degree among nodes.
167
+ When
168
+ α <
169
+ 1
170
+ logβ−1 n every link has a cost smaller than 1 and therefore the diameter is 1 and all of the
171
+ degrees are equal to n − 1, and when α > log(β−1n2) no agent can justify a link to a node of
172
+ distance > 1, and therefore the degrees and diameter are 2d and dn1/d respectively. Here we
173
+ provide analysis for intermediary values of α.
174
+ To establish our bounds, we do not require the assumption that each agent chooses their links
175
+ to minimize their cost. In each of our cases, the assumption that no agent can reduce its cost by
176
+ adding a link (add-stability) is sufficient to prove the upper bound on the greedy diameter of the
177
+ network. When in addition to add-stability we also assume that no agent can improve its cost
178
+ by removing a link (toggle-stability) we are able to also prove upper bounds on the maximum
179
+ degree. Since each agent reduces its cost with each these operations of addition and deletion
180
+ of a link, therefore, performing these operations in any order will eventually result in stability.
181
+ It is also worth noting that these assumptions are much more general than, for example, the
182
+ assumption of a Nash equilibrium.
183
+ ‡In this paper, unless specified otherwise, by distance we are referring to the distance through the grid, that is,
184
+ grid-distance
185
+ 4
186
+
187
+ v
188
+ l
189
+ l − l′
190
+ v
191
+ l
192
+ l − l′′
193
+ Figure 1: Items 3 (left) and 4 (right) of Observation 3.1. In each case l′ is the diameter of the smaller
194
+ squares.
195
+ We start with a set of observations on the properties of the grid that will be used throughout
196
+ this section in order to bound the greedy diameter and maximum degree among the nodes. For
197
+ this, let us define S(v, l) to be the set of all nodes of distance exactly l from v, and B(v, l) be
198
+ the set of all nodes u with d(u, v) ≤ l. The following observation lists some properties regarding
199
+ S(v, l) and B(v, l).
200
+ Observation 3.1. For any node v on the d-dimensional grid and l ∈ N the following holds:
201
+ 1. |S(v, l)| ∈ Θ(ld−1).
202
+ 2. |B(v, l)| ∈ Θ(ld).
203
+ 3. The nodes in B(v, l)\B(v, l − l′) can be covered with O(( l
204
+ l′ )
205
+ d−1) balls of the form B(u, l′)
206
+ with u ∈ B(v, l)\B(v, l − l′).
207
+ 4. The nodes in B(v, l)\B(v, l − l′′) can be covered by O(( l
208
+ l′ )
209
+ d) balls of the form B(u, l′) with
210
+ u ∈ B(v, l)\B(v, l − l′′).
211
+ 3.1
212
+ Balance: α = d + 1
213
+ Here we focus on the case when α = d+1 and show that both maximum degree and the iterations
214
+ required for greedy routing to find its destination are bounded by O(log n).
215
+ Let us start with a useful lemma that provides a lower bound on the drop in the curiosity-cost
216
+ when adding a link.
217
+ Lemma 3.2. If a node v has no link in B(u, l), then adding a link to u will decrease the total
218
+ curiosity-cost of v by Ω(ld+1).
219
+ 5
220
+
221
+ Proof. Consider the set of nodes S with distance l′ from u where l′ ≤ 1
222
+ 3l. Note that any node
223
+ in S induces a curiosity-cost of at least 2
224
+ 3l. If v adds a link to u, then the curiosity-cost of each
225
+ node in S will be reduced to at most 1
226
+ 3l. Therefore, by Item 2 of Lemma 3.1 the total decrease
227
+ in curiosity-cost is at least c l
228
+ 3
229
+ d × l
230
+ 3 = c l
231
+ 3
232
+ d+1 which concludes the lemma.
233
+ Consider an add-stable node v, that is, a node v that does not benefit from adding any more
234
+ links to any other nodes. Next we provide an upper bound on the distance that a node u with
235
+ d(u, v) = l may have from the neighbors of v, that is, d(u, N(v)). This is done by showing that
236
+ if the distance is too large then v would benefit from adding a link to u.
237
+ Lemma 3.3. If a node v in N is add-stable, then for any u with d(v, u) ≤ l there exists a node
238
+ u′ of distance at most O(l
239
+ α
240
+ d+1) from u that v has a link to, that is, N(v) ∩ B(u, cl
241
+ α
242
+ d+1) ̸= ∅ for
243
+ some constant c.
244
+ Proof. For the sake of contradiction, suppose we have a node u such that N(v)∩B(u, cl
245
+ α
246
+ d+1) = ∅.
247
+ By Lemma 3.2 adding a link from v to u decreases the curiosity-cost by at least c′lα for some
248
+ constant c′. When β < c′, this implies that the reduction in the curiosity-cost is larger than the
249
+ cost of a link to u which is at most βlα, contradicting add-stability.
250
+ Now we can prove an upper bound on the number of iterations required for the greedy routing
251
+ algorithm to reach its destination.
252
+ Theorem 3.4. If a network N is add-stable and α = d + 1, then any node u is reachable from
253
+ any node v via greedy routing in O(log(n)) steps.
254
+ Proof. When α = d + 1, by Lemma 3.3 we know that in each iteration of greedy routing the
255
+ distance to destination is reduced by a constant factor, resulting in logarithmic bound on the
256
+ number of iterations until the destination is reached.
257
+ Next we turn our focus towards bounding the maximum degree when α = d + 1 by showing
258
+ that the number of links that v has to all the nodes of distance between l and cl for some constant
259
+ c, is bounded by a constant.
260
+ Lemma 3.5. When α ≤ d + 1, if a node v in N is toggle-stable then v has at most a constant
261
+ number of links to any ball of radius l′ ≤ ǫl
262
+ α
263
+ d+1 ≤ ǫl centered at a node u with d(u, v) = l, that
264
+ is, |N(v) ∩ B(u, l′)| ≤ c.
265
+ Proof. Any node within B(u, l′) has distance at most l + l′ from v, and since v in N is toggle-
266
+ stable, by Lemma 3.3 we can argue that any node within the ball can serve only nodes of
267
+ distance at most c′(l + l′)
268
+ α
269
+ d+1 for some constant c′. Therefore any node that is served by a node
270
+ in B(u, l′) must also lie within the ball B(u, l′ + c′(l + l′)
271
+ α
272
+ d+1 ). Since l′ ≤ ǫl
273
+ α
274
+ d+1 ≤ ǫl, we have
275
+ l′ + c′(l + l′)
276
+ α
277
+ d+1 ≤ c′′l
278
+ α
279
+ d+1 for some constant c′′. Let C(u′) be the set of the nodes whose closest
280
+ node in N(v) is u′. By Item 2 of Lemma 3.1 we can argue that
281
+
282
+ u′∈N(v)∩B(u,l′)
283
+ |C(u′)| ≤ c∗(l
284
+ α
285
+ d+1 )d.
286
+ for some constant c∗.
287
+ By removing a link to a node u′ ∈ B(u, l′), the curiosity-cost induced to v is increased by
288
+ at most c′′l
289
+ α
290
+ d+1|C(u′)|, and therefore there is a node u′ ∈ N(v) ∩ B(u, l′) the removal of which
291
+ decreases the total cost induced to v by at least
292
+ β(l − l′)α−c′′l
293
+ α
294
+ d+1|C(u′)| ≥ β(l − l′)α−c′′l
295
+ α
296
+ d+1 ×
297
+ c∗l
298
+ α
299
+ d+1)d
300
+ |N(v) ∩ B(u, l′)| ≥ β(1−ǫ)αlα−
301
+ c⋆lα
302
+ |N(v) ∩ B(u, l′)|.
303
+ 6
304
+
305
+ Therefore if |N(v) ∩ B(u, l′)| >
306
+ c⋆
307
+ β(1−ǫ)α = c, v would be able to decrease its total cost by
308
+ removing u′, contradicting stability.
309
+ Theorem 3.6. If a node v in N is toggle-stable and α = d + 1, then the degree of v is bounded
310
+ by O(log n) links.
311
+ Proof. For any integer 0 ≤ i ≤ log1+ǫ(n) let P(i) be the set of grid points that are of distance
312
+ l from v such that (1 + ǫ)i < l ≤ (1 + ǫ)i+1. By Lemma 3.5 for any p ∈ P(i) we know that the
313
+ number of links that v has to the members of the ball B(p, ǫ(1 + ǫ)i) is bounded by constant.
314
+ Also, by Item 3 of Lemma 3.1 the nodes in P(i) can be covered using c(1+ǫ)i+1
315
+ ǫ(1+ǫ)i
316
+ d−1
317
+ such balls for
318
+ some constant c. Therefore, for each 0 ≤ i ≤ log1+ǫ(n) we can bound the size of N(v) ∩ P(i) by
319
+ a constant, concluding the theorem.
320
+ 3.2
321
+ Sub-logarithmic diameter: α < d + 1
322
+ In this section we consider cases when
323
+ 1
324
+ logβ−1 n < α < d + 1 and prove upper bounds on the
325
+ number of iterations that greedy routing requires and maximum degree for this range of α.
326
+ Theorem 3.7. If a network N is add-stable and α < d + 1, then any node u is reachable from
327
+ any node v via greedy routing in O(log d+1
328
+ α log(n)) steps.
329
+ Proof. By Lemma 3.3 if in an iteration of greedy routing the distance to destination is l, then
330
+ in next iteration the distance is at most cl
331
+ α
332
+ d+1 for some constant c. Therefore, after
333
+ log
334
+ α
335
+ d+1 (
336
+ 1
337
+ log(n)) = log d+1
338
+ α log(n)
339
+ iterations the distance to destination will be constant.
340
+ Theorem 3.8. If a node v in N is toggle-stable and α < d + 1, then the degree of v is bounded
341
+ by o(log log(n)n1−δ
342
+ α
343
+ d+1) links for any δ < 1.
344
+ Proof. For some positive constant 0 < a < 1 and some integer 0 ≤ i ≤ loga−1 log(n) let P(i) be
345
+ the set of grid points that are of distance l from v such that nai+1/d < l ≤ nai/d. By Lemma
346
+ 3.5 for any p ∈ P(i) we know that the number of links that v has to the members of the ball
347
+ B(p, ǫ(nai+1/d)
348
+ α
349
+ d+1 ) is bounded by constant.
350
+ By Item 4 of Lemma 3.1 P(i) can be covered with O(nai−ai+1
351
+ α
352
+ d+1) balls B(p, ǫ(nai+1/d)
353
+ α
354
+ d+1)
355
+ where p ∈ P(i).
356
+ Therefore the total number of links of v can be bounded by
357
+ |N(v)| ≤ c +
358
+ i≤loga−1 log(n)
359
+
360
+ i=0
361
+ nai−ai+1
362
+ α
363
+ d+1 ≤ c + loga−1 log(n)n1−a
364
+ α
365
+ d+1
366
+ for some constant c.
367
+ 3.3
368
+ Sub-logarithmic degrees: α > d + 1
369
+ Now let us turn our focus to cases when d + 1 < α < log(β−1n2) and prove bounds analogous to
370
+ those of previous sections. Here we need to modify some of our lemmas, as in this case the cost
371
+ of links increases relative to length so fast that it no longer benefits v to establish a link to the
372
+ middle of a region it wishes to cover with that link.
373
+ 7
374
+
375
+ v
376
+ u
377
+ u′
378
+ u′′
379
+ l − ǫl
380
+ 1
381
+ α−d
382
+ l − 2ǫl
383
+ 1
384
+ α−d
385
+ ǫl
386
+ 1
387
+ α−d
388
+ ǫl
389
+ 1
390
+ α−d
391
+ 4
392
+ Figure 2: For Lemma 3.9. Adding a link from v to u′ (resp. u′′) decreases the curiosity-cost of each
393
+ of the nodes in the area indicated by red (resp. blue) hashing by at least ǫl
394
+ 1
395
+ α−d
396
+ 4
397
+ .
398
+ Lemma 3.9. If a node v in N is add-stable, then for any u with d(v, u) ≤ l there exists a node
399
+ u′ ∈ N(v) with d(u, u′) ≤ l − ǫl
400
+ 1
401
+ α−d .
402
+ Sketch of proof: For the sake of contradiction assume that v has no link to any node in B(u, l −
403
+ ǫl
404
+ 1
405
+ α−d ) and let u′ be arg min
406
+ u′∈B(u,l−2ǫl
407
+ 1
408
+ α−d ) d(u′, v). Then, the node v benefits from adding a link
409
+ to u′, as u′ will be able to reduce the curiosity of Ω((l
410
+ 1
411
+ α−d )d−1l) nodes by at least Ω(l
412
+ 1
413
+ α−d ) (See
414
+ Figure 2), and therefore reduce its total curiosity-cost by Ω(l1+
415
+ d
416
+ α−d ). We can argue that
417
+ ǫ′l1+
418
+ d
419
+ α−d = ǫ′l
420
+ α
421
+ α−d > β(2ǫl
422
+ 1
423
+ α−d )α
424
+ for proper value of ǫ and β, and therefore it is beneficial for v to add a link to u′.
425
+ Theorem 3.10. If a network N is add-stable and α > d + 1, then any node u is reachable from
426
+ any node v via greedy routing in o(log log(n)n1−
427
+ δ
428
+ α−d ) steps where δ is any constant smaller than
429
+ 1.
430
+ Proof. By induction we can argue that starting from a node v, the worst case of our analysis of
431
+ greedy routing is realized when the destination is the furthest node from v. By Lemma 3.9 in
432
+ each step if the distance to the furthest node is l, in the next step this distance will be at most
433
+ l−ǫl
434
+ 1
435
+ α−d . Let us consider the number of iterations it takes to get from distance nai of destination
436
+ to get to distance lai+1 for some a < 1. This is bounded by at most
437
+ lai
438
+ ǫl
439
+ ai+1
440
+ α−d
441
+ = ǫ−1lai− ai+1
442
+ α−d .
443
+ 8
444
+
445
+ Therefore, the total number of iterations is bounded by
446
+ i≤log log n
447
+
448
+ i=0
449
+ ǫ−1lai− ai+1
450
+ α−d ≤
451
+ i≤log log n
452
+
453
+ i=0
454
+ ǫ−1l1−
455
+ a
456
+ α−d ≤ log log(n)ǫ−1l1=
457
+ a
458
+ α−d
459
+ Here we show that for d = 1, when α > d + 1 the degrees are restricted by a sub-logarithmic
460
+ upper bound. Equivalent proof for higher dimensions remains a challenge.
461
+ Theorem 3.11. If α > d + 1 = 2 and a network N is toggle-stable, then any node v has at most
462
+ O(log
463
+ α
464
+ d+1 log(n)) links.
465
+ Proof. Think of each node of distance l from v to initially have a budget of l of curiosity-cost
466
+ that can be spent to justify maintenance of a link. We will show that if v were to have more
467
+ than c log
468
+ α
469
+ d+1 log(n) links, then there would be a set of nodes that would have insufficient budget
470
+ in order to justify a set of links that serve a subset of them, and therefore, N would not be
471
+ toggle-stable.
472
+ Consider a node v and let P(i) be the set of nodes with distance l′ from v such that n
473
+ ai+1
474
+ d
475
+ <
476
+ l′ ≤ n
477
+ ai
478
+ d where a = d+1
479
+ α . We show that the size of P(i) ∩ N(v) is bounded by a constant. For
480
+ this, note that any link that v has in P(i) costs at least βn
481
+ αai+1
482
+ d
483
+ .
484
+ Noting that d = 1, let S be the set P(i) ∩ N(v) minus the elements that are furthest from v
485
+ on each side, and hence |S| ≥ |P(i)∩N(v)|−2. No node in S can serve a node of distance larger
486
+ than n
487
+ ai
488
+ d from v, and by Item 2 of Lemma 3.1 there are at most n
489
+ ai
490
+ d
491
+ d
492
+ nodes that can contribute
493
+ to justify S, and each such a node has a budget of at most n
494
+ ai
495
+ d . Therefore, we have
496
+ |S| ≤ n
497
+ ai
498
+ d
499
+ d+1
500
+ βn
501
+ αai+1
502
+ d
503
+ = n
504
+ (d+1)i+1
505
+ dαi
506
+ βn
507
+ (d+1)i+1
508
+ dαi
509
+ = β−1
510
+ .
511
+ We conjecture that the bound from Theorem 3.11 can be extended to d > 1.
512
+ 4
513
+ Discussion
514
+ Our main contribution is to provide a simple explanation for the small-world phenomenon that
515
+ matches previously established theoretical observations.
516
+ While the questions that we are concerned with here are inherently inspired by nature, this
517
+ work was initially carried out as a purely mathematical mission to reestablish the logarithmic
518
+ bounds on maximum degree and greedy diameter in a setting where individuals have only local
519
+ information. However, the model that came out of this research seems to be providing insight
520
+ into drives that connect us.
521
+ Imagine a population distributed over a plane, where each individual maintains the status
522
+ (say current address) of some of the others in order to gain some knowledge through them. There
523
+ is a real effort here, which is mainly the effort and attention that is required to maintain the
524
+ status of another, and there is an implicit drive that can be described as a desire to know all.
525
+ Our results suggest that such a population ends up forming a small-world network.
526
+ It is imaginable that α (the exponent of the distance in cost of maintaining a link) has been
527
+ reduced by the progresses made through history. Particularly with writing and a postal service,
528
+ 9
529
+
530
+ the cost of maintaining the status of another seems to increase relative to distance with a small
531
+ exponent. It would be interesting to gain an understanding of the real value of α through analysis
532
+ of empirical data.
533
+ As for applicability our model may be useful to engineers whenever robust networks with
534
+ nodes of bounded degree are required, particularly when nodes are to make decisions indepen-
535
+ dently regarding their connections.
536
+ It must be noted that the our cost function can be modified in a number of ways while still
537
+ yielding networks with small-world properties. For instance, if our model is used to connect a
538
+ swarm of drones, if each drone v chooses the set N(v) of those whose status it watches for by
539
+ minimizing:
540
+ cN(v) = β
541
+
542
+ u∈N(v)
543
+ dα(v, u) +
544
+
545
+ u/∈N(v)
546
+ wv(u)d(u, N(v))
547
+ (2)
548
+ where wv(u) represents the relative importance of u for v, then some degree of small-world
549
+ properties are established as a side effect depending on parameters α and β, and the correlation
550
+ between relative importance and proximity.
551
+ At this point, many directions remain unexplored.
552
+ Particularly, it is curious as to what
553
+ happens to the threshold for other values of β. When we set β = n, our cost function closely
554
+ resembles the objective function upon which the model of Even-Dar and Kearns [1] is based.
555
+ Although their model is inherently different, a similar threshold with features of its own appears
556
+ there. All of this hints towards a bigger picture, perhaps a more general framework that is yet
557
+ to be discovered.
558
+ 10
559
+
560
+ References
561
+ [1] E. Even-Dar and M. J. Kearns. A small world threshold for economic network formation. In
562
+ Advances in Neural Information Processing Systems 19, pages 385–392. MIT Press, 2007.
563
+ [2] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proceedings of
564
+ the Thirty-second Annual ACM Symposium on Theory of Computing, pages 163–170, New
565
+ York, NY, USA, 2000. ACM.
566
+ [3] S. Milgram. The Small World Problem. Psychology Today, 2:60–67, 1967.
567
+ [4] J. Travers and S. Milgram. An experimental study of the small world problem. Sociometry,
568
+ 32:425–443, 1969.
569
+ [5] D. J. Watts and S. H. Strogatz.
570
+ Collective dynamics of’small-world’networks.
571
+ Nature,
572
+ 393(6684):409–10, 1998.
573
+ 11
574
+
R9AyT4oBgHgl3EQf7_qI/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf,len=261
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
3
+ page_content='00849v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
4
+ page_content='SI] 2 Jan 2023 Small-World Formation via Local Information Soroush Alamdari sorush@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
5
+ page_content='com Abstract It is observed that in a society almost anyone is acquainted with almost anyone else through only a few intermediary links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
6
+ page_content=' This is known as the small-world phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
7
+ page_content=' In this paper we investigate this observation from a theoretical stand-point by imagining each individual as a greedy agent satisfying a drive for knowledge by acquiring links that cost to maintain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
8
+ page_content=' We show that in such a setting small-world properties emerge naturally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
9
+ page_content='∗ ∗The results in this paper were initially announced in 35th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
10
+ page_content=' 1 1 The small-world phenomenon The drives that move us towards each other are far more complicated than to be mathematically understandable, and yet, there could be clues that may help us paint an abstract picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
11
+ page_content=' For this, we focus on one particular observation, that is, the small-world phenomenon: The idea that any two people know each other through only a few links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
12
+ page_content=' The small-world phenomenon was confirmed in an experiment carried by Milgram [3], where randomly selected individuals in Nebraska and Kansas received an information packet with in- struction asking them to help the packet reach a certain individual in Boston Massachusetts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
13
+ page_content=' In case they did not know the target individual personally, the recipients were instructed to pass the packet on to someone they knew personally who was most likely to personally know the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
14
+ page_content=' So each initial recipient started a chain of correspondence, some of which ended before reaching the target due to lack of participation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
15
+ page_content=' Among the chains that reached the target, the average length of a chain was just bellow six.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
16
+ page_content=' An observation we have been trying to understand since.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
17
+ page_content=' Explaining this observation is challenging, particularly because.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
18
+ page_content=' Consider the network whose nodes are residents of united states at the time of the experiment, and where there is a link from a node v to a node u, if v has the address of u and claims to personally know them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
19
+ page_content=' Minus oddities, the experiment essentially shows that in this network any two nodes are connected via a short chain of links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
20
+ page_content=' This is particularly fascinating as each individual only knows a very small group of others compared to the total population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
21
+ page_content=' Satisfying these two constraints simultaneously is a challenge even in an abstract mathematical setting: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
22
+ page_content=' Degree: The number of others that any node has links to, that is the degree of that node, is small relative to the total population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
23
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
24
+ page_content=' Diameter: For any recipient and any target, the length of the shortest chain of links that starts from the recipient and ends in the target is very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
25
+ page_content=' The length of the longest such chain in a network is referred to as the diameter of that network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
26
+ page_content=' To address this, Watts and Strogatz [5] showed that in a society with a population of n that are sitting around a ring, if each individual has links to the nε others that are sitting on each side of it plus nε random other nodes, then each pair of nodes are connected via a chain of expected length smaller than 1/ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
27
+ page_content=' While this simple model satisfies both Constraints 1 and 2, it does not explain how such a chain is actually found by the forwarded packages in the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
28
+ page_content=' There each recipient is unaware of the structure of this network and cannot decide who among the people it has a link to is on the shortest chain to the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
29
+ page_content=' The fact that such a short chains are actually observed by the experiment implies a much more restricting constraint than Constraint 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
30
+ page_content=' This observation allows us to strengthen Constraint 2: 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
31
+ page_content=' Limited information: Each node is unaware of the links maintained by other nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
32
+ page_content=' We refer to this condition as the limited information constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
33
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
34
+ page_content=' Greedy diameter: For any recipient and any target, a very short chain connecting the recipient to the target can be found if each recipient chooses who to forward the packet to based on similarity with the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
35
+ page_content=' We refer to the length of the longest such chain in a network as the greedy diameter of that network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
36
+ page_content=' Closer analysis of the experiment has shown that participants favor geographical information when deciding the next recipient [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
37
+ page_content=' Kleinberg [2] argues that such information is sufficient for satisfying Constraint 4 by showing that in a population that is distributed homogeneously over the plane, if each node has a link to a node of geographical distance l with probability 1/lα, then iteratively choosing the next recipient based on geographical proximity to the target almost always produces a short chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
38
+ page_content=' Particularly, when α = 2, both the expected length of the 2 α < d + 1 α = d + 1 d + 1 < α Maximum degree o(n1−δ α d+1 log log n) O(log n) O(log α d+1 log n) for d = 1 Observable diameter O(log d+1 α log n) O(log n) o(n1− δ α−d log log n) Table 1: The bounds on maximum degree and observable diameter at stability, for different values of α relative to the dimension d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
39
+ page_content=' Here δ can be any constant smaller than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
40
+ page_content=' chain that is found and the expected number of links that each node creates can be bounded by O(log n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
41
+ page_content=' Although Kleinberg’s model satisfies all of the constraints with a natural explanation, it does so by reducing the behavior of the individuals to a random process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
42
+ page_content=' It remains curious whether the small-world phenomenon exists by coincidence, or if it is designed by our collective minds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
43
+ page_content=' While it is possible that our social experience is dominated by random encounters, it seems more plausible that a selfish drive connects us in this particular way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
44
+ page_content=' And so we add one more constraint, although it is not immediately verifiable: 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
45
+ page_content=' Strategic choice: Each node create links by making choices in order to satisfy some objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
46
+ page_content=' To address this, researchers have been trying to find the right game-theoretic model that would be able to explain the astonishing properties of our social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
47
+ page_content=' However, by consid- ering a game-theoretic model where individuals make choices strategically based on the choices of others, the limited information constraint is immediately violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
48
+ page_content=' However, if a game-theoretic model that reproduces the small-world properties is established based on the correct objective function, then the small-world properties should persist even when the full information assump- tion is relaxed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
49
+ page_content=' Among various game-theoretic models of network formation, our result highlights the work of Even-Dar and Kearns [1], where the population is distributed uniformly on the plane and each agent v chooses its links in order to minimize the total cost of maintaining the links plus the average distance to other nodes through the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
50
+ page_content=' In their model, a link to a node of geographical distance l induces a cost of lα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
51
+ page_content=' Particularly, they show that in this model when α < 2, the diameter can be bounded by a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
52
+ page_content=' When attempting to derandomize the work of Kleinberg [2] at the critical point where loga- rithmic bounds appear on the expected degrees and greedy diameter, we come upon a strategic model of network creation that achieves similar bounds and satisfies all of our constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
53
+ page_content=' When analyzing the objective function that gives this we see a natural interpretation that hints towards the role of curiosity in emergence of small-world phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
54
+ page_content=' In Section 2 we present the model in details and discuss the components of the cost function that the agents are trying to minimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
55
+ page_content=' In Section 3 we analyze the model on a d-dimensional grid†.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
56
+ page_content='We focus on a notion of equilibrium where agents cannot further improve their cost by adding or deleting a link, showing that α = d + 1 is a threshold where the upper bounds on the performance of the greedy routing and maximum degree match to O(log n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
57
+ page_content=' We also analyze the maximum degree and the performance of greedy routing for other values of α, particularly showing that when α < d + 1 the number of iterations that are required for greedy routing to find its destination can be bounded by O(log d+1 α log(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
58
+ page_content=' We conclude in Section 4 by discussing the implications of our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
59
+ page_content=' †Throughout the paper we assume that d is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
60
+ page_content=' 3 2 The Model Consider a d-dimensional circular grid of n nodes representing the underlying structure upon which the network is formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
61
+ page_content=' For nodes u and v we use d(u, v) to refer to the distance‡ of u and v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
62
+ page_content=' Also, for a node u and a set of nodes V we use d(u, V ) to refer to the distance of u to its closest member in V , that is, d(u, V ) = minv∈V d(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
63
+ page_content=' A network N assigns to each node v a set N(v) of nodes that v has a links to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
64
+ page_content=' To model the creation of such a network we introduce a cost that each agent incurs at a given setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
65
+ page_content=' Let cN(v) be such a function that calculates the cost induced to a node v in N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
66
+ page_content=' There are two components to this cost function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
67
+ page_content=' the cost of maintaining the links that v has to other nodes and the cost induced by the information that v is missing regarding the nodes that it does not have a link to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
68
+ page_content=' For a node u, let lN(v, u) be the former and sN(v, u) be the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
69
+ page_content=' We have cN(v) = � u∈N(v) lN(v, u) + � u/∈N(v) sN(v, u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
70
+ page_content=' For the cost that v incurs for maintaining a link to an agent at distance d(v, u), it is natural to assume a dependence between this cost and distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
71
+ page_content=' Let us define lN(v, u) = dα(v, u) for some number α ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
72
+ page_content=' The exact choice of α is discussed in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
73
+ page_content=' We will refer to this cost as the link-cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
74
+ page_content=' It remains to define sN(v, u), that is, the cost that v pays for what it does not know about u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
75
+ page_content=' We capture this by assuming that each node u induces a cost to v that is proportional to the distance between u and the node closest to u that v has a link to, that is, d(u, N(v)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
76
+ page_content=' We refer to this as the curiosity-cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
77
+ page_content=' We are ready to express our cost function cN(v) such that it only depends on N(v) and the position of the nodes on the underlying grid: cN(v) = β � u∈N(v) dα(v, u) + � u/∈N(v) d(u, N(v)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
78
+ page_content=' (1) 3 Analysis In this section we analyze the network constructed by agents who seek to reduce their costs by adding and deleting links to other nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
79
+ page_content=' In particular, we discuss the trade-off between the greedy routing diameter of the network and the maximum degree among nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
80
+ page_content=' When α < 1 logβ−1 n every link has a cost smaller than 1 and therefore the diameter is 1 and all of the degrees are equal to n − 1, and when α > log(β−1n2) no agent can justify a link to a node of distance > 1, and therefore the degrees and diameter are 2d and dn1/d respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
81
+ page_content=' Here we provide analysis for intermediary values of α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
82
+ page_content=' To establish our bounds, we do not require the assumption that each agent chooses their links to minimize their cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
83
+ page_content=' In each of our cases, the assumption that no agent can reduce its cost by adding a link (add-stability) is sufficient to prove the upper bound on the greedy diameter of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
84
+ page_content=' When in addition to add-stability we also assume that no agent can improve its cost by removing a link (toggle-stability) we are able to also prove upper bounds on the maximum degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
85
+ page_content=' Since each agent reduces its cost with each these operations of addition and deletion of a link, therefore, performing these operations in any order will eventually result in stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
86
+ page_content=' It is also worth noting that these assumptions are much more general than, for example, the assumption of a Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
87
+ page_content=' ‡In this paper, unless specified otherwise, by distance we are referring to the distance through the grid, that is, grid-distance 4 v l l − l′ v l l − l′′ Figure 1: Items 3 (left) and 4 (right) of Observation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
88
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
89
+ page_content=' In each case l′ is the diameter of the smaller squares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
90
+ page_content=' We start with a set of observations on the properties of the grid that will be used throughout this section in order to bound the greedy diameter and maximum degree among the nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
91
+ page_content=' For this, let us define S(v, l) to be the set of all nodes of distance exactly l from v, and B(v, l) be the set of all nodes u with d(u, v) ≤ l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
92
+ page_content=' The following observation lists some properties regarding S(v, l) and B(v, l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
93
+ page_content=' Observation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
94
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
95
+ page_content=' For any node v on the d-dimensional grid and l ∈ N the following holds: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
96
+ page_content=' |S(v, l)| ∈ Θ(ld−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
97
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
98
+ page_content=' |B(v, l)| ∈ Θ(ld).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
99
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
100
+ page_content=' The nodes in B(v, l)\\B(v, l − l′) can be covered with O(( l l′ ) d−1) balls of the form B(u, l′) with u ∈ B(v, l)\\B(v, l − l′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
101
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
102
+ page_content=' The nodes in B(v, l)\\B(v, l − l′′) can be covered by O(( l l′ ) d) balls of the form B(u, l′) with u ∈ B(v, l)\\B(v, l − l′′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
103
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
104
+ page_content='1 Balance: α = d + 1 Here we focus on the case when α = d+1 and show that both maximum degree and the iterations required for greedy routing to find its destination are bounded by O(log n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
105
+ page_content=' Let us start with a useful lemma that provides a lower bound on the drop in the curiosity-cost when adding a link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
106
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
107
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
108
+ page_content=' If a node v has no link in B(u, l), then adding a link to u will decrease the total curiosity-cost of v by Ω(ld+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
109
+ page_content=' 5 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
110
+ page_content=' Consider the set of nodes S with distance l′ from u where l′ ≤ 1 3l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
111
+ page_content=' Note that any node in S induces a curiosity-cost of at least 2 3l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
112
+ page_content=' If v adds a link to u, then the curiosity-cost of each node in S will be reduced to at most 1 3l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
113
+ page_content=' Therefore, by Item 2 of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
114
+ page_content='1 the total decrease in curiosity-cost is at least c l 3 d × l 3 = c l 3 d+1 which concludes the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
115
+ page_content=' Consider an add-stable node v, that is, a node v that does not benefit from adding any more links to any other nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
116
+ page_content=' Next we provide an upper bound on the distance that a node u with d(u, v) = l may have from the neighbors of v, that is, d(u, N(v)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
117
+ page_content=' This is done by showing that if the distance is too large then v would benefit from adding a link to u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
118
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
119
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
120
+ page_content=' If a node v in N is add-stable, then for any u with d(v, u) ≤ l there exists a node u′ of distance at most O(l α d+1) from u that v has a link to, that is, N(v) ∩ B(u, cl α d+1) ̸= ∅ for some constant c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
121
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
122
+ page_content=' For the sake of contradiction, suppose we have a node u such that N(v)∩B(u, cl α d+1) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
123
+ page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
124
+ page_content='2 adding a link from v to u decreases the curiosity-cost by at least c′lα for some constant c′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
125
+ page_content=' When β < c′, this implies that the reduction in the curiosity-cost is larger than the cost of a link to u which is at most βlα, contradicting add-stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
126
+ page_content=' Now we can prove an upper bound on the number of iterations required for the greedy routing algorithm to reach its destination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
127
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
128
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
129
+ page_content=' If a network N is add-stable and α = d + 1, then any node u is reachable from any node v via greedy routing in O(log(n)) steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
130
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
131
+ page_content=' When α = d + 1, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
132
+ page_content='3 we know that in each iteration of greedy routing the distance to destination is reduced by a constant factor, resulting in logarithmic bound on the number of iterations until the destination is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
133
+ page_content=' Next we turn our focus towards bounding the maximum degree when α = d + 1 by showing that the number of links that v has to all the nodes of distance between l and cl for some constant c, is bounded by a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
134
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
135
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
136
+ page_content=' When α ≤ d + 1, if a node v in N is toggle-stable then v has at most a constant number of links to any ball of radius l′ ≤ ǫl α d+1 ≤ ǫl centered at a node u with d(u, v) = l, that is, |N(v) ∩ B(u, l′)| ≤ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
137
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
138
+ page_content=' Any node within B(u, l′) has distance at most l + l′ from v, and since v in N is toggle- stable, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
139
+ page_content='3 we can argue that any node within the ball can serve only nodes of distance at most c′(l + l′) α d+1 for some constant c′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
140
+ page_content=' Therefore any node that is served by a node in B(u, l′) must also lie within the ball B(u, l′ + c′(l + l′) α d+1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
141
+ page_content=' Since l′ ≤ ǫl α d+1 ≤ ǫl, we have l′ + c′(l + l′) α d+1 ≤ c′′l α d+1 for some constant c′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
142
+ page_content=' Let C(u′) be the set of the nodes whose closest node in N(v) is u′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
143
+ page_content=' By Item 2 of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
144
+ page_content='1 we can argue that � u′∈N(v)∩B(u,l′) |C(u′)| ≤ c∗(l α d+1 )d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
145
+ page_content=' for some constant c∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
146
+ page_content=' By removing a link to a node u′ ∈ B(u, l′), the curiosity-cost induced to v is increased by at most c′′l α d+1|C(u′)|, and therefore there is a node u′ ∈ N(v) ∩ B(u, l′) the removal of which decreases the total cost induced to v by at least β(l − l′)α−c′′l α d+1|C(u′)| ≥ β(l − l′)α−c′′l α d+1 × c∗l α d+1)d |N(v) ∩ B(u, l′)| ≥ β(1−ǫ)αlα− c⋆lα |N(v) ∩ B(u, l′)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
147
+ page_content=' 6 Therefore if |N(v) ∩ B(u, l′)| > c⋆ β(1−ǫ)α = c, v would be able to decrease its total cost by removing u′, contradicting stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
148
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
149
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
150
+ page_content=' If a node v in N is toggle-stable and α = d + 1, then the degree of v is bounded by O(log n) links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
151
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
152
+ page_content=' For any integer 0 ≤ i ≤ log1+ǫ(n) let P(i) be the set of grid points that are of distance l from v such that (1 + ǫ)i < l ≤ (1 + ǫ)i+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
153
+ page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
154
+ page_content='5 for any p ∈ P(i) we know that the number of links that v has to the members of the ball B(p, ǫ(1 + ǫ)i) is bounded by constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
155
+ page_content=' Also, by Item 3 of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
156
+ page_content='1 the nodes in P(i) can be covered using c(1+ǫ)i+1 ǫ(1+ǫ)i d−1 such balls for some constant c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
157
+ page_content=' Therefore, for each 0 ≤ i ≤ log1+ǫ(n) we can bound the size of N(v) ∩ P(i) by a constant, concluding the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
158
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
159
+ page_content='2 Sub-logarithmic diameter: α < d + 1 In this section we consider cases when 1 logβ−1 n < α < d + 1 and prove upper bounds on the number of iterations that greedy routing requires and maximum degree for this range of α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
160
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
161
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
162
+ page_content=' If a network N is add-stable and α < d + 1, then any node u is reachable from any node v via greedy routing in O(log d+1 α log(n)) steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
163
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
164
+ page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
165
+ page_content='3 if in an iteration of greedy routing the distance to destination is l, then in next iteration the distance is at most cl α d+1 for some constant c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
166
+ page_content=' Therefore, after log α d+1 ( 1 log(n)) = log d+1 α log(n) iterations the distance to destination will be constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
167
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
168
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
169
+ page_content=' If a node v in N is toggle-stable and α < d + 1, then the degree of v is bounded by o(log log(n)n1−δ α d+1) links for any δ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
170
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
171
+ page_content=' For some positive constant 0 < a < 1 and some integer 0 ≤ i ≤ loga−1 log(n) let P(i) be the set of grid points that are of distance l from v such that nai+1/d < l ≤ nai/d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
172
+ page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
173
+ page_content='5 for any p ∈ P(i) we know that the number of links that v has to the members of the ball B(p, ǫ(nai+1/d) α d+1 ) is bounded by constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
174
+ page_content=' By Item 4 of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
175
+ page_content='1 P(i) can be covered with O(nai−ai+1 α d+1) balls B(p, ǫ(nai+1/d) α d+1) where p ∈ P(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
176
+ page_content=' Therefore the total number of links of v can be bounded by |N(v)| ≤ c + i≤loga−1 log(n) � i=0 nai−ai+1 α d+1 ≤ c + loga−1 log(n)n1−a α d+1 for some constant c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
177
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
178
+ page_content='3 Sub-logarithmic degrees: α > d + 1 Now let us turn our focus to cases when d + 1 < α < log(β−1n2) and prove bounds analogous to those of previous sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
179
+ page_content=' Here we need to modify some of our lemmas, as in this case the cost of links increases relative to length so fast that it no longer benefits v to establish a link to the middle of a region it wishes to cover with that link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
180
+ page_content=' 7 v u u′ u′′ l − ǫl 1 α−d l − 2ǫl 1 α−d ǫl 1 α−d ǫl 1 α−d 4 Figure 2: For Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
181
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
182
+ page_content=' Adding a link from v to u′ (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
183
+ page_content=' u′′) decreases the curiosity-cost of each of the nodes in the area indicated by red (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
184
+ page_content=' blue) hashing by at least ǫl 1 α−d 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
185
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
186
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
187
+ page_content=' If a node v in N is add-stable, then for any u with d(v, u) ≤ l there exists a node u′ ∈ N(v) with d(u, u′) ≤ l − ǫl 1 α−d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
188
+ page_content=' Sketch of proof: For the sake of contradiction assume that v has no link to any node in B(u, l − ǫl 1 α−d ) and let u′ be arg min u′∈B(u,l−2ǫl 1 α−d ) d(u′, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
189
+ page_content=' Then, the node v benefits from adding a link to u′, as u′ will be able to reduce the curiosity of Ω((l 1 α−d )d−1l) nodes by at least Ω(l 1 α−d ) (See Figure 2), and therefore reduce its total curiosity-cost by Ω(l1+ d α−d ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
190
+ page_content=' We can argue that ǫ′l1+ d α−d = ǫ′l α α−d > β(2ǫl 1 α−d )α for proper value of ǫ and β, and therefore it is beneficial for v to add a link to u′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
191
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
192
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
193
+ page_content=' If a network N is add-stable and α > d + 1, then any node u is reachable from any node v via greedy routing in o(log log(n)n1− δ α−d ) steps where δ is any constant smaller than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
194
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
195
+ page_content=' By induction we can argue that starting from a node v, the worst case of our analysis of greedy routing is realized when the destination is the furthest node from v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
196
+ page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
197
+ page_content='9 in each step if the distance to the furthest node is l, in the next step this distance will be at most l−ǫl 1 α−d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
198
+ page_content=' Let us consider the number of iterations it takes to get from distance nai of destination to get to distance lai+1 for some a < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
199
+ page_content=' This is bounded by at most lai ǫl ai+1 α−d = ǫ−1lai− ai+1 α−d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
200
+ page_content=' 8 Therefore, the total number of iterations is bounded by i≤log log n � i=0 ǫ−1lai− ai+1 α−d ≤ i≤log log n � i=0 ǫ−1l1− a α−d ≤ log log(n)ǫ−1l1= a α−d Here we show that for d = 1, when α > d + 1 the degrees are restricted by a sub-logarithmic upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
201
+ page_content=' Equivalent proof for higher dimensions remains a challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
202
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
203
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
204
+ page_content=' If α > d + 1 = 2 and a network N is toggle-stable, then any node v has at most O(log α d+1 log(n)) links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
205
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
206
+ page_content=' Think of each node of distance l from v to initially have a budget of l of curiosity-cost that can be spent to justify maintenance of a link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
207
+ page_content=' We will show that if v were to have more than c log α d+1 log(n) links, then there would be a set of nodes that would have insufficient budget in order to justify a set of links that serve a subset of them, and therefore, N would not be toggle-stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
208
+ page_content=' Consider a node v and let P(i) be the set of nodes with distance l′ from v such that n ai+1 d < l′ ≤ n ai d where a = d+1 α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
209
+ page_content=' We show that the size of P(i) ∩ N(v) is bounded by a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
210
+ page_content=' For this, note that any link that v has in P(i) costs at least βn αai+1 d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
211
+ page_content=' Noting that d = 1, let S be the set P(i) ∩ N(v) minus the elements that are furthest from v on each side, and hence |S| ≥ |P(i)∩N(v)|−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
212
+ page_content=' No node in S can serve a node of distance larger than n ai d from v, and by Item 2 of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
213
+ page_content='1 there are at most n ai d d nodes that can contribute to justify S, and each such a node has a budget of at most n ai d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
214
+ page_content=' Therefore, we have |S| ≤ n ai d d+1 βn αai+1 d = n (d+1)i+1 dαi βn (d+1)i+1 dαi = β−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
215
+ page_content=' We conjecture that the bound from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
216
+ page_content='11 can be extended to d > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
217
+ page_content=' 4 Discussion Our main contribution is to provide a simple explanation for the small-world phenomenon that matches previously established theoretical observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
218
+ page_content=' While the questions that we are concerned with here are inherently inspired by nature, this work was initially carried out as a purely mathematical mission to reestablish the logarithmic bounds on maximum degree and greedy diameter in a setting where individuals have only local information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
219
+ page_content=' However, the model that came out of this research seems to be providing insight into drives that connect us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
220
+ page_content=' Imagine a population distributed over a plane, where each individual maintains the status (say current address) of some of the others in order to gain some knowledge through them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
221
+ page_content=' There is a real effort here, which is mainly the effort and attention that is required to maintain the status of another, and there is an implicit drive that can be described as a desire to know all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
222
+ page_content=' Our results suggest that such a population ends up forming a small-world network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
223
+ page_content=' It is imaginable that α (the exponent of the distance in cost of maintaining a link) has been reduced by the progresses made through history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
224
+ page_content=' Particularly with writing and a postal service, 9 the cost of maintaining the status of another seems to increase relative to distance with a small exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
225
+ page_content=' It would be interesting to gain an understanding of the real value of α through analysis of empirical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
226
+ page_content=' As for applicability our model may be useful to engineers whenever robust networks with nodes of bounded degree are required, particularly when nodes are to make decisions indepen- dently regarding their connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
227
+ page_content=' It must be noted that the our cost function can be modified in a number of ways while still yielding networks with small-world properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
228
+ page_content=' For instance, if our model is used to connect a swarm of drones, if each drone v chooses the set N(v) of those whose status it watches for by minimizing: cN(v) = β � u∈N(v) dα(v, u) + � u/∈N(v) wv(u)d(u, N(v)) (2) where wv(u) represents the relative importance of u for v, then some degree of small-world properties are established as a side effect depending on parameters α and β, and the correlation between relative importance and proximity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
229
+ page_content=' At this point, many directions remain unexplored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
230
+ page_content=' Particularly, it is curious as to what happens to the threshold for other values of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
231
+ page_content=' When we set β = n, our cost function closely resembles the objective function upon which the model of Even-Dar and Kearns [1] is based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
232
+ page_content=' Although their model is inherently different, a similar threshold with features of its own appears there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
233
+ page_content=' All of this hints towards a bigger picture, perhaps a more general framework that is yet to be discovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
234
+ page_content=' 10 References [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
235
+ page_content=' Even-Dar and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
236
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
237
+ page_content=' Kearns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
238
+ page_content=' A small world threshold for economic network formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
239
+ page_content=' In Advances in Neural Information Processing Systems 19, pages 385–392.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
240
+ page_content=' MIT Press, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
241
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
242
+ page_content=' Kleinberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
243
+ page_content=' The small-world phenomenon: An algorithmic perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
244
+ page_content=' In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, pages 163–170, New York, NY, USA, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
245
+ page_content=' ACM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
246
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
247
+ page_content=' Milgram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
248
+ page_content=' The Small World Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
249
+ page_content=' Psychology Today, 2:60–67, 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
250
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
251
+ page_content=' Travers and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
252
+ page_content=' Milgram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
253
+ page_content=' An experimental study of the small world problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
254
+ page_content=' Sociometry, 32:425–443, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
255
+ page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
256
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
257
+ page_content=' Watts and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
258
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
259
+ page_content=' Strogatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
260
+ page_content=' Collective dynamics of’small-world’networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
261
+ page_content=' Nature, 393(6684):409–10, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
262
+ page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9AyT4oBgHgl3EQf7_qI/content/2301.00849v1.pdf'}
R9FJT4oBgHgl3EQfLCxT/content/tmp_files/2301.11467v1.pdf.txt ADDED
@@ -0,0 +1,1813 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cross-domain recommendation via user interest alignment
2
+ Chuang Zhao
3
+ College of Management and
4
+ Economics, Tianjin University
5
+ Tianjin, China
6
7
+ Hongke Zhao
8
+ College of Management and
9
+ Economics, Tianjin University
10
+ Tianjin, China
11
12
+ Ming HE
13
+ AI Lab at Lenovo Research
14
+ Beijin, China
15
16
+ Jian Zhang
17
+ School of Cyberspace Security,
18
+ Hangzhou Dianzi University
19
+ Hangzhou, China
20
21
+ Jianping Fan
22
+ AI Lab at Lenovo Research
23
+ Beijin, China
24
25
+ ABSTRACT
26
+ Cross-domain recommendation aims to leverage knowledge from
27
+ multiple domains to alleviate the data sparsity and cold-start prob-
28
+ lems in traditional recommender systems. One popular paradigm
29
+ is to employ overlapping user representations to establish domain
30
+ connections, thereby improving recommendation performance in
31
+ all scenarios. Nevertheless, the general practice of this approach is
32
+ to train user embeddings in each domain separately and then aggre-
33
+ gate them in a plain manner, often ignoring potential cross-domain
34
+ similarities between users and items. Furthermore, considering
35
+ that their training objective is recommendation task-oriented with-
36
+ out specific regularizations, the optimized embeddings disregard
37
+ the interest alignment among user’s views, and even violate the
38
+ user’s original interest distribution. To address these challenges,
39
+ we propose a novel cross-domain recommendation framework,
40
+ namely COAST, to improve recommendation performance on dual
41
+ domains by perceiving the cross-domain similarity between entities
42
+ and aligning user interests. Specifically, we first construct a uni-
43
+ fied cross-domain heterogeneous graph and redefine the message
44
+ passing mechanism of graph convolutional networks to capture
45
+ high-order similarity of users and items across domains. Targeted
46
+ at user interest alignment, we develop deep insights from two more
47
+ fine-grained perspectives of user-user and user-item interest in-
48
+ variance across domains by virtue of affluent unsupervised and
49
+ semantic signals. We conduct intensive experiments on multiple
50
+ tasks, constructed from two large recommendation data sets. Exten-
51
+ sive results show COAST consistently and significantly outperforms
52
+ state-of-the-art cross-domain recommendation algorithms as well
53
+ as classic single-domain recommendation methods.
54
+ KEYWORDS
55
+ Cross-domain similarity, Interest alignment, Recommender system
56
+ Permission to make digital or hard copies of all or part of this work for personal or
57
+ classroom use is granted without fee provided that copies are not made or distributed
58
+ for profit or commercial advantage and that copies bear this notice and the full citation
59
+ on the first page. Copyrights for components of this work owned by others than ACM
60
+ must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
61
+ to post on servers or to redistribute to lists, requires prior specific permission and/or a
62
+ fee. Request permissions from [email protected].
63
+ Conference’17, July 2017, Washington, DC, USA
64
+ © 2018 Association for Computing Machinery.
65
+ ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
66
+ https://doi.org/XXXXXXX.XXXXXXX
67
+ Knowledge Transfer
68
+ Rich Domain
69
+ Sparse Domain
70
+ Watch
71
+ Read
72
+ User Interest
73
+ Source
74
+ Target
75
+ Improve
76
+ (a)
77
+ (b)
78
+ Figure 1: (a) illustrates that the behavior of an overlapping
79
+ user in different domains is driven by the same distribution
80
+ of interests. (b) illustrates that we improve the recommen-
81
+ dation performance of the two domains through knowledge
82
+ transfer of overlapping users.
83
+ 1
84
+ INTRODUCTION
85
+ In an effort to alleviate information overload [6, 27], various well-
86
+ known platforms such as Netflix [11] and Amazon [23] deploy
87
+ recommender systems to capture users’ personalized preferences.
88
+ Despite their excellent performance, data sparsity and cold-start
89
+ problems, as two serious challenges, pose obstacles to model user
90
+ interests accurately and efficiently [36].
91
+ To address these headaches, researchers put their insights into
92
+ cross-domain recommender systems (CDR), i.e., transfer knowledge
93
+ from informative recommendation scenarios (source domain) to
94
+ scenarios with sparse interactions (target domain) via transfer learn-
95
+ ing techniques [34]. This directed transfer essentially enhances the
96
+ knowledge of the target domain and achieves promising results
97
+ on multiple recommendation data sets [46]. Further, several re-
98
+ searchers engage in bidirectional cross-domain recommendation,
99
+ arguing that reasonable model structures can facilitate the mutual
100
+ transfer of source and target domain knowledge [22]. For instance,
101
+ user Jack searches and browses a large number of computer cost-
102
+ effective related posts in the online community (source domain),
103
+ and we can simultaneously recommend various types of comput-
104
+ ers to him in the online mall (target domain), and vice versa. This
105
+ dual recommendation paradigm can not only alleviate the negative
106
+ arXiv:2301.11467v1 [cs.IR] 26 Jan 2023
107
+
108
+ ##Stephen Knight
109
+ Form&IdeologyANNASMITH
110
+ Jhe Brile
111
+ groomDLIVER STONE ANG PETER KUZNICK
112
+ UNTOLI
113
+ HISTORY
114
+ WITESTHE HISTORY OF
115
+ LOVEPanipatWUUTHARREISON
116
+ MCCOIMUGHEY
117
+ BI
118
+ DETECTITHEGIRLHE
119
+ DRAGONTATTOOConference’17, July 2017, Washington, DC, USA
120
+ Trovato and Tobin, et al.
121
+ transfer phenomenon, but also promote the upper bound on the
122
+ target domain by improving the recommendation ability of the
123
+ model in the source domain [43].
124
+ To our best knowledge, the mainstream taxonomy of dual cross-
125
+ domain recommendation can be separated into collective matrix fac-
126
+ torization, mapping-based methods, graph neural network-based ap-
127
+ proaches, and representation combination of overlapping entities [34].
128
+ This paper strives to kick the last paradigm upstairs, the general
129
+ practice of which is to train user and item representations separately
130
+ in the two domains, and then perform specific aggregations (concat,
131
+ dot, pooling) on them for knowledge transfer [41]. Even with the re-
132
+ markable results [37], they still encounter three serious challenges.
133
+ Firstly, vast majority of these studies conduct experiments on ex-
134
+ plicit data sets with fully overlapping users, which significantly
135
+ pole apart from rich implicit content and partial user overlap in
136
+ real-world scenarios [26]. Secondly, the general practice of inde-
137
+ pendently training entity representations in each domain struc-
138
+ turally isolates the interactions among users-items, thereby failing
139
+ to perceive higher-order similarities between entities. Thirdly, con-
140
+ sidering the recommendation task-oriented optimization objective,
141
+ these work cannot guarantee the alignment of overlapping users’
142
+ interests across domains [1]. In other words, we argue that the plain
143
+ aggregations of entity representations across domains without any
144
+ regularizations are incapable of distinguishing users’ personal pref-
145
+ erences at the instance level, nor can it ensure that users’ interests
146
+ in items are consistent, or even cause conflicting interests among
147
+ users’ views.
148
+ With the aim of addressing these challenges, we propose a Cross-
149
+ domain recOmmendation viA uSer inTerest alignment, i.e. COAST,
150
+ which endeavors to improve cross-domain recommendation with
151
+ partial user overlap, as shown in Figure 1(b). Unlike previous stud-
152
+ ies, we extract enough features from the affluent content data
153
+ (comments, tags, user/item profiles) to form an implicit data set
154
+ to capture more feedback. Meanwhile, we modernize the previ-
155
+ ous approach of separately training representations into a unified
156
+ cross-domain heterogeneous graph to assimilate the cross-domain
157
+ similarity of users and items. Targeted at overlapping users’ inter-
158
+ est alignment across multiple domains, we gain in-depth insights
159
+ from both user-user and user-item perspectives. Specifically, for
160
+ user-user interest alignment, we believe that users’ behaviors in
161
+ different domains are driven by the same interest distribution, thus
162
+ encouraging all views of the user to possess similar interest distribu-
163
+ tions over K interest representations, as shown in Figure 1(a). This
164
+ not only allows the model to distinguish users at the instance level,
165
+ but also mitigates conflicting interests in views of the same user.
166
+ For user-item interests alignment, we contend that interacted items
167
+ are a observation of user interests, and all user views should exhibit
168
+ consistent preferences for them. Particularly, benefiting from the
169
+ rich semantics of gradients [10], we employ gradient alignment
170
+ to encourage higher-order projections across views to follow the
171
+ same optimization path.
172
+ In this paper, we make the following contributions:
173
+ • To the best of our knowledge, we make significant efforts in
174
+ cross-domain recommendation by considering cross-domain
175
+ similarity and user interest alignment. Our framework performs
176
+ dual knowledge transfer on basis of partial user overlap to im-
177
+ prove recommendation performance.
178
+ • Instead of training entity representations separately, we con-
179
+ struct a unified cross-domain heterogeneous graph, and cor-
180
+ respondingly develop a novel message passing mechanism to
181
+ capture the cross-domain similarity between entities.
182
+ • We resort to contrastive learning and gradient alignment to con-
183
+ strain user-user and user-item interest alignment, respectively,
184
+ thereby enhancing the interest consistency across views.
185
+ • We compare COAST to state-of-the-art algorithms for real-world
186
+ recommendations, achieving significant improvements on all
187
+ tasks. We promise the code and data sets will be released for
188
+ further comparison after acceptance 1.
189
+ The rest of this paper is organized as follows. Section 2 briefly
190
+ introduces related work, and then introduces the details of our
191
+ proposed model. The experimental results and analysis are given
192
+ in Section 4. Finally, we summarize the paper in the fifth section.
193
+ 2
194
+ RELATED WORK
195
+ Our proposed framework stems from two research areas: cross-
196
+ domain recommendation [34] and contrastive learning [17]. We
197
+ respectively summarize their main research paradigms, pros and
198
+ cons, and close links with our research.
199
+ 2.1
200
+ Cross-domain Recommendation
201
+ Cross-domain recommendation strives to explore data from multi-
202
+ ple domains to simultaneously improve the recommendation per-
203
+ formance of the model in all scenarios [18].
204
+ A rudimentary idea is to incorporate several constraints of cross-
205
+ domain knowledge to decompose the user-item interaction matri-
206
+ ces in both domains simultaneously [14, 28, 39]. This genre can be
207
+ extended on a large number of matrix factorization-based single-
208
+ domain recommendations [31], whereas its performance is inferior
209
+ to deep learning approaches. Another paradigm is to customize a
210
+ mapping function whose optimization objective is that the trans-
211
+ formed cold-start user representation generalizes well in the target
212
+ domain [29, 45]. The effiency of this paradigm depends on the rea-
213
+ sonableness and representational power of the mapping function
214
+ and whether enough overlapping entities are available for training,
215
+ which limits the generalizability of the model. The third paradigm
216
+ resorts to the popular knowledge graph technology [35], which
217
+ builds shared graphs to represent the relationships among users,
218
+ items, and attributes, and learns entity representations through
219
+ graph embeddings [4, 20]. Despite the excellent extraction capabil-
220
+ ity of graph structure, the high demands of computational resources
221
+ make the scalability of these methods potentially limited. Recently,
222
+ algorithms utilizing overlapping user representations and combi-
223
+ nations is trendy, and their standard practice is to learn entity
224
+ representations from various domains, and then combine overlap-
225
+ ping entity representations to enrich the knowledge of each do-
226
+ main [9, 44]. Apparently, the lack of cross-domain similarity and the
227
+ rough combination way limit their recommendation performance.
228
+ Our approach falls within the last paradigm, but strives to con-
229
+ quer the proposed drawbacks. The closest algorithm to ours in this
230
+ paradigm is GADTCDR [42], but they are fundamentally different.
231
+ 1https://github/anonymous/COAST
232
+
233
+ Cross-domain recommendation via user interest alignment
234
+ Conference’17, July 2017, Washington, DC, USA
235
+ First, at the data level, apart from explicit interactions, we attach
236
+ exploration of content information. Second, at the algorithm level,
237
+ we construct a unified cross-domain heterogeneous graph and user
238
+ interest alignment for training, which enhances the generalization
239
+ of the model. Finally, at the optimization level, we optimize in an
240
+ end-to-end manner, avoiding the potential target inconsistency
241
+ brought by two-stage training.
242
+ 2.2
243
+ Contrastive Learning
244
+ Contrastive learning emphasizes learning common features be-
245
+ tween different views of an instance, with the intention of instance-
246
+ level discrimination [24]. In contrast to supervised learning, it learns
247
+ in a self-supervised manner.
248
+ Early contrastive learning architectures favored large batch sizes
249
+ to aggregate enough negative examples, but the scalability of such
250
+ methods was limited by GPU memory [3]. Aiming to improve on
251
+ this, Wu et al. [33] applied a memory bank to store a large number
252
+ of sample representations as negative examples, thus avoiding the
253
+ common out-of-memory. Despite the approximate performance, a
254
+ potential pitfall of this approach is that representation updates in
255
+ the memory bank can be computationally expensive as it becomes
256
+ outdated quickly within a few iterations. Consequently, He et al.
257
+ [12] further improved the form of the static repository, using a mo-
258
+ mentum encoder to generate a dictionary as a queue for encoding
259
+ keys, the current mini-batch is enqueued, and the oldest mini-batch
260
+ is dequeued. This approach eliminates the need to use two separate
261
+ models for feature extraction, and dynamic queues avoid exces-
262
+ sive memory consumption. All of the above architectures place
263
+ insight into using specific metrics to measure sample similarity,
264
+ i.e., encouraging different views of the same entity to be closer
265
+ in the projected space and vice versa [32]. Recently, Caron et al.
266
+ [2] abandoned the traditional comparison of positive and negative
267
+ examples, and launched a new exploration of contrastive learning
268
+ from the perspective of clustering.
269
+ Inspired by contrastive learning, we intend to discriminate user
270
+ representations at the instance level. Particularly, following the
271
+ idea of clustering, we encourage different views of the same user to
272
+ aggregate into the same interest center, thereby generating better
273
+ user interest representations.
274
+ 3
275
+ PROPOSED METHOD
276
+ In this section, we introduce the proposed COAST framework.
277
+ Specifically, we first elaborate the definition of the general CDR
278
+ problem, then outline our framework, and finally detail the sub-
279
+ modules and optimization methods.
280
+ 3.1
281
+ Problem Formulation
282
+ This work considers a general CDR scenario with two domains S
283
+ (source) and T (target), where the former contains rich and informa-
284
+ tive interactions and the latter is relatively sparse. Suppose source
285
+ domain DS = (US, VS, ES, XS), target domain DT = (UT, VT,
286
+ ET, XT), where U, V, E, X are user set, item set and edge set, at-
287
+ tribute set in each domain, respectively. In particular, the user sets
288
+ US and UT contain an overlapping user subset U𝑜. Then, the
289
+ user set can be redefined as US = {U𝑠, U𝑜}, UT = {U𝑡, U𝑜},
290
+ where U𝑠 and U𝑡 are non-overlapping/distinct user sets in the
291
+ two domains. For simplicity of exposition, we further introduce
292
+ two binary matrices to store user-item interactions, namely AS =
293
+ {0, 1}|US |×|VS |, AT = {0, 1}|UT |×|VT |, where element 𝐴𝑖𝑗 in each
294
+ domain denotes whether the user 𝑢𝑖 ∈ U and item 𝑣𝑗 ∈ V have an
295
+ interaction in the edge set E. The definition of dual cross-domain
296
+ recommendation is as follows,
297
+ Given the observed interaction and content of S and T, dual CDR
298
+ aims to leverage knowledge transfer from overlapping users to im-
299
+ prove recommendation performance in both domains. Formally, given
300
+ AS, AT, XS, XT , we expect to recommend 𝑣𝑖 ∈ VS, 𝑣𝑗 ∈ VT
301
+ respectively in domains S and T.
302
+ Important mathematical notes can be found in Appendix A.
303
+ 3.2
304
+ Overview of COAST Framework
305
+ Distinct-I
306
+ Overlap-U
307
+ Overlap-U
308
+ Distinct-U
309
+ Distinct-U
310
+ Distinct-I
311
+ 𝐹𝒮
312
+ 𝐹𝒯
313
+ 𝑧𝒮
314
+ 𝑧𝒯
315
+ 𝑄𝒮
316
+ 𝑄𝒯
317
+ U
318
+ U
319
+ I
320
+ I
321
+ MLP
322
+ MLP
323
+ MLP
324
+ MLP
325
+ MLP
326
+ MLP
327
+ MLP
328
+ MLP
329
+ ො𝑦𝑠
330
+ ො𝑦𝑟
331
+ gradient
332
+ gradient
333
+ Target
334
+ Source
335
+ overlap
336
+ swap
337
+ K
338
+ Figure 2: Overall framework of COAST.
339
+ In this section, we outline the proposed cross-domain recommen-
340
+ dation framework COAST, whose architecture is shown in Figure 2.
341
+ First, we construct a unified cross-domain heterogeneous graph,
342
+ and improve the message passing mechanism of graph convolu-
343
+ tional network to capture the cross-domain similarity of users and
344
+ items. Then, for each overlap user, we utilize contrastive learning
345
+ and gradient alignment from both user-user and user-item perspec-
346
+ tives to ensure the alignment of user interests. Finally, following
347
+ previous studies, we adopt a negative sampling mechanism to cal-
348
+ culate the supervision loss of the two domains, which is jointly
349
+ optimized with the above two losses for alignment.
350
+ 3.3
351
+ Cross-domain Graph Convolution
352
+ We argue that previous separately trained representations can only
353
+ capture single-domain information; therefore we construct a unified
354
+ cross-domain heterogeneous graph and a novel message passing
355
+ mechanism to capture cross-domain similarity.
356
+ 3.3.1
357
+ Construction. We determine nodes and edges in the hetero-
358
+ geneous graph G on basis of AS and AT. Note that for items from
359
+
360
+ Conference’17, July 2017, Washington, DC, USA
361
+ Trovato and Tobin, et al.
362
+ both domains, we treat them as nodes of the same type, the differ-
363
+ ence being the type of edges users interact with them. For the initial
364
+ embeddings of nodes, we generate them in the following data pre-
365
+ processing manner. Specifically, for common numerical attributes
366
+ and category attributes, we perform normalization and one-hot
367
+ encoding respectively. For text attributes (tags, comments, profiles,
368
+ etc.), we first aggregate the text associated with the entity into
369
+ a large document, which is then converted into semantic vectors
370
+ using doc2vec technique [5]. Note that we perform joint encoding
371
+ on users of both domains. Finally, we get the initial embedding for
372
+ each user and item, i.e., 𝑒𝑢 ∈ HU, 𝑒𝑣
373
+ S ∈ HS, 𝑒𝑣
374
+ T ∈ HT. Formally,
375
+ 𝑒𝑢 =
376
+ 
377
+ 
378
+ 𝑒𝑢
379
+ S,
380
+ 𝑖𝑓 𝑢 ∈ U𝑠
381
+ 𝑒𝑢
382
+ T,
383
+ 𝑖𝑓 𝑢 ∈ U𝑡
384
+ 𝑒𝑢
385
+ S ⊗ 𝑒𝑢
386
+ T,
387
+ 𝑖𝑓 𝑢 ∈ U𝑜
388
+ ,
389
+ (1)
390
+ where ⊗ is max pooling operation. Overlapping users have behav-
391
+ iors in both domains, so we aggregate their representations in both
392
+ domains. Without loss of generality, we adopt max pooling here.
393
+ We experimented with operations such as sum and averaging, and
394
+ found no significant improvement.
395
+ 3.3.2
396
+ Propagation. To capture the high-order cross-domain sim-
397
+ ilarity of users and items, we improve upon the message passing
398
+ mechanism of graph convolution networks [30]. Formally,
399
+ 𝑚𝑢←𝑣 =
400
+ 1
401
+ √︃
402
+ |N𝑢||NS𝑣 ||NT𝑣 |
403
+ (𝑊1𝑒𝑢 +𝑊2(𝑒𝑣
404
+ S ⊙𝑒𝑢)+𝑊3(𝑒𝑣
405
+ T ⊙𝑒𝑢)), (2)
406
+ where N represents set of 1-hop neighbors,𝑊 is a trainable parame-
407
+ ter, and ⊙ denotes the element-wise product. We add cross-domain
408
+ user-item interactions to the message passing mechanism of graph
409
+ convolution operation, expecting to capture historical interaction
410
+ information. This approach not only enriches the embedding rep-
411
+ resentation, but also enhances the capture of cross-domain collabo-
412
+ rative signals. Formally, the user embedding propagation is,
413
+ 𝑒𝑢 (𝑙+1) = LeakyReLU(𝑚(𝑙)
414
+ 𝑢←𝑢 +
415
+ ∑︁
416
+ 𝑣∈N𝑢
417
+ 𝑚(𝑙)
418
+ 𝑢←𝑣),
419
+ (3)
420
+ where 𝑙 represents the 𝑙-th GNN layer. We also support stacking of
421
+ GNN layers to perceive higher-order similarities. Formally,
422
+ 𝐸(𝑙) = 𝜎((𝐿 + 𝐼)𝐸(𝑙−1)𝑊 (𝑙)
423
+ 1
424
+ + 𝐿𝐸(𝑙−1) ⊙ 𝐸(𝑙−1)𝑊 (𝑙)
425
+ 2
426
+ + 𝐿𝐸(𝑙−1) ⊙ 𝐸(𝑙−1)𝑊 (𝑙)
427
+ 3
428
+ ),
429
+ (4)
430
+ where 𝜎 is activation function 𝑅𝑒𝑙𝑢, 𝐸 is the representations for
431
+ users and items, 𝐼 denotes an identity matrix. 𝐿 represents the
432
+ Laplacian matrix for the graph. Formally,
433
+ 𝐿 = D− 1
434
+ 2 𝐴D− 1
435
+ 2 and 𝐴 =
436
+
437
+ 0
438
+ 𝑅
439
+ 𝑅⊤
440
+ 0
441
+
442
+ ,
443
+ (5)
444
+ where D is the diagonal degree matrix, 𝐴 is the adjacency matrix,
445
+ 𝑅 is the user-item interaction matrix and 0 is all zero matrix. We
446
+ concat the user and item representations of each layer, i.e., 𝑒𝑢 =
447
+ 𝑒𝑢 (0) ⊕ · · · ⊕ 𝑒𝑢 (𝑙),𝑒𝑣
448
+ S = 𝑒𝑣(0)
449
+ S
450
+ ⊕ · · · ⊕ 𝑒𝑣(𝑙)
451
+ S ,𝑒𝑣
452
+ T = 𝑒𝑣(0)
453
+ T
454
+ ⊕ · · · ⊕ 𝑒𝑣(𝑙)
455
+ T .
456
+ Our approach has several advantages. On the one hand, we
457
+ form a unified graph structure for user-item interactions in differ-
458
+ ent domains, which is intuitive and easy to capture cross-domain
459
+ similarity. On the other hand, we generalize the message passing
460
+ mechanism to cross-domain scenarios, enhancing the practicality
461
+ of traditional graph convolution operators.
462
+ 3.4
463
+ User Interest Alignment
464
+ Previous studies applied plain representation aggregation to trans-
465
+ fer knowledge of both domains; however we argue that this ap-
466
+ proach ignores the alignment of user interests. Consequently, we
467
+ align user interests from user-user and user-item perspectives to
468
+ constrain user representation.
469
+ 3.4.1
470
+ User-User Alignment.
471
+ To discriminate users at the instance
472
+ Neighbors-U
473
+ View1
474
+ U-feature
475
+ View2
476
+ U-feature
477
+ Neighbors-U
478
+ View1
479
+ View2
480
+ item
481
+ user
482
+ feature
483
+ rich
484
+ sparse
485
+ overlap
486
+ Figure 3: User-User interest alignment.
487
+ level, we separately aggregate users’ second-order neighbors’ repre-
488
+ sentation in different domains to obtain corresponding contrastive
489
+ views, as shown in Figure 3. The motivation behind it is that the
490
+ user’s context can enhance the user’s interest representation in this
491
+ domain, which is widely used in single-domain graph recommen-
492
+ dation [25]. Formally, for 𝑢 ∈ U𝑜
493
+ 𝑒𝑢
494
+ S =
495
+ ∑︁
496
+ 𝑖 ∈NS
497
+ 𝑢,2
498
+ 𝛼𝑖𝑒𝑢𝑖,
499
+ 𝑒𝑢
500
+ T =
501
+ ∑︁
502
+ 𝑖 ∈NT
503
+ 𝑢,2
504
+ 𝛼𝑖𝑒𝑢𝑖,
505
+ (6)
506
+ where N𝑢,2 is the 2-hop neighbors of 𝑢 and 𝛼𝑖 =
507
+ exp(𝑠 (𝑢𝑖,𝑢))
508
+
509
+ 𝑗∈N𝑢,2 exp(𝑠 (𝑢𝑗,𝑢)) .
510
+ 𝑠(·) represents the scoring function, and without loss of generality,
511
+ we use the dot product.
512
+ Then we feed 𝑒𝑢
513
+ S and 𝑒𝑢
514
+ T into the feature extractors 𝐹S and
515
+ 𝐹T respectively, and get their representations 𝑧S, 𝑧T. We assume
516
+ that overlapping users have a total of K interests, i.e., {𝑐1, · · · ,𝑐𝐾 }.
517
+ According to our assumption, the distribution of interests among
518
+ different views of the same user should be consistent. Formally,
519
+ ℓ(𝑧T,𝑞S) = −
520
+ ∑︁
521
+ 𝑘
522
+ 𝑞(𝑘)
523
+ S log𝑝 (𝑘)
524
+ T
525
+ 𝑝 (𝑘)
526
+ T
527
+ =
528
+ exp( 1
529
+ 𝜏 𝑧⊤
530
+ T𝑐𝑘)
531
+
532
+ 𝑘′ exp( 1
533
+ 𝜏 𝑧⊤
534
+ T𝑐𝑘′)
535
+ ,
536
+ (7)
537
+ where 𝑞 is the higher-order projection through the Q extractor and
538
+ 𝜏 is a temperature parameter. In other words, we encourage the
539
+ contrastive views of 𝑢 to posses the same clustering results over
540
+ interest distribution. The user-user alignment loss is as follows,
541
+ LU,U = ℓ(𝑧T,𝑞S) + ℓ(𝑧S,𝑞T),
542
+ (8)
543
+ Moreover, we follow the same solution in swav [2], which restricts
544
+ the transportation of tensors in the mini-batch to ensure that the
545
+ model is memory efficient.
546
+
547
+ Cross-domain recommendation via user interest alignment
548
+ Conference’17, July 2017, Washington, DC, USA
549
+ 3.4.2
550
+ User-Item Alignment. To ensure consistent user interest in
551
+ items, we encourage different views of 𝑢 to be closer to the inter-
552
+ acted item representation, as shown in Figure 4. A straightforward
553
+ motivation of this insight is that both user views and interacted
554
+ items can represent the user’s real interests; therefore they should
555
+ be close in the projected space, even if the views and items are in
556
+ different domains. Consequently, benefit from the rich semantics of
557
+ gradients [10], we introduce gradient alignment to induce different
558
+ views to follow the same optimization path for interacted items.
559
+ Formally, we define 𝑔S and 𝑔T to represent the expected gradients
560
+ on the user’s source and target views.
561
+ 𝑔S =
562
+ E
563
+ (𝑢,𝑣)∼(U𝑜,VS)[∇𝜃𝑓 𝑢
564
+ 𝑠 ℓ𝑐𝑒 (𝐹𝑢
565
+ 𝑠 (𝑒𝑢) · (𝐹 𝑣
566
+ 𝑠 (𝑒𝑣))⊤,𝑦𝑢,𝑣)],
567
+ (9)
568
+ where 𝐹𝑢𝑠 , 𝐹 𝑣𝑠 are tower structures for extracting the representations
569
+ of users and items in the source domain, both composed of Multi-
570
+ Layer Perceptrons (MLPs).
571
+ 𝑔T =
572
+ E
573
+ (𝑢,𝑣)∼(U𝑜,VT)[∇𝜃𝑓 𝑢
574
+ 𝑡 ℓ𝑐𝑒 (𝐹𝑢
575
+ 𝑡 (𝑒𝑢) · (𝐹 𝑣
576
+ 𝑡 (𝑒𝑣))⊤,𝑦𝑢,𝑣)],
577
+ (10)
578
+ We aim to minimize discrepancy between 𝑔S and 𝑔T. Without loss
579
+ of generality, we use cosine similarity as the discrepancy measure.
580
+ L𝑈,𝐼 = 1 −
581
+ 𝑔⊤
582
+ S · 𝑔T
583
+ ∥𝑔S∥2∥𝑔T ∥2
584
+ ,
585
+ (11)
586
+ where || · ||2 represents the 2-Norm.
587
+ Overlap-U
588
+ Overlap-U
589
+ I
590
+ I
591
+ ො𝑦𝑟
592
+ ො𝑦𝑟
593
+ gradient
594
+ 𝑦𝑟
595
+ A
596
+ B
597
+ C
598
+ Figure 4: User-Item interest alignment.
599
+ Overall, we constrain user representations from a more fine-
600
+ grained perspective, i.e., user interest alignment. On the one hand,
601
+ this approach acts as a regularizer to prevent overfitting of user
602
+ representations. On the other hand, contrastive learning utilizes
603
+ unsupervised information and gradient alignment utilizes semantic
604
+ information, both of which further enrich the transfer of cross-
605
+ domain knowledge.
606
+ 3.5
607
+ Model Optimization
608
+ In this section, we first elaborate the supervised prediction of
609
+ COAST, and then illustrate the joint optimization process.
610
+ 3.5.1
611
+ Supervised Estimation. Similar to the previous work [21], we
612
+ adopt a dual-tower structure to capture high-order representations
613
+ of users and items, where the tower structure is composed of MLPs.
614
+ The structure of MLPs uses [𝐷, 2𝐷, 4𝐷, 8𝐷, 4𝐷, 2𝐷, 𝐷], which has
615
+ been shown to be effective in feature extraction [42].
616
+ ˆ𝑦𝑠 =
617
+ 𝐹𝑢𝑠 (𝑒𝑢
618
+ S) · (𝐹 𝑣𝑠 (𝑒𝑣
619
+ S))⊤
620
+ ||𝐹𝑢𝑠 ||||𝐹 𝑣𝑠 ||
621
+ + 𝜆1(||𝑒𝑢|| + ||𝑒𝑣
622
+ S||)
623
+ ˆ𝑦𝑡 =
624
+ 𝐹𝑢
625
+ 𝑡 (𝑒𝑢
626
+ T) · (𝐹 𝑣
627
+ 𝑡 (𝑒𝑣
628
+ T))⊤
629
+ ||𝐹𝑢
630
+ 𝑡 ||||𝐹 𝑣
631
+ 𝑡 ||
632
+ + 𝜆1(||𝑒𝑢|| + ||𝑒𝑣
633
+ T||)
634
+ ,
635
+ (12)
636
+ where ||𝑒𝑢|| is the embedding regularizer. To avoid our model over-
637
+ fitting 𝑌 + (ground truth), we randomly select a certain number of
638
+ unobserved user-item interactions as negative instances, denoted
639
+ 𝑌 −, 𝑦 = {𝑌 +,𝑌 −}. This negative sampling-based training strategy
640
+ has been widely used in existing algorithms [40]. Formally, we
641
+ optimize using binary cross-entropy,
642
+ ℓ(𝑦, ˆ𝑦) = 𝑦 log ˆ𝑦 + (1 − 𝑦) log(1 − ˆ𝑦),
643
+ (13)
644
+ The supervised loss is optimized in both domains simultaneously,
645
+ L𝑠 = ℓ(𝑦𝑠, ˆ𝑦𝑠) + ℓ(𝑦𝑡, ˆ𝑦𝑡)
646
+ (14)
647
+ 3.5.2
648
+ Total Loss. Loss functions for each part are added together
649
+ for joint optimization. The overall loss function is
650
+ L = L𝑠 + 𝜆2(L𝑈,𝑈 + L𝑈,𝐼 ),
651
+ (15)
652
+ where 𝜆2 is the weight of the two interest alignment constraints.
653
+ Overall, we propose an end-to-end solution for dual cross-domain
654
+ recommendation, which can improve the recommendation perfor-
655
+ mance of both domains while ensuring the alignment of overlapping
656
+ user interests. The overall optimization process of the algorithm is
657
+ shown in Algorithm 1 in Appendix B.
658
+ 4
659
+ EXPERIMENTS
660
+ To demonstrate the state-of-the-art and robustness of our model, we
661
+ conduct extensive experiments to answer the following questions:
662
+ • RQ1: How does COAST perform on common metrics compared
663
+ to state-of-the-art algorithms?
664
+ • RQ2: How do overlapping user ratios and sub-modules affect
665
+ model performance?
666
+ • RQ3: What impact do several key parameters have on model
667
+ performance?
668
+ 4.1
669
+ Experimental Settings
670
+ In this section, we present the statistics of the data sets, necessary
671
+ parameter settings for the model, and state-of-the-art algorithms
672
+ for comparison.
673
+ 4.1.1
674
+ Data Sets. We conduct extensive experiments using large-
675
+ scale anonymized data sets obtained from Douban and a well-
676
+ known industrial platform. They both allow users to rate and review
677
+ a range of items from different domains, each of which represents
678
+ the user’s interests. On that account, the combination of explicit
679
+ user feedback and implicit domain knowledge is unique and valu-
680
+ able for cross-domain recommendation.
681
+ • Douban data set. We choose a subset containing the three
682
+ largest domains, including books, movies, and music. They are
683
+ linked together by a shared user ID that identifies the same user.
684
+ Correspondingly, we construct three cross-domain recommen-
685
+ dation tasks: movie-book, movie-music, and book-music.
686
+ • Industrial data set. This platform has two scenarios, mall and
687
+ community, which are connected by a shared user id. Conse-
688
+ quently, we constructed a task mall-community, expecting to
689
+ improve the recommendation performance in both domains.
690
+ Statistics on the two data sets can be found in Table 1. For both
691
+ data sets, the user’s content features are aggregated by user com-
692
+ ments, user tags, and user profiles, and the item’s content features
693
+ are composed of its profile and the comments below it. Note that
694
+
695
+ Conference’17, July 2017, Washington, DC, USA
696
+ Trovato and Tobin, et al.
697
+ Table 1: Statistics of data sets.
698
+ data sets
699
+ Douban
700
+ Industrial Platform
701
+ Domains
702
+ Movie
703
+ Music
704
+ Book
705
+ Mall
706
+ Community
707
+ Users
708
+ 2,712
709
+ 1,672
710
+ 2,110
711
+ 35,233
712
+ 29,355
713
+ Items
714
+ 34,893
715
+ 5,567
716
+ 6,777
717
+ 1,749
718
+ 2,452
719
+ Interactions 1,278,401 69,709 96,041 319,795
720
+ 175,802
721
+ Density
722
+ 1.35%
723
+ 0.75%
724
+ 0.67%
725
+ 0.52%
726
+ 0.24%
727
+ Tasks
728
+ Richer
729
+ Sparser
730
+ Overlap
731
+ Douban
732
+ Task1
733
+ Movie
734
+ Book
735
+ 2,106
736
+ Task2
737
+ Movie
738
+ Music
739
+ 1,666
740
+ Task3
741
+ Book
742
+ Music
743
+ 1,566
744
+ Industrial Platform Task4
745
+ Mall
746
+ Community
747
+ 3,146
748
+ each user may interact with items from different domains, but each
749
+ item belongs to only one domain. To improve data quality, we filter
750
+ all data sets to keep users and items with at least 5 interactions [42].
751
+ We normalize the scoring range from 0 to 1.
752
+ 4.1.2
753
+ Parameter Settings. Our framework is implemented using
754
+ Pytorch. Except for the necessary concat operation, the embedding
755
+ size is 64. We adopt Kaiming method [13] for parameter initial-
756
+ ization. For gradient descent, we take Adam [19] with the initial
757
+ learning rate 5e-4 for model optimization. In our proposed model,
758
+ we set batch size to 4096 and the training maximum epoch to 100.
759
+ We initialize the user’s interest K to 256, set the regularization
760
+ weight 𝜆1 and alignment weight 𝜆2 to 1e-2 and 1e-3, respectively.
761
+ Similar to previous work [7], we adopt a leave-one-out approach
762
+ to evaluate model performance. Specifically, for each user in the
763
+ test set, we randomly sample 99 items that the user has not inter-
764
+ acted with as negative examples, and calculate the ground truth
765
+ hit rate and ranking position. The results of model and baselines
766
+ are evaluated by Hit Ratio (Hit) and Normalized Discounted Cu-
767
+ mulative Gain (NDCG) values, where HR measures whether the
768
+ test item is ranked on the Top-N list while NDCG measures the
769
+ specific ranking quality that assigns high scores to hits at top posi-
770
+ tion ranks [16]. Note that this paper is evaluated with @10 unless
771
+ otherwise specified.
772
+ 4.1.3
773
+ Baselines. To verify the effectiveness of cross-domain recom-
774
+ mendation and the superiority of our model, we choose the classic
775
+ single-domain recommendation algorithms and cross-domain rec-
776
+ ommendation approaches for comparison.
777
+ • NMF [16]: NMF aims to find a reasonable user-item interaction
778
+ function for recommendation by combining the linearity of MF
779
+ and the nonlinearity of MLP.
780
+ • LightGCN [15]: LightGCN only obtains node embeddings by
781
+ neighborhood aggregation because it believes that feature trans-
782
+ formation and nonlinear activation have little effect on collabo-
783
+ rative filtering, and even damage recommendation performance.
784
+ • MVDNN [8]: MVDNN maps users and items from multiple do-
785
+ mains into a common latent space, and optimizes by maximizing
786
+ the similarity between users and their preferred items.
787
+ • DTCDR [41]: DTCDR extends NMF to cross-domain recom-
788
+ mendation, leveraging the textual and rating representations of
789
+ overlapping users from both domains for knowledge transfer.
790
+ • DDTCDR [21]: DDTCDR seeks to learn a latent orthogonal
791
+ mapping function between domains to obtain cold-start user
792
+ representations in other domains.
793
+ • DML [22]: DML further extends DDTCTR based on dual metric
794
+ learning, which exploits multiple orthogonal mapping functions
795
+ to explore the transfer of cold-start user representations.
796
+ • GADTCDR [42]: GADTCDR adds user-user and item-item
797
+ edges to heterogeneous graphs based on content similarity to
798
+ improve representation capabilities.
799
+ • CDRIB [1]: CDRIB uses the information bottleneck principle
800
+ to debias recommendations in two domains.
801
+ Please note that NMF and LightGCN are single-domain recom-
802
+ mendation algorithms, and experiments are performed on the two
803
+ domains separately. The others are cross-domain recommenda-
804
+ tion algorithms, where DDTCDR and DML are mapping-based
805
+ methods, while MVDNN, DTCDR, GADTCDR, and CDRIB are
806
+ representation-combination-based approaches. To be fair, we tune
807
+ the hyper-parameters of each model to achieve the best results.
808
+ 4.2
809
+ Comparison with Baselines (RQ1)
810
+ The results of all algorithms on the four tasks are shown in Ta-
811
+ ble 2, with the last row representing the improvement of our model
812
+ over the best baseline for that task. To summarize, benefiting from
813
+ perception of cross-domain similarity and user interest alignment,
814
+ COAST achieved 0.32%-10.22% improvement compared to the best
815
+ performance on different tasks.
816
+ These experiments reflect some interesting findings: (1) Cross-
817
+ domain algorithms outperform single-domain algorithms in most
818
+ tasks, demonstrating the importance of knowledge transfer in cross-
819
+ domain recommendation. Underperforming cross-domain baselines,
820
+ especially those based on mapping genres, over-rely on overlapping
821
+ user ratios such as DDTCDR, DML. (2) Algorithms incorporating
822
+ implicit features outperform models using only explicit interac-
823
+ tions, indicating the importance of capturing content similarity.
824
+ (3) The representation-combination-based models outperform the
825
+ mapping-based approaches, proving that a custom simple map-
826
+ ping function cannot reflect the complex transformation of user
827
+ representations across domains. (3) The improvement of the tar-
828
+ get domain is greater than that of the source domain. On the one
829
+ hand, the source domain can provide more information, and on the
830
+ other hand, the improvement of the recommendation capability
831
+ of the source domain leads to a further promotion in the upper
832
+ bound of the recommendation performance of the target domain.
833
+ (4) Furthermore, we observe that the proposed model improves the
834
+ movie-book task larger than the movie-music task. The possible rea-
835
+ sons are differences in data set size and the number of overlapping
836
+ users, which determine the richness of knowledge and the caliber
837
+ of transfer. We plan to leave this as a topic for future research.
838
+ 4.3
839
+ Robust Testing (RQ2, RQ3)
840
+ We perform overlap ratio tests, ablation experiments, and hyper-
841
+ parameter tests to verify the robustness of our model.
842
+ 4.3.1
843
+ Length N. We also examine the performance of COAST as
844
+ well as the most competitive algorithms in single-domain, cross-
845
+ domain baselines, i.e., LightGCN, GADTCDR, on different recom-
846
+ mendation list lengths, as shown in Figure 5.
847
+
848
+ Cross-domain recommendation via user interest alignment
849
+ Conference’17, July 2017, Washington, DC, USA
850
+ Table 2: Performance comparison for cross-domain recommendation.
851
+ Algorithm
852
+ Task1
853
+ Task2
854
+ Task3
855
+ Task4
856
+ Movie
857
+ Book
858
+ Movie
859
+ Music
860
+ Book
861
+ Music
862
+ Mall
863
+ Community
864
+ Hit
865
+ NDCG
866
+ Hit
867
+ NDCG
868
+ Hit
869
+ NDCG
870
+ Hit
871
+ NDCG
872
+ Hit
873
+ NDCG
874
+ Hit
875
+ NDCG
876
+ Hit
877
+ NDCG
878
+ Hit
879
+ NDCG
880
+ NMF
881
+ 0.5445
882
+ 0.3154
883
+ 0.3916
884
+ 0.2224
885
+ 0.5445
886
+ 0.3154
887
+ 0.3959
888
+ 0.2206
889
+ 0.3916
890
+ 0.2224
891
+ 0.3959
892
+ 0.2206
893
+ 0.5850
894
+ 0.3265
895
+ 0.3793
896
+ 0.2048
897
+ LightGCN
898
+ 0.6174
899
+ 0.3492
900
+ 0.3805
901
+ 0.2226
902
+ 0.6174
903
+ 0.3492
904
+ 0.3528
905
+ 0.2023
906
+ 0.3805
907
+ 0.2226
908
+ 0.3528
909
+ 0.2023
910
+ 0.5848
911
+ 0.2933
912
+ 0.5119
913
+ 0.2490
914
+ MVDNN
915
+ 0.6382
916
+ 0.3689
917
+ 0.4654
918
+ 0.2575
919
+ 0.6414
920
+ 0.3641
921
+ 0.3965
922
+ 0.2238
923
+ 0.5104
924
+ 0.2947
925
+ 0.3923
926
+ 0.2390
927
+ 0.5963
928
+ 0.3002
929
+ 0.5211
930
+ 0.2507
931
+ DTCDR
932
+ 0.6420
933
+ 0.3794
934
+ 0.4302
935
+ 0.2394
936
+ 0.6197
937
+ 0.4278†
938
+ 0.3593
939
+ 0.2211
940
+ 0.5108†
941
+ 0.3263†
942
+ 0.2848
943
+ 0.2017
944
+ 0.5580
945
+ 0.3109
946
+ 0.3632
947
+ 0.2643
948
+ DDTCDR
949
+ 0.5937
950
+ 0.3558
951
+ 0.4436
952
+ 0.2511
953
+ 0.5921
954
+ 0.3722
955
+ 0.3467
956
+ 0.2189
957
+ 0.4540
958
+ 0.2666
959
+ 0.3086
960
+ 0.2042
961
+ 0.5135
962
+ 0.2884
963
+ 0.3729
964
+ 0.1886
965
+ DML
966
+ 0.6060
967
+ 0.3638
968
+ 0.4662
969
+ 0.2662
970
+ 0.6093
971
+ 0.4059
972
+ 0.3821
973
+ 0.2287
974
+ 0.4521
975
+ 0.2616
976
+ 0.4253†
977
+ 0.2548†
978
+ 0.5491
979
+ 0.3181
980
+ 0.4283
981
+ 0.2124
982
+ GADTCDR
983
+ 0.6817†
984
+ 0.4205†
985
+ 0.4882†
986
+ 0.3026†
987
+ 0.6818†
988
+ 0.4276
989
+ 0.4383†
990
+ 0.2498†
991
+ 0.4492
992
+ 0.2761
993
+ 0.3571
994
+ 0.1933
995
+ 0.6654†
996
+ 0.4055†
997
+ 0.5173†
998
+ 0.2907†
999
+ CDRIB
1000
+ 0.6114
1001
+ 0.3301
1002
+ 0.4630
1003
+ 0.2772
1004
+ 0.6411
1005
+ 0.3578
1006
+ 0.4103
1007
+ 0.2272
1008
+ 0.5021
1009
+ 0.2654
1010
+ 0.2866
1011
+ 0.2038
1012
+ 0.5744
1013
+ 0.3007
1014
+ 0.4802
1015
+ 0.2814
1016
+ COAST
1017
+ 0.6905
1018
+ 0.4271
1019
+ 0.5052
1020
+ 0.3174
1021
+ 0.6938
1022
+ 0.4292
1023
+ 0.4497
1024
+ 0.2515
1025
+ 0.5138
1026
+ 0.3293
1027
+ 0.4688
1028
+ 0.2712
1029
+ 0.6769
1030
+ 0.4073
1031
+ 0.5503
1032
+ 0.3195
1033
+ Improvement
1034
+ 1.2909%
1035
+ 1.5696%
1036
+ 3.4821%
1037
+ 4.8909%
1038
+ 1.7600%
1039
+ 0.3273%
1040
+ 2.6001%
1041
+ 0.6805%
1042
+ 0.5873%
1043
+ 0.9194%
1044
+ 10.2280%
1045
+ 6.4364%
1046
+ 1.7283%
1047
+ 0.4439%
1048
+ 6.3793%
1049
+ 9.9071%
1050
+ † means the strongest baseline’s performance.
1051
+ 1
1052
+ 3
1053
+ 5
1054
+ 7
1055
+ 10
1056
+ 0.2
1057
+ 0.3
1058
+ 0.4
1059
+ 0.5
1060
+ 0.6
1061
+ 0.7
1062
+ Top-N Hit (movie)
1063
+ COAST
1064
+ GADTCDR
1065
+ LightGCN
1066
+ (a) Hit of Douban-movie.
1067
+ 1
1068
+ 3
1069
+ 5
1070
+ 7
1071
+ 10
1072
+ 0.20
1073
+ 0.25
1074
+ 0.30
1075
+ 0.35
1076
+ 0.40
1077
+ Top-N NDCG (movie)
1078
+ COAST
1079
+ GADTCDR
1080
+ LightGCN
1081
+ (b) NDCG of Douban-movie.
1082
+ 1
1083
+ 3
1084
+ 5
1085
+ 7
1086
+ 10
1087
+ 0.15
1088
+ 0.20
1089
+ 0.25
1090
+ 0.30
1091
+ 0.35
1092
+ 0.40
1093
+ 0.45
1094
+ 0.50
1095
+ Top-N Hit (book)
1096
+ COAST
1097
+ GADTCDR
1098
+ LightGCN
1099
+ (c) Hit of Douban-book.
1100
+ 1
1101
+ 3
1102
+ 5
1103
+ 7
1104
+ 10
1105
+ 0.125
1106
+ 0.150
1107
+ 0.175
1108
+ 0.200
1109
+ 0.225
1110
+ 0.250
1111
+ 0.275
1112
+ 0.300
1113
+ 0.325
1114
+ Top-N NDCG (book)
1115
+ COAST
1116
+ GADTCDR
1117
+ LightGCN
1118
+ (d) NDCG of Douban-book.
1119
+ Figure 5: Top-N performance.
1120
+ Obviously, the performance of all algorithms increases as the
1121
+ recommendation list grows, because the longer the list, the higher
1122
+ the fault tolerance. Meanwhile, compared with the LightGCN and
1123
+ GADTCDR algorithms, our algorithm achieves the best perfor-
1124
+ mance in all scenarios, especially in the difficult 𝑁 = 3 scenario
1125
+ with the greatest improvement, which shows our superiority.
1126
+ 4.3.2
1127
+ Overlap Ratio M. To investigate the robustness of our model,
1128
+ we experiment with scaling the number of overlapping users.
1129
+ Table 3 reports the recommendation performance of COAST,
1130
+ GADTCDR trained on corresponding cross-domain scenarios with
1131
+ overlapping users of 25%, 50%, 75%, and 100%, respectively. From
1132
+ Table 3, we have the following observations. (1) With the increase
1133
+ of the overlapping user training ratio,the recommendation perfor-
1134
+ mance of all algorithms steadily improves, which demonstrates that
1135
+ overlapping ratio is effective to enhance the correlation across do-
1136
+ mains. (2) Our model shows robust performance to make recommen-
1137
+ dations for both domains than the strongest baseline GADTCDR,
1138
+ even with only 25% user overlap. This is attributed to the unified
1139
+ Table 3: Overlap ratio test.
1140
+ Task
1141
+ Ratio
1142
+ COAST
1143
+ GADTCDR
1144
+ source
1145
+ target
1146
+ source
1147
+ target
1148
+ Hit
1149
+ NDCG
1150
+ Hit
1151
+ NDCG
1152
+ Hit
1153
+ NDCG
1154
+ Hit
1155
+ NDCG
1156
+ Task1
1157
+ 25%
1158
+ 0.6606
1159
+ 0.4013
1160
+ 0.4531
1161
+ 0.2735
1162
+ 0.6067
1163
+ 0.3447
1164
+ 0.3933
1165
+ 0.2412
1166
+ 50%
1167
+ 0.6824
1168
+ 0.4242
1169
+ 0.4801
1170
+ 0.2976
1171
+ 0.6193
1172
+ 0.3711
1173
+ 0.4402
1174
+ 0.2709
1175
+ 75%
1176
+ 0.6831
1177
+ 0.4132
1178
+ 0.5019
1179
+ 0.3078
1180
+ 0.6263
1181
+ 0.3766
1182
+ 0.4474
1183
+ 0.2889
1184
+ 100%
1185
+ 0.6905
1186
+ 0.4271
1187
+ 0.5052
1188
+ 0.3174
1189
+ 0.6817
1190
+ 0.4205
1191
+ 0.4882
1192
+ 0.3026
1193
+ Task2
1194
+ 25%
1195
+ 0.6875
1196
+ 0.4188
1197
+ 0.4055
1198
+ 0.2238
1199
+ 0.5997
1200
+ 0.3527
1201
+ 0.2805
1202
+ 0.1512
1203
+ 50%
1204
+ 0.6881
1205
+ 0.4161
1206
+ 0.4372
1207
+ 0.2445
1208
+ 0.6186
1209
+ 0.3601
1210
+ 0.3301
1211
+ 0.1297
1212
+ 75%
1213
+ 0.6872
1214
+ 0.4143
1215
+ 0.4382
1216
+ 0.2469
1217
+ 0.6101
1218
+ 0.3712
1219
+ 0.3445
1220
+ 0.1808
1221
+ 100%
1222
+ 0.6938
1223
+ 0.4292
1224
+ 0.4497
1225
+ 0.2515
1226
+ 0.6818
1227
+ 0.4276
1228
+ 0.4383
1229
+ 0.2498
1230
+ Taks3
1231
+ 25%
1232
+ 0.4763
1233
+ 0.2958
1234
+ 0.3929
1235
+ 0.2148
1236
+ 0.4080
1237
+ 0.2484
1238
+ 0.2805
1239
+ 0.1512
1240
+ 50%
1241
+ 0.4845
1242
+ 0.3081
1243
+ 0.3954
1244
+ 0.2181
1245
+ 0.4338
1246
+ 0.2698
1247
+ 0.3367
1248
+ 0.1812
1249
+ 75%
1250
+ 0.5014
1251
+ 0.3115
1252
+ 0.4192
1253
+ 0.2293
1254
+ 0.4350
1255
+ 0.2619
1256
+ 0.3375
1257
+ 0.1891
1258
+ 100%
1259
+ 0.5138
1260
+ 0.3293
1261
+ 0.4688
1262
+ 0.2712
1263
+ 0.4492
1264
+ 0.2761
1265
+ 0.3571
1266
+ 0.1933
1267
+ Task4
1268
+ 25%
1269
+ 0.6453
1270
+ 0.3883
1271
+ 0.5240
1272
+ 0.3454
1273
+ 0.6380
1274
+ 0.3713
1275
+ 0.5037
1276
+ 0.3000
1277
+ 50%
1278
+ 0.6550
1279
+ 0.3912
1280
+ 0.5236
1281
+ 0.2998
1282
+ 0.6470
1283
+ 0.3863
1284
+ 0.5069
1285
+ 0.2916
1286
+ 75%
1287
+ 0.6590
1288
+ 0.3945
1289
+ 0.5439
1290
+ 0.3242
1291
+ 0.6493
1292
+ 0.3874
1293
+ 0.5010
1294
+ 0.2922
1295
+ 100%
1296
+ 0.6769
1297
+ 0.4073
1298
+ 0.5503
1299
+ 0.3195
1300
+ 0.6654
1301
+ 0.4055
1302
+ 0.5173
1303
+ 0.2907
1304
+ graph message passing mechanism and user interest alignment,
1305
+ which enable the model to perceive the cross-domain similarity
1306
+ between entities and ensure consistent interests across views. (3)
1307
+ Further, we observe that the overlap ratio has little improvement on
1308
+ 75%→100% than 25% → 50%, as the absolute number of overlapping
1309
+ users is large enough to ensure basic knowledge transfer.
1310
+ 4.3.3
1311
+ Ablation Studies. We further compare COAST with several
1312
+ ablation variants to demonstrate the effectiveness and advance-
1313
+ ment of different sub-modules. For fairness, other settings are kept
1314
+ unchanged except for the specified ablation module.
1315
+ • COAST-NF: This variant uses only explicit interactions.
1316
+ • COAST-NS: Instead of constructing cross-domain heteroge-
1317
+ neous graphs, each domain trains representations separately.
1318
+ • COAST-NM: No user-item interaction in section 3.3.2.
1319
+ • COAST-NU: This variant is not subject to user-user consis-
1320
+ tency.
1321
+ • COAST-NI: This variant is not subject to user-item consistency.
1322
+ As reported in Figure 6, COAST-NF has the worst performance
1323
+ but is still stronger than the vast majority of baselines (except for
1324
+ GADTCDR), illustrating that our model structure is able to mine
1325
+ structural similarities from explicit data. Regarding COAST-NS and
1326
+ COAST-NM, as ablations of the cross-domain graph module, both
1327
+ decrease compared with COAST. The former cannot capture cross-
1328
+ domain similarity due to the isolation of user-item cross-domain
1329
+
1330
+ Conference’17, July 2017, Washington, DC, USA
1331
+ Trovato and Tobin, et al.
1332
+ COAST-NF
1333
+ COAST-NS COAST-NM COAST-NU
1334
+ COAST-NI
1335
+ COAST
1336
+ 0.0
1337
+ 0.1
1338
+ 0.2
1339
+ 0.3
1340
+ 0.4
1341
+ 0.5
1342
+ 0.6
1343
+ 0.7
1344
+ Hit (movie)
1345
+ (a) Hit@10 of Douban-movie.
1346
+ COAST-NF
1347
+ COAST-NS COAST-NM COAST-NU
1348
+ COAST-NI
1349
+ COAST
1350
+ 0.00
1351
+ 0.05
1352
+ 0.10
1353
+ 0.15
1354
+ 0.20
1355
+ 0.25
1356
+ 0.30
1357
+ 0.35
1358
+ 0.40
1359
+ NDCG (movie)
1360
+ (b) NDCG@10 of Douban-movie.
1361
+ COAST-NF
1362
+ COAST-NS COAST-NM COAST-NU
1363
+ COAST-NI
1364
+ COAST
1365
+ 0.0
1366
+ 0.1
1367
+ 0.2
1368
+ 0.3
1369
+ 0.4
1370
+ 0.5
1371
+ Hit (book)
1372
+ (c) Hit@10 of Douban-book.
1373
+ COAST-NF
1374
+ COAST-NS COAST-NM COAST-NU
1375
+ COAST-NI
1376
+ COAST
1377
+ 0.00
1378
+ 0.05
1379
+ 0.10
1380
+ 0.15
1381
+ 0.20
1382
+ 0.25
1383
+ 0.30
1384
+ NDCG (book)
1385
+ (d) NDCG@10 of Douban-book.
1386
+ Figure 6: Ablation studies.
1387
+ 16
1388
+ 32
1389
+ 64
1390
+ 128
1391
+ 0.683
1392
+ 0.684
1393
+ 0.685
1394
+ 0.686
1395
+ 0.687
1396
+ 0.688
1397
+ 0.689
1398
+ 0.690
1399
+ Hit
1400
+ NDCG
1401
+ 0.414
1402
+ 0.416
1403
+ 0.418
1404
+ 0.420
1405
+ 0.422
1406
+ 0.424
1407
+ 0.426
1408
+ Hyper-Emb (movie)
1409
+ (a) Hit@10 of Douban-movie.
1410
+ 16
1411
+ 32
1412
+ 64
1413
+ 128
1414
+ 0.498
1415
+ 0.499
1416
+ 0.500
1417
+ 0.501
1418
+ 0.502
1419
+ 0.503
1420
+ 0.504
1421
+ 0.505
1422
+ Hit
1423
+ NDCG
1424
+ 0.312
1425
+ 0.313
1426
+ 0.314
1427
+ 0.315
1428
+ 0.316
1429
+ 0.317
1430
+ Hyper-Emb (book)
1431
+ (b) Hit@10 of Douban-book.
1432
+ Figure 7: The impact of 𝐷.
1433
+ interactions at the graph structure level, while the latter is insuffi-
1434
+ cient to characterize the collaborative filtering relationship due to
1435
+ ignoring the collaborative signal of user-item. Meanwhile, with the
1436
+ same structure, COAST improve over COAST-NU, COAST-NI. This
1437
+ demonstrates that using user interest alignment as a constraint can
1438
+ not only effectively prevent overfitting, but also, as a fine-grained
1439
+ knowledge utilization, significantly enhance the generalization of
1440
+ user representations across domains. From a deeper perspective,
1441
+ contrastive learning and gradient alignment leverage the poten-
1442
+ tial unsupervised signals and semantic features in the data, which
1443
+ greatly facilitates the extraction of domain-invariant features. In
1444
+ general, each submodule of COAST plays an indispensable role and
1445
+ contributes significantly to the model performance.
1446
+ 4.3.4
1447
+ Hyper-testing. In this subsection, we present the tuning of
1448
+ several key hyper-parameters in our framework.
1449
+ Embedding size D. Embedding size is one of the most important
1450
+ hyper- parameters in deep learning and is closely related to model
1451
+ capacity [38]. To improve the performance of the proposed COAST,
1452
+ we perform a hyper-parameter search on the embedding size.
1453
+ 64
1454
+ 128
1455
+ 256
1456
+ 512
1457
+ 0.680
1458
+ 0.682
1459
+ 0.684
1460
+ 0.686
1461
+ 0.688
1462
+ 0.690
1463
+ Hit
1464
+ NDCG
1465
+ 0.414
1466
+ 0.416
1467
+ 0.418
1468
+ 0.420
1469
+ 0.422
1470
+ 0.424
1471
+ 0.426
1472
+ Hyper-Interest (movie)
1473
+ (a) Hit@10 of Douban-movie.
1474
+ 64
1475
+ 128
1476
+ 256
1477
+ 512
1478
+ 0.492
1479
+ 0.494
1480
+ 0.496
1481
+ 0.498
1482
+ 0.500
1483
+ 0.502
1484
+ 0.504
1485
+ Hit
1486
+ NDCG
1487
+ 0.304
1488
+ 0.306
1489
+ 0.308
1490
+ 0.310
1491
+ 0.312
1492
+ 0.314
1493
+ 0.316
1494
+ 0.318
1495
+ Hyper-Interest (book)
1496
+ (b) Hit@10 of Douban-book.
1497
+ Figure 8: The impact of 𝐾.
1498
+ 1e-3
1499
+ 5e-3
1500
+ 1e-2
1501
+ 5e-2
1502
+ 0.683
1503
+ 0.684
1504
+ 0.685
1505
+ 0.686
1506
+ 0.687
1507
+ 0.688
1508
+ 0.689
1509
+ 0.690
1510
+ Hit
1511
+ NDCG
1512
+ 0.4100
1513
+ 0.4125
1514
+ 0.4150
1515
+ 0.4175
1516
+ 0.4200
1517
+ 0.4225
1518
+ 0.4250
1519
+ 0.4275
1520
+ Hyper- 2 (movie)
1521
+ (a) Hit@10 of Douban-movie.
1522
+ 1e-3
1523
+ 5e-3
1524
+ 1e-2
1525
+ 5e-2
1526
+ 0.496
1527
+ 0.498
1528
+ 0.500
1529
+ 0.502
1530
+ 0.504
1531
+ Hit
1532
+ NDCG
1533
+ 0.310
1534
+ 0.312
1535
+ 0.314
1536
+ 0.316
1537
+ Hyper- 2 (book)
1538
+ (b) Hit@10 of Douban-book.
1539
+ Figure 9: The impact of 𝜆2.
1540
+ As shown in Figure 7, our algorithm performs best when 𝐷 = 64
1541
+ on any metrics. The larger the embedding size, the more expressive
1542
+ the model is, but too high embedding size will slow down the
1543
+ convergence speed and lead to overfitting. In consequence, we
1544
+ choose 𝐷 = 64 as the embedding size in COAST.
1545
+ Number of Interests K. In section 3.4.1, we constrain users’ con-
1546
+ trasting views to belong to the same cluster center. In view of this,
1547
+ we perform a test on the number of interest cluster centers 𝐾.
1548
+ As shown in Figure 8, our model is sensitive to 𝐾. We argue that
1549
+ this phenomenon arises because 𝐾 represents an abstract interest
1550
+ center rather than a concrete interest. Meanwhile, we propose
1551
+ that higher 𝐾 can be chosen to characterize the distribution of
1552
+ user interests when the number of items and users increases. This
1553
+ is intuitive, as the number of users increases, the interests will
1554
+ obviously become more diverse. Consequently, we choose 𝐾 = 256.
1555
+ Consistency weight 𝜆2. The consistency weight 𝜆2 is a trade-off
1556
+ between task interest and user interest alignment. To improve the
1557
+ recommendation effect, we have tuned it.
1558
+ The larger 𝜆2 is, the stronger the constraint on user interest
1559
+ consistency is, but hinders domain-specific user representation,
1560
+ thereby impairing recommendation performance on that domain.
1561
+ Conversely, the smaller 𝜆2 is, our model will degenerate into a
1562
+ general representation combination model, which cannot solve
1563
+ user interest alignment. Experimentally, we set 𝜆2 = 0.01.
1564
+ 5
1565
+ CONCLUSION
1566
+ In this work, we propose the COAST framework, which aims to
1567
+ improve model performance in dual cross-domain recommenda-
1568
+ tion scenarios. This work represents an attempt to leverage rich
1569
+ content information and user interest alignment for bidirectional
1570
+ knowledge transfer. Specifically, we model the interaction of users
1571
+ and items in two domains as a unified cross-domain heterogeneous
1572
+
1573
+ 1
1574
+ 11Cross-domain recommendation via user interest alignment
1575
+ Conference’17, July 2017, Washington, DC, USA
1576
+ graph, and improve the message passing mechanism of graph con-
1577
+ volution to capture the cross-domain similarity of users and items.
1578
+ Further, we utilize contrastive learning and gradient alignment to
1579
+ constrain overlapping user interest alignment from both user-user
1580
+ and user-item perspectives. Overall, our solution has several ad-
1581
+ vantages. First, at the data level, our task is constructed on data
1582
+ sets with partial user overlap and exploits both explicit and implicit
1583
+ information, which has a wider range of application scenarios. Sec-
1584
+ ond, at the algorithm level, we learn better representations from
1585
+ high-order cross-domain similarity and user interest alignment com-
1586
+ pared to previous plain combinations. Finally, at the experimental
1587
+ level, we conduct extensive experiments, all of which demonstrate
1588
+ the state-of-the-art and superiority of our model.
1589
+ There are still several limitations of our study for future work.
1590
+ First, how to extend our work to more complex scenarios, such as
1591
+ the case of overlapping items or multi-domain recommendation.
1592
+ Second, how to integrate data from other modalities or integrate
1593
+ more complex interactions, such as images, attribute nodes, in fea-
1594
+ ture extraction module. Finally, we should validate the robustness
1595
+ of COAST on more large cross-domain recommendation data sets.
1596
+ REFERENCES
1597
+ [1] Jiangxia Cao, Jiawei Sheng, Xin Cong, Tingwen Liu, and Bin Wang. 2022. Cross-
1598
+ Domain Recommendation to Cold-Start Users via Variational Information Bottle-
1599
+ neck. arXiv preprint arXiv:2203.16863 (2022).
1600
+ [2] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
1601
+ Armand Joulin. 2020. Unsupervised learning of visual features by contrasting
1602
+ cluster assignments. Advances in Neural Information Processing Systems 33 (2020),
1603
+ 9912–9924.
1604
+ [3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
1605
+ simple framework for contrastive learning of visual representations. In Interna-
1606
+ tional conference on machine learning. PMLR, 1597–1607.
1607
+ [4] Qiang Cui, Tao Wei, Yafeng Zhang, and Qing Zhang. 2020. HeroGRAPH: A Het-
1608
+ erogeneous Graph Framework for Multi-Target Cross-Domain Recommendation..
1609
+ In ORSUM@ RecSys.
1610
+ [5] Andrew M Dai, Christopher Olah, and Quoc V Le. 2015. Document embedding
1611
+ with paragraph vectors. arXiv preprint arXiv:1507.07998 (2015).
1612
+ [6] Aminu Da’u and Naomie Salim. 2020. Recommendation system based on deep
1613
+ learning methods: a systematic review and new directions. Artificial Intelligence
1614
+ Review 53, 4 (2020), 2709–2748.
1615
+ [7] Qilin Deng, Kai Wang, Minghao Zhao, Zhene Zou, Runze Wu, Jianrong Tao,
1616
+ Changjie Fan, and Liang Chen. 2020. Personalized bundle recommendation
1617
+ in online games. In Proceedings of the 29th ACM International Conference on
1618
+ Information & Knowledge Management. 2381–2388.
1619
+ [8] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
1620
+ learning approach for cross domain user modeling in recommendation systems.
1621
+ In Proceedings of the 24th international conference on world wide web. 278–288.
1622
+ [9] Chen Gao, Xiangning Chen, Fuli Feng, Kai Zhao, Xiangnan He, Yong Li, and
1623
+ Depeng Jin. 2019. Cross-domain recommendation without sharing user-relevant
1624
+ data. In The world wide web conference. 491–502.
1625
+ [10] Zhiqiang Gao, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, and Chaoliang
1626
+ Zhong. 2021. Gradient distribution alignment certificates better adversarial
1627
+ domain adaptation. In Proceedings of the IEEE/CVF International Conference on
1628
+ Computer Vision. 8937–8946.
1629
+ [11] Carlos A Gomez-Uribe and Neil Hunt. 2015. The netflix recommender system:
1630
+ Algorithms, business value, and innovation. ACM Transactions on Management
1631
+ Information Systems (TMIS) 6, 4 (2015), 1–19.
1632
+ [12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
1633
+ mentum contrast for unsupervised visual representation learning. In Proceedings
1634
+ of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.
1635
+ [13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
1636
+ into rectifiers: Surpassing human-level performance on imagenet classification.
1637
+ In Proceedings of the IEEE international conference on computer vision. 1026–1034.
1638
+ [14] Ming He, Jiuling Zhang, Peng Yang, and Kaisheng Yao. 2018. Robust transfer
1639
+ learning for cross-domain collaborative filtering using multiple rating patterns
1640
+ approximation. In Proceedings of the Eleventh ACM International Conference on
1641
+ Web Search and Data Mining. 225–233.
1642
+ [15] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
1643
+ Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
1644
+ recommendation. In Proceedings of the 43rd International ACM SIGIR conference
1645
+ on research and development in Information Retrieval. 639–648.
1646
+ [16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
1647
+ Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
1648
+ conference on world wide web. 173–182.
1649
+ [17] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-
1650
+ jee, and Fillia Makedon. 2020. A survey on contrastive self-supervised learning.
1651
+ Technologies 9, 1 (2020), 2.
1652
+ [18] Muhammad Murad Khan, Roliana Ibrahim, and Imran Ghani. 2017. Cross domain
1653
+ recommender systems: a systematic literature review. ACM Computing Surveys
1654
+ (CSUR) 50, 3 (2017), 1–34.
1655
+ [19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
1656
+ mization. arXiv preprint arXiv:1412.6980 (2014).
1657
+ [20] Jin Li, Zhaohui Peng, Senzhang Wang, Xiaokang Xu, Philip S Yu, and Zhenyun
1658
+ Hao. 2020. Heterogeneous Graph Embedding for Cross-Domain Recommendation
1659
+ Through Adversarial Learning. In International Conference on Database Systems
1660
+ for Advanced Applications. Springer, 507–522.
1661
+ [21] Pan Li and Alexander Tuzhilin. 2020. Ddtcdr: Deep dual transfer cross domain
1662
+ recommendation. In Proceedings of the 13th International Conference on Web
1663
+ Search and Data Mining. 331–339.
1664
+ [22] Pan Li and Alexander Tuzhilin. 2021. Dual metric learning for effective and
1665
+ efficient cross-domain recommendations. IEEE Transactions on Knowledge and
1666
+ Data Engineering (2021).
1667
+ [23] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-
1668
+ tions: Item-to-item collaborative filtering. IEEE Internet computing 7, 1 (2003),
1669
+ 76–80.
1670
+ [24] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie
1671
+ Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE Transactions
1672
+ on Knowledge and Data Engineering (2021).
1673
+ [25] Yong Liu, Susen Yang, Yonghui Xu, Chunyan Miao, Min Wu, and Juyong Zhang.
1674
+ 2021. Contextualized graph attention network for recommendation with item
1675
+ knowledge graph. IEEE Transactions on Knowledge and Data Engineering (2021).
1676
+ [26] Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-domain
1677
+ recommendation: An embedding and mapping approach.. In IJCAI, Vol. 17. 2464–
1678
+ 2470.
1679
+ [27] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
1680
+ Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
1681
+ Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
1682
+ for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
1683
+ (2019).
1684
+ [28] Chang-Dong Wang, Yan-Hui Chen, Wu-Dong Xi, Ling Huang, and Guangqiang
1685
+ Xie. 2021. Cross-Domain Explicit-Implicit-Mixed Collaborative Filtering Neural
1686
+ Network. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2021).
1687
+ [29] Tianxin Wang, Fuzhen Zhuang, Zhiqiang Zhang, Daixin Wang, Jun Zhou, and
1688
+ Qing He. 2021. Low-dimensional Alignment for Cross-Domain Recommenda-
1689
+ tion. In Proceedings of the 30th ACM International Conference on Information &
1690
+ Knowledge Management. 3508–3512.
1691
+ [30] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
1692
+ Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
1693
+ SIGIR conference on Research and development in Information Retrieval. 165–174.
1694
+ [31] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2022. A survey
1695
+ on accuracy-oriented neural recommendation: From collaborative filtering to
1696
+ information-rich recommendation. IEEE Transactions on Knowledge and Data
1697
+ Engineering (2022).
1698
+ [32] Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z Li. 2021. Self-
1699
+ supervised learning on graphs: Contrastive, generative, or predictive. IEEE
1700
+ Transactions on Knowledge and Data Engineering (2021).
1701
+ [33] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised
1702
+ feature learning via non-parametric instance discrimination. In Proceedings of
1703
+ the IEEE conference on computer vision and pattern recognition. 3733–3742.
1704
+ [34] Tianzi Zang, Yanmin Zhu, Haobing Liu, Ruohan Zhang, and Jiadi Yu. 2021. A
1705
+ survey on cross-domain recommendation: taxonomies, methods, and future
1706
+ directions. arXiv preprint arXiv:2108.03357 (2021).
1707
+ [35] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
1708
+ Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
1709
+ ACM SIGKDD international conference on knowledge discovery & data mining.
1710
+ 793–803.
1711
+ [36] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
1712
+ ommender system: A survey and new perspectives. ACM Computing Surveys
1713
+ (CSUR) 52, 1 (2019), 1–38.
1714
+ [37] Cheng Zhao, Chenliang Li, Rong Xiao, Hongbo Deng, and Aixin Sun. 2020. CATN:
1715
+ Cross-domain recommendation for cold-start users via aspect transfer network.
1716
+ In Proceedings of the 43rd International ACM SIGIR Conference on Research and
1717
+ Development in Information Retrieval. 229–238.
1718
+ [38] Chuang Zhao, Hongke Zhao, Runze Wu, Qilin Deng, Yu Ding, Jianrong Tao, and
1719
+ Changjie Fan. 2022. Multi-dimensional Prediction of Guild Health in Online
1720
+ Games: A Stability-Aware Multi-task Learning Approach. (2022).
1721
+
1722
+ Conference’17, July 2017, Washington, DC, USA
1723
+ Trovato and Tobin, et al.
1724
+ [39] Zhi-Lin Zhao, Ling Huang, Chang-Dong Wang, and Dong Huang. 2018. Low-rank
1725
+ and sparse cross-domain recommendation algorithm. In International Conference
1726
+ on Database Systems for Advanced Applications. Springer, 150–157.
1727
+ [40] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
1728
+ Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
1729
+ prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
1730
+ 5941–5948.
1731
+ [41] Feng Zhu, Chaochao Chen, Yan Wang, Guanfeng Liu, and Xiaolin Zheng. 2019.
1732
+ Dtcdr: A framework for dual-target cross-domain recommendation. In Proceed-
1733
+ ings of the 28th ACM International Conference on Information and Knowledge
1734
+ Management. 1533–1542.
1735
+ [42] Feng Zhu, Yan Wang, Chaochao Chen, Guanfeng Liu, and Xiaolin Zheng. 2020.
1736
+ A Graphical and Attentional Framework for Dual-Target Cross-Domain Recom-
1737
+ mendation.. In IJCAI. 3001–3008.
1738
+ [43] Feng Zhu, Yan Wang, Chaochao Chen, Jun Zhou, Longfei Li, and Guanfeng Liu.
1739
+ 2021. Cross-domain recommendation: challenges, progress, and prospects. arXiv
1740
+ preprint arXiv:2103.01696 (2021).
1741
+ [44] Feng Zhu, Yan Wang, Jun Zhou, Chaochao Chen, Longfei Li, and Guanfeng Liu.
1742
+ 2021. A unified framework for cross-domain and cross-system recommendations.
1743
+ IEEE Transactions on Knowledge and Data Engineering (2021).
1744
+ [45] Yongchun Zhu, Kaikai Ge, Fuzhen Zhuang, Ruobing Xie, Dongbo Xi, Xu Zhang,
1745
+ Leyu Lin, and Qing He. 2021. Transfer-meta framework for cross-domain recom-
1746
+ mendation to cold-start users. In Proceedings of the 44th International ACM SIGIR
1747
+ Conference on Research and Development in Information Retrieval. 1813–1817.
1748
+ [46] Yongchun Zhu, Zhenwei Tang, Yudan Liu, Fuzhen Zhuang, Ruobing Xie, Xu
1749
+ Zhang, Leyu Lin, and Qing He. 2022. Personalized transfer of user preferences for
1750
+ cross-domain recommendation. In Proceedings of the Fifteenth ACM International
1751
+ Conference on Web Search and Data Mining. 1507–1515.
1752
+
1753
+ Cross-domain recommendation via user interest alignment
1754
+ Conference’17, July 2017, Washington, DC, USA
1755
+ A
1756
+ IMPORTANT NOTATIONS
1757
+ Table 4: Mathematical Notation
1758
+ Symbol
1759
+ Notation
1760
+ S, T
1761
+ source/target domain
1762
+ U
1763
+ user set
1764
+ V
1765
+ item set
1766
+ A
1767
+ user-item interaction matrix
1768
+ X, H
1769
+ features before/after preprocessing
1770
+ G = (U, V, E, H)
1771
+ heterogeneous graph of user-item interactions
1772
+ 𝑁
1773
+ neighbors set
1774
+ 𝑚
1775
+ message passing function
1776
+ 𝐾
1777
+ the total number of interests in the user set
1778
+ 𝑔
1779
+ gradient calculation
1780
+ 𝑦
1781
+ whether the user clicked on the item
1782
+ B
1783
+ ALGORITHM
1784
+ Algorithm 1 The Algorithm of COAST
1785
+ Input: Interaction matrix AS,AT,XS,XT;
1786
+ Output: Parameters Θ;
1787
+ 1: Random initialize model parameters Θ,
1788
+ 2: Data preprocessing 𝑒𝑢 ∈ HU, 𝑒𝑣
1789
+ S ∈ HS, 𝑒𝑣
1790
+ T ∈ HT
1791
+ 3: Graph construction G = (U, V, E, H)
1792
+ 4: while not converged do
1793
+ 5:
1794
+ Sample a batch of training data
1795
+ 6:
1796
+ Graph propagation, getting 𝑒𝑢, 𝑒𝑣
1797
+ 7:
1798
+ for 𝑢 ∈ U𝑜 do
1799
+ 8:
1800
+ User-User interest alignment L𝑈 ,𝑈
1801
+ 9:
1802
+ User-Item interest alignment L𝑈 ,𝐼
1803
+ 10:
1804
+ end for
1805
+ 11:
1806
+ Supervise loss L𝑠
1807
+ 12:
1808
+ Joint optimization L
1809
+ 13:
1810
+ Update the parameters
1811
+ 14: end while
1812
+ 15: return Parameters Θ
1813
+
R9FJT4oBgHgl3EQfLCxT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff