jackkuo commited on
Commit
d7df988
·
verified ·
1 Parent(s): fdbc8d4

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. 3dE1T4oBgHgl3EQflwTE/content/tmp_files/2301.03290v1.pdf.txt +0 -0
  3. 3dE1T4oBgHgl3EQflwTE/content/tmp_files/load_file.txt +0 -0
  4. 3tAzT4oBgHgl3EQf9f42/content/tmp_files/2301.01919v1.pdf.txt +1175 -0
  5. 3tAzT4oBgHgl3EQf9f42/content/tmp_files/load_file.txt +0 -0
  6. 7dAzT4oBgHgl3EQfgPzo/vector_store/index.pkl +3 -0
  7. 9NFPT4oBgHgl3EQfYjSJ/content/tmp_files/load_file.txt +0 -0
  8. CdAyT4oBgHgl3EQfR_ex/content/tmp_files/2301.00078v1.pdf.txt +2025 -0
  9. CdAyT4oBgHgl3EQfR_ex/content/tmp_files/load_file.txt +0 -0
  10. D9E1T4oBgHgl3EQfWgQs/content/tmp_files/2301.03114v1.pdf.txt +0 -0
  11. D9E1T4oBgHgl3EQfWgQs/content/tmp_files/load_file.txt +0 -0
  12. FtE3T4oBgHgl3EQftQtg/vector_store/index.pkl +3 -0
  13. H9E1T4oBgHgl3EQfXwRb/content/tmp_files/2301.03130v1.pdf.txt +824 -0
  14. H9E1T4oBgHgl3EQfXwRb/content/tmp_files/load_file.txt +0 -0
  15. INE0T4oBgHgl3EQfhwHS/content/tmp_files/2301.02437v1.pdf.txt +1353 -0
  16. INE0T4oBgHgl3EQfhwHS/content/tmp_files/load_file.txt +0 -0
  17. JtFLT4oBgHgl3EQfKS8v/content/tmp_files/2301.12007v1.pdf.txt +3078 -0
  18. JtFLT4oBgHgl3EQfKS8v/content/tmp_files/load_file.txt +0 -0
  19. LtE1T4oBgHgl3EQfZAR1/content/tmp_files/2301.03145v1.pdf.txt +778 -0
  20. LtE1T4oBgHgl3EQfZAR1/content/tmp_files/load_file.txt +481 -0
  21. LtFQT4oBgHgl3EQfUjZg/content/tmp_files/2301.13297v1.pdf.txt +2165 -0
  22. LtFQT4oBgHgl3EQfUjZg/content/tmp_files/load_file.txt +0 -0
  23. MtE1T4oBgHgl3EQfZQTY/content/tmp_files/2301.03149v1.pdf.txt +932 -0
  24. MtE1T4oBgHgl3EQfZQTY/content/tmp_files/load_file.txt +0 -0
  25. ONE2T4oBgHgl3EQfrAiX/content/tmp_files/2301.04045v1.pdf.txt +1306 -0
  26. ONE2T4oBgHgl3EQfrAiX/content/tmp_files/load_file.txt +0 -0
  27. PNE3T4oBgHgl3EQfxguY/vector_store/index.pkl +3 -0
  28. QNAyT4oBgHgl3EQf7voS/content/tmp_files/2301.00842v1.pdf.txt +0 -0
  29. QNAyT4oBgHgl3EQf7voS/content/tmp_files/load_file.txt +0 -0
  30. QNFQT4oBgHgl3EQfZDbf/content/tmp_files/2301.13315v1.pdf.txt +221 -0
  31. QNFQT4oBgHgl3EQfZDbf/content/tmp_files/load_file.txt +204 -0
  32. RtE3T4oBgHgl3EQfywtH/content/tmp_files/2301.04722v1.pdf.txt +1715 -0
  33. RtE3T4oBgHgl3EQfywtH/content/tmp_files/load_file.txt +0 -0
  34. TtE3T4oBgHgl3EQfzwsF/content/tmp_files/2301.04730v1.pdf.txt +226 -0
  35. TtE3T4oBgHgl3EQfzwsF/content/tmp_files/load_file.txt +217 -0
  36. U9AyT4oBgHgl3EQf8vpk/content/tmp_files/2301.00861v1.pdf.txt +916 -0
  37. U9AyT4oBgHgl3EQf8vpk/content/tmp_files/load_file.txt +0 -0
  38. WNAzT4oBgHgl3EQfKPsc/content/tmp_files/2301.01092v1.pdf.txt +0 -0
  39. WNAzT4oBgHgl3EQfKPsc/content/tmp_files/load_file.txt +0 -0
  40. XNE2T4oBgHgl3EQfDwZ0/content/tmp_files/2301.03628v1.pdf.txt +1191 -0
  41. XNE2T4oBgHgl3EQfDwZ0/content/tmp_files/load_file.txt +0 -0
  42. XdAzT4oBgHgl3EQf1v7O/content/tmp_files/2301.01805v1.pdf.txt +1736 -0
  43. XdAzT4oBgHgl3EQf1v7O/content/tmp_files/load_file.txt +0 -0
  44. XdE2T4oBgHgl3EQfYgeB/content/tmp_files/2301.03855v1.pdf.txt +1519 -0
  45. XdE2T4oBgHgl3EQfYgeB/content/tmp_files/load_file.txt +0 -0
  46. YtE4T4oBgHgl3EQfOAxw/content/tmp_files/2301.04961v1.pdf.txt +746 -0
  47. YtE4T4oBgHgl3EQfOAxw/content/tmp_files/load_file.txt +0 -0
  48. Z9E0T4oBgHgl3EQf4QJC/content/tmp_files/2301.02735v1.pdf.txt +758 -0
  49. Z9E0T4oBgHgl3EQf4QJC/content/tmp_files/load_file.txt +0 -0
  50. cdFST4oBgHgl3EQfDjjb/content/tmp_files/2301.13711v1.pdf.txt +2154 -0
.gitattributes CHANGED
@@ -143,3 +143,7 @@ zNFLT4oBgHgl3EQfni-P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
143
  ttE4T4oBgHgl3EQfWAzx/content/2301.05030v1.pdf filter=lfs diff=lfs merge=lfs -text
144
  DdAyT4oBgHgl3EQf4vob/content/2301.00790v1.pdf filter=lfs diff=lfs merge=lfs -text
145
  rdE1T4oBgHgl3EQfjAQ8/content/2301.03257v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
143
  ttE4T4oBgHgl3EQfWAzx/content/2301.05030v1.pdf filter=lfs diff=lfs merge=lfs -text
144
  DdAyT4oBgHgl3EQf4vob/content/2301.00790v1.pdf filter=lfs diff=lfs merge=lfs -text
145
  rdE1T4oBgHgl3EQfjAQ8/content/2301.03257v1.pdf filter=lfs diff=lfs merge=lfs -text
146
+ gtE4T4oBgHgl3EQfrA2b/content/2301.05205v1.pdf filter=lfs diff=lfs merge=lfs -text
147
+ etE2T4oBgHgl3EQfGgZ8/content/2301.03658v1.pdf filter=lfs diff=lfs merge=lfs -text
148
+ idFMT4oBgHgl3EQf4zEN/content/2301.12453v1.pdf filter=lfs diff=lfs merge=lfs -text
149
+ ptAyT4oBgHgl3EQfl_gG/content/2301.00461v1.pdf filter=lfs diff=lfs merge=lfs -text
3dE1T4oBgHgl3EQflwTE/content/tmp_files/2301.03290v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dE1T4oBgHgl3EQflwTE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tAzT4oBgHgl3EQf9f42/content/tmp_files/2301.01919v1.pdf.txt ADDED
@@ -0,0 +1,1175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Scalable Communication for Multi-Agent Reinforcement Learning
2
+ via Transformer-Based Email Mechanism
3
+ Xudong Guo , Daming Shi , Wenhui Fan
4
+ Department of Automation, Tsinghua University
5
+ {gxd20, shidm18}@mails.tsinghua.edu.cn, [email protected]
6
+ Abstract
7
+ Communication can impressively improve co-
8
+ operation in multi-agent reinforcement learning
9
+ (MARL), especially for partially-observed tasks.
10
+ However, existing works either broadcast the mes-
11
+ sages leading to information redundancy, or learn
12
+ targeted communication by modeling all the other
13
+ agents as targets, which is not scalable when the
14
+ number of agents varies. In this work, to tackle
15
+ the scalability problem of MARL communication
16
+ for partially-observed tasks, we propose a novel
17
+ framework Transformer-based Email Mecha-
18
+ nism (TEM). The agents adopt local communica-
19
+ tion to send messages only to the ones that can
20
+ be observed without modeling all the agents. In-
21
+ spired by human cooperation with email forward-
22
+ ing, we design message chains to forward informa-
23
+ tion to cooperate with the agents outside the ob-
24
+ servation range. We introduce Transformer to en-
25
+ code and decode the message chain to choose the
26
+ next receiver selectively. Empirically, TEM outper-
27
+ forms the baselines on multiple cooperative MARL
28
+ benchmarks. When the number of agents varies,
29
+ TEM maintains superior performance without fur-
30
+ ther training.
31
+ 1
32
+ Introduction
33
+ Multi-agent reinforcement learning (MARL) has achieved re-
34
+ markable success in many complex challenges, especially in
35
+ game playing [OpenAI et al., 2019; Vinyals et al., 2019].
36
+ MARL shows great potential to solve cooperative multi-agent
37
+ real-world tasks, such as autonomous vehicle teams [Shalev-
38
+ Shwartz et al., 2016], robotics control [Kober et al., 2013]
39
+ and intelligent traffic control [Wei et al., 2019]. However,
40
+ some essential obstacles still exist for MARL to reach satis-
41
+ factory performance. When training the MARL algorithms,
42
+ the agents keep updating their policies and causing dynam-
43
+ ics in the environment, which may hinder the model con-
44
+ vergence. Worse still, in most cooperative multi-agent tasks,
45
+ agents can only observe part of the environment. Partial ob-
46
+ servability and non-stationarity make it harder to success-
47
+ fully cooperate, even though some works employ centralized
48
+ Figure 1:
49
+ Message chain formed by email forwarding in the
50
+ Transformer-based Email Mechanism (TEM). The agents (circles)
51
+ are trying to surround and capture the target (square). The dotted
52
+ circle is the observation range for the agent with the same color.
53
+ The black lines are message chains. ⟨·⟩ demotes concatenating. The
54
+ cross denotes not sending or forwarding after receiver selection. The
55
+ agents a, b and c indirectly cooperate by sending (ma) and forward-
56
+ ing (⟨ma, mb⟩) messages to capture the target T. As they are not in
57
+ the same observation range, forwarding like emails is necessary.
58
+ training and decentralized execution (CTDE) paradigm to im-
59
+ port a critic to coordinate the whole team [Yu et al., 2021;
60
+ Lowe et al., 2020; Son et al., 2019; Rashid et al., 2018].
61
+ Inspired by the ways how humans and animals cooperate,
62
+ communication is introduced to share information between
63
+ agents.
64
+ Some works broadcast the messages to all the
65
+ other agents [Zhang et al., 2019; Sukhbaatar et al., 2016;
66
+ Foerster et al., 2016], and other recent works try to learn
67
+ targeted peer-to-peer communication to reduce the commu-
68
+ nication bandwidth [Ding et al., 2020; Jiang and Lu, 2018;
69
+ Yuan et al., 2022]. Attention mechanism from Transformer
70
+ [Vaswani et al., 2017] is also employed to learn the commu-
71
+ nication [Jiang and Lu, 2018]. However, the existing meth-
72
+ ods rely on modeling every teammate in the environment by
73
+ ID to decide whether to communicate, which will bring huge
74
+ computational overhead when the number of agents is large.
75
+ As the modeling network is trained by a specific amount of
76
+ IDs, the learned communication mechanism is not scalable
77
+ to reuse when the number of agents changes. In fact, the
78
+ agent cannot know the state of an agent outside the observa-
79
+ tion range, and cannot judge whether the information is useful
80
+ for it, so it is unreasonable to directly share information with
81
+ arXiv:2301.01919v1 [cs.MA] 5 Jan 2023
82
+
83
+ d
84
+ e
85
+
86
+ T
87
+ ar
88
+ Csuch an agent. For example, for applications to autonomous
89
+ vehicles, only the vehicles nearby are worth communicating
90
+ with to avoid collisions. Thus, global communication with
91
+ all vehicles is unnecessary. Moreover, communication with
92
+ other vehicles should adapt to different numbers of agents as
93
+ the traffic situation varies a lot.
94
+ In this work, to tackle this new problem - the scalability
95
+ of MARL communication, we propose a scalable multi-agent
96
+ communication mechanism via Transformer-based Email
97
+ Mechanism (TEM) to tackle the abovementioned challenges
98
+ as shown in Fig 1. We adopt local communication to send
99
+ messages only to the agents in the observation range, with-
100
+ out modeling all the agents. The agent will decide whom to
101
+ communicate with by its own intention and by observing the
102
+ agents in the range. Thus, no matter how the overall num-
103
+ ber of the agents changes, the learned communication mech-
104
+ anism is scalable. To better utilize the key information and
105
+ indirectly cooperate with the agents outside the range, we de-
106
+ sign a new communication mechanism like email forward-
107
+ ing to form a message chain. The agents can send and for-
108
+ ward the messages so that the chain connects agents from
109
+ different ranges. For example, the agent a in Fig 1 would
110
+ like to surround and capture the target T with other agents,
111
+ thus the agent a may send a message to the agent b instead of
112
+ d, though d is the nearest. Then the agent b can forward the
113
+ message together with the information from itself to c, so that
114
+ a, b and c can cooperate for the same goal though there is no
115
+ direct communication between them. Similarly, in our daily
116
+ life, cooperation in a big company or organization relies on
117
+ such forwarding emails to share information, as it is always
118
+ hard to directly find the exact contact in another department.
119
+ To suit the unfixed length of the message chain and ensure
120
+ the communication mechanism is scalable, we design a new
121
+ message network and employ Transformer to encode and de-
122
+ code the sequence of messages. Furthermore, augmented by
123
+ the attention mechanism in the Transformer, the communi-
124
+ cation is selective by modeling the correlation between the
125
+ messages and the observation. The message network is inde-
126
+ pendent and can be plugged into any CTDE method. What’s
127
+ more, we design a loss to guide the agent to estimate the im-
128
+ pact of the message on other agents. Note that we do not
129
+ introduce the broadcast mechanism from email to keep the
130
+ communication efficient.
131
+ For evaluation, we test TEM on three partial-observation
132
+ cooperative MARL benchmarks: the Starcraft multi-agent
133
+ challenge (SMAC) [Samvelyan et al., 2019], Predator Prey
134
+ (PP) [Kim et al., 2019] and Cooperative Navigation (CN)
135
+ [Lowe et al., 2020], where TEM reaches better performance
136
+ than the baselines. We also evaluate the scalability of TEM.
137
+ Without extra training, TEM can suit both situations where
138
+ the number of agents increases and decreases, and still out-
139
+ performs the baselines.
140
+ 2
141
+ Related Works
142
+ Learning how to communicate is a popular research domain
143
+ in multi-agent reinforcement learning. Researches in this do-
144
+ main focus mainly on cooperative scenarios, where agents
145
+ could communicate with each other explicitly. In the early
146
+ works, RIAL and DIAL [Foerster et al., 2016] are designed
147
+ to learn communication, where messages are delivered from
148
+ one timestep to the next timestep in a broadcast way. Comm-
149
+ Net [Sukhbaatar et al., 2016] proposes a hidden layer as com-
150
+ munication and allows the agents to communicate repeatedly
151
+ in each step. IC3Net [Singh et al., 2018] brings in the gat-
152
+ ing mechanism to control communication based on Comm-
153
+ Net. Both of BiC-Net [Peng et al., 2017] and ATOC [Jiang
154
+ and Lu, 2018] implement the communication layer as bidi-
155
+ rectional RNN, which inputs the observations of all agents
156
+ and outputs the action or the integrated thought of each agent.
157
+ However, these methods either broadcast the messages or rely
158
+ on a centralized communication layer, which is high-cost and
159
+ not stable. Communication should not only serve as an inte-
160
+ gration of information, instead, the agents should share infor-
161
+ mation selectively through peer-to-peer communication.
162
+ To avoid broadcasting messages, recent works try to de-
163
+ sign more intelligent communication mechanisms.
164
+ CTDE
165
+ paradigms are also imported to implement decentralized com-
166
+ munication.
167
+ Some works are based on QMIX [Rashid et
168
+ al., 2018]: VBC [Zhang et al., 2019] proposes a request-
169
+ reply mechanism and a variance-based regularizer to elimi-
170
+ nate the noisy components in messages. NDQ [Wang et al.,
171
+ 2020] learns nearly decomposable value functions with com-
172
+ munication. TMC [Zhang et al., 2020] maximizes the mu-
173
+ tual information between the decentralized Q functions and
174
+ the communication messages while minimizing the entropy
175
+ of messages between agents. MAIC [Yuan et al., 2022] al-
176
+ lows each agent to learn to generate incentive messages by
177
+ modeling every teammate and bias other agents’ value func-
178
+ tions directly. Some are based on another CTDE framework
179
+ MADDPG [Lowe et al., 2020]: TarMAC [Das et al., 2019]
180
+ proposes a targeted communication behavior via a signature-
181
+ based soft attention mechanism. Besides the message, the
182
+ sender broadcasts a key used by the receivers to gauge the
183
+ message’s relevance. DAACMP [Mao et al., 2020] adds a
184
+ double attention mechanism in the actor and critic network
185
+ respectively to select and process the important messages.
186
+ I2C [Ding et al., 2020] learns a prior net via causal inference
187
+ for peer-to-peer communication. The influence of one agent
188
+ on another is inferred via the joint action-value function and
189
+ quantified to label the necessity of peer-to-peer communica-
190
+ tion. Nevertheless, the methods above need to model every
191
+ other agent in the environment to achieve individual commu-
192
+ nication, which is not scalable and practical.
193
+ To the best of our knowledge, none of the existing MARL
194
+ communication methods considers the scalability of the com-
195
+ munication mechanism and the forwarding protocol inspired
196
+ by email.
197
+ 3
198
+ Background
199
+ 3.1
200
+ Policy Gradient (PG) Reinforcement Learning
201
+ Policy Gradient (PG) reinforcement learning has the advan-
202
+ tage of learning a policy network explicitly, in contrast to
203
+ value-based reinforcement learning methods. PG methods
204
+ optimize the policy parameter θ to maximize its objective
205
+ function J(θ) = ES(Vπθ(s)). However, due to the variance
206
+ of environments, it is hard to choose a subtle learning rate in
207
+
208
+ reinforcement learning. To resolve this problem and ensure
209
+ the safe optimization of policy learning, the Trust Region Pol-
210
+ icy Optimization (TRPO) [Schulman et al., 2015] increases
211
+ the constraint of the parameter difference between policy up-
212
+ dates. Such constraint ensures the parameter changes in a
213
+ small range, so that the collapse of value can be avoided and
214
+ the policy can learn monotonically. The parameter update of
215
+ TRPO is θk+1 = arg maxθL(θk, θ) s.t. ¯DKL(θ||θk) ≤ δ,
216
+ where L(θk, θ) = E[ πθ(a|s)
217
+ πθk (a|s)Aπθk (s, a)] is the approxima-
218
+ tion of the original policy gradient object J(θ) within the
219
+ constraint of KL divergence.
220
+ Based on TRPO, a simplified version Proximal Policy Op-
221
+ timization [Schulman et al., 2017] is carried out, maintaining
222
+ the motivation to constrain the learning step while more ef-
223
+ ficient and easy to be implemented. The object function of
224
+ PPO can be written as:
225
+ L(s, a, θk, θ) =min[ πθ(a|s)
226
+ πθk(a|s)Aπθk (s, a),
227
+ clip( πθ(a|s)
228
+ πθk(a|s)), 1 − ϵ, 1 + ϵ)Aπθk (s, a)],
229
+ (1)
230
+ which forces the ratio of πθ(a|s)
231
+ πθk (a|s) to locate in the interval (1−
232
+ ϵ, 1 + ϵ), so that the new θ is not too far away from old θk.
233
+ 3.2
234
+ MAPPO Algorithm
235
+ Multi-agent PPO (MAPPO) introduces PPO into the multi-
236
+ agent scenario [Yu et al., 2021]. MAPPO mainly considers
237
+ decentralized partially observable Markov decision processes
238
+ (DEC-POMDP). In an environment with n agents, s ∈ S de-
239
+ notes the state of the environment. The agent i only has a
240
+ local observation of environment oi = O(s) and chooses its
241
+ action based on its observation and policy ai = πi(ai|oi).
242
+ The joint action A = (a1, ..., an) denotes the set of actions of
243
+ all agents. Then, the environment transits its state based on
244
+ the transition probability P(s′|s, A). In MARL, all the agents
245
+ will get rewards based on the transition of state and their ac-
246
+ tions (or more likely joint action) ri = R(s, A). Each agent is
247
+ supposed to get a higher accumulated reward �
248
+ t rt
249
+ i. There-
250
+ fore, the agents optimize their policy to maximize the dis-
251
+ count accumulated reward J(θ) = Eat,st[�
252
+ t γtR(st, at)],
253
+ where γ ∈ (0, 1] is the discount factor.
254
+ MAPPO utilizes parameter sharing within homogeneous
255
+ agents, i.e., homogeneous agents share the same set of net-
256
+ work structure and parameters during training and testing.
257
+ MAPPO is also a CTDE framework, namely, each PPO agent
258
+ maintains an actor network πθ to learn the policy and a critic
259
+ network Vφ(s) to learn the value function, where θ and φ are
260
+ the parameters of policy network and value network, respec-
261
+ tively. The value function requires the global state and only
262
+ works during training procedures to reduce variance. In our
263
+ work, we take MAPPO as our baseline and backbone, and
264
+ add TEM as the communication mechanism into MAPPO.
265
+ 4
266
+ Methods
267
+ In this section, we introduce the detailed structure and de-
268
+ sign of TEM. Before each action decision-making, the agents
269
+ Figure 2: Workflow of TEM during one time step. A denotes the
270
+ actor network, C denotes the critic network, E denotes the environ-
271
+ ment. One training step has three phases: communication, action
272
+ and learning. The execution only includes the first two phases and
273
+ the critic will not work.
274
+ communicate with each other following the designed proto-
275
+ col, sharing the key information efficiently and selectively.
276
+ We design a message module based on Transformer to en-
277
+ code the messages received. At the same time, the module
278
+ is able to decide whether to communicate and whom to com-
279
+ municate with. The message module works together with the
280
+ original action decision module from MAPPO, to form the
281
+ actor network in the CTDE structure. The workflow of TEM
282
+ is illustrated in Fig 2. We design an independent loss to en-
283
+ courage the message module to maximize the messages’ im-
284
+ pact on other agents. The whole model has the scalability to
285
+ transfer from one scenario to another. As the message mod-
286
+ ule is parallel to the action module, our model can be plugged
287
+ into any CTDE structure.
288
+ 4.1
289
+ Communication Protocol Design
290
+ We design a communication protocol following the way how
291
+ humans communicate by email. The information flow is like
292
+ a forwarding chain: the chain starts with an agent with key in-
293
+ formation to share, and the following agents merge their own
294
+ information into the chain and then forward the new message
295
+ to the next agent. The chain ends when the final agent finds
296
+ the message useless for others, or there are no more potential
297
+ communication objects.
298
+ When designing the communication protocol, we mainly
299
+ consider the following questions: (1) Whether to communi-
300
+ cate? (2) Whom to communicate with? (3) What to commu-
301
+ nicate? (4) How to utilize the messages?
302
+ (1) Whether to communicate? As shown in Fig 2, in ev-
303
+ ery step of execution and training, the first stage is commu-
304
+ nication. When the communication stage is done, the actor
305
+ networks for each agent will make the action decisions by
306
+ the observations and messages. In the communication stage,
307
+ each agent has the chance to decide whether to start a new
308
+ chain and send a message. And the agents who receive mes-
309
+ sages can decide whether to continue forwarding the mes-
310
+ sages. Multiple message chains are allowed and the informa-
311
+ tion from different chains is merged if there is a shared node
312
+ for the chains.
313
+
314
+ Communication !
315
+ Action
316
+ Critic & Actor
317
+ Learning
318
+ 01'
319
+ A
320
+ a1
321
+ m_a1 =
322
+ 2
323
+ m1
324
+ 02
325
+ A
326
+ a2
327
+ m_a2
328
+ m2
329
+ E
330
+ +R
331
+ V
332
+ 03
333
+ A
334
+ m_a3
335
+ 04
336
+ A
337
+ Execution
338
+ TrainingFigure 3: Network structure of TEM. (a) Actor network of agent i, including an action network and a message network. Emb denotes the
339
+ embedding network. (b) Encoder module. (c) Decoder module, where m_dec0
340
+ i = o_fi.
341
+ (2) Whom to communicate with?
342
+ We think that for
343
+ partial-observation (PO) problems, communication with all
344
+ the agents is not reasonable and effective. The direct commu-
345
+ nication with the agent outside the observation range may not
346
+ bring helpful information as the sender does not even know
347
+ the receiver’s state. Therefore, we do not model all the other
348
+ agents to decide whether to communicate with them like in
349
+ some previous works [Ding et al., 2020; Yuan et al., 2022].
350
+ Instead, when the agent i chooses communication objects, we
351
+ only consider the agents in the observation range Oi , and in
352
+ our experiments, Oi includes the nearest several agents of the
353
+ agent i. By training the message module, the agent can pre-
354
+ dict the impact of the message on other agents, and is more
355
+ likely to choose the one with the highest impact to communi-
356
+ cate.
357
+ We combine the two decisions (1) and (2) into one commu-
358
+ nication action. The communication actions of agent i m_ai
359
+ include not sending at all m_ai = 0, and sending to one agent
360
+ j in the observation range m_ai = j, (j ∈ Oi). Namely, we
361
+ have:
362
+ P(m_ai = 0) +
363
+
364
+ j∈Oi
365
+ (P(m_ai = j)) = 1.
366
+ (2)
367
+ This way, the agent can decide when and whom to communi-
368
+ cate by one action, simplifying the modeling and learning.
369
+ (3) What to communicate? To keep the information from
370
+ the head nodes in the chain, and merge the information from
371
+ different chains, every agent maintains a message buffer to
372
+ store the messages. In practice, the message buffer is imple-
373
+ mented as a queue, with a fixed storage length, but can flexi-
374
+ bly push in and pop out elements as the communication goes
375
+ (First Input First Output, FIFO). We use m_bi to denote all
376
+ the messages inside the agent i ’s message buffer. When send-
377
+ ing the new message, the agent i merges its own observation
378
+ into the chain, then the message chain expands to ⟨m_bi, oi⟩.
379
+ Here, the operation ⟨·⟩ demotes pushing into the queue. The
380
+ buffer is clear when every step starts.
381
+ (4) How to utilize the messages? Instead of some previ-
382
+ ous works [Zhang et al., 2019; Yuan et al., 2022], we do not
383
+ think the messages directly influence the value estimation of
384
+ other agents is the natural way of communication. The infor-
385
+ mation exchange should be separated from the information
386
+ utilization. And the final effects of the messages should be
387
+ determined by the receiver instead of the sender. Thus, in our
388
+ model, messages are taken as a counterpart of the observa-
389
+ tion, serving as part of the inputs of the actor network.
390
+ 4.2
391
+ Network Design
392
+ The schematics of the network design in our model are shown
393
+ as Fig 3. Each agent has an actor network to observe the envi-
394
+ ronment and communicate with other agents. The actor net-
395
+ work of the agent i will output the action to interact with the
396
+ environment ai, the action to communicate m_ai (whether
397
+ to communicate and whom to communicate with), and the
398
+ corresponding message to be sent mi. To better utilize the
399
+ history information and get a smoother action sequence, an
400
+ RNN is employed in the actor network. Thus the agent i also
401
+ keeps a hidden state ht
402
+ i, and updates it every time step.
403
+ The actor network consists of two sub-networks, the ac-
404
+ tion network and the message network. The action network
405
+ mainly concentrates on the task itself and tries to get bet-
406
+ ter rewards by outputting reasonable actions. The message
407
+ network concentrates on the communication to share infor-
408
+ mation with other agents instead. The two sub-networks ex-
409
+ change the representation feature of the observations o_fi and
410
+ that of the messages m_fi to merge the information.
411
+ In the action network, o_fi is learned by a multi-layer
412
+ perceptron (MLP), and then the action network concatenates
413
+ o_fi and m_fi to input into the RNN together with the hidden
414
+ state from the last time step ht−1
415
+ i
416
+ . Another MLP, in the end,
417
+ processes the output of the RNN to generate the final action
418
+ ai.
419
+ On the other hand, the messages from other agents like
420
+ mj · · · mk are stored in the message buffer, like the email
421
+ inbox. The embedding layer (we implement it as a full con-
422
+ nected (FC) layer by practice) converts the messages to fit
423
+
424
+ Message Buffer
425
+ FC
426
+ FC
427
+ FC
428
+ Action
429
+ Network
430
+ Message
431
+ Emb
432
+ Self-Attention
433
+ Network
434
+ MLP
435
+ m_enci
436
+ Softmax
437
+ o_fi
438
+ Encoder
439
+ × Ne
440
+ m_fi
441
+ MLP
442
+ FC
443
+ Attention
444
+ cat
445
+ m_fi
446
+ Network
447
+ o_f i
448
+ Decoder
449
+ Encoder Φ
450
+ RNN
451
+ m_deci
452
+ MLP
453
+ m_bi
454
+ Decoder
455
+ MLP
456
+ i
457
+ MLPthe input dimensions of the encoders. Ne sequential encoder
458
+ modules and Nd sequential decoder modules are followed by
459
+ the embedding layer. The output of encoder modules m_fi
460
+ serves as the representation of all the messages in the buffer,
461
+ with the key information emphasized by the attention mecha-
462
+ nism. The decoder modules further combine the information
463
+ from both of m_fi and o_fi to get the output m_deci. Fi-
464
+ nally, one MLP produces the communication decision m_ai.
465
+ For each encoder module, it takes in m_encne−1
466
+ i
467
+ from the
468
+ embedding layer or the last encoder, then generates m_encne
469
+ i
470
+ as the input for the next layer. The transformer in the mod-
471
+ ule can model the sequential information and is flexible to
472
+ fit message chains with different lengths. Also, the attention
473
+ mechanism will help the agent to pick out the key informa-
474
+ tion from the chain. ne implies the position of the layer in
475
+ the encoder sequence. To prevent gradient vanishing, the en-
476
+ coder module employs the residual connections to link the
477
+ self-attention mechanism and the MLP [Wen et al., 2022].
478
+ The structure of the self-attention mechanism is the same as
479
+ the attention network in the decoder while k, q and v are gen-
480
+ erated from the same input m_encne−1
481
+ i
482
+ .
483
+ In the decoder module, the first m_dec0
484
+ i is the representa-
485
+ tion of the observations o_fi. In the attention network, full
486
+ connected layers generates key k and query q by m_decnd−1
487
+ i
488
+ and m_fi, respectively. Also, the third FC layer generates
489
+ value v from m_decnd−1
490
+ i
491
+ . k and q are used for calculating
492
+ the weights α of the value v as Equation 3.
493
+ α = Softmax(exp(qkT
494
+ √dk
495
+ )).
496
+ (3)
497
+ In fact, the weight α learns the correlations between the
498
+ m_decnd−1
499
+ i
500
+ and m_fi. By multiplying v and α, then we get
501
+ the weighted representation of m_decnd−1
502
+ i
503
+ from the ending
504
+ FC layer. With a similar structure of the residual connections
505
+ and MLP, we get m_decnd
506
+ i
507
+ as the input for the next layer.
508
+ 4.3
509
+ Loss Function Design
510
+ The communication among the agents during a collaborative
511
+ task aims to share the key information that one believes is
512
+ useful for some specific other agents. So the learning of the
513
+ message network is driven by the impact of the message to be
514
+ sent.
515
+ As the communication will not change either the action of
516
+ other agents or the loss of the action network, an indepen-
517
+ dent loss to model the influence of the messages on other
518
+ agents’ actions is needed.
519
+ We denote the communication
520
+ loss as L(i)
521
+ m (θ), where θ is the parameters of the actor net-
522
+ work. The action of an agent j is sampled from the categorical
523
+ distribution P(aj|oj, m_bj) learned by the action network.
524
+ Then, when considering the new message from the agent i mi,
525
+ we can estimate the distribution P(aj|oj, ⟨m_bj, mi⟩) as the
526
+ consequence of the communication. Kullback-Leibler (KL)
527
+ divergence is widely used to measure the discrepancy be-
528
+ tween these two conditional probability distributions. Thus,
529
+ the causal effect Γ(i)
530
+ j
531
+ of the message from agent i on agent j
532
+ can be defined as:
533
+ Γ(i)
534
+ j
535
+ = DKL (P(aj|oj, ⟨m_bj, mi⟩)||P(aj|oj, m_bj)) . (4)
536
+ By considering all the possible agents to send the message to
537
+ in the observation range, we can get the expectation of the
538
+ causal effect of the message EΓ(i)(θ) by Equation 5:
539
+ EΓ(i)(θ) =
540
+
541
+ j∈Oi
542
+
543
+ Pθ(m_ai = j|oi, m_bi)Γ(i)
544
+ j
545
+
546
+ ,
547
+ (5)
548
+ where Oi denotes the observation range of the agent i. The
549
+ communication decision of agent i is sampled form the cat-
550
+ egorical distribution Pθ(m_ai|oi, m_bi) learned by the mes-
551
+ sage network. Pθ denotes that the gradient of this item should
552
+ be propagated when training.
553
+ The expectation EΓ(i)(θ) represents the overall effect the
554
+ message mi can bring to the whole system, which we should
555
+ maximize in the loss function.
556
+ However, communication
557
+ should also be sparse and efficient.
558
+ If we do not control
559
+ the communication times by the external guidance, the agents
560
+ will tend to send as many messages as possible to get higher
561
+ EΓ(i)(θ).
562
+ Therefore, we also designed another item for
563
+ communication loss to reduce the communication overhead.
564
+ When the agent i chooses not to send the message to any
565
+ agents in the observation range for most of the times, the
566
+ probability Pθ(m_ai = 0|oi, m_bi) should be relatively high.
567
+ So we need to maximize this probability at the same time.
568
+ So far, we can get the final communication loss L(i)
569
+ m (θ) by
570
+ the following equation and maximize it when training.
571
+ L(i)
572
+ m (θ) = EΓ(i)(θ) + δPθ(m_ai = 0|oi, m_bi),
573
+ (6)
574
+ where δ is the weight of the communication reduction.
575
+ The loss of the action network L(i)
576
+ a (θ) is defined followed
577
+ by Equation 1 in MAPPO as:
578
+ L(i)
579
+ a (θ) =min(r(i)
580
+ θ A(i)
581
+ πθold , clip(r(i)
582
+ θ , 1 − ϵ, 1 + ϵ)A(i)
583
+ πθold ),
584
+ (7)
585
+ where r(i)
586
+ θ
587
+ =
588
+ πθ(a(i)|o(i))
589
+ πθold(a(i)|o(i)), A(i)
590
+ πθold is the advantage function.
591
+ What’s more, to encourage more exploration when train-
592
+ ing, we adopt an entropy loss L(i)
593
+ e (θ) as [Yu et al., 2021]:
594
+ L(i)
595
+ e (θ) = S(πθ(oi)).
596
+ (8)
597
+ We can get the overall loss function for the actor network
598
+ when training:
599
+ L(θ) =
600
+ n
601
+
602
+ i=1
603
+
604
+ L(i)
605
+ a (θ) + λmL(i)
606
+ m (θ) + λeL(i)
607
+ e (θ)
608
+
609
+ ,
610
+ (9)
611
+ where n is the number of the agents, and λm, λe are the coef-
612
+ ficients to weight the corresponding losses.
613
+ The critic network is trained to minimize the loss function
614
+ L(φ) =
615
+ n
616
+
617
+ i=1
618
+ (max[(Vφ(s(i)) − R)2,
619
+ (clip(Vφ(s(i)), Vφold(s(i)) − ϵ, Vφold(s(i)) + ϵ) − R)2]),
620
+ (10)
621
+ where R is the discounted accumulated reword.
622
+
623
+ Figure 4: Test win rate for the SMAC map 5m vs. 6m, the shaded
624
+ regions represent the 95% confidence intervals. FC: Full Communi-
625
+ cation, RC: Randomly-stop Communication.
626
+ 5
627
+ Experiments
628
+ We evaluate the performance of TEM on three widely-used
629
+ partially-observed multi-agent cooperative tasks: the Star-
630
+ craft multi-agent challenge (SMAC), Predator Prey (PP) and
631
+ Cooperative Navigation (CN). We compare the training pro-
632
+ cess of TEM with the baselines and analyze the performance.
633
+ We test the scalability of TEM to scenarios with different
634
+ numbers of agents and targets when zero-shot transferring.
635
+ 5.1
636
+ StarCraft II Micromanagement Benchmark
637
+ In the SMAC task, N units controlled by the algorithm try
638
+ to kill all the M enemies. There are usually more enemies
639
+ than agents, or the enemies are more powerful types of units,
640
+ so defeating all the enemies with limited observation range
641
+ is challenging, demanding proper cooperation strategies and
642
+ micro-control of movement and attack. We choose the hard
643
+ map 5m vs 6m to evaluate TEM. TEM controls 5 Marines to
644
+ fight with 6 enemy Marines.
645
+ The baselines include MAPPO, MADDPG, Full Com-
646
+ munication (FC) and Randomly-stop Communication (RC).
647
+ MAPPO is the CTDE backbone we are using in the follow-
648
+ ing experiments, which is proven to have state-of-the-art per-
649
+ formance on several MARL cooperative benchmarks [Yu et
650
+ al., 2021]. MADDPG is another classic CTDE approach for
651
+ multi-agent cooperation tasks [Lowe et al., 2020]. FC and
652
+ RC are two special cases of TEM. We keep the communica-
653
+ tion protocol the same, but disable the decoder in the mes-
654
+ sage module, instead, the agents choose the communication
655
+ targets by pre-defined rules. In FC, the agent will keep ran-
656
+ domly choosing someone to communicate with, to extend the
657
+ message chain until no one is available. In RC, the agent will
658
+ randomly stop the message chain by a probability p, or keep
659
+ forwarding to a random one.
660
+ We run the experiments over 6 seeds. For each seed, we
661
+ compute the win rate over 32 test games after each training
662
+ iteration as shown in Fig. 4.TEM gets the highest win rate
663
+ over the baselines. FC and RC perform worse than MAPPO
664
+ benchmark. One possible reason is that targeted communica-
665
+ tion by TEM could improve cooperation while random com-
666
+ munication by FC and RC may bring redundant information
667
+ for decision-making. The win rate of baseline MADDPG re-
668
+ mains zero, showing that it is hard to defeat an army with
669
+ more units and MADDPG fails to learn such a strategy.
670
+ Figure 5: Reward for Predator Prey (PP) during training, the shaded
671
+ regions represent the 95% confidence intervals.
672
+ 5.2
673
+ Predator Prey
674
+ In the Predator Prey (PP) task, N predators try to chase, sur-
675
+ round and finally capture M preys, as shown in Fig 1. The
676
+ predators are the agents to be trained and the preys flee in the
677
+ opposite direction of the closest predator at a faster speed fol-
678
+ lowing pre-defined rules. So the predators have to be grouped
679
+ automatically and cooperate to surround each prey, and it is
680
+ impossible for one predator to capture a prey itself. In prac-
681
+ tice, we set N as 7 and M as 3, denoted as 7-3 scenario.
682
+ Different from the PP task in some previous works, here,
683
+ the agents can only partially observe the teammates and tar-
684
+ gets. The rewards are the sum of the agents’ negative dis-
685
+ tances to their closest preys or landmarks. In addition, the
686
+ agents are penalized for collisions with other agents.
687
+ The baselines include MAPPO, I2C, MADDPG, DDPG,
688
+ FC and RC. I2C proposes an individual communication
689
+ mechanism [Ding et al., 2020]. DDPG is a classic deep re-
690
+ inforcement learning algorithm for continuous control [Lill-
691
+ icrap et al., 2019]. We apply DDPG independently to each
692
+ agent as a baseline without considering cooperation.
693
+ As shown in Fig 5, while other baselines gradually con-
694
+ verge at the last episodes, TEM keeps raising the rewards and
695
+ improves the final reward by 17.2% compared with MAPPO.
696
+ 5.3
697
+ Cooperative Navigation
698
+ In the Cooperative Navigation (CN) task, N agents try to
699
+ occupy N stationary landmarks separately, as shown in Fig
700
+ 7. The positions of landmarks and agents are randomly ini-
701
+ tialized. The best strategy is that each agent has a different
702
+ target from the beginning through communication instead of
703
+ rescheduling when collisions happen because of choosing the
704
+ same target. In practice, we set N as 7, denoted as 7-7 sce-
705
+ nario. The baselines and reward settings are the same as PP.
706
+ We compare TEM with the baselines on the training perfor-
707
+ mance Fig 6. We can see that TEM converges to the highest
708
+ Figure 6: Reward for Cooperative Navigation (CN) during training,
709
+ the shaded regions represent the 95% confidence intervals.
710
+
711
+ WinRatefor5mvs6m
712
+ 1.0
713
+ TEM
714
+ MAPPO
715
+ 0.8
716
+ MADDPG
717
+ RC
718
+ 0.6
719
+ FC
720
+ Rate
721
+ Win
722
+ 0.4
723
+ 0.2
724
+ 0.0
725
+ 0.0
726
+ 0.2
727
+ 0.4
728
+ 0.6
729
+ 0.8
730
+ 1.0
731
+ Step
732
+ 1e7RewardforPredatorPrey(PP)
733
+ TEM
734
+ -25
735
+ MAPPO
736
+ I2C
737
+ -30
738
+ DDPG
739
+ MADDPG
740
+ Reward
741
+ RC
742
+ -35
743
+ FC
744
+ -40
745
+ -45
746
+ -50
747
+ 2
748
+ 3
749
+ 4
750
+ 5
751
+ Step
752
+ 1e7RewardforCooperative Navigation (CN)
753
+ -40
754
+ TEM
755
+ MAPPO
756
+ -50
757
+ I2C
758
+ DDPG
759
+ MADDPG
760
+ Reward
761
+ -60
762
+ RC
763
+ FC
764
+ -70
765
+ -80
766
+ -90
767
+ 3
768
+ 5
769
+ Step
770
+ 1e7Figure 7: Comparison between (a) TEM and (b) MAPPO on the
771
+ same environment of CN. Five frames are illustrated. Green lines
772
+ are the trajectories and pink lines are message chains.
773
+ reward than all the baselines. FC and RC are only slightly bet-
774
+ ter than MAPPO, suggesting that the communication actions
775
+ m_a learned by TEM are targeted, and the message chain
776
+ brings helpful information to the ones that really need it.
777
+ We compare the illustrations on CN between TEM and
778
+ MAPPO in Fig 7. In (a), the TEM agents Agent 1 and Agent 4
779
+ notice Landmark 1 by communication (pink message chain).
780
+ Thus each agent moves straight forward to the corresponding
781
+ landmark. While in (b), the MAPPO agents miss Landmark
782
+ 1, so for Agent 4, there will be nowhere to go. Agent 4 first
783
+ tries to scramble with Agent 1 but fails, then turns to Agent
784
+ 2. Agent 2 is forced to leave to avoid collision and turns to
785
+ Agent 3. We can see that communication brought by TEM
786
+ can improve cooperation and reduce internal strife.
787
+ 5.4
788
+ Scalability of TEM
789
+ We further examine the scalability of TEM on PP task in Ta-
790
+ ble 1. We take average episode rewards (R), successful cap-
791
+ ture times (S), collision times (C) as the metrics. For R and
792
+ S, the performance is better when the values are higher, while
793
+ for C, the performance is better when the values are lower.
794
+ Note that the existing MARL communication approaches are
795
+ not scalable due to the modeling of each agent, the base-
796
+ lines are the transferred MAPPO and the specifically trained
797
+ MAPPO. We directly transfer the learned model from the 7-
798
+ 3 scenario to 9-3 and 3-1 scenarios without further training.
799
+ For 9-3 scenario, two new agents are included, and it will be
800
+ easier to capture the preys. But more agents also increase the
801
+ risks of collision, so the cooperation mode could be different
802
+ and the agents need to communicate to suit the new scenario.
803
+ For TEM, the average episode rewards rise from -40.5 to -
804
+ 17.9, and the gain is 55.8%, while for MAPPO, the gain of
805
+ rewards is 52.3%. TEM does not only perform better after
806
+ transferring, but also gains more. For 3-1 scenario, both the
807
+ numbers of the agents and preys change. The results show
808
+ that TEM still keeps a better performance on all the metrics.
809
+ Moreover, it shows that after TEM learns how to commu-
810
+ nicate in a complex scenario, it can successfully transfer to
811
+ simple ones.
812
+ We also train MAPPO from scratch specifically on 9-3
813
+ and 3-1 (denoted as MAPPO (learned)), and the performance
814
+ of transferred TEM (trained on 7-3) is close to MAPPO
815
+ (learned) on 9-3 without training. But the transferred TEM
816
+ works worse on 3-1, and we suggest that cooperation by com-
817
+ munication may not play an essential role in such a simple
818
+ TEM (7-3)
819
+ MAPPO (7-3)
820
+ MAPPO (learned)
821
+ TEM (finetuned)
822
+ 7-3
823
+ R
824
+ -40.5±4.7
825
+ -44.9±4.3
826
+ -
827
+ -
828
+ S
829
+ 61.6±18.3
830
+ 49.0±16.5
831
+ -
832
+ -
833
+ C
834
+ 1.4±0.6
835
+ 12.6±2.6
836
+ -
837
+ -
838
+ 3-1
839
+ R
840
+ -10.6±4.7
841
+ -12.7±5.9
842
+ -7.52±2.6
843
+ -7.0±2.8
844
+ S
845
+ 18.7±14.0
846
+ 13.5±12.7
847
+ 36.5±13.2
848
+ 31.7±13.4
849
+ C
850
+ 1.2±1.2
851
+ 3.6±2.7
852
+ 1.8±1.8
853
+ 0.8 ±0.6
854
+ 9-3
855
+ R
856
+ -17.9±5.0
857
+ -21.3±7.5
858
+ -17.1± 8.2
859
+ -14.0 ±2.6
860
+ S
861
+ 107.2±23.6
862
+ 69.3±32.0
863
+ 109.5±18.7
864
+ 127.9±5.9
865
+ C
866
+ 16.2±1.8
867
+ 30.6±6.7
868
+ 7.2±1.9
869
+ 5.4±1.6
870
+ Table 1: Scalability of TEM on PP. R: average episode rewards, S:
871
+ successful capture times, C: collision times. TEM (7-3) and MAPPO
872
+ (7-3) are trained on the scenario 7-3: 7 agents to capture 3 preys,
873
+ and tested on ten random environments on 7-3, 3-1, 9-3 scenarios.
874
+ MAPPO (learned) is specifically trained from scratch on the corre-
875
+ sponding test environments. TEM (finetuned) is the TEM model
876
+ trained on 7-3 and tuned on the corresponding test environments.
877
+ environment. We further finetune TEM (7-3) on the new sce-
878
+ narios and the finetuned models even outperform the specially
879
+ learned MAPPO.
880
+ Similar experiments are conducted on CN as shown in Ta-
881
+ ble 2. TEM keeps the scalability when transferred from 7-
882
+ 7 scenario to 6-6 and 9-9, and outperforms the transferred
883
+ MAPPO. Surprisingly, the transferred TEM even outper-
884
+ forms the MAPPO trained from scratch (denoted as MAPPO
885
+ (learned)) on most metrics. It suggests that CN requires more
886
+ communication to coordinate the agents to explore the land-
887
+ marks at the corner. And the results also show that the com-
888
+ munication pattern learned from 7-7 still works well in other
889
+ scenarios. Similarly, the finetuned TEM gets even better per-
890
+ formance.
891
+ TEM (7-7)
892
+ MAPPO (7-7)
893
+ MAPPO (learned)
894
+ TEM (finetuned)
895
+ 7-7
896
+ R
897
+ -38.8±15.1
898
+ -46.6±14.8
899
+ -
900
+ -
901
+ S
902
+ 35.8± 6.2
903
+ 23.3±9.0
904
+ -
905
+ -
906
+ C
907
+ 2.8±0.3
908
+ 4.2±0.2
909
+ -
910
+ -
911
+ 6-6
912
+ R
913
+ -39.8±5.3
914
+ -45.0±8.0
915
+ -43.6±10.1
916
+ -36.7 ±5.2
917
+ S
918
+ 35.3±6.2
919
+ 20.0±5.9
920
+ 19.3±6.8
921
+ 36.1±5.9
922
+ C
923
+ 7.2±0.4
924
+ 8.4±0.4
925
+ 4.8±0.4
926
+ 4.8 ±0.2
927
+ 9-9
928
+ R
929
+ -45.8±23.9
930
+ -57.5±25.3
931
+ -50.8±12.9
932
+ -41.1 ±11.4
933
+ S
934
+ 39.4±4.9
935
+ 26.6±8.7
936
+ 29.0±6.6
937
+ 38.9±5.2
938
+ C
939
+ 9.0±0.3
940
+ 28.8±0.4
941
+ 10.8±0.2
942
+ 8.0±0.2
943
+ Table 2: Scalability of TEM on CN. TEM (7-7) and MAPPO (7-7)
944
+ are trained on the scenario 7-7: 7 agents to occupy 7 landmarks, and
945
+ tested on ten random environments on 7-3, 6-6, 9-9 scenarios.
946
+ 6
947
+ Conclusions
948
+ To tackle the scalability problem of MARL communication,
949
+ this paper proposes a novel framework Transformer-based
950
+ Email Mechanism (TEM). The agents adopt local communi-
951
+ cation to send and forward messages like emails to form mes-
952
+ sage chains, which set up bridges among partial-observation
953
+ ranges. We introduce Transformer to encode and decode the
954
+ message chain to choose the next receiver selectively. Em-
955
+ pirical results in diverse multi-agent cooperative tasks show
956
+ that our method outperforms the baselines. Furthermore, we
957
+ can directly apply TEM to a new environment with a different
958
+ number of agents without retraining. Better performance than
959
+ the baselines when zero-shot transferring shows the scalabil-
960
+ ity of TEM. Based on TEM, communication for hundreds of
961
+ agents and further tailored message generation can be devel-
962
+ oped, which may be an important step for MARL applications
963
+ to real-world tasks.
964
+
965
+ Agent 1
966
+ Agent 1
967
+ Agent 4
968
+ Agent 4
969
+ Agent 2
970
+ Agent 3
971
+ Agent 2
972
+ Agent 3References
973
+ [Das et al., 2019] Abhishek Das,
974
+ Théophile Gervet,
975
+ Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rab-
976
+ bat, and Joelle Pineau.
977
+ TarMAC: Targeted Multi-
978
+ Agent Communication. In Proceedings of the 36th In-
979
+ ternational Conference on Machine Learning, pages
980
+ 1538–1546. PMLR, May 2019.
981
+ [Ding et al., 2020] Ziluo Ding,
982
+ Tiejun Huang,
983
+ and
984
+ Zongqing Lu. Learning Individually Inferred Com-
985
+ munication for Multi-Agent Cooperation.
986
+ In Ad-
987
+ vances in Neural Information Processing Systems,
988
+ volume 33, pages 22069–22079, 2020.
989
+ [Foerster et al., 2016] Jakob Foerster, Ioannis Alexan-
990
+ dros Assael, Nando de Freitas, and Shimon White-
991
+ son.
992
+ Learning to Communicate with Deep Multi-
993
+ Agent Reinforcement Learning. In Advances in Neu-
994
+ ral Information Processing Systems, volume 29, 2016.
995
+ [Jiang and Lu, 2018] Jiechuan Jiang and Zongqing Lu.
996
+ Learning Attentional Communication for Multi-
997
+ Agent Cooperation.
998
+ November 2018.
999
+ arXiv:
1000
+ 1805.07733.
1001
+ [Kim et al., 2019] Daewoo Kim, Sangwoo Moon, David
1002
+ Hostallero, Wan Ju Kang, Taeyoung Lee, Kyunghwan
1003
+ Son, and Yung Yi. Learning to Schedule Communi-
1004
+ cation in Multi-agent Reinforcement Learning. Febru-
1005
+ ary 2019. arXiv: 1902.01554.
1006
+ [Kober et al., 2013] Jens Kober, J. Andrew Bagnell, and
1007
+ Jan Peters. Reinforcement learning in robotics: A sur-
1008
+ vey. The International Journal of Robotics Research,
1009
+ 32(11):1238–1274, September 2013.
1010
+ [Lillicrap et al., 2019] Timothy P. Lillicrap, Jonathan J.
1011
+ Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
1012
+ Yuval Tassa, David Silver, and Daan Wierstra. Con-
1013
+ tinuous control with deep reinforcement learning. July
1014
+ 2019. arXiv: 1509.02971.
1015
+ [Lowe et al., 2020] Ryan
1016
+ Lowe,
1017
+ Yi
1018
+ Wu,
1019
+ Aviv
1020
+ Tamar, Jean Harb, Pieter Abbeel, and Igor Mor-
1021
+ datch.
1022
+ Multi-Agent
1023
+ Actor-Critic
1024
+ for
1025
+ Mixed
1026
+ Cooperative-Competitive
1027
+ Environments.
1028
+ March
1029
+ 2020. arXiv:1706.02275.
1030
+ [Mao et al., 2020] Hangyu Mao,
1031
+ Zhengchao Zhang,
1032
+ Zhen Xiao, Zhibo Gong, and Yan Ni. Learning Agent
1033
+ Communication under Limited Bandwidth by Mes-
1034
+ sage Pruning. Proceedings of the AAAI Conference on
1035
+ Artificial Intelligence, 34(04):5142–5149, April 2020.
1036
+ [OpenAI et al., 2019] OpenAI,
1037
+ Christopher
1038
+ Berner,
1039
+ Greg Brockman,
1040
+ Brooke Chan,
1041
+ Vicki Cheung,
1042
+ Przemysław D˛ebiak, Christy Dennison, David Farhi,
1043
+ Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
1044
+ Józefowicz, Scott Gray, Catherine Olsson, Jakub
1045
+ Pachocki, Michael Petrov, Henrique P. d O. Pinto,
1046
+ Jonathan Raiman, Tim Salimans, Jeremy Schlatter,
1047
+ Jonas Schneider,
1048
+ Szymon Sidor,
1049
+ Ilya Sutskever,
1050
+ Jie Tang, Filip Wolski, and Susan Zhang.
1051
+ Dota 2
1052
+ with Large Scale Deep Reinforcement Learning,
1053
+ December 2019. arXiv:1912.06680.
1054
+ [Peng et al., 2017] Peng Peng, Ying Wen, Yaodong
1055
+ Yang, Quan Yuan, Zhenkun Tang, Haitao Long, and
1056
+ Jun Wang.
1057
+ Multiagent Bidirectionally-Coordinated
1058
+ Nets: Emergence of Human-level Coordination in
1059
+ Learning to Play StarCraft Combat Games, Septem-
1060
+ ber 2017. arXiv:1703.10069.
1061
+ [Rashid et al., 2018] Tabish
1062
+ Rashid,
1063
+ Mikayel
1064
+ Samvelyan,
1065
+ Christian Schroeder de
1066
+ Witt,
1067
+ Gre-
1068
+ gory Farquhar, Jakob Foerster, and Shimon Whiteson.
1069
+ QMIX: Monotonic Value Function Factorisation for
1070
+ Deep Multi-Agent Reinforcement Learning, June
1071
+ 2018. arXiv:1803.11485.
1072
+ [Samvelyan et al., 2019] Mikayel Samvelyan,
1073
+ Tabish
1074
+ Rashid, Christian Schroeder de Witt, Gregory Far-
1075
+ quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man
1076
+ Hung, Philip H. S. Torr, Jakob Foerster, and Shimon
1077
+ Whiteson. The StarCraft Multi-Agent Challenge, De-
1078
+ cember 2019. arXiv:1902.04043.
1079
+ [Schulman et al., 2015] John Schulman, Sergey Levine,
1080
+ Pieter Abbeel, Michael Jordan, and Philipp Moritz.
1081
+ Trust Region Policy Optimization. In Proceedings of
1082
+ the 32nd International Conference on Machine Learn-
1083
+ ing, pages 1889–1897. PMLR, June 2015.
1084
+ [Schulman et al., 2017] John Schulman, Filip Wolski,
1085
+ Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
1086
+ Proximal Policy Optimization Algorithms, August
1087
+ 2017. arXiv:1707.06347.
1088
+ [Shalev-Shwartz et al., 2016] Shai
1089
+ Shalev-Shwartz,
1090
+ Shaked Shammah, and Amnon Shashua. Safe, Multi-
1091
+ Agent, Reinforcement Learning for Autonomous
1092
+ Driving, October 2016. arXiv:1610.03295.
1093
+ [Singh et al., 2018] Amanpreet Singh, Tushar Jain, and
1094
+ Sainbayar Sukhbaatar. Learning when to Communi-
1095
+ cate at Scale in Multiagent Cooperative and Competi-
1096
+ tive Tasks, December 2018. arXiv:1812.09755.
1097
+ [Son et al., 2019] Kyunghwan
1098
+ Son,
1099
+ Daewoo
1100
+ Kim,
1101
+ Wan Ju Kang, David Earl Hostallero, and Yung Yi.
1102
+ QTRAN: Learning to Factorize with Transforma-
1103
+ tion for Cooperative Multi-Agent Reinforcement
1104
+ Learning. In Proceedings of the 36th International
1105
+ Conference on Machine Learning, pages 5887–5896.
1106
+ PMLR, May 2019.
1107
+ [Sukhbaatar et al., 2016] Sainbayar Sukhbaatar, arthur
1108
+ szlam, and Rob Fergus. Learning Multiagent Com-
1109
+ munication with Backpropagation.
1110
+ In Advances in
1111
+ Neural Information Processing Systems, volume 29,
1112
+ 2016.
1113
+ [Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer,
1114
+ Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
1115
+ Gomez, Łukasz Kaiser, and Illia Polosukhin. Atten-
1116
+ tion is All you Need. In Advances in Neural Informa-
1117
+ tion Processing Systems, volume 30, 2017.
1118
+ [Vinyals et al., 2019] Oriol Vinyals, Igor Babuschkin,
1119
+ Wojciech M. Czarnecki, Michaël Mathieu, Andrew
1120
+ Dudzik, Junyoung Chung, David H. Choi, Richard
1121
+ Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
1122
+ Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
1123
+ Huang, Laurent Sifre, Trevor Cai, John P. Aga-
1124
+ piou, Max Jaderberg, Alexander S. Vezhnevets, Rémi
1125
+ Leblond, Tobias Pohlen, Valentin Dalibard, David
1126
+ Budden, Yury Sulsky, James Molloy, Tom L. Paine,
1127
+ Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai
1128
+ Wu, Roman Ring, Dani Yogatama, Dario Wünsch,
1129
+ Katrina McKinney, Oliver Smith, Tom Schaul, Tim-
1130
+ othy Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
1131
+ Chris Apps, and David Silver. Grandmaster level in
1132
+ StarCraft II using multi-agent reinforcement learning.
1133
+ Nature, 575(7782):350–354, November 2019.
1134
+ [Wang et al., 2020] Rundong Wang, Xu He, Runsheng
1135
+ Yu, Wei Qiu, Bo An, and Zinovi Rabinovich. Learn-
1136
+
1137
+ ing Efficient Multi-agent Communication: An Infor-
1138
+ mation Bottleneck Approach. In Proceedings of the
1139
+ 37th International Conference on Machine Learning,
1140
+ pages 9908–9918. PMLR, November 2020.
1141
+ ISSN:
1142
+ 2640-3498.
1143
+ [Wei et al., 2019] Hua Wei, Nan Xu, Huichu Zhang,
1144
+ Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan
1145
+ Zhang, Yanmin Zhu, Kai Xu, and Zhenhui Li. CoL-
1146
+ ight: Learning Network-level Cooperation for Traffic
1147
+ Signal Control. In Proceedings of the 28th ACM Inter-
1148
+ national Conference on Information and Knowledge
1149
+ Management, pages 1913–1922, November 2019.
1150
+ [Wen et al., 2022] Muning Wen, Jakub Grudzien Kuba,
1151
+ Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and
1152
+ Yaodong Yang. Multi-Agent Reinforcement Learn-
1153
+ ing is a Sequence Modeling Problem, May 2022.
1154
+ arXiv:2205.14953.
1155
+ [Yu et al., 2021] Chao Yu, Akash Velu, Eugene Vinit-
1156
+ sky, Yu Wang, Alexandre Bayen, and Yi Wu. The Sur-
1157
+ prising Effectiveness of PPO in Cooperative, Multi-
1158
+ Agent Games, July 2021. arXiv:2103.01955.
1159
+ [Yuan et al., 2022] Lei Yuan, Jianhao Wang, Fuxiang
1160
+ Zhang, Chenghe Wang, ZongZhang Zhang, Yang Yu,
1161
+ and Chongjie Zhang. Multi-Agent Incentive Commu-
1162
+ nication via Decentralized Teammate Modeling. Pro-
1163
+ ceedings of the AAAI Conference on Artificial Intelli-
1164
+ gence, 36(9):9466–9474, June 2022.
1165
+ [Zhang et al., 2019] Sai Qian Zhang, Qi Zhang, and
1166
+ Jieyu Lin. Efficient Communication in Multi-Agent
1167
+ Reinforcement Learning via Variance Based Control.
1168
+ In Advances in Neural Information Processing Sys-
1169
+ tems, volume 32, 2019.
1170
+ [Zhang et al., 2020] Sai Qian Zhang, Qi Zhang, and
1171
+ Jieyu Lin. Succinct and Robust Multi-Agent Com-
1172
+ munication With Temporal Message Control. In Ad-
1173
+ vances in Neural Information Processing Systems,
1174
+ volume 33, pages 17271–17282, 2020.
1175
+
3tAzT4oBgHgl3EQf9f42/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dAzT4oBgHgl3EQfgPzo/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44c6dd8f35bf3d31df73f1398c0bd70294f0214b675b9ef9d9c5510b98e03ad1
3
+ size 158250
9NFPT4oBgHgl3EQfYjSJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdAyT4oBgHgl3EQfR_ex/content/tmp_files/2301.00078v1.pdf.txt ADDED
@@ -0,0 +1,2025 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ IMAGE AND VIDEO COMPRESSION OF FLUID FLOW DATA
2
+ A PREPRINT
3
+ Vishal Anatharaman, Jason Feldkamp, Kai Fukami∗, Kunihiko Taira
4
+ Department of Mechanical and Aerospace Engineering,
5
+ University of California, Los Angeles, CA 90095, USA
6
+ Corresponding author: [email protected]
7
+ January 3, 2023
8
+ ABSTRACT
9
+ We study the compression of spatial and temporal features in fluid flow data using multimedia com-
10
+ pression techniques. The efficacy of spatial compression techniques, including JPEG and JPEG2000
11
+ (JP2), and spatio-temporal video compression techniques, namely H.264, H.265, and AV1, in limiting
12
+ the introduction of compression artifacts and preserving underlying flow physics are considered for
13
+ laminar periodic wake around a cylinder, two-dimensional turbulence, and turbulent channel flow.
14
+ These compression techniques significantly compress flow data while maintaining dominant flow
15
+ features with negligible error. AV1 and H.265 compressions present the best performance across a
16
+ variety of canonical flow regimes and outperform traditional techniques such as proper orthogonal
17
+ decomposition in some cases. These image and video compression algorithms are flexible, scalable,
18
+ and generalizable holding potential for a wide range of applications in fluid dynamics in the context
19
+ of data storage and transfer.
20
+ 1
21
+ Introduction
22
+ High-fidelity simulations and experiments within the field of fluid dynamics produce exceedingly large amounts of
23
+ data. As the need for higher fidelity simulations and advanced experimental resources expands, storage and transfer
24
+ requirements for spatio-temporal data from simulations, become a major challenge. To address this issue, spatio-
25
+ temporal redundancies or repeated dominant flow features can be exploited by a variety of compression techniques
26
+ to alleviate memory constraints for fluid flow data storage. A variety of compression techniques, including modal
27
+ analysis [1, 2, 3], sub-sampling and local re-simulation [4], and deep learning [5, 6, 7, 8] have been considered in an
28
+ effort to reduce the size of fluid flow data. Although effective, these techniques can be application-specific and struggle
29
+ to achieve substantial compression ratios without introducing undesirable compression artifacts such as discontinuities
30
+ or deletions of flow features.
31
+ In comparison, multimedia compression techniques are general and simple to use, and have benefited from demand
32
+ for the modern technologies of high-resolution video streaming [9, 10, 11] and video-conferencing [12, 13, 14].
33
+ These compression techniques are classified into two groups: lossless compression and lossy compression [15]. With
34
+ lossless techniques, the data retrieved from or reconstructed from the compressed state is identical to that preceding
35
+ the application of a compression algorithm. Hence, this is preferred for archival purposes and used for medical
36
+ imaging [16] and technical drawings [17]. In contrast, processed data with lossy techniques do not necessarily match the
37
+ original data, enabling a significant data-size reduction in the compressed state. Since this may introduce compression
38
+ artifacts such as discontinuities in image data or the loss of high spatial frequency information, it is suitable for natural
39
+ images such as photographs in applications where imperceptible loss may be acceptable [18]. We consider here the
40
+ impacts of such losses on fluid mechanics simulation data to assess the costs of applying lossy techniques. In 2003,
41
+ Schmalzl [19] considered multimedia data compression for fluid flows with an example of Rayleigh-Bénard convection.
42
+ With multimedia compression technologies having undergone significantly advances in the last two decades, we reassess
43
+ image and video compressions with modern algorithms for applications to fluid flow data.
44
+ Lossy techniques of interest typically involve frequency-domain transformation, filtering, and entropy coding as
45
+ components in the compression process. The development of the discrete cosine transform (DCT) [20, 21] has played a
46
+ arXiv:2301.00078v1 [physics.flu-dyn] 31 Dec 2022
47
+
48
+ A PREPRINT - JANUARY 3, 2023
49
+ Original data
50
+ Compressed data
51
+ Reconstruction
52
+
53
+ Spatial
54
+ Compression
55
+ Temporal
56
+ Compression
57
+ t
58
+ Original
59
+ Data
60
+ Compressed
61
+ Data
62
+
63
+ !(#, %, &)
64
+ !′(#, %, &)
65
+ Original data
66
+ Reconstruction
67
+ (a)
68
+ (b)
69
+ Figure 1: (a) Spatial compression: an example velocity field of flow over a cylinder q(x) is represented as a grayscale
70
+ image, encoded using an image-based technique to a compressed form, and reconstructed as ˜q(x) using a decoder.
71
+ (b) Spatio-temporal compression: multiple snapshots of this flow field data q(x, t) are represented as a grayscale video
72
+ and are compressed to ˜q(x, t) with both spatial and temporal techniques.
73
+ crucial role in image compression, and is the basis of Joint Photographic Experts Group (JPEG) [22]. The emergence of
74
+ JPEG enabled efficient image compression in a wide range of communities and it became a generally accepted format
75
+ for digital images. After the development of DCT, wavelet transforms began to be utilized for image compression
76
+ in such algorithms as JPEG2000 (JP2) [23], which achieves better compression than the DCT of JPEG as a result of
77
+ multi-scale properties of wavelets.
78
+ In tandem with the growth of image compression techniques, advancement in video compression technologies followed
79
+ suit since video data can be characterized as a time series of image frames. Generally, these time frames include both
80
+ spatial and temporal redundancies. In fact, we often see the similarities (redundancies) between temporally adjacent
81
+ frames or spatially adjacent pixels. Video compression algorithms are designed to remove such redundancies and
82
+ obtain a compact form of the original information. Current video compression technologies are generally based on the
83
+ DCT [24]. Although other candidates including fractal compression [25, 26], matching pursuit [27], and discrete wavelet
84
+ transform (DWT) have been investigated as the subject of some studies, these are still not used in practical products.
85
+ Moving Picture Experts Group (MPEG) series have been traditionally used for video compression of high-definition
86
+ television [28, 29, 30]. H.2xx series was then developed and they have achieved significant compression compared to
87
+ the conventional MPEGs [31, 32]. Especially in the recent versions such as H.264 and H.265, motion compensation,
88
+ quantization, and entropy coding are applied for efficient video compression. More recently, AOMedia Video 1 (AV1),
89
+ an open, royalty-free video coding format, was released in 2018, achieving enhanced compression compared to the
90
+ aforementioned techniques [33, 34].
91
+ To meet the demand for these image and video compression tools, significant investment and research have produced
92
+ compression techniques of impressive efficiency and usability in addition to free video encoders [35] to promote
93
+ widespread accessibility. As such, leveraging these multimedia-inspired compression techniques should also be of
94
+ particular interest to the fluid dynamics community given the massive scale of data produced, stored, and transferred.
95
+ 2
96
+
97
+ Original Data
98
+ Compressed Data
99
+ Reconstruction
100
+ nxm
101
+ < nxm
102
+ nxm
103
+ 01100111 01101111
104
+ 11.
105
+ Encoding
106
+ Decoding
107
+ (qn1
108
+ g(x, y)gfa,tgfr,t2A PREPRINT - JANUARY 3, 2023
109
+ A standardization on one or more multimedia compression formats for storing fluid flow data in a compressed
110
+ representation can yield dividends in research output by allowing greater access to high-fidelity fluid flow data sets and
111
+ by removing memory constraints as a barrier to entry.
112
+ This paper investigates the effectiveness of these image and video compression techniques on fluid flow data. Spatial
113
+ image compression techniques, such as JPEG and JP2, alongside spatio-temporal video compression techniques,
114
+ namely H.264, H.265, and AV1, are examined for various flow fields, including laminar cylinder flow, two-dimensional
115
+ turbulence, and turbulent channel flow. Field variables from simulation data, such as streamwise velocity and vorticity,
116
+ are represented as grayscale images, and multiple snapshots are packaged into a video. These videos are then encoded
117
+ into a compressed form using the aforementioned multimedia compression methods. Modern techniques can compress
118
+ flow data well below 10% of the original file size with negligible error and preserve the underlying physics of the flow.
119
+ Although this paper focuses on applications to canonical fluid flows, the flexibility and scalability of these algorithms
120
+ suggest an expansive potential within this field.
121
+ Compression is a process in which data is compressed (encoded) into a representation that uses less data, and
122
+ decompressed (decoded) into identical data in the case of lossless compression or nearly-identical data in the case
123
+ of lossy compression. Through this procedure, a compression method reduces bits of the original data q(x, t) by
124
+ eliminating statistical redundancies that may be contained within temporally adjacent frames and spatially adjacent
125
+ pixels. In general, a data compression algorithm is referred to as an encoder φ while one that performs the decompression
126
+ is called a decoder ψ,
127
+ γ(x, t) = φ(q(x, t)),
128
+ q(x, t) ≈ ˜q(x, t) = ψ(γ(x, t)),
129
+ (1)
130
+ where γ(x, t) is the compressed data corresponding to the original data q(x, t). Depending on the extent of compression,
131
+ the data, and a choice of encoder/decoder, the reconstruction ˜q(x, t) generally includes some amount of error.
132
+ The data compression process is illustrated in figure 1 for both image and video compressions. Figure 1(a) depicts a lossy
133
+ spatial image compression technique, involving quantization of the image data in a compressed space and producing
134
+ a reconstruction in the image space showing the operations of JPEG and JP2. Figure 1(b) provides a visualization
135
+ of a spatio-temporal compression technique, exploiting a redundant block of a frame that remains consistent across
136
+ subsequent frames, similar to H.264, H.265, and AV1. As these algorithms originated in the multimedia industry, they
137
+ are optimized for human viewers and involve the removal of high-frequency components in the data and down-sampling
138
+ of the color spectrum such that the eyes cannot easily distinguish compressed data from the original data. For the
139
+ purposes of this study, we only consider grayscale images and videos, which are comprised only of a single-component
140
+ field data matrix, denoted as ˜q(x). This is in contrast to full-color data, which requires red, green, and blue components,
141
+ and is unnecessary for the current analysis as we are interested in considering field variables individually. Herein, we
142
+ consider the application of five compression techniques on grayscale images and videos. The encoding schemes, which
143
+ package the data into a compressed binary form, are detailed in what follows.
144
+ 2
145
+ Compression techniques
146
+ 2.1
147
+ Image Compression
148
+ 2.1.1
149
+ JPEG
150
+ Let us first describe JPEG, which is a standard lossy spatial compression used for encoding image data based on the
151
+ discrete cosine transform (DCT). An example of a JPEG compression process with a vorticity field of two-dimensional
152
+ decaying isotropic turbulence is presented in figure 2. The images are partitioned into 8 × 8 blocks in a left-to-right,
153
+ top-to-bottom scan. Pixel values within blocks are quantized to values of [−128, 127] from [0, 255]. The forward DCT
154
+ is individually performed at each block and outputs compressed data. The DCT for 8 × 8 blocks is mathematically
155
+ expressed as
156
+ F(kx, ky) = 1
157
+ 4C(kx)C(ky)
158
+
159
+ 7
160
+
161
+ ix=0
162
+ 7
163
+
164
+ iy=0
165
+ f(ix, iy) cos
166
+ �(2ix + 1)kxπ
167
+ 16
168
+
169
+ cos
170
+ �(2iy + 1)kyπ
171
+ 16
172
+ ��
173
+ ,
174
+ (2)
175
+ f(ix, iy) = 1
176
+ 4
177
+
178
+ 7
179
+
180
+ kx=0
181
+ 7
182
+
183
+ ky=0
184
+ C(kx)C(ky)F(kx, ky) cos
185
+ �(2ix + 1)kxπ
186
+ 16
187
+
188
+ cos
189
+ �(2iy + 1)kyπ
190
+ 16
191
+ ��
192
+ ,
193
+ (3)
194
+ where
195
+ C(k) =
196
+ �1/
197
+
198
+ 2
199
+ for k = 0
200
+ 1
201
+ otherwise.
202
+ (4)
203
+ 3
204
+
205
+ A PREPRINT - JANUARY 3, 2023
206
+ Input
207
+ 8×8 block
208
+ DCT for 8×8 block
209
+ Reconstructed image
210
+ (Keeping 8.31% of the DCT coefficients)
211
+ Figure 2: JPEG compression process with an example of two-dimensional isotropic turbulent vorticity.
212
+ Here, F(kx, ky) denotes the DCT coefficient corresponding to the horizontal wavelength kx and vertical wavelength ky
213
+ and f(ix, iy) describes the pixel value at the location corresponding to ix and iy. In other words, the forward DCT takes
214
+ as input a discrete signal of 64 points and produces coefficients for a linear combination of 64 unique basis signals, each
215
+ denoting a specific spatial wavelength. Most of the spatial domain information is concentrated across lower wavelength
216
+ because of slow spatial variation from one pixel to the next in image data. This quality permits lossy quantization,
217
+ which refers to constant values in a quantization table Q(kx, ky) with 64 elements. The DCT coefficient is normalized
218
+ by a constant Q(kx, ky) in an element-wise manner,
219
+ F Q(kx, ky) = ⌊F(kx, ky)
220
+ Q(kx, ky)⌋
221
+ (5)
222
+ where F Q(kx, ky) is a normalized coefficient and the operation ⌊·⌋ denotes rounding to the nearest integer. Quantization
223
+ tables are provided by the Joint Photographics Experts Group. Note that dividing the DCT coefficients by values in the
224
+ quantization table reduces high-wavenumber coefficients to 0, which permits efficient entropy coding (explained later)
225
+ to perform the cutoff at high frequencies [36]. The resulting quantized DCT coefficients form a matrix of size 8 × 8
226
+ with low-wavenumber components generally located in the top-left of the matrix and high-wavenumber coefficients at
227
+ the bottom-right, as a consequence of the similar distribution of spatial modes to which these coefficients correspond.
228
+ Subsequently, quantized coefficients are ordered from low to high wavenumbers.
229
+ To reduce the data size, entropy coding [37, 38], a lossless method of compressing bitstreams with redundancies, is then
230
+ performed for the output of DCT. The idea of entropy coding is used not only for JPEG but also other image/video
231
+ compression techniques such as JP2, H.2xx series, and AV1. To express the encoding-based data compression, let us
232
+ consider a message of DAEBCBACBBBC (12 characters). Since this message includes five different characters, it
233
+ needs to prepare 3 bits to convert these characters to bits or binary digits representation. Here, we use the following
234
+ conversion table,
235
+ A
236
+ B
237
+ C
238
+ D
239
+ E
240
+ 000
241
+ 001
242
+ 010
243
+ 011
244
+ 100
245
+ With this table, the message is expressed as
246
+ D
247
+ A
248
+ E
249
+ B
250
+ C
251
+ B
252
+ A
253
+ C
254
+ B
255
+ B
256
+ B
257
+ C
258
+ 011
259
+ 000
260
+ 100
261
+ 001
262
+ 010
263
+ 001
264
+ 000
265
+ 010
266
+ 001
267
+ 001
268
+ 001
269
+ 010
270
+ As shown, the number of bits is 36. The idea of the encoding-based compression is to prepare an adaptive conversion
271
+ table assigning a shorter bit length for characters that appear in a high probability and a longer bit length for characters
272
+ that barely appear. For example, the following adaptive table can be used:
273
+ A
274
+ B
275
+ C
276
+ D
277
+ E
278
+ 110
279
+ 0
280
+ 10
281
+ 1110
282
+ 1111
283
+ 4
284
+
285
+ A PREPRINT - JANUARY 3, 2023
286
+ With this new table, the message can be expressed as
287
+ D
288
+ A
289
+ E
290
+ B
291
+ C
292
+ B
293
+ A
294
+ C
295
+ B
296
+ B
297
+ B
298
+ C
299
+ 1110
300
+ 110
301
+ 1111
302
+ 0
303
+ 10
304
+ 0
305
+ 110
306
+ 10
307
+ 0
308
+ 0
309
+ 0
310
+ 10
311
+ The current table can save the total number of bits for the message from 36 to 25. Modern data compression techniques
312
+ efficiently ��nd such an adaptive conversion table for saving image and video sizes.
313
+ The presence of a better adaptive conversion can be proven with the source coding theorem [39]. For any data, the
314
+ expected code length should satisfy the relationship,
315
+ Eβ∼P [l(d(β))] ≥ Eβ∼P [− logb(P(β))],
316
+ (6)
317
+ where l is the number of symbols in a message, d is the coding function, b is the number of symbols in a table, and P is
318
+ the probability of the original symbol. An entropy coding method attempts to approach the lower bound. For JPEG
319
+ compression, Huffman coding [40] is used to determine an adaptable table composed of the estimated probability of
320
+ occurrence for each possible value. Huffman coding uses binary trees [41] for efficient encoding.
321
+ 2.1.2
322
+ JPEG2000 (JP2)
323
+ JPEG2000 (JP2) is a successor to JPEG. JP2 operates using a similar four-step process to JPEG, involving image
324
+ partitioning, frequency-domain transformation, quantization, and entropy coding. In contrast to JPEG, JP2 introduces
325
+ more advanced dynamic tiling algorithms based on variable-sized macroblocks. This makes use of the discrete wavelet
326
+ transform (DWT), and performs additional preprocessing prior to entropy coding. Tiling in this context refers to the
327
+ partitioning of the source image into several non-overlapping rectangular blocks, each of which is processed distinctly.
328
+ Whereas JPEG restricts tile sizes to 8 × 8, tiles in JP2 can be of arbitrary size up to the image dimensions. The DWT is
329
+ applied to each tile in a manner similar to DCT, decomposing a signal into a linear combination of wavelet functions.
330
+ The coefficients in this linear combination correspond to a specific wavelet basis function in the signal. A wavelet can
331
+ be defined as a scale and shift of a basis wavelet. Child wavelets [42] are generally considered for DWT, given by
332
+ ψg,r(s) =
333
+ 1
334
+ 2g/2 ψ
335
+ �s − 2gr
336
+ 2g
337
+
338
+ (7)
339
+ where g is a scaling factor, r is a shift factor, and s corresponds to the index of the one-dimensional representation of an
340
+ image. In other words, the flow field snapshot is converted to a one-dimensional representation and the independent
341
+ variable upon which this one-dimensional signal f(s). The DWT coefficient given a wavelet of the preceding definition
342
+ is then
343
+ Fg,r =
344
+ � ∞
345
+ −∞
346
+ f(s)ψg,rds
347
+ (8)
348
+ where f(s) is a one-dimensional signal. The signal can be reconstructed through the summation of the product of each
349
+ coefficient with the corresponding wavelet. In a discrete interpretation, this is written as
350
+ f(s) =
351
+
352
+
353
+ g=−∞
354
+
355
+
356
+ r=−∞
357
+ Fg,rψg,r.
358
+ (9)
359
+ The summation bounds for both the calculation of the coefficients and reconstruction of the signal can be set to finite
360
+ values and can still produce lossless reconstructions assuming that the wavelets contain the maximum and minimum
361
+ wavelengths within the source image.
362
+ An example of the DWT for the vorticity field of two-dimensional decaying turbulence is presented in figure 3. The
363
+ DWT can be applied recursively to one-dimensional signals to produce higher fidelity representations of data. As such,
364
+ successive high-pass filters are applied on down-sampled images, producing a higher fidelity representation of spatial
365
+ frequencies in the source image. The DWT can be extended to higher dimensions by applying the one-dimensional
366
+ DWT on rows and columns. The recursive application of the DWT produces 2n distinct filtered images where n is the
367
+ number of times the DWT is applied.
368
+ Similar to JPEG compression, the DWT coefficients are quantized following the transformation on the wavespace,
369
+ F Q
370
+ a,b = sign(Fa,b)⌊|Fa,b|
371
+ ∆b
372
+ ⌋,
373
+ (10)
374
+ 5
375
+
376
+ A PREPRINT - JANUARY 3, 2023
377
+ (b)
378
+ (c)
379
+ (d)
380
+ (e)
381
+ (g)
382
+ (f)
383
+ (a)
384
+ 0
385
+ 50
386
+ 100
387
+ -50
388
+ -100
389
+ Figure 3: An example of the two-level discrete wavelet transform for two-dimensional homogeneous turbulent vorticity
390
+ field, used in JP2 compression. High-pass filtering yields three large images. Low-pass filtering and downscaling are
391
+ then performed, producing the three small images. (a) The final approximation image. (b, e) Vertical, (c, f) horizontal,
392
+ and (d, g) diagonal coefficients of the second (b − d) and the first levels (e − g) are shown.
393
+ where ∆b is defined as the quantization step. DWT coefficients within the range (−∆b, ∆b) are quantized to 0.
394
+ Following quantization, the coefficients are processed in preparation for entropy coding. Arithmetic coding [43] is
395
+ used for entropy coding in JPEG2000. While Huffman coding separates the original data into component symbols and
396
+ replaces each with a code in a table, Arithmetic coding encodes the entire message into a single number represented
397
+ with an arbitrary-precision fraction pa, where 0 ≤ pa < 1.
398
+ 2.2
399
+ Video Compression
400
+ 2.2.1
401
+ H.264 (AVC)
402
+ The H.264 video compression includes a multi-step process, consisting generally of prediction, transformation (a set
403
+ of frequency-domain representation and quantization in image compression), and entropy encoding on the encoder
404
+ side. A similar process for file reconstruction is performed on the decoder side. Prediction in video compression
405
+ amounts to an operation to remove redundancies in the given signal. H.264 supports a range of prediction options
406
+ 6
407
+
408
+ 500
409
+ 450
410
+ 400
411
+ 350
412
+ 300
413
+ 250
414
+ 200
415
+ 150
416
+ 100
417
+ 50
418
+ 20
419
+ 40
420
+ 60
421
+ 80
422
+ 100
423
+ 120
424
+ 140
425
+ 160
426
+ 180
427
+ 200160
428
+ 140
429
+ 120
430
+ 100
431
+ 80
432
+ 60
433
+ 40
434
+ 20
435
+ 20
436
+ 40
437
+ 60
438
+ 80
439
+ 100
440
+ 120
441
+ 140
442
+ 160
443
+ 180
444
+ 200160
445
+ 140
446
+ 120
447
+ 100
448
+ 80
449
+ 60
450
+ 40
451
+ 20
452
+ 20
453
+ 40
454
+ 60
455
+ 80
456
+ 100
457
+ 120
458
+ 140
459
+ 160
460
+ 180
461
+ 200300
462
+ 250
463
+ 200
464
+ 150
465
+ 100
466
+ 50
467
+ 50
468
+ 100
469
+ 150
470
+ 200
471
+ 250
472
+ 300
473
+ 350
474
+ 400300
475
+ 250
476
+ 200
477
+ 150
478
+ 100
479
+ 50
480
+ 50
481
+ 100
482
+ 150
483
+ 200
484
+ 250
485
+ 300
486
+ 350
487
+ 400100
488
+ 50
489
+ 0
490
+ -50
491
+ -100A PREPRINT - JANUARY 3, 2023
492
+ Frame 1
493
+ MC Frame 2
494
+ Frame 2 MC Residual
495
+ Figure 4: Motion compensation (MC), used in temporal compression of H.264, H.265, and AV1, is exemplified by the
496
+ calculation of a motion vector field, describing the translation of pixels between successive frames. As an example, a
497
+ streamwise velocity field u of three-dimensional turbulent channel flow is considered. Subtracting this field from the
498
+ original image yields a residual image, which is stored.
499
+ such as intra-prediction used for data within the current frame, inter-prediction for motion compensation, and multiple
500
+ block-size-based predictions. An accurate prediction implies that the residual contains very little information, amounting
501
+ to good compression performance.
502
+ Video data is first partitioned into macroblocks of dimension 16 × 16 pixels. A prediction of the current macroblock
503
+ is formed using 4 × 4 and 16 × 16-sized blocks in the case of intra-frame prediction, referring to predictions from
504
+ surrounding blocks within the same frame. A range of block sizes from 4 × 4 to 16 × 16 are also considered in the
505
+ case of inter-frame prediction, referring to predictions from previously coded frames. Macroblock prediction is further
506
+ discretized into intra-prediction with neighboring blocks in the current frame, blocks in a previously coded frame, and
507
+ blocks from up to two previously coded frames.
508
+ In intra-prediction, the size of prediction macroblocks can be three cases: 16 × 16, 8 × 8, or 4 × 4 pixels [31]. The
509
+ choice of block size is made primarily based on prediction efficiency. One of several prediction modes where each
510
+ prediction mode indicates a direction in which to extrapolate pixel values or to average across all pixels. In the case of
511
+ inter-prediction, the reference frame, where the prediction block is situated, is chosen from several previously decoded
512
+ frames. As shown in figure 4, a motion vector is then obtained for the current macroblock, based on the offset from the
513
+ prediction block or from previously coded motion vectors. These motion vectors are optionally weighted to account for
514
+ temporal proximity between frames, and are sent into the data stream. Generally, a deblocking filter is further applied to
515
+ each frame to store in a decoded format for subsequent inter-frame predictions in smoothing the sharp edges caused by
516
+ the use of block coding [44].
517
+ Transformation involves the conversion of blocks to frequency-domain representations and quantization of coefficients
518
+ corresponding to high wavelength data. The DCT step is given by the transformation of block X by matrix A into DCT
519
+ coefficients Y for each macroblock. For the case of 4 × 4 blocks, these matrices X, Y ∈ R4×4 are expressed as
520
+ Y = AXAT =
521
+
522
+ ��
523
+ a
524
+ a
525
+ a
526
+ a
527
+ b
528
+ c
529
+ −c
530
+ −b
531
+ a
532
+ −a
533
+ −a
534
+ a
535
+ c
536
+ −b
537
+ b
538
+ −c
539
+
540
+ �� X
541
+
542
+ ��
543
+ a
544
+ b
545
+ a
546
+ c
547
+ a
548
+ c
549
+ −a
550
+ −b
551
+ a
552
+ −c
553
+ −a
554
+ b
555
+ a
556
+ −b
557
+ a
558
+ −c
559
+
560
+ �� ,
561
+ (11)
562
+ where a = 1/2, b =
563
+
564
+ 1/2 cos(π/8), c =
565
+
566
+ 1/2 cos(3π/8). The rows of A are orthonormal. To calculate equation 11
567
+ on a practical processor, the approximation for b and c is required. This is achieved with a fixed-point approximation,
568
+ which is equivalent to scaling each row of A by 2.5 and rounding to the nearest integer. A core transform Cf4, which
569
+ scales each term of A by 2.5 and rounds to the nearest integer, and a scaling matrix Sf4, which restores norms of row of
570
+ Cf4 to 1 by scaling, are respectively defined as,
571
+ Cf4 =
572
+
573
+ ��
574
+ c1
575
+ c1
576
+ c1
577
+ c1
578
+ c2
579
+ c1
580
+ −c1
581
+ −c2
582
+ c1
583
+ −c1
584
+ −c1
585
+ c1
586
+ c1
587
+ −c2
588
+ c2
589
+ −c1
590
+
591
+ �� ,
592
+ Sf4 =
593
+
594
+ ��
595
+ s1
596
+ s2
597
+ s1
598
+ s2
599
+ s2
600
+ s3
601
+ s2
602
+ s3
603
+ s1
604
+ s2
605
+ s1
606
+ s2
607
+ s2
608
+ s3
609
+ s2
610
+ s3
611
+
612
+ �� ,
613
+ (12)
614
+ where c1 = 1, c2 = 2, s1 = 1/4, s2 = 1/(2
615
+
616
+ 10), and s3 = 1/10. Matrix Y is then determined as
617
+ Y = [Cf4XCT
618
+ f4]Sf4.
619
+ (13)
620
+ Similar DCT approximations are specified for other block sizes, involving Cf8, Sf8, and others [31]. A quantization
621
+ mechanism similar to JPEG is applied, with a quantization table specified for various block sizes. The quantized DCT
622
+ coefficients are then traversed in an oscillating, “zig-zag” manner from low- to high-wavenumber components. Entropy
623
+ coding is finally applied to the output of DCT.
624
+ 7
625
+
626
+ Frame 1
627
+ MC Frame 2
628
+ Frame 2 MC ResidualA PREPRINT - JANUARY 3, 2023
629
+ 2.2.2
630
+ H.265 (HEVC)
631
+ H.265 was released in 2013 as the successor to H.264. While the fundamental architecture is unchanged from H.264,
632
+ H.265 makes use of coding tree units which are similar to macroblocks but expand the range of possible dimensions,
633
+ with variable dimensions selected by the encoder, allowing coding tree units to be divided into sub-blocks. Predictions
634
+ and reconstructions are performed on coding tree units and supported sub-block sizes range from 64 × 64 to 4 × 4
635
+ pixels. Motion vectors are predicted based on those of adjacent units or blocks in the case of intra prediction, or previous
636
+ encoded frames in the case of inter prediction. As in H.264, the DCT is performed at the coding tree block level, and
637
+ the resultant coefficients are subjected to scalar quantization and entropy coding. Instead of deblocking filter in H.264,
638
+ a sample adaptive offset filter is applied within the prediction loop to improve the quality of the compressed data [45].
639
+ 2.2.3
640
+ AV1
641
+ AV1 was released in 2018 in an effort to replace the H.2XX series of video compression algorithms. In AV1, much
642
+ of the fundamental architecture from H.2XX is maintained. Frames are partitioned using a 4-way partition tree with
643
+ dimensions ranging from 128 × 128 to 4 × 4. AV1 supports 56 directional spatial modes for intra-frame prediction with
644
+ finer angle variations than that provided by H.2XX. AV1 extends the number of reference frames that any given frame
645
+ can use to perform predictions to seven references for inter-frame prediction, thus enabling more accurate encoding
646
+ of data with rich temporal characteristics. Motion vector field formation is improved by expanding the spatial search
647
+ domain for vector candidates and through the utilization of a temporal motion field estimation system. AV1 also
648
+ extends frequency-domain transform algorithms to include the asymmetric discrete sine transform with a richer set
649
+ of transform kernels for varying block sizes. Entropy coding and scalar quantization are also used as well as H.2XX
650
+ compression algorithms. To perform deblocking, a constrained directional enhancement filter and loop restoration
651
+ filters are applied [33]. These filters are able to effectively remove artifacts without causing blurring, compared to
652
+ conventional deblocking filters [46].
653
+ 3
654
+ Flow Fields
655
+ Let us apply the compression techniques presented above to representative fluid flow data sets from numerical
656
+ simulations. We describe herein the problem setup of the example flow fields we analyze and the simulation approach
657
+ used to generate them.
658
+ 3.1
659
+ Two-dimensional laminar cylinder wake
660
+ Bluff body flow forms a large class of problems, such as the vortex shedding around a cylinder. We first apply the
661
+ compression techniques to the two-dimensional cylinder wake obtained by direct numerical simulation (DNS) [47, 48].
662
+ The governing equations are the incompressible Navier–Stokes equations,
663
+ ∇ · u = 0,
664
+ (14)
665
+ ∂u
666
+ ∂t + u · ∇u = −∇p +
667
+ 1
668
+ ReD
669
+ ∇2u,
670
+ (15)
671
+ where u and p are the non-dimensionalized velocity vector and pressure, respectively.
672
+ All variables are non-
673
+ dimensionalized with the fluid density ρ, the uniform velocity U∞, and the cylinder diameter D. The Reynolds
674
+ number is defined as ReD = U∞D/ν = 100 with ν being the kinematic viscosity. We consider five nested lev-
675
+ els of multi-domains with the finest grid level covering (x, y) = [−1, 15] × [−8, 18] and the largest domain being
676
+ (x, y) = [−5, 75] × [−40, 40]. The time step for DNS is ∆t = 2.50 × 10−3. We extract the domain around a cylinder
677
+ body over (x∗, y∗)/D = [−0.7, 15] × [−5, 5] with (Nx, Ny) = (500, 300) and (∆x, ∆y) = (0.0314, 0.0333). The
678
+ flow exhibits vortex shedding with a single period with 21 snapshots. For the compression analysis, 160 temporal
679
+ snapshots of grayscale images of the streamwise velocity field u are considered.
680
+ 3.2
681
+ Two-dimensional decaying homogeneous isotropic turbulence
682
+ To examine the data compression performance by the present techniques for more complex turbulent flows, we also
683
+ consider a two-dimensional decaying homogeneous isotropic turbulence. This time-varying flow can be regarded
684
+ as a canonical fluid flow example for a broad range of turbulent flows. The data set is prepared by DNS using
685
+ the two-dimensional vorticity transport equation [49]. We set the initial Reynolds number Re0 ≡ u∗l∗
686
+ 0/ν = 80.4,
687
+ where u∗ is the characteristic velocity obtained by the square root of the spatially averaged initial kinetic energy,
688
+ l∗
689
+ 0 = [2u2(t0)/ω2(t0)]1/2 is the initial integral length, and ν is the kinematic viscosity. The computational domain and
690
+ 8
691
+
692
+ A PREPRINT - JANUARY 3, 2023
693
+ the numbers of grid points are set to Lx = Ly = 1 and Nx = Ny = 128, respectively. We use 1000 snapshots in an
694
+ eddy turn-overtime of t ∈ [2, 6] with a time interval of ∆t = 0.004. For the data compression analysis, 128 × 128 grid
695
+ with grayscale contours of the vorticity field ω are used.
696
+ 3.3
697
+ Turbulent channel flow
698
+ To further demonstrate the present data compression techniques, we also examine turbulent channel flow at a friction
699
+ Reynolds number of Reτ = uτδ/ν = 180, where uτ is the friction velocity, δ is the half-width of the channel, and ν
700
+ is the kinematic viscosity. This flow involves a broader range of spatio-temporal flow scales and fewer redundancies
701
+ compared to the previous two examples. The data sets are prepared by a three-dimensional DNS [50, 51], numerically
702
+ solving the incompressible Navier–Stokes equations. The present DNS has been validated by comparison with spectral
703
+ DNS data of Moser et al [52]. The streamwise, wall-normal, and spanwise spatial coordinates are denoted by x, y, and z,
704
+ respectively. The size of the computational domain and the number of grid points here are (Lx, Ly, Lz) = (4πδ, 2δ, 2πδ)
705
+ and (Nx, Ny, Nz) = (256, 96, 256), respectively. The grids in the streamwise and spanwise directions are taken to be
706
+ uniform, while that in the y direction is a non-uniform grid. The no-slip boundary condition is imposed on the walls and
707
+ a periodic boundary condition is applied to the x and z directions. The flow is driven by a constant pressure gradient. In
708
+ what follows, we denote wall-unit quantities with the superscript +.
709
+ For the present study, an x − z cross-sectional streamwise velocity u at y+ = 13.2 is analyzed, where representative
710
+ streak structures are present [53]. Fifty temporal snapshots of a 256 × 256 spatial grid over t+ ∈ [0, 63] are formatted
711
+ into grayscale data and are used for compression assessment.
712
+ 4
713
+ Results
714
+ For image compression, matrices of flow field data corresponding to specific temporal snapshots are represented as
715
+ uncompressed grayscale images. These images are compressed using JPEG and JP2 encoders. For video compression,
716
+ the matrices of flow field data are represented as grayscale images and concatenated into uncompressed, grayscale
717
+ videos. This raw video file is used as the input to the H.264, H.265, and AV1 encoders. To obtain control over the
718
+ outputted file size for the purposes of this analysis, a two-pass encoding scheme is considered. In the two-pass encoding,
719
+ the encoder runs twice. The first run is used to collect some information and statistics such as how many bytes would
720
+ be needed for data compression and the second run performs the actual encoding. These two processes enable the use
721
+ of the information collected in the first run to achieve enhanced compression.
722
+ This study uses FFmpeg [35], a free and open-source software consisting of various libraries for handling video, audio,
723
+ and other multimedia files. These libraries can be easily used from the command line ffmpeg. Default encoding
724
+ settings for the relevant FFMpeg library are used to maintain consistency across all tests.
725
+ 4.1
726
+ Image compression
727
+ To establish a baseline performance for comparison, individual flow snapshots are compressed using singular value
728
+ decomposition (SVD). Individual snapshots are decomposed into left and right singular vector matrices U and V T , and
729
+ a diagonal matrix Σ containing the singular values. Snapshots are reconstructed by retaining the r leading modes. Here,
730
+ the compression ratio η in the SVD context is then defined as
731
+ η = r(m + n + 1)
732
+ mn
733
+ ,
734
+ (16)
735
+ where m and n are the snapshot dimensions in the horizontal and vertical directions and a value of η = 1 corresponds
736
+ to the original, uncompressed snapshot. In the present study, the snapshot dimensions for each flow example are set
737
+ as (m, n) = (500, 300) for cylinder wake, (128, 128) for two-dimensional decaying turbulence, and (256, 256) for
738
+ turbulent channel flow, respectively.
739
+ Let us compare the image compression techniques with the cylinder wake example. As for the data attribute, we use
740
+ a streamwise velocity u. The compressed wake fields and the spatial absolute error distributions with η ≈ 0.05 are
741
+ presented in figure 5. The L2 error norm of reconstruction ε = ||fRef − fComp||2/||fRef||2, where fRef and fComp
742
+ are respectively the reference and compressed flow fields, is also shown underneath the decoded fields. The SVD
743
+ produces negligible error for the entire flow field, although slight discontinuities are observed in the wake region. By
744
+ comparison, JPEG compression introduces some compression artifacts including discontinuities of grayscale contours
745
+ and granulated vortical structures. This is due to fixed-size areas upon which the DCT is performed and elementary
746
+ anti-blocking features. This indicates that compression based on the fixed block of 8 × 8 pixels is not appropriate for
747
+ flow fields that include fine-scale spatial variations. In contrast, the compressed flow field with the JP2 algorithm retains
748
+ 9
749
+
750
+ A PREPRINT - JANUARY 3, 2023
751
+ JPEG
752
+ JPEG2000
753
+ SVD
754
+ {ε, η} = {0.0176, 0.0548}
755
+ {ε, η} = {0.00370, 0.0507}
756
+ {ε, η} = {0.00670, 0.0532}
757
+ Compressed flow field
758
+ Spatial error distribution
759
+ 0
760
+ 50
761
+ 100
762
+ -50
763
+ -100
764
+ 0
765
+ 0.01
766
+ 0.02
767
+ 0.03
768
+ 0.04
769
+ 0.05
770
+ Figure 5: Comparison of image compression techniques for cylinder wake at ReD = 100. A streamwise velocity field
771
+ u is considered. The L2 error norm of the reconstruction ε and the compression ratio η are shown underneath each flow
772
+ field contour. Spatial absolute error distribution for each compression technique is also presented.
773
+ JPEG
774
+ JPEG2000
775
+ SVD
776
+ {ε, η} = {0.0350, 0.282}
777
+ {ε, η} = {0.0233, 0.270}
778
+ {ε, η} = {0.00820, 0.282}
779
+ 0
780
+ 50
781
+ 100
782
+ -50
783
+ -100
784
+ Figure 6: Comparison of image compression techniques for two-dimensional decaying turbulence. A vorticity field ω is
785
+ considered. The L2 error norm of the reconstruction ε and the compression ratio η are shown underneath each flow
786
+ field contour.
787
+ wake features even while achieving significant data compression, with the L2 error of 0.00370. These results support
788
+ the effectiveness of the adaptive block size of DWT in JP2 compression for bluff body wake data sets.
789
+ Next, we apply the image compression techniques to two-dimensional decaying homogeneous isotropic turbulence,
790
+ as shown in figure 6. We use a vorticity field ω as a quantity of interest and compare the compression results with
791
+ η ≈ 0.280. Similar to the cylinder example, the SVD can provide a smooth field and small error for the entire flow field.
792
+ Although SVD can achieve a reasonable compression for the laminar cylinder wake and two-dimensional turbulence
793
+ that are mainly composed of large vortical structures, we discuss later how the presence of fine-scale turbulent structures
794
+ alters the compression performance. For this two-dimensional turbulence, the effect of 8 × 8 pixel blocks can be clearly
795
+ observed in JPEG compression. Such pixelized artifacts on the flow field can be mitigated by using the JP2 compression
796
+ technique, analogous to the observation with the cylinder example.
797
+ The limitation of the SVD and the efficacy of the DWT-based process in the JP2 algorithm are further emphasized in
798
+ the example of more complex turbulence. Here, the compression techniques are applied to a streamwise velocity u
799
+ 10
800
+
801
+ JPEG
802
+ JPEG2000
803
+ SVD
804
+ (8, n) = {0.0176, 0.0548)
805
+ (8, n) = {0.00370, 0.0507
806
+ (s, n) = {0.00670, 0.0532)
807
+ (8, n) = (0.00490, 0.136)
808
+ (8, n) = (0.00310, 0.120)
809
+ (8, n) = (0.00180, 0.112)100
810
+ 50
811
+ 0
812
+ -50
813
+ -100JPEG
814
+ JPEG2000
815
+ SVD
816
+ = 0.0350
817
+ 8= 0.0233
818
+ 8 = 0.00820
819
+ n = 0.282
820
+ n = 0.270
821
+ n = 0.282
822
+ 8 = 0.0168
823
+ 8 = 0.0134
824
+ 8= 0.00310
825
+ n = 0.511
826
+ n = 0.452
827
+ n = 0.502100
828
+ 50
829
+ 0
830
+ -50
831
+ -100A PREPRINT - JANUARY 3, 2023
832
+ {ε, η} = {0.129, 0.0281}
833
+ {ε, η} = {0.0265, 0.234}
834
+ {ε, η} = {0.0903, 0.0234}
835
+ {ε, η} = {0.235, 0.0235}
836
+ {ε, η} = {0.0122, 0.240}
837
+ {ε, η} = {0.0258 0.235}
838
+ JPEG
839
+ SVD
840
+ JPEG2000
841
+ {ε, η} = {0.129, 0.0281}
842
+ {ε, η} = {0.0265, 0.234}
843
+ {ε, η} = {0.0903, 0.0234}
844
+ {ε, η} = {0.235, 0.0235}
845
+ {ε, η} = {0.0122, 0.240}
846
+ {ε, η} = {0.0258 0.235}
847
+ JPEG
848
+ SVD
849
+ JPEG2000
850
+ {ε, η} = {0.129, 0.0281}
851
+ {ε, η} = {0.0265, 0.234}
852
+ {ε, η} = {0.0903, 0.0234}
853
+ {ε, η} = {0.235, 0.0235}
854
+ {ε, η} = {0.0122, 0.240}
855
+ {ε, η} = {0.0258 0.235}
856
+ JPEG
857
+ SVD
858
+ JPEG2000
859
+ JPEG
860
+ JPEG2000
861
+ SVD
862
+ {ε, η} = {0.129, 0.0281}
863
+ {ε, η} = {0.0903, 0.0234}
864
+ {ε, η} = {0.235, 0.0235}
865
+ 0
866
+ 50
867
+ 100
868
+ -50
869
+ -100
870
+ Figure 7: Comparison of image compression techniques for turbulent channel flow at Reτ = 180. A streamwise
871
+ velocity field u is considered. The L2 error norm of the reconstruction ε and the compression ratio η are shown
872
+ underneath each flow field contour.
873
+ (a)
874
+ (b)
875
+ : JPEG
876
+ : JP2
877
+ : SVD
878
+ : Cylinder
879
+ : 2D turbulence
880
+ : Channel
881
+ SVD
882
+ JPEG
883
+ JP2
884
+ SVD
885
+ JP2
886
+ JPEG
887
+ SVD
888
+ JPEG
889
+ JP2
890
+ (c)
891
+ (d)
892
+ (e)
893
+ Figure 8: Relationship between (a) the L2 error norm ε, (b) SSIM, and image compression ratio η. Zoom-in view of
894
+ η-SSIM curve for (c) cylinder wake, (d) two-dimensional turbulence, and (e) turbulent channel flow.
895
+ of the three-dimensional channel flow. The compression results with η ≈ 0.025 are compared in figure 7. As shown,
896
+ the SVD-based compression cannot retain the important features of the streaks. Compared to SVD, JPEG provides a
897
+ better reconstruction although it also introduces discontinuities that obscure small spatial length scales in the flow field.
898
+ Surprisingly, JP2 produces non-negligible artifacts and maintains an L2 error norm less than half that of SVD. The
899
+ channel flow field at this low η remains nearly indistinguishable from the uncompressed flow field, also preserving the
900
+ streak spacing of the reference DNS field [53, 54]. These observations suggest the effectiveness of the JP2 algorithm
901
+ for image compression of complex fluid flow data.
902
+ Building on these assessments, the L2 error between compressed and uncompressed flow fields is evaluated across
903
+ compression ratios, as shown in figure 8(a). The error is averaged over all temporal snapshots of each flow example. In
904
+ general, all compression algorithms produce an asymptotically decaying L2 error. JPEG introduces appreciable error at
905
+ low η, in the same order as SVD compression. It is worth pointing out that JP2 performs especially well at low η while
906
+ SVD compression produces the lowest L2 error for high η for all flow fields.
907
+ 11
908
+
909
+ 100
910
+ 50
911
+ 0
912
+ -50
913
+ -100100
914
+ 10
915
+ -2
916
+ 10
917
+ 10
918
+ 0.0
919
+ 0.2
920
+ 0.4
921
+ 0.6
922
+ 0.8
923
+ n1.00
924
+ 0.75
925
+ SSIM
926
+ 0.50
927
+ L
928
+ 0.25
929
+ 0.00
930
+ 0.0
931
+ 0.2
932
+ 0.4
933
+ 0.6
934
+ 0.8
935
+ n1.005
936
+ 1.000
937
+ EE
938
+ 0.995
939
+ SSIM
940
+ 0.990
941
+ 0.985
942
+ 0.980
943
+ 0.0
944
+ 0.2
945
+ 0.4
946
+ 0.6
947
+ 0.8
948
+ n1.000
949
+ 0.975
950
+ SSIM
951
+ 0.950
952
+ 0.925
953
+ 0.900
954
+ 0.0
955
+ 0.2
956
+ 0.4
957
+ 0.6
958
+ 0.8
959
+ n1.00
960
+ SSIM
961
+ 0.99
962
+ 0.98
963
+ 0.97
964
+ 0.0
965
+ 0.2
966
+ 0.4
967
+ 0.6
968
+ 0.8
969
+ nA PREPRINT - JANUARY 3, 2023
970
+ (a)
971
+ (d)
972
+ (b)
973
+ (e)
974
+ (c)
975
+ (f)
976
+ ηLow = 0.0299
977
+ ηMed = 0.0913
978
+ ηHigh = 0.237
979
+ ηLow = 0.295
980
+ ηMed = 0.539
981
+ ηHigh = 0.885
982
+ ηLow = 0.215
983
+ ηMed = 0.505
984
+ ηHigh = 0.932
985
+ ηLow = 0.0299
986
+ ηMed = 0.0913
987
+ ηHigh = 0.237
988
+ ηLow = 0.0381
989
+ ηMed = 0.0880
990
+ ηHigh = 0.803
991
+ ηLow = 0.0381
992
+ ηMed = 0.0880
993
+ ηHigh = 0.803
994
+ Figure 9: Kinetic energy spectra for two-dimensional decaying homogeneous isotropic turbulence using (a) JPEG and
995
+ (d) JP2. (b, e) Streamwise and (c, f) spanwise kinetic energy spectrum of three-dimensional turbulent channel flow
996
+ compressed with (b, c) JPEG and (e, f) JP2.
997
+ As an additional metric for quantifying the error introduced by each compression method, the localized structural
998
+ similarity index (SSIM) [55] is computed between compressed and uncompressed flow fields. SSIM can capture spatial
999
+ correlation around pixels and is less sensitive against a pixel-wise error caused by translation and rotational difference
1000
+ compared to the L2 error. Hence, SSIM is suited for the image and video-based compression analysis. The SSIM χ is
1001
+ defined as
1002
+ χ = l(ix, iy)c(ix, iy)s(ix, iy)
1003
+ (17)
1004
+ where
1005
+ l(ix, iy) = 2µxµy + C1
1006
+ µ2x + µ2y + C1
1007
+ ,
1008
+ c(ix, iy) = 2σxσy + C2
1009
+ σ2x + σ2y + C2
1010
+ ,
1011
+ s(ix, iy) = σxy + C3
1012
+ σxσy + C3
1013
+ (18)
1014
+ with µx and σx defined as the mean and standard deviation of ix respectively, σxy being the covariance of ix and iy,
1015
+ and c1, c2, and c3 being constants to stabilize division. We set {C1, C2, C3} = {0.16, 1.44, 0.72} following Wang et
1016
+ al. [55]. The resultant value lies between 0, representing no similarity, and 1, representing an identical image. The
1017
+ relationship between the image compression ratio and the L2 error is depicted in figure 8(b) Generally, JP2 and SVD
1018
+ produce a negligible decrease in the SSIM at low compression ratios and asymptotically approach an SSIM value of 1
1019
+ at higher compression ratios. The SSIM value of the cylinder flow field with JPEG compression applied decays by
1020
+ approximately 10%, as a result of significant discontinuities produced by JPEG.
1021
+ We also present the zoom-in view of the relationship between SSIM and the compression ratio η for each flow, in
1022
+ figures 8(c) − (e). Similar to the observation in the η − ε curves in figure 8(a), SVD and JP2 provide high SSIM scores
1023
+ compared to JPEG. Especially at excessive compression (low η) of three-dimensional turbulent channel flow, JP2 can
1024
+ provide better reconstructions than the other two cases. Although scalar metrics such as the L2 error ε and SSIM are
1025
+ useful, we note that monitoring not only scalar values but also decoded flow fields is important in assessing how vortical
1026
+ structures can be retained through data compression because the influence of local structures are averaged.
1027
+ We are additionally interested in whether finer structures in flow images can still be retained through the present
1028
+ compression process. To examine this aspect, we consider the kinetic energy spectrum of both two- and three-
1029
+ dimensional turbulence examples, as summarized in figure 9. The kinetic energy spectrum E(k) for two-dimensional
1030
+ decaying turbulence is
1031
+ E(k) = 1
1032
+ 2(uiui),
1033
+ (19)
1034
+ 12
1035
+
1036
+ Uncompressed
1037
+ JPEG LoW
1038
+ JPEG Medium
1039
+ JPEG High
1040
+ 10~5
1041
+ E
1042
+ 10-10
1043
+ 101
1044
+ 102
1045
+ 103
1046
+ k-Uncompressed
1047
+ JP2 LoW
1048
+ JP2 Medium
1049
+ JP2 High
1050
+ 10-5
1051
+ E
1052
+ 10-10
1053
+ 101
1054
+ 102
1055
+ 103
1056
+ k100
1057
+ 10-4
1058
+ 10-6
1059
+ 10-1
1060
+ 10-2100
1061
+ 10-4
1062
+ 10-6
1063
+ 10~2
1064
+ 10-1100
1065
+ 10-4
1066
+ 10-6
1067
+ 10-1
1068
+ 10~2100
1069
+ 10-4
1070
+ 10-6
1071
+ 10-1
1072
+ 102A PREPRINT - JANUARY 3, 2023
1073
+ {ε, η} = {0.0411, 0.0380}
1074
+ {ε, η} = {0.00470, 0.148}
1075
+ H.265
1076
+ {ε, η} = {0.0132, 0.0196}
1077
+ {ε, η} = {0.00450, 0.142}
1078
+ AV1
1079
+ {ε, η} = {0.0171, 0.0309}
1080
+ POD
1081
+ {ε, η} = {0.00200, 0.130}
1082
+ {ε, η} = {0.0578, 0.0300}
1083
+ {ε, η} = {0.00770, 0.157}
1084
+ H.264
1085
+ {ε, η} = {0.0411, 0.0380}
1086
+ {ε, η} = {0.00470, 0.148}
1087
+ H.265
1088
+ {ε, η} = {0.0132, 0.0196}
1089
+ {ε, η} = {0.00450, 0.142}
1090
+ AV1
1091
+ {ε, η} = {0.0171, 0.0309}
1092
+ POD
1093
+ {ε, η} = {0.00200, 0.130}
1094
+ {ε, η} = {0.0578, 0.0300}
1095
+ {ε, η} = {0.00770, 0.157}
1096
+ H.264
1097
+ 0
1098
+ 50
1099
+ 100
1100
+ -50
1101
+ -100
1102
+ H.264
1103
+ {ε, η} = {0.0578, 0.0300}
1104
+ H.265
1105
+ {ε, η} = {0.0411, 0.0380}
1106
+ {ε, η} = {0.0132, 0.0196}
1107
+ {ε, η} = {0.0171, 0.0309}
1108
+ AV1
1109
+ POD
1110
+ Figure 10: Comparison of video compression techniques applied on a streamwise velocity field u of cylinder wake
1111
+ at ReD = 100, compressed using H.264, H.265, AV1, and POD compression algorithms. The L2 error norm of the
1112
+ reconstruction ε and the compression ratio η are shown underneath each flow field contour.
1113
+ where ui are the components of the fluctuating velocity and the overbar denotes an averaging operation in space and
1114
+ time. For three-dimensional turbulent channel flow, the one-dimensional streamwise and spanwise spectra is evaluated
1115
+ Euu(k+
1116
+ x ; y+) = ˆu∗ˆu
1117
+ z,t, Euu(k+
1118
+ z ; y+) = ˆu∗ˆu
1119
+ x,t,
1120
+ (20)
1121
+ where (·)∗ represents the complex conjugate and ˆ(·) denotes the one-dimensional Fourier transformed variable. Here,
1122
+ we compare three compression ratios, denoted as low, medium, and high, for each turbulent flow.
1123
+ JP2 demonstrates a strong adherence to the kinetic energy spectrum of the uncompressed flow field in both the x
1124
+ and z directions while JPEG compression at low η introduces non-negligible errors at higher wave numbers. This is
1125
+ a consequence of the quantization step of JPEG compression that removes high wavelength scales from the image.
1126
+ Considering the overestimation of Euu(k+
1127
+ x ) as seen in figure 9 when using JPEG, this is likely caused by the absence
1128
+ of a deblocking filter, producing more high wavelength artifacts in the image than what exists in the uncompressed
1129
+ data. Similarly, the underestimation of E(k) by JP2 can be attributed to adaptive block sizes that produce a lower
1130
+ peak signal-to-noise ratio, indicative of lower quality. In general, JP2 is more adept at preserving high-wavenumber
1131
+ structures.
1132
+ 4.2
1133
+ Video compression
1134
+ From the perspective of information, fluid flows are inherently temporally-redundant — as such, video compression
1135
+ algorithms that perform temporal compression are a powerful tool, achieving compression performance that outperforms
1136
+ the previously analyzed image-based techniques. This section assesses the capabilities of video compression techniques
1137
+ such as H.264, H.265, and AV1 compression algorithms for time-varying fluid flow data. Additionally, proper orthogonal
1138
+ decomposition (POD) compression [56] is considered to compare this familiar method of compression within the
1139
+ fluid dynamics community with those analyzed herein [3, 57]. POD is used to decompose a matrix of vectorized,
1140
+ temporally evolving flow field data into a set of basis modes and eigenvalues that contain coherent flow structures
1141
+ and can be used for flow field reconstruction. Formally, a flow field q(x, t) − q(x) can be represented as �n
1142
+ j=1 ajφj
1143
+ where aj is the temporal coefficient for mode φj. The value of aj is the inner product between the mode φj and the
1144
+ mean-subtracted flow field, q(x, t) − q(x). This modal representation can be truncated to r modes, such that the flow
1145
+ field is approximated by �r
1146
+ j=1 ajφj. This study uses the snapshot POD method [58] for comparison to the other video
1147
+ 13
1148
+
1149
+ 100
1150
+ 50
1151
+ 0
1152
+ -50
1153
+ -100A PREPRINT - JANUARY 3, 2023
1154
+ H.264
1155
+ ε = 0.0377
1156
+ η =0.0256
1157
+ ε = 0.00660
1158
+ η =0.222
1159
+ ε = 0.0227
1160
+ η =0.0324
1161
+ ε = 0.00580
1162
+ η = 0.230
1163
+ ε = 0.0175
1164
+ η = 0.0207
1165
+ ε = 0.00480
1166
+ η = 0.206
1167
+ ε = 0.0170
1168
+ η = 0.0209
1169
+ ε = 0.00300
1170
+ η = 0.201
1171
+ H.265
1172
+ AV1
1173
+ POD
1174
+ H.264
1175
+ ε = 0.0377
1176
+ η =0.0256
1177
+ ε = 0.00660
1178
+ η =0.222
1179
+ ε = 0.0227
1180
+ η =0.0324
1181
+ ε = 0.00580
1182
+ η = 0.230
1183
+ ε = 0.0175
1184
+ η = 0.0207
1185
+ ε = 0.00480
1186
+ η = 0.206
1187
+ ε = 0.0170
1188
+ η = 0.0209
1189
+ ε = 0.00300
1190
+ η = 0.201
1191
+ H.265
1192
+ AV1
1193
+ POD
1194
+ H.264
1195
+ ε = 0.0377
1196
+ η =0.0256
1197
+ ε = 0.00660
1198
+ η =0.222
1199
+ ε = 0.0227
1200
+ η =0.0324
1201
+ ε = 0.00580
1202
+ η = 0.230
1203
+ ε = 0.0175
1204
+ η = 0.0207
1205
+ ε = 0.00480
1206
+ η = 0.206
1207
+ ε = 0.0170
1208
+ η = 0.0209
1209
+ ε = 0.00300
1210
+ η = 0.201
1211
+ H.265
1212
+ AV1
1213
+ POD
1214
+ H.264
1215
+ ε = 0.0377
1216
+ η =0.0256
1217
+ ε = 0.00660
1218
+ η =0.222
1219
+ ε = 0.0227
1220
+ η =0.0324
1221
+ ε = 0.00580
1222
+ η = 0.230
1223
+ ε = 0.0175
1224
+ η = 0.0207
1225
+ ε = 0.00480
1226
+ η = 0.206
1227
+ ε = 0.0170
1228
+ η = 0.0209
1229
+ ε = 0.00300
1230
+ η = 0.201
1231
+ H.265
1232
+ AV1
1233
+ POD
1234
+ 0
1235
+ 50
1236
+ 100
1237
+ -50
1238
+ -100
1239
+ H.264
1240
+ {ε, η} = {0.0377, 0.0256}
1241
+ H.265
1242
+ {ε, η} = {0.0227, 0.0324}
1243
+ {ε, η} = {0.0175, 0.0207}
1244
+ {ε, η} = {0.0170, 0.0209}
1245
+ AV1
1246
+ POD
1247
+ Figure 11: Comparison of video compression techniques applied on two-dimensional isotropic turbulent vorticity field,
1248
+ compressed using H.264, H.265, AV1, and POD compression algorithms. The L2 error norm of the reconstruction ε
1249
+ and the compression ratio η are shown underneath each flow field contour.
1250
+ {ε, η} = {0.231, 0.147}
1251
+ {ε, η} = {0.0890, 0.403}
1252
+ {ε, η} = {0.151, 0.135}
1253
+ {ε, η} = {0.0832, 0.185}
1254
+ {ε, η} = {0.0588, 0.367}
1255
+ {ε, η} = {0.0502, 0.385}
1256
+ {ε, η} = {0.255, 0.157}
1257
+ {ε, η} = {0.139, 0.412}
1258
+ H.264
1259
+ H.265
1260
+ AV1
1261
+ POD
1262
+ {ε, η} = {0.231, 0.147}
1263
+ {ε, η} = {0.0890, 0.403}
1264
+ {ε, η} = {0.151, 0.135}
1265
+ {ε, η} = {0.0832, 0.185}
1266
+ {ε, η} = {0.0588, 0.367}
1267
+ {ε, η} = {0.0502, 0.385}
1268
+ {ε, η} = {0.255, 0.157}
1269
+ {ε, η} = {0.139, 0.412}
1270
+ H.264
1271
+ H.265
1272
+ AV1
1273
+ POD
1274
+ 0
1275
+ 50
1276
+ 100
1277
+ -50
1278
+ -100
1279
+ {ε, η} = {0.231, 0.147}
1280
+ {ε, η} = {0.0890, 0.403}
1281
+ {ε, η} = {0.151, 0.135}
1282
+ {ε, η} = {0.0832, 0.185}
1283
+ {ε, η} = {0.0588, 0.367}
1284
+ {ε, η} = {0.0502, 0.385}
1285
+ {ε, η} = {0.255, 0.157}
1286
+ {ε, η} = {0.139, 0.412}
1287
+ H.264
1288
+ H.265
1289
+ AV1
1290
+ POD
1291
+ H.264
1292
+ {ε, η} = {0.231, 0.147}
1293
+ H.265
1294
+ {ε, η} = {0.0832, 0.185}
1295
+ {ε, η} = {0.151, 0.135}
1296
+ {ε, η} = {0.255, 0.157}
1297
+ AV1
1298
+ POD
1299
+ Figure 12: Comparison of video compression techniques applied on a streamwise velocity field u of three-dimensional
1300
+ turbulent channel flow at Reτ = 180, compressed using H.264, H.265, AV1, and POD compression algorithms. The
1301
+ L2 error norm of the reconstruction ε and the compression ratio η are shown underneath each flow field contour.
1302
+ compression techniques. The compression ratio for a reconstructed flow field containing r modes is evaluated as
1303
+ η = r(m + n) + m
1304
+ n(m + n) + m,
1305
+ (21)
1306
+ where m is the total number of pixels in the flow field and n is the total number of flow snapshots.
1307
+ The results of video compression for laminar cylinder wake at ReD = 100 are shown in figure 10. Here, we compare
1308
+ the decoded streamwise velocity field u with η ≈ 0.02 − 0.03. POD compression introduces negligible error, likely
1309
+ as a result of the temporally redundant nature of periodic wake and the larger coherent modal structures that POD
1310
+ is able to extract. By comparison, H.264 compression produces significant artifacts at low η. H.264 struggles likely
1311
+ because inter-frame prediction candidates are chosen from a shallow time range. We also observe that H.265 fails to
1312
+ improve in terms of error level over H.264 for the cylinder wake. This is due to the employment of a similar inter-frame
1313
+ prediction and selection algorithm to that of H.264. Compared to these H.2XX series, the AV1 algorithm provides much
1314
+ 14
1315
+
1316
+ 100
1317
+ 50
1318
+ 0
1319
+ -50
1320
+ -100100
1321
+ 50
1322
+ 0
1323
+ -50
1324
+ -100A PREPRINT - JANUARY 3, 2023
1325
+ (a)
1326
+ (b)
1327
+ : H264
1328
+ : H265
1329
+ : POD
1330
+ : Cylinder
1331
+ : 2D turb.
1332
+ : Channel
1333
+ POD
1334
+ AV1
1335
+ (c)
1336
+ (d)
1337
+ : AV1
1338
+ H265 H264
1339
+ POD
1340
+ AV1
1341
+ H265
1342
+ H264
1343
+ Figure 13: Relationship between (a) the L2 error norm ε, (b) SSIM, and video compression ratio η. Zoom-in view of
1344
+ η-SSIM curve for (c) cylinder wake and (d) two-dimensional isotropic turbulence.
1345
+ better compression, achieving a lower L2 error than that achieved by H.264 and H.265. This highlights the enhanced
1346
+ capability of AV1 to compress laminar and temporally redundant flow fields.
1347
+ We next examine the video compression techniques for two-dimensional decaying homogeneous isotropic turbulence,
1348
+ as summarized in figure 11. The flow fields are compared for the compression ratios of η ≈ 0.02 − 0.03. Similar to the
1349
+ cylinder case, POD compression provides a reasonable reconstruction, likely because large-scale vortical structures
1350
+ are dominant at this particular time. It is, however, easily anticipated that the error of this time-varying flow relies
1351
+ on the presence of a range of length scales, as the small length scales disappear with the progress of the decay over
1352
+ time [59, 60]. The dependence of the compression performance over time for decaying flow will be examined later.
1353
+ While H.2xx compression techniques provide a reasonable reconstruction, AV1 provides better compression without
1354
+ suffering from pixelized artifacts. These results suggest the powerful capabilities of novel deblocking filters for fluid
1355
+ flow applications.
1356
+ The video compression techniques are also applied to the x−z sectional streamwise velocity field u of three-dimensional
1357
+ turbulent channel flow at Reτ = 180, as depicted in figure 12. The compressed flow fields are compared for η ≈ 0.150.
1358
+ In contrast to the other flow examples, POD compression produces significant visible artifacts and a high error value
1359
+ for turbulent channel flow because of a complex temporal evolution of the flow field. POD requires a greater number
1360
+ of modes for adequate reconstruction [61, 62, 63]. Although H.265 improves over H.264 significantly for turbulent
1361
+ channel flow, this still produces few observable discontinuities. This is likely caused by adaptive tiling in macroblocks
1362
+ for prediction procedures, allowing lower η with similar flow field representation. AV1 exceeds the performance of
1363
+ H.264 and H.265 consistently and POD compression on turbulent channel flow. Flow fields compressed using AV1 are
1364
+ indistinguishable from uncompressed flow fields at high η.
1365
+ The L2 error and SSIM are evaluated across a range of compression ratios for each type of flow field, as presented in
1366
+ figure 13. In general, all video compression algorithms produce asymptotically decaying L2 error values with increasing
1367
+ η. AV1 performs well at low η, especially for the cylinder wake. Additionally, all compression algorithms perform
1368
+ well for two-dimensional turbulence, likely as a result of the flow field snapshots holding slow changes from one
1369
+ frame to the next due to the decaying nature of the flow. Moreover, as observed with samples at various compression
1370
+ ratios, the L2 error for all algorithms plateau at non-negligible values for the cylinder wake flow field. SSIM values
1371
+ 15
1372
+
1373
+ n
1374
+ 10
1375
+ -2
1376
+ 10
1377
+ 3
1378
+ 10
1379
+ 0.0
1380
+ 0.2
1381
+ 0.4
1382
+ 0.6
1383
+ 0.8
1384
+ n1.0
1385
+ 0.8
1386
+ 4
1387
+ SSIM
1388
+ 0.6
1389
+ 0.4
1390
+ 0.2
1391
+ 0.0
1392
+ 0.2
1393
+ 0.4
1394
+ 0.6
1395
+ 0.8
1396
+ n1.000
1397
+ SSIM
1398
+ 0.995
1399
+ 0.990
1400
+ 0.985
1401
+ 0.0
1402
+ 0.2
1403
+ 0.4
1404
+ 0.6
1405
+ 0.8
1406
+ n1.000
1407
+ SSIM
1408
+ 0.995
1409
+ 0.990
1410
+ 0.985
1411
+ 0.0
1412
+ 0.2
1413
+ 0.4
1414
+ 0.6
1415
+ 0.8
1416
+ nA PREPRINT - JANUARY 3, 2023
1417
+ (b)
1418
+ (c)
1419
+ (a)
1420
+ (i)
1421
+ (ii)
1422
+ (i)
1423
+ (ii)
1424
+ (i)
1425
+ (ii)
1426
+ (i)
1427
+ (ii)
1428
+ (i)
1429
+ (ii)
1430
+ (i)
1431
+ (ii)
1432
+ (b)
1433
+ (c)
1434
+ (a)
1435
+ (i)
1436
+ (ii)
1437
+ (i)
1438
+ (ii)
1439
+ (i)
1440
+ (ii)
1441
+ (i)
1442
+ (ii)
1443
+ (i)
1444
+ (ii)
1445
+ (i)
1446
+ (ii)
1447
+ (b)
1448
+ (c)
1449
+ (a)
1450
+ (i)
1451
+ (ii)
1452
+ (i)
1453
+ (ii)
1454
+ (i)
1455
+ (ii)
1456
+ (i)
1457
+ (ii)
1458
+ (i)
1459
+ (ii)
1460
+ (i)
1461
+ (ii)
1462
+ (b)
1463
+ (c)
1464
+ (a)
1465
+ (i)
1466
+ (ii)
1467
+ (i)
1468
+ (ii)
1469
+ (i)
1470
+ (ii)
1471
+ (i)
1472
+ (ii)
1473
+ (i)
1474
+ (ii)
1475
+ (i)
1476
+ (ii)
1477
+ (a)
1478
+ (b)
1479
+ (c)
1480
+ Figure 14: L2 error norm ε of vorticity field ω for two-dimensional decaying homogeneous isotropic turbulence over
1481
+ time. (a) H.264, (b) H.265, and (c) AV1. (i) and (ii) in each case are chosen due to their employment in inter-frame
1482
+ prediction in each algorithm.
1483
+ generally diverge from the asymptotic limit at low η. The exceptional cases include cylinder wake and two-dimensional
1484
+ turbulence compressed using AV1, which introduces negligible error at low η. AV1 outperforms H.264 and H.265 on
1485
+ turbulent channel flow as well, due to the improved blocking techniques.
1486
+ In addition, the time evolution of the L2 error is examined to gain insight into the performance of video compression
1487
+ algorithms for individual snapshots. The temporal evolution of the L2 error norm ε for two-dimensional decaying
1488
+ turbulence is shown in figure 14. H.2xx compression techniques exhibit repeated temporal structures in its L2 error
1489
+ evolution, likely as a consequence of inter-frame prediction selecting frames to make predictions from at relatively
1490
+ similar intervals. AV1 compression provides a distinctive reduction in the L2 error over time for medium and low η,
1491
+ indicating improved accuracy as snapshots begin to show redundancies due to the vortex field decaying and exhibiting
1492
+ similar large-scale coherent structures from one snapshot to the next. We also observe that H.264 produces a high error
1493
+ at low η for early flow field snapshots. This relates to the time-varying flow nature of the present decaying turbulence,
1494
+ as mentioned above. The presence of finer structures at the high Taylor Reynolds number Reλ(t) portion of the flow
1495
+ likely causes the difficulty in compressing vortical flow data.
1496
+ We also examine the L2 error norm ε and the flow fields over time for turbulent channel flow, as depicted in figure 15.
1497
+ H.264 generally produces a larger L2 error compared to the other techniques, as we also observed with the visual
1498
+ assessments in figure 12. With low η of H.264 compression, the error decreases over time, likely as a result of a later
1499
+ snapshot being selected for inter-frame prediction. Compared to H.264, H.265 provides better compression over time.
1500
+ Similar to the observation with H.264, the L2 error significantly varies over time at a low η. This is likely due to the
1501
+ inter-frame selection of an early frame from which further predictions were made. AV1 produces a negligible error at a
1502
+ high η while the errors increase as η decreases.
1503
+ We are also interested in the performance of video compression algorithms in preserving high wavenumber structures in
1504
+ the compressed state. The general performance of each compression algorithm with regard to kinetic energy spectra of
1505
+ each flow field is investigated, as shown in figure 16. H.264 performs well for two-dimensional turbulence, but produces
1506
+ a noticeable error at all η in both the stream- and spanwise directions of the kinetic energy spectrum of turbulent channel
1507
+ flow. A similar divergence from the expected data can be observed at low η in the spanwise direction as well. H.265
1508
+ performs comparatively well for two-dimensional decaying isotropic turbulence, and for turbulent channel flow in the
1509
+ spanwise direction. However, it produces a non-negligible error at high wavenumbers when compressed at low η in the
1510
+ spanwise direction. This indicates an over-representation of high-wavenumber components due to blocking as a result
1511
+ of the adaptive subblock sizes of H.265. Generally, AV1 is the best-suited algorithm for preserving spatial frequency
1512
+ information, particularly at high wavenumbers, for both two and three-dimensional turbulent flow fields. At higher η,
1513
+ the energy contents at each wavenumber are almost indistinguishable.
1514
+ 16
1515
+
1516
+ 0.012
1517
+ AV1 Low
1518
+ AV1 Medium
1519
+ Error
1520
+ 0.01
1521
+ AV1 High
1522
+ 0.008
1523
+ 0.006
1524
+ 0.004
1525
+ 0.002
1526
+ 0
1527
+ 2
1528
+ 3
1529
+ 4
1530
+ 5
1531
+ 6
1532
+ t10
1533
+ 0
1534
+ 10
1535
+ w
1536
+ 2
1537
+ 10
1538
+ 10
1539
+ 3
1540
+ 0.0
1541
+ 0.2
1542
+ 0.4
1543
+ 0.6
1544
+ 0.8
1545
+ n0.015
1546
+ H265 L0W
1547
+ ^H265 Medium
1548
+ H265 High
1549
+ 0.01
1550
+ 0.005
1551
+ 2
1552
+ 3
1553
+ 4
1554
+ 5
1555
+ 6
1556
+ t0.025
1557
+ H264 L0w
1558
+ _H264 Medium
1559
+ 0.02
1560
+ H264 High
1561
+ 0.015
1562
+ 0.01
1563
+ 0.005
1564
+ 2
1565
+ 3
1566
+ 4
1567
+ 5
1568
+ 6
1569
+ tA PREPRINT - JANUARY 3, 2023
1570
+ (b)
1571
+ (c)
1572
+ (a)
1573
+ (i)
1574
+ (ii)
1575
+ (i)
1576
+ (ii)
1577
+ (i)
1578
+ (ii)
1579
+ (i)
1580
+ (ii)
1581
+ (i)
1582
+ (ii)
1583
+ (i)
1584
+ (ii)
1585
+ (b)
1586
+ (c)
1587
+ (a)
1588
+ (i)
1589
+ (ii)
1590
+ (i)
1591
+ (ii)
1592
+ (i)
1593
+ (ii)
1594
+ (i)
1595
+ (ii)
1596
+ (i)
1597
+ (ii)
1598
+ (i)
1599
+ (ii)
1600
+ (b)
1601
+ (c)
1602
+ (a)
1603
+ (i)
1604
+ (ii)
1605
+ (i)
1606
+ (ii)
1607
+ (i)
1608
+ (ii)
1609
+ (i)
1610
+ (ii)
1611
+ (i)
1612
+ (ii)
1613
+ (i)
1614
+ (ii)
1615
+ (a)
1616
+ (b)
1617
+ (c)
1618
+ Figure 15: L2 error norm ε of streamwise velocity field u for turbulent channel flow over time. (a) H.264, (b) H.265,
1619
+ and (c) AV1. (i) and (ii) in each case are chosen due to their employment in inter-frame prediction in each algorithm.
1620
+ At last, we investigate whether the video compression techniques can preserve the temporal evolution of complex
1621
+ turbulent flows. Here, let us examine the temporal two-point correlation for three-dimensional channel flow compressed
1622
+ using all three video compression algorithms. The temporal two-point correlation coefficient at a given t+ is defined
1623
+ as R+
1624
+ uu(t+)/R+
1625
+ uu(0) [64, 65] and is depicted in figure 17. The assessment of temporal two-point correlation provides
1626
+ insight into the relations of flow snapshots to preceding snapshots.
1627
+ Consistent with the insights gained from the kinetic energy spectrum, H.264 compression at a η exhibits disagreement
1628
+ with the reference curve at t+ values between 5 and 30, and above 50. This is indicative of a de-correlation of the
1629
+ velocity field and is likely a result of poor performance in capturing high-wavenumber information. Except for this
1630
+ particular case, all compression algorithms generally perform well, with temporal two-point correlation coefficients
1631
+ closely following that of the uncompressed flow field. These results suggest that these novel video compression
1632
+ techniques capture the spatio-temporal redundancies well even for complex turbulent flows and also significantly reduce
1633
+ data size while preserving their physics.
1634
+ 5
1635
+ Conclusion
1636
+ We compressed flow field data from canonical flow examples using a number of widely-available multimedia com-
1637
+ pression techniques. The performance of the JPEG and JP2 spatial image compression techniques and the H.264,
1638
+ H.265, and AV1 spatio-temporal video compression techniques were considered for simulated laminar cylinder flow,
1639
+ decaying isotropic turbulence, and turbulent channel flow. Streamwise velocity and vorticity field data were represented
1640
+ as grayscale images and videos, and were compressed using the aforementioned techniques.
1641
+ All techniques, with the exception of JPEG, were shown to compress flow data below 10% of the original file size while
1642
+ introducing negligible error and preserving underlying flow physics. AV1 and H.265 compression were shown to have
1643
+ the best performance across a variety of flow regimes. The spatial error distributions were concentrated on the cylinder
1644
+ surface and directly behind the cylinder for the streamwise velocity data compression and in the vortex shedding wake
1645
+ for the vorticity data. Turbulence statistics in the form of kinetic energy spectra were preserved under compression for
1646
+ all methods except JPEG.
1647
+ 17
1648
+
1649
+ 0.14
1650
+ 0.12
1651
+ 0.1
1652
+ 0.08
1653
+ 0.06
1654
+ 0.04
1655
+ 0.02
1656
+ 20
1657
+ 40
1658
+ 0
1659
+ 6010
1660
+ 0
1661
+ 10
1662
+ w
1663
+ 2
1664
+ 10
1665
+ 10
1666
+ 3
1667
+ 0.0
1668
+ 0.2
1669
+ 0.4
1670
+ 0.6
1671
+ 0.8
1672
+ n0.4
1673
+ 0.3
1674
+ 0.2
1675
+ 20
1676
+ 40
1677
+ 601.2
1678
+ 0.8
1679
+ 0.6
1680
+ 0.4
1681
+ 0.2
1682
+ 20
1683
+ 40
1684
+ 60A PREPRINT - JANUARY 3, 2023
1685
+ (d)
1686
+ (g)
1687
+ (e)
1688
+ (h)
1689
+ (f)
1690
+ (i)
1691
+ (a)
1692
+ (b)
1693
+ (c)
1694
+ ηLow = 0.0640
1695
+ ηMed = 0.585
1696
+ ηHigh = 0.880
1697
+ ηLow = 0.0724
1698
+ ηMed = 0.595
1699
+ ηHigh = 0.976
1700
+ ηLow = 0.0587
1701
+ ηMed = 0.562
1702
+ ηHigh = 0.898
1703
+ ηLow = 0.119
1704
+ ηMed = 0.367
1705
+ ηHigh = 0.776
1706
+ ηLow = 0.0872
1707
+ ηMed = 0.403
1708
+ ηHigh = 0.817
1709
+ ηLow = 0.0872
1710
+ ηMed = 0.403
1711
+ ηHigh = 0.817
1712
+ ηLow = 0.119
1713
+ ηMed = 0.367
1714
+ ηHigh = 0.776
1715
+ ηLow = 0.187
1716
+ ηMed = 0.385
1717
+ ηHigh = 0.767
1718
+ ηLow = 0.187
1719
+ ηMed = 0.385
1720
+ ηHigh = 0.767
1721
+ Figure 16: Kinetic energy spectra E(k) for (a, d, g) two-dimensional decaying homogeneous isotropic turbulence
1722
+ using H.264, H.265, and AV1. (b, e, h) Streamwise Euu(k+
1723
+ x ) and (c, f, i) spanwise kinetic energy spectra Euu(k+
1724
+ z ) of
1725
+ three-dimensional turbulent channel flow.
1726
+ For single snapshots of data represented as an image, JP2 compression was shown to far outperform JPEG compression,
1727
+ with a tolerable increase in computational complexity. For multiple temporal snapshots of data represented as a
1728
+ video, the choice of compression method becomes more nuanced. JP2 compression was shown to achieve the lowest
1729
+ compression error as temporal compression adds slight error to the data. The AV1 algorithm maximizes η at the expense
1730
+ of computational complexity and non-negligible encoding time. This algorithm is new and emerging from the research
1731
+ environment, so future optimizations could bring this encoding time to a manageable level. The H.265 algorithm
1732
+ provided excellent compression performance at a fast encoding time, and appears as a promising algorithm for current
1733
+ fluid dynamics applications. H.264 provided acceptable compression performance, but was largely triumphed by the
1734
+ AV1 and H.265 algorithms.
1735
+ We have shown that modern multimedia compression algorithms provide robust performance in a variety of fluid flow
1736
+ applications. The implementation of these techniques becomes especially pertinent as simulations within computational
1737
+ fluid dynamics become exceedingly data-intensive, a trend that decreases the accessibility to high-fidelity models. These
1738
+ methods are free, easily accessible, regularly updated and supported, and provide flexible and scalable compression
1739
+ performance. As such, the implementation of these compression techniques has exciting potential across the fluid
1740
+ dynamics community for data storage and transfer with minimal loss.
1741
+ 18
1742
+
1743
+ -Uncompressed
1744
+ 1H265 L0W
1745
+ ^H265 Medium
1746
+ H265 High
1747
+ 10~5
1748
+ 10-10
1749
+ 101
1750
+ 102
1751
+ 103
1752
+ k-Uncompressed
1753
+ AV1 Low
1754
+ AV1 Medium
1755
+ ·AV1 High
1756
+ 10~5
1757
+ 10-10
1758
+ 101
1759
+ 102
1760
+ 103
1761
+ k100
1762
+ 10-4
1763
+ 10-2
1764
+ 10-1100
1765
+ 10-4
1766
+ 10-2
1767
+ 10-1
1768
+ Y100
1769
+ 10-4
1770
+ 10-2
1771
+ 10-1100
1772
+ 10-4
1773
+ 10-2
1774
+ 10-1-Uncompressed
1775
+ H264 LoW
1776
+ H264 Medium
1777
+ H264 High
1778
+ 10~5
1779
+ 10-10
1780
+ 101
1781
+ 102
1782
+ 103
1783
+ k100
1784
+ 10-4
1785
+ 10-6
1786
+ 10-2
1787
+ 10-1100
1788
+ 10
1789
+ 10-4
1790
+ 10-6
1791
+ 10-2
1792
+ 10-1A PREPRINT - JANUARY 3, 2023
1793
+ (a)
1794
+ (b)
1795
+ (c)
1796
+ ηLow = 0.187
1797
+ ηMed = 0.385
1798
+ ηHigh = 0.767
1799
+ ηLow = 0.0872
1800
+ ηMed = 0.403
1801
+ ηHigh = 0.817
1802
+ ηLow = 0.119
1803
+ ηMed = 0.367
1804
+ ηHigh = 0.776
1805
+ Figure 17: Normalized temporal two-point correlation coefficients Ruu(t+)/Ruu(0) for three-dimensional turbulent
1806
+ channel flow using H.264, H.265, and AV1.
1807
+ JPEG
1808
+ JP2
1809
+ H.264
1810
+ H.265
1811
+ AV1
1812
+ u, Cylinder Flow
1813
+ 0.58
1814
+ 2.27
1815
+ 0.94
1816
+ 2.85
1817
+ 61.21
1818
+ ω, Cylinder Flow
1819
+ 0.59
1820
+ 1.53
1821
+ 0.92
1822
+ 2.39
1823
+ 43.83
1824
+ u, Channel Flow
1825
+ 0.29
1826
+ 1.42
1827
+ 0.45
1828
+ 1.96
1829
+ 49.59
1830
+ Table 1: Encoding time (s) for different compression algorithms and flow regimes, compressed at 100 KB/s bitrate.
1831
+ Acknowledgements
1832
+ KT acknowledges the support from the US Army Research Office (W911NF-21-1-0060), the US Air Force Office
1833
+ of Scientific Research (FA9550-21-1-0178), and the US Department of Defense Vannevar Bush Faculty Fellowship
1834
+ (N00014-22-1-2798). We also thank Professor Koji Fukagata (Keio University) for sharing his DNS code.
1835
+ Appendix: Encoding time
1836
+ The increased performance of new compression algorithms comes at a cost; non-negligible increases in computational
1837
+ complexity should be considered when implementing these algorithms. In fact, in a paper from 2000 on compressing
1838
+ three-dimensional flows with the JPEG and JP2 algorithms [66], the added complexity of the JP2 algorithm caused
1839
+ JPEG to be recommended over JP2, despite losing clear performance benefits. The recommendation of the present
1840
+ study reverses that statement. As such, it is important to quantify the encoding time of these algorithms at the time of
1841
+ writing this study.
1842
+ The decoding time is observed to be negligibly small for all compression codecs; thus, this appendix focuses on
1843
+ encoding. The streamwise velocity and vorticity data are encoded for both the laminar cylinder flow and turbulent
1844
+ channel flow cases at the same bitrate (100 KB/s) for all compression algorithms and the encoding time is measured.
1845
+ The encoding is performed with a 2.5GHz i7 Intel Core processor and 8 GB RAM. The results are summarized in
1846
+ table 1. Encoding time per frame is observed to be larger for the turbulent channel flow than the laminar cylinder flow,
1847
+ indicating that the algorithms struggle to encode multiscale turbulent flow data. Across encoding algorithms, JPEG and
1848
+ H.264 compression are the fastest, a testament to the maturity and low complexity of these methods. JP2 and H.265
1849
+ encoding are generally several times slower, but still relatively fast, justifying their added compression performance.
1850
+ AV1 is observed to be far slower in encoding than the other methods: over 100 times slower than JPEG and H.264, and
1851
+ over 25 times slower than JP2 and H.265. This severe encoding time increase limits the practicality of implementing this
1852
+ algorithm in large-scale applications, and perhaps justifies the use of H.265 over AV1. As the algorithm was released
1853
+ only a few years prior to the writing of this paper, advances in computing and algorithm development could increase its
1854
+ practicality in the near future.
1855
+ References
1856
+ [1] P. Holmes, J.L. Lumley, G. Berkooz, and C.W. Rowley. Turbulence, Coherent Structures, Dynamical Systems and
1857
+ Symmetry. Cambridge Univ. Press, 2nd edition, 2012.
1858
+ 19
1859
+
1860
+ -Uncompressed
1861
+ H264 L0W
1862
+ 0.8
1863
+ H264 Medium
1864
+ H264 High
1865
+ 0.6
1866
+ 0.4
1867
+ 0.2
1868
+ 0
1869
+ 20
1870
+ 0
1871
+ 40
1872
+ 60-Uncompressed
1873
+ H265 L0W
1874
+ 0.8
1875
+ H265 Medium
1876
+ H265 High
1877
+ 0.6
1878
+ 0.4
1879
+ 0.2
1880
+ 0
1881
+ 20
1882
+ 0
1883
+ 40
1884
+ 60-Uncompressed
1885
+ AV1 Low
1886
+ 0.8
1887
+ AV1 Medium
1888
+ AV1 High
1889
+ 0.6
1890
+ 0.4
1891
+ 0.2
1892
+ 0
1893
+ 0
1894
+ 20
1895
+ 40
1896
+ 60A PREPRINT - JANUARY 3, 2023
1897
+ [2] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech., 656:5–28, 2010.
1898
+ [3] K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T. Schmidt, S. Gordeyev,
1899
+ V. Theofilis, and L. S. Ukeiley. Modal analysis of fluid flows: An overview. AIAA J., 55(12):4013–4041, 2017.
1900
+ [4] Z. Wu, T. A. Zaki, and C. Meneveau. Data compression for turbulence databases using spatiotemporal subsampling
1901
+ and local resimulation. Phys. Rev. Fluids, 5(6), Jun 2020.
1902
+ [5] Y. Liu, Y. Wang, D. Liang, F. Wang, F. Liu, Y. Lu, and S. Li. A novel in situ compression method for CFD data
1903
+ based on generative adversarial network. J. Vis., 22, 10 2018.
1904
+ [6] A. Glaws, R. King, and M. Sprague. Deep learning for in situ data compression of large turbulent flow simulations.
1905
+ Phys. Rev. Fluids, 5(11):114602, 2020.
1906
+ [7] A. T. Mohan, D. Tretiak, M. Chertkov, and D. Livescu. Spatio-temporal deep learning models of 3D turbulence
1907
+ with physics informed diagnostics. J. Turb., 21(9-10):484–524, 2020.
1908
+ [8] M. Momenifar, E. Diao, V. Tarokh, and A. D. Bragg. Dimension reduced turbulent flow data from deep vector
1909
+ quantisers. J. Turb., 23(4-5):232–264, 2022.
1910
+ [9] J. G. Apostolopoulos, W.-T. Tan, and S. J. Wee. Video streaming: Concepts, algorithms, and systems. HP
1911
+ Laboratories, Report HPL-2002-260, pages 2641–8770, 2002.
1912
+ [10] A. Rao, A. Legout, Y.-S. Lim, D. Towsley, C. Barakat, and W. Dabbous. Network characteristics of video
1913
+ streaming traffic. In Proceedings of the seventh conference on emerging networking experiments and technologies,
1914
+ pages 1–12, 2011.
1915
+ [11] X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung. A survey on multi-access edge computing applied to video
1916
+ streaming: some research issues and challenges. IEEE Commun. Surv. Tutor., 23(2):871–903, 2021.
1917
+ [12] C. Egido. Video conferencing as a technology to support group work: a review of its failures. In Proceedings of
1918
+ the 1988 ACM conference on Computer-supported cooperative work, pages 13–24, 1988.
1919
+ [13] K. M. Augestad and R. O. Lindsetmo. Overcoming distance: video-conferencing as a clinical and educational
1920
+ tool among surgeons. World J. Surg., 33(7):1356–1365, 2009.
1921
+ [14] C. B. Mpungose. Lecturers’ reflections on use of Zoom video conferencing technology for e-learning at a south
1922
+ african university in the context of coronavirus. Afr. Identities, pages 1–17, 2021.
1923
+ [15] A. Said and W. A Pearlman. An image multiresolution representation for lossless and lossy compression. IEEE
1924
+ Trans. Image Process., 5(9):1303–1310, 1996.
1925
+ [16] F. Liu, M. Hernandez-Cabronero, V. Sanchez, M. W. Marcellin, and A. Bilgin. The current role of image
1926
+ compression standards in medical imaging. Information, 8(4):131, 2017.
1927
+ [17] K. Arora and M. Shukla. A comprehensive review of image compression techniques. Int. J. Comput. Sci. Inf.
1928
+ Technol., 5(2):1169–1172, 2014.
1929
+ [18] J. Guo and H. Chao. Building dual-domain representations for compression artifacts reduction. In European
1930
+ Conference on Computer Vision, pages 628–644. Springer, 2016.
1931
+ [19] J. Schmalzl. Using standard image compression algorithms to store data from computational fluid dynamics.
1932
+ Comput. Geosci., 29(8):1021–1031, 2003.
1933
+ [20] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Trans. Comput., 100(1):90–93, 1974.
1934
+ [21] N. Ahmed. How I came up with the discrete cosine transform. Digit. Signal Process., 1(1):4–5, 1991.
1935
+ [22] J. Mitchell. Digital compression and coding of continuous-tone still images: Requirements and guidelines. ITU-T
1936
+ Recommendation T, 81, 1992.
1937
+ [23] D. Taubman and M. Marcellin. JPEG2000 image compression fundamentals, standards and practice: image
1938
+ compression fundamentals, standards and practice, volume 642. Springer Science & Business Media, 2012.
1939
+ [24] R. Hoffman. Data compression in digital systems. Springer Science & Business Media, 2012.
1940
+ [25] Y. Fisher. Fractal image compression. Fractals, 2(03):347–361, 1994.
1941
+ [26] Y. Fisher. Fractal image compression: theory and application. Springer Science & Business Media, 2012.
1942
+ [27] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process.,
1943
+ 41(12):3397–3415, 1993.
1944
+ [28] P. N. Tudor. MPEG-2 video compression. Electron. Commun. Eng. J., 7(6):257–264, 1995.
1945
+ [29] B. G. Haskell, A. Puri, and A. N. Netravali. Digital video: an introduction to MPEG-2. Springer Science &
1946
+ Business Media, 1996.
1947
+ 20
1948
+
1949
+ A PREPRINT - JANUARY 3, 2023
1950
+ [30] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, and M. Dietz. ISO/IEC MPEG-2
1951
+ advanced audio coding. J. Audio Eng. Soc., 45(10):789–814, 1997.
1952
+ [31] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC video coding standard.
1953
+ IEEE Trans. Circuits Syst. Video Technol., 13(7):560–576, 2003.
1954
+ [32] G. Pastuszak and A. Abramowski. Algorithm and architecture design of the H.265/HEVC intra encoder. IEEE
1955
+ Trans. Circuits Syst. Video Technol., 26(1):210–222, 2015.
1956
+ [33] Y. Chen, D. Murherjee, J. Han, A. Grange, Y. Xu, Z. Liu, S. Parker, C. Chen, H. Su, U. Joshi, C.-H. Chiang,
1957
+ Y. Wang, P. Wilkins, J. Bankoski, L. Trudeau, N. Egge, J.-M. Valin, T. Davies, S. Midtskogen, A. Norkin, and
1958
+ P. de Rivaz. An overview of core coding tools in the AV1 video codec. In 2018 Picture Coding Symposium (PCS),
1959
+ pages 41–45, 2018.
1960
+ [34] J. Han, B. Li, D. Mukherjee, C.-H. Chiang, A. Grange, C. Chen, H. Su, S. Parker, S. Deng, U. Joshi, Y. Chen,
1961
+ Y. Wang, P. Wilkins, and Y. Xu. A technical overview of AV1. Proceedings of the IEEE, 109(9):1435–1462, 2021.
1962
+ [35] FFmpeg. A complete, cross-platform solution to record, convert and stream audio and video. https://www.
1963
+ ffmpeg.org/, 2022. Accessed: 2022-11-25.
1964
+ [36] G.K. Wallace. The JPEG still picture compression standard. IEEE Trans. Consum. Electron., 38(1):xviii–xxxiv,
1965
+ 1992.
1966
+ [37] V. Sze and D. Marpe. Entropy coding in HEVC. In High Efficiency Video Coding (HEVC), pages 209–274.
1967
+ Springer, 2014.
1968
+ [38] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp. The use of asymmetric numeral systems as an accurate
1969
+ replacement for huffman coding. In 2015 Picture Coding Symposium (PCS), pages 65–69. IEEE, 2015.
1970
+ [39] C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–423, 1948.
1971
+ [40] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proc. IRE, 40(9):1098–1101,
1972
+ 1952.
1973
+ [41] D. E. Knuth. Fundamental algorithms. 1973.
1974
+ [42] C. E. Heil and D. F. Walnut. Continuous and discrete wavelet transforms. SIAM review, 31(4):628–666, 1989.
1975
+ [43] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM J. Res. Dev., 23(2):149–162, 1979.
1976
+ [44] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz. Adaptive deblocking filter. IEEE Trans. Circuits
1977
+ Syst. Video Technol., 13(7):614–619, 2003.
1978
+ [45] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the high efficiency video
1979
+ coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol., 22(12):1649–1668, 2012.
1980
+ [46] S. Midtskogen and J.-M. Valin. The AV1 constrained directional enhancement filter (CDEF). In 2018 IEEE
1981
+ International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1193–1197. IEEE, 2018.
1982
+ [47] K. Taira and T. Colonius. The immersed boundary method: A projection approach. J. Comput. Phys., 225(2):2118–
1983
+ 2137, 2007.
1984
+ [48] T. Colonius and K. Taira. A fast immersed boundary method using a nullspace approach and multi-domain
1985
+ far-field boundary conditions. Comput. Methods Appl. Mech. Eng., 197:2131–2146, 2008.
1986
+ [49] K. Taira, A. G. Nair, and S. L. Brunton. Network structure of two-dimensional decaying isotropic turbulence. J.
1987
+ Fluid Mech., 795:R2, 2016.
1988
+ [50] K. Fukagata, N. Kasagi, and P. Koumoutsakos. A theoretical prediction of friction drag reduction in turbulent flow
1989
+ by superhydrophobic surfaces. Phys. Fluids, 18:051703, 2006.
1990
+ [51] K. Fukami, K. Fukagata, and K. Taira. Machine-learning-based spatio-temporal super resolution reconstruction of
1991
+ turbulent flows. J. Fluid Mech., 909:A9, 2021.
1992
+ [52] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of turbulent channel flow up to Reτ = 590.
1993
+ Phys. Fluids, 11(4):943–945, 1999.
1994
+ [53] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J.
1995
+ Fluid Mech., 177:133–166, 1987.
1996
+ [54] C. R. Smith and S. P. Metzler. The characteristics of low-speed streaks in the near-wall region of a turbulent
1997
+ boundary layer. J. Fluid Mech., 129:27–54, 1983.
1998
+ [55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to
1999
+ structural similarity. IEEE Trans. Image Process., 13(4):600–612, 2004.
2000
+ 21
2001
+
2002
+ A PREPRINT - JANUARY 3, 2023
2003
+ [56] J. L. Lumley. The structure of inhomogeneous turbulent flows. In A. M. Yaglom and V. I. Tatarski, editors,
2004
+ Atmospheric turbulence and radio wave propagation. Nauka, 1967.
2005
+ [57] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. Dawson, and C.-A. Yeh. Modal
2006
+ analysis of fluid flows: Applications and outlook. AIAA J., 58(3):998–1022, 2020.
2007
+ [58] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math.,
2008
+ 45(3):561–571, 1987.
2009
+ [59] J. C. McWilliams. The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146:21–43, 1984.
2010
+ [60] C.-A. Yeh, M. Gopalakrishnan Meena, and K. Taira. Network broadcast analysis and control of turbulent flows. J.
2011
+ Fluid Mech., 910:A15, 2021.
2012
+ [61] G. Alfonsi and L. Primavera. The structure of turbulent boundary layers in the wall region of plane channel flow.
2013
+ Proc. R. Soc. A, 463(2078):593–612, 2007.
2014
+ [62] S. D. Muralidhar, B. Podvin, L. Mathelin, and Y. Fraigneau. Spatio-temporal proper orthogonal decomposition of
2015
+ turbulent channel flow. J. Fluid Mech., 864:614–639, 2019.
2016
+ [63] K. Fukami, T. Nakamura, and K. Fukagata. Convolutional neural network based hierarchical autoencoder for
2017
+ nonlinear mode decomposition of fluid field data. Phys. Fluids, 32(9):095110, 2020.
2018
+ [64] K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata. Synthetic turbulent inflow generator using machine learning.
2019
+ Phys. Rev. Fluids, 4:064603, 2019.
2020
+ [65] M. Quadrio and P. Luchini. Integral space–time scales in turbulent wall flows. Phys. Fluids, 15(8):2219–2227,
2021
+ 2003.
2022
+ [66] J. Schmalzl. Using standard image compression algorithms to store data from computational fluid dynamics.
2023
+ Comput. Geosci., 29(8):1021–1031, 2003.
2024
+ 22
2025
+
CdAyT4oBgHgl3EQfR_ex/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9E1T4oBgHgl3EQfWgQs/content/tmp_files/2301.03114v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9E1T4oBgHgl3EQfWgQs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FtE3T4oBgHgl3EQftQtg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a067a0eb538895b9e4b8f513a48afb54575021e9cce230065bfec602a030a910
3
+ size 141546
H9E1T4oBgHgl3EQfXwRb/content/tmp_files/2301.03130v1.pdf.txt ADDED
@@ -0,0 +1,824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ SFI-Swin: Symmetric Face Inpainting with Swin
4
+ Transformer by Distinctly Learning Face Components
5
+ Distributions
6
+
7
+ MohammadReza Naderi1*, MohammadHossein Givkashi1*, Nader Karimi1, Shahram Shirani2, Shadrokh Samavi1,2,3
8
+ 1Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran
9
+ 2Department of Electrical and Computer Engineering, McMaster University, L8S 4L8, Canada
10
+ 3Computer Science Department, Seattle University, Seattle 98122 USA
11
+ Abstract
12
+ Image inpainting consists of filling holes or missing parts of an image. Inpainting face images with symmetric
13
+ characteristics is more challenging than inpainting a natural scene. None of the powerful existing models can fill
14
+ out the missing parts of an image while considering the symmetry and homogeneity of the picture. Moreover, the
15
+ metrics that assess a repaired face image quality cannot measure the preservation of symmetry between the rebuilt
16
+ and existing parts of a face. In this paper, we intend to solve the symmetry problem in the face inpainting task by
17
+ using multiple discriminators that check each face organ's reality separately and a transformer-based network.
18
+ We also propose "symmetry concentration score" as a new metric for measuring the symmetry of a repaired face
19
+ image. The quantitative and qualitative results show the superiority of our proposed method compared to some
20
+ of the recently proposed algorithms in terms of the reality, symmetry, and homogeneity of the inpainted parts.
21
+ The code for the proposed method is available at https://github.com/mohammadrezanaderi4/SFI-Swin
22
+ 1. Introduction
23
+ Removing objects from an image or filling in holes is a typical application of computer vision. With
24
+ the image inpainting technique, it is possible to either fill in empty regions or remove a few elements
25
+ from the image. New deep learning models with convolutional neural networks or transformer models
26
+ are intended to produce realistic-looking inpainted images. Face inpainting is a subset of image
27
+ inpainting. Its purpose is to fill the missing regions of a face image. Two major concerns should be
28
+ considered carefully during the inpainting of missing parts of a face: First, the inpainted regions must be
29
+ homogeneous with the other parts of the face and highly correlated to the available surrounding areas of
30
+ the input image. Second, facial symmetry must be preserved between the left and right sides. Many
31
+ inpainting methods have been proposed, and some achieved excellent results in repairing missing areas
32
+ of natural images. But almost all have difficulty repairing a face image symmetrically and
33
+ homogeneously. This shortcoming is because the network losses do not convey a general understanding
34
+ of the facial features to the generator. To further illustrate the main issues of previous works, we will
35
+ discuss the effect of usual losses that have been used in references [1] to [6].
36
+ The loss functions that are mainly used in inpainting are pixel-wise, adversarial, feature-matching,
37
+ and perceptual loss. We will discuss the effect of each loss on the model training in this section.
38
+ 1.1 Pixel-Wise Loss: As shown in Equation 1, Pixel-wise loss is computed between the inpainted
39
+ image and ground truth. Its goal is to lead the model to inpaint the missing regions similar to ground
40
+ truth by considering available parts of the face. However, the available regions cannot completely
41
+ describe the missing parts of the image. Therefore, this loss only can lead the inpainting network to
42
+ understand the low-level features of the missing parts.
43
+
44
+ ℒ������������������������ (������������, �������������) = ‖������������ − ������������� ‖1 or 2
45
+
46
+ (1)
47
+
48
+ In Equation 1, ������������ is the inpainted image, ������������� is the ground truth, and ‖ ‖1 or 2 stands for L1 or L2 norm
49
+ computation.
50
+
51
+ * The first two authors contributed equally to this work.
52
+
53
+ 2
54
+
55
+
56
+ 1.2 Adversarial and Feature Matching Losses: The adversarial loss [7] (Equations 2, 3, 4) attempts
57
+ to check the reality of an inpainted image based on the distribution of ground truths and generated images
58
+ using an extra network called a discriminator. In Equations 2, 3, and 4, ������������, �������������, ������������, ������������, ������������, and ������������, represent
59
+ the inpainted image, ground truth, discriminator, generator, parameters of the discriminator, and
60
+ parameters of the generator. Also, ������������������������ is the stop gradient, indicating that the backpropagated gradient
61
+ stops when it reaches specific parameters. Finally, the feature matching loss (Equation 5) is computed
62
+ between the features extracted from the discriminator's middle layers for the inpainted image and ground
63
+ truth. In Equation 5, ������������������������������������ presents middle features of the discriminator. Adversarial and feature
64
+ matching losses came from the idea that although we cannot reconstruct the missing regions exactly
65
+ similar to ground truth, at least we can be sure that the inpainted regions look realistic.
66
+
67
+ ℒ������������ = −������������������������[log ������������ℰ(������������)] − �������������������������log �1 − ������������������������(�������������)��
68
+ (2)
69
+ ℒ������������ = −������������������������[log ������������������������(�������������)]
70
+ (3)
71
+ ℒ������������������������������������ = ������������������������������������(ℒ������������) + ������������������������������������(ℒ������������)
72
+ (4)
73
+ ℒ������������������������(������������, �������������) = ‖ ������������������������������������������������(������������) − ������������������������������������������������(�������������)‖1 or 2
74
+ (5)
75
+
76
+ The architecture of the discriminator is patch-based. The discriminator tests the reality of the patches
77
+ of the whole image [7].
78
+ 1.3 Perceptual Loss: The perceptual loss is shown in Equation 6. This loss is computed using the
79
+ encoder of a pre-trained segmentation network to compare the high-level features of the generated and
80
+ ground truth images. In Equation 6, ������������, �������������, ������������, present inpainted image, ground truth, and encoder of a pre-
81
+ trained segmentation network, respectively. This loss mostly considered high-level features such as
82
+ edges in the image.
83
+
84
+ ℒ������������������������(������������, �������������) = ‖ ������������(������������) − ������������(�������������)‖1 or 2
85
+ (6)
86
+
87
+ The adversarial, feature matching, and perceptual losses mainly focus on the reality of the patches
88
+ and edges' smoothness. Therefore, these losses do not represent the importance of the homogeneity and
89
+ symmetry of the image. The perceptual loss causes the inpainting network to occasionally prefer the
90
+ reality of the patches over the validity of the whole picture. In other words, due to the pressure of the
91
+ mentioned losses, the generator sacrifices the symmetry of the face to get more realistic patches. This
92
+ patch-based behavior is one of the apparent drawbacks of available image synthesizing and image
93
+ inpainting methods. The mentioned shortcoming motivates us to add a new term to the loss function of
94
+ image inpainting networks to consider symmetry and global features of each part of the face. We can
95
+ get more realistic faces by assessing an image's symmetry and global facial features. Meanwhile, we use
96
+ a base inpainting network that balances global and patch-based losses to get the maximum benefit from
97
+ this additional loss.
98
+ A large receptive field is used in Swin transformer blocks [8]. We used Swin transformer blocks in
99
+ this paper and applied a new loss focusing on distinct facial feature distribution. Hence, we increase the
100
+ inpainting model's concentration on the symmetry problem. Furthermore, current metrics cannot
101
+ measure the symmetry of the inpainted face. Therefore, we propose a new metric to resolve this
102
+ shortcoming.
103
+
104
+
105
+
106
+ 3
107
+
108
+ Our main contributions are as follows:
109
+ • Proposing a homogeneity-aware loss to solve the heterogeneity and asymmetricity problems
110
+ in inpainting methods.
111
+ • Using transformer base architecture to achieve a wider receptive field and balance the usage
112
+ of global and local features and input and output image gradients.
113
+ • Increasing the generalizability of the inpainting model by upgrading its understanding of the
114
+ semantic face parts using separate discriminators for each part of the face.
115
+ • Proposing a new metric, symmetry concentration score (SCS), to assess the symmetry and
116
+ homogeneity of facial organs.
117
+ The structure of this paper is as follows: In section 2, we will present some previous relevant methods.
118
+ Then, section 3 offers the proposed method. Finally, experimental results are detailed in section 4, and
119
+ the conclusion is presented in section 5.
120
+ 2. Related Works
121
+ Several methods for image inpainting have been proposed, including deep generative base and
122
+ transformer base methods. This section will discuss these two types of methods in more detail.
123
+ 2.1 Deep Generative Methods
124
+ In recent years, the generative adversarial network has been used for image completion and
125
+ inpainting [9]–[12]. In [1], a new approach has been proposed based on conditional and unconditional
126
+ generative networks. The authors present new metrics for measuring image completeness. These metrics
127
+ are based on the linear separability of features in a feature space. These metrics demonstrate a measure
128
+ of the perceptual fidelity of the inpainted image compared to the real image. A method for generating
129
+ high-quality inpainted image based on aggregated contextual transformations was presented in [2].
130
+ Authors of [2] also employed distant contexts, not in the masked region's neighborhood. Inpainting
131
+ methods are evaluated on different tasks, such as removing logos, editing faces, and removing objects
132
+ [13]–[16]. In [3], the authors focused on a large missing region and proposed an adversarial method for
133
+ image inpainting. The model can generate visually realistic images for contiguous and separated large
134
+ missing areas. Also, a new loss was proposed to measure the non-local correlation between patches and
135
+ help the model get a better inference result.
136
+ A method is proposed in [4] that uses edges and masked images to generate inpainted images. They
137
+ used an edge generator that completed edges in missing regions and a completion network that used an
138
+ edge map and input image to generate the result. With this approach, they achieved a good result with a
139
+ focus on the edges of the image. In [17], they introduced a method for human body completion. They
140
+ used three steps in their work: prior encoding, segmentation completion, and texture completion. A
141
+ segmentation map can help capture important information from the human body. They also designed a
142
+ memory module, a dictionary for storing learned latent vectors. These segmentation maps are typically
143
+ used to segment each part of the human body and assist in extracting high-level information. As a result,
144
+ it helps the model to learn better. Multi-scale structure discriminators have been used to generate
145
+ segmentation maps with good information, so the results were interesting in human body completion. In
146
+ [18], the authors used a generative adversarial network that contains dilated convolution for increasing
147
+ receptive fields. They tried to achieve a reasonable structure without blurriness in the output. Further,
148
+ they developed a new self-guided regression loss technique for enhancing semantic features and
149
+ concentrating on uncertain areas. When a model fills holes in an image, it's essential to generate a good
150
+ result and have color consistency in all pictures.
151
+ In [19], the authors proposed a method for image inpainting with attention to color consistency in
152
+ images. The output was reliable without any artifacts, and the stable colors in different parts of the
153
+ images provided the ability to create realistic images. In [5], the authors used gated convolutions in the
154
+
155
+ 4
156
+
157
+ model to solve the problem of using vanilla convolutions that understand the pixels differently. They
158
+ also proposed a new loss function named SN-PatchGAN that helps the model generate a high-quality
159
+ and flexible image compared to previous methods.
160
+ 2.2 Transformer Methods
161
+ Since transformers are highly effective for tasks related to natural language processing, researchers
162
+ have used them in vision tasks. A transformer has a global view and uses an attention mechanism to
163
+ extract information [20–23]. In [24], a transformer was used for image completion. They use the global
164
+ view of the transformer and achieve better results for large masks than other methods. Recently a
165
+ combination of transformer and convolution has been used. In [25], the authors proposed a model
166
+ containing a transformer and convolution for image inpainting. The global view of the transformer and
167
+ feature extraction in convolution helped the model generate good results in image completion. In [26],
168
+ a novel inpainting framework has been proposed for high-resolution images. They also proposed
169
+ modifying transformer blocks to stabilize the training of large masks.
170
+ With the long-range interaction modeling in the transformer, the model generated high-fidelity
171
+ images. Therefore, the architecture can understand critical dependencies between different regions on
172
+ the image with attention-based models. In [27], they proposed an inpainting method that used a
173
+ transformer and CNN model. The model gets additional input that contains lines and edges on the
174
+ masked image. As a result, the model can reconstruct edges in a better way. With this approach, the
175
+ proposed model can learn to reconstruct masked images focusing on the edges and lines. In [28], the
176
+ blind face inpainting method has been proposed. They used two stages for the blind face inpainting
177
+ process due to the difficulty in detecting masks of different shapes and sizes, as well as the difficulty of
178
+ restoring masked images that are realistic. They used a transformer model during the first stage to detect
179
+ corrupted regions. In the next step, a network has been proposed for restoring features at different levels
180
+ in a hierarchical manner, thereby producing semantically coherent content based on unmasked regions
181
+ of the face.
182
+ 3. Proposed method
183
+ Our proposed method is called Symmetric Face Inpainting with Swin Transformer (SFI-Swin). We
184
+ will discuss our method from two perspectives. First, we will discuss the generator architecture based
185
+ on a transformer in subsection 3.1. Then in subsection 3.2, we will concentrate on the loss functions and
186
+ propose a loss that focuses on the symmetry and homogeneity of the face features. We use six additional
187
+ discriminators with the same architecture to compute this loss.
188
+ 3.1 Generator architecture
189
+ As discussed in [6], using a generator architecture with a wider receptive field produces more
190
+ homogeneous outputs while considering the entire facial features. Thus, they added fast Fourier
191
+ convolution layers [29] to their models to make a generator with a wider receptive field. Although their
192
+ work seems to be effective, it sometimes fails to make a balance between using global and local features
193
+ [6]. We use the Swin-Unet [30] architecture as our generator to create a balance between local and global
194
+ features. Swin-Unet has a large receptive field because of its self-attention mechanism and could balance
195
+ local and global feature usage well. As discussed in [31], skip connections downgrade the image
196
+ inpainting ability of the generator model because it allows the generator to copy the available parts of
197
+ the input to the output.
198
+ Skip connections prevent the model from constructing the whole available and missed parts of the
199
+ input based on high-level features that are extracted in the middle of the generator. Such a network
200
+ results in totally heterogeneous face features in output. Therefore, we omit the skip connections from
201
+ the Swin-Unet model, and our final generator architecture is shown in Fig. 1. The patch discriminator
202
+ [7] architecture is also shown in Fig. 1.
203
+
204
+
205
+ 5
206
+
207
+
208
+ Using the Swin transformer [8] layers, which could balance the utilization of local and global
209
+ features, leads to more homogeneous and realistic facial features. In addition, Swin transformer blocks
210
+ do not add much computational complexity compared to convolutional models with a similar number of
211
+ parameters. This behavior is because the Swin transformer computes the correlation between the patches
212
+ in certain parts of the image.
213
+ 3.2 Homogeneity Loss
214
+ In this section, we propose a new loss that we will use in addition to the losses that were discussed
215
+ in Section 1. The idea behind this new loss is that we compute the realness of each part of the face
216
+ compared to the distribution of that specific part in the whole dataset. This will oblige the generator to
217
+ pay more attention to symmetric and global features. We consider six additional discriminators with the
218
+ same architecture to compute the homogeneity loss, as shown in Figure 1. Each discriminator is for a
219
+ specific part of the face, such as skin, eyes, lips, clothes, and hair. It is noteworthy that each of these
220
+ parts is extracted from a face image using a pre-trained semantic segmentation module [32]. The
221
+ segmentation module parameters are frozen during training. While the generator intends to inpaint the
222
+ missed regions, computing the realness of each facial organ will conclude more symmetry in the output
223
+ image. The architecture of these discriminators is designed to assess the total realness of a specific face.
224
+
225
+ Fig. 1. Block diagram of our proposed method. First, the generator takes the masked image as input and attempts to inpaint it. Then
226
+ the inpainted image is fed to the patch discriminator to check the overall reality of the patches. Meanwhile, the inpainted image is
227
+ also fed into a semantic segmentation network [32] to separate the semantic parts of the face, such as eyes, and ears. The architecture
228
+ of these six semantic discriminators is the same. In the next step, six distinct discriminators calculate the total realness of each
229
+ semantic part of the face. Then, the generator parameters will be updated based on these seven discriminators and the pixel-wise loss
230
+ gradient signals, which are backpropagated to the generator.
231
+
232
+ Patch Partition
233
+ Patch Merging
234
+ Linear Projection
235
+ Linear Embedding
236
+ Swin Transformer
237
+ Swin Transformer
238
+ Block x 2
239
+ Patch Expanding
240
+ Block x 1
241
+ Encoder
242
+ Bottlenec
243
+ Decoder
244
+ Skin
245
+ Discriminator
246
+ F××48
247
+ Wx兴xC
248
+ Wx×2C
249
+ WH
250
+ WH
251
+ WxH
252
+ xC
253
+ W×H×C(4x) W×H×Clas
254
+ Eye
255
+ Discriminator
256
+ Masked
257
+ Hair
258
+ Image
259
+ Discriminator
260
+ Semantic
261
+ Generator
262
+ Segmentor
263
+ Lip
264
+ Discriminator
265
+ Patch
266
+ Discriminator
267
+ Cloth
268
+ Discriminator
269
+ Conv 4 × 4, stride=2
270
+ Linear
271
+ Input Conv
272
+ Conv 4 x 4, stride=2
273
+ Input Conv
274
+ projection
275
+ Ear
276
+ Conv 4 × 4, stride = 1
277
+ Conv 1 × 1, stride = 1
278
+ Conv 4 x 4, stride = 1
279
+ Conv 1 × 1, stride = 1
280
+ Discriminator
281
+ Discriminator
282
+ Discriminator
283
+ Output =
284
+ Vector with
285
+ 10 elements6
286
+
287
+ This characteristic is unlike the patch discriminator, which does not completely understand the face
288
+ image. One of the main features of the face is its symmetry which the related discriminator will consider.
289
+ Using these semantic discriminators to check the realness of each face organ increases the generator's
290
+ knowledge about different semantic parts of the image. Considering facial organs helps the network to
291
+ repair portraits more realistically. The block diagram of SFI-Swin is shown in Figure 1.
292
+ For each of these discriminators and the corresponding facial organ, the adversarial and feature-
293
+ matching loss is computed using Equations 4 and 5. Therefore the overall homogeneity loss could be
294
+ presented as Equations 7 and 8.
295
+
296
+
297
+ ⎪⎪
298
+
299
+ ⎪⎪
300
+ ⎧ ℒ������������������������������������������������(������������, �������������) = ℒ������������������������������������(������������������������������������������������������������, �������������������������������������������������������������) + ℒ������������������������(������������������������������������������������������������, �������������������������������������������������������������)
301
+ ℒ������������������������������������(������������, �������������) = ℒ�������������������������������������������������������������������������������������, �������������������������������������������������� + ℒ�������������������������������������������������������������������������, ��������������������������������������������������
302
+ ℒℎ������������������������������������(������������, �������������) = ℒ������������������������������������(������������ℎ������������������������������������, �������������ℎ������������������������������������) + ℒ������������������������(������������ℎ������������������������������������, �������������ℎ������������������������������������)
303
+ ℒ������������������������������������(������������, �������������) = ℒ�������������������������������������������������������������������������������������, �������������������������������������������������� + ℒ�������������������������������������������������������������������������, ��������������������������������������������������
304
+ ℒ������������������������������������������������ℎ(������������, �������������) = ℒ������������������������������������(������������������������������������������������������������ℎ, �������������������������������������������������������������ℎ) + ℒ������������������������(������������������������������������������������������������ℎ, �������������������������������������������������������������ℎ)
305
+ ℒ������������������������������������(������������, �������������) = ℒ������������������������������������(������������������������������������������������, �������������������������������������������������) + ℒ������������������������(������������������������������������������������, �������������������������������������������������)
306
+
307
+ ⎪⎪
308
+
309
+ ⎪⎪
310
+
311
+
312
+
313
+ (7)
314
+ ℒ������������������������(������������, �������������) = ������������1ℒ������������������������������������������������(������������, �������������) + ������������2ℒ������������������������������������(������������, �������������) + ������������3ℒℎ������������������������������������(������������, �������������) + ������������4ℒ������������������������������������(������������, �������������)
315
+ + ������������5ℒ������������������������������������������������ℎ(������������, �������������) + ������������6ℒ������������������������������������(������������, �������������)
316
+ (8)
317
+
318
+
319
+ where ������������1, ������������2, ������������3, ������������4, ������������5, and ������������6 are set to be 0.083, 0.25, 0.083, 0.25, 0.083, 0.083, and 0.25,
320
+ respectively. The coefficients of eyes, ears, and lips are set three times greater than other parts of the
321
+ face. This is because, during the experiments, we realized that the model is mostly incapable of
322
+ maintaining the symmetry of these face organs.
323
+ 4. Experimental results
324
+ In this section, we present the experiment setups and results accomplished using these setups.
325
+ 4.1 Experiments setups
326
+ In the following, we will discuss the dataset, metrics, hyperparameters, and the total loss function
327
+ we used to train our models.
328
+ Data and metrics: We use CelebAHQ [33] dataset. This dataset contains 28k images. We split the
329
+ data to train, validate, and test, similar to [6]. Learned Perceptual Image Patch Similarity (LPIPS) [34]
330
+ and Fr'echet inception distance (FID) [35] metrics are used to evaluate our proposed method
331
+ performance. Compared to pixel-level L1 and L2 distances, LPIPS and FID are more suitable for
332
+ measuring the performance of large masks when multiple natural completions are plausible. The
333
+ experimentation pipeline is implemented using PyTorch [36].
334
+ Training hyperparameters: The learning rate of the generator is 0.001, and that of the seven
335
+ discriminators is 0.0001. The discrimination process is more straightforward than the generation process,
336
+ especially in the initial epochs of the training [6]. Hence, a lower initial learning rate for the
337
+ discriminators allows the generator to converge faster during the initial epochs. This will balance the
338
+ training procedures between the discriminators and the generator. This balance prevents the training
339
+ procedure from collapsing. These learning rates also are optimized using a beam search algorithm to get
340
+ the best results [6]. The batch size is also set to 20, and we train our model for 40 epochs using the Adam
341
+ optimizer [37]. We trained our model with an NVIDIA GeForce RTX 3090 with 24GB RAM GPU.
342
+
343
+ 7
344
+
345
+ Loss function: besides the proposed homogeneity loss, we used the same losses as [6]. Therefore,
346
+ the total loss function of our model is shown in Equation 9.
347
+ ℒ(������������, �������������) = ������������ℒ������������������������(������������, �������������) + ������������ℒ������������������������������������(������������, �������������) + ������������ℒ������������������������(������������, �������������) + ������������ℒ������������������������(������������, �������������)
348
+
349
+ (9)
350
+
351
+ where ������������, ������������, ������������, and ������������ are set to 10, 10, 100, and 20. These values are based on our experiments to get the
352
+ best results on the test data.
353
+
354
+ 4.2 Qualitative results: Fig. 2 shows SFI-Swin performance to inpaint for different mask sizes, in
355
+ comparison with [6]. To further illustrate our proposed method's capability to inpaint the face images
356
+ symmetrically, we generate masks that omit one of the eyes and slowly grow around the omitted region
357
+ to cover half of the face. We compare our method with [6], and the results are shown in Figure 3. Further,
358
+ we randomly chose ten images from the test set. Then, we masked (eliminated) one eye and a K×K block
359
+ of the image. We tested with K set to 16, 32, and 64.
360
+ We repaired the image with a missing eye and a K×K block. We then calculated the difference
361
+ between the repaired eye while a K×K patch was masked with the inpainted image that only the eye was
362
+ missing. We then find the mean of the absolute difference image and assign this value to the
363
+ corresponding K×K block. The average absolute difference will be large if a block is essential to repair
364
+ the missing eye. Finally, we built a heatmap to show the blocks that play an important role in the
365
+ inpainting of the missing eye. The results are shown in Figure 4. As we can see, the non-missing eye
366
+ and the chick area around the missing eye are the most important patches for reconstructing the missing
367
+ area. We repeated this experiment for half of the face. The effects of each missing K×K patch on the
368
+ inpaint eye and half face are shown in Figure 5. The lighter the color of the shown patch, the more effect
369
+ it has on reconstructing the missing right-side eye.
370
+
371
+ Fig. 2. a) Original images, b) masks, inpainted images by c) LaMa [6], d) Swin, and e) SFI-Swin.
372
+
373
+ Narrow masks
374
+ Medium masks
375
+ Wide masks
376
+ a)
377
+ b)
378
+ c)
379
+ (p
380
+ e)8
381
+
382
+
383
+ While inpainting a facial part from one side of the face, our method focuses on the same organ on the
384
+ other side. This consideration causes symmetry in the repaired image.
385
+ 4.3 Quantitative results: Table 1 shows the performance of our proposed method to repair the
386
+ missing parts of the face compared with the best recently proposed methods in this field in terms of FID
387
+ and LPIPS scores. Because previous works trained multiple models for different mask sizes, therefore
388
+ to compare fairly, we show their performance based on the mask sizes which they used in training.
389
+ However, our method follows the aggressive mask generation proposed by [6] that helps it handle
390
+ narrow, medium, and wide masks simultaneously. As a result, our proposed methods, Swin and Swin
391
+
392
+ Fig. 3. Performances of b) LaMa, c) Swin, d) SFI-Swin in comparison with e) ground-truth to inpaint a) masked images starting from an
393
+ eye and grown to cover half of the face. A white border is drawn to show the reconstructed region.
394
+
395
+ D=0
396
+ D = 12
397
+ D = 24
398
+ D = 36
399
+ D = 48
400
+ D=0
401
+ D = 12
402
+ D = 24
403
+ D= 36
404
+ D = 48
405
+ a)
406
+ b)
407
+ c)
408
+ (p
409
+ e)
410
+ a)
411
+ b)
412
+ d)
413
+ e)9
414
+
415
+ with multiple semantic discriminators (SFI-Swin), achieved the best results in medium and wide mask
416
+ inpainting.
417
+
418
+ FID and LPIPS are patch-based metrics and do not consider homogeneity and symmetricity in the
419
+ face. Thus, we propose the symmetry concentration score (SCS) to assess the symmetry of the left and
420
+ right sides of the face. In Figure 5, we presented heatmaps that depict the influence the model takes from
421
+ a K×K block of the face during the inpainting of an eye or half of the face. Our symmetry concentration
422
+ score measures the amount of attention the network pays to a part of the face while repairing the same
423
+ semantic part on the other side. To acquire this metric, we calculate the mean of the overlapping K × K
424
+ patches with the desired organs while considering three different patch sizes (16×16, 32×32, 64×64).
425
+ The results are shown in Table 2. Our method using multiple semantic discriminators performed better
426
+ than the Swin network without these discriminators. Also, we achieved better symmetric results than
427
+ [6].
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+ Fig. 4. Steps to compute symmetry concentration score (SCS). First, we mask an eye and a K×K patch of the face, and reconstruct the
436
+ missing eye and the K×K patch. Then the absolute difference between the image with inpainted eye with the image with a missing K×K
437
+ patch and the missing eye is computed. The difference shows the effect of that K×K patch on inpainting result of the missing eye. The
438
+ effect of all K×K patches is computed and shown as a heatmap. The face borders are also depicted to investigate the impact of each part of
439
+ the face on inpainting the missed eye.
440
+
441
+ eye mask
442
+ Absolute value of
443
+ Difference between
444
+ generated eye when
445
+ only that eye is masked
446
+ Mask
447
+ Output
448
+ Output x eye mask
449
+ and when an additional
450
+ patch is also masked
451
+ from the Original
452
+ X
453
+ Image
454
+ Overlay the mean of the
455
+ difference image on the
456
+ X
457
+ corresponding patch
458
+ absO, mean
459
+ Original
460
+ X
461
+ Image
462
+ absO, mean
463
+ Effect of each
464
+ patch on
465
+ filling the
466
+ abs(), mean
467
+ empty eye
468
+ X
469
+ X
470
+ absO, mean10
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+ Fig. 5. Influence that the generator gets from each K×K block of the face receives to repair the missing parts of the face. a) Lama, b)
485
+ Swin, c) SFI-Swin. The missing parts are shown as empty black regions (an eye or half of the face), while the background is not
486
+ considered in these experiments.
487
+
488
+ Eye
489
+ Half face
490
+ Block size = 16x16
491
+ a)
492
+ b)
493
+ c)
494
+ a)
495
+ Block size = 32x32
496
+ n
497
+ C
498
+ a)
499
+ Block size = 64x64
500
+ b)
501
+ C11
502
+
503
+ Table 1. Presenting the performance of our method SFI-Swin to inpaint different types of masks comparing to powerful methods in
504
+ this field using two popular metrics, FID and LPIPS. The three best models in each column are shown in red, orange, and green.
505
+ Train
506
+ masks type
507
+ Methods
508
+ CelebA-HQ (256×256)
509
+ Narrow masks
510
+ Medium masks
511
+ Wide masks
512
+ 40-50% masked
513
+ All samples
514
+ 40-50% masked
515
+ All samples
516
+ 40-50% masked
517
+ All samples
518
+ FID
519
+ LPIPS
520
+ FID
521
+ LPIPS
522
+ FID
523
+ LPIPS
524
+ FID
525
+ LPIPS
526
+ FID
527
+ LPIPS
528
+ FID
529
+ LPIPS
530
+ Aggressive
531
+ train
532
+ masks
533
+ Ours (SFI-Swin)
534
+ 23.7
535
+ 0.157
536
+ 7.44
537
+ 0.101
538
+ 33.43
539
+ 0.161
540
+ 5.54
541
+ 0.088
542
+ 26.81
543
+ 0.102
544
+ 5.97
545
+ 0.104
546
+ Swin [30]
547
+ 23.2
548
+ 0.151
549
+ 7.31
550
+ 0.098
551
+ 32.88
552
+ 0.160
553
+ 5.60
554
+ 0.086
555
+ 26.69
556
+ 0.101
557
+ 5.98
558
+ 0.102
559
+ LaMa-Fourier [6]
560
+ 22.7
561
+ 0.132
562
+ 7.26
563
+ 0.085
564
+ 34.1
565
+ 0.145
566
+ 6.13
567
+ 0.080
568
+ 27.8
569
+ 0.168
570
+ 6.96
571
+ 0.098
572
+ Narrow
573
+ train
574
+ masks
575
+ CoModGAN [1]
576
+ 35.9
577
+ 0.139
578
+ 16.8
579
+ 0.079
580
+ 48.4
581
+ 0.169
582
+ 19.4
583
+ 0.092
584
+ 64.4
585
+ 0.191
586
+ 24.4
587
+ 0.102
588
+ AOT GAN [2]
589
+ 21.0
590
+ 0.127
591
+ 6.67
592
+ 0.081
593
+ 39.1
594
+ 0.162
595
+ 7.28
596
+ 0.089
597
+ 40.4
598
+ 0.204
599
+ 10.3
600
+ 0.118
601
+ RegionWise [3]
602
+ 32.5
603
+ 0.188
604
+ 11.1
605
+ 0.124
606
+ 40.4
607
+ 0.179
608
+ 7.52
609
+ 0.101
610
+ 33.9
611
+ 0.205
612
+ 8.54
613
+ 0.121
614
+ DeepFill v2 [5]
615
+ 37.0
616
+ 0.201
617
+ 12.5
618
+ 0.190
619
+ 45.3
620
+ 0.189
621
+ 9.05
622
+ 0.105
623
+ 43.0
624
+ 0.214
625
+ 11.2
626
+ 0.126
627
+ EdgeConnect [4]
628
+ 29.2
629
+ 0.156
630
+ 9.61
631
+ 0.099
632
+ 40.5
633
+ 0.174
634
+ 7.56
635
+ 0.095
636
+ 34.7
637
+ 0.205
638
+ 9.02
639
+ 0.120
640
+ Wide
641
+ train
642
+ masks
643
+ RegionWise [3]
644
+ 47.5
645
+ 0.246
646
+ 17.9
647
+ 0.164
648
+ 50.9
649
+ 0.220
650
+ 10.3
651
+ 0.124
652
+ 42.6
653
+ 0.233
654
+ 11.2
655
+ 0.140
656
+ DeepFill v2 [5]
657
+ 30.4
658
+ 0.169
659
+ 9.99
660
+ 0.108
661
+ 40.3
662
+ 0.173
663
+ 7.65
664
+ 0.095
665
+ 34.6
666
+ 0.196
667
+ 8.95
668
+ 0.115
669
+ EdgeConnect [4]
670
+ 55.5
671
+ 0.248
672
+ 18.3
673
+ 0.152
674
+ 40.2
675
+ 0.174
676
+ 7.79
677
+ 0.097
678
+ 32.7
679
+ 0.196
680
+ 8.43
681
+ 0.116
682
+
683
+
684
+ Table 2. Comparing the symmetry concentration score (SCS) of our method SFI-Swin to
685
+ inpaint certain parts of the face compared to Swin and LaMa [6].
686
+ Method | Metric + face parts
687
+ SCS for eye
688
+ SCS for half face
689
+ Ours (SFI-Swin)
690
+ 0.7177
691
+ 0.4233
692
+ Swin [30]
693
+ 0.6319
694
+ 0.3948
695
+ LaMa [6]
696
+ 0.6225
697
+ 0.3740
698
+
699
+ 5. Conclusion
700
+
701
+ This paper discussed the effect of using multiple semantic discriminators incorporated with the Swin
702
+ transformer-based architecture to repair face images. Our proposed method preserved the symmetry and
703
+ homogeneity of the face parts. Our experimental results show the proposed method's superiority over
704
+ powerful rivals, especially on the medium and wide masks.
705
+ We also proposed a new method to assess the concentration of the inpainting network while inpainting
706
+ a specific face organ.
707
+ By using multiple discriminators to compute the reality of each facial organ, the generator was guided
708
+ to preserve the symmetry and homogeneity of the face. This resulted in a generator that resolved one of
709
+ the most critical inpainting shortcomings.
710
+
711
+
712
+
713
+
714
+
715
+
716
+ 12
717
+
718
+ References
719
+
720
+ [1]
721
+ S. Zhao et al., "Large scale image completion via co-modulated generative adversarial networks,"
722
+ arXiv Prepr. arXiv2103.10428, 2021.
723
+ [2]
724
+ Y. Zeng, J. Fu, H. Chao, and B. Guo, "Aggregated contextual transformations for high-resolution
725
+ image inpainting," IEEE Trans. Vis. Comput. Graph., 2022.
726
+ [3]
727
+ Y. Ma et al., "Region-wise Generative Adversarial Image Inpainting for Large Missing Areas,"
728
+ IEEE Trans. Cybern., 2022.
729
+ [4]
730
+ K. Nazeri, E. Ng, T. Joseph, F. Z. Qureshi, and M. Ebrahimi, "Edgeconnect: Generative image
731
+ inpainting with adversarial edge learning," arXiv Prepr. arXiv1901.00212, 2019.
732
+ [5]
733
+ J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, "Free-form image inpainting with gated
734
+ convolution," in Proceedings of the IEEE/CVF international conference on computer vision,
735
+ 2019, pp. 4471–4480.
736
+ [6]
737
+ R. Suvorov et al., "Resolution-robust large mask inpainting with Fourier convolutions," in
738
+ Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp.
739
+ 2149–2159.
740
+ [7]
741
+ P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional
742
+ adversarial networks," in Proceedings of the IEEE conference on computer vision and pattern
743
+ recognition, 2017, pp. 1125–1134.
744
+ [8]
745
+ Z. Liu et al., "Swin transformer: Hierarchical vision transformer using shifted windows," in
746
+ Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–
747
+ 10022.
748
+ [9]
749
+ X. Zhang, D. Zhai, T. Li, Y. Zhou, and Y. Lin, "Image inpainting based on deep learning: A
750
+ review," Inf. Fusion, 2022.
751
+ [10] Z. Qin, Q. Zeng, Y. Zong, and F. Xu, "Image inpainting based on deep learning: A review,"
752
+ Displays, vol. 69, p. 102028, 2021.
753
+ [11] J. Jam, C. Kendrick, K. Walker, V. Drouard, J. G.-S. Hsu, and M. H. Yap, "A comprehensive
754
+ review of past and present image inpainting methods," Comput. Vis. image Underst., vol. 203, p.
755
+ 103147, 2021.
756
+ [12] S. Su, M. Yang, L. He, X. Shao, Y. Zuo, and Z. Qiang, "A Survey of Face Image Inpainting Based
757
+ on Deep Learning," in International Conference on Cloud Computing, 2022, pp. 72–87.
758
+ [13] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, "PatchMatch: A randomized
759
+ correspondence algorithm for structural image editing," ACM Trans. Graph., vol. 28, no. 3, p. 24,
760
+ 2009.
761
+ [14] A. Criminisi, P. Pérez, and K. Toyama, "Region filling and object removal by exemplar-based
762
+ image inpainting," IEEE Trans. image Process., vol. 13, no. 9, pp. 1200–1212, 2004.
763
+ [15] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, "Generative image inpainting with
764
+ contextual attention," in Proceedings of the IEEE conference on computer vision and pattern
765
+ recognition, 2018, pp. 5505–5514.
766
+ [16] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, "Context encoders: Feature
767
+ learning by inpainting," in Proceedings of the IEEE conference on computer vision and pattern
768
+ recognition, 2016, pp. 2536–2544.
769
+ [17] Z. Zhao et al., "Prior based human completion," in Proceedings of the IEEE/CVF Conference on
770
+ Computer Vision and Pattern Recognition, 2021, pp. 7951–7961.
771
+ [18] Z. Hui, J. Li, X. Wang, and X. Gao, "Image fine-grained inpainting," arXiv Prepr.
772
+ arXiv2002.02609, 2020.
773
+ [19] Y. Zhou, C. Barnes, E. Shechtman, and S. Amirghodsi, "Transfill: Reference-guided image
774
+ inpainting by merging multiple color and spatial transformations," in Proceedings of the
775
+ IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 2266–2276.
776
+ [20] A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at
777
+
778
+ 13
779
+
780
+ scale," arXiv Prepr. arXiv2010.11929, 2020.
781
+ [21] L. Yuan et al., "Tokens-to-token vit: Training vision transformers from scratch on imagenet," in
782
+ Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 558–567.
783
+ [22] H. Yin, A. Vahdat, J. M. Alvarez, A. Mallya, J. Kautz, and P. Molchanov, "A-ViT: Adaptive
784
+ Tokens for Efficient Vision Transformer," in Proceedings of the IEEE/CVF Conference on
785
+ Computer Vision and Pattern Recognition, 2022, pp. 10809–10818.
786
+ [23] K. Han et al., "A survey on vision transformer," IEEE Trans. Pattern Anal. Mach. Intell., 2022.
787
+ [24] Z. Wan, J. Zhang, D. Chen, and J. Liao, "High-fidelity pluralistic image completion with
788
+ transformers," in Proceedings of the IEEE/CVF International Conference on Computer Vision,
789
+ 2021, pp. 4692–4701.
790
+ [25] C. Zheng, T.-J. Cham, and J. Cai, "Tfill: Image completion via a transformer-based architecture,"
791
+ arXiv Prepr. arXiv2104.00845, 2021.
792
+ [26] W. Li, Z. Lin, K. Zhou, L. Qi, Y. Wang, and J. Jia, "MAT: Mask-Aware Transformer for Large
793
+ Hole Image Inpainting," in Proceedings of the IEEE/CVF Conference on Computer Vision and
794
+ Pattern Recognition, 2022, pp. 10758–10768.
795
+ [27] Q. Dong, C. Cao, and Y. Fu, "Incremental transformer structure enhanced image inpainting with
796
+ masking positional encoding," in Proceedings of the IEEE/CVF Conference on Computer Vision
797
+ and Pattern Recognition, 2022, pp. 11358–11368.
798
+ [28] J. Wang, S. Chen, Z. Wu, and Y.-G. Jiang, "FT-TDR: Frequency-guided Transformer and Top-
799
+ Down Refinement Network for Blind Face Inpainting," IEEE Trans. Multimed., 2022.
800
+ [29] L. Chi, B. Jiang, and Y. Mu, "Fast Fourier convolution," Adv. Neural Inf. Process. Syst., vol. 33,
801
+ pp. 4479–4488, 2020.
802
+ [30] H. Cao et al., "Swin-unet: Unet-like pure transformer for medical image segmentation," arXiv
803
+ Prepr. arXiv2105.05537, 2021.
804
+ [31] P. Wang, Y. Li, and N. Vasconcelos, "Rethinking and improving the robustness of image style
805
+ transfer," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
806
+ Recognition, 2021, pp. 124–133.
807
+ [32] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, "Bisenet v2: Bilateral network with guided
808
+ aggregation for real-time semantic segmentation," Int. J. Comput. Vis., vol. 129, no. 11, pp. 3051–
809
+ 3068, 2021.
810
+ [33] T. Karras, T. Aila, S. Laine, and J. Lehtinen, "Progressive growing of gans for improved quality,
811
+ stability, and variation," arXiv Prepr. arXiv1710.10196, 2017.
812
+ [34] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, "The unreasonable effectiveness of
813
+ deep features as a perceptual metric," in Proceedings of the IEEE conference on computer vision
814
+ and pattern recognition, 2018, pp. 586–595.
815
+ [35] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, "Gans trained by a two
816
+ time-scale update rule converge to a local nash equilibrium," Adv. Neural Inf. Process. Syst., vol.
817
+ 30, 2017.
818
+ [36] A. Paszke et al., "Pytorch: An imperative style, high-performance deep learning library," Adv.
819
+ Neural Inf. Process. Syst., vol. 32, 2019.
820
+ [37] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv Prepr.
821
+ arXiv1412.6980, 2014.
822
+
823
+
824
+
H9E1T4oBgHgl3EQfXwRb/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
INE0T4oBgHgl3EQfhwHS/content/tmp_files/2301.02437v1.pdf.txt ADDED
@@ -0,0 +1,1353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Valid P-Value for Deep Learning-Driven Salient Region
2
+ Daiki Miwa∗
3
+ Nagoya Institute of Technology
4
5
+ Vo Nguyen Le Duy∗
6
+ RIKEN
7
8
+ Ichiro Takeuchi†
9
+ Nagoya University and RIKEN
10
11
+ January 9, 2023
12
+ Abstract
13
+ Various saliency map methods have been proposed to interpret and explain predictions of
14
+ deep learning models. Saliency maps allow us to interpret which parts of the input signals have a
15
+ strong influence on the prediction results. However, since a saliency map is obtained by complex
16
+ computations in deep learning models, it is often difficult to know how reliable the saliency map
17
+ itself is. In this study, we propose a method to quantify the reliability of a salient region in the
18
+ form of p-values. Our idea is to consider a salient region as a selected hypothesis by the trained
19
+ deep learning model and employ the selective inference framework. The proposed method can
20
+ provably control the probability of false positive detections of salient regions. We demonstrate
21
+ the validity of the proposed method through numerical examples in synthetic and real datasets.
22
+ Furthermore, we develop a Keras-based framework for conducting the proposed selective inference
23
+ for a wide class of CNNs without additional implementation cost.
24
+ ∗Equal contribution
25
+ †Corresponding author
26
+ 1
27
+ arXiv:2301.02437v1 [stat.ML] 6 Jan 2023
28
+
29
+ 1
30
+ Introduction
31
+ Deep neural networks (DNNs) have exhibited remarkable predictive performance in numerous practical
32
+ applications in various domains owing to their ability to automatically discover the representations
33
+ needed for prediction tasks from the provided data. To ensure that the decision-making process of
34
+ DNNs is transparent and easy to understand, it is crucial to effectively explain and interpret DNN
35
+ representations.
36
+ For example, in image classification tasks, obtaining salient regions allows us to
37
+ explain which parts of the input image strongly influence the classification results.
38
+ Several saliency map methods have been proposed to explain and interpret the predictions of DNN
39
+ models [Ribeiro et al., 2016, Bach et al., 2015, Doshi-Velez and Kim, 2017, Lundberg and Lee, 2017,
40
+ Zhou et al., 2016, Selvaraju et al., 2017]. However, the results obtained from saliency methods are
41
+ fragile [Kindermans et al., 2017, Ghorbani et al., 2019, Melis and Jaakkola, 2018, Zhang et al., 2020,
42
+ Dombrowski et al., 2019, Heo et al., 2019]. It is important to develop a method for quantifying the
43
+ reliability of DNN-driven salient regions.
44
+ Our idea is to interpret salient regions as hypotheses driven by a trained DNN model and employ
45
+ a statistical hypothesis testing framework. We use the p-value as a criterion to quantify the statistical
46
+ reliability of the DNN-driven hypotheses. Unfortunately, constructing a valid statistical test for DNN-
47
+ driven salient regions is challenging because of the selection bias. In other words, because the trained
48
+ DNN selects the salient region based on the provided data, the post-selection assessment of importance
49
+ is biased upwards.
50
+ To correct the selection bias and compute valid p-values for DNN-driven salient regions, we intro-
51
+ duce a conditional selective inference (SI) approach. The selection bias is corrected by conditional SI
52
+ in which the test statistic conditional on the event that the hypotheses (salient regions) are selected
53
+ using the trained DNNs. Our main technical contribution is to develop a computational method for
54
+ explicitly deriving the exact (non-asymptotic) conditional sampling distribution of the salient region
55
+ for a wide class convolutional neural networks (CNNs), which enables us to conduct conditional SI
56
+ and compute valid p-values. Figure 1 presents an example of the problem setup.
57
+ Related works.
58
+ In this study, we focus on statistical hypothesis testing for post-hoc analysis, i.e.,
59
+ quantifying the statistical significance of the salient regions identified in a trained DNN model when
60
+ a test input instance is fed into the model. Several methods have been developed to visualize and
61
+ understand trained DNNs. Many of these post-hoc approaches [Mahendran and Vedaldi, 2015, Zeiler
62
+ and Fergus, 2014, Dosovitskiy and Brox, 2016, Simonyan et al., 2013] have focused on developing
63
+ visualization tools for saliency maps given a trained DNN. Other methods have aimed to identify
64
+ the discriminative regions in an input image given a trained network [Selvaraju et al., 2017, Fong
65
+ 2
66
+
67
+ Input Image
68
+ Saliency Map
69
+ Salient Region
70
+ Reference Image
71
+ Two-sample
72
+ Test
73
+ (a) Image without tumor region. The naive-p = 0.00 (wrong detection) and selective-p = 0.43 (true negative)
74
+ Input Image
75
+ Saliency Map
76
+ Salient Region
77
+ Reference Image
78
+ Two-sample
79
+ Test
80
+ (b) Image with tumor region. The naive-p = 0.00 (true positive) and selective-p = 0.00 (true positive)
81
+ Figure 1: Examples of the problem setup and the proposed method on brain tumor dataset. By
82
+ applying a saliency method called CAM [Zhou et al., 2016] on a query input image, we obtain the
83
+ salient region. Our goal is to provide the statistical significance of the salient region in the form of
84
+ p-value by considering two-sample test between the salient region and the corresponding region in
85
+ the a reference image. Note that, since the salient region is selected based on the data, the degree
86
+ of saliency in the selected region is biased upward. In the upper image where there is no true brain
87
+ tumor, the naive p-value which is obtained without caring the selection bias is nearly zero, indicating
88
+ the false positive finding of the salient region.
89
+ On the other hand, the selective p-value which is
90
+ obtained by the proposed conditional SI approach is 0.43, indicating that the selected saliency region
91
+ is not statistically significant. In the lower figure where there is a true brain tumor, both the naive p-
92
+ value and the selective p-value are very small, indicating true positive finding. These results illustrate
93
+ that naive p-value cannot be used to quantify the reliability of DNN-based salient region. In contrast,
94
+ with the selective p-values, we can successfully identify false positive and true positive detections with
95
+ a desired error rate.
96
+ and Vedaldi, 2017, Zhou et al., 2016, Lundberg and Lee, 2017]. Furthermore, some recent studies
97
+ have shown that many popular methods for explanation and interpretation are not stable against a
98
+ perturbation or adversarial attack on the input data and model [Kindermans et al., 2017, Ghorbani
99
+ et al., 2019, Melis and Jaakkola, 2018, Zhang et al., 2020, Dombrowski et al., 2019, Heo et al.,
100
+ 2019]. However, to the best of our knowledge, no study to date has quantitatively evaluated and
101
+ reproducibility of DNN-driven salient regions with a rigorous statistical inference framework.
102
+ Recently, conditional SI has been recognized as a promising new approach for evaluating the
103
+ 3
104
+
105
+ 27statistical significance of data-driven hypotheses. Conditional SI has been mainly studied for inference
106
+ of linear model features selected by a feature selection method such as Lasso [Lee et al., 2016, Liu
107
+ et al., 2018, Hyun et al., 2018, Le Duy and Takeuchi, 2021] and stepwise feature selection [Tibshirani
108
+ et al., 2016, Sugiyama et al., 2021a]. The main idea of conditional SI study is to make inferences
109
+ conditional on selection events, which allows us to derive exact sampling distributions of test statistics.
110
+ In addition, conditional SI has been applied to various problems [Fithian et al., 2015, Tian and Taylor,
111
+ 2018, Yang et al., 2016, Hyun et al., 2021, Duy et al., 2020, Sugiyama et al., 2021b, Chen and Bien,
112
+ 2019, Panigrahi et al., 2016, Tsukurimichi et al., 2021, Hyun et al., 2018, Tanizaki et al., 2020, Duy
113
+ and Takeuchi, 2021, Tibshirani et al., 2016, Sugiyama et al., 2021a, Suzumura et al., 2017, Das et al.,
114
+ 2021, Duy and Takeuchi, 2022].
115
+ Most relevant existing work of this study is Duy et al. [2022], where the authors provide a framework
116
+ for computing valid p-values for DNN-based image segmentation results. In this paper, we generalized
117
+ this work so that hypotheses characterized by any internal nodes of the network can be considered,
118
+ enabling us to quanfity the statistical significance of salient regions.
119
+ This is in contrast to Duy
120
+ et al. [2022]’s work, which only considered the inference of the DNN’s output in a segmentation task.
121
+ Furthermore, we introduce a Keras-based implementation framework that enables us to conduct SI for
122
+ a wide class of CNNs without additional implementation costs. This is in contrast to Duy et al. [2022]’s
123
+ work, where the selection event must be implemented whenever the network architecture is changed.
124
+ In another direction, Burns et al. [2020] considered the black box model interpretability as a multiple-
125
+ hypothesis testing problem. They aimed to deduce important features by testing the significance of the
126
+ difference between the model prediction and what would be expected when replacing the features with
127
+ their counterfactuals. The difficulty of this multiple-hypothesis testing approach is that the number
128
+ of hypotheses to be considered is large (e.g., in the case of an image with n pixels, the number of
129
+ possible salient regions is 2n). Multiple testing correction methods, such as the Bonferroni correction,
130
+ are highly conservative when the number of hypotheses is large. To circumvent this difficulty, they
131
+ only considered a tractable number of regions selected by a human expert or object detector, which
132
+ causes selection bias because these candidate regions are selected based on the data.
133
+ Contribution.
134
+ Our main contributions are as follows:
135
+ • We provide an exact (non-asymptotic) inference method for salient regions based on the SI
136
+ concept. To the best of our knowledge, this is the first method that proposes to provide valid p-values
137
+ to statistically quantify the reliability of DNN-driven salient regions.
138
+ • We propose a novel algorithm and its implementation. Specifically, we propose Keras-based
139
+ implementation enables us to conduct conditional SI for a wide class of CNNs without additional
140
+ implementation costs.
141
+ 4
142
+
143
+ • We conducted experiments on both synthetic and real-world datasets, through which we show
144
+ that our proposed method can successfully control the false positive rate, has good performance in
145
+ terms of computational efficiency, and provides good results in practical applications. We provide the
146
+ detailed description of our implementation in the supplementary document. Our code is available at
147
+ https://github.com/takeuchi-lab/selective inference dnn salient region.
148
+ 2
149
+ Problem Formulation
150
+ In this paper, we consider the problem of quantifying the statistical significance of the salient regions
151
+ identified by a trained DNN model when a test input instance is fed into the model. Consider an
152
+ n-dimensional query input vector
153
+ X = (X1, ..., Xn)⊤ = s + ε,
154
+ ε ∼ N(0, σ2In)
155
+ and an n-dimensional reference input vector,
156
+ Xref = (Xref
157
+ 1 , ..., Xref
158
+ n )⊤ = sref + εref,
159
+ εref ∼ N(0, σ2In),
160
+ where s, sref ∈ Rn are the signals and ε, εref ∈ Rn are the noises for query and reference input vectors,
161
+ respectively. We assume that the signals, s and sref are unknown, whereas the distribution of noises
162
+ ε and εref are known (or can be estimated from external independent data) to follow N(0, σ2In),
163
+ an n-dimensional normal distribution with a mean vector 0 and covariance matrix σ2In, which are
164
+ mutually independent. In the illustrative example presented in §1, X is a query brain image for a
165
+ potential patient (we do not know whether she/he has a brain tumor), whereas Xref is a brain image
166
+ of a healthy person known to be without brain tumors.
167
+ Consider a saliency method for a trained CNN. We denote the saliency method as a function
168
+ A : Rn → Rn that takes a query input vector X ∈ Rn and returns the saliency map A(X) ∈ Rn. We
169
+ define a salient region MX for the query input vector X as the set of elements whose saliency map
170
+ value is greater than a threshold
171
+ MX = {i ∈ [n] : Ai(X) ≥ τ} ,
172
+ (1)
173
+ where τ ∈ R denotes the given threshold. In this study, we consider CAM [Zhou et al., 2016] as an
174
+ example of saliency method and threshold-based definition of the salient region. Our method can be
175
+ applied to other saliency methods and other definition of salient region.
176
+ Statistical inference.
177
+ To quantify the statistical significance of the saliency region MX, we con-
178
+ sider such two-sample test to quantify the statistical significance of the difference between the salient
179
+ 5
180
+
181
+ regions of the query input vector XMX and corresponding region of the reference input vector Xref
182
+ MX.
183
+ As concrete examples of the two-sample test, we consider the mean null test:
184
+ H0 :
185
+ 1
186
+ |MX|
187
+
188
+ i∈MX
189
+ si =
190
+ 1
191
+ |MX|
192
+
193
+ i∈MX
194
+ sref
195
+ i
196
+ v.s.
197
+ H1 :
198
+ 1
199
+ |MX|
200
+
201
+ i∈MX
202
+ si ̸=
203
+ 1
204
+ |MX|
205
+
206
+ i∈MX
207
+ sref
208
+ i .
209
+ (2)
210
+ and global null test:
211
+ H0 : si = sref
212
+ i , ∀i ∈ MX,
213
+ v.s.
214
+ H1 : si ̸= sref
215
+ i , ∃i ∈ MX,
216
+ (3)
217
+ In the mean null test depicted in Eq. (2), we consider a null hypothesis that the average signals in the
218
+ salient region MX are the same between X and Xref. In contrast, in the global null test in Eq. (3),
219
+ we consider a null hypothesis that all elements of the signals in the salient region MX are the same
220
+ between X and Xref. The p-values for these two-sample tests can be used to quantify the statistical
221
+ significance of the salient region MX.
222
+ Test-statistic.
223
+ For a two-sample test conducted between XMX and Xref
224
+ MX, we consider a class of
225
+ test statistics called conditionally linear test-statistic, which is expressed as
226
+ T(X, Xref) = η⊤
227
+ MX
228
+ � X
229
+ Xref
230
+
231
+ ,
232
+ (4)
233
+ and conditionally χ test-statistic, which is expressed as
234
+ T(X, Xref) = σ−1
235
+ ����PMX
236
+ � X
237
+ Xref
238
+ ����� ,
239
+ (5)
240
+ where ηMX ∈ R2n is a vector and PMX ∈ R2n×2n is a projection matrix that depends on saliency
241
+ region MX.
242
+ The test statistics for the mean null tests and the global null test can be written in the form of Eq.
243
+ (4) and (5), respectivery. For the mean null test in Eq. (2), we consider the following test-statistic
244
+ T(X, Xref) = η⊤
245
+ MX
246
+ � X
247
+ Xref
248
+
249
+ =
250
+ 1
251
+ |MX|
252
+
253
+ i∈MX
254
+ Xi −
255
+ 1
256
+ |MX|
257
+
258
+ i∈MX
259
+ Xref
260
+ i
261
+ ,
262
+ where ηMX =
263
+ 1
264
+ |MX|
265
+
266
+ � 1n
267
+ MX
268
+ −1n
269
+ MX
270
+
271
+ � ∈ R2n. For the gloabl null test in Eq. (3), we consider the following
272
+ test-statistic
273
+ T(X, Xref) = σ−1
274
+ ����PMX
275
+ � X
276
+ Xref
277
+ ����� =
278
+
279
+
280
+
281
+ � �
282
+ i∈MX
283
+ �Xi − Xref
284
+ i
285
+
286
+
287
+ �2
288
+ ,
289
+ where
290
+ PMX = 1
291
+ 2
292
+
293
+ � diag(1n
294
+ MX)
295
+ −diag(1n
296
+ MX)
297
+ −diag(1n
298
+ MX)
299
+ diag(1n
300
+ MX)
301
+
302
+ � .
303
+ (6)
304
+ 6
305
+
306
+ To obtain p-values for these two-sample tests we need to know the sampling distribution of the
307
+ test-statistics. Unfortunately, it is challenging to derive the sampling distributions of test-statistics
308
+ because they depend on the salient region MX, which is obtained through a complicated calculation
309
+ in the trained CNN.
310
+ 3
311
+ Computing Valid p-value by Conditional Selective Inference
312
+ In this section, we introduce an approach to compute the valid p-values for the two-sample tests for
313
+ the salient region MX between the query input vector X and the reference input vector Xref based
314
+ on the concept of conditional SI [Lee et al., 2016].
315
+ 3.1
316
+ Conditional Distribution and Selective p-value
317
+ Conditional distribution.
318
+ The basic idea of conditional SI is to consider the sampling distribution
319
+ of the test-statistic conditional on a selection event. Specifically, we consider the sampling property
320
+ of the following conditional distribution
321
+ T(X, Xref)
322
+ ��� {MX = MXobs} ,
323
+ (7)
324
+ where Xobs is the observation (realization) of random vector X. The condition in Eq.(7) indicates the
325
+ randomness of X conditional on the event that the same salient region MX as the observed MXobs
326
+ is obtained. By conditioning on the salient region MX, derivation of the sampling distribution of the
327
+ conditionally linear and χ test-statistic T(X, Xref) is reduced to a derivation of the distribution of
328
+ linear function and quadratic function of (X, Xref), respectively.
329
+ Selective p-value.
330
+ After considering the conditional sampling distribution in (7), we introduce the
331
+ following selective p-value:
332
+ pselective = PH0
333
+ � ��T(X, Xref)
334
+ �� ≥
335
+ ��T(Xobs, Xref
336
+ obs)
337
+ ��
338
+ ��� MX = MXobs, QX,Xref = Qobs
339
+
340
+ ,
341
+ (8)
342
+ where
343
+ QX,Xref = ΩX,Xref,
344
+ Qobs = QXobs,Xref
345
+ obs
346
+ with
347
+ ΩX,Xref =
348
+
349
+ I2n − ηMXη⊤
350
+ MX
351
+ ∥ηMX∥2
352
+ � � X
353
+ Xref
354
+
355
+ ∈ R2n
356
+ in the case of mean null test, and
357
+ QX,Xref =
358
+
359
+ VX,Xref, UX,Xref
360
+
361
+ ,
362
+ Qobs = QXobs,Xref
363
+ obs
364
+ 7
365
+
366
+ with
367
+ VX,Xref = σPMX
368
+ � X
369
+ Xref
370
+ ������PMX
371
+ � X
372
+ Xref
373
+ ����� ∈ R2n,
374
+ UX,Xref = P ⊥
375
+ MX
376
+ � X
377
+ Xref
378
+
379
+ ∈ R2n
380
+ in the case of global null test. The QX,Xref is the sufficient statistic of the nuisance parameter that
381
+ needs to be conditioned on in order to tractably conduct the inference 1.
382
+ The selective p-value in Eq.(8) has the following desired sampling property
383
+ PH0
384
+
385
+ pselective ≤ α | MX = MXobs
386
+
387
+ = α,
388
+ ∀α ∈ [0, 1].
389
+ (9)
390
+ This means that the selective p-values pselective can be used as a valid statistical significance measure
391
+ for the salient region MX.
392
+ 3.2
393
+ Characterization of the Conditional Data Space
394
+ To compute the selective p-value in (8), we need to characterize the conditional data space whose
395
+ characterization is described introduced in the next section. We define the set of (X Xref)⊤ ∈ R2n
396
+ that satisfies the conditions in Eq. (8) as
397
+ D =
398
+
399
+ (X Xref)⊤ ∈ R2n �� MX = MXobs, QX,Xref = Qobs
400
+
401
+ .
402
+ (10)
403
+ According to the second condition, the data in D is restricted to a line in R2n as stated in the following
404
+ Lemma.
405
+ Lemma 1. Let us define let us define,
406
+ a = ΩXobs,Xref
407
+ obs
408
+ and
409
+ b =
410
+ ηMX
411
+ ∥ηMX∥2 ∈ R2n.
412
+ (11)
413
+ in the mean null test, and
414
+ a = UXobs,Xref
415
+ obs
416
+ and
417
+ b = VXobs,Xref
418
+ obs
419
+ (12)
420
+ in the case of global null test. Then, the set D in (10) can be rewritten as D =
421
+ ��
422
+ X Xref�⊤ = a+bz |
423
+ z ∈ Z
424
+
425
+ by using the scalar parameter z ∈ R, where
426
+ Z = {z ∈ R | Ma1:n+b1:nz = MXobs} .
427
+ (13)
428
+ x1:n represents a vector of elements 1 through n of x.
429
+ 1This nuisance parameter QX,Xref corresponds to the component z in the seminal conditional SI paper [Lee et al.,
430
+ 2016] (see Sec. 5, Eq. 5.2 and Theorem 5.2) and z, w in [Chen and Bien, 2019](see Sec. 3, Theorem 3.7). We note that
431
+ additional conditioning on QX,Xref is a standard approach in the conditional SI literature and is used in almost all
432
+ the conditional SI-related studies. Here, we would like to note that the selective p-value depend on QX,Xref , but the
433
+ property in (9) is satisfied without this additional condition because we can marginalize over all values of QX,Xref (see
434
+ the lower part of the proof of Theorem 5.2 in Lee et al. [2016] and the proof of Theorem 3.7 in Chen and Bien [2019] ).
435
+ 8
436
+
437
+ Proof. The proof is deferred to Appendix A.1
438
+
439
+ Lemma 1 indicates that we do not need to consider the 2n-dimensional data space. Instead, we
440
+ only need to consider the one-dimensional projected data space Z in (13).
441
+ Now, let us consider
442
+ a random variable Z ∈ R and its observation Zobs ∈ R that satisfies (X Xref)⊤ = a + bZ and
443
+ (Xobs Xref
444
+ obs)⊤ = a + bZobs. The selective p-value (8) is rewritten as
445
+ pselective = PH0 (|Z| ≥ |Zobs| | Z ∈ Z) .
446
+ (14)
447
+ Because the variable Z ∼ N(0, σ2∥η∥2) in the case of mean null test and Z ∼ χ (Trace(P)) in the case
448
+ of global null test under the null hypothesis, Z | Z ∈ Z follows a truncated normal distribution and a
449
+ truncated χ distribution, respectively. Once the truncation region Z is identified, computation of the
450
+ selective p-value in (14) is straightforward. Therefore, the remaining task is to identify Z.
451
+ In general, computation of Z in (13) is difficult because we need to identify the selection event
452
+ Ma1:n+b1:nz for all values of z ∈ R, which is computationally challenging. In the next section, we
453
+ show that the challenge can be resolved under a wide class of problems.
454
+ 4
455
+ Piecewise Linear Network
456
+ The problem of computing selective p-values for the selected salient region is casted into the problem
457
+ of identifying a set of intervals Z = {z ∈ R | MX(z) = MXobs}. Given the complexity of saliency
458
+ computation in a trained DNN, it seems difficult to obtain Z. In this section, however, we explain
459
+ that this is feasible for a wide class of CNNs.
460
+ Piecewise linear components in CNN
461
+ The key idea is to note that most of basic operations and
462
+ common activation functions used in a trained CNN can be represented as piecewise linear functions
463
+ in the following form:
464
+ Definition 1. (Piecewise Linear Function) A piecewise linear function f : Rn �→ Rm is defined as:
465
+ f(X) =
466
+
467
+
468
+
469
+
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+ Ψf
486
+ 1X + ψf
487
+ 1 ,
488
+ if X ∈ Pf
489
+ 1 := {X′ ∈ Rn | ∆f
490
+ 1X′ ≤ δf
491
+ 1 },
492
+ Ψf
493
+ 2X + ψf
494
+ 2 ,
495
+ if X ∈ Pf
496
+ 2 := {X′ ∈ Rn | ∆f
497
+ 2X′ ≤ δf
498
+ 2 },
499
+ ...
500
+ Ψf
501
+ K(f)X + ψf
502
+ K(f),
503
+ if X ∈ Pf
504
+ K(f) := {X′ ∈ Rn | ∆f
505
+ K(f)X′ ≤ δf
506
+ K(f)}
507
+ where Ψf
508
+ k, ψf
509
+ k, ∆f
510
+ k and δf
511
+ k for k ∈ [K(f)] are certain matrices and vectors with appropriate dimensions,
512
+ Pf
513
+ k := {x ∈ Rn | ∆f
514
+ kx ≤ δf
515
+ k} is a polytope in Rn for k ∈ [K(f)], and K(f) is the number of polytopes
516
+ for the function f.
517
+ 9
518
+
519
+ Examples of piecewise linear components in a trained CNN are shown in Appendix A.2.
520
+ Piecewise Linear Network
521
+ Definition 2. (Piecewise Linear Network) A network obtained by concatenations and compositions
522
+ of piecewise linear functions is called piecewise linear network.
523
+ Since the concatenation and the composition of piecewise linear functions is clearly piecewise linear
524
+ function, the output of any node in the piecewise linear network is written as a piecewise linear function
525
+ of an input vector X. This is also true for the saliency map function Ai(X), i ∈ [n]. Furthermore,
526
+ as discussed in §4, we can focus on the input vector in the form of X(z) = a1:n + b1:nz which is
527
+ parametrized by a scalar parameter z ∈ R. Therefore, the saliency map value for each element is
528
+ written as a piecewise linear function of the scalar parameter z, i.e.,
529
+ Ai(X(z)) =
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+ κAi
550
+ 1 z + ρAi
551
+ 1 ,
552
+ if z ∈ [LAi
553
+ 1 , U Ai
554
+ 1 ],
555
+ κAi
556
+ 2 z + ρAi
557
+ 2 ,
558
+ if z ∈ [LAi
559
+ 2 , U Ai
560
+ 2 ],
561
+ ...
562
+ κAi
563
+ K(Ai)z + ρf
564
+ K(Ai),
565
+ if z ∈ [LAi
566
+ K(Ai), U Ai
567
+ K(Ai)],
568
+ (15)
569
+ where K(Ai) is the number of linear pieces of the piecewise linear function, κAi
570
+ k , ρAi
571
+ k
572
+ are certain scalar
573
+ parameters, [LAi
574
+ k , U Ai
575
+ k ] are intervals for k ∈ [K(Ai)] (note that a polytope in Rn is reduced to an
576
+ interval when it is projected onto one-dimensional space).
577
+ This means that, for each piece of the piecewise linear function, we can identify the interval of z
578
+ such that Ai(X(z)) ≥ τ as follows 2
579
+ z ∈
580
+
581
+
582
+
583
+
584
+ max
585
+
586
+ LAi
587
+ k ,
588
+
589
+ τ − ρAi
590
+ k
591
+
592
+ /κAi
593
+ k
594
+
595
+ , U Ai
596
+ k
597
+
598
+ if κAi
599
+ k
600
+ > 0
601
+
602
+ LAi
603
+ k , min
604
+
605
+ U Ai
606
+ k ,
607
+
608
+ τ − ρAi
609
+ k
610
+
611
+ /κAi
612
+ k
613
+
614
+ ,
615
+
616
+ if κAi
617
+ k
618
+ < 0
619
+
620
+ Ai(X(z)) ≥ τ.
621
+ (16)
622
+ With a slight abuse of notation, let us collectively denote the finite number of intervals on z ∈ R that
623
+ are defined by LAi
624
+ k , U Ai
625
+ k , (τ − ρAi
626
+ i /κAi
627
+ k ) for all (k, i) ∈ [K(Ai)] × [n] as
628
+ [z0, z1], [z1, z2], . . . , [zt−1, zt], [zt, zt+1], . . . , [zT −1, zT ],
629
+ where zmin = z0 and zmax = zT are defined such that the probability mass of z < zmin and z > zmax
630
+ are negligibly small.
631
+ 2For simplicity, we omit the description for the case of κAi
632
+ k
633
+ = 0. In this case, if ρAi
634
+ k
635
+ ≥ τ, then z ∈ [LAi
636
+ k , UAi
637
+ k
638
+ ] ⇒ i ∈
639
+ MX(z).
640
+ 10
641
+
642
+ Algorithm 1 SI DNN Saliency
643
+ Input: Xobs, zmin, zmax, T ← ∅
644
+ 1: Obtain Eobs, compute η as well as a and b ← Eq. (12), and initialize: t = 1, zt = zmin
645
+ 2: for t ≤ T do
646
+ 3:
647
+ Compute zt+1 by Auto-Conditioning (see §5)
648
+ 4:
649
+ if EX(z),Xref (z) = Eobs in z ∈ [zt, zt+1] (by using Eq.(16)) then
650
+ 5:
651
+ T ← T + {t}
652
+ 6:
653
+ end if
654
+ 7:
655
+ t = t + 1
656
+ 8: end for
657
+ 9: Identify Z ← �
658
+ t∈T [zt, zt+1]
659
+ 10: pselective ← Eq. (14)
660
+ Output: pselective
661
+ Algorithm
662
+ Algorithm 1 shows how we identify Z = {z ∈ R | MX(z),Xref(z) = Mobs}. We simply
663
+ check the intervals of z in the order of [z0, z1], [z1, z2], ..., [zT −1, zT ] to see whether MX(z) = MX(zobs)
664
+ or not in the interval by using Eq.(16). Then, the truncation region Z in Eq.(13) is given as Z =
665
+
666
+ t∈[T ]|EX(z),Xref (z)=Eobs for z∈[zt,zt+1][zt, zt+1].
667
+ 5
668
+ Implementation: Auto-Conditioning
669
+ The bottleneck of our algorithm is Line 3 in Algorithm 1, where zt+1 must be found by considering
670
+ all relevant piecewise linear components in a complicated trained CNN. The difficulty lies not only in
671
+ the computational cost but also in the implementation cost. To implement conditional SI in DNNs
672
+ naively, it is necessary to characterize all operations at each layer of the network as selection events and
673
+ implement each of the specifically[Duy et al., 2022] To circumvent this difficulty, we introduce a mod-
674
+ ular implementation scheme called auto-conditioning, which is similar to auto-differentiation [Baydin
675
+ et al., 2018] in concept. This enables us to conduct conditional SI for a wide class of CNNs without
676
+ additional implementation cost.
677
+ The basic idea in auto-conditioning is to add a mechanism to compute and maintain the interval
678
+ z ∈ [Lf
679
+ k, U f
680
+ k ] for each piecewise linear component f in the network (e.g., layer API in the Keras
681
+ framework).
682
+ This enables us to automatically compute the interval [Lf
683
+ k, U f
684
+ k ] of a piecewise linear
685
+ function f when it is obtained as concatenation and/or composition of multiple piecewise linear
686
+ components. If f is obtained by concatenating two piecewise linear functions f1 and f2, we can easily
687
+ obtain [Lf
688
+ k, U f
689
+ k ] = [Lf1
690
+ k1, U f1
691
+ k1 ] ∩ [Lf2
692
+ k2, U f2
693
+ k2 ]. However, if f is obtained as a composition of two piecewise
694
+ linear functions f1 and f2, the calculation of the interval is given by the following lemma.
695
+ Lemma 2. Consider the composition of two piecewise linear functions, that is, f(X(z)) = (f2 ◦
696
+ 11
697
+
698
+ f1)(X(z)). Given a real value of z, the interval [Lf2
699
+ k , U f2
700
+ k ] in the input domain of f2 can be computed
701
+ as
702
+ Lf2
703
+ k2 =
704
+ max
705
+ j:(∆f2
706
+ k2γf1)j<0
707
+ (δf2
708
+ k2)j − (∆f2
709
+ k2βf1)j
710
+ (∆f2
711
+ k2γf1)j
712
+ ,
713
+ U f2
714
+ k2 =
715
+ min
716
+ j:(∆f2
717
+ k2γf1)j>0
718
+ (δf2
719
+ k2)j − (∆f2
720
+ k2βf1)j
721
+ (∆f2
722
+ k2γf1)j
723
+ ,
724
+ where βf1 + γf1z is the output of f1 (i.e., the input of f2). Moreover, ∆f2
725
+ k2 and δf2
726
+ k2 are obtained by
727
+ verifying the value of βf1 + γf1z. Then, the interval of the composite function is obtained as follows:
728
+ [Lf
729
+ k, U f
730
+ k ] = [Lf1
731
+ k1, U f1
732
+ k1 ] ∩ [Lf2
733
+ k2, U f2
734
+ k2 ]
735
+ The proof is provided in Appendix A.3.
736
+ Here, the variables βfk and γfk can be recursively
737
+ computed through layers as
738
+ βfk+1 = Ψfk
739
+ k βfk + ψfk
740
+ k
741
+ and
742
+ γfk+1 = Ψfk
743
+ k γfk.
744
+ Lemma 2 indicates that the intervals in which X(z) decreases can be forwardly propagated through
745
+ these layers. This means that the lower bound LAi
746
+ k
747
+ and upper bound U Ai
748
+ k
749
+ of the current piece in the
750
+ piecewise linear function in Eq. (15) can be automatically computed by forward propagation of the
751
+ intervals of the relevant piecewise linear components.
752
+ 6
753
+ Experiment
754
+ We only highlight the main results. More details (methods for comparison, network structure, etc.)
755
+ can be found in the Appendix A.4.
756
+ Experimental setup.
757
+ We compared our proposed method with the naive method, over-conditioning
758
+ (OC) method, and Bonferroni correction. To investigate the false positive rate (FPR) we consid-
759
+ erd, 1000 null images X = (X1, ..., Xn) and 1000 reference images Xref = (Xref
760
+ 1 , ..., xref
761
+ n ), where
762
+ s = sref = 0 and ε, εref ∼ N(0, In), for each n ∈ {64, 256, 1024, 4096}. To investigate the true positive
763
+ rate (TPR), we set n = 256 and generated 1,000 images, in which si = signal for any i ∈ S where
764
+ S is the “true” salient region whose location is randomly determined. si = 0 for any i ̸∈ S and
765
+ ε ∼ N(0, In). We set ∆ ∈ {1, 2, 3, 4}. Reference images were generated in the same way as in the case
766
+ of FPR. In all experiments, we set the threshold for selecting the salient region τ = 0 in the mean
767
+ null test and τ = 5 in the global null test . We set the significance level α = 0.05. We used CAM as
768
+ the saliency method in all experiments.
769
+ Numerical results.
770
+ The results of FPR control are presented in Fig. 2. The proposed method, OC,
771
+ and Bonferroni successfully controlled the FPR in both the mean and global null test cases, whereas
772
+ 12
773
+
774
+ 64
775
+ 256
776
+ 1024
777
+ 4096
778
+ n
779
+ 0.0
780
+ 0.2
781
+ 0.4
782
+ 0.6
783
+ 0.8
784
+ 1.0
785
+ False Positive Rate(FPR)
786
+ Proposed
787
+ OC
788
+ Bonferroni
789
+ Naive
790
+ (a) Mean null test
791
+ 64
792
+ 256
793
+ 1024
794
+ 4096
795
+ n
796
+ 0.00
797
+ 0.05
798
+ 0.10
799
+ 0.15
800
+ 0.20
801
+ 0.25
802
+ 0.30
803
+ 0.35
804
+ False Positive Rate(FPR)
805
+ Proposed
806
+ OC
807
+ Bonferroni
808
+ Naive
809
+ (b) Global null test
810
+ Figure 2: False Positive Rate (FPR) comparison.
811
+ 1
812
+ 2
813
+ 3
814
+ 4
815
+ 0.0
816
+ 0.2
817
+ 0.4
818
+ 0.6
819
+ 0.8
820
+ True Positive Rate(TPR)
821
+ Proposed
822
+ OC
823
+ Bonferroni
824
+ (a) Mean null test
825
+ 1
826
+ 2
827
+ 3
828
+ 4
829
+ 0.0
830
+ 0.2
831
+ 0.4
832
+ 0.6
833
+ 0.8
834
+ 1.0
835
+ True Positive Rate(TPR)
836
+ Proposed
837
+ OC
838
+ Bonferroni
839
+ (b) Global null test
840
+ Figure 3: True Positive Rate (FPR) comparison.
841
+ Input Image
842
+ Saliency Map
843
+ Salient Region
844
+ Reference Image
845
+ Reference Region
846
+ Figure 4: Mean null test for image without tumor (pnaive = 0.00, pselective = 0.78).
847
+ the others could not. Because naive methods failed to control the FPR, we no longer considered their
848
+ TPR. The results of the TPR comparison are shown in Fig. 3. The proposed method has the highest
849
+ TPR in all cases. The Bonferroni method has the lowest TPR because it is conservative owing to
850
+ considering the number of all possible hypotheses. The OC method also has a low TPR than the
851
+ proposed method because it considers several extra conditions, which causes the loss of TPR.
852
+ Real data experiments.
853
+ We examined the brain image dataset extracted from the dataset used
854
+ in Buda et al. [2019], which included 939 and 941 images with and without tumors, respectively. The
855
+ results of the mean null test are presented in Figs. 4 and 5. The results of the global null test are
856
+ presented in Figs. 6 and 7. The naive p-value remains small even when the image has no tumor region,
857
+ which indicates that naive p-values cannot be used to quantify the reliability of DNN-based salient
858
+ regions. The proposed method successfully identified false positive and true positive detections.
859
+ 7
860
+ Conclusion
861
+ In this study, we proposed a novel method to conduct statistical inference on the significance of
862
+ DNN-driven salient regions based on the concept of conditional SI. We provided a novel algorithm for
863
+ efficiently and flexibly conducting conditional SI for salient regions. We conducted experiments on
864
+ 13
865
+
866
+ Input Image
867
+ Saliency Map
868
+ Salient Region
869
+ Reference Image
870
+ Reference Region
871
+ Figure 5: Mean null test for image with a tumor (pnaive = 0.00, pselective = 1.92 × 10−4).
872
+ Input Image
873
+ Saliency Map
874
+ Salient Region
875
+ Reference Image
876
+ Reference Region
877
+ Figure 6: Global null test for image without tumor (pnaive = 0.03, pselective = 0.46)
878
+ Input Image
879
+ Saliency Map
880
+ Salient Region
881
+ Reference Image
882
+ Reference Region
883
+ Figure 7: Global null test for image with a tumor (pnaive = 0.00, pselective = 1.51 × 10−3).
884
+ both synthetic and real-world datasets to demonstrate the performance of the proposed method.
885
+ Acknowledgements
886
+ This work was partially supported by MEXT KAKENHI (20H00601), JST CREST (JPMJCR21D3),
887
+ JST Moonshot R&D (JPMJMS2033-05), JST AIP Acceleration Research (JPMJCR21U2), NEDO
888
+ (JPNP18002, JPNP20006), and RIKEN Center for Advanced Intelligence Project.
889
+ References
890
+ S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. M¨uller, and W. Samek. On pixel-wise ex-
891
+ planations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):
892
+ e0130140, 2015.
893
+ A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind.
894
+ Automatic differentiation in
895
+ machine learning: a survey. Journal of Marchine Learning Research, 18:1–43, 2018.
896
+ 14
897
+
898
+ 2M. Buda, A. Saha, and M. A. Mazurowski. Association of genomic subtypes of lower-grade gliomas
899
+ with shape features automatically extracted by a deep learning algorithm. Computers in biology
900
+ and medicine, 109:218–225, 2019.
901
+ C. Burns, J. Thomason, and W. Tansey. Interpreting black box models via hypothesis testing. In
902
+ Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, pages 47–57, 2020.
903
+ S. Chen and J. Bien. Valid inference corrected for outlier removal. Journal of Computational and
904
+ Graphical Statistics, pages 1–12, 2019.
905
+ D. Das, V. N. L. Duy, H. Hanada, K. Tsuda, and I. Takeuchi. Fast and more powerful selective
906
+ inference for sparse high-order interaction model. arXiv preprint arXiv:2106.04929, 2021.
907
+ A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. M¨uller, and P. Kessel. Explanations
908
+ can be manipulated and geometry is to blame.
909
+ In Advances in Neural Information Processing
910
+ Systems, pages 13589–13600, 2019.
911
+ F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning. arXiv
912
+ preprint arXiv:1702.08608, 2017.
913
+ A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks. In Proceed-
914
+ ings of the IEEE conference on computer vision and pattern recognition, pages 4829–4837, 2016.
915
+ V. N. L. Duy and I. Takeuchi. More powerful conditional selective inference for generalized lasso by
916
+ parametric programming. arXiv preprint arXiv:2105.04920, 2021.
917
+ V. N. L. Duy and I. Takeuchi. Exact statistical inference for time series similarity using dynamic time
918
+ warping by selective inference. arXiv preprint arXiv:2202.06593, 2022.
919
+ V. N. L. Duy, H. Toda, R. Sugiyama, and I. Takeuchi. Computing valid p-value for optimal changepoint
920
+ by selective inference using dynamic programming. In Advances in Neural Information Processing
921
+ Systems, pages 11356–11367, 2020.
922
+ V. N. L. Duy, S. Iwazaki, and I. Takeuchi. Quantifying statistical significance of neural network-based
923
+ image segmentation by selective inference. Advances in Neural Information Processing Systems,
924
+ 2022.
925
+ W. Fithian, J. Taylor, R. Tibshirani, and R. Tibshirani. Selective sequential model selection. arXiv
926
+ preprint arXiv:1512.02565, 2015.
927
+ R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation. In
928
+ Proceedings of the IEEE International Conference on Computer Vision, pages 3429–3437, 2017.
929
+ 15
930
+
931
+ A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. In Proceedings of the
932
+ AAAI Conference on Artificial Intelligence, volume 33, pages 3681–3688, 2019.
933
+ J. Heo, S. Joo, and T. Moon. Fooling neural network interpretations via adversarial model manipu-
934
+ lation. In Advances in Neural Information Processing Systems, pages 2925–2936, 2019.
935
+ S. Hyun, M. G’sell, and R. J. Tibshirani. Exact post-selection inference for the generalized lasso path.
936
+ Electronic Journal of Statistics, 12(1):1053–1097, 2018.
937
+ S. Hyun, K. Z. Lin, M. G’Sell, and R. J. Tibshirani. Post-selection inference for changepoint detection
938
+ algorithms with application to copy number variation data. Biometrics, 77(3):1037–1049, 2021.
939
+ P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Sch¨utt, S. D¨ahne, D. Erhan, and B. Kim.
940
+ The (un) reliability of saliency methods. arXiv preprint arXiv:1711.00867, 2017.
941
+ V. N. Le Duy and I. Takeuchi. Parametric programming approach for more powerful and general
942
+ lasso selective inference. In International Conference on Artificial Intelligence and Statistics, pages
943
+ 901–909. PMLR, 2021.
944
+ J. D. Lee, D. L. Sun, Y. Sun, and J. E. Taylor. Exact post-selection inference, with application to the
945
+ lasso. The Annals of Statistics, 44(3):907–927, 2016.
946
+ K. Liu, J. Markovic, and R. Tibshirani. More powerful post-selection inference, with application to
947
+ the lasso. arXiv preprint arXiv:1801.09037, 2018.
948
+ S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Advances in
949
+ neural information processing systems, pages 4765–4774, 2017.
950
+ A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In
951
+ Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5188–5196,
952
+ 2015.
953
+ D. A. Melis and T. Jaakkola. Towards robust interpretability with self-explaining neural networks. In
954
+ Advances in Neural Information Processing Systems, pages 7775–7784, 2018.
955
+ S. Panigrahi, J. Taylor, and A. Weinstein. Bayesian post-selection inference in the linear model. arXiv
956
+ preprint arXiv:1605.08824, 28, 2016.
957
+ M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the predictions of
958
+ any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
959
+ discovery and data mining, pages 1135–1144, 2016.
960
+ 16
961
+
962
+ R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual
963
+ explanations from deep networks via gradient-based localization. In Proceedings of the IEEE inter-
964
+ national conference on computer vision, pages 618–626, 2017.
965
+ K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
966
+ classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.
967
+ K. Sugiyama, V. N. L. Duy, and I. Takeuchi.
968
+ More powerful and general selective inference for
969
+ stepwise feature selection using the homotopy continuation approach. In Proceedings of the 38th
970
+ International Conference on Machine Learning, 2021a.
971
+ R. Sugiyama, H. Toda, V. N. L. Duy, Y. Inatsu, and I. Takeuchi.
972
+ Valid and exact statisti-
973
+ cal inference for multi-dimensional multiple change-points by selective inference. arXiv preprint
974
+ arXiv:2110.08989, 2021b.
975
+ S. Suzumura, K. Nakagawa, Y. Umezu, K. Tsuda, and I. Takeuchi. Selective inference for sparse
976
+ high-order interaction models. In Proceedings of the 34th International Conference on Machine
977
+ Learning-Volume 70, pages 3338–3347. JMLR. org, 2017.
978
+ K. Tanizaki, N. Hashimoto, Y. Inatsu, H. Hontani, and I. Takeuchi. Computing valid p-values for image
979
+ segmentation by selective inference. In Proceedings of the IEEE/CVF Conference on Computer
980
+ Vision and Pattern Recognition, pages 9553–9562, 2020.
981
+ X. Tian and J. Taylor. Selective inference with a randomized response. The Annals of Statistics, 46
982
+ (2):679–710, 2018.
983
+ R. J. Tibshirani, J. Taylor, R. Lockhart, and R. Tibshirani. Exact post-selection inference for se-
984
+ quential regression procedures. Journal of the American Statistical Association, 111(514):600–620,
985
+ 2016.
986
+ T. Tsukurimichi, Y. Inatsu, V. N. L. Duy, and I. Takeuchi. Conditional selective inference for ro-
987
+ bust regression and outlier detection using piecewise-linear homotopy continuation. arXiv preprint
988
+ arXiv:2104.10840, 2021.
989
+ F. Yang, R. F. Barber, P. Jain, and J. Lafferty. Selective inference for group-sparse linear models. In
990
+ Advances in Neural Information Processing Systems, pages 2469–2477, 2016.
991
+ M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European
992
+ conference on computer vision, pages 818–833. Springer, 2014.
993
+ 17
994
+
995
+ X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Interpretable deep learning under fire. In
996
+ 29th {USENIX} Security Symposium ({USENIX} Security 20), 2020.
997
+ B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative
998
+ localization. In Proceedings of the IEEE conference on computer vision and pattern recognition,
999
+ pages 2921–2929, 2016.
1000
+ A
1001
+ Appendix
1002
+ A.1
1003
+ Proof of Lemma 1
1004
+ In the mean null test, according to the second condition in (10), we have
1005
+ ΩX,Xref = ΩXobs,Xref
1006
+ obs
1007
+
1008
+
1009
+ I2n − ηMXη⊤
1010
+ MX
1011
+ η⊤
1012
+ MXηMX
1013
+ � � X
1014
+ Xref
1015
+
1016
+ = ΩXobs,Xref
1017
+ obs
1018
+
1019
+ � X
1020
+ Xref
1021
+
1022
+ = ΩXobs,Xref
1023
+ obs +
1024
+ ηMX
1025
+ ∥ηMX∥2 η⊤
1026
+ MX
1027
+ � X
1028
+ Xref
1029
+
1030
+ .
1031
+ By defining a = qXobs,Xref
1032
+ obs, b =
1033
+ ηMX
1034
+ ∥ηMX ∥2 , z = η⊤
1035
+ MX
1036
+ � X
1037
+ Xref
1038
+
1039
+ , we obtain the result in Lemma 1.
1040
+ In the global null test, according to the second condition in (10),
1041
+ UX,Xref = UXobs,Xref
1042
+ obs
1043
+ ⇔ P ⊥
1044
+ MX
1045
+ � X
1046
+ Xref
1047
+
1048
+ = UXobs,Xref
1049
+ obs
1050
+ ⇔ (I2n − PMX)
1051
+ � X
1052
+ Xref
1053
+
1054
+ = UXobs,Xref
1055
+ obs
1056
+
1057
+ � X
1058
+ Xref
1059
+
1060
+ = UXobs,Xref
1061
+ obs + VXobs,Xref
1062
+ obsσ−1
1063
+ ����PMX
1064
+ � X
1065
+ Xref
1066
+ ����� .
1067
+ By defining a = UXobs,Xref
1068
+ obs, b = VXobs,Xref
1069
+ obs, z = σ−1 ���PMX
1070
+ � X
1071
+ Xref
1072
+ ���� , we obtain the result in Lemma
1073
+ 1.
1074
+ A.2
1075
+ Examples of piecewise linear functions
1076
+ Examples of piecewise linear components in a trained CNN with X ∈ R2 are provided as follows:
1077
+ 18
1078
+
1079
+ ReLU: Consider f is ReLU function. Then, K(f) = 4, ψk = (0 0)⊤ for any k ∈ [4],
1080
+ Ψf
1081
+ 1 =
1082
+
1083
+ �0
1084
+ 0
1085
+ 0
1086
+ 0
1087
+
1088
+ � , Pf
1089
+ 1 =
1090
+
1091
+
1092
+ �X : X1 < 0,
1093
+ X2 < 0
1094
+
1095
+
1096
+ � ,
1097
+ Ψf
1098
+ 2 =
1099
+
1100
+ �0
1101
+ 0
1102
+ 0
1103
+ 1
1104
+
1105
+ � , Pf
1106
+ 2 =
1107
+
1108
+
1109
+ �X : X1 < 0,
1110
+ X2 ≥ 0
1111
+
1112
+
1113
+ � ,
1114
+ Ψf
1115
+ 3 =
1116
+
1117
+ �1
1118
+ 0
1119
+ 0
1120
+ 0
1121
+
1122
+ � , Pf
1123
+ 3 =
1124
+
1125
+
1126
+ �X : X1 ≥ 0,
1127
+ X2 < 0
1128
+
1129
+
1130
+ � ,
1131
+ Ψf
1132
+ 4 =
1133
+
1134
+ �1
1135
+ 0
1136
+ 0
1137
+ 1
1138
+
1139
+ � , Pf
1140
+ 4 =
1141
+
1142
+
1143
+ �X : X1 ≥ 0,
1144
+ X2 ≥ 0
1145
+
1146
+
1147
+ � .
1148
+ This can be similarly extended to the case of Leaky ReLU.
1149
+ Max-pooling: Consider f(X) = max{X1, X2}. Then, it is represented as a piecewise linear function
1150
+ with K(f) = 2, ψk = (0) for any k ∈ [2],
1151
+ Ψf
1152
+ 1 =
1153
+
1154
+ 1
1155
+ 0
1156
+
1157
+ , Pf
1158
+ 1 = {X : X1 ≥ X2} ,
1159
+ Ψf
1160
+ 2 =
1161
+
1162
+ 0
1163
+ 1
1164
+
1165
+ , Pf
1166
+ 2 = {X : X1 < X2} .
1167
+ Convolution and matrix-vector multiplication: In a neural network, the multiplication results between
1168
+ the weight matrix and the output of the previous layer and its summation with the bias vector is a
1169
+ linear function. In a CNN, the convolution operation is obviously a linear function.
1170
+ Upsampling: Consider f is the upsampling operation on X ∈ R2, then it can be represented as a
1171
+ piecewise linear function with K(f) = 1, ψ1 = (0 0 0 0)⊤,
1172
+ Ψf
1173
+ 1 =
1174
+
1175
+ �1
1176
+ 1
1177
+ 0
1178
+ 0
1179
+ 0
1180
+ 0
1181
+ 1
1182
+ 1
1183
+
1184
+
1185
+
1186
+ ,
1187
+ Pf
1188
+ 1 = R2.
1189
+ Sigmoid and hyperbolic tangent: If there is any specific demand to use non-piecewise linear activation
1190
+ functions, we can apply a piecewise-linear approximation approach to these functions.
1191
+ A.3
1192
+ Proof of Lemma 2
1193
+ At f1, given a a real value z, the input is βf0 + γf0z = a1:n + b1:nz. By checking the value of this
1194
+ input, we can easily obtain the polytope
1195
+ {∆f1
1196
+ k1(βf0 + γf0z) ≤ δf1
1197
+ k1},
1198
+ k1 ∈ [K(f1)],
1199
+ that βf0 + γf0z belongs to. Based on the obtained polytope, we can calculate the interval [Lf1
1200
+ k1, U f1
1201
+ k1 ],
1202
+ Lf1
1203
+ k1 =
1204
+ max
1205
+ j:(∆f1
1206
+ k1γf0)j<0
1207
+ (δf1
1208
+ k1)j − (∆f1
1209
+ k1βf0)j
1210
+ (∆f1
1211
+ k1γf0)j
1212
+ and
1213
+ U f1
1214
+ k1 =
1215
+ min
1216
+ j:(∆f1
1217
+ k1γf0)j>0
1218
+ (δf1
1219
+ k1)j − (∆f1
1220
+ k1βf0)j
1221
+ (∆f1
1222
+ k1γf0)j
1223
+ .
1224
+ Moreover, based on the obtained polytope, we can easily obtain Ψf1
1225
+ k1 and ψf1
1226
+ k1, k1 ∈ [K(f1)]. Therefore,
1227
+ the output of the first layer at z can be defined as
1228
+ f1(z) = Ψf1
1229
+ k1(βf0 + γf0z) + ψf1
1230
+ k1
1231
+ = βf1 + γf1z,
1232
+ 19
1233
+
1234
+ where βf1 = Ψf1
1235
+ k1βf0 + ψf1
1236
+ k1 and γf1 = Ψf1
1237
+ k1γf0. Next, we input βf1, γf1 to f2.
1238
+ At the 2nd layer, similarly, the input is βf1 + γf1z. By checking the value of this input, we can
1239
+ easily obtain the polytope
1240
+ {∆f2
1241
+ k2(βf1 + γf1z) ≤ δf2
1242
+ k2},
1243
+ k2 ∈ [K(f2)],
1244
+ that βf1 + γf1z belongs to. Based on the obtained polytope, we can calculate the interval [Lf2
1245
+ k2, U f2
1246
+ k2 ],
1247
+ Lf2
1248
+ k2 =
1249
+ max
1250
+ j:(∆f2
1251
+ k2γf1)j<0
1252
+ (δf2
1253
+ k2)j − (∆f2
1254
+ k2βf1)j
1255
+ (∆f2
1256
+ k2γf1)j
1257
+ and
1258
+ U f2
1259
+ k2 =
1260
+ min
1261
+ j:(∆f2
1262
+ k2γf1)j>0
1263
+ (δf2
1264
+ k2)j − (∆f2
1265
+ k2βf1)j
1266
+ (∆f2
1267
+ k2γf1)j
1268
+ .
1269
+ Moreover, based on the obtained polytope, we can easily obtain Ψf2
1270
+ k2 and ψf2
1271
+ k2, k2 ∈ [K(f2)]. Therefore,
1272
+ the output of the first layer at z can be defined as
1273
+ f2(z) = Ψf2
1274
+ k2(βf1 + γf1z) + ψf2
1275
+ k2
1276
+ = βf2 + γf2z,
1277
+ where βf2 = Ψf2
1278
+ k2βf1 + ψf2
1279
+ k2 and γf2 = Ψf2
1280
+ k2γf1.
1281
+ A.4
1282
+ Experimental details.
1283
+ Methods for comparison.
1284
+ We compared our proposed method with the following approaches:
1285
+ • Naive: the classical z-test is used to calculate the naive p-value.
1286
+ • Bonferroni: the number of all possible hypotheses are considered to account for the selection
1287
+ bias. The p-value is computed by pbonferroni = min(1, pnaive ∗ 2n)
1288
+ • Over-conditioning (OC): additionally conditioning on the observed activeness and inactiveness
1289
+ of all the nodes. The limitation of this method is its low statistical power due to over-conditioning.
1290
+ Network structure.
1291
+ In all the experiments, we used the network structure shown in Fig. 8.
1292
+ Experimental setting on brain image dataset.
1293
+ We examine the brain image dataset extracted
1294
+ from the dataset used in Buda et al. [2019], which includes 941 images without tumors (C1) and 939
1295
+ images with tumors (C2). We selected 50 images from C1 as reference images. We used 841 images
1296
+ from C1 and 889 images from C2 for DNN training. The remaining images from C1 and C2 are used
1297
+ for demonstrating the advantages of the proposed selective p-value.
1298
+ More results on brain image dataset.
1299
+ Additional results are shown in Figs. 11, 12, 9 and 10
1300
+ 20
1301
+
1302
+ Conv
1303
+ MaxPooling
1304
+ GAP
1305
+ UpSampling
1306
+ Image
1307
+ Saliency Map
1308
+ Prediction
1309
+ FC
1310
+ Weight
1311
+ ( 𝑛, 𝑛, 1)
1312
+ ( 𝑛, 𝑛, 4)
1313
+ ( 𝑛/2, 𝑛/2,4)
1314
+ (4)
1315
+ (1)
1316
+ ( 𝑛, 𝑛, 4)
1317
+ ( 𝑛/2, 𝑛/2,4)
1318
+ CAM
1319
+ ( 𝑛, 𝑛, 4)
1320
+ ( 𝑛, 𝑛, 4)
1321
+ Figure 8: Network structure.
1322
+ 21
1323
+
1324
+ Input Image
1325
+ Saliency Map
1326
+ Salient Region
1327
+ Reference Image
1328
+ Reference Region
1329
+ (a) pnaive = 0.01, pselective = 0.47
1330
+ Figure 9: Inference on salient regions for images without tumor (mean null test).
1331
+ Input Image
1332
+ Saliency Map
1333
+ Salient Region
1334
+ Reference Image
1335
+ Reference Region
1336
+ (a) pnaive = 0.00, pselective = 2.82 × 10−4
1337
+ Figure 10: Inference on salient regions for images where there exists a tumor (mean null test).
1338
+ Input Image
1339
+ Saliency Map
1340
+ Salient Region
1341
+ Reference Image
1342
+ Reference Region
1343
+ (a) pnaive = 3.00 × 10−4, pselective = 0.29
1344
+ Figure 11: Inference on salient regions for images without tumor (global null test).
1345
+ Input Image
1346
+ Saliency Map
1347
+ Salient Region
1348
+ Reference Image
1349
+ Reference Region
1350
+ (a) pnaive = 0.00, pselective = 2.66 × 10−20
1351
+ Figure 12: Inference on salient regions for images where there exists a tumor (global null test).
1352
+ 22
1353
+
INE0T4oBgHgl3EQfhwHS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JtFLT4oBgHgl3EQfKS8v/content/tmp_files/2301.12007v1.pdf.txt ADDED
@@ -0,0 +1,3078 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.12007v1 [math.OC] 27 Jan 2023
2
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC
3
+ OPTIMIZATION PROBLEMS
4
+ POUYA SAMPOURMAHANI∗, MOHAMMADHOSSEIN MOHAMMADISIAHROUDI, TAM ´AS TERLAKY
5
+ Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA, 18015
6
+ Abstract. Second-order conic optimization (SOCO) can be considered as a special case of semidefinite optimiza-
7
+ tion (SDO). In the literature it has been advised that a SOCO problem can be embedded in an SDO problem using
8
+ the arrow-head matrix transformation. However, a primal-dual solution pair cannot be mapped simultaneously
9
+ using the arrow-head transformation as we might lose complementarity and duality in some cases. To address this
10
+ issue, we investigate the relationship between SOCO problems, and their SDO counterpart. Through derivation of
11
+ standard semidefinite representations of SOCO problems, we introduce admissible mappings. We show that the
12
+ proposed mappings preserve both feasibility and optimality. Further, we discuss how the optimal partition of a
13
+ SOCO problem maps to the optimal partition of its SDO counterpart.
14
+ Keywords. Second-order conic Optimization; Semidefinite Optimization; Semidefinite Representation; Mapping;
15
+ Optimal Partition.
16
+ 2020 Mathematics Subject Classification. 90C25, 90C22, 90C99.
17
+ 1. INTRODUCTION
18
+ In the hierarchy of convex optimization problems, second-order conic optimization (SOCO)
19
+ problems can be seen as a special case of semidefinite optimization (SDO) problems. SOCO
20
+ problems minimize a linear function over the intersection of an affine space with the Cartesian
21
+ product of second-order cones, also known as Lorentz cones. An SDO problem consists of
22
+ minimizing a linear objective function over the intersection of the cone of positive semidefinite
23
+ matrices with an affine space. SDO encompasses other subclasses of conic optimization prob-
24
+ lems namely linear optimization (LO), and SOCO, in the hierarchy. This means that each one
25
+ can be represented as a special case of SDO [1].
26
+ In this paper, we focus on the relationship of SOCO and SDO. We investigate their relation-
27
+ ship in order to gain theoretical insight and realize how these problems get mapped to each
28
+ other. Only a few papers [9, 11] were devoted to study this relationship from a theoretical point
29
+ of view. Sim and Zhao [9], in particular, studied the relationship between a SOCO problem
30
+ and its counterpart SDO problem. They provided a mapping based on the direct correspon-
31
+ dence between the dual problems of SOCO and SDO. Their SDO representation is defined on
32
+ the product of some cones of positive semidefinite matrices, which is a special case of standard
33
+ ∗Corresponding author.
34
+ E-mail address: [email protected] (P. Sampourmahani), [email protected] (M. Mohammadisiahroudi),
35
+ [email protected] (T. Terlaky).
36
+ Received xx, x, xxxx; Accepted xx, x, xxxx.
37
+ ©2023 Communications in Optimization Theory
38
+ 1
39
+
40
+ 2
41
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
42
+ SDO and needs further analysis. In this paper, we extend their analysis by considering the actual
43
+ standard case which returns an SDO representation through a large positive semidefinite cone.
44
+ Furthermore, we propose a framework that allows full description of the point-to-set map
45
+ from SOCO to its SDO counterpart. Then, we analyze how the optimal partition of a SOCO
46
+ problem is mapped to that of SDO, and vice versa. This is important in understanding the
47
+ relationship between these two problems as we are mapping between an index-based partition
48
+ and a subspace-based partition.
49
+ Throughout this paper, the following notation is used. The Lorentz cone of dimension ni
50
+ is denoted by L ni, and Rn denotes the n-dimensional Euclidean space. Superscripts are used
51
+ to represent cone-related information, and subscripts are used for matrix and vector entries.
52
+ For a given matrix A, Ai j represents the (i, j)-th entry, while Ai denotes the i-th matrix. The
53
+ notation (.;.;...;.) denotes the concatenation of the column vectors. The set of all p×q matrices
54
+ with real entries is denoted by Rp×q. For a symmetric matrix X, X ⪰ 0 (X ≻ 0) means X is
55
+ positive semidefinite (positive definite). Furthermore, the trace operator is denoted by Tr(.).
56
+ The remaining notations will be introduced at appropriate places.
57
+ This paper is structured as follows. Section 2 reviews the preliminaries required for this pa-
58
+ per. Section 3 studies the relationship between SOCO and SDO relying on the correspondence
59
+ of dual problems. Section 4 takes the other direction and proposes mappings focusing on corre-
60
+ spondence of primal problems as the starting point. Section 5 analyzes how the optimal partition
61
+ of SOCO maps to that of it’s SDO counterpart. Section 6 concludes the paper, summarizing our
62
+ results.
63
+ 2. PRELIMINARIES
64
+ Let L ni denote the Lorentz cone of dimension ni, and L n = L n1 ×L n2 ×...×L nr, where
65
+ n = ∑r
66
+ i=1 ni. Then, the primal and dual SOCO problems are defined as follows
67
+ z∗
68
+ PSOCO := min (c1)Tx1 +...+(cr)Txr
69
+ s.t. A1x1 +...+Arxr = b,
70
+ xi ∈ L ni,
71
+ for i = 1,...,r,
72
+ (PSOCO)
73
+ z∗
74
+ DSOCO := max bTy
75
+ s.t. (Ai)Ty+si = ci,
76
+ for i = 1,...,r,
77
+ si ∈ L ni,
78
+ for i = 1,...,r,
79
+ (DSOCO)
80
+ where ci ∈ Rni, Ai ∈ Rm×ni, b ∈ Rm. We define the feasible sets of the primal-dual problems as
81
+ follows,
82
+ FPSOCO = {(x1;x2;...;xr) ∈ L n : A1x1 +...+Arxr = b},
83
+ FDSOCO = {(y;s1;s2;...;sr) ∈ Rm ×L n : (Ai)Ty+si = ci for i = 1,...,r},
84
+ and the sets of optimal solutions as
85
+ P∗
86
+ SOCO = {x∗ = (x1;x2;...;xr) ∈ FPSOCO : cTx∗ = z∗
87
+ PSOCO},
88
+ D∗
89
+ SOCO = {(y∗,s∗) = (y;s1;s2;...;sr) ∈ FDSOCO : bTy∗ = z∗
90
+ DSOCO},
91
+ respectively. An optimal solution of SOCO, if there exists any, is denoted by (x∗;y∗;s∗).
92
+
93
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
94
+ 3
95
+ Let Arw(·) denote the arrow-head (Lorentz) transformation [8, 10], with the structure of
96
+ Arw(xi) :=
97
+ � xi
98
+ 1
99
+ (xi
100
+ 2:ni)T
101
+ xi
102
+ 2:ni
103
+ xi
104
+ 1Ini−1
105
+
106
+ ,
107
+ where (xi
108
+ 2:ni)T denotes the vector (xi
109
+ 2,...,xi
110
+ ni). Then, the Jordan product is defined as
111
+ xi ◦si = Arw(xi)si = Arw(si)xi =
112
+
113
+ (xi)Tsi
114
+ xi
115
+ 1si
116
+ 2:ni +si
117
+ 1xi
118
+ 2:ni
119
+
120
+ ,
121
+ i = 1,...,r.
122
+ Any feasible solutions satisfying x◦s = 0 is called complementary. Here, we have
123
+ x◦s := (x1 ◦s1,x2 ◦s2,...,xr ◦sr).
124
+ Feasible solution are complementary if and only if they are optimal with zero duality gap.
125
+ Definition 2.1. An optimal solution (x∗;y∗;s∗) ∈ P∗
126
+ SOCO × D∗
127
+ SOCO is called maximally com-
128
+ plementary if x∗ ∈ ri(P∗
129
+ SOCO) and (y∗;s∗) ∈ ri(D∗
130
+ SOCO). Further, (x∗;y∗;s∗) is called strictly
131
+ complementary if x∗ +s∗ ∈ int(L n).
132
+ Next, we define the primal and dual SDO problems.
133
+ z∗
134
+ PSDO := min Tr(CX)
135
+ s.t. Tr(AiX) = bi
136
+ for all i = 1,...,m,
137
+ X ⪰ 0,
138
+ (PSDO)
139
+ z∗
140
+ PSDO := max bTy
141
+ s.t.
142
+ m
143
+
144
+ i=1
145
+ yiAi +S = C,
146
+ S ⪰ 0,
147
+ (DSDO)
148
+ where X,S,C, and Ai for i = 1,...,m are n×n symmetric matrices, and b,y ∈ Rm. We define
149
+ the feasible sets of SDO problems as
150
+ FPSDO = {X ∈ Sn : Tr(AiX) = bi,i = 1,...,m,X ⪰ 0},
151
+ FDSDO = {(y,S) ∈ Rm ×Sn :
152
+ m
153
+
154
+ i=1
155
+ yiAi +S = C,S ⪰ 0},
156
+ where Sn denotes the set of n ×n symmetric matrices. The sets of optimal solutions for a pair
157
+ of SDO problems are
158
+ P∗
159
+ SDO = {X∗ ∈ FPSDO : Tr(CX∗) = z∗
160
+ PSDO},
161
+ D∗
162
+ SDO = {(y∗,S∗) ∈ FDSDO : bTy∗ = z∗
163
+ DSDO}.
164
+ A feasible and an optimal solution of SDO are denoted as (X,y,S), and (X∗,y∗,S∗), respectively.
165
+ Any feasible solution (X,y,S) satisfying XS = 0 is called complementary. Similar to SOCO, a
166
+ feasible solution is optimal and yields zero duality gap if and only if it is complementary.
167
+ Definition 2.2. A primal-dual optimal solution (X∗,y∗,S∗) ∈ P∗
168
+ SDO × D∗
169
+ SDO is called maxi-
170
+ mally complementary if X∗ ∈ ri(P∗
171
+ SDO) and (y∗,S∗) ∈ ri(D∗
172
+ SDO). A maximally complementary
173
+ optimal solution (X∗,y∗,S∗) is called strictly complementary if X∗ +S∗ ≻ 0.
174
+
175
+ 4
176
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
177
+ Next, we define the optimal partitions of SOCO and SDO. The notion of the optimal partition
178
+ of LO can be extended to SOCO [8]. Even though a SOCO problem can be embedded in SDO,
179
+ the optimal partition in SOCO may be more nuanced when it is defined and analyzed directly
180
+ in the SOCO setting. In SOCO, the index set {1,...,r} of the second-order cones is partitioned
181
+ into four subsets
182
+ ¯
183
+ B,
184
+ ¯
185
+ N , ¯
186
+ R, and
187
+ ¯
188
+ T , where
189
+ ¯
190
+ T is further partitioned to
191
+ ¯
192
+ T := ( ¯T1, ¯T2, ¯T3) as
193
+ follows,
194
+ ¯
195
+ B := { i | xi
196
+ 1 > ||xi
197
+ 2:ni||2, for some x ∈ P∗
198
+ SOCO},
199
+ ¯
200
+ N := { i | si
201
+ 1 > ||si
202
+ 2:ni||2, for some s ∈ D∗
203
+ SOCO},
204
+ ¯
205
+ R := { i | xi
206
+ 1 = ||xi
207
+ 2:ni||2 > 0,si
208
+ 1 = ||si
209
+ 2:ni||2 > 0, for some (x;y;s) ∈ P∗
210
+ SOCO ×D∗
211
+ SOCO},
212
+ ¯
213
+ T1 := { i | xi = si = 0, for all (x;y;s) ∈ P∗
214
+ SOCO ×D∗
215
+ SOCO},
216
+ ¯
217
+ T2 := { i | si = 0, for all (y;s) ∈ D∗
218
+ SOCO, and xi
219
+ 1 = ||xi
220
+ 2:ni||2 > 0, for some x ∈ P∗
221
+ SOCO},
222
+ ¯
223
+ T3 := { i | xi = 0, for all x ∈ P∗
224
+ SOCO, and si
225
+ 1 = ||si
226
+ 2:ni||2 > 0, for some (y;s) ∈ D∗
227
+ SOCO}.
228
+ It should be highlighted that, due to the convexity of the optimal set,
229
+ ¯
230
+ B,
231
+ ¯
232
+ N , ¯
233
+ R, and
234
+ ¯
235
+ T are
236
+ mutually disjoint and their union is the index set {1,...,r}. Therefore, it follows from the
237
+ complementarity condition that for all (˜x∗; ˜y∗; ˜s∗) ∈ P∗
238
+ SOCO ×D∗
239
+ SOCO, ˜xi = 0 for all i ∈
240
+ ¯
241
+ N , and
242
+ ˜si = 0 for all i ∈ ¯
243
+ B [8].
244
+ For SDO, let B := R(X∗) and N := R(S∗), where (X∗,y∗,S∗) is a maximally comple-
245
+ mentary optimal solution, meaning that we have R(X) ⊆ B and R(S) ⊆ N for all (X,y,S) ∈
246
+ P∗
247
+ SDO × D∗
248
+ SDO. By the complementarity condition, the subspaces B and N are orthogonal.
249
+ Moreover, let subspace T , be the orthogonal complement to B+N . The partition (B,N ,T )
250
+ of Rn is called the optimal partition of an SDO problem. We can represent X∗ and S∗ using
251
+ a common eigenvector basis, Q∗, as X∗ = Q∗Λ(X∗)(Q∗)T, and S∗ = Q∗Λ(S∗)(Q∗)T, where
252
+ Λ(X∗) and Λ(S∗) corresponds to the diagonal matrices containing the eigenvalues of X∗ and S∗,
253
+ respectively. Thus, we have R(X∗) = R(Q∗Λ(X∗)), and R(S∗) = R(Q∗Λ(S∗)). In particular,
254
+ the columns of Q∗ corresponding to the positive eigenvalues of X∗ and S∗ can be chosen as an
255
+ orthonormal basis for B and N , respectively [8].
256
+ Current literature [1, 2, 3, 4, 5, 7, 9, 8, 10] suggests that a SOCO problem can be embedded
257
+ in an SDO problem using the arrow-head matrix transformation,
258
+ Arw(xi) :=
259
+ � xi
260
+ 1
261
+ (xi
262
+ 2:ni)T
263
+ xi
264
+ 2:ni
265
+ xi
266
+ 1Ini−1
267
+
268
+ ⪰ 0 ⇔ xi ∈ L ni.
269
+ (2.1)
270
+ However, this transformation cannot be used to map both primal and dual solutions at the same
271
+ time. Upon using the arrow-head representation of vectors xi and si simultaneously, we might
272
+ lose duality and complementarity. The following example illustrates that we may lose comple-
273
+ mentarity.
274
+ Example 2.3. Let (x;y;s) be an optimal solution of SOCO and assume that there exist at least
275
+ one index i ∈ R. For all i ∈ R, we can represent a solution as
276
+ xi = ζ i
277
+
278
+
279
+ 1
280
+ xi
281
+ 2:ni
282
+ ||xi
283
+ 2:ni||2
284
+
285
+ ,
286
+ si = ξ i
287
+
288
+
289
+ 1
290
+ si
291
+ 2:ni
292
+ ||si
293
+ 2:ni||2
294
+
295
+ ,
296
+ xi
297
+ 2:ni
298
+ ||xi
299
+ 2:ni||2
300
+ = −
301
+ si
302
+ 2:ni
303
+ ||si
304
+ 2:ni||2
305
+ ,
306
+
307
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
308
+ 5
309
+ where ζ i = xi
310
+ 1 ≥ 0, ξ i = si
311
+ 1 ≥ 0, and for at least one (x∗;y∗;s∗) we have both ζ i,ξ i > 0. Without
312
+ loss of generality, and for the sake of simplicity, assume that ζ i = ξ i = 1. Moreover, let
313
+ uj =
314
+ xi
315
+ j
316
+ ||xi
317
+ 2:ni||2
318
+ = −
319
+ si
320
+ j
321
+ ||si
322
+ 2:ni||2
323
+ ,
324
+ j = 2,...,ni,
325
+ and u = (u2;...;uni). Then, using the arrow-head matrix transformation, we have
326
+ Xi = Arw(xi) =
327
+ �1
328
+ uT
329
+ u
330
+ Ini−1
331
+
332
+ ,
333
+ Si = Arw(si) =
334
+ � 1
335
+ −uT
336
+ −u
337
+ Ini−1
338
+
339
+ .
340
+ While xi ◦si = 0, this transformation does not preserve complementarity as we have
341
+ XiSi =
342
+ �1
343
+ uT
344
+ u
345
+ Ini−1
346
+ �� 1
347
+ −uT
348
+ −u
349
+ Ini−1
350
+
351
+ =
352
+
353
+ 0
354
+ [0]1×(n−1)
355
+ [0](n−1)×1
356
+ Ini−1 −uuT
357
+
358
+ ̸= 0.
359
+ Example 2.3 shows that the arrow-head matrix transformation is not sufficient to represent a
360
+ primal-dual pair of SOCO problems as an SDO problem. Thus, it seems worth exploring the
361
+ actual relationship between an instance of SOCO and it’s SDO counterpart.
362
+ To address this issue, Sim and Zhao [9] started from a SOCO dual problem and exploited the
363
+ arrowhead representation (2.1) of the dual SOCO problem, to obtain the SDO dual as follows,
364
+ max bTy
365
+ s.t.
366
+ m
367
+
368
+ i=1
369
+ yiArw(aj
370
+ (i))+S j = Arw(cj) for all j = 1,...,r,
371
+ S j ⪰ 0 for all j = 1,...,r,
372
+ (DSZ)
373
+ where aj
374
+ (i) denotes ith row of the matrix A corresponding to Lorentz cone j. Observe that S j as a
375
+ linear combination of arrow-head matrices is an arrow-head matrix, too. Using this dual model,
376
+ we get the SDO primal problem as
377
+ min
378
+ r
379
+
380
+ j=1
381
+ Tr(Arw(cj)X j)
382
+ s.t.
383
+ r
384
+
385
+ j=1
386
+ Tr(Arw(aj
387
+ (i))X j) = bi for all i = 1,...,m,
388
+ X j ⪰ 0 for all j = 1,...,r.
389
+ (PSZ)
390
+ They showed that X j = Arw(xj) is not a feasible solution for the SDO primal problem (PSZ).
391
+ In fact, primal feasible solutions of (PSZ) are fully dense, and do not have an arrow-head
392
+ structure. To fix this issue, they proposed the mapping
393
+ MR(xj) =
394
+ � 1
395
+ 4θ j
396
+ 1
397
+ 2(xj
398
+ 2:n)T
399
+ 1
400
+ 2xj
401
+ 2:n
402
+ x j
403
+ 1−∥x j
404
+ 2:n∥
405
+ 2(n−1) I + x j
406
+ 2:n(x j
407
+ 2:n)T
408
+ θ j
409
+
410
+ ,
411
+ (2.2)
412
+ where θ j = xj
413
+ 1 +∥x j
414
+ 2:n∥+
415
+
416
+ (xj
417
+ 1 +∥xj
418
+ 2:n∥)2 −4∥xj
419
+ 2:n∥2.
420
+ In our study, a key concept is the notion of admissible map which is defined next.
421
+
422
+ 6
423
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
424
+ Definition 2.4. A mapping M is called admissible if it preserves feasibility and objective func-
425
+ tion value, i.e.
426
+ (x,y,s) ∈ FPSOCO ×FDSOCO ⇒ M (x,y,s) ∈ FPSDO ×FDSDO,
427
+ (X,y,S) ∈ FPSDO ×FDSDO ⇒ M −1(X,y,S) ∈ FPSOCO ×FDSOCO,
428
+ cTx = Tr(CX), bTy = bTy.
429
+ The mapping of Sim and Zhao [9] is admissible, and they proved that it maps a solution from
430
+ the boundary (interior) of the Lorentz cone to a solution on the boundary (interior) of the cone
431
+ of semidefinite matrices. In this paper, we seek to extend their approach and explore mappings
432
+ that satisfy the definition of admissible mapping. Although the mapping of [9] is a point to
433
+ point map, the image of (x,y,s) might be a point or a set. In addition, the SDO representation
434
+ of SOCO of [9], (PSZ) and (DSZ), is defined using the product of multiple cones of positive
435
+ semidefinite matrices, but we use a more general approach to get an SDO representation in
436
+ standard form. The major goal of this paper is clarifying more the relationship between SOCO
437
+ and the related SDO by developing different mappings and exploring the relationship between
438
+ the optimal partitions of these problems.
439
+ Without loss of generality, in Sections 3 and 4, we first present the results in case of a single
440
+ second-order cone, and then we generalize the results to the multiple cone case. To this end, we
441
+ consider the following primal and dual problems,
442
+ z∗
443
+ P1
444
+ SOCO = min
445
+
446
+ cTx : Ax = b, x ∈ L n�
447
+ ,
448
+ (P1
449
+ SOCO)
450
+ z∗
451
+ D1
452
+ SOCO = max
453
+
454
+ bTy : ATy+s = c, (y,s) ∈ Rm ×L n�
455
+ ,
456
+ (D1
457
+ SOCO)
458
+ with feasible sets FP1
459
+ SOCO = {x ∈ L n : Ax = b} and FD1
460
+ SOCO = {(y,s) ∈ Rm×L n : ATy+s = c},
461
+ and optimal solution sets P1
462
+ SOCO
463
+ ∗ = {x ∈ FP1
464
+ SOCO : cTx = z���
465
+ P1
466
+ SOCO} and D1
467
+ SOCO
468
+ ∗ = {(y,s) ∈
469
+ FD1
470
+ SOCO : bTy = z∗
471
+ D1
472
+ SOCO}, respectively.
473
+ 3. FROM SOCO TO SDO: STARTING FROM THE DUAL SIDE
474
+ One can derive the SDO counterpart of a SOCO problem starting with either the primal or
475
+ dual SOCO problem. In this section, similar to [9], we initiate the derivation from the dual
476
+ side of SOCO. Thus, as mentioned earlier, we preserve the arrow-head structure of the matrix S
477
+ corresponding to dual solution s.
478
+ 3.1. Derivation and Solution Mapping. We utilize the arrow-head transformation to the vec-
479
+ tor c and the rows of matrix A,
480
+ ⃗C = Arw(c),
481
+ ⃗Ai = Arw(a(i)),
482
+ i = 1,2,...,m.
483
+ Since in the SOCO dual s = c−ATy, by applying the arrow-head structure to A and c, we have
484
+ that S = ⃗C −∑m
485
+ i=1 yi⃗Ai has the arrow-head structure, as it is a linear combination of arrow-head
486
+ matrices. Therefore, the SDO counterpart of the SOCO dual problem (D1
487
+ SOCO) is as follows,
488
+ z∗
489
+ DD
490
+ SDO := max
491
+
492
+ bTy :
493
+ m
494
+
495
+ i=1
496
+ yi⃗Ai +S = ⃗C, S ⪰ 0
497
+
498
+ ,
499
+ (DD
500
+ SDO)
501
+
502
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
503
+ 7
504
+ which has the following dual,
505
+ z∗
506
+ PD
507
+ SDO := min
508
+
509
+ Tr(⃗CX) : Tr(⃗AiX) = bi,
510
+ i = 1,...,m,
511
+ X ⪰ 0
512
+
513
+ ,
514
+ (PD
515
+ SDO)
516
+ as it’s SDO primal problem. For the SDO problems (PD
517
+ SDO) and (DD
518
+ SDO), let
519
+ FDD
520
+ SDO = {(y,S) ∈ Rm ×Sn :
521
+ m
522
+
523
+ i=1
524
+ yi⃗Ai +S = ⃗C,S ⪰ 0},
525
+ FPD
526
+ SDO = {X ∈ Sn : Tr(⃗AiX) = bi,i = 1,...,m,X ⪰ 0}
527
+ represent the feasible sets, and
528
+ DD
529
+ SDO
530
+ ∗ = {(y,S) ∈ FDD
531
+ SDO : bTy = z∗
532
+ DD
533
+ SDO},
534
+ PD
535
+ SDO
536
+ ∗ = {X ∈ FPD
537
+ SDO : Tr(⃗CX) = z∗
538
+ PD
539
+ SDO},
540
+ represent the optimal solution sets, respectively. The following theorem provides a point to set
541
+ admissible mapping, see Definition 2.4 for r = 1, based on the (D1
542
+ SOCO) and (P1
543
+ SOCO), and their
544
+ representations (DD
545
+ SDO), (PD
546
+ SDO).
547
+ Theorem 3.1. Consider the SOCO problem pairs (P1
548
+ SOCO) and (D1
549
+ SOCO) with (x,y,s) ∈ FP1
550
+ SOCO ×
551
+ FD1
552
+ SOCO, and the SDO problem pairs (PD
553
+ SDO) and (DD
554
+ SDO) with (X,y,S) ∈ FPD
555
+ SDO × FDD
556
+ SDO.
557
+ Then, mapping (X,y,S) = M (x,y,s) with
558
+ S = Arw(s),
559
+ y = y,
560
+ X =
561
+
562
+ 
563
+ X11
564
+ X12
565
+ ...
566
+ X1n
567
+ X12
568
+ X22
569
+ ...
570
+ X2n
571
+ ...
572
+ ...
573
+ ...
574
+ ...
575
+ X1n
576
+ X2n
577
+ ...
578
+ Xnn
579
+
580
+  ⪰ 0 with
581
+
582
+ 
583
+ ∑n
584
+ i=1Xii
585
+ X12
586
+ ...
587
+ X1n
588
+
589
+  =
590
+
591
+ 
592
+ x1
593
+ x2
594
+ 2...
595
+ xn
596
+ 2
597
+
598
+ ,
599
+ is a point-to-set admissible mapping. In addition, the inverse mapping denoted by (x,y,s) =
600
+ M −1(X,y,S), with
601
+ s = Arw−1(S),
602
+ y = y,
603
+ x =
604
+
605
+ ∑n
606
+ i=1 Xii,2X12,...,2X1n
607
+ �T ,
608
+ is a point-to-point admissible mapping.
609
+ Proof. The proof of this theorem is presented in Appendix A.
610
+
611
+ The following corollaries restate that the provided mapping preserves the objective function
612
+ value.
613
+ Corollary 3.2. We have z∗
614
+ P1
615
+ SOCO = z∗
616
+ PD
617
+ SDO, and z∗
618
+ D1
619
+ SOCO = z∗
620
+ DD
621
+ SDO.
622
+ Corollary 3.3. A feasible solution (x,y,s) ∈ FP1
623
+ SOCO ×FD1
624
+ SOCO is optimal for a pair of SOCO
625
+ problems (P1
626
+ SOCO), and (D1
627
+ SOCO) with optimal value (z∗
628
+ P,z∗
629
+ D) if and only if the mapped solution
630
+ (X,y,S) is optimal for the SDO problems (PD
631
+ SDO), and (DD
632
+ SDO) with optimal value (z∗
633
+ P,z∗
634
+ D) .
635
+ Corollary 3.4. A feasible solution (x,y,s) ∈ FP1
636
+ SOCO ×FD1
637
+ SOCO is optimal for a pair of SOCO
638
+ problems (P1
639
+ SOCO), and (D1
640
+ SOCO) with zero duality gap if and only if the mapped solution
641
+ (X,y,S) is optimal for the SDO problems (PD
642
+ SDO), and (DD
643
+ SDO) with zero duality gap, i.e.,
644
+ x◦s = 0 ⇐⇒ Tr(XS) = 0
645
+
646
+ 8
647
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
648
+ Note that these results are valid regardless of duality (strong / weak with gap), status of the
649
+ SOCO problems. Furthermore, observe that one can propose different admissible mappings
650
+ that satisfies the conditions presented in Theorem 3.1. In Section 3.2, we propose a rank-one
651
+ mapping, which is the simplest option. In Section 3.3, we show that when x ∈ int(L n), full
652
+ rank mappings can also be obtained, which map a solution in the interior of SOCO to a solution
653
+ in the interior of the SDO cone.
654
+ 3.2. Rank-one Mapping. In this section, we construct a rank-one matrix X for vector x that
655
+ satisfies the conditions in Theorem 3.1. Thus, we introduce the vector β ∈ Rn, and define the
656
+ rank-one matrix.
657
+ X = ββ T,
658
+ with
659
+ n
660
+
661
+ i=1
662
+ β 2
663
+ i = x1,
664
+ β1β j = xj
665
+ 2 for all j = 2,...,n.
666
+ We need to solve this n-variable-n-equation system. The solution of this system is β = 0 if
667
+ x = 0, and if x ̸= 0 then
668
+ β =
669
+ 1
670
+
671
+ 2(x1 +δ)
672
+ (x1 +δ,x2,...,xn)T,
673
+ where δ =
674
+
675
+ (x1)2 −||x2:n||2. It is easy to see that if we are on the boundary of the second-
676
+ order cone, then δ = 0. Otherwise, we have δ ̸= 0. Using this vector, we can construct a
677
+ suitable matrix X.
678
+ Theorem 3.5. Consider the rank-one mapping with
679
+ X =
680
+
681
+ [0]n×n
682
+ if x = (0,0,...,0),
683
+ DMR1(x)
684
+ otherwise.
685
+ (3.1)
686
+ where
687
+ DMR1(x) = ββ T =
688
+
689
+ 
690
+ x1+δ
691
+ 2
692
+ x2
693
+ 2
694
+ ...
695
+ xn
696
+ 2
697
+ x2
698
+ 2
699
+ x2
700
+ 2
701
+ 2[x1+δ]
702
+ ...
703
+ x2xn
704
+ 2[x1+δ]
705
+ ...
706
+ ...
707
+ ...
708
+ ...
709
+ xn
710
+ 2
711
+ x2xn
712
+ 2[x1+δ]
713
+ ...
714
+ x2n
715
+ 2[x1+δ]
716
+
717
+ 
718
+ .
719
+ Then, (3.1) together with (y,S) = (y,Arw(s)) is a point-to-point admissible mapping.
720
+ Proof. The proof is straightforward as it is enough to show that matrix DMR1(x) satisfies the
721
+ conditions in Theorem 3.1.
722
+
723
+ 3.3. Higher Rank Mapping. In this section, we show that when a SOCO solution is in the
724
+ interior of the cone, i.e. x ∈ int(L n), then we can use a full rank mapping, i.e.
725
+ DMRn(x) =
726
+ n
727
+
728
+ i=1
729
+ β i(β i)T.
730
+ Theorem 3.6. There exist mappings DMR where rank(DMR(¯x)) = n for x ∈ int(L n).
731
+
732
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
733
+ 9
734
+ Proof. The proof of this theorem is presented in Appendix B.
735
+
736
+ One can easily modify Algorithm 1 (presented in proof of Theorem 3.6) to map a solution
737
+ x ∈ int(L n) to a matrix DMRk(x) with rank 1 ≤ k ≤ n. This means that the primal feasible set
738
+ of a SOCO can be mapped to different subsets of the SDO primal feasible region, e.g., rank-one
739
+ mapping maps the primal feasible set of a SOCO to a one-dimensional face of the SDO primal
740
+ feasible set.
741
+ Recall that Theorem 1 of [9] proposes the mapping
742
+ MR(x) =
743
+ � 1
744
+
745
+ 1
746
+ 2xT
747
+ 2:n
748
+ 1
749
+ 2x2:n
750
+ x1−∥x2:n∥
751
+ 2(n−1) I + x2:nxT
752
+ 2:n
753
+ θ
754
+
755
+ ,
756
+ where θ = x1 +∥x2:n∥+
757
+
758
+ (x1 +∥x2:n∥)2 −4∥x2:n∥2. They showed that this map is admissible.
759
+ Moreover, it has full rank when x1 > ∥x2:n∥, i.e. x ∈ int(L n), and it is a rank-one matrix when
760
+ x1 = ∥x2:n∥. This map also proves Theorem 3.6, while our proof follows a different approach.
761
+ In our approach, we can generate different mappings and explore the feasible set of SDO by
762
+ changing parameter ε in Algorithm 1. However, to prove that the set of all maps with different
763
+ rank produced by our approach can build the whole feasible set of the SDO representation is an
764
+ ongoing research.
765
+ Given the mapping of Sim and Zhao [9], consider the case in which the solution is on the
766
+ boundary of the second-order cone, i.e. x1 = ∥x2:n∥. Then, θ = 2x1, and
767
+ MR1(x) =
768
+ � 1
769
+ 2x1
770
+ 1
771
+ 2xT
772
+ 2:n
773
+ 1
774
+ 2x2:n
775
+ x2:nxT
776
+ 2:n
777
+ 2x1
778
+
779
+ .
780
+ We can see that this is exactly identical to the rank one mapping we presented in Theorem 3.5.
781
+ We can write it as
782
+ MR1(x) = ν1(ν1)T,
783
+ where
784
+ ν1 =
785
+ 1
786
+
787
+ θ
788
+ �1
789
+ 2θ,x2,...,xn
790
+ �T
791
+ .
792
+ In order to construct MR(x) as the sum of rank-one matrices, we define
793
+ ν j =
794
+
795
+ x1 −∥x2:n∥
796
+ 2(n−1)
797
+ ej
798
+ for j = 2,...,n,
799
+ where ej is a unit vector with 1 in element j. By this setting, we have
800
+ MR(x) =
801
+ n
802
+
803
+ j=1
804
+ ν j(ν j)T.
805
+ If the solution x of the SOCO primal problem is on the boundary of the cone, i.e. x1 = ∥x2:n∥,
806
+ then we get
807
+ ν1 =
808
+ 1
809
+ √2x1
810
+ (x1,x2,...,xn)T ,
811
+ ν j = 0,
812
+ for j = 2,...,n.
813
+
814
+ 10
815
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
816
+ This results in the rank one mapping MR1(x). On the other hand, if the solution is in the interior
817
+ of the cone, i.e. x1 > ∥x2:n∥, then ν j ̸= 0 for j = 2,...,n, and we can construct the full rank
818
+ mapping MR(x). Note that one cannot take a combination of first k vectors ν j to construct a
819
+ rank-k mapping as it would not be admissible since it violates the conditions given in Theorem
820
+ 3.1, i.e. sum of diagonals will not be equal to x1. To overcome this issue and construct a rank-k
821
+ mapping, let N ⊆ {2,...,n} with |N | = k. One can take the following definition of ν j,
822
+ ν j =
823
+
824
+ x1 −∥x2:n∥
825
+ 2(k −1)
826
+ ej
827
+ for j ∈ N , and ν j = 0 for j /∈ N .
828
+ The resulting matrix MRk(x) has rank k, and one can easily see that it satisfies the conditions
829
+ of Theorem 3.1. Considering k = n, this choice of ν j results in identical mapping to MR(x).
830
+ Next theorem shows that we can have mappings with different ranks when we are mapping a
831
+ solution from interior of the Lorentz cone.
832
+ Theorem 3.7. Let ρ(x) = max{rank(M (x)) : M is admissible map}. We have
833
+ • ρ(x) = n if x ∈ int(L n).
834
+ • ρ(x) = 1 if x ∈ ∂(L n).
835
+ Proof. Proof of this theorem is similar to Theorem 1 of [9].
836
+
837
+ In the next section, we generalize our result for the case there are multiple Lorentz cones.
838
+ 3.4. Generalization to Multiple SOCs. In this section, we extend our rank-one mapping to
839
+ the case with multiple second-order cones. We can use similar conditions as in Theorem 3.1 to
840
+ extend our mapping to the case of multiple second-order cones. Although, instead of the “Arw”
841
+ operator, we need to introduce a new operator called “DArw” which constructs a block diagonal
842
+ matrix with arrow-head matrices of input vectors. First, we transform the objective coefficient
843
+ vectors and coefficient matrices into proper block-diagonal structure as
844
+ ˜C = DArw(c1,c2,...,cr) =
845
+
846
+ 
847
+ ⃗C1
848
+ ⃗C2
849
+ ...
850
+ ⃗Cr
851
+
852
+ ,
853
+ where ⃗Ci is the arrow-head matrix corresponding to vector ci for all i = 1,...,r. Moreover, we
854
+ define a similar block diagonal matrix
855
+ ˜Aj = DArw(A1
856
+ j,A2
857
+ j,...,Ar
858
+ j) =
859
+
860
+ 
861
+ ⃗A1
862
+ j
863
+ ⃗A2
864
+ j
865
+ ...
866
+ ⃗Ar
867
+ j
868
+
869
+ 
870
+ for all j = 1,...,m,
871
+ where Ai
872
+ j corresponds to the row j of matrix Ai for all i = 1,...,r. Now, the SDO representation
873
+ of the SOCO problem can be derived as (PSDO) and (DSDO). Compared to the SDO represen-
874
+ tation of [9], (PSZ) and (DSZ), our representation is a standard SDO over one cone of positive
875
+
876
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
877
+ 11
878
+ semidefinite matrices of dimension n×n. Given the introduced notations ˜C and ˜A, we have
879
+ z∗
880
+ P ˜D
881
+ SDO := min Tr( ˜C ˜X)
882
+ s.t. Tr( ˜Ai ˜X) = bi
883
+ for all i = 1,...,m,
884
+ ˜X ⪰ 0,
885
+ (P ˜D
886
+ SDO)
887
+ and the dual problem is
888
+ z∗
889
+ D ˜D
890
+ SDO := max bTy
891
+ s.t.
892
+ m
893
+
894
+ i=1
895
+ yi ˜Ai + ˜S = ˜C,
896
+ ˜S ⪰ 0.
897
+ (D ˜D
898
+ SDO)
899
+ Analogously, we can define the sets of feasible and optimal solutions for the problems (P ˜D
900
+ SDO)
901
+ and (D ˜D
902
+ SDO).
903
+ We can present the following theorem to specify admissible mappings for the general form.
904
+ Theorem 3.8. Consider the SOCO problem pairs (PSOCO) and (DSOCO) with
905
+ (x1;x2;...;xr;y;s1;s2;...;sr) ∈ FPSOCO ×FDSOCO,
906
+ and SDO problem pairs (P ˜D
907
+ SDO) and (D ˜D
908
+ SDO) with ( ˜X, ˜y, ˜S) ∈ FP ˜D
909
+ SDO × FD ˜D
910
+ SDO. Then, the fol-
911
+ lowing mapping, denoted by ( ˜X, ˜y, ˜S) = M (x1;x2;...;xr;y;s1;s2;...;sr), with
912
+ ˜S = DArw(s1;...;sr),
913
+ ˜y = y,
914
+ ˜X ⪰ 0
915
+ s.t.
916
+
917
+ 
918
+ ∑ui+ni
919
+ j=ui ˜Xj j
920
+ ˜Xui,ui+1
921
+ ...
922
+ ˜Xui,ui+ni
923
+
924
+  =
925
+
926
+ 
927
+ xi
928
+ 1
929
+ xi
930
+ 2
931
+ 2...
932
+ xin
933
+ 2
934
+
935
+ 
936
+ , for all i = 1,...,r
937
+ coupled with the inverse mapping denoted by (x1;x2;...;xr;y;s1;s2;...;sr) = M −1( ˜X, ˜y, ˜S) with
938
+ (s1;...;sr) = DArw−1( ˜S),
939
+ y = ˜y,
940
+ (x1;...;xr) =
941
+
942
+ 
943
+ ∑ui+ni
944
+ j=ui ˜Xj j
945
+ 2 ˜Xui,ui+1
946
+ ...
947
+ 2 ˜Xui,ui+ni
948
+
949
+ ,
950
+ where ui = 1+∑i−1
951
+ k=0 ni and n0 = 0, is an admissible mapping.
952
+ Proof. The proof of this theorem is analogous to that of Theorem 3.1.
953
+
954
+ Remark 3.9. Note that a solution of (P ˜D
955
+ SDO) is not necessarily block-diagonal.
956
+
957
+ 12
958
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
959
+ Using the conditions in Theorem 3.7, we can write
960
+ ˜S = DArw(s1,s2,...,sr) =
961
+
962
+ 
963
+ Arw(s1)
964
+ Arw(s2)
965
+ ...
966
+ Arw(sr)
967
+
968
+ ,
969
+ and,
970
+ ˜y = y.
971
+ We can define matrix ˜X using our rank one mapping with vector ˜β. Vector ˜β consists of n
972
+ elements partitioned into r sub-vectors each corresponds to the cones in the problem. Thus, we
973
+ have
974
+ ˜X = ˜β ˜β T,
975
+ where
976
+ ˜β = ((β 1)T,(β 2)T,...,(β r)T)T.
977
+ One can calculate vector ˜β in the closed form as follows,
978
+ β i =
979
+ 1
980
+
981
+ 2(xi
982
+ 1 +δ i)
983
+
984
+ xi
985
+ 1 +δ i,xi
986
+ 2,...,xi
987
+ ni
988
+
989
+ ,
990
+ where δ i =
991
+
992
+ (xi
993
+ 1)2 −||xi
994
+ 2:n||2. We can also have a separate rank-one mapping for each Lorentz
995
+ cone as ˜X = ∑r
996
+ i=1(β)i(β)T
997
+ i , where
998
+ (β j)i =
999
+
1000
+
1001
+
1002
+ 1
1003
+
1004
+ 2(xi
1005
+ 1+δ i)
1006
+
1007
+ xi
1008
+ 1 +δ i,xi
1009
+ 2,...,xi
1010
+ ni
1011
+
1012
+ if j = i,
1013
+ 0
1014
+ otherwise.
1015
+ In this case, ˜X is a block diagonal matrix with rank equal to r. If we choose (β j)i ∈ Rnj for
1016
+ j ∈ {1,...,r}/{i}, then ˜X = ∑r
1017
+ i=1(β)i(β)T
1018
+ i will be a positive semidefinite matrix, which is not
1019
+ necessarily block diagonal. Since all the input matrices are block diagonal, it is straightforward
1020
+ to check that the mapping will remain admissible. For any Lorentz cone i with xi
1021
+ 1 > ∥xi
1022
+ 2:n∥, the
1023
+ corresponding part of the matrix ˜X can have any rank from 1 to ni using higher rank mappings
1024
+ proposed in the previous section. For instance, if the solution x is in the interior of all Lorentz
1025
+ cones, i.e. xi
1026
+ 1 > ∥xi
1027
+ 2:n∥ for i = 1,...,r, then we can find ˜X = ∑r
1028
+ i=1∑nr
1029
+ k=1(β)k
1030
+ i (β)k
1031
+ i
1032
+ T whose rank is
1033
+ n×r. In this case, it is straightforward to produce mapping with arbitrary rank form 1 to n×r
1034
+ by using Algorithm 1 for filling diagonal blocks and fill other parts with arbitrary numbers.
1035
+ 4. FROM SOCO TO SDO: STARTING FROM THE PRIMAL SIDE
1036
+ In this section, we analyze the case when we start to reformulate the standard primal SOCO
1037
+ as an equivalent SDO problem, which requires more complex reformulation and was left un-
1038
+ touched by Sim and Zhao [9]. The purpose is to investigate the SOCO-SDO relationship starting
1039
+ from the primal side and answer the following questions.
1040
+ (1) What happens if we force matrix X to be arrow-head?
1041
+ (2) Does this derivation results in similar mappings between the SOCO problems and their
1042
+ SDO counterparts?
1043
+
1044
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
1045
+ 13
1046
+ 4.1. Derivation and Solution Mapping. Recall SOCO problems (P1
1047
+ SOCO) and (D1
1048
+ SOCO) and
1049
+ their corresponding feasible and optimal solution sets from Section 2. Recall that we have
1050
+ x ∈ L n if and only if X = Arw(x) ⪰ 0, thus starting from (P1
1051
+ SOCO) requires a different choice
1052
+ of ⃗C and ⃗Ai in order to properly represent the primal constraint of SOCO in an equivalent SDO
1053
+ reformulation. Thus, we define
1054
+ ⃗C = Arw(1
1055
+ nc1, 1
1056
+ 2c2,..., 1
1057
+ ncn),
1058
+ ⃗Ai = Arw(1
1059
+ nai1, 1
1060
+ 2ai2,..., 1
1061
+ 2ain),
1062
+ i = 1,2,...,m.
1063
+ which leads to preserving aT
1064
+ (i)x = Tr(⃗AiX) = bi, i = 1,...,m, where X = Arw(x). Using the just
1065
+ introduced arrow-head representations of c, a(i), and x, we write the following SDO problem.
1066
+ min
1067
+
1068
+ Tr(⃗CX) : Tr(⃗AiX) = bi,
1069
+ i = 1,...,m,
1070
+ X ⪰ 0
1071
+
1072
+ .
1073
+ However, in this SDO problem X is a semidefinite matrix without arrow-head structure. Thus, in
1074
+ order to represent (P1
1075
+ SOCO) using this SDO model, we need to enforce the arrow-head structure
1076
+ on matrix X. In other words, we need to translate the arrow-head structure requirement into
1077
+ linear constraints. Thus, we introduce symmetric matrices ˇAhl for 2 ≤ h < l ≤ n with (ˇAhl)hl =
1078
+ (ˇAhl)lh = 1 for 2 ≤ h < l ≤ n, and all other entries are zero. Moreover, we introduce matrix ˆAk,
1079
+ with (ˆAk)11 = 1,(ˆAk)kk = −1 for k = 2,...,n, and rest of the entries are zero. Therefore, we write
1080
+ the following model
1081
+ min Tr(⃗CX)
1082
+ s.t. Tr(⃗AiX) = bi,
1083
+ i = 1,...,m
1084
+ Tr(ˇAhlX) = 0,
1085
+ h = 2,...,n−1, h < l ≤ n
1086
+ Tr(ˆAkX) = 0,
1087
+ k = 2,...,n
1088
+ X ⪰ 0,
1089
+ (PP
1090
+ SDO)
1091
+ which is an accurate SDO representation of (P1
1092
+ SOCO) as the arrow-head structure of the matrix
1093
+ X is enforced by the linear constraints. Let z∗
1094
+ PP
1095
+ SDO denote the optimal objective function value
1096
+ of (PP
1097
+ SDO), and
1098
+ FPP
1099
+ SDO = {X ∈ Sn :Tr(⃗AiX) = bi,i = 1,...,m,
1100
+ Tr(ˇAhlX) = 0,h = 2,...,n, h < l,
1101
+ Tr(ˆAkX) = 0,k = 2,...,n,
1102
+ X ⪰ 0},
1103
+ and
1104
+ PP
1105
+ SDO
1106
+ ∗ = {X ∈ FPP
1107
+ SDO : Tr(⃗CX) = z∗
1108
+ PP
1109
+ SDO},
1110
+
1111
+ 14
1112
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
1113
+ be the feasible and optimal solution sets of problem (PP
1114
+ SDO), respectively. Next, we present the
1115
+ dual model of the SDO problem (PP
1116
+ SDO) as
1117
+ max bTv
1118
+ s.t.
1119
+ m
1120
+
1121
+ i=1
1122
+ vi⃗Ai + ∑
1123
+ h̸=1,h<l
1124
+ whl ˇAhl +
1125
+ n
1126
+
1127
+ k=2
1128
+ ukˆAk +S =⃗C,
1129
+ S ⪰ 0,
1130
+ (DP
1131
+ SDO)
1132
+ where whl denotes the dual variable corresponding to the matrix dedicated for setting entries
1133
+ (h,l) and (l,h) in X equal to zero, and uk corresponds to the linear constraints that are setting
1134
+ elements on the diagonal of each block equal to each other for that specific block.
1135
+ Similarly, let z∗
1136
+ DP
1137
+ SDO denote the optimal objective function value for the dual model (DP
1138
+ SDO), and
1139
+ FDP
1140
+ SDO =
1141
+
1142
+ (v,w,u,S) ∈ Rm ×R
1143
+ (n−1)(n−2)
1144
+ 2
1145
+ ×R(n−1) ×Sn :
1146
+ m
1147
+
1148
+ i=1
1149
+ vi⃗Ai + ∑
1150
+ h̸=1,h<l
1151
+ whl ˇAhl +
1152
+ n
1153
+
1154
+ k=2
1155
+ uk ˆAk +S =⃗C, S ⪰ 0
1156
+
1157
+ and
1158
+ DP
1159
+ SDO
1160
+ ∗ = {(v,w,u,S) ∈ FDP
1161
+ SDO : bTv = z∗
1162
+ DP
1163
+ SDO},
1164
+ be the feasible and optimal solution sets of problem (DP
1165
+ SDO), respectively.
1166
+ Let’s analyze the structure of S. First, recall problem (D1
1167
+ SOCO), where we have
1168
+ s j = cj −
1169
+ m
1170
+
1171
+ i=1
1172
+ yiai j,
1173
+ for all j = 1,...,n.
1174
+ Considering that, we seek to preserve the objective function value throughout the mapping, we
1175
+ have v = y. Therefore, using the non-zero structure of the matrices ˇAhl and ˆAk, we have
1176
+ S =
1177
+
1178
+ 
1179
+ 1
1180
+ n(s1)−∑n
1181
+ k=2 uk
1182
+ 1
1183
+ 2(s2)
1184
+ ...
1185
+ ...
1186
+ 1
1187
+ 2(sn)
1188
+ 1
1189
+ 2(s2)
1190
+ 1
1191
+ n(s1)+u2
1192
+ −w23
1193
+ ...
1194
+ −w2n
1195
+ ...
1196
+ −w23
1197
+ 1
1198
+ n(s1)+u3
1199
+ ...
1200
+ ...
1201
+ ...
1202
+ ...
1203
+ ...
1204
+ ...
1205
+ −w(n−1)n
1206
+ 1
1207
+ 2(sn)
1208
+ −w2n
1209
+ ...
1210
+ −w(n−1)n
1211
+ 1
1212
+ n(s1)+un
1213
+
1214
+ 
1215
+ .
1216
+ (4.1)
1217
+ Furthermore, we have free variables w and u which can take values such that S is positive
1218
+ semidefinite. Now, let y = (v;w;u), and b = [b;0 (n−1)(n−2)
1219
+ 2
1220
+ ×1;0n−1×1]. Then, we can present the
1221
+ following theorem which presents a point to set admissible mapping, see Definition 2.4, with
1222
+ r = 1, based on (P1
1223
+ SOCO) and (D1
1224
+ SOCO), and their representations (PP
1225
+ SDO) and (DP
1226
+ SDO).
1227
+ Theorem 4.1. Consider the SOCO problem pairs (P1
1228
+ SOCO) and (D1
1229
+ SOCO) with (x,y,s) ∈ FP1
1230
+ SOCO ×
1231
+ FD1
1232
+ SOCO and SDO problem pairs (PP
1233
+ SDO) and (DP
1234
+ SDO) with (X,v,w,u,S) ∈ FPP
1235
+ SDO × FDP
1236
+ SDO.
1237
+
1238
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
1239
+ 15
1240
+ Then, the mapping (X,v,w,u,S) = M (x,y,s) defined as
1241
+ X = Arw(x),
1242
+ v = y,
1243
+ S =
1244
+
1245
+ 
1246
+ s1
1247
+ n −∑n
1248
+ k=2 uk
1249
+ s2
1250
+ 2
1251
+ ...
1252
+ ...
1253
+ sn
1254
+ 2
1255
+ s2
1256
+ 2
1257
+ s1
1258
+ n +u2
1259
+ −w23
1260
+ ...
1261
+ −w2n
1262
+ ...
1263
+ −w23
1264
+ s1
1265
+ n +u3
1266
+ ...
1267
+ ...
1268
+ ...
1269
+ ...
1270
+ ...
1271
+ ...
1272
+ −w(n−1)n
1273
+ sn
1274
+ 2
1275
+ −w2n
1276
+ ...
1277
+ −w(n−1)n
1278
+ s1
1279
+ n +un
1280
+
1281
+ 
1282
+ ,
1283
+ where w ∈ R
1284
+ (n−1)(n−2)
1285
+ 2
1286
+ and u ∈ R(n−1) taking any values such that S ⪰ 0 is a point-to-set admis-
1287
+ sible mapping. The inverse mapping is denoted by (x,y,s) = M −1(X,v,w,u,S), with
1288
+ x = Arw−1(X),
1289
+ y = v,
1290
+ s =
1291
+
1292
+ 
1293
+ c1 −∑m
1294
+ i=1viai1
1295
+ ...
1296
+ cn −∑m
1297
+ i=1viain
1298
+
1299
+ .
1300
+ Proof. The proof of this theorem is presented in Appendix C.
1301
+
1302
+ Remark 4.2. The proposed mapping in Theorem 4.1 is not necessarily a point to point mapping
1303
+ regarding dual variables of (D1
1304
+ SOCO) and (DP
1305
+ SDO).
1306
+ Analogous to Corollaries 3.2-3.4, the proposed mapping in Theorem 4.1 preserves optimality
1307
+ and complementarity.
1308
+ 4.2. Rank-one Mapping. Using the intuition from the dual side’s section, we seek to represent
1309
+ matrix S using a rank one matrix. Hence, we propose
1310
+ S = η(η)T,
1311
+ with
1312
+ n
1313
+
1314
+ i=1
1315
+ (ηi)2 = s1,
1316
+ η1ηj = s j
1317
+ 2 for all j = 2,...,n.
1318
+ We need to solve an n-variable-n-equation system. The solution of this system is
1319
+ η =
1320
+ 1
1321
+
1322
+ 2(s1 +δ ′)
1323
+
1324
+ s1 +δ ′,s2,...,sn
1325
+ �T,
1326
+ where δ ′ =
1327
+
1328
+ s1 −||s2:n||2. Using this vector, we can construct matrix S. Thus, we can compute
1329
+ uk for k = 2,...,n, and whl for h ̸= 1,h < l as follows,
1330
+ uk = (ηk)2 − 1
1331
+ ns1 =
1332
+ s2
1333
+ k
1334
+ 2(s1 +δ ′) − 1
1335
+ ns1,
1336
+ k = 2,...,n,
1337
+ whl = ηhηl =
1338
+ shsl
1339
+ 2(s1 +δ ′),
1340
+ h ̸= 1,h < l.
1341
+
1342
+ 16
1343
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
1344
+ Theorem 4.3. Consider the rank-one mapping
1345
+ S =
1346
+
1347
+ [0]n×n
1348
+ if s = (0,0,...,0),
1349
+ PMR1
1350
+ otherwise.
1351
+ (4.2)
1352
+ where
1353
+ PMR1 = η(η)T =
1354
+
1355
+ 
1356
+ s1+δ ′
1357
+ 2
1358
+ s2
1359
+ 2
1360
+ ...
1361
+ sn
1362
+ 2
1363
+ s2
1364
+ 2
1365
+ s2
1366
+ 2
1367
+ 2[s1+δ ′]
1368
+ ...
1369
+ s2sn
1370
+ 2[s1+δ ′]
1371
+ ...
1372
+ ...
1373
+ ...
1374
+ ...
1375
+ sn
1376
+ 2
1377
+ s2sn
1378
+ 2[s1+δ ′]
1379
+ ...
1380
+ s2n
1381
+ 2[s1+δ ′]
1382
+
1383
+ 
1384
+ .
1385
+ Then, (4.2) together with (X,y) = (Arw(x),y) is a point-to-point admissible mapping.
1386
+ Proof. The proof is similar to that of Theorem 3.5.
1387
+
1388
+ 4.3. Higher Rank Mapping. The derivation of full rank mapping is similar to the derivation
1389
+ discussed in Section 3.3, as we show that when a SOCO solution s ∈ int(L n), then we can use
1390
+ a full rank mapping, i.e.
1391
+ PMR =
1392
+ n
1393
+
1394
+ i=1
1395
+ ηi(ηi)T.
1396
+ The proof of existence of a full rank mapping is similar to the proof presented in Appendix B.
1397
+ Theorem 4.4. There exist mappings PMR where rank(PMR(¯s)) = n for s ∈ int(L n).
1398
+ Proof. The proof of this theorem is similar to the proof presented in Appendix B. The difference
1399
+ is that we need to set π1 = s in the proof.
1400
+
1401
+ The reason why the procedure to show the existence of full rank mapping is similar for both
1402
+ directions is that although the mappings seem to be different, in fact both satisfy analogous
1403
+ conditions about the first row and column and the trace of the mapping matrix. From this point
1404
+ of view, they are very similar. In fact, the update vector in the procedure is meant to be satisfying
1405
+ those conditions. Thus, we can follow the procedure in Appendix B for both mappings.
1406
+ Similar to Theorem 1 of [9], we can develop the following mapping for the primal side.
1407
+ MR(s) =
1408
+ � 1
1409
+ 4θ′
1410
+ 1
1411
+ 2sT
1412
+ 2:n
1413
+ 1
1414
+ 2s2:n
1415
+ s1−∥s2:n∥
1416
+ 2(n−1) I + s2:nsT
1417
+ 2:n
1418
+ θ ′
1419
+
1420
+ ,
1421
+ where θ′ = s1 +∥s2:n∥ +
1422
+
1423
+ (s1 +∥s2:n∥)2 −4∥s2:n∥2. Here, we can perform the same analysis
1424
+ we did in Section 3.3, too. Considering the case in which the solution is on the boundary of the
1425
+ second-order cone, i.e. s1 = ∥s2:n∥. Then, θ′ = 2s1, and
1426
+ MR1(s) =
1427
+ � 1
1428
+ 2s1
1429
+ 1
1430
+ 2sT
1431
+ 2:n
1432
+ 1
1433
+ 2s2:n
1434
+ s2:nsT
1435
+ 2:n
1436
+ 2s1
1437
+
1438
+ .
1439
+ We can see that this is exactly identical to the rank one mapping we presented in Theorem 4.3.
1440
+ We can also write it as
1441
+ MR1(s) = γ1(γ1)T
1442
+
1443
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
1444
+ 17
1445
+ where
1446
+ γ1 =
1447
+ 1
1448
+
1449
+ θ′
1450
+ �1
1451
+ 2θ′,s2,...,sn
1452
+ �T
1453
+ .
1454
+ To obtain MR(s) as the sum of rank-one matrices, we define
1455
+ γ j =
1456
+
1457
+ s1 −∥s2:n∥
1458
+ 2(n−1)
1459
+ ej
1460
+ forj = 2,...,n,
1461
+ where ej is a unit vector with 1 in element j. By this setting, we have
1462
+ MR(s) =
1463
+ n
1464
+
1465
+ j=1
1466
+ γ j(γ j)T.
1467
+ If the solution s of the SOCO dual problem is on the boundary of the cone, i.e. s1 = ∥s2:n∥, then
1468
+ we get
1469
+ γ1 =
1470
+ 1
1471
+ √2s1
1472
+ (s1,s2,...,sn)T ,
1473
+ γ j = 0,
1474
+ for j = 2,...,n.
1475
+ This leads to the rank one mapping MR1(s). On the other hand, if the solution s ∈ int(L n),
1476
+ i.e. s1 > ∥s2:n∥, then γ j ̸= 0 for j = 2,...,n, and we obtain the full rank mapping MR(s). To
1477
+ construct an admissible rank-k mapping, here one cannot take a combination of first k vectors
1478
+ γ j as it violates the conditions given in Theorem 4.1, i.e. the sum of the diagonal elements will
1479
+ not be equal to s1. Recall the definition of N from Section 3.3. The correct choice of γ j to
1480
+ construct a rank-k mapping is
1481
+ γ j =
1482
+
1483
+ s1 −∥s2:n∥
1484
+ 2(k −1)
1485
+ ej
1486
+ for j ∈ N , and γ j = 0 for j /∈ N .
1487
+ The resulting matrix MR(s) has rank k, and one can easily see that it satisfies the conditions of
1488
+ Theorem 4.1. Analogous to the dual side, we have the following theorem.
1489
+ Theorem 4.5. Let ρ(s) = max{rank(M (s)) : M is admissible map}. We have
1490
+ • ρ(s) = n if s ∈ int(L n).
1491
+ • ρ(s) = 1 if s ∈ ∂(L n).
1492
+ Proof. Proof of this theorem is similar to Theorem 1 of [9].
1493
+
1494
+ 4.4. Generalization to Multiple SOCs. Similar to the discussion in Subsection 3.4, here we
1495
+ adopt the mapping presented in Theorem 3.8 to the primal side. Here we need to define the
1496
+ following notations. Let,
1497
+ ˜C =
1498
+
1499
+ 
1500
+ ⃗C1
1501
+ ⃗C2
1502
+ ...
1503
+ ⃗Cr
1504
+
1505
+ ,
1506
+ where
1507
+ ⃗Ck = Arw(1
1508
+ nck
1509
+ 1, 1
1510
+ 2ck
1511
+ 2,..., 1
1512
+ 2ck
1513
+ n)
1514
+ and
1515
+ ˜Aj = DArw(⃗A1
1516
+ j,⃗A2
1517
+ j,...,⃗Ar
1518
+ j)
1519
+ for all j = 1,...,m,
1520
+
1521
+ 18
1522
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
1523
+ where
1524
+ ⃗Ak
1525
+ j = Arw(1
1526
+ nak
1527
+ i1, 1
1528
+ 2ak
1529
+ i2,..., 1
1530
+ 2ak
1531
+ in)
1532
+ for all k = 1,...,r.
1533
+ Similar to the structure of ˜C and ˜Aj, matrix ˜X needs to have a block-diagonal structure. Thus,
1534
+ we need to enforce this structure on it. To this end, we define an operator. Let Cf(i) = j, be an
1535
+ operator which returns the corresponding cone j to input row i of the block-diagonal matrices.
1536
+ Let set I consists of all entries that need to be zero due to being either off-arrow within the
1537
+ blocks, or the off-block-diagonal structure.
1538
+ I =
1539
+
1540
+ (h,l) ∈ [1,
1541
+ r
1542
+
1543
+ i=1
1544
+ ni]2
1545
+ �����
1546
+
1547
+
1548
+ Cf(h)
1549
+ i=0 ni < l,
1550
+
1551
+ Cf(h)−1
1552
+ i=0
1553
+ ni +1 < h < ∑
1554
+ Cf(h)
1555
+ i=0 ni,
1556
+ and
1557
+ h < l ≤ ∑
1558
+ Cf(h)
1559
+ i=0 ni.
1560
+
1561
+ ,
1562
+ K =
1563
+
1564
+ k ∈ [1,
1565
+ r
1566
+
1567
+ i=1
1568
+ ni]
1569
+ �����
1570
+ Cf(k)−1
1571
+
1572
+ i=0
1573
+ ni +1 < k ≤
1574
+ Cf(k)
1575
+
1576
+ i=0
1577
+ ni
1578
+
1579
+ ,
1580
+ where n0 = 0. Note that here we introduce matrices ˜ˇAhl and ˜ˆAk which are generalizations of
1581
+ ��Ahl and ˆAk, for the multiple cone case, respectively. In detail, ˜ˇAhl enforces all entries off-block-
1582
+ diagonal and off-arrow within each block to be zero. Moreover, ˜ˆAk guarantees that in each
1583
+ block, diagonal entries are equal by setting entry (k,k) equal to −1 and entry (∑
1584
+ Cf(k)−1
1585
+ t=1
1586
+ nt +
1587
+ 1,∑
1588
+ Cf(k)−1
1589
+ t=1
1590
+ nt +1) equal to +1. By this notation, we have
1591
+ min Tr(˜C ˜X)
1592
+ s.t. Tr(˜Aj ˜X) = bj,
1593
+ j = 1,...,m
1594
+ Tr(˜ˇAhl ˜X) = 0,
1595
+ (h,l) ∈ I
1596
+ Tr(˜ˆAk ˜X) = 0,
1597
+ k ∈ K
1598
+ ˜X ⪰ 0.
1599
+ (P ˜P
1600
+ SDO)
1601
+ Then, we dualize and get
1602
+ max bTy
1603
+ s.t.
1604
+ m
1605
+
1606
+ j=1
1607
+ yj ˜Aj + ∑
1608
+ h,l∈I
1609
+ vhl ˜ˇAhl + ∑
1610
+ k∈K
1611
+ zk˜ˆAk + ˜S = ˜C,
1612
+ ˜S ⪰ 0.
1613
+ (D ˜P
1614
+ SDO)
1615
+ In similar fashion to other introduced models, we can define the sets of feasible and optimal
1616
+ solutions corresponding to models (P ˜P
1617
+ SDO) and (D ˜P
1618
+ SDO).
1619
+ Next, we can present the following theorem.
1620
+ Theorem 4.6. Consider the SOCO problem pairs (PSOCO) and (DSOCO) with
1621
+ (x1;x2;...;xr;y;s1;s2;...;sr) ∈ FPSOCO ×FDSOCO,
1622
+
1623
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
1624
+ 19
1625
+ and SDO problem pairs (P ˜P
1626
+ SDO) and (D ˜P
1627
+ SDO) with ( ˜X, ˜y, ˜S) ∈ FP ˜P
1628
+ SDO ×FD ˜P
1629
+ SDO. Then, the map-
1630
+ ping ( ˜X, ˜y,v,z, ˜S) = M (x,y,s) defined as
1631
+ ˜X = DArw(X1,X2,...,Xr),
1632
+ ˜y = y,
1633
+ ˜S =
1634
+
1635
+ 
1636
+ S1
1637
+ S2
1638
+ ...
1639
+ Sr
1640
+
1641
+  ⪰ 0 s.t.
1642
+
1643
+ 
1644
+ ∑ui+ni
1645
+ j=ui ˜Sj j
1646
+ ˜Sui,ui+1
1647
+ ...
1648
+ ˜Sui,ui+ni
1649
+
1650
+  =
1651
+
1652
+ 
1653
+ si
1654
+ 1
1655
+ si
1656
+ 2
1657
+ 2...
1658
+ sin
1659
+ 2
1660
+
1661
+ 
1662
+ with vectors v and z taking values such that ˜S ⪰ 0. Furthermore, the inverse mapping denoted
1663
+ by (x,y,s) = M −1( ˜X, ˜y,v,z, ˜S), with
1664
+ (x1;...;xr) with xi =
1665
+
1666
+ 
1667
+ ˜xui,ui
1668
+ ˜xui+1,ui
1669
+ ...
1670
+ ˜xui+ni,ui
1671
+
1672
+ ,
1673
+ y = ˜y,
1674
+ (s1;...;sr) with si =
1675
+
1676
+ 
1677
+ ∑ui+ni
1678
+ j=ui ˜Sj j
1679
+ 2 ˜Sui,ui+1
1680
+ ...
1681
+ 2 ˜Sui,ui+ni
1682
+
1683
+ ,
1684
+ where ui = 1+∑i−1
1685
+ k=0 ni and n0 = 0, is an admissible mapping.
1686
+ Proof. The proof of this theorem is analogous to that of Theorem 3.1.
1687
+
1688
+ We observe that although in the general case the mapping is similar to that of the dual side,
1689
+ but the details of the mapping are different. This mapping is different from the other one since it
1690
+ requires more work to enforce the arrow-head structure on matrix ˜X. An analogous analysis on
1691
+ different rank mappings can be done for the generalized multiple cone case, with the difference
1692
+ that here we have the arrow-head structure for matrix ˜X, and we can compute matrix ˜S with
1693
+ different ranks. We skip that similar analysis here for brevity.
1694
+ Now, that we have the generalized standard mapping for both sides, we can proceed with
1695
+ studying the mapping of the optimal partitions on both sides in the next section.
1696
+ 5. MAPPING THE OPTIMAL PARTITION
1697
+ As shown in the previous sections, the proposed mappings represent a solution of SOCO
1698
+ depending on where it is located in the cone. For a solution on the boundary of the second-order
1699
+ cone, all admissible maps provide a rank-one positive semidefinite matrix, while a solution in
1700
+ the interior of the Lorentz cone can be mapped to semidefinite matrices with different ranks.
1701
+ This correspondence can be analyzed in order to see how the optimal partition of SOCO is
1702
+ mapped to that of the derived SDO counterparts. For mapping the optimal partition, maximally
1703
+ complementary solutions are of particular interest. First, we define a helpful notation, and then
1704
+ the following theorem discusses the preservation of maximal complementarity.
1705
+ Definition 5.1 (Proper Map). Mapping M is a proper map if M is admissible and rank(X) =
1706
+ ρ(x) for all x ∈ L n, or rank(S) = ρ(s) for all s ∈ L n
1707
+ Based on this definition, a rank-one mapping is not proper but map MR of [9] is proper. In
1708
+ the subsequent theorem, we show that a proper mapping preserves maximal complementarity
1709
+ using eigenvalues of the mapped solution. We used the mapping approach of Section 3 which
1710
+
1711
+ 20
1712
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
1713
+ starts from dual side. Let λ X
1714
+ i denotes the ith eigenvalue of a matrix X. Then, the eigenvalues
1715
+ of an arrow-head matrix X = Arw(x) are λ X
1716
+ 1 = x1 − ∥x2:n∥, λ X
1717
+ 2 = ··· = λ X
1718
+ n−1 = x1, and λ X
1719
+ n =
1720
+ x1 +∥x2:n∥, see e.g. [1].
1721
+ Theorem 5.2. For a maximally complementary solution (x;y;s) ∈ P∗
1722
+ SOCO×D∗
1723
+ SOCO, the mapped
1724
+ solution ( ˜X, ˜y, ˜S) = M (x;y;s) ∈ P ˜D∗
1725
+ SDO ×D ˜D∗
1726
+ SDO is maximally complementary if M is a proper
1727
+ map.
1728
+ Proof. Given a maximally complementary solution (x;y;s) ∈ P∗
1729
+ SOCO ×D∗
1730
+ SOCO, one can analyze
1731
+ the result of mapping based how the cones are partitioned. The following analysis holds for the
1732
+ dual side direction. In this direction, we have matrix ˜S as a block diagonal of arrow-head
1733
+ matrices. Since M is proper map, the eigenvalues of matrix ˜X can be partitioned based on
1734
+ Lorentz cones. If vector xi is on the non-zero boundary of Lorentz cone, the all corresponding
1735
+ eigenvalues are non-zero except the first one. If the vector xi is in the interior of Lorentz cone,
1736
+ the corresponding eigenvalues are positive. For the point of the second-order cone, all the
1737
+ corresponding eigenvalues are zero. Thus, we have
1738
+ if i ∈ ¯
1739
+ B =
1740
+
1741
+ xi
1742
+ 1 > ∥xi
1743
+ 2:ni∥
1744
+ → full rank matrix Xi with λ Xi
1745
+ 1 ,λ Xi
1746
+ 2 ,...,λ Xi
1747
+ ni > 0,
1748
+ si = 0
1749
+ → zero Si matrix with λ Si
1750
+ 1 = ... = λ Si
1751
+ ni = 0,
1752
+ if i ∈
1753
+ ¯
1754
+ N =
1755
+
1756
+ xi = 0
1757
+ → zero matrix Xi with λ Xi
1758
+ 1 = ... = λ Xi
1759
+ ni = 0,
1760
+ si
1761
+ 1 > ∥si
1762
+ 2:ni∥
1763
+ → arrow-head matrix Si with λ Si
1764
+ 1 ,λ Si
1765
+ 2 ,...,λ Si
1766
+ ni > 0,
1767
+ if i ∈ ¯
1768
+ R =
1769
+
1770
+ xi
1771
+ 1 = ∥xi
1772
+ 2:ni∥ > 0
1773
+ → rank-one matrix Xi with λ Xi
1774
+ 1 > 0,λ Xi
1775
+ 2 = ... = λ Xi
1776
+ ni = 0
1777
+ si
1778
+ 1 = ∥si
1779
+ 2:ni∥ > 0
1780
+ → arrow-head Si matrix with λ Si
1781
+ 1 = 0,λ Si
1782
+ 2 ,...,λ Si
1783
+ ni > 0,
1784
+ if i ∈ ¯
1785
+ T1 =
1786
+
1787
+ xi = 0
1788
+ → zero matrix Xi with λ Xi
1789
+ 1 = ... = λ Xi
1790
+ ni = 0,
1791
+ si = 0
1792
+ → zero matrix Si with λ Si
1793
+ 1 = ... = λ Si
1794
+ ni = 0,
1795
+ if i ∈ ¯
1796
+ T2 =
1797
+
1798
+ xi
1799
+ 1 = ∥xi
1800
+ 2:ni∥ > 0
1801
+ → rank-one matrix Xi with λ Xi
1802
+ 1 > 0,λ Xi
1803
+ 2 = ... = λ Xi
1804
+ ni = 0
1805
+ si = 0
1806
+ → zero matrix Si with λ Si
1807
+ 1 = ... = λ Si
1808
+ ni = 0,
1809
+ if i ∈ ¯
1810
+ T3 =
1811
+
1812
+ xi = 0
1813
+ → zero matrix Xi with λ Xi
1814
+ 1 = ... = λ Xi
1815
+ ni = 0,
1816
+ si
1817
+ 1 = ∥si
1818
+ 2:ni∥ > 0
1819
+ → arrow-head matrix Si with λ Si
1820
+ 1 = 0,λ Si
1821
+ 2 ,...,λ Si
1822
+ ni > 0,
1823
+ Now, using that M is a proper, M maps a given maximally complementary optimal SOCO so-
1824
+ lution to ( ˜X, ˜y, ˜S) ∈ P ˜D∗
1825
+ SDO ×D ˜D∗
1826
+ SDO. Here, we show that this solution is maximally complemen-
1827
+ tary for the SDO counterpart problem. The proof goes by contradiction. Let us assume to the
1828
+ contrary that ( ˜X, ˜y, ˜S) is not a maximally complementary solution. Let ( ˆX, ˆy, ˆS) ∈ P ˜D∗
1829
+ SDO×D ˜D∗
1830
+ SDO
1831
+ be a maximally complementary solution. Since both ( ˜X, ˜y, ˜S) and ( ˆX, ˆy, ˆS) are optimal, then
1832
+ ˆS ˜X = 0. Accordingly, if λ ˜Si
1833
+ j > 0 then λ ˆSi
1834
+ j > 0. Now it is enough to show that there are no i, j
1835
+ such that λ ˜Si
1836
+ j = 0 and λ ˆSi
1837
+ j > 0. If there exist such index, by doing inverse mapping, the mapped
1838
+ solution in SOCO will have larger partition set either for
1839
+ ¯
1840
+ N , ¯
1841
+ R, or
1842
+ ¯
1843
+ T3 which contradicts with
1844
+ assumption that solution (x;y;s) being a maximally complementary solution of SOCO. With
1845
+ similar reasoning we can show that there are no i, j such that λ ˜Xi
1846
+ j
1847
+ = 0 and λ ˆXi
1848
+ j
1849
+ > 0. Thus, we
1850
+ can conclude that a proper map preserves maximal complementarity.
1851
+
1852
+
1853
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
1854
+ 21
1855
+ One can prove similar theorem as stated as follows for the mapping of Section 4 starting from
1856
+ primal side.
1857
+ Theorem 5.3. For a maximally complementary solution (x;y;s) ∈ P∗
1858
+ SOCO×D∗
1859
+ SOCO, the mapped
1860
+ solution ( ˜X, ˜y, ˜S) = M (x;y;s) ∈ P ˜P∗
1861
+ SDO ×D ˜P∗
1862
+ SDO is maximally complementary if M is a proper
1863
+ map.
1864
+ Proof. The proof is analogous to the proof of Theorem 5.2.
1865
+
1866
+ 5.1. Mapping the Optimal Partition. Based on the analysis described in the proof of The-
1867
+ orem 5.2, one can develop the mapping for the optimal partitions. Based on the sign of the
1868
+ eigenvalues, if positive, their corresponding eigenvectors generate the subspaces B and N ,
1869
+ and if zero, to subspace T of the optimal partition of SDO. First we consider mapping starting
1870
+ from the dual side as discussed in Section 3.4 and Section 4.4. The summary of optimal parti-
1871
+ tion mapping on the dual side is presented in Table 1, where ei
1872
+ j represents the jth eigenvector
1873
+ corresponding to λ j for the semidefinite cone i.
1874
+ B
1875
+ N
1876
+ T
1877
+ if i ∈ ¯
1878
+ B
1879
+ {ei
1880
+ 1,...,ei
1881
+ ni}
1882
+ /0
1883
+ /0
1884
+ if i ∈
1885
+ ¯
1886
+ N
1887
+ /0
1888
+ {ei
1889
+ 1,...,ei
1890
+ ni}
1891
+ /0
1892
+ if i ∈ ¯
1893
+ R
1894
+ {ei
1895
+ 1}
1896
+ {ei
1897
+ 2,...,ei
1898
+ ni}
1899
+ /0
1900
+ if i ∈ ¯T1
1901
+ /0
1902
+ /0
1903
+ {ei
1904
+ 1,...,ei
1905
+ ni}
1906
+ if i ∈ ¯T2
1907
+ {ei
1908
+ 1}
1909
+ /0
1910
+ {ei
1911
+ 2,...,ei
1912
+ ni}
1913
+ if i ∈ ¯T3
1914
+ /0
1915
+ {ei
1916
+ 2,...,eini}
1917
+ {ei
1918
+ 1}
1919
+ TABLE 1. The Dual Side Optimal Partition Mapping
1920
+ A similar analysis can be conducted for the primal side derivation, where matrix X has an
1921
+ arrow-head structure and we represent matrix S using zero, rank-one or full rank matrices, based
1922
+ on the position of vector s in the second-order cone. The optimal partition mapping is presented
1923
+ in Table 2.
1924
+
1925
+ 22
1926
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
1927
+ B
1928
+ N
1929
+ T
1930
+ if i ∈ ¯
1931
+ B
1932
+ {ei
1933
+ 1,...,ei
1934
+ ni}
1935
+ /0
1936
+ /0
1937
+ if i ∈
1938
+ ¯
1939
+ N
1940
+ /0
1941
+ {ei
1942
+ 1,...,ei
1943
+ ni}
1944
+ /0
1945
+ if i ∈ ¯
1946
+ R
1947
+ {ei
1948
+ 2,...,ei
1949
+ ni}
1950
+ {ei
1951
+ 1}
1952
+ /0
1953
+ if i ∈ ¯T1
1954
+ /0
1955
+ /0
1956
+ {ei
1957
+ 1,...,ei
1958
+ ni}
1959
+ if i ∈ ¯T2 {ei
1960
+ 2,...,ei
1961
+ ni}
1962
+ /0
1963
+ {ei
1964
+ 1}
1965
+ if i ∈ ¯T3
1966
+ /0
1967
+ {ei
1968
+ 1}
1969
+ {ei
1970
+ 2,...,ei
1971
+ ni}
1972
+ TABLE 2. The Primal Side Optimal Partition Mapping
1973
+ We can see that the result of mapping the optimal partition for the two sides are different.
1974
+ We observe identical outcome for partitions ¯
1975
+ B,
1976
+ ¯
1977
+ N ,
1978
+ ¯
1979
+ T1, which was predictable as they include
1980
+ the simple case where at least one of the variables x and s is zero. However, notable difference
1981
+ arises for the ¯
1982
+ R, ¯T2, and ¯T3 partitions depending on whether the dual or the primal variable’s
1983
+ representation is forced to be arrow-head.
1984
+ Consider partition ¯
1985
+ R, where both x and s are on the non-zero boundary of the second-order
1986
+ cone. Adopting the dual (primal) side approach, variable s (x) will have arrow-head represen-
1987
+ tation, and the other has a rank one representation. We have seen in Example 2.3, this partition
1988
+ is where complementarity will not be preserved if we apply arrow-head representation on both
1989
+ primal and dual sides. While our derivations guarantee feasibility and duality, we can see that
1990
+ complementarity is also preserved as the arrow-head matrix has only one zero eigenvalue, while
1991
+ the rank-one matrix has only one none-zero. For partitions
1992
+ ¯
1993
+ T2 and
1994
+ ¯
1995
+ T3, the difference in tables
1996
+ simply comes from which variable is non-zero and its corresponding arrow-head representation
1997
+ eigenvalues.
1998
+ From the geometric point of view, we can see that for partitions ¯
1999
+ B and
2000
+ ¯
2001
+ N , where the respec-
2002
+ tive solution is in the interior of the second-order cone, the mapped solution is in the interior of
2003
+ the semidefinite cone. For partition ¯
2004
+ R, we observe that the solution pair, which both are on the
2005
+ non-zero boundary of the second-order cone is mapped to a face of the semidefinite cone. For
2006
+ partition
2007
+ ¯
2008
+ T1, the zero solution pair is mapped to the origin. Finally, for partitions
2009
+ ¯
2010
+ T2, and
2011
+ ¯
2012
+ T3,
2013
+ the solutions are on the boundary of the second-order cone in the primal and dual, respectively.
2014
+ We can see that the result of the mapping is a face of the semidefinite cone, for both cases,
2015
+ depending on if the primal or dual variable is on the boundary on the second-order cone.
2016
+ 6. CONCLUSION
2017
+ In this paper, we study the relationship between a SOCO problem and its SDO representa-
2018
+ tion. Knowing about the fact that SOCO can be considered as a special case of SDO, we extend
2019
+ the literature by investigating both the primal and the dual side SDO representations of a SOCO
2020
+ problem. We demonstrate that using arrow-head matrix transformation on the primal or dual
2021
+ SOCO problem, does not result in an arrow-head matrix variable on its dual. In fact, nothing
2022
+ forces the dual variable to be arrow-head. We usually end up with dense matrices which can be
2023
+ represented by either rank-one or full rank mappings, based on the position of SOCO solutions
2024
+
2025
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
2026
+ 23
2027
+ in the second-order cone. We propose low-rank to full rank mappings which are admissible,
2028
+ meaning that they preserve feasibility and objective function value. First of all, these mappings
2029
+ are not unique. One can come up with different mappings that satisfies these conditions. In ad-
2030
+ dition, the dense structure of mapped solutions gives us an intuition about why solving SOCO
2031
+ as a SOCO problem is more efficient than solving as an SDO problem. In the SDO representa-
2032
+ tion, we have to deal with dense matrices when solving the SDO counterpart. Furthermore, we
2033
+ investigated the relationship between the optimal partitions of these problems. The optimal par-
2034
+ tition of SOCO is an index-based partition, while that of SDO is a subspace-based partition. We
2035
+ discussed how these partitions map to each other based on the eigenvalue analysis of mapped
2036
+ solutions.
2037
+ The theoretical study of the relationship between SOCO and its SDO counterparts remains
2038
+ with unsolved questions. One interesting question to look into is to study how degeneracy and
2039
+ singularity degree properties are affected throughout mappings.
2040
+
2041
+ 24
2042
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
2043
+ APPENDIX A. PROOF OF THEOREM 3.1
2044
+ Proof. To prove that the presented mapping in Theorem 3.1 is admissible, we need to show that
2045
+ it complies with the definition of admissible mapping, i.e. preservation of feasibility and the
2046
+ objective function value.
2047
+ Step 1. First, we show that if (y,s) ∈ FD1
2048
+ SOCO, then (y,S) = (y,Arw(s)) ∈ FDD
2049
+ SDO. Since S =
2050
+ Arw(s) and s ∈ L n, we know that S is positive semidefinite [1]. The only thing remains to
2051
+ prove is that ∑n
2052
+ i=1 yi⃗Ai +S = ⃗C. Since (y,s) is feasible, i.e., ATy+s = c, we have
2053
+ n
2054
+
2055
+ i=1
2056
+ yi⃗Ai +S =
2057
+
2058
+ 
2059
+ ∑n
2060
+ i=1yiai1 +s1
2061
+ ∑n
2062
+ i=1yiai2 +s2
2063
+ ...
2064
+ ∑n
2065
+ i=1yiain +sn
2066
+ ∑n
2067
+ i=1yiai2 +s2
2068
+ ∑n
2069
+ i=1yiai1 +s1
2070
+ ...
2071
+ ...
2072
+ ∑n
2073
+ i=1yiain +sn
2074
+ ∑n
2075
+ i=1yiai1 +s1
2076
+
2077
+ 
2078
+ =
2079
+
2080
+ 
2081
+ c1
2082
+ c2
2083
+ ...
2084
+ cn
2085
+ c2
2086
+ c1
2087
+ ...
2088
+ ...
2089
+ cn
2090
+ c1
2091
+
2092
+  = ⃗C.
2093
+ Step 2. We show that if x = (x1,...,xn) ∈ FP1
2094
+ SOCO, then matrix X as defined in Theorem 3.1,
2095
+ belongs to FPD
2096
+ SDO. By construction, X is positive semidefinite and we need to just show that
2097
+ Tr(⃗AiX) = bi. Based on the construction of X and feasibility of x, i.e., Ax = b, we have
2098
+ Tr(⃗AiX) = ai1(
2099
+ n
2100
+
2101
+ i=1
2102
+ Xii)+2ai2X12 +...+2ainX1n
2103
+ = ai1x1 +ai2x2 +...+ainxn = bi.
2104
+ Step 3. It is obvious that bTy = bTy. Similar to step 2, we have
2105
+ Tr(⃗CX) = c1(
2106
+ n
2107
+
2108
+ i=1
2109
+ Xii)+2c2X12 +...+2cnX1n
2110
+ = c1x1 +c2x2 +...+cnxn = cTx.
2111
+ Step 4. In this step, we show that if X ∈ FPD
2112
+ SDO, then x ∈ FP1
2113
+ SOCO. Suppose that X ∈ FPD
2114
+ SDO,
2115
+ then it is positive semidefinite. We need to show that x ∈ L n. To do so, we utilize that in a
2116
+ positive semidefinite matrix every principal submatrix, in particular every 2-by-2 submatrix is
2117
+ positive semidefinite [6]. Thus,
2118
+ |Xi j| ≤
2119
+
2120
+ XiiXj j
2121
+ for all i = 1,...,n and for all j = 1,...,n
2122
+ Thus, we have
2123
+ X2
2124
+ 12 +X2
2125
+ 13 +...+X2
2126
+ 1n ≤ (X11X22)+(X11X33)+...+(X11Xnn)
2127
+ (A.1)
2128
+ ≤ X11(X22 +X33 +...+Xnn),
2129
+ (A.2)
2130
+
2131
+ X2
2132
+ 12 +X2
2133
+ 13 +...+X2
2134
+ 1n ≤
2135
+
2136
+ X11(X22 +X33 +...+Xnn)
2137
+ (A.3)
2138
+ ≤ X11 +X22 +X33 +...+Xnn
2139
+ 2
2140
+ ,
2141
+ (A.4)
2142
+
2143
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
2144
+ 25
2145
+ where (A.4) is derived using the arithmetic-geometric mean inequality. The expression can be
2146
+ rewritten as
2147
+ n
2148
+
2149
+ i=1
2150
+ Xii ≥ 2
2151
+
2152
+ X2
2153
+ 12 +X2
2154
+ 13 +...+X2
2155
+ 1n
2156
+ =
2157
+
2158
+ (2X12)2 +(2X13)2 +...+(2X1n)2,
2159
+ or simply,
2160
+ n
2161
+
2162
+ i=1
2163
+ Xii ≥
2164
+
2165
+ (2X12)2 +(2X13)2 +...+(2X1n)2,
2166
+ x1 ≥
2167
+
2168
+ (x2)2 +...+(xn)2 = ||x2:n||2,
2169
+ which shows that x ∈ L n. Now, we need to prove that Ax = b. Thus, we have
2170
+ Aix = ai1x1 +ai2x2 +...+ainxn
2171
+ for all i = 1,...,m,
2172
+ = ai1(
2173
+ n
2174
+
2175
+ i=1
2176
+ Xii)+ai2(2X12)+...+ain(2X1n)
2177
+ = Tr(⃗AiX) = bi.
2178
+ Step 5. Finally, we need to show that if (y,S) ∈ FDD
2179
+ SDO, then (y,s) ∈ FD1
2180
+ SOCO. As (y,S) =
2181
+ (y,Arw(s)), according to [1], we know that S = Arw(s) ⪰ 0, implies s ∈ L n. Then, the only
2182
+ property that remains to prove is that ∑m
2183
+ i=1 yiAi + s = c. By feasibility of (y,S), we know that
2184
+ ∑n
2185
+ i=1yi⃗Ai +S = ⃗C, i.e.,
2186
+
2187
+ 
2188
+ ∑n
2189
+ i=1 yiai1 +s1
2190
+ ∑n
2191
+ i=1 yiai2 +s2
2192
+ ...
2193
+ ∑n
2194
+ i=1 yiain +sn
2195
+ ∑n
2196
+ i=1 yiai2 +s2
2197
+ ∑n
2198
+ i=1 yiai1 +s1
2199
+ ...
2200
+ ...
2201
+ ∑n
2202
+ i=1 yiain +sn
2203
+ ∑n
2204
+ i=1 yiai1 +s1
2205
+
2206
+  =
2207
+
2208
+ 
2209
+ c1
2210
+ c2
2211
+ ...
2212
+ cn
2213
+ c2
2214
+ c1
2215
+ ...
2216
+ ...
2217
+ cn
2218
+ c1
2219
+
2220
+ ,
2221
+ where each element of the matrix is a constraint in (D1
2222
+ SOCO) which means ∑m
2223
+ i=1 yiAi +s = c.
2224
+ Considering all of the previous steps, we conclude that presented mapping in Theorem 3.1 is
2225
+ an admissible mapping.
2226
+
2227
+
2228
+ 26
2229
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
2230
+ APPENDIX B. PROOF OF THEOREM 3.6
2231
+ Proof. A rank-n mapping of ¯x can be constructed by Algorithm 1.
2232
+ Algorithm 1 Full Rank Mapping
2233
+ π1 = ¯x,
2234
+ Choose sufficiently small ε
2235
+ for k = 1 : n−1 do
2236
+ τk ← πk
2237
+ 2
2238
+
2239
+ τk
2240
+ k+1 = τk
2241
+ k+1 +ε
2242
+ if πk
2243
+ k+1 ≥ 0
2244
+ τk
2245
+ k+1 = τk
2246
+ k+1 −ε
2247
+ if πk
2248
+ k+1 < 0
2249
+ Calculate
2250
+ β k =
2251
+ 1
2252
+ 2
2253
+
2254
+ τk
2255
+ 1+ ˆδ k
2256
+ 2
2257
+ (τk
2258
+ 1 + ˆδ k,τk
2259
+ 2,...,τk
2260
+ n)T, where ˆδ k =
2261
+
2262
+ (τk
2263
+ 1)2 −||τk
2264
+ 2:n||2.
2265
+ πk+1 = πk −τk
2266
+ end for
2267
+ Calculate
2268
+ β n =
2269
+ 1
2270
+ 2
2271
+
2272
+ πn
2273
+ 1+ ˆδ n
2274
+ 2
2275
+ (πn
2276
+ 1 + ˆδ n,πn
2277
+ 2,...,πn
2278
+ n)T, where ˆδ n =
2279
+
2280
+ (πn
2281
+ 1)2 −||πk
2282
+ 2:n||2.
2283
+ If ∥πk
2284
+ 2:n∥ < πk
2285
+ 1 for all k, then we have
2286
+ 0 < ||πk
2287
+ 2:n||
2288
+ 2
2289
+ ≤ ||τk
2290
+ 2:n|| < τk
2291
+ 1 ≤ πk
2292
+ 1
2293
+ 2 < πk
2294
+ 1,
2295
+
2296
+
2297
+
2298
+ πk
2299
+ j
2300
+ 2 ≤ τk
2301
+ j
2302
+ if π j ≥ 0
2303
+ πk
2304
+ j
2305
+ 2 ≥ τk
2306
+ j
2307
+ if π j < 0
2308
+ ,
2309
+ j = 2,...,n.
2310
+ (B.1)
2311
+ We need to show that in all loops ∥πk
2312
+ 2:n∥ < πk
2313
+ 1. For k = 1 this holds since ∥x2:n∥ < x1. Using
2314
+ induction, we need to prove ∥πk+1
2315
+ 2:n ∥ < πk+1
2316
+ 1
2317
+ assuming ∥πk
2318
+ 2:n∥ < πk
2319
+ 1. We have
2320
+ πk+1
2321
+ 1
2322
+ −∥πk+1
2323
+ 2:n ∥ = (πk
2324
+ 1 −τk
2325
+ 1)−∥(πk
2326
+ j −τk
2327
+ j)2:n∥ ≥ τk
2328
+ 1 −∥τk
2329
+ 2:n∥ > 0.
2330
+ Thus, πk
2331
+ 1 > ∥πk
2332
+ 2:n∥ for all k. The proposed MR is also admissible since
2333
+ n
2334
+
2335
+ j=1
2336
+ MRj j =
2337
+ n
2338
+
2339
+ k=1
2340
+ n
2341
+
2342
+ j=1
2343
+ (β k
2344
+ j )2 = x1
2345
+ MR1j =
2346
+ n
2347
+
2348
+ k=1
2349
+ β k
2350
+ j β k
2351
+ 1 = x j
2352
+ 2 .
2353
+ We need to prove that the generated β k vectors are linearly independent. We have
2354
+ β k =
2355
+ 1
2356
+ 2
2357
+
2358
+ τk
2359
+ 1+ ˆδ k
2360
+ 2
2361
+ (τk
2362
+ 1 + ˆδ,τk
2363
+ 2,...,τk
2364
+ n)T, where ˆδ k =
2365
+
2366
+ (τk
2367
+ 1)2 −||τk
2368
+ 2:n||2.
2369
+
2370
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
2371
+ 27
2372
+ Let us define the matrix
2373
+ B =
2374
+
2375
+ 
2376
+ τ1
2377
+ 1 + ˆδ 1
2378
+ τ2
2379
+ 1 + ˆδ 2
2380
+ ...
2381
+ τn
2382
+ 1 + ˆδ n
2383
+ τ1
2384
+ 2
2385
+ τ2
2386
+ 2
2387
+ ...
2388
+ τn
2389
+ 2
2390
+ ...
2391
+ ...
2392
+ ...
2393
+ ...
2394
+ τ1
2395
+ n
2396
+ τ2
2397
+ n
2398
+ ...
2399
+ τn
2400
+ n
2401
+
2402
+ 
2403
+ We still need to prove that B has full rank. Now, w.l.o.g. we may assume that x ≥ 0. One can
2404
+ easily extend the following proof to general x. Then we have
2405
+ B =
2406
+
2407
+ 
2408
+ τ1
2409
+ 1 + ˆδ 1
2410
+ τ2
2411
+ 1 + ˆδ 2
2412
+ ...
2413
+ τn
2414
+ 1 + ˆδ n
2415
+ τ1
2416
+ 2
2417
+ τ2
2418
+ 2
2419
+ ...
2420
+ τn
2421
+ 2
2422
+ ...
2423
+ ...
2424
+ ...
2425
+ ...
2426
+ τ1
2427
+ n
2428
+ τ2
2429
+ n
2430
+ ...
2431
+ τn
2432
+ n
2433
+
2434
+ 
2435
+ =
2436
+
2437
+ 
2438
+ π1
2439
+ 1
2440
+ 2 + ˆδ 1
2441
+ π2
2442
+ 1
2443
+ 2 + ˆδ 2
2444
+ ...
2445
+ πn
2446
+ 1 + ˆδ n
2447
+ π1
2448
+ 2
2449
+ 2 +ε
2450
+ π2
2451
+ 2
2452
+ 2
2453
+ ...
2454
+ πn
2455
+ 2
2456
+ π1
2457
+ 3
2458
+ 2
2459
+ π2
2460
+ 3
2461
+ 2 +ε
2462
+ ...
2463
+ πn
2464
+ 3
2465
+ ...
2466
+ ...
2467
+ ...
2468
+ ...
2469
+ π1n
2470
+ 2
2471
+ π2n
2472
+ 2
2473
+ ...
2474
+ πn
2475
+ n
2476
+
2477
+ 
2478
+ =
2479
+
2480
+ 
2481
+ x1
2482
+ 2 + ˆδ 1
2483
+ x1
2484
+ 4 + ˆδ 2
2485
+ ...
2486
+ x1
2487
+ (2)n + ˆδ n
2488
+ x2
2489
+ 2 +ε
2490
+ x2
2491
+ 4 − ε
2492
+ 2
2493
+ ...
2494
+ x1
2495
+ (2)n −
2496
+ ε
2497
+ (2)n−1
2498
+ x3
2499
+ 2
2500
+ x3
2501
+ 4 +ε
2502
+ ...
2503
+ x1
2504
+ (2)n −
2505
+ ε
2506
+ (2)n−2
2507
+ ...
2508
+ ...
2509
+ ...
2510
+ ...
2511
+ xn
2512
+ 2
2513
+ xn
2514
+ 4
2515
+ ...
2516
+ x1
2517
+ (2)n − ε
2518
+ (2)
2519
+
2520
+ 
2521
+ =
2522
+
2523
+ 
2524
+ x1
2525
+ 2
2526
+ x1
2527
+ 4
2528
+ ...
2529
+ x1
2530
+ (2)n
2531
+ x2
2532
+ 2
2533
+ x2
2534
+ 4
2535
+ ...
2536
+ x1
2537
+ (2)n
2538
+ x3
2539
+ 2
2540
+ x3
2541
+ 4
2542
+ ...
2543
+ x1
2544
+ (2)n
2545
+ ...
2546
+ ...
2547
+ ...
2548
+ ...
2549
+ xn
2550
+ 2
2551
+ xn
2552
+ 4
2553
+ ...
2554
+ x1
2555
+ (2)n
2556
+
2557
+ 
2558
+ +
2559
+
2560
+ 
2561
+ ˆδ 1
2562
+ ˆδ 2
2563
+ ...
2564
+ ˆδ n−1
2565
+ ˆδ n
2566
+ ε
2567
+ −ε
2568
+ 2
2569
+ ...
2570
+
2571
+ ε
2572
+ (2)n−2
2573
+
2574
+ ε
2575
+ (2)n−1
2576
+ 0
2577
+ ε
2578
+ ...
2579
+
2580
+ ε
2581
+ (2)n−3
2582
+
2583
+ ε
2584
+ (2)n−2
2585
+ ...
2586
+ ...
2587
+ ...
2588
+ ...
2589
+ ...
2590
+ 0
2591
+ 0
2592
+ ...
2593
+ ε
2594
+ − ε
2595
+ (2)
2596
+
2597
+ 
2598
+ ,
2599
+ where
2600
+
2601
+ 
2602
+ ˆδ 1
2603
+ ˆδ 2
2604
+ ...
2605
+ ˆδ n
2606
+
2607
+  =
2608
+
2609
+ 
2610
+
2611
+ (x1
2612
+ 2 )2 −(x2
2613
+ 2 +ε)2 −(x3
2614
+ 2 )2 −···−(xn
2615
+ 2 )2
2616
+
2617
+ (x1
2618
+ 4 )2 −(x2
2619
+ 4 − ε
2620
+ 2)2 −(x3
2621
+ 4 +ε)2 −···−(xn
2622
+ 4 )2
2623
+ ...
2624
+
2625
+ ( x1
2626
+ (2)n)2 −( x1
2627
+ (2)n −
2628
+ ε
2629
+ (2)n−1)2 −(x3
2630
+ 4 −
2631
+ ε
2632
+ (2)n−1)2 −···−( xn
2633
+ (2)n − ε
2634
+ 2)2
2635
+
2636
+ 
2637
+ .
2638
+
2639
+ 28
2640
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
2641
+ By doing row eliminations on both matrices to sparsify the second matrix, we get
2642
+
2643
+ 
2644
+ x1
2645
+ 2
2646
+ 2x1
2647
+ 4
2648
+ ...
2649
+ n x1
2650
+ (2)n
2651
+ x2
2652
+ 2
2653
+ 2x2
2654
+ 4
2655
+ ...
2656
+ n x1
2657
+ (2)n
2658
+ x3
2659
+ 2
2660
+ 2x3
2661
+ 4
2662
+ ...
2663
+ n x1
2664
+ (2)n
2665
+ ...
2666
+ ...
2667
+ ...
2668
+ ...
2669
+ xn
2670
+ 2
2671
+ 2xn
2672
+ 4
2673
+ ...
2674
+ n x1
2675
+ (2)n
2676
+
2677
+ 
2678
+ +
2679
+
2680
+ 
2681
+ 0
2682
+ 0
2683
+ ...
2684
+ 0
2685
+ ¯δ
2686
+ ε
2687
+ 0
2688
+ ...
2689
+ 0
2690
+ 0
2691
+ 0
2692
+ ε
2693
+ ...
2694
+ 0
2695
+ 0
2696
+ ...
2697
+ ...
2698
+ ...
2699
+ ...
2700
+ ...
2701
+ 0
2702
+ 0
2703
+ ...
2704
+ ε
2705
+ 0
2706
+
2707
+ 
2708
+ where
2709
+ ¯δ =
2710
+ ˆδ 1
2711
+ (2)n−1 +
2712
+ ˆδ 2
2713
+ (2)n−2 +···+
2714
+ ˆδ n−1
2715
+ 2
2716
+ + ˆδ n.
2717
+ As we can see ¯δ, as sum of strictly positive numbers, is strictly positive, and the matrix has
2718
+ full rank. By choosing small ε, we can show that B has full rank. The last piece is to find
2719
+ appropriate value for ε. We need to choose ε so that
2720
+ (x1
2721
+ 2 )2 −(x2
2722
+ 2 +ε)2 −(x3
2723
+ 2 )2 −···−(xn
2724
+ 2 )2 > 0
2725
+ (x1
2726
+ 4 )2 −(x2
2727
+ 4 − ε
2728
+ 2)2 −(x3
2729
+ 4 +ε)2 −···−(xn
2730
+ 4 )2 > 0
2731
+ ...
2732
+ ( x1
2733
+ (2)n)2 −( x1
2734
+ (2)n −
2735
+ ε
2736
+ (2)n−1)2 −(x3
2737
+ 4 −
2738
+ ε
2739
+ (2)n−1)2 −···−( xn
2740
+ (2)n − ε
2741
+ 2)2 > 0.
2742
+ Let ρ = (x1)2 −∑n
2743
+ i=2(xi)2 > 0. Then, we have
2744
+ 4ε2 +4x2ε −ρ < 0
2745
+ 20ε2 +(8x3 −4x2)ε −ρ < 0
2746
+ ...
2747
+ Since the second derivatives of all quadratic forms in these inequalities are positive, they are
2748
+ convex. Since coefficients of ε2 and ρ are strictly positive, they have two distinct roots. Thus,
2749
+ any epsilon in the intersection of all these intervals satisfies the required conditions. The in-
2750
+ tersection of them is non-empty since we have a valid choice ε = x1−∥x2:n∥
2751
+ 2(n−1)
2752
+ as discussed in
2753
+ Section 3.3.
2754
+
2755
+ APPENDIX C. PROOF OF THEOREM 4.1
2756
+ Proof. Proof is similar to that of Theorem 3.1, showing that under the proposed setting (x,y,s)
2757
+ and (X,y,S) = M (x,y,s) satisfy the primal and dual constraints and preserves the objective
2758
+ function value. To this end, we need to take the following steps.
2759
+ Step 1. First, we show that if x ∈ FP1
2760
+ SOCO, then X = Arw(x) ∈ FPP
2761
+ SDO. First, we know that
2762
+ since x ∈ L n, then X = Arw(x) ⪰ 0. Next, we need to show that X satisfies the SDO primal
2763
+
2764
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
2765
+ 29
2766
+ constraint. Thus,
2767
+ Tr(⃗AiX) = 1
2768
+ nai1(
2769
+ n
2770
+
2771
+ i=1
2772
+ Xii)+ 2
2773
+ 2ai2X12 +...+ 2
2774
+ 2ainX1n
2775
+ = ai1x1 +ai2x2 +...+ainxn
2776
+ = a(i)x = bi,
2777
+ for all i = 1,...,m.
2778
+ The second equality represents the product of ith row of matrix A and vector x. Hence, we can
2779
+ conclude that X satisfies the SDO primal constraint.
2780
+ Step 2. Next, we show that if (y,s) ∈ FD1
2781
+ SOCO, then (y,S) ∈ FDP
2782
+ SDO. By definition and using u
2783
+ and w in construction of S, we have S ⪰ 0. Next, we need to show that S satisfies the constraint
2784
+ of (DP
2785
+ SDO). Thus, since (y,s) is feasible for (D1
2786
+ SOCO), i.e. ∑m
2787
+ i=1 yiai j +sj = cj for all j = 1,...,n,
2788
+ we can write
2789
+ m
2790
+
2791
+ i=1
2792
+ yi⃗Ai + ∑
2793
+ h̸=1,h<l
2794
+ whl ˜Ahl +
2795
+ n
2796
+
2797
+ k=2
2798
+ uk ˆAk +S =
2799
+
2800
+ 
2801
+ 1
2802
+ n ∑m
2803
+ i=1 yiai1
2804
+ 1
2805
+ 2 ∑m
2806
+ i=1 yiai2
2807
+ ...
2808
+ 1
2809
+ 2 ∑m
2810
+ i=1 yiain
2811
+ 1
2812
+ 2 ∑m
2813
+ i=1 yiai2
2814
+ 1
2815
+ n ∑m
2816
+ i=1 yiai1
2817
+ ...
2818
+ ...
2819
+ 1
2820
+ 2 ∑m
2821
+ i=1 yiain
2822
+ 1
2823
+ n ∑m
2824
+ i=1 yiai1
2825
+
2826
+ 
2827
+ +
2828
+
2829
+ 
2830
+ 0
2831
+ 0
2832
+ ...
2833
+ ...
2834
+ 0
2835
+ 0
2836
+ 0
2837
+ w23
2838
+ ...
2839
+ w2n
2840
+ ...
2841
+ w23
2842
+ ...
2843
+ ...
2844
+ ...
2845
+ ...
2846
+ ...
2847
+ ...
2848
+ ...
2849
+ w(n−1)n
2850
+ 0
2851
+ w2n
2852
+ ...
2853
+ w(n−1)n
2854
+ 0
2855
+
2856
+ 
2857
+ +
2858
+
2859
+ 
2860
+ ∑n
2861
+ k=2 uk
2862
+ 0
2863
+ ...
2864
+ ...
2865
+ ...
2866
+ 0
2867
+ 0
2868
+ −u2
2869
+ 0
2870
+ ...
2871
+ ...
2872
+ 0
2873
+ ...
2874
+ 0
2875
+ ...
2876
+ ...
2877
+ ...
2878
+ ...
2879
+ ...
2880
+ ...
2881
+ −ui
2882
+ ...
2883
+ ...
2884
+ ...
2885
+ ...
2886
+ ...
2887
+ ...
2888
+ 0
2889
+ 0
2890
+ 0
2891
+ ...
2892
+ ...
2893
+ 0
2894
+ −un
2895
+
2896
+ 
2897
+ +
2898
+
2899
+ 
2900
+ s1
2901
+ n −∑n
2902
+ k=2 uk
2903
+ s2
2904
+ 2
2905
+ ...
2906
+ ...
2907
+ sn
2908
+ 2
2909
+ s2
2910
+ 2
2911
+ s1
2912
+ n +u2
2913
+ −w23
2914
+ ...
2915
+ −w2n
2916
+ ...
2917
+ −w23
2918
+ s1
2919
+ n +u3
2920
+ ...
2921
+ ...
2922
+ ...
2923
+ ...
2924
+ ...
2925
+ ...
2926
+ −w(n−1)n
2927
+ sn
2928
+ 2
2929
+ −w2n
2930
+ ...
2931
+ −w(n−1)n
2932
+ s1
2933
+ n +un
2934
+
2935
+ 
2936
+ =
2937
+
2938
+ 
2939
+ 1
2940
+ nc1
2941
+ 1
2942
+ 2c2
2943
+ ...
2944
+ 1
2945
+ 2cn
2946
+ 1
2947
+ 2c2
2948
+ 1
2949
+ nc1
2950
+ ...
2951
+ ...
2952
+ 1
2953
+ 2cn
2954
+ 1
2955
+ nc1
2956
+
2957
+  = ⃗C.
2958
+
2959
+ 30
2960
+ SAMPOURMAHANI, MOHAMMADISIAHROUDI, TERLAKY
2961
+ Step 3. It is obvious that bTy = bTy. Similar to step 1, we have
2962
+ Tr(⃗CX) = 1
2963
+ nc1(
2964
+ n
2965
+
2966
+ i=1
2967
+ Xii)+ 2
2968
+ 2c2X12 +...+ 2
2969
+ 2cnX1n
2970
+ = c1x1 +c2x2 +...+cnxn
2971
+ = cTx.
2972
+ Step 4. In this step, we need to show that if X ∈ FPP
2973
+ SDO, then x ∈ FP1
2974
+ SOCO. To this end, we
2975
+ know that as X = Arw(x) is positive semidefinite, then x ∈ L n. Next, we need to show that
2976
+ Ax = b. Thus, we have
2977
+ Aix = ai1x1 +ai2x2 +...+ainxn
2978
+ = 1
2979
+ nai1(nx1)+2(1
2980
+ 2ai2)x2 +...+2(1
2981
+ 2ain)xn
2982
+ = Tr(⃗AiX) = bi,
2983
+ for all i = 1,...,m.
2984
+ Step 5. Finally, we need to show that if (y,S) ∈ FDP
2985
+ SDO, then (y,s) ∈ FD1
2986
+ SOCO. Suppose that
2987
+ S ∈ FDP
2988
+ SDO, then it is positive semidefinite. We need to show that s ∈ L n. To do so, recall that
2989
+ in a positive semidefinite matrix every principal submatrix, in particular every 2-by-2 submatrix
2990
+ is positive semidefinite [6]. Thus,
2991
+ |Si j| ≤
2992
+
2993
+ SiiSj j
2994
+ for all i = 1,...,n and for all j = 1,...,n
2995
+ Thus, we have
2996
+ S2
2997
+ 12 +S2
2998
+ 13 +...+S2
2999
+ 1n ≤ (S11S22)+(S11S33)+...+(S11Snn)
3000
+ (C.1)
3001
+ ≤ S11(S22 +S33 +...+Snn),
3002
+ (C.2)
3003
+
3004
+ S2
3005
+ 12 +S2
3006
+ 13 +...+S2
3007
+ 1n ≤
3008
+
3009
+ S11(S22 +S33 +...+Snn)
3010
+ (C.3)
3011
+ ≤ S11 +S22 +S33 +...+Snn
3012
+ 2
3013
+ ,
3014
+ (C.4)
3015
+ where (C.4) is derived using the arithmetic-geometric mean inequality. The expression can be
3016
+ rewritten as
3017
+ n
3018
+
3019
+ i=1
3020
+ Sii ≥ 2
3021
+
3022
+ S2
3023
+ 12 +S2
3024
+ 13 +...+S2
3025
+ 1n
3026
+ =
3027
+
3028
+ (2S12)2 +(2S13)2 +...+(2S1n)2,
3029
+ or simply,
3030
+ s1 ≥
3031
+
3032
+ (s2)2 +...+(sn)2 = ||s2:n||2,
3033
+ which according to definition of (4.1) shows that s ∈ L n. Next, we need to show that vector
3034
+ s =
3035
+
3036
+ 
3037
+ c1 −∑m
3038
+ i=1yiai1
3039
+ ...
3040
+ cn −∑m
3041
+ i=1yiain,
3042
+
3043
+ 
3044
+ satisfies the SOCO dual constraint. This is obvious since each entry of this vector is equal to
3045
+ the corresponding entry of vector s in the definition of (D1
3046
+ SOCO).
3047
+
3048
+
3049
+ ON SEMIDEFINITE REPRESENTATIONS OF SECOND-ORDER CONIC OPTIMIZATION PROBLEMS
3050
+ 31
3051
+ Acknowledgements
3052
+ This research is supported by the National Science Foundation (NSF) under Grant No. 2128527.
3053
+ REFERENCES
3054
+ [1] Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical Programming,
3055
+ 95(1):3–51, 2003.
3056
+ [2] Roberto Andreani, Gabriel Haeser, Leonardo M Mito, C H´ector Ram´ırez, and Thiago P Silveira. Global
3057
+ convergence of algorithms under constant rank conditions for nonlinear second-order cone programming.
3058
+ Journal of Optimization Theory and Applications, 195(1):42–78, 2022.
3059
+ [3] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms,
3060
+ and Engineering Applications. SIAM, 2001.
3061
+ [4] Etienne De Klerk. Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applica-
3062
+ tions, volume 65. Springer Science & Business Media, 2006.
3063
+ [5] Daniel Dueri, Jing Zhang, and Behc¸et Ac¸ikmese. Automated custom code generation for embedded, real-
3064
+ time second order cone programming. In Proceedings of the 19th IFAC World Congress. Ed. E. Boje, and X.
3065
+ Xia, volume 47, pages 1605–1612. Elsevier, 2014.
3066
+ [6] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2012.
3067
+ [7] Qingwei Jin, Ye Tian, Zhibin Deng, Shu-Cherng Fang, and Wenxun Xing. Exact computable representation of
3068
+ some second-order cone constrained quadratic programming problems. Journal of the Operations Research
3069
+ Society of China, 1(1):107–134, 2013.
3070
+ [8] Ali Mohammad-Nezhad. Conic Optimization: Optimal Partition, Parametric, and Stability Analysis. PhD
3071
+ thesis, Lehigh University, 2019.
3072
+ [9] Chee-Khian Sim and Gongyun Zhao. A note on treating a second order cone program as a special case of a
3073
+ semidefinite program. Mathematical Programming, 102(3):609–613, 2005.
3074
+ [10] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Handbook of Semidefinite Programming: The-
3075
+ ory, Algorithms, and Applications, volume 27. Springer Science & Business Media, 2012.
3076
+ [11] Jinchuan Zhou, Jingyong Tang, and Jein-Shan Chen. Further relationship between second-order cone and
3077
+ positive semidefinite matrix cone. Optimization, 65(12):2115–2133, 2016.
3078
+
JtFLT4oBgHgl3EQfKS8v/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LtE1T4oBgHgl3EQfZAR1/content/tmp_files/2301.03145v1.pdf.txt ADDED
@@ -0,0 +1,778 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Platoon Leader Selection, User Association and
2
+ Resource Allocation on a C-V2X based highway: A
3
+ Reinforcement Learning Approach
4
+ Mohammad Farzanullah and Tho Le-Ngoc
5
+ Department of Electrical & Computer Engineering, McGill University, Montr´eal, QC, Canada
6
+ Abstract—We consider the problem of dynamic platoon leader
7
+ selection, user association, channel assignment, and power allo-
8
+ cation on a cellular vehicle-to-everything (C-V2X) based high-
9
+ way, where multiple vehicle-to-vehicle (V2V) and vehicle-to-
10
+ infrastructure (V2I) links share the frequency resources. There
11
+ are multiple roadside units (RSUs) on a highway, and vehicles can
12
+ form platoons, which has been identified as an advanced use case
13
+ to increase road efficiency. The traditional optimization methods,
14
+ requiring global channel information at a central controller, are
15
+ not viable for high-mobility vehicular networks. To deal with this
16
+ challenge, we propose a distributed multi-agent reinforcement
17
+ learning (MARL) for resource allocation (RA). Each platoon
18
+ leader, acting as an agent, can collaborate with other agents for
19
+ joint sub-band selection and power allocation for its V2V links,
20
+ and joint user association and power control for its V2I links.
21
+ Moreover, each platoon can dynamically select the vehicle most
22
+ suitable to be the platoon leader. We aim to maximize the V2V
23
+ and V2I packet delivery probability in the desired latency using
24
+ the deep Q-learning algorithm. Simulation results indicate that
25
+ our proposed MARL outperforms the centralized hill-climbing
26
+ algorithm, and platoon leader selection helps to improve both
27
+ V2V and V2I performance.
28
+ Index Terms—New radio, cellular vehicle-to-everything, rein-
29
+ forcement learning, resource allocation
30
+ I. INTRODUCTION
31
+ Cellular vehicle-to-everything (C-V2X) is a vehicular stan-
32
+ dard that enables communication between vehicles and other
33
+ entities on the road, such as pedestrians and infrastructure, to
34
+ increase road safety and efficiency [1]. The C-V2X system
35
+ consists of communication between different entities, such
36
+ as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),
37
+ vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P)
38
+ communications. The C-V2X is envisioned to support high
39
+ throughput, ultra-reliable, and low latency communications.
40
+ 3GPP has provided the 5G new radio (NR) standards
41
+ for vehicular communications concerning architecture in TS
42
+ 23.287 [2], advanced use cases in TS 22.886 [3], and eval-
43
+ uation methodology in TR 37.885 [4]. One component of
44
+ infrastructure will be the roadside units (RSUs). RSU is a
45
+ stationary wireless C-V2X device that can exchange messages
46
+ with vehicles and other C-V2X entities. It uses the PC5
47
+ side-link interface to communicate with the vehicles and
48
+ transmit information about road signs and traffic lights [3].
49
+ It can also receive information from the vehicles to make
50
+ a dynamic map of the surroundings and share it with other
51
+ vehicles/pedestrians. Furthermore, we consider the use-case of
52
+ platooning, where multiple vehicles form a train-like structure
53
+ and travel closely together in a line. The platoon leader (PL)
54
+ organizes communications between vehicles. Vehicle platoon-
55
+ ing has been identified as an advanced use case in [3] and has
56
+ gained significant interest since it reduces fuel consumption
57
+ and traffic congestion. The RSU and platoon will need to
58
+ exchange a maximum of 1200 bytes in 500 ms for real-
59
+ time traffic updates and 600 bytes in 10 ms for conditional
60
+ automated driving [3]. We grouped these two requirements
61
+ for an aggregate of 624 bytes in 10 ms. Moreover, the PL
62
+ and members need to exchange 50-1200 bytes in 10 ms for
63
+ cooperative driving and up to 2000 bytes in 10 ms for collision
64
+ avoidance [3]. We aggregate these service requirements and
65
+ keep the exchange of 1200-2800 bytes in 10 ms for our
66
+ simulations. An intelligent resource allocation (RA) design is
67
+ necessary for these stringent requirements.
68
+ The 5G new radio (NR) C-V2X supports two RA modes
69
+ for sidelink PC5 communications: mode 1, the under-coverage
70
+ mode, and mode 2, the out-of-coverage mode [5]. In mode 1,
71
+ the gNB allocates the communication resources to vehicles.
72
+ Meanwhile, in mode 2, the vehicles autonomously select
73
+ the resources. For mode 2, the current RA technique used
74
+ in standards is the sensing-based Semi-Persistent Scheduling
75
+ (SPS) algorithm, which periodically selects random resources.
76
+ However, the probability of resource selection collision can be
77
+ high, and many works have considered either improving the
78
+ SPS algorithm or alternate techniques to increase reliability.
79
+ [6] proposes a novel sensing-based SPS algorithm in an urban
80
+ scenario to reduce the collision probability. The authors in
81
+ [7] considered a highway scenario and suggested a stochastic
82
+ reservation scheme for aperiodic traffic. For the platooning
83
+ use case, [8] shows that the SPS algorithm can not achieve
84
+ the required performance.
85
+ Due to the fast channel variations in vehicular networks,
86
+ centralized optimization schemes that require global channel
87
+ state information (CSI) will no longer be feasible. The high
88
+ CSI overhead and the corresponding increase in latency make
89
+ such methods impractical. To deal with this issue, distributed
90
+ RA algorithms have been suggested in the literature, e.g., [9],
91
+ [10]. Furthermore, traditional optimization techniques have
92
+ limitations, requiring complete information about the environ-
93
+ ment and needing to be retrained for rapidly varying envi-
94
+ ronments [11]. Recently, distributed multi-agent reinforcement
95
+ learning (MARL) has been proposed as an alternative approach
96
+ to resolving such issues. The authors in [12] used Deep Q
97
+ Networks (DQN) for joint channel assignment and power
98
+ allocation to maximize the V2V delivery probability and V2N
99
+ arXiv:2301.03145v1 [cs.MA] 9 Jan 2023
100
+
101
+ sum-rate in an urban setting, where the V2V links share the
102
+ time-frequency resources with V2N links. Inspired by these
103
+ results, [13] used double DQN for a platoon-based scenario
104
+ for the same objectives. [14] uses the actor-critic method for
105
+ mode selection, subchannel selection, and power control in an
106
+ urban platoon scenario to increase the transmission probability
107
+ of cooperative awareness messages.
108
+ This paper considers a highway C-V2X system consisting
109
+ of multiple platoons. We consider the periodic payload deliv-
110
+ ery from PLs to RSUs, termed V2I links. Furthermore, we
111
+ consider the periodic transmission of messages from PLs to
112
+ members, termed V2V links. We assume a limited spectrum
113
+ is available for the V2V and V2I transmission, and they share
114
+ the frequency resources for efficient spectrum usage. Given
115
+ this system, this paper formulates a dynamic PL selection,
116
+ user association, channel assignment, and power level control
117
+ to maximize the packet delivery probability for both V2V and
118
+ V2I links. Reliability is defined as the successful transmission
119
+ of the packet within a time constraint T [12], [13].
120
+ We utilize MARL in a distributed manner. The RL works
121
+ on a trial-and-error strategy, and each agent slowly improves
122
+ the action taken based on the feedback from the vehicular
123
+ environment. We use the Deep Q-learning algorithm, which
124
+ DeepMind developed for Atari video games [15]. Deep Q-
125
+ Learning has been used for joint channel assignment and
126
+ power allocation in C-V2X systems [12], [13]. However,
127
+ we also use Deep Q-learning for user association and PL
128
+ selection. As per our knowledge, dynamic PL selection has
129
+ not been investigated in the literature. In our work, there
130
+ are multiple collaborative agents for PL selection, V2V joint
131
+ channel assignment and power allocation, and V2I joint user
132
+ association and power allocation. The objective is to increase
133
+ reliability for both V2V and V2I links. Simulation results
134
+ indicate that the proposed MARL algorithm can outperform
135
+ other benchmarks, such as the hill-climbing algorithm, which
136
+ requires global CSI at the central controller. Moreover, the
137
+ dynamic PL selection offers a gain in V2V and V2I reliability.
138
+ II. SYSTEM MODEL AND PROBLEM FORMULATION
139
+ Road Side Unit (RSU)
140
+ V2V link
141
+ V2I link
142
+ Platoon Leader
143
+ Platoon Member
144
+ Fig. 1.
145
+ Illustrative C-V2X based highway, where multiple platoon leaders
146
+ are transmitting to RSUs using the V2I links, and each platoon leader is
147
+ transmitting to its platoon members using the V2V links.
148
+ As illustrated in Fig. 1, we consider a highway-based C-
149
+ V2X System, outlined in [4]. The highway consists of 3
150
+ lanes on both sides. The roadside units (RSUs) are placed in
151
+ the middle of the highway, with 100 m between them. RSU
152
+ is a stationary communicating device capable of exchanging
153
+ messages with other V2X devices. We consider there are K
154
+ RSUs on the highway. Furthermore, we consider there are
155
+ M platoons, with O vehicles in each platoon. The PL is
156
+ required to share the real-time data with the RSUs so that
157
+ the RSUs can form a dynamic map of the surrounding traffic.
158
+ We refer to the message exchange from PLs to RSUs as
159
+ V2I communication. Moreover, the PLs need to periodically
160
+ transmit the cooperative awareness messages and the traffic
161
+ data received from RSUs to the platoon members. In this
162
+ paper, we refer to the communication from the PL to platoon
163
+ members as V2V communications. Each platoon is denoted as
164
+ m, and the platoon leader is denoted as m′. In our simulations,
165
+ the PL selection is dynamic, and all vehicles in a platoon are
166
+ candidates for becoming the PL. The vehicles in a platoon are
167
+ in the same lane, each with a single PL at a given time. It is
168
+ considered that the vehicles are separated by a fixed distance
169
+ of d meters and are traveling with a velocity of v m/s. It is
170
+ considered that the vehicles and RSUs use a single antenna to
171
+ transmit/receive the signal.
172
+ We consider that a fixed and limited number of sub-bands
173
+ are available for both V2V and V2I links, denoted as N.
174
+ Each sub-band has a bandwidth of W. The PL needs to
175
+ transmit a payload of size BV 2I to the RSUs, and a payload
176
+ of BV 2V to the platoon members, within a time constraint
177
+ of T. We assume that both V2V and V2I links use the
178
+ same spectrum for efficient spectrum utilization. However, all
179
+ the V2V and V2I links can interfere, making an intelligent
180
+ design for interference management necessary. The set of
181
+ RSUs, platoons, and sub-bands are denoted as K, M, and N,
182
+ respectively. Meanwhile, the set of members in each platoon
183
+ is denoted as Vm, m = 1, . . . , O. In the paper, Lab refers to
184
+ the large-scale fading power from transmitter a to receiver b.
185
+ The small-scale fading power from a to b in the sub-band n
186
+ is given by gab[n]. The ρab[n] is used as an indicator function
187
+ set to 1 if the link ab reuses the sub-band n and 0 otherwise.
188
+ The V2I links consist of communication from the PL to the
189
+ RSU. Each PL m′ is required to transmit a fixed payload of
190
+ BV 2I to the RSUs within a time constraint of T. We assume
191
+ each RSU has a sub-band preassigned to it. Each RSU k will
192
+ experience interference from other V2V and V2I links using
193
+ the same sub-band n. Thus, the typical signal-to-interference
194
+ (SINR) for a V2I link m′k can be written as:
195
+ SINRm′k[n] = Pm′kLm′kgm′k[n]
196
+ Ik + σ2
197
+ k
198
+ (1)
199
+ Here, the interference at the RSU receiver is denoted by Ik
200
+ Ik =
201
+
202
+ k∈K
203
+
204
+ a̸=m
205
+ ρa′k[n]Pa′kLa′kga′k[n]+
206
+ M
207
+
208
+ m=1
209
+
210
+ o∈Vm
211
+ ρm′o[n]Pm′oLm′ogm′o[n]
212
+ (2)
213
+ In (1), the σ2
214
+ k is the noise power at the RSU. For simplicity,
215
+ we assume that the noise power at all RSUs is equal.
216
+
217
+ Given the SINR, the achievable rate for the V2I link from
218
+ m can be written as:
219
+ Rm = W log2(1 + SINRm′k[n])
220
+ (3)
221
+ Meanwhile, the V2V link consists of communications be-
222
+ tween the PL and the members. Each PL m′ is required to
223
+ transmit a fixed payload of size BV 2V to each of its members o
224
+ in the time constraint T. The platoon member o will experience
225
+ interference from the other V2V and V2I links using the same
226
+ sub-band n. The SINR for a platoon member o in platoon m
227
+ can be written as:
228
+ SINRmo[n] = Pm′oLm′ogm′o[n]
229
+ Io + σ2o
230
+ (4)
231
+ Here, the interference at member o is denoted by Io
232
+ Io =
233
+
234
+ k∈K
235
+
236
+ m∈M
237
+ ρm′k[n]Pm′kLm′o,kgm′o,k[n]+
238
+ M
239
+
240
+ a=1,a̸=m
241
+ ρa′x[n]Pa′xLa′,moga′,mo[n]
242
+ (5)
243
+ where x denotes the platoon members in platoon a.
244
+ Given the SINR, the achievable rate for the platoon member
245
+ o in platoon m can be written as:
246
+ Rmo =
247
+ W
248
+ O − 1 log2(1 + SINRmo[n])
249
+ (6)
250
+ where we divide the bandwidth equally among the platoon
251
+ members.
252
+ A. Problem Formulation
253
+ We consider a multi-objective optimization problem, where
254
+ we simultaneously maximize the payload delivery proba-
255
+ bility for the V2V and V2I links. For the V2I link, the
256
+ objective for each PL is to transmit the payload BV 2I
257
+ to the RSUs within a time limit of T. This is given by
258
+ P(∆T
259
+ �T
260
+ t=1
261
+ �N
262
+ n=1 ρmk[n, t] ≥ BV 2I), ∀m ∈ M, where
263
+ ∆T is the channel coherence time. Meanwhile, for the V2V
264
+ links, the objective is to maximize the delivery of pay-
265
+ load BV 2V
266
+ within a time limit of T. This is given by
267
+ P(∆T
268
+ �T
269
+ t=1
270
+ �N
271
+ n=1 ρmo[n, t] ≥ BV 2V ), ∀m ∈ M, o ∈ Vm.
272
+ Due to the spectrum sharing between the V2V and V2I
273
+ links, we need to optimize two competing objectives of simul-
274
+ taneously maximizing the V2V and the V2I payload delivery
275
+ probability. To achieve this, we use MARL for multiple
276
+ objectives:
277
+ 1) Platoon Leader selection: For each platoon m, the PL
278
+ will be selected dynamically and periodically. The pla-
279
+ toon will decide which vehicle is the most suitable for
280
+ being the leader so that both objectives can be met.
281
+ 2) Joint User Association and power allocation for V2I
282
+ links: Each PL m′ will need to decide which RSU k
283
+ it needs to be served by, along with its transmit power
284
+ level Pm′k
285
+ 3) Joint channel assignment and power allocation for V2V
286
+ links: Each PL m′ needs to decide the channel n and
287
+ transmit power Pm′o to transmit to its platoon members.
288
+ III. OPTIMAL ACTION SELECTION USING DEEP
289
+ REINFORCEMENT LEARNING
290
+ A. Reinforcement Learning and Deep Q Learning
291
+ Reinforcement Learning (RL) is a discipline of Machine
292
+ Learning (ML) where an agent can make a sequence of
293
+ decisions by interacting with an environment. Based on the
294
+ reward received by taking action, the agent learns to become
295
+ intelligent. The agent aims to take actions that maximize
296
+ the long-term cumulative reward. Markov Decision Process
297
+ (MDP) is used to model an RL problem. According to the
298
+ Markov property, the current state captures all relevant infor-
299
+ mation from history. At each time-step t, the agent observes
300
+ the environment through the state st and takes an action at.
301
+ The agent receives a reward rt and transitions into a new
302
+ state st+1. In RL, the goal of the agents is to maximize the
303
+ cumulative reward Gt it receives in the long run, given by
304
+ Gt = �∞
305
+ k=0 γkrk+t where γ ∈ [0, 1] represents the discount
306
+ factor which reduces the present value of the future rewards.
307
+ The action-value function Qπ(s, a) is defined as the ex-
308
+ pected return by taking an action a in state s by following
309
+ a policy π: Qπ(s, a) = Eπ[Gt|St = s, At = a] where the
310
+ expectation is taken over all possible transitions following the
311
+ distribution π. The goal of RL is to find the optimal policy
312
+ π∗ that maximizes the Q-function over all the policies.
313
+ Q-learning is an off-policy RL algorithm that learns the
314
+ value of an action a in a state s. It repetitively updates the
315
+ action-value function for each state-action pair (s, a) until
316
+ they converge to the optimal action-value function Q∗(s, a).
317
+ The update equation is given by: Q(st, at) ← Q(st, at) +
318
+ α[rt+1 + γ maxa′ Q(st+1, a′) − Q(st, at)] where α represents
319
+ the learning rate. If the Q-function is estimated accurately,
320
+ the optimal policy π∗ at a given state s would be to select
321
+ the action a∗ that yields the highest value. The Deep Q-
322
+ Learning [16] uses a Deep Neural Network (DNN) as a
323
+ function approximator to learn the Q-function. The state space
324
+ is input to the DNN, and it learns to predict the Q-value for
325
+ each output action. The state-action space is explored with a
326
+ soft policy such as ϵ-greedy, where the agent takes random
327
+ action at a given state st at time t with a probability of
328
+ ϵ. Otherwise, greedy action a∗ = arg maxa∈A Q∗(st, a) is
329
+ selected. The tuple < st, at, rt, st+1 > is stored in the replay
330
+ memory at each time instance. At each time-step, a mini-
331
+ batch is sampled from the replay memory to update the DNN
332
+ parameters θ, and the gradient descent algorithms are used to
333
+ update the parameters θ.
334
+ B. Multi-Agent Reinforcement Learning for optimization
335
+ In this section, we formulate the multi-agent RL algorithm
336
+ for optimization. There will be three different types of agents,
337
+ all based within the vehicles in the platoon. The first agent
338
+ type will be the PL selection, which will dynamically decide
339
+ the PL every 100 ms. The second type of agent will be the
340
+
341
+ V2V platoon, which needs to determine the joint channel
342
+ assignment and power allocation. Meanwhile, the third type
343
+ of agent will be the V2I agent, which will need to optimize
344
+ joint user association and power allocation. All the agents will
345
+ interact with the environment and learn to take optimal actions
346
+ by trial and error. Furthermore, we use a common reward for
347
+ all the agents to ensure collaboration. Moreover, each agent
348
+ has a separate DQN and only uses its own experience to train
349
+ the DNN.
350
+ We develop two phases for the MARL problem: training
351
+ and testing. During the training phase, each agent can access
352
+ the common reward to train the DQN. Meanwhile, during the
353
+ testing phase, each agent uses the trained DQN to select the
354
+ action optimally.
355
+ 1) State and Action Space for Platoon Leader Selection:
356
+ For the platoon leader selection agent, the state space Zpl(t)
357
+ consist of the measurements at time-step t. The state space
358
+ consists of the following measurements: i) The large-scale fad-
359
+ ing information between all members within a platoon m, i.e.,
360
+ {Lab}(a,b)∈Vm; ii) The large-scale fading information between
361
+ all vehicles in platoon m to all RSUs, i.e., {Lok}k∈K,o∈Vm.
362
+ Meanwhile, the action space consists of the PL selection. The
363
+ action is updated every 100 ms.
364
+ 2) State and Action Space for V2V agent:
365
+ The state
366
+ space of the V2V agent, denoted by Zv2v(t), consists of
367
+ the measurements from the last time-step t and consists of
368
+ the following groups: i) Direct channel measurements from
369
+ the PL m′ to the members, i.e., {Lm′ogm′o[n]}o∈Vm ii)
370
+ The interfering channels from other PLs sharing the same
371
+ sub-band with the V2V agent m, which occupies the sub-
372
+ band n, i.e., {ρa′x[n]Pa′xLa′,moga′mo}a∈M,a̸=m,x∈Va iii) The
373
+ interfering channels from the V2I links to the RSU, i.e.,
374
+ {ρm′k[n]Pm′kLm′o,kgm′ok}o∈Vm,k∈K iv) The remaining pay-
375
+ load and time limitation after the current time-step.
376
+ Meanwhile, the action space consists of the combination
377
+ of sub-band selection and power allocation. The sub-band
378
+ consists of N disjoint sub-bands, and the power levels are
379
+ broken down into multiple discrete levels in the range [0, Pd],
380
+ where Pd denotes the maximum power.
381
+ 3) State and Action Space for V2I agent: The state space
382
+ of the V2I agent, denoted by Zv2i(t), for the PL m′, consists
383
+ of the measurements from the last time-step t and consists of
384
+ the following groups: i) Direct channel measurements from
385
+ the PL m′ to all the RSUs, i.e., {Lm′kgm′k}k∈K ii) The
386
+ remaining payload and time remaining after current time-step.
387
+ iii) The training iteration number e and the agent’s probability
388
+ of random action selection ϵ.
389
+ The action space consists of the RSU selected and the power
390
+ level. We assume that each RSU uses a fixed sub-band. There
391
+ are K RSUs to select from and transmit at a power divided
392
+ into multiple discrete levels in the range [0, Pd].
393
+ 4) Reward function design: We use a common reward
394
+ for all the agents in our proposed MARL design to ensure
395
+ collaboration. We have a multi-objective problem, which is
396
+ to maximize the payload delivery probability for the PL to
397
+ RSU V2I links, and maximize the payload delivery probability
398
+ for the PL to platoon members V2V links, within the time
399
+ constraint T. The V2V and V2I agents need to select actions
400
+ to minimize interference between each other. To achieve this
401
+ purpose, we define the reward at time-step t, denoted as rt,
402
+ as:
403
+ rt = wc
404
+ M
405
+
406
+ m=1
407
+
408
+ o∈Vm
409
+ Umo(t) + wd
410
+ M
411
+
412
+ m=1
413
+ Vm(t)
414
+ (7)
415
+ where Umo(t) is the contribution towards the reward of the
416
+ V2V link m′o and Vm(t) is the contribution of the V2I link
417
+ from PL m′ to RSU. Furthermore, wc, wd ∈ [0, 1] are weights
418
+ to balance the two objectives.
419
+ Umo(t) is the achievable rate of the PL to platoon member
420
+ link mo, defined as:
421
+ Umo(t) =
422
+
423
+ Rmo(t),
424
+ if Bmo(t) ≥ 0,
425
+ U,
426
+ otherwise.
427
+ (8)
428
+ where Bmo(t) is the remaining payload for the V2V link mo at
429
+ time-step t. Furthermore, if the payload intended for link mo
430
+ has been delivered, the agent is given an award U, which needs
431
+ to be greater than the maximum rate achievable, to indicate
432
+ to the agent the successful transmission of the payload. U is
433
+ a hyperparameter that needs to be adjusted empirically [12].
434
+ Similarly, Vm(t) is the achievable rate of the PL to RSU
435
+ link, defined as:
436
+ Vm(t) =
437
+
438
+ Rm(t),
439
+ if Bm(t) ≥ 0,
440
+ V,
441
+ otherwise.
442
+ (9)
443
+ where Bm(t) is the payload that PL m′ needs to transmit to
444
+ the RSUs. V is a hyperparameter, which needs to be greater
445
+ than the maximum achievable rate of the V2I link.
446
+ C. Training Algorithm and Testing Strategy
447
+ We devise the problem as an episodic setting, where each
448
+ episode corresponds to the time limit T for the V2V and V2I
449
+ links to complete their transmission. Each episode consists
450
+ of multiple time-steps t. The vehicle location and large-scale
451
+ fading are updated every 100 ms [4]. Meanwhile, the small-
452
+ scale fading is updated at each time-step t, changing the state
453
+ space for the V2V and V2I agents and prompting the agents to
454
+ adjust their actions. Each agent stops its transmission once its
455
+ payload has been delivered. The training is centralized, where
456
+ each agent has access to the common reward rt. Deep Q-
457
+ Learning is used to train the agent. The algorithm is outlined
458
+ in Algorithm 1.
459
+ During the testing phase, each agent observes the state. The
460
+ state is input to the trained DQN, which is used to select the
461
+ optimal action. The testing is implemented in a distributed
462
+ manner, where each agent takes action based on their local
463
+ state observation only.
464
+ IV. ILLUSTRATIVE RESULTS
465
+ This section presents the simulation results to illustrate the
466
+ performance of our algorithm. We consider a highway setting
467
+ as described in TR 37.885 [4], with the carrier frequency
468
+ of 6 GHz. The technical report provides all details, such
469
+
470
+ Algorithm 1 Training Algorithm
471
+ 1: Initiate the environment and generate the V2I and V2V links
472
+ 2: Initiate the DQN with random parameters θ
473
+ 3: for each episode i do
474
+ 4:
475
+ if i%20 = 0 then
476
+ 5:
477
+ Update the vehicle locations and large-scale fading
478
+ 6:
479
+ for each PL selection agent n1 do
480
+ 7:
481
+ Observe the state st1 for PL selection and take action
482
+ at1
483
+ 8:
484
+ end for
485
+ 9:
486
+ end if
487
+ 10:
488
+ for each time-step t do
489
+ 11:
490
+ Update small-scale channel fading
491
+ 12:
492
+ for each V2V agent n2 do
493
+ 13:
494
+ Observe the state st2
495
+ 14:
496
+ end for
497
+ 15:
498
+ for each V2I agent n3 do
499
+ 16:
500
+ Observe the state st3
501
+ 17:
502
+ end for
503
+ 18:
504
+ All agents take actions simultaneously according to the
505
+ ϵ−greedy policy and receive the common reward rt
506
+ 19:
507
+ for each agent {n1, n2, n3} do
508
+ 20:
509
+ Observe the next state st+1
510
+ 21:
511
+ Store et = [st, at, rt, st+1] in the replay memory
512
+ 22:
513
+ end for
514
+ 23:
515
+ end for
516
+ 24:
517
+ for each agent {n1, n2, n3} do
518
+ 25:
519
+ Uniformly sample mini-batch data D from replay memory
520
+ 26:
521
+ Train the deep Q-networks using the mini-batch data.
522
+ 27:
523
+ end for
524
+ 28: end for
525
+ as evaluation scenarios, vehicle drop and mobility modeling,
526
+ RSU deployment, and channel models for V2V and V2I links.
527
+ The small-scale fading is modeled as Rayleigh fading. We
528
+ consider a highway with a length of 1 km, with 3 lanes for
529
+ traffic on both sides. The RSUs are placed in the middle of
530
+ the highway, with a distance of 100 m between them. We use
531
+ option A in UE drop options in Section 6.1.2 of TR 37.885
532
+ [4]. The type 3 vehicles (bus/tracks) are used, with a length of
533
+ 13 m and 2 m distance between each in a platoon. All vehicles
534
+ travel with a velocity of 140 km/h. Each V2V platoon consists
535
+ of 3 vehicles. Moreover, the antenna on vehicles is placed in
536
+ the middle of each vehicle. As per TS 22.185 [3], the V2V
537
+ and V2I links need to complete their transmission in 10 ms.
538
+ However, we set T as 5 ms, assuming the other 5 ms will
539
+ be used for communication in other directions, i.e., platoon
540
+ member to platoon leader. The main simulation parameters
541
+ are listed in Table I.
542
+ The DQN was implemented in Python using the Tensorflow
543
+ package. The DNN for all 3 types of agents consisted of 3
544
+ hidden layers. The DNN of PL selection agents had 71, 35,
545
+ and 17 neurons, the DNN of V2V agents had 100, 50, and
546
+ 24 neurons; and the DNN of V2I agents had 166, 83, and
547
+ 40 neurons in their hidden layers, respectively. The rectified
548
+ linear unit (ReLU) was us as the activation function for all
549
+ 3 types of agents. RMSProp was used for optimization for
550
+ all agents, and learning rates of 0.0001, 0.0001, and 0.001
551
+ were used for PL selection agents, V2V agents, and V2I
552
+ agents, respectively. The wc and wd in (7) were set as 0.3
553
+ and 0.7, respectively. Meanwhile, the hyperparameters U in
554
+ TABLE I
555
+ SIMULATION PARAMETERS
556
+ Carrier frequency
557
+ 6 GHz
558
+ Bandwidth of each sub-band
559
+ 1 MHz
560
+ Number of sub-bands N
561
+ 2
562
+ Number of RSUs K
563
+ 11
564
+ Number of platoons M
565
+ [4,6]
566
+ Number of vehicles in each platoon O
567
+ 3
568
+ Vehicle velocity v
569
+ 140 km/h
570
+ Tx power for V2V links
571
+ [23, 15, 5, -100] dBm
572
+ Tx power for V2I links
573
+ [23, -100] dBm
574
+ Vehicle Antenna gain
575
+ 3 dBi
576
+ Vehicle receiver noise figure
577
+ 9 dB
578
+ Noise PSD
579
+ -169 dBm/Hz
580
+ Time constraint T
581
+ 5 ms
582
+ Platoon Leader update interval
583
+ 100 ms
584
+ V2V payload BV 2V
585
+ [1200,.....,2800] bytes
586
+ V2I payload BV 2I
587
+ 624 bytes
588
+ (8) and V in (9) were selected as 25 and 15, respectively. The
589
+ training phase consisted of 2000 episodes, and the testing was
590
+ performed for 100 episodes. The ϵ-greedy policy was used
591
+ during the training, and the value of ϵ was reduced linearly
592
+ from 1 to 0.02 for 1600 episodes. The training was performed
593
+ setting BV 2V as 2400 bytes and was varied between 1200-
594
+ 2800 bytes during testing. Meanwhile, BV 2I was set to 624
595
+ bytes during the training and testing phases.
596
+ We developed three benchmarks for comparison: 1) Hill-
597
+ climbing algorithm [17]: Hill-climbing algorithm is a local
598
+ search optimization method, guaranteed to reach a local opti-
599
+ mum. It is a centralized iterative algorithm, which starts with a
600
+ random solution, and then iteratively keeps improving it until
601
+ it reaches an optimum. The algorithm is used as an upper
602
+ benchmark in our paper. 2) Greedy Algorithm: Each agent
603
+ uses the best link available to transmit at maximum power. 3)
604
+ RL algorithm without PL selection: We run the RL algorithm,
605
+ fixing the leading vehicle in each platoon as the platoon leader.
606
+ This is to show the effectiveness of PL selection agents.
607
+ 0
608
+ 200
609
+ 400
610
+ 600
611
+ 800
612
+ 1000
613
+ 1200
614
+ 1400
615
+ 1600
616
+ 1800
617
+ 2000
618
+ Training episodes
619
+ 2
620
+ 3
621
+ 4
622
+ 5
623
+ 6
624
+ 7
625
+ 8
626
+ Cummulative reward per episode
627
+ Fig. 2. Cumulative reward per episode for M = 4
628
+ Fig. 2 shows the cumulative reward for each episode for
629
+ the case of 4 platoons. The reward increases during training,
630
+ indicating that the agents can collaborate.
631
+
632
+ 6
633
+ 7
634
+ 8
635
+ 9
636
+ 10
637
+ 11
638
+ 12
639
+ 13
640
+ 14
641
+ V2V payload size BV2V (
642
+ 200 bytes)
643
+ 0.7
644
+ 0.75
645
+ 0.8
646
+ 0.85
647
+ 0.9
648
+ 0.95
649
+ 1
650
+ Average V2V payload success rate
651
+ Proposed RL algorithm
652
+ Hill climbing algorithm
653
+ RL algorithm without PL selection
654
+ Greedy Algorithm
655
+ 4 platoons
656
+ 6 platoons
657
+ (a) Average V2V payload delivery probability
658
+ 6
659
+ 7
660
+ 8
661
+ 9
662
+ 10
663
+ 11
664
+ 12
665
+ 13
666
+ 14
667
+ V2V payload size BV2V (
668
+ 200 bytes)
669
+ 0.8
670
+ 0.82
671
+ 0.84
672
+ 0.86
673
+ 0.88
674
+ 0.9
675
+ 0.92
676
+ 0.94
677
+ 0.96
678
+ 0.98
679
+ 1
680
+ Average V2I payload success rate
681
+ Proposed RL algorithm
682
+ Hill climbing algorithm
683
+ RL algorithm without PL selection
684
+ Greedy Algorithm
685
+ 4 platoons
686
+ 6 platoons
687
+ (b) Average V2I payload delivery probability
688
+ Fig. 3. V2V and V2I performance for M = 4 and M = 6.
689
+ Fig. 3 shows the reliability of V2V and V2I links as we
690
+ increase BV 2V for the cases of 4 and 6 platoons. Fig. 3a
691
+ shows that the V2V performance decreases as we increase the
692
+ packet size. This is because a larger payload size requires
693
+ a longer time to transmit. For 4 platoons, we achieve a
694
+ reliability of 1 for up to 2200 bytes, outperforming all the other
695
+ benchmarks. Fig. 3b shows that for 4 platoons, the payload
696
+ success rate for V2I links is 0.9975 for all cases. However,
697
+ the hill-climbing and greedy algorithm performance decrease,
698
+ indicating more significant interference as we increase V2V
699
+ payload size. When we increase the number of platoons to 6,
700
+ the performance gap between the proposed algorithm and the
701
+ hill-climbing algorithm increases, which shows the superiority
702
+ of our algorithm for a higher number of agents. Furthermore,
703
+ it can be seen that dynamic platoon leader selection improves
704
+ performance for both V2V and V2I links.
705
+ V. CONCLUSION
706
+ In this work, we proposed a distributed multi-agent rein-
707
+ forcement learning algorithm to optimize the performance of
708
+ the V2V and the V2I links. The V2V and V2I links used
709
+ the same spectrum, making an intelligent resource allocation
710
+ design necessary to manage interference. Each platoon leader
711
+ had an agent for joint channel assignment and power allocation
712
+ for V2V links, and another agent for joint user association
713
+ and power allocation for V2I links. Further, another agent was
714
+ able to select the platoon leader, to maximize the reliability
715
+ of both V2V and V2I links. Based on RL, the agents could
716
+ collaborate to take optimal actions. The proposed approach
717
+ is decentralized, and the agents were able to make decisions
718
+ based on their local state observations only. Simulation results
719
+ indicate that the proposed algorithm could perform well for
720
+ variable V2V packet size and different numbers of platoons,
721
+ outperforming the centralized hill-climbing algorithm. More-
722
+ over, the PL selection improved reliability for both V2V and
723
+ V2I links.
724
+ REFERENCES
725
+ [1] H. Abou-Zeid, F. Pervez, A. Adinoyi, M. Aljlayl, and H. Yanikomeroglu,
726
+ “Cellular V2X transmission for connected and autonomous vehicles
727
+ standardization, applications, and enabling technologies,” IEEE Con-
728
+ sumer Electronics Magazine, vol. 8, no. 6, pp. 91–98, 2019.
729
+ [2] “3rd Generation Partnership Project; Technical Specification Group
730
+ Services and System Aspects; Architecture enhancements for 5G System
731
+ (5GS) to support Vehicle-to-Everything (V2X) services (Release 17) ,”
732
+ TS 23.287 V17.4.0, Sep. 2022.
733
+ [3] “3rd Generation Partnership Project; Technical Specification Group
734
+ Services and System Aspects; Study on enhancement of 3GPP Support
735
+ for 5G V2X Services (Release 16) ,” TR 22.886 V16.2.0, Dec. 2018.
736
+ [4] “3rd Generation Partnership Project; Technical Specification Group Ra-
737
+ dio Access Network; Study on evaluation methodology of new Vehicle-
738
+ to-Everything (V2X) use cases for LTE and NR; (Release 15) ,” TR
739
+ 37.885 V15.3.0, Jun. 2019.
740
+ [5] K. Sehla, T. M. T. Nguyen, G. Pujolle, and P. B. Velloso, “Resource
741
+ Allocation Modes in C-V2X: From LTE-V2X to 5G-V2X,” IEEE
742
+ Internet of Things Journal, vol. 9, no. 11, pp. 8291–8314, 2022.
743
+ [6] S. Yi, G. Sun, and X. Wang, “Enhanced resource allocation for 5G V2X
744
+ in congested smart intersection,” in 2020 IEEE 92nd Veh. Tech. Conf.
745
+ [7] Y. Yoon and H. Kim, “A stochastic reservation scheme for aperiodic
746
+ traffic in NR V2X communication,” in 2021 IEEE Wireless Commun.
747
+ Networking Conf. (WCNC).
748
+ [8] M. Segata, P. Arvani, and R. L. Cigno, “A critical assessment of C-V2X
749
+ resource allocation scheme for platooning applications,” in ”2021 IEEE
750
+ Wireless On-demand Network Systems and Services Conf. (WONS)”.
751
+ [9] A. Masmoudi, K. Mnif, and F. Zarai, “A survey on radio resource
752
+ allocation for V2X communication,” Wireless Communications and
753
+ Mobile Computing, vol. 2019.
754
+ [10] M. Allouch, S. Kallel, A. Soua, O. Shagdar, and S. Tohme, “Survey on
755
+ radio resource allocation in long-term evolution-vehicle,” Concurrency
756
+ and Computation: Practice and Experience, vol. 34, no. 7, 2022.
757
+ [11] A. Alwarafy, M. Abdallah, B. S. Ciftler, A. Al-Fuqaha, and M. Hamdi,
758
+ “Deep reinforcement learning for radio resource allocation and manage-
759
+ ment in next generation heterogeneous wireless networks: A survey,”
760
+ arXiv preprint arXiv:2106.00574, 2021.
761
+ [12] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks
762
+ based on multi-agent reinforcement learning,” IEEE J. Sel. Areas Com-
763
+ mun., vol. 37, no. 10, pp. 2282–2292, 2019.
764
+ [13] H. V. Vu, M. Farzanullah, Z. Liu, D. H. Nguyen, R. Morawski,
765
+ and T. Le-Ngoc, “Multi-Agent Reinforcement Learning for Channel
766
+ Assignment and Power Allocation in Platoon-Based C-V2X Systems,”
767
+ in 2022 IEEE 95th Veh. Tech. Conf.
768
+ [14] M. Parvini et al., “AoI-aware resource allocation for platoon-based C-
769
+ V2X networks via multi-agent multi-task reinforcement learning,” arXiv
770
+ preprint arXiv:2105.04196, 2021.
771
+ [15] Mnih et al., “Human-level control through deep reinforcement learning,”
772
+ nature, vol. 518, no. 7540, pp. 529–533, 2015.
773
+ [16] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
774
+ tion, King’s College, Cambridge United Kingdom, May 1989.
775
+ [17] S. J. Russell, Artificial intelligence a modern approach.
776
+ Pearson
777
+ Education, Inc., 2010.
778
+
LtE1T4oBgHgl3EQfZAR1/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf,len=480
2
+ page_content='Platoon Leader Selection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
3
+ page_content=' User Association and Resource Allocation on a C-V2X based highway: A Reinforcement Learning Approach Mohammad Farzanullah and Tho Le-Ngoc Department of Electrical & Computer Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
4
+ page_content=' McGill University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
5
+ page_content=' Montr´eal,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
6
+ page_content=' QC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
7
+ page_content=' Canada Abstract—We consider the problem of dynamic platoon leader selection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
8
+ page_content=' user association,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
9
+ page_content=' channel assignment,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
10
+ page_content=' and power allo- cation on a cellular vehicle-to-everything (C-V2X) based high- way,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
11
+ page_content=' where multiple vehicle-to-vehicle (V2V) and vehicle-to- infrastructure (V2I) links share the frequency resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
12
+ page_content=' There are multiple roadside units (RSUs) on a highway, and vehicles can form platoons, which has been identified as an advanced use case to increase road efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
13
+ page_content=' The traditional optimization methods, requiring global channel information at a central controller, are not viable for high-mobility vehicular networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
14
+ page_content=' To deal with this challenge, we propose a distributed multi-agent reinforcement learning (MARL) for resource allocation (RA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
15
+ page_content=' Each platoon leader, acting as an agent, can collaborate with other agents for joint sub-band selection and power allocation for its V2V links, and joint user association and power control for its V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
16
+ page_content=' Moreover, each platoon can dynamically select the vehicle most suitable to be the platoon leader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
17
+ page_content=' We aim to maximize the V2V and V2I packet delivery probability in the desired latency using the deep Q-learning algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
18
+ page_content=' Simulation results indicate that our proposed MARL outperforms the centralized hill-climbing algorithm, and platoon leader selection helps to improve both V2V and V2I performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
19
+ page_content=' Index Terms—New radio, cellular vehicle-to-everything, rein- forcement learning, resource allocation I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
20
+ page_content=' INTRODUCTION Cellular vehicle-to-everything (C-V2X) is a vehicular stan- dard that enables communication between vehicles and other entities on the road, such as pedestrians and infrastructure, to increase road safety and efficiency [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
21
+ page_content=' The C-V2X system consists of communication between different entities, such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P) communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
22
+ page_content=' The C-V2X is envisioned to support high throughput, ultra-reliable, and low latency communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
23
+ page_content=' 3GPP has provided the 5G new radio (NR) standards for vehicular communications concerning architecture in TS 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
24
+ page_content='287 [2], advanced use cases in TS 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
25
+ page_content='886 [3], and eval- uation methodology in TR 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
26
+ page_content='885 [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
27
+ page_content=' One component of infrastructure will be the roadside units (RSUs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
28
+ page_content=' RSU is a stationary wireless C-V2X device that can exchange messages with vehicles and other C-V2X entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
29
+ page_content=' It uses the PC5 side-link interface to communicate with the vehicles and transmit information about road signs and traffic lights [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
30
+ page_content=' It can also receive information from the vehicles to make a dynamic map of the surroundings and share it with other vehicles/pedestrians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
31
+ page_content=' Furthermore, we consider the use-case of platooning, where multiple vehicles form a train-like structure and travel closely together in a line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
32
+ page_content=' The platoon leader (PL) organizes communications between vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
33
+ page_content=' Vehicle platoon- ing has been identified as an advanced use case in [3] and has gained significant interest since it reduces fuel consumption and traffic congestion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
34
+ page_content=' The RSU and platoon will need to exchange a maximum of 1200 bytes in 500 ms for real- time traffic updates and 600 bytes in 10 ms for conditional automated driving [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
35
+ page_content=' We grouped these two requirements for an aggregate of 624 bytes in 10 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
36
+ page_content=' Moreover, the PL and members need to exchange 50-1200 bytes in 10 ms for cooperative driving and up to 2000 bytes in 10 ms for collision avoidance [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
37
+ page_content=' We aggregate these service requirements and keep the exchange of 1200-2800 bytes in 10 ms for our simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
38
+ page_content=' An intelligent resource allocation (RA) design is necessary for these stringent requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
39
+ page_content=' The 5G new radio (NR) C-V2X supports two RA modes for sidelink PC5 communications: mode 1, the under-coverage mode, and mode 2, the out-of-coverage mode [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
40
+ page_content=' In mode 1, the gNB allocates the communication resources to vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
41
+ page_content=' Meanwhile, in mode 2, the vehicles autonomously select the resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
42
+ page_content=' For mode 2, the current RA technique used in standards is the sensing-based Semi-Persistent Scheduling (SPS) algorithm, which periodically selects random resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
43
+ page_content=' However, the probability of resource selection collision can be high, and many works have considered either improving the SPS algorithm or alternate techniques to increase reliability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
44
+ page_content=' [6] proposes a novel sensing-based SPS algorithm in an urban scenario to reduce the collision probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
45
+ page_content=' The authors in [7] considered a highway scenario and suggested a stochastic reservation scheme for aperiodic traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
46
+ page_content=' For the platooning use case, [8] shows that the SPS algorithm can not achieve the required performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
47
+ page_content=' Due to the fast channel variations in vehicular networks, centralized optimization schemes that require global channel state information (CSI) will no longer be feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
48
+ page_content=' The high CSI overhead and the corresponding increase in latency make such methods impractical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
49
+ page_content=' To deal with this issue, distributed RA algorithms have been suggested in the literature, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
50
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
51
+ page_content=', [9], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
52
+ page_content=' Furthermore, traditional optimization techniques have limitations, requiring complete information about the environ- ment and needing to be retrained for rapidly varying envi- ronments [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
53
+ page_content=' Recently, distributed multi-agent reinforcement learning (MARL) has been proposed as an alternative approach to resolving such issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
54
+ page_content=' The authors in [12] used Deep Q Networks (DQN) for joint channel assignment and power allocation to maximize the V2V delivery probability and V2N arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
55
+ page_content='03145v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
56
+ page_content='MA] 9 Jan 2023 sum-rate in an urban setting, where the V2V links share the time-frequency resources with V2N links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
57
+ page_content=' Inspired by these results, [13] used double DQN for a platoon-based scenario for the same objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
58
+ page_content=' [14] uses the actor-critic method for mode selection, subchannel selection, and power control in an urban platoon scenario to increase the transmission probability of cooperative awareness messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
59
+ page_content=' This paper considers a highway C-V2X system consisting of multiple platoons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
60
+ page_content=' We consider the periodic payload deliv- ery from PLs to RSUs, termed V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
61
+ page_content=' Furthermore, we consider the periodic transmission of messages from PLs to members, termed V2V links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
62
+ page_content=' We assume a limited spectrum is available for the V2V and V2I transmission, and they share the frequency resources for efficient spectrum usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
63
+ page_content=' Given this system, this paper formulates a dynamic PL selection, user association, channel assignment, and power level control to maximize the packet delivery probability for both V2V and V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
64
+ page_content=' Reliability is defined as the successful transmission of the packet within a time constraint T [12], [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
65
+ page_content=' We utilize MARL in a distributed manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
66
+ page_content=' The RL works on a trial-and-error strategy, and each agent slowly improves the action taken based on the feedback from the vehicular environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
67
+ page_content=' We use the Deep Q-learning algorithm, which DeepMind developed for Atari video games [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
68
+ page_content=' Deep Q- Learning has been used for joint channel assignment and power allocation in C-V2X systems [12], [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
69
+ page_content=' However, we also use Deep Q-learning for user association and PL selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
70
+ page_content=' As per our knowledge, dynamic PL selection has not been investigated in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
71
+ page_content=' In our work, there are multiple collaborative agents for PL selection, V2V joint channel assignment and power allocation, and V2I joint user association and power allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
72
+ page_content=' The objective is to increase reliability for both V2V and V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
73
+ page_content=' Simulation results indicate that the proposed MARL algorithm can outperform other benchmarks, such as the hill-climbing algorithm, which requires global CSI at the central controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
74
+ page_content=' Moreover, the dynamic PL selection offers a gain in V2V and V2I reliability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
75
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
76
+ page_content=' SYSTEM MODEL AND PROBLEM FORMULATION Road Side Unit (RSU) V2V link V2I link Platoon Leader Platoon Member Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
77
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
78
+ page_content=' Illustrative C-V2X based highway, where multiple platoon leaders are transmitting to RSUs using the V2I links, and each platoon leader is transmitting to its platoon members using the V2V links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
79
+ page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
80
+ page_content=' 1, we consider a highway-based C- V2X System, outlined in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
81
+ page_content=' The highway consists of 3 lanes on both sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
82
+ page_content=' The roadside units (RSUs) are placed in the middle of the highway, with 100 m between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
83
+ page_content=' RSU is a stationary communicating device capable of exchanging messages with other V2X devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
84
+ page_content=' We consider there are K RSUs on the highway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
85
+ page_content=' Furthermore, we consider there are M platoons, with O vehicles in each platoon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
86
+ page_content=' The PL is required to share the real-time data with the RSUs so that the RSUs can form a dynamic map of the surrounding traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
87
+ page_content=' We refer to the message exchange from PLs to RSUs as V2I communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
88
+ page_content=' Moreover, the PLs need to periodically transmit the cooperative awareness messages and the traffic data received from RSUs to the platoon members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
89
+ page_content=' In this paper, we refer to the communication from the PL to platoon members as V2V communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
90
+ page_content=' Each platoon is denoted as m, and the platoon leader is denoted as m′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
91
+ page_content=' In our simulations, the PL selection is dynamic, and all vehicles in a platoon are candidates for becoming the PL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
92
+ page_content=' The vehicles in a platoon are in the same lane, each with a single PL at a given time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
93
+ page_content=' It is considered that the vehicles are separated by a fixed distance of d meters and are traveling with a velocity of v m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
94
+ page_content=' It is considered that the vehicles and RSUs use a single antenna to transmit/receive the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
95
+ page_content=' We consider that a fixed and limited number of sub-bands are available for both V2V and V2I links, denoted as N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
96
+ page_content=' Each sub-band has a bandwidth of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
97
+ page_content=' The PL needs to transmit a payload of size BV 2I to the RSUs, and a payload of BV 2V to the platoon members, within a time constraint of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
98
+ page_content=' We assume that both V2V and V2I links use the same spectrum for efficient spectrum utilization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
99
+ page_content=' However, all the V2V and V2I links can interfere, making an intelligent design for interference management necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
100
+ page_content=' The set of RSUs, platoons, and sub-bands are denoted as K, M, and N, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
101
+ page_content=' Meanwhile, the set of members in each platoon is denoted as Vm, m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
102
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
103
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
104
+ page_content=' , O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
105
+ page_content=' In the paper, Lab refers to the large-scale fading power from transmitter a to receiver b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
106
+ page_content=' The small-scale fading power from a to b in the sub-band n is given by gab[n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
107
+ page_content=' The ρab[n] is used as an indicator function set to 1 if the link ab reuses the sub-band n and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
108
+ page_content=' The V2I links consist of communication from the PL to the RSU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
109
+ page_content=' Each PL m′ is required to transmit a fixed payload of BV 2I to the RSUs within a time constraint of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
110
+ page_content=' We assume each RSU has a sub-band preassigned to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
111
+ page_content=' Each RSU k will experience interference from other V2V and V2I links using the same sub-band n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
112
+ page_content=' Thus, the typical signal-to-interference (SINR) for a V2I link m′k can be written as: SINRm′k[n] = Pm′kLm′kgm′k[n] Ik + σ2 k (1) Here, the interference at the RSU receiver is denoted by Ik Ik = � k∈K � a̸=m ρa′k[n]Pa′kLa′kga′k[n]+ M � m=1 � o∈Vm ρm′o[n]Pm′oLm′ogm′o[n] (2) In (1), the σ2 k is the noise power at the RSU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
113
+ page_content=' For simplicity, we assume that the noise power at all RSUs is equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
114
+ page_content=' Given the SINR, the achievable rate for the V2I link from m can be written as: Rm = W log2(1 + SINRm′k[n]) (3) Meanwhile, the V2V link consists of communications be- tween the PL and the members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
115
+ page_content=' Each PL m′ is required to transmit a fixed payload of size BV 2V to each of its members o in the time constraint T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
116
+ page_content=' The platoon member o will experience interference from the other V2V and V2I links using the same sub-band n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
117
+ page_content=' The SINR for a platoon member o in platoon m can be written as: SINRmo[n] = Pm′oLm′ogm′o[n] Io + σ2o (4) Here, the interference at member o is denoted by Io Io = � k∈K � m∈M ρm′k[n]Pm′kLm′o,kgm′o,k[n]+ M � a=1,a̸=m ρa′x[n]Pa′xLa′,moga′,mo[n] (5) where x denotes the platoon members in platoon a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
118
+ page_content=' Given the SINR, the achievable rate for the platoon member o in platoon m can be written as: Rmo = W O − 1 log2(1 + SINRmo[n]) (6) where we divide the bandwidth equally among the platoon members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
119
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
120
+ page_content=' Problem Formulation We consider a multi-objective optimization problem, where we simultaneously maximize the payload delivery proba- bility for the V2V and V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
121
+ page_content=' For the V2I link, the objective for each PL is to transmit the payload BV 2I to the RSUs within a time limit of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
122
+ page_content=' This is given by P(∆T �T t=1 �N n=1 ρmk[n, t] ≥ BV 2I), ∀m ∈ M, where ∆T is the channel coherence time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
123
+ page_content=' Meanwhile, for the V2V links, the objective is to maximize the delivery of pay- load BV 2V within a time limit of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
124
+ page_content=' This is given by P(∆T �T t=1 �N n=1 ρmo[n, t] ≥ BV 2V ), ∀m ∈ M, o ∈ Vm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
125
+ page_content=' Due to the spectrum sharing between the V2V and V2I links, we need to optimize two competing objectives of simul- taneously maximizing the V2V and the V2I payload delivery probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
126
+ page_content=' To achieve this, we use MARL for multiple objectives: 1) Platoon Leader selection: For each platoon m, the PL will be selected dynamically and periodically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
127
+ page_content=' The pla- toon will decide which vehicle is the most suitable for being the leader so that both objectives can be met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
128
+ page_content=' 2) Joint User Association and power allocation for V2I links: Each PL m′ will need to decide which RSU k it needs to be served by, along with its transmit power level Pm′k 3) Joint channel assignment and power allocation for V2V links: Each PL m′ needs to decide the channel n and transmit power Pm′o to transmit to its platoon members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
129
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
130
+ page_content=' OPTIMAL ACTION SELECTION USING DEEP REINFORCEMENT LEARNING A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
131
+ page_content=' Reinforcement Learning and Deep Q Learning Reinforcement Learning (RL) is a discipline of Machine Learning (ML) where an agent can make a sequence of decisions by interacting with an environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
132
+ page_content=' Based on the reward received by taking action, the agent learns to become intelligent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
133
+ page_content=' The agent aims to take actions that maximize the long-term cumulative reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
134
+ page_content=' Markov Decision Process (MDP) is used to model an RL problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
135
+ page_content=' According to the Markov property, the current state captures all relevant infor- mation from history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
136
+ page_content=' At each time-step t, the agent observes the environment through the state st and takes an action at.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
137
+ page_content=' The agent receives a reward rt and transitions into a new state st+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
138
+ page_content=' In RL, the goal of the agents is to maximize the cumulative reward Gt it receives in the long run, given by Gt = �∞ k=0 γkrk+t where γ ∈ [0, 1] represents the discount factor which reduces the present value of the future rewards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
139
+ page_content=' The action-value function Qπ(s, a) is defined as the ex- pected return by taking an action a in state s by following a policy π: Qπ(s, a) = Eπ[Gt|St = s, At = a] where the expectation is taken over all possible transitions following the distribution π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
140
+ page_content=' The goal of RL is to find the optimal policy π∗ that maximizes the Q-function over all the policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
141
+ page_content=' Q-learning is an off-policy RL algorithm that learns the value of an action a in a state s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
142
+ page_content=' It repetitively updates the action-value function for each state-action pair (s, a) until they converge to the optimal action-value function Q∗(s, a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
143
+ page_content=' The update equation is given by: Q(st, at) ← Q(st, at) + α[rt+1 + γ maxa′ Q(st+1, a′) − Q(st, at)] where α represents the learning rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
144
+ page_content=' If the Q-function is estimated accurately, the optimal policy π∗ at a given state s would be to select the action a∗ that yields the highest value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
145
+ page_content=' The Deep Q- Learning [16] uses a Deep Neural Network (DNN) as a function approximator to learn the Q-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
146
+ page_content=' The state space is input to the DNN, and it learns to predict the Q-value for each output action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
147
+ page_content=' The state-action space is explored with a soft policy such as ϵ-greedy, where the agent takes random action at a given state st at time t with a probability of ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
148
+ page_content=' Otherwise, greedy action a∗ = arg maxa∈A Q∗(st, a) is selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
149
+ page_content=' The tuple < st, at, rt, st+1 > is stored in the replay memory at each time instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
150
+ page_content=' At each time-step, a mini- batch is sampled from the replay memory to update the DNN parameters θ, and the gradient descent algorithms are used to update the parameters θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
151
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
152
+ page_content=' Multi-Agent Reinforcement Learning for optimization In this section, we formulate the multi-agent RL algorithm for optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
153
+ page_content=' There will be three different types of agents, all based within the vehicles in the platoon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
154
+ page_content=' The first agent type will be the PL selection, which will dynamically decide the PL every 100 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
155
+ page_content=' The second type of agent will be the V2V platoon, which needs to determine the joint channel assignment and power allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
156
+ page_content=' Meanwhile, the third type of agent will be the V2I agent, which will need to optimize joint user association and power allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
157
+ page_content=' All the agents will interact with the environment and learn to take optimal actions by trial and error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
158
+ page_content=' Furthermore, we use a common reward for all the agents to ensure collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
159
+ page_content=' Moreover, each agent has a separate DQN and only uses its own experience to train the DNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
160
+ page_content=' We develop two phases for the MARL problem: training and testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
161
+ page_content=' During the training phase, each agent can access the common reward to train the DQN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
162
+ page_content=' Meanwhile, during the testing phase, each agent uses the trained DQN to select the action optimally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
163
+ page_content=' 1) State and Action Space for Platoon Leader Selection: For the platoon leader selection agent, the state space Zpl(t) consist of the measurements at time-step t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
164
+ page_content=' The state space consists of the following measurements: i) The large-scale fad- ing information between all members within a platoon m, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
165
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
166
+ page_content=', {Lab}(a,b)∈Vm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
167
+ page_content=' ii) The large-scale fading information between all vehicles in platoon m to all RSUs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
168
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
169
+ page_content=', {Lok}k∈K,o∈Vm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
170
+ page_content=' Meanwhile, the action space consists of the PL selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
171
+ page_content=' The action is updated every 100 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
172
+ page_content=' 2) State and Action Space for V2V agent: The state space of the V2V agent, denoted by Zv2v(t), consists of the measurements from the last time-step t and consists of the following groups: i) Direct channel measurements from the PL m′ to the members, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
173
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
174
+ page_content=', {Lm′ogm′o[n]}o∈Vm ii) The interfering channels from other PLs sharing the same sub-band with the V2V agent m, which occupies the sub- band n, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
175
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
176
+ page_content=', {ρa′x[n]Pa′xLa′,moga′mo}a∈M,a̸=m,x∈Va iii) The interfering channels from the V2I links to the RSU, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
177
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
178
+ page_content=', {ρm′k[n]Pm′kLm′o,kgm′ok}o∈Vm,k∈K iv) The remaining pay- load and time limitation after the current time-step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
179
+ page_content=' Meanwhile, the action space consists of the combination of sub-band selection and power allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
180
+ page_content=' The sub-band consists of N disjoint sub-bands, and the power levels are broken down into multiple discrete levels in the range [0, Pd], where Pd denotes the maximum power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
181
+ page_content=' 3) State and Action Space for V2I agent: The state space of the V2I agent, denoted by Zv2i(t), for the PL m′, consists of the measurements from the last time-step t and consists of the following groups: i) Direct channel measurements from the PL m′ to all the RSUs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
182
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
183
+ page_content=', {Lm′kgm′k}k∈K ii) The remaining payload and time remaining after current time-step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
184
+ page_content=' iii) The training iteration number e and the agent’s probability of random action selection ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
185
+ page_content=' The action space consists of the RSU selected and the power level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
186
+ page_content=' We assume that each RSU uses a fixed sub-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
187
+ page_content=' There are K RSUs to select from and transmit at a power divided into multiple discrete levels in the range [0, Pd].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
188
+ page_content=' 4) Reward function design: We use a common reward for all the agents in our proposed MARL design to ensure collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
189
+ page_content=' We have a multi-objective problem, which is to maximize the payload delivery probability for the PL to RSU V2I links, and maximize the payload delivery probability for the PL to platoon members V2V links, within the time constraint T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
190
+ page_content=' The V2V and V2I agents need to select actions to minimize interference between each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
191
+ page_content=' To achieve this purpose, we define the reward at time-step t, denoted as rt, as: rt = wc M � m=1 � o∈Vm Umo(t) + wd M � m=1 Vm(t) (7) where Umo(t) is the contribution towards the reward of the V2V link m′o and Vm(t) is the contribution of the V2I link from PL m′ to RSU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
192
+ page_content=' Furthermore, wc, wd ∈ [0, 1] are weights to balance the two objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
193
+ page_content=' Umo(t) is the achievable rate of the PL to platoon member link mo, defined as: Umo(t) = � Rmo(t), if Bmo(t) ≥ 0, U, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
194
+ page_content=' (8) where Bmo(t) is the remaining payload for the V2V link mo at time-step t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
195
+ page_content=' Furthermore, if the payload intended for link mo has been delivered, the agent is given an award U, which needs to be greater than the maximum rate achievable, to indicate to the agent the successful transmission of the payload.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
196
+ page_content=' U is a hyperparameter that needs to be adjusted empirically [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
197
+ page_content=' Similarly, Vm(t) is the achievable rate of the PL to RSU link, defined as: Vm(t) = � Rm(t), if Bm(t) ≥ 0, V, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
198
+ page_content=' (9) where Bm(t) is the payload that PL m′ needs to transmit to the RSUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
199
+ page_content=' V is a hyperparameter, which needs to be greater than the maximum achievable rate of the V2I link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
200
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
201
+ page_content=' Training Algorithm and Testing Strategy We devise the problem as an episodic setting, where each episode corresponds to the time limit T for the V2V and V2I links to complete their transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
202
+ page_content=' Each episode consists of multiple time-steps t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
203
+ page_content=' The vehicle location and large-scale fading are updated every 100 ms [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
204
+ page_content=' Meanwhile, the small- scale fading is updated at each time-step t, changing the state space for the V2V and V2I agents and prompting the agents to adjust their actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
205
+ page_content=' Each agent stops its transmission once its payload has been delivered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
206
+ page_content=' The training is centralized, where each agent has access to the common reward rt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
207
+ page_content=' Deep Q- Learning is used to train the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
208
+ page_content=' The algorithm is outlined in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
209
+ page_content=' During the testing phase, each agent observes the state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
210
+ page_content=' The state is input to the trained DQN, which is used to select the optimal action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
211
+ page_content=' The testing is implemented in a distributed manner, where each agent takes action based on their local state observation only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
212
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
213
+ page_content=' ILLUSTRATIVE RESULTS This section presents the simulation results to illustrate the performance of our algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
214
+ page_content=' We consider a highway setting as described in TR 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
215
+ page_content='885 [4], with the carrier frequency of 6 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
216
+ page_content=' The technical report provides all details,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
217
+ page_content=' such ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
218
+ page_content='Algorithm 1 Training Algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
219
+ page_content='1: Initiate the environment and generate the V2I and V2V links ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
220
+ page_content='2: Initiate the DQN with random parameters θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
221
+ page_content='3: for each episode i do ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
222
+ page_content='4: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
223
+ page_content='if i%20 = 0 then ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
224
+ page_content='5: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
225
+ page_content='Update the vehicle locations and large-scale fading ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
226
+ page_content='6: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
227
+ page_content='for each PL selection agent n1 do ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
228
+ page_content='7: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
229
+ page_content='Observe the state st1 for PL selection and take action ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
230
+ page_content='at1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
231
+ page_content='8: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
232
+ page_content='end for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
233
+ page_content='9: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
234
+ page_content='end if ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
235
+ page_content='10: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
236
+ page_content='for each time-step t do ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
237
+ page_content='11: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
238
+ page_content='Update small-scale channel fading ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
239
+ page_content='12: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
240
+ page_content='for each V2V agent n2 do ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
241
+ page_content='13: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
242
+ page_content='Observe the state st2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
243
+ page_content='14: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
244
+ page_content='end for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
245
+ page_content='15: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
246
+ page_content='for each V2I agent n3 do ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
247
+ page_content='16: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
248
+ page_content='Observe the state st3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
249
+ page_content='17: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
250
+ page_content='end for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
251
+ page_content='18: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
252
+ page_content='All agents take actions simultaneously according to the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
253
+ page_content='ϵ−greedy policy and receive the common reward rt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
254
+ page_content='19: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
255
+ page_content='for each agent {n1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
256
+ page_content=' n2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
257
+ page_content=' n3} do 20: Observe the next state st+1 21: Store et = [st,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
258
+ page_content=' at,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
259
+ page_content=' rt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
260
+ page_content=' st+1] in the replay memory 22: end for 23: end for 24: for each agent {n1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
261
+ page_content=' n2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
262
+ page_content=' n3} do 25: Uniformly sample mini-batch data D from replay memory 26: Train the deep Q-networks using the mini-batch data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
263
+ page_content=' 27: end for 28: end for as evaluation scenarios, vehicle drop and mobility modeling, RSU deployment, and channel models for V2V and V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
264
+ page_content=' The small-scale fading is modeled as Rayleigh fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
265
+ page_content=' We consider a highway with a length of 1 km, with 3 lanes for traffic on both sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
266
+ page_content=' The RSUs are placed in the middle of the highway, with a distance of 100 m between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
267
+ page_content=' We use option A in UE drop options in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
268
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
269
+ page_content='2 of TR 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
270
+ page_content='885 [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
271
+ page_content=' The type 3 vehicles (bus/tracks) are used, with a length of 13 m and 2 m distance between each in a platoon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
272
+ page_content=' All vehicles travel with a velocity of 140 km/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
273
+ page_content=' Each V2V platoon consists of 3 vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
274
+ page_content=' Moreover, the antenna on vehicles is placed in the middle of each vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
275
+ page_content=' As per TS 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
276
+ page_content='185 [3], the V2V and V2I links need to complete their transmission in 10 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
277
+ page_content=' However, we set T as 5 ms, assuming the other 5 ms will be used for communication in other directions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
278
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
279
+ page_content=', platoon member to platoon leader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
280
+ page_content=' The main simulation parameters are listed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
281
+ page_content=' The DQN was implemented in Python using the Tensorflow package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
282
+ page_content=' The DNN for all 3 types of agents consisted of 3 hidden layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
283
+ page_content=' The DNN of PL selection agents had 71, 35, and 17 neurons, the DNN of V2V agents had 100, 50, and 24 neurons;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
284
+ page_content=' and the DNN of V2I agents had 166, 83, and 40 neurons in their hidden layers, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
285
+ page_content=' The rectified linear unit (ReLU) was us as the activation function for all 3 types of agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
286
+ page_content=' RMSProp was used for optimization for all agents, and learning rates of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
287
+ page_content='0001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
288
+ page_content='0001, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
289
+ page_content='001 were used for PL selection agents, V2V agents, and V2I agents, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
290
+ page_content=' The wc and wd in (7) were set as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
291
+ page_content='3 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
292
+ page_content='7, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
293
+ page_content=' Meanwhile,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
294
+ page_content=' the hyperparameters U in TABLE I SIMULATION PARAMETERS Carrier frequency 6 GHz Bandwidth of each sub-band 1 MHz Number of sub-bands N 2 Number of RSUs K 11 Number of platoons M [4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
295
+ page_content='6] Number of vehicles in each platoon O 3 Vehicle velocity v 140 km/h Tx power for V2V links [23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
296
+ page_content=' 15,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
297
+ page_content=' 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
298
+ page_content=' -100] dBm Tx power for V2I links [23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
299
+ page_content=' -100] dBm Vehicle Antenna gain 3 dBi Vehicle receiver noise figure 9 dB Noise PSD 169 dBm/Hz Time constraint T 5 ms Platoon Leader update interval 100 ms V2V payload BV 2V [1200,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
300
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
301
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
302
+ page_content=',2800] bytes V2I payload BV 2I 624 bytes (8) and V in (9) were selected as 25 and 15, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
303
+ page_content=' The training phase consisted of 2000 episodes, and the testing was performed for 100 episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
304
+ page_content=' The ϵ-greedy policy was used during the training, and the value of ϵ was reduced linearly from 1 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
305
+ page_content='02 for 1600 episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
306
+ page_content=' The training was performed setting BV 2V as 2400 bytes and was varied between 1200- 2800 bytes during testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
307
+ page_content=' Meanwhile, BV 2I was set to 624 bytes during the training and testing phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
308
+ page_content=' We developed three benchmarks for comparison: 1) Hill- climbing algorithm [17]: Hill-climbing algorithm is a local search optimization method, guaranteed to reach a local opti- mum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
309
+ page_content=' It is a centralized iterative algorithm, which starts with a random solution, and then iteratively keeps improving it until it reaches an optimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
310
+ page_content=' The algorithm is used as an upper benchmark in our paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
311
+ page_content=' 2) Greedy Algorithm: Each agent uses the best link available to transmit at maximum power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
312
+ page_content=' 3) RL algorithm without PL selection: We run the RL algorithm, fixing the leading vehicle in each platoon as the platoon leader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
313
+ page_content=' This is to show the effectiveness of PL selection agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
314
+ page_content=' 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Training episodes 2 3 4 5 6 7 8 Cummulative reward per episode Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
315
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
316
+ page_content=' Cumulative reward per episode for M = 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
317
+ page_content=' 2 shows the cumulative reward for each episode for the case of 4 platoons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
318
+ page_content=' The reward increases during training, indicating that the agents can collaborate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
319
+ page_content=' 6 7 8 9 10 11 12 13 14 V2V payload size BV2V ( 200 bytes) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
320
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
321
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
322
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
323
+ page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
324
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
325
+ page_content='95 1 Average V2V payload success rate Proposed RL algorithm Hill climbing algorithm RL algorithm without PL selection Greedy Algorithm 4 platoons 6 platoons (a) Average V2V payload delivery probability 6 7 8 9 10 11 12 13 14 V2V payload size BV2V ( 200 bytes) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
326
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
327
+ page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
328
+ page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
329
+ page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
330
+ page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
331
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
332
+ page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
333
+ page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
334
+ page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
335
+ page_content='98 1 Average V2I payload success rate Proposed RL algorithm Hill climbing algorithm RL algorithm without PL selection Greedy Algorithm 4 platoons 6 platoons (b) Average V2I payload delivery probability Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
336
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
337
+ page_content=' V2V and V2I performance for M = 4 and M = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
338
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
339
+ page_content=' 3 shows the reliability of V2V and V2I links as we increase BV 2V for the cases of 4 and 6 platoons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
340
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
341
+ page_content=' 3a shows that the V2V performance decreases as we increase the packet size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
342
+ page_content=' This is because a larger payload size requires a longer time to transmit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
343
+ page_content=' For 4 platoons, we achieve a reliability of 1 for up to 2200 bytes, outperforming all the other benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
344
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
345
+ page_content=' 3b shows that for 4 platoons, the payload success rate for V2I links is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
346
+ page_content='9975 for all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
347
+ page_content=' However, the hill-climbing and greedy algorithm performance decrease, indicating more significant interference as we increase V2V payload size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
348
+ page_content=' When we increase the number of platoons to 6, the performance gap between the proposed algorithm and the hill-climbing algorithm increases, which shows the superiority of our algorithm for a higher number of agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
349
+ page_content=' Furthermore, it can be seen that dynamic platoon leader selection improves performance for both V2V and V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
350
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
351
+ page_content=' CONCLUSION In this work, we proposed a distributed multi-agent rein- forcement learning algorithm to optimize the performance of the V2V and the V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
352
+ page_content=' The V2V and V2I links used the same spectrum, making an intelligent resource allocation design necessary to manage interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
353
+ page_content=' Each platoon leader had an agent for joint channel assignment and power allocation for V2V links, and another agent for joint user association and power allocation for V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
354
+ page_content=' Further, another agent was able to select the platoon leader, to maximize the reliability of both V2V and V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
355
+ page_content=' Based on RL, the agents could collaborate to take optimal actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
356
+ page_content=' The proposed approach is decentralized, and the agents were able to make decisions based on their local state observations only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
357
+ page_content=' Simulation results indicate that the proposed algorithm could perform well for variable V2V packet size and different numbers of platoons, outperforming the centralized hill-climbing algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
358
+ page_content=' More- over, the PL selection improved reliability for both V2V and V2I links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
359
+ page_content=' REFERENCES [1] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
360
+ page_content=' Abou-Zeid, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
361
+ page_content=' Pervez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
362
+ page_content=' Adinoyi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
363
+ page_content=' Aljlayl, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
364
+ page_content=' Yanikomeroglu, “Cellular V2X transmission for connected and autonomous vehicles standardization, applications, and enabling technologies,” IEEE Con- sumer Electronics Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
365
+ page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
366
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
367
+ page_content=' 91–98, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
368
+ page_content=' [2] “3rd Generation Partnership Project;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
369
+ page_content=' Technical Specification Group Services and System Aspects;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
370
+ page_content=' Architecture enhancements for 5G System (5GS) to support Vehicle-to-Everything (V2X) services (Release 17) ,” TS 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
371
+ page_content='287 V17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
372
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
373
+ page_content='0, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
374
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
375
+ page_content=' [3] “3rd Generation Partnership Project;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
376
+ page_content=' Technical Specification Group Services and System Aspects;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
377
+ page_content=' Study on enhancement of 3GPP Support for 5G V2X Services (Release 16) ,” TR 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
378
+ page_content='886 V16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
379
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
380
+ page_content='0, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
381
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
382
+ page_content=' [4] “3rd Generation Partnership Project;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
383
+ page_content=' Technical Specification Group Ra- dio Access Network;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
384
+ page_content=' Study on evaluation methodology of new Vehicle- to-Everything (V2X) use cases for LTE and NR;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
385
+ page_content=' (Release 15) ,” TR 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
386
+ page_content='885 V15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
387
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
388
+ page_content='0, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
389
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
390
+ page_content=' [5] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
391
+ page_content=' Sehla, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
392
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
393
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
394
+ page_content=' Nguyen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
395
+ page_content=' Pujolle, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
396
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
397
+ page_content=' Velloso, “Resource Allocation Modes in C-V2X: From LTE-V2X to 5G-V2X,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
398
+ page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
399
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
400
+ page_content=' 8291–8314, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
401
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
402
+ page_content=' Yi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
403
+ page_content=' Sun, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
404
+ page_content=' Wang, “Enhanced resource allocation for 5G V2X in congested smart intersection,” in 2020 IEEE 92nd Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
405
+ page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
406
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
407
+ page_content=' [7] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
408
+ page_content=' Yoon and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
409
+ page_content=' Kim, “A stochastic reservation scheme for aperiodic traffic in NR V2X communication,” in 2021 IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
410
+ page_content=' Networking Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
411
+ page_content=' (WCNC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
412
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
413
+ page_content=' Segata, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
414
+ page_content=' Arvani, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
415
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
416
+ page_content=' Cigno, “A critical assessment of C-V2X resource allocation scheme for platooning applications,” in ”2021 IEEE Wireless On-demand Network Systems and Services Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
417
+ page_content=' (WONS)”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
418
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
419
+ page_content=' Masmoudi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
420
+ page_content=' Mnif, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
421
+ page_content=' Zarai, “A survey on radio resource allocation for V2X communication,” Wireless Communications and Mobile Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
422
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
423
+ page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
424
+ page_content=' Allouch, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
425
+ page_content=' Kallel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
426
+ page_content=' Soua, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
427
+ page_content=' Shagdar, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
428
+ page_content=' Tohme, “Survey on radio resource allocation in long-term evolution-vehicle,” Concurrency and Computation: Practice and Experience, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
429
+ page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
430
+ page_content=' 7, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
431
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
432
+ page_content=' Alwarafy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
433
+ page_content=' Abdallah, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
434
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
435
+ page_content=' Ciftler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
436
+ page_content=' Al-Fuqaha, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
437
+ page_content=' Hamdi, “Deep reinforcement learning for radio resource allocation and manage- ment in next generation heterogeneous wireless networks: A survey,” arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
438
+ page_content='00574, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
439
+ page_content=' [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
440
+ page_content=' Liang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
441
+ page_content=' Ye, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
442
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
443
+ page_content=' Li, “Spectrum sharing in vehicular networks based on multi-agent reinforcement learning,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
444
+ page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
445
+ page_content=' Areas Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
446
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
447
+ page_content=' 37, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
448
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
449
+ page_content=' 2282–2292, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
450
+ page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
451
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
452
+ page_content=' Vu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
453
+ page_content=' Farzanullah, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
454
+ page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
455
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
456
+ page_content=' Nguyen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
457
+ page_content=' Morawski, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
458
+ page_content=' Le-Ngoc, “Multi-Agent Reinforcement Learning for Channel Assignment and Power Allocation in Platoon-Based C-V2X Systems,” in 2022 IEEE 95th Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
459
+ page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
460
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
461
+ page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
462
+ page_content=' Parvini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
463
+ page_content=', “AoI-aware resource allocation for platoon-based C- V2X networks via multi-agent multi-task reinforcement learning,” arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
464
+ page_content='04196, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
465
+ page_content=' [15] Mnih et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
466
+ page_content=', “Human-level control through deep reinforcement learning,” nature, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
467
+ page_content=' 518, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
468
+ page_content=' 7540, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
469
+ page_content=' 529–533, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
470
+ page_content=' [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
471
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
472
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
473
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
474
+ page_content=' Watkins, “Learning from delayed rewards,” Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
475
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
476
+ page_content=' disserta- tion, King’s College, Cambridge United Kingdom, May 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
477
+ page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
478
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
479
+ page_content=' Russell, Artificial intelligence a modern approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
480
+ page_content=' Pearson Education, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
481
+ page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LtE1T4oBgHgl3EQfZAR1/content/2301.03145v1.pdf'}
LtFQT4oBgHgl3EQfUjZg/content/tmp_files/2301.13297v1.pdf.txt ADDED
@@ -0,0 +1,2165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version February 1, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ Planetesimal Initial Mass Functions following Diffusion Regulated Gravitational Collapse
4
+ Konstantin Gerbig
5
+ 1 and Rixin Li (李日新)
6
+ 2
7
+ 1Department of Astronomy, Yale University, 52 Hillhouse Ave, New Haven, CT 06511, USA
8
+ 2Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
9
+ ABSTRACT
10
+ The initial mass function (IMF) of planetesimals is of key importance for understanding the
11
+ initial stages of planet formation, yet theoretical predictions so far have been insufficient in
12
+ explaining the variety of IMFs found in simulations. Here, we connect diffusion-tidal-shear limited
13
+ planetesimal formation within the framework of a Toomre-like instability in the particle mid-plane of
14
+ a protoplanetary disk to an analytic prediction for the planetesimal IMF. The shape of the IMF is
15
+ set by the stability parameter Qp, which in turn depends on the particle Stokes number, the Toomre
16
+ Q value of the gas, the local dust concentration and the local diffusivity. We compare our prediction
17
+ to high-resolution numerical simulations of the streaming instability and planetesimal formation via
18
+ gravitational collapse. We find that our IMF prediction agrees with numerical results, and is consistent
19
+ with both the ‘planetesimals are born big’ paradigm and the power law description commonly found
20
+ in simulations.
21
+ 1. INTRODUCTION
22
+ Planetesimals
23
+ are
24
+ the
25
+ initial
26
+ building
27
+ blocks
28
+ of
29
+ planets and their Initial Mass Function (IMF) is
30
+ consequently of great interest.
31
+ The planetesimal
32
+ formation
33
+ process
34
+ in
35
+ protoplanetary
36
+ disks,
37
+ which
38
+ ultimately dictates the planetesimal IMF, is connected
39
+ to
40
+ an
41
+ ensemble
42
+ of
43
+ challenges,
44
+ one
45
+ of
46
+ the
47
+ most
48
+ prominent of which is the so-called meter barrier (see
49
+ the review by Chiang & Youdin 2010).
50
+ Particles
51
+ exceeding sizes of order meters are expected to be
52
+ limited
53
+ in
54
+ their
55
+ capacity
56
+ to
57
+ grow
58
+ via
59
+ continued
60
+ coagulation due to both rapid radial drift inwards and
61
+ increased relative velocities that result in preferentially
62
+ destructive collisions (Birnstiel et al. 2012).
63
+ One
64
+ well-received solution to this growth barrier is to
65
+ rapidly form planetesimals via gravitational collapse of
66
+ over-dense particle clouds. Initial ideas focused on the
67
+ gravitational instability of the entire particle mid-plane
68
+ (Safronov 1969; Goldreich & Ward 1973).
69
+ However,
70
+ Kelvin-Helmholtz stirring prevents razor-thin particle
71
+ settling and thus renders such a global gravitational
72
+ instability challenging (Weidenschilling 1980; Sekiya
73
+ 1998; Youdin & Shu 2002; Johansen et al. 2006a). On
74
+ the other hand, local patches have been shown to
75
+ Corresponding author: Konstantin Gerbig
76
77
+ collapse if local particle concentrations are sufficiently
78
+ high (Johansen et al. 2006b). In particular, instabilities
79
+ energized by the relative dust-gas streaming velocity
80
+ (Youdin & Goodman 2005; Squire & Hopkins 2018)
81
+ can concentrate particles to densities sufficient for
82
+ gravitational collapse to trigger and planetesimals to
83
+ form (e.g., Johansen et al. 2015; Gerbig et al. 2020). In
84
+ the past, the IMF of planetesimals has been obtained
85
+ by performing numerical simulations of this setup and
86
+ then counting produced planetesimals, a process that
87
+ resulted in power-laws of various kinds (Simon et al.
88
+ 2016; Sch¨afer et al. 2017; Li et al. 2019).
89
+ Recently, the formation of planetesimals has been
90
+ connected to the diffusion of particles as well as their
91
+ stability to stellar tidal forces (Klahr & Schreiber 2016;
92
+ Gerbig et al. 2020; Klahr & Schreiber 2020, 2021).
93
+ This framework envisions particles to be subject to a
94
+ diffusive flux away from the concentration maximum,
95
+ much how pressurized gas clouds resist collapse in star
96
+ formation. In addition, any particle cloud on the verge
97
+ of gravitational collapse must be stable to stellar tidal
98
+ gravity. These effects limit planetesimal formation on
99
+ small scales and large scales respectively, thus together
100
+ prescribe a characteristic scale on which planetesimal
101
+ formation is expected to occur.
102
+ This in turn, can be
103
+ translated to a characteristic planetesimal mass, which
104
+ Klahr & Schreiber (2020) hypothesized to be the center
105
+ of a Gaussian-shaped IMF, in agreement with IMFs of
106
+ arXiv:2301.13297v1 [astro-ph.EP] 30 Jan 2023
107
+
108
+ ID2
109
+ Gerbig and Li
110
+ primordial asteroids (Delbo et al. 2019), yet seemingly
111
+ implying a mismatch to numerically obtained IMFs.
112
+ In this paper,
113
+ we connect these two paradigms
114
+ by deriving planetesimal IMFs within the framework
115
+ of diffusion-tidal-shear limited planetesimal formation.
116
+ Thereby, we argue that the probability density function
117
+ of a given scale to collapse scales with the scale’s
118
+ Toomre-like growth rate.
119
+ We also directly test our
120
+ prediction by conducting numerical simulations using
121
+ proven setups in ATHENA (Stone et al. 2008), that
122
+ produce the streaming instability (Youdin & Goodman
123
+ 2005) and planetesimal formation. In the process, we
124
+ for the first time conduct diffusion measurements in
125
+ large-scale stratified streaming instability simulations,
126
+ as well as develop a method for obtaining local particle
127
+ concentrations that are appropriate for characterizing
128
+ the onset of planetesimal formation.
129
+ The paper is structured as follows.
130
+ In Sect. 2
131
+ we review the Toomre-like instability for planetesimal
132
+ formation.
133
+ In Sect. 3, we derive planetesimal IMFs,
134
+ which we compare to numerical simulations in Sect. 4.
135
+ We discuss our results, namely applicability, caveats and
136
+ implications, in Sect. 5.
137
+ 2. TOOMRE-LIKE INSTABILITY
138
+ 2.1. Stability parameter
139
+ The stability of self-gravitating particles subject to
140
+ a diffusive flux induced by coupling to turbulent gas
141
+ velocities has been studied in numerous occasions
142
+ (Youdin 2011; Gerbig et al. 2020; Klahr & Schreiber
143
+ 2020, 2021), and can be assessed using a Toomre-like
144
+ value Qp, such as
145
+ Qp ≡
146
+
147
+ δr
148
+ St
149
+ 1
150
+ Z
151
+ csΩ
152
+ πGΣg
153
+ =
154
+
155
+ δr
156
+ St
157
+ Q
158
+ Z
159
+ (1)
160
+ where Z = Σp/Σg is the (local) dust concentration,
161
+ Q = csΩ/(πGΣg) is the standard Toomre value (Toomre
162
+ 1964), St = tsΩ is the dimensionless stopping time,
163
+ and δr
164
+ = Dp,r/(csH) is the dimensionless (radial)
165
+ diffusion coefficient for particles.
166
+ Ω is the orbital
167
+ frequency, cs the sound-speed of the gas, H = cs/Ω the
168
+ disk pressure scale-height, Σp and Σg particle and gas
169
+ surface densities respectively, and G is the gravitational
170
+ constant.
171
+ In the Epstein regime, the stopping time
172
+ relates to particle size a, and dust material density ρ•
173
+ via ts = ρ•a/(
174
+
175
+ 2πΣg). We consider dust and pebbles
176
+ where ts is such that St remains below unity (e.g.,
177
+ Birnstiel et al. 2012).
178
+ This corresponds to well or at
179
+ least marginally coupled particles.
180
+ If Qp < 1, the system is unstable and expected to
181
+ collapse and form planetesimals.
182
+ We review the
183
+ corresponding
184
+ instability
185
+ analysis
186
+ in
187
+ the
188
+ following
189
+ section.
190
+ 2.2. Dynamical equations and dispersion relation
191
+ Following (Klahr & Schreiber 2021), we start with the
192
+ a set of dynamical equations for dust particles in the
193
+ shearing sheet approximation and under the assumption
194
+ of a razor-thin disk. We adopt the coordinates r, φ, z
195
+ for radial, azimuthal and vertical directions respectively,
196
+ and consider a patch at distance R from a solar-mass
197
+ star. The linearized set of equation is given by
198
+ 1
199
+ Σp
200
+ ∂Σ′
201
+ p
202
+ ∂t + ∂v′
203
+ r
204
+ ∂r = 0,
205
+ (2)
206
+ ∂v′
207
+ r
208
+ ∂r − 2Ωv′
209
+ φ = − 1
210
+ Σp
211
+ Dp,r
212
+ ts
213
+ ∂Σ′
214
+ p
215
+ ∂r − ∂Φ′
216
+ ∂r − v′
217
+ r
218
+ ts
219
+ ,
220
+ (3)
221
+ ∂v′
222
+ φ
223
+ ∂t + Ωv′
224
+ r
225
+ 2
226
+ = 0,
227
+ (4)
228
+ where the prime denotes perturbed quantities.
229
+ They
230
+ describe mass continuity, and conservation of radial and
231
+ azimuthal momenta.
232
+ Notably, we ignore an explicit
233
+ azimuthal drag term as in e.g., Youdin (2011), an
234
+ assumption that is justified at dust-to-gas ratios of
235
+ order unity.
236
+ Instead, coupling to the gas is assumed
237
+ to be wholly described by gas pressure counteracting
238
+ radial contraction and the diffusive flux in the radial
239
+ momentum equation, which can be understood as an
240
+ effective pressure flux induced by turbulent gas motions.
241
+ As a consequence, there is also no mass diffusion term
242
+ in the continuity equation.
243
+ We continue by introducing axisymmetric WKB waves
244
+ scaling with Σ′
245
+ p ∝ exp(−i(kr − ωt)). Φ′ = −2πGΣ′/|k|
246
+ is the potential for a perturbed disk assuming ρp(k, z) =
247
+ (kΣp/2) exp(−|k|z). The resulting dispersion relation is
248
+ given by (Eq. (B22) in Klahr & Schreiber 2021),
249
+ ω2
250
+ 0 = δr
251
+ Stc2
252
+ sk2 − 2πΣpG|k| + Ω2,
253
+ (5)
254
+ and can be expressed in terms of the stability parameter
255
+ Qp
256
+ ω2
257
+ 0
258
+ Ω2 = δr
259
+ St(kH)2 − 2
260
+ Qp
261
+
262
+ δr
263
+ St|k|H + 1.
264
+ (6)
265
+ Here, ω2
266
+ 0 is defined as ω2
267
+ 0 = ω(ω − i/ts), and represents
268
+ the complex frequency without the drag term in Eq. (3).
269
+ Note that the herein used solution to the Poisson
270
+ equation does not take into account a softening term
271
+ caused by the particle layer thickness (see Eq. (12) in
272
+ Youdin 2011).
273
+
274
+ Planetesimal IMFs under diffusion regulated collapse
275
+ 3
276
+ 10−2
277
+ 10−1
278
+ 100
279
+ 101
280
+ k[kfgm]
281
+ −6
282
+ −4
283
+ −2
284
+ 0
285
+ 2
286
+ ω2
287
+ 0[Ω−2]
288
+ Qp = 0.4
289
+ Qp = 0.5
290
+ Qp = 0.6
291
+ Qp = 0.8
292
+ 10−1
293
+ 100
294
+ Qp
295
+ 10−3
296
+ 10−2
297
+ 10−1
298
+ 100
299
+ λ[H]
300
+ λfgm
301
+ lc
302
+
303
+
304
+ δ/StH
305
+ −1.5
306
+ −1.0
307
+ −0.5
308
+ 0.0
309
+ 0.5
310
+ 1.0
311
+ log(γΩ)
312
+ Figure 1. Dispersion relation ω2
313
+ 0 in Eq. (5) (left panel) and growth rates γ in Eq. (11) (right panel) for different values of
314
+ Qp. Parameters are δ = 10−5 and St = 0.4. The gray shaded region in the left panel indicates stability against axisymmetric
315
+ perturbations. As Qp decreases, more modes become unstable, and the fastest growing mode (dashed lines in right panel) shifts
316
+ to smaller scales. For reference, we plot the scale 2π
317
+
318
+ δ/StH (dotted line right panel).
319
+ 10−4
320
+ 10−2
321
+ 100
322
+ mp[MCeres]
323
+ 0.0000
324
+ 0.0025
325
+ 0.0050
326
+ 0.0075
327
+ 0.0100
328
+ 0.0125
329
+ 0.0150
330
+ 0.0175
331
+ p(mp)
332
+ Qp = 0.15
333
+ Qp = 0.4
334
+ Qp = 0.8
335
+ 10−4
336
+ 10−2
337
+ 100
338
+ mp[MCeres]
339
+ 0.0
340
+ 0.2
341
+ 0.4
342
+ 0.6
343
+ 0.8
344
+ 1.0
345
+ P(mp)
346
+ δr = δz = 10−6
347
+ δr = δz = 10−5
348
+ 10−4
349
+ 10−2
350
+ 100
351
+ mp[MCeres]
352
+ 10−2
353
+ 10−1
354
+ 100
355
+ N(> mp)
356
+ Figure 2. Probability density functions (left panel), cumulative probability density functions (center panel) and initial mass
357
+ functions (right panel) for the growth rates in Fig. 2 where St = 0.4. Diffusion is isotropic and set to δ = 10−6 (solid lines)
358
+ and δ = 10−5 (dashed lines). Different colors correspond to different values of Qp, all of which chosen to be unstable. We use
359
+ Eq. (16) for converting unstable scale to seed mass, which assumes collapse at Hill density, and requires knowledge of the aspect
360
+ ratio which we set to h = 0.05. We assume the system to produce N = 1000 planetesimals total to calculate the normalized
361
+ IMF N(< mp).
362
+ 2.3. Fastest growing mode and growth rates.
363
+ The
364
+ fastest
365
+ growing
366
+ mode
367
+ is
368
+ found
369
+ by
370
+ solving
371
+ ∂ω2
372
+ 0/∂k = 0, which yields
373
+ kfgm =
374
+
375
+ St
376
+ δr
377
+ 1
378
+ QpH .
379
+ (7)
380
+ The complex frequency of the fastest growing mode is
381
+ simply
382
+ ω2
383
+ 0,fgm
384
+ Ω2
385
+ = 1 − 1
386
+ Q2p
387
+ ,
388
+ (8)
389
+ which highlights that only for Qp < 1 exist k for which
390
+ ω2
391
+ 0 < 0 and the instability can grow, thus justifying the
392
+ definition of Qp as a stability parameter. We can also
393
+ calculate largest and smallest unstable scales λ = 2π/k
394
+ by solving ω2
395
+ 0 = 0, resulting in
396
+ λmin/max
397
+ λfgm
398
+ = 1
399
+ Qp
400
+
401
+ 1
402
+ Qp
403
+ ±
404
+
405
+ 1
406
+ Q2p
407
+ − 1
408
+
409
+ ,
410
+ (9)
411
+ with λfgm = 2π/kfgm. The range of unstable scales is
412
+ λmax − λmin = 2λfgm/Qp
413
+
414
+ 1/Q2p − 1, which increases
415
+ for decreasing Qp.
416
+ Note, that the fastest growing mode relates to the
417
+ critical cloud radius lc in Klahr & Schreiber (2020) and
418
+ Gerbig et al. (2020) via
419
+ λfgm = 2π
420
+
421
+ δr
422
+ StQpH = 6πQplc.
423
+ (10)
424
+
425
+ 4
426
+ Gerbig and Li
427
+ The growth rate γ(k) can be found solving γ = iω
428
+ or equivalently γ(γ + 1/ts) = −ω2
429
+ 0 (Klahr & Schreiber
430
+ 2021):
431
+ γ(k)
432
+
433
+ = − 1
434
+ 2St +
435
+
436
+ 1
437
+ 4St2 − ω2
438
+ 0(k)
439
+ Ω2
440
+ .
441
+ (11)
442
+ Hence, the fastest growing mode kfgm grows with
443
+ γ(k = kfgm)
444
+
445
+ = − 1
446
+ 2St +
447
+
448
+ 1
449
+ 4St2 + 1
450
+ Q2p
451
+ − 1
452
+ (12)
453
+ Dispersion relation and growth rates are shown for a set
454
+ of unstable Qp in Fig. 1. In the right panel, we also
455
+ plot λfgm, lc as well as the scale 2π
456
+
457
+ δr/StH which is of
458
+ order the radial extent of small-scale particle structures
459
+ (Gerbig et al. 2020).
460
+ 3. PLANETESIMAL INITIAL MASS FUNCTIONS
461
+ 3.1. Planetesimal masses at Hill density
462
+ In order for a region in the particle disk to be
463
+ stable against stellar tidal gravity, its mass must be be
464
+ contained within its Hill-radius.
465
+ In other words, the
466
+ region’s density must be at least Hill density
467
+ ρH = 9Ω2
468
+ 4πG.
469
+ (13)
470
+ Assuming a given scale k = 2π/λ is unstable under the
471
+ previously discussed dispersion relation, at Hill density
472
+ ρH, the mass available to the produced planetesimal1
473
+ can be estimated with
474
+ mp = π
475
+ 4
476
+ � λ
477
+
478
+ �2
479
+ Σp(ρp = ρH)
480
+ (14)
481
+ We assumed that the seed mass has access to a region of
482
+ size λ/2π. The surface density if the mid-plane has Hill-
483
+ density can be estimated with Σp =
484
+
485
+ 2πHpρp, where
486
+ the particle scale height relates to the vertical diffusion
487
+ coefficient via (Youdin & Lithwick 2007)
488
+ Hp =
489
+
490
+ δz
491
+ StH.
492
+ (15)
493
+ Together, the mass associated with an unstable scale λ
494
+ is of order,
495
+ mp = 9
496
+ 64
497
+
498
+ 2
499
+ π3 h3
500
+
501
+ δz
502
+ St
503
+ � λ
504
+ H
505
+ �2
506
+ M⊙,
507
+ (16)
508
+ 1 The mass mp is only equal to the initial planetesimal mass if
509
+ the entire particle cloud collapses to material density of the
510
+ planetesimal, and thus should be understood as an approximate
511
+ mass scale.
512
+ As such, in Klahr & Schreiber (2020, 2021), this
513
+ mass scale is called ‘equivalent mass’, and associated with some
514
+ conversion efficiency that quantifies the fraction that ultimately
515
+ ends up in the formed planetesimal.
516
+ and equivalently, the unstable scale λ that is expected
517
+ to produce a planetesimal of mass of order mp is
518
+ λ
519
+ H =
520
+
521
+ 64
522
+ 9
523
+
524
+ π3
525
+ 2
526
+ 1
527
+ h3
528
+
529
+ St
530
+ δz
531
+ mp
532
+ M⊙
533
+ �1/2
534
+ (17)
535
+ Here h = H/R is the disk aspect ratio, typically of order
536
+ 0.03 < h < 0.1. The mass associated with the fastest
537
+ growing mode is given by
538
+ mp,fgm = 9
539
+ 8
540
+ �π
541
+ 2
542
+
543
+ δz
544
+ St
545
+ δr
546
+ Sth3Q2
547
+ pM⊙
548
+ (18)
549
+ which scales as
550
+ mp,fgm ≈ 0.37MCeres ·
551
+ � δz
552
+ 10−5
553
+ � 1
554
+ 2 � δr
555
+ 10−5
556
+
557
+ ·
558
+ �0.1
559
+ St
560
+ � 3
561
+ 2 � h
562
+ 0.05
563
+ �3 �Qp
564
+ 1
565
+ �2
566
+ (19)
567
+ Under isotropic diffusion, this equals the characteristic
568
+ mass in Klahr & Schreiber (2020) if Qp ≈ 0.28.
569
+ Note, that the Toomre instability a priori does not
570
+ require Hill-density to operate. Indeed, as pointed out
571
+ by Klahr & Schreiber (2021), if the vertical density
572
+ structure is not set by vertical diffusion, but instead
573
+ stringently follows ρp(k, z) = (kΣp/2) exp(−|k|z), then
574
+ the fastest growing linear instability would be achieved
575
+ at a mid-plane density of ρp(k = kfgm, z = 0) = 2ρH/9.
576
+ By presupposing Hill density, our approach detaches
577
+ from this assumption of mode-dependent stratification,
578
+ and in the process excludes Toomre unstable clouds that
579
+ fail to withstand tidal gravity and are thus of little
580
+ physical importance for the IMF.
581
+ 3.2. IMF from Toomre growth rate
582
+ Given this context of Toomre-like instability and
583
+ Hill density, we proceed by providing predictions for
584
+ the IMF. Our ansatz is to take the mode-depended
585
+ instability growth rates as a probability density function
586
+ p(λ) for unstable scales, and then convert unstable
587
+ modes to planetesimal masses via the recipes discussed
588
+ in Sect. 3.1. This yields a probability density function
589
+ p(mp) such that the probability of a seed mass within
590
+ [mp, mp + dmp] is p(mp)dmp. This first order approach
591
+ agrees with intuition in that fastest growing modes
592
+ should most preferentially collapse,
593
+ slowly growing
594
+ modes only sometimes, stable modes never.
595
+ We write the probability density function p(λ) for
596
+ scale λ to collapse as
597
+ p(λ)dλ ∝ max[ˆγ−1γ(λ), 0]
598
+ (20)
599
+
600
+ Planetesimal IMFs under diffusion regulated collapse
601
+ 5
602
+ ˆγ−1
603
+ is
604
+ a
605
+ normalization
606
+ constant
607
+ given
608
+ by
609
+ ˆγ =
610
+ � λmax
611
+ λmin γ(λ)dλ. Since λ ∝ m1/2
612
+ p
613
+ via Eq. (17), we can
614
+ map p(λ)dλ onto the probability density function for
615
+ seed planetesimal masses p(mp)dmp.
616
+ The
617
+ probability
618
+ density
619
+ function
620
+ p(mp),
621
+ the
622
+ cumulative probability function P(m′
623
+ p ≤ mp), and the
624
+ resulting IMF are shown in Fig. 2, for St = 0.4 and
625
+ different values of δ and Qp.
626
+ The smaller Qp, the
627
+ flatter the IMF, as more scales become unstable. The
628
+ steepest IMF is achieved for Qp → 1.
629
+ Indeed, for
630
+ Qp = 1, the probability density function becomes a
631
+ Dirac delta function, i.e., p(mp) = δ(mp,H − mp).
632
+ Increasing diffusivity shifts the IMF to larger masses,
633
+ provided Qp remains constant, which would require a
634
+ corresponding decrease in Q/Z.
635
+ 3.3. Comparison to statistical approaches
636
+ Our ansatz is distinct from past means of deriving
637
+ planetesimal IMFs. Cuzzi et al. (2008, 2010); Hartlep
638
+ & Cuzzi (2020) approach the problem statistically,
639
+ and consider turbulent clustering of particles.
640
+ In
641
+ particular, the assumed scale invariance of the turbulent
642
+ spectrum implies the statistically appearance of regions
643
+ of highly enhanced particle density.
644
+ The argument is
645
+ that only sufficiently dense clumps can withstand ram
646
+ pressure disruption and thus contract to planetesimals
647
+ in a process called primary accretion, thus limiting
648
+ the formation of planetesimals on the low-mass end.
649
+ Our mechanism likewise prohibits the formation of
650
+ arbitrarily small planetesimals, yet the physical intuition
651
+ differs in that (1) the system is, in fact, gravitationally
652
+ unstable under the Toomre-like instability discussed in
653
+ Sect. 2 resulting in (2) ram pressure being negligible
654
+ compared to diffusion (also see Klahr & Schreiber
655
+ (2020)), and (3), that the smallest planetesimals are
656
+ those resulting from the smallest scale that can be
657
+ gravitationally unstable under the dispersion relation in
658
+ Eq. (5).
659
+ Another statistical ansatz was taken by Hopkins &
660
+ Christiansen
661
+ (2013),
662
+ where
663
+ turbulent
664
+ density
665
+ fluctuations can render local regions of the (gas) disk
666
+ unstable to gravitational collapse.
667
+ The initial mass
668
+ function of collapsing clumps therein depends on the
669
+ critical density for self-gravitating clumps and as well
670
+ as the properties of the ambient turbulence.
671
+ In our
672
+ ansatz, the gas remains stable throughout. Moreover,
673
+ we take all clumps to collapse exactly at Hill density in
674
+ Eq. (13). Different masses are the result of collapse of
675
+ differently sized regions, i.e. on different scales λ.
676
+ 4. NUMERICAL TESTS
677
+ We perform high-resolution numerical tests using
678
+ ATHENA (Stone et al. 2008; Bai & Stone 2010a) to
679
+ −0.1
680
+ 0.0
681
+ 0.1
682
+ y/H
683
+ t = 60.00 Ω−1
684
+ −0.1
685
+ 0.0
686
+ 0.1
687
+ x/H
688
+ −0.05
689
+ 0.00
690
+ 0.05
691
+ z/H
692
+ −2.5
693
+ −2.0
694
+ −1.5
695
+ −1.0
696
+ −0.5
697
+ 0.0
698
+ log(Σp/Σg)
699
+ −2
700
+ 0
701
+ 2
702
+ log(max(ρp)y/ρ0)
703
+ Figure 3. Map of the particle surface density at after 60
704
+ Ω−1, which is when self-gravity is turned on. Top panel is
705
+ vertically integrated, wheares bottom panel is azimuthally
706
+ integrated. The white dashed lines mark the border of the
707
+ physical simulation domain and the ghost cells. Since, one
708
+ of the two filaments at 60 Ω−1 is located right at the radial
709
+ simulation boundary, we chose to include the ghost cells in
710
+ this figure, which results in that filament being depicted
711
+ twice.
712
+ directly test our predictions for the IMF. The procedure
713
+ is similar to that in e.g. Li et al. (2019); Gerbig
714
+ et al. (2020), in that we let a small patch around
715
+ a protoplanetary disk mid-plane evolve into some
716
+ turbulent state.
717
+ We then turn on self-gravity with
718
+ different values for Qp by varying the self-gravity
719
+ parameter ˆG in code units. The measurement of Qp,
720
+ as well as the calculation of the predicted IMF requires
721
+ measurement of radial and vertical diffusion, prior to
722
+ turning on-self gravity. Since the streaming instability
723
+ will concentrate particles into filaments, we must also
724
+ determine the local particle concentration.
725
+ 4.1. Numerical Setup
726
+ We employ ATHENA (Stone et al. 2008) to solve the
727
+ hydrodynamic equations on an Eulerian grid including
728
+ Lagrangian super-particles (Bai & Stone 2010a). Our
729
+ numerical setup is similar to simulations of streaming
730
+ instability regulated planetesimal formation such as
731
+ Johansen et al. (2007); Simon et al. (2016); Li et al.
732
+ (2019); Gerbig et al. (2020), in that we use the local
733
+
734
+ 6
735
+ Gerbig and Li
736
+ −0.1
737
+ 0.0
738
+ 0.1
739
+ x/H
740
+ −0.1
741
+ 0.0
742
+ 0.1
743
+ y/H
744
+ Q = 16, t = 60 Ω−1
745
+ −0.1
746
+ 0.0
747
+ 0.1
748
+ x/H
749
+ Q = 8, t = 60 Ω−1
750
+ −0.1
751
+ 0.0
752
+ 0.1
753
+ x/H
754
+ Q = 4, t = 60 Ω−1
755
+ −3.5
756
+ −3.0
757
+ −2.5
758
+ −2.0
759
+ −1.5
760
+ −1.0
761
+ −0.5
762
+ 0.0
763
+ log(Σp/Σg)
764
+ 101
765
+ 103
766
+ NColumns
767
+ all columns
768
+ Q = 4
769
+ Q = 8
770
+ Q = 16
771
+ Z
772
+ Figure 4. Maps of the columns that, at 60 Ω−1, contain at least one cell at or above Hill-density for Q = 16, Q = 8, and Q = 4
773
+ (top panels, from left to right), and corresponding column density histograms (bottom panel). The bottom panel also indicates
774
+ the chosen values for Z in dashed lines, i.e. Z = 0.137, Z = 0.100, and Z = 0.0075 for Q = 16, Q = 8, and Q = 4 respectively.
775
+ The full surface density map of this snapshot is shown in Fig. 3.
776
+ shearing box approximation (Goldreich & Lynden-Bell
777
+ 1965) with coordinates (x, y, z).
778
+ We consider a non-
779
+ magnetized gas with an isothermal equation of state.
780
+ Gas is initialized in hydrostatic equilibrium. Particles
781
+ are forced into a super-Keplerian rotation by an external
782
+ pressure gradient, which we parameterize using
783
+ Π = ηvK
784
+ cs
785
+ ,
786
+ (21)
787
+ where
788
+ η
789
+ =
790
+ −(1/2)h2d ln ρ/(d ln r).
791
+ This
792
+ is
793
+ mathematically equivalent to real disks where particles
794
+ orbit Keplerian, and gas experiences sub-Keplerian
795
+ forcing (see Bai & Stone 2010a for details on the
796
+ pressure gradient implementation in ATHENA). Note,
797
+ that Π relates to the pressure gradient parameter used
798
+ in Schreiber & Klahr (2018); Gerbig et al. (2020)
799
+ simply via Π = β/2.
800
+ Particles are initialized with a
801
+ narrower Gaussian, however at an scale height of ηr/2,
802
+ which is the characteristic scale of Kelvin-Helmholtz
803
+ instability in protoplanetary disks (Gerbig et al. 2020).
804
+ As
805
+ such,
806
+ particles
807
+ are
808
+ not
809
+ expected
810
+ to
811
+ undergo
812
+ significant settling or lofting due to vertical stellar
813
+ gravity or Kelvin-Helmholtz stirring respectively.
814
+ The pressure gradient and the resulting relative
815
+ velocity between particle and gas flow energize the linear
816
+ streaming instability (Youdin & Goodman 2005; Squire
817
+ & Hopkins 2018), which then saturates non-linearly and
818
+ in the process concentrates particles into high density
819
+ regions (Johansen & Youdin 2007). The degree of which
820
+ the streaming instability operates, and as a consequence
821
+ the strength of particle diffusion and concentration prior
822
+ to gravitational collapse and planetesimal formation, is
823
+ largely set by two quantities. First, the Stokes number
824
+ St, and second, the ratio of metallicity and pressure
825
+ gradient Z0/Π (Sekiya & Onishi 2018).
826
+ The former
827
+ quantifies the coupling of particles to the gas flow, in
828
+ particular the gas turbulence. The latter traces the ratio
829
+ of dust abundance relative to gas and dust layer scale-
830
+ height, and thus maps onto the mid-plane dust-to-gas
831
+ ratio. Note, that the metallicity Z0 is the global (as in
832
+ simulation domain averaged) particle concentration and
833
+ thus not necessarily equal to the local enhancement Z we
834
+ introduced in Eq. (1). We elaborate on this important
835
+ difference in Sect. 4.2.
836
+ In this work, we choose St = 0.4, Z0 = 0.02 and
837
+ Π = 0.05. This setup is specifically designed to provide
838
+ favorable conditions for the streaming instability and,
839
+ provided Qp < 1, planetesimal formation, in order to
840
+ produce a large number of planetesimals which allows
841
+ for a more statistically robust determination of the
842
+ numerical IMF. Our simulations use a computational
843
+
844
+ Planetesimal IMFs under diffusion regulated collapse
845
+ 7
846
+ domain of 0.2H × 0.2H × 0.15H, with a resolution of
847
+ 2560/H (i.e., ∆x ≈ 3.9 · 10−4H) and Npar = 226 ≈
848
+ 6.71·107 particles. The vertical extent is slightly reduced
849
+ from a cube to mitigate computational costs and is
850
+ still tall enough because the particle layer remains thin
851
+ all the time.
852
+ Moreover, in the vertical direction, we
853
+ adopt outflow boundary conditions that are known to
854
+ reduce boundary artifacts, especially in shorter boxes
855
+ (Li et al. 2018). In the radial and azimuthal directions,
856
+ the standard shearing-periodic boundary conditions are
857
+ imposed.
858
+ Following the precedent set by many past works of
859
+ streaming instability, we express the results of our scale-
860
+ free simulations in the dimensionless unit system of
861
+ dynamical timescale Ω−1, H, and ρ0. The simulation
862
+ is run for t = 60Ω−1 without self-gravity. This allows
863
+ for sufficient amount of time in the non-linear phase of
864
+ the streaming instability to measure diffusion.
865
+ Figure.
866
+ 3 shows the vertically
867
+ (top
868
+ panel)
869
+ and
870
+ azimuthally
871
+ (bottom
872
+ panel)
873
+ integrated
874
+ particle
875
+ densities at 60Ω−1, i.e.
876
+ just before self-gravity is
877
+ turned on.
878
+ The streaming instability in a stratified
879
+ disk collects particles into two azimuthally elongated
880
+ filaments,
881
+ which are enhanced in particle density
882
+ relative to the prescribed average of Z0 = 0.02.
883
+ Following the snapshot at 60 Ω−1 depicted in Fig. 3
884
+ we turn on self-gravity,
885
+ the strength of which is
886
+ parameterized by the self-gravity parameter
887
+ ˜G
888
+
889
+ 4πGρ0/Ω2, which relates to Q via Q = 4/(
890
+
891
+ 2π ˜G). Self-
892
+ gravity is required for the concept of Hill-density to be
893
+ meaningful. Specifically, the Hill-density depends on the
894
+ self-gravity parameter via
895
+ ρH
896
+ ρ0
897
+ = 9
898
+ ˜G
899
+ = 9
900
+ �π
901
+ 8 Q
902
+ (22)
903
+ We conduct three self-gravity runs with Q = 16, Q = 8
904
+ and Q = 4 which correspond to Hill densities of ρH/ρ0 ∼
905
+ 90, ρH/ρ0 ∼ 45 and ρH/ρ0 ∼ 23 respectively. Note that,
906
+ we can also now associate a Hill-radius rH with a given
907
+ mass m, i.e.,
908
+ rH = R
909
+ � m
910
+ M⊙
911
+ � 1
912
+ 3
913
+ =
914
+ �4πρ0m
915
+ ˜G
916
+ � 1
917
+ 3
918
+ =
919
+ �4π
920
+ 9 ρHm
921
+ � 1
922
+ 3
923
+ . (23)
924
+ 4.2. Local particle concentration
925
+ The stability parameter Qp depends on the local
926
+ particle concentration Z = Σp/Σg. This is importantly
927
+ not equal to the initial, global particle concentration
928
+ Z0, which in our case is set to Z0 = 0.02. The reason
929
+ for this lies within predominanetly radial concentration
930
+ of particle surface density within two filaments as
931
+ evident in Fig. 3, where the typical particle column
932
+ density exceeds Z = 0.02 by between one and two
933
+ orders of magnitude.
934
+ This challenge in applying the
935
+ diffusion-limited collapse criterion to proven shearing
936
+ box simulation simulations of the streaming instability
937
+ was also recognized in Gerbig et al. (2020), where
938
+ the radial extent of streaming instability filaments was
939
+ related to a radial enhancement. While this argument
940
+ was sufficient to demonstrate the general applicability
941
+ of a diffusion-limited collapse criterion to simulations,
942
+ it lacks the precision to reliably predict the Qp as it
943
+ by construction cannot account for additional azimuthal
944
+ enhancement within filaments.
945
+ Because of this, in this work, we choose a different
946
+ pathway and utilize the requirement of Hill-density
947
+ for planetesimal formation to measure the average
948
+ particle concentration of the cells that are expected to
949
+ participate in planetesimal formation. More precisely, in
950
+ order for a given vertical column to be counted towards
951
+ the metallicity, it must contain at least one cell at or
952
+ above Hill density.
953
+ Figure. 4 shows maps of the columns that satisfy this
954
+ requirement for all three Q-values. Note, we are here
955
+ depicting the same snapshot at 60Ω−1 as in Fig. 3,
956
+ i.e.
957
+ before self-gravity has impacted the simulation.
958
+ We are merely evaluating which columns satisfy our
959
+ requirement for a given Hill-density.
960
+ A comparison
961
+ to Fig. 3 confirms that this scheme constrains the
962
+ metallicity measurement to the over-dense filaments
963
+ only. In the bottom panel of Fig. 4, we show histograms
964
+ of the surface density of both the entire simulation
965
+ domain in grey, as well only those columns that contain
966
+ at least one cell above Hill density. The dashed lines
967
+ indicate the average particle concentration for the three
968
+ runs given, and correspond to Z = 0.137, Z = 0.100,
969
+ and Z = 0.075 for Q = 16, Q = 8, and Q = 4
970
+ respectively.
971
+ 4.3. Radial diffusion
972
+ We measure radial particle diffusion via (Youdin &
973
+ Lithwick 2007; Johansen & Youdin 2007; Schreiber &
974
+ Klahr 2018; Baehr et al. 2022)
975
+ δr
976
+ csH = Dp,r = 1
977
+ 2
978
+ ∂⟨|xi(t) − xi(t0)|2⟩i
979
+ ∂t
980
+ ,
981
+ (24)
982
+ The idea is,
983
+ that as the turbulent state evolves
984
+ particles, the underlying diffusion will widen the particle
985
+ distribution, and as such allow for a calculation of
986
+ a value for particle diffusion.
987
+ If the particles were
988
+ normally distributed, this would correspond to the
989
+ time evolution of the distribution’s variance.
990
+ Note,
991
+ that since we are investigating the streaming instability
992
+ in stratified disks, this method cannot be used to
993
+
994
+ 8
995
+ Gerbig and Li
996
+ −0.8
997
+ −0.6
998
+ −0.4
999
+ −0.2
1000
+ 0.0
1001
+ ∆x/H
1002
+ 0.00
1003
+ 0.01
1004
+ 0.02
1005
+ 0.03
1006
+ 0.04
1007
+ 0.05
1008
+ Nbin/Npar
1009
+ t0 = 18Ω−1
1010
+ ∆t =6Ω−1
1011
+ ∆t =15Ω−1
1012
+ ∆t =24Ω−1
1013
+ ∆t =42Ω−1
1014
+ −0.3
1015
+ −0.2
1016
+ −0.1
1017
+ 0.0
1018
+ ∆x/H
1019
+ 0.00
1020
+ 0.01
1021
+ 0.02
1022
+ 0.03
1023
+ 0.04
1024
+ 0.05
1025
+ 0.06
1026
+ 0.07
1027
+ Nbin/Npar
1028
+ t0 = 50.25Ω−1
1029
+ ∆t =3.75Ω−1
1030
+ ∆t =5.0Ω−1
1031
+ ∆t =7.5Ω−1
1032
+ ∆t =9.75Ω−1
1033
+ Figure 5.
1034
+ Evolution of an initial particle distribution
1035
+ at different times ∆t for t0
1036
+ = 18Ω−1 (top panel) and
1037
+ t0 = 50.25Ω−1 (bottom panel).
1038
+ Due to the two over-
1039
+ dense filaments the particle distribution develops bi-modality
1040
+ — an effect not seen in unstratified streaming instability
1041
+ simulations (e.g., Johansen & Youdin 2007)
1042
+ determine vertical diffusivity which we will measure in
1043
+ the subsequent section.
1044
+ Figure. 5 shows the evolution of the initial particle
1045
+ distribution from 18Ω−1 to 60Ω−1, when we turn on
1046
+ self-gravity.
1047
+ Our particle distribution depicts much
1048
+ stronger non-Gaussianity than Johansen & Youdin
1049
+ (2007) Fig. 17,
1050
+ since our simulation is stratified.
1051
+ This leads the streaming instability to produce as
1052
+ azimuthally-extended filaments, where particles drift
1053
+ slower due to the enhanced local dust-to-gas ratio. This
1054
+ can lead to multiple peaks in the particle distribution
1055
+ — in our specific case there are two peaks as there are
1056
+ two dominant filaments.
1057
+ If we take all particles into account when evaluating
1058
+ Eq. (24), we will determine a global value for the
1059
+ radial diffusivity.
1060
+ However, the strength of diffusion
1061
+ is expected to vary locally and correlate with particle
1062
+ density (see e.g., Schreiber & Klahr 2018).
1063
+ As such,
1064
+ we sort all particles by local density and measure
1065
+ the evolution of the distribution up to 60Ω−1 for
1066
+ each density bin, and then calculate the corresponding
1067
+ diffusion coefficients via Eq. (24).
1068
+ Fig. 6 shows that
1069
+ denser regions are less diffusive than less dense regions.
1070
+ More specifically, up to a dust-to-gas ratio of order 101,
1071
+ the diffusion is approximately constant at δr = 1.3·10−4.
1072
+ This is a value consistent with that found in Li & Youdin
1073
+ (2021).
1074
+ For more dense regions,
1075
+ the diffusion decreases
1076
+ significantly down to δ ∼ 10−6 for ρp/ρ0 > 4 · 102. This
1077
+ turbophoretic behavior of the particles (Caporaloni
1078
+ et al. 1975; Belan et al. 2014) makes it challenging to
1079
+ pinpoint an exact value of δ that is appropriate for the
1080
+ determination
1081
+ of
1082
+ Qp
1083
+ and
1084
+ the
1085
+ subsequent
1086
+ IMF.
1087
+ Additionally,
1088
+ calculation
1089
+ of
1090
+ δ
1091
+ requires
1092
+ temporal
1093
+ averaging. In Fig. 6 we show multiple averaging times
1094
+ in order to highlight the trend of longer averaging
1095
+ times yielding larger diffusivity.
1096
+ In this work, we choose diffusivities by evaluating
1097
+ δ(ρp) at the particle density weighted average
1098
+ ˜ρp(Q) =
1099
+
1100
+ i,ρp,i>ρH(Q) Niρp,i
1101
+
1102
+ i,ρp,i>ρH(Q)
1103
+ .
1104
+ (25)
1105
+ Note that we only count those particles in Hill-stable
1106
+ regions.
1107
+ The resulting densities are indicated in the
1108
+ right panel of Fig. 6. We evaluate the radial diffusion
1109
+ coefficient δr (see Eq. 24) with a second-order one-side
1110
+ derivative at t = 60/Ω (by supplying edge order=2
1111
+ to numpy.gradient).
1112
+ This results in diffusivities of
1113
+ δr = 2.4 · 10−6, δr = 2.0 · 10−6, and δr = 2.6 · 10−6
1114
+ for Q = 16, Q = 8, and Q = 4 respectively.
1115
+ We
1116
+ acknowledge
1117
+ that
1118
+ due
1119
+ to
1120
+ the
1121
+ steepness
1122
+ of
1123
+ δx(ρH/ρ0) at high dust-to-gas ratios, as well as the
1124
+ dependence on averaging time ∆tave, there remains a
1125
+ relatively large ambiguity about the most appropriate
1126
+ values for δr.
1127
+ Indeed, we find any diffusivity within
1128
+ 1 · 10−6 ≲ δx ≲ 1 · 10−5 justifiable, and note that this
1129
+ full range is consistent with diffusivities obtained by
1130
+ Schreiber & Klahr (2018) at similar dust-to-gas ratios
1131
+ (although with smaller particles).
1132
+ 4.4. Vertical diffusion
1133
+ While vertical diffusion is not required to calculate
1134
+ the stability parameter Qp which arises from a purely
1135
+ 2D
1136
+ consideration,
1137
+ it
1138
+ is
1139
+ required
1140
+ to
1141
+ calculate
1142
+ planetesimal masses by setting the surface density
1143
+ necessary to achieve tidal-stability.
1144
+ We first measure
1145
+ the particle scale-height in each vertical column of grid
1146
+ cells by calculating the standard deviation of the
1147
+
1148
+ Planetesimal IMFs under diffusion regulated collapse
1149
+ 9
1150
+ 52
1151
+ 54
1152
+ 56
1153
+ 58
1154
+ 60
1155
+ t [Ω−1]
1156
+ 0.0000
1157
+ 0.0005
1158
+ 0.0010
1159
+ 0.0015
1160
+ 0.0020
1161
+ ⟨|xi(t) − xi(t0 = 50Ω−1)|2⟩i [H2]
1162
+ 10−1
1163
+ 100
1164
+ 101
1165
+ 102
1166
+ 103
1167
+ ρp/ρ0
1168
+ 10−6
1169
+ 10−5
1170
+ 10−4
1171
+ δx
1172
+ t = 60Ω−1
1173
+ ∆tavg = 1Ω−1
1174
+ ∆tavg = 2Ω−1
1175
+ 0.5
1176
+ 1.0
1177
+ 1.5
1178
+ 2.0
1179
+ 2.5
1180
+ 3.0
1181
+ 3.5
1182
+ 4.0
1183
+ Number of particles
1184
+ ×106
1185
+ ρH(Q = 16)/ρ0
1186
+ ρH(Q = 8)/ρ0
1187
+ ρH(Q = 4)/ρ0
1188
+ ˜ρp(Q)/ρ0
1189
+ Figure 6. Radial diffusion depends on particle density. Left panel: Evolution of the variance of the particle distribution for
1190
+ different densities. Colors correspond to densities. Right panel: diffusion vs particle density. Colors correspond to density
1191
+ and map onto the left panel. Different line styles indicate different averaging times when calculating the gradient in Eq. (24).
1192
+ We overlay a histogram of the density distribution of the particles, where vertical solid lines indicate Hill density for chosen
1193
+ Q-values. Vertical dashed-dotted lines correspond to the weighted average density ˜ρp(Q), which pinpoint the diffusivities to
1194
+ δr = 2.4 · 10−6, δr = 2.0 · 10−6, and δr = 2.6 · 10−6 for Q = 16, Q = 8, and Q = 4 respectively
1195
+ −0.1
1196
+ 0.0
1197
+ 0.1
1198
+ x/H
1199
+ −0.1
1200
+ 0.0
1201
+ 0.1
1202
+ y/H
1203
+ −0.1
1204
+ 0.0
1205
+ 0.1
1206
+ x/H
1207
+ −0.1
1208
+ 0.0
1209
+ 0.1
1210
+ y/H
1211
+ 10−3
1212
+ 10−2
1213
+ 10−1
1214
+ Σp/Σg
1215
+ 10−6
1216
+ 10−5
1217
+ δz
1218
+ Q = 16
1219
+ Q = 8
1220
+ Q = 4
1221
+ 0.002
1222
+ 0.004
1223
+ 0.006
1224
+ 0.008
1225
+ 0.010
1226
+ Hp/H
1227
+ −6.5
1228
+ −6.0
1229
+ −5.5
1230
+ −5.0
1231
+ −4.5
1232
+ log(δz)
1233
+ Figure 7. Map of particle scale height Hp(left panel) and vertical diffusion coefficient δz(center panel) at 60 Ω−1. The right
1234
+ panel shows the mean vertical diffusion ℏδz vs the local particle concentration (compare to top panel of Fig. 3). The shaded
1235
+ region characterizes ℏδz ± σδ, where σδ is the standard deviation of the vertical diffusivities at a given Σp/Σ. The vertical
1236
+ lines indicate the the determined values for Z (see Sect. 4.2, Fig. 4), which set the chosen values for vertical diffusivities to
1237
+ δz = 2.3 · 10−6, δz = 3.1 · 10−6, and δz = 3.3 · 10−6 for Q = 16, Q = 8, and Q = 4 respectively.
1238
+ vertical particle positions, and then convert to vertical
1239
+ diffusivity δz using Eq. (15). Similar procedures were
1240
+ also done by e.g., Bai & Stone (2010b); Yang et al.
1241
+ (2018); Li & Youdin (2021) when analyzing the vertical
1242
+ diffusivity within a stratified particle layer subject to
1243
+ the streaming instability. The resulting maps are seen
1244
+ in the left and center panel of Fig. 7. The right panel
1245
+ of Fig. 7 depicts the mean vertical diffusivity plotted vs
1246
+ local particle concentration, where the gray shaded
1247
+ region indicates one standard deviation from the mean.
1248
+ While there is significant spread of diffusivity for a
1249
+ given particle concentration, the vertical diffusivity
1250
+ behaves similar to the radial diffusivity in that it
1251
+ decreases in more concentrated regions. While in the
1252
+ plateau region, the diffusion anisotropy is of order
1253
+ δr/δz ∼ 10 which is consistent with e.g., Fig. 6 in Li &
1254
+
1255
+ 10
1256
+ Gerbig and Li
1257
+ Table 1. Simulation parameters for the three self-gravity
1258
+ runs.
1259
+ For all simulations, St = 0.4, Z0 = 0.02, Π =
1260
+ 0.05, and self-gravity is turned on after 60Ω−1. Calculated
1261
+ masses assume h = 0.05 and collapse at Hill-density. Our
1262
+ simulations have a radial and azimuthal domain size of 0.2H,
1263
+ and the smallest resolved scale is ∆x = 3.9 × 10−4H. The
1264
+ first two rows are prescribed values. Rows three, four and
1265
+ five correspond to quantities measured at 60Ω−1 as described
1266
+ in Sects. 4.2, 4.3 and 4.4. Subsequent rows are properties
1267
+ calculated within the diffusion-limited collapse framework
1268
+ outlined in Sects. 2 and 3.
1269
+ Q
1270
+ 16
1271
+ 8
1272
+ 4
1273
+ ρH/ρ0
1274
+ 90.2
1275
+ 45.1
1276
+ 22.6
1277
+ Z
1278
+ 0.137
1279
+ 0.100
1280
+ 0.075
1281
+ δr
1282
+ 2.42 · 10−6
1283
+ 2.04 · 10−6
1284
+ 2.60 · 10−6
1285
+ δz
1286
+ 2.35 · 10−6
1287
+ 3.07 · 10−6
1288
+ 3.28 · 10−6
1289
+ Qp
1290
+ 0.287
1291
+ 0.180
1292
+ 0.136
1293
+ λmin[H]
1294
+ 2.26 · 10−3
1295
+ 1.29 · 10−3
1296
+ 1.09 · 10−3
1297
+ λfgm[H]
1298
+ 4.42 · 10−3
1299
+ 2.56 · 10−3
1300
+ 2.18 · 10−3
1301
+ λmax[H]
1302
+ 1.05 · 10−1
1303
+ 1.56 · 10−1
1304
+ 2.34 · 10−1
1305
+ mp,min[MCeres]
1306
+ 1.16 · 10−4
1307
+ 4.32 · 10−5
1308
+ 3.22 · 10−5
1309
+ mp,fgm[MCeres]
1310
+ 4.44 · 10−4
1311
+ 1.70 · 10−4
1312
+ 1.27 · 10−4
1313
+ mp,max[MCeres]
1314
+ 0.253
1315
+ 0.630
1316
+ 1.47
1317
+ Youdin (2021), in denser regions the diffusion is of
1318
+ order isotropic.
1319
+ Indeed, we evaluate δz(Σp/Σ) at the
1320
+ particle concentrations identified in Sect. 4.2, which
1321
+ yields δz
1322
+ =
1323
+ 2.3 · 10−6,
1324
+ δz
1325
+ =
1326
+ 3.1 · 10−6,
1327
+ and
1328
+ δz = 3.3 · 10−6 for Q = 16, Q = 8, and Q = 4
1329
+ respectively.
1330
+ This
1331
+ relatively
1332
+ low,
1333
+ and
1334
+ isotropic
1335
+ diffusion
1336
+ is
1337
+ consistent with high particle concentrations damping
1338
+ diffusion from gas, regardless of direction (Ida et al.
1339
+ 2021).
1340
+ 4.5. Planetesimals and mass scalings
1341
+ Table 1 summarizes the simulation parameters, the
1342
+ measured
1343
+ quantities
1344
+ δr,
1345
+ δz
1346
+ and
1347
+ local
1348
+ particle
1349
+ concentration Z, as well as the resulting predicted
1350
+ properties, namely Qp as well as characteristic size and
1351
+ mass scales. All three simulations have Qp < 1 and are
1352
+ thus expected to be gravitationally unstable.
1353
+ This is
1354
+ unsurprising as the simulation parameters were chosen
1355
+ in
1356
+ line
1357
+ with
1358
+ past
1359
+ setups
1360
+ proven
1361
+ to
1362
+ produce
1363
+ planetesimals (e.g., Li et al. 2019).
1364
+ Our smallest
1365
+ resolved scale is ∆x = 3.9 · 10−4H, which is about an
1366
+ order
1367
+ of
1368
+ magnitude
1369
+ smaller
1370
+ than
1371
+ λmin
1372
+ for
1373
+ our
1374
+ simulations.
1375
+ We thus expect to capture the small
1376
+ scales
1377
+ of
1378
+ diffusion
1379
+ regulated
1380
+ collapse
1381
+ in
1382
+ these
1383
+ simulations.
1384
+ On the other hand, the domain size is
1385
+ 0.2H, which is of order λmax.
1386
+ Moreover, the largest
1387
+ scale is further limited by the maximum extent of
1388
+ over-dense regions, which radially and vertically is of
1389
+ order ηr
1390
+ =
1391
+ ΠH (Gerbig et al. 2020),
1392
+ which for
1393
+ Π = 0.05 is just 5 · 10−2H, and thus almost an order of
1394
+ magnitude less than λmax. Hence, we do not expect to
1395
+ the simulation to collapse on the largest unstable scales
1396
+ and produce planetesimals on the very high mass end.
1397
+ Fig. 8 shows snapshots of all three runs at 62Ω−1
1398
+ which is 2.0Ω−1 after self-gravity is turned on.
1399
+ In
1400
+ addition
1401
+ to
1402
+ the
1403
+ practical
1404
+ benefit
1405
+ of
1406
+ reducing
1407
+ computational costs,
1408
+ we chose this short time for
1409
+ self-gravity to act, in order to capture a relatively
1410
+ pristine mass distribution that is devoid of mergers.
1411
+ We used the clump finder algorithm PLAN (Li 2019; Li
1412
+ et al. 2019) to identify gravitationally bound clumps2,
1413
+ which are produced in all three runs. Indeed, all runs
1414
+ collapse rapidly enough for diffusion measurements to
1415
+ be unfeasible post 60 Ω−1.
1416
+ Thus, we cannot confirm
1417
+ whether
1418
+ or
1419
+ not
1420
+ diffusion
1421
+ increases
1422
+ in
1423
+ this
1424
+ gravo-turbulent state as it does in Klahr & Schreiber
1425
+ (2021).
1426
+ Note, that the requirement of Hill-density imposes a
1427
+ physical mass unit onto the analytic prediciton, and only
1428
+ implicitly depends on distance to the star (see Klahr &
1429
+ Schreiber 2020, for a discussion on the radial dependence
1430
+ of the diffusion-limited collapse criterion). On the other
1431
+ hand, the numerical results, i.e. the densities of bound
1432
+ clumps in Fig. 8 are fully scale-free in gas surface density
1433
+ ρ0. However, the two can be connected using the self-
1434
+ gravity parameter. More specifically, the mass unit of
1435
+ the simulation M0 can be expressed as
1436
+ M0 = ρ0H3 = h3 ˜GM⊙
1437
+ 4π =
1438
+ 1
1439
+ 4
1440
+
1441
+ 2π3
1442
+ h3
1443
+ Q M⊙
1444
+ (26)
1445
+ = 5.21 · 102
1446
+ � Q
1447
+ 16
1448
+ �−1 � h
1449
+ 0.05
1450
+ �3
1451
+ MCeres,
1452
+ (27)
1453
+ which introduces the same cubic dependence on aspect
1454
+ ratio as the analytic predictions in e.g., Eq. (16). The
1455
+ aspect ratio relates to the pressure gradient parameter
1456
+ via
1457
+ h =
1458
+
1459
+ −2η d ln ρ
1460
+ d ln r
1461
+ �1/2
1462
+ = −2Πd ln ρ
1463
+ d ln r .
1464
+ (28)
1465
+ 2 Throughout
1466
+ this
1467
+ paper,
1468
+ we
1469
+ use
1470
+ ‘planetesimals’
1471
+ and
1472
+ ‘gravitationally
1473
+ bound
1474
+ clumps’
1475
+ relatively
1476
+ interchangeably.
1477
+ The latter is more precise, as our simulations do not resolve the
1478
+ scale of planetesimals. Likewise, the Toomre-like paradigm only
1479
+ predicts the mass of a Hill-stable region subject to gravitational
1480
+ collapse.
1481
+ The actual planetesimal mass requires knowledge of
1482
+ contraction efficiency and subsequent accretion of additional
1483
+ pebbles.
1484
+
1485
+ Planetesimal IMFs under diffusion regulated collapse
1486
+ 11
1487
+ −0.10
1488
+ −0.05
1489
+ 0.00
1490
+ 0.05
1491
+ 0.10
1492
+ x [H]
1493
+ −0.10
1494
+ −0.05
1495
+ 0.00
1496
+ 0.05
1497
+ 0.10
1498
+ y [H]
1499
+ Q = 16, Qp = 0.29
1500
+ −0.10
1501
+ −0.05
1502
+ 0.00
1503
+ 0.05
1504
+ 0.10
1505
+ x [H]
1506
+ Q = 8, Qp = 0.18
1507
+ −0.10
1508
+ −0.05
1509
+ 0.00
1510
+ 0.05
1511
+ 0.10
1512
+ x [H]
1513
+ Q = 4, Qp = 0.14
1514
+ −2.0
1515
+ −1.5
1516
+ −1.0
1517
+ −0.5
1518
+ 0.0
1519
+ 0.5
1520
+ 1.0
1521
+ log(Σp/Σg)
1522
+ −2.0
1523
+ −1.5
1524
+ −1.0
1525
+ −0.5
1526
+ 0.0
1527
+ 0.5
1528
+ 1.0
1529
+ log(Σp/Σg)
1530
+ −2.0
1531
+ −1.5
1532
+ −1.0
1533
+ −0.5
1534
+ 0.0
1535
+ 0.5
1536
+ 1.0
1537
+ log(Σp/Σg)
1538
+ Figure 8. Snapshots of the three self-gravity simulations at 62Ω−1, which is 2Ω−1 after self-gravity is turned on. All three
1539
+ simulations formed gravitationally bound clumps indiciated by red circles.
1540
+ Throughout this work, we choose h = 0.05, which
1541
+ together with our simulation parameter of Π = 0.05
1542
+ implicitly assumes d ln ρ/d ln r = −1/2. These choices
1543
+ are relatively generic for disk models (compare to e.g.,
1544
+ Dullemond et al. 2007; Gerbig et al. 2019; Gerbig &
1545
+ Laughlin 2022).
1546
+ The smallest mass above which a planetesimal is well
1547
+ resolved is the mass associated with a Hill-radius that
1548
+ equals the cell-size, i.e., mrH=∆x.
1549
+ This limitation is
1550
+ caused by the accuracy of the self-gravity solver set
1551
+ by the finite grid scale (Simon et al. 2016).
1552
+ PLAN
1553
+ automatically discards clumps, if any, less massive than
1554
+ mrH=∆x.
1555
+ Using Eq. (23) and the mass scaling in
1556
+ Eq. (26), this mass limit is independent of Q, i.e.
1557
+ mrH=∆x = 9
1558
+ 4π ρH∆x3 = 9
1559
+
1560
+ �ρH
1561
+ ρ0
1562
+ � �∆x
1563
+ H
1564
+ �3
1565
+ M0
1566
+ = 81
1567
+ 64h3
1568
+ �∆x
1569
+ H
1570
+ �3
1571
+ M⊙ = 1.97 · 10−5MCeres
1572
+ (29)
1573
+ for ∆x = 3.9 · 10−4H. As shown in Table 1, mrH=∆x
1574
+ is smaller than mp,min, and λmin is larger than 2∆x
1575
+ for all Q, suggesting we sufficiently resolve the smallest
1576
+ expected planetesimals.
1577
+ 4.6. IMFs and K-S test
1578
+ Figure 9 shows the IMFs obtained from the snapshot
1579
+ shown in Fig. 8 in solid lines.
1580
+ We compare these
1581
+ numerically obtained IMFs, to the predicted IMF from
1582
+ the Toomre-like instability paradigm, evaluated for the
1583
+ properties shown in Tab. 1.
1584
+ Hereby, we draw N
1585
+ planetesimals from the theoretical PDF, where N is
1586
+ the number of bound clumps found in the respective
1587
+ simulation. We conduct this random draw 1000 times
1588
+ in order to obtain an average theoretical IMF (dashed
1589
+ curves), together with one and three σ intervals (dark
1590
+ and light shaded regions respectively). In addition, we
1591
+ draw a dotted vertical line, corresponding to the mass
1592
+ associated with the fastest growing mode of the IMF
1593
+ prediction.
1594
+ In order to assess the quality of the analytical
1595
+ predictions,
1596
+ we
1597
+ perform
1598
+ two
1599
+ sample
1600
+ Kolmogorov-Smirnov (K-S) tests, which quantify the
1601
+ likelihood p of two samples (in our case the numerical
1602
+ and
1603
+ analytically
1604
+ obtained
1605
+ planetesimal
1606
+ masses)
1607
+ originating from the same underlying distribution. The
1608
+ null hypothesis, that is the two samples indeed coming
1609
+ from the same distribution, can be rejected if p < 0.05.
1610
+ For the growth-rate based PDF, the K-S test yields
1611
+ p-values of 0.501, 0.395, and 0.0629 for Q = 16, Q = 8,
1612
+ and Q = 4 respectively.
1613
+ The numerical IMFs are
1614
+ therefore consistent with the analytical IMFs obtained
1615
+ from the Toomre-like analysis.
1616
+ 5. DISCUSSION
1617
+ We developed a framework of analytically obtaining
1618
+ planetesimal IMFs, based on the Toomre-like instability
1619
+ in the particle layer in protoplanetary disks. In Sect. 4
1620
+ we presented a simulation of the streaming instability,
1621
+ measured diffusivity and particle concentration for three
1622
+ self-gravity runs, and then compared resulting Qp-values
1623
+ and corresponding analytical IMFs to the numerically
1624
+ obtained IMFs. We find that the IMFs are consistent
1625
+ with each other, as seen Fig. 9.
1626
+ Specifically, our
1627
+ prediction can explain a number of key properties of the
1628
+ planetesimal IMF, which we will outline in the following.
1629
+ Our IMF prediction explains the somewhat counter-
1630
+ intuitive property of the least massive clumps being
1631
+ present in the simulation with the most mass, i.e.
1632
+ Q = 4. Since this simulation has the smallest Qp with
1633
+ Qp = 0.14, the fastest growing mode shifts to smaller
1634
+ scales (see Fig. 1) and thus the most likely planetesimal
1635
+ becomes less massive.
1636
+
1637
+ 12
1638
+ Gerbig and Li
1639
+ 10−5
1640
+ 10−4
1641
+ 10−3
1642
+ 10−2
1643
+ 10−1
1644
+ 100
1645
+ mp[MCeres]
1646
+ 10−2
1647
+ 10−1
1648
+ 100
1649
+ N(> mp)
1650
+ p = 5.01e-01
1651
+ Q = 16, Z = 0.137
1652
+ δz = 2.3e-06, δr = 2.4e-06
1653
+ Qp = 0.29, N = 90
1654
+ 10−5
1655
+ 10−4
1656
+ 10−3
1657
+ 10−2
1658
+ 10−1
1659
+ 100
1660
+ mp[MCeres]
1661
+ p = 3.95e-01
1662
+ Q = 8, Z = 0.1
1663
+ δz = 3.1e-06, δr = 2.0e-06
1664
+ Qp = 0.18, N = 102
1665
+ 10−5
1666
+ 10−4
1667
+ 10−3
1668
+ 10−2
1669
+ 10−1
1670
+ 100
1671
+ mp[MCeres]
1672
+ p = 6.29e-02
1673
+ Q = 4, Z = 0.075
1674
+ δz = 3.3e-06, δr = 2.6e-06
1675
+ Qp = 0.14, N = 84
1676
+ Figure 9. Initial mass functions N(> mp)for the three self-gravity runs. The numerically obtained IMFs are shown in solid
1677
+ lines and are based on the snapshots seen in Fig. 8. The IMF resulting from the growth rate-based PDF are shown in dashed
1678
+ lines. The dark and light shaded regions indicate one and three standard deviations from the distribution of IMFs that originates
1679
+ from only drawing N ∼ 100 planetesimals from the distribution. The vertical dotted lines indicate the masses associated with
1680
+ the fastest growing mode mp,fgm. Lastly, the p-value from the K-S-Test is shown in the top right corner of each panel.
1681
+ Next, we observe that the IMF becomes flatter if Q
1682
+ and therefore Qp decreases, which is due to the increase
1683
+ of the range of unstable scales.
1684
+ Notably, all three
1685
+ numerical IMFs fall short of the analytical prediction
1686
+ on the high mass end. As alluded to in Sect. 4.5, this
1687
+ is expected as these planetesimals would have to form
1688
+ from scales that exceed the maximum scale of particle
1689
+ over-densities ηr (see Gerbig et al. 2020). Indeed, the
1690
+ idea that the most massive planetesimal is not set by
1691
+ the largest Toomre-scale λ but by ηr, is consistent
1692
+ with our simulations where the most massive clump
1693
+ has ∼ 0.1MCeres in all three simulations, and also with
1694
+ Fig. 10 in Simon et al. (2016), where the most massive
1695
+ planetesimal shortly after self-gravity is turned on is
1696
+ relatively independent of ˜G (or equivalently Q).
1697
+ Lastly, the fact that λfgm is much closer to λmin
1698
+ when Qp is small, provides an explanation for why only
1699
+ high-resolution simulations can sufficiently capture the
1700
+ turnover in the mass frequency distribution at the low-
1701
+ mass end of planetesimal IMFs (Li et al. 2019).
1702
+ 5.1. Caveats
1703
+ In this section, we outline a number of caveats that are
1704
+ to be kept in mind when relating the herein presented
1705
+ theory and analysis to real disks.
1706
+ First, unstable scales λ were converted to planetesimal
1707
+ masses by assuming the contraction of a circular
1708
+ sheet of radius λ/(2π) at Hill-density.
1709
+ While such a
1710
+ conversion agrees with timescale arguments presented
1711
+ in e.g. Gerbig et al. (2020); Klahr & Schreiber (2020),
1712
+ it certainly is an order of magnitude calculation.
1713
+ In
1714
+ particular, as pointed out in Polak & Klahr (2022), a
1715
+ sphere at Hill-density is not fully tidally stable.
1716
+ The
1717
+ Hill-sphere is derived by considering the tidal forces on
1718
+ either end of the Roche lobe in the restricted three-
1719
+ body potential. This has the Hill-sphere extend beyond
1720
+ the tidally-stable Roche lobe, and implies Hill-density is
1721
+ insufficient for tidal stability by an order of unity factor.
1722
+ Moreover, it is not the case that all unstable scales are
1723
+ at Hill-density exactly. In fact, as evidenced by Fig. 6,
1724
+ many particles are located within regions which exceed
1725
+ Hill-density by up to an order of magnitude.
1726
+ Additionally,
1727
+ our
1728
+ model
1729
+ assumed
1730
+ planetesimal
1731
+ formation to be perfectly efficient.
1732
+ Fig. 8 however
1733
+ demonstrates that there are still particles in the
1734
+ filaments that are not bound to any clump. Moreover,
1735
+ previous
1736
+ works
1737
+ showed
1738
+ that
1739
+ higher
1740
+ resolution
1741
+ simulations may extend the mass distribution to lower
1742
+ masses (Li et al. 2019). Another possibility that is not
1743
+ considered in our model is a single clump forming
1744
+ binary planetesimals upon contraction to material
1745
+ density (Nesvorn´y et al. 2019, 2021).
1746
+ Further, our
1747
+ model does not take into account the possibility of
1748
+ “clumps
1749
+ within
1750
+ clumps”
1751
+ which
1752
+ would
1753
+ result
1754
+ in
1755
+ double-counting of planetesimals (compare to Hopkins
1756
+ &
1757
+ Christiansen
1758
+ 2013,
1759
+ who
1760
+ consider
1761
+ this
1762
+ when
1763
+ investigating the statistical instability of the gas disk).
1764
+ We note,
1765
+ that while multiplicity and inefficient
1766
+ contraction would shift the IMF towards smaller masses,
1767
+ collapse beyond Hill-density and double counting would
1768
+ shift the IMF towards larger masses. We expect that
1769
+ this allows the numerically obtained IMFs to remain
1770
+ consistent with our analytical predictions.
1771
+ Other simplifying assumptions include gas density
1772
+ being considered constant.
1773
+ For stable, yet small Q
1774
+ values, the gas develops a mid-plane cusp with a non-
1775
+
1776
+ Planetesimal IMFs under diffusion regulated collapse
1777
+ 13
1778
+ neglible vertical density gradient (see e.g., Armitage
1779
+ 2015, for a review). We also assumed a mono-disperse
1780
+ dust population with a constant Stokes number. This
1781
+ choice is likely reasonable to first order as in real disks,
1782
+ most solid mass is contained in the largest grains (e.g.,
1783
+ Birnstiel et al. 2011; McNally et al. 2021), and the
1784
+ largest grains dominate dust-gas interactions in the mid-
1785
+ plane and participate most vigorously in planetesimal
1786
+ formation (Yang & Zhu 2021).
1787
+ Still, a multi-species
1788
+ dust fluid can alter the turbulent behavior of the system
1789
+ itself (see e.g., Krapp et al. 2019, who pointed out
1790
+ the damping effect multi-species dust can have on the
1791
+ streaming instability).
1792
+ Therefore, the assumption of
1793
+ single-species dust is to be kept in mind when applying
1794
+ our results to real disks.
1795
+ Lastly, we acknowledge that our numerical setup does
1796
+ not perfectly replicate the assumptions the Toomre-like
1797
+ instability is based on. More specifically, the Toomre
1798
+ analysis,
1799
+ assumes a thin,
1800
+ two-dimensional disk of
1801
+ constant density which is then linearly perturbed in form
1802
+ of axisymmetric waves.
1803
+ This picture evidently differs
1804
+ from the turbulent state, i.e.
1805
+ non-linear streaming
1806
+ instability in vertically-stratified disks, our simulations
1807
+ are in when self-gravity is turned on.
1808
+ We attempted
1809
+ to mitigate this discrepancy by evaluating diffusivities
1810
+ and concentration locally, rather than globally, which,
1811
+ as discussed in Sect. 4.6, yielded consistent IMFs.
1812
+ 5.2. The shape of the initial mass function in real disks
1813
+ The diffusion-tidal-shear collapse paradigm suggests
1814
+ that the shape of planetesimal IMF depends on the
1815
+ gravitational,
1816
+ Toomre-like
1817
+ instability
1818
+ and
1819
+ on
1820
+ the
1821
+ stability parameter Qp
1822
+ only.
1823
+ While independent
1824
+ information on diffusivities δr and δz, as well as Stokes
1825
+ number St, and disk aspect ratio h are required to
1826
+ match the IMF to the appropriate mass range, they do
1827
+ not affect the steepness of the IMF (for a fixed Qp). As
1828
+ such, as a disk region collects more massive particles, it
1829
+ experiences an increase in average grain size, cools or
1830
+ becomes less turbulent, its Qp-value decreases, thus
1831
+ flattening the planetesimal IMF. Within this context,
1832
+ the role of the streaming instability (or other processes
1833
+ affecting particle dynamics) for the planetesimal IMF
1834
+ in this work, is to set the initial condition at the onset
1835
+ of gravitational collapse. The key question within our
1836
+ framework therefore is to determine what value for Qp
1837
+ takes on in real disks.
1838
+ Our simulations, much like many in previous works
1839
+ (e.g., Simon et al. 2016; Sch¨afer et al. 2017; Li et al. 2019;
1840
+ Gerbig et al. 2020) show collapse as soon as self-gravity
1841
+ is turned on. The turbulent state before self-gravity is
1842
+ turned on is therefore not physical, and thus the Qp-
1843
+ values and IMFs we calculate not necessarily reflective
1844
+ of real disks.
1845
+ Indeed, as discussed in Gerbig et al.
1846
+ (2020), if a system softly evolves towards instability —
1847
+ for example by collecting more particle mass — its Qp-
1848
+ value likewise softly evolve from Qp > 1 to Qp < 1.
1849
+ If Qp ∼ 1 is sufficient for the system to fully collapse
1850
+ and form planetesimals as assumed in Klahr & Schreiber
1851
+ (2020, 2021), then the resulting IMF is expected to be
1852
+ rather steep (Polak & Klahr 2022). On the other hand,
1853
+ the system may be unable to fully contract at Qp ∼ 1
1854
+ if it is below Hill-density.
1855
+ To a similar effect, as the
1856
+ contraction time, given by (Gerbig et al. 2020),
1857
+ tc =
1858
+
1859
+ 4πGρpSt =
1860
+ �π
1861
+ 8
1862
+
1863
+ δz
1864
+ δr
1865
+ Qp
1866
+ St Ω−1,
1867
+ (30)
1868
+ only falls below the dynamical timescale Ω−1 once Qp
1869
+ is substantially less than unity, it is plausible that the
1870
+ system can collect relevant amounts of mass during
1871
+ contraction.
1872
+ Both situations would lead to smaller
1873
+ values for Qp and thus flatter IMFs like the ones in our
1874
+ simulations in Fig. 9.
1875
+ One observational constraint may be provided by
1876
+ the Asteroids size distribution,
1877
+ which,
1878
+ at least in
1879
+ part, constitutes pristine planetesimals from the Solar
1880
+ System’s formation era (see Klahr et al. 2022, for a
1881
+ review). Taking, the collisional evolution into account,
1882
+ it is possible to reconstruct model of the primordial size
1883
+ distribution of Asteroids (see e.g., Delbo et al. 2019).
1884
+ Within the here presented framework, the “knee” at
1885
+ ∼ 100 km (e.g., Gladman et al. 2001) typically found
1886
+ in the resulting mass functions can be interpreted as
1887
+ an indication of a marginally unstable origin system
1888
+ with Qp close to unity — that is assuming the asteroids
1889
+ in question indeed formed via gravitational collapse of
1890
+ locally over-dense regions, which very well may not have
1891
+ been the case.
1892
+ Cold Classical Kuiper Belt Objects
1893
+ (KBOs) are believed to be even more primordial with
1894
+ little to no collisional evolution (Morbidelli & Nesvorn´y
1895
+ 2020).
1896
+ Kavelaars et al. (2021) found a exponentially
1897
+ tapered power law as the best fit for the Cold Classical
1898
+ KBO mass distribution, and connected the lack of
1899
+ large planetesimals (> 400 km in size) to streaming
1900
+ instability regulated planetesimal formation. Our work
1901
+ is consistent with this interpretation, as Qp imposes a
1902
+ limit on the maximum planetesimal mass.
1903
+ One often invoked pathway of forming planetesimals
1904
+ and circumventing the meter barrier, that is worth
1905
+ discussing in the context of our work, is the existence
1906
+ of long-lived pressure bumps associated with disk sub-
1907
+ structures. While such structures are robustly confirmed
1908
+ observationally (e.g., Andrews et al. 2018), their role
1909
+ in producing the first generation of planetesimals is
1910
+
1911
+ 14
1912
+ Gerbig and Li
1913
+ elusive,
1914
+ as already existing planets seem to most
1915
+ promisingly explain the sub-structures in the first
1916
+ place (Teague et al. 2021).
1917
+ Either way, a pressure
1918
+ bump is characterized by very small pressure gradients,
1919
+ which diminishes the relative velocity between dust
1920
+ and gas.
1921
+ If Π = 0, then particles can trivially settle
1922
+ razor-thin and go gravitationally unstable (as seen in
1923
+ e.g., Abod et al. 2019).
1924
+ In this state, both vertical
1925
+ and radial diffusivities are expected to trend towards
1926
+ zero, implying Qp
1927
+
1928
+ 0 as well, which our work
1929
+ associates with the planetesimal IMF shifting towards
1930
+ very small masses. Unless hierarchical mergers between
1931
+ small planetesimal immediately after formation is very
1932
+ efficient, such a bottom-heavy mass function seems
1933
+ unlikely. We therefore suspect that either the majority
1934
+ of planetesimal formation does not occur in Π = 0
1935
+ regions; or, that other mechanisms, possibly gravito-
1936
+ turbulence (see e.g., Riols et al. 2017, for the gas disk),
1937
+ provide a lower bound on diffusivities, thus also setting
1938
+ a lower limit on Qp.
1939
+ To conclude, our analysis that connects the PDF of
1940
+ formed
1941
+ planetesimals
1942
+ to
1943
+ the
1944
+ growth
1945
+ rates
1946
+ of
1947
+ the
1948
+ Toomre-like instability of a particle layer subject to a
1949
+ diffusive flux, unifies both the flat, power-law shaped,
1950
+ IMFs previously obtained numerically (e.g., Simon
1951
+ et al. 2016; Li et al. 2019), and the ‘Asteroids are born
1952
+ big’ (Morbidelli et al. 2009) paradigm that arises when
1953
+ investigating marginally unstable systems (Klahr &
1954
+ Schreiber 2020).
1955
+ The analytically obtained IMFs are
1956
+ consistent with our numerical setups. Further work is
1957
+ required
1958
+ to
1959
+ test
1960
+ the
1961
+ predictions
1962
+ for
1963
+ different
1964
+ numerically setups, and in particular, to assess how the
1965
+ value of Qp at the on-set of planetesimal formation,
1966
+ and thus the steepness of the resulting IMF, depend on
1967
+ disk properties and radii.
1968
+ Such an analysis informs
1969
+ initial conditions for planet formation models (e.g.,
1970
+ Emsenhuber
1971
+ et
1972
+ al.
1973
+ 2021),
1974
+ and
1975
+ conversely,
1976
+ if
1977
+ the
1978
+ formation
1979
+ of
1980
+ an
1981
+ observed
1982
+ exoplanetary
1983
+ population
1984
+ presupposes a specific planetesimal IMF(e.g., Batygin
1985
+ & Morbidelli 2023, for rocky Super-Earths), provides
1986
+ constraints
1987
+ on
1988
+ the
1989
+ disk
1990
+ state
1991
+ during
1992
+ the
1993
+ era
1994
+ of
1995
+ planetesimal formation.
1996
+ 6. ACKNOWLEDGEMENTS
1997
+ This work and KG and RL benefited from the
1998
+ 2022 Exoplanet Summer Program in the Other Worlds
1999
+ Laboratory (OWL) at the University of California,
2000
+ Santa Cruz, a program funded by the Heising-Simons
2001
+ Foundation. The authors thank Greg Laughlin, Hubert
2002
+ Klahr, Andrew Youdin, Ruth Murray-Clay and Malena
2003
+ Rice for insightful comments and discussions.
2004
+ Software:
2005
+ Athena (Stone et al. 2008), PLAN (Li
2006
+ 2019), NumPy (Harris et al. 2020), Matplotlib (Hunter
2007
+ 2007), CMasher (van der Velden 2020)
2008
+ REFERENCES
2009
+ Abod, C. P., Simon, J. B., Li, R., et al. 2019, ApJ, 883,
2010
+ 192, doi: 10.3847/1538-4357/ab40a3
2011
+ Andrews, S. M., Huang, J., P´erez, L. M., et al. 2018, ApJL,
2012
+ 869, L41, doi: 10.3847/2041-8213/aaf741
2013
+ Armitage, P. J. 2015, arXiv e-prints, arXiv:1509.06382.
2014
+ https://arxiv.org/abs/1509.06382
2015
+ Baehr, H., Zhu, Z., & Yang, C.-C. 2022, ApJ, 933, 100,
2016
+ doi: 10.3847/1538-4357/ac7228
2017
+ Bai, X.-N., & Stone, J. M. 2010a, ApJS, 190, 297,
2018
+ doi: 10.1088/0067-0049/190/2/297
2019
+ —. 2010b, ApJ, 722, 1437,
2020
+ doi: 10.1088/0004-637X/722/2/1437
2021
+ Batygin, K., & Morbidelli, A. 2023, arXiv e-prints,
2022
+ arXiv:2301.04680. https://arxiv.org/abs/2301.04680
2023
+ Belan, S., Fouxon, I., & Falkovich, G. 2014, PhRvL, 112,
2024
+ 234502, doi: 10.1103/PhysRevLett.112.234502
2025
+ Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539,
2026
+ A148, doi: 10.1051/0004-6361/201118136
2027
+ Birnstiel, T., Ormel, C. W., & Dullemond, C. P. 2011,
2028
+ A&A, 525, A11, doi: 10.1051/0004-6361/201015228
2029
+ Caporaloni, M., Tampieri, F., Trombetti, F., & Vittori, O.
2030
+ 1975, Journal of Atmospheric Sciences, 32, 565,
2031
+ doi: 10.1175/1520-0469(1975)032⟨0565:
2032
+ TOPINA⟩2.0.CO;2
2033
+ Chiang, E., & Youdin, A. N. 2010, Annual Review of Earth
2034
+ and Planetary Sciences, 38, 493,
2035
+ doi: 10.1146/annurev-earth-040809-152513
2036
+ Cuzzi, J. N., Hogan, R. C., & Bottke, W. F. 2010, Icarus,
2037
+ 208, 518, doi: 10.1016/j.icarus.2010.03.005
2038
+ Cuzzi, J. N., Hogan, R. C., & Shariff, K. 2008, ApJ, 687,
2039
+ 1432, doi: 10.1086/591239
2040
+ Delbo, M., Avdellidou, C., & Morbidelli, A. 2019, A&A,
2041
+ 624, A69, doi: 10.1051/0004-6361/201834745
2042
+ Dullemond, C. P., Hollenbach, D., Kamp, I., & D’Alessio,
2043
+ P. 2007, in Protostars and Planets V, ed. B. Reipurth,
2044
+ D. Jewitt, & K. Keil, 555.
2045
+ https://arxiv.org/abs/astro-ph/0602619
2046
+ Emsenhuber, A., Mordasini, C., Burn, R., et al. 2021,
2047
+ A&A, 656, A69, doi: 10.1051/0004-6361/202038553
2048
+ Gerbig, K., & Laughlin, G. 2022, ApJ, 930, 68,
2049
+ doi: 10.3847/1538-4357/ac6500
2050
+
2051
+ Planetesimal IMFs under diffusion regulated collapse
2052
+ 15
2053
+ Gerbig, K., Lenz, C. T., & Klahr, H. 2019, A&A, 629,
2054
+ A116, doi: 10.1051/0004-6361/201935278
2055
+ Gerbig, K., Murray-Clay, R. A., Klahr, H., & Baehr, H.
2056
+ 2020, ApJ, 895, 91, doi: 10.3847/1538-4357/ab8d37
2057
+ Gladman, B., Kavelaars, J. J., Petit, J.-M., et al. 2001, AJ,
2058
+ 122, 1051, doi: 10.1086/322080
2059
+ Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 125,
2060
+ doi: 10.1093/mnras/130.2.125
2061
+ Goldreich, P., & Ward, W. R. 1973, ApJ, 183, 1051,
2062
+ doi: 10.1086/152291
2063
+ Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
2064
+ 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2
2065
+ Hartlep, T., & Cuzzi, J. N. 2020, ApJ, 892, 120,
2066
+ doi: 10.3847/1538-4357/ab76c3
2067
+ Hopkins, P. F., & Christiansen, J. L. 2013, ApJ, 776, 48,
2068
+ doi: 10.1088/0004-637X/776/1/48
2069
+ Hunter, J. D. 2007, Computing in Science & Engineering, 9,
2070
+ 90, doi: 10.1109/MCSE.2007.55
2071
+ Ida, S., Guillot, T., Hyodo, R., Okuzumi, S., & Youdin,
2072
+ A. N. 2021, A&A, 646, A13,
2073
+ doi: 10.1051/0004-6361/202039705
2074
+ Johansen, A., Henning, T., & Klahr, H. 2006a, ApJ, 643,
2075
+ 1219, doi: 10.1086/502968
2076
+ Johansen, A., Klahr, H., & Henning, T. 2006b, ApJ, 636,
2077
+ 1121, doi: 10.1086/498078
2078
+ Johansen, A., Mac Low, M.-M., Lacerda, P., & Bizzarro, M.
2079
+ 2015, Science Advances, 1, 1500109,
2080
+ doi: 10.1126/sciadv.1500109
2081
+ Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007,
2082
+ Nature, 448, 1022, doi: 10.1038/nature06086
2083
+ Johansen, A., & Youdin, A. 2007, ApJ, 662, 627,
2084
+ doi: 10.1086/516730
2085
+ Kavelaars, J. J., Petit, J.-M., Gladman, B., et al. 2021,
2086
+ ApJL, 920, L28, doi: 10.3847/2041-8213/ac2c72
2087
+ Klahr, H., Delbo, M., & Gerbig, K. 2022, in Vesta and
2088
+ Ceres. Insights from the Dawn Mission for the Origin of
2089
+ the Solar System (Cambridge University Press), 199,
2090
+ doi: 10.1017/9781108856324.017
2091
+ Klahr, H., & Schreiber, A. 2016, in Asteroids: New
2092
+ Observations, New Models, ed. S. R. Chesley,
2093
+ A. Morbidelli, R. Jedicke, & D. Farnocchia, Vol. 318, 1–8,
2094
+ doi: 10.1017/S1743921315010406
2095
+ Klahr, H., & Schreiber, A. 2020, ApJ, 901, 54,
2096
+ doi: 10.3847/1538-4357/abac58
2097
+ —. 2021, ApJ, 911, 9, doi: 10.3847/1538-4357/abca9b
2098
+ Krapp, L., Ben´ıtez-Llambay, P., Gressel, O., & Pessah,
2099
+ M. E. 2019, ApJL, 878, L30,
2100
+ doi: 10.3847/2041-8213/ab2596
2101
+ Li, R. 2019, PLAN: A Clump-finder for Planetesimal
2102
+ Formation Simulations, Astrophysics Source Code
2103
+ Library, record ascl:1911.001. http://ascl.net/1911.001
2104
+ Li, R., & Youdin, A. N. 2021, ApJ, 919, 107,
2105
+ doi: 10.3847/1538-4357/ac0e9f
2106
+ Li, R., Youdin, A. N., & Simon, J. B. 2018, ApJ, 862, 14,
2107
+ doi: 10.3847/1538-4357/aaca99
2108
+ —. 2019, ApJ, 885, 69, doi: 10.3847/1538-4357/ab480d
2109
+ McNally, C. P., Lovascio, F., & Paardekooper, S.-J. 2021,
2110
+ MNRAS, 502, 1469, doi: 10.1093/mnras/stab112
2111
+ Morbidelli, A., Bottke, W. F., Nesvorn´y, D., & Levison,
2112
+ H. F. 2009, Icarus, 204, 558,
2113
+ doi: 10.1016/j.icarus.2009.07.011
2114
+ Morbidelli, A., & Nesvorn´y, D. 2020, in The
2115
+ Trans-Neptunian Solar System, ed. D. Prialnik, M. A.
2116
+ Barucci, & L. Young, 25–59,
2117
+ doi: 10.1016/B978-0-12-816490-7.00002-3
2118
+ Nesvorn´y, D., Li, R., Simon, J. B., et al. 2021, PSJ, 2, 27,
2119
+ doi: 10.3847/PSJ/abd858
2120
+ Nesvorn´y, D., Li, R., Youdin, A. N., Simon, J. B., &
2121
+ Grundy, W. M. 2019, Nature Astronomy, 3, 808,
2122
+ doi: 10.1038/s41550-019-0806-z
2123
+ Polak, B., & Klahr, H. 2022, arXiv e-prints,
2124
+ arXiv:2211.13318. https://arxiv.org/abs/2211.13318
2125
+ Riols, A., Latter, H., & Paardekooper, S. J. 2017, MNRAS,
2126
+ 471, 317, doi: 10.1093/mnras/stx1548
2127
+ Safronov, V. S. 1969, Evolution of the protoplanetary cloud
2128
+ and formation of the earth and planets (Nauka Press)
2129
+ Sch¨afer, U., Yang, C.-C., & Johansen, A. 2017, A&A, 597,
2130
+ A69, doi: 10.1051/0004-6361/201629561
2131
+ Schreiber, A., & Klahr, H. 2018, ApJ, 861, 47,
2132
+ doi: 10.3847/1538-4357/aac3d4
2133
+ Sekiya, M. 1998, Icarus, 133, 298 ,
2134
+ doi: https://doi.org/10.1006/icar.1998.5933
2135
+ Sekiya, M., & Onishi, I. K. 2018, ApJ, 860, 140,
2136
+ doi: 10.3847/1538-4357/aac4a7
2137
+ Simon, J. B., Armitage, P. J., Li, R., & Youdin, A. N. 2016,
2138
+ ApJ, 822, 55, doi: 10.3847/0004-637X/822/1/55
2139
+ Squire, J., & Hopkins, P. F. 2018, MNRAS, 477, 5011,
2140
+ doi: 10.1093/mnras/sty854
2141
+ Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., &
2142
+ Simon, J. B. 2008, ApJS, 178, 137, doi: 10.1086/588755
2143
+ Teague, R., Bae, J., Aikawa, Y., et al. 2021, ApJS, 257, 18,
2144
+ doi: 10.3847/1538-4365/ac1438
2145
+ Toomre, A. 1964, ApJ, 139, 1217, doi: 10.1086/147861
2146
+ van der Velden, E. 2020, The Journal of Open Source
2147
+ Software, 5, 2004, doi: 10.21105/joss.02004
2148
+ Weidenschilling, S. J. 1980, Icarus, 44, 172,
2149
+ doi: 10.1016/0019-1035(80)90064-0
2150
+
2151
+ 16
2152
+ Gerbig and Li
2153
+ Yang, C.-C., Mac Low, M.-M., & Johansen, A. 2018, ApJ,
2154
+ 868, 27, doi: 10.3847/1538-4357/aae7d4
2155
+ Yang, C.-C., & Zhu, Z. 2021, MNRAS, 508, 5538,
2156
+ doi: 10.1093/mnras/stab2959
2157
+ Youdin, A. N. 2011, ApJ, 731, 99,
2158
+ doi: 10.1088/0004-637X/731/2/99
2159
+ Youdin, A. N., & Goodman, J. 2005, The Astrophysical
2160
+ Journal, 620, 459, doi: 10.1086/426895
2161
+ Youdin, A. N., & Lithwick, Y. 2007, Icarus, 192, 588,
2162
+ doi: 10.1016/j.icarus.2007.07.012
2163
+ Youdin, A. N., & Shu, F. H. 2002, ApJ, 580, 494,
2164
+ doi: 10.1086/343109
2165
+
LtFQT4oBgHgl3EQfUjZg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtE1T4oBgHgl3EQfZQTY/content/tmp_files/2301.03149v1.pdf.txt ADDED
@@ -0,0 +1,932 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ “A Handbook of Integer Sequences” Fifty Years Later
2
+ N. J. A. Sloane,
3
+ The OEIS Foundation Inc.,
4
+ 11 So. Adelaide Ave., Highland Park, NJ 08904, USA
5
6
+ January 8, 2023
7
+ Abstract
8
+ Until 1973 there was no database of integer sequences. Someone coming across
9
+ the sequence 1,2,4,9,21,51,127,... would have had no way of discovering that
10
+ it had been studied since 1870 (today these are called the Motzkin numbers,
11
+ and form entry A001006 in the database). Everything changed in 1973 with the
12
+ publication of A Handbook of Integer Sequences, which listed 2372 entries. This
13
+ report describes the fifty-year evolution of the database from the Handbook to its
14
+ present form as The On-Line Encyclopedia of Integer Sequences (or OEIS), which
15
+ contains 360,000 entries, receives a million visits a day, and has been cited 10,000
16
+ times, often with a comment saying “discovered thanks to the OEIS”.
17
+ 1
18
+ Introduction
19
+ Number sequences arise in all branches of science: for example, 1,1,2,4,9,20,48,115,...
20
+ gives the number of rooted trees with n nodes (A000081,1 see also Fig. 1), and in daily
21
+ life: how many pieces can you cut a pancake into with n knife-cuts? (The pieces need
22
+ not all be the same size.) That one is easy: 1,2,4,7,11,16,..., n(n+1)/2+1 (A000124).
23
+ But what is the answer for cutting up an (ideal) bagel, or torus? That is a lot harder:
24
+ with a sharp knife you might get a few terms, perhaps 1,2,6,13,..., but probably not
25
+ enough to guess the formula, which is n(n2 + 3n + 8)/6 for n > 0. For that you would
26
+ need to to consult the database: go to https://oeis.org and enter “cutting bagel”,
27
+ or go directly to A003600.
28
+ My fascination with these sequences began in 1964 when I was a graduate student
29
+ at Cornell University in Ithaca, NY, studying neural networks. I had encountered a
30
+ sequence of numbers, 1,8,78,944,13800,..., and I badly needed a formula for the n-th
31
+ term, in order to determine the rate of growth of the terms (this would indicate how
32
+ long the activity in this very simple neural network would persist). I will say more
33
+ about this sequence in Section 2.1.
34
+ I noticed that although several books in the Cornell library contained sequences
35
+ somewhat similar to mine, as far as I could tell this particular sequence was not men-
36
+ tioned. I expected to have to analyze many related sequences, so in order to keep track
37
+ of the sequences in these books, I started recording them on 3” × 5” file cards.
38
+ 1Six-digit numbers prefixed by A refer to entries in the current version of the Handbook, The On-Line
39
+ Encyclopedia of Integer Sequences [11].
40
+ 1
41
+ arXiv:2301.03149v1 [math.NT] 9 Jan 2023
42
+
43
+ Figure 1: Left: one of 48 unlabeled rooted trees with 7 nodes (the root node is at the
44
+ bottom); center: four cuts of a pancake can produce 11 pieces; right: three cuts of a
45
+ bagel can produce 13 pieces.
46
+ The collection grew rapidly as I searched though more books, and once the word got
47
+ out, people started sending me sequences. Richard Guy was an enthusiastic supporter
48
+ right from the start.
49
+ In 1973 I formalized the collection as A Handbook of Integer
50
+ Sequences, which was published by Academic Press (Fig. 2). It contained 2372 entries.
51
+ Figure 2: Front cover of the Handbook. The embossed figures show side views of the two
52
+ ways of folding a strip of three (blank) stamps, and the five ways of folding a strip of
53
+ four stamps. The full sequence begins 1,1,2,5,14,38,120,353,1148,3527,..., A001011.
54
+ No formula is known.
55
+ Once the book appeared, the flood of correspondence increased, and it took twenty
56
+ years to prepare the next version.
57
+ Simon Plouffe helped a great deal, and in 1995
58
+ Academic Press published our sequel, The Encyclopedia of Integer Sequences, with 5487
59
+ entries. From this point on the collection grew even more rapidly. I waited a year,
60
+ until it had doubled in size, and then put it on the Internet, calling it The On-Line
61
+ Encyclopedia of Integer Sequences.
62
+ In the rest of this article I will first say more about the evolution of the database:
63
+ the Handbook (§2.1), the 1995 Encyclopedia (§2.2), the On-Line Encyclopedia (§2.3),
64
+ and the OEIS Foundation (§2.4). The next sections describe the database itself: what
65
+ 2
66
+
67
+ AHANDBOOKOF
68
+ INTEGER SEQUENCES
69
+ N.JLA.SLOANEsequences are—or are not—included (§3.1), how the database is used (§3.2), the layout
70
+ of a typical entry (§3.3), the arrangement of the entries (§3.4), and a Fact Sheet (§3.5).
71
+ The final sections describe some especially interesting sequences: Recam´an’s sequence
72
+ (§4.1), Iteration of number-theoretic functions (§4.2), Gijswijt’s sequence (§4.3), Lex-
73
+ icographically Earliest Sequences (§4.4), The Stepping Stones problem (§4.5), Stained
74
+ glass windows (§4.6), and other sequences I would have liked to include (§4.7).
75
+ Several open questions are mentioned to which I would very much like to know the
76
+ answers.
77
+ Notation.
78
+ a(n) will denote the n-th term of the sequence being discussed, and
79
+ A001006(n) (for example) would denote the n-th term of A001006. σ(n) is the sum of
80
+ the divisors of n (A000203).
81
+ 2
82
+ Evolution of the database
83
+ 2.1
84
+ The Handbook of Integer Sequences
85
+ Once the collection had grown to a few hundred entries, I entered them on punched
86
+ cards,2 which made it easier to check and sort them. The Handbook was type-set directly
87
+ from the punched cards. There were a few errors in the book, but almost all of them
88
+ were caused by errors in the original publications. Accuracy was a primary concern in
89
+ that book, as it is today in the OEIS.
90
+ The book was an instant success. It was, I believe, the world’s first dictionary of
91
+ integer sequences (and my original title said Dictionary rather than Handbook). Many
92
+ people said “What a great idea”, and wondered why no one had done it before. Martin
93
+ Gardner recommended it in the Scientific American of July 1974. Lynn A. Steen, writing
94
+ in the American Mathematical Monthly said “Incomparable, eccentric, yet very useful.
95
+ Contains thousands of ‘well-defined and interesting’ infinite integer sequences together
96
+ with references for each ... If you ever wondered what comes after 1,2,4,8,17,35,71,...,
97
+ this is the place to look it up”’.
98
+ Harvey J. Hindin, writing from New York City, exuberantly concluded a letter to
99
+ me by saying: “There’s the Old Testament, the New Testament, and the Handbook of
100
+ Integer Sequences.”
101
+ I never did find the sequence that started it all in the literature, but I learned P´olya’s
102
+ theory of counting, and with John Riordan’s help found the answer, which appears in
103
+ [13] and A000435.
104
+ 2These were never called “punch cards” (sic). To anyone who worked with them in the 1960s, “punch
105
+ cards” sounds like “grill cheese” (sic) for “grilled cheese”, or “barb wire” (sic) for “barbed wire”, both
106
+ of which I have recently seen in print.
107
+ 3
108
+
109
+ 2.2
110
+ The Encyclopedia of Integer Sequences
111
+ Following the publication of the Handbook, a large amount of correspondence ensued,
112
+ with suggestions for further sequences and updates to the entries. By the early 1990’s
113
+ over a cubic meter of new material had accumulated.
114
+ A Canadian mathematician,
115
+ Simon Plouffe, offered to help in preparing a revised edition of the book, and in 1995
116
+ The Encyclopedia of Integer Sequence, by me and Simon Plouffe, was published by
117
+ Academic Press. It contained 5487 sequences, occupying 587 pages. By now punched
118
+ cards were obsolete, and the entries were stored on magnetic tape.
119
+ 2.3
120
+ The On-Line Encyclopedia of Integer Sequences
121
+ Again, once the book appeared, many further sequences and updates were submitted
122
+ from people all over the world. I waited a year, until the size of the collection had
123
+ doubled, to 10000 entries, and then in 1996 I launched The On-Line Encyclopedia of
124
+ Integer Sequences (now usually called simply the OEIS) on the Internet. From 1996
125
+ until October 26, 2009, it was part of my homepage on the AT&T Labs website.
126
+ Incidentally, in 2004 the database was mentioned by the Internet website slashdot
127
+ (“News for Nerds. Stuff that Matters”), and this brought so much traffic to my Bell
128
+ Labs homepage that it briefly crashed the whole Bell Labs website. My boss was quite
129
+ proud of this, since it was a rare accomplishment for the Mathematics and Statistics
130
+ Research Center.
131
+ 2.4
132
+ The OEIS Foundation
133
+ In 2009, in order to ensure the long-term future of the database, I set up a non-profit
134
+ foundation, The OEIS Foundation Inc., a 501(c)(3) Public Charity, whose purpose is
135
+ to own, maintain and raise funds to support The On-Line Encyclopedia of Integer Se-
136
+ quences or OEIS.
137
+ On October 26, 2009, I transferred the intellectual property of The On-Line Ency-
138
+ clopedia of Integer Sequences to the Foundation. A new OEIS with multiple editors was
139
+ launched on November 11, 2010.
140
+ Since then it has been possible for anyone in the world to propose a new sequence
141
+ or an update to an existing sequence. To do this, users must first register, and then
142
+ submissions are reviewed by the editors before they become a permanent part of the
143
+ OEIS. Technically the OEIS is now a “moderated wiki”.
144
+ I started writing this article on November 11, 2022, noting that this marked twelve
145
+ years of successful operation of the online OEIS, and also that the database is in its
146
+ 59th year of existence.
147
+ 4
148
+
149
+ 3
150
+ The database today
151
+ 3.1
152
+ What sequences are included?
153
+ From the very beginning the goal of the database has been to include all “interest-
154
+ ing” sequences of integers.
155
+ This is a vague definition, but some further examples
156
+ will make it clearer.
157
+ The database includes a huge number of familiar and unfa-
158
+ miliar sequences from mathematics (the prime numbers 2,3,5,7,11,13,..., A000040;
159
+ 60,168,360,504,660,1092,..., the orders of noncyclic simple groups, A001034), com-
160
+ puter science (0,1,3,5,8,11,14,..., Number of comparisons needed for merge sort,
161
+ A001855), physics (see “self-avoiding walks on lattices”, Ising model, etc., e.g. A002921),
162
+ chemistry (the enumeration of chemical compounds was one of the motivations behind
163
+ P´olya’s theory of counting, see e.g. A000602), and not least, from puzzles and I.Q.
164
+ tests (1,8,11,69,99,96,111,..., the “strobogrammatic” numbers, guess!, or see A000787;
165
+ 4,14,23,34,42,50,59,..., the numbered stops on the New York City A train subway,
166
+ A011554. That entry has links to a map and the train schedule).
167
+ Sequences that have arisen in the course of someone’s work—especially if published—
168
+ have always been welcomed. On the other hand, sequences that have been proposed
169
+ simply because they were missing from the database are less likely to be accepted.
170
+ There are a few hard and fast rules. The sequence must be well-defined and the
171
+ terms must not be time-dependent—if the next term is only known to be either 14 or
172
+ 15, for instance, then the sequence must end with the last term that is known for certain.
173
+ The sequence may not have any missing terms or gaps. In the case of Mersenne primes,
174
+ for instance (A000043) it is common for later primes to be known before all intermediate
175
+ numbers having been tested. The later primes get mentioned in comments, but they
176
+ are not as part of the main sequence until their position has been confirmed.
177
+ Very short sequences and sequences that are subsequences of many other sequences
178
+ are not accepted. A sequence for which the only known terms are 2,3,5,7 would not
179
+ be accepted since it is matched by a large number of existing sequences. The definition
180
+ may not involve an arbitrary but large parameter (primes ending in 1 are fine, A030430,
181
+ but not primes ending in 2023).3
182
+ Most entries give an ordered list of integers. But triangles of numbers are included
183
+ by reading them row-by-row: Pascal’s triangle becomes 1, 1,1, 1,2,1, 1,3,3,1,...,
184
+ A007318.
185
+ Doubly-infinite square arrays are included by reading them by antidiago-
186
+ nals: the standard multiplication table for positive integers becomes 1, 2,2, 3,4,3,
187
+ 4,6,6,4,..., A003991.
188
+ Sequences of fractions are included as a linked pair giving the numerators and denom-
189
+ inators separately (the Bernoulli numbers are A027641/A027642). Important individual
190
+ real numbers are included by giving their decimal or continued fraction expansions (for
191
+ π see A000796 and A001203). A relatively small number of sequences of nonintegral
192
+ 3The OEIS Wiki, which has a great deal of useful information about the database, has a section
193
+ listing additional examples of “what not to submit”.
194
+ 5
195
+
196
+ real numbers are included by rounding them to the nearest integer, or by taking floors
197
+ or ceilings (the imaginary parts of the zeros of Riemann’s zeta function give A002410).
198
+ Two less obvious sources for sequences are binomial coefficient identities and number-
199
+ theoretic inequalities. The values of either side of the identity
200
+ n
201
+
202
+ k=0
203
+ (2n
204
+ k )
205
+ 2
206
+ = 1
207
+ 2(4n
208
+ 2n) − 1
209
+ 2(2n
210
+ n )
211
+ 2
212
+ [7, (3.68)] give A036910. From the inequality σ(n) < n√n for n > 2, [10, Sect. III.1.1.b],
213
+ we get the integer sequence ⌊n√n⌋ − σ(n), A055682. The point is that if you want to
214
+ know if this inequality is known, you look up the difference sequence, and find A055682
215
+ and a reference to the proof. Many more sequences of these two types should be added
216
+ to the database.
217
+ 3.2
218
+ How the database is used
219
+ The main applications of the database are in identifying sequences or in finding out the
220
+ current status of a known sequence. Barry Cipra has called it a mathematical analogue
221
+ of a “fingerprint file”. You encounter a number sequence, and wish to know if anyone
222
+ has ever come across it before.
223
+ If your sequence is in the database, the reply will give a definition, the first 50 or
224
+ so terms, and, when available, formulas, references, computer code for producing the
225
+ sequence, links to any relevant web sites, and so on.
226
+ Figures 3 and 4 show what happens if you submit 1,2,5,14,42,132,429, the first few
227
+ Catalan numbers, one of the most famous sequences of all.
228
+ Figure 3: The result of submitting 1,2,5,14,42,132,429 to the database. This figure
229
+ shows the banner at the top of the reply. There are 26 matches, ranked in order of
230
+ importance, the top match being the one we want, the Catalan numbers. A shortened
231
+ version of the top match is shown in the next figure.
232
+ 6
233
+
234
+ TheOEisissupportedbythemanygenerousdonorstotheOEisFoundation
235
+ 013627
236
+ THE ON-LINE ENCYCLOPEDIA
237
+ 20
238
+ OF INTEGER SEOUENCES
239
+ ?
240
+ 10221121
241
+ founded in 1964 by N. J. A. Sloane
242
+ 1.2.5.14,42.132,429
243
+ Search
244
+ Hints
245
+ (GreetingsfromTheOn-LineEncyclopediaofIntegerSequences!)
246
+ Search:seq:1.2.5.14.42.132.429
247
+ Displaying1-10of26resultsfound.
248
+ page 1 2 3
249
+ Sort:relevanceIreferencesInumberImodifiedIcreated
250
+ Format:longIshortIdataA000108
251
+ Catalan numbers: C(n) = binomial(2n,n)/(n + 1) = (2n)!/(n!(n + 1)!).
252
+ (Formerly M1459 N0577)
253
+ DATA
254
+ 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ...
255
+ COMMENTS
256
+ These were formerly sometimes called Segner numbers.
257
+ A very large number of combinatorial interpretations are known -
258
+ see references, esp. R. P. Stanley, Catalan Numbers, Camb., 2015.
259
+ This is probably the longest entry in the OEIS, and rightly so.
260
+ The solution to Schr¨oder’s first problem: number of ways to insert n pairs
261
+ of parentheses in a word of n + 1 letters. E.g., for n = 2 there are 2 ways:
262
+ ((ab)c) or (a(bc)); for n=3 there are 5 ways: ((ab)(cd)), (((ab)c)d), ...
263
+ ...
264
+ REFERENCES
265
+ The large number of references and links demonstrates the ubiquity
266
+ of the Catalan numbers.
267
+ R. Alter, Some remarks and results on Catalan numbers, pp. 109-132
268
+ in Proc. Louisiana Conf. Combinatorics, Graph Theory and
269
+ Computer Science. Vol. 2, edited R. C. Mullin et al., 1971.
270
+ M. Bona, ed., Handbook of Enumerative Combinatorics, CRC Press, 2015
271
+ L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 53.
272
+ J. H. Conway & R. K. Guy, The Book of Numbers, Springer, 1995, 96-106.
273
+ ...
274
+ LINKS
275
+ Robert G. Wilson v, Table of n, a(n) for n = 0..1000
276
+ ...
277
+ F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Disc. Math.,
278
+ Vol. 204, No. 1-3 (1999), 73-112.
279
+ ...
280
+ W. G. Brown, Historical Note on a Recurrent Combinatorial Problem,
281
+ Amer. Math. Monthly,. 72, No. 9 (1965), 973-977.
282
+ ...
283
+ FORMULA
284
+ Recurrence: a(n) = 2 ∗ (2 ∗ n − 1) ∗ a(n − 1)/(n + 1) with a(0) = 1.
285
+ ...
286
+ MAPLE
287
+ A000108 := n-¿binomial(2*n, n)/(n+1);
288
+ ...
289
+ MATHEMATICA
290
+ A000108[n ] := (2 n)!/n!/(n+1)!
291
+ ...
292
+ PARI
293
+ a(n)=binomial(2*n, n)/(n+1)
294
+ ...
295
+ KEYWORD
296
+ core,nonn,easy,nice
297
+ AUTHOR
298
+ N. J. A. Sloane
299
+ Figure 4: The entry for the Catalan number A000108. The full entry has over 750 lines,
300
+ which have been edited here to show samples of the different fields.
301
+ I could have chosen a simpler example, like the Fibonacci numbers, but I have a
302
+ particular reason for choosing the Catalan numbers. When the OEIS was new, people
303
+ would sometimes say to me that they had a sequence they were trying to understand,
304
+ and would I show them how to use the database.
305
+ At least twice when I used the
306
+ Catalan sequence as an illustration, they said, why, that is my sequence, how on earth
307
+ did you know? It was no mind-reading trick, the Catalan numbers are certainly the
308
+ most common sequence that people don’t know about. This entry is the longest—and
309
+ 7
310
+
311
+ one of the most important—in the whole database.
312
+ If we do not find your sequence in the database, we will send you a message inviting
313
+ you to submit it (if you consider it is of general interest), so that the next person who
314
+ comes across it will be helped, and your name will go on record as the person who
315
+ submitted it.
316
+ The second main use of the database is to find out the latest information about a
317
+ particular sequence.
318
+ Of course we cannot hope to keep all 360000 entries up-to-date. But when a new
319
+ paper is published that mentions the OEIS, Google will tell us, and we then add links to
320
+ that paper from any sequence that it mentions. People have told us that this is one of
321
+ the main ways they use the OEIS. After all, even a specialist in (say) permutation groups
322
+ cannot keep track of all the papers published worldwide in that area. And if a paper in
323
+ a physics journal happens to mention a number-theoretic sequence, for example, that is
324
+ unlikely to be noticed by mathematicians.
325
+ There are also many other ways in which the database has proved useful.
326
+ For example, it is an excellent source of problems to work on. The database is con-
327
+ stantly being updated. Every day we get thirty to fifty submissions of new sequences,
328
+ and an equal number of comments on existing entries (new formulas, references, ad-
329
+ ditional terms, etc.).
330
+ The new sequences are often sent in by non-mathematicians,
331
+ and are a great source of problems. You can see the current submissions at https:
332
+ //oeis.org/draft. Often enough you will see a sequence that is so interesting you
333
+ want to drop everything and work on it. And remember that we are always in need of
334
+ more volunteer editors. In fact anyone who has registered with the OEIS can suggest
335
+ edits, you do not even need to be an official editor. We have been the source of many
336
+ international collaborations.
337
+ There is also an educational side: several people have told us that they were led into
338
+ mathematics through working as an editor. Here is a typical story.
339
+ Subject: Reminiscence from a young mathematician
340
+ I wanted to relay a bit of nostalgia and my heartfelt thanks. Back in the late 1990s, I was a high
341
+ school student in Oregon. While I was interested in mathematics, I had no significant mathematically
342
+ creative outlet until I discovered the OEIS in the course of trying to invent some puzzles for myself. I
343
+ remember becoming a quite active contributor through the early 2000s, and eventually at one point, an
344
+ editor. My experience with the OEIS, and the eventual intervention of one of my high school teachers,
345
+ catalyzed my interest in studying mathematics, which I eventually did at [...] College. I went on to a
346
+ Ph.D. in algebraic geometry at the University of [...], and am currently at [...].
347
+ I wanted to thank you for seriously engaging with an 18-year old kid, even though I likely submitted
348
+ my fair share of mathematically immature sequences. I doubt I would have become a mathematician
349
+ without the OEIS!
350
+ A less-obvious use of the database is to quickly tell you how hard a problem is. I use
351
+ it myself in this way all the time. Is the sequence “Catalan” or “Collatz”? If a sequence
352
+ comes up in your own work, or when reviewing someone else’s work, it is useful to know
353
+ right away if this is a well-understood sequence, like the Catalan numbers, or if it is one
354
+ of the notoriously intractable problems like the Collatz or 3x + 1 problem (A006577).
355
+ 8
356
+
357
+ Finally, the OEIS is a welcome escape when you feel the world is falling apart. Take
358
+ a look at Scott Shannon’s drawings of stained glass windows in A331452; or Jonathan
359
+ Wild’s delicate illustrations of the ways to draw four circles (in A250001); or ´Eric An-
360
+ gelini’s “1995” puzzle (A131744) or any of his “lexicographically earliest sequences”
361
+ (A121053, A307720, and many more); or find better solutions to the Stepping Stones
362
+ Problem (§4.5,A337663). You can find brand new problems at any hour of the day or
363
+ night by looking at the stack of recent submissions: but beware, you may see a problem
364
+ there that will keep you awake for days. Or search in the database for phrases like “It
365
+ appears that ...”, or “Conjecture: ...”, or “It would be nice to know more!”
366
+ 3.3
367
+ Layout of a typical entry
368
+ This is a good place to mention some of the features of an OEIS entry. Most of the
369
+ fields (see Figs. 3 and 4) are self-explanatory. At the top it tells you how many matches
370
+ were found to your query (26 in the example). These are ranked in order of importance.
371
+ The DATA section shows the start of the sequence, usually enough terms to fill a few
372
+ lines on the screen (typically 300 to 500 decimal digits). Often one wants more terms
373
+ than are shown, and the first link in the entry will point to a plain text file with perhaps
374
+ 10000 or 20000 terms. That file will have a name like b001006.txt, and is called the
375
+ “b-file” for the sequence. Some entries also have much larger tables, giving a million or
376
+ more terms.
377
+ If you click the “graph” button near the top of the reply, you will be shown two plots
378
+ of the sequence, and if you click the “listen” button, you could listen to the sequence
379
+ played on an instrument of your choice. The default instrument is the grand piano, and
380
+ the terms of the sequence would be mapped to the 80 keys by reducing the numbers
381
+ mod 80 and adding 1.
382
+ I conclude this section with a philosophical comment.
383
+ When you are seriously trying to analyze a sequence, and are prepared to spend
384
+ any amount of time needed (searching for a formula or recurrence, for instance), you
385
+ need all the help you can get, which is why we provide the b-files and other data files,
386
+ and why we give computer programs in so many languages. This is also the reason we
387
+ give as many references and links as possible for a sequence. Even if the reference is to
388
+ an ancient or obscure journal, or one that has been accused as being “predatory”, we
389
+ still give the reference, especially for sequences that are not well-understood. The same
390
+ thing holds for formulas, comments, and cross-references to other sequences. When you
391
+ are desperate, you will accept help from anywhere. And do not forget “Superseeker”!
392
+ 3.4
393
+ Arrangement of the entries
394
+ The entries in the database are (virtually) arranged in two different ways, the first
395
+ essentially chronological, the second lexicographic.
396
+ 9
397
+
398
+ The first is by their absolute identification number, or A-number.4 Once the collec-
399
+ tion reached a few hundred entries, I sorted them into lexicographic order and numbered
400
+ them A1, A2, A3, .... A1 gives the number of symmetry groups of order n, A2 is the
401
+ famous Kolakoski sequence, and so on. This numbering is still used today, only A1 has
402
+ become A000001, A2 is A000002, ..., and as each new submission comes in it gets a
403
+ number from the stack. Current sequences are being issued numbers around A360000.
404
+ Rejected A-numbers are recycled, so there are no gaps in the order. We reached 100000
405
+ entries in 2004, and 250000 in 2015. The present growth rate is about 12000 new entries
406
+ each year.
407
+ The second arrangement is a kind of lexicographic ordering.
408
+ First I describe an
409
+ idealized, theoretical, lexicographic order. Sequences of nonnegative numbers can be
410
+ arranged in lexicographic (or dictionary) order.
411
+ For example, sequences beginning
412
+ 1,2,4,... come before 1,2,5,..., 1,2,4,3,..., 1,3,..., etc., but after 1,2,3,....
413
+ Also
414
+ 1,2,4,... comes after the two-term sequence 1,2 (because blanks precede numbers).
415
+ More formally, we compare the two sequences term-by-term, and in the first position
416
+ where they differ whichever is smaller (or blank) is the lexicographically earlier sequence.
417
+ For sequences with negative terms, we ignore the signs and sort according to the
418
+ absolute values.
419
+ Here is the actual ordering used in the OEIS. The sequences are arranged (virtually)
420
+ into a version of lexicographic order, according to the following rules. First, delete all
421
+ minus signs. Then find the first term that is greater than 1, and discard all the terms
422
+ before it. What’s left determines its position in the lexicographic order. For example,
423
+ to place −1,0,1,1,2,1,17,3,2,1,... in the ordering, we would ignore the terms before
424
+ the underlined 2, and consider the sequence as beginning 2,1,17,3,2,1,....
425
+ Sequences that contain only 0s, 1s and −1s are sorted into lexicographic order by
426
+ absolute value and appear at the beginning of the ordering. The first sequence in the
427
+ database is therefore the zero sequence A000004.
428
+ In this way every sequence has a unique position in the ordering. The sequences
429
+ have been sorted in this way since the 1960s. For the first ten years the punched card
430
+ entries were physically sorted into this order.
431
+ When you look at an OEIS entry, A005132 say (the subject of Section 4.1), towards
432
+ the bottom you will see two lines like5
433
+ Sequence in context: A277558 A350578 A335299 * A064388 A064387 A064389
434
+ Adjacent sequences: A005129 A005130 A005131 * A005133 A005134 A005135
435
+ which tell you the three entries immediately before and after that entry in the lexico-
436
+ graphic ordering, and the three entries before and after it in the A-numbering. The
437
+ asterisks represent the sequence you are looking at. The first group can be useful if you
438
+ are uncertain about a term in your sequence, the second in case you want to look at
439
+ other sequences submitted around that time.
440
+ Today the sequences are actually stored internally in an SQLite database. However,
441
+ 4The sequences in the 1973 and 1995 books were numbered N0001, ..., and M0001, ..., respectively.
442
+ 5If you don’t see these, click on the A-number at the top of the entry.
443
+ 10
444
+
445
+ the punched card format has been so useful that when you view a sequence, as in Fig. 4,
446
+ it is still presented to you in something very like the old punched card format.
447
+ 3.5
448
+ Summary: “A Handbook of Integer Sequences” today
449
+ – Now The On-Line Encyclopedia of Integer Sequences or OEIS: https://oeis.org
450
+ – Accurate information about 360000 sequences.
451
+ – Definition, formulas, references, links, programs. View as list, table, graph, music!
452
+ – Traffic: 1 million hits/day.
453
+ – 30 new entries, 50 updates every day.
454
+ – Often called one of best math sites on the Web. Fingerprint file for mathematics.
455
+ – Street creds: 10000 citations.
456
+ – A moderated Wiki, owned by OEIS Foundation, a 501(c)(3) public charity.
457
+ – Uses: to see if your sequence is new, to find references, formulas, programs.
458
+ – Catalan or Collatz? (Very easy or very hard?)
459
+ – Source of fascinating research problems;6 low-hanging fruit from recent submis-
460
+ sions.
461
+ – Accessible (free, friendly).
462
+ – Fun (1,2,4,6,3,9,12,8,10,5,15,...?). Interesting, educational. Escape.
463
+ – Addictive (better than video games).
464
+ – Has led many people into mathematics.
465
+ – One of the most successful international collaborations, a modest contribution
466
+ towards world peace.
467
+ – Need editors.
468
+ 4
469
+ Some favorite sequences
470
+ I’m sometimes asked what my favorite sequence is. This is a difficult question. I’m
471
+ tempted to reply by saying: If you were the keeper of the only zoo in the world, how
472
+ would you answer that question? (Because that is roughly the situation I’m in.) Would
473
+ you pick one of the exotic animals, a giraffe, a kangaroo, or a blue whale? Or one of the
474
+ essential animals, like a horse, a cow, or a duck? If the question came from a visiting
475
+ alien, of course, there is only one possible answer: a human being.
476
+ 6Look for “Conjecture”, “It appears that”, “It would be nice to”, ...
477
+ 11
478
+
479
+ For sequences, the essential ones are the primes, the powers of 2, the Catalan num-
480
+ bers, or (especially if the question came from an alien with no fingers or toes), the
481
+ counting sequence 0, 1, 2, 3, 4, ... (A001477).
482
+ But here I’ll mention a few that are fairly exotic. The Recam´an and Gijswijt se-
483
+ quences have simple recursive definitions, yet are astonishingly hard to understand.
484
+ 4.1
485
+ Recam´an’s sequence (A005132)
486
+ This remarkable sequence has resisted analysis for over 30 years, even though we have
487
+ computed an astronomical number of terms. It was contributed to the database by
488
+ Bernardo Recam´an Santos in 1991.
489
+ The definition is deceptively simple. The first term is 0. We now add or subtract 1,
490
+ then we add or subtract 2, then add or subtract 3, and so on. The rule is that we always
491
+ first try to subtract, but we can only subtract if that leaves a nonnegative number that
492
+ is not yet in the sequence. Otherwise we must add.
493
+ Here is how the sequence starts. We have the initial 0. We can’t subtract 1, because
494
+ that would give a negative number, so we add 1 to 0. So the second term is 1. We can’t
495
+ subtract 2 from 1, so we add it, getting the third term 1+2 = 3. Again we can’t subtract
496
+ 3, for that would give 0, which has already appeared, so we add 3, getting the fourth
497
+ tern 3 + 3 = 6.
498
+ Now we must add or subtract 4, and this time we can subtract, because 6−4 = 2, and
499
+ 2 is nonnegative and a number that hasn’t yet appeared. So at this point the sequence
500
+ is 0,1,3,6,2. Then it continues 7(= 2 + 5), 13(= 7 + 6),20(= 13 + 7),12(= 20 − 8), and so
501
+ on. The first 16 terms are
502
+ 0,1,3,6,2,7,13,20,12,21,11,22,10,23,9,24,...
503
+ When adding rather than subtracting, repeated terms are permitted (42 is repeated
504
+ at the 24th term).
505
+ Edmund Harriss has found an elegant was to draw the sequence as a spiral on the
506
+ number line. Start at 0, and when we subtract n, draw a semicircle of diameter n to
507
+ the left from the last point, or to the right if we are adding n. Draw the semicircles
508
+ alternately below and above the horizontal axis so as to produce a smooth spiral.
509
+ The main question about this sequence is: Does every positive number appear?
510
+ What makes this sequence so interesting is that certain numbers (for reasons we do not
511
+ understand) are extremely reluctant to appear. 4 does not appear until 131 steps, and
512
+ 19 takes 95734 steps.
513
+ A group of us at AT&T Bell Labs worked on this sequence in 2001, and developed a
514
+ way to greatly speed up the computation. Allan Wilks used it to compute the first 1015
515
+ terms, and found that 2406 (which had been missing for a long time) finally appeared
516
+ at step 394178473633984.
517
+ At this point the smallest missing number was 852655 = 5⋅31⋅5501. Benjamin Chaffin
518
+ has continued this work, and in 2018 reached 10230 terms. However, 852655 was still
519
+ 12
520
+
521
+ Figure 5: Harriss’s drawing of the first 64 terms of Recam´an’s sequence. (The tiny
522
+ initial semicircle, at the extreme left, is below the axis. It has diameter 1 and joins the
523
+ points 0 and 1. It continues as a semicircle of diameter 2, above the axis, joining the
524
+ points 1 and 3.)
525
+ missing, and there has been no progress since then.
526
+ Thirty years ago I thought that every number would eventually appear.
527
+ Now I
528
+ am not so sure. My current belief is that there are two possibilities: either there are
529
+ infinitely many numbers that never appear, and 852655 just happens to be the smallest
530
+ of them, but has no other special property. A similar phenomenon appears to occur
531
+ when iterating various number-theoretic functions—see the next section.
532
+ Or, every
533
+ number will eventually appear (just as presumably every one of Shakespeare’s plays will
534
+ eventually appear in the expansion of π in base 60), although we may never be able
535
+ to extend the sequence far enough to hit 852655. For the latest information about this
536
+ sequence (or any other sequence mentioned in this article), consult the OEIS.
537
+ Open question: Does 852655 appear in A005132?
538
+ 4.2
539
+ Iteration of number-theoretic functions
540
+ Many mysterious sequences arise from the iteration of number-theoretic functions. A
541
+ classic problem concerns the iteration of the function f(n) = σ(n) − n, the sum of the
542
+ “aliquot parts” of n (see Guy [8, §B6]). For an initial value of n, what happens to the
543
+ trajectory n,f(n),f(f(n)),...? All n < 276 terminate by entering a cycle (such n are
544
+ called “perfect”, “amicable”, or “sociable” numbers), or reaching a prime, then 1, then
545
+ 0. But it appears likely that n = 276 and perhaps infinitely many even numbers, will
546
+ never terminate. The trajectory of 276 is A008892, and the b-file gives the first 2140
547
+ 13
548
+
549
+ terms, term 2140 being a 213-digit number. The continuation of the trajectory has
550
+ stalled at term 2051, where a 202-digit number is waiting to be factored. A098007 gives
551
+ the number of distinct terms in the trajectory of n, or −1 if the trajectory is unbounded.
552
+ The value of A098007(276) is unknown.
553
+ If indeed 276 does go to infinity, it is natural to ask, how did 276 know it was destined
554
+ to be the first immortal number under the map f? The answer may be that there are
555
+ infinitely many immortal numbers, and 276 just happens to be the first. It got lucky,
556
+ that’s all! Just as 852655 got lucky in Recam´an’s problem.
557
+ A similar question, also discussed by Guy [8, §B41], which has received much less
558
+ attention, concerns the map g(n) = (σ(n) + φ(n))/2, where φ(n) is the Euler totient
559
+ function A000010. The trajectory may end at 1, a prime, or a fraction, or it may increase
560
+ monotonically to infinity. Sequence A292108 gives the number of steps in the trajectory,
561
+ or −1 if the trajectory is infinite. All numbers n < 270 have finite trajectories, but it
562
+ appears that 270 goes increases forever. The trajectory of 270 is A291789. Andrew
563
+ Booker has given a heuristic argument showing that almost all numbers go to infinity.
564
+ What makes 270 the first immortal number under g? Again I suspect it just got lucky!
565
+ Open questions: Does the trajectory of 276 under f increase forever? What about
566
+ the trajectory of 270 under g?
567
+ 4.3
568
+ Gijswijt’s sequence (A090822)
569
+ For this sequence it will be helpful to remember that chemists do not write H − H − O,
570
+ they write H2O, they do not write AlAlAlSOOOOSOOOO, they write Al3(SO4)2.
571
+ We will apply a similar compression to sequences of numbers, except that we indicate
572
+ repetition by superscripts rather than by subscripts.
573
+ For this problem, when we look at a sequence of numbers, we want to write it in the
574
+ form XY Y ...Y , or XY k, where X and Y are themselves sequences of numbers, X can
575
+ be missing, and the exponent k is as large as possible.
576
+ For example, we can write 1,2,2,2,2 as XY k, where X = 1, Y = 2, and k = 4. The
577
+ highest k we can achieve for a sequence is called its “curling number”. So 1,2,2,2,2
578
+ has curling number 4. Think of an animal with its head looking to the left, with a very
579
+ curly tail. X represents the head and body of the animal, and Y k represents the curls
580
+ in its tail.
581
+ Consider the sequence 3,2,4,4,2,4,4,2,4,4. We could take X = 3,2,4,4,2,4,4,2 and
582
+ Y = 4, getting XY 2, with k = 2, or we could take X = 3, Y = 2,4,4, getting XY 3, with
583
+ k = 3, which is larger. So this sequence has curling number 3.
584
+ Remember that X may be missing. So the sequence with a single term 99, say, can
585
+ be written as Y 1 where Y is the number 99, and it has curling number 1. (The notion
586
+ of curling number is independent of the base in which the numbers are written.)
587
+ We are now ready to define Dion Gijswijt’s absolutely brilliant sequence, which he
588
+ sent to the OEIS in 2004.
589
+ 14
590
+
591
+ The rule for finding the next term is simple: it is the curling number of the sequence
592
+ so far. And you start with 1. That’s the sequence!
593
+ So let’s construct it. We start with 1, and the curling number of 1 is 1. So now we
594
+ have 1,1. This has curling number 2, so now we have 1,1,2. At each step we recompute
595
+ the curling number, and make that the next term.
596
+ Here are the first few generations.
597
+ 1
598
+ 1 1
599
+ 1 1 2
600
+ 1 1 2 1
601
+ 1 1 2 1 1
602
+ 1 1 2 1 1 2
603
+ 1 1 2 1 1 2 2 (we took Y = 1 1 2)
604
+ 1 1 2 1 1 2 2 2
605
+ 1 1 2 1 1 2 2 2 3
606
+ and we have found the first 3, at the 9th term. After a while, a 4 appears at term 220.
607
+ But Gijswijt was unable to find a 5, and left that question open when he submitted
608
+ the sequence. Some Bell Labs colleagues computed many millions of terms, but no 5
609
+ appeared.
610
+ Finally, over the course of a long weekend, Fokko van der Bult (a fellow student of
611
+ Gijswijt’s in Amsterdam) and I independently showed that there is a 5. In fact there
612
+ are infinitely many 5’s, but the first one does not appear until about term 101023. The
613
+ universe would be cold long before any computer search would find it.
614
+ In the paper we wrote about the sequence [4], we also conjectured that the first time
615
+ a number N > 4 appears is at about term
616
+ 2 ↑ (2 ↑ (3 ↑ (4 ↑ (5 ↑ ... ↑ (N − 1))))),
617
+ where the up-arrows (↑) indicate exponentiation. This is a tower of exponents of height
618
+ N − 1.
619
+ A very recent manuscript by a student of Gijswijt’s, Levi van de Pol, still under
620
+ review, has extended our work, and may have proved the above conjecture.
621
+ I cannot resist adding a further comment about curling numbers, which if true shows
622
+ that the Gijswijt sequence is in a sense universal.
623
+ The Curling Number Conjecture asserts that if any finite starting sequence is ex-
624
+ tended by the rule that the next term is the curling number of the sequence so far, then
625
+ eventually the curling number will be 1.
626
+ If true, this implies that if the starting sequence contains no 1s, then the sequence
627
+ eventually becomes Gijswijt’s sequence [5, Th. 23]. In fact I conjecture that this is true
628
+ for any starting sequence.
629
+ Open question: Is the Curling Number Conjecture true?
630
+ 15
631
+
632
+ 4.4
633
+ Lexicographically Earliest Sequences
634
+ Although there is no space to discuss them in detail, let me just mention that there
635
+ are many fascinating and difficult sequences in the OEIS whose definition has the form
636
+ “Lexicographically Earliest Sequence of distinct positive numbers with the property that
637
+ ...”, where now we are using lexicographic in its pure sense, as defined in Section 3.4.
638
+ A favorite example is the EKG (or ECG) sequence A064413, whose definition is the
639
+ lexicographically earlier infinite sequence of distinct positive numbers with the property
640
+ that each term after the first has a nontrivial common factor with the previous term [9].
641
+ Other L.E.S. examples are the Yellowstone permutation A098550 [2], the Enots Wolley
642
+ sequence A336957 (the name suggests the definition), and the Binary Two-Up sequence
643
+ A354169 [6].
644
+ Open question: Show that the terms of the Enots Wolley sequence are precisely 1,
645
+ 2, and all numbers with at least two distinct prime factors.
646
+ 4.5
647
+ The Stepping Stones Problem (A337663)
648
+ This lovely problem was invented in 2020 by two undergraduates, Thomas Ladouceur
649
+ and Jeremy Rebenstock. You have an infinite chessboard, and a handful of brown stones,
650
+ which are worth one point each. You also have an infinite number of white stones, of
651
+ values 2, 3, 4,..., one of each value. Suppose you have n brown stones. You start by
652
+ placing them anywhere on the board. Now you place the white stones, trying to place
653
+ as many as you can. The rules are that you can only place a white stone labeled k on
654
+ a square if the values of the stones on the eight squares around it add up to k. And
655
+ you must place the white stones in order, first 2, then 3, and so on. You stop when
656
+ you cannot place the next higher-numbered white stone. The goal is to maximize the
657
+ highest value that you place. Call this a(n).
658
+ 9
659
+ 5
660
+ 10
661
+ 11
662
+ 4
663
+ 1
664
+ 12
665
+ 8
666
+ 3
667
+ 2
668
+ 16∗
669
+ 6
670
+ 1
671
+ 15
672
+ 13
673
+ 7
674
+ 14
675
+ Figure 6: A solution to the Stepping Stones problem for two starting stones. The high
676
+ point a(2) = 16 here is indicated by an asterisk, as it is in the next three tables.
677
+ Say we start with n = 2 brown stones. There are infinitely many squares where they
678
+ can be placed, but it turns out that the best thing is to place them so they are separated
679
+ diagonally by a single blank square, as in Fig. 6. Now we start trying to place the white
680
+ 16
681
+
682
+ stones. The 2 stone has to go between the two brown (or 1) stones, and then the 3 goes
683
+ on a square adjacent to the 1 and the 2. There is now a choice for where the 4 goes, but
684
+ the choice shown in Fig. 6 is the best. (After we have placed the 4, the neighbors of the
685
+ 3 no longer add up to 3, but that is OK. It is only when we place the 3 that its neighbors
686
+ must add to 3.) Continuing in this way, we eventually reach 16. There is nowhere to
687
+ place the 17, so we stop. Ladouceur and Rebenstock showed, using a computer and
688
+ considering all possible arrangements, that 16 is the highest value that can be attained
689
+ with two starting stones. So a(2) = 16.
690
+ This is clearly a hard problem, since the number of possibilities grows rapidly with
691
+ the number of brown stones. Only six terms of this sequence are known: a(1) through
692
+ a(6) are 1,16,28,38,49,60. A solution for n = 4 found by Arnauld Chevallier is shown in
693
+ Fig. 7. There are lower bounds for larger values of n which may turn out to be optimal.
694
+ For n = 7,...,10 the current best constructions give 71,80,90,99. See A337663 for the
695
+ latest information.
696
+ 35
697
+ 18
698
+ 36
699
+ 23
700
+ 21
701
+ 32
702
+ 17
703
+ 1
704
+ 14
705
+ 9
706
+ 12
707
+ 20
708
+ 34
709
+ 16
710
+ 15
711
+ 5
712
+ 4
713
+ 8
714
+ 26
715
+ 27
716
+ 31
717
+ 10
718
+ 1
719
+ 3
720
+ 19
721
+ 25
722
+ 1
723
+ 28
724
+ 11
725
+ 2
726
+ 6
727
+ 33
728
+ 29
729
+ 24
730
+ 13
731
+ 22
732
+ 1
733
+ 7
734
+ 37
735
+ 30
736
+ 38∗
737
+ Figure 7: A solution to the Stepping Stones problem for four starting stones.
738
+ We don’t know how fast a(n) grows. There have been a series of upper and lower
739
+ bounds, initiated by Robert Gerbicz and Andrew Howroyd. The simple linear construc-
740
+ tion shown in Fig. 8 shows that a(n) ≥ 6(n − 1) for n ≥ 3.
741
+ 1
742
+ 2
743
+ 3
744
+ 4
745
+ 5
746
+ 6
747
+ 7
748
+ 8
749
+ 9
750
+ 1
751
+ 1
752
+ 1
753
+ 10
754
+ 18∗
755
+ 17
756
+ 16
757
+ 15
758
+ 14
759
+ 13
760
+ 12
761
+ 11
762
+ Figure 8: Every additional 1 on the middle row increases the number of white stones
763
+ by 6, showing that a(n) ≥ 6(n − 1) for n ≥ 3.
764
+ 17
765
+
766
+ By combining the constructions of Figs. 6 and 8, Menno Verhoeven obtained a(n) ≥
767
+ 6n + 3 for n ≥ 3 (Table 9).
768
+ 25
769
+ 24
770
+ 1
771
+ 26
772
+ 23
773
+ 27
774
+ 22
775
+ 28
776
+ 21
777
+ 1
778
+ 29
779
+ 20
780
+ 30
781
+ 19
782
+ 31
783
+ 9
784
+ 5
785
+ 10
786
+ 11
787
+ 18
788
+ 1
789
+ 32
790
+ 4
791
+ 1
792
+ 17
793
+ 33∗
794
+ 12
795
+ 8
796
+ 3
797
+ 2
798
+ 16
799
+ 6
800
+ 1
801
+ 15
802
+ 13
803
+ 7
804
+ 14
805
+ Figure 9: Combining the constructions of of Figs. 6 and 8 gives a(n) ≥ 6n + 3 for n ≥ 3.
806
+ The case n = 5 is shown. For other values of n, adjust the height of the “chimney” on
807
+ the right.
808
+ The best lower bound for large n is due to Robert Gerbicz, who has shown by a
809
+ remarkable extension of the construction in Figs. 8 and 9 that limn→∞ a(n)/n > 6. (A
810
+ preliminary version of his bound gives a(n) > 6.0128n−5621 for all n, although the exact
811
+ values of the constants have not been confirmed.) In his construction the “chimney” on
812
+ the right of Fig. 9 gets expanded into a whole trellis.
813
+ One might think that with a sufficiently clever arrangement, perhaps extending the
814
+ construction in Fig. 8 so that the path wraps around itself in a spiral, one could achieve
815
+ large numbers with only a few starting stones. But a simple counting argument due
816
+ to Robert Gerbicz shows this is impossible. The current best upper bound is due to
817
+ Jonathan F. Waldmann, who has shown that a(n) < 79n + C for some constant C. See
818
+ A337663 for the latest information, including proofs of of the results mentioned here.
819
+ Open question: Improve the upper and lower bounds on a(n).
820
+ 4.6
821
+ Stained glass windows
822
+ In 1998 Poonen and Rubinstein [12] famously determined the numbers of vertices and
823
+ cells in the planar graph formed from a regular n-gon by joining every pair of vertices
824
+ by a chord. The answers are in A006561 and A007678. Lars Blomberg, Scott Shannon,
825
+ and I have studied versions of this question when the regular n-gon is replaced by other
826
+ 18
827
+
828
+ Figure 10: A 4×2 grid of squares with every pair of boundary points joined by a chord.
829
+ The graph has 213 vertices and 296 cells.
830
+ The cells are color-coded to distinguish
831
+ triangles (red), quadrilaterals (yellow), and pentagons (blue).
832
+ polygons, for instance by a square in which n equally-spaced points are placed along each
833
+ side and each pair of boundary points is joined by a chord. We also studied rectangles,
834
+ triangles, etc. In most cases we were unable to find formulas for the numbers of vertices
835
+ or cells, but we collected a lot of data, and the graphs, when colored, often resemble
836
+ stained glass windows (see [3] and the illustrations in A331452 and other sequences
837
+ cross-referenced there).7 So we consoled ourselves with the motto: if we can’t solve it,
838
+ make art!
839
+ The most promising case to analyze seemed to be the n × 2 grid (although we did
840
+ not succeed even there).
841
+ Open question: How many vertices and cells are there in the graph for the n×2 grid,
842
+ 7There is no fee for downloading images in the OEIS, but if you use any of them, please credit the
843
+ source!
844
+ 19
845
+
846
+ as illustrated for n = 4 in Fig. 10? Sequences A331763 and A331766 give the first 100
847
+ terms, yet even with all that data we have not found a formula.
848
+ The case of an n × n grid seems even harder.
849
+ Figure 11 shows the 6 × 6 graph.
850
+ Sequences A331449 and A255011 give the numbers of vertices and cells for n ≤ 42.
851
+ A334699 enumerates the cells by number of sides.
852
+ Figure 11: A 6×6 grid with every pair of boundary points joined by a chord. There are
853
+ 4825 vertices and 6264 cells.
854
+ In the summer of 2022 Scott Shannon and I considered several other families of planar
855
+ graphs. I cannot resist showing one of Shannon’s graphs, a 16 × 16 grid, illustrating the
856
+ 16th term of A355798 (Fig. 12). There are 61408 cells. Although Shannon has calculated
857
+ 40 terms of this sequence, again no formula is known.
858
+ 20
859
+
860
+ Figure 12: Scott Shannon’s “Magic Carpet” graph, illustrating A355798(16).
861
+ 4.7
862
+ If I had more space
863
+ If I had had more space I would also have discussed some very interesting sequences
864
+ arising from:
865
+ – Dissecting a square to get a regular n-gon (A110312).
866
+ – Gerrymandering (A341578, A348453, and many others).
867
+ – In how many ways can circles overlap? (A250001).
868
+ – The Inventory sequence A342585.
869
+ – Kaprekar’s junction numbers (A006064, [1]).
870
+ – The kissing number problem (A001116, A257479).
871
+ – The neural network problem that started it all (A000435).
872
+ – Squares in the plane (A051602).
873
+ And, maybe, meta-sequences such as A051070 (a(n) is the nth term of An) and
874
+ A107357 (the nth term is 1 + the nth term of An).
875
+ 21
876
+
877
+ A final comment: there are many videos on the Internet of talks I have given about
878
+ sequences. There are over twenty videos that Brady Haran and I have made that have
879
+ appeared on the Youtube Numberphile channel (and have been viewed over eight million
880
+ times). See for example “Terrific Toothpick Patterns”.
881
+ 5
882
+ Acknowledgments
883
+ I would like to thank some good friends who have helped me and the OEIS over the
884
+ years: David L. Applegate, William Cheswick, Russ Cox, Susanna S. Cuyler, Harvey
885
+ P. Dale, Ronald L. Graham, Richard K. Guy, Marc LeBrun, John Riordan, and Doron
886
+ Zeilberger.
887
+ There are many active volunteer editors, and it is impossible to thank them all.
888
+ But I would like to give particular thanks to J¨org Arndt, Michael S. Branicky, Michael
889
+ De Vlieger, Amiram Eldar, Charles R. Greathouse IV, Maximilian F. Hasler, Alois P.
890
+ Heinz, Andrew Howroyd, Sean A. Irvine, Michel Marcus, Richard J. Mathar, Peter
891
+ Munn, Hugo Pfoertner, Kevin Ryde, Jon E. Schoenfield, R´emy Sigrist, and Chaiwah
892
+ Wu.
893
+ I also thank the members of the Board of Trustees of the OEIS Foundation, past
894
+ and present, for all their help, both to me personally and to the OEIS.
895
+ Figure credits: Figure 1(c): Clifford A. Pickover. Figure 5: Edmund Harriss. Fig-
896
+ ures 6, 7, 8, and 9 are based on communications from Thomas Ladouceur and Jeremy
897
+ Rebenstock, Arnauld Chevallier, Skylark Xentha Murphy-Davies, and Menno Verho-
898
+ even, respectively. Figures 10 and 11: Lars Blomberg and Scott Shannon. Figure 12:
899
+ Scott R. Shannon. Other figures: the author.
900
+ References
901
+ [1] M. A. Alekseyev and N. J. A. Sloane, On Kaprekar’s Junction Numbers, J. Com-
902
+ binat. and Number Theory, 2023, in press.
903
+ [2] D. L. Applegate, H. Havermann, B. Selcoe, V. Shevelev, N. J. A. Sloane, and
904
+ R. Zumkeller, The Yellowstone permutation, J. Integer Seqs., 18 (2015), #15.6.7.
905
+ [3] L. Blomberg, S. R. Shannon, and N. J. A. Sloane, Graphical enumeration and
906
+ stained glass windows, 1: Rectangular grids, Integers, Ron Graham Memorial Vol-
907
+ ume 21A (2021), #A5.
908
+ [4] F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane, and Allan
909
+ Wilks, A slow-growing sequence defined by an unusual recurrence, J. Integer Seqs.,
910
+ 10 (2007), #07.1.2.
911
+ [5] B. Chaffin, J. P. Linderman, N. J. A. Sloane and A. R. Wilks, On curling numbers
912
+ of integer sequences, J. Integer Seqs., 16 (2013), #13.4.3.
913
+ 22
914
+
915
+ [6] M. De Vlieger, T. Scheuerle, R. Sigrist, N. J. A. Sloane, and W. Trump, The binary
916
+ Two-Up sequence, arXiv:2209.04108, Sep. 11 2022.
917
+ [7] H. W. Gould, Combinatorial Identities, Morgantown, WV, 1972.
918
+ [8] R. K. Guy, Unsolved Problems in Number Theory, 3rd. ed., Springer, 2010.
919
+ [9] J. C. Lagarias, E. M. Rains, and N. J. A. Sloane, The EKG sequence, Experimental
920
+ Math., 11 (2002), 437–446.
921
+ [10] D. S. Mitrinovi´c, J. S´andor and B. Crstici, Handbook of Number Theory, Kluwer,
922
+ Dordrecht, 1996.
923
+ [11] The OEIS Foundation Inc. (2023), The On-Line Encyclopedia of Integer Sequences,
924
+ https://oeis.org.
925
+ [12] B. Poonen and M. Rubinstein, The number of intersection points made by the
926
+ diagonals of a regular polygon, SIAM J. Discrete Mathematics, 11.1 (1998) 135–
927
+ 156.
928
+ [13] J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J.
929
+ Austral. Math. Soc., 10 (1969), 278–282.
930
+ 2020 Mathematics Subject Classification: 05-00, 11-00, 11Bxx, 48-00, 68-00
931
+ 23
932
+
MtE1T4oBgHgl3EQfZQTY/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ONE2T4oBgHgl3EQfrAiX/content/tmp_files/2301.04045v1.pdf.txt ADDED
@@ -0,0 +1,1306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Experimental characterization of an ultra-broadband dual-mode
2
+ symmetric Y–junction based on metamaterial waveguides
3
+ Raquel Fernández de Caboa,*, Jaime Vilasa,b, Pavel Chebenc, Aitor V. Velascoa, David González-
4
+ Andraded
5
+ a Instituto de Óptica Daza de Valdés, Consejo Superior de Investigaciones Científicas (CSIC), 121 Serrano, Madrid 28006, Spain
6
+ b Alcyon Photonics S.L., 11 Génova, Madrid 28004, Spain
7
+ c National Research Council Canada, 1200 Montreal Road, Bldg. M50, Ottawa K1A 0R6, Canada
8
+ d Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, Palaiseau 91120, France
9
+ * Corresponding author: [email protected]
10
+ ARTICLE INFO
11
+
12
+ Keywords:
13
+ Silicon photonics
14
+ Subwavelength grating
15
+ metamaterial
16
+ Power splitter
17
+ Y-junction
18
+ Ultra-broadband
19
+ Fabrication tolerant
20
+
21
+
22
+
23
+
24
+
25
+
26
+ ABSTRACT
27
+
28
+ Silicon photonic integrated circuits routinely require 3-dB optical power dividers with
29
+ minimal losses, small footprints, ultra-wide bandwidths, and relaxed manufacturing
30
+ tolerances to distribute light across the chip and as a key building block to form more
31
+ complex devices. Symmetric Y–junctions stand out among other power splitting
32
+ devices owing to their wavelength-independent response and a straightforward design.
33
+ Yet, the limited resolution of current fabrication methods results in a minimum feature
34
+ size (MFS) at the tip between the two Y–junction arms that leads to significant losses
35
+ for the fundamental mode. Here we propose to circumvent this limitation by leveraging
36
+ subwavelength metamaterials in a new type of ultra-broadband and fabrication-
37
+ tolerant Y–junction. An exhaustive experimental study over a 260 nm bandwidth
38
+ (1420–1680 nm) shows excess loss below 0.3 dB for the fundamental transverse-
39
+ electric mode (TE0) for a high-resolution lithographic process (MFS ~ 50 nm) and less
40
+ than 0.5 dB for a fabrication resolution of 100 nm. Subwavelength Y–junctions with
41
+ deterministically induced errors of ±10 nm further demonstrated robust fabrication
42
+ tolerances. Moreover, the splitter exhibits excess loss lower than 1 dB for the first-
43
+ order transverse-electric mode (TE1) within a 100 nm bandwidth (1475–1575 nm),
44
+ using high-resolution lithography.
45
+ 1. Introduction
46
+ Photonic integrated circuits (PICs) built on the silicon-
47
+ on-insulator (SOI) platform benefit from high modal
48
+ confinement, small footprints, energy efficiency and
49
+ large-scale production, whilst driving-down costs thanks
50
+ to the compatibility with complementary metal-oxide-
51
+ semiconductor (CMOS) fabrication processes [1–3].
52
+ These compelling advantages substantially extend the
53
+ scope of photonic integration beyond telecom and
54
+ datacom to emerging applications with a far-reaching
55
+ impact. These include 5G mobile communications [4],
56
+ the Internet of Things [5], quantum photonics [6], light
57
+ detection and ranging [7], spectrometry [8,9] and
58
+ biochemical sensing [10], also enabling lab-on-a-chip
59
+ solutions [11].
60
+ The complexity leap of the aforementioned
61
+ applications requires an increasing number of on-chip
62
+ components that take advantage of either multimode or
63
+ broadband operations. Specifically, 3-dB optical power
64
+ splitters are key components extensively used in light
65
+ distribution or as building blocks for more intricate
66
+ arrangements, including optical switches, multiplexers
67
+ or integrated Mach-Zehnder interferometers [12,13].
68
+ Sequentially concatenated 3-dB power splitters are often
69
+ utilized to implement 1×N dividers [14,15], requiring
70
+ compact and low-loss designs. For datacom applications
71
+ such as mode-division multiplexing [16] or multitarget
72
+ sensing [17], power splitters with broad bandwidths are
73
+ required. Different power division architectures have
74
+ been reported based, among others, on symmetric Y–
75
+ junctions [18,19], multimode interference (MMI)
76
+ couplers [20–22], inverse tapers [23], adiabatic tapers
77
+ [24], directional and adiabatic couplers [25–27], slot
78
+ waveguides [28] and photonic crystal structures [29–31].
79
+ MMI devices offer good fabrication tolerances and
80
+ compact footprints, and their operational bandwidth can
81
+ be optimized through geometry design [20,21] or
82
+ partially shallowly etched regions [22]. Inverse tapers
83
+ [23] provide efficient mode evolution but typically
84
+ present narrow bandwidths. Adiabatic tapers [24] exhibit
85
+ wider bandwidths, but the performance of transverse-
86
+ electric (TE) polarized light has larger fluctuations across
87
+ the operation bandwidth due to the higher sensitivity to
88
+ sidewall roughness. Conversely, the bandwidth of
89
+ conventional directional couplers is restricted due to the
90
+ strong wavelength-dependence of the evanescent
91
+ coupling. Asymmetric [25] and bent [26] directional
92
+
93
+ couplers have been demonstrated with reduced
94
+ wavelength dependence, but it is not sufficient for ultra-
95
+ broadband optical systems. Additional power division
96
+ architectures with low losses over extensive operational
97
+ bandwidth also include adiabatic couplers [27], slot
98
+ waveguides [28] photonic crystal power splitters [29–
99
+ 31], inverse design methods [32,33], pixelated meta-
100
+ structures [34], and deep neural networks [35].
101
+ Amongst these power splitters, symmetric Y–
102
+ junctions are one of the most common alternatives given
103
+ their
104
+ polarization-
105
+ and
106
+ wavelength-independent
107
+ response, and their straightforward design. Symmetric
108
+ Y–junctions consist of a stem waveguide ramifying into
109
+ two arms of the same width. However, these structures
110
+ typically present significant loss for fundamental modes
111
+ at the junction, especially as the tilt angle between the
112
+ two branching arms increases [36]. Two basic
113
+ mechanisms are responsible for this loss: the wavefront
114
+ mismatch due to the abrupt tilt angle, and the
115
+ transformation of the mode profile in the interface
116
+ between the stem and the arms [37]. In order to reduce
117
+ the effect of the tilt angle, s-bend shaped waveguides can
118
+ be employed for the arms [38], whereas the junction
119
+ region can be tapered to ensure an approximately
120
+ adiabatic mode evolution. Despite these design
121
+ optimizations, minimum feature size (MFS) limitations
122
+ of fabrication technologies lead to an imperfect tip
123
+ between the two Y–junction arms. This MFS constraint
124
+ causes considerable losses on the fundamental mode as
125
+ the maximum of its power profile coincides with the
126
+ junction tip [39]. Conversely, this same effect is
127
+ negligible for the first-order mode, which presents a
128
+ minimum of its power profile at the waveguide center.
129
+ Several approaches to optimized Y–junction designs
130
+ have been proposed to circumvent the effect of the MFS
131
+ at the tip, including tapered and slotted waveguides
132
+ [19,27,28], core size optimization [40] or particle swarm
133
+ optimization algorithms [18]. Nevertheless, ultra-
134
+ broadband, low-loss and fabrication-tolerant solutions
135
+ are still sought after.
136
+ Subwavelength gratings (SWG) provide a powerful
137
+ tool for improving the performance of a wide range of
138
+ photonic devices [41–45]. SWGs are based on periodic
139
+ grating waveguides with a period (Λ) significantly
140
+ smaller than the operating wavelength (λ), hence
141
+ behaving as a homogenous metamaterial (i.e. a medium
142
+ with tailored optical properties). This behavior inhibits
143
+ diffraction and enables refractive index and dispersion
144
+ engineering [44]. Subwavelength engineering has
145
+ become a strong design method for the realization of
146
+ integrated silicon photonics components, including
147
+ fiber-chip couplers [41], reconfigurable filters [46] and
148
+ gradient-index lenses [47]. SWG metamaterials have
149
+ also been successfully applied to several power splitters
150
+ such as asymmetric directional couplers [48], three-guide
151
+ directional couplers [49], inverse tapers [45,50], slot
152
+ adiabatic waveguides [51], MMI devices [52–54],
153
+ waveguide crossings [55] and Y–junctions [56].
154
+ Recently, we proposed an architecture for a high-
155
+ performance and fabrication-tolerant SWG Y–junction
156
+ [57]. However, this previous study only covered
157
+ simulation results and preliminary measurements for
158
+ TE0.
159
+ In this paper, we present a comprehensive
160
+ experimental study of a
161
+ dual-mode Y–junction
162
+ engineered with subwavelength metamaterials for
163
+ deconfinement of the fundamental mode near the
164
+ junction tip and mitigating losses. Specifically, we
165
+ greatly expand our original study [57] by including
166
+ accurate TE0 mode measurements through cascaded
167
+ splitters and TE1 mode measurements through auxiliary
168
+ mode multiplexers, for both SWG and conventional Y-
169
+ junctions. We also measure biased devices in order to
170
+ study the fabrication tolerances of our device considering
171
+ both 50 nm and 100 nm MFSs. Our power splitter yields
172
+ a measured fundamental transverse-electric mode (TE0)
173
+ excess loss (EL) of less than 0.3 dB considering a high-
174
+ resolution fabrication process with MFS of 50 nm and
175
+ below 0.5 dB for a resolution scenario with MFS of 100
176
+ nm within the 1420–1680 nm wavelength range.
177
+ Moreover, the splitter exhibits excess loss lower than 1
178
+ dB for the first-order transverse-electric mode (TE1)
179
+ within a 100 nm bandwidth (1475–1575 nm), in the high-
180
+ resolution process.
181
+ 2. Device design
182
+ Our proposed SWG Y–junction, presented in Fig. 1(a),
183
+ operates according to similar principles as a conventional
184
+ symmetric Y–junction, illustrated in Fig. 2(a). The
185
+ structure of the SWG and conventional Y–junctions
186
+ comprise two single-mode output arms and a multimode
187
+ input stem waveguide that supports the first two TE
188
+ modes. When TE0 is injected into the stem waveguide,
189
+ its power is equally divided into two in-phase TE0 modes,
190
+ one in each output arm. When the stem waveguide is
191
+ excited with TE1, two TE0 modes of equal power but with
192
+ a relative phase difference of π are generated in the two
193
+ output arms [39]. Therefore, notice that the Y-junction
194
+ operates simultaneously as a splitter and a mode
195
+ converter for TE1 mode. In the conventional symmetric
196
+ Y–junction, MFS limitations at the junction tip results in
197
+ significant TE0 loss penalty. By applying SWG
198
+ engineering, modal confinement near the junction tip is
199
+ reduced and the TE0 mode transition at the stem-arm
200
+ interface is smoothed, significantly reducing losses.
201
+ Both splitters were designed for a 220-nm-thick Si
202
+ core. Our SWG Y–junction includes an input strip
203
+ waveguide of width Ws = 1.2 m, optimized to avoid a
204
+ weak confinement of the Bloch–Floquet TE1 mode that
205
+ would lead to high TE1 excess losses (ELTE1) due to
206
+ substrate leakage or mode radiation. Using an adiabatic
207
+ input taper of length Lti = 10 m, the strip waveguide is
208
+ progressively adapted to a subwavelength stem
209
+ waveguide of the same width and a length Lc = 13 m.
210
+ The SWG stem splits into two SWG single-mode arms
211
+ of width W = 500 nm and length Lb = 12.3 m. Each
212
+ SWG arm is shaped as an s-bend to avoid abrupt tilt
213
+ angles at the junction tip. After the SWG s-bends, each
214
+ arm waveguide transforms into a strip output waveguide
215
+ by means of an output taper of length Lto = 6 m. The
216
+
217
+ final separation between arms (Ha) is 1.5 m. An initial
218
+ arm offset (Hoff) is included to account for two alternative
219
+ MFS scenarios. We considered an MFS of 50 nm for
220
+ high-resolution fabrication processes and an MFS of 100
221
+ nm.
222
+ In both SWG arms and stem, Λ was set to 220 nm to
223
+ prevent Bragg reflection while maintaining SWG feature
224
+ sizes above the target MFS. In order to minimize mode
225
+ mismatch at the junction, we set different duty cycles in
226
+ the stem (DCs =as/Λ) and the arms (DCa=aa/Λ), where
227
+ as and aa are the lengths of the SWG silicon segments in
228
+ the stem and arms, respectively. For DCs = 0.5, the best
229
+ EL balance between TE0 and TE1 modes was achieved
230
+ for DCa = 0.6 when considering an MFS of 50 nm and
231
+ for DCa = 0.55 with MFS of 100 nm. The design
232
+ procedure followed is described in further detail in [57].
233
+ Notice that fabrication tolerances and the effect of
234
+ temperature variations was also studied, showing
235
+ negligible performance degradation for ±10 K. Figures
236
+ 1(b) and 1(c) show scanning electron microscope (SEM)
237
+ images of the fabricated SWG Y–junctions for MFS 50
238
+ nm and 100 nm, respectively.
239
+ In order to compare the performance of our SWG
240
+ device with a conventional splitter, we designed
241
+ conventional Y–junctions with different MFSs (Fig.
242
+ 2(a)). These devices also comprise an input multimode
243
+ stem waveguide of width W0 = 1 m, which is adapted to
244
+ the width at the junction (Wt = 2W + Hoff) by means of a
245
+ taper of length Lt = 4 m. The two single-mode s-shaped
246
+ output arms maintain the same arm width (W), length (Lb)
247
+ and final separation (Ha) as in the SWG splitter. The
248
+ initial offset between the arms (Hoff) was also included to
249
+ consider the MFSs of 50 nm and 100 nm. Additionally,
250
+ we also included a third study-case with Hoff = 0 nm,
251
+ which ideally would result in a perfect tip. SEM images
252
+ of the fabricated conventional Y–junctions for Hoff of 0
253
+ nm, 50 nm and 100 nm can be seen in Figs. 2(b), 2(c) and
254
+ 2(d), respectively. It can be observed that conventional
255
+ Y–junctions with Hoff = 0 nm and Hoff = 50 nm, as
256
+ fabricated, present comparable tip dimensions. This
257
+ leads to almost analogous performance for both devices,
258
+ as discussed in more detail in the following sections.
259
+
260
+ Fig. 2. Conventional Y–junction schematic (a), and SEM images of the tip for three resolutions: ideal 0 nm (b), and realistic 50 nm (c) and 100 nm (d).
261
+
262
+
263
+ Fig. 1. Subwavelength Y–junction schematic (a) and SEM images for devices with an MFS of 50 nm (b) and 100 nm (c).
264
+
265
+
266
+ TEi
267
+ TE
268
+ +
269
+ W
270
+ (b)
271
+ (c)
272
+ (d)
273
+ 462nm
274
+ 468nm
275
+ 455nm
276
+ 947nm
277
+ 956nm
278
+ 42nm
279
+ 993nm
280
+ nm
281
+ 200nm
282
+ 200nm
283
+ 200nmTEi
284
+ TE0
285
+ (b)
286
+ C
287
+ 114nm
288
+ 134nm
289
+ 117nm
290
+ 127nm
291
+ 493nm
292
+ 486nm
293
+ 100nm
294
+ 200nm
295
+ 1157nm
296
+ 200nm
297
+ L1163nm3. Fabrication and experimental characterization
298
+ The device was fabricated using electron-beam
299
+ lithography in a commercial foundry [58]. The SOI wafer
300
+ has a silicon layer thickness of 220 nm and a 2-µm-thick
301
+ buried oxide (BOX). The mask pattern was defined by
302
+ exposing the resist to a 100 keV electron-beam
303
+ lithography system, followed by an anisotropic reactive
304
+ ion etching process that transfers the pattern to the Si
305
+ layer. A SiO2 cladding with a thickness of 2.2 µm was
306
+ deposited by chemical vapor deposition. Finally, a deep
307
+ etch process was applied to smooth the chip facets,
308
+ allowing efficient fiber-chip edge coupling by using
309
+ high-efficiency broadband SWG edge couplers [41].
310
+ Experimental characterization was carried out using
311
+ two tunable lasers to sweep the wavelength from 1420
312
+ nm to 1680 nm, coupled to a three-paddle fiber
313
+ polarization controller, a linear polarizer and a half-wave
314
+ plate. TE polarized light was coupled into the chip using
315
+ a lensed polarization-maintaining optical fiber. Light at
316
+ the chip output was collected by a 40× microscope
317
+ objective, directed to a Glan-Thompson polarizer, and
318
+ focused onto a germanium photodetector.
319
+ 3.1 Fundamental transverse-electric mode (TE0)
320
+ In [57], 3D finite-difference time-domain simulations
321
+ were performed for the SWG Y-junction, which
322
+ provided excess loss for the TE0 (ELTE0) mode below 0.3
323
+ dB in a 350 nm bandwidth for the worst-case MFS
324
+ scenario of 100 nm. Given the challenge of measuring
325
+ losses of this order of magnitude in a stand-alone
326
+ configuration, we implemented cascaded structures with
327
+ multiple stages. That is, 1 to 4 stages of concatenated Y–
328
+ junctions: 1×2, 1×4, 1×8 and 1×16 structures. SEM
329
+ image of a 1×16 structure and the different stages are
330
+ shown in Fig. 3(a), with a close-up view of the SWG Y–
331
+ junction in Fig. 3(b). The 50 nm MFS is within the limit
332
+ of the fabrication resolution offered by the foundry and,
333
+ as it can be seen in the SEMs, the device was fabricated
334
+ correctly. Reference waveguides with the same length
335
+ and number of bends as the cascaded structures were also
336
+ included to determine Y–junction excess loss.
337
+ The measured excess loss for different cascaded Y–
338
+ junctions is presented in Fig. 4. The ELTE0 of the SWG
339
+ splitter designed for MFS = 50 nm (𝐸𝐿𝑇𝐸0
340
+ 𝑆𝑊𝐺,50) is plotted in
341
+ Fig. 4(a) and for MFS = 100 nm (𝐸𝐿𝑇𝐸0
342
+ 𝑆𝑊𝐺,100) in Fig. 4(c).
343
+ The ELTE0 of the conventional Y–junction is shown in
344
+ Fig. 4(b) for MFS = 50 nm (𝐸𝐿𝑇𝐸0
345
+ 𝐶𝑜𝑛𝑣,50) and for MFS = 100
346
+ nm (𝐸𝐿𝑇𝐸0
347
+ 𝐶𝑜𝑛𝑣,100) in Fig. 4(d). Conventional Y–junctions
348
+ with Hoff = 0 nm were also measured but have not been
349
+ included in Fig. 4 for clarity, since they are very similar
350
+ to results with Hoff = 50 nm. This similarity is caused by
351
+ the MFS limitation of the fabrication process and verifies
352
+ our initial assumption on e-beam fabrication MFS. That
353
+ is, even when the nominal design includes a perfect tip
354
+ (Hoff = 0), experimental MFS limitations will induce an
355
+ imperfect tip, in this case, similar to the design of Hoff =
356
+ 50 nm. Notwithstanding, results for this Hoff are included
357
+ in Figs. 5 and 8 for direct comparison. For both MFSs of
358
+ 50 nm and 100 nm, the SWG splitter has a substantially
359
+ reduced ELTE0 compared to the conventional Y–junction.
360
+ Figure 4 shows the overall excess loss increment as
361
+ more cascaded stages are included. To obtain the ELTE0
362
+ relative to a single Y-junction, we performed a linear
363
+ regression with the measured losses in each cascaded
364
+ stage. Figure 5 shows the resulting ELTE0 per splitter, that
365
+ is, the average loss per cascaded splitter calculated
366
+ through the slope of the linear regression. The SWG Y–
367
+ junction (solid line) exhibits a flat response in the entire
368
+ measured bandwidth from 1420 nm to 1680 nm, with an
369
+ 𝐸𝐿𝑇𝐸0
370
+ 𝑆𝑊𝐺,50 lower than 0.3 dB and 𝐸𝐿𝑇𝐸0
371
+ 𝑆𝑊𝐺,100 below 0.5 dB in
372
+ the full 260 nm spectrum. By contrast, the conventional
373
+ Y–junction
374
+ (dotted
375
+ line)
376
+ shows
377
+ a
378
+ performance
379
+ degradation towards shorter wavelengths, resulting in a
380
+ loss penalty, especially for an MFS of 100 nm (see Fig.
381
+ 5(b)). Considering the high-resolution fabrication (MFS
382
+
383
+ Fig. 4. Excess loss of the 1×2, 1×4, 1×8 and 1×16 cascaded structures,
384
+ for SWG Y–junction with 50 nm MFS (a), conventional Y–junction
385
+ with 50 nm MFS (b), SWG Y–junction with 100 nm MFS (c), and
386
+ conventional Y–junction with 100 nm MFS (d).
387
+
388
+ Fig. 3. SEM images of the SWG Y–junction in cascaded configuration
389
+ 1×16 (a) and inset of the device (b).
390
+
391
+ SWG.MFS = 50
392
+ over
393
+ 3
394
+ 1x2
395
+ 1x2
396
+ 2.5
397
+ 1x4
398
+ 2.5
399
+ 1x4
400
+ 1x8
401
+ 1x8
402
+ 2
403
+ 1x16
404
+ 2
405
+ 1x16
406
+ 1.5
407
+ (aB)
408
+ 1.5
409
+ n
410
+ 1
411
+ EL
412
+ 1
413
+ 0.5
414
+ 0.5
415
+ 0
416
+ 0
417
+ -0.5
418
+ 0.5
419
+ 1420
420
+ 1485
421
+ 1550
422
+ 1615
423
+ 1680
424
+ 1420
425
+ 1485
426
+ 1550
427
+ 1615
428
+ 1680
429
+ Wavelength(nm)
430
+ Wavelength (nm)
431
+ 6
432
+ 6
433
+ 1x2
434
+ 1x2
435
+ 5
436
+ 1x4
437
+ 1x4
438
+ 1x8
439
+ 1x8
440
+ 1x16
441
+ 1x16
442
+ 4
443
+ (dB)
444
+ dB)
445
+ m
446
+ 73
447
+ 2
448
+ 0
449
+ 0
450
+ 1420
451
+ 1485
452
+ 1550
453
+ 1615
454
+ 1680
455
+ 1420
456
+ 1485
457
+ 1550
458
+ 1615
459
+ 1680
460
+ Wavelength(nm)
461
+ Wavelength(nm)(a)
462
+ 20μm
463
+ 4cascaded stages
464
+ 3cascaded stages
465
+ 2 cascaded stages
466
+ istage
467
+ (b)
468
+ 3μm= 50 nm), our device consistently outperforms the
469
+ conventional Y–junction, with 𝐸𝐿𝑇𝐸0
470
+ 𝑆𝑊𝐺,50 < 0.23 dB in a
471
+ 215 nm bandwidth (1420 nm – 1635 nm) as presented in
472
+ Fig. 5(a). As previously explained, it can be seen that
473
+ excess losses for conventional Y-junctions with an Hoff =
474
+ 0 nm and Hoff = 50 nm are very similar, only differing in
475
+ a mean deviation of less than 0.06 dB. As the MFS
476
+ increases to 100 nm, the negative impact on the
477
+ performance of the conventional Y–junction is more
478
+ pronounced, with an 𝐸𝐿𝑇𝐸0
479
+ 𝐶𝑜𝑛𝑣,100 above 0.57 dB in the 1420
480
+ nm –1680 nm window. The SWG device, on the other
481
+ hand, yields improved performance over the entire
482
+ measured bandwidth with 𝐸𝐿𝑇𝐸0
483
+ 𝑆𝑊𝐺,100 below 0.46 dB.
484
+ Devices with deterministically induced dimension
485
+ variations (Δδ) of ±10 nm were incorporated in the mask
486
+ layout to measure the robustness of the SWG Y–junction
487
+ to fabrication errors. Figure 6(a) shows 𝐸𝐿𝑇𝐸0
488
+ 𝑆𝑊𝐺,50,
489
+ demonstrating that performance is preserved despite the
490
+ presence of geometric variations, and even exhibiting a
491
+ slight improvement for over-etching deviations (i.e., Δδ
492
+ = -10 nm, SEM shown in Fig. 6(c)). In contrast, for the
493
+ MFS of 100 nm (Fig. 6(b)), 𝐸𝐿𝑇𝐸0
494
+ 𝑆𝑊𝐺,100 is slightly improved
495
+ for Δδ = +10 nm (SEM shown in Fig. 6(f)). For Δδ = -10
496
+ nm (SEM shown in Fig. 6(d)), 𝐸𝐿𝑇𝐸0
497
+ 𝑆𝑊𝐺,100performance
498
+ degrades towards longer wavelengths. The largest
499
+ fabrication bias was observed in waveguide width,
500
+ narrowing the designed stem waveguide (Ws = 1200 ± 10
501
+ nm) by approximately 40 nm.
502
+ 3.2 First-order transverse-electric mode (TE1)
503
+ In order to characterize the TE1 mode division, a mode
504
+ multiplexer [59] was included in combination with the
505
+ SWG Y–junction, as schematically shown in Fig. 7.
506
+ When TE0 is injected through the upper input port of the
507
+ mode multiplexer, the TE0 mode is generated at the
508
+ output multimode waveguide. When the lower input port
509
+ is excited with TE0, mode evolution results in TE1 at the
510
+ mode multiplexer output. Two mode multiplexers in
511
+ back-to-back were used as reference to extract TE1 mode
512
+ excess loss of the Y–junctions.
513
+ Figure 8(a) shows ELTE1 measurements for MFS = 50
514
+ nm in both SWG (𝐸𝐿𝑇𝐸1
515
+ 𝑆𝑊𝐺,50) and conventional (𝐸𝐿𝑇𝐸1
516
+ 𝐶𝑜𝑛𝑣,50)
517
+ Y–junctions, as well as for the conventional Y–junction
518
+ with Hoff = 0 nm. Likewise, ELTE1 for MFS = 100 nm in
519
+
520
+ Fig. 6. Tolerances to fabrication errors of Δδ = ±10 nm for the SWG
521
+ Y–junction with MFS of 50 nm (a) and 100 nm (b). Excess loss per
522
+ splitter was measured through linear regression of cascaded stages.
523
+ SEM images of devices with Δδ = -10 nm for an MFS of 50 nm (c)
524
+ and 100 nm (d). SEM images of devices with Δδ = +10 nm for an MFS
525
+ of 50 nm (e) and 100 nm (f).
526
+
527
+ Fig. 7. Schematic of the structure employed for the characterization of TE1 mode (a) and SEM images of the mode multiplexer (b).
528
+
529
+ Fig. 5. EL per splitter measured through linear regression of the
530
+ response of four cascaded stages for SWG (solid line) and conventional
531
+ (dotted line) Y–junctions, for MFS of 50 nm (a) and 100 nm (b). Results
532
+ obtained for the conventional splitter with ideal resolution (MFS = 0
533
+ nm) are also shown in panel (a).
534
+
535
+ b)1.5
536
+ 1.5
537
+ Nominal
538
+ 20=-10nm
539
+ Nominal
540
+ A=-10nm
541
+ 1
542
+ 40=+10nm
543
+ 1
544
+ A0=+10nm
545
+ 【dB]
546
+ 0.5
547
+ 0.5
548
+ 0
549
+ -0.5
550
+ -0.5
551
+ 1420
552
+ 1485
553
+ 1550
554
+ 1615
555
+ 1680
556
+ 1420
557
+ 1485
558
+ 1550
559
+ 1615
560
+ 1680
561
+ Wavelength(nm)
562
+ Wavelength(nm)
563
+ (C)
564
+ 103nm
565
+ 125nm
566
+ 483nm
567
+ (d)
568
+ 105nm
569
+ 116nm
570
+ -479nm
571
+ 56nm
572
+ f107nm
573
+ L1146nm
574
+ 200nm
575
+ -1146nm
576
+ 200nm
577
+ (e)
578
+ 123nm
579
+ 147nm
580
+ 507nm
581
+ (f).124nm
582
+ 136m
583
+ -497nm
584
+ 37nm
585
+ f88nm
586
+ L1168nm
587
+ 200nm
588
+ 1166nm
589
+ 200nmTEi
590
+ TE
591
+ (b)
592
+ 2μm
593
+ 15.16μm
594
+ 5.04μm
595
+ 0.50μm
596
+ 0.15μm7
597
+ 0.74μm
598
+ 0.15μmr
599
+ 0.25μm
600
+ 0.52μmConv MFS = O nm
601
+ ..
602
+ Conv MFS = 50 nm
603
+ SWG MFS =50 nm
604
+ 1
605
+ (ap)
606
+ 0.5
607
+ 0
608
+ 1420
609
+ 1485
610
+ 1550
611
+ 1615
612
+ 1680
613
+ Wavelength(nm)
614
+ ConvMFS= 100 nm
615
+ SWG MFS = 100 nm
616
+ (ap)
617
+ 0.5
618
+ 0
619
+ 1420
620
+ 1485
621
+ 1550
622
+ 1615
623
+ 1680
624
+ Wavelength(nm)SWG (𝐸𝐿𝑇𝐸1
625
+ 𝑆𝑊𝐺,100) and conventional (𝐸𝐿𝑇𝐸1
626
+ 𝐶𝑜𝑛𝑣,100) Y–
627
+ junctions are depicted in Fig. 8(b). As previously
628
+ mentioned, 𝐸𝐿𝑇𝐸1
629
+ 𝐶𝑜𝑛𝑣,50 and 𝐸𝐿𝑇𝐸1
630
+ 𝐶𝑜𝑛𝑣,100 are negligible due to
631
+ TE1 mode odd symmetry, with a power minimum at the
632
+ center of the multimode stem. Our device exhibits an
633
+ 𝐸𝐿𝑇𝐸1
634
+ 𝑆𝑊𝐺,50 below 1 dB over a 100 nm bandwidth ranging
635
+ from 1475 to 1575 nm. Within a 170 nm bandwidth
636
+ (1420 – 1590 nm), 𝐸𝐿𝑇𝐸1
637
+ 𝑆𝑊𝐺,50 and 𝐸𝐿𝑇𝐸1
638
+ 𝑆𝑊𝐺,100 only increase by
639
+ 0.5 dB. Compared to the conventional Y–junction, the
640
+ degradation of the TE1 mode for our SWG Y–junction
641
+ arises from the selection of the stem waveguide width of
642
+ WS = 1200 nm, as a compromise between ELTE0 and
643
+ ELTE1. Note that increasing the width of the SWG stem
644
+ waveguide results in a stronger modal confinement that
645
+ prevents TE1 mode radiation, but increasingly penalizes
646
+ TE0 due to the resulting mode profile at the junction tip
647
+ [57]. Nevertheless, the performance of the proposed
648
+ device compares very favorably to state-of-the-art
649
+ higher-order mode power splitters (see Table 1).
650
+ SWG Y–junctions with Δδ = ±10 nm were also
651
+ included in combination with the mode multiplexer
652
+ structures to study fabrication tolerances for TE0 and TE1
653
+ mode division mux/demux and are shown in Figs. 9(a)
654
+ and (b). Figure 9(a) shows that 𝐸𝐿𝑇𝐸0
655
+ 𝑆𝑊𝐺,50 is lower than 0.5
656
+ dB for both under-etching and over-etching errors in the
657
+ full 1420 nm – 1680 nm bandwidth. Figure 9(b) shows
658
+ that 𝐸𝐿𝑇𝐸0
659
+ 𝑆𝑊𝐺,100 remain <1 dB for Δδ = -10 nm and <0.7 dB
660
+ for Δδ = +10 nm, for the same bandwidth. These results
661
+ corroborate the robustness of the SWG Y–junction to
662
+ fabrication errors for TE0 mode, shown in section 3.1
663
+ (see Figs. 6(a) and (b)). The performance for TE1 mode
664
+ division is more sensitive to fabrication errors in the
665
+ width of the SWG stem owing to the weaker confinement
666
+ of the Bloch-Floquet TE1 mode compared to the Bloch-
667
+ Floquet TE0 mode. While under-etching results in
668
+ 𝐸𝐿𝑇𝐸1
669
+ 𝑆𝑊𝐺,50 < 2.1 dB and 𝐸𝐿𝑇𝐸1
670
+ 𝑆𝑊𝐺,100 < 1.7 dB for the full
671
+ bandwidth, over-etching errors are negligible at shorter
672
+ wavelengths and increase towards longer wavelengths.
673
+ 4. Conclusions
674
+ The detailed experimental study conducted in this work
675
+ demonstrates the broadband performance and relaxed
676
+ fabrication tolerances of SWG-based Y–junctions. Two
677
+ resolutions were investigated to account for different
678
+ fabrication processes, namely MFS of 50 nm and 100
679
+ nm. Accurate measurements in cascaded splitters
680
+ demonstrate excess loss for the fundamental TE mode
681
+ lower than 0.3 dB for MFS = 50 nm and below 0.5 dB
682
+ for MFS = 100 nm, in a 260 nm bandwidth (1420 nm –
683
+ 1680 nm). Characterization of the first-order TE mode
684
+ was performed in combination with a mode multiplexer,
685
+ showing excess loss lower than 1 dB over a 100 nm
686
+
687
+ Fig. 8. ELTE1 measurements for SWG (solid) and conventional (dotted)
688
+ Y–junctions for MFS of 50 nm (a) and 100 nm (b). Conventional Y–
689
+ junction (dashed) with MFS = 0 nm is also shown in panel (a).
690
+
691
+ Fig. 9. Tolerances to fabrication errors of the SWG Y–junction for
692
+ TE0 (dashed line) and TE1 (solid line) polarizations, for MFS of 50 nm
693
+ (a) and 100 nm (b).
694
+ Table 1. Experimental performance comparison of state-of-the-art multimode power dividers.
695
+ Ref.
696
+ Design method
697
+ EL (dB)
698
+ Bandwidth (nm)
699
+ MFS (nm)
700
+ Length (µm)
701
+ Functionality
702
+ [33]
703
+ Inverse
704
+ design
705
+ subwavelength
706
+ axisymmetric
707
+ 1.5
708
+ 60
709
+ 30
710
+ 2.88
711
+ 2-mode splitter
712
+ [34]
713
+ Pixelated meta-structure
714
+ 1.5
715
+ 40
716
+ 30
717
+ 4.5
718
+ 3-mode splitter
719
+ [60]
720
+ MMI coupler
721
+ 0.76
722
+ 60
723
+ 1000
724
+ 86.5
725
+ 2-mode splitter
726
+ [61]
727
+ Tapered directional coupler
728
+ 0.7
729
+ 30
730
+ 200
731
+ 25
732
+ 2-mode splitter
733
+ [62]
734
+ Densely-packed waveguide array
735
+ 1
736
+ 28
737
+ 110
738
+ 46
739
+ 2-mode splitter
740
+ This work
741
+ SWG Y–junction
742
+ 1
743
+ 100
744
+ 50
745
+ 41.3
746
+ 2-mode splitter & converter
747
+ This work
748
+ SWG Y–junction
749
+ 1.5
750
+ 170
751
+ 100
752
+ 41.3
753
+ 2-mode splitter & converter
754
+
755
+
756
+ a
757
+ 2.5
758
+ -Conv MFS = O nm
759
+ ...
760
+ Conv MFS = 50 nm
761
+ 2
762
+ SWG MFS = 50 nm
763
+ B
764
+ 1.5
765
+ 1
766
+ 0.5
767
+ 0
768
+ -0.5
769
+ 1420
770
+ 1470
771
+ 1520
772
+ 1570
773
+ 1620
774
+ Wavelength (nm)
775
+ b)
776
+ 2.5
777
+ Conv MFS = 100 nm
778
+ SWG MFS = 100 nm
779
+ 2
780
+ 1.5
781
+ 1
782
+ 0.5
783
+ 0
784
+ -0.5
785
+ 1420
786
+ 1470
787
+ 1520
788
+ 1570
789
+ 1620
790
+ Wavelength(n-TE
791
+ 2.5
792
+ Nominal
793
+ 48=-10nm
794
+ 2
795
+ 14§=+10nm
796
+ (dB)
797
+ 1.5
798
+ 0.5
799
+ -0.5
800
+ 1420
801
+ 1470
802
+ 1520
803
+ 1570
804
+ 1620
805
+ Wavelength (nm)
806
+ TE
807
+ TEi
808
+ 2.5
809
+ Nominal
810
+ 145=-10nm
811
+ 40=+10nm
812
+ B
813
+ d
814
+ 0.5
815
+ 0
816
+ -0.5
817
+ 1420
818
+ 1470
819
+ 1520
820
+ 1570
821
+ 1620
822
+ Wavelength(nm)bandwidth (1475 nm – 1575 nm) for the 50 nm MFS.
823
+ SWG Y–junctions with deterministically induced errors
824
+ of -10 nm and +10 nm were also measured to analyze
825
+ resilience
826
+ to
827
+ over-
828
+ and
829
+ under-etching
830
+ errors.
831
+ Experimental results demonstrate robust fabrication
832
+ tolerances for the fundamental TE mode. Our SWG-
833
+ engineered metamaterial Y–junction opens up promising
834
+ prospects for improving performance of diverse silicon
835
+ photonic integrated circuits where power splitters are
836
+ ubiquitous component, such as on-chip high bandwidth
837
+ communication systems and broadband spectroscopic
838
+ systems.
839
+ Credit authorship contribution statement
840
+ Raquel Fernández de Cabo: Software, Formal
841
+ Analysis, Validation, Data curation, Writing – original
842
+ draft. Jaime Vilas: Experimental validation, Writing –
843
+ review & editing. Pavel Cheben: Conceptualization,
844
+ Writing – review & editing. Aitor V. Velasco:
845
+ Conceptualization, Resources, Funding acquisition,
846
+ Supervision, Writing – review & editing. David
847
+ González-Andrade: Methodology, Supervision, Project
848
+ administration, Writing – review & editing.
849
+ Declaration of Competing Interest
850
+ The authors declare that they have no known competing
851
+ financial interests or personal relationships that could
852
+ have appeared to influence the work reported in this
853
+ paper.
854
+ Acknowledgements
855
+ This work has been funded by the Spanish Ministry of
856
+ Science
857
+ and
858
+ Innovation
859
+ (RTI2018-097957-B-C33,
860
+ RED2018-102768-T,
861
+ PID2020-115353RA-I00);
862
+ the
863
+ Spanish State Research Agency and the European Social
864
+ Fund
865
+ Plus
866
+ under
867
+ grant
868
+ PRE2021-096954;
869
+ the
870
+ Community of Madrid – FEDER funds (S2018/NMT-
871
+ 4326); the Horizon 2020 research and innovation
872
+ program under Marie Sklodowska-Curie grant No.
873
+ 101062518; European Union – NextGenerationEU,
874
+ through the Recovery, Transformation and Resilience
875
+ Plan (DIN2020-011488).
876
+ References
877
+ [1]
878
+ R. Soref, The Past, Present, and Future of Silicon Photonics,
879
+ IEEE J. Select. Topics Quantum Electron. 12 (2006) 1678–
880
+ 1687. https://doi.org/10.1109/jstqe.2006.883151.
881
+ [2]
882
+ B. Jalali, S. Fathpour, Silicon Photonics, J. Lightwave Technol.
883
+ 24 (2006) 4600–4615. https://doi.org/10.1109/jlt.2006.885782.
884
+ [3]
885
+ M. Hochberg, T. Baehr-Jones, Towards fabless silicon
886
+ photonics,
887
+ Nature
888
+ Photon
889
+ 4
890
+ (2010)
891
+ 492–494.
892
+ https://doi.org/10.1038/nphoton.2010.172.
893
+ [4]
894
+ F. Falconi, C. Porzi, S. Pinna, V. Sorianello, G. Serafino, M.
895
+ Puleri, A. D’Errico, M. Romagnoli, A. Bogoni, P. Ghelfi, Fast
896
+ and Linear Photonic Integrated Microwave Phase-Shifter for 5G
897
+ Beam-Steering Applications, Optical Fiber Communication
898
+ Conference
899
+ (2018)
900
+ M2G.4.
901
+ https://doi.org/10.1364/OFC.2018.M2G.4.
902
+ [5]
903
+ Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee,
904
+ Progress in wearable electronics/photonics—Moving toward
905
+ the era of artificial intelligence and internet of things, InfoMat 2
906
+ (2020) 1131–1162. https://doi.org/10.1002/inf2.12122.
907
+ [6]
908
+ Darius Bunandar, Mihir Pant, Greg R. Steinbrecher, Jacob
909
+ Mower, Mihika Prabhu, Tom Baehr-Jones, Michael Hochberg,
910
+ Dirk Englund, Large-scale quantum photonic circuits in silicon,
911
+ Nanophotonics (146) 456–468.
912
+ [7]
913
+ C.V. Poulton, A. Yaacobi, D.B. Cole, M.J. Byrd, M. Raval, D.
914
+ Vermeulen, M.R. Watts, Coherent solid-state LIDAR with
915
+ silicon photonic optical phased arrays, Opt. Lett., OL 42 (2017)
916
+ 4091–4094. https://doi.org/10.1364/OL.42.004091.
917
+ [8]
918
+ E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, R. Baets,
919
+ Glucose sensing by waveguide-based absorption spectroscopy
920
+ on a silicon chip, Biomed. Opt. Express, BOE 5 (2014) 1636–
921
+ 1648. https://doi.org/10.1364/BOE.5.001636.
922
+ [9]
923
+ A. Herrero-Bermello, J. Li, M. Khazaei, Y. Grinberg, A.V.
924
+ Velasco, M. Vachon, P. Cheben, L. Stankovic, V. Stankovic,
925
+ D.-X. Xu, J.H. Schmid, C. Alonso-Ramos, On-chip Fourier-
926
+ transform spectrometers and machine learning: a new route to
927
+ smart photonic sensors, Opt. Lett., OL 44 (2019) 5840–5843.
928
+ https://doi.org/10.1364/OL.44.005840.
929
+ [10]
930
+ C. Ciminelli, F. Dell’Olio, D. Conteduca, C.M. Campanella,
931
+ M.N. Armenise, High performance SOI microring resonator for
932
+ biochemical sensing, Optics & Laser Technology 59 (2014) 60–
933
+ 67. https://doi.org/10.1016/j.optlastec.2013.12.011.
934
+ [11]
935
+ A.L. Washburn, R.C. Bailey, Photonics-on-a-chip: recent
936
+ advances in integrated waveguides as enabling detection
937
+ elements for real-world, lab-on-a-chip biosensing applications,
938
+ Analyst
939
+ 136
940
+ (2011)
941
+ 227–236.
942
+ https://doi.org/10.1039/c0an00449a.
943
+ [12]
944
+ J. Song, Q. Fang, S.H. Tao, T.Y. Liow, M.B. Yu, G.Q. Lo, D.L.
945
+ Kwong, Fast and low power Michelson interferometer thermo-
946
+ optical switch on SOI, Opt. Express, OE 16 (2008) 15304–
947
+ 15311. https://doi.org/10.1364/OE.16.015304.
948
+ [13]
949
+ A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques,
950
+ N. Abadía, V. Veerasubramanian, D.V. Plant, Experimental
951
+ parametric study of 128 Gb/s PAM-4 transmission system using
952
+ a multi-electrode silicon photonic Mach Zehnder modulator,
953
+ Opt.
954
+ Express
955
+ 25
956
+ (2017)
957
+ 13252–13262.
958
+ https://doi.org/10.1364/oe.25.013252.
959
+ [14]
960
+ S.H. Tao, Q. Fang, J.F. Song, M.B. Yu, G.Q. Lo, D.L. Kwong,
961
+ Cascade wide-angle Y-junction 1 x 16 optical power splitter
962
+ based on silicon wire waveguides on silicon-on-insulator, Opt.
963
+ Express,
964
+ OE
965
+ 16
966
+ (2008)
967
+ 21456–21461.
968
+ https://doi.org/10.1364/oe.16.021456.
969
+ [15]
970
+ K.K. Chung, H.P. Chan, P.L. Chu, A 1×4 polarization and
971
+ wavelength independent optical power splitter based on a novel
972
+ wide-angle low-loss Y-junction, Optics Communications 267
973
+ (2006) 367–372. https://doi.org/10.1016/j.optcom.2006.06.048.
974
+ [16]
975
+ D. González-Andrade, A. Dias, J.G. Wangüemert-Pérez, A.
976
+ Ortega-Moñux, Í. Molina-Fernández, R. Halir, P. Cheben, A. V.
977
+ Velasco, Experimental demonstration of a broadband mode
978
+ converter and multiplexer based on subwavelength grating
979
+ waveguides, Optics & Laser Technology 129 (2020) 106297.
980
+ https://doi.org/10.1016/j.optlastec.2020.106297.
981
+ [17]
982
+ D. González-Andrade, T.T.D. Dinh, S. Guerber, N. Vulliet, S.
983
+ Cremer, S. Monfray, E. Cassan, D. Marris-Morini, F. Boeuf, P.
984
+ Cheben, L. Vivien, A.V. Velasco, C. Alonso-Ramos,
985
+ Broadband Fourier-transform silicon nitride spectrometer with
986
+ wide-area multiaperture input, Opt. Lett., OL 46 (2021) 4021–
987
+ 4024. https://doi.org/10.1364/OL.438361.
988
+ [18]
989
+ Y. Zhang, S. Yang, A.E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-
990
+ Jones, M. Hochberg, A compact and low loss Y-junction for
991
+ submicron silicon waveguide, Opt. Express, OE 21 (2013)
992
+ 1310–1316. https://doi.org/10.1364/OE.21.001310.
993
+ [19]
994
+ C. Sun, J. Zhao, Z. Wang, L. Du, W. Huang, Broadband and
995
+ high uniformity Y junction optical beam splitter with multimode
996
+
997
+ tapered
998
+ branch,
999
+ Optik
1000
+ 180
1001
+ (2019)
1002
+ 866–872.
1003
+ https://doi.org/10.1016/j.ijleo.2018.12.013.
1004
+ [20]
1005
+ S. Hassan, D. Chack, Design and analysis of polarization
1006
+ independent
1007
+ MMI
1008
+ based
1009
+ power
1010
+ splitter
1011
+ for
1012
+ PICs,
1013
+ Microelectronics
1014
+ Journal
1015
+ 104
1016
+ (2020)
1017
+ 104887.
1018
+ https://doi.org/10.1016/j.mejo.2020.104887.
1019
+ [21]
1020
+ D.P. Nair, M. Menard, A Compact Low-Loss Broadband
1021
+ Polarization Independent Silicon 50/50 Splitter, IEEE Photonics
1022
+ J.
1023
+ 13
1024
+ (2021)
1025
+ 1–7.
1026
+ https://doi.org/10.1109/JPHOT.2021.3091539.
1027
+ [22]
1028
+ Y. Chen, J. Xiao, Ultracompact and broadband silicon-based
1029
+ polarization-independent 1 × 2 power splitter using a shallowly
1030
+ etched multimode interference coupler, J. Opt. Soc. Am. B 38
1031
+ (2021) 3064. https://doi.org/10.1364/JOSAB.428649.
1032
+ [23]
1033
+ X. Li, H. Xu, X. Xiao, Z. Li, J. Yu, Y. Yu, Compact and low-
1034
+ loss silicon power splitter based on inverse tapers, Opt. Lett.,
1035
+ OL
1036
+ 38
1037
+ (2013)
1038
+ 4220–4223.
1039
+ https://doi.org/10.1364/OL.38.004220.
1040
+ [24]
1041
+ Y. Wang, S. Gao, K. Wang, E. Skafidas, Ultra-broadband and
1042
+ low-loss 3 dB optical power splitter based on adiabatic tapered
1043
+ silicon waveguides, Opt. Lett., OL 41 (2016) 2053–2056.
1044
+ https://doi.org/10.1364/OL.41.002053.
1045
+ [25]
1046
+ Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N.A.F. Jaeger, L.
1047
+ Chrostowski, Broadband silicon photonic directional coupler
1048
+ using asymmetric-waveguide based phase control, Opt.
1049
+ Express,
1050
+ OE
1051
+ 23
1052
+ (2015)
1053
+ 3795–3806.
1054
+ https://doi.org/10.1364/OE.23.003795.
1055
+ [26]
1056
+ X. Chen, W. Liu, Y. Zhang, Y. Shi, Polarization-insensitive
1057
+ broadband 2 × 2 3 dB power splitter based on silicon-bent
1058
+ directional couplers, Opt. Lett., OL 42 (2017) 3738–3740.
1059
+ https://doi.org/10.1364/OL.42.003738.
1060
+ [27]
1061
+ L. Han, B.P.-P. Kuo, N. Alic, S. Radic, Ultra-broadband
1062
+ multimode 3dB optical power splitter using an adiabatic coupler
1063
+ and a Y-branch, Opt. Express, OE 26 (2018) 14800–14809.
1064
+ https://doi.org/10.1364/OE.26.014800.
1065
+ [28]
1066
+ D. González-Andrade, C. Lafforgue, E. Durán-Valdeiglesias, X.
1067
+ Le Roux, M. Berciano, E. Cassan, D. Marris-Morini, A.V.
1068
+ Velasco, P. Cheben, L. Vivien, C. Alonso-Ramos, Polarization-
1069
+ and wavelength-agnostic nanophotonic beam splitter, Sci. Rep.
1070
+ 9 (2019) 3604. https://doi.org/10.1038/s41598-019-40497-7.
1071
+ [29]
1072
+ D. Yang, H. Tian, Y. Ji, High-bandwidth and low-loss photonic
1073
+ crystal power-splitter with parallel output based on the
1074
+ integration of Y-junction and waveguide bends, Optics
1075
+ Communications
1076
+ 285
1077
+ (2012)
1078
+ 3752–3757.
1079
+ https://doi.org/10.1016/j.optcom.2012.05.022.
1080
+ [30]
1081
+ I. Park, H.-S. Lee, H.-J. Kim, K.-M. Moon, S.-G. Lee, B.-H. O,
1082
+ S.-G. Park, E.-H. Lee, Photonic crystal power-splitter based on
1083
+ directional coupling, Opt. Express, OE 12 (2004) 3599–3604.
1084
+ https://doi.org/10.1364/OPEX.12.003599.
1085
+ [31]
1086
+ M. Danaie, R. Nasiri Far, A. Dideban, Design of a High-
1087
+ Bandwidth Y-Shaped Photonic Crystal Power Splitter for TE
1088
+ Modes,
1089
+ IJOP
1090
+ 12
1091
+ (2018)
1092
+ 33–42.
1093
+ https://doi.org/10.29252/ijop.12.1.33.
1094
+ [32]
1095
+ H. Ma, J. Huang, K. Zhang, J. Yang, Arbitrary-direction,
1096
+ multichannel and ultra-compact power splitters by inverse
1097
+ design method, Optics Communications 462 (2020) 125329.
1098
+ https://doi.org/10.1016/j.optcom.2020.125329.
1099
+ [33]
1100
+ W. Chang, X. Ren, Y. Ao, L. Lu, M. Cheng, L. Deng, D. Liu,
1101
+ M. Zhang, Inverse design and demonstration of an ultracompact
1102
+ broadband dual-mode 3 dB power splitter, Opt. Express, OE 26
1103
+ (2018) 24135–24144. https://doi.org/10.1364/OE.26.024135.
1104
+ [34]
1105
+ H. Xie, Y. Liu, Y. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z.
1106
+ He, K. Xu, An Ultra-Compact 3-dB Power Splitter for Three
1107
+ Modes Based on Pixelated Meta-Structure, IEEE Photon.
1108
+ Technol.
1109
+ Lett.
1110
+ 32
1111
+ (2020)
1112
+ 341–344.
1113
+ https://doi.org/10.1109/LPT.2020.2975128.
1114
+ [35]
1115
+ M.H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang,
1116
+ C. Lin, K. Parsons, Deep Neural Network Inverse Design of
1117
+ Integrated Photonic Power Splitters, Sci. Rep. 9 (2019) 1368.
1118
+ https://doi.org/10.1038/s41598-018-37952-2.
1119
+ [36]
1120
+ Z. Weissman, E. Marom, A. Hardy, Very low-loss Y-junction
1121
+ power
1122
+ divider,
1123
+ Opt.
1124
+ Lett.
1125
+ 14
1126
+ (1989)
1127
+ 293–295.
1128
+ https://doi.org/10.1364/ol.14.000293.
1129
+ [37]
1130
+ Z. Weissman, A. Hardy, E. Marom, Mode-dependent radiation
1131
+ loss in Y junctions and directional couplers, IEEE J. Quantum
1132
+ Electron.
1133
+ 25
1134
+ (1989)
1135
+ 1200–1208.
1136
+ https://doi.org/10.1109/3.29248.
1137
+ [38]
1138
+ A.G. Rickman, G.T. Reed, Silicon-on-insulator optical rib
1139
+ waveguides: loss, mode characteristics, bends and y-junctions,
1140
+ IEE Proceedings - Optoelectronics 141 (1994) 391–393.
1141
+ https://doi.org/10.1049/ip-opt:19941468.
1142
+ [39]
1143
+ J.D. Love, N. Riesen, Single-, Few-, and Multimode Y-
1144
+ Junctions, J. Lightwave Technol. 30 (2012) 304–309.
1145
+ https://doi.org/10.1109/jlt.2011.2179976.
1146
+ [40]
1147
+ S. Serecunova, D. Seyringer, F. Uherek, H. Seyringer, Design
1148
+ and optimization of optical power splitters for optical access
1149
+ networks,
1150
+ Opt
1151
+ Quant
1152
+ Electron
1153
+ 54
1154
+ (2022).
1155
+ https://doi.org/10.1007/s11082-022-03620-z.
1156
+ [41]
1157
+ P. Cheben, P.J. Bock, J.H. Schmid, J. Lapointe, S. Janz, D.-X.
1158
+ Xu, A. Densmore, A. Delâge, B. Lamontagne, T.J. Hall,
1159
+ Refractive index engineering with subwavelength gratings for
1160
+ efficient microphotonic couplers and planar waveguide
1161
+ multiplexers,
1162
+ Opt.
1163
+ Lett.,
1164
+ OL
1165
+ 35
1166
+ (2010)
1167
+ 2526–2528.
1168
+ https://doi.org/10.1364/OL.35.002526.
1169
+ [42]
1170
+ R.
1171
+ Halir,
1172
+ A.
1173
+ Ortega-Monux,
1174
+ D.
1175
+ Benedikovic,
1176
+ G.Z.
1177
+ Mashanovich, J.G. Wanguemert-Perez, J.H. Schmid, I. Molina-
1178
+ Fernandez, P. Cheben, Subwavelength-Grating Metamaterial
1179
+ Structures for Silicon Photonic Devices, Proc. IEEE 106 (2018)
1180
+ 2144–2157. https://doi.org/10.1109/jproc.2018.2851614.
1181
+ [43]
1182
+ J.M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux,
1183
+ Í. Molina-Fernández, A.V. Velasco, P. Cheben, J.H. Schmid, S.
1184
+ Wang, R. Halir, Tilted subwavelength gratings: controlling
1185
+ anisotropy in metamaterial nanophotonic waveguides, Opt.
1186
+ Lett.,
1187
+ OL
1188
+ 43
1189
+ (2018)
1190
+ 4691–4694.
1191
+ https://doi.org/10.1364/OL.43.004691.
1192
+ [44]
1193
+ P. Cheben, R. Halir, J.H. Schmid, H.A. Atwater, D.R. Smith,
1194
+ Subwavelength integrated photonics, Nature 560 (2018) 565–
1195
+ 572. https://doi.org/10.1038/s41586-018-0421-7.
1196
+ [45]
1197
+ M. Lu, C. Deng, P. Zheng, P. Liu, D. Lin, G. Hu, B. Yun, Y.
1198
+ Cui, Ultra-compact TE-mode-pass power splitter based on
1199
+ subwavelength gratings and hybrid plasmonic waveguides on
1200
+ SOI platform, Optics Communications 498 (2021) 127250.
1201
+ https://doi.org/10.1016/j.optcom.2021.127250.
1202
+ [46]
1203
+ S.H. Badri, S.G. Farkoush, Subwavelength grating waveguide
1204
+ filter based on cladding modulation with a phase-change
1205
+ material grating, Appl. Opt., AO 60 (2021) 2803–2810.
1206
+ https://doi.org/10.1364/AO.419587.
1207
+ [47]
1208
+ S.H. Badri, M.M. Gilarlue, Silicon nitride waveguide devices
1209
+ based on gradient-index lenses implemented by subwavelength
1210
+ silicon grating metamaterials, Appl. Opt. 59 (2020) 5269–5275.
1211
+ https://doi.org/10.1364/AO.393501.
1212
+ [48]
1213
+ C. Ye, D. Dai, Ultra-Compact Broadband 2 × 2 3 dB Power
1214
+ Splitter Using a Subwavelength-Grating-Assisted Asymmetric
1215
+ Directional Coupler, J. Lightwave Technol. 38 (2020) 2370–
1216
+ 2375. https://doi.org/10.1109/jlt.2020.2973663.
1217
+ [49]
1218
+ N. Yang, J. Xiao, A compact silicon-based polarization-
1219
+ independent power splitter using a three-guide directional
1220
+ coupler with subwavelength gratings, Optics Communications
1221
+ 459
1222
+ (2020)
1223
+ 125095.
1224
+ https://doi.org/10.1016/j.optcom.2019.125095.
1225
+ [50]
1226
+ J. Xiao, Z. Guo, Ultracompact Polarization-Insensitive Power
1227
+ Splitter Using Subwavelength Gratings, IEEE Photon. Technol.
1228
+
1229
+ Lett.
1230
+ 30
1231
+ (2018)
1232
+ 529–532.
1233
+ https://doi.org/10.1109/LPT.2018.2801337.
1234
+ [51]
1235
+ L. Xu, Y. Wang, A. Kumar, E. El-Fiky, D. Mao, H. Tamazin,
1236
+ M. Jacques, Z. Xing, M.G. Saber, D.V. Plant, Compact high-
1237
+ performance adiabatic 3-dB coupler enabled by subwavelength
1238
+ grating slot in the silicon-on-insulator platform, Opt. Express,
1239
+ OE
1240
+ 26
1241
+ (2018)
1242
+ 29873–29885.
1243
+ https://doi.org/10.1364/OE.26.029873.
1244
+ [52]
1245
+ H. Shiran, G. Zhang, O. Liboiron-Ladouceur, Dual-mode
1246
+ broadband compact 2 × 2 optical power splitter using sub-
1247
+ wavelength metamaterial structures, Opt. Express, OE 29
1248
+ (2021) 23864–23876. https://doi.org/10.1364/OE.423882.
1249
+ [53]
1250
+ R. Halir, P. Cheben, J.M. Luque‐González, J.D. Sarmiento‐
1251
+ Merenguel, J.H. Schmid, G. Wangüemert‐Pérez, D.-X. Xu, S.
1252
+ Wang, A. Ortega‐Moñux, Í. Molina‐Fernández, Ultra‐
1253
+ broadband nanophotonic beamsplitter using an anisotropic sub‐
1254
+ wavelength metamaterial, Laser & Photonics Reviews 10
1255
+ (2016) 1039–1046. https://doi.org/10.1002/lpor.201600213.
1256
+ [54]
1257
+ J.M. Luque‐González, A. Ortega‐Moñux, R. Halir, J.H. Schmid,
1258
+ P. Cheben, Í. Molina‐Fernández, J.G. Wangüemert‐Pérez,
1259
+ Bricked Subwavelength Gratings: A Tailorable On‐Chip
1260
+ Metamaterial Topology, Laser & Photonics Reviews 15 (2021)
1261
+ 2000478. https://doi.org/10.1002/lpor.202000478.
1262
+ [55]
1263
+ H. Xu, D. Dai, Y. Shi, Ultra-broadband on-chip multimode
1264
+ power splitter with an arbitrary splitting ratio, OSA Continuum
1265
+ 3 (2020) 1212. https://doi.org/10.1364/OSAC.396024.
1266
+ [56]
1267
+ L. Lu, D. Liu, M. Yan, M. Zhang, Subwavelength adiabatic
1268
+ multimode Y-junctions, Opt. Lett., OL 44 (2019) 4729–4732.
1269
+ https://doi.org/10.1364/OL.44.004729.
1270
+ [57]
1271
+ R. Fernández de Cabo, D. González-Andrade, P. Cheben, A.V.
1272
+ Velasco, High-Performance On-Chip Silicon Beamsplitter
1273
+ Based on Subwavelength Metamaterials for Enhanced
1274
+ Fabrication Tolerance, Nanomaterials (Basel) 11 (2021).
1275
+ https://doi.org/10.3390/nano11051304.
1276
+ [58]
1277
+ Applied Nanotools Inc. | X-Ray Optics and Integrated
1278
+ Photonics, NanoSOI Fabrication Service | Applied Nanotools
1279
+ Inc,
1280
+ 2020.
1281
+ https://www.appliednt.com/nanosoi-fabrication-
1282
+ service/ (accessed 9 December 2021).
1283
+ [59]
1284
+ D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai,
1285
+ H. Yu, H.-K. Tsang, 10-Channel Mode (de)multiplexer with
1286
+ Dual Polarizations, Laser & Photonics Reviews 12 (2018)
1287
+ 1700109. https://doi.org/10.1002/lpor.201700109.
1288
+ [60]
1289
+ R. Liu, L. Lu, P. Zhang, W. Chang, D. Liu, M. Zhang, Integrated
1290
+ Dual-Mode 3-dB Power Splitter Based on Multimode
1291
+ Interference Coupler, IEEE Photon. Technol. Lett. 32 (2020)
1292
+ 883–886. https://doi.org/10.1109/lpt.2020.3002344.
1293
+ [61]
1294
+ Y. Luo, Y. Yu, M. Ye, C. Sun, X. Zhang, Integrated dual-mode
1295
+ 3 dB power coupler based on tapered directional coupler, Sci
1296
+ Rep 6 (2016) 23516. https://doi.org/10.1038/srep23516.
1297
+ [62]
1298
+ K. Chen, Z. Nong, J. Zhang, X. Cai, S. He, L. Liu, Multimode 3
1299
+ dB Coupler Based on Symmetrically Coupled Waveguides for
1300
+ On-Chipbrk Mode Division Multiplexing, J. Lightwave
1301
+ Technol.
1302
+ 35
1303
+ (2017)
1304
+ 4260–4267.
1305
+ https://doi.org/10.1109/JLT.2017.2735860.
1306
+
ONE2T4oBgHgl3EQfrAiX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PNE3T4oBgHgl3EQfxguY/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:290862611d4a7caf8f2b19a24e950854aa1eaa433bfd60b01621ae03b02aa84f
3
+ size 253822
QNAyT4oBgHgl3EQf7voS/content/tmp_files/2301.00842v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
QNAyT4oBgHgl3EQf7voS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QNFQT4oBgHgl3EQfZDbf/content/tmp_files/2301.13315v1.pdf.txt ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13315v1 [physics.atom-ph] 30 Jan 2023
2
+ Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022
3
+ 1
4
+ Probing Gravity for one Minute
5
+ with an Optical-Lattice Atom Interferometer
6
+ C.D. Panda, M. Tao, J. Eggelhof, M. Ceja, A. Reynoso, V. Xu, and H. M¨uller
7
+ University of California, Berkeley, CA 94720, USA
8
+ We have realized an atom interferometer that probes gravitational potentials
9
+ by holding, rather than dropping, atoms.
10
+ Up to one minute of coherence
11
+ times are realized by suspending the spatially separated atomic wave packets
12
+ in an optical lattice that is mode-filtered by an optical cavity. This trapped
13
+ configuration suppresses phase variance due to vibrations by four to five orders
14
+ of magnitude, overcoming the dominant noise source in atom-interferometric
15
+ gravimeters.
16
+ Recent progress in characterizing and reducing interferometer
17
+ decoherence led to major increases in coherence and precision, paving the way
18
+ to measurements of dark-energy candidates and probes of the quantum nature
19
+ of gravity through measuring the gravity of source masses with record precision
20
+ and spatial resolution.
21
+ Light-pulse atom interferometry1 has been used to measure the fine struc-
22
+ ture constant,2 the gravitational constant,3 to test the equivalence princi-
23
+ ple,4 to look for laboratory signatures of dark energy,5 or to search for CPT
24
+ or Lorentz violation.6,7 Atom interferometers are among the most accurate
25
+ and sensitive tools for measuring gravity, in and out of the laboratory.8
26
+ The achieved precision is limited by two main factors: coherence time and
27
+ sensitivity to vibrations. In atom interferometers performed with atomic
28
+ fountains, coherence is limited by the available free-fall time to below three
29
+ seconds (for ∼ 10 m drop towers).
30
+ Our interferometer suspends atoms against Earth’s gravity in an optical
31
+ lattice that is formed by the mode of an optical cavity (Fig. 1). We observe
32
+ up to 1 minute of coherence time (Fig. 2), which is by far the longest-lasting
33
+ realization of the fundamental notion that a massive quantum particle can
34
+ be in a superposition of being located in two different places at once and
35
+ still three times longer than we have realized with the same experiment
36
+ in a previous publication.9 Achieving this in a conventional free-fall atom
37
+ interferometer would require a drop tower 4.5 km tall.
38
+
39
+ Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022
40
+ 2
41
+ Δz
42
+ Fig. 1.
43
+ Lattice interferometer atom trajectories.
44
+ Ultracold Cesium atoms are
45
+ launched against gravity.
46
+ A pair of π/2 pulses creates a spatial superposition state
47
+ where two atomic wavepackets are separated by a distance ∆z. After a time tA, atoms
48
+ reach the apex of their free-fall trajectory and are loaded in a far-detuned optical lattice
49
+ formed by the mode of an optical cavity (horizontal stripes) and remain held for a time
50
+ τ. The two wavepackets are recombined and their interference is measured.
51
+ Atoms held at fixed locations can measure extremely weak fields, such
52
+ as the gravity due to small milligram source masses, for many seconds. This
53
+ is orders of magnitude longer than possible with atomic fountains and rep-
54
+ resents a major sensitivity boost for fundamental-physics experiments, such
55
+ as tests of fifth forces,10 searches for dark energy in the laboratory,5 pro-
56
+ posed measurements of the gravitational Aharonov–Bohm effect,11 or tests
57
+ on whether gravity can mediate entanglement between quantum mechan-
58
+ ical systems.12 The optical-lattice interferometer is also significantly less
59
+ susceptible to noise due to acousto-mechanical vibrations than its fountain
60
+ counterpart. Holding the atoms in an optical lattice for 60 seconds provides
61
+ 104–105 times suppression of environmental vibrations in the 1–1000 Hz vi-
62
+ bration band, making operation near the standard quantum limit possible.
63
+ Bringing optical-lattice technology, common to atomic-clock metrol-
64
+ ogy,13 to atom interferometry is nontrivial, as spatial-superposition states
65
+ are particularly susceptible to external forces. The interaction of the atoms
66
+ with the optical lattice causes shifts of the atomic partial wavepacket phases
67
+ that are large compared to the measured signals. This common-mode phase
68
+
69
+ B
70
+ 元/2
71
+ 元/2
72
+ 元/2
73
+ 元/2
74
+ +hk.
75
+ X
76
+ ZProceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022
77
+ 3
78
+ Fig. 2.
79
+ One-minute interference fringes measured with the lattice interferometer.
80
+ is intrinsically subtracted by the interferometer, but any imperfections in
81
+ the optical potential can lead to phase shifts and decoherence. Precise con-
82
+ trol of the optical field is therefore necessary, which we achieve at least
83
+ partially by using an optical cavity as a mode-filter for the optical lattice.
84
+ We empirically observe a robust scaling in the decoherence rate of
85
+ our interferometer, where the contrast follows an exponential decay, C =
86
+ C0 exp(−τ/τC) with C0 the starting contrast. τC is inversely proportional
87
+ to the wavepacket separation ∆z and trap depth U: 1/τC = U∆z/c, where
88
+ c = 110 ± 30 µm Er s is a measured constant and Er is the recoil energy
89
+ of the Cs D2 transition (Fig. 3a).
90
+ The decoherence results from resid-
91
+ ual transverse motion of the atoms in the one-dimensional optical lattice,
92
+ where atoms sample tiny differences in the optical potential holding the top
93
+ and bottom partial wavepackets. We confirm this by observing increased
94
+ contrast when only selecting cold atoms by loading atoms in the narrower
95
+ higher-order Laguerre–Gaussian modes of the cavity (Fig. 3b). Planned
96
+ reductions in the atom sample temperature and control of lattice imperfec-
97
+ tions promise to increase coherence times past the one-minute mark.
98
+ We have described an optical-lattice atom interferometer with coher-
99
+ ence times reaching one minute, realizing the longest spatial superposi-
100
+ tion states to date, more than an order of magnitude longer than atomic-
101
+ fountain interferometers.
102
+ This geometry comes along with intrinsic ad-
103
+ vantages: vibration-noise rejection and micron-scale spatial resolution of
104
+ the measured signals. Cognizance and reduction of decoherence and atom-
105
+ source upgrades promise to push this technology to record precision and
106
+ ultra-long coherence. This opens a new era in atom interferometry, with
107
+
108
+ Time offset (μus)
109
+ -20-10.0 10.20
110
+ -20-1001020-20-1001020
111
+ 0.4
112
+ T
113
+ 0.2
114
+ AA
115
+ 0.0
116
+ As
117
+ -0.2
118
+ -0.4
119
+ 0.2109
120
+ 1.0509
121
+ 5.1109
122
+ 15.0509
123
+ 30.0309
124
+ 60.0609
125
+ Interferometer hold time (seconds)Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022
126
+ 4
127
+ Contrast decay constant c (
128
+
129
+ m Er s)
130
+ Transverse mode
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+ 0
152
+ 2
153
+ 4
154
+ 6
155
+ 8
156
+ 10
157
+ 12
158
+ 0.0
159
+ 0.2
160
+ 0.4
161
+ 0.6
162
+ 0.8
163
+ 1.0
164
+ 1.2
165
+ 1.4
166
+ U (Er)
167
+ 1/τC (s)
168
+ Δz (μm)
169
+ ▼ 1.8
170
+ ▲ 4.2
171
+
172
+ 6.5
173
+
174
+ 9.4
175
+ ◆ 11.3
176
+ a
177
+ b
178
+ Fig. 3.
179
+ Interferometer coherence. a.) Measured linear scaling of 1/τC with trap
180
+ depth U and separation, ∆z.
181
+ b.)
182
+ The magnitude of the contrast decay constant
183
+ c increases when the optical-lattice radius is lowered through the use of higher-order
184
+ Laguerre–Gaussian modes of the cavity.
185
+ applications in gravimetry, searches for fifth forces, a measurement of the
186
+ gravitational Aharonov–Bohm effect in the absence of forces, or new tests
187
+ of CPT and Lorentz violation.
188
+ References
189
+ 1. A.D. Cronin, J. Schmiedmayer, and D.E. Pritchard, Rev. Mod. Phys. 81,
190
+ 1051 (2009).
191
+ 2. L. Morel, Z. Yao, P. Clade, and S. Guellati-Kh´elifa, Nature 588, 61 (2020).
192
+ 3. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G.M. Tino, Nature
193
+ 510, 518 (2014).
194
+ 4. P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A. Kasevich, Phys.
195
+ Rev. Lett. 125, 191101 (2020).
196
+ 5. M. Jaffe et al., Nature Phys. 13, 938 (2017).
197
+ 6. K. Chung, S. Chiow, S. Herrmann, S. Chu, and H. M”uller, Phys. Rev. D
198
+ 80, 016002 (2009).
199
+ 7. Q.G. Bailey and V.A. Kosteleck´y, Phys. Rev. D 74, 045001 (2006).
200
+ 8. G.M. Tino, Quantum Sci. Technol. 6, 024014 (2021).
201
+ 9. V. Xu, M. Jaffe, C.D. Panda, S.L. Kristensen, L.W. Clark, and H. M¨uller,
202
+ Science 366, 745 (2019).
203
+ 10. P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin, and A. Clairon,
204
+ Phys. Rev. A 75, 063608 (2007).
205
+ 11. M.A. Hohensee, B. Estey, P. Hamilton, A. Zeilinger, and H. M¨uller, Phys.
206
+ Rev. Lett. 108, 230404 (2012).
207
+ 12. D. Carney, H. M¨uller, and J.M. Taylor, PRX Quantum 2, 030330 (2021).
208
+ 13. G.E. Marti, R.B. Hutson, A. Goban, S.L. Campbell, N. Poli, and J. Ye, Phys.
209
+ Rev. Lett. 120, 103201 (2018).
210
+
211
+ 500
212
+ 400
213
+ 300
214
+ I
215
+ 200
216
+ I
217
+ 100
218
+ LG 00
219
+ LG 10
220
+ LG 20
221
+ 0
QNFQT4oBgHgl3EQfZDbf/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf,len=203
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
3
+ page_content='13315v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
4
+ page_content='atom-ph] 30 Jan 2023 Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022 1 Probing Gravity for one Minute with an Optical-Lattice Atom Interferometer C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
5
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
6
+ page_content=' Panda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
7
+ page_content=' Tao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
8
+ page_content=' Eggelhof, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
9
+ page_content=' Ceja, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
10
+ page_content=' Reynoso, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
11
+ page_content=' Xu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
12
+ page_content=' M¨uller University of California, Berkeley, CA 94720, USA We have realized an atom interferometer that probes gravitational potentials by holding, rather than dropping, atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
13
+ page_content=' Up to one minute of coherence times are realized by suspending the spatially separated atomic wave packets in an optical lattice that is mode-filtered by an optical cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
14
+ page_content=' This trapped configuration suppresses phase variance due to vibrations by four to five orders of magnitude, overcoming the dominant noise source in atom-interferometric gravimeters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
15
+ page_content=' Recent progress in characterizing and reducing interferometer decoherence led to major increases in coherence and precision, paving the way to measurements of dark-energy candidates and probes of the quantum nature of gravity through measuring the gravity of source masses with record precision and spatial resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
16
+ page_content=' Light-pulse atom interferometry1 has been used to measure the fine struc- ture constant,2 the gravitational constant,3 to test the equivalence princi- ple,4 to look for laboratory signatures of dark energy,5 or to search for CPT or Lorentz violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
17
+ page_content='6,7 Atom interferometers are among the most accurate and sensitive tools for measuring gravity, in and out of the laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
18
+ page_content='8 The achieved precision is limited by two main factors: coherence time and sensitivity to vibrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
19
+ page_content=' In atom interferometers performed with atomic fountains, coherence is limited by the available free-fall time to below three seconds (for ∼ 10 m drop towers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
20
+ page_content=' Our interferometer suspends atoms against Earth’s gravity in an optical lattice that is formed by the mode of an optical cavity (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
21
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
22
+ page_content=' We observe up to 1 minute of coherence time (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
23
+ page_content=' 2), which is by far the longest-lasting realization of the fundamental notion that a massive quantum particle can be in a superposition of being located in two different places at once and still three times longer than we have realized with the same experiment in a previous publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
24
+ page_content='9 Achieving this in a conventional free-fall atom interferometer would require a drop tower 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
25
+ page_content='5 km tall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
26
+ page_content=' Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022 2 Δz Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
27
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
28
+ page_content=' Lattice interferometer atom trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
29
+ page_content=' Ultracold Cesium atoms are launched against gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
30
+ page_content=' A pair of π/2 pulses creates a spatial superposition state where two atomic wavepackets are separated by a distance ∆z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
31
+ page_content=' After a time tA, atoms reach the apex of their free-fall trajectory and are loaded in a far-detuned optical lattice formed by the mode of an optical cavity (horizontal stripes) and remain held for a time τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
32
+ page_content=' The two wavepackets are recombined and their interference is measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
33
+ page_content=' Atoms held at fixed locations can measure extremely weak fields, such as the gravity due to small milligram source masses, for many seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
34
+ page_content=' This is orders of magnitude longer than possible with atomic fountains and rep- resents a major sensitivity boost for fundamental-physics experiments, such as tests of fifth forces,10 searches for dark energy in the laboratory,5 pro- posed measurements of the gravitational Aharonov–Bohm effect,11 or tests on whether gravity can mediate entanglement between quantum mechan- ical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
35
+ page_content='12 The optical-lattice interferometer is also significantly less susceptible to noise due to acousto-mechanical vibrations than its fountain counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
36
+ page_content=' Holding the atoms in an optical lattice for 60 seconds provides 104–105 times suppression of environmental vibrations in the 1–1000 Hz vi- bration band, making operation near the standard quantum limit possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
37
+ page_content=' Bringing optical-lattice technology, common to atomic-clock metrol- ogy,13 to atom interferometry is nontrivial, as spatial-superposition states are particularly susceptible to external forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
38
+ page_content=' The interaction of the atoms with the optical lattice causes shifts of the atomic partial wavepacket phases that are large compared to the measured signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
39
+ page_content=' This common-mode phase B 元/2 元/2 元/2 元/2 +hk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
40
+ page_content=' X ZProceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
41
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
42
+ page_content=' One-minute interference fringes measured with the lattice interferometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
43
+ page_content=' is intrinsically subtracted by the interferometer, but any imperfections in the optical potential can lead to phase shifts and decoherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
44
+ page_content=' Precise con- trol of the optical field is therefore necessary, which we achieve at least partially by using an optical cavity as a mode-filter for the optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
45
+ page_content=' We empirically observe a robust scaling in the decoherence rate of our interferometer, where the contrast follows an exponential decay, C = C0 exp(−τ/τC) with C0 the starting contrast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
46
+ page_content=' τC is inversely proportional to the wavepacket separation ∆z and trap depth U: 1/τC = U∆z/c, where c = 110 ± 30 µm Er s is a measured constant and Er is the recoil energy of the Cs D2 transition (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
47
+ page_content=' 3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
48
+ page_content=' The decoherence results from resid- ual transverse motion of the atoms in the one-dimensional optical lattice, where atoms sample tiny differences in the optical potential holding the top and bottom partial wavepackets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
49
+ page_content=' We confirm this by observing increased contrast when only selecting cold atoms by loading atoms in the narrower higher-order Laguerre–Gaussian modes of the cavity (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
50
+ page_content=' 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
51
+ page_content=' Planned reductions in the atom sample temperature and control of lattice imperfec- tions promise to increase coherence times past the one-minute mark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
52
+ page_content=' We have described an optical-lattice atom interferometer with coher- ence times reaching one minute, realizing the longest spatial superposi- tion states to date, more than an order of magnitude longer than atomic- fountain interferometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
53
+ page_content=' This geometry comes along with intrinsic ad- vantages: vibration-noise rejection and micron-scale spatial resolution of the measured signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
54
+ page_content=' Cognizance and reduction of decoherence and atom- source upgrades promise to push this technology to record precision and ultra-long coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
55
+ page_content=' This opens a new era in atom interferometry, with Time offset (μus) 20-10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
56
+ page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
57
+ page_content='20 20-1001020-20-1001020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
58
+ page_content='4 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
59
+ page_content='2 AA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
60
+ page_content='0 As 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
61
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
62
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
63
+ page_content='2109 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
64
+ page_content='0509 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
65
+ page_content='1109 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
66
+ page_content='0509 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
67
+ page_content='0309 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
68
+ page_content='0609 Interferometer hold time (seconds)Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry (CPT’22), Indiana University, Bloomington, May 17–26, 2022 4 Contrast decay constant c ( � m Er s) Transverse mode � � � � ■ ■ ■ ■ ◆ ◆ ◆ ◆ ▲ ▲ ▲ ▲ ▼ ▼ ▼ ▼ 0 2 4 6 8 10 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
69
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
70
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
71
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
72
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
73
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
74
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
75
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
76
+ page_content='4 U (Er) 1/τC (s) Δz (μm) ▼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
77
+ page_content='8 ▲ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
78
+ page_content='2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
79
+ page_content='5 ■ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
80
+ page_content='4 ◆ 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
81
+ page_content='3 a b Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
82
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
83
+ page_content=' Interferometer coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
84
+ page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
85
+ page_content=') Measured linear scaling of 1/τC with trap depth U and separation, ∆z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
86
+ page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
87
+ page_content=') The magnitude of the contrast decay constant c increases when the optical-lattice radius is lowered through the use of higher-order Laguerre–Gaussian modes of the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
88
+ page_content=' applications in gravimetry, searches for fifth forces, a measurement of the gravitational Aharonov–Bohm effect in the absence of forces, or new tests of CPT and Lorentz violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
89
+ page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
90
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
91
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
92
+ page_content=' Cronin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
93
+ page_content=' Schmiedmayer, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
94
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
95
+ page_content=' Pritchard, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
96
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
97
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
98
+ page_content=' 81, 1051 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
99
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
100
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
101
+ page_content=' Morel, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
102
+ page_content=' Yao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
103
+ page_content=' Clade, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
104
+ page_content=' Guellati-Kh´elifa, Nature 588, 61 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
105
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
106
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
107
+ page_content=' Rosi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
108
+ page_content=' Sorrentino, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
109
+ page_content=' Cacciapuoti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
110
+ page_content=' Prevedelli, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
111
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
112
+ page_content=' Tino, Nature 510, 518 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
113
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
114
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
115
+ page_content=' Asenbaum, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
116
+ page_content=' Overstreet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
117
+ page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
118
+ page_content=' Curti, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
119
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
120
+ page_content=' Kasevich, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
121
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
122
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
123
+ page_content=' 125, 191101 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
124
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
125
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
126
+ page_content=' Jaffe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
127
+ page_content=', Nature Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
128
+ page_content=' 13, 938 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
129
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
130
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
131
+ page_content=' Chung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
132
+ page_content=' Chiow, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
133
+ page_content=' Herrmann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
134
+ page_content=' Chu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
135
+ page_content=' M”uller, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
136
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
137
+ page_content=' D 80, 016002 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
138
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
139
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
140
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
141
+ page_content=' Bailey and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
142
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
143
+ page_content=' Kosteleck´y, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
144
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
145
+ page_content=' D 74, 045001 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
146
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
147
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
148
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
149
+ page_content=' Tino, Quantum Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
150
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
151
+ page_content=' 6, 024014 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
152
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
153
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
154
+ page_content=' Xu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
155
+ page_content=' Jaffe, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
156
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
157
+ page_content=' Panda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
158
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
159
+ page_content=' Kristensen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
160
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
161
+ page_content=' Clark, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
162
+ page_content=' M¨uller, Science 366, 745 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
163
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
164
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
165
+ page_content=' Wolf, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
166
+ page_content=' Lemonde, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
167
+ page_content=' Lambrecht, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
168
+ page_content=' Bize, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
169
+ page_content=' Landragin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
170
+ page_content=' Clairon, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
171
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
172
+ page_content=' A 75, 063608 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
173
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
174
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
175
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
176
+ page_content=' Hohensee, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
177
+ page_content=' Estey, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
178
+ page_content=' Hamilton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
179
+ page_content=' Zeilinger, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
180
+ page_content=' M¨uller, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
181
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
182
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
183
+ page_content=' 108, 230404 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
184
+ page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
185
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
186
+ page_content=' Carney, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
187
+ page_content=' M¨uller, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
188
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
189
+ page_content=' Taylor, PRX Quantum 2, 030330 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
190
+ page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
191
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
192
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
193
+ page_content=' Marti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
194
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
195
+ page_content=' Hutson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
196
+ page_content=' Goban, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
197
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
198
+ page_content=' Campbell, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
199
+ page_content=' Poli, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
200
+ page_content=' Ye, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
201
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
202
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
203
+ page_content=' 120, 103201 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
204
+ page_content=' 500 400 300 I 200 I 100 LG 00 LG 10 LG 20 0' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNFQT4oBgHgl3EQfZDbf/content/2301.13315v1.pdf'}
RtE3T4oBgHgl3EQfywtH/content/tmp_files/2301.04722v1.pdf.txt ADDED
@@ -0,0 +1,1715 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04722v1 [math.PR] 11 Jan 2023
2
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING
3
+ RANDOM MATRIX THEORY
4
+ ANDREW CAMPBELL, KYLE LUH, AND VLAD MARGARINT
5
+ Abstract. We provide an order of convergence for a version of the Carath´eodory
6
+ convergence for the multiple SLE model with a Dyson Brownian motion driver
7
+ towards its hydrodynamic limit, for β = 1 and β = 2. The result is obtained
8
+ by combining techniques from the field of Schramm-Loewner Evolutions with
9
+ modern techniques from random matrices. Our approach shows how one can
10
+ apply modern tools used in the proof of universality in random matrix theory,
11
+ in the field of Schramm-Loewner Evolutions.
12
+ 1. Introduction and main results
13
+ Schramm-Loewner Evolution (SLE) and random matrix theory (RMT) are two
14
+ active and well-studied fields of research within modern probability theory [2,38].
15
+ The SLE was introduced by Oded Schramm in 2000 in his study of scaling limits
16
+ of various discrete processes [49]. RMT appeared earlier in the statistical work of
17
+ Wishart [61] and the pioneering physics of Wigner [60]. Both SLE and RMT have
18
+ been thriving areas of mathematical research since their advent.
19
+ When studying SLE theory, one introduces the notion of compact hulls, which
20
+ are compact sets with simply connected complements in the upper half-plane. If
21
+ Kt is a growing set of hulls parameterized by t ∈ [0, T ] and the growth is local in
22
+ some sense, then it is known that gt := gKt obeys the Loewner differential equation
23
+ ∂tgt(z) =
24
+ 2
25
+ gt(z) − Wt
26
+ where Wt is referred to as the driving function and captures the local growth of Kt.
27
+ SLE are the random curves corresponding to the gt when the driving function is a
28
+ constant multiple of Brownian motion, that we denote by √κBt, for κ ≥ 0. With
29
+ probability one, gt is continuous up to the boundary and the limit
30
+ γ(t) = lim
31
+ y→0 g−1
32
+ t
33
+ (√κBt + iy)
34
+ exists and is continuous in time, by the Rohde-Schramm Theorem [46]. The curve
35
+ γ(t) is called the SLE trace. Also, it can be shown that with probability one, gt is
36
+ a continuous family of conformal maps from Ht to H, where Ht is the unbounded
37
+ component of the complement in H of γ(t), for t ∈ [0, T ] [46]. Moreover, the nature
38
+ of the curve changes as κ increases from simple a.s. when κ ∈ [0, 4], to having
39
+ double points a.s. for κ ∈ (4, 8) and space-filling a.s., for κ ≥ 8. For different
40
+ parameters κ, the SLE models the scaling limits of an astoundingly diverse set of
41
+ discrete models. For instance, it was proved in [39] that the scaling limit of the loop
42
+ erased random walk (with the loops erased in a chronological order) converges in the
43
+ K. Luh was supported in part by the Ralph E. Powe Junior Faculty Enhancement Award.
44
+ 1
45
+
46
+ 2
47
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
48
+ scaling limit to SLEκ with κ = 2. Moreover, other two dimensional discrete models
49
+ from Statistical Mechanics including the Ising model cluster boundaries, Gaussian
50
+ free field interfaces, percolation on the triangular lattice at critical probability, and
51
+ Uniform spanning trees were proved to converge in the scaling limit to SLE for
52
+ values of κ = 3, κ = 4, κ = 6 and κ = 8 respectively in the series of works [52], [50],
53
+ [51] and [39].
54
+ One can consider more generally the Loewner equation driven by a time-dependent
55
+ real-valued measure µt
56
+
57
+ ∂tgt(z) =
58
+
59
+ R
60
+ µt(dx)
61
+ gt(z) − x,
62
+ g0(z) = z.
63
+ When the driving measure µt is a Dirac-delta mass at location √κBt, we recover
64
+ the previous SLE maps. In the case µt = �N
65
+ i=1 ωi(t)δUi(t), for some non-intersecting
66
+ continuous functions Ui(t) ∈ R (called driving functions), and weights ωi(t) ∈ R+,
67
+ we obtain the multi-slit Loewner equation with driving functions Ui(t), i = 1, · · · , n.
68
+ In this work, we consider the case ωi(t) = 1/N, for all t ∈ [0, T ].
69
+ For a real parameter β > 0, Dyson Brownian motion (DBM) is defined by the
70
+ following system of N equations
71
+ (1)
72
+ dλ(i)
73
+ t
74
+ =
75
+ 2
76
+ √Nβ dB(i)
77
+ t
78
+ + 2
79
+ N
80
+
81
+ j̸=i
82
+ dt
83
+ λ(j)
84
+ t
85
+ − λ(i)
86
+ t
87
+ ,
88
+ for i = 1, 2, ..., N.
89
+ Due to its connections with other fields, an important Loewner equation is the
90
+ multiple SLE with DBM as a driver. The multiple SLE maps that are obtained
91
+ when the driving measure is an empirical measure on N DBM particles are denoted
92
+ in this paper by gN
93
+ t (z). This model was introduced by Cardy in [10], and studied
94
+ further by Lawler and Healey in [30], in connection with the quantum Calogero-
95
+ Sutherland model and Conformal Field Theory.
96
+ More works on the connection
97
+ between Multiple SLE and CFT can be found in [40] and [48]. In the case of N = 2
98
+ curves, perturbations of this model in the parameter β have been studied in [11].
99
+ We note that the parameters β in the DBM model and κ in SLE theory are related
100
+ via β = 8/κ.
101
+ We refer to the multiple SLE model with Dyson Brownian motion as a driver
102
+ as the simultaneously growing multiple SLE model. There is also a version of the
103
+ multiple SLE that has non-simultaneous growth that has received a lot of attention
104
+ in the previous years. There have been several results on the multiple SLE model
105
+ in both the upper half-plane and the unit disk versions [5, 12, 13, 15, 31, 32, 35, 37,
106
+ 40,45,47,58,62,63].
107
+ In [14], the authors consider the N → ∞ limit of multiple SLE driven by DBM. In
108
+ particular they show that the empirical measure of the initial positions converges to
109
+ a probability measure µ0, then gN
110
+ t converges in distribution with respect to locally
111
+ uniform convergence to g∞
112
+ t
113
+ solving
114
+ (2)
115
+
116
+ ∂tg∞
117
+ t (z) = M ∞
118
+ t (z),
119
+ g0(z) = z,
120
+ Where M ∞
121
+ t
122
+ is a solution to the complex Burgers equation
123
+ (3)
124
+ � ∂M∞
125
+ t (z)
126
+ ∂t
127
+ = −2M ∞
128
+ t (z) ∂M∞
129
+ t (z)
130
+ ∂z
131
+ , t > 0,
132
+ M ∞
133
+ 0 (z) =
134
+
135
+ R
136
+ 2
137
+ z−xdµ0(x).
138
+
139
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
140
+ 3
141
+ Their result serves as the multiple SLE analog of Wigner’s famous semicircle law
142
+ in random matrix theory.
143
+ We consider this model and we obtain more refined
144
+ information by providing an order of convergence of this model in a weaker ver-
145
+ sion of the Carath´eodory type convergence. We aim in future works to study the
146
+ full Carath´eodory convergence by strengthening the estimates as we approach the
147
+ multiple SLE hull.
148
+ In this work, we combine elements of the proof of Local Laws in random matrix
149
+ theory, such as resolvent techniques, with elements of the SLE theory. In other
150
+ words, we apply modern techniques from random matrix theory to the analysis of
151
+ SLE. Local Laws are a very important research direction in random matrix theory
152
+ in the last years (see [9], [16], [18], [17], [19], [20], [21], [22], [25], [24], [26], [23],
153
+ [42], [44], [54], [53], [57], [56], [55] for a non-exhaustive list). They are one of the
154
+ fundamental ingredients in proving the universality of Wigner ensembles in random
155
+ matrix theory (see [27]).
156
+ Given the outstanding developments in the proof of the universality in RMT
157
+ using the analysis of the DBM, the interaction between multiple SLE and random
158
+ matrices will provide many avenues to explore. The approach in the current work
159
+ represents one of the possible directions of exploration between these two major
160
+ fields of Probability theory. In a different direction, which we aim to explore in the
161
+ future, one can study the geometry of the multiple SLE curves using the analysis
162
+ of the Dyson Brownian motion drivers, as well as good approximation schemes of
163
+ the model (see, for example, [28], [59], [33] in the one SLE curve case). Yet another
164
+ possibility is to study the continuity of the multiple SLE model in the parameter
165
+ β, motivated by the great interest and progress throughout the years in this yet
166
+ unresolved conjecture in the one SLE curve case (see [6], [7], [29], [34]). In addition,
167
+ the fact that the multiple SLE curves grow from the positions of the drivers along
168
+ with some knowledge about the structure of the drivers gives the possibility of
169
+ defining new observables in order to study the convergence of discrete models to
170
+ the multiple SLE. Examples of such observables include the statistics of the kth
171
+ smallest distance between drivers, for k ≥ 1, (see [8]) or the probability of having
172
+ no drivers in a symmetric region about the origin (see [41] for β = 2).
173
+ Although our result can be obtained for general bounded initial conditions, we
174
+ state it in the case in which all the Dyson Brownian motion particles start from
175
+ the origin. We prefer this choice for the simplicity of the notation and exposition.
176
+ Theorem 1.1. Let β = 1 or β = 2, and let us consider Dyson Brownian motion
177
+ beginning at the origin. Let KT be the multiple SLE hull at time T > 0. Then, for
178
+ any ε > 0, for the multiple SLE maps for N curves, we have that
179
+ sup
180
+ t∈[0,T ], z∈G
181
+ |gN
182
+ t (z) − g∞
183
+ t (z)| = O
184
+
185
+ 1
186
+ N 1/3−ε
187
+
188
+ ,
189
+ with overwhelming probability1, for a given G ⊂ H \ KT .
190
+ Remark 1.2. It is well-known that for the special values of the parameters β = 1,
191
+ β = 2 and β = 4, the Dyson Brownian motion particles statistics can be understood
192
+ using matrices as these values correspond to the well-studied models of the Gauss-
193
+ ian Orthogonal Ensemble, Gaussian Unitary Ensemble (GUE), and the Gaussian
194
+ 1An event E holds with overwhelming probability if, for every p > 0, P(E) ≥ 1 − Op(n−p); see
195
+ Definition 3.1 for details.
196
+
197
+ 4
198
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
199
+ Symplectic Ensemble (GSE) respectively. An n × n real symmetric matrix A is
200
+ drawn from the Gaussian Orthogonal Ensemble (GOE) if the upper-triangular en-
201
+ tries Aij, 1 ≤ i ≤ j ≤ n are independent Guassian random variables, where Aij has
202
+ mean zero and variance 1+δij
203
+ n
204
+ and δij is the Kronecker delta. The GUE and GSE
205
+ ensembles are defined similarly with complex and quaternic Gaussian off-diagonal
206
+ entries. We study the cases β = 1 and β = 2 respectively as they correspond to
207
+ the critical parameters κ = 8 and κ = 4 in SLE theory. We expect that a similar
208
+ analysis will hold for the case β = 4 that corresponds to the value κ = 2.
209
+ We note that the N −(1/3−ǫ) order of convergence to the hydrodynamic limit
210
+ of multiple SLE is obtained via an estimate in [44] which is, to the best of our
211
+ knowledge, the best stability estimate in this setting available in the literature.
212
+ Theorem 1.1 relies on the following technical result.
213
+ Theorem 1.3. Let β = 1 or β = 2, and let us consider Dyson Brownian motion
214
+ started from the origin
215
+
216
+ λ(1)
217
+ t , . . . , λ(N)
218
+ t
219
+
220
+ and M N
221
+ t
222
+ : C+ → C− defined by
223
+ M N
224
+ t (z) = 1
225
+ N
226
+ N
227
+
228
+ j=1
229
+ 2
230
+ z − λ(j)
231
+ t
232
+ .
233
+ Let M ∞
234
+ t
235
+ : C+ → C− be the solution to the complex Burgers equation
236
+ (4)
237
+ � ∂M∞
238
+ t (z)
239
+ ∂t
240
+ = −2M ∞
241
+ t (z) ∂M∞
242
+ t (z)
243
+ ∂z
244
+ , t > 0,
245
+ M ∞
246
+ 0 (z) = 2
247
+ z.
248
+ Then for any compact set G ⊂ C+, ε > 0, and fixed t ∈ [0, T ]
249
+ (5)
250
+ sup
251
+ z∈G
252
+ ��M N
253
+ t (z) − M ∞
254
+ t (z)
255
+ �� = OG,ε
256
+
257
+ t
258
+ N
259
+ 1
260
+ 3 −ε
261
+
262
+ ,
263
+ with overwhelming probability.
264
+ The remainder of the paper is organized into several sections. In the second
265
+ section, we present probabilistic estimates involving the multiple SLE hull and sub-
266
+ sets of its complement. The third section focuses on the random matrix techniques
267
+ we use, as well as on the proof of Theorem 1.3. In subsection 3.4 we utilize a net
268
+ argument that extends the previously obtained results for a fixed time t ∈ [0, T ], to
269
+ all times simultaneously. In section 4, we prove Theorem 1.1 and in the Appendix
270
+ we provide the stability part of the argument.
271
+ 2. Subset of the complement of the multiple SLE hull
272
+ In this section, we provide probabilistic estimates for general β ≥ 1 that are
273
+ useful in deducing the choice of the set G ⊂ H \ KT , where we establish the order
274
+ of convergence of the family of maps. We present the estimates for general β ≥ 1,
275
+ and specialize to the β = 1 and β = 2 cases in our application.
276
+ Let ∂tgt(z) =
277
+ 1
278
+ N
279
+ �N
280
+ i=1
281
+ 2
282
+ gt(z)−λi
283
+ t , where (λ(1)
284
+ t , · · · , λ(N)
285
+ t
286
+ ) is a Dyson Brownian
287
+ motion (DBM) with parameter β ≥ 1. We first consider λi
288
+ t ≡ 0, ∀t ∈ [0, T ],
289
+
290
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
291
+ 5
292
+ for all i = {1, 2, · · · , N}. Then, we have that ∂tgt(z) =
293
+ 2N
294
+ Ngt(z) =
295
+ 2
296
+ gt(z). Since
297
+ gt(z) = Re(gt(z)) + iIm(gt(z)), we have that
298
+ ∂tIm(gt(z)) = −2Im(gt(z))
299
+ |gt(z)|2
300
+
301
+ 2
302
+ (Im(gt(z))2 .
303
+ This allows us to conclude that
304
+ Im (gt(z))2 ⩾ (Im(z))2 − 4t > 0,
305
+ whenever Im(z) > 2
306
+
307
+ T.
308
+ In order to control the real part, for a Dyson Brownian motion (λ(1)
309
+ t , · · · , λ(N)
310
+ t
311
+ )
312
+ with parameter β ≥ 1, we observe that
313
+ ∂tRe(gt(z)) = 1
314
+ N
315
+ N
316
+
317
+ i=1
318
+ Re (gt(z)) − λi
319
+ t
320
+ ��gt(z) − λi
321
+ t
322
+ ��2
323
+ > 0,
324
+ whenever Re(gt(z)) > M = supt∈[0,T ] supi={1,2,...,N}
325
+ ��λi
326
+ t
327
+ �� . Then, combining the two
328
+ estimates, we have that
329
+ {z ∈ H| : |Re(z) > M or Im > 2
330
+
331
+ T} ⊂ H \ KT .
332
+ We also note that for all t ∈ [0, T ], we have
333
+ Kt ⊂ {z ∈ H : | Re z| ≤ M and Im z ≤ 2
334
+
335
+ T}.
336
+ Next, we use the following probabilistic result on the behaviour of the extreme
337
+ eigenvalues.
338
+ Lemma 2.1 (Lemma 4.3.17 in [3]). Let λ∗
339
+ N(t) := max1≤i≤N
340
+ ���λ(i)
341
+ t
342
+ ��� = max
343
+
344
+ λ(N)
345
+ t
346
+ , −λ(1)
347
+ t
348
+
349
+ .
350
+ Let β ≥ 1. Then there exist finite constants α = α(β) > 0, C = C(β), and for all
351
+ t ≥ 0 a random variable η∗
352
+ N(t) with law independent of t, such that
353
+ P (η∗
354
+ N(t) ≥ x + C) ≤ e−αNx
355
+ and, for all t ≥ 0,
356
+ λ∗
357
+ N(t) ≤ λ∗
358
+ N(0) +
359
+
360
+ tη∗
361
+ N(t).
362
+ In the case of the DBM drivers, using Lemma 2.1, we have that for β ≥ 1 and
363
+ for C = C(β) and α = α(β) some finite constants that
364
+ P
365
+
366
+ sup
367
+ t∈[0,T ]
368
+ sup
369
+ i={1,2,...,N}
370
+ ��λi
371
+ t
372
+ �� ≤ (C + x)
373
+
374
+ T
375
+
376
+ ≥ 1 − e−αNx.
377
+ For conformal maps, we have the following result.
378
+ Lemma 2.2 (Lemma 4.5 in [36]). Let K be a hull and H = H\K. If K ⊂ B (x0, r),
379
+ then gK maps H ∩ B (x0, 2r) into B (x0, 3r) and
380
+ sup
381
+ z∈H
382
+ |gK(z) − z| ≤ 5r.
383
+ For a box G ⊂ HT = H \ KT , we have that with overwhelming probability that
384
+ (6)
385
+ gN
386
+ t (G) ⊂ {z :
387
+
388
+ Im(z0))2 − 4t ≤ Im(z) ≤ Im(z0); |Re(z)| ≤ f(N, T )},
389
+ where f(N, T ) can be deduced from the following:
390
+
391
+ 6
392
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
393
+ (7)
394
+ |RegK(z)| ≤ |gK(z)| ≤ |z| + 5r.
395
+ In the case of the multiple SLE hull KT , we have r =
396
+
397
+ M 2 + (2
398
+
399
+ T)2.
400
+ 3. Random Matrix Techniques
401
+ In this section we prove some random matrix results leading to the proof of
402
+ Theorem 1.3. It is worth noting that for β = 1 and β = 2, DBM
403
+
404
+ λ(1)
405
+ t , . . . , λ(N)
406
+ t
407
+
408
+ defined as the solution to (1) starting from initial positions
409
+
410
+ λ(1)
411
+ 0 , . . . , λ(N)
412
+ 0
413
+
414
+ is equal
415
+ in distribution to the eigenvalues of D−2
416
+
417
+ tA where D is an N ×N diagonal matrix
418
+ of the initial positions and A is a matrix drawn from the Gaussian Orthogonal
419
+ Ensemble for β = 1 or Gaussian Unitary Ensemble (GUE) for β = 2. We establish
420
+ the results in this section for the case when A is drawn from the GOE, since the
421
+ adjustments to the GUE model are straightforward.
422
+ 3.1. Tools. This section introduces the tools we will use throughout. We begin
423
+ with a definition describing high probability events.
424
+ Definition 3.1 (High probability events). Let E be an event that depends on n.
425
+ • E holds asymptotically almost surely if P(E) = 1 − o(1).
426
+ • E holds with high probability if P(E) = 1−O(n−c) for some constant c > 0.
427
+ • E holds with overwhelming probability if, for every p > 0, P(E) ≥ 1 −
428
+ Op(n−p).
429
+ For z = E + iη ∈ C+, n × n Hermitian matrix H, and G(z) := (H − zI)−1 the
430
+ Ward identity states that
431
+ (8)
432
+ n
433
+
434
+ j=1
435
+ |Gij(z)|2 = 1
436
+ η Im Gii(z).
437
+ If A and B are invertible matrices, the resolvent identity states that
438
+ (9)
439
+ A−1 − B−1 = A−1(B − A)B−1 = B−1(B − A)A−1.
440
+ If ξ is a Gaussian random variable with mean zero and variance σ2 and f : R → C
441
+ is continuously differentiable, the Gaussian integration by parts formula states that
442
+ (10)
443
+ E[ξf(ξ)] = σ2E[f ′(ξ)],
444
+ provided the expectations are finite.
445
+ The next lemma is a convenient moment
446
+ bound for a martingale difference sequence.
447
+ Lemma 3.2 (Lemma 2.12 from [4]). Let {Xk} be a complex martingale difference
448
+ sequence and Fk = σ(X1, . . . , Xk) be the σ-algebra generated by X1, . . . , Xk. Then,
449
+ for any p ≥ 2,
450
+ E
451
+ �����
452
+ n
453
+
454
+ k=1
455
+ Xk
456
+ �����
457
+ p
458
+ ≤ Cp
459
+
460
+ E
461
+ � n
462
+
463
+ k=1
464
+ Ek−1|Xk|2
465
+ �p/2
466
+ + E
467
+ n
468
+
469
+ k=1
470
+ |Xk|p
471
+
472
+  .
473
+ where Cp is a constant that only depends on p and Ek−1[·] := E[·|Fk−1].
474
+ The next concentration lemma is helpful in controlling the deviation of a qua-
475
+ dratic form from its expectation.
476
+
477
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
478
+ 7
479
+ Lemma 3.3 (Equation (3) from [1]). Let X be an n-vector containing iid standard
480
+ Gaussian random variables, A a deterministic n × n matrix and ℓ ≥ 1 an integer.
481
+ Then
482
+ E[X∗AX − tr A|2ℓ ≤ Cℓ(tr AA∗)ℓ
483
+ where Cℓ is a constant that only depends on ℓ.
484
+ Finally, we will require the following algebraic identity in Section 3.2.
485
+ Lemma 3.4 (Theorem A.5 from [4]). Let A be an n × n symmetric matrix and
486
+ Ak be the k-th major submatrix of size (n − 1) × (n − 1). If A and Ak are both
487
+ invertible, then
488
+ tr(A−1) − tr(A−1
489
+ k ) =
490
+ 1 + α∗
491
+ kA−2
492
+ k αk
493
+ Akk − α∗
494
+ kA−1
495
+ k αk
496
+ where αk is obtained from the k-th column of A by deleting the k-th entry.
497
+ 3.2. Concentration of the Gaussian Orthogonal Ensemble. In this section
498
+ we show that |M N
499
+ t (z)−EM N
500
+ t (z)| is small for a fixed z ∈ C+. To match the random
501
+ matrix literature we will consider for fixed t > 0, mN(z) := − 1
502
+ 2M N
503
+ t (z). We let At
504
+ be
505
+
506
+ tA where A is drawn from the Gaussian Orthogonal Ensemble.
507
+ We note that mN(z) − EmN(z) can be written as the following telescopic sum
508
+ mN(z) − EmN(z) =
509
+ n
510
+
511
+ k=1
512
+ (EkmN(z) − Ek−1mN(z)) :=
513
+ N
514
+
515
+ k=1
516
+ γk
517
+ Observe that
518
+ mN(z) = 1
519
+ N tr(At − z)−1 = 1
520
+ N tr
521
+ 1
522
+
523
+ tA − z =
524
+ 1
525
+ N
526
+
527
+ t tr
528
+ 1
529
+ A − z/
530
+
531
+ t =
532
+ 1
533
+ N
534
+
535
+ t tr
536
+ 1
537
+ A − z′
538
+ We define E′ = E/
539
+
540
+ t and η′ = η/
541
+
542
+ t. Let Ek denote the conditional expectation
543
+ with respect to the σ-field generated by Aij with i, j ≤ k, so that ENmN(z) =
544
+ mN(z) and E0mN(z) = EmN(z).
545
+
546
+ 8
547
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
548
+ γk =
549
+ 1
550
+ N
551
+
552
+ t(Ek tr(A − z′)−1 − Ek−1 tr(A − z′)−1)
553
+ =
554
+ 1
555
+ N
556
+
557
+ t
558
+
559
+ Ek
560
+
561
+ tr(A − z′)−1 − (Ak − z′)−1�
562
+ − Ek−1
563
+
564
+ tr(A − z′)−1 − tr(Ak − z′)−1��
565
+ =
566
+ 1
567
+ N
568
+
569
+ t(Ek − Ek−1)
570
+
571
+ a∗
572
+ kG2
573
+ kak − Eaka∗
574
+ kG2
575
+ kak
576
+ Akk − z′ − a∗
577
+ kGkak
578
+ +
579
+ 1 + Eaka∗
580
+ kG2
581
+ kak
582
+ Akk − z′ − a∗
583
+ kGkak
584
+
585
+ 1 + Eaka∗
586
+ kG2
587
+ kak
588
+ Akk − z′ − Eaka∗
589
+ kGkak
590
+
591
+ =
592
+ 1
593
+ N
594
+
595
+ t(Ek − Ek−1)
596
+
597
+ a∗
598
+ kG2
599
+ kak − Eaka∗
600
+ kG2
601
+ kak
602
+ Akk − z′ − a∗
603
+ kGkak
604
+
605
+ (1 + Eaka∗
606
+ kG2
607
+ kak)(a∗
608
+ kGkak − Eaka∗
609
+ kGkak)
610
+ (Akk − z′ − a∗
611
+ kGkak)(Akk − z′ − Eaka∗
612
+ kGkak)
613
+
614
+ =
615
+ 1
616
+ N
617
+
618
+ t(Ek − Ek−1)
619
+
620
+ a∗
621
+ kG2
622
+ kak − 1
623
+ N tr G2
624
+ k
625
+ Akk − z′ − a∗
626
+ kGkak
627
+
628
+ (1 + 1
629
+ N tr G2
630
+ k)(a∗
631
+ kGkak − 1
632
+ N tr Gk)
633
+ (Akk − z′ − a∗
634
+ kGkak)(Akk − z′ − 1
635
+ N tr Gk)
636
+
637
+ where ak denotes the k-th row of A with the k-th entry removed. We define the
638
+ following quantities,
639
+ αk = a∗
640
+ kG2
641
+ kak − 1
642
+ N tr G2
643
+ k,
644
+ βk =
645
+ 1
646
+ Akk − z′ − a∗
647
+ kGkak
648
+ ,
649
+ ¯βk =
650
+ 1
651
+ Akk − z′ − 1
652
+ N tr Gk
653
+ ,
654
+ δk = a∗
655
+ kGkak − 1
656
+ N tr Gk,
657
+ ǫk = 1 + 1
658
+ N tr G2
659
+ k,
660
+ so that
661
+ mN(z) − EmN(z) =
662
+ 1
663
+ N
664
+
665
+ t
666
+ N
667
+
668
+ k=1
669
+ (Ek − Ek−1)αkβk −
670
+ 1
671
+ N
672
+
673
+ t
674
+ N
675
+
676
+ k=1
677
+ (Ek − Ek−1)ǫkδkβk ¯βk
678
+ := 1
679
+
680
+ tS1 − 1
681
+
682
+ tS2.
683
+ (11)
684
+ For a fixed ε > 0, we will show that N 1−ε(η′)3|S1| = o(1) and N 1−ε(η′)3|S2| =
685
+ o(1) with overwhelming probability. This will be done via the method of moments.
686
+ We begin with S1. By Markov’s inequality, it suffices to bound E|N 1−ε(η′)3S1|2ℓ =
687
+ E|N −ε(η′)3 �n
688
+ k=1(Ek − Ek−1)αkβk|2ℓ for ℓ ∈ N.
689
+
690
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
691
+ 9
692
+ By Lemma 3.2, for any ℓ ≥ 1,
693
+ E|N −ε(η′)3
694
+ N
695
+
696
+ k=1
697
+ (Ek − Ek−1)αkβk|2ℓ ≤ Cℓ
698
+
699
+ E
700
+ � N
701
+
702
+ k=1
703
+ Ek−1|N −ε(η′)3αkβk|2
704
+ �ℓ
705
+ +
706
+ N
707
+
708
+ k=1
709
+ E|N −ε(η′)3αkβk|2ℓ
710
+
711
+ .
712
+ We use Cℓ to indicate a constant that only depends on ℓ, but may change from line
713
+ to line. Since Im a∗
714
+ kGkak > 0,
715
+ |βk| ≤ (η′)−1.
716
+ Therefore,
717
+ E
718
+ �����N −ε(η′)3
719
+ n
720
+
721
+ k=1
722
+ (Ek − Ek−1)αkβk
723
+ �����
724
+ 2ℓ
725
+ ≤ CℓN −2εℓ
726
+
727
+ E
728
+ � N
729
+
730
+ k=1
731
+ Ek−1|(η′)2αk|2
732
+ �ℓ
733
+ +
734
+ N
735
+
736
+ k=1
737
+ E|(η′)2αk|2ℓ
738
+
739
+ .
740
+ (12)
741
+ By Lemma 3.3,
742
+ E|(η′)2αk|2ℓ ≤ Cℓ(η′)4ℓN −2ℓE| tr G2
743
+ kG∗2
744
+ k |ℓ.
745
+ We use the simple bound that
746
+ tr G2
747
+ kG∗2
748
+ k =
749
+ � N
750
+
751
+ i=1
752
+ 1
753
+ ((λi − E)2 + (η′)2)2
754
+
755
+ ≤ N(η′)−4
756
+ (13)
757
+ We now have that
758
+ E|(η′)2αk|2ℓ ≤ Cℓ(η′)4ℓN −2ℓE|N(η′)−4|ℓ
759
+ ≤ CℓN −ℓ
760
+ Therefore, by equation (12),
761
+ E
762
+ �����N −ε(η′)3
763
+ N
764
+
765
+ k=1
766
+ (Ek − Ek−1)αkβk
767
+ �����
768
+ 2ℓ
769
+ ≤ CℓN −2εℓ
770
+
771
+ E
772
+ � N
773
+
774
+ k=1
775
+ Ek|(η′)2αk|2
776
+ �ℓ
777
+ + N −ℓ+1
778
+
779
+
780
+ By the same reasoning as in (13), we also have that Ek|αk|2 ≤ N(η′)−4. Thus,
781
+ Ek|(η′)2αk|2 ≤ KN −1
782
+ so
783
+ E
784
+ � N
785
+
786
+ k=1
787
+ Ek|(η′)2αk|2
788
+ �ℓ
789
+ ≤ Cℓ.
790
+ Finally, we can conclude that
791
+ E
792
+ �����N −ε(η′)3
793
+ N
794
+
795
+ k=1
796
+ (Ek−1 − Ek)αkβk
797
+ �����
798
+ 2ℓ
799
+ ≤ CℓN −2εℓ.
800
+ As ℓ is arbitrary, we have shown that |S1| = oη(t3/2/N 1−ε) with overwhelming
801
+ probability.
802
+
803
+ 10
804
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
805
+ Now we address S2. We first observe that
806
+ ����1 + 1
807
+ N tr G2
808
+ k
809
+ ���� ≤ 1 + 1
810
+ N tr GkG∗
811
+ k
812
+ = (η′)−1 Im
813
+
814
+ −Akk + z′ + 1
815
+ N tr Gk
816
+
817
+ Therefore,
818
+ |ǫk ¯βk| =
819
+ |1 + 1
820
+ N tr G2
821
+ k|
822
+ |Akk − z′ − 1
823
+ N tr Gk| ≤ (η′)−1
824
+ Recalling that |βk| ≤ (η′)−1, we have that
825
+ E|N 1−ε(η′)4S2|2ℓ = N −2εℓ(η′)2ℓ
826
+ �����
827
+ N
828
+
829
+ k=1
830
+ (Ek − Ek−1)δk
831
+ �����
832
+ 2ℓ
833
+ Again, by Lemma 3.2
834
+ E|N 1−ε(η′)4S2|2ℓ ≤ CℓN −2εℓ(η′)2ℓ
835
+
836
+ E
837
+ � N
838
+
839
+ k=1
840
+ Ek−1|δk|2
841
+ �ℓ
842
+ +
843
+ N
844
+
845
+ K=1
846
+ E|δk|2ℓ
847
+
848
+  .
849
+ Note that by Lemma 3.3,
850
+ E|δk|2ℓ ≤ CℓN −2ℓE| tr GkG∗
851
+ k|ℓ.
852
+ We have that
853
+ tr GkG∗
854
+ k ≤ N(η′)−2
855
+ so
856
+ E|δk|2ℓ ≤ CℓN −ℓ(η′)−2ℓ.
857
+ Additionally,
858
+ Ek−1|δk|2 ≤ N −1(η′)−2.
859
+ Thus,
860
+ E|N 1−ε(η′)4S2|2ℓ ≤ CℓN −2εℓ.
861
+ We can then conclude that S2 is oη(t2/N 1−ε) with overwhelming probability. Re-
862
+ turning to (11) we have shown that
863
+ (14)
864
+ |mN(z) − EmN(z)| = o
865
+
866
+ t
867
+ N 1−ε
868
+
869
+ with overwhelming probability.
870
+ 3.3. Proof of Theorem 1.3. In this section we provide the proof of Theorem
871
+ 1.3. We will give begin the proof for generic initial starting positions of the Dyson
872
+ Brownian motion, before specializing to the starting positions at the origin. Define
873
+ the matrix
874
+ (15)
875
+ Lt = D − 2
876
+
877
+ tA
878
+ where A is drawn from the Gaussian Orthogonal/Unitary Ensemble and D is an
879
+ N × N deterministic diagonal matrix. Define the resolvent matrices
880
+ Gt(z) := (Lt − zI)−1 ,
881
+ and
882
+ Q(z) := (D − zI)−1 .
883
+
884
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
885
+ 11
886
+ Next, we define the functions
887
+ M N
888
+ t (z) = − 2
889
+ N tr Gt(z),
890
+ and
891
+ SN(z) = − 2
892
+ N tr Q(z).
893
+ Fix t, η > 0 and z such that Im(z) ≥ η. Additionally, define the matrices
894
+ G := Gt(z),
895
+ and
896
+ Q := Q
897
+
898
+ z − 2tEM N
899
+ t (z)
900
+
901
+ .
902
+ In particular SN �
903
+ z − 2tEM N
904
+ t (z)
905
+
906
+ = − 2
907
+ N tr Q. By the resolvent identity (9)
908
+ EM N
909
+ t (z) − SN �
910
+ z − 2tEM N
911
+ t (z)
912
+
913
+ = − 2
914
+ N (tr Gt − tr Qt)
915
+ (16)
916
+ = −2E 1
917
+ N tr
918
+
919
+ G ˜AQ
920
+
921
+ + 4tEM N
922
+ t (z)E 1
923
+ N tr (GQ)
924
+ where ˜A = 2
925
+
926
+ tA. We now consider the term
927
+ (17)
928
+ − 2E 1
929
+ N tr
930
+
931
+ G ˜AQ
932
+
933
+ = − 2
934
+ N
935
+
936
+ i,j
937
+ QiiE
938
+
939
+ Gij ˜Aji
940
+
941
+ .
942
+ A computation involving the resolvent identity (9) shows that
943
+ ∂Gkl
944
+ ∂Aij
945
+ =
946
+
947
+ GkiGji + GkjGil,
948
+ if i ̸= j,
949
+ GkiGjl,
950
+ if i = j .
951
+ Applying Gaussian integration by parts to (17) yields
952
+ −2E 1
953
+ N tr
954
+
955
+ G ˜AQ
956
+
957
+ = −8
958
+ N 2 E
959
+
960
+ i,j
961
+ QiiG2
962
+ ij − 4t
963
+ N EM N
964
+ t (z) tr(QG),
965
+ which when combined with (16) gives
966
+ EM N
967
+ t (z) − SN �
968
+ z − 2tEM N
969
+ t (z)
970
+
971
+ = −8
972
+ N 2 E
973
+
974
+ i,j
975
+ QiiG2
976
+ ij − 4t
977
+ N EM N
978
+ t (z) tr(QG)
979
+ (18)
980
+ + 4tEM N
981
+ t (z)E 1
982
+ N tr (GQ) .
983
+ We now fix z = E + iη ∈ C+. By the Ward identity (8)
984
+ ������
985
+ 8
986
+ N 2 E
987
+
988
+ i,j
989
+ QiiG2
990
+ ij
991
+ ������
992
+ ≤ E 8
993
+ N 2
994
+
995
+ j
996
+ |Qii|
997
+
998
+ j
999
+ |Gij|2
1000
+ ≤ E
1001
+ 8
1002
+ N 2η
1003
+
1004
+ i
1005
+ |Qii| Im Gii
1006
+
1007
+ 8
1008
+ Nη3 .
1009
+
1010
+ 12
1011
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
1012
+ For the difference 4tEM N
1013
+ t (z)E 1
1014
+ N tr (GQ) − 4t
1015
+ N EM N
1016
+ t (z) tr(QG), note that
1017
+ ����
1018
+ 4t
1019
+ N tr (GQ)
1020
+ ���� =
1021
+ �����
1022
+ 4t
1023
+ N
1024
+
1025
+ i
1026
+ QiiGii
1027
+ �����
1028
+ ≤ 4t
1029
+ η2 .
1030
+ It then follows from (14) with D equal to the zero matrix that
1031
+ E
1032
+ �����4t
1033
+
1034
+ EM N
1035
+ t (z)
1036
+ � 1
1037
+ N tr (GQ) − 4t
1038
+ N M N
1039
+ t (z) tr(QG)
1040
+ ����
1041
+
1042
+ ≤ E
1043
+ ���M N
1044
+ t (z)E − EM N
1045
+ t (z)
1046
+ ��
1047
+ ����
1048
+ 4t
1049
+ N tr (GQ)
1050
+ ����
1051
+
1052
+ = o
1053
+ �4 max(t, t2)
1054
+ N 1−εη2
1055
+
1056
+ .
1057
+ Thus, we conclude that
1058
+ (19)
1059
+ EM N
1060
+ t (z) − SN �
1061
+ z − 2tEM N
1062
+ t (z)
1063
+
1064
+ = O
1065
+ �4 max(t, t2)
1066
+ N 1−εη3
1067
+
1068
+ ,
1069
+ where SN(z) = 2
1070
+ z for all N. Let M ∞
1071
+ t
1072
+ be defined as in Theorem 1.3, then
1073
+ M ∞
1074
+ t (z) − SN (z ��� 2tM ∞
1075
+ t (z)) = 0.
1076
+ Note for each z ∈ C+, st = − 1
1077
+ 2M ∞
1078
+ t (z), ˜st = − 1
1079
+ 2EM N
1080
+ t (z), and s0(z) = − 1
1081
+ 2SN(z)
1082
+ satisfy the conditions of Proposition A.1, (see Appendix) and hence it follows from
1083
+ Proposition A.1 and (44) (see Appendix) that
1084
+ (20)
1085
+ EM N
1086
+ t (z) − M ∞
1087
+ t (z) = O
1088
+ �41/3 max(t, t2)1/3
1089
+ N 1/3−εη
1090
+
1091
+ .
1092
+ Applying (14) to (20) completes the proof of Theorem 1.3.
1093
+ 3.4. Extension to uniform bound over [0, T ]. In this section we outline how to
1094
+ extend Theorem 1.3 uniformly in t ∈ [0, T ]. This relies on the continuity of DBM.
1095
+ Without loss of generality, we work with the interval [0, 1] instead of the interval
1096
+ [0, T ]. Let us consider a partition of the time interval [0, 1] into a uniform partition
1097
+ with tk = k
1098
+ n, k = 0, 1, . . . , n. The intervals of this partition are all equally-sized and
1099
+ their lengths are equal to 1
1100
+ n.
1101
+ Let us consider t ∈ (t1, t2) an intermediate time. We have that
1102
+ sup
1103
+ z∈G
1104
+ |M ∞
1105
+ t (z) − M N
1106
+ t (z)|
1107
+ ≤ sup
1108
+ z∈G
1109
+ |M ∞
1110
+ t (z) − M ∞
1111
+ t1 (z)| + sup
1112
+ z∈G
1113
+ |M ∞
1114
+ t1 (z) − M N
1115
+ t1 (z)| + sup
1116
+ z∈G
1117
+ |M N
1118
+ t1 (z) − M N
1119
+ t (z)|,
1120
+ (21)
1121
+ with G being a particular subset of the complement of the hull as in the previous
1122
+ section. The first term can be controlled from the Burgers equation as the solution
1123
+ is locally Lipschitz in time.
1124
+ For the second term of the right hand side of (21), we have that from Theorem
1125
+ 1.3, for any ǫ > 0
1126
+
1127
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
1128
+ 13
1129
+ (22)
1130
+ sup
1131
+ z∈G
1132
+ |M ∞
1133
+ t1 (z) − M N
1134
+ t1 (z)| = Oε
1135
+
1136
+ 1
1137
+ N 1/3−ǫ
1138
+
1139
+ with overwhelming probability, that is with probability at least 1 − e−cN, for some
1140
+ constant c.
1141
+ By a union bound for any tj, j = 1, . . . , n in the net, we have that
1142
+ P
1143
+ ��
1144
+ ti
1145
+ |M ∞
1146
+ ti (z) − M N
1147
+ ti (z)| = Ω
1148
+
1149
+ C
1150
+ N 1/3−ǫ
1151
+ ��
1152
+
1153
+ n
1154
+
1155
+ i=1
1156
+ P
1157
+
1158
+ |M ∞
1159
+ ti (z) − M N
1160
+ ti (z)| = Ω
1161
+
1162
+ C
1163
+ N 1/3−ǫ
1164
+ ��
1165
+ ≤ ne−CN,
1166
+ (23)
1167
+ where g = Ω(f) means g(x)
1168
+ f(x), as x → ∞.
1169
+ For the third term of the right hand side of (21), using the notation ˜ηi
1170
+ t = z − λi
1171
+ t,
1172
+ for i = 1, 2, . . ., N, we have that
1173
+ (24)
1174
+ |M N
1175
+ t1 (z) − M N
1176
+ t (z)| ≤ 2
1177
+ N
1178
+ N
1179
+
1180
+ i=1
1181
+ |λi
1182
+ t − λi
1183
+ t1|
1184
+ |˜ηi
1185
+ t1 ˜ηi
1186
+ t|
1187
+
1188
+ ˜C|t − t1|1/2−ǫ
1189
+ Im(z0)2
1190
+ ,
1191
+ where we have used the regularity of the Dyson Brownian Motion driver ( [43])
1192
+ and the bound |˜ηi
1193
+ t| ≥ | Im(z)| ≥ | Im(z0)| where z0 ∈ H such that Im(z0) ≤
1194
+ minz∈G(Im(z)).
1195
+ Using the notation ˆC =
1196
+ ˜
1197
+ C
1198
+ Im(z0)2 , if we want the error to not accumulate in our
1199
+ net we need
1200
+ ˆC
1201
+ 1
1202
+ n1/2−ǫ ≤
1203
+ C
1204
+ N 1/3−ǫ .
1205
+ Thus, for our partition of the time interval we have
1206
+ n >
1207
+ ˆC2(N (1/3−ǫ))2
1208
+ C2
1209
+ ,
1210
+ for ˆC and C some constants. It then follows from (21), that
1211
+ (25)
1212
+ sup
1213
+ t∈[0,1], z∈G
1214
+ ��M N
1215
+ t (z) − M ∞
1216
+ t (z)
1217
+ �� = O
1218
+
1219
+ 1
1220
+ N
1221
+ 1
1222
+ 3 −ε
1223
+
1224
+ .
1225
+ 4. Proof of Theorem 1.1
1226
+ In this section we will complete the proof of Theorem 1.1. Fix ε > 0. Let G be
1227
+ a suitable compact subset of C+ and let ˜G be a compact subset of C+ such that
1228
+ gN
1229
+ t (G) ⊆ ˜G with overwhelming probability (see (6) for the existence of such a ˜G).
1230
+
1231
+ 14
1232
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
1233
+ Begin by defining η := minz∈ ˜
1234
+ G(Im z) > 0. Note that
1235
+ |gN
1236
+ t (z) − g∞
1237
+ t (z)| =
1238
+ ����
1239
+ � t
1240
+ 0
1241
+ M N
1242
+ s (gN
1243
+ s (z)) − M ∞
1244
+ s (g∞
1245
+ s (z))ds
1246
+ ����
1247
+ (26)
1248
+
1249
+ ����
1250
+ � t
1251
+ 0
1252
+ M N
1253
+ s (gN
1254
+ s (z)) − M ∞
1255
+ s (gN
1256
+ s (z))ds
1257
+ ����
1258
+ (27)
1259
+ +
1260
+ ����
1261
+ � t
1262
+ 0
1263
+ M ∞
1264
+ s (gN
1265
+ s (z)) − M ∞
1266
+ s (g∞
1267
+ s (z))ds
1268
+ ���� .
1269
+ For the term M N
1270
+ s (gN
1271
+ s (z)) − M ∞
1272
+ s (gN
1273
+ s (z)), observe that from Theorem 1.3
1274
+ sup
1275
+ z∈ ˜
1276
+ G
1277
+ ��M N
1278
+ s (z) − M ∞
1279
+ s (z)
1280
+ �� = O
1281
+ � 4T 2
1282
+ N
1283
+ 1
1284
+ 3 −ε
1285
+
1286
+ ,
1287
+ for fixed s ∈ [0, T ] with overwhelming probability. From the argument in Section
1288
+ 3.4 this can be extended to
1289
+ (28)
1290
+ sup
1291
+ s∈[0,T ], z∈ ˜
1292
+ G
1293
+ ��M N
1294
+ s (z) − M ∞
1295
+ s (z)
1296
+ �� = O
1297
+ � 4T 2
1298
+ N
1299
+ 1
1300
+ 3 −ε
1301
+
1302
+ .
1303
+ For the term M ∞
1304
+ s (gN
1305
+ s (z)) − M ∞
1306
+ s (g∞
1307
+ s (z)), note that M ∞
1308
+ s
1309
+ is at most
1310
+ 2
1311
+ η2 -Lipschitz on
1312
+ ˜G, and hence
1313
+ (29)
1314
+ ��M ∞
1315
+ s (gN
1316
+ s (z)) − M ∞
1317
+ s (g∞
1318
+ s (z))
1319
+ �� ≤ 2
1320
+ η2 |gN
1321
+ t (z) − g∞
1322
+ t (z)|.
1323
+ From (26), (28), and (29), we conclude that
1324
+ |gN
1325
+ t (z) − g∞
1326
+ t (z)| ≤ O
1327
+ � 4T 2
1328
+ N
1329
+ 1
1330
+ 3 −ε
1331
+
1332
+ +
1333
+ � t
1334
+ 0
1335
+ 2
1336
+ η2 |gN
1337
+ s (z) − g∞
1338
+ s (z)|ds.
1339
+ Theorem 1.1 then follows from Gr¨onwall’s iequality.
1340
+
1341
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
1342
+ 15
1343
+ Appendix A. Stability
1344
+ The following is essentially a result of O’Rourke and Vu ( [44]). We provide the
1345
+ details for the time change for the convenience of the reader.
1346
+ Proposition A.1 (Stability for positive time). Let t > 0 and z, st, ˜st be elements
1347
+ of the upper half-plane such that
1348
+ (30)
1349
+ st = s0(z + 4tst),
1350
+ and
1351
+ (31)
1352
+ ˜st = s0(z + 4t˜st) + O(ε),
1353
+ with s0(z) =
1354
+
1355
+ R
1356
+ dµ0
1357
+ x−z for some compactly supported probability measure µ0, some
1358
+ R ≥ z, and small ε > 0. Additionally assume there exists η > 0 such that Im(z) ≥ η.
1359
+ Then s, s′ = O(1) and
1360
+ (32)
1361
+ st = ˜st + O
1362
+
1363
+ ε1/3
1364
+ (4t)2/3η
1365
+
1366
+ .
1367
+ Proof. Showing st, ˜st = O(1) requires no change from O’Rourke and Vu.
1368
+ Let
1369
+ wt = z + 4tst and ˜wt = z + 4t˜st. We aim now to show |wt − ˜wt| is sufficiently
1370
+ small It follows from (30) and (31) that
1371
+ (33)
1372
+ s0(wt) − s0( ˜wt) = wt − ˜wt
1373
+ 4t
1374
+ + O(ε).
1375
+ It additionally follows from the definition of s0 that
1376
+ s0(wt) − s0( ˜wt) = (wt − ˜wt)
1377
+
1378
+ R
1379
+ dµ0(z)
1380
+ (x − wt)(x − ˜wt),
1381
+ which when combined with (33) yields
1382
+ (34)
1383
+
1384
+ R
1385
+ dµ0(z)
1386
+ (x − wt)(x − ˜wt) = 1
1387
+ 4t + O
1388
+
1389
+ ε
1390
+ |wt − ˜wt|
1391
+
1392
+ .
1393
+ On the other hand
1394
+ Im(st) = Im(s0(wt))
1395
+ = Im(wt)
1396
+
1397
+ R
1398
+ dµ0(x)
1399
+ |x − wt|2 ,
1400
+ (35)
1401
+ and rearranging yields
1402
+ (36)
1403
+
1404
+ R
1405
+ dµ0(x)
1406
+ |x − wt|2 =≤ 1
1407
+ 4t.
1408
+ An identical argument yields
1409
+ (37)
1410
+
1411
+ R
1412
+ dµ0(x)
1413
+ |x − ˜wt|2 =≤ 1
1414
+ 4t + O
1415
+ �ε
1416
+ η
1417
+
1418
+ .
1419
+ From the arithmetic mean-geometric mean inequality, we have
1420
+ ����
1421
+ 1
1422
+ (x − wt) (x − ˜wt)
1423
+ ���� ≤ 1
1424
+ 2
1425
+ 1
1426
+ |x − wt|2 + 1
1427
+ 2
1428
+ 1
1429
+ |x − ˜wt|2 .
1430
+
1431
+ 16
1432
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
1433
+ Since wt ̸= ˜wt, it follows that
1434
+ ����Re
1435
+
1436
+ 1
1437
+ (x − wt) (x − ˜wt)
1438
+ ����� = (1 − δ)
1439
+
1440
+ 1
1441
+ 2
1442
+ 1
1443
+ |x − wt|2 + 1
1444
+ 2
1445
+ 1
1446
+ |x − ˜wt|2
1447
+
1448
+ for some δ > 0. Then we have
1449
+ |x − wt| = (1 + O(δ)) |x − ˜wt| .
1450
+ and
1451
+ ∠ (x − wt, x − ˜wt) = O
1452
+
1453
+ δ1/2�
1454
+ .
1455
+ Since x, wt, ˜wt = O(1), we obtain wt− ˜wt = O
1456
+
1457
+ δ1/2�
1458
+ . We obtain that Re
1459
+
1460
+ 1
1461
+ (x−wt)(x− ˜
1462
+ wt)
1463
+
1464
+
1465
+
1466
+ 1 − C |wt − ˜wt|2� �
1467
+ 1
1468
+ 2
1469
+ 1
1470
+ |x−wt|2 + 1
1471
+ 2
1472
+ 1
1473
+ |x− ˜wt|2
1474
+
1475
+ for some C > 0, and hence
1476
+ Re
1477
+
1478
+ R
1479
+ dµ(x)
1480
+ (x − wt) (x − ˜wt) ≤
1481
+
1482
+ 1 − C |wt − ˜wt|2� � 1
1483
+ 4t + O
1484
+ �ε
1485
+ η
1486
+ ��
1487
+ .
1488
+ We have that
1489
+ (38)
1490
+
1491
+ 1 − C|wt − ˜wt|2� � 1
1492
+ 4t + O
1493
+ � ǫ
1494
+ η
1495
+ ��
1496
+ = 1
1497
+ 4t + O
1498
+
1499
+ ǫ
1500
+ |wt − ˜wt|
1501
+
1502
+ .
1503
+ Then,
1504
+ (39)
1505
+ 1
1506
+ 4t + O
1507
+ � ǫ
1508
+ η
1509
+
1510
+ − c
1511
+ 4t|wt − ˜wt|2 − C|wt − ˜wt|2O
1512
+ � ǫ
1513
+ η
1514
+
1515
+ = 1
1516
+ 4t + O
1517
+
1518
+ ǫ
1519
+ |wt − ˜wt|
1520
+
1521
+ .
1522
+ Furthermore, we obtain
1523
+ (40)
1524
+ O (ǫ) = |wt − ˜wt|O
1525
+ � ǫ
1526
+ η
1527
+
1528
+ − C
1529
+ 4t|wt − ˜wt|3 − C|wt − ˜wt|3O
1530
+ � ǫ
1531
+ η
1532
+
1533
+ .
1534
+ Using that the first and the third term are bounded we obtain
1535
+ (41)
1536
+ O(ǫ) + O
1537
+ � ǫ
1538
+ η
1539
+
1540
+ = |wt − ˜wt|3 C
1541
+ 4t.
1542
+ Thus, we have that
1543
+ (42)
1544
+ |wt − ˜wt| = O
1545
+ ��4tǫ
1546
+ η
1547
+ �1/3�
1548
+ ,
1549
+ and
1550
+ (43)
1551
+ |st − ˜st| = O
1552
+
1553
+ ǫ1/3
1554
+ (4t)2/3η1/3
1555
+
1556
+ .
1557
+
1558
+ For small t the following observation is useful. Fix η > 0, then s0 is Lipschitz
1559
+ with Lipschitz constant at most
1560
+ 1
1561
+ η2 on {z : Im(z) ≥ η}. Thus for st and ˜st as in
1562
+ (30) and (31) one has
1563
+ (44)
1564
+ st − ˜st = 4t
1565
+ η2 (st − ˜st) + O (ε) .
1566
+
1567
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
1568
+ 17
1569
+ References
1570
+ [1] R. a. Adamczak, R. Lata�l a, and R. Meller. Hanson-Wright inequality in Banach spaces. Ann.
1571
+ Inst. Henri Poincar´e Probab. Stat., 56(4):2356–2376, 2020.
1572
+ [2] G. Akemann, J. Baik, and P. Di Francesco. The Oxford handbook of random matrix theory.
1573
+ Oxford University Press, 2011.
1574
+ [3] A. Anderson, Greg W. Guionnet and O. Zeitouni. An introduction to Random Matrices.
1575
+ Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
1576
+ [4] Z. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices. Springer
1577
+ Series in Statistics. Springer, New York, second edition, 2010.
1578
+ [5] V. Beffara, E. Peltola, and H. Wu. On the uniqueness of global multiple SLEs. Ann. Probab.,
1579
+ 49(1):400–434, 2021.
1580
+ [6] D. Beliaev, T. J. Lyons, and V. Margarint. Continuity in κ in SLEκ theory using a constructive
1581
+ method and rough path theory. Ann. Inst. Henri Poincar´e Probab. Stat., 57(1):455–468, 2021.
1582
+ [7] D. Beliaev, V. Margarint, and A. Shekhar. Continuity of zero-hitting times of Bessel processes
1583
+ and welding homeomorphisms of SLEκ. ALEA Lat. Am. J. Probab. Math. Stat., 18(1):69–79,
1584
+ 2021.
1585
+ [8] G. Ben Arous and P. Bourgade. Extreme gaps between eigenvalues of random matrices. Ann.
1586
+ Probab., 41(4):2648–2681, 2013.
1587
+ [9] F. Benaych-Georges and A. Knowles. Lectures on the local semicircle law for Wigner matri-
1588
+ ces. Advanced Topics in Random Matrices, Panoramas et Synth`eses, 2016.
1589
+ [10] J. Cardy. Stochastic loewner evolution and dyson’s circular ensembles. Journal of Physics A:
1590
+ Mathematical and General, 36(24):L379, 2003.
1591
+ [11] J. Chen and V. Margarint. Perturbations of multiple Schramm-Loewner evolution with two
1592
+ non-colliding Dyson Brownian motions. Stochastic Process. Appl., 151:553–569, 2022.
1593
+ [12] A. del Monaco, I. Hotta, and S. Schleiß inger. Tightness results for infinite-slit limits of the
1594
+ chordal Loewner equation. Comput. Methods Funct. Theory, 18(1):9–33, 2018.
1595
+ [13] A. del Monaco and S. Schleiß inger. Multiple SLE and the complex Burgers equation. Math.
1596
+ Nachr., 289(16):2007–2018, 2016.
1597
+ [14] A. del Monaco and S. Schleiß inger. Multiple SLE and the complex Burgers equation. Math.
1598
+ Nachr., 289(16):2007–2018, 2016.
1599
+ [15] J. Dub´edat. Commutation relations for Schramm-Loewner evolutions. Comm. Pure Appl.
1600
+ Math., 60(12):1792–1847, 2007.
1601
+ [16] L. Erd˝os, A. Knowles, and H.-T. Yau. Averaging fluctuations in resolvents of random band
1602
+ matrices. Ann. Henri Poincar´e, 14(8):1837–1926, 2013.
1603
+ [17] L. Erd˝os, B. Schlein, and H.-T. Yau. Local semicircle law and complete delocalization for
1604
+ Wigner random matrices. Comm. Math. Phys., 287(2):641–655, 2009.
1605
+ [18] L. Erd˝os, B. Schlein, and H.-T. Yau. Semicircle law on short scales and delocalization of
1606
+ eigenvectors for Wigner random matrices. Ann. Probab., 37(3):815–852, 2009.
1607
+ [19] L. Erd˝os, B. Schlein, and H.-T. Yau. Wegner estimate and level repulsion for Wigner random
1608
+ matrices. Int. Math. Res. Not. IMRN, (3):436–479, 2010.
1609
+ [20] L. Erd˝os, B. Schlein, and H.-T. Yau. Universality of random matrices and local relaxation
1610
+ flow. Invent. Math., 185(1):75–119, 2011.
1611
+ [21] L. Erd˝os, B. Schlein, H.-T. Yau, and J. Yin. The local relaxation flow approach to universality
1612
+ of the local statistics for random matrices. Ann. Inst. Henri Poincar´e Probab. Stat., 48(1):1–
1613
+ 46, 2012.
1614
+ [22] L. Erd˝os and H.-T. Yau. Universality of local spectral statistics of random matrices. Bull.
1615
+ Amer. Math. Soc. (N.S.), 49(3):377–414, 2012.
1616
+ [23] L. Erd˝os and H.-T. Yau. A dynamical approach to random matrix theory, volume 28 of
1617
+ Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New
1618
+ York; American Mathematical Society, Providence, RI, 2017.
1619
+ [24] L. Erd˝os, H.-T. Yau, and J. Yin. Universality for generalized Wigner matrices with Bernoulli
1620
+ distribution. J. Comb., 2(1):15–81, 2011.
1621
+ [25] L. Erd˝os, H.-T. Yau, and J. Yin. Bulk universality for generalized Wigner matrices. Probab.
1622
+ Theory Related Fields, 154(1-2):341–407, 2012.
1623
+ [26] L. Erd˝os, H.-T. Yau, and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Adv.
1624
+ Math., 229(3):1435–1515, 2012.
1625
+
1626
+ 18
1627
+ A. CAMPBELL, K. LUH, AND V. MARGARINT
1628
+ [27] L. Erdos and H.-T. Yau. A dynamical approach to random matrix theory. Courant Lecture
1629
+ Notes in Mathematics, 28, 2017.
1630
+ [28] J. Foster, T. Lyons, and V. Margarint. An asymptotic radius of convergence for the Loewner
1631
+ equation and simulation of SLEκ traces via splitting. J. Stat. Phys., 189(2):Paper No. 18,
1632
+ 14, 2022.
1633
+ [29] P. K. Friz, H. Tran, and Y. Yuan. Regularity of SLE in (t, κ) and refined GRR estimates.
1634
+ Probab. Theory Related Fields, 180(1-2):71–112, 2021.
1635
+ [30] V. O. Healey and G. F. Lawler. N-sided radial schramm–loewner evolution. Probability Theory
1636
+ and Related Fields, 181(1):451–488, 2021.
1637
+ [31] I. Hotta and M. Katori. Hydrodynamic limit of multiple SLE. J. Stat. Phys., 171(1):166–188,
1638
+ 2018.
1639
+ [32] I. Hotta and S. Schleiß inger. Limits of radial multiple SLE and a Burgers-Loewner differential
1640
+ equation. J. Theoret. Probab., 34(2):755–783, 2021.
1641
+ [33] V. M. Jiaming Chen. Convergence of Ninomiya-Victoir Splitting Scheme to Schramm-
1642
+ Loewner Evolutions. https://arxiv.org/pdf/2110.10631.pdf.
1643
+ [34] F. Johansson Viklund, S. Rohde, and C. Wong. On the continuity of SLEκ in κ. Probab.
1644
+ Theory Related Fields, 159(3-4):413–433, 2014.
1645
+ [35] M. Katori and S. Koshida. Conformal welding problem, flow line problem, and multiple
1646
+ Schramm-Loewner evolution. J. Math. Phys., 61(8):083301, 25, 2020.
1647
+ [36] A. Kemppainen. Schramm-Loewner evolution, volume 24 of SpringerBriefs in Mathematical
1648
+ Physics. Springer, Cham, 2017.
1649
+ [37] K. Kyt¨ol¨a and E. Peltola. Pure partition functions of multiple SLEs. Comm. Math. Phys.,
1650
+ 346(1):237–292, 2016.
1651
+ [38] G. F. Lawler. Conformally invariant processes in the plane. Number 114. American Mathe-
1652
+ matical Soc., 2008.
1653
+ [39] G. F. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased
1654
+ random walks and uniform spanning trees. Ann. Probab., 32(1B):939–995, 2004.
1655
+ [40] J. Lenells and F. Viklund. Schramm’s formula and the Green’s function for multiple SLE. J.
1656
+ Stat. Phys., 176(4):873–931, 2019.
1657
+ [41] S. Lyu, Y. Chen, and E. Fan. Asymptotic gap probability distributions of the Gaussian
1658
+ unitary ensembles and Jacobi unitary ensembles. Nuclear Phys. B, 926:639–670, 2018.
1659
+ [42] V. Margarint. Proof of the Weak Local Law for Wigner Matrices using Resolvent Expansions.
1660
+ https://arxiv.org/pdf/1808.07092.pdf.
1661
+ [43] D. Nualart and V. P´erez-Abreu. On the eigenvalue process of a matrix fractional Brownian
1662
+ motion. Stochastic Process. Appl., 124(12):4266–4282, 2014.
1663
+ [44] S. O’Rourke and V. Vu. Universality of local eigenvalue statistics in random matrices with
1664
+ external source. Random Matrices Theory Appl., 3(2):1450005, 37, 2014.
1665
+ [45] E. Peltola and H. Wu. Global and local multiple SLEs for κ ≤ 4 and connection probabilities
1666
+ for level lines of GFF. Comm. Math. Phys., 366(2):469–536, 2019.
1667
+ [46] S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math. (2), 161(2):883–924, 2005.
1668
+ [47] O. Roth and S. Schleissinger. The Schramm-Loewner equation for multiple slits. J. Anal.
1669
+ Math., 131:73–99, 2017.
1670
+ [48] K. Sakai. Multiple Schramm-Loewner evolutions for conformal field theories with Lie algebra
1671
+ symmetries. Nuclear Phys. B, 867(2):429–447, 2013.
1672
+ [49] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel
1673
+ Journal of Mathematics, 118(1):221–288, 2000.
1674
+ [50] O. Schramm and S. Sheffield. Contour lines of the two-dimensional discrete Gaussian free
1675
+ field. Acta Math., 202(1):21–137, 2009.
1676
+ [51] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling
1677
+ limits. C. R. Acad. Sci. Paris S´er. I Math., 333(3):239–244, 2001.
1678
+ [52] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the
1679
+ Ising model. Ann. of Math. (2), 172(2):1435–1467, 2010.
1680
+ [53] T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics up to the
1681
+ edge. Comm. Math. Phys., 298(2):549–572, 2010.
1682
+ [54] T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics. Acta Math.,
1683
+ 206(1):127–204, 2011.
1684
+ [55] T. Tao and V. Vu. The Wigner-Dyson-Mehta bulk universality conjecture for Wigner matri-
1685
+ ces. Electron. J. Probab., 16:no. 77, 2104–2121, 2011.
1686
+
1687
+ RATE OF CONVERGENCE IN MULTIPLE SLE USING RANDOM MATRIX THEORY
1688
+ 19
1689
+ [56] T. Tao and V. Vu. Random matrices: the universality phenomenon for Wigner ensembles.
1690
+ In Modern aspects of random matrix theory, volume 72 of Proc. Sympos. Appl. Math., pages
1691
+ 121–172. Amer. Math. Soc., Providence, RI, 2014.
1692
+ [57] T. Tao and V. Vu. Random matrices: universality of local spectral statistics of non-Hermitian
1693
+ matrices. Ann. Probab., 43(2):782–874, 2015.
1694
+ [58] N.-G. K. Tom Alberts, Sung-Soo Byun and N. G. Makarov. Pole Dynamics and an Integral
1695
+ of Motion for Multiple SLE(0). https://arxiv.org/pdf/2011.05714/.
1696
+ [59] H. Tran. Convergence of an algorithm simulating Loewner curves. Ann. Acad. Sci. Fenn.
1697
+ Math., 40(2):601–616, 2015.
1698
+ [60] E. P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Annals of
1699
+ Mathematics, 62(3):548–564, 1955.
1700
+ [61] J. Wishart. The generalised product moment distribution in samples from a normal multi-
1701
+ variate population. Biometrika, pages 32–52, 1928.
1702
+ [62] D. Zhan. Two-curve Green’s function for 2-SLE: the interior case. Comm. Math. Phys.,
1703
+ 375(1):1–40, 2020.
1704
+ [63] D. Zhan. Two-curve Green’s function for 2-SLE: the boundary case. Electron. J. Probab.,
1705
+ 26:Paper No. 32, 58, 2021.
1706
+ Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO
1707
+ 80309-0395, USA
1708
+ Email address: [email protected]
1709
+ Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO
1710
+ 80309-0395, USA
1711
+ Email address: [email protected]
1712
+ Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO
1713
+ 80309-0395, USA
1714
+ Email address: [email protected]
1715
+
RtE3T4oBgHgl3EQfywtH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
TtE3T4oBgHgl3EQfzwsF/content/tmp_files/2301.04730v1.pdf.txt ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Graphene amplifier reaches the quantum-noise limit
2
+ Kin Chung Fong1, ∗
3
+ 1Raytheon BBN Technologies, Quantum Engineering and Computing Group, Cambridge, Massachusetts 02138, USA
4
+ (Dated: January 13, 2023)
5
+ To make yourself heard in a noisy environment
6
+ is no easy task.
7
+ An amplifier, like a megaphone,
8
+ can come to your rescue by increasing your voice’s
9
+ volume over the background noise.
10
+ Your speech
11
+ can be heard clearly.
12
+ This is analogous to mea-
13
+ suring superconducting qubits. Since their energy
14
+ quanta are a few orders of magnitude smaller than
15
+ the thermal noise, amplifiers are necessary to boost
16
+ the signal up before being registered by apparatus
17
+ at room temperature. However, having a high gain
18
+ from amplifiers is not nearly enough. The physical
19
+ process of amplification is also subjected to fluctua-
20
+ tions, resulting in added noise by the amplifier that
21
+ can degrade the signal-to-noise ratio. For a phase-
22
+ insensitive linear amplifier, the minimum amount of
23
+ this added noise is half a quantum because of quan-
24
+ tum fluctuations[1].
25
+ Employing a parametric pro-
26
+ cess to achieve this fundamental limit of amplifica-
27
+ tion at radio and microwave frequencies has a long
28
+ history: from using variable-capacitor diodes in the
29
+ 1960s to Josephson junctions in the 1980s[2]. With
30
+ high gain and low noise, modern Josephson para-
31
+ metric amplifiers (JPAs)[3] have quickly become a
32
+ must-have in laboratories[4]: enabling high-fidelity
33
+ qubit readouts, observing quantum jumps, tracking
34
+ quantum trajectory, and even searching for the rare
35
+ event when the axion dark matter converts into a
36
+ microwave photon under a high magnetic field.
37
+ Writing in Nature Nanotechnology, two indepen-
38
+ dent reports by Guilliam Butseraen, et. al.[5] and
39
+ Joydip Sarkar, et. al.[6], now further advance JPAs
40
+ using a two-dimensional material—graphene.
41
+ We can consult children on swings about the pro-
42
+ cess of parametric amplification[7] (Fig. 1a). A child
43
+ can amplify the pendulum oscillation by standing
44
+ up and squatting down when the swing reaches its
45
+ maximum and minimum height, respectively. This
46
+ stand-and-squat action is pumping the pendulum
47
+ motion at twice its resonant frequency, and doing
48
+ work on the harmonic oscillator. The amplitude of
49
+ the originally small oscillation (signal) will gradu-
50
+ ally increase, i.e. amplify. Parametric amplification
51
+ sets apart from other amplification mechanisms be-
52
53
+ cause it modulates the reactance, rather than the
54
+ resistance of the system. As such, it minimizes the
55
+ noise that is inevitably brought into the amplifica-
56
+ tion process according to the fluctuation-dissipation
57
+ theorem.
58
+ A JPA constructed by a superconducting LC res-
59
+ onator, schematically shown in Fig.
60
+ 1b, operates
61
+ under the similar principle. In addition to suppress-
62
+ ing dissipation, superconductors can form Josephson
63
+ junctions, which can provide an inductance—from
64
+ the inertia of the Cooper pairs tunneling through the
65
+ junction—to the circuit. When two Josephson junc-
66
+ tions are made in the form of a loop, their supercur-
67
+ rents will interfere and form a device known as super-
68
+ conducting quantum interference device (SQUID)
69
+ (Fig. 1c-d). Due to the Aharonov-Bohm phase, the
70
+ total critical current of the SQUID depends on the
71
+ magnetic flux through the loop. A magnetic field
72
+ generated by an electrical current can control the
73
+ Josephson inductance.
74
+ Hence, we can pump the
75
+ JPA by modulating its resonant frequency with a
76
+ pump current at twice the frequency of the super-
77
+ conducting resonators. Alternatively, JPAs can be
78
+ powered up by feeding the pump tone directly into
79
+ the input port for parametric amplification.
80
+ The
81
+ second method exploits the non-linear dependence
82
+ of Josephson inductance on the magnitude of the
83
+ current running through the junction, which allow
84
+ for non-degenerate parametric amplifications. JPAs
85
+ operate as a reflection amplifier: when the minute
86
+ signal enters the JPA via the coupling capacitor, it
87
+ is parametrically amplified before making its way
88
+ back to the input port.
89
+ The two research teams now replace the insula-
90
+ tor traditionally used as the Josephson weak link
91
+ with a layer of graphene encapsulated by hexagonal-
92
+ boron nitride (Fig.
93
+ 1e-f).
94
+ By doing so, the re-
95
+ searchers can employ the gate voltage response of
96
+ the graphene to tune the Josephson critical current
97
+ and thus the Josephson inductance.
98
+ Hence, they
99
+ can control the resonant frequency of the JPA by
100
+ voltage, rather than current. Butseraen, et. al. at-
101
+ tain parametric amplification using a transmission-
102
+ line resonator at ∼5 GHz and a pump tone through
103
+ the gate; whereas Sarkar, et. al. exploit lump com-
104
+ ponents and a pump tone applied at the input port,
105
+ arXiv:2301.04730v1 [cond-mat.mes-hall] 11 Jan 2023
106
+
107
+ FIG. 1. (a) Parametric amplification in a mechanical oscillator. The red dot marks the center of mass of the child
108
+ in the swing. Its oscillation periodically modulates the effective length of the pendulum, and thus, the resonant
109
+ frequency. (b) Schematic model of the parametric amplifier at radio or microwave frequencies. The signal will enter
110
+ the LC resonator and be amplified by the modulation of the inductance before leaving the resonator. (c) A SQUID as
111
+ an implementation of the variable inductor. The Josephson inductance depends inversely on the total critical current,
112
+ which is controlled by the magnetic flux through the loop. (d) Josephson junctions based on superconductor-insulator-
113
+ superconductor (SIS) heterostructure. (e) Graphene-based Josephson junction with a gate control can operate as
114
+ a variable inductor. (f) Josephson junctions based on superconductor-normal metal-superconductor (SNS) lateral
115
+ junctions. The latest reports demonstrate JPA by SNS junction with graphene, encapsulated in hexagonal-boron
116
+ nitride (blue), as the weak link. This new JPA is voltage-tunable and can operate under a high-magnetic field.
117
+ respectively.
118
+ They both achieve similar figures of
119
+ merit: ∼10 MHz bandwidth, ∼500 MHz tuning of
120
+ the resonant frequency with a gain of >20 dB, and
121
+ 1-dB compression point at about -127 dBm of in-
122
+ put power.
123
+ Most importantly, both teams show
124
+ that the added noise from the graphene JPA can
125
+ reach the quantum limit. This is a pleasant surprise
126
+ given that graphene Josephson junctions are more
127
+ dissipative with a lower quality-factor at microwave
128
+ frequency[8], than the conventional superconductor-
129
+ insulator-superconductor (SIS) junctions.
130
+ With
131
+ their careful designs and implementations, the two
132
+ teams demonstrate that a superconductor-normal
133
+ metal-superconductor (SNS) junction can overcome
134
+ its intrinsic dissipation to achieve quantum-limited
135
+ amplification.
136
+ Given the ubiquity of JPAs based on SQUIDs, it
137
+ is natural to question the utility of graphene JPA
138
+ beyond mere scientific curiosity. One of the poten-
139
+ tial benefits may lie in the mitigation of cross-talks
140
+ among different tunable components in the quantum
141
+ circuitry due to the magnetic field generated by a
142
+ current bias. Without the SQUID loop, graphene
143
+ JPAs can also be more densely packed and oper-
144
+ ate under a larger in-plane magnetic field.
145
+ More-
146
+ over, these latest results exemplify the renewed in-
147
+ terest in applying SNS junctions to quantum sci-
148
+ ence. Unlike their insulating counterpart, SNS junc-
149
+ tions possess more variety in their physical proper-
150
+ ties, arising from the interplay of the superconduc-
151
+ tor and the materials in the weak link.
152
+ Not only
153
+ would it enable voltage control of quantum ampli-
154
+ fiers as shown here, but, by developing this mo-
155
+ tif, we can also create new hybrid superconducting
156
+ electronics[9], qubits[10, 11], high-sensitivity pho-
157
+ ton detectors[12], and topological superconductivity
158
+ which may host Majorana zero modes[13]. With the
159
+ rise of quantum technology, we shall expect more
160
+ innovations from SNS junctions to come!
161
+ The author declares no conflict of interest.
162
+ [1] C. M. Caves, Physical Review D 26, 1817 (1982).
163
+ [2] B. Yurke, P. G. Kaminsky, R. E. Miller, E. A. Whit-
164
+ taker, A. D. Smith, A. H. Silver, and R. W. Simon,
165
+ Physical Review Letters 60, 764 (1987).
166
+ [3] M. A. Castellanos-Beltran and K. W. Lehnert, Ap-
167
+ plied Physics Letters 91, 083509 (2007).
168
+ [4] J. Aumentado, IEEE Microwave Magazine 21, 45
169
+ (2020).
170
+ [5] G. Butseraen, A. Ranadive, N. Aparicio, K. R.
171
+ Amin,
172
+ A.
173
+ Juyal,
174
+ M.
175
+ Esposito,
176
+ K.
177
+ Watanabe,
178
+ 2
179
+
180
+ a
181
+ a
182
+ S
183
+ **
184
+ S
185
+ OB
186
+ e
187
+ gateT. Taniguchi, N. Roch, F. Lefloch, et al., Nature
188
+ Nanotechnology 17, 1153 (2022).
189
+ [6] J. Sarkar, K. V. Salunkhe, S. Mandal, S. Ghatak,
190
+ A.
191
+ H.
192
+ Marchawala,
193
+ I.
194
+ Das,
195
+ K.
196
+ Watanabe,
197
+ T. Taniguchi, R. Vijay, and M. M. Deshmukh, Na-
198
+ ture Nanotechnology 17, 1147 (2022).
199
+ [7] D. Rugar and P. Grtter, Physical Review Letters
200
+ 67, 699 (1991).
201
+ [8] R. Haller,
202
+ G. Flp,
203
+ D. Indolese,
204
+ J. Ridderbos,
205
+ R. Kraft, L. Y. Cheung, J. H. Ungerer, K. Watan-
206
+ abe, T. Taniguchi, D. Beckmann, et al., Physical
207
+ Review Research 4, 013198 (2022).
208
+ [9] J. J. A. Baselmans, A. F. Morpurgo, B. J. v. Wees,
209
+ and T. M. Klapwijk, Nature 397, 43 (1999).
210
+ [10] J. I.-J. Wang, D. Rodan-Legrain, L. Bretheau, D. L.
211
+ Campbell, B. Kannan, D. Kim, M. Kjaergaard,
212
+ P. Krantz, G. O. Samach, F. Yan, et al., Nature
213
+ Nanotechnology 14, 120 (2019).
214
+ [11] M. Hays, V. Fatemi, D. Bouman, J. Cerrillo, S. Dia-
215
+ mond, K. Serniak, T. Connolly, P. Krogstrup, J. Ny-
216
+ grd, A. L. Yeyati, et al., Science 373, 430 (2021).
217
+ [12] E. D. Walsh, W. Jung, G.-H. Lee, D. K. Efetov,
218
+ B.-I. Wu, K. F. Huang, T. A. Ohki, T. Taniguchi,
219
+ K. Watanabe, P. Kim, et al., Science 372, 409
220
+ (2021).
221
+ [13] A. Fornieri, A. M. Whiticar, F. Setiawan, E. Por-
222
+ tols, A. C. C. Drachmann, A. Keselman, S. Gronin,
223
+ C. Thomas, T. Wang, R. Kallaher, et al., Nature
224
+ 569, 89 (2019).
225
+ 3
226
+
TtE3T4oBgHgl3EQfzwsF/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf,len=216
2
+ page_content='Graphene amplifier reaches the quantum-noise limit Kin Chung Fong1, ∗ 1Raytheon BBN Technologies, Quantum Engineering and Computing Group, Cambridge, Massachusetts 02138, USA (Dated: January 13, 2023) To make yourself heard in a noisy environment is no easy task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
3
+ page_content=' An amplifier, like a megaphone, can come to your rescue by increasing your voice’s volume over the background noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
4
+ page_content=' Your speech can be heard clearly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
5
+ page_content=' This is analogous to mea- suring superconducting qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
6
+ page_content=' Since their energy quanta are a few orders of magnitude smaller than the thermal noise, amplifiers are necessary to boost the signal up before being registered by apparatus at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
7
+ page_content=' However, having a high gain from amplifiers is not nearly enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
8
+ page_content=' The physical process of amplification is also subjected to fluctua- tions, resulting in added noise by the amplifier that can degrade the signal-to-noise ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
9
+ page_content=' For a phase- insensitive linear amplifier, the minimum amount of this added noise is half a quantum because of quan- tum fluctuations[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
10
+ page_content=' Employing a parametric pro- cess to achieve this fundamental limit of amplifica- tion at radio and microwave frequencies has a long history: from using variable-capacitor diodes in the 1960s to Josephson junctions in the 1980s[2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
11
+ page_content=' With high gain and low noise, modern Josephson para- metric amplifiers (JPAs)[3] have quickly become a must-have in laboratories[4]: enabling high-fidelity qubit readouts, observing quantum jumps, tracking quantum trajectory, and even searching for the rare event when the axion dark matter converts into a microwave photon under a high magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
12
+ page_content=' Writing in Nature Nanotechnology, two indepen- dent reports by Guilliam Butseraen, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
13
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
14
+ page_content=' [5] and Joydip Sarkar, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
15
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
16
+ page_content=' [6], now further advance JPAs using a two-dimensional material—graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
17
+ page_content=' We can consult children on swings about the pro- cess of parametric amplification[7] (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
18
+ page_content=' 1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
19
+ page_content=' A child can amplify the pendulum oscillation by standing up and squatting down when the swing reaches its maximum and minimum height, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
20
+ page_content=' This stand-and-squat action is pumping the pendulum motion at twice its resonant frequency, and doing work on the harmonic oscillator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
21
+ page_content=' The amplitude of the originally small oscillation (signal) will gradu- ally increase, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
22
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
23
+ page_content=' amplify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
24
+ page_content=' Parametric amplification sets apart from other amplification mechanisms be- ∗ fongkc@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
25
+ page_content='com cause it modulates the reactance, rather than the resistance of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
26
+ page_content=' As such, it minimizes the noise that is inevitably brought into the amplifica- tion process according to the fluctuation-dissipation theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
27
+ page_content=' A JPA constructed by a superconducting LC res- onator, schematically shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
28
+ page_content=' 1b, operates under the similar principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
29
+ page_content=' In addition to suppress- ing dissipation, superconductors can form Josephson junctions, which can provide an inductance—from the inertia of the Cooper pairs tunneling through the junction—to the circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
30
+ page_content=' When two Josephson junc- tions are made in the form of a loop, their supercur- rents will interfere and form a device known as super- conducting quantum interference device (SQUID) (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
31
+ page_content=' 1c-d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
32
+ page_content=' Due to the Aharonov-Bohm phase, the total critical current of the SQUID depends on the magnetic flux through the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
33
+ page_content=' A magnetic field generated by an electrical current can control the Josephson inductance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
34
+ page_content=' Hence, we can pump the JPA by modulating its resonant frequency with a pump current at twice the frequency of the super- conducting resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
35
+ page_content=' Alternatively, JPAs can be powered up by feeding the pump tone directly into the input port for parametric amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
36
+ page_content=' The second method exploits the non-linear dependence of Josephson inductance on the magnitude of the current running through the junction, which allow for non-degenerate parametric amplifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
37
+ page_content=' JPAs operate as a reflection amplifier: when the minute signal enters the JPA via the coupling capacitor, it is parametrically amplified before making its way back to the input port.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
38
+ page_content=' The two research teams now replace the insula- tor traditionally used as the Josephson weak link with a layer of graphene encapsulated by hexagonal- boron nitride (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
39
+ page_content=' 1e-f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
40
+ page_content=' By doing so, the re- searchers can employ the gate voltage response of the graphene to tune the Josephson critical current and thus the Josephson inductance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
41
+ page_content=' Hence, they can control the resonant frequency of the JPA by voltage, rather than current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
42
+ page_content=' Butseraen, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
43
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
44
+ page_content=' at- tain parametric amplification using a transmission- line resonator at ∼5 GHz and a pump tone through the gate;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
45
+ page_content=' whereas Sarkar, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
46
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
47
+ page_content=' exploit lump com- ponents and a pump tone applied at the input port, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
48
+ page_content='04730v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
49
+ page_content='mes-hall] 11 Jan 2023 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
50
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
51
+ page_content=' (a) Parametric amplification in a mechanical oscillator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
52
+ page_content=' The red dot marks the center of mass of the child in the swing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
53
+ page_content=' Its oscillation periodically modulates the effective length of the pendulum, and thus, the resonant frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
54
+ page_content=' (b) Schematic model of the parametric amplifier at radio or microwave frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
55
+ page_content=' The signal will enter the LC resonator and be amplified by the modulation of the inductance before leaving the resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
56
+ page_content=' (c) A SQUID as an implementation of the variable inductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
57
+ page_content=' The Josephson inductance depends inversely on the total critical current, which is controlled by the magnetic flux through the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
58
+ page_content=' (d) Josephson junctions based on superconductor-insulator- superconductor (SIS) heterostructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
59
+ page_content=' (e) Graphene-based Josephson junction with a gate control can operate as a variable inductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
60
+ page_content=' (f) Josephson junctions based on superconductor-normal metal-superconductor (SNS) lateral junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
61
+ page_content=' The latest reports demonstrate JPA by SNS junction with graphene, encapsulated in hexagonal-boron nitride (blue), as the weak link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
62
+ page_content=' This new JPA is voltage-tunable and can operate under a high-magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
63
+ page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
64
+ page_content=' They both achieve similar figures of merit: ∼10 MHz bandwidth, ∼500 MHz tuning of the resonant frequency with a gain of >20 dB, and 1-dB compression point at about -127 dBm of in- put power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
65
+ page_content=' Most importantly, both teams show that the added noise from the graphene JPA can reach the quantum limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
66
+ page_content=' This is a pleasant surprise given that graphene Josephson junctions are more dissipative with a lower quality-factor at microwave frequency[8], than the conventional superconductor- insulator-superconductor (SIS) junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
67
+ page_content=' With their careful designs and implementations, the two teams demonstrate that a superconductor-normal metal-superconductor (SNS) junction can overcome its intrinsic dissipation to achieve quantum-limited amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
68
+ page_content=' Given the ubiquity of JPAs based on SQUIDs, it is natural to question the utility of graphene JPA beyond mere scientific curiosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
69
+ page_content=' One of the poten- tial benefits may lie in the mitigation of cross-talks among different tunable components in the quantum circuitry due to the magnetic field generated by a current bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
70
+ page_content=' Without the SQUID loop, graphene JPAs can also be more densely packed and oper- ate under a larger in-plane magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
71
+ page_content=' More- over, these latest results exemplify the renewed in- terest in applying SNS junctions to quantum sci- ence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
72
+ page_content=' Unlike their insulating counterpart, SNS junc- tions possess more variety in their physical proper- ties, arising from the interplay of the superconduc- tor and the materials in the weak link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
73
+ page_content=' Not only would it enable voltage control of quantum ampli- fiers as shown here, but, by developing this mo- tif, we can also create new hybrid superconducting electronics[9], qubits[10, 11], high-sensitivity pho- ton detectors[12], and topological superconductivity which may host Majorana zero modes[13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
74
+ page_content=' With the rise of quantum technology, we shall expect more innovations from SNS junctions to come!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
75
+ page_content=' The author declares no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
76
+ page_content=' [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
77
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
78
+ page_content=' Caves, Physical Review D 26, 1817 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
79
+ page_content=' [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
80
+ page_content=' Yurke, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
81
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
82
+ page_content=' Kaminsky, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
83
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
84
+ page_content=' Miller, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
85
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
86
+ page_content=' Whit- taker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
87
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
88
+ page_content=' Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
89
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
90
+ page_content=' Silver, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
91
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
92
+ page_content=' Simon, Physical Review Letters 60, 764 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
93
+ page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
94
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
95
+ page_content=' Castellanos-Beltran and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
96
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
97
+ page_content=' Lehnert, Ap- plied Physics Letters 91, 083509 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
98
+ page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
99
+ page_content=' Aumentado, IEEE Microwave Magazine 21, 45 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
100
+ page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
101
+ page_content=' Butseraen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
102
+ page_content=' Ranadive, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
103
+ page_content=' Aparicio, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
104
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
105
+ page_content=' Amin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
106
+ page_content=' Juyal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
107
+ page_content=' Esposito, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
108
+ page_content=' Watanabe, 2 a a S ** S OB e gateT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
109
+ page_content=' Taniguchi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
110
+ page_content=' Roch, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
111
+ page_content=' Lefloch, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
112
+ page_content=', Nature Nanotechnology 17, 1153 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
113
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
114
+ page_content=' Sarkar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
115
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
116
+ page_content=' Salunkhe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
117
+ page_content=' Mandal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
118
+ page_content=' Ghatak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
119
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
120
+ page_content=' Marchawala, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
121
+ page_content=' Das, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
122
+ page_content=' Watanabe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
123
+ page_content=' Taniguchi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
124
+ page_content=' Vijay, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
125
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
126
+ page_content=' Deshmukh, Na- ture Nanotechnology 17, 1147 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
127
+ page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
128
+ page_content=' Rugar and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
129
+ page_content=' Grtter, Physical Review Letters 67, 699 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
130
+ page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
131
+ page_content=' Haller, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
132
+ page_content=' Flp, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
133
+ page_content=' Indolese, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
134
+ page_content=' Ridderbos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
135
+ page_content=' Kraft, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
136
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
137
+ page_content=' Cheung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
138
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
139
+ page_content=' Ungerer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
140
+ page_content=' Watan- abe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
141
+ page_content=' Taniguchi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
142
+ page_content=' Beckmann, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
143
+ page_content=', Physical Review Research 4, 013198 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
144
+ page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
145
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
146
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
147
+ page_content=' Baselmans, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
148
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
149
+ page_content=' Morpurgo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
150
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
151
+ page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
152
+ page_content=' Wees, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
153
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
154
+ page_content=' Klapwijk, Nature 397, 43 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
155
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
156
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
157
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
158
+ page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
159
+ page_content=' Rodan-Legrain, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
160
+ page_content=' Bretheau, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
161
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
162
+ page_content=' Campbell, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
163
+ page_content=' Kannan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
164
+ page_content=' Kim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
165
+ page_content=' Kjaergaard, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
166
+ page_content=' Krantz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
167
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
168
+ page_content=' Samach, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
169
+ page_content=' Yan, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
170
+ page_content=', Nature Nanotechnology 14, 120 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
171
+ page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
172
+ page_content=' Hays, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
173
+ page_content=' Fatemi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
174
+ page_content=' Bouman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
175
+ page_content=' Cerrillo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
176
+ page_content=' Dia- mond, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
177
+ page_content=' Serniak, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
178
+ page_content=' Connolly, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
179
+ page_content=' Krogstrup, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
180
+ page_content=' Ny- grd, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
181
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
182
+ page_content=' Yeyati, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
183
+ page_content=', Science 373, 430 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
184
+ page_content=' [12] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
185
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
186
+ page_content=' Walsh, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
187
+ page_content=' Jung, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
188
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
189
+ page_content=' Lee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
190
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
191
+ page_content=' Efetov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
192
+ page_content='-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
193
+ page_content=' Wu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
194
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
195
+ page_content=' Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
196
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
197
+ page_content=' Ohki, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
198
+ page_content=' Taniguchi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
199
+ page_content=' Watanabe, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
200
+ page_content=' Kim, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
201
+ page_content=', Science 372, 409 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
202
+ page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
203
+ page_content=' Fornieri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
204
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
205
+ page_content=' Whiticar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
206
+ page_content=' Setiawan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
207
+ page_content=' Por- tols, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
208
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
209
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
210
+ page_content=' Drachmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
211
+ page_content=' Keselman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
212
+ page_content=' Gronin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
213
+ page_content=' Thomas, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
214
+ page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
215
+ page_content=' Kallaher, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
216
+ page_content=', Nature 569, 89 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
217
+ page_content=' 3' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE3T4oBgHgl3EQfzwsF/content/2301.04730v1.pdf'}
U9AyT4oBgHgl3EQf8vpk/content/tmp_files/2301.00861v1.pdf.txt ADDED
@@ -0,0 +1,916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Hardware Abstractions and Hardware Mechanisms to Support
2
+ Multi-Task Execution on Coarse-Grained Reconfigurable Arrays
3
+ Taeyoung Kong, Kalhan Koul, Priyanka Raina, Mark Horowitz, and Christopher Torng
4
+ Stanford University
5
+ {kongty,kkoul,praina,horowitz,ctorng}@stanford.edu
6
+ Abstract
7
+ Domain-specific accelerators are used in various com-
8
+ puting systems ranging from edge devices to data centers.
9
+ Coarse-grained reconfigurable arrays (CGRAs) represent
10
+ an architectural midpoint between the flexibility of an
11
+ FPGA and the efficiency of an ASIC and are a promising
12
+ candidate for servicing multi-tasked workloads within an
13
+ application domain. Unfortunately, scheduling multiple
14
+ tasks onto a CGRA is challenging. CGRAs lack abstrac-
15
+ tions that capture hardware resources, leaving workload
16
+ schedulers unable to reason about performance, energy,
17
+ and utilization for different schedules. This work first pro-
18
+ poses a CGRA architecture that can flexibly partition key
19
+ resources, including the global buffer memory capacity,
20
+ the global buffer memory bandwidth, and the compute re-
21
+ sources. Partitioned resources serve as hardware abstrac-
22
+ tions that decouple compilation and resource allocation.
23
+ The compiler uses these abstractions for coarse-grained
24
+ resource mapping, and the scheduler uses them for flexi-
25
+ ble resource allocation at run time. We then propose two
26
+ hardware mechanisms to support multi-task execution.
27
+ A flexible-shape execution region increases the overall
28
+ resource utilization by mapping multiple tasks with dif-
29
+ ferent resource requirements. Dynamic partial reconfig-
30
+ uration (DPR) enables a CGRA to update the hardware
31
+ configuration as the scheduler makes decisions rapidly.
32
+ We show that our abstraction can help automatic and
33
+ efficient scheduling of multi-tasked workloads onto our
34
+ target CGRA with high utilization, resulting in 1.05x–
35
+ 1.24x higher throughput and a 23–28% lower latency in a
36
+ multi-tasked cloud workload and 60.8% reduced latency
37
+ in an autonomous system workload when compared to a
38
+ baseline CGRA running single tasks at a time.
39
+ 1. Introduction
40
+ Domain-specific accelerators have gained growing inter-
41
+ est in recent years as they provide improved performance
42
+ and energy efficiency over general-purpose processors.
43
+ Application-specific integrated circuits (ASICs) [8, 18,
44
+ 21] show the highest performance and efficiency as they
45
+ are specialized for target applications such as image pro-
46
+ cessing or machine learning (ML). However, the ASIC
47
+ design process can span multiple years, and fixed-function
48
+ accelerators quickly become obsolete as applications con-
49
+ tinue to evolve. Some works deploy applications on FP-
50
+ GAs [12, 16, 17]. FPGAs enable reconfiguration of the
51
+ underlying hardware and can accelerate diverse work-
52
+ loads, but their bit-level flexibility incurs high area and
53
+ energy overheads. Coarse-grained reconfigurable arrays
54
+ (CGRAs) are promising architectures that lie between
55
+ ASICs and FPGAs. A CGRA has arithmetic units and a
56
+ routing system that are configurable in word-level gran-
57
+ ularity, providing flexibility at a lower overhead than
58
+ a FPGA. With its unique advantages, a CGRA can be
59
+ widely adopted in domains with high performance, power,
60
+ and flexibility requirements.
61
+ As hardware accelerators are deployed in various sce-
62
+ narios, the demand for multi-task execution support on
63
+ hardware is growing. For example, many vendors [21, 13]
64
+ offer INFerence-as-a-Service, where multiple tenants
65
+ share the same hardware to run inference tasks. Also, an
66
+ autonomous system handles concurrent tasks to process
67
+ various types of data from numerous sensors. Some works
68
+ have explored multi-task execution support in ASICs and
69
+ FPGAs. PREMA [11] and Planaria [14] propose a sys-
70
+ tolic array that supports multi-tenancy by temporal and
71
+ spatial multiplexing, respectively. [35, 29, 34] propose an
72
+ FPGA virtualization framework with multi-tenancy sup-
73
+ port. However, multi-task execution support on CGRAs
74
+ has not been explored much thus far. A noteworthy ex-
75
+ ception is ChordMap [27] which schedules multiple tasks
76
+ captured in synchronous data flow graphs onto a CGRA.
77
+ However, it assumes that all tasks are known a priori,
78
+ whereas in a multi-tenant cloud or multi-tasked edge work-
79
+ load scenario, tasks may arrive dynamically and require
80
+ schedulers to react to maximize utilization.
81
+ Unfortunately, scheduling multiple tasks onto a CGRA
82
+ is challenging as it lacks abstractions capturing hardware
83
+ resources. In this paper, we propose hardware abstrac-
84
+ tions of a CGRA by partitioning key hardware resources.
85
+ Both compilers and schedulers can exploit the abstrac-
86
+ arXiv:2301.00861v1 [cs.AR] 2 Jan 2023
87
+
88
+ tions to reason about performance, energy, and utilization.
89
+ We also develop hardware mechanisms that allow fast and
90
+ flexible multi-task execution on a CGRA, which sched-
91
+ ulers exploit to improve hardware utilization. We evaluate
92
+ our CGRA with two different multi-tasked workload sce-
93
+ narios to show the potential. Our key contributions are:
94
+ • 1⃝ We propose a CGRA architecture that can flexibly
95
+ re-partition key resources, including the Global Buffer
96
+ (GLB) memory capacity, the GLB memory bandwidth,
97
+ and the compute resources. Specifically, we partition
98
+ the GLB into GLB-slices and the tile array into array-
99
+ slices, which serve as hardware abstractions. The com-
100
+ piler uses these abstractions for coarse-grain resource
101
+ mapping, while the scheduler uses them for flexible
102
+ resource allocation.
103
+ • 2⃝ We propose two hardware mechanisms to support
104
+ multi-task execution on the CGRA. First, the CGRA
105
+ can form a flexible-shape execution region at run time.
106
+ It improves resource utilization by enabling a scheduler
107
+ to allocate GLB-slices and array-slices flexibly. Sec-
108
+ ond, we propose a fast-DPR method to reconfigure the
109
+ underlying hardware rapidly according to scheduler de-
110
+ cisions. It also supports run time relocation of a task to
111
+ any available array-slice without software intervention.
112
+ • 3⃝ We quantify the benefits of our proposed mecha-
113
+ nisms on two different examples. Our CGRA with
114
+ flexible execution regions and fast-DPR shows 1.05x–
115
+ 1.24x higher throughput and 23–28% lower latency in a
116
+ cloud system scenario and 60.8% reduced latency in an
117
+ autonomous system scenario than the baseline CGRA.
118
+ 2. Architectural Support for Multi-Task Ex-
119
+ ecution on a CGRA
120
+ In this section, we explore the architectural support
121
+ needed for multi-task execution on a CGRA. Section 2.1
122
+ first introduces a baseline CGRA architecture with com-
123
+ mon features present in many reconfigurable accelera-
124
+ tors [7, 32, 15, 6, 1, 28]. Section 2.2 then introduces how
125
+ we abstract the hardware resources in the CGRA for the
126
+ scheduler by partitioning the global buffer (GLB) and
127
+ the tile array into GLB-slices and array-slices, respec-
128
+ tively. We further develop hardware mechanisms that
129
+ enable multi-task execution on top of these abstractions
130
+ (Section 2.3), including flexible-shape execution regions
131
+ and dynamic partial reconfiguration (DPR).
132
+ 2.1. Baseline CGRA Architecture
133
+ Our baseline CGRA consists of a tile array with pro-
134
+ cessing element (PE) and memory (MEM) tiles and a
135
+ global buffer (GLB) (Figure 1). We leverage almost the
136
+ same hardware configuration used in the Amber SoC [7].
137
+ The CGRA has 32x16 tiles with 384 PE tiles and 128
138
+ MEM tiles, and tiles communicate through a statically
139
+ Figure 1: Baseline CGRA block diagram corresponding to [23].
140
+ App.
141
+ Task
142
+ Ver.
143
+ Tpt.
144
+ Array
145
+ slices
146
+ GLB
147
+ slices
148
+ ResNet-18
149
+ conv2_x
150
+ a
151
+ 64
152
+ 2
153
+ 7
154
+ b
155
+ 256
156
+ 6
157
+ 7
158
+ conv3_x
159
+ a
160
+ 64
161
+ 2
162
+ 4
163
+ b
164
+ 256
165
+ 6
166
+ 4
167
+ conv4_x
168
+ a
169
+ 64
170
+ 2
171
+ 6
172
+ b
173
+ 256
174
+ 6
175
+ 6
176
+ conv5_x
177
+ a
178
+ 64
179
+ 2
180
+ 20
181
+ b
182
+ 128
183
+ 6
184
+ 20
185
+ MobileNet
186
+ conv_dw
187
+ _pw_2_x
188
+ 1
189
+ a
190
+ 52
191
+ 2
192
+ 4
193
+ b
194
+ 208
195
+ 5
196
+ 4
197
+ conv_dw
198
+ _pw_3_x
199
+ a
200
+ 52
201
+ 2
202
+ 4
203
+ b
204
+ 104
205
+ 3
206
+ 4
207
+ conv_dw
208
+ _pw_4_x
209
+ a
210
+ 52
211
+ 2
212
+ 4
213
+ b
214
+ 104
215
+ 3
216
+ 4
217
+ Camera
218
+ pipeline
219
+ Camera
220
+ pipeline
221
+ a
222
+ 3
223
+ 4
224
+ 4
225
+ b
226
+ 12
227
+ 6
228
+ 14
229
+ Harris
230
+ Harris
231
+ a
232
+ 1
233
+ 2
234
+ 4
235
+ b
236
+ 2
237
+ 4
238
+ 7
239
+ c
240
+ 4
241
+ 7
242
+ 14
243
+ Table 1: Variants of tasks with different resource usage and
244
+ throughput. ResNet-18 and MobileNet consist of several lay-
245
+ ers, and one or more layers form a single task. The unit of
246
+ throughput (Tpt.) for ResNet-18 and MobileNet is MACs/cycle
247
+ and for camera pipeline and harris it is pixels/cycle.
248
+ configured mesh interconnect. A PE tile is extended from
249
+ Amber version to support MAC operation. Each node
250
+ in the interconnect has five incoming and five outgoing
251
+ tracks in each direction, and switch boxes route data from
252
+ incoming tracks to outgoing tracks. Connection boxes
253
+ select data from incoming tracks and route it to the PE
254
+ or MEM tile cores. The GLB consists of 32 banks, with
255
+ each bank containing 128 KB of SRAM. Each GLB bank
256
+ directly communicates with the tile array through IO tiles
257
+ located at the top of the array.
258
+ 2.2. A Scheduler-Visible Abstraction of Hardware Re-
259
+ sources
260
+ We focus on three key hardware resources within the
261
+ CGRA (Figure 1): the GLB memory capacity, the GLB
262
+ 1A conv_dw_pw refers to a merged task of a depth-wise convolu-
263
+ tional layer and a point-wise convolutional layer.
264
+ 2
265
+
266
+ CGRA
267
+ GLB
268
+ PE
269
+ PE
270
+ MEM
271
+ Bank,
272
+ Global Buffer (GLB)
273
+
274
+ PE
275
+ PE
276
+
277
+ MEM
278
+ +
279
+ CGRA Interconnect
280
+ PE
281
+ Tiles
282
+ PE
283
+ PE
284
+ MEM
285
+ MEM
286
+ Tiles
287
+ Routing
288
+ Connection
289
+ Switch
290
+ Tracks
291
+ Box
292
+ Box(a) Baseline
293
+ (b) Fixed-sized execution region
294
+ (c) Variably sized execution region
295
+ (d) Flexible-shape execution region
296
+ Figure 2: Resource allocation in the baseline CGRA and a CGRA with three different execution regions. Resources colored grey
297
+ represent the blocks occupied by a current-running task, and those colored red represent blocks occupied by a next-running task.
298
+ memory bandwidth, and the compute resources within
299
+ the tile array. When a task is compiled in the Amber
300
+ toolchain [23], a compiler converts it into a dataflow
301
+ graph where each node and edge represents a hardware
302
+ resource and communication, respectively. Specifically,
303
+ GLB banks are used for medium-sized storage and com-
304
+ munication to the host and tile array, and PE and MEM
305
+ tiles are used for computation and as small scratchpads.
306
+ The dataflow graph can derive the usage of memory capac-
307
+ ity, memory bandwidth, compute units, and throughput.
308
+ We abstract the hardware resources by partitioning the
309
+ GLB and tile array into homogeneous GLB-slices and
310
+ array-slices, respectively. For example, we can abstract
311
+ each GLB bank within our CGRA as a GLB-slice and
312
+ every set of four columns in the tile array (48 PE tiles and
313
+ 16 MEM tiles) as an array-slice. This abstraction serves
314
+ as a middle layer that decouples offline bitstream genera-
315
+ tion by a compiler and run time resource allocation by a
316
+ scheduler. During compilation, we represent the resource
317
+ usage of each task using these abstracted GLB-slices and
318
+ array-slices. For instance, a conv2_x layer in [19] utilizes
319
+ 750KB of GLB memory capacity, 17.3MB/s of memory
320
+ bandwidth, 80 PE tiles, and 17 MEM tiles and achieves
321
+ 64 OPs/cycle throughput at a 500MHz clock frequency.
322
+ The task is abstracted as seven GLB-slices and two array-
323
+ slices in coarse-grain resource slice usage. It is possible to
324
+ produce variants of the same task with different resource
325
+ usage and throughput by tweaking the compiler. For ex-
326
+ ample, increasing the unroll factor of the same task by
327
+ four would achieve 4x throughput (256 OPs/cycle) with
328
+ 288 PE tiles, 33 MEM tiles, and the same GLB mem-
329
+ ory capacity and bandwidth, which is abstracted as seven
330
+ GLB-slices and six array-slices. Our approach allows
331
+ for pre-computation of bitstreams that support different
332
+ resource usage and throughput to be cached in on-chip
333
+ storage to support fast dynamic partial reconfiguration, as
334
+ discussed later. Table 1 summarizes the resource usage
335
+ and throughput for several different variants of tasks. At
336
+ run time, a scheduler leverages the hardware slice abstrac-
337
+ tion to decide which variant of tasks to choose, which
338
+ resources to allocate, and when to execute.
339
+ 2.3. Hardware Mechanisms
340
+ Flexible-Shape Execution Regions. To manage multi-
341
+ ple tasks that are concurrently running, we need a way
342
+ to monitor hardware resources and the status of tasks,
343
+ that are build upon the abstractions described above. We
344
+ introduce an execution region, a sub-region of the CGRA
345
+ on which a single task is mapped and executed. An ex-
346
+ ecution region consists of one or more GLB-slices and
347
+ array-slices. The flexibility to form different sizes and
348
+ shapes of execution regions gives the scheduler a sim-
349
+ plified and quantized view of hardware resources while
350
+ providing enough information to allocate resources to
351
+ each task to maximize resource utilization in multi-tasked
352
+ workloads.
353
+ Figure 2 compares different mechanisms to form an
354
+ execution region and how they affect resource allocation.
355
+ 3
356
+
357
+ CGRA
358
+ GlobalBuffer(GLB)
359
+ GLB-slice
360
+ Array-slice
361
+ Tile-ArrayCGRA
362
+ GlobalBuffer (GLB)
363
+ 1111111111
364
+ Tile-ArrayCGRA
365
+ GlobalBuffer(GLB)
366
+ Tile-ArrayCGRA
367
+ Global Buffer (GLB)
368
+ GLB-slice
369
+ [available
370
+ Multi-stageNetwork
371
+ Array-slice
372
+ Tile-Array
373
+ [available]The blocks colored in gray represent resources occupied
374
+ by the currently running task, and those colored in red rep-
375
+ resent resources allocated to the next-running task. The
376
+ baseline CGRA (Figure 2a) is unaware of our hardware
377
+ slice abstraction, and the entire CGRA serves as a single
378
+ large execution region. Since an existing task is already
379
+ mapped onto the CGRA, subsequent tasks are always
380
+ forced to wait until the previous tasks finish and release
381
+ the single execution region.
382
+ The simplest mechanism to form an execution region
383
+ is only to support fixed-sized regions. For example, all
384
+ execution regions in Figure 2b consist of two GLB-slices
385
+ and one array-slice. Fixed-sized regions are not optimal.
386
+ Since each task must fit within the fixed-sized execution
387
+ region, the largest task with the highest resource usage
388
+ determines the size. On the other hand, when there are
389
+ several available execution regions, a task can be unrolled
390
+ and mapped in parallel to achieve higher throughput (e.g.,
391
+ the next-running task is unrolled by three in Figure 2b).
392
+ This method does not require much architectural change,
393
+ and the implementation of a scheduling algorithm can
394
+ be straightforward given the assumption that all target
395
+ tasks fit within an execution region. However, although
396
+ unrolling increases throughput, optimization across the
397
+ unrolled dimension can be challenging to support.
398
+ Another method is to support variably sized execution
399
+ regions by merging multiple fixed-sized regions. We de-
400
+ fine the unit size of a region as in the fixed-sized region
401
+ case, but we can merge multiple unit regions to form a
402
+ larger execution region. For example, in Figure 2c, three
403
+ unit-sized regions are merged to execute the next-running
404
+ task (colored in red). The benefit of variably sized execu-
405
+ tion regions is to allow compilation optimization across
406
+ the unrolled dimension. For example, a camera pipeline
407
+ task with 3 pixels/cycle throughput uses four array-slices
408
+ (Table 1). Naively unrolling it by four achieves 12 pix-
409
+ els/cycle throughput using 16 array-slices. However, the
410
+ compiler can optimize to time-multiplex PE tiles and
411
+ achieve 12 pixels/cycle throughput with only six array-
412
+ slices. Support for a variably sized region still allows for
413
+ the pre-computation of bitstreams for multiple variants of
414
+ tasks with different resource usage and throughput. How-
415
+ ever, this approach may still suffer from low resource
416
+ utilization since the ratio of GLB-slices and array-slices
417
+ within an execution region always remains the same.
418
+ Therefore, we propose flexible-shape execution regions
419
+ in which GLB-slices and array-slices are no longer cou-
420
+ pled. Decoupling of GLB-slices and array-slices enables
421
+ finer-grained resource allocation. For example, Figure 2d
422
+ shows how an execution region can be allocated any
423
+ number of GLB-slices and array-slices, forming a non-
424
+ rectangular shape, with remaining array-slices and GLB-
425
+ slices available to be used by other tasks. The support
426
+ for flexible-shape execution regions improves resource
427
+ utilization, especially for multi-tasked workloads where
428
+ memory-intensive and compute-intensive tasks are mixed.
429
+ However, it may require additional communication be-
430
+ tween the GLB-slices and the array-slices. In this work,
431
+ we limit the placement of GLB-slices and array-slices
432
+ within an execution region to be contiguous to simplify
433
+ our study. Design space exploration on flexible placement
434
+ support and the required network remains as future work.
435
+ Section 3.1 describes the benefits of these mechanisms in
436
+ more detail with a cloud system example.
437
+ Dynamic Partial Reconfiguration. Dynamic partial re-
438
+ configuration (DPR) is a mechanism to update the hard-
439
+ ware configuration in reconfigurable architectures. We
440
+ propose fast-DPR following the DPR mechanism pro-
441
+ posed in Amber SoC [7], but with added features to
442
+ exploit hardware abstractions. In Amber, every other
443
+ GLB bank stores the configuration bitstreams and inde-
444
+ pendently streams configuration into two columns of the
445
+ tile array. Also, clocks and configuration signals are dis-
446
+ tributed down each column together, enabling reconfigur-
447
+ ing the tile array at high clock frequency without pipeline
448
+ stages. In our CGRA, we also reuse GLB blocks to store
449
+ and stream bitstreams to the tile array and follow the same
450
+ clock distribution network. Unlike Amber, however, one
451
+ GLB bank streams configuration into one array-slice (in
452
+ turn, four columns of the tile array) as an array-slice is
453
+ the minimum unit of execution regions.
454
+ We added a feature to relocate bitstreams at run time to
455
+ exploit hardware abstractions further. In Amber, the com-
456
+ piler generates region-aware bitstreams; the bitstreams
457
+ for one region cannot be reused in different regions even
458
+ though the two regions are homogeneous. This limitation
459
+ comes from the fact that the address of each configuration
460
+ register in different columns has a distinct column #id. On
461
+ the other hand, our compiler generates region-agnostic
462
+ bitstreams by assuming that the task is always mapped to
463
+ the leftmost region. We also added a register indicating
464
+ the destination region of DPR to GLB banks. When the
465
+ host processor triggers DPR, GLB banks read the register
466
+ and stream bitstreams to the target region via the network
467
+ between the GLB and the tile array. With this bitstream
468
+ relocation feature, a user can pre-load bitstreams of the
469
+ next task to the GLB in advance and rapidly map it to any
470
+ next available region just by writing to a single register.
471
+ 3. Evaluation
472
+ We evaluate the benefits of multi-task execution support
473
+ under two different workload scenarios. In a cloud sys-
474
+ tem example scenario (Section 3.1), our CGRA with
475
+ flexible-shape execution regions enables 1.05x-1.24x
476
+ higher throughput and 23-28% lower normalized turn-
477
+ around time (NTAT) over the baseline CGRA. In an au-
478
+ tonomous system example scenario (Section 3.2), our
479
+ CGRA enables 60.8% reduced total latency.
480
+ 4
481
+
482
+ (a) Cloud system example
483
+ (b) Autonomous system example
484
+ Figure 3: (a) Cloud system example scenario with four tenants
485
+ submitting requests to the CGRA. Each tenant is assigned with
486
+ a task from MobileNet, ResNet-18, camera pipeline, and Harris,
487
+ respectively. (b) Autonomous system example with tasks that
488
+ may be triggered under conditions.
489
+ 3.1. Example 1: Cloud System
490
+ Overview. In this example, we construct a synthetic
491
+ cloud computing scenario that models real-world exam-
492
+ ples in which the CGRA serves application requests from
493
+ multiple users (Figure 3a). We construct the multi-tasked
494
+ workload using kernels from machine learning (ML) and
495
+ image processing domains, including ResNet-18 [19]
496
+ and MobileNet [20] from the ML domain, and camera
497
+ pipeline and Harris corner detector from the image pro-
498
+ cessing domain. Table 1 summarizes the benchmark tasks
499
+ and their resource requirements.
500
+ To generate the multi-tasked workload, we assume four
501
+ tenants share the CGRA and are assigned one of the four
502
+ target applications. Each tenant sends a request to the
503
+ CGRA following a Poisson distribution. Whenever a new
504
+ task arrives, or an existing task finishes, the scheduler
505
+ is triggered and runs a greedy algorithm to schedule the
506
+ next available task. The scheduler checks if dependencies
507
+ are met before scheduling the task (e.g., in ResNet-18,
508
+ conv2_x depends on conv1_x). If there is more than one
509
+ version of a task that can be mapped onto the available
510
+ resources, the greedy scheduler always chooses the one
511
+ with the highest throughput.
512
+ Metrics. We measure Normalized Turn-Around Time and
513
+ throughput to compare the baseline CGRA and the three
514
+ partitioning mechanisms described in Section 2.3. Turn-
515
+ (a) NTAT
516
+ (b) Throughput
517
+ Figure 4: Evaluation in a cloud system example. (a) NTAT and
518
+ (b) throughput for each task with fixed-sized, variably sized, and
519
+ flexible-shape resource partitioning, normalized to the baseline
520
+ CGRA. Flexible-shape partitioning decreases NTAT by 23-28%
521
+ and increases throughput by 1.05x-1.24x.
522
+ Around Time (TAT) is the interval from the time of request
523
+ to submit a task to the time of task completion. Normal-
524
+ ized Turn-Around Time (NTAT) is the ratio of the TAT to
525
+ the execution time, which represents the relative delay of
526
+ a task (Equation (1) - (2)). We calculate NTAT for each re-
527
+ quest and the arithmetic average for each application. We
528
+ also measure the average throughput for each application
529
+ to demonstrate the performance benefit.
530
+ TAT = wait_time + execution_time
531
+ (1)
532
+ NTAT = TAT / execution_time
533
+ (2)
534
+ Results. Figure 4 illustrates the relative improvements
535
+ in NTAT and throughput for flexible-shape execution re-
536
+ gions compared to fixed- and variably-sized execution
537
+ regions. Even with a simple greedy scheduling algo-
538
+ rithm, we achieve 23–28% decreased NTAT and 1.05x–
539
+ 1.24x higher throughput. Note that we only pre-compile
540
+ each task to two different variants in this case study (Ta-
541
+ ble 1), and a scheduler greedily selects the one with higher
542
+ throughput if resources are available. Co-optimizing com-
543
+ pilation and scheduling policy may improve NTAT and
544
+ throughput further, which remains future work.
545
+ 3.2. Example 2: Autonomous System
546
+ Overview. In this case study, we construct a synthetic
547
+ edge system scenario modeling the real world in which
548
+ multiple tasks from image processing and ML domains ex-
549
+ ecute in parallel and can dynamically trigger. Specifically,
550
+ we develop an autonomous system scenario as described
551
+ in Figure 3b following a methodology used in [30]. 2 The
552
+ system takes a RAW image in Bayer encoding format
553
+ (RGGB) from sensors at 30 fps and first runs a camera
554
+ 2We also changed the tasks to simplify the example.
555
+ 5
556
+
557
+ User 1
558
+ User 2
559
+ MobileNet
560
+ ResNet-18
561
+ CGRA
562
+ User 3
563
+ User 4
564
+ Camera
565
+ Harris Corner
566
+ Pipeline
567
+ DetectorBackground detected
568
+ Senddatatothecloud
569
+ Depth estimation
570
+ Image compression
571
+ (stereo)
572
+ (gaussian)
573
+ CGRA
574
+ Foreveryframe
575
+ Sign detected
576
+ Camera pipeline
577
+ Sign classifier
578
+ (camerapipeline)
579
+ (ResNet)baseline
580
+ Fixed
581
+ Variable
582
+ Flexible
583
+ 1.250
584
+ 1.000
585
+ NTAT
586
+ hh
587
+ 0.750
588
+ 0.500
589
+ ResNet-18
590
+ MobileNet
591
+ Camera
592
+ Harrisbaseline
593
+ Fixed
594
+ Variable
595
+ Flexible
596
+ 1.25
597
+ Throughput
598
+ 1.00
599
+
600
+ 0.75
601
+ 0.50
602
+ ResNet-18
603
+ MobileNet
604
+ Camera
605
+ HarrisFigure 5: The average latency of an autonomous system
606
+ example with different execution regions. The values are nor-
607
+ malized to the result of the baseline. A red bar indicates the
608
+ time spent for reconfiguration, and a blue bar indicates the
609
+ sum of wait time and execution time. To show the benefit of
610
+ fast-DPR (Section 2.3), we assume the baseline CGRA uses
611
+ AXI4-Lite interface for DPR, while others use fast-DPR.
612
+ pipeline task on the CGRA to convert to an RGB image.
613
+ Once the CGRA generates an RGB image, the system
614
+ runs object detection and dynamically decides on the next
615
+ tasks. 3 When an event happens (e.g., detection of a spe-
616
+ cific background), it processes the event and executes the
617
+ corresponding tasks (e.g., depth estimation). Except for a
618
+ camera pipeline that runs every frame, we set the period
619
+ from one event to the next same event to follow a uniform
620
+ random distribution between 3–7 frames.
621
+ Results. We evaluate the benefit of hardware resource
622
+ partitioning and fast DPR by comparing our proposed
623
+ CGRA to the baseline CGRA with AXI4-Lite-based DPR.
624
+ Specifically, the baseline CGRA maps only one task at
625
+ a time. When more than one event occurs, the base-
626
+ line handles each task one by one and reconfigures using
627
+ sequential AXI4-Lite configuration transactions. In the
628
+ proposed CGRA with multi-task execution support, we ex-
629
+ ploit flexible-shape resource partitioning to concurrently
630
+ run more than one task on the CGRA when possible. Also,
631
+ we use the parallel and high-frequency DPR mechanisms
632
+ in Section 2.3 to configure bitstreams. We compute the
633
+ arithmetic average of the latency over all frames. As de-
634
+ scribed in Figure 5, our techniques enable a 60.8% latency
635
+ reduction compared to the baseline. With fast DPR, re-
636
+ configuration takes less than 5% of the total latency, an
637
+ appreciable reduction from 14.4% in the baseline.
638
+ 4. Related Work
639
+ As Deep Neural Networks (DNNs) are widely used in vari-
640
+ ous domains, DNN accelerators [18, 17, 8, 9, 10, 25] have
641
+ emerged and been deployed in the cloud system [21, 13].
642
+ To that end, many prior works have explored multi-
643
+ tenancy support on DNN accelerators in cloud systems.
644
+ 3This work assumes that object detection is executed in another
645
+ hardware in the system (e.g. GPU or ASIC).
646
+ Multi-task execution support is also studied in FPGAs
647
+ targeting both cloud and edge computing. However, a non-
648
+ negligible portion of FPGA resources is typically reserved
649
+ for controlling multi-task execution, ultimately decreas-
650
+ ing the available computing resources. ChordMap [27]
651
+ explores the automated mapping of multi-tasked applica-
652
+ tions onto a CGRA, but it is limited to mapping multiple
653
+ tasks within streaming applications with all tasks known
654
+ a priori. Our work proposes hardware abstractions and
655
+ mechanisms, which both compilers and schedulers can
656
+ exploit and co-optimize to improve resource utilization in
657
+ both cloud and edge systems.
658
+ Multi-Task Execution on DNN Accelerators. Some
659
+ DNN accelerators service multi-DNN tasks at the soft-
660
+ ware level. AI-MT [2] and Layerweaver [31] propose a
661
+ scheduling policy to mix compute- and memory-intensive
662
+ tasks to increase hardware utilization. PREMA [11] im-
663
+ plements preemptible NPUs to support multi-tenancy
664
+ via temporal multiplexing.
665
+ Many works add flexibil-
666
+ ity to an accelerator to accommodate multiple DNN
667
+ tasks. Planaria [14] introduces a flexible systolic array
668
+ with dynamic architecture fission to map multiple DNN
669
+ tasks. [26] suggests a multi-directional network to sup-
670
+ port up to four DNN tasks with different dataflow. Other
671
+ works [24, 3] explore a computing system with multiple
672
+ DNN accelerators with different hardware characteristics.
673
+ While these works only support DNN workloads, our
674
+ work can support any applications that can be mapped
675
+ onto a CGRA.
676
+ Multi-Task Execution on FPGAs. In FPGAs, multi-
677
+ task execution support has been explored in the context of
678
+ virtualization. Some works divide an FPGA into a static
679
+ region, a shell, which serves as glue logic between the
680
+ host and the FPGA, and a dynamic region, a role, which
681
+ handles the computation of tasks. [4, 5, 33] partition
682
+ a physical FPGA into several fixed-size virtual blocks
683
+ and share them across multiple tasks. AmorphOS [22]
684
+ presents a hardware abstraction of an FPGA, Morphlet,
685
+ which dynamically alters its size based on resource re-
686
+ quirements. ViTAL [35] provides a full-stack framework
687
+ to run multiple tasks with different sizes on homogeneous
688
+ regions. [34] supports running multi-DNN tasks on an
689
+ FPGA by dividing hardware resources into multiple PE
690
+ cores and spatially multiplexing them, while [30] eval-
691
+ uates the benefits of temporal multiplexing of FPGAs
692
+ using DPR for vision applications on embedded devices.
693
+ While these works only target scenarios where underlying
694
+ applications change infrequently because of long reconfig-
695
+ uration time of FPGAs, our work can support both cloud
696
+ systems and real-time edge systems due to rapid DPR.
697
+ 5. Conclusion
698
+ Multi-task execution support on accelerators is becoming
699
+ increasingly relevant in both cloud and edge systems and
700
+ 6
701
+
702
+ DPR
703
+ Waiting + Execution
704
+ 1.000
705
+ 1.0.0.0
706
+ 0.750
707
+ latency
708
+ 0.500
709
+ 0.447
710
+ 0.445
711
+ 0.392
712
+ 0.250
713
+ 0.000
714
+ baseline
715
+ fixed
716
+ variable
717
+ flexiblehas the potential to improve performance through bet-
718
+ ter hardware utilization. This work proposes abstracting
719
+ hardware resources within a CGRA into coarser-grained
720
+ units with which a workload scheduler can quickly make
721
+ decisions. Based on the proposed abstraction, we develop
722
+ hardware mechanisms to support multi-task execution
723
+ through flexible-shape hardware partitioning and high-
724
+ throughput dynamic partial reconfiguration. Our evalua-
725
+ tions modeling both a cloud and an edge system scenario
726
+ suggest that the abstraction and hardware mechanisms can
727
+ enable automatic schedulers to achieve high performance
728
+ in multi-tasked workloads on future CGRAs.
729
+ References
730
+ [1] G. Ansaloni, P. Bonzini, and L. Pozzi, “Egra: A coarse grained
731
+ reconfigurable architectural template,” IEEE Transactions on
732
+ Very Large Scale Integration (VLSI) Systems, vol. 19, no. 6, pp.
733
+ 1062–1074, 2010.
734
+ [2] E. Baek, D. Kwon, and J. Kim, “A multi-neural network accelera-
735
+ tion architecture,” in 2020 ACM/IEEE 47th Annual International
736
+ Symposium on Computer Architecture (ISCA).
737
+ IEEE, 2020, pp.
738
+ 940–953.
739
+ [3] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F.
740
+ Oliveira, X. Ma, E. Shiu, and O. Mutlu, “Google neural network
741
+ models for edge devices: Analyzing and mitigating machine
742
+ learning inference bottlenecks,” in 2021 30th International Con-
743
+ ference on Parallel Architectures and Compilation Techniques
744
+ (PACT).
745
+ IEEE, 2021, pp. 159–172.
746
+ [4] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and
747
+ P. Chow, “Fpgas in the cloud: Booting virtualized hardware
748
+ accelerators with openstack,” in 2014 IEEE 22nd Annual Inter-
749
+ national Symposium on Field-Programmable Custom Computing
750
+ Machines, 2014, pp. 109–116.
751
+ [5] ——, “Fpgas in the cloud: Booting virtualized hardware accel-
752
+ erators with openstack,” in 2014 IEEE 22nd Annual Interna-
753
+ tional Symposium on Field-Programmable Custom Computing
754
+ Machines, 2014, pp. 109–116.
755
+ [6] F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, P. Rolandi,
756
+ C. Mucci, A. Lodi, A. Vitkovski, and L. Vanzolini, “A dynami-
757
+ cally adaptive dsp for heterogeneous reconfigurable platforms,”
758
+ in 2007 Design, Automation & Test in Europe Conference &
759
+ Exhibition.
760
+ IEEE, 2007, pp. 1–6.
761
+ [7] A. Carsello, K. Feng, T. Kong, K. Koul, Q. Liu, J. Melchert,
762
+ G. Nyengele, M. Strange, K. Zhang, A. Nayak et al., “Amber: A
763
+ 367 gops, 538 gops/w 16nm soc with a coarse-grained reconfig-
764
+ urable array for flexible acceleration of dense linear algebra,” in
765
+ 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI
766
+ Technology and Circuits).
767
+ IEEE, 2022, pp. 70–71.
768
+ [8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
769
+ for energy-efficient dataflow for convolutional neural networks,”
770
+ ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp.
771
+ 367–379, 2016.
772
+ [9] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A
773
+ flexible accelerator for emerging deep neural networks on mobile
774
+ devices,” IEEE Journal on Emerging and Selected Topics in
775
+ Circuits and Systems, vol. 9, no. 2, pp. 292–308, 2019.
776
+ [10] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
777
+ Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercom-
778
+ puter,” in 2014 47th Annual IEEE/ACM International Symposium
779
+ on Microarchitecture.
780
+ IEEE, 2014, pp. 609–622.
781
+ [11] Y. Choi and M. Rhu, “Prema: A predictive multi-task schedul-
782
+ ing algorithm for preemptible neural processing units,” in 2020
783
+ IEEE International Symposium on High Performance Computer
784
+ Architecture (HPCA).
785
+ IEEE, 2020, pp. 220–233.
786
+ [12] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
787
+ D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A
788
+ configurable cloud-scale dnn processor for real-time ai,” in 2018
789
+ ACM/IEEE 45th Annual International Symposium on Computer
790
+ Architecture (ISCA).
791
+ IEEE, 2018, pp. 1–14.
792
+ [13] ——, “A configurable cloud-scale dnn processor for real-time
793
+ ai,” in 2018 ACM/IEEE 45th Annual International Symposium
794
+ on Computer Architecture (ISCA).
795
+ IEEE, 2018, pp. 1–14.
796
+ [14] S. Ghodrati, B. H. Ahn, J. Kyung Kim, S. Kinzer, B. R. Yatham,
797
+ N. Alla, H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim, C. Young,
798
+ and H. Esmaeilzadeh, “Planaria: Dynamic architecture fission
799
+ for spatial multi-tenant acceleration of deep neural networks,”
800
+ in 2020 53rd Annual IEEE/ACM International Symposium on
801
+ Microarchitecture (MICRO), 2020, pp. 681–697.
802
+ [15] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann,
803
+ “Snafu: an ultra-low-power, energy-minimal cgra-generation
804
+ framework and architecture,” in 2021 ACM/IEEE 48th Annual In-
805
+ ternational Symposium on Computer Architecture (ISCA). IEEE,
806
+ 2021, pp. 1027–1040.
807
+ [16] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
808
+ and H. Yang, “Angel-eye: A complete design flow for mapping
809
+ cnn onto embedded fpga,” IEEE transactions on computer-aided
810
+ design of integrated circuits and systems, vol. 37, no. 1, pp. 35–
811
+ 47, 2017.
812
+ [17] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
813
+ S. Yao, Y. Wang et al., “Ese: Efficient speech recognition en-
814
+ gine with sparse lstm on fpga,” in Proceedings of the 2017
815
+ ACM/SIGDA International Symposium on Field-Programmable
816
+ Gate Arrays, 2017, pp. 75–84.
817
+ [18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
818
+ W. J. Dally, “Eie: Efficient inference engine on compressed deep
819
+ neural network,” ACM SIGARCH Computer Architecture News,
820
+ vol. 44, no. 3, pp. 243–254, 2016.
821
+ [19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
822
+ image recognition,” in Proceedings of the IEEE conference on
823
+ computer vision and pattern recognition, 2016, pp. 770–778.
824
+ [20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
825
+ T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
826
+ convolutional neural networks for mobile vision applications,”
827
+ arXiv preprint arXiv:1704.04861, 2017.
828
+ [21] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
829
+ R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al.,
830
+ “In-datacenter performance analysis of a tensor processing unit,”
831
+ in Proceedings of the 44th annual international symposium on
832
+ computer architecture, 2017, pp. 1–12.
833
+ [22] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and
834
+ C. J. Rossbach, “Sharing, protection, and compatibility for recon-
835
+ figurable fabric with {AmorphOS},” in 13th USENIX Symposium
836
+ on Operating Systems Design and Implementation (OSDI 18),
837
+ 2018, pp. 107–127.
838
+ [23] K. Koul, J. Melchert, K. Sreedhar, L. Truong, G. Nyengele,
839
+ K. Zhang, Q. Liu, J. Setter, P.-H. Chen, Y. Mei, M. Strange,
840
+ R. Daly, C. Donovick, A. Carsello, T. Kong, K. Feng, D. Huff,
841
+ A. Nayak, R. Setaluri, J. Thomas, N. Bhagdikar, D. Durst,
842
+ Z. Myers, N. Tsiskaridze, S. Richardson, R. Bahr, K. Fatahalian,
843
+ P. Hanrahan, C. Barrett, M. Horowitz, C. Torng, F. Kjolstad,
844
+ and P. Raina, “Aha:
845
+ An agile approach to the design of
846
+ coarse-grained reconfigurable accelerators and compilers,” ACM
847
+ Trans. Embed. Comput. Syst., apr 2022, just Accepted. [Online].
848
+ Available: https://doi.org/10.1145/3534933
849
+ [24] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and
850
+ V. Chandra, “Heterogeneous dataflow accelerators for multi-dnn
851
+ workloads,” in 2021 IEEE International Symposium on High-
852
+ Performance Computer Architecture (HPCA).
853
+ IEEE, 2021, pp.
854
+ 71–83.
855
+ [25] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
856
+ dataflow mapping over dnn accelerators via reconfigurable inter-
857
+ connects,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 461–475,
858
+ 2018.
859
+ [26] J. Lee, J. Choi, J. Kim, J. Lee, and Y. Kim, “Dataflow mirroring:
860
+ Architectural support for highly efficient fine-grained spatial mul-
861
+ titasking on systolic-array npus,” in 2021 58th ACM/IEEE Design
862
+ Automation Conference (DAC).
863
+ IEEE, 2021, pp. 247–252.
864
+ [27] Z. Li, D. Wijerathne, X. Chen, A. Pathania, and T. Mitra,
865
+ “Chordmap: Automated mapping of streaming applications onto
866
+ cgra,” IEEE Transactions on Computer-Aided Design of Inte-
867
+ grated Circuits and Systems, vol. 41, no. 2, pp. 306–319, 2022.
868
+ [28] L. Liu, D. Wang, M. Zhu, Y. Wang, S. Yin, P. Cao, J. Yang,
869
+ and S. Wei, “An energy-efficient coarse-grained reconfigurable
870
+ processing unit for multiple-standard video decoding,” IEEE
871
+ Transactions on Multimedia, vol. 17, no. 10, pp. 1706–1720,
872
+ 2015.
873
+ [29] J. Mbongue, F. Hategekimana, D. T. Kwadjo, D. Andrews, and
874
+ C. Bobda, “Fpgavirt: A novel virtualization framework for fpgas
875
+ in the cloud,” in 2018 IEEE 11th International Conference on
876
+ Cloud Computing (CLOUD).
877
+ IEEE, 2018, pp. 862–865.
878
+ 7
879
+
880
+ [30] M. Nguyen, R. Tamburo, S. Narasimhan, and J. C. Hoe, “Quanti-
881
+ fying the benefits of dynamic partial reconfiguration for embed-
882
+ ded vision applications,” in 2019 29th International Conference
883
+ on Field Programmable Logic and Applications (FPL).
884
+ IEEE,
885
+ 2019, pp. 129–135.
886
+ [31] Y. H. Oh, S. Kim, Y. Jin, S. Son, J. Bae, J. Lee, Y. Park, D. U. Kim,
887
+ T. J. Ham, and J. W. Lee, “Layerweaver: Maximizing resource
888
+ utilization of neural processing units via layer-wise scheduling,”
889
+ in 2021 IEEE International Symposium on High-Performance
890
+ Computer Architecture (HPCA).
891
+ IEEE, 2021, pp. 584–597.
892
+ [32] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatin-
893
+ sky, and M. Horowitz, “Evaluating programmable architectures
894
+ for imaging and vision applications,” in 2016 49th Annual
895
+ IEEE/ACM International Symposium on Microarchitecture (MI-
896
+ CRO).
897
+ IEEE, 2016, pp. 1–13.
898
+ [33] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “En-
899
+ abling fpgas in hyperscale data centers,” in 2015 IEEE 12th Intl
900
+ Conf on Ubiquitous Intelligence and Computing and 2015 IEEE
901
+ 12th Intl Conf on Autonomic and Trusted Computing and 2015
902
+ IEEE 15th Intl Conf on Scalable Computing and Communica-
903
+ tions and Its Associated Workshops (UIC-ATC-ScalCom), 2015,
904
+ pp. 1078–1086.
905
+ [34] S. Zeng, G. Dai, H. Sun, K. Zhong, G. Ge, K. Guo, Y. Wang, and
906
+ H. Yang, “Enabling efficient and flexible fpga virtualization for
907
+ deep learning in the cloud,” in 2020 IEEE 28th Annual Interna-
908
+ tional Symposium on Field-Programmable Custom Computing
909
+ Machines (FCCM).
910
+ IEEE, 2020, pp. 102–110.
911
+ [35] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Proceedings
912
+ of the Twenty-Fifth International Conference on Architectural
913
+ Support for Programming Languages and Operating Systems,
914
+ 2020, pp. 845–858.
915
+ 8
916
+
U9AyT4oBgHgl3EQf8vpk/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
WNAzT4oBgHgl3EQfKPsc/content/tmp_files/2301.01092v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
WNAzT4oBgHgl3EQfKPsc/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
XNE2T4oBgHgl3EQfDwZ0/content/tmp_files/2301.03628v1.pdf.txt ADDED
@@ -0,0 +1,1191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Topological order in interacting semimetals
2
+ Jinmin Yi,∗ Xuzhe Ying,∗ Lei Gioia, and A.A. Burkov
3
+ Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada and
4
+ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
5
+ (Dated: January 11, 2023)
6
+ It has recently been demonstrated that it is possible to open a gap in a magnetic Weyl semimetal,
7
+ while preserving the chiral anomaly along with the charge conservation and translational symmetries,
8
+ which all protect the gapless nodes in a weakly interacting semimetal. The resulting state was shown
9
+ to be a nontrivial generalization of a nonabelian fractional quantum Hall liquid to three dimensions.
10
+ Here we point out that a second fractional quantum Hall state exists in this case.
11
+ This state
12
+ has exactly the same electrical and thermal Hall responses as the first, but a distinct (fracton)
13
+ topological order. Moreover, the existence of this second fractional quantum Hall state necessarily
14
+ implies a gapless phase, which has identical topological response to a noninteracting Weyl semimetal,
15
+ but is distinct from it. This may be viewed as a generalization (in a weaker form) of the known
16
+ duality between a noninteracting two-dimensional Dirac fermion and QED3 to 3 + 1 dimensions. In
17
+ addition we discuss a (3 + 1)-dimensional topologically ordered state, obtained by gapping a nodal
18
+ line semimetal without breaking symmetries.
19
+ I.
20
+ INTRODUCTION
21
+ Topological order, a concept that originated in the
22
+ study of the fractional quantum Hall effect (FQHE) in
23
+ two dimensional (2D) electron gas systems,1 continues
24
+ to be a subject of intense interest.
25
+ From the funda-
26
+ mental physics prospective, topologically ordered states
27
+ provide perfect examples of emergent macroscopic quan-
28
+ tum phenomena, with fractionally-quantized electromag-
29
+ netic and thermal responses, that are impossible to ex-
30
+ plain based on textbook models of weakly-interacting
31
+ electrons.
32
+ Instead, such fractionally-quantized observ-
33
+ able responses necessarily imply excitations with frac-
34
+ tional charges, fractional and nonabelian statistics, which
35
+ can not be constructed out of any finite number of ele-
36
+ mentary constituents.2 In addition, such exotic excita-
37
+ tions may have future potential practical uses in quan-
38
+ tum computing and quantum simulation, as their non-
39
+ local topological nature makes them highly resistant to
40
+ decoherence and noise.3
41
+ Topologically-ordered states in 2D are by now well-
42
+ understood.
43
+ Various theoretical models,4–7 as well as
44
+ complete formal classifications of 2D topological orders
45
+ exist.8 Although significant progress has been made in re-
46
+ cent years,9–19 less is known about topologically-ordered
47
+ states in three dimensions (3D). 3D topologically ordered
48
+ states are significantly different from the 2D ones. On
49
+ the one hand, fractional statistics is impossible in 3D and
50
+ quasiparticle excitations may only be bosons or fermions.
51
+ This could make one doubt that, for example, fractional
52
+ quantum Hall (FQH) states may even in principle be gen-
53
+ eralized to 3D, as the existence of anyons, i.e. quasipar-
54
+ ticles with fractional statistics, is an essential feature of
55
+ the 2D FQHE. On the other hand, in addition to point
56
+ quasiparticles, one-dimensional loop excitations exist in
57
+ 3D, which both adds complexity and opens up new in-
58
+ teresting possibilities.
59
+ We recently demonstrated that a promising way to
60
+ achieve 3D topologically ordered states is through gap-
61
+ ping topological semimetals without breaking the pro-
62
+ tecting symmetries20–22 (see Refs. 23–29 for related
63
+ work).
64
+ Topological semimetals30–35 are intermediate
65
+ phases between insulators of different electronic structure
66
+ topology.
67
+ They may be characterized by unquantized
68
+ anomalies,36,37 i.e. topological terms with noninteger and
69
+ continuously-tunable coefficients, similar to the electron
70
+ filling parameter, characterizing ordinary Fermi liquids.
71
+ Much like fractional filling in a Fermi liquid mandates the
72
+ existence of a Fermi surface of gapless particle-hole ex-
73
+ citations,38 these unquantized anomalies necessarily im-
74
+ ply gapless modes and corresponding long-range entan-
75
+ glement. The only way gaplessness may be circumvented
76
+ in the absence of broken symmetries is through the for-
77
+ mation of a topologically-ordered state, which preserves
78
+ the anomaly and the long-range entanglement of the gap-
79
+ less semimetal.
80
+ Specifically, in Ref. 20 we presented an explicit con-
81
+ struction of a 3D topologically-ordered state in a gapped
82
+ magnetic Weyl semimetal, which exhibits a nontrivial
83
+ generalization of the FQHE to 3D. This state is ob-
84
+ tained starting from a magnetic Weyl semimetal with
85
+ a single pair of nodes, separated by half a reciprocal lat-
86
+ tice vector.
87
+ These nodes may be gapped by breaking
88
+ the U(1) charge conservation symmetry while forming a
89
+ superconducting state with intra-nodal pairing. In gen-
90
+ eral, such states break translational symmetry since the
91
+ Weyl nodes exist at nontrivial momenta in the first Bril-
92
+ louin zone (BZ). However, when the nodes are separated
93
+ by exactly half a reciprocal lattice vector, such a pair-
94
+ ing leads to density modulation at the reciprocal lattice
95
+ vector, which does not break the crystal translational
96
+ symmetry.
97
+ Restoring the charge conservation symme-
98
+ try by proliferating flux 2hc/e = 4π (we will be using
99
+ ℏ = c = e = 1 units throughout this paper) vortices in
100
+ the superconducting order parameter leads to a feature-
101
+ less fractionalized insulator with Z4 topological order,
102
+ that has the same electrical and thermal Hall conductiv-
103
+ ities as the original noninteracting Weyl semimetal, i.e.
104
+ arXiv:2301.03628v1 [cond-mat.str-el] 9 Jan 2023
105
+
106
+ 2
107
+ exhibits FQHE in 3D. Unlike in 2D FQH liquids, quasi-
108
+ particle excitations in this state are bosons and fermions.
109
+ What plays the role of the anyons in the 2D FQHE are
110
+ intersections of the vortex-loop excitations with atomic
111
+ planes.
112
+ These behave as fractionally-charged particles
113
+ with semionic statistics, which may be sharply defined
114
+ by considering three-loop braiding processes,15 involving
115
+ a line defect of translational symmetry, i.e. an edge dis-
116
+ location.
117
+ In this paper we show that, in addition to the 3D FQH
118
+ state of Ref. 20, another state exists, which has identi-
119
+ cal topological response, but distinct topological order,
120
+ which turns out to be of a fracton type. The existence
121
+ of these two distinct states turns out to be closely re-
122
+ lated to a very similar property of gapped symmetric
123
+ 2D Dirac surface states of 3D time-reversal (TR) in-
124
+ variant topological insulators (TI).39–43 In this case, two
125
+ distinct topologically-ordered states exist.
126
+ One, called
127
+ Pfaffian-antisemion,40,42 is closely related to the 3D FQH
128
+ states of Ref. 20 (more precisely, the relation is with the
129
+ TR-broken version of this state).
130
+ The second one, T-
131
+ Pfaffian,39,41 is related to the other 3D state we will con-
132
+ struct in the present paper (again, more precisely, the
133
+ relation is with the TR-breaking version of this state,
134
+ which is usually called PH, which stands for particle-
135
+ hole-symmetric, Pfaffian44,45).
136
+ Another interesting consequence emerges from these
137
+ analogies to the 2D TR-invariant TI surface state topo-
138
+ logical orders. It is well-known that the PH-Pfaffian is
139
+ closely related to the recently discovered duality relation
140
+ between a massless noninteracting 2D Dirac fermion and
141
+ QED3.44,46–51 Namely, the PH-Pfaffian state is obtained
142
+ when the dual Dirac fermion of QED3 is gapped by pair-
143
+ ing, which does not break the charge conservation sym-
144
+ metry since the dual fermion is neutral. The existence of
145
+ the analog of the PH-Pfaffian state in our 3D system then
146
+ also implies the existence of a gapless state, which is re-
147
+ lated to the noninteracting Weyl semimetal via a duality
148
+ relation, somewhat similar to the 2D Dirac duality. We
149
+ demonstrate that this is indeed the case. However, we
150
+ find that the duality only applies to topological response
151
+ in this case and not to the dynamics and is weaker than
152
+ the 2D duality in this sense.
153
+ The path to topologically ordered insulators through
154
+ gapping topological semimetals is quite general and is
155
+ not limited to the magnetic Weyl semimetal case.
156
+ To
157
+ emphasize this point, here we also discuss a topologically-
158
+ ordered state, which is obtained by gapping a nodal
159
+ line semimetal without breaking symmetries. This state
160
+ has a topological order, distinct from a gapped Weyl
161
+ semimetal, and is characterized by a fractional elec-
162
+ tric polarization, impossible in an ordinary weakly-
163
+ interacting insulator.
164
+ The rest of the paper is organized as follows.
165
+ In
166
+ section II, after a preliminary discussion of topological
167
+ field theory description of the electromagnetic response
168
+ of Weyl semimetals, we recap the construction of the 3D
169
+ analog of the Pfaffian-antisemion state of Refs. 20 and
170
+ 21. In section III, we demonstrate the existence of a du-
171
+ ality relation (which applies to topological response only)
172
+ between a noninteracting Weyl semimetal and a QED4,
173
+ which describes a time-reversed Weyl semimetal, coupled
174
+ to a dynamical gauge field. In section IV we discuss a
175
+ topologically-ordered state, obtained by gapping a nodal
176
+ line semimetal without breaking symmetries. This state
177
+ is characterized by a fractional electric polarization, im-
178
+ possible in an ordinary insulator. We conclude in sec-
179
+ tion V with a brief discussion of our results.
180
+ II.
181
+ GAPPED SYMMETRY-PRESERVING
182
+ STATES IN WEYL SEMIMETALS
183
+ A.
184
+ Preliminaries
185
+ To keep the paper self-contained, we will start by re-
186
+ capping the construction of the 3D FQH state of Ref. 20
187
+ and 21, which, as will be explained below, may be viewed
188
+ as a TR-breaking 3D analog of the Pfaffian-antisemion
189
+ state on a strongly-interacting 3D TI surface. We will
190
+ also put the theory of Ref. 21 on a more rigorous foot-
191
+ ing by introducing the language of translation gauge
192
+ fields,36,52–55 which allows one to use proper coordinate-
193
+ free notation for the corresponding topological field the-
194
+ ories.
195
+ We start from the simplest cubic lattice model of a
196
+ magnetic Weyl semimetal with a pair of nodes34
197
+ H =
198
+
199
+ k
200
+ ψ†
201
+ k [σx sin(kxd) + σy sin(kyd) + σzm(k)] ψk.
202
+ (1)
203
+ Here σi are Pauli matrices, describing the pair of touching
204
+ bands and
205
+ m(k) = cos(kzd) − cos(Qd) − ˜m[2 − cos(kxd) − cos(kyd)],
206
+ (2)
207
+ where d is the lattice constant, ˜m > 1 and m(k) van-
208
+ ishes at two points on the z-axis with kz = ±Q, which
209
+ correspond to the locations of the Weyl nodes.
210
+ Such a Weyl semimetal is characterized by the anoma-
211
+ lous Hall conductivity
212
+ σxy = e2
213
+ h
214
+ 2Q
215
+ 2π = 1
216
+
217
+ 2Q
218
+ 2π .
219
+ (3)
220
+ This may be expressed as a topological term in the effec-
221
+ tive action for probe electromagnetic gauge fields when
222
+ the fermions are integrated out56
223
+ L = i2Q
224
+ 8π ϵzναβAν∂αAβ.
225
+ (4)
226
+ In its primitive form above, Eq. (4) does not actually
227
+ look like a topological term, since it explicitly contains a
228
+ preferred direction in space (z) and depends on a nonuni-
229
+ versal microscopic lattice constant d through the Weyl
230
+ node separation 2Q.
231
+
232
+ 3
233
+ To fix these issues, it proves useful to introduce the
234
+ concept of a translation gauge field.36,52–55 Recall that
235
+ Bravais lattice points R of a perfect crystal may be
236
+ described as intersections of families of crystal planes,
237
+ perpendicular to primitive reciprocal lattice vectors bi,
238
+ where i = 1, 2, 3 (or x, y, z for a cubic crystal). Mathe-
239
+ matically, this is expressed by the equation
240
+ θi(r, t) = bi · r = 2πni,
241
+ (5)
242
+ where ni are sets of integers, labeling the crystal planes
243
+ in a family i and the Bravais lattice vectors r = R are the
244
+ solutions of this equations. Eq. (5) implies that the recip-
245
+ rocal lattice vectors in a perfect crystal may be expressed
246
+ as gradients of the phases bi
247
+ j = ∂jθi. This may be gen-
248
+ eralized to a distorted crystal, including time-dependent
249
+ distortions, by introducing translation “gauge fields”
250
+ ei
251
+ µ = 1
252
+ 2π ∂µθi.
253
+ (6)
254
+ The fields ei
255
+ µ may in fact be viewed as true (strictly
256
+ speaking, integer valued) gauge fields, if one explicitly
257
+ takes account of the fact that the phases θi on crys-
258
+ tal planes may be relabelled in arbitrary 2π × Z incre-
259
+ ments.54,55 This will not make a significant difference in
260
+ our case and either viewpoint is acceptable.
261
+ In a convenient differential form language, we may view
262
+ ei as a one-form
263
+ ei = ei
264
+ µdxµ.
265
+ (7)
266
+ In a crystal without dislocations,
267
+ dei = 1
268
+ 2(∂µei
269
+ ν − ∂νei
270
+ µ)dxµ ∧ dxν = 0,
271
+ (8)
272
+ as clearly follows from the definition Eq. (6).
273
+ On the
274
+ other hand, if a dislocation with a Burgers vector along
275
+ bi is present, the integral of ei around a loop, enclosing
276
+ the dislocation line is
277
+
278
+ ei = 1.
279
+ The benefit of introducing translation gauge fields be-
280
+ comes apparent if we now replace a reciprocal lattice vec-
281
+ tor along the z-direction in Eq. (4) with the correspond-
282
+ ing translation gauge field
283
+
284
+ d δz
285
+ µ → 2πez
286
+ µ.
287
+ (9)
288
+ Then Eq. (4) becomes
289
+ L = i λ
290
+ 4π ϵµναβez
291
+ µAν∂αAβ = i λ
292
+ 4π ez ∧ A ∧ dA,
293
+ (10)
294
+ where λ = 2Q/(2π/d) is a dimensionless separation be-
295
+ tween the Weyl nodes in units of the reciprocal lattice
296
+ vector. Now Eq. (10) looks like a proper topological term,
297
+ which only contains gauge fields and a universal coeffi-
298
+ cient. The nonuniversal and variable lattice constant d
299
+ has been absorbed into the definition of the translation
300
+ gauge field and we will henceforth set d = 1 for simplicity.
301
+ Varying Eq. (10) with respect to ez
302
+ z produces response
303
+ per atomic xy-plane, which is determined by a universal
304
+ numerical coefficient λ. A noninteger value of the coef-
305
+ ficient λ requires gapless modes in the form of a pair of
306
+ Weyl nodes to be present,36,37 since a fractional value (in
307
+ units of e2/h) of the Hall conductance per atomic plane
308
+ is impossible in a noninteracting gapped insulator.
309
+ B.
310
+ 3D analog of the Pfaffian-antisemion state
311
+ To derive the field theory of the gapped 3D FQH state
312
+ of Ref. 20 we first move to a dual description of the nonin-
313
+ teracting Weyl semimetal of Eq. (1), in which the electric
314
+ charge is separated from the fermions and is represented
315
+ in terms of a two-form gauge potential, which couples
316
+ to the vortex loop excitations.21,57,58 This approach is
317
+ essentially equivalent to what is known as “functional
318
+ bosonization”,59–62 apart from unimportant technical de-
319
+ tails. We start by representing the fermion operators in
320
+ Eq. (1) (after Fourier transforming them to real space)
321
+ as
322
+ ψr = eiθrfr,
323
+ (11)
324
+ where r label the sites of a cubic lattice, eiθr represents
325
+ a spinless charged boson (chargon) and fr is a neutral
326
+ fermion (spinon).
327
+ After straightforward and standard
328
+ manipulations,21,63 one obtains the following exact rep-
329
+ resentation of the Weyl semimetal Lagrangian L
330
+ L = Lf + Lb
331
+ (12)
332
+ where Lf is the Lagrangian of the spinons fr, which has
333
+ a form, identical to the lattice Lagrangian of the original
334
+ electrons ψr, except that fr are coupled to a compact
335
+ statistical gauge field aµ rather than the probe electro-
336
+ magnetic field Aµ. The statistical field expresses U(1)
337
+ gauge invariance of the parton decomposition Eq. (11)
338
+ and serves the purpose of gluing together the spinons
339
+ and the chargons. The chargon Lagrangian has the form
340
+ Lb = i
341
+ 4π (Aµ − aµ)ϵµναβ∆νbαβ +
342
+ 1
343
+ 8π2χ(ϵµναβ∆νbαβ)2.
344
+ (13)
345
+ Here bµν = −bνµ is a two-form 2π×Z valued lattice gauge
346
+ field, which represents integer chargon currents Jµ as
347
+ Jµ = 1
348
+ 4π ϵµναβ∆νbαβ,
349
+ (14)
350
+ ∆µ is a lattice derivative and χ is a positive constant.
351
+ Lattice site indices r have been suppressed everywhere
352
+ for brevity.
353
+ To avoid dealing with discrete variables, we may imple-
354
+ ment the 2πZ constraint on bµν by adding a term i
355
+ 2 ˜Jµνbµν
356
+ to Lb and summing over integer-valued variables ˜Jµν,
357
+ which have the meaning of vortex loop currents. Gauge
358
+ invariance of Eq. (14) with respect to a transformation
359
+ bµν → bµν + ∆µgν − ∆νgµ implies a conservation law
360
+ ∆µ ˜Jµν = 0,
361
+ (15)
362
+
363
+ 4
364
+ which may be solved as
365
+ ˜Jµν = 1
366
+ 2π ϵµναβ∆αcβ,
367
+ (16)
368
+ where cµ are 2πZ valued one-form gauge fields. The con-
369
+ straint on cµ may, in turn, be softened by adding a term
370
+ −t cos(∆µφ + cµ), where the presence of a new compact
371
+ angular variable φ takes account of the gauge invariance
372
+ of Eq. (16) with respect to cµ → cµ + ∆µφ. In essence,
373
+ the particle created by eiφ, is the original chargon.
374
+ Then, after taking the continuum limit, the chargon
375
+ Lagrangian takes the dual form
376
+ Lb = i
377
+ 4π (Aµ − aµ + cµ)ϵµναβ∂νbαβ + . . . ,
378
+ (17)
379
+ where . . . contain both the higher-derivative terms for
380
+ bµν and the additional terms for cµ whose form depends
381
+ on the value of the parameter t. In particular, when t
382
+ is large, eiφ boson is condensed, leading to a mass term
383
+ for cµ (i.e. gap for vortices), which may then be ignored.
384
+ Integration over bµν the simply sets Aµ = aµ, i.e. the
385
+ electric charge is re-attached to the spinons and we re-
386
+ cover the original Weyl semimetal. In contrast, when t
387
+ is small, eiφ particle is gapped, which leads to a Maxwell
388
+ term, (ϵ∂c)2, for the gauge field cµ. In this case, integra-
389
+ tion over cµ produces a mass term b2 for the two-form
390
+ gauge field, which corresponds to a charge gap.
391
+ This
392
+ state is a Mott insulator, which has gapless spinons that
393
+ retain the Weyl semimetal band structure.
394
+ To obtain a fully gapped state, which preserves topo-
395
+ logical response of the Weyl semimetal Eq. (10) and does
396
+ not break any symmetries, we place the spinons into
397
+ a paired state. For weak pairing, only the intra-nodal
398
+ pairing state opens a gap.64–67 Such a pairing generally
399
+ breaks translational symmetry, except when 2Q = π or
400
+ λ = 1/2,20 to which we now specialize. With such an
401
+ intra-nodal pairing term, the spinon Hamiltonian may
402
+ be brought to the form
403
+ H = 1
404
+ 2
405
+
406
+ k
407
+ f †
408
+ k {σx sin(kx) + σy sin(ky)
409
+ +
410
+ ��
411
+ ∆2 + cos2(kz) − ˜m(2 − cos(kx) − cos(ky))
412
+
413
+ σz
414
+
415
+ fk,
416
+ (18)
417
+ where ∆ is the pairing amplitude. This Hamiltonian de-
418
+ scribes a 3D topological p-wave superconductor, which
419
+ has a chiral Majorana mode, spanning the full extent of
420
+ the BZ. This may also be viewed as a stack of 2D topo-
421
+ logical superconductors, since the pairing gap does not
422
+ close at any value of kz.
423
+ The spinon pairing produces a term ∝ − cos(2aµ)
424
+ for the statistical gauge field, which leaves only aµ =
425
+ 0, π mod 2π possible values at low energies and makes it
426
+ a Z2 gauge field. While nontrivial π-flux configurations of
427
+ aµ (visons68) are still possible, these may be easily shown
428
+ to bind gapless 1D Majorana mode in their cores, which
429
+ is a direct consequence of the fact that the spinon super-
430
+ conductor is topologically nontrivial. This means that in
431
+ any fully gapped symmetry-preserving state such vison
432
+ loop excitations must be gapped, which means that we
433
+ may set aµ = 0 mod 2π at low energies. This detaches
434
+ the boson and fermion sectors of the theory. The fermion
435
+ sector thus contributes the same thermal Hall response
436
+ as the noninteracting Weyl semimetal at λ = 1/2, which
437
+ arises from the chiral Majorana mode, spanning the full
438
+ BZ. The electrical response must entirely come from the
439
+ boson sector.
440
+ In order to reproduce the electrical response of the non-
441
+ interacting Weyl semimetal, it is necessary to condense
442
+ double (i.e. flux 4π) vortices of the boson field eiθ. This
443
+ is accomplished by the following modification of the field
444
+ theory Eq. (17)
445
+ Lb = i
446
+ 4π (Aµ + 2cµ)ϵµναβ∂νbαβ + 2i
447
+ 4π ϵµναβez
448
+ µcν∂αcβ
449
+ + 1
450
+ 2g (ϵµναβ∂αcβ)2 + i
451
+ 2bµν˜jµν + icµjµ.
452
+ (19)
453
+ The extra factor of 2 in front of cµ, compared to Eq. (17),
454
+ expresses the fact that double (flux 4π) vortices are be-
455
+ ing condensed. This also means that the quasiparticle,
456
+ which is minimally coupled to the gauge field cµ, carries
457
+ a charge 1/2.
458
+ The second term is a topological term,
459
+ which will give rise to the correct electrical Hall con-
460
+ ductivity, as will be shown below.
461
+ This term may be
462
+ viewed as describing a layered integer quantum Hall state
463
+ of the charge-1/2 bosonic quasiparticles. The third term
464
+ is the Maxwell term. It is subdominant to the topological
465
+ term at long wavelengths, but has been included explic-
466
+ itly since the topological term only contains components
467
+ of cµ, transverse to the translation gauge field ez. In par-
468
+ ticular, if ez
469
+ µ = δz
470
+ µ, cz does not enter into the topological
471
+ term and its dynamics is governed by the Maxwell term.
472
+ Let us now demonstrate that Eq. (19) indeed describes
473
+ the correct physics. Let us set ˜jµν = 0 and integrate out
474
+ bµν. This gives cµ = −Aµ/2. Substituting this back into
475
+ Eq. (19), we obtain
476
+ Lb = i
477
+ 8π ϵµναβez
478
+ µAν∂αAβ − i
479
+ 2Aµjµ.
480
+ (20)
481
+ The first term in Eq. (20) correctly reproduces the electri-
482
+ cal Hall conductivity of a noninteracting Weyl semimetal
483
+ with λ = 1/2, which is half conductance quantum σxy =
484
+ 1/4π per atomic plane. The second term tells us that
485
+ quasiparticle excitations in the gapped state, described
486
+ by Eq. (19), are bosons with electric charge 1/2. To es-
487
+ tablish gapped nature of this state it is important to note
488
+ the following. If we reinsert the statistical gauge field aµ
489
+ into Eq. (19), it is clear that fluctuations of bµν effec-
490
+ tively constrain cµ = (aµ − Aµ)/2. This implies that,
491
+ since aµ is made a Z2 gauge field by spinon pairing, cµ
492
+ becomes a discrete Z4 gauge field.
493
+ This is important,
494
+ since, unlike in 2 + 1 dimensions, a (3 + 1)-dimensional
495
+ Maxwell-Chern-Simons theory with U(1) gauge fields is
496
+ gapless.69,70
497
+ The most straightforward way to see that this the-
498
+ ory also correctly captures the thermal Hall conductivity
499
+
500
+ 5
501
+ κxy = 0 is to consider the boundary theory, that cor-
502
+ responds to Eq. (19).
503
+ To derive the boundary theory
504
+ we follow the standard method.2 We choose a gauge, in
505
+ which on the boundary, taken to be in the xz-plane, we
506
+ set the temporal components of all the gauge fields to
507
+ zero, i.e. c0 = 0, b0µ = 0. Then, integrating out c0, we
508
+ obtain
509
+ ϵ0νλρ∂νbλρ = ϵ0νλρ∂ν(ez
510
+ λcρ − ez
511
+ ρcλ),
512
+ (21)
513
+ while integrating b0ν gives
514
+ ϵ0νλρ∂λcρ = 0.
515
+ (22)
516
+ Eqs. (21) and (22) along with dez = 0 imply that
517
+ ϵ0νλρ∂νbλρ = 0.
518
+ (23)
519
+ Eq. (23) may then be solved as
520
+ bij = ∂igj − ∂jgi,
521
+ (24)
522
+ where i, j = x, z refer to spatial coordinates on the
523
+ boundary, while Eq. (22) is solved as
524
+ ci = ∂iϕ.
525
+ (25)
526
+ Plugging this back into what remains of Eq. (19) after
527
+ integrating out c0 and b0µ, we obtain
528
+ Lb = i
529
+ 2π ϵ0νλρez
530
+ ν∂λϕ∂τ∂ρϕ − i
531
+ π ϵ0νλρ∂νϕ∂τ∂λgρ,
532
+ (26)
533
+ where ∂τ ≡ ∂0.
534
+ Integrating this in the presence of a
535
+ boundary, perpendicular to the y-direction, gives
536
+ Lsurf = i
537
+ 2π ϵijez
538
+ i ∂τϕ∂jϕ − i
539
+ π ϵij∂τϕ∂igj,
540
+ (27)
541
+ where i, j
542
+ =
543
+ x, z.
544
+ Adding symmetry-allowed non-
545
+ topological terms and the electromagnetic field, we finally
546
+ obtain the following surface state Lagrangian
547
+ Lsurf = i
548
+ 2π ϵijez
549
+ i ∂τϕ∂jϕ − i
550
+ π ϵij∂τϕ∂igj + vϕ
551
+ 2π (∂iϕ)2
552
+ + vg
553
+ 2π (∂igj − ∂jgi)2 + i
554
+ 2π ϵµνλAµ∂νgλ.
555
+ (28)
556
+ Setting ez
557
+ µ = δz
558
+ µ and Fourier transforming, we obtain the
559
+ following expression for the excitation spectrum of the
560
+ surface modes
561
+ ϵ(k) = −vgkx
562
+ 2
563
+ +
564
+ ��v2g
565
+ 4 + vgvϕ
566
+
567
+ k2x + vgvϕk2z.
568
+ (29)
569
+ This looks like an ordinary anisotropic 2D superfluid dis-
570
+ persion, except for a “tilt” in the x-direction due to the
571
+ first term. However, the dispersion is still nonchiral, since
572
+ there is always a pair of left- and right-handed modes for
573
+ every value of kz. Consequently, a straightforward calcu-
574
+ lation gives a vanishing thermal Hall conductivity in this
575
+ state
576
+ κxy ∼
577
+
578
+ dkxdkzvx(k)ϵ(k)∂nB[ϵ(k)]
579
+ ∂T
580
+ = 0,
581
+ (30)
582
+ where vx(k) = ∂ϵ(k)
583
+ ∂kx
584
+ and nB(ϵ) is the Bose-Einstein dis-
585
+ tribution. The integral over kx in Eq. (30) vanishes since
586
+ the left-handed (kx < 0) and right-handed (kx > 0)
587
+ modes give a contribution that is equal in magnitude but
588
+ opposite in sign.
589
+ By construction, this state is a fully gapped symmet-
590
+ ric state, which has an identical topological response to
591
+ a noninteracting Weyl semimetal at λ = 1/2. Note again
592
+ that, while there does exist a close connection between
593
+ this state and the 2D Pfaffian-antisemion state, it may
594
+ not be viewed as a simple stack of such 2D states. In par-
595
+ ticular, there are no semion quasiparticles, but isolated
596
+ intersections of 2π vortex loop excitations with atomic
597
+ xy-planes do behave as semions.
598
+ C.
599
+ 3D analog of the PH-Pfaffian state
600
+ Now we note that a second distinct gapped symmet-
601
+ ric state, reproducing topological response of a nonin-
602
+ teracting Weyl semimetal, actually exists. This state is,
603
+ in a way, simpler than the 3D analog of the Pfaffian-
604
+ antisemion above and, as we will demonstrate, may be
605
+ viewed as a 3D analog of the PH-Pfaffian.39,41,44,45
606
+ To construct this state, we take a time-reversed copy
607
+ of our Weyl semimetal with λ = 1/2. Writing its La-
608
+ grangian in terms of spinon and chargon variables, we
609
+ have
610
+ L = ¯fγµ(∂µ+iaµ)f − i
611
+ 8π ez∧a∧da+ i
612
+ 4π (A−a)∧db, (31)
613
+ where the first term is the contribution of the gapless
614
+ Weyl fermions while the second term is the topological
615
+ contribution from all the filled negative-energy states.
616
+ We will switch to the index-free notation henceforth.
617
+ We now place the chargons into a stack of independent
618
+ ν = 1/2 quantum Hall states in each xy-atomic plane.
619
+ Technically, this means that we take the two-form gauge
620
+ field b to be “foliated”71–74
621
+ b = ez ∧ ˜b,
622
+ (32)
623
+ where ˜b = ˜b0dτ +˜bxdx+˜bydy is a one-form field that lacks
624
+ the z-component, and add a term − 2i
625
+ 4πez ∧ ˜b ∧ d˜b to the
626
+ Lagrangian Eq. (31). Furthermore, we place the spinons
627
+ into the intra-nodal pairing state of Eq. (18), which leads
628
+ to a 3D p + ip topological superconductor with a chiral
629
+ Majorana mode, spanning the surface BZ, whose chirality
630
+ is, however, opposite to the chirality of the Fermi-arc
631
+ state of the original noninteracting Weyl semimetal. This
632
+ gaps out the gauge field aµ and decouples the boson and
633
+ fermion sectors.
634
+ The boson sector Lagrangian now reads
635
+ Lb = − 2i
636
+ 4π ez ∧ ˜b ∧ d˜b + i
637
+ 2π ez ∧ A ∧ d˜b.
638
+ (33)
639
+ Integrating over ˜b leaves the effective action
640
+ Lb = i
641
+ 8π ez ∧ A ∧ dA,
642
+ (34)
643
+
644
+ 6
645
+ which describes topological electrical response, which is
646
+ identical to the original noninteracting Weyl semimetal.
647
+ The thermal Hall effect, coming from Lb, is twice that
648
+ of the noninteracting Weyl semimetal, however a mi-
649
+ nus a half is contributed by the opposite-chirality Ma-
650
+ jorana surface state of the paired time-reversed spinons.
651
+ Thus we fully reproduce both electrical and thermal
652
+ topological responses of the noninteracting gapless Weyl
653
+ semimetal.
654
+ This state may be viewed as a 3D generalization of
655
+ the 2D PH-Pfaffian state. Note that, unlike the 3D ana-
656
+ log of the Pfaffian-antisemion state, described above, this
657
+ state is not a 3D incompressible liquid, but exhibits a
658
+ fracton-type order.71–74 If we ignore fermions, Eq. (33)
659
+ describes a stack of independent 2D PH-Pfaffian states.
660
+ The charge-1/2 anyon excitations in these 2D states are
661
+ only able to move within a given plane and can not tun-
662
+ nel between the planes. Neutral fermions propagate in
663
+ 3D and connect the individual layers together, but the
664
+ anyons remain confined within 2D layers.
665
+ III.
666
+ “DUAL” WEYL SEMIMETAL
667
+ The existence of a 3D analog of the PH-Pfaffian has an
668
+ important implication, which we will now discuss. Let us
669
+ first return back to the 3D Pfaffian-antisemion state. Let
670
+ us note that, in this case, the topological response of a
671
+ noninteracting Weyl semimetal is only reproduced when
672
+ the fermionic spinons are gapped by pairing and vison
673
+ vortex loops excitations are gapped. If the pairing gap is
674
+ taken to zero, the statistical field a is no longer massive
675
+ and its coupling to the gapless Weyl spinons produces a
676
+ topological term
677
+ i
678
+ 8πez ∧ a ∧ da, so that the Lagrangian
679
+ may be written as
680
+ L = ¯fγµ(∂µ + iaµ)f + i
681
+ 8π ez ∧ a ∧ da
682
+ + i
683
+ 4π (A − a + 2c) ∧ db + i
684
+ 2π ez ∧ c ∧ dc.
685
+ (35)
686
+ Integrating out b and c gives
687
+ L = ¯fγµ(∂µ + iaµ)f + i
688
+ 4π ez ∧ a ∧ da
689
+ − i
690
+ 4π ez ∧ A ∧ da + i
691
+ 8π ez ∧ A ∧ dA.
692
+ (36)
693
+ To obtain the electromagnetic response, we now integrate
694
+ out a. This may be done perturbatively, treating the re-
695
+ sponse of the gapless low-energy modes, i.e.
696
+ the first
697
+ term in Eq. (36) as a perturbation, compared to the sec-
698
+ ond term. This is possible, because the response of the
699
+ gapless modes, treated in the random phase approxima-
700
+ tion (RPA), is given by
701
+ Sf = 1
702
+ 2
703
+
704
+ q
705
+ aµ(q)Πµν(q)aν(−q),
706
+ (37)
707
+ where
708
+ Πµν(q) = (q2δµν − qµqν)f(q2),
709
+ (38)
710
+ is the polarization operator of the massless 3D Dirac
711
+ fermion and
712
+ f(q2) =
713
+ 1
714
+ 12π2 ln
715
+ �4Λ2
716
+ q2
717
+
718
+ + O(1).
719
+ (39)
720
+ Here Λ ≫ q is the cutoff momentum, and a convention
721
+ q0 = −Ω is used (Ω is the Matsubara frequency). Note
722
+ that Πµν(q) is almost the same as the polarization op-
723
+ erator of the massive 3D Dirac fermion, in which case
724
+ f(q2) would have been a constant at small q. Even with
725
+ the log nonanalyticity, Πµν(q) is still much smaller, in
726
+ the long wavelength limit, than the topological contribu-
727
+ tions, which are of first order in q.
728
+ At leading order we may then ignore the gapless
729
+ fermions and vary the Lagrangian with respect to a,
730
+ which gives at the saddle point a = A/2 and leaves the
731
+ Lagrangian
732
+ L = ¯fγµ(∂µ + iAµ/2)f +
733
+ i
734
+ 16π ez ∧ A ∧ dA,
735
+ (40)
736
+ which clearly corresponds to half of the Hall conductivity
737
+ of a noninteracting Weyl semimetal, i.e. the theory with
738
+ gapless spinons does not reproduce topological response
739
+ of the noninteracting Weyl semimetal.
740
+ In contrast, let us return to Eq. (31), which describes a
741
+ time-reversed Weyl semimetal and add to it the foliated
742
+ topological term of Eq. (33), without opening the spinon
743
+ pairing gap
744
+ L = ¯fγµ(∂µ + iaµ)f − i
745
+ 8π ez ∧ a ∧ da
746
+ + i
747
+ 2π ez ∧ (A − a) ∧ d˜b − 2i
748
+ 4π ez ∧ ˜b ∧ d˜b.
749
+ (41)
750
+ Integrating out ˜b now, we obtain
751
+ L = ¯fγµ(∂µ+iaµ)f − i
752
+ 4π ez∧A∧da+ i
753
+ 8π ez∧A∧dA. (42)
754
+ This has identical electrical and thermal Hall responses to
755
+ the original noninteracting Weyl semimetal. This means
756
+ that Eq. (41) describes a distinct gapless state, which
757
+ reproduces the topological response of a noninteracting
758
+ Weyl semimetal. This statement is very closely analo-
759
+ gous to the statement of duality between noninteract-
760
+ ing 2D Dirac fermion and QED3.44,46–51 However, note
761
+ that, in contrast to the 2D Dirac duality case, dynami-
762
+ cally this system is quite different from a noninteracting
763
+ Weyl semimetal. Indeed, integrating out f and then a
764
+ in Eq. (42) using RPA produces a Meissner term for the
765
+ components of A, transverse to z. The coefficient of the
766
+ Meissner term, however, vanishes in the long-wavelength
767
+ limit (it is equal to the inverse of the function f(q2), in-
768
+ troduced in Eq. (39)).
769
+ The system thus behaves as a
770
+ superconductor at finite length scales and in directions,
771
+ transverse to z, but with a phase stiffness that vanishes
772
+ in the thermodynamic limit. In contrast, it behaves as
773
+ an insulator along z.
774
+
775
+ 7
776
+ IV.
777
+ TOPOLOGICAL ORDER IN A GAPPED
778
+ NODAL LINE SEMIMETAL
779
+ We will now extend the ideas, developed above, to
780
+ the case of nodal line semimetals, which realize a dis-
781
+ tinct kind of (3 + 1)-dimensional topological order, when
782
+ gapped without breaking the protecting symmetries. In
783
+ the nodal line semimetals, only nodal lines which arise
784
+ from touchings of pairs of nondegenerate bands, are topo-
785
+ logically nontrivial. In this case, TR symmetry may be
786
+ taken to be broken, while the nodal line is then protected
787
+ by the mirror reflection symmetry in the plane, contain-
788
+ ing the line.75 This may be described by the following
789
+ two-band cubic-lattice Hamiltonian76,77
790
+ H(k) = [6 − t1 − 2(cos kx + cos ky + cos kz)] σx
791
+ + 2t2 sin kzσy.
792
+ (43)
793
+ The nodal line in this model appears in the xy-plane
794
+ of the momentum space and is protected by the mirror
795
+ reflection symmetry within this plane, where the mirror
796
+ reflection operator is σx. The band-touching line in the
797
+ xy-plane is given by the solution of the equation
798
+ 4 − t1 − 2(cos kx + cos ky) = 0.
799
+ (44)
800
+ In order construct a gapped symmetric state, it is use-
801
+ ful to reinterpret Eq. (43) as a stacking of alternating
802
+ electron and hole-like Fermi liquids with the band dis-
803
+ persions (see Fig. 1)
804
+ ϵ±(k) = ±[4 − t1 − 2(cos kx + cos ky)],
805
+ (45)
806
+ where ± are the two eigenvalues of the mirror reflection
807
+ operator σx.37 The Luttinger volumes of the two Fermi
808
+ liquids ±VF are equal in magnitude to the area in mo-
809
+ mentum space, enclosed by the nodal line. For the two
810
+ Fermi liquids, the topological response describes the fill-
811
+ ing of the charged particles
812
+ L = ±iVF
813
+ 4π2 ex ∧ ey ∧ A,
814
+ (46)
815
+ Consequently, the topological response of the nodal line,
816
+ takes the form of fractional electric polarization37,78,79
817
+ L = ±iVF
818
+ 8π2 ex ∧ ey ∧ dA,
819
+ (47)
820
+ impossible in an ordinary insulator without topological
821
+ order.
822
+ The simplest way to obtain a gapped mirror-symmetric
823
+ insulator with the same topological response Eq. (47)
824
+ is to stack gapped 2D Fermi liquid states in a mirror-
825
+ symmetric fashion.
826
+ To gap the 2D Fermi liquids, we
827
+ follow the same procedure as above.
828
+ We represent an
829
+ electron as a product of a neutral spinon f and a bosonic
830
+ chargon eiθ and place the spinons into a fully-gapped
831
+ paired state.
832
+ The simplest fully gapped paired spinon
833
+ +
834
+ -
835
+ +
836
+ +
837
+ +
838
+ +
839
+ -
840
+ -
841
+ -
842
+ -
843
+ d
844
+ d
845
+ FIG. 1.
846
+ (Color online) Construction of the nodal line
847
+ semimetal as a stack of alternating coupled electron and hole-
848
+ like Fermi liquids. The Luttinger volume of each 2D Fermi
849
+ liquid is equal in magnitude to the area in momentum space,
850
+ enclosed by the nodal line. The lattice constant d is set equal
851
+ to unity in all the equations.
852
+ state is p-wave (since the Fermi liquids are spinless), de-
853
+ scribed by the following Hamiltonian
854
+ Hf =
855
+
856
+ k
857
+
858
+ ϵ±(k)f †
859
+ kfk + ∆
860
+ 2 (sin kx + i sin ky)f †
861
+ kf †
862
+ −k + h.c.
863
+
864
+ .
865
+ (48)
866
+ Introducing Nambu spinor notation ψk = (fk, f †
867
+ −k), this
868
+ may be represented as a massive 2D Dirac Hamiltonian
869
+ H = 1
870
+ 2
871
+
872
+ k
873
+ ψ†
874
+ k [ϵ±(k)τz + ∆(τx sin kx − τy sin ky)] ψk,
875
+ (49)
876
+ where τa are Pauli matrices in the particle-hole space.
877
+ This is the Hamiltonian of a Read-Green topological su-
878
+ perconductor,80 which hosts chiral Majorana modes at
879
+ the edges, with opposite chirality for electron and hole-
880
+ like Fermi liquid states. Consequently, an elementary flux
881
+ hc/2e = π vortex hosts a zero-energy localized Majorana
882
+ bound state and can not be condensed.
883
+ To condense higher-flux vortices, we need to consider
884
+ the chargon sector of the theory. Suppose we attempt
885
+ to condense flux-2π vortices. The chargon sector will be
886
+ described by the following theory81,82
887
+ Lb = i
888
+ 2π (A + c) ∧ db ± iVF
889
+ (2π)2 ex ∧ ey ∧ c.
890
+ (50)
891
+ Here b is a one-form gauge field, which determines the
892
+ charge current
893
+ Jµ = 1
894
+ 2π ϵµνλ∂νbλ,
895
+ (51)
896
+ while c is a one-form gauge field, which determines the
897
+ vortex current
898
+ ˜Jµ = 1
899
+ 2π ϵµνλ∂νcλ.
900
+ (52)
901
+ The last term of the Lagrangian produces the correct
902
+ electromagnetic response of a system with charge ν =
903
+
904
+ 8
905
+ ±VF /(2π)2 per unit cell when b is integrated out, setting
906
+ c = −A. However, when the filling ν is not an integer,
907
+ Eq. (50) can not be the correct theory of a featureless
908
+ insulator since the last term is not gauge invariant. With
909
+ ν = ±p/q, a featureless insulator may be obtained only
910
+ by condensing flux 2πq vortices, which is described by
911
+ the theory
912
+ Lb = i
913
+ 2π (A + qc) ∧ db ± ipex ∧ ey ∧ c,
914
+ (53)
915
+ where all terms now have properly quantized integer co-
916
+ efficients and are gauge invariant. This is because the
917
+ quasiparticle, minimally coupled to cµ, carries charge
918
+ 1/q, as seen from the first term. Therefore, the filling
919
+ of such quasiparticles is qν = p (i.e. an integer), which is
920
+ what the second term expresses.
921
+ Stacking such insulators with alternating sign of ν in
922
+ the z-direction in a mirror-symmetric fashion, we obtain
923
+ Lb = i
924
+ 4π (A + qc) ∧ db ± ip
925
+ 2 ex ∧ ey ∧ dc,
926
+ (54)
927
+ where the factor of 1/2 in front of the last term arises
928
+ due to the fact that the unit cell of the stack contains a
929
+ pair of electron and hole-like 2D Fermi liquids and the
930
+ mirror symmetry requires that all neighboring 2D Fermi
931
+ liquids in the stack are separated by an equal distance.
932
+ The gauge field b in Eq. (54) has now been promoted to a
933
+ two-form field, such that the (3 + 1)-dimensional charge
934
+ current is given by
935
+ Jµ = 1
936
+ 4π ϵµναβ∂νbαβ,
937
+ (55)
938
+ while the two-form vortex current is
939
+ ˜Jµν = 1
940
+ 2π ϵµναβ∂αcβ.
941
+ (56)
942
+ Integrating out b in Eq. (54) gives c = −A/q and the
943
+ electromagnetic response described by
944
+ L = ± ip
945
+ 2q ex ∧ ey ∧ dA = ±iVF
946
+ 8π2 ex ∧ ey ∧ dA,
947
+ (57)
948
+ which coincides with Eq. (47). Thus we obtain a feature-
949
+ less insulator with topological order, which has an iden-
950
+ tical topological response to a weakly-interacting nodal
951
+ line semimetal. Note that the nodal line semimetal has
952
+ no topological thermal response, which is also the case in
953
+ the fractionalized insulator that we have constructed.
954
+ V.
955
+ DISCUSSION AND CONCLUSIONS
956
+ In this paper we have presented a theory of (3 + 1)-
957
+ dimensional topologically ordered states, obtained by
958
+ gapping 3D topological semimetals without breaking pro-
959
+ tecting symmetries.
960
+ We started by pointing out that
961
+ a second gapped symmetric topologically-ordered state,
962
+ preserving the chiral anomaly of magnetic Weyl semimet-
963
+ als, exists, in addition to the state, originally proposed
964
+ in Ref. 20.
965
+ We have shown that, while the state of
966
+ Ref. 20 may be viewed as a 3D TR-breaking analog of
967
+ the Pfaffian-antisemion state in gapped 3D TI surface
968
+ states, the new state is the 3D analog of the PH-Pfaffian.
969
+ In contrast to the 3D Pfaffian-antisemion state, the 3D
970
+ PH-Pfaffian does not exhibit a true 3D topological order,
971
+ but a fracton-like order instead, with independent layers
972
+ of 2D PH-Pfaffian liquid immersed in a 3D p + ip topo-
973
+ logical superconductor of neutral composite fermions.
974
+ We then demonstrated that an interesting consequence
975
+ of the existence of the 3D PH-Pfaffian, is a duality
976
+ relation between a noninteracting Weyl semimetal and
977
+ QED4, in which a time-reversed electrically-neutral Weyl
978
+ semimetal is coupled to a dynamical gauge field, whose
979
+ topological defects (intersections of flux lines with atomic
980
+ planes) carry the electric charge. This duality relation
981
+ may be viewed as a 3D generalization of the known Dirac
982
+ fermion to QED3 duality relation, but is weaker than in
983
+ the 2D case, since the duality only applies to the topo-
984
+ logical response and not to the dynamics.
985
+ Finally, we have extended the theory to include topo-
986
+ logical orders in a gapped nodal line semimetal. Other
987
+ extensions, in particular to TR-invariant Weyl and Dirac
988
+ semimetals are also possible, but do not lead to any fun-
989
+ damentally new structure. One lesson we may highlight
990
+ is that gapped symmetric topological semimetals provide
991
+ a very simple and natural setting for (3 + 1)-dimensional
992
+ topologically-ordered states to appear.
993
+ The simplicity
994
+ stems, in part, from the fact that, due to the existence
995
+ of a preferred direction, selected by either the separa-
996
+ tion between the Weyl points in momentum space, or
997
+ the plane of the nodal line, there exists a natural con-
998
+ nection to well-studied (2 + 1)-dimensional topological
999
+ orders. The connection manifests either directly, in the
1000
+ form of layered fracton-like order, or less directly, when
1001
+ intersections of (3 + 1)-dimensional vortex-loop excita-
1002
+ tions with atomic planes behave as fractionally-charged
1003
+ and sometimes anyonic (2 + 1)-dimensional quasiparticle
1004
+ excitations.
1005
+ ACKNOWLEDGMENTS
1006
+ We acknowledge useful discussions with Chong Wang.
1007
+ Financial support was provided by the Natural Sciences
1008
+ and Engineering Research Council (NSERC) of Canada.
1009
+ AAB was also supported by Center for Advancement
1010
+ of Topological Semimetals, an Energy Frontier Research
1011
+ Center funded by the U.S. Department of Energy Office
1012
+ of Science, Office of Basic Energy Sciences, through the
1013
+ Ames Laboratory under contract DE-AC02-07CH11358.
1014
+ Research at Perimeter Institute is supported in part by
1015
+ the Government of Canada through the Department of
1016
+ Innovation, Science and Economic Development and by
1017
+ the Province of Ontario through the Ministry of Eco-
1018
+ nomic Development, Job Creation and Trade.
1019
+
1020
+ 9
1021
+ ∗ These authors contributed equally to this work.
1022
+ 1 X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
1023
+ 2 X.-G. Wen, Quantum Field Theory of Many-Body Systems
1024
+ (Oxford University Press, 2004).
1025
+ 3 C. Nayak, S. H. Simon, A. Stern, M. Freedman,
1026
+ and
1027
+ S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
1028
+ 4 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
1029
+ 5 S.-C. Zhang, International Journal of Modern Physics B
1030
+ 06, 25 (1992).
1031
+ 6 M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110
1032
+ (2005).
1033
+ 7 A. Kitaev, Annals of Physics 321, 2 (2006).
1034
+ 8 X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).
1035
+ 9 M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803
1036
+ (2009).
1037
+ 10 J. Maciejko, X.-L. Qi, A. Karch, and S.-C. Zhang, Phys.
1038
+ Rev. Lett. 105, 246809 (2010).
1039
+ 11 B. Swingle, M. Barkeshli, J. McGreevy,
1040
+ and T. Senthil,
1041
+ Phys. Rev. B 83, 195139 (2011).
1042
+ 12 K. Walker and Z. Wang, Frontiers of Physics 7, 150 (2012).
1043
+ 13 C. W. von Keyserlingk, F. J. Burnell,
1044
+ and S. H. Simon,
1045
+ Phys. Rev. B 87, 045107 (2013).
1046
+ 14 C.-M. Jian and X.-L. Qi, Phys. Rev. X 4, 041043 (2014).
1047
+ 15 C. Wang and M. Levin, Phys. Rev. Lett. 113, 080403
1048
+ (2014).
1049
+ 16 P. Ye and Z.-C. Gu, Phys. Rev. X 5, 021029 (2015).
1050
+ 17 P. Ye and Z.-C. Gu, Phys. Rev. B 93, 205157 (2016).
1051
+ 18 Y. Fuji and A. Furusaki, Phys. Rev. B 99, 241107 (2019).
1052
+ 19 T. Lan and X.-G. Wen, Phys. Rev. X 9, 021005 (2019).
1053
+ 20 C. Wang, L. Gioia,
1054
+ and A. A. Burkov, Phys. Rev. Lett.
1055
+ 124, 096603 (2020).
1056
+ 21 M. Thakurathi and A. A. Burkov, Phys. Rev. B 101,
1057
+ 235168 (2020).
1058
+ 22 D. Sehayek, M. Thakurathi, and A. A. Burkov, Phys. Rev.
1059
+ B 102, 115159 (2020).
1060
+ 23 T. Meng, A. G. Grushin, K. Shtengel, and J. H. Bardar-
1061
+ son, Phys. Rev. B 94, 155136 (2016).
1062
+ 24 T. Morimoto and N. Nagaosa, Scientific Reports 6, 19853
1063
+ EP (2016).
1064
+ 25 E. Sagi, A. Stern,
1065
+ and D. F. Mross, Phys. Rev. B 98,
1066
+ 201111 (2018).
1067
+ 26 Y. Hu, J. W. F. Venderbos, and C. L. Kane, Phys. Rev.
1068
+ Lett. 121, 126601 (2018).
1069
+ 27 T. Meng and J. C. Budich, Phys. Rev. Lett. 122, 046402
1070
+ (2019).
1071
+ 28 S. Raza, A. Sirota,
1072
+ and J. C. Y. Teo, Phys. Rev. X 9,
1073
+ 011039 (2019).
1074
+ 29 P. M. Tam, J. W. F. Venderbos,
1075
+ and C. L. Kane, Phys.
1076
+ Rev. B 105, 045106 (2022).
1077
+ 30 G. Volovik, The Universe in a Helium Droplet (Oxford:
1078
+ Clarendon, 2003).
1079
+ 31 G. E. Volovik, in Quantum Analogues: From Phase Tran-
1080
+ sitions to Black Holes and Cosmology, Lecture Notes
1081
+ in Physics,
1082
+ Vol. 718, edited by W. G. Unruh and
1083
+ R. Sch¨utzhold (Springer Berlin Heidelberg, 2007).
1084
+ 32 S. Murakami, New Journal of Physics 9, 356 (2007).
1085
+ 33 X. Wan, A. M. Turner, A. Vishwanath,
1086
+ and S. Y.
1087
+ Savrasov, Phys. Rev. B 83, 205101 (2011).
1088
+ 34 A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205
1089
+ (2011).
1090
+ 35 N. P. Armitage, E. J. Mele,
1091
+ and A. Vishwanath, Rev.
1092
+ Mod. Phys. 90, 015001 (2018).
1093
+ 36 L. Gioia, C. Wang, and A. A. Burkov, Phys. Rev. Research
1094
+ 3, 043067 (2021).
1095
+ 37 C. Wang, A. Hickey, X. Ying,
1096
+ and A. A. Burkov, Phys.
1097
+ Rev. B 104, 235113 (2021).
1098
+ 38 D. V. Else, R. Thorngren, and T. Senthil, Phys. Rev. X
1099
+ 11, 021005 (2021).
1100
+ 39 P. Bonderson, C. Nayak,
1101
+ and X.-L. Qi, Journal of Sta-
1102
+ tistical Mechanics: Theory and Experiment 2013, P09016
1103
+ (2013).
1104
+ 40 C. Wang, A. C. Potter, and T. Senthil, Phys. Rev. B 88,
1105
+ 115137 (2013).
1106
+ 41 X. Chen, L. Fidkowski, and A. Vishwanath, Phys. Rev. B
1107
+ 89, 165132 (2014).
1108
+ 42 M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, Phys.
1109
+ Rev. B 92, 125111 (2015).
1110
+ 43 D. F. Mross, A. Essin,
1111
+ and J. Alicea, Phys. Rev. X 5,
1112
+ 011011 (2015).
1113
+ 44 D. T. Son, Phys. Rev. X 5, 031027 (2015).
1114
+ 45 D. T. Son, Annual Review of Condensed Matter Physics
1115
+ 9, 397 (2018).
1116
+ 46 C. Wang and T. Senthil, Phys. Rev. X 5, 041031 (2015).
1117
+ 47 M. A. Metlitski and A. Vishwanath, Phys. Rev. B 93,
1118
+ 245151 (2016).
1119
+ 48 D. F. Mross, J. Alicea, and O. I. Motrunich, Phys. Rev.
1120
+ Lett. 117, 016802 (2016).
1121
+ 49 N. Seiberg, T. Senthil, C. Wang, and E. Witten, Annals
1122
+ of Physics 374, 395 (2016).
1123
+ 50 A. Karch and D. Tong, Phys. Rev. X 6, 031043 (2016).
1124
+ 51 J.-Y. Chen, J. H. Son, C. Wang, and S. Raghu, Phys. Rev.
1125
+ Lett. 120, 016602 (2018).
1126
+ 52 J. Nissinen and G. E. Volovik, Phys. Rev. Research 1,
1127
+ 023007 (2019).
1128
+ 53 J. Nissinen, T. T. Heikkil¨a, and G. E. Volovik, Phys. Rev.
1129
+ B 103, 245115 (2021).
1130
+ 54 X.-Y. Song, Y.-C. He, A. Vishwanath, and C. Wang, Phys.
1131
+ Rev. Research 3, 023011 (2021).
1132
+ 55 N. Manjunath and M. Barkeshli, Phys. Rev. Research 3,
1133
+ 013040 (2021).
1134
+ 56 A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133
1135
+ (2012).
1136
+ 57 T. Senthil, Phys. Rev. B 78, 045109 (2008).
1137
+ 58 M. Barkeshli and J. McGreevy, Phys. Rev. B 86, 075136
1138
+ (2012).
1139
+ 59 C. Burgess and F. Quevedo, Nuclear Physics B 421, 373
1140
+ (1994).
1141
+ 60 C. Burgess, C. L¨utken, and F. Quevedo, Physics Letters
1142
+ B 336, 18 (1994).
1143
+ 61 A. Chan, T. L. Hughes, S. Ryu,
1144
+ and E. Fradkin, Phys.
1145
+ Rev. B 87, 085132 (2013).
1146
+ 62 H.-G. Zirnstein and B. Rosenow, Phys. Rev. B 88, 085105
1147
+ (2013).
1148
+ 63 A. G. Grushin and G. Palumbo, Phys. Rev. B 102, 115146
1149
+ (2020).
1150
+ 64 T. Meng and L. Balents, Phys. Rev. B 86, 054504 (2012).
1151
+ 65 G. Y. Cho, J. H. Bardarson, Y.-M. Lu, and J. E. Moore,
1152
+ Phys. Rev. B 86, 214514 (2012).
1153
+ 66 G. Bednik, A. A. Zyuzin, and A. A. Burkov, Phys. Rev.
1154
+ B 92, 035153 (2015).
1155
+ 67 Y. Li and F. D. M. Haldane, Phys. Rev. Lett. 120, 067003
1156
+ (2018).
1157
+
1158
+ 10
1159
+ 68 T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850
1160
+ (2000).
1161
+ 69 S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D
1162
+ 41, 1231 (1990).
1163
+ 70 X. Ying,
1164
+ A. A.
1165
+ Burkov,
1166
+ and C.
1167
+ Wang,
1168
+ (2022),
1169
+ 10.48550/ARXIV.2210.06641.
1170
+ 71 K. Slagle and Y. B. Kim, Phys. Rev. B 96, 195139 (2017).
1171
+ 72 K. Slagle, D. Aasen, and D. Williamson, SciPost Phys. 6,
1172
+ 43 (2019).
1173
+ 73 K. Slagle, Phys. Rev. Lett. 126, 101603 (2021).
1174
+ 74 H. Geng, S. Kachru, A. Karch, R. Nally, and B. C. Ray-
1175
+ haun, Fortschritte der Physik 69, 2100133 (2021).
1176
+ 75 A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B
1177
+ 84, 235126 (2011).
1178
+ 76 Y. Wang and R. M. Nandkishore, Phys. Rev. B 95, 060506
1179
+ (2017).
1180
+ 77 H. Shapourian, Y. Wang, and S. Ryu, Phys. Rev. B 97,
1181
+ 094508 (2018).
1182
+ 78 S. T. Ramamurthy and T. L. Hughes, Phys. Rev. B 95,
1183
+ 075138 (2017).
1184
+ 79 A. A. Burkov, Phys. Rev. B 97, 165104 (2018).
1185
+ 80 N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
1186
+ 81 L. Balents, L. Bartosch, A. Burkov, S. Sachdev,
1187
+ and
1188
+ K. Sengupta, Phys. Rev. B 71, 144508 (2005).
1189
+ 82 A. A. Burkov and L. Balents, Phys. Rev. B 72, 134502
1190
+ (2005).
1191
+
XNE2T4oBgHgl3EQfDwZ0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
XdAzT4oBgHgl3EQf1v7O/content/tmp_files/2301.01805v1.pdf.txt ADDED
@@ -0,0 +1,1736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Unsupervised Manifold Linearizing and Clustering
2
+ Tianjiao Ding1 Shengbang Tong2 Kwan Ho Ryan Chan1 Xili Dai3 Yi Ma2 Benjamin D. Haeffele1
3
+ Abstract
4
+ Clustering data lying close to a union of low-
5
+ dimensional manifolds, with each manifold as a cluster,
6
+ is a fundamental problem in machine learning. When the
7
+ manifolds are assumed to be linear subspaces, many meth-
8
+ ods succeed using low-rank and sparse priors, which have
9
+ been studied extensively over the past two decades. Un-
10
+ fortunately, most real-world datasets can not be well ap-
11
+ proximated by linear subspaces. On the other hand, several
12
+ works have proposed to identify the manifolds by learning
13
+ a feature map such that the data transformed by the map
14
+ lie in a union of linear subspaces, even though the original
15
+ data are from non-linear manifolds. However, most works
16
+ either assume knowledge of the membership of samples to
17
+ clusters, or are shown to learn trivial representations. In
18
+ this paper, we propose to simultaneously perform cluster-
19
+ ing and learn a union-of-subspace representation via Max-
20
+ imal Coding Rate Reduction. Experiments on synthetic and
21
+ realistic datasets show that the proposed method achieves
22
+ clustering accuracy comparable with state-of-the-art alter-
23
+ natives, while being more scalable and learning geometri-
24
+ cally meaningful representations.
25
+ 1. Introduction
26
+ 1.1. Motivation and Contributions
27
+ Clustering is a fundamental problem in machine learn-
28
+ ing, allowing one to group data into clusters based on as-
29
+ sumptions about the geometry of clusters. For example,
30
+ when data are concentrated around distinct centroids, classi-
31
+ cal k-means clustering [14,17,26,29] and its variants [2,3,5]
32
+ are able to find the cluster centroids and assign membership
33
+ to each data point. More generally4, subspace clustering
34
+ methods [11, 13, 16, 25, 27, 50] are designed to cluster data
35
+ that lie close to a union of different low-dimensional linear
36
+ (or affine) subspaces, where each subspace defines a cluster.
37
+ 1Mathematical Institute for Data Science, Johns Hopkins University,
38
+ USA 2Department of Electrical Engineering and Computer Sciences, Uni-
39
+ versity of California, Berkeley, USA 3The Hong Kong University of Sci-
40
+ ence and Technology (Guangzhou), PRC
41
+ 4This includes k-means-based methods, since a centroid is a 0-
42
+ dimensional affine subspace.
43
+ Overall, those methods often enjoy theoretical guarantees of
44
+ correct clustering [13,22,27,37,40,41,44,47–51] and find
45
+ applications in various problems such as image clustering,
46
+ face recognition, motion segmentation, and recently in pop-
47
+ ular Transformer architectures in deep learning [38].
48
+ Despite the wide range of applications and theoretical
49
+ guarantees, subspace clustering methods rely on a crucial
50
+ assumption that each cluster can be well approximated by
51
+ a linear/affine subspace, which is often not valid for many
52
+ real-world datasets. For instance, even in a dataset as sim-
53
+ ple as MNIST hand-written digits, images of a single digit
54
+ do not lie close to a low-dimensional linear subspace, thus
55
+ directly applying subspace clustering will fail. Instead, it
56
+ is more natural to assume the clusters are from non-linear
57
+ low-dimensional manifolds (one manifold per cluster), and
58
+ attempt to learn or design a non-linear embedding of the
59
+ data so that the transformed data lies close to distinct linear
60
+ subspaces, with points from one manifold mapped to the
61
+ same subspace. For example, [24] shows that a subspace
62
+ clustering method can achieve 99% clustering accuracy on
63
+ MNIST images after embedding the data with the scattering
64
+ transform [6].
65
+ Beyond the above example, numerous other subspace
66
+ clustering methods have explored hand-designing an appro-
67
+ priate feature embedding (or kernel) such as polynomial or
68
+ exponential mappings [34]. However, these embeddings as-
69
+ sume specific families of manifolds, thus they need to be
70
+ hand-crafted for various tasks and datasets using domain
71
+ knowledge, which makes their application challenging for
72
+ complicated data such as natural images.
73
+ On the other
74
+ hand, [12] proposes to cluster data based on treating a lo-
75
+ cal neighborhood of the manifold approximately as a linear
76
+ subspace. However, for this to succeed sufficient sampling
77
+ density is required, which implies a prohibitive number of
78
+ samples when the manifolds are of moderate dimension or
79
+ are highly curved. Further, for a new sample unseen at train-
80
+ ing time one needs to run the algorithm with all samples
81
+ to embed it or assign a membership to it, which is expen-
82
+ sive computationally. More recently, numerous works pro-
83
+ pose to learn an appropriate linear embedding of the data
84
+ via deep networks and then perform subspace clustering in
85
+ the feature space [1, 18, 20, 35, 54]. Unfortunately, it has
86
+ been shown that many of these formulations are provably
87
+ arXiv:2301.01805v1 [cs.LG] 4 Jan 2023
88
+
89
+ (a)
90
+ (b)
91
+ (c)
92
+ (d)
93
+ Figure 1. (a) Input data X of two manifolds each containing 100 points. (b) Features Zθ at random initialization. (c) Zθ after self-
94
+ supervised initialization. (d) Zθ after MLC (4) training. Details are in the Appendix.
95
+ ill-posed and learn trivial representations5, with much of the
96
+ claimed benefit coming from ad-hoc post-processing rather
97
+ than the method itself [15].
98
+ This leads to the following
99
+ question:
100
+ Question 1. For data approximately supported on an un-
101
+ derlying union of manifolds, can we learn a transformation
102
+ of the data, so that the transformed data lie in distinct linear
103
+ subspaces to be easily clustered?
104
+ Meanwhile, learning a representation from multi-modal
105
+ data has been a topic of its own interest in machine learning.
106
+ An ideal property of the learned representation often pur-
107
+ sued is between-cluster discrimination, i.e., features from
108
+ different clusters should be well separated. Further, an im-
109
+ portant yet often ignored property of the learned representa-
110
+ tion is that it maintains within-cluster diversity. This is de-
111
+ sirable as it allows distances of samples within a cluster to
112
+ be preserved under the learned transformation, which could
113
+ facilitate downstream tasks such as denoising, hierarchical
114
+ clustering and semantic interpretation. In the supervised
115
+ setting, training with the cross-entropy (CE) classification
116
+ objective fails to achieve the second property, as it has been
117
+ shown empirically [32] and theoretically [43, 56] that the
118
+ representation learned by CE has the property that features
119
+ from one cluster tend to collapse to a single point. On the
120
+ other hand, recent work has proposed the principle of Max-
121
+ imal Coding Rate Reduction (MCR2) [53] as one of the few
122
+ methods that are able to achieve the two ideal properties
123
+ by learning a representation where features from each clus-
124
+ ter are expected to lie close to a low-dimensional subspace
125
+ (within-cluster diverse), and the subspaces from different
126
+ clusters are orthogonal to each other (between-cluster dis-
127
+ criminative). However, for MCR2 to learn such orthogonal
128
+ subspaces each corresponding to one cluster, one needs the
129
+ annotation of which sample belong to which cluster. Such
130
+ annotation might be expensive or impossible to acquire for
131
+ 5In this paper, we use ‘representation’ and ‘feature’ interchangeably to
132
+ mean the image of data under a (learned) transformation.
133
+ large-scale datasets. This motivates another question of in-
134
+ terest:
135
+ Question 2. Can we learn a union-of-orthogonal-subspace
136
+ representation of data coming from an underlying union of
137
+ manifolds without access to the labels?
138
+ This paper gives positive answers to the two interrelated
139
+ questions by making the following contributions.
140
+ 1. We propose to simultaneously cluster the data and
141
+ learn a union-of-orthogonal-subspace representation
142
+ via MCR2, when data is assumed to lie close to a
143
+ union of manifolds. This is achieved by formulation
144
+ (4), which optimizes over both the representation and
145
+ a doubly stochastic membership formulation inspired
146
+ by the state-of-the-art subspace clustering result [24].
147
+ 2. Since the membership has as many entries as the
148
+ square of the batch size of the input data, we give a
149
+ parameterization of the membership (Figure 2). Fur-
150
+ ther, as problem (4) is highly non-convex, we give a
151
+ meta-algorithm (Algorithm 1) on how to initialize the
152
+ variables and to optimize it.
153
+ 3. We conduct experiments on simulation and CIFAR10
154
+ to demonstrate some desirable properties of the pro-
155
+ posed method.
156
+ We further experiment on datasets
157
+ with larger number of clusters and imbalanced clus-
158
+ ters such as CIFAR100-20, CIFAR100-100, and Tiny-
159
+ ImageNet200, and show that the proposed method
160
+ achieves state-of-the-art performance.
161
+ 1.2. Additional Related Work
162
+ Beyond the above, we make connections to a few impor-
163
+ tant works that are related to this paper.
164
+ Deep Clustering and Representation Learning.
165
+ Re-
166
+ cently, there is an interesting line of research in representa-
167
+ tion learning and clustering that takes advantage of pseudo-
168
+ labelling and semi/self-supervised learning [7, 30, 33, 45].
169
+
170
+ 1.0
171
+ 0.5
172
+ 0.0
173
+ -1.0
174
+ -0.5
175
+ -0.5
176
+ 0.0
177
+ -1.0
178
+ 0.5
179
+ -1.0
180
+ -0.5
181
+ 0.0
182
+ 1.0
183
+ 0.5
184
+ 1.01.0
185
+ 0.5
186
+ 0.0
187
+ -1.0
188
+ -0.5
189
+ -0.5
190
+ 0.0
191
+ -1.0
192
+ 0.5
193
+ -1.0
194
+ -0.5
195
+ 0.0
196
+ 1.0
197
+ 0.5
198
+ 1.01.0
199
+ 0.5
200
+ 0.0
201
+ -1.0
202
+ -0.5
203
+ -0.5
204
+ 0.0
205
+ -1.0
206
+ 0.5
207
+ -1.0
208
+ -0.5
209
+ 0.0
210
+ 1.0
211
+ 0.5
212
+ 1.01.0
213
+ 0.5
214
+ 0.0
215
+ -1.0
216
+ -0.5
217
+ -0.5
218
+ 0.0
219
+ -1.0
220
+ 0.5
221
+ -1.0
222
+ -0.5
223
+ 0.0
224
+ 1.0
225
+ 0.5
226
+ 1.0Specifically, one first identifies a subset of samples (often
227
+ termed reliable samples) based on geometric or statistical
228
+ criteria in the learned representation and cluster prediction,
229
+ and then uses the predicted labels for those reliable sam-
230
+ ples as if they are ground-truth labels to refine the rep-
231
+ resentation and cluster prediction of other samples.
232
+ De-
233
+ spite the promising clustering performance, the represen-
234
+ tation learned by these methods are not constrained to be
235
+ both between-cluster discriminative and within-cluster di-
236
+ verse. In contrast, the proposed method learns a represen-
237
+ tation with these two ideal properties (see Figure 4) and
238
+ also achieves state-of-the-art clustering performance (see
239
+ Tables 2 and 4).
240
+ Neural Manifold Clustering and Embedding (NMCE).
241
+ A recent preprint [23] also proposes a solution to the same
242
+ problem we study, i.e., clustering the data and learning an
243
+ union-of-orthogonal-subspace representation.
244
+ In particu-
245
+ lar, [23] proposes to model the point-to-cluster membership
246
+ and optimize MCR2 [53] over both the representation and
247
+ the membership. In this paper, we adopt a similar formula-
248
+ tion, but we propose to model the point-to-point affinity us-
249
+ ing a doubly stochastic matrix, inspired by the state-of-the-
250
+ art subspace clustering methods (§2.2). Aside from having
251
+ different conceptual formulations and algorithms, our for-
252
+ mulation is much more stable with respect to initialization
253
+ and is naturally suitable for hierarchical clustering. We de-
254
+ tail these distinctions in §2.2. Experiments (Table 2) further
255
+ show that the proposed method (MLC) achieves higher ac-
256
+ curacy than [23] (NMCE) on large scale realistic datasets.
257
+ 2. Problem Formulation
258
+ We start by defining the problem that we study. Suppose
259
+ X = [x1, . . . , xn] ∈ RD×n is a dataset of n samples drawn
260
+ from a union of k underlying manifolds �k
261
+ j=1 Mj and y ∈
262
+ Rn their memberships to the manifolds, i.e., xi ∈ My(i).
263
+ Problem 1 (Unsupervised Manifold Linearizing and Clus-
264
+ tering). Given the dataset X, can we simultaneously 1)
265
+ cluster the samples, i.e., estimate y, and 2) learn a lin-
266
+ ear representation for manifolds, i.e., find a transformation
267
+ f : RD → Rd, such that the image of each manifold f(Mi)
268
+ is a low-dimensional linear subspace of Rd, and the sub-
269
+ spaces satisfy desired properties (§1), i.e., they are between-
270
+ cluster discriminative and within-cluster diverse?
271
+ Here we base our approach on the principle of Maximal
272
+ Coding Rate Reduction (MCR2) which is designed to learn
273
+ ideal representations in the supervised case, i.e., when the
274
+ membership y is given (§2.1). Then we discuss the chal-
275
+ lenges of simultaneously clustering and learning represen-
276
+ tation (Problem 1), and propose our MCR2 clustering ob-
277
+ jective to solve Problem 1 with those challenges in mind
278
+ (§2.2). We further give an algorithm to optimize the pro-
279
+ posed objective (§2.3).
280
+ 2.1. Supervised Manifold Linearizing via MCR2
281
+ In the case when the labels y are given as supervision,
282
+ MCR2 [53] aims to address part 2) of Problem 1.
283
+ Let
284
+ fθ : RD → Sd−1 be a featurizer parameterized by a
285
+ neural network, which in turn gives an embedding Zθ :=
286
+ [z1, . . . , zn] ∈ Rd×n of data with zi := fθ(xi) ∈ Sd−1.
287
+ MCR2 aims to learn an ideal representation by optimizing
288
+ max
289
+ θ
290
+ R(Zθ; ϵ) − Rc(Zθ, Π; ϵ)
291
+ s.t.
292
+ Zθ ∈ S
293
+ (1)
294
+ where R(Zθ; ϵ) := log det
295
+
296
+ I +
297
+ d
298
+ nϵ2 ZθZ⊤
299
+ θ
300
+
301
+ ,
302
+ and Rc(Zθ, Π; ϵ) :=
303
+ k
304
+
305
+ j=1
306
+ ⟨Πj, 1⟩
307
+ n
308
+ log det
309
+
310
+ I +
311
+ d
312
+ ⟨Πj, 1⟩ϵ2 Zθ Diag(Πj)Z⊤
313
+ θ
314
+
315
+ .
316
+ Here S is the set of matrices whose columns all have unit
317
+ ℓ2 norm6, Π ∈ Rn×k is a given membership matrix such
318
+ that Πij = 1 if j = y(i) and Πij = 0 otherwise, ϵ > 0
319
+ is a prescribed precision parameter, Πj ∈ Rn denotes the
320
+ jth column of Π, 1 is a vector of all ones so that ⟨Πj, 1⟩
321
+ is the number of points in cluster j, and finally for v ∈
322
+ Rn, Diag(v) denotes a diagonal matrix with the entries of
323
+ v along the diagonal.
324
+ Intuitively7, the R(Zθ; ϵ) term of (1) measures the vol-
325
+ ume of Zθ, and maximizing it would diversify features from
326
+ all samples, which we will refer to as the expansion term
327
+ Likewise, the Rc(Zθ, Π; ϵ) term measures the sum of vol-
328
+ umes of each cluster of Zθ and is referred to as the compres-
329
+ sion term, since minimizing it would push features within
330
+ each cluster to stay close. It has been shown that given
331
+ Π, the features obtained by maximizing the rate reduction
332
+ R(Zθ; ϵ)−Rc(Zθ, Π; ϵ) has the property that the features
333
+ of each cluster spread uniformly within a subspace (within-
334
+ cluster diverse), and the subspaces from different clusters
335
+ are orthogonal (between-cluster discriminative), under rel-
336
+ atively mild assumptions [53].
337
+ 2.2. Unsupervised Manifold Linearizing and Clus-
338
+ tering via MCR2
339
+ While the MCR2 formulation is designed to learn ideal
340
+ representations (§1) when the membership y (or equiva-
341
+ lently Π) is given, here we are interested in the unsuper-
342
+ vised setting where one does not have access to membership
343
+ annotations. Thus, we propose to simultaneously perform
344
+ both parts 1) and 2) of Problem 1 by also optimizing over
345
+ 6This can be easily achieved by having the last layer of the neural net-
346
+ work fθ be a normalization layer.
347
+ 7More formally, terms of the form log det
348
+
349
+ I +
350
+ d
351
+ nϵ2 W W ⊤�
352
+ esti-
353
+ mate the average number of bits needed to code n i.i.d. samples W ∈
354
+ Rd×n from a zero-mean d-dimensional Gaussian up to a distortion ϵ [28],
355
+ hence the name coding rate.
356
+
357
+ the membership Π of data. This naturally leads to
358
+ max
359
+ θ,Π∈Ω◦ R(Zθ; ϵ) − Rc(Zθ, Π; ϵ)
360
+ s.t.
361
+ Zθ ∈ S,
362
+ (2)
363
+ where Ω◦ := {Π ∈ Rn×k : ∀i ∈ [n], ∃ˆy(i)
364
+ s.t. Πiˆy(i) =
365
+ 1 and Πij = 0 for j ̸= ˆy(i)} is the set of all ‘hard’ assign-
366
+ ments, i.e., each row of Π is a one-hot vector. However,
367
+ this optimization is in general combinatorial: its complex-
368
+ ity grows exponentially in n and k, and it does not allow
369
+ smooth and gradual changes of Π. Further, a second chal-
370
+ lenge is the chicken-and-egg nature of this problem: If one
371
+ already has an ideal representation Z, then existing sub-
372
+ space clustering methods can be applied on Z to estimate
373
+ the membership. Likewise, if one is given the membership
374
+ Π of clusters, then solving (1) would lead to an ideal rep-
375
+ resentation. However, the Zθ and Π at the beginning of
376
+ optimization is typically far from ideal.
377
+ Doubly Stochastic Subspace Clustering. To address the
378
+ combinatorial of estimating the cluster memberships, we
379
+ draw inspiration from the closely related problem of sub-
380
+ space clustering, where the goal is to cluster n samples as-
381
+ sumed to lie close to a union of k low-dimensional sub-
382
+ spaces (§1). In this case, one typically does not directly
383
+ learn an n × k matrix denoting memberships of n points
384
+ into k subspaces. Instead, one first learns an affinity ma-
385
+ trix Π ∈ Rn×n signaling the similarity between pairs of
386
+ points, and then applies spectral clustering on the learned
387
+ Π to obtain a final clustering [11,13,16,25,27,50]. In par-
388
+ ticular, requiring doubly-stochastic constraints on the affin-
389
+ ity Π is shown theoretically to suppress false inter-cluster
390
+ connections for clustering problems [9] along with state-of-
391
+ the-art empirical performance for subspace clustering prob-
392
+ lems [24].
393
+ Inspired by the above, we propose a constraint set Ω for
394
+ matrix Π to be the set of n × n doubly stochastic matrices,
395
+ Ω = {Π ∈ Rn×n : Π ≥ 0,
396
+ Π1 = Π⊤1 = 1}.
397
+ (3)
398
+ However, this constraint alone is insufficient for strong clus-
399
+ tering performance: Consider the optimization of (2) with
400
+ respect to Π ∈ Ω only, and note that the objective is
401
+ strongly convex with respect to Π. Since we maximize a
402
+ convex function with respect to convex constraints Ω, an
403
+ optimal Π would lie at an extreme point of Ω, which for
404
+ doubly stochastic matrices is a permutation matrix. This is
405
+ not ideal for clustering, as it implies that every point is as-
406
+ signed to its own distinct cluster, and there is no incentive
407
+ to merge points into larger clusters. To resolve this issue,
408
+ we follow the approach in [24] and add ℓ2 regularization8
409
+ γ
410
+ 2 ∥Π∥2
411
+ F to Π which biases Π toward the uniform matrix
412
+ 1
413
+ n11⊤, so by tuning γ we can also tune the sparsity level of
414
+ 8Other choices of regularization are also possible: Essentially any func-
415
+ tion which achieves its minimum over Ω at the uniform matrix could po-
416
+ tentially be used, e.g., the negative entropy function �
417
+ ij Πij log(Πij).
418
+ Π. This results in our final proposed formulation, dubbed
419
+ Manifold Linearizing and Clustering (MLC):
420
+ max
421
+ θ
422
+ R(Zθ; ϵ) − Rc(Zθ, Πθ; ϵ) − γ
423
+ 2 ∥Πθ∥2
424
+ F
425
+ (4)
426
+ s.t.
427
+ Zθ ∈ S, Πθ ∈ Ω,
428
+ where R(Zθ; ϵ) = log det
429
+
430
+ I +
431
+ d
432
+ nϵ2 ZθZ⊤
433
+ θ
434
+
435
+ , and
436
+ Rc(Zθ, Πθ; ϵ) = 1
437
+ n
438
+ n
439
+
440
+ j=1
441
+ log det
442
+
443
+ I + d
444
+ ϵ2 Zθ Diag((Πθ)j)Z⊤
445
+ θ
446
+
447
+ .
448
+ Note that here Πθ = Πθ(X) is now also parameterized
449
+ by a neural network. While this is constrained optimization
450
+ which may appear difficult to handle, we explain in §2.3
451
+ how we parameterize Zθ and Πθ via neural networks so
452
+ that the constraints are satisfied by construction. Below, we
453
+ note a few advantages of the proposed formulation.
454
+ Parameterizing Π via a Neural Network versus Free
455
+ Variables. An alternative way to parameterize the mem-
456
+ bership would be to directly take Π as decision variables in
457
+ Ω, as opposed to outputs of a neural network. However, this
458
+ leads to maintaining O(n2) variables which is prohibitive
459
+ for large datasets (e.g., n = 106 for ImageNet). In contrast,
460
+ this is not the case if one parameterizes Π as a neural net-
461
+ work, since one can do stochastic gradient descent such that
462
+ for each batch both the memory and computational com-
463
+ plexity is at most square of the batch size (Figure 2).
464
+ Comparison with NMCE. As mentioned in §1.2, NMCE
465
+ [23] approaches Problem 1 also by optimizing MCR2 over
466
+ both the representation and membership.
467
+ However, in
468
+ NMCE the membership is parameterized by an n × k ma-
469
+ trix Πn×k that models the point-cluster membership, which
470
+ is different from our doubly stochastic point-point member-
471
+ ship matrix Πθ inspired from the state-of-the-art subspace
472
+ clustering. Note further that for NMCE the initialization
473
+ of Πn×k is arbitrary and has nothing to do with the struc-
474
+ tures in the initialized representation Πθ, and a bad initial-
475
+ ization of Πn×k could lead to the features from different
476
+ true clusters being compressed. On the other hand, the pro-
477
+ posed doubly stochastic membership Πθ can be initialized
478
+ deterministically using structures from self-supervised ini-
479
+ tialized features Zθ (§2.3).
480
+ Interestingly, optimizing (4)
481
+ allows an interpretation of linearizing each point with its
482
+ neighbors. Empirically as seen in (Table 2), the proposed
483
+ MLC yields a higher clustering accuracy than NMCE [23].
484
+ 2.3. Algorithms
485
+ As mentioned, in the MLC objective (4), we parameter-
486
+ ize both the representation Zθ and doubly stochastic mem-
487
+ bership Πθ via a neural network. Below we elaborate on
488
+ how this is done. We summarize the network architecture
489
+ in Figure 2, and the meta algorithm in Algorithm 1.
490
+ Parameterizing Zθ. We follow [53] and take some existing
491
+ network architecture as the backbone. We append a few
492
+
493
+ Figure 2. Overall architecture for optimizing the proposed manifold linearizing and clustering (MLC) objective (4). Given n input samples
494
+ X each lying in RD, their d-dimensional representation is given by Zθ(X), where θ denotes network parameters. Further, their doubly
495
+ stochastic membership matrix Πθ(X) is given by taking an inner product kernel of the output of the cluster head Cθ(X) followed by a
496
+ doubly stochastic projection.
497
+ affine layers with non-linearity as the representation head to
498
+ further transform the output in Rd, followed by a projection
499
+ layer to respect the unit sphere Sd−1 constraint.
500
+ Parameterizing Πθ. In subspace clustering, the member-
501
+ ship Π given data X often takes the form of g(X)⊤g(X)
502
+ for some (linear) transformation g, such as in the inner
503
+ product kernel [9, 16] where g = I or the least square re-
504
+ gression [27] where g = (I + λX⊤X)−1/2. This moti-
505
+ vates us to parameterize gθ by a neural network, and take
506
+ C⊤
507
+ θ Cθ ∈ Rn×n as the membership where Cθ is shorthand
508
+ for gθ(X). Nevertheless, such an n×n matrix is in general
509
+ not doubly stochastic, i.e., C⊤
510
+ θ Cθ /∈ Ω. To obtain a doubly
511
+ stochastic membership, we further apply a Sinkhorn projec-
512
+ tion layer PΩ,η(·) [10,39], which gives our final parameter-
513
+ ization of the membership as Πθ = PΩ,η(C⊤
514
+ θ Cθ) ∈ Ω.
515
+ Initializing Zθ: Self-supervised Representation Learn-
516
+ ing via MCR2. Since the proposed MCR2 clustering objec-
517
+ tive (4) is non-convex, it is important to properly initialize
518
+ both Z and Π to converge to good (local) minimum. On
519
+ the other hand, randomly initialized features are typically
520
+ far from being ideal, since they may not satisfy the idealized
521
+ properties (§1), and further may not respect the invariance
522
+ to augmentation, i.e., the augmented samples should have
523
+ their representation close to each other. Thus, we adopt the
524
+ self-supervised training strategy [23]
525
+ max
526
+ θ
527
+ R
528
+ �Zθ + Z′
529
+ θ
530
+ 2
531
+ ; ϵ
532
+
533
+ + λ
534
+ n
535
+
536
+ i=1
537
+ |z⊤
538
+ i z′
539
+ i|,
540
+ s.t.
541
+ z′
542
+ i, zi ∈ Sd−1,
543
+ ∀i ∈ [n],
544
+ (5)
545
+ where for every i, zi and z′
546
+ i are features of different aug-
547
+ mentations of the i-th sample. This essentially requires that
548
+ features from different augmentations of the same sample
549
+ should be as close as possible, whereas features from dif-
550
+ ferent samples should be as uncorrelated as possible.
551
+ Initializing Πθ. An ideal initialization of Πθ would be
552
+ such that if (Πθ)ij has a high value then points i, j are
553
+ likely to be from the same true cluster and vice versa. On the
554
+ other hand, after the self-supervised feature initialization
555
+ mentioned above, Zθ already have some structures which
556
+ we can utilize.
557
+ Thus, we propose to initialize Πθ with
558
+ PΩ,η(Z⊤
559
+ θ Zθ), which is easily implemented by copying the
560
+ parameters from Zθ to Cθ once after the self-supervised
561
+ initialization of the former, i.e., from the feature head to the
562
+ cluster head in Figure 2.
563
+ Data Augmentation. Beyond initializing Zθ, it is often
564
+ desirable to incorporate augmentation in optimizing (4).
565
+ Specifically, from {X(a) ∈ RD×n}A
566
+ a=1 the dataset X
567
+ under A different augmentations, one computes (Z(a)
568
+ θ
569
+
570
+ Rd×n, Π(a)
571
+ θ
572
+ ∈ Rd×n) for each augmentation a, and use in
573
+ (4)
574
+ Zθ = PSd−1
575
+
576
+ 1
577
+ A
578
+ A
579
+
580
+ a=1
581
+ Z(a)
582
+ θ
583
+
584
+ ,
585
+ Πθ = 1
586
+ A
587
+ A
588
+
589
+ a=1
590
+ Π(a)
591
+ θ
592
+ ∈ Ω.
593
+ (6)
594
+ Note that one can benefit from parallelization by putting
595
+ X(a), Z(a)
596
+ θ , Π(a)
597
+ θ
598
+ for each augmentation a on one comput-
599
+ ing device, since Π(a)
600
+ θ
601
+ only depends on X(a) but not from
602
+ other augmentations.
603
+ 3. Experiments on Real Datasets
604
+ Metrics. To evaluate the clustering quality, we run spec-
605
+ tral clustering on learned membership matrix Π, and re-
606
+ port the normalized mutual information (NMI, [42]) and
607
+ clustering accuracy (ACC, [21]), as are commonly used in
608
+ clustering tasks.
609
+ To evaluate the learned representation,
610
+ we define the following metric: for a collection of points
611
+ W = [w1, . . . , wl] ∈ Rd×l (l > d) with associated sin-
612
+ gular values {σi}d
613
+ i=1, define the numerical rank of W as
614
+ arg minr
615
+
616
+ r : �r
617
+ i=1 σ2
618
+ i / �d
619
+ i=1 σ2
620
+ i > 0.95
621
+
622
+ . Now, one can
623
+ measure the numerical rank of the learned representaion Z,
624
+
625
+ BackboneAlgorithm 1 MLC: Unsupervised Manifold Linearizing
626
+ and Clustering
627
+ Input: X ∈ RD×n,
628
+ ϵ, γ, η, λ > 0,
629
+ d, k, nb, T, A ∈ Z≥0
630
+ 1: initialize Zθ by self-supervised representation learning
631
+ via MCR2
632
+ ▷ (5)
633
+ 2: initialize Πθ
634
+ 3: for t = 1, . . . , T do
635
+ 4:
636
+ ¯
637
+ X ∈ RD×nb ← sample a batch from X
638
+ 5:
639
+ ¯
640
+ X(1), . . . , ¯
641
+ X(A) ← apply A augmentations to ¯
642
+ X
643
+ 6:
644
+ ¯Zθ, ¯Πθ ← forward pass with { ¯
645
+ X(a)}A
646
+ a=1 and net-
647
+ work parameters θ
648
+
649
+ (6)
650
+ 7:
651
+ ∇θ(4) ← backward pass with respect objective (4)
652
+ 8:
653
+ θ ←update θ using some optimizer on ∇θ(4)
654
+ 9: end for
655
+ 10: run spectral clustering on Πθ to estimate labels ˆy of
656
+ samples
657
+ Output: Zθ, ˆy
658
+ as well as that of each ground-truth cluster9 of Z. A low
659
+ numerical rank of W implies that points in W lie close to
660
+ a low-dimensional subspace. We further report the cosine
661
+ similarity of learned representation, which is simply |z⊤
662
+ i zj|
663
+ for points i and j, since ∥zi∥ = 1 by construction in (4).
664
+ Finally, to compare the efficiency of methods we report the
665
+ training time in §3.2, where the experiments are run on 2
666
+ Nvidia RTX3090 GPUs.
667
+ 3.1. Comparison with Subspace Clustering
668
+ To demonstrate the ability of MLC to cluster the sam-
669
+ ples and linearize the manifolds, we conduct experiments on
670
+ CIFAR10, which consists of RGB images from 10 classes
671
+ such as planes, birds, and deers. As mentioned in §1 sub-
672
+ space clustering methods rely crucially on the assumption
673
+ that data lie close to a union of linear subspaces, which
674
+ many real-world dataset may not satisfy. To show that this
675
+ is the case, we additionally compare the proposed method
676
+ with subspace clustering methods. As we shall see, apply-
677
+ ing subspace clustering directly on self-supervised features
678
+ of CIFAR10 will yield low clustering accuracy. In contrast,
679
+ MLC is able to achieve high clustering accuracy, and more-
680
+ over, produce a union-of-orthogonal-subspace representa-
681
+ tion on which subspace clustering methods can also achieve
682
+ high accuracy.
683
+ Data.
684
+ We use the training split of CIFAR10 containing
685
+ 50000 RGB images, each of size 3 × 32 × 32. We use
686
+ the augmentation specified in the Appendix to perform self-
687
+ supervised representation learning (5) and get Zself. For
688
+ a fair comparison, the so-learned Zself are used both as ini-
689
+ tialization for MLC (line 1 of Algorithm 1), and as the input
690
+ 9They are defined by the true labels y (§2), so that the numerical rank
691
+ metric is decoupled from the quality of learned membership Π.
692
+ Table 1. Clustering accuracy and normalized mutual information
693
+ for subspace clustering (EnSC, SSC-OMP) on self-supervised fea-
694
+ tures Zself, features ZMLC learned by MLC, and manifold clus-
695
+ tering (MLC) on X, where X is 6 · 104 images from 10 classes
696
+ of CIFAR10.
697
+ Method
698
+ Input Data
699
+ ACC
700
+ NMI
701
+ EnSC
702
+ Zself
703
+ 72.2
704
+ 67.9
705
+ ZMLC
706
+ 81.5
707
+ 79.2
708
+ SSC-OMP
709
+ Zself
710
+ 67.8
711
+ 64.5
712
+ ZMLC
713
+ 78.4
714
+ 76.3
715
+ MLC
716
+ X
717
+ 86.3
718
+ 78.3
719
+ for subspace clustering methods10. In MLC, for each image
720
+ in each batch we randomly sample A = 2 augmentations
721
+ to apply on the image. As an additional comparison, we
722
+ also run subspace clustering methods on the features ZMLC
723
+ learned by MLC.
724
+ Methods. We compare with the elastic-net subspace clus-
725
+ tering with active-set solver (EnSC, [50]) and sparse sub-
726
+ space clustering with orthogonal matching pursuit solver
727
+ (SSC-OMP, [51]), using off-the-shelf implementation pro-
728
+ vided by the authors11.
729
+ We search the parameters of
730
+ EnSC over (γ, τ) ∈ {1, 5, 10, 50, 100} × {0.9, 0.95, 1}
731
+ and those of SSC over (kmax, ϵ)
732
+
733
+ {3, 5, 10, 20} ×
734
+ {10−4, 10−5, 10−6, 10−7}, and report the run with the
735
+ highest clustering accuracy for each method. We summa-
736
+ rize detailed parameters for MLC in the Appendix.
737
+ Results. Figure 3 reports the coding rates (as loss terms
738
+ in (4) and numerical ranks of features learned by MLC as
739
+ epoch varies. As a first note, the coding rate R of all fea-
740
+ tures (the blue curve in 3a) decreases only slightly as epoch
741
+ goes, indicating that the overall representation is diverse in
742
+ the feature space. Indeed, the numerical rank of all features
743
+ (the dark curve in Figure 3b) stays 118 which is close to the
744
+ dimension 128 of the feature space. This is in sharp contrast
745
+ to the deep subspace clustering methods where all the fea-
746
+ tures collapse to a one-dimensional subspace [15]. More-
747
+ over, as the coding rate Rc of clustered features (the orange
748
+ curve in Figure 3a) goes down, the numerical ranks of fea-
749
+ tures from each ground-truth cluster decrease. For instance,
750
+ the representation from true cluster 3 has a numerical rank
751
+ of 37 in the first step and 24 in the last step. This implies
752
+ that most representation gets linearized better and clustered
753
+ more accurately, even though the MLC objective (4) is un-
754
+ supervised, i.e., it does not use ground-truth labels y. Last
755
+ but not the least, note that the features within each ground-
756
+ 10The self-supervised features Zself empirically exhibit some union-of-
757
+ subspace structure, and are typically used for subspace clustering, as also
758
+ seen in [53, §3.2] and [55, §4.2].
759
+ 11https : / / github . com / ChongYou / subspace -
760
+ clustering
761
+
762
+ (a) Coding rate of all features R, that of clustered
763
+ features Rc, and the rate reduction ∆R = R−Rc.
764
+ (b) Numerical ranks of all features Zθ and features
765
+ from each ground-truth cluster i, {zj : y(j) = i}.
766
+ Figure 3. Coding rates (as loss terms in (4)) and numerical ranks (§3.1) of the features
767
+ learned by MLC on CIFAR10 as epoch varies.
768
+ Figure 4. Cosine similarity |Z⊤
769
+ MLCZMLC|
770
+ of the features ZMLC learned by MLC.
771
+ truth cluster spread well in a low-dimensional subspace,
772
+ e.g., the numerical ranks for the true clusters at the last step
773
+ are within [13, 23]. This achieves the desired within-cluster
774
+ diverse property (§1), as opposed to the neural collapse phe-
775
+ nomenon that appears with the cross-entropy loss.
776
+ To compare MLC with subspace clustering methods, we
777
+ report clustering accuracy and normalized mutual informa-
778
+ tion for EnSC, SSC-OMP on self-supervised features Zself,
779
+ features ZMLC learned by MLC, and MLC on X, where X
780
+ is 6 · 104 images from 10 classes of CIFAR10. In addition
781
+ we plot the cosine similarity of the features learned by MLC
782
+ in Figure 4. Remarkably, the highest clustering accuracy
783
+ is 86.3% achieved by MLC on X, which surpasses EnSC
784
+ (72.2%) and SSC-OMP (67.8%) on Zself by a large margin,
785
+ even though Zself is used both as initialization for MLC and
786
+ input for EnSC and SSC-OMP. Interestingly, using instead
787
+ the features ZMLC learned by MLC, the clustering perfor-
788
+ mance of EnSC and SSC-OMP increases and even becomes
789
+ comparable to MLC, e.g., EnSC achieves 79.2% normal-
790
+ ized mutual information compared to 78.3% of MLC. This
791
+ suggests that ZMLC has a union-of-subspace structure that
792
+ can be utilized by subspace clustering. Indeed, as seen in
793
+ Figure 4, features from different clusters tend to have a
794
+ small similarity, i.e., being orthogonal to each other. This
795
+ demonstrates the between-cluster discrimination (§1) as de-
796
+ sired.
797
+ 3.2. Comparison with Deep Clustering Methods
798
+ We further compare the proposed MLC with state-of-
799
+ the-art deep clustering methods. Note that most methods
800
+ reported (all except NMCE which is discussed in §2.2) do
801
+ not aim to learn a union-of-orthogonal-subspace represen-
802
+ tation, in contrast to MLC. As we will see, MLC achieves
803
+ clustering accuracy comparable to state-of-the-art methods
804
+ on large scale datasets with faster computational time, and
805
+ further surpasses them on extreme yet realistic cases like
806
+ datasets of imbalanced clusters.
807
+ Compared Methods. We conduct experiments with MLC,
808
+ SCAN [45], and IMC-SWAV [31].12 Training details can
809
+ be found in the Appendix. In addition we include the num-
810
+ bers reported from DeepCluster [7], IIC [19], RUC [33] and
811
+ NMCE [23]. For a fair comparison, all methods reported
812
+ use ResNet-18 as the backbone, which is also commonly
813
+ adopted by other methods.
814
+ Datasets.
815
+ Beyond CIFAR10 (§3.1), we further use
816
+ CIFAR100-20, CIFAR100-100 and Tiny Imagenet-200 to
817
+ evaluate the performance of our method. Both CIFAR100-
818
+ 100 and CIFAR100-20 contain the same 50000 train images
819
+ and 10000 test images with size 32 × 32 × 3, while the for-
820
+ mer are split into 100 clusters and the latter 20 super clus-
821
+ ters. Finally, Tiny ImageNet contains 100000 train images
822
+ and 10000 test images with size 64 × 64 × 3 split into 200
823
+ clusters.
824
+ Results on Large-scale Datasets. We report clustering ac-
825
+ curacy and normalized mutual information on CIFAR10,
826
+ CIFAR100-20, CIFAR100-100, and TinyImageNet in Ta-
827
+ ble 2, and we further report running time in minutes for
828
+ CIFAR100-100 in Table 3. As seen, the highest cluster-
829
+ ing performance on CIFAR10 is achieved by RUC+SCAN
830
+ (90.3% ACC) and IMC-SWAV (81.1% NMI), where MLC
831
+ yields a slightly lower ACC of 86.3% and NMI of 78.3%.
832
+ We note some interesting semantic interpretation for the
833
+ clustering obtained by MLC in the Appendix. On the other
834
+ hand, MLC performs comparably with other methods on
835
+ CIFAR100-20 by achieving an ACC of 52.2% and NMI of
836
+ 54.6%. Notably, MLC outperforms SCAN and IMC-SWAV
837
+ on CIFAR100-100 and TinyImageNet-200 by a large mar-
838
+ gin, while using lower running time: E.g., on CIFAR100-
839
+ 12The authors are aware of a preprint [30] which approaches image
840
+ clustering via a combination of self/semi-supervised learning and pseudo-
841
+ labeling. However, to the best of our effort we are unable to reproduce the
842
+ numbers reported in this paper using the implementation provided by the
843
+ authors. We discuss the details in the Appendix and thus do not report their
844
+ numbers here.
845
+
846
+ Loss terms
847
+ 140
848
+ 120
849
+ 100
850
+ Loss terms
851
+ 80
852
+ 60
853
+ 40
854
+ △R
855
+ R
856
+ Rc
857
+ 20
858
+ 0
859
+ 500
860
+ 1000
861
+ 1500
862
+ 2000
863
+ 2500
864
+ StepNumerical rank of Z
865
+ 120
866
+ 100
867
+ All
868
+ Class 0
869
+ Class 1
870
+ 80
871
+ Class 2
872
+ Class 3
873
+ Class 4
874
+ 60
875
+ Class 5
876
+ Class 6
877
+ Class 7
878
+ Class 8
879
+ 40
880
+ Class 9
881
+ 20
882
+ 0
883
+ 500
884
+ 1000
885
+ 1500
886
+ 2000
887
+ 2500
888
+ Step1.0
889
+ 0
890
+ 0.8
891
+ 2000
892
+ 0.6
893
+ 4000
894
+ 6000
895
+ 0.4
896
+ 8000
897
+ 0.2
898
+ 0
899
+ 2000
900
+ 4000
901
+ 6000
902
+ 8000
903
+ 0.0Table 2. Clustering accuracy and normalized mutual information on large scale datasets. For a fair comparison, all methods use ResNet-18
904
+ as backbone.
905
+ Method / Dataset
906
+ CIFAR10-10
907
+ CIFAR100-20
908
+ CIFAR100-100
909
+ Tiny ImageNet-200
910
+ Metrics
911
+ ACC
912
+ NMI
913
+ ACC
914
+ NMI
915
+ ACC
916
+ NMI
917
+ ACC
918
+ NMI
919
+ DeepCluster (ECCV′18)
920
+ 37.4
921
+ -
922
+ 18.9
923
+ -
924
+ -
925
+ -
926
+ -
927
+ -
928
+ IIC (ICCV′19)
929
+ 61.7
930
+ 51.1
931
+ 25.7
932
+ 22.5
933
+ -
934
+ -
935
+ -
936
+ -
937
+ SCAN (ECCV′20)
938
+ 87.6
939
+ 78.7
940
+ 46.8
941
+ 45.9
942
+ 34.3
943
+ 55.7
944
+ -
945
+ -
946
+ RUC+SCAN (CVPR′21)
947
+ 90.3
948
+ -
949
+ 53.3
950
+ -
951
+ -
952
+ -
953
+ -
954
+ -
955
+ IMC-SWAV (Arxiv′21)
956
+ 89.1
957
+ 81.1
958
+ 49.0
959
+ 50.3
960
+ 43.9
961
+ 58.3
962
+ 28.2
963
+ 52.6
964
+ NMCE (Arxiv′22)
965
+ 83.0
966
+ 76.1
967
+ 43.7
968
+ 48.8
969
+ -
970
+ -
971
+ -
972
+ -
973
+ MLC
974
+ 86.3
975
+ 78.3
976
+ 52.2
977
+ 54.6
978
+ 49.4
979
+ 68.3
980
+ 33.5
981
+ 67.5
982
+ Table 3.
983
+ Running time in minutes and clustering accuracy on
984
+ CIFAR100-100. For a fair comparison, all methods use ResNet-18
985
+ as backbone.
986
+ Method / Metric
987
+ Running Time
988
+ ACC
989
+ Stage
990
+ I
991
+ II
992
+ III
993
+ Total
994
+ SCAN (ECCV′20)
995
+ 308.3
996
+ 33.3
997
+ 54.7
998
+ 396.3
999
+ 34.3
1000
+ IMC-SWAV (Arxiv′21)
1001
+ 529.4
1002
+ -
1003
+ -
1004
+ 529.4
1005
+ 43.9
1006
+ MLC
1007
+ 266.7
1008
+ 17.7
1009
+ -
1010
+ 284.4
1011
+ 48.3
1012
+ Table 4. Clustering accuracy on imbalanced datasets: (a) Imb-
1013
+ CIFAR10, (b) Imb-CIFAR100-100.
1014
+ For a fair comparison, all
1015
+ methods use ResNet-18 as backbone.
1016
+ Method / Dataset
1017
+ (a)
1018
+ (b)
1019
+ IMC-SWAV (Arxiv′21)
1020
+ 65.7
1021
+ 38.2
1022
+ SCAN (ECCV′20)
1023
+ 62.9
1024
+ 31.1
1025
+ MLC
1026
+ 80.0
1027
+ 46.1
1028
+ 100, MLC yields an accuracy of 49.4% in 291 minutes,
1029
+ whereas IMC-SWAV has 43.9% using 529 minutes, and
1030
+ SCAN has 34.3% in 396 minutes.
1031
+ Imbalanced Clusters.
1032
+ Note that for CIFAR10 or CI-
1033
+ FAR100 each cluster contains approximately the same num-
1034
+ ber of samples. On the other hand, natural images are typ-
1035
+ ically imbalanced, i.e., the clusters have unequal number
1036
+ of samples.
1037
+ To mimic this setting, we take a naive ap-
1038
+ proach to construct the following imbalanced datasets. For
1039
+ the 10 clusters of CIFAR10, we remove half of the sam-
1040
+ ples from odd-numbered clusters (i.e., clusters 1, 3, . . . , 9)
1041
+ from both the training and test split. We refer to the re-
1042
+ duced dataset Imb-CIFAR10. Likewise we construct Imb-
1043
+ CIFAR100-100. We run two state-of-the-art methods IMC-
1044
+ SWAV and SCAN as well as the proposed MLC on Imb-
1045
+ CIFAR10 and Imb-CIFAR100-100.
1046
+ Table 4 shows clustering accuracy on the imbalanced
1047
+ datasets Imb-CIFAR10 and Imb-CIFAR100-100. As a first
1048
+ observation, the clustering accuracy of all methods is lower
1049
+ on the imbalanced datasets than on the balanced counter-
1050
+ parts, as expected. Notably, MLC suffers from the least
1051
+ performance drop, e.g., when moving from CIFAR10 to
1052
+ Imb-CIFAR10 the accuracy of MLC drops from 86% to
1053
+ 80%, whereas that of SCAN and IMC-SWAV decreases
1054
+ from above 87% to below 66%.
1055
+ 4. Conclusion
1056
+ This paper studies the problem of simultaneously clus-
1057
+ tering and learning an union-of-orthogonal-subspace repre-
1058
+ sentation for data, when data lies close to a union of low-
1059
+ dimensional manifolds. To address the problem we pro-
1060
+ pose an objective based on maximal coding rate reduction
1061
+ and doubly stochastic membership inspired by the state-of-
1062
+ the-art subspace clustering results. We provide an efficient
1063
+ and effective parameterization of the membership variables
1064
+ as well as a meta-algorithm to optimize the representation
1065
+ and membership jointly. We further conduct experiments
1066
+ on datasets with larger number of clusters and imbalanced
1067
+ clusters and show that the proposed method achieves state-
1068
+ of-the-art performance. We believe that our work provides
1069
+ a general and unified framework for unsupervised learning
1070
+ of structured representations for multi-modal data.
1071
+
1072
+ References
1073
+ [1] Mahdi Abavisani and Vishal M Patel. Deep multimodal sub-
1074
+ space clustering networks. IEEE Journal of Selected Topics
1075
+ in Signal Processing, 12(6):1601–1614, Apr. 2018. 1
1076
+ [2] David Arthur and Sergei Vassilvitskii. k-means++: The ad-
1077
+ vantages of careful seeding. In the Eighteenth Annual ACM-
1078
+ SIAM Symposium on Discrete Algorithms. Society for Indus-
1079
+ trial and Applied Mathematics, June 2006. 1
1080
+ [3] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi
1081
+ Kumar, and Sergei Vassilvitskii. Scalable K-Means++. Pro-
1082
+ ceedings VLDB Endowment, 5(7), Mar. 2012. 1
1083
+ [4] Adrien Bardes, Jean Ponce, and Yann LeCun.
1084
+ VI-
1085
+ CReg:
1086
+ Variance-Invariance-Covariance regularization for
1087
+ Self-Supervised learning.
1088
+ In International Conference on
1089
+ Learning Representations, 2022. 13
1090
+ [5] Paul Bradley, Olvi Mangasarian, and W Street. Clustering
1091
+ via concave minimization. In Advances in neural informa-
1092
+ tion processing systems, 1996. 1
1093
+ [6] Joan Bruna and St´ephane Mallat. Invariant scattering convo-
1094
+ lution networks. IEEE transactions on pattern analysis and
1095
+ machine intelligence, 35(8):1872–1886, Aug. 2013. 1
1096
+ [7] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
1097
+ Matthijs Douze. Deep clustering for unsupervised learning
1098
+ of visual features. In European conference on computer vi-
1099
+ sion, pages 132–149, July 2018. 2, 7
1100
+ [8] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
1101
+ Norouzi, and Geoffrey E Hinton. Big self-supervised mod-
1102
+ els are strong semi-supervised learners. Advances in neural
1103
+ information processing systems, 33:22243–22255, 2020. 13
1104
+ [9] Tianjiao Ding, Derek Lim, Rene Vidal, and Benjamin D Ha-
1105
+ effele. Understanding doubly stochastic clustering. In the
1106
+ 39th International Conference on Machine Learning, vol-
1107
+ ume 162 of Proceedings of Machine Learning Research,
1108
+ pages 5153–5165. PMLR, 2022. 4, 5
1109
+ [10] Marvin Eisenberger, Aysim Toker, Laura Leal-Taix´e, Florian
1110
+ Bernard, and Daniel Cremers. A unified framework for im-
1111
+ plicit sinkhorn differentiation. In IEEE/CVF Conference on
1112
+ Computer Vision and Pattern Recognition, pages 509–518,
1113
+ 2022. 5, 13
1114
+ [11] Ehsan Elhamifar and Rene Vidal. Sparse subspace cluster-
1115
+ ing. In IEEE Conference on Computer Vision and Pattern
1116
+ Recognition, pages 2790–2797, June 2009. 1, 4
1117
+ [12] Ehsan Elhamifar and Ren´e Vidal. Sparse manifold clustering
1118
+ and embedding. Advances in neural information processing
1119
+ systems, 24, 2011. 1
1120
+ [13] Ehsan Elhamifar and Rene Vidal. Sparse subspace cluster-
1121
+ ing: Algorithm, theory, and applications. IEEE transactions
1122
+ on pattern analysis and machine intelligence, 35(11):2765–
1123
+ 2781, 2013. 1, 4
1124
+ [14] Edward Forgey. Cluster analysis of multivariate data: Effi-
1125
+ ciency vs. interpretability of classification. Biometrics, 1965.
1126
+ 1
1127
+ [15] Benjamin D Haeffele, Chong You, and Ren´e Vidal. A cri-
1128
+ tique of Self-Expressive deep subspace clustering. In Inter-
1129
+ national Conference on Learning Representations, 2020. 2,
1130
+ 6
1131
+ [16] Reinhard Heckel and Helmut B¨olcskei.
1132
+ Robust subspace
1133
+ clustering via thresholding. IEEE transactions on informa-
1134
+ tion theory, 61(11):6320–6342, 2015. 1, 4, 5
1135
+ [17] R C Jancey. Multidimensional group analysis. Australian
1136
+ Journal of Botany, 14:127–130, 1966. 1
1137
+ [18] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and
1138
+ Ian Reid. Deep subspace clustering networks. In Advances
1139
+ in Neural Information Processing Systems, volume 2017-
1140
+ Decem, pages 24–33, 2017. 1
1141
+ [19] Xu Ji, Jo˜ao F Henriques, and Andrea Vedaldi. Invariant in-
1142
+ formation clustering for unsupervised image classification
1143
+ and segmentation. In IEEE/CVF International Conference
1144
+ on Computer Vision, July 2018. 7
1145
+ [20] Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad
1146
+ Kamangar.
1147
+ Deep low-rank subspace clustering.
1148
+ In 2020
1149
+ IEEE/CVF Conference on Computer Vision and Pattern
1150
+ Recognition Workshops. IEEE, June 2020. 1
1151
+ [21] Minsik Lee, Jieun Lee, Hyeogjin Lee, and Nojun Kwak.
1152
+ Membership representation for detecting block-diagonal
1153
+ structure in low-rank or sparse subspace clustering.
1154
+ Pro-
1155
+ ceedings of the IEEE Computer Society Conference on Com-
1156
+ puter Vision and Pattern Recognition, 07-12-June:1648–
1157
+ 1656, 2015. 5
1158
+ [22] Chun-Guang Li, Chong You, and Ren´e Vidal. On geometric
1159
+ analysis of affine sparse subspace clustering. IEEE J. Sel.
1160
+ Top. Signal Process., 12(6):1520–1533, Dec. 2018. 1
1161
+ [23] Zengyi Li, Yubei Chen, Yann LeCun, and Friedrich T Som-
1162
+ mer.
1163
+ Neural manifold clustering and embedding.
1164
+ arXiv
1165
+ [cs.LG], Jan. 2022. 3, 4, 5, 7, 12, 13, 14
1166
+ [24] Derek Lim, Ren´e Vidal, and Benjamin D Haeffele. Doubly
1167
+ stochastic subspace clustering. arXiv [cs.LG], Nov. 2020. 1,
1168
+ 2, 4
1169
+ [25] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong
1170
+ Yu, and Yi Ma. Robust recovery of subspace structures by
1171
+ low-rank representation. IEEE transactions on pattern anal-
1172
+ ysis and machine intelligence, 35(1):171–184, Jan. 2013. 1,
1173
+ 4
1174
+ [26] Stuart Lloyd. Least squares quantization in PCM. Technical
1175
+ report, Bell Laboratories, 1957. 1
1176
+ [27] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang
1177
+ Huang, and Shuicheng Yan. Robust and efficient subspace
1178
+ segmentation via least squares regression. In European con-
1179
+ ference on computer vision, pages 347–360. Springer, 2012.
1180
+ 1, 4, 5
1181
+ [28] Yi Ma, Harm Derksen, Wei Hong, and John Wright. Seg-
1182
+ mentation of multivariate mixed data via lossy data coding
1183
+ and compression. IEEE transactions on pattern analysis and
1184
+ machine intelligence, 29(9):1546–1562, 2007. 3
1185
+ [29] James B McQueen.
1186
+ Some methods for classification and
1187
+ analysis of multivariate observations. In Fifth Berkeley Sym-
1188
+ posium on Mathematical Statistics and Probability, pages
1189
+ 281–297, 1967. 1
1190
+ [30] Chuang Niu, Hongming Shan, and Ge Wang. SPICE: Se-
1191
+ mantic pseudo-labeling for image ClustEring. arXiv [cs.CV],
1192
+ Mar. 2021. 2, 7, 13
1193
+ [31] Foivos Ntelemis, Yaochu Jin, and Spencer A Thomas. In-
1194
+ formation maximization clustering via Multi-View Self-
1195
+ Labelling. arXiv [cs.CV], Mar. 2021. 7, 13
1196
+
1197
+ [32] Vardan Papyan, X Y Han, and David L Donoho. Prevalence
1198
+ of neural collapse during the terminal phase of deep learning
1199
+ training. Proceedings of the National Academy of Sciences
1200
+ of the United States of America, 117(40):24652–24663, Oct.
1201
+ 2020. 2
1202
+ [33] Sungwon Park, Sungwon Han, Sundong Kim, Danu Kim,
1203
+ Sungkyu Park, Seunghoon Hong, and Meeyoung Cha. Im-
1204
+ proving unsupervised image clustering with robust learning.
1205
+ In IEEE/CVF Conference on Computer Vision and Pattern
1206
+ Recognition, pages 12278–12287, 2021. 2, 7
1207
+ [34] Vishal M Patel and Rene Vidal. Kernel sparse subspace clus-
1208
+ tering.
1209
+ In 2014 IEEE International Conference on Image
1210
+ Processing (ICIP). IEEE, Oct. 2014. 1
1211
+ [35] Xi Peng, Jiashi Feng, Shijie Xiao, Jiwen Lu, Zhang Yi, and
1212
+ Shuicheng Yan.
1213
+ Deep sparse subspace clustering.
1214
+ arXiv
1215
+ [cs.CV], Sept. 2017. 1
1216
+ [36] Herbert Robbins and Sutton Monro. A stochastic approxi-
1217
+ mation method. Ann. Math. Stat., 22(3):400–407, 1951. 13
1218
+ [37] Daniel P Robinson, Rene Vidal, and Chong You.
1219
+ Ba-
1220
+ sis pursuit and orthogonal matching pursuit for subspace-
1221
+ preserving recovery: Theoretical analysis. arXiv [cs.LG],
1222
+ Dec. 2019. 1
1223
+ [38] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David
1224
+ Grangier. Efficient content-based sparse attention with rout-
1225
+ ing transformers. Transactions of the Association for Com-
1226
+ putational Linguistics, 9:53–68, Feb. 2021. 1
1227
+ [39] Michael E Sander, Pierre Ablin, Mathieu Blondel, and
1228
+ Gabriel Peyr´e.
1229
+ Sinkformers:
1230
+ Transformers with doubly
1231
+ stochastic attention. In International Conference on Artifi-
1232
+ cial Intelligence and Statistics, Oct. 2021. 5
1233
+ [40] Mahdi Soltanolkotabi and Emmanuel J Cand´es. A geomet-
1234
+ ric analysis of subspace clustering with outliers. Annals of
1235
+ statistics, 40(4):2195–2238, 2012. 1
1236
+ [41] Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J
1237
+ Candes. Robust subspace clustering. Annals of statistics,
1238
+ 42(2):669–699, 2014. 1
1239
+ [42] Strehl and Ghosh. Cluster ensembles – a knowledge reuse
1240
+ framework for combining multiple partitions. Journal of ma-
1241
+ chine learning research, 2002. 5
1242
+ [43] Tom Tirer and Joan Bruna. Extended unconstrained features
1243
+ model for exploring deep neural collapse. In International
1244
+ Conference on Machine Learning, Feb. 2022. 2
1245
+ [44] Manolis Tsakiris and Rene Vidal. Theoretical analysis of
1246
+ sparse subspace clustering with missing entries. In Jennifer
1247
+ Dy and Andreas Krause, editors, International Conference
1248
+ on Machine Learning, pages 4975–4984, 2018. 1
1249
+ [45] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
1250
+ Georgoulis, Marc Proesmans, and Luc Van Gool. SCAN:
1251
+ Learning to classify images without labels. In European con-
1252
+ ference on computer vision. Springer, 2020. 2, 7, 13
1253
+ [46] Ulrike von Luxburg. A tutorial on spectral clustering. Statis-
1254
+ tics and computing, 17(4):395–416, 2007. 13
1255
+ [47] Yining Wang, Yu-Xiang Wang, and Aarti Singh.
1256
+ A de-
1257
+ terministic analysis of noisy sparse subspace clustering for
1258
+ dimensionality-reduced data. In International Conference on
1259
+ Machine Learning, 2015. 1
1260
+ [48] Yu-Xiang Wang and Huan Xu. Noisy sparse subspace clus-
1261
+ tering. Journal of Machine Learning Research, 2016. 1
1262
+ [49] Chong You, Chun-Guang Li, Daniel Robinson, and Rene Vi-
1263
+ dal. Is an affine constraint needed for affine subspace clus-
1264
+ tering?
1265
+ In International Conference on Computer Vision
1266
+ (ICCV). IEEE, Oct. 2019. 1
1267
+ [50] Chong You, Chun Guang Li, Daniel P Robinson, and Rene
1268
+ Vidal. Oracle based active set algorithm for scalable elastic
1269
+ net subspace clustering. In the IEEE conference on computer
1270
+ vision and pattern recognition, pages 3928–3937, 2016. 1,
1271
+ 4, 6
1272
+ [51] Chong You, Daniel P Robinson, and Ren´e Vidal. Scalable
1273
+ sparse subspace clustering by orthogonal matching pursuit.
1274
+ In IEEE Conference on Computer Vision and Pattern Recog-
1275
+ nition, June 2016. 1, 6
1276
+ [52] Yang You, Igor Gitman, and Boris Ginsburg. Large batch
1277
+ training of convolutional networks.
1278
+ arXiv [cs.CV], Aug.
1279
+ 2017. 13
1280
+ [53] Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing
1281
+ Song, and Yi Ma. Learning diverse and discriminative repre-
1282
+ sentations via the principle of maximal coding rate reduction.
1283
+ In Neural Information Processing Systems, June 2020. 2, 3,
1284
+ 4, 6, 12
1285
+ [54] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi,
1286
+ Honggang Zhang, Jun Guo, and Zhouchen Lin.
1287
+ Self-
1288
+ Supervised convolutional subspace clustering network. In
1289
+ IEEE/CVF conference on computer vision and pattern
1290
+ recognition, 2019. 1
1291
+ [55] Shangzhi Zhang, Chong You, Ren´e Vidal, and Chun-Guang
1292
+ Li. Learning a self-expressive network for subspace cluster-
1293
+ ing. In IEEE Conference on Computer Vision and Pattern
1294
+ Recognition, Oct. 2021. 6
1295
+ [56] Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu,
1296
+ and Zhihui Zhu. On the optimization landscape of neural col-
1297
+ lapse under MSE loss: Global optimality with unconstrained
1298
+ features. In International Conference in Machine Learning,
1299
+ Mar. 2022. 2
1300
+
1301
+ (a) Learned cluster 1
1302
+ (b) Learned cluster 2
1303
+ (c) Learned cluster 3
1304
+ (d) Learned cluster 4
1305
+ (e) Learned cluster 5
1306
+ (f) Learned cluster 6
1307
+ (g) Learned cluster 7
1308
+ (h) Learned cluster 8
1309
+ (i) Learned cluster 9
1310
+ Figure 5. Principal images (defined in §A) of clusters learned by MLC on CIFAR10.
1311
+
1312
+ A. Semantic Interpretability of the Learned
1313
+ Representation and Clusters on CIFAR10
1314
+ Recall that MLC is designed to perform clustering
1315
+ while learning a union-of-orthogonal-subspace representa-
1316
+ tion (§1), where each cluster defines a low-dimensional sub-
1317
+ space. Therefore, we further visualize the different direc-
1318
+ tions within each learned cluster or subspace. Specifically,
1319
+ after a final clustering is obtained (line 10 of Algorithm 1),
1320
+ we take the features from each learned cluster and apply
1321
+ Principal Component Analysis (PCA) to them to obtain the
1322
+ first 8 principal components. These correspond to the 8
1323
+ rows for each cluster in Figure 5. Recall that the princi-
1324
+ pal components are mutually orthogonal, indicating uncor-
1325
+ related directions within one cluster. To visualize those di-
1326
+ rections or principal components in images, we take the fea-
1327
+ tures that are closest to the principal components and visu-
1328
+ alize the corresponding original images.
1329
+ Interestingly, the rows of images corresponding to prin-
1330
+ cipal components appear to exhibit some semantic ‘con-
1331
+ cepts’. For example in Figure 5b, row 1 and 8 are respec-
1332
+ tively white and red trucks, while row 4 are the trucks that
1333
+ ship sand or mud; row 1 of Figure 5d are deers with trees
1334
+ as background. This further suggests that the learned em-
1335
+ bedding seems to preserve distance within each cluster (as
1336
+ desired in §1), i.e., images that are close/far in semantic
1337
+ meaning will be close/far in the feature space. Note how-
1338
+ ever, that some learned clusters do not align fully with the
1339
+ ground-truth labels. For instance, rows 1 and 3 of Figure 5h
1340
+ are cats while all other rows in this cluster are dogs. On the
1341
+ other hand, one may argue that Figure 5h are a cluster of
1342
+ cats and dogs of light colors, whereas Figure 5c is a clus-
1343
+ ter of those of brown colors, which could be a semantically
1344
+ meaningful clustering even though it does not align with the
1345
+ ground-truth labels. We believe it would be an interesting
1346
+ future work to use MLC to discover new semantics that are
1347
+ not present in the given labels.
1348
+ Table 5. Ablation study on the roles of different parts of Algo-
1349
+ rithm 1 and on using augmentation.
1350
+ Ablation Study on CIFAR-10
1351
+ Clustering
1352
+ Accuracy
1353
+ Full Algorithm 1
1354
+ 86.3%
1355
+ Replacing self-supervised initialization (line 1)
1356
+ with random initialization
1357
+ 20.0%
1358
+ Replacing updating MLC objective (4) (lines 3-9)
1359
+ with subspace clustering (EnSC)
1360
+ 73.4%
1361
+ Not using augmentation in lines 3-9
1362
+ 80.0%
1363
+ B. Role of Augmentation
1364
+ Recall that data augmentation was used both in the self-
1365
+ supervised initialization (line 1 of Algorithm 1, see ‘Initial-
1366
+ izing Zθ’ in §2.3) and in updating the MLC objective (lines
1367
+ 3-9, ‘Data Augmentation’ in §2.3). Below we give addi-
1368
+ tional clarification on the role of augmentation therein.
1369
+ B.1. Augmentation for Initializing the Features
1370
+ Since the proposed MLC objective (4) is highly non-
1371
+ convex, the (local) solution that a first-order optimizer con-
1372
+ verges to in general depends on the initialization. However,
1373
+ before line 1 of Algorithm 1 is executed, the features Z at
1374
+ initialization could be very far from union-of-orthogonal-
1375
+ subspace (as desired by Problem 1), since the neural net-
1376
+ work has an arbitrary architecture and initialization. To at
1377
+ least promote some ideal structures in the features, we con-
1378
+ duct line 1 of Algorithm 1 so that the features from an origi-
1379
+ nal sample and its augmented copy are close, while features
1380
+ from different samples spread out in the feature space. This
1381
+ is a common idea used in contrastive learning, and more re-
1382
+ lated in [53, §3.2] [23, §3.6] that are both based on MCR2
1383
+ as in this paper (even though the formulations are different,
1384
+ as argued in §1.2). Empirically, initializing the features us-
1385
+ ing augmentation (line 1 of Algorithm 1) is important for
1386
+ the following-up steps: as seen in Table 5, on CIFAR-10, if
1387
+ one uses random initialization to replace this step, then the
1388
+ final clustering accuracy is 20%, in sharp contrast to 86.3%.
1389
+ B.2. Augmentation for Updating MLC Objective (4)
1390
+ In optimizing MLC (lines 3-9 of Algorithm 1), augmen-
1391
+ tation empirically improves clustering performance. As one
1392
+ can see in Table 5, on CIFAR-10 using the sample self-
1393
+ supervised initialization of the features, MLC achieves only
1394
+ 80% clustering accuracy without augmentation, in contrast
1395
+ to 86.3% with augmentation. We attribute this difference to
1396
+ the fact that augmentation enriches the diversity of samples
1397
+ the algorithm sees.
1398
+ C. Role of Different Parts of Algorithm 1
1399
+ C.1. Initialization of the Features (Line 1)
1400
+ Please kindly refer to §B.1.
1401
+ C.2. Updating the MLC Objective (4) (Lines 3-9)
1402
+ The main novelty of this paper lies in updating the MLC
1403
+ objective that learns both the representation Zθ and a dou-
1404
+ bly stochastic membership Πθ. Note that in this step, clus-
1405
+ tering is pursued by modeling the membership Πθ, as op-
1406
+ posed to the self-supervised feature initialization step where
1407
+ no membership is explicitly pursued. This step is indeed im-
1408
+ portant for clustering: as seen in Table 5, on CIFAR-10, the
1409
+
1410
+ clustering accuracy on the self-supervised initialized fea-
1411
+ tures Zθ is only 73.4%, in contrast to 86.3% obtained after
1412
+ updating the MLC objective (4).
1413
+ C.3. Spectral Clustering (Line 10)
1414
+ Since the proposed MLC learns a doubly stochas-
1415
+ tic membership that signals pair-wise similarity between
1416
+ points, it is standard to run spectral clustering [46] to com-
1417
+ pute a final set of clusters from the learned membership.
1418
+ This is done once at the very end of Algorithm 1, and is
1419
+ rather efficient compared to the other parts of Algorithm 1:
1420
+ for instance, using an unaccelerated implementation from
1421
+ SciPy, it takes less than 30 seconds to perform spectral clus-
1422
+ tering on a 10000 × 10000 matrix.
1423
+ D. Details on Experiment Settings
1424
+ D.1. Synthetic Union-of-Manifold Data
1425
+ We perform simulations to visualize the properties of the
1426
+ proposed manifold learning and clustering method. As seen
1427
+ in Figure 1a, we generate data X from two manifolds on
1428
+ the sphere S2, each consisting of 200 samples. The points
1429
+ from the first manifold (green) take the form
1430
+ xi =
1431
+
1432
+
1433
+ cos
1434
+
1435
+ A sin(ωφi)
1436
+
1437
+ cos φi
1438
+ cos
1439
+
1440
+ A sin(ωφi)
1441
+
1442
+ sin φi
1443
+ sin
1444
+
1445
+ A sin(ωφi)
1446
+
1447
+
1448
+ � + ϵi,
1449
+ (7)
1450
+ where A = 0.2 and ω = 5 sets the curvature of the mani-
1451
+ fold, ϵi ∼ N(0, 0.05I3) is the additive noise, and we take
1452
+ φi = 2πi
1453
+ 100 for i = 1, . . . , 100 to generate 100 points. On the
1454
+ other hand, the points from the second manifold (blue) are
1455
+ simply 100 samples from N([0, 0, 1]⊤, 0.05I3). We take
1456
+ the feature dimension d = 3 to be equal to he input di-
1457
+ mension D = 3. We paramterize both the feature head
1458
+ fθ and the cluster head gθ to be a simple fully-connected
1459
+ network with 100 hidden neurons, followed by a Rectified
1460
+ Linear Unit as non-linearity and a projection operator onto
1461
+ the sphere S2. Figures 1b to 1d report the features Zθ with
1462
+ random initialization (i.e., before line 1 of Algorithm 1),
1463
+ with self-supervised initialization, and at convergence of
1464
+ MLC. Notably, despite Zθ being noisy and only approxi-
1465
+ mately piece-wise linear, as epoch goes Zθ gradually trans-
1466
+ form to two linear subspaces: the green points converge to
1467
+ a 2-dimensional subspace (intersected with S2) and the blue
1468
+ points converge to a 1-dimension subspace.
1469
+ D.2. Training Details on Real Datasets
1470
+ MLC. As said, we use ResNet-18 as the backbone for ex-
1471
+ periments on CIFAR10, CIFAR100-20, CIFAR100-100 and
1472
+ Tiny-ImageNet-200, and the imbalanced counterparts Imb-
1473
+ CIFAR10, Imb-CIFAR100-100. We also fix the batch size
1474
+ to be 1024 in all experiments. In self-supervised initializa-
1475
+ tion of Zθ (line 1 of Algorithm 1), we use the precision
1476
+ (§2.1) parameter ϵ2 = 0.2, a LARS optimizer [52] (as is
1477
+ also done in [8, 23]) with a learning rate of 0.3 and trained
1478
+ MLC for 1000 epochs. On the other hand, in the train-
1479
+ ing of MLC objective, we use ϵ2 = 0.1, γ = 0.05, and
1480
+ η = 0.175 for the entropy regularization in the Sinkhorn
1481
+ projection [10] layer PΩ,η(·). We fix the backbone and for
1482
+ each batch, we perform one update for parameters in the
1483
+ feature head Zθ and one update for parameters in the clus-
1484
+ ter head Cθ. For each head we use one SGD optimizer [36]
1485
+ with a learning rate of 10−2, momentum of 0.9, and weight
1486
+ decay of 5 · 10−4. Finally, for all experiments, we use the
1487
+ augmentation from [4] detailed below in PyTorch code.
1488
+ Augmentation 1 Augmentations for real datasets
1489
+ import torchvision.transforms as t
1490
+ t.Compose([
1491
+ t.RandomResizedCrop(32,scale=(0.04,
1492
+ 1.0)),
1493
+ t.RandomHorizontalFlip(p=0.5),
1494
+ t.RandomGrayscale(p=0.2),
1495
+ t.RandomApply([t.ColorJitter(0.4,
1496
+ 0.4, 0.4, 0.1)], p=0.8),
1497
+ GaussianBlur(p=0.1)
1498
+ ])
1499
+ SCAN and IMC-SWAV. Recall that we conduct ex-
1500
+ periments on CIFAR100-100, Imb-CIFAR10, and Imb-
1501
+ CIFAR100-100 with SCAN [45], IMC-SWAV [31] and
1502
+ MLC, and report clustering and running time in Tables 3
1503
+ and 4. We use off-the-shelf implementation13 provided by
1504
+ the authors. For a fair comparison, SCAN, IMC-SWAV and
1505
+ MLC all use ResNet-18 as the backbone. Finally, the hyper-
1506
+ parameters of SCAN and IMC-SWAV are set to be the ones
1507
+ optimally chosen for CIFAR10 and CIFAR100 respectively
1508
+ provided by the authors.
1509
+ SPICE. As mentioned, the preprint [30] proposed a method
1510
+ SPICE that appears to achieve state-of-the-art performance
1511
+ in image clustering. We tried to reproduce their results on
1512
+ CIFAR-100-20 using the official implementation14. How-
1513
+ ever, the provided implementation ran into a few errors,
1514
+ which are also observed15. Despite our best effort to fix
1515
+ those issues, the experiments yield only 14% clustering ac-
1516
+ curacy on CIFAR100-20 as opposed to the 53% reported in
1517
+ the paper [30]. Therefore, we note this observation and do
1518
+ not include SPICE in the main text.
1519
+ 13https://github.com/wvangansbeke/Unsupervised-
1520
+ Classification,
1521
+ https : / / github . com / foiv0s / imc -
1522
+ swav-pub
1523
+ 14https : / / github . com / niuchuangnn / SPICE,
1524
+ commit
1525
+ 5eba538.
1526
+ 15https://github.com/niuchuangnn/SPICE/issues/
1527
+ 27,https://github.com/niuchuangnn/SPICE/issues/31
1528
+
1529
+ Table 6. Clustering accuracy and normalized mutual information of MLC and NMCE on CIFAR10 over 10 random seeds, using the same
1530
+ self-initialized features. For the purpose of comparison, both methods use the same optimization strategy and hyper-parameters optimally
1531
+ tuned for NMCE. Consequently, the clustering performance of MLC reported here is lower than that in Table 2.
1532
+ Method
1533
+ Metric
1534
+ Seed
1535
+ Mean
1536
+ Std.
1537
+ 0
1538
+ 1
1539
+ 2
1540
+ 3
1541
+ 4
1542
+ 5
1543
+ 6
1544
+ 7
1545
+ 8
1546
+ 9
1547
+ MLC
1548
+ ACC
1549
+ 84.5
1550
+ 84.8
1551
+ 84.8
1552
+ 84.6
1553
+ 84.4
1554
+ 84.4
1555
+ 84.0
1556
+ 84.3
1557
+ 84.4
1558
+ 84.6
1559
+ 84.5
1560
+ 0.24
1561
+ NMI
1562
+ 76.6
1563
+ 77.1
1564
+ 76.8
1565
+ 76.8
1566
+ 76.5
1567
+ 76.4
1568
+ 76.1
1569
+ 76.4
1570
+ 76.4
1571
+ 76.5
1572
+ 76.6
1573
+ 0.28
1574
+ NMCE
1575
+ ACC
1576
+ 83.7
1577
+ 82.1
1578
+ 81.6
1579
+ 73.7
1580
+ 80.4
1581
+ 77.9
1582
+ 81.7
1583
+ 81.4
1584
+ 72.7
1585
+ 80.9
1586
+ 79.6
1587
+ 3.69
1588
+ NMI
1589
+ 74.4
1590
+ 71.2
1591
+ 70.4
1592
+ 65.2
1593
+ 70.0
1594
+ 68.1
1595
+ 72.7
1596
+ 70.8
1597
+ 69.2
1598
+ 69.8
1599
+ 70.2
1600
+ 2.49
1601
+ (a) CIFAR100-20
1602
+ (b) CIFAR100-100
1603
+ (c) Tiny ImageNet-200
1604
+ Figure 6.
1605
+ Cosine similarity |Z⊤
1606
+ MLCZMLC| of the features ZMLC learned by MLC on more complicated datasets: CIFAR100-20,
1607
+ CIFAR100-100, Tiny ImageNet-200.
1608
+ E. Additional Comparison of MLC and NMCE
1609
+ on Stability with Respect to Random Seeds
1610
+ As detailed in §2.2, one of the advantages of the pro-
1611
+ posed MLC over NMCE [23] is that MLC has a more sta-
1612
+ ble performance with respect to random seeds, since MLC
1613
+ is able to initialize the membership deterministically using
1614
+ structures from the self-supervised initialized features. Be-
1615
+ low we conduct extra experiments to provide empirical ev-
1616
+ idence. We first fix a self-supervised initialization of fea-
1617
+ tures that is in turn used for both NMCE and MLC. Then,
1618
+ using this very same initialization of features, we update
1619
+ NMCE and MLC objective respectively with 5 different
1620
+ seeds: recall that NMCE initializes the membership ran-
1621
+ domly whereas MLC initializes the membership determin-
1622
+ istically using the initialized features. To make a valid com-
1623
+ parison, for both methods we further use the same opti-
1624
+ mization strategy and hyper-parameters that are optimally16
1625
+ tuned for NMCE (which are not optimal for MLC): pre-
1626
+ cision ϵ2 = 0.2, # epochs 100, LARS optimizer for Zθ
1627
+ with an initial learning rate 0.3 decayed to 0 in a cosine
1628
+ annealing manner. Table 6 reports clustering accuracy and
1629
+ normalized mutual information of MLC and NMCE over
1630
+ 16For NMCE, we use the implementation as well as the parameters pro-
1631
+ vided in https://github.com/zengyi-li/NMCE-release.
1632
+ 10 random seeds. As expected, MLC has a more stable
1633
+ clustering performance by having a standard deviation of
1634
+ clustering accuracy and normalized mutual information less
1635
+ than 0.28, in contrast to more than 2.49 achieved by NMCE.
1636
+ Further, MLC achieves higher mean clustering performance
1637
+ than NMCE, as also observed in Table 2. Last but not least,
1638
+ we note that the numbers in Table 6 are not comparable to
1639
+ those in Table 2, since for MLC the hyper-parameters and
1640
+ optimizers are different, and for NMCE an additional step
1641
+ that fine tunes the backbone is used in Table 2.
1642
+ F. Addtional Visualization on Learned Repre-
1643
+ sentation and Clusters
1644
+ Figure 6 presents the cosine similarity (as defined in the
1645
+ preamble of §3) of the representation learned by MLC on
1646
+ CIFAR100-20, CIFAR100-100 and TinyImageNet-200 (for
1647
+ the counterpart on CIFAR10 see §3.1). As seen, the cosine
1648
+ similarity maps form approximately block diagonal struc-
1649
+ tures, showing that the features from different clusters are
1650
+ roughly orthogonal to each other. This is desired by the
1651
+ between-cluster discrimination (§1).
1652
+ Finally, we provide additional visualization of principal
1653
+ images on CIFAR100-20 (see §A for definition) in Figure 8.
1654
+
1655
+ ZtZepoch:{epoch}batch:{step}
1656
+ 0
1657
+ 1.0
1658
+ 200
1659
+ 0.8
1660
+ 400
1661
+ 0.6
1662
+ 600
1663
+ 0.4
1664
+ 800
1665
+ 0.2
1666
+ 1000
1667
+ 0
1668
+ 200
1669
+ 400
1670
+ 600
1671
+ 800
1672
+ 1000ZtZepoch:{epoch}batch:{step)
1673
+ 0
1674
+ 1.0
1675
+ 200
1676
+ 0.8
1677
+ 400
1678
+ 600
1679
+ 0.6
1680
+ 800
1681
+ 0.4
1682
+ 1000
1683
+ 1200
1684
+ 0.2
1685
+ 1400
1686
+ 0
1687
+ 200
1688
+ 400
1689
+ 600
1690
+ 800
1691
+ 1000
1692
+ 1200
1693
+ 1400ZtZepoch:fepoch}batch:(step}
1694
+ 0
1695
+ 1.0
1696
+ 200
1697
+ 0.8
1698
+ 400
1699
+ 600
1700
+ 0.6
1701
+ 800
1702
+ 0.4
1703
+ 1000
1704
+ 1200
1705
+ 0.2
1706
+ 1400
1707
+ 0
1708
+ 200
1709
+ 400
1710
+ 600
1711
+ 800
1712
+ 1000
1713
+ 1200
1714
+ 1400(a) Learned cluster 1
1715
+ (b) Learned cluster 2
1716
+ (c) Learned cluster 3
1717
+ (d) Learned cluster 4
1718
+ (e) Learned cluster 5
1719
+ (f) Learned cluster 6
1720
+ (g) Learned cluster 7
1721
+ (h) Learned cluster 8
1722
+ (i) Learned cluster 9
1723
+ (j) Learned cluster 10
1724
+ (k) Learned cluster 11
1725
+ (l) Learned cluster 12
1726
+
1727
+ 9d(m) Learned cluster 13
1728
+ (n) Learned cluster 14
1729
+ (o) Learned cluster 15
1730
+ (p) Learned cluster 16
1731
+ (q) Learned cluster 17
1732
+ (r) Learned cluster 18
1733
+ (s) Learned cluster 19
1734
+ (t) Learned cluster 20
1735
+ Figure 8. Principal images (defined in §A) of clusters learned by MLC on CIFAR100-20.
1736
+
XdAzT4oBgHgl3EQf1v7O/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
XdE2T4oBgHgl3EQfYgeB/content/tmp_files/2301.03855v1.pdf.txt ADDED
@@ -0,0 +1,1519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Continuous optical-to-mechanical quantum state transfer in the unresolved sideband
2
+ regime
3
+ Amy Navarathna1,2, James S. Bennett1,2,3, and Warwick P. Bowen1,2∗
4
+ 1 ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Queensland 4072, Australia
5
+ 2 School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
6
+ 3 Centre for Quantum Dynamics, Griffith University, Nathan, QLD 4222, Australia
7
+ (Dated: January 11, 2023)
8
+ Optical-to-mechanical quantum state transfer is an important capability for future quantum net-
9
+ works, quantum communication, and distributed quantum sensing. However, existing continuous
10
+ state transfer protocols operate in the resolved sideband regime, necessitating a high-quality optical
11
+ cavity and a high mechanical resonance frequency. Here, we propose a continuous protocol that
12
+ operates in the unresolved sideband regime. The protocol is based on feedback cooling, can be im-
13
+ plemented with current technology, and is able to transfer non-Gaussian quantum states with high
14
+ fidelity. Our protocol significantly expands the kinds of optomechanical devices for which continu-
15
+ ous optical-to-mechanical state transfer is possible, paving the way towards quantum technological
16
+ applications and the preparation of macroscopic superpositions to test the fundamentals of quantum
17
+ science.
18
+ The ability to transfer quantum states between op-
19
+ tical communication channels and quantum computing
20
+ nodes is a necessary ingredient of the emerging quan-
21
+ tum internet [1]. Quantum state transfer also has im-
22
+ portant applications in quantum-enhanced sensing [2, 3],
23
+ quantum-secure communications [4], and fundamental
24
+ tests of macroscopic quantum mechanics [5–10]. A lead-
25
+ ing approach is to mediate the transfer using an optome-
26
+ chanical resonator [11–16]. This is attractive because me-
27
+ chanical resonators interact via radiation pressure with
28
+ electromagnetic fields of all frequencies [1] and can also
29
+ be functionalized to interact with most quantum com-
30
+ puting nodes, such as spins [18–20], superconducting de-
31
+ vices [21–23] and atomic ensembles [24].
32
+ The first step in the transfer process is an optical-
33
+ to-mechanical state transfer, with a subsequent transfer
34
+ to the final computing node [25–27].
35
+ An optical cav-
36
+ ity is employed to enhance the radiation pressure during
37
+ the optical-to-mechanical state transfer.
38
+ Leading pro-
39
+ posals work only in the resolved sideband regime, where
40
+ the decay rate of this cavity is lower than the mechani-
41
+ cal resonance frequency [12, 28]. By contrast, most op-
42
+ tomechanical systems operate in the unresolved sideband
43
+ regime [29].
44
+ In many cases this is due to the benefits
45
+ that low mechanical frequencies convey for applications,
46
+ for instance in precision sensing [30–32].
47
+ In others, it
48
+ is because of the difficulty of simultaneously achieving a
49
+ low decay rate, a high resonance frequency, and sufficient
50
+ radiation pressure coupling [33].
51
+ To date, the only proposals for optical-to-mechanical
52
+ state transfer in the unresolved sideband regime have
53
+ used pulsed, rather than continuous, optomechanical in-
54
+ teractions [34–36].
55
+ This narrows the range of applica-
56
+ tions, introduces significant technical challenges due to
57
+ the additional timing and phase accuracy required [36–
58
59
+ 38], and involves large radiation pressure impulse forces
60
+ that can be problematic [35, 39, 40].
61
+ It is well known that a mechanical resonator can be
62
+ feedback cooled close to its motional ground state in
63
+ the unresolved sideband regime [41]. Here we propose
64
+ a continuous optical-to-mechanical state transfer proto-
65
+ col based on the same concept. By modelling the open
66
+ quantum system dynamics, we show that feedback cool-
67
+ ing can be understood as the transfer of a vacuum state
68
+ of light onto the mechanical resonator. We find that ap-
69
+ propriate choice of the feedback parameters allows the
70
+ transfer of arbitrary quantum states. The requirements
71
+ for successful transfer closely match those for ground-
72
+ state cooling – once the optomechanical cooperativity ex-
73
+ ceeds the thermal occupancy of the mechanical resonator,
74
+ a coherent state can be transferred with near unity fi-
75
+ delity and the Wigner-negativity of non-Gaussian states
76
+ can be preserved.
77
+ Moreover, the feedback parameters
78
+ can be used to phase-sensitively amplify (or squeeze) the
79
+ transferred state, to engineer its temporal profile, and –
80
+ in direct analogy to state-transfer via resolved sideband
81
+ cooling [42] – to achieve the transfer of a single optical
82
+ sideband.
83
+ Our work extends continuous optomechanical state
84
+ transfer beyond the resolved sideband limit, to low-
85
+ quality optical cavities and low frequency mechanical res-
86
+ onators. Feedback cooling of a mechanical resonator to
87
+ near its motional ground state has recently been demon-
88
+ strated, both in cryogenic [43] and room temperature en-
89
+ vironments [44]. As such, our proposal can be directly
90
+ implemented with existing technology, providing a new
91
+ tool for quantum networks and opening a new pathway
92
+ to create and study macroscopic quantum systems. Our
93
+ work also provides new insights into feedback cooling,
94
+ showing that the process is in fact a quantum state trans-
95
+ fer from light to mechanical motion.
96
+ We consider an optomechanical system in the unre-
97
+ solved sideband, high mechanical quality regime (κ ≫
98
+ Ω ≫ Γ) with resonant optical driving, where κ (Γ) is
99
+ arXiv:2301.03855v1 [quant-ph] 10 Jan 2023
100
+
101
+ 2
102
+ FIG. 1.
103
+ Schematic optomechanical system with feedback.
104
+ Light is coupled into an optomechanical cavity. The reflected
105
+ light is measured through homodyne detection. The detected
106
+ photocurrent (Yout(t)) is convolved with a filter f(t) and di-
107
+ rectly fed back to the momentum of the mechanical resonator.
108
+ the optical (mechanical) energy decay rate, and Ω the
109
+ mechanical resonance frequency.
110
+ In this scenario, the
111
+ amplitude quadrature of the input optical field Xin is di-
112
+ rectly imprinted on the mechanical motion via radiation
113
+ pressure. The phase quadrature Yin is not, but is encoded
114
+ on the phase quadrature of the output optical field as [1]:
115
+ Yout = −√ηYin + 2
116
+
117
+ ηΓCQ +
118
+
119
+ 1 − ηYv,
120
+ (1)
121
+ where η is the detection efficiency, C
122
+ =
123
+ 4g2
124
+ om/Γκ
125
+ is the optomechanical cooperativity with gom being
126
+ the
127
+ coherent-amplitude-boosted
128
+ optomechanical
129
+ cou-
130
+ pling rate, Yv is the vacuum noise introduced due to
131
+ detection loss, Q (P) is the dimensionless mechanical
132
+ position (momentum) operator with [Q, P] = i, and all
133
+ optical quadrature operators are normalised such that
134
+ [X(t), Y (t′)] = iδ(t−t′). We propose to detect the output
135
+ phase quadrature and use continuous feedback to trans-
136
+ fer it to the mechanical resonator, as shown in Fig. 1. We
137
+ note that feed-forward, similar to our feedback, has been
138
+ applied to improve microwave-to-optical state transfer in
139
+ the resolved sideband regime [45]. In contrast, the feed-
140
+ forward functioned in that experiment to suppress cor-
141
+ related noise terms, while both optical quadratures were
142
+ transferred by radiation pressure.
143
+ Our scheme is analogous to feedback cooling [41, 43,
144
+ 44, 46–50], with the detected signal applied as a force
145
+ onto the mechanical resonator. Using quantum Langevin
146
+ equations, we find that it is described by the following
147
+ equations of motion:
148
+ ˙Q = ΩP − Γ
149
+ 2 Q +
150
+
151
+ ΓQin,
152
+ (2)
153
+ and
154
+ ˙P = − ΩQ − Γ
155
+ 2 P +
156
+
157
+ ΓPin − 2
158
+
159
+ ΓCXin
160
+ (3)
161
+ − ΓG
162
+ 2 f(t) ⊛
163
+
164
+
165
+
166
+ Yin −
167
+ �1 − η
168
+ η
169
+ Yv
170
+
171
+ 1
172
+ 2
173
+
174
+ ΓC
175
+ + Q
176
+
177
+ ,
178
+ where Pin and Qin are white thermal noise operators that
179
+ satisfy [Qin(t), Pin(t′)] = iδ(t−t′), and we have made the
180
+ rotating wave approximation (RWA) with respect to the
181
+ mechanical bath [1, 51]. The last term of Eq. (3) repre-
182
+ sents the feedback force, where the measured photocur-
183
+ rent is convolved with an arbitrary causal filter function
184
+ f(t) ∈ R and amplified by the gain factor G. The fil-
185
+ ter function is normalised so that |f(Ω)| = 1, where
186
+ f(ω) =
187
+ � ∞
188
+ −∞ f (t) eiωtdt is the Fourier transform of f(t).
189
+ The steady-state solutions to Eqs (2) and (3) are found
190
+ by moving into frequency space and adiabatically elimi-
191
+ nating the dynamics of the optical cavity field (Supple-
192
+ mentary Material, Section I [56]).
193
+ This results in the
194
+ quadratures
195
+ Q (ω) =
196
+
197
+ Γχ(ω)
198
+
199
+ Qin + φ(ω)Pin − 2
200
+
201
+ Cφ(ω)Xin + Gf(ω)φ(ω)
202
+ 4
203
+
204
+ C
205
+
206
+ Yin −
207
+ �1 − η
208
+ η
209
+ Yv
210
+ � �
211
+ ,
212
+ (4)
213
+ P (ω) =
214
+
215
+ Γχ(ω)
216
+
217
+ Pin −
218
+ �Gf(ω)Γ
219
+ 2Ω
220
+ + 1
221
+
222
+ φ(ω)Qin − 2
223
+
224
+ CXin + Gf(ω)
225
+ 4
226
+
227
+ C
228
+
229
+ Yin −
230
+ �1 − η
231
+ η
232
+ Yv
233
+ � �
234
+ ,
235
+ (5)
236
+ where
237
+ φ(ω) =
238
+
239
+ Γ/2 − iω ,
240
+ (6)
241
+ the feedback-broadened mechanical susceptibility is
242
+ χ(ω) =
243
+ 1
244
+ Ωφ(ω)−1 + (Ω + GΓ f(ω)
245
+ 2 )φ(ω)
246
+ ,
247
+ (7)
248
+ and the adiabatic elimination is valid in the unresolved
249
+ sideband regime ({Ω, CΓ} ≪ κ) taken throughout this
250
+ paper. From Eq. (7), we see that the mechanical suscep-
251
+ tibility decreases as G increases. This suppresses most
252
+ of the mechanical terms in Eqs (4) and (5). The only
253
+ term that remains is Qin in P(ω), but this is suppressed
254
+ by the large mechanical quality factor (Ω/Γ ≫ 1). It is
255
+ this combined suppression of all mechanical terms that
256
+ enables optical state transfer with high fidelity.
257
+ The optical input field consists of a continuum of op-
258
+ tical modes. To build insight into which of these modes
259
+ is best transferred to the single mechanical mode, as well
260
+ as the gain and noise of the transfer process, we re-write
261
+
262
+ 3
263
+ Eqs (4) and (5) as:
264
+ Q = gXXtrans + Qnoise,optical + Qnoise,mechanical
265
+ (8)
266
+ P = gY Ytrans + Pnoise,optical + Pnoise,mechanical.
267
+ (9)
268
+ Here, Xtrans and Ytrans are the optical quadratures trans-
269
+ ferred to position and momentum, respectively, and gX
270
+ and gY are the transfer gains.
271
+ Terms labelled with a
272
+ subscript ‘noise’ encompass the residual thermal variance
273
+ remaining after feedback, and any optical terms not aris-
274
+ ing from the temporal mode of interest (i.e., inefficient
275
+ detection, mode mismatch).
276
+ The input optical quadratures transferred to Q and P
277
+ in Eqs. (4) and (5) are not perfectly conjugate observ-
278
+ ables. The difference is embodied in φ, and is a result
279
+ of the retarded response of the mechanical position to an
280
+ applied force. The imperfection introduces an ambigu-
281
+ ity in the optical mode that is optimally transferred –
282
+ a different mode is best transferred to P and Q. Here,
283
+ we choose to assess the transfer of the mode that is op-
284
+ timally transferred to P. This mode is described by the
285
+ annihilation operator
286
+ atrans(ω) = u(ω)ain(ω)
287
+ (10)
288
+ and spectral modeshape
289
+ u(ω) = 2
290
+
291
+ ΓC
292
+ gY
293
+ χ(ω)
294
+ �Gf(ω)
295
+ 8C
296
+ − i
297
+
298
+ ,
299
+ (11)
300
+ where ain(ω) = (Xin(ω) + iYin(ω))/
301
+
302
+ 2.
303
+ Using the
304
+ relations Xtrans = (a†
305
+ trans + atrans)/
306
+
307
+ 2 and Ytrans =
308
+ i(a†
309
+ trans − atrans)/
310
+
311
+ 2, its amplitude and phase quadra-
312
+ tures are found to be
313
+ Xtrans = 2
314
+
315
+ ΓC
316
+ gY
317
+ χ(ω)
318
+ �Gf(ω)
319
+ 8C
320
+ Xin + Yin
321
+
322
+ (12)
323
+ Ytrans = 2
324
+
325
+ ΓC
326
+ gY
327
+ χ(ω)
328
+
329
+ −Xin + Gf(ω)
330
+ 8C
331
+ Yin
332
+
333
+ .
334
+ (13)
335
+ Comparison of Eq. (13) with Eq. (5) confirms that Ytrans
336
+ is reproduced exactly in P(ω), scaled by the momentum
337
+ gain gY .
338
+ The phase quadrature transfer gain, gY , can be de-
339
+ termined by enforcing the boson commutation relation
340
+ [atrans(t), a†
341
+ trans(t)] = 1 on Eq. (10); while that for
342
+ the amplitude quadrature, gX, can be found by requir-
343
+ ing that the optical noise on position commutes with
344
+ both Xtrans and Ytrans, i.e., [Qnoise,optical(t), Xtrans(t)] =
345
+ [Qnoise,optical(t), Ytrans(t)] = 0, where Qnoise,optical is ob-
346
+ tained by rearranging Eq. (8). Together, these give
347
+ gY =
348
+ �4ΓC
349
+
350
+ � ∞
351
+ −∞
352
+ |χ(ω)|2 �
353
+ |f(ω)|2 + 1
354
+
355
+
356
+ �1/2
357
+ (14)
358
+ gX = − 1
359
+ gY
360
+ 8ΓC
361
+
362
+ � ∞
363
+ −∞
364
+ |χ(ω)|2ℑ(φ(ω))ℑ(f(ω))dω.
365
+ (15)
366
+ The spectral modeshape and quadratures of the trans-
367
+ ferred mode depend on both the feedback-broadened me-
368
+ chanical susceptibility χ(ω) and the feedback filter func-
369
+ tion f(ω), so that the transferred state can be controlled
370
+ through appropriate choice of the filter properties. Thus
371
+ far our results are valid for an arbitrary real-valued causal
372
+ filter function. In the remainder of the paper we choose
373
+ the generalized-Lorentzian filter
374
+ f(ω) =
375
+ Γ′Ω
376
+ ω2 − Ω2 + iΓ′ω ,
377
+ (16)
378
+ where Γ′ is the filter bandwidth. This filter is commonly
379
+ used for feedback cooling [41, 48, 50, 52] and is close
380
+ to the known optimal filter for both momentum estima-
381
+ tion [53] and feedback cooling [54]. Γ′ is chosen to be
382
+ much larger than Ω, so that the filter acts as an integra-
383
+ tor near the mechanical resonance frequency. The gain
384
+ factor G can then be understood as the fractional increase
385
+ in the mechanical decay rate due to the feedback.
386
+ With the filter in Eq. (16) and in the limit of large filter
387
+ bandwidth and mechanical quality factor (Ω/Γ ≫ 1), the
388
+ amplitude and phase quadrature transfer gains can be
389
+ approximated as
390
+ gY = 2
391
+
392
+
393
+
394
+ �C
395
+
396
+ 1 +
397
+ G2
398
+ 64C2
399
+ 2 + G
400
+
401
+ and gX =
402
+ 1
403
+ gY (1 + 2/G).
404
+ (17)
405
+ We define the overall gain of the transfer process as
406
+ √gXgY , so that it is independent of unitary squeezing
407
+ operations on the transferred state [55], and define the
408
+ level of squeezing applied during the transfer as gX/gY .
409
+ The overall gain and squeezing level are plotted as a
410
+ function of the feedback gain factor G in Fig. 2 using
411
+ both numerical calculations and the analytic approxima-
412
+ tions of Eqs (17). For these plots and throughout the
413
+ paper we use the system parameters Ω/2π = 1 MHz,
414
+ Γ/2π = 1 Hz, Γ′/2π = 1.59 MHz, κ/2π = 100 MHz, and
415
+ gom/2π = 395 kHz, T = 30 mK which have been achieved
416
+ in a range of optomechanical experiments [33, 43, 44].
417
+ The overall transfer gain approaches unity for G ≫ 1,
418
+ and the transfer generally involves amplitude quadrature
419
+ squeezing (gX/gY < 1).
420
+ Only at G = 8C do we find
421
+ that the input state is transferred without any squeezing
422
+ (gX/gY = 1). Comparison of Eq. (12) with Eq. (4) shows
423
+ that, in the high quality limit for which f(ω) can be sub-
424
+ stituted with f(±Ω) = ∓i, this choice of gain also results
425
+ in near-agreement between Xtrans and the optical input
426
+ terms in Q. The remaining discrepancy arises from the
427
+ retardation factor φ(ω), and this discrepancy approaches
428
+ zero in the high-quality-factor limit. We therefore select
429
+ G = 8C for the remainder of the paper.
430
+ It is illustrative to consider how our choice of filter
431
+ function and gain factor influences the spectral mode-
432
+ shape u(ω). The frequency dependence of the prefactor
433
+ in Eq. (11) depends only on χ(ω), and is sharply peaked
434
+ at both ±Ω. However, since f(±Ω) = ∓i, for G = 8C the
435
+ term in parentheses is precisely zero at −Ω and equals
436
+
437
+ 4
438
+ 10−6
439
+ 10−5
440
+ 10−4
441
+ 10−3
442
+ 10−2
443
+ 10−1
444
+ 100
445
+ 101
446
+ G/C
447
+ 0
448
+ 0.50
449
+ 1.0
450
+ √gXgY
451
+ 1
452
+ 0.5
453
+ 0
454
+ gX/gY
455
+ FIG.
456
+ 2.
457
+ Transfer
458
+ gain
459
+ (√gXgY , red)
460
+ and
461
+ squeezing
462
+ (gX/gY , blue) as a function of the feedback strength by co-
463
+ operativity (G/C). The dashed line indicates G = 1 and the
464
+ full grey line indicates the optimal gain (G = 8C), where
465
+ gX/gY = 1. The dots are numerically obtained, and the lines
466
+ are using the analytic expressions derived in the high quality
467
+ factor limit.
468
+ −2i at Ω.
469
+ Our particular choice, therefore, enables a
470
+ single-sideband state transfer, transferring only the lower
471
+ optical sideband and doing this with a modeshape given
472
+ approximately by χ(ω) (see also Supplementary Mate-
473
+ rial, Section II [56]).
474
+ To quantitatively assess the quality of transfer we
475
+ first consider an input vacuum state. We calculate the
476
+ contributions to the position and momentum variances
477
+ from this input and from the noise sources specified in
478
+ Eqs (8) and (9) (see Supplementary Material, Sections
479
+ II & III [56]). We separate the optical noise into con-
480
+ tributions arising from inefficiences and mode mismatch,
481
+ so that the non-ideality of the transfer that arises due
482
+ to φ(ω) can be assessed.
483
+ The results are plotted in
484
+ Fig. 3 (a) as a function of C/nth (with G = 8C). The
485
+ variance of the transferred optical mode increases with C,
486
+ asymptoting to the vacuum variance of 1/2 once C ≫ 1.
487
+ Conversely, the mechanical noise contribution decreases,
488
+ dropping below the vacuum level for C ≫ nth. The vari-
489
+ ance of the optical inefficiency noise has a cooperativity
490
+ dependence that is similar to the optical signal, increas-
491
+ ing with C and asymptoting to a constant value once
492
+ C ≫ 1. As expected, this noise increases as the detec-
493
+ tion efficiency degrades. However, even for η as low as
494
+ 0.5 the transferred signal variance still dominates ineffi-
495
+ ciency noise for the whole range of C/nth. The mode-
496
+ mismatch noise on Q is very low for small C, increases
497
+ approximately linearly with C, and eventually exceeds
498
+ the signal variance. Thus, the mode-mismatch ultimately
499
+ constrains the performance of the state transfer.
500
+ Using the analytic expressions for the gains in Eqs (17),
501
+ we derive analytic expressions for the different variance
502
+ contributions that are valid in the same high-quality,
503
+ high-bandwidth limit (see Supplementary Material [56],
504
+ Section III). With the exception of the mismatch noise,
505
+ which is zero in the limit of high quality, these expres-
506
+ sions agree well with the numerical results in Fig. 3 (a).
507
+ From them, we find that when C ≫ 1 the noise variance
508
+ introduced by optical inefficiency is Vη = (1−η)/4η, and
509
+ that the mechanical noise variance is suppressed below
510
+ the vacuum noise level once C > ¯nth/2.
511
+ 10−3
512
+ 10−2
513
+ 10−1
514
+ 100
515
+ 101
516
+ C/nth
517
+ 10−2
518
+ 100
519
+ 102
520
+ Variance
521
+ (a)
522
+ 0
523
+ 0.5
524
+ 1
525
+ F
526
+ (b)
527
+ Coherent→
528
+ (c)
529
+ ↑→
530
+ P
531
+ Q
532
+ Cat→
533
+ Fock→
534
+ 0.0 0.2 0.4 0.6 0.8 1.0
535
+ η
536
+ 0.0
537
+ 0.5
538
+ 1.0
539
+ F
540
+ −0.30
541
+ −0.15
542
+ 0.00
543
+ 0.15
544
+ 0.30
545
+ Wtransferred
546
+ FIG. 3.
547
+ (a) Contributions to the variance as a function of
548
+ interaction strength of mechanical noise (blue), optical signal
549
+ (yellow), and two contributions of optical noise: mode mis-
550
+ match on Q (black), and inefficiency (red). The size of the
551
+ markers correspond to the inefficiency (η = 0.9, 0.75, 0.5) for
552
+ decreasing size respectively. (b) The transfer fidelity (F) as a
553
+ function of interaction strength for a coherent state (black),
554
+ cat state (green) (α = 2) and single photon Fock state (dark
555
+ blue). Inset shows F as a function of η for the coherent state,
556
+ at a fixed value of C/nth = 10. (c) Corresponding plots of the
557
+ Wigner distributions for a coherent state (top row), cat state
558
+ (middle row) and Fock state (bottom row) at the interaction
559
+ strengths indicated by the grey lines connected to subplot (b).
560
+ The black dotted circle in the top right indicates the length
561
+ scale of the contour of the ground state. The orientation of
562
+ the plots is indicated by the black arrows in the top right plot.
563
+ Since the feedback process is linear and all noise
564
+ sources are Gaussian, it is straightforward to extend our
565
+ analysis beyond the transfer of vacuum states, to more
566
+ elaborate states such as Schr¨odinger cat states. This can
567
+ be achieved using Wigner functions (Supplementary Ma-
568
+ terial, Section IV [56]). Imperfections introduced by the
569
+ thermal noise, mode mismatch, and inefficiency tend to
570
+ ‘smear out’ quantum features of the transferred optical
571
+ mode’s Wigner function. Mathematically, this is repre-
572
+ sented by convolving the signal’s Wigner function with a
573
+
574
+ 5
575
+ Gaussian noise kernel G(r) (with r = (Q P)T ) [57]:
576
+ Wtransferred(r) = (W ⊛ G) (r).
577
+ (18)
578
+ In the regime relevant to this paper, G is typically close to
579
+ symmetric, with a slight wider spread in the Q direction
580
+ due to mode mismatch. The transfer fidelity can then be
581
+ determined for any pure input state as
582
+ F = 2π
583
+ � ∞
584
+ −∞
585
+ � ∞
586
+ −∞
587
+ W(r)Wtransferred(r)d2r.
588
+ (19)
589
+ We plot the fidelity for input coherent, Fock, and cat
590
+ states in Fig. 3 (b) as a function of C/nth and assum-
591
+ ing that η = 1. The coherent state fidelity exceeds the
592
+ classical limit of 1/2 at C/nth = 0.25 and the no-cloning
593
+ bound of 2/3 at C/nth = 0.50. The fidelity for the non-
594
+ Gaussian states also reach fidelities greater than 0.5 at
595
+ similar, experimentally accessible [33, 43, 58] coopera-
596
+ tivities.
597
+ For the chosen experimental parameters, the
598
+ maximum achievable fidelities are 0.98, 0.93, and 0.82
599
+ for coherent, Fock, and cat states, respectively, and are
600
+ limited by the mode-mismatch noise. The fidelity is ro-
601
+ bust against measurement inefficiencies as visible in the
602
+ inset of Fig. 3 (b), which shows that the coherent state
603
+ fidelity can exceed 1/2 even with a detection efficiency as
604
+ low as η = 0.2. Fig. 3 (c) plots the Wigner distributions
605
+ of transferred coherent, Fock, and cat states at three dif-
606
+ ferent values of C/nth, showing that the negativity of
607
+ the Fock and cat states can be transferred, and therefore
608
+ non-classical properties of the input state preserved.
609
+ In conclusion, we have identified that feedback can be
610
+ used to achieve continuous optical-to-mechanical state
611
+ transfer in the unresolved sideband regime. We predict
612
+ that state transfer can be achieved with high fidelity and
613
+ whilst preserving non-classical features such as Wigner
614
+ negativity.
615
+ The ability to implement continuous state
616
+ transfer in the unresolved sideband regime significantly
617
+ widens the class of optomechanical systems that can be
618
+ used as interfaces in quantum networks.
619
+ ACKNOWLEDGEMENTS
620
+ The authors thank Mr S. Khademi and Dr C. Meng
621
+ for useful discussions. This research was primarily sup-
622
+ ported by the Australian Research Council Centre of
623
+ Excellence for Engineered Quantum Systems (EQUS,
624
+ CE170100009). Support was also provided by the by the
625
+ Air Force Office of Scientific Research under award num-
626
+ ber FA9550-20-1-0391.
627
+ REFERENCES
628
+ [1] H.
629
+ J.
630
+ Kimble,
631
+ Nature
632
+ 453,
633
+ 1023
634
+ (2008),
635
+ ISSN
636
+ 0028-0836,
637
+ 1476-4687,
638
+ URL http://www.nature.com/
639
+ articles/nature07127.
640
+ [2] C. Degen, F. Reinhard, and P. Cappellaro, Reviews
641
+ of Modern Physics 89,
642
+ 035002 (2017),
643
+ ISSN 0034-
644
+ 6861,
645
+ 1539-0756,
646
+ URL http://link.aps.org/doi/10.
647
+ 1103/RevModPhys.89.035002.
648
+ [3] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono,
649
+ K. Usami, and Y. Nakamura, Science 367, 425 (2020),
650
+ ISSN 0036-8075, 1095-9203, URL https://www.science.
651
+ org/doi/10.1126/science.aaz9236.
652
+ [4] R. Riedinger, A. Wallucks, I. Marinkovi´c, C. L¨oschnauer,
653
+ M. Aspelmeyer, S. Hong, and S. Gr¨oblacher, Nature 556,
654
+ 473 (2018), ISSN 0028-0836, 1476-4687, URL http://
655
+ www.nature.com/articles/s41586-018-0036-z.
656
+ [5] M.
657
+ Paternostro,
658
+ D.
659
+ Vitali,
660
+ S.
661
+ Gigan,
662
+ M.
663
+ S.
664
+ Kim,
665
+ ˇC. Brukner, J. Eisert, and M. Aspelmeyer, Physical
666
+ Review Letters 99,
667
+ 250401 (2007),
668
+ ISSN 0031-9007,
669
+ 1079-7114,
670
+ URL https://link.aps.org/doi/10.1103/
671
+ PhysRevLett.99.250401.
672
+ [6] I. Pikovski,
673
+ M. R. Vanner,
674
+ M. Aspelmeyer,
675
+ M. S.
676
+ Kim, and ˇC. Brukner, Nature Physics 8, 393 (2012),
677
+ ISSN 1745-2473, 1745-2481, URL http://www.nature.
678
+ com/articles/nphys2262.
679
+ [7] M. Arndt and K. Hornberger, Nature Physics 10, 271
680
+ (2014), ISSN 1745-2473, 1745-2481, URL http://www.
681
+ nature.com/articles/nphys2863.
682
+ [8] S. Forstner, M. Zych, S. Basiri-Esfahani, K. E. Khosla,
683
+ and
684
+ W.
685
+ P.
686
+ Bowen,
687
+ Optica
688
+ 7,
689
+ 1427
690
+ (2020),
691
+ ISSN
692
+ 2334-2536,
693
+ URL
694
+ https://opg.optica.org/abstract.
695
+ cfm?URI=optica-7-10-1427.
696
+ [9] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Ci-
697
+ cak, A. Kwiatkowski, S. Geller, S. Glancy, E. Knill, R. W.
698
+ Simmonds, et al., Science 372, 622 (2021), ISSN 0036-
699
+ 8075, 1095-9203, URL https://www.science.org/doi/
700
+ 10.1126/science.abf2998.
701
+ [10] L. Mercier de L´epinay, C. F. Ockeloen-Korppi, M. J.
702
+ Woolley, and M. A. Sillanp¨a¨a, Science 372, 625 (2021),
703
+ ISSN 0036-8075, 1095-9203, URL https://www.science.
704
+ org/doi/10.1126/science.abf5389.
705
+ [11] S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and
706
+ D. Vitali, Physical Review Letters 109, 130503 (2012),
707
+ ISSN 0031-9007, 1079-7114, URL https://link.aps.
708
+ org/doi/10.1103/PhysRevLett.109.130503.
709
+ [12] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W.
710
+ Simmonds, and K. W. Lehnert, Nature 495, 210 (2013),
711
+ ISSN 0028-0836, 1476-4687, URL http://www.nature.
712
+ com/articles/nature11915.
713
+ [13] R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel,
714
+ and K. W. Lehnert, Nature Communications 6, 10021
715
+ (2015), ISSN 2041-1723, URL http://www.nature.com/
716
+ articles/ncomms10021.
717
+ [14] N.
718
+ J.
719
+ Lambert,
720
+ A.
721
+ Rueda,
722
+ F.
723
+ Sedlmeir,
724
+ and
725
+ H. G. L. Schwefel,
726
+ Advanced Quantum Technologies
727
+ 3, 1900077 (2020), ISSN 2511-9044, 2511-9044, URL
728
+
729
+ 6
730
+ https://onlinelibrary.wiley.com/doi/10.1002/qute.
731
+ 201900077.
732
+ [15] G. Arnold, M. Wulf, S. Barzanjeh, E. S. Redchenko,
733
+ A.
734
+ Rueda,
735
+ W.
736
+ J.
737
+ Hease,
738
+ F.
739
+ Hassani,
740
+ and
741
+ J.
742
+ M.
743
+ Fink, Nature Communications 11, 4460 (2020), ISSN
744
+ 2041-1723,
745
+ URL
746
+ https://www.nature.com/articles/
747
+ s41467-020-18269-z.
748
+ [16] M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter,
749
+ Nature 588, 599 (2020), ISSN 0028-0836, 1476-4687, URL
750
+ http://www.nature.com/articles/s41586-020-3038-6.
751
+ [1] W. P. Bowen and G. J. Milburn, Quantum optomechanics
752
+ (CRC Press, Boca Raton London New York, 2015), ISBN
753
+ 978-0-367-57519-9.
754
+ [18] P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R.
755
+ Maze, and M. D. Lukin, Physical Review B 79, 041302
756
+ (2009), ISSN 1098-0121, 1550-235X, URL https://link.
757
+ aps.org/doi/10.1103/PhysRevB.79.041302.
758
+ [19] P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and
759
+ A.
760
+ C.
761
+ B.
762
+ Jayich,
763
+ Nature
764
+ Communications
765
+ 5,
766
+ 4429
767
+ (2014), ISSN 2041-1723, URL http://www.nature.com/
768
+ articles/ncomms5429.
769
+ [20] S. Carter, A. Bracker, G. Bryant, M. Kim, C. Kim,
770
+ M. Zalalutdinov, M. Yakes, C. Czarnocki, J. Casara,
771
+ M. Scheibner, et al., Physical Review Letters 121, 246801
772
+ (2018), ISSN 0031-9007, 1079-7114, URL https://link.
773
+ aps.org/doi/10.1103/PhysRevLett.121.246801.
774
+ [21] B. H. Schneider, S. Etaki, H. S. J. van der Zant, and G. A.
775
+ Steele, Scientific Reports 2, 599 (2012), ISSN 2045-2322,
776
+ URL http://www.nature.com/articles/srep00599.
777
+ [22] P. Arrangoiz-Arriola, E. A. Wollack, M. Pechal, J. D.
778
+ Witmer, J. T. Hill, and A. H. Safavi-Naeini, Physical Re-
779
+ view X 8, 031007 (2018), ISSN 2160-3308, URL https:
780
+ //link.aps.org/doi/10.1103/PhysRevX.8.031007.
781
+ [23] M. Pechal, P. Arrangoiz-Arriola, and A. H. Safavi-Naeini,
782
+ Quantum Science and Technology 4, 015006 (2018), ISSN
783
+ 2058-9565, URL https://iopscience.iop.org/article/
784
+ 10.1088/2058-9565/aadc6c.
785
+ [24] P. Treutlein, D. Hunger, S. Camerer, T. W. H¨ansch, and
786
+ J. Reichel, Physical Review Letters 99, 140403 (2007),
787
+ ISSN 0031-9007, 1079-7114, URL https://link.aps.
788
+ org/doi/10.1103/PhysRevLett.99.140403.
789
+ [25] W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold,
790
+ H. G. Schwefel, and J. M. Fink, PRX Quantum 1, 020315
791
+ (2020), ISSN 2691-3399, URL https://link.aps.org/
792
+ doi/10.1103/PRXQuantum.1.020315.
793
+ [26] P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D.
794
+ Sukachev, and P. E. Barclay, Nature Physics 17, 1420
795
+ (2021), ISSN 1745-2473, 1745-2481, URL https://www.
796
+ nature.com/articles/s41567-021-01364-3.
797
+ [27] B. Brubaker, J. Kindem, M. Urmey, S. Mittal, R. De-
798
+ laney, P. Burns, M. Vissers, K. Lehnert, and C. Re-
799
+ gal,
800
+ Physical
801
+ Review
802
+ X
803
+ 12,
804
+ 021062
805
+ (2022),
806
+ ISSN
807
+ 2160-3308,
808
+ URL https://link.aps.org/doi/10.1103/
809
+ PhysRevX.12.021062.
810
+ [28] J. Zhang,
811
+ K. Peng,
812
+ and S. L. Braunstein,
813
+ Phys-
814
+ ical Review A 68,
815
+ 013808 (2003),
816
+ ISSN 1050-2947,
817
+ 1094-1622,
818
+ URL https://link.aps.org/doi/10.1103/
819
+ PhysRevA.68.013808.
820
+ [29] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt,
821
+ Reviews of Modern Physics 86, 1391 (2014), ISSN 0034-
822
+ 6861, 1539-0756, URL https://link.aps.org/doi/10.
823
+ 1103/RevModPhys.86.1391.
824
+ [30] S.
825
+ Basiri-Esfahani,
826
+ A.
827
+ Armin,
828
+ S.
829
+ Forstner,
830
+ and
831
+ W.
832
+ P.
833
+ Bowen,
834
+ Nature
835
+ Communications
836
+ 10,
837
+ 132
838
+ (2019), ISSN 2041-1723, URL http://www.nature.com/
839
+ articles/s41467-018-08038-4.
840
+ [31] M. Sansa,
841
+ M. Defoort,
842
+ A. Brenac,
843
+ M. Hermouet,
844
+ L. Banniard, A. Fafin, M. Gely, C. Masselon, I. Favero,
845
+ G. Jourdan, et al., Nature Communications 11, 3781
846
+ (2020), ISSN 2041-1723, URL http://www.nature.com/
847
+ articles/s41467-020-17592-9.
848
+ [32] B. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen,
849
+ G. Allen, R. Amin, S. B. Anderson, W. G. Anderson,
850
+ M. A. Arain, et al., New Journal of Physics 11, 073032
851
+ (2009), ISSN 1367-2630, URL https://iopscience.iop.
852
+ org/article/10.1088/1367-2630/11/7/073032.
853
+ [33] R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muho-
854
+ nen,
855
+ and
856
+ E.
857
+ Verhagen,
858
+ Nature
859
+ Communications
860
+ 8,
861
+ ncomms16024 (2017), ISSN 2041-1723, URL http://www.
862
+ nature.com/articles/ncomms16024.
863
+ [34] M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim,
864
+ ˇC. Brukner, K. Hammerer, G. J. Milburn, and M. As-
865
+ pelmeyer,
866
+ Proceedings
867
+ of
868
+ the
869
+ National
870
+ Academy
871
+ of
872
+ Sciences 108,
873
+ 16182 (2011),
874
+ ISSN 0027-8424,
875
+ 1091-
876
+ 6490, URL https://pnas.org/doi/full/10.1073/pnas.
877
+ 1105098108.
878
+ [35] J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Van-
879
+ ner, H. Rubinsztein-Dunlop, and W. P. Bowen, New
880
+ Journal
881
+ of
882
+ Physics
883
+ 18,
884
+ 053030
885
+ (2016),
886
+ ISSN
887
+ 1367-
888
+ 2630, URL https://iopscience.iop.org/article/10.
889
+ 1088/1367-2630/18/5/053030.
890
+ [36] U. B. Hoff, J. Kollath-B¨onig, J. S. Neergaard-Nielsen,
891
+ and U. L. Andersen, Physical Review Letters 117, 143601
892
+ (2016), ISSN 0031-9007, 1079-7114, URL https://link.
893
+ aps.org/doi/10.1103/PhysRevLett.117.143601.
894
+ [37] M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer,
895
+ Nature Communications 4, 2295 (2013), ISSN 2041-1723,
896
+ URL http://www.nature.com/articles/ncomms3295.
897
+ [38] K.
898
+ E.
899
+ Khosla,
900
+ G.
901
+ A.
902
+ Brawley,
903
+ M.
904
+ R.
905
+ Vanner,
906
+ and
907
+ W.
908
+ P.
909
+ Bowen,
910
+ Optica
911
+ 4,
912
+ 1382
913
+ (2017),
914
+ ISSN
915
+ 2334-2536,
916
+ URL
917
+ https://opg.optica.org/abstract.
918
+ cfm?URI=optica-4-11-1382.
919
+ [39] J. T. Muhonen, G. R. La Gala, R. Leijssen, and E. Ver-
920
+ hagen, Physical Review Letters 123, 113601 (2019), ISSN
921
+ 0031-9007, 1079-7114, URL https://link.aps.org/doi/
922
+ 10.1103/PhysRevLett.123.113601.
923
+ [40] J. S. Bennett, L. S. Madsen, H. Rubinsztein-Dunlop,
924
+ and W. P. Bowen, New Journal of Physics 22, 103028
925
+ (2020), ISSN 1367-2630, URL https://iopscience.iop.
926
+ org/article/10.1088/1367-2630/abb73f.
927
+ [41] S.
928
+ Mancini,
929
+ D.
930
+ Vitali,
931
+ and
932
+ P.
933
+ Tombesi,
934
+ Physi-
935
+ cal Review Letters 80, 688 (1998), ISSN 0031-9007,
936
+ 1079-7114,
937
+ URL https://link.aps.org/doi/10.1103/
938
+ PhysRevLett.80.688.
939
+ [42] R. Peterson, T. Purdy, N. Kampel, R. Andrews, P.-L. Yu,
940
+ K. Lehnert, and C. Regal, Physical Review Letters 116,
941
+ 063601 (2016), ISSN 0031-9007, 1079-7114, URL https://
942
+ link.aps.org/doi/10.1103/PhysRevLett.116.063601.
943
+ [43] M.
944
+ Rossi,
945
+ D.
946
+ Mason,
947
+ J.
948
+ Chen,
949
+ Y.
950
+ Tsaturyan,
951
+ and
952
+ A.
953
+ Schliesser,
954
+ Nature
955
+ 563,
956
+ 53
957
+ (2018),
958
+ ISSN
959
+ 0028-0836,
960
+ 1476-4687,
961
+ URL http://www.nature.com/
962
+ articles/s41586-018-0643-8.
963
+ [44] J. Guo, R. Norte, and S. Gr¨oblacher, Physical Re-
964
+ view
965
+ Letters
966
+ 123,
967
+ 223602
968
+ (2019),
969
+ ISSN
970
+ 0031-9007,
971
+ 1079-7114,
972
+ URL https://link.aps.org/doi/10.1103/
973
+ PhysRevLett.123.223602.
974
+ [45] A. P. Higginbotham, P. S. Burns, M. D. Urmey, R. W.
975
+ Peterson, N. S. Kampel, B. M. Brubaker, G. Smith, K. W.
976
+
977
+ 7
978
+ Lehnert, and C. A. Regal, Nature Physics 14, 1038 (2018),
979
+ ISSN 1745-2473, 1745-2481, URL http://www.nature.
980
+ com/articles/s41567-018-0210-0.
981
+ [46] P. F. Cohadon, A. Heidmann, and M. Pinard, Phys-
982
+ ical Review Letters 83, 3174 (1999), ISSN 0031-9007,
983
+ 1079-7114,
984
+ URL https://link.aps.org/doi/10.1103/
985
+ PhysRevLett.83.3174.
986
+ [47] A. Hopkins, K. Jacobs, S. Habib, and K. Schwab,
987
+ Physical Review B 68, 235328 (2003), ISSN 0163-1829,
988
+ 1095-3795,
989
+ URL https://link.aps.org/doi/10.1103/
990
+ PhysRevB.68.235328.
991
+ [48] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar,
992
+ Physical Review Letters 99, 017201 (2007), ISSN 0031-
993
+ 9007, 1079-7114, URL https://link.aps.org/doi/10.
994
+ 1103/PhysRevLett.99.017201.
995
+ [49] K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel,
996
+ and W. P. Bowen, Physical Review Letters 104, 123604
997
+ (2010), ISSN 0031-9007, 1079-7114, URL https://link.
998
+ aps.org/doi/10.1103/PhysRevLett.104.123604.
999
+ [50] G. I. Harris, U. L. Andersen, J. Knittel, and W. P.
1000
+ Bowen, Physical Review A 85, 061802 (2012), ISSN 1050-
1001
+ 2947, 1094-1622, URL https://link.aps.org/doi/10.
1002
+ 1103/PhysRevA.85.061802.
1003
+ [51] A. C. Doherty,
1004
+ A. Szorkovszky,
1005
+ G. I. Harris,
1006
+ and
1007
+ W. P. Bowen, Philosophical Transactions of the Royal
1008
+ Society
1009
+ A:
1010
+ Mathematical,
1011
+ Physical
1012
+ and
1013
+ Engineering
1014
+ Sciences
1015
+ 370,
1016
+ 5338
1017
+ (2012),
1018
+ ISSN
1019
+ 1364-503X,
1020
+ 1471-
1021
+ 2962, URL https://royalsocietypublishing.org/doi/
1022
+ 10.1098/rsta.2011.0531.
1023
+ [52] M. Pinard, P. F. Cohadon, T. Briant, and A. Heid-
1024
+ mann, Physical Review A 63, 013808 (2000), ISSN 1050-
1025
+ 2947, 1094-1622, URL https://link.aps.org/doi/10.
1026
+ 1103/PhysRevA.63.013808.
1027
+ [53] C. Meng, G. A. Brawley, J. S. Bennett, M. R. Vanner,
1028
+ and W. P. Bowen, Physical Review Letters 125, 043604
1029
+ (2020), ISSN 0031-9007, 1079-7114, URL https://link.
1030
+ aps.org/doi/10.1103/PhysRevLett.125.043604.
1031
+ [54] A. C. Doherty and K. Jacobs, Physical Review A 60,
1032
+ 2700 (1999), ISSN 1050-2947, 1094-1622, URL https://
1033
+ link.aps.org/doi/10.1103/PhysRevA.60.2700.
1034
+ [55] W. Bowen, N. Treps, B. Buchler, R. Schnabel, T. Ralph,
1035
+ T. Symul, and Ping Koy Lam, IEEE Journal of Se-
1036
+ lected Topics in Quantum Electronics 9, 1519 (2003),
1037
+ ISSN 1077-260X, URL http://ieeexplore.ieee.org/
1038
+ document/1263784/.
1039
+ [56] See Supplemental Material (below) for more details to
1040
+ reproduce the work, a figure of the contributions to the
1041
+ power spectral density of the mechanical quadratures, and
1042
+ analytic expressions for the variance contributions.
1043
+ [57] S. Chountasis, L. K. Stergioulas, and A. Vourdas, Jour-
1044
+ nal of Modern Optics 46, 2131 (1999), ISSN 0950-0340,
1045
+ 1362-3044, URL http://www.tandfonline.com/doi/abs/
1046
+ 10.1080/09500349908231397.
1047
+ [58] D.
1048
+ J.
1049
+ Wilson,
1050
+ V.
1051
+ Sudhir,
1052
+ N.
1053
+ Piro,
1054
+ R.
1055
+ Schilling,
1056
+ A. Ghadimi, and T. J. Kippenberg, Nature 524, 325
1057
+ (2015), ISSN 0028-0836, 1476-4687, URL http://www.
1058
+ nature.com/articles/nature14672.
1059
+
1060
+ 1
1061
+ Supplemental Material: Continuous optical-to-mechanical quantum state transfer in
1062
+ the unresolved sideband regime
1063
+ I.
1064
+ THEORETICAL MODEL
1065
+ The Quantum Langevin equation used to derive the equation of motion for an arbitrary quadrature (O) is [S1]:
1066
+ dO
1067
+ dt = 1
1068
+ iℏ [O, H] −
1069
+
1070
+ O, a†� �γ
1071
+ 2 a − √γain(t)
1072
+
1073
+ +
1074
+ �γ
1075
+ 2 a† − √γa†
1076
+ in(t)
1077
+
1078
+ [O, a] ,
1079
+ (S1)
1080
+ with γ the linewidth and a† (a) the creation (annihilation) operator associated with the operator O.
1081
+ The full set of equations of motion (EOM) in frequency space, after including adiabatic elimination on the optical
1082
+ quadratures, is:
1083
+ −iωP = −ΩQ − Γ
1084
+ 2 P +
1085
+
1086
+ ΓPin − 2αgom,0X
1087
+ −iωQ = ΩP − Γ
1088
+ 2 Q +
1089
+
1090
+ ΓQin
1091
+ 0 = −κ
1092
+ 2 X + √κXin
1093
+ 0 = −κ
1094
+ 2 Y − √κYin − 2αgom,0Q,
1095
+ (S2)
1096
+ where Γ (κ) is the mechanical (optical) linewidth, and gom,0 the single-photon optomechanical interaction strength,
1097
+ which is boosted by α from the intracavity photon amplitude, P(in) and Q(in) are the (intracavity) momentum and
1098
+ position quadratures of the mechanical oscillator, respectively, Ω is the mechanical resonance frequency and X(in) and
1099
+ Y(in) are the (intracavity) amplitude and phase quadratures of the optical cavity respectively.
1100
+ Using input-output relations (Oout = Oin − √γO), we can determine an estimate for the mechanical position
1101
+ quadrature, by rescaling the detected photocurrent:
1102
+ Yout = −√ηYin + 2
1103
+
1104
+ ηΓCQ +
1105
+
1106
+ 1 − ηYv,
1107
+ (S3)
1108
+ such that
1109
+ Qest = Q −
1110
+ √κ
1111
+ 4αgom,0
1112
+
1113
+ Yin −
1114
+ �1 − η
1115
+ η
1116
+ Yv
1117
+
1118
+ ,
1119
+ (S4)
1120
+ which includes the added noise (Yv) from detection inefficiencies (η). After convolution with an arbitrary causal
1121
+ real-valued filter function (f(t) ⊛ Qest) this is equivalent to an estimate of the momentum quadrature (Pest). To
1122
+ model applying a feedback force we subtract G Γ
1123
+ 2 Pest from the equation of motion for P, where G is the strength of
1124
+ the feedback force.
1125
+ The steady state solutions for the mechanical quadratures are then as included in the main text (reproduced here
1126
+ for ease of reading):
1127
+ Q (ω) =
1128
+
1129
+ Γχ(ω)
1130
+
1131
+ Qin + φ(ω)Pin − 2
1132
+
1133
+ Cφ(ω)Xin + Gf(ω)φ(ω)
1134
+ 4
1135
+
1136
+ C
1137
+
1138
+ Yin −
1139
+ �1 − η
1140
+ η
1141
+ Yv
1142
+ � �
1143
+ ,
1144
+ (S5)
1145
+ and
1146
+ P (ω) =
1147
+
1148
+ Γχ(ω)
1149
+
1150
+ Pin −
1151
+ �Gf(ω)Γ
1152
+ 2Ω
1153
+ + 1
1154
+
1155
+ φ(ω)Qin − 2
1156
+
1157
+ CXin + Gf(ω)
1158
+ 4
1159
+
1160
+ C
1161
+
1162
+ Yin −
1163
+ �1 − η
1164
+ η
1165
+ Yv
1166
+ � �
1167
+ ,
1168
+ (S6)
1169
+ with
1170
+ φ(ω) =
1171
+
1172
+ Γ/2 − iω ,
1173
+ (S7)
1174
+
1175
+ 2
1176
+ and
1177
+ χ(ω) =
1178
+ 1
1179
+ Ωφ(ω)−1 + (Ω + GΓ f(ω)
1180
+ 2 )φ(ω)
1181
+ .
1182
+ (S8)
1183
+ Following the main text, we re-write Eqs. (S5) and (S6) in the form:
1184
+ Q = gXXtrans + Qnoise, optical + Qnoise, mechanical
1185
+ (S9)
1186
+ P = gY Ytrans + Pnoise, optical + Pnoise, mechanical.
1187
+ (S10)
1188
+ Here, Xtrans and Ytrans are the quadratures of the transferred optical mode that are imprinted on the position and
1189
+ momentum, respectively, and gX and gY are the transfer gains allowing for possible differences in gain between
1190
+ position and momentum. Terms labelled with a subscript ‘noise’ encompass the residual mechanical noise remaining
1191
+ after feedback, and the optical noise imprinted on the mechanical oscillator by both feedback and radiation pressure.
1192
+ Following the main text, we can derive the susceptibility of the transferred mode, by using the relations Xtrans =
1193
+ (a†
1194
+ trans + atrans)/
1195
+
1196
+ 2 and Ytrans = i(a†
1197
+ trans − atrans)/
1198
+
1199
+ 2 to find:
1200
+ u(ω) = 2
1201
+
1202
+ ΓC
1203
+ gY
1204
+ χ(ω)
1205
+ �Gf(ω)
1206
+ 8C
1207
+ − i
1208
+
1209
+ (S11)
1210
+ or in terms of Xtrans and Ytrans:
1211
+ Xtrans = 2
1212
+
1213
+ ΓC
1214
+ gY
1215
+ χ(ω)
1216
+ �Gf(ω)
1217
+ 8C
1218
+ Xin + Yin
1219
+
1220
+ (S12)
1221
+ Ytrans = −2
1222
+
1223
+ ΓC
1224
+ gY
1225
+ χ(ω)
1226
+
1227
+ Xin − Gf(ω)
1228
+ 8C
1229
+ Yin
1230
+
1231
+ .
1232
+ (S13)
1233
+ The gain parameters are found through the method described in the main text:
1234
+ gY =
1235
+ �4ΓC
1236
+
1237
+ � ∞
1238
+ −∞
1239
+ |χ(ω)|2 �
1240
+ |f(ω)|2 + 1
1241
+
1242
+
1243
+ �1/2
1244
+ (S14)
1245
+ gX = − 1
1246
+ gY
1247
+ 8ΓC
1248
+
1249
+ � ∞
1250
+ −∞
1251
+ |χ(ω)|2ℑ(φ(ω))ℑ(f(ω))dω.
1252
+ (S15)
1253
+ II.
1254
+ MECHANICAL POWER SPECTRAL DENSITY
1255
+ We construct the symmetrised power spectral densities for all separate contributions listed in Eqs. (S9) and (S10)
1256
+ using the following relations:
1257
+ ¯SOO = SOO(ω) + SOO(−ω)
1258
+ 2
1259
+ ,
1260
+ (S16)
1261
+ and
1262
+ ⟨Qin (t)Qin (t′)⟩ = ⟨Pin (t) Pin (t′)⟩ = (¯nth + 1/2) δ (t − t′) ,
1263
+ (S17)
1264
+ where ¯nth ≈ kBT/ℏΩ is the mean thermal occupancy of the mechanical resonator and T is its temperature. Due to
1265
+ the typically high frequency of the optical field we approximate the optical field to have no thermal occupancy, with
1266
+ ⟨Xin (t)Xin (t′)⟩ = ⟨Yin (t) Yin (t′)⟩ = δ (t − t′) /2.
1267
+ (S18)
1268
+
1269
+ 3
1270
+ 10−12
1271
+ 10−10
1272
+ 10−8
1273
+ 10−6
1274
+ 10−4
1275
+ PSD (Hz−1)
1276
+ (a)
1277
+ C/nth = 0.01
1278
+ 10−1
1279
+ 100
1280
+ 101
1281
+ ω/Ω
1282
+ 10−6
1283
+ 10−10
1284
+ 10−8
1285
+ PSD (Hz−1)
1286
+ C/nth = 10.0
1287
+ (b)
1288
+ 10−1
1289
+ 100
1290
+ 101
1291
+ |ω/Ω|
1292
+ 10−14
1293
+ 10−9
1294
+ 10−4
1295
+ |u(ω)|2 (Hz−1)
1296
+ 10−1
1297
+ 100
1298
+ 101
1299
+ |ω/Ω|
1300
+ 10−10
1301
+ 10−6
1302
+ 10−8
1303
+ |u(ω)|2 (Hz−1)
1304
+ FIG. S1. (a) Four separate contributions to the power spectral density (PSD) with C/nth = 0.01 of the mechanical quadratures:
1305
+ transferred optical mode (yellow), mechanical noise (blue), optical noise from mode mismatch on Q (black) and optical noise
1306
+ from inefficiencies (η) (red). The width of the red lines correspond to η = 0.9, 0.75, and 0.5 (decreasing width respectively).
1307
+ The inset shows the spectral mode of the signal for ω < 0 (green) and ω > 0 (purple). (b) Same as in (a) but with a larger
1308
+ interaction strength, C/nth = 10.
1309
+ Using these, we find:
1310
+ SQQ, optical signal =g2
1311
+ Y
1312
+ 1
1313
+
1314
+ 1
1315
+ 24Γ4g2
1316
+ om
1317
+ Γκ |χ(ω)|2 �
1318
+ |f(ω)|2 + 1
1319
+
1320
+ SQQ, optical noise =1
1321
+ 24Γ4g2
1322
+ om
1323
+ Γκ |χ(ω)|2
1324
+ � �1 − η
1325
+ η
1326
+
1327
+ |f(ω)φ(ω)|2 + |φ(ω)f(ω) − gXgY |2 + |−φ(ω) − gY gXf(ω)|2
1328
+
1329
+ SQQ, mechanical noise =Γ|χ(ω)|2 �
1330
+ 1 + |φ(ω)|2�
1331
+ (¯nth + 1
1332
+ 2)
1333
+ SPP, optical signal =g2
1334
+ Y
1335
+ 1
1336
+ 24Γ4g2
1337
+ om
1338
+ Γκ |χ(ω)|2 �
1339
+ |f(ω)|2 + 1
1340
+
1341
+ SPP, optical noise =1
1342
+ 24Γ4g2
1343
+ om
1344
+ Γκ |χ(ω)|2
1345
+ �1 − η
1346
+ η
1347
+ � �
1348
+ |f(ω)|2 + 1
1349
+
1350
+ SPP, mechanical noise =Γ|χ(ω)|2
1351
+
1352
+ 1 +
1353
+ ����4φ(ω)f(ω) 1
1354
+
1355
+ 4g2
1356
+ om
1357
+ κΓ + 1
1358
+ ����
1359
+ 2� �
1360
+ ¯nth + 1
1361
+ 2
1362
+
1363
+ SPQ =4g2
1364
+ om
1365
+ πκ |χ(ω)|2
1366
+
1367
+ 1 + |f(ω)|2
1368
+ 4
1369
+
1370
+ 1 −
1371
+ �1 − η
1372
+ η
1373
+ �2�
1374
+ ℜ(φ(ω))+
1375
+ Γ
1376
+ 2π |χ(ω)|2 8g2
1377
+ om
1378
+ κΩ2 (ℑ (f(ω))ℑ (φ(ω)) − ℜ(f(ω))ℜ(φ(ω)))
1379
+
1380
+ ¯nth + 1
1381
+ 2
1382
+
1383
+ ,
1384
+ (S19)
1385
+ Each contribution is plotted for two different optomechanical cooperativities in Fig. S1 (a) and (b), including
1386
+ inefficiency noise for three different detection efficiencies. Apart from the additional mode mismatch noise on Q, the
1387
+ contributions are near identical for Q and P in the limit that C ≪ Ω/Γ. We therefore only plot them for Q.
1388
+ Apart from the mode-mismatch noise, all contributions to the power spectral density are peaked at the mechanical
1389
+
1390
+ 4
1391
+ resonance frequency and have a roughly Lorenzian shape. The mismatch-noise, by contrast, is peaked at ω = 0 and
1392
+ approximates the shape of a low pass filter. At low cooperativity (Fig. S1 (a)), the noise dominates the optical signal,
1393
+ preventing an effective quantum state transfer. At higher cooperativity (Fig. S1 (b)), the optical signal rises above
1394
+ the noise contributions, suggesting that quantum state transfer is possible. The inset in both figures plots the spectral
1395
+ modeshape of the signal mode (u(ω)). The optical signal peaks at −Ω (blue) and is suppressed relative to this peak
1396
+ by several orders of magnitude at Ω (green), evidencing that the chosen filter enables a single-sideband transfer.
1397
+ III.
1398
+ VARIANCES
1399
+ We obtain numerical values for the variances of each component of the power spectral density by integrating over
1400
+ frequency. To obtain the variance plot of the main text we sweep the interaction strength gom, while keeping the
1401
+ other system parameters constant.
1402
+ We also determine analytical approximations in the limit of a large bandwidth filter and high mechanical quality
1403
+ factor (Q = Ω
1404
+ Γ ≫ 1). In that limit, and with our chosen filter, the expressions for gY and gX can be approximated as:
1405
+ gY =
1406
+
1407
+
1408
+
1409
+ �2C
1410
+
1411
+ 1 +
1412
+ G2
1413
+ 64C2
1414
+ 1 + G/2
1415
+
1416
+ ,
1417
+ (S20)
1418
+ and
1419
+ gX =
1420
+ 1
1421
+ gY(1 + 2/G).
1422
+ (S21)
1423
+ Using these expressions and approximating the spectral densities in the high quality limit, we calculate analytic
1424
+ expressions for the variance of each component through the residue theorem. The results are:
1425
+ VXtrans = 1
1426
+ 2gX
1427
+ 2,
1428
+ (S22)
1429
+ VQmech =
1430
+ 1
1431
+ 1 + G/2
1432
+ �1
1433
+ 2 + nth
1434
+
1435
+ ,
1436
+ (S23)
1437
+ VQmismatch = 0,
1438
+ (S24)
1439
+ VQ η = 1
1440
+ 4
1441
+ �1 − η
1442
+ η
1443
+
1444
+ gX
1445
+ 2,
1446
+ (S25)
1447
+ VQmismatchQsignal = 0,
1448
+ (S26)
1449
+ and
1450
+ VPQ = VQP = 0.
1451
+ (S27)
1452
+ Eq. S24 only occurs in the variance for Q.
1453
+ The analytic variances for P are similar, with the subscript Q (X)
1454
+ substituted for P (Y).
1455
+
1456
+ 5
1457
+ IV.
1458
+ WIGNER FUNCTIONS
1459
+ The Wigner functions used as optical input states are given by the following equations in Wigner space (r = (QP)T ):
1460
+ WCat (Q=2,P=0)(r) = exp(−r · r)
1461
+
1462
+ exp(−2α · α) cosh
1463
+
1464
+ 2
1465
+
1466
+ 2r · α
1467
+
1468
+ + cos
1469
+
1470
+ 2
1471
+
1472
+ 2r · (ϖα)
1473
+ ��
1474
+ π(exp(−2α · α) + 1)
1475
+ WFock (n=1)(r) = e−r·r (2r · r − 1)
1476
+ π
1477
+ WCoherent, vacuum(r) = e− r·r
1478
+ 2
1479
+ 2π ,
1480
+ (S28)
1481
+ where α = (αr, αi), and we use αr = 2, and αi = 0 for the calculation of the fidelity in the main text, and ϖ =
1482
+ ((0, 1), (−1, 0)) is a symplectic matrix.
1483
+ As stated in the main text, the interactions are Gaussian and we can construct a Wigner function associated with
1484
+ the noise in the system:
1485
+ Wnoise(r) = 1
1486
+
1487
+ 1
1488
+
1489
+ det (Vnoise)
1490
+ exp
1491
+ �Q2V11 − 2QPV12 + P 2V22
1492
+ 2V 2
1493
+ 12 − 2V11V22
1494
+
1495
+ ,
1496
+ (S29)
1497
+ where Vij are the elements of the correlation matrix that only contains all the noise contributions. Specifically:
1498
+ Vnoise =
1499
+
1500
+ VQQ, optical noise + VQQ, mechanical noise
1501
+ VQnoise Pnoise
1502
+ VPnoise Qnoise
1503
+ VPP, optical noise + VPP, mechanical noise
1504
+
1505
+ .
1506
+ (S30)
1507
+ The transferred Wigner functions Wtransferred are found by:
1508
+ Wtransferred(r′) = (Wtarget ⊛ Wnoise) (r),
1509
+ (S31)
1510
+ which we use directly for the calculation of the transfer fidelity:
1511
+ F = 2π
1512
+ � ∞
1513
+ −∞
1514
+ Wtarget(r)Wtransferred(r)dr.
1515
+ (S32)
1516
+ REFERENCES
1517
+ [S1] W. P. Bowen and G. J. Milburn, Quantum optomechanics (CRC Press, Boca Raton London New York, 2015), ISBN
1518
+ 978-0-367-57519-9.
1519
+
XdE2T4oBgHgl3EQfYgeB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
YtE4T4oBgHgl3EQfOAxw/content/tmp_files/2301.04961v1.pdf.txt ADDED
@@ -0,0 +1,746 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Silicon Carbide Metasurfaces for Controlling the
2
+ Spontaneous Emission of Embedded Color
3
+ Centers
4
+ Mohammed Ashahar Ahamad and Faraz Ahmed Inam
5
+ Department of Physics, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
6
7
+ Stefania Castelletto
8
+ School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
9
10
+ Abstract:
11
+ Nanopillars fabricated in diamond or silicon-carbide (SiC) have been used to
12
+ enhance the light harvesting or absorption or to increase the collection efficiency of embed-
13
+ ded single photon emission in the visible or near infrared for their detection using confocal
14
+ microscopy. While electric and magnetic dipolar resonances in SiC have been studied in
15
+ the far-infrared, they have not been studied in the near infrared. Here we show for the first
16
+ time that electromagnetic Mie-scattering moments within SiC metasurfaces can control the
17
+ spontaneous emission process of point defects in the near infrared. Using SiC nanopillars
18
+ based metasurfaces, we theoretically demonstrate a control over the spontaneous emission
19
+ rate of embedded color-centers by using the coherent superposition of the electric dipolar
20
+ and magnetic quadrupolar electromagnetic Mie-scattering moments of the structure. More
21
+ than an order of magnitude emission/decay rate enhancement is obtained with the maximum
22
+ enhancement close to 30. We also demonstrate that the relative phase of the Mie-scattering
23
+ moments helps in controlling the emission directionality. SiC metasurfaces in the spectral
24
+ range of color centres, from the visible to the near infrared, can be used to control the con-
25
+ finement and directionality of their spontaneous emission, increasing the opportunities to
26
+ study light-matter interaction and to advance quantum photonic and quantum sensing de-
27
+ vice integration.
28
+ Keywords: Mie-scattering moments, silicon carbide nanopillars metasurface, emission en-
29
+ hancements, radiation directionality, color centres
30
+ © 2022 The Author(s)
31
+ 1.
32
+ Introduction
33
+ Color-centers in silicon-carbide (SiC) are example of emitters that possess single photon emission [1], optical spin
34
+ read out and control, and have been amongst the most studied for optical coherence spin control and spin-photon
35
+ interface [2,3] due to their very long coherence time [4,5] and photo-stability. SiC is quite distinguished from the
36
+ other material platforms as it possesses color centre with optical-spin properties combined with advanced material
37
+ fabrication methods, metal-oxide-semiconductor functionalities [6] and nonlinear second and third order optical
38
+ properties. Due to its wide electronic bandgap which leads to broad optical transparency, photostable color centres
39
+ emission [7] which extend to the near infrared, CMOS compatibility [8] and availability of quantum-grade wafer-
40
+ scale SiC on insulator, it has emerged as one of the most a promising material for integrated quantum photonic
41
+ applications [9,10].
42
+ In particular, SiC can host a wide range of point defects/color centers including silicon vacancy VSi (V1, V2,
43
+ V3), divacancies VSiVC and carbon antisite vacancy pair CSiVC [11]. The VSi in SiC is a promising single photon
44
+ source (SPS) for spin-photon photon interface in the near infrared region around 917nm [12, 13]. At present
45
+ the main challenge in applying SiC for quantum networks is to significantly enhance the rate of single photon
46
+ generation and collection from embedded color-centers. Photonics is mainly used to enhance the properties of
47
+ these systems.
48
+ So far in SiC bulk material, nanopillars have been fabricated to enhance the light harvesting or collection
49
+ efficiency of embedded single photon emission for their detection using confocal microscopy [12,14]; while meta-
50
+ lenses [15] are used to modify the phase front of the emitted light, achieving high focusing and large emission
51
+ directionality of the color-centers emitting below these meta-lenses. Currently metasurfaces used to excite/enhance
52
+ arXiv:2301.04961v1 [physics.optics] 12 Jan 2023
53
+
54
+ the magnetic and electric resonances in SiC have been investigated only in the far infrared [16] and in the context
55
+ of surface phonon polaritons studies [17]. Recently it has been shown that metamaterial/metasurface light matter
56
+ interaction can be used to control, enhance and tune the quantum properties of bulk materials [18,19]. In particular
57
+ all dielectric metasurfaces due to their zero absorption losses have emerged as the preferred platform compared to
58
+ plasmonics in photo-luminescence enhancement [20]. When a dielectric structure is placed under electromagnetic
59
+ excitation, various charge and current distributions are excited in it. These distributions results in multi-polar Mie-
60
+ scattering resonances being excited in structures with dimensions of the order of the excitation wavelength [21]. A
61
+ coherent superposition of these resonances leads to many interesting phenomena like, bound states in continuum
62
+ (BIC) [22], tuning of the radiation directionality in the lateral or transverse directions [23] and tuning of the local
63
+ optical density of states (LDOS) to achieve emission rate enhancement for emitters embedded in the metasurfaces
64
+ [24].
65
+ Here for the first time we study the electric dipolar and magnetic quadrupolar resonances in the near infrared
66
+ in SiC for controlling the spontaneous emission rate of the embedded color centers in the dielectric nanopillars
67
+ forming Mie resonators.
68
+ In this study, using the coherent superposition of Mie-scattering resonances in SiC pillars based metasurface, we
69
+ theoretically demonstrate that it is possible to control the spectral spontaneous emission process of the embedded
70
+ color-centers.We first optimise the scattering efficiency of the SiC metasurface when excited by a plane wave and
71
+ then by a dipole emitter. In the case the light source is a dipole, namely the VSi embedded in the SiC metamaterial,
72
+ we study the effects of the metasurface based on array of nanopillars Mie resonances on the LDOS and emission
73
+ directionality. In particular, we study the effect of the periodicity of the nanopillars array to increase the emission
74
+ rate and maintain high directionality compared to the case of a single pillar.
75
+ 2.
76
+ Theoretical background
77
+ Scattering is the phenomenon of re-emission of radiation by a particle after undergoing interaction with radiation
78
+ [25]. When a plane electromagnetic wave is incident on a particle, charge distribution and displacement currents
79
+ J(r) = −iωε0(εr − 1)E(r) (here E(r) is the field at the position vector r, ω = 2πr is the angular frequency, εr
80
+ and ε0 are the permittivity of the particle and surrounding medium) are excited within it. When the particle’s
81
+ dimensions are of the order of the excitation wavelength, the excited charge and current distributions leads to the
82
+ development of multipolar Mie-scattering modes [26, 27]. The amplitude and phase of excitation of the electric
83
+ and magnetic resonances or multi-polar Mie-scattering moments inside the scatterer are totally governed by its
84
+ size, shape and surrounding electromagnetic environment [28]. These multi-polar Mie resonances in the visible
85
+ spectral range have been demonstrated experimentally in the last decade using a silicon spherical nanopartciles
86
+ and nanodiamonds [29,30].
87
+ The total scattering efficiency (SE) Ctotal
88
+ sca
89
+ is calculated by normalizing the total far field scattered power to the
90
+ energy flux of the incident wave on the scatterer [31]. The total SE Ct
91
+ sca is the sum of partial SE from different mul-
92
+ tipoles: Cp
93
+ sca, Cm
94
+ sca, CQ
95
+ sca and CM
96
+ sca represents contributions from electric dipole, magnetic dipole, electric quadrupole
97
+ and magnetic quadrupole respectively [32].
98
+ Ctotal
99
+ sca
100
+ =
101
+ Cp
102
+ sca +Cm
103
+ sca +CQ
104
+ sca +CM
105
+ sca
106
+ (1)
107
+ Ctotal
108
+ sca
109
+ =
110
+ k4
111
+ 6πε2
112
+ 0|Einc|2
113
+
114
+ �∑
115
+
116
+ |pα|2 +
117
+ ���mα
118
+ c
119
+ ���
120
+ 2�
121
+ + 1
122
+ 120 ∑
123
+
124
+ �|kQe
125
+ αβ|2 +
126
+ �����
127
+ kQm
128
+ αβ
129
+ c
130
+ �����
131
+ 2�
132
+
133
+
134
+
135
+ (2)
136
+ where, pα and mα are the electric and magnetic dipole moments with Qe
137
+ αβ and Qm
138
+ αβ being the corresponding
139
+ quadrupole moments. |Einc| is the amplitude of the incident electric field, k is the wave-vector and c is the speed
140
+ of light. They are mathematically expressed as [32]:
141
+ ED : pα
142
+ =
143
+ − 1
144
+
145
+ ��
146
+ d3rJω
147
+ α j0(kr)+ k2
148
+ 2
149
+
150
+ d3r
151
+
152
+ 3(r.Jω)rα −r2Jω
153
+ α
154
+ � j2(kr)
155
+ (kr)2
156
+
157
+ (3)
158
+ MD : mα
159
+ =
160
+ 3
161
+ 2
162
+
163
+ d3r(r×Jω)α
164
+ j1(kr)
165
+ kr
166
+ (4)
167
+ EQ : Qe
168
+ αβ
169
+ =
170
+ − 3
171
+
172
+ ��
173
+ d3r[3(rβJω
174
+ α +rαJω
175
+ β )−2(r.Jω)δαβ] j1(kr)
176
+ (kr)
177
+ +
178
+ 2k2
179
+
180
+ d3[5rαrβ(r.Jω)−(rαJβ +rβJα)r2 −r2(r.Jω)δαβ] j3(kr)
181
+ (kr)3
182
+
183
+ (5)
184
+ MQ : Qm
185
+ αβ
186
+ =
187
+ 15
188
+
189
+ d3r
190
+
191
+ rα(r×Jω)β +rβ(r×Jω)α
192
+ � j2(kr)
193
+ (kr)2
194
+ (6)
195
+
196
+ Fig. 1. (a) Schematic of the metasurface with a 2D periodic lattice of SiC pillars under plane-wave
197
+ excitation at 917 nm with wave-vector along the +z-direction. (b) Schematic of the unit cell. Each
198
+ pillar has a length L = 2 µm and diameter D = 424 nm with a dipole emitter located at the center
199
+ of each pillar. (c) The SE of the individual multipolar Mie-scattering moments as a function of the
200
+ lattice periodicity, P, under plane-wave excitation at 917 nm. P is varied from 450 nm to 2500 nm.
201
+ (d) The corresponding phase of the individual multipolar Mie-scattering moments as a function of
202
+ the lattice periodicity, P. The dotted black lines corresponds to overlapping ED and MQ resonances
203
+ with P = 915 nm, 1095 nm, 1500 nm and 2315 nm.
204
+ The Mie-resonances control the electromagnetic field amplitudes within the scatterer and therefore contribute
205
+ in tuning the local electromagnetic density of states (LDOS). The LDOS due to the local electromagnetic environ-
206
+ ment around a point dipole emitter is defined as [33]
207
+ ρ(ω,r) = ∑
208
+ k,σ
209
+ | ˆd ·Ek,σ(r)|2δ(ω −ωk,σ).
210
+ (7)
211
+ Here, ˆd is the unit vector specifying the direction of the transition dipole moment with ω being the transition
212
+ frequency. The summation is over all wavevectors (k) and polarizations (σ). E is the total electric field at the
213
+ source position resulting from the superposition of the fields directly radiated by the dipole emitter embedded
214
+ inside the scatterer with the fields reflected and scattered back from the surroundings. The LDOS govern the
215
+ complete radiation process of a dipole emitter. Hence the Mie-scattering modes play a vital role in tuning the
216
+ spontaneous emission process of the emitter by controlling the scattered electric field at the source point.
217
+ The balancing of the electric and magnetic Mie-scattering moments leads to the directionality of the scattered
218
+ radiation pattern [32]. The radiation pattern is controlled by the relative phase of the balanced electric and magnetic
219
+ multi-polar moments [34]. When the electric and magnetic dipolar moments are balanced and in phase, |ED| =
220
+ |MD|, arg(ED) = arg(MD), this leads to a completely forward radiation directionality, known as the Kerker
221
+ condition [32]. When these dipolar moments are out-of-phase, |ED| = |MD|, arg(ED) = arg(MD)+π, it results in
222
+ a completely backward directionality, known as the anti-Kerker condition [34]. When the superposition of dipolar
223
+
224
+ a
225
+ L=2um
226
+ Unit cell
227
+ D = 424 nm
228
+ X
229
+ P
230
+ 10
231
+
232
+ (c)
233
+ ED
234
+ !!
235
+ MD
236
+ Phase(rad)
237
+ EQ
238
+ MQ
239
+ 0
240
+ L
241
+ S
242
+ T
243
+
244
+ 0
245
+ 500
246
+ 1000
247
+ 1500
248
+ 2000
249
+ 2500
250
+ 1000
251
+ 1500
252
+ 2000
253
+ P(nm)
254
+ P(nm)Fig. 2. The 2D electric field norm within (a) a single SiC pillar and the SiC pillar metasurface with
255
+ P = (b) 2315 nm, (c) 1500 nm and (d) 1095 nm under (i) plane wave excitation with wave-vector
256
+ along the +z-direction and electric field polarized along the +x-direction and (ii) dipole excitation
257
+ with dipole emitter placed at the center of the SiC pillar with orientation along the x-direction.
258
+ as well as the quadrapolar moments are balanced and are in phase, |ED + MD| = |EQ + MQ| with arg(ED +
259
+ MD) = arg(ED + MD), the radiation pattern is highly directional along the forward direction, known as the
260
+ generalised Kerker condition [34]. However, when these superpositions are out-of-phase, this leads to a complete
261
+ transverse scattering [34]. The phase of the Mie-scattering moments therefore controls the far-field scattering
262
+ radiation pattern of the scatterer. Under a point dipole emitter excitation of the structure, the far-field scattering
263
+ pattern of the structures also influences the radiation pattern of the dipole emitter placed in the vicinity of the
264
+ scatterer [35].
265
+ In the following we investigate these effects in SiC nanopillars array under plane wave-excitation and under a
266
+ single dipole excitation simulating the VSi.
267
+ 3.
268
+ Results and discussion
269
+ 3.1.
270
+ Scattering efficiency and decay-rate enhancement
271
+ We have computationally optimised the SiC metasurface, shown in Fig. 1(a) with unit cell in Fig. 1(b), to achieve
272
+ the generalised Kerker’s condition in SiC for the specific color centre of interest. The metasurface consists of a
273
+ periodic 2D lattice of SiC pillars, each of length, L = 2µm. The electrodynamics calculations are performed using
274
+ the commercial Comsol Multiphysics RF module. The details of the calculations are presented in the Methods
275
+ sections. The metasurface is excited by a plane wave with wavelength, λexc, travelling along the +z-direction
276
+ (arrow symbol in Fig. 1(a)) with the electric field polarized along the +x-direction. Under the influence of the
277
+ plane electromagnetic wave, Mie scattering moments are excited within the SiC pillars. We first optimised the
278
+ diameter, D, of the SiC pillars for the maxima in the SE at λexc = 917 nm corresponding to the zero phonon line
279
+ (ZPL) of the silicon vacancy, VSi in SiC [36,37]. The optimised D value was found to be around 424 nm. We then
280
+ study the coherent superposition of the Mie-scattering modes of the individual SiC pillars by varying the lattice
281
+ periodicity, P. For P ≫ λexc, the structure is expected to behave as a single isolated pillar. With decreasing P, the
282
+ interactions between the Mie-scattering modes of the individual pillars will increase. When these modes will be
283
+ in phase, their coherent superposition will lead to a maxima for the total SE of the 2D SiC pillar lattice. Fig. 1(c)
284
+ and (d) show the amplitude and the phase of the individual Mie-scattering moments of the SiC pillar metasurface
285
+ as a function of P. Sharp resonance peaks are observed in the amplitude of the individual Mie-scattering moments
286
+
287
+ (iD)
288
+ (a) Single pillar
289
+ (a)Single pillar (b)P: 2315 nm
290
+ (b) P: 2315 nm
291
+ X
292
+ 3
293
+ 2.5
294
+ ('n'e)
295
+ 1.5
296
+ (c) P: 1500 nm
297
+ (d) P: 1095 nm
298
+ (c)P: 1500 nm
299
+ (d)P: 1095 nm
300
+ 0.5Fig. 3. The SE of the individual excited multipolar Mie-scattering moments and the emitter’s (VSi
301
+ color-center) relative decay rate in the SiC pillar metasurface as a function of the lattice periodicity,
302
+ P. The dipole emitter is placed at the center of the SiC pillars with dipole orientation along the
303
+ horizontal plane. The γ∞ is the emitter’s decay rate in the bulk SiC. (b) The schematic representation
304
+ of the tuning of the embedded color-center’s emission with the lattice periodicity, P set to (i) off-
305
+ resonant P1 and (ii) resonant P2 values.
306
+ (Fig. 1(c)). At these sharp resonances, a sharp jump in the phase of the corresponding Mie-scattering moment is
307
+ observed (Fig. 1(d)). We will now focus on the local maxima arising due to the ED and the MQ moments (under
308
+ dipole excitation of the structure only these two resonances were excited and were observed to have an influence
309
+ on the dipole emitter’s decay rates). These local maxima are observed for P =915 nm, 1095 nm, 1500 nm and
310
+ 2315 nm (black dotted lines in Fig. 1(c) and (d)). At P =915 nm, the ED resonance peak is much greater than the
311
+ MQ resonance with the phase of these two resonances being equal. For P =1095 nm, 1500 nm and 2315 nm, the
312
+ ED and MQ moments are nearly balanced and a sharp jump is also observed in their phase. We will now examine
313
+ the balanced superposition of these two moments at P =1095 nm, 1500 nm and 2315 nm.
314
+ Figure 2(i) shows the normalised electric field distribution within a (a) single SiC pillar and the SiC pillar meta-
315
+ surface with P = (b) 2315 nm, (c) 1500 nm and (d) 1095 nm under plane wave excitation with wave-vector along
316
+ the +z-direction and electric field polarized along the +x-direction. Strong confinement of the electric field within
317
+ the SiC cylinder is observed at these P values corresponding to the balanced superposition of the ED and MQ
318
+ resonances, with the maximum field confinement observed for P = 1500 nm (the SE was also observed to be max-
319
+ imum at this P value). The field confinement will in-turn lead to LDOS enhancement within the SiC pillar (Eq 7).
320
+ For a dipole emitter placed at the field maxima points, the LDOS enhancement will lead to its decay rate enhance-
321
+ ment. Figure Fig. 2(ii) shows the normalised electric field distribution within (a) a single SiC pillar and the SiC
322
+ pillar metasurface with P = (b) 2315 nm, (c) 1500 nm and (d) 1095 nm under dipole excitation with dipole emitter
323
+ placed at the center of the SiC pillars with orientation along the x-direction. Large field confinement/enhancement
324
+ which will lead to large LDOS enhancement can be observed here.
325
+ We now study the influence of the above LDOS enhancement on the spontaneous emission rates of a dipole
326
+ emitter, the VSi color-center embedded at the center of each SiC pillar. Figure 3(a) shows the emitter’s (VSi color-
327
+ center) relative decay rate together with the SE of the individual Mie-scattering moments in the SiC pillar meta-
328
+ surface as a function of the lattice periodicity, P. The decay rates of the VSi emitter in the SiC pillar metasurface,
329
+ γ are scaled relative to its decay rates in a bulk SiC crystal, γ∞. The influence of the LDOS enhancement arising
330
+ from the electric field confinement (Fig. 2) in tuning the emitter’s decay rate can be clearly observed here. Also, it
331
+ can be observed that the relative decay rates ( γ
332
+ γ∞ ) (dash-dotted red curve) only tunes with the local maxima which
333
+ are dominated by ED and MQ resonances. These resonances corresponds to P = 1095 nm, 1500 nm and 2315
334
+ nm, respectively. A schematic representation of the embedded dipole emitter’s radiation tuning with the SiC pillar
335
+ lattice periodicity, P at an off-resonant (i) and resonant (ii) value is presented in Fig. 3.
336
+ In Fig. 4, we study the SE spectral response due to all the excited Mie-scattering moments and the effect
337
+ on the relative decay rates of a horizontally oriented (along x-direction) dipole source for the above resonant
338
+
339
+ 20
340
+ (a)
341
+ ED
342
+ (b)
343
+ 30
344
+ MD
345
+ 15
346
+ EQ
347
+ SE (a.u.)
348
+ -MQ
349
+ 20
350
+ 8
351
+ 10
352
+ -8
353
+ 10
354
+ (i)
355
+ (iD)
356
+ 500
357
+ 1000
358
+ 1500 2000
359
+ 2500
360
+ P (nm)Fig. 4. The spectral response of the SE with the individual excited multipolar Mie-scattering mo-
361
+ ments under horizontal dipole excitation and the emitter’s (VSi color-center with dipole orientation
362
+ along the horizontal plane) relative decay rate in a (a) single SiC pillar; SiC pillar metastuface with
363
+ P = (b) 2315nm, (c) 1500 nm and (d) 1095 nm, respectively.
364
+ periodicity values (P = 1095 nm, 1500 nm and 2315 nm) of the metasurface. Here, the Mie-scattering moments
365
+ of the metasurface are excited by the dipole source itself. For an isolated SiC pillar (Fig. 4(a)), all the studied
366
+ Mie-scattering moments are observed to be weakly excited with no clear resonances. The relative decay rate
367
+ (dash-dotted red curve) is observed to be around 2.7 at 917 nm. However, for all resonant P values (P = 1095
368
+ nm, 1500 nm and 2315 nm), significant contributions are observed only from the ED and MQ moments. Their
369
+ superposition is controlling the behaviour of the SE and the relative decay rate. The maximum relative decay rate
370
+ enhancement is close to 30 at 917 nm for P = 1500 nm and 1095 nm. For P = 2315 nm the enhancement is about
371
+ 20. Therefore, it can be concluded that the coherent superposition of the ED and MQ Mie-scattering moments
372
+ of the individual pillars are enhancing the decay rates of an embedded dipole emitter by more than an order of
373
+ magnitude.
374
+ We now study the role of the phase of the excited Mie-scattering moments (ED and MQ) of the SiC pillar
375
+ metasurface on the far field radiation pattern of an embedded dipole emitter.
376
+ 3.2.
377
+ Phase analysis and Radiation pattern
378
+ Figure 5 shows a narrow range of values for both the relative amplitudes and phase of the ED and MQ moments
379
+ at the resonant P values. At the VSi color-center’s peak emission wavelength of 917 nm, the MQ moment appears
380
+ to be slightly larger than the ED moment. For P = 1500 nm, the ED
381
+ MQ = 0.7 and for P = 1095 nm and 2315 nm, the
382
+ ED
383
+ MQ = 0.81. The corresponding phase difference between ED and MQ moments is π at 917 nm for all resonant P
384
+ values.
385
+ In Fig. 6(i) we show the in-phase and out-of-phase superposition of the balanced ED and MQ moments. The
386
+ influence of this superposition on both the in-plane (X-Z plane, blue curve) and out-of-plane (Y-Z plane, red
387
+ curve) far-field scattering patterns is shown here. The in-phase (ED + MQ) superposition results in longitudinal
388
+ (along top and bottom directions) scattering and the out-of-phase (ED − MQ) superposition results in transverse
389
+ scattering along the out-of-plane direction (red curve).
390
+ We now study the influence of the ED and MQ moments superpositions on the embedded dipole emitter radi-
391
+ ation pattern for a single nanopillar and SiC metasurface of array of interacting nanopillars. The emitter’s dipole
392
+ orientation is along the X-direction. Fig. 6(ii) shows the far-field emission patterns of the embedded VSi color-
393
+
394
+ 1.5
395
+ 1.5
396
+ Single Pillar
397
+ ED
398
+ P = 2315nm
399
+ -ED
400
+ (b)
401
+ 30
402
+ 30
403
+ MD
404
+ MD
405
+ -EQ
406
+ -EQ
407
+ 1
408
+ SE(a.u.)
409
+ 20
410
+ -MQ
411
+ 20.8
412
+ 8
413
+ -MQ
414
+ a
415
+ .... TOTAL
416
+ ..... TOTAL
417
+ 0.5
418
+ 10
419
+ 10
420
+ 8
421
+ 8
422
+ 0
423
+ 0
424
+ 0
425
+ 900
426
+ 910
427
+ 920
428
+ 930
429
+ 940
430
+ 950
431
+ 900
432
+ 910
433
+ 930
434
+ 940
435
+ 920
436
+ 950
437
+ 入(nm)
438
+ 入(nm)
439
+ 1.5
440
+ 1.5
441
+ = 1500 nm
442
+ P = 1095nm
443
+ (d)
444
+ D
445
+ (c)
446
+ ED
447
+ ED
448
+ 30
449
+ 30
450
+ MD
451
+ -MD
452
+ -EQ
453
+ -EQ
454
+ L
455
+ (a.u.)
456
+ 20_8
457
+ 一MQ
458
+ 20.8
459
+ 一MQ
460
+ ....TOTAL
461
+ ..... TOTAL
462
+ 10
463
+ 10
464
+ 8
465
+ 0
466
+ 0
467
+ 0
468
+ 900
469
+ 910
470
+ 920
471
+ 930
472
+ 940
473
+ 950
474
+ 900
475
+ 910
476
+ 920
477
+ 930
478
+ 940
479
+ 950
480
+ 入(nm)
481
+ 入(nm)Fig. 5. The spectral response of the (a) relative amplitudes and (b) phase difference of the elec-
482
+ tric dipolar (ED) and magnetic quadrapular (MQ) Mie-scattering moments excited under horizontal
483
+ dipole excitation.
484
+ center at 917 nm for different resonant P values. In a single pillar, the majority of the emission is observed to be
485
+ directed towards the bottom surface and lies mainly along the longitudinal direction (bottom and top). However,
486
+ in the SiC metasurface at the resonant P values corresponding to ED and MQ moments, the out-of-phase super-
487
+ position of the ED and MQ moments (the phase difference between these moments was observed to be close to π
488
+ at 917 nm in Fig. 5) directs the embedded emitter’s radiation pattern along the transverse direction, especially in
489
+ the out-of-plane (Y-Z plane, red curve).
490
+ 4.
491
+ Conclusion
492
+ We studied for the first time the coherent superposition of the eletric and magnetic dipolar and quadrupolar Mie-
493
+ scattering moments of SiC metamaterial nanopillars array in the near infrared emission (917 nm). We first de-
494
+ termined the design of the metasurface periodicity to induce sharp resonances in the amplitude and phase of the
495
+ Mie-scattering moments. Strong electric field confinement was observed within the SiC pillar when the periodicity
496
+ of the lattice matched with the resonance of the ED and MQ modes. The field confinement leads to large LDOS
497
+ and subsequently decay rate enhancement for a color-center dipole embedded at the center of the SiC pillar. Under
498
+ a point dipole emitter excitation within SiC, it was determined that only the ED and MQ moments are contribut-
499
+ ing to the electromagnetic scattering in the SiC nanopillars metasurface. Both these moments were observed to
500
+ be nicely coupled and were showing collective resonance at the optimised wavelength (917 nm). The coherent
501
+ superposition of these two moments controls the complete spontaneous emission process of the embedded color
502
+ center. At the collective resonance point of these two moments (λ = 917 nm), we determined more than an order
503
+ of magnitude decay rate enhancement with the maximum enhancement reaching 30. Such an enhancement has
504
+ never been reported in dielectric neither in metal-dielectric individual nanopillars [38], thus paving the way for
505
+ the use SiC metasurfaces to to enhance and control light extraction from quantum emitters, to study light matter
506
+ interaction effects in integrated quantum photonics and for applications in quantum sensing. We also observed that
507
+ by designing specific resonant structures, the coherent superposition of the ED and MQ moments can be used to
508
+ better control the radiation/emission pattern and hence the emission directionality of the embedded dipole emitter
509
+ compared to a single nanopillar. Specifically the embedded emitter’s radiation pattern can be more confined along
510
+ the transverse direction, especially in the out-of-plane (Y-Z plane, red curve), thus facilitating the planar emission
511
+ propagation. Such result is relevant for applications of SiC metasurfaces for planar integrated photonics. Our study
512
+ can prompt further studies on SiC quantum states of light based on multi-emitters-resonators coupling enabled by
513
+ metamaterials such as superradiance [39].
514
+ 5.
515
+ Materials and Methods
516
+ All the electrodynamics calculations have been performed using the commercial COMSOL Multiphysics Radio
517
+ Frequency (RF) module. The periodic boundary conditions are applied to all the horizontal planes defining the 2D
518
+ lattice of the SiC substrate to build an array of dielectric pillars metasurface. The Scattering boundary conditions
519
+ are applied at the top and bottom boundaries of the computational domain. The optical constant for the SiC has
520
+ been extracted from the experimentally reported values by Singh et.al. [40]. During the entire calculation the
521
+ minimum meshing size was 1 nm with the maximum being λ/7.
522
+
523
+ (a)
524
+ (b)
525
+ - Single pillar
526
+ Phase difference (rad)
527
+ T
528
+ ED
529
+ .....P: 1095 nm
530
+ e
531
+ arg(ED) -
532
+ 1.5
533
+ MQ
534
+ -P: 1500 nm
535
+ arg (MQ)
536
+ - P: 2315 nm
537
+ 1
538
+ 0.5
539
+ -T
540
+ 0
541
+ 913
542
+ 915
543
+ 917
544
+ 919
545
+ 921
546
+ 913
547
+ 915
548
+ 917
549
+ 919
550
+ 921
551
+ 入 (nm)
552
+ 入(nm)Fig. 6. (i) In-plane (X-Z plane, blue curves) and out-of-plane (Y-Z plane, red curves) far-field scat-
553
+ tering pattern corresponding to the in-phase (ED+MD) and out-of-phase (ED-MQ) superposition
554
+ of the electric dipolar (ED) and magnetic quadrupolar (MQ) Mie-scattering moments. (ii) Farfield
555
+ radiation patterns in-plane (X-Z plane, blue curves) and out-of-plane (Y-Z plane, red curves) of a
556
+ dipole emitter (orientation along the X-direction, same as that of electric field in (i)) placed at the
557
+ center of (a) single pillar; SiC pillar metastuface with P = (b) 2315nm, (c) 1500 nm and (d) 1095
558
+ nm, respectively.
559
+ 5.1.
560
+ Scattering efficiency calculation
561
+ The scattering cross section is defined as the amount of power scattered by the scatterer to the amount of power
562
+ per unit area carried by the incident wave. The SE is obtained just by dividing the scattering cross-section by
563
+ the geometrical cross-section. Mathematically it is expressed as SE = σs/G [41]. Here σs is the scattering cross
564
+ section and G is geometrical cross section.
565
+ The SE is calculated semi-analytically using electric field values at each mesh point in the computational grid
566
+ under plane-wave excitation using Comsol Multi-physics module. Using these field values and permittivity profile
567
+ at each mesh points, current density is calculated as: Jω(r) = iωε0(εr −1)Eω(r). Here ε0 and εr are permittivity of
568
+ free space and SiC medium, respectively. The computationally obtained values of E(r), Jω(r) and ε(r) are used to
569
+ calculate individual multipolar Mie-scattering moments, pα, mα, Qe
570
+ αβ and Qm
571
+ αβ described in Eq. 2. The integration
572
+ referred in Eq. 2 is carried on the domain of the SiC pillar.
573
+ 5.2.
574
+ Relative decay rate calculations
575
+ In these calculations, the SiV center is treated as a classical radiating point dipole source. In the computational
576
+ domain, it is modelled as a point current source driven at the emission frequency, ν = c
577
+ λ [42]. Scattering/perfectly
578
+ matched layer (PML) boundary conditions are applied on the exterior boundaries of the computational domain.
579
+ The total power radiated by the dipole is integrated over a closed surface enclosing the current source. The relative
580
+ decay-rate is calculated as Γrel = γ/γ∞ = P/P∞ [42], where P∞ is the power corresponding to the point dipole’s
581
+ emission in the bulk SiC. The permittivity of SiC is taken from [43].
582
+ Acknowledgement The authors would like to acknowledge the financial support from the Department of Sci-
583
+ ence and Technology (DST), India (CRG/2021/001167). The authors thank Dr Nadeem Ahmed for his help regard-
584
+ ing the plotting of the figures and the formatting of the manuscript. MA and FAI also thank Dr Ahmed Mekawy
585
+ for his help regarding multipole decomposition of the Mie-scattering moments.
586
+ References
587
+ 1. A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,”
588
+ Reports on Prog. Phys. 80, 034502 (2017).
589
+ 2. D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-
590
+ state spins,” Nat. Photonics 12, 516–527 (2018).
591
+
592
+ Out-of-plane
593
+ In-plane
594
+ (a) Single pillar
595
+ (b) P: 2315 nm
596
+ (D)
597
+ K
598
+ 90
599
+ 90
600
+ K
601
+ 120
602
+ 120
603
+ 60
604
+ 60
605
+ X
606
+ B
607
+ 30
608
+ 150
609
+ 30
610
+ 150
611
+ ED
612
+ MQ
613
+ ED + MQ
614
+ 180
615
+ 180
616
+ 0
617
+ 0
618
+ 210
619
+ 330
620
+ 210
621
+ 330
622
+ 240
623
+ 300
624
+ 240
625
+ 300
626
+ 270
627
+ 270
628
+ P:1095nm
629
+ (c) P: 1500 nm
630
+ (d)
631
+ ED - MQ
632
+ 90
633
+ 90
634
+ 120
635
+ 120
636
+ 60
637
+ 60
638
+ 150
639
+ 30
640
+ 150
641
+ 30
642
+ 180
643
+ 180
644
+ 0
645
+ 0
646
+ 210
647
+ 330
648
+ 210
649
+ 330
650
+ 240
651
+ 300
652
+ 240
653
+ 300
654
+ 270
655
+ 2703. N. T. Son, C. P. Anderson, A. Bourassa, K. C. Miao, C. Babin, M. Widmann, M. Niethammer, J. Ul Hassan, N. Morioka,
656
+ I. G. Ivanov et al., “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett. 116, 190501 (2020).
657
+ 4. C. P. Anderson, E. O. Glen, C. Zeledon, A. Bourassa, Y. Jin, Y. Zhu, C. Vorwerk, A. L. Crook, H. Abe, J. Ul-Hassan,
658
+ T. Ohshima, N. T. Son, G. Galli, and D. D. Awschalom, “Five-second coherence of a single spin with single-shot
659
+ readout in silicon carbide,” Sci. Adv. 8, eabm5912 (2022).
660
+ 5. D. Simin, H. Kraus, A. Sperlich, T. Ohshima, G. V. Astakhov, and V. Dyakonov, “Locking of electron spin coherence
661
+ above 20 ms in natural silicon carbide,” Phys. Rev. B Condens. Matter. 95, 161201 (2017).
662
+ 6. G. Liu, B. R. Tuttle, and S. Dhar, “Silicon carbide: A unique platform for metal-oxide-semiconductor physics,” Appl.
663
+ Phys. Rev. 2, 021307 (2015).
664
+ 7. S. Castelletto, “Silicon carbide single-photon sources: challenges and prospects,” Mater. for Quantum Technol. 1,
665
+ 023001 (2021).
666
+ 8. Y. Zhu, W. Wei, A. Yi, T. Jin, C. Shen, X. Wang, L. Zhou, C. Wang, W. Ou, S. Song et al., “Hybrid integration
667
+ of deterministic quantum dots-based single-photon sources with cmos-compatible silicon carbide photonics,” arXiv
668
+ preprint arXiv:2203.12202 (2022).
669
+ 9. D. M. Lukin, M. A. Guidry, and J. Vuˇckovi´c, “Integrated quantum photonics with silicon carbide: challenges and
670
+ prospects,” PRX Quantum 1, 020102 (2020).
671
+ 10. S. Castelletto, A. Peruzzo, C. Bonato, B. C. Johnson, M. Radulaski, H. Ou, F. Kaiser, and J. Wrachtrup, “Silicon carbide
672
+ photonics bridging quantum technology,” ACS Photonics 9, 1434–1457 (2022).
673
+ 11. S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photonics 2, 022001
674
+ (2020).
675
+ 12. M. Radulaski, M. Widmann, M. Niethammer, J. L. Zhang, S.-Y. Lee, T. Rendler, K. G. Lagoudakis, N. T. Son, E. Janz´en,
676
+ T. Ohshima, J. Wrachtrup, and J. Vuˇckovi´c, “Scalable Quantum Photonics with Single Color Centers in Silicon Car-
677
+ bide,” Nano Lett. 17, 1782–1786 (2017).
678
+ 13. N. Morioka, C. Babin, R. Nagy, I. Gediz, E. Hesselmeier, D. Liu, M. Joliffe, M. Niethammer, D. Dasari, V. Vorobyov
679
+ et al., “Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in
680
+ silicon carbide,” Nat. communications 11, 1–8 (2020).
681
+ 14. S. Castelletto, A. S. Al Atem, F. A. Inam, H. J. von Bardeleben, S. Hameau, A. F. Almutairi, G. Guillot, S.-i. Sato,
682
+ A. Boretti, and J. M. Bluet, “Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon
683
+ carbide micropillars,” Beilstein J. Nanotechnol. 10, 2383–2395 (2019).
684
+ 15. O. Schaeper, Z. Yang, M. Kianinia, J. E. Fr¨och, A. Komar, Z. Mu, W. Gao, D. N. Neshev, and I. Aharonovich, “Mono-
685
+ lithic Silicon Carbide Metalenses,” ACS Photonics 9, 1409–1414 (2022).
686
+ 16. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic
687
+ resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
688
+ 17. J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky,
689
+ I. Vurgaftman, J. G. Tischler et al., “Low-loss, extreme subdiffraction photon confinement via silicon carbide localized
690
+ surface phonon polariton resonators,” Nano Lett. 13, 3690–3697 (2013).
691
+ 18. C.-W. Qiu, T. Zhang, G. Hu, and Y. Kivshar, “Quo vadis, metasurfaces?” Nano Lett. 21, 5461–5474 (2021).
692
+ 19. A. S. Solntsev, G. S. Agarwal, and Y. S. Kivshar, “Metasurfaces for quantum photonics,” Nat. Photonics 15, 327–336
693
+ (2021).
694
+ 20. Y.-T. Lin, A. Hassanfiroozi, W.-R. Jiang, M.-Y. Liao, W.-J. Lee, and P. C. Wu, “Photoluminescence enhancement with
695
+ all-dielectric coherent metasurfaces,” Nanophotonics 11, 2701–2709 (2022).
696
+ 21. R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-
697
+ wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
698
+ 22. Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. Feng, Q. Cao, J. Li, S. Lan, and J. Liu, “High- Q Quasibound States in the Continuum
699
+ for Nonlinear Metasurfaces,” Phys. Rev. Lett. 123 (2019).
700
+ 23. H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, P. Belov, A. Karabchevsky, A. B.
701
+ Evlyukhin, Y. Kivshar, and A. S. Shalin, “Transverse scattering and generalized kerker effects in all-dielectric mie-
702
+ resonant metaoptics,” Phys. Rev. Lett. 122, 193905 (2019).
703
+ 24. M. Khokhar, F. A. Inam, and R. V. Nair, “Kerker Condition for Enhancing Emission Rate and Directivity of Single
704
+ Emitter Coupled to Dielectric Metasurfaces,” Adv. Opt. Mater. 10, 2200978 (2022).
705
+ 25. H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1981).
706
+ 26. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Contributions to optics
707
+ turbid media 25, 377–445 (1976).
708
+ 27. F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D.
709
+ Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21, 27587–
710
+ 27601 (2013).
711
+ 28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
712
+ 29. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov,
713
+ “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano letters 12, 3749–
714
+ 3755 (2012).
715
+ 30. D. A. Shilkin, M. R. Shcherbakov, E. V. Lyubin, K. G. Katamadze, O. S. Kudryavtsev, V. S. Sedov, I. I. Vlasov, and
716
+ A. A. Fedyanin, “Optical magnetism and fundamental modes of nanodiamonds,” ACS Photonics 4, 1153–1158 (2017).
717
+
718
+ 31. T. Hinamoto and M. Fujii, “Menp: an open-source matlab implementation of multipole expansion for nanophotonics,”
719
+ Osa Continuum 4, 1640–1648 (2021).
720
+ 32. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized Kerker condition for highly directive nanoan-
721
+ tennas,” Opt. Lett. 40, 2645 (2015).
722
+ 33. F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous
723
+ emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
724
+ 34. H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, P. Belov, A. Karabchevsky, A. B.
725
+ Evlyukhin, Y. Kivshar, and A. S. Shalin, “Transverse scattering and generalized kerker effects in all-dielectric mie-
726
+ resonant metaoptics,” Phys. review letters 122, 193905 (2019).
727
+ 35. F. Qin, Z. Zhang, K. Zheng, Y. Xu, S. Fu, Y. Wang, and Y. Qin, “Transverse kerker effect for dipole sources,” Phys.
728
+ Rev. Lett. 128, 193901 (2022).
729
+ 36. F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared
730
+ single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
731
+ 37. M. Widmann, S. Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L. P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko,
732
+ M. Jamali, S. Ali Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janz´en, and J. Wrachtrup, “Coherent control of
733
+ single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
734
+ 38. F. A. Inam and S. Castelletto, “Metal-dielectric nanopillar antenna-resonators for efficient collected photon rate from
735
+ silicon carbide color centers,” Nanomaterials 13 (2023).
736
+ 39. O. Mello, Y. Li, S. A. Camayd-Mu˜noz, C. DeVault, M. Lobet, H. Tang, M. Lonc¸ar, and E. Mazur, “Extended many-body
737
+ superradiance in diamond epsilon near-zero metamaterials,” Appl. Phys. Lett. 120, 061105 (2022).
738
+ 40. S. Singh, J. Potopowicz, L. Van Uitert, and S. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,”
739
+ Appl. Phys. Lett. 19, 53–56 (1971).
740
+ 41. F. Frezza, F. Mangini, and N. Tedeschi, “Tutorial: Introduction to electromagnetic scattering,” J. Opt. Soc. Am. A 31,
741
+ 1–11 (2017).
742
+ 42. Y. Xu, J. S. Vuˇckovi´c, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of
743
+ spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465 (1999).
744
+ 43. P. T. B. Shaffer, “Refractive Index, Dispersion, and Birefringence of Silicon Carbide Polytypes,” Appl. Opt. Vol. 10,
745
+ Issue 5, pp. 1034-1036 10, 1034–1036 (1971).
746
+
YtE4T4oBgHgl3EQfOAxw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
Z9E0T4oBgHgl3EQf4QJC/content/tmp_files/2301.02735v1.pdf.txt ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 1
3
+
4
+
5
+ Designing an Improved Deep Learning-based Model for
6
+ COVID-19 Recognition in Chest X-ray Images: A Knowledge
7
+ Distillation Approach
8
+ AmirReza BabaAhmadi1, Sahar Khalafi2, Masoud ShariatPanahi3 , Moosa Ayati4
9
+
10
+ Abstract
11
+ Background and Objectives: COVID-19 has adversely affected humans and societies in different aspects. Numerous
12
+ people have perished due to inaccurate COVID-19 identification and, consequently, a lack of appropriate medical
13
+ treatment. Numerous solutions based on manual and automatic feature extraction techniques have been investigated
14
+ to address this issue by researchers worldwide. Typically, automatic feature extraction methods, particularly deep
15
+ learning models, necessitate a powerful hardware system to perform the necessary computations. Unfortunately, many
16
+ institutions and societies cannot benefit from these advancements due to the prohibitively high cost of high-quality
17
+ hardware equipment. As a result, this study focused on two primary goals: first, lowering the computational costs
18
+ associated with running the proposed model on embedded devices, mobile devices, and conventional computers; and
19
+ second, improving the model's performance in comparison to previously published methods (at least performs on par
20
+ with state of the art models) in order to ensure its performance and accuracy for the medical recognition task.
21
+ Methods: This study used two neural networks to improve feature extraction from our dataset: VGG19 and
22
+ ResNet50V2. Both of these networks are capable of providing semantic features from the nominated dataset.
23
+ Streaming in a fully connected classifier layer that feeds richer features, therefore feature vectors of these networks
24
+ have been merged, and this action resulted in satisfactory classification results for normal and COVID-19 cases. On
25
+ the other hand, these two networks have many layers and require a significant amount of computation. To this end,
26
+ An alternative network was considered, namely MobileNetV2, which excels at extracting semantic features while
27
+ requiring minimal computation on mobile and embedded devices. Knowledge distillation (KD) was used to transfer
28
+ knowledge from the teacher network (concatenated ResNet50V2 and VGG19) to the student network (MobileNetV2)
29
+ to improve MobileNetV2 performance and to achieve a robust and accurate model for the COVID-19 identification
30
+ task from chest X-ray images.
31
+ Results: Pre-trained networks were used to provide a more useful starting point for the COVID-19 detection task.
32
+ Additionally, a 5-fold cross-validation technique was used on both the teacher and student networks to evaluate the
33
+
34
+ 1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran (email: [email protected])
35
+ 2 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
36
+ 3 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
37
+ 4 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
38
+
39
+
40
+ 2
41
+
42
+
43
+ proposed method's performance. Finally, the proposed model achieved 98.8% accuracy in detecting infectious and
44
+ normal cases.
45
+ Conclusion: The study results demonstrate the proposed method's superior performance. With the student model
46
+ achieving acceptable accuracy and F1-score using cross-validation technique, it can be concluded that this network is
47
+ well-suited for conventional computers, embedded systems, and clinical experts' cell phones.
48
+ Keywords: COVID-19, Deep Learning, Medical Image Analysis, Knowledge Distillation, Chest X-ray images,
49
+ Teacher-Student Model
50
+
51
+
52
+ 1. Background and Objectives
53
+ COVID-19 has been a significant threat to human life and health in recent years. It has delivered a detrimental effect
54
+ on healthcare systems worldwide. Unfortunately, COVID-19 is highly contagious and transmissible. As a result, it is
55
+ inevitable to develop prediction systems capable of rapidly diagnosing it and averting its adverse effects. Numerous
56
+ scientists have conducted multiple studies to develop human-level prediction and diagnosis systems to aid
57
+ communities in combating this disease.
58
+ These methods are typically effective at detecting COVID-19 using CT and chest X-ray images. However, the fatal
59
+ flaw is that automatic feature extraction techniques, particularly deep learning models, require a significant amount of
60
+ computation to perform a specific task. Numerous hospitals and institutions are unable to procure expensive hardware
61
+ systems capable of performing these algorithms.
62
+ Additionally, in the absence of medical experts, the health of the population in many developing countries may be
63
+ jeopardized. In some developing countries, the scarcity of human experts capable of identifying medical diseases from
64
+ medical images is a stark reality. As a result, an effort is made to offer an alternate solution to remedy this issue in
65
+ this study.
66
+ This paper focuses on two primary objectives and charts the course accordingly: first, a fast algorithm capable of being
67
+ deployed in conventional computers and embedded in mobile devices and tablets, and other embedded systems
68
+ requires development. The second objective, which prompted developing a novel deep learning model, was to deliver
69
+ more accurate and reliable results than previously published methods to ensure the algorithm's performance for
70
+ medical diagnosis.
71
+ Recognizing COVID-19 is the first step toward treatment. The main objective of this paper is an attempt to address
72
+ this step. COVID-19 is typically accompanied by symptoms including coughing, colds, and shortness of breath, among
73
+ others. According to the WHO, respiratory problems are the fatal symptoms of COVID-19 and can be identified using
74
+ CT scans or chest X-rays obtained in hospitals and medical clinics.
75
+
76
+
77
+ 3
78
+
79
+
80
+ Deep learning and its associated techniques have been widely applied to computer vision tasks such as medical image
81
+ analysis in recent years. Examples include tumor detection [1], diabetic retinopathy [2], among others.
82
+ Considering that medical image analysis is one of the most exciting applications of computer vision and deep learning,
83
+ automatic feature extractor algorithms can be critical in diagnosing diseases at levels comparable to human experts.
84
+ Due to the critical nature of the initial diagnosis, researchers have identified this step's accuracy as a significant
85
+ challenge. The following section examines related works and studies in order to create a solid framework for our
86
+ research. In [3], a model based on stacked convolutional neural networks with multiple pre-trained networks was
87
+ proposed. In [4], a residual-layer-based neural network with a modified kernel was used to prognosticate the presence
88
+ of COVID-19 in normal and pneumonia chest X-ray images.
89
+ [5] proposes a model based on an ensemble learning classifier to address the imbalance dataset issue. Another paper
90
+ [6] introduced a combination of LSTM5 (for detection) and a convolutional neural network (for recognition). This
91
+ method produced a 99.4% accuracy metric. [7] describes the development of a model using LSTM and GAN
92
+ architectures. This method does not require the addition of a network for feature extraction for the binary classification
93
+ task. [8] investigated the presence of COVID-19 in medical images using a deep neural network based on a CNN with
94
+ additional components in different layers.
95
+ In [9], CNN and SVM6 were combined to analyze COVID-19 CXR images. [10] proposes a new framework based on
96
+ the use of DarkNet53 to perform chest X-ray images. [11] conducted a comparative study to determine which model
97
+ performs the best among pre-trained deep learning architectures. Fifteen models were examined in order to determine
98
+ the optimal architecture. According to this study, VGG19 was the most accurate pre-trained model. Another
99
+ comparative study [12] classified COVID-19 from normal cases and pneumonia using novel pre-trained architectures
100
+ such as DenseNet 201, Inception V3, Resnet50, and a few other networks. [13] introduced a new model based on
101
+ GAN and CNN. Multiple classifiers were used to perform the classification task in [13]. Furthermore, this paper
102
+ developed a COVID-19 segmentation model using a unique dataset.
103
+ [14] compared pre-trained architectures and then modified those networks to reduce trainable parameters and enable
104
+ faster algorithm training. [15] examined a variety of pre-trained architectures, including Alex-Net, VGG16, and the
105
+ ResNet family. Moreover, this article concentrated on evaluating freezing layers and other configurations used in
106
+ transfer learning methods. A study was conducted in [16] to determine the best candidate for COVID-19 recognition.
107
+ Based on this research, the outstanding architecture for COVID-19 detection is achieved through the Inception
108
+ Network. Another comparative study was conducted in [17] using DenseNet121, ResNet50, VGG16, and VGG19.
109
+ In [18], a binary classification task has been performed. Fine-tuning was performed on the final layer of the pre-trained
110
+ SqueezeNet, DenseNet121, ResNet50, and ResNet18 networks. [19] depicts a voting-based procedure for evaluating
111
+
112
+ 5 Long Short-Term Memory (LSTM)
113
+ 6 Support Vector Machine (SVM)
114
+
115
+
116
+ 4
117
+
118
+
119
+ VGG16, InceptionV3, and ResNet50 predictions. The final layer (output) compares the performance of all of the
120
+ networks mentioned previously in a simultaneous manner and selects the best result.
121
+ In [20], an assessment of the effect of preprocessing on the results of CNN-based networks is made. [21] describes
122
+ the development of a customized network dubbed COVID-Net for CXR and chest X-ray medical images. Another
123
+ study [22] compared COVID-19, bacterial pneumonia, and viral-pneumonia classification results using state-of-the-
124
+ art algorithms and CNN architecture. In another study [23], PCA7 was used to increase the efficiency of feature
125
+ extraction. YOLO8 Networks with additional convolution layers involving modified kernels were used in [24] to detect
126
+ COVID-19 from chest X-ray images.
127
+ [25] examined the performance of the Efficient-Net family in detecting COVID-19 and pneumonia in normal cases.
128
+ In [26], a network, termed CoroNet, was introduced based on the Xception network to perform multi-class
129
+ classification from normal category images, including pneumonia-viral, pneumonia-bacterial, and COVID-19.
130
+ This paper is structured as follows: The second section provides an overview of previous publications on the task. The
131
+ third section describes the knowledge distillation method and explains why it was incorporated into the algorithm.
132
+ Section four discusses the dataset that was used to conduct this research. Section five describes the training phase and
133
+ the evaluation metrics. Finally, section six presents the proposed model's evaluation results, and section seven
134
+ summarizes our paper's findings.
135
+
136
+ 2. Methods
137
+ Nowadays, Deep Neural Networks9 have revolutionized the field of computer vision. Their applications have been
138
+ extensively investigated in a variety of fields, including self-driving cars [27], medical image analysis [28][29], and
139
+ agriculture [30], among others. CNNs10 have established themselves as the most effective tools for automatic feature
140
+ extraction in computer vision and NLP11, speech processing, and video classification tasks.
141
+ This paper demonstrates how CNN-based neural networks can improve semantic feature extraction for binary
142
+ classification tasks involving COVID-19 and normal cases. DenseNet [31], ResNet [32], VGG [33], Xception [34],
143
+ and Mobile-NetV2 [35] are some of the most powerful pre-trained networks. VGG19 is an extension of VGG16; it
144
+ features sixteen convolutional layers and three fully connected layers. Five MaxPool layers are used, and the final
145
+ layer is a SoftMax layer. ResNet50V2 is an enhanced version of ResNet50 that outperforms previous versions such
146
+ as ResNet101.
147
+
148
+ 7 Principal Component Analysis (PCA)
149
+ 8 You Only Look Once (YOLO)
150
+ 9 Deep Neural Networks (DNN)
151
+ 10 Convolutional Neural Networks (CNN)
152
+ 11 Natural Language Processing (NLP)
153
+
154
+
155
+ 5
156
+
157
+
158
+ ResNet50V2 has been equipped with several new connections between different blocks, allowing this network to
159
+ achieve a high level of accuracy in the ImageNet competition. MobileNetV2 is a convolutional network designed with
160
+ depth-wise convolution layers to improve accuracy while lowering computational costs. This reduction is caused by
161
+ decreasing trainable parameters. Due to the use of inverted residual blocks, this network can be embedded in mobile
162
+ phones, tablets, and other conventional embedded devices.
163
+ Since both ResNet50V2 and VGG19 generate the same size output layer (feature vector), their feature vectors were
164
+ combined to produce a richer semantic feature set for the specified task. Afterward, a CNN layer was added to this
165
+ architecture (kernel size 1 and 1024 filters). The network's output was then flattened and streamed into the fully
166
+ connected layers. Notably, no activation function in the final CNN layer was used. The classification layer was
167
+ constructed using 64 neurons in fully connected layers, with a dropout rate of 0.5. Another fully connected layer has
168
+ been added to this layer, the final layer, whose neurons count is equal to the size of the problem's classes.
169
+ The entire architecture is termed the teacher network, with MobileNetV2 serving as the student network in a broader
170
+ context referred to as the teacher-student model or knowledge distillation framework. The structure of the teacher
171
+ model is depicted in Figure 1. The tensors' feature size for both ResNet50V2 and VGG19 is 10*10*2048, and the size
172
+ of the concatenated feature is 10*10*4096.
173
+
174
+
175
+ Figure 1. Teacher Model Architecture
176
+
177
+
178
+ Teacher Model Architecture
179
+ ResNet50V2
180
+ 10*10*2048
181
+ CNNlayer
182
+ Filteri024
183
+ Dropout(50%)
184
+ VGG19
185
+ Kernel(1,l)
186
+ 10*10+2048
187
+ 10*10*4096
188
+ n
189
+ Classifier
190
+ Merged Features
191
+ 6
192
+
193
+
194
+
195
+
196
+ 3. Knowledge Distillation
197
+ Hinton et al. pioneered Knowledge Distillation12 in [36]. KD is a process that involves training a smaller network to
198
+ imitate the behavior of a more extensive network. The purpose of designing a complex network as a teacher is to
199
+ learn more sophisticated features and deliver better results. However, we typically want to run our network on a
200
+ standard computer or embedded device.
201
+ Due to the limitation of memory size and computational cost, frequent issues arise. As a result, a solution is required
202
+ to address these issues. A weighted average (mean) is necessary to distill knowledge from teacher to student. Cross-
203
+ Entropy with soft targets is the initial objective function. Through the softmax function in the smaller network, this
204
+ objective function is calculated based on high temperature. A more significant architecture (network) must be used to
205
+ generate soft targets. Cross-Entropy with valid labels is the second objective function. This function is calculated
206
+ using the softmax output from the student model by setting the temperature to zero.
207
+ The teacher network and the student network begin receiving training data in parallel. The teacher model contains a
208
+ softmax with temperature in its output. By contrast, the student model generates two different outputs. The first output
209
+ is softmax with temperature, while the second output contains standard softmax. The student model is intended to
210
+ produce softened probabilities (the output of the teacher model). The following formula is used to calculate the loss
211
+ of knowledge distillation:
212
+ 2
213
+ ( . )
214
+ (1
215
+ ) (
216
+ . )
217
+ KD
218
+ s
219
+ L
220
+ KL p q T
221
+ L W x
222
+
223
+
224
+ =
225
+ +
226
+
227
+
228
+ (1)
229
+ Where p and q denote the probabilities generated by student and teacher networks in a specific temperature (T),
230
+ respectively, and KL denotes the Kullback-Leibler divergence, which measures the level of distinction between two
231
+ probabilistic distributions. The Cross-Entropy of the student model with T=1 is (LWs.x). According to [36],  and T
232
+ are hyperparameters where the greater the value of  , the better the learning experience for the student model.
233
+ Back-propagation must be performed only in the student network during the distillation phase to add a significant
234
+ element to this description since the teacher has already tuned its parameters. The teacher's knowledge is then
235
+ transferred to the student model throughout the distillation procedure. Notably, the student model can be trained at a
236
+ faster rate than the teacher model. For more details regarding the distillation procedure, please refer to [37]. The
237
+ procedure for knowledge distillation is depicted in Figure 1.
238
+
239
+ 12 Knowledge Distillation (KD)
240
+
241
+
242
+ 7
243
+
244
+
245
+
246
+ Figure 2. Knowledge Distillation for COVID-19 detection
247
+ 4. Dataset
248
+ Two public datasets were used to train the proposed deep learning model to build the required dataset. First, a public
249
+ dataset available at (https://github.com/ieee8023/covid-chestxray-dataset) was used for positive samples of COVID-
250
+ 19. Afterward, the dataset available at (https://www.kaggle.com/c/rsna-pneumonia-detection-challenge) was used to
251
+ collect negative samples (normal cases).
252
+ Following the two datasets being merged, 118 COVID-19 cases and 8851 normal cases were established. It became
253
+ clear that an unbalanced dataset was created due to the number of positive cases (COVID-19) being significantly
254
+ lower than the number of normal chest X-ray medical images. As a result, the issue was mitigated through the use of
255
+ sampling techniques. The central concept is to select an equal number of items from each category for the binary
256
+ classification task. The oversampling method was used to increase COVID-19 (positive cases) samples to ensure that
257
+ both positive and negative classes had an equal number of samples.
258
+ The number of positive cases increased to 8851 following the oversampling technique, while the number of negative
259
+ (normal) samples remained unchanged. It should be noted that no images of pneumonia were used in this study.
260
+ Pneumonia is classified into several different classes, including SARS, Streptococcus, ARDS, and Pneumocystis. In
261
+ this respect, treating all of these categories as a single class was deemed as impractical. This cannot be very clear in
262
+ terms of interpreting recognition task results as distinct pneumonia types require a unique type of treatment. As a
263
+ result, developing a pneumonia-type classifier was deferred to a later date. Figure 3 illustrates a selection of patients
264
+ with COVID-19 and normal images from the dataset.
265
+
266
+ Generating soft targets
267
+ Teacher
268
+ Network(ResNet50V2/VGG19)
269
+ Chest X-ray Dataset
270
+ Backpropagation
271
+ Loss
272
+ Student
273
+ Trainingthe student
274
+ Network(MobileNetV2)
275
+ 8
276
+
277
+
278
+
279
+
280
+ Figure 3(a): Healthy person
281
+
282
+ Figure 3(b): Patient with COVID-19
283
+ 4.1 Data Augmentation
284
+ Before data augmentation, the images were normalized to avoid issues with vanishing and exploding gradients. After
285
+ that, the image was resized to 224x224. The model was then enhanced with data augmentation techniques to make it
286
+ more responsive to variations within the medical images. During data augmentation, it was assumed that variations in
287
+ the images did not affect the label's (ground truth) definition. Random rotation was the only data augmentation
288
+
289
+
290
+ 9
291
+
292
+
293
+ approach considered for the dataset, between (0-200). This can prevent overfitting and also helps the learning curve
294
+ converge more quickly.
295
+ 5. Training Phase
296
+ The training phase consumed approximately 80% of the dataset, with the remaining 20% used for the test phase. The
297
+ K-fold Cross-Validation technique was used to ensure the accuracy of the performance evaluation. The loss function
298
+ was binary Cross-Entropy, and the optimizer was Adam (with a learning rate=1e-5). The number of folds was 5 (k=5).
299
+ The batch size was 32, and the epoch number was set to 120.
300
+ 5.1 Evaluation Metrics
301
+ Several specific criteria need to be established for evaluating the model's performance on the test dataset. True Positive
302
+ refers to correctly identifying COVID-19 positives among both positive and normal cases. In the conceptualization,
303
+ true negativity entails accurately identifying normal cases. False Positive refers to the practice of misdiagnosing
304
+ COVID-19 cases as normal. False-negative prediction is misclassifying normal cases as COVID-19 cases.
305
+ Precision is defined as the ratio of True Positives over the sum of True Positives and False Positives.
306
+
307
+ TP
308
+ Precision
309
+ TP
310
+ FP
311
+ =
312
+ +
313
+ (1)
314
+
315
+ Sensitivity is the ratio of True Positives over to the sum of True Positives and False Negatives.
316
+
317
+ (
318
+ )
319
+ TP
320
+ Sensitivity recall
321
+ TP
322
+ FN
323
+ =
324
+ +
325
+
326
+ (2)
327
+
328
+ Specificity is the ratio of True Negatives over the sum of False Positives and True Negatives.
329
+
330
+ TN
331
+ Specificity
332
+ TN
333
+ FP
334
+ =
335
+ +
336
+
337
+ (3)
338
+
339
+
340
+
341
+ 10
342
+
343
+
344
+ Finally, three additional criteria were used to measure the performance of the proposed model on the study's dataset
345
+ (F1 Score and Balanced-Accuracy in addition to conventional accuracy).
346
+ 2*
347
+ *
348
+ 1
349
+ (
350
+ )
351
+ precision recall
352
+ F
353
+ Score
354
+ precision
355
+ recall
356
+
357
+ =
358
+ +
359
+
360
+ (4)
361
+
362
+ 2
363
+ specificity
364
+ sensitivity
365
+ Balanced Accuracy
366
+ +
367
+ =
368
+ (5)
369
+
370
+ TP
371
+ TN
372
+ Accuracy
373
+ Positive
374
+ Negative
375
+ +
376
+ =
377
+ +
378
+
379
+ (6)
380
+
381
+ 6. Results and Discussion
382
+ In this section, we present the results of our method applied to the dataset mentioned above. The images which have
383
+ been used for the test have not been seen before by the algorithm. Therefore, these results are approvable that the
384
+ proposed algorithm can perform very well on unseen medical images. Table 1 presents the results of the training
385
+ teacher model. It is conspicuous that the teacher's performance is enough to detect chest X-ray images with good
386
+ accuracy and F1-score. Table 2 shows the results of MobileNetV2 (student model). Its results are satisfactory for the
387
+ classification task. Despite presenting good results of the student network, we decided to improve its classification
388
+ ability via the knowledge distillation approach. Table 3 is presenting the results of the student network after
389
+ knowledge distillation is completed. Eventually, the student network performs on par with the existing methods in
390
+ the literature and sometimes achieves better accuracy and F1-score in comparison with previous publications.
391
+
392
+ Table 1: Evaluation results of the Teacher Network (ResNet50V2/VGG19)
393
+ Fold No.
394
+ Acc
395
+ Precision
396
+ Specificity
397
+ Recall(sensitivity)
398
+ F1 score
399
+ Balanced-
400
+ Acc
401
+ 1
402
+ 0.978
403
+ 0.978
404
+ 0.978
405
+ 0.978
406
+ 0.978
407
+ 0.978
408
+ 2
409
+ 0.989
410
+ 0.978
411
+ 1.000
412
+ 1.000
413
+ 0.988
414
+ 1.000
415
+ 3
416
+ 1.000
417
+ 1.000
418
+ 1.000
419
+ 1.000
420
+ 1.000
421
+ 1.000
422
+ 4
423
+ 0.989
424
+ 0.978
425
+ 1.000
426
+ 1.000
427
+ 0.988
428
+ 1.000
429
+ 5
430
+ 1.000
431
+ 1.000
432
+ 1.000
433
+ 1.000
434
+ 1.000
435
+ 1.000
436
+ Average
437
+ 0.992
438
+ 0.987
439
+ 0.996
440
+ 0.996
441
+ 0.991
442
+ 0.996
443
+
444
+
445
+
446
+ 11
447
+
448
+
449
+
450
+
451
+ Table 2: Evaluation results of the Student Network (MobileNetV2) Before Knowledge-Distillation
452
+ Fold No.
453
+ Acc
454
+ Precision
455
+ Specificity
456
+ Recall(sensitivity)
457
+ F1 score
458
+ Balanced-
459
+ Acc
460
+ 1
461
+ 0.987
462
+ 0.978
463
+ 1.000
464
+ 1.000
465
+ 0.992
466
+ 1.000
467
+ 2
468
+ 0.974
469
+ 0.976
470
+ 0.976
471
+ 0.976
472
+ 0.972
473
+ 0.976
474
+ 3
475
+ 0.974
476
+ 0.976
477
+ 0.976
478
+ 0.976
479
+ 0.972
480
+ 0.976
481
+ 4
482
+ 0.987
483
+ 0.978
484
+ 1.000
485
+ 1.000
486
+ 0.992
487
+ 1.000
488
+ 5
489
+ 0.987
490
+ 0.978
491
+ 1.000
492
+ 1.000
493
+ 0.992
494
+ 1.000
495
+ Average
496
+ 0.980
497
+ 0.977
498
+ 0.990
499
+ 0.990
500
+ 0.984
501
+ 0.990
502
+
503
+ Table 3: Evaluation results of the Student Network (MobileNetV2) After Knowledge-Distillation
504
+ Fold No.
505
+ Acc
506
+ Precision
507
+ Specificity
508
+ Recall(sensitivity)
509
+ F1 score
510
+ Balanced-
511
+ Acc
512
+ 1
513
+ 0.974
514
+ 0.976
515
+ 0.976
516
+ 0.976
517
+ 0.972
518
+ 0.976
519
+ 2
520
+ 1.000
521
+ 1.000
522
+ 1.000
523
+ 1.000
524
+ 1.000
525
+ 1.000
526
+ 3
527
+ 0.978
528
+ 0.978
529
+ 1.000
530
+ 1.000
531
+ 0.992
532
+ 1.000
533
+ 4
534
+ 1.000
535
+ 1.000
536
+ 1.000
537
+ 1.000
538
+ 1.000
539
+ 1.000
540
+ 5
541
+ 0.989
542
+ 0.978
543
+ 1.000
544
+ 1.000
545
+ 0.988
546
+ 1.000
547
+ Average
548
+ 0.988
549
+ 0.987
550
+ 0.996
551
+ 0.996
552
+ 0.991
553
+ 0.996
554
+ %Improvement
555
+ 0.8 %
556
+ 1.0 %
557
+ 0.6 %
558
+ 0.6 %
559
+ 0.7 %
560
+ 0.6 %
561
+
562
+
563
+ Table 4: Number of total parameters in each architecture
564
+ Teacher Network (ResNet50V2/VGG19)
565
+ 49,222,390
566
+ Student Network (MobileNetV2)
567
+ 2,334,966
568
+ Number of Parameters Reduction (%)
569
+ -95.3 %
570
+
571
+
572
+ It is noteworthy that the student network has outperformed its previous version(without KD) in terms of evaluation
573
+ metrics performance, and this is because knowledge distillation improves MobileNetV2's performance to some extent.
574
+ Meanwhile, KD aids the network in mitigating common neural network forgetting problems. Thus, the student model's
575
+ performance demonstrates that it can be used for medical recognition tasks in embedding systems while requiring
576
+ minimal computation, owing to the use of depthwise convolutional layers and knowledge distillation. Table 4 shows
577
+ the number of parameters in each architecture. It’s conspicuous that not only KD can improve student model’s
578
+ performance, but also it reduces the number of parameters about 95.3% while maintainging perfromance. Therfore,
579
+ student model can be an eligible candidate for COVID-19 recognition task.
580
+
581
+
582
+ 12
583
+
584
+
585
+
586
+ 7. Conclusion
587
+ In this paper, a novel method was developed for identifying COVID-19 medical chest X-ray images. Due to
588
+ encountering an unbalanced dataset, this issue was resolved using oversampling and data augmentation techniques. In
589
+ evaluating the algorithm, the fivefold cross-validation method was used to ensure the proposed model's performance.
590
+ After performing knowledge distillation, an accuracy and F1-score of 98.8% and 99.1% were achieved respectively.
591
+ The proposed method, we believe, is an excellent choice for the COVID-19 recognition task. However, adding more
592
+ diverse datasets from different countries will help improve the algorithm. For future works on medical image datasets,
593
+ incremental learning techniques, self-supervised deep learning methods, vision transformer architectures, knowledge
594
+ distillation under adversarial attacks are proposed.
595
+
596
+ Declaration
597
+ Conflict of interest
598
+ The corresponding author declares that there are no conflicts of interest on behalf of all authors.
599
+
600
+ References
601
+ [1]
602
+ K. Paeng, S. Hwang, S. Park, and M. Kim, "A unified framework for tumor proliferation score prediction in
603
+ breast histopathology," in Lecture Notes in Computer Science (including subseries Lecture Notes in
604
+ Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10553 LNCS, pp. 231–239, doi:
605
+ 10.1007/978-3-319-67558-9_27.
606
+ [2]
607
+ J. de la Torre, A. Valls, and D. Puig, "A deep learning interpretable classifier for diabetic retinopathy disease
608
+ grading," Neurocomputing, vol. 396, pp. 465–476, Jul. 2020, doi: 10.1016/J.NEUCOM.2018.07.102.
609
+ [3]
610
+ A. Gupta, Anjum, S. Gupta, and R. Katarya, "InstaCovNet-19: A deep learning classification model for the
611
+ detection of COVID-19 patients using Chest X-ray," Appl. Soft Comput., vol. 99, Feb. 2021, doi:
612
+ 10.1016/J.ASOC.2020.106859.
613
+ [4]
614
+ C. Ouchicha, O. Ammor, and M. Meknassi, "CVDNet: A novel deep learning architecture for detection of
615
+ coronavirus (Covid-19) from chest x-ray images," Chaos, Solitons and Fractals, vol. 140, Nov. 2020, doi:
616
+ 10.1016/J.CHAOS.2020.110245.
617
+
618
+
619
+ 13
620
+
621
+
622
+ [5]
623
+ P. Saha, M. S. Sadi, and M. M. Islam, "EMCNet: Automated COVID-19 diagnosis from X-ray images using
624
+ convolutional neural network and ensemble of machine learning classifiers," Informatics Med. Unlocked,
625
+ vol. 22, Jan. 2021, doi: 10.1016/J.IMU.2020.100505.
626
+ [6]
627
+ M. Z. Islam, M. M. Islam, and A. Asraf, "A combined deep CNN-LSTM network for the detection of novel
628
+ coronavirus (COVID-19) using X-ray images," Informatics Med. Unlocked, vol. 20, Jan. 2020, doi:
629
+ 10.1016/J.IMU.2020.100412.
630
+ [7]
631
+ S. Sheykhivand et al., "Developing an efficient deep neural network for automatic detection of COVID-19
632
+ using chest X-ray images," Alexandria Eng. J., vol. 60, no. 3, pp. 2885–2903, Jun. 2021, doi:
633
+ 10.1016/J.AEJ.2021.01.011.
634
+ [8]
635
+ E. Hussain, M. Hasan, M. A. Rahman, I. Lee, T. Tamanna, and M. Z. Parvez, "CoroDet: A deep learning-
636
+ based classification for COVID-19 detection using chest X-ray images," Chaos, Solitons and Fractals, vol.
637
+ 142, Jan. 2021, doi: 10.1016/J.CHAOS.2020.110495.
638
+ [9]
639
+ Y. KUTLU and Y. CAMGÖZLÜ, "Detection of coronavirus disease (COVID-19) from X-ray images using
640
+ deep convolutional neural networks," Nat. Eng. Sci., vol. 6, no. 1, pp. 60–74, Jan. 2021, doi:
641
+ 10.28978/NESCIENCES.868087.
642
+ [10]
643
+ R. C. Joshi et al., "A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray
644
+ images," Biocybern. Biomed. Eng., vol. 41, no. 1, pp. 239–254, Jan. 2021, doi: 10.1016/J.BBE.2021.01.002.
645
+ [11]
646
+ M. M. Rahaman et al., "Identification of COVID-19 samples from chest X-Ray images using deep learning:
647
+ A comparison of transfer learning approaches," J. Xray. Sci. Technol., vol. 28, no. 5, pp. 821–839, 2020,
648
+ doi: 10.3233/XST-200715.
649
+ [12]
650
+ K. El Asnaoui and Y. Chawki, "Using X-ray images and deep learning for automated detection of
651
+ coronavirus disease," J. Biomol. Struct. Dyn., pp. 1–12, 2020, doi: 10.1080/07391102.2020.1767212.
652
+ [13]
653
+ M. Loey, F. Smarandache, and N. E. M. Khalifa, "Within the lack of chest COVID-19 X-ray dataset: A
654
+ novel detection model based on GAN and deep transfer learning," Symmetry (Basel)., vol. 12, no. 4, Apr.
655
+ 2020, doi: 10.3390/SYM12040651.
656
+ [14]
657
+ R. K. Singh, R. Pandey, and R. N. Babu, "COVIDScreen: explainable deep learning framework for
658
+ differential diagnosis of COVID-19 using chest X-rays," Neural Comput. Appl., 2021, doi: 10.1007/S00521-
659
+ 020-05636-6.
660
+ [15]
661
+ S. Sarv Ahrabi, M. Scarpiniti, E. Baccarelli, and A. Momenzadeh, "An accuracy vs. Complexity comparison
662
+ of deep learning architectures for the detection of covid-19 disease," computation, vol. 9, no. 1, pp. 1–20,
663
+ Jan. 2021, doi: 10.3390/COMPUTATION9010003.
664
+
665
+
666
+ 14
667
+
668
+
669
+ [16]
670
+ I. Lorencin et al., "Automatic evaluation of the lung condition of COVID-19 patients using X-ray images
671
+ and convolutional neural networks," J. Pers. Med., vol. 11, no. 1, pp. 1–31, Jan. 2021, doi:
672
+ 10.3390/JPM11010028.
673
+ [17]
674
+ R. Jain, M. Gupta, S. Taneja, and D. J. Hemanth, "Deep learning-based detection and analysis of COVID-19
675
+ on chest X-ray images," Appl. Intell., vol. 51, no. 3, pp. 1690–1700, Mar. 2021, doi: 10.1007/S10489-020-
676
+ 01902-1.
677
+ [18]
678
+ S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. Jamalipour Soufi, "Deep-COVID: Predicting COVID-
679
+ 19 from chest X-ray images using deep transfer learning," Med. Image Anal., vol. 65, Oct. 2020, doi:
680
+ 10.1016/J.MEDIA.2020.101794.
681
+ [19]
682
+ S. C. R and R. K. Dubey, "Deep Learning-Based Hybrid Models for Prediction of COVID-19 using Chest
683
+ X-Ray," Aug. 2020, doi: 10.36227/TECHRXIV.12839204.V1.
684
+ [20]
685
+ J. D. Arias-Londono, J. A. Gomez-Garcia, L. Moro-Velazquez, and J. I. Godino-Llorente, “Artificial
686
+ Intelligence applied to chest X-Ray images for the automatic detection of COVID-19. A thoughtful
687
+ evaluation approach," IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3044858.
688
+ [21]
689
+ L. Wang, Z. Q. Lin, and A. Wong, "COVID-Net: a tailored deep convolutional neural network design for
690
+ detection of COVID-19 cases from chest X-ray images," Sci. Rep., vol. 10, no. 1, Dec. 2020, doi:
691
+ 10.1038/S41598-020-76550-Z.
692
+ [22]
693
+ I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: automatic detection from X-ray images utilizing
694
+ transfer learning with convolutional neural networks," Phys. Eng. Sci. Med., vol. 43, no. 2, pp. 635–640,
695
+ Jun. 2020, doi: 10.1007/S13246-020-00865-4.
696
+ [23]
697
+ T. Garg, M. Garg, O. P. Mahela, and A. R. Garg, "Convolutional Neural Networks with Transfer Learning
698
+ for Recognition of COVID-19: A Comparative Study of Different Approaches," AI, vol. 1, no. 4, pp. 586–
699
+ 606, Dec. 2020, doi: 10.3390/AI1040034.
700
+ [24]
701
+ T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, "Automated
702
+ detection of COVID-19 cases using deep neural networks with X-ray images," Comput. Biol. Med., vol. 121,
703
+ Jun. 2020, doi: 10.1016/J.COMPBIOMED.2020.103792.
704
+ [25]
705
+ E. Luz et al., "Towards an effective and efficient deep learning model for COVID-19 patterns detection in
706
+ X-ray images," Res. Biomed. Eng., Apr. 2021, doi: 10.1007/S42600-021-00151-6.
707
+ [26]
708
+ A. I. Khan, J. L. Shah, and M. M. Bhat, "CoroNet: A deep neural network for detection and diagnosis of
709
+ COVID-19 from chest x-ray images," Comput. Methods Programs Biomed., vol. 196, Nov. 2020, doi:
710
+ 10.1016/J.CMPB.2020.105581.
711
+
712
+
713
+ 15
714
+
715
+
716
+ [27]
717
+ C. Häne et al., "3D visual perception for self-driving cars using a multi-camera system: Calibration,
718
+ mapping, localization, and obstacle detection," Image Vis. Comput., vol. 68, pp. 14–27, Dec. 2017, doi:
719
+ 10.1016/J.IMAVIS.2017.07.003.
720
+ [28]
721
+ X. Qiu, Z. Liu, M. Zhuang, D. Cheng, C. Zhu, and X. Zhang, "Fusion of CNN1 and CNN2-based Magnetic
722
+ Resonance Image Diagnosis of Knee Meniscus Injury and a Comparative Analysis with Computed
723
+ Tomography," Comput. Methods Programs Biomed., p. 106297, Jul. 2021, doi:
724
+ 10.1016/J.CMPB.2021.106297.
725
+ [29]
726
+ C. Liao, C. Wang, J. Bai, L. Lan, and X. Wu, "Deep learning for registration of region of interest in
727
+ consecutive wireless capsule endoscopy frames," Comput. Methods Programs Biomed., vol. 208, p. 106189,
728
+ Sep. 2021, doi: 10.1016/J.CMPB.2021.106189.
729
+ [30]
730
+ C. Ren, D. K. Kim, and D. Jeong, "A Survey of Deep Learning in Agriculture: Techniques and Their
731
+ Applications," J. Inf. Process. Syst., vol. 16, no. 5, pp. 1015–1033, 2020, doi: 10.3745/JIPS.04.0187.
732
+ [31]
733
+ G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks,"
734
+ Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 2261–2269,
735
+ Aug. 2016, Accessed: Jul. 26, 2021. [Online]. Available: https://arxiv.org/abs/1608.06993v5.
736
+ [32]
737
+ K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the
738
+ IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Dec. 2016, vol. 2016-
739
+ December, pp. 770–778, doi: 10.1109/CVPR.2016.90.
740
+ [33]
741
+ K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Sep.
742
+ 2015, Accessed: Jun. 17, 2021. [Online]. Available: http://www.robots.ox.ac.uk/.
743
+ [34]
744
+ F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in Proceedings - 30th IEEE
745
+ Conference on Computer Vision and Pattern Recognition, CVPR 2017, Nov. 2017, vol. 2017-January, pp.
746
+ 1800–1807, doi: 10.1109/CVPR.2017.195.
747
+ [35]
748
+ M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, "MobileNetV2: Inverted Residuals and
749
+ Linear Bottlenecks," in Proceedings of the IEEE Computer Society Conference on Computer Vision and
750
+ Pattern Recognition, Dec. 2018, pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.
751
+ [36]
752
+ G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network," Mar. 2015, Accessed:
753
+ Jul. 26, 2021. [Online]. Available: https://arxiv.org/abs/1503.02531v1.
754
+ [37]
755
+ J. Gou, B. Yu, S. J. Maybank, and D. Tao, "Knowledge Distillation: A Survey," Int. J. Comput. Vis., vol.
756
+ 129, no. 6, pp. 1789–1819, Jun. 2020, doi: 10.1007/s11263-021-01453-z.
757
+
758
+
Z9E0T4oBgHgl3EQf4QJC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
cdFST4oBgHgl3EQfDjjb/content/tmp_files/2301.13711v1.pdf.txt ADDED
@@ -0,0 +1,2154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13711v1 [astro-ph.HE] 31 Jan 2023
2
+ MNRAS 000, 1–14 (2022)
3
+ Preprint 1 February 2023
4
+ Compiled using MNRAS LATEX style file v3.0
5
+ Wideband Study of the Brightest Black Hole X-ray Binary 4U 1543−47 in
6
+ the 2021 Outburst: Signature of Disk-Wind Regulated Accretion
7
+ Geethu Prabhakar1⋆, Samir Mandal1†, Bhuvana G. R.2, and Anuj Nandi3
8
+ 1 Department of Earth and Space Sciences, Indian Institute of Space Science and Technology (IIST), Trivandrum - 695547, India
9
+ 2 Department of Physics, Dayananda Sagar University, Bengaluru - 560068, India
10
+ 3 Space Astronomy Group, ISITE Campus, U R Rao Satellite Centre, Bengaluru - 560037, India
11
+ Accepted XXX. Received YYY; in original form ZZZ
12
+ ABSTRACT
13
+ A comprehensive wideband spectral analysis of the brightest black hole X-ray binary 4U 1543 − 47 during its 2021 outburst
14
+ is carried out for the first time using NICER, NuSTAR, and AstroSat observations by phenomenological and reflection mod-
15
+ elling. The source attains a super-Eddington peak luminosity and remains in the soft state, with a small fraction (< 3%) of
16
+ the inverse-Comptonized photons. The spectral modelling reveals a steep photon index (Γ ∼ 2 − 2.6) and relatively high inner
17
+ disk temperature (Tin ∼ 0.9 − 1.27 keV). The line-of-sight column density varies between (0.45 − 0.54)×1022 cm−2. Reflection
18
+ modelling using the RELXILL model suggests that 4U 1543 − 47 is a low-inclination system (θ ∼ 32◦ − 40◦). The accretion
19
+ disk is highly ionized (log ξ > 3) and has super solar abundance (3.6−10 AFe,⊙) over the entire period of study. We detected a
20
+ prominent dynamic absorption feature between ∼ 8 − 11 keV in the spectra throughout the outburst. This detection is the first
21
+ of its kind for X-ray binaries. We infer that the absorption of the primary X-ray photons by the highly ionized, fast-moving
22
+ disk-winds can produce the observed absorption feature. The phenomenological spectral modelling also shows the presence of
23
+ a neutral absorption feature ∼ 7.1 −7.4 keV, and both ionized and neutral absorption components follow each other with a delay
24
+ of a typical viscous timescale of 10 − 15 days.
25
+ Key words: accretion, accretion disc - black hole physics - X-rays: binaries - stars: individual: 4U 1543 − 47
26
+ 1 INTRODUCTION
27
+ X-ray spectroscopy of black hole X-ray binaries (BH-XRBs)
28
+ holds the key to unveil the geometry of the system and the
29
+ dynamics of the accretion process. The spectrum of BH-XRBs
30
+ mainly consists of a hard powerlaw and a soft thermal compo-
31
+ nent. The soft component, which is a multi-temperature black-
32
+ body, is assumed to be originated from an optically thick, ge-
33
+ ometrically thin accretion disk (Shakura & Sunyaev 1973). The
34
+ hard powerlaw component is generally believed to be emitted
35
+ from an optically thin, hot electron cloud called ‘corona’ by the
36
+ Comptonization of the soft disk photons (Sunyaev & Titarchuk
37
+ 1980, 1985; Zdziarski et al. 1994; Chakrabarti & Titarchuk 1995;
38
+ Poutanen & Coppi 1998; Chakrabarti & Mandal 2006; Iyer et al.
39
+ 2015; Poutanen et al. 2018). The relative strength of these com-
40
+ ponents leads to different states in outbursting BH-XRBs. In the
41
+ Low/Hard State (LHS), the non-thermal component dominates and
42
+ in the High/Soft State (HSS), the disk emission dominates. There
43
+ are short-lived intermediate states also, namely, the Hard Interme-
44
+ diate State (HIMS) and Soft Intermediate State (SIMS), lying be-
45
+ tween LHS and HSS (Homan et al. 2001; Homan & Belloni 2005;
46
+ Remillard & McClintock 2006; Nandi et al. 2012; Sreehari et al.
47
+ 2019; Aneesha et al. 2019; Bhuvana et al. 2021; Prabhakar et al.
48
+ 2022). A typical outburst starts with the LHS and proceeds through
49
50
51
+ intermediate states to HSS then back to LHS again and finally reach
52
+ quiescence. However, it does not always have to go through all the
53
+ states mentioned above (Debnath et al. 2015; Radhika et al. 2016;
54
+ García et al. 2019; Baby et al. 2020, 2021; Prabhakar et al. 2022).
55
+ The advent of high resolution spectroscopy reveals the presence
56
+ of reflection features in the spectra of many BH-XRBs. Irrespective
57
+ of the geometry of the corona, it is believed that the photons upscat-
58
+ terd by the corona, the primary photons interact with the disc mate-
59
+ rial and a part of which produces the reflection features (Basko et al.
60
+ 1974). The reprocessed X-ray spectrum consists of fluorescent line
61
+ emission from various elements, a soft thermal continuum and a
62
+ Compton hump peaked at ∼ 20 − 30 keV. The most prominent fea-
63
+ ture among the fluorescent emission lines is the iron K-edge at ∼ 7.1
64
+ keV (Ueda et al. 1998) and Kα line at ∼ 6 − 7 keV (White et al.
65
+ 1986; Barret & Olive 2002; Di Salvo et al. 2005). This is because
66
+ the fluorescence yield increases with the atomic number (Burhop
67
+ 1952). For a distant observer, these reflection features appeared to
68
+ be diluted/broadened and distorted (asymmetric) due to relativistic
69
+ effects of the strong gravity region in the close vicinity of the BH
70
+ (Fabian et al. 1989, 2000). Spectral modelling using relativistic re-
71
+ flection models can address the effect of blurring of the spectral fea-
72
+ tures and helps to probe the physics of the strong gravity region at
73
+ the inner disk. The accretion disk characteristics, such as the ion-
74
+ ization of the disk material, the iron abundance, inclination of the
75
+ system, spin of the BH etc., can also be obtained from reflection
76
+ modelling. The line broadening can also be due to Comptonization
77
+ in a highly ionized, optically thick cloud, and the resultant feature
78
+ © 2022 The Authors
79
+
80
+ 2
81
+ Prabhakar et al.
82
+ is broad and symmetric. However, this mechanism is important for
83
+ high inclination systems only (Petrucci et al. 2001).
84
+ The Fe−K band (5 − 8 keV) is the energy range where most of
85
+ the emission/absorption features appear. The first observational ev-
86
+ idence of the Fe−K absorption lines was provided by Ueda et al.
87
+ (1998) with ASCA in the spectra of galactic superluminal BH source
88
+ GRO J1655 − 40. Kotani et al. (2000) and Lee et al. (2002) also de-
89
+ tected similar features in the superluminal jet source GRS 1915+105
90
+ with ASCA. Later, it is revealed that the absorption features are
91
+ very common in the spectra of BH-XRBs (Shidatsu et al. 2013;
92
+ King et al. 2014; Xu et al. 2018). Photon interaction with neutral
93
+ and static material produces sharp fluorescent lines at their corre-
94
+ sponding transition energy levels. In case of ionized absorbers, there
95
+ would be an increase in the transition line energy compared to their
96
+ neutral ones. The absorption lines from highly ionized ions give an
97
+ insight into the highly ionized plasma around the compact object.
98
+ The process of accretion in XRBs is usually accompanied with
99
+ outflows and/or jets (Fender et al. 1999, 2004, 2010; Miller et al.
100
+ 2012, 2013; Radhika & Nandi 2014; Radhika et al. 2016). The per-
101
+ sistent jets are present in the LHS of the system, and it gets turned
102
+ off in HSS. Accretion disk-wind is generally observed in the disk-
103
+ dominated HSS, though it can exist in other spectral states as well
104
+ (Lee et al. 2002; Miller et al. 2008; Neilsen & Lee 2009; Neilsen
105
+ 2013). The disk-winds carry a sufficient amount of matter which
106
+ suppresses the launch of radio jets (Neilsen & Lee 2009) in HSS.
107
+ The disk-wind can also be highly ionized and their presence can be
108
+ inferred by the blue-shifted absorption features in the X-ray spec-
109
+ trum (Ebisawa 1997; Kotani et al. 1997). In general, it seems that
110
+ the absorption lines are absent in the LHS, which is still a matter
111
+ of debate. Neilsen & Lee (2009) suggests that the wind gets pho-
112
+ toionized completely in LHS, and the medium becomes transparent;
113
+ this could be a possible reason for the absence of absorption lines in
114
+ the spectra. Usually, the disk-winds are observed in high inclination
115
+ systems (Ponti et al. 2012). Such systems may show intensity ‘dips’
116
+ in their X-ray spectra, for e.g., GRS 1915 + 105, 4U 1630 − 47, H
117
+ 1743 − 322, MAXI J1305 − 704, GRO J1655 − 40 (Leahy 1997;
118
+ Kuulkers et al. 1998; Shidatsu et al. 2013). The dips are believed to
119
+ be caused by obscuring material associated with the accretion disk
120
+ (Frank et al. 1987) and are visible for highly inclined systems with
121
+ inclination angle 60◦ ≲ θ ≲ 80◦ (Frank et al. 1987). The disk-winds
122
+ play a major role in regulating the accretion scenario of BH-XRBs.
123
+ For example, Muñoz-Darias et al. (2016) showed how winds control
124
+ the violent outburst of V404 Cygni by diminishing a significant frac-
125
+ tion of the outer disk. Disk-wind studies in BH-XRBs can provide
126
+ great insights into the physical mechanisms involved in the accretion
127
+ process.
128
+ 4U 1543 − 47 is a BH-XRB, discovered by Uhuru satellite in
129
+ 1971 (Matilsky et al. 1972). Since the discovery, it has undergone
130
+ five outbursts; the first four are in an interval of ∼ 10 years, in
131
+ 1984 (Kitamoto et al. 1984), 1992 (Harmon et al. 1992) and 2002
132
+ (Park et al. 2004). After a gap of 19 years, the fifth outburst hap-
133
+ pened in 2021 (Negoro et al. 2021a), which marks the source as
134
+ the brightest BH-XRB with a peak X-ray intensity of 11 Crab in
135
+ 2 − 4 keV with MAXI/GSC (Negoro et al. 2021b). The 2002 out-
136
+ burst was also brighter (4 Crab in 2 − 12 keV), while the previ-
137
+ ous three outbursts have comparable intensities (Park et al. 2004).
138
+ Its optical counterpart, IL Lupi, was discovered by Pedersen (1983).
139
+ The central engine is a dynamically confirmed BH with a mass of
140
+ 9.4 ± 1.0 M⊙, and the companion is an A2V star of mass 2.45 ±
141
+ 0.15 M⊙ (Russell et al. 2006). It is located at RA = 15h47m8s.27,
142
+ Dec = −47◦40
143
+ ′10
144
+ ′′.8 (J2000) (Park et al. 2004) at a distance of
145
+ 7.5 ± 0.5 kpc (Jonker & Nelemans 2004). Orosz (2003) estimated
146
+ the orbital inclination of the system as 20.7◦ ± 1.5◦. There were
147
+ multiple attempts to estimate the spin (a∗, dimensionless spin pa-
148
+ rameter) of the BH in 4U 1543 − 47 using RXTE observations of
149
+ the 2002 outburst. Shafee et al. (2006) estimated a spin of ∼ 0.75 −
150
+ 0.85 using continuum-fitting of RXTE data. Miller et al. (2009) and
151
+ Morningstar & Miller (2014) estimated the spin value as 0.3 ± 0.1
152
+ and 0.43+0.22
153
+ −0.31 respectively using relativistic disk reflection and disk
154
+ continuum modelling. These three estimations are based on a BH
155
+ mass of 9.4 ± 1.0 M⊙ and a distance of 7.5 ± 0.5 kpc. Shafee et al.
156
+ (2006) and Morningstar & Miller (2014) used the binary inclination
157
+ (θ) of 20.7 ± 1.5 degree, while Miller et al. (2009) used a θ of 32+3
158
+ −4
159
+ degree for the spin estimation. Dong et al. (2020) reported a spin of
160
+ 0.67+0.15
161
+ −0.08 and θ of 36.3+5.3
162
+ −3.4 degree by reflection modelling of RXTE
163
+ data using the model RELXILL.
164
+ The Giant Metrewave Radio Telescope (GMRT) detected radio
165
+ flares from the source in 2002 outburst (Park et al. 2004). Multi-
166
+ ple flaring occasions are reported at different phases of the outburst.
167
+ Russell et al. (2020) reported the presence of a compact jet in the
168
+ SIMS of the 2002 outburst of 4U 1543 − 47 using multiwavelength
169
+ observations (X-ray, optical, IR, and radio). Since the system has
170
+ a low inclination, the jet angle and axis of rotation may coincide.
171
+ Russell et al. (2020) tested the chances of jet contribution to the lu-
172
+ minosity of the system and renounced that possibility.
173
+ Until now, there is no study in literature based on the 2021 out-
174
+ burst of 4U 1543 − 47. We aim for a detailed analysis of the wide-
175
+ band spectral characteristics of the 2021 outburst using three dif-
176
+ ferent instrument data from NICER (Neutron star Interior Compo-
177
+ sition ExploreR), NuSTAR (Nuclear Spectroscopic Telescope Array)
178
+ and AstroSat during outburst decay. The evolution of spectral pa-
179
+ rameters is investigated using phenomenological and reflection mod-
180
+ elling. Even though the reflection modelling of RXTE data of 2002
181
+ outburst (Miller et al. 2009; Morningstar & Miller 2014; Dong et al.
182
+ 2020) unveil the fundamental quantities of the system like a∗ and
183
+ θ, data from much better spectral resolution instruments like NuS-
184
+ TAR (Harrison et al. 2013) are highly promising. It can also provide
185
+ outburst specific quantities like the iron abundance and ionization
186
+ of the accretion disk. We report the presence of strong and dynamic
187
+ absorption features in the 2021 outburst spectra, which has not been
188
+ observed in any previous outbursts of 4U 1543 − 47. We examine
189
+ these features quantitatively using phenomenological modelling of
190
+ NuSTAR data.
191
+ This paper is structured as follows: The observations and the data
192
+ reduction procedure are discussed in §2. The evolution of the out-
193
+ burst lightcurve and hardness ratio are examined in §3. The spectral
194
+ modelling and parameter evolution are presented in §4. Phenomeno-
195
+ logical and reflection modelling of different epochs are discussed in
196
+ §4.1 and §4.2, respectively. The detailed study of the absorption fea-
197
+ tures in the spectra of 4U 1543 − 47 is carried out in §4.3. We dis-
198
+ cussed our overall findings in §5. Finally, we summarise the results
199
+ in §6 and then conclude.
200
+ 2 OBSERVATIONS AND DATA REDUCTION
201
+ We perform the present study based on the 2021 outburst of 4U
202
+ 1543 − 47 using NuSTAR, NICER and AstroSat observations over
203
+ a period from 17 June 2021 (MJD 59382) to 14 September 2021
204
+ (MJD 59471). We considered all the NuSTAR and AstroSat obser-
205
+ vations in this period and used the NICER observations which are
206
+ simultaneous with NuSTAR. The list of observations considered for
207
+ this study is given in Table 1. There are a total of 16 epochs of ob-
208
+ MNRAS 000, 1–14 (2022)
209
+
210
+ Disk-wind regulated accretion in 4U 1543−47
211
+ 3
212
+ Table 1. The list of observations of the source 4U 1543 − 47 considered for the study. There are 16 epochs consisting of ten NuSTAR and six AstroSat
213
+ observations. Seven NuSTAR epochs have simultaneous NICER coverage also.
214
+ Epoch
215
+ Obs. ID (MJD)
216
+ Remarks
217
+ NuSTAR
218
+ NICER
219
+ AstroSat
220
+ 1
221
+ 80702317002 (59382.42)
222
+ 4655060101 (59382.44)
223
+ 2
224
+ 80702317004 (59389.47)
225
+ 4655060201 (59389.47)
226
+ 3
227
+ T04_018T01_9000004494 (59396.04)
228
+ Offset
229
+ 4
230
+ 80702317006 (59396.18)
231
+ 4655060301 (59396.19)
232
+ 5
233
+ 80702317008 (59403.02)
234
+ 4655060401 (59403.04)
235
+ 6
236
+ T04_021T01_9000004526 (59405.36)
237
+ Offset
238
+ 7
239
+ T04_030T01_9000004588 (59421.19)
240
+ Pointed
241
+ 8
242
+ 90702326002 (59421.67)
243
+ 9
244
+ 90702326004 (59428.18)
245
+ 4202230143 (59428.13)
246
+ 10
247
+ T04_035T01_9000004622 (59430.59)
248
+ Pointed
249
+ 11
250
+ 90702326006 (59450.19)
251
+ 12
252
+ 90702326008 (59455.55)
253
+ 13
254
+ T04_046T01_9000004680 (59457.06)
255
+ Pointed
256
+ 14
257
+ T04_051T01_9000004686 (59461.05)
258
+ Pointed
259
+ 15
260
+ 90702326010 (59465.67)
261
+ 4202230166 (59466.07)
262
+ 16
263
+ 90702326012 (59471.51)
264
+ 4202230171 (59471.43)
265
+ servations consisting of ten NuSTAR and six AstroSat observations.
266
+ Seven NuSTAR epochs have simultaneous NICER coverage also.
267
+ 2.1 NuSTAR Data Reduction
268
+ NuSTAR (Harrison et al. 2013) has observed the source several
269
+ times in the 2021 outburst. NuSTAR is devoid of pile-up issues
270
+ and moreover, its good energy resolution in the energy cover-
271
+ age (3 − 79 keV) makes it suitable for the study of enormously
272
+ bright sources like 4U 1543 − 47. NuSTAR consists two focal
273
+ plane module telescopes (FPMA and FPMB), both are operat-
274
+ ing in 3 − 78 keV band. The NuSTAR data for the 2021 out-
275
+ burst is reduced using HEASOFT v.6.29, NUSTARDAS pipeline
276
+ v.2.1.1 and CALDB v.20211115. For extremely bright sources,
277
+ we set statusexpr="STATUS==b0000xxx00xxxx000"1 and set
278
+ saamode to strict and tentacle to yes. A circular region of
279
+ radius 35 pixels centered on the brightest pixel is extracted as the
280
+ source region and as the background region, we also choose a 35
281
+ pixel circular region away from this. These files are used for gener-
282
+ ating science products such as the spectrum, background, lightcurve,
283
+ Auxiliary Response File (ARF) and Response Matrix File (RMF),
284
+ through the NUPRODUCTS task, independently for both FPMA and
285
+ FPMB. The spectra are grouped with a minimum of 50 counts per
286
+ bin without any systematics.
287
+ 2.2 NICER Data Reduction
288
+ The
289
+ X-ray
290
+ Timing
291
+ Instrument
292
+ (XTI)
293
+ onboard
294
+ NICER
295
+ (Gendreau et al. 2016) operates in 0.2 − 12 keV band. NICER
296
+ has observed the source 4U 1543 − 47 in almost every day during
297
+ the 2021 outburst. We analyse NICER data of the source between
298
+ MJD 59382 and MJD 59471 which is simultaneous with the
299
+ NuSTAR observations (Table 1). The data is reduced using the
300
+ tool NICERDAS2 in HEASOFT v.6.29 with the 20210707 caldb
301
+ version. There are 56 focal plane modules (FPMs) of NICER/XTI.
302
+ 1 https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/
303
+ 2 https://heasarc.gsfc.nasa.gov/docs/nicer/nicer_analysis.html
304
+ We excluded FPM-14 and 34 in addition to the non-functional
305
+ FPMs (FPM-11, 20, 22, and 60) due to increased noise levels.
306
+ Since 4U 1543 − 47 is extremely bright at the beginning of the
307
+ outburst, the initial epochs (till ∼ MJD 59425) are affected by
308
+ telemetry saturation. For such observations, a lower number of
309
+ FPMs were kept active by the instrument team and we considered
310
+ only the active detectors in the data reduction. Level-2 standard
311
+ calibration and filtering are done using nicerl2 task and applied
312
+ barycenter corrections through barycorr with refframe="ICRS".
313
+ Spectra is generated using XSELECT (V2.4m). Lightcurve of
314
+ the NICER observation on MJD 59428.18 shows a flaring in the
315
+ high energy band; therefore, the corresponding GTIs are excluded
316
+ from the extraction. The ARF and RMF files are generated for
317
+ each observation based on the number of active detectors. The
318
+ task nibackgen3C503 (Remillard et al. 2021) is used for creating
319
+ background files. Finally, the source spectra are grouped with 25
320
+ photons per bin and a systematic uncertainty of 1 % is added to the
321
+ spectra.
322
+ 2.3 AstroSat Data Reduction
323
+ The Soft X-ray Telescope (SXT) and Large Area X-ray Propor-
324
+ tional Counter (LAXPC) on-board AstroSat (Yadav et al. 2016;
325
+ Agrawal et al. 2017) together observes the astronomical sources in
326
+ wideband energy range (0.3−80 keV). AstroSat has observed the
327
+ 2021 outburst of 4U 1543-47 during 6 different epochs. The first
328
+ two of these observations are carried out with an offset of 40′ since
329
+ the source was too bright to have pointed observation (Garg et al.
330
+ 2021). We obtain Level-1 LAXPC and Level-2 SXT data of all six
331
+ observations available at data archive hosted by ISSDC4.
332
+ LAXPC consists of three identical proportional counts namely
333
+ LAXPC10, LAXPC20 and LAXPC30. However, for our analysis, we
334
+ have used data from LAXPC20 alone because of its steady gain (see
335
+ also Bhuvana et al. 2021; Baby et al. 2021; Bhuvana et al. 2022;
336
+ Prabhakar et al. 2022). To extract the Level-2 LAXPC data file i.e.,
337
+ source spectrum, lightcurve, RMF and background spectrum and
338
+ 3 https://heasarc.gsfc.nasa.gov/docs/nicer/tools/nicer_bkg_est_tools.html
339
+ 4 https://astrobrowse.issdc.gov.in/astro_archive/archive/Home.jsp
340
+ MNRAS 000, 1–14 (2022)
341
+
342
+ 4
343
+ Prabhakar et al.
344
+ 0
345
+ 5
346
+ 10
347
+ 0
348
+ 25
349
+ 50
350
+ 75
351
+ 100
352
+ 125
353
+ 150
354
+ 175
355
+ 0
356
+ 20
357
+ (a)
358
+ NICER
359
+ NuSTAR
360
+ AstroSat
361
+ 0.0
362
+ 0.5
363
+ 0
364
+ 25
365
+ 50
366
+ 75
367
+ 100
368
+ 125
369
+ 150
370
+ 175
371
+ 0.0
372
+ 0.2
373
+ (b)
374
+ 0
375
+ 25
376
+ 50
377
+ 75
378
+ 100
379
+ 125
380
+ 150
381
+ 175
382
+ Time (days since MJD 59370)
383
+ 0.0
384
+ 0.2
385
+ 0.4
386
+ (c)
387
+ Flux (photons/sec/cm2)
388
+ Ratio (4-10/2-4 keV)
389
+ 10-20 keV
390
+ 2-10 keV
391
+ Flux (Crab)
392
+ Figure 1. MAXI/GSC daily average lightcurve in the energy bands (a) 2 − 10 keV and (b) 10 − 20 keV with flux in units of photons/sec/cm2 and Crab in the left
393
+ and right Y-axes respectively. The hardness ratio (c) is defined by the flux in 4 − 10 keV to 2 − 4 keV. The NICER, NuSTAR and AstroSat observations for this
394
+ study are marked using lines with the colours cyan, blue and red respectively.
395
+ lightcurve, we make use of latest version of single routine LAXPC
396
+ software LaxpcSoftversion3.4.35 (Antia et al. 2022). Level-2
397
+ files are extracted from a single event and the top layer of LAXPC
398
+ unit to avoid the instrument effects at high energy. While the soft-
399
+ ware generated LAXPC response files are used for pointed obser-
400
+ vations, a 40′ offset LAXPC response file provided by the instru-
401
+ ment is used for the offset observations (see also Baby et al. 2020;
402
+ Katoch et al. 2021).
403
+ SXT has observed the source in Photon Counting (PC) mode dur-
404
+ ing all the epochs. The orbit-wise SXT cleaned Level-2 event files
405
+ are merged to get single event file for each observation using event
406
+ merger python routine6 based on Julia v 1.1.1. The merged event file
407
+ is then loaded into XSELECT, where we select single-pixel events
408
+ by applying grade 0 filter to avoid optical data leakage (Singh et al.
409
+ 2021; Prabhakar et al. 2022). From the XSELECT images, we find
410
+ that the first two offset observations have count rate < 40 counts s−1
411
+ and hence the corresponding spectra wouldn’t have pileup issues.
412
+ We select a circular region of radius 10′ in the image to extract the
413
+ source spectrum and lightcurve files. In all the pointed observations
414
+ (see Table 1), we find the central region of the image to be very
415
+ bright which could cause a pile-up effect. Therefore, source files are
416
+ extracted from an annular region of the outer radius of 15′ and inner
417
+ radius of 2′ for these observations. The standard SXT background
418
+ spectrum and instrument response file provided by the instrument
419
+ team7 are used. ARF for the selected region is obtained from python-
420
+ based tool sxtarfmodule provided by the SXT team. Extracted SXT
421
+ and LAXPC spectra are grouped to have 30 counts per bin in the first
422
+ 5 http://www.tifr.res.in/~astrosat_laxpc/LaxpcSoft.html
423
+ 6 https://www.tifr.res.in/~astrosat_sxt/dataanalysis.html
424
+ 7 https://www.tifr.res.in/~astrosat_sxt/dataanalysis.html
425
+ two observations and 20 counts per bin in the rest of the observations
426
+ based on the source brightness. A systematics of 2% (Sreehari et al.
427
+ 2019; Athulya et al. 2022) is applied for both SXT and LAXPC spec-
428
+ tra.
429
+ 3 OUTBURST PROFILE AND HARDNESS RATIO
430
+ During the 2021 outburst of 4U 1543 − 47, the flux reached the
431
+ peak value within a few days of the commencement of the out-
432
+ burst. The outburst is monitored by multiple X-ray instruments. The
433
+ MAXI/GSC8 daily lightcurve of the source is generated for two dif-
434
+ ferent energy bands, 2 − 10 keV and 10 − 20 keV and are plotted in
435
+ Fig. 1. The MJD 59370 (05 June 2021) is defined as day 0 through-
436
+ out the study and according to this, the outburst continues over ∼175
437
+ days. The lightcurve reveals that the source is extremely luminous in
438
+ low energies with a very high count rate (Fig. 1a), while the contri-
439
+ bution to the luminosity in the high energy band (Fig. 1b) is an order
440
+ of magnitude lower. The highest value of flux in 2 − 10 keV band is
441
+ 32.67 photons/sec/cm2 (∼ 10 Crab) on day 9, whereas the same in
442
+ 10 − 20 keV is just 0.19 photons/sec/cm2 (∼ 0.5 Crab). The source
443
+ flux reached 11.65 Crab in 2 − 4 keV, which is the highest value ob-
444
+ served among the BH-XRBs. We define hardness ratio (HR) as the
445
+ ratio of flux in 4 − 10 keV to 2 − 4 keV since beyond 10 keV the
446
+ contribution is significantly low. The HR evolution (Fig. 1c) shows
447
+ that the source mostly remains in the soft state during the outburst.
448
+ The NICER, NuSTAR and AstroSat observations used in this study
449
+ are marked by cyan, blue and red dashed lines, respectively. There
450
+ is no simultaneous broadband observation in the rising phase of the
451
+ outburst.
452
+ 8 http://maxi.riken.jp/mxondem/
453
+ MNRAS 000, 1–14 (2022)
454
+
455
+ Disk-wind regulated accretion in 4U 1543−47
456
+ 5
457
+ 10
458
+ 5
459
+ 0.8
460
+ 1
461
+ 1.2
462
+ Ratio
463
+ Energy (keV)
464
+ Figure 2. The ratios (model to data) of the spectral fitting of NuSTAR obser-
465
+ vations (Table 1) using tbabs(diskbb+powerlaw) model. The colours black,
466
+ red, green, blue, cyan, pink, magenta, orange, yellow and grey represent the
467
+ NuSTAR epochs in ascending order (Table 1). A strong absorption feature ex-
468
+ ists between ∼ 8 − 11 keV for all the epochs. The absorption depth increases
469
+ up to Epoch 9 (pink in colour) and then decreases as the outburst progresses.
470
+ The figure is zoomed around the absorption feature for better clarity.
471
+ 4 SPECTRAL MODELLING AND RESULTS
472
+ We studied the spectral properties of the 2021 outburst of 4U 1543−
473
+ 47 from MJD 59382 (17 June 2021) to MJD 59471 (14 September
474
+ 2021). All the three instruments, NICER, NuSTAR and AstroSat have
475
+ good coverage over this period. Table 1 summarises the list of obser-
476
+ vations used in this work. In total, there are 16 epochs, comprising
477
+ ten NuSTAR and six AstroSat (SXT-LAXPC) observations. In addi-
478
+ tion, there are seven NICER observations which are simultaneous
479
+ with that of NuSTAR and we used these pairs for NICER-NuSTAR
480
+ wideband spectral analysis. We carried out phenomenological and
481
+ reflection modelling of each NuSTAR observations and extended that
482
+ to wideband NICER-NuSTAR and AstroSat observations.
483
+ 4.1 Phenomenological Spectral Modelling
484
+ We used HEASOFT v.6.29 and XSPEC V12.12.0 package for the
485
+ spectral modelling of NICER, NuSTAR and AstroSat data. We have
486
+ done spectral modelling of NICER-NuSTAR and AstroSat data to
487
+ see the nature of the broad-band spectrum. The NICER data below
488
+ 0.8 keV shows large residuals; therefore, we used 0.8 − 10 keV for
489
+ NICER spectra and 4 − 60 keV for NuSTAR spectra. Spectra from
490
+ both FPMA and FPMB telescopes of NuSTAR give similar results.
491
+ We present only FPMA spectra throughout the study. We used 0.5−7
492
+ keV for SXT and 3 − 30 keV for LAXPC as significant data is not
493
+ available beyond this range.
494
+ To accommodate the interstellar absorption, we used the tbabs
495
+ model which uses an equivalent hydrogen column density nH
496
+ through the solar abundance table provided by Wilms et al.
497
+ (2000). We initially modelled the NuSTAR observations with
498
+ tbabs(diskbb+powerlaw) model. Here, diskbb (Mitsuda et al. 1984)
499
+ represents the multicolor blackbody spectrum from the accretion
500
+ disc and powerlaw employs the inverse Comptonization of the soft
501
+ blackbody photons. We detected a broad absorption feature at ∼
502
+ 8−11 keV in all epochs. The ratio of data to model of all the NuSTAR
503
+ observations are shown in Fig. 2. The different NuSTAR epochs are
504
+ shown in black, red, green, blue, cyan, pink, magenta, orange, yel-
505
+ low and grey colours in ascending order. It shows that the depth of
506
+ absorption feature starts with a low value (black in colour) and then
507
+ keeps on increasing as the outburst progress, reaching the maximum
508
+ on Epoch 9 (pink in colour). Finally, the absorption depth decreases
509
+ towards the end (grey in colour) of our study. We found a similar
510
+ absorption feature in the AstroSat/LAXPC data as well.
511
+ We used a partial covering fraction absorption model pcfabs9 in
512
+ XSPEC to check if this strong absorption feature at ∼ 8−11 keV can
513
+ be due to an intervening absorber, but it did not improve the fitting
514
+ and the low energy residuals were high. We also tried several other
515
+ models, for example, the thermal Comptonization model nthcomp
516
+ (Zdziarski et al. 1996) or thcomp (Zdziarski et al. 2020) in-place of
517
+ powerlaw, and diskbb was replaced by kerrbb (Li et al. 2005). Var-
518
+ ious combinations of these models, fit to the data also showed the
519
+ presence of the absorption feature at ∼ 8 − 11 keV. Model combina-
520
+ tion with kerrbb as the seed photon source did not provide a good
521
+ fit; moreover, it failed to constrain the BH mass and spin. So, we
522
+ prefer to use diskbb model in combination with thcomp which is an
523
+ improved version of nthcomp. The thcomp is a convolution model
524
+ which allows a variable fraction (parameter cov_ f rac) of seed pho-
525
+ ton to Comptonize both up-scattering and down-scattering. Other
526
+ parameters are the photon index (Γ) and electron temperature (kTe)
527
+ of the corona.
528
+ The observed absorption feature has a symmetrical profile and in-
529
+ clusion of a Gaussian absorption model gabs10 fits the absorption
530
+ feature well. The parameters of gabs component are line energy
531
+ (line E, Eg), line width (σ) and line depth (strength). However, if
532
+ we use a smeared absorption edge model, smedge (Ebisawa et al.
533
+ 1994) in XSPEC to compensate for the absorption feature, it re-
534
+ sults in an abnormally high value of absorption width due to the
535
+ asymmetric nature of the model. In addition, the NuSTAR data show
536
+ a weak presence of a Fe Kα absorption edge. Therefore, we also
537
+ used an edge component to improve the fit residual for NuSTAR.
538
+ The model parameters for the edge component are the threshold
539
+ energy of the absorption edge (edge E, Ee) and the correspond-
540
+ ing absorption depth (D). Therefore, the final model for NICER-
541
+ NuSTAR data is tbabs(thcomp × diskbb)edge × gabs (model M1,
542
+ hereafter). In contrast, the absorption edge feature was not visible
543
+ in the AstroSat/LAXPC data, possibly due to the low spectral resolu-
544
+ tion of LAXPC. Therefore, the model M1 for AstroSat data becomes
545
+ tbabs(thcomp×diskbb)×gabs. However, the AstroSat data of Epoch
546
+ 3 & 6 show the presence of a weak Fe Kα emission line feature in
547
+ the residual, and we include a gauss model component for these two
548
+ epochs of AstroSat data.
549
+ All the seven NICER-NuSTAR simultaneous pairs and six AstroSat
550
+ observations are fitted with the model M1. The Fig. 3a and Fig. 3b
551
+ show the wideband spectra of NICER-NuSTAR (Epoch 2 & 9) and
552
+ AstroSat (Epoch 3 & 7) respectively modelled using M1. In each
553
+ case, the spectrum in the red colour is relatively softer than that of
554
+ the black colour; therefore, both figures illustrate moderate spectral
555
+ changes during the outburst decay.
556
+ The goodness of the fit is determined using χ2 statistics. The re-
557
+ duced χ2 (χ2
558
+ red) varies between 0.9 − 1.3. All the parameters es-
559
+ timated from the wideband phenomenological modelling are pre-
560
+ sented in Table 2. The parameter uncertainties are calculated within
561
+ the 90% confidence range. Note that the NuSTAR observations on
562
+ Epoch 8, 11 & 12 (Table 1) are not included here as no simultane-
563
+ ous NICER observations available. The nH is left free and it varies
564
+ between (0.45 − 0.54) × 1022 cm−2. We aim to find out the evolution
565
+ 9 https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelPcfabs.html
566
+ 10 https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node246.html
567
+ MNRAS 000, 1–14 (2022)
568
+
569
+ 6
570
+ Prabhakar et al.
571
+ 10−4
572
+ 10−3
573
+ 0.01
574
+ 0.1
575
+ 1
576
+ 10
577
+ Photons cm−2 s−1 keV−1
578
+ 1
579
+ 10
580
+ 2
581
+ 5
582
+ 20
583
+ 50
584
+ 1
585
+ 1.5
586
+ Ratio
587
+ Energy (keV)
588
+ (a)
589
+ Epoch 2
590
+ Epoch 9
591
+ 10−3
592
+ 0.01
593
+ 0.1
594
+ 1
595
+ 10
596
+ Photons cm−2 s−1 keV−1
597
+ 1
598
+ 10
599
+ 0.5
600
+ 2
601
+ 5
602
+ 20
603
+ 1
604
+ 1.5
605
+ Ratio
606
+ Energy (keV)
607
+ (b)
608
+ Epoch 3
609
+ Epoch 7
610
+ Figure 3. (a) Simultaneous NICER-NuSTAR pair on Epoch 2 (black in colour) and Epoch 9 (red in colour) fitted with the model tbabs(thcomp × diskbb)edge ×
611
+ gabs. Epoch 2 spectrum is harder compared to that of Epoch 9. (b) The AstroSat spectra on Epoch 3 (black) and 7 (red) respectively modelled using
612
+ tbabs(thcomp × diskbb) × gabs. We include an additional gauss component for AstroSat (Epoch 3) data. Both instruments show spectral changes during
613
+ the outburst.
614
+ Table 2. Wideband NICER-NuSTAR simultaneous pairs and AstroSat observations (highlighted with grey colour) using the model tbabs(thcomp×diskbb)edge×
615
+ gabs and tbabs(thcomp×diskbb)×gabs respectively. The error values represent 90% confidence interval. The NuSTAR data on Epoch 8, 11 & 12 are not included
616
+ here as no simultaneous NICER observations available. The bolometric (0.5 − 100 keV) observed flux and estimated luminosity for each epoch are also shown.
617
+ Epoch
618
+ nH
619
+ Model
620
+ χ2
621
+ red
622
+ Fbol
623
+ Lbol
624
+ diskbb
625
+ thcomp
626
+ edge or gauss∗
627
+ gabs
628
+ (×1022
629
+ Tin
630
+ norm
631
+ Γ
632
+ kTe
633
+ cov_frac
634
+ line E
635
+ D or σ
636
+ line E
637
+ σ
638
+ strength
639
+ (×10−8
640
+ cm−2)
641
+ (keV)
642
+ (×103)
643
+ (keV)
644
+ (×10−2)
645
+ (keV)
646
+ (keV)
647
+ (keV)
648
+ (keV)
649
+ (keV)
650
+ erg cm−2 s−1)
651
+ (LEdd)
652
+ 1
653
+ 0.470+0.002
654
+ −0.002 1.272+0.002
655
+ −0.002 7.96+0.05
656
+ −0.05 2.44+0.06
657
+ −0.05
658
+ 20f
659
+ 2.3+0.2
660
+ −0.2
661
+ 7.16+0.05
662
+ −0.05 0.04+0.01
663
+ −0.01
664
+ 10.0+0.1
665
+ −0.1
666
+ 1.60+0.09
667
+ −0.09 0.84+0.08
668
+ −0.08 0.90
669
+ 27.64+0.04
670
+ −0.04
671
+ 1.52+0.14
672
+ −0.14
673
+ 2
674
+ 0.458+0.002
675
+ −0.002 1.159+0.002
676
+ −0.002 6.07+0.04
677
+ −0.04
678
+ 2.0+0.1
679
+ −0.1
680
+ 11.6+3.9
681
+ −1.9
682
+ 0.9+0.2
683
+ −0.1
684
+ 7.19+0.07
685
+ −0.07 0.03+0.01
686
+ −0.01
687
+ 9.9+0.1
688
+ −0.1
689
+ 1.65+0.07
690
+ −0.08
691
+ 1.2+0.1
692
+ −0.1
693
+ 1.00
694
+ 17.22+0.02
695
+ −0.03
696
+ 0.95+0.09
697
+ −0.09
698
+ 3
699
+ 0.52+0.02
700
+ −0.02
701
+ 0.99+0.01
702
+ −0.01
703
+ 15.4+1.5
704
+ −1.4
705
+ 1.84+0.14
706
+ −0.12
707
+ 20f
708
+ 0.39+0.07
709
+ −0.06 6.77+0.15
710
+ −0.15
711
+ 0.6f
712
+ 7.35+0.34
713
+ −0.39
714
+ 2f
715
+ 1.73+0.47
716
+ −0.47 1.17
717
+ 19.5+0.1
718
+ −0.1
719
+ 1.07+0.001
720
+ −0.001
721
+ 4
722
+ 0.461+0.002
723
+ −0.002 1.094+0.002
724
+ −0.002 5.82+0.05
725
+ −0.05
726
+ 2.2+0.1
727
+ −0.1
728
+ 20f
729
+ 0.3+0.1
730
+ −0.1
731
+ 7.27+0.07
732
+ −0.07 0.05+0.01
733
+ −0.01
734
+ 10.4+0.1
735
+ −0.1
736
+ 1.94+0.08
737
+ −0.07
738
+ 2.2+0.2
739
+ −0.1
740
+ 0.95
741
+ 12.38+0.02
742
+ −0.03
743
+ 0.68+0.06
744
+ −0.06
745
+ 5
746
+ 0.458+0.002
747
+ −0.002 1.050+0.002
748
+ −0.002 5.77+0.04
749
+ −0.04
750
+ 2.3+0.2
751
+ −0.2
752
+ 20f
753
+ 0.2+0.1
754
+ −0.1
755
+ 7.28+0.05
756
+ −0.05 0.06+0.01
757
+ −0.01
758
+ 10.7+0.1
759
+ −0.1
760
+ 1.97+0.08
761
+ −0.07
762
+ 2.7+0.2
763
+ −0.2
764
+ 1.02
765
+ 10.10+0.01
766
+ −0.02
767
+ 0.56+0.05
768
+ −0.05
769
+ 6
770
+ 0.50+0.02
771
+ −0.02
772
+ 0.97+0.02
773
+ −0.02
774
+ 12.1+1.5
775
+ −1.4
776
+ 2.3f
777
+ 20f
778
+ 0.3+0.02
779
+ −0.02
780
+ 6.77+0.18
781
+ −0.18
782
+ 0.6f
783
+ 9.05+0.51
784
+ −0.55
785
+ 2.5f
786
+ 2.27+0.66
787
+ −0.68 1.27
788
+ 13.9+0.06
789
+ −0.05
790
+ 0.76+0.001
791
+ −0.001
792
+ 7
793
+ 0.54+0.01
794
+ −0.01
795
+ 0.98+0.01
796
+ −0.01
797
+ 7.64+0.33
798
+ −0.33 2.26+0.06
799
+ −0.05
800
+ 20f
801
+ 0.2f
802
+ -
803
+ -
804
+ 10.7+0.2
805
+ −0.2
806
+ 1.46+0.24
807
+ −0.18 1.56+0.25
808
+ −0.33 1.29
809
+ 9.36+0.21
810
+ −0.20
811
+ 0.51+0.004
812
+ −0.004
813
+ 9
814
+ 0.451+0.003
815
+ −0.003 0.966+0.002
816
+ −0.002 5.60+0.05
817
+ −0.05
818
+ 2.6+0.5
819
+ −0.4
820
+ 20f
821
+ 0.1+0.2
822
+ −0.1
823
+ 7.44+0.08
824
+ −0.08 0.08+0.02
825
+ −0.02
826
+ 10.5+0.2
827
+ −0.1
828
+ 2.02+0.09
829
+ −0.09
830
+ 3.3+0.3
831
+ −0.2
832
+ 1.05
833
+ 6.88+0.02
834
+ −0.02
835
+ 0.38+0.04
836
+ −0.04
837
+ 10
838
+ 0.53+0.01
839
+ −0.01
840
+ 0.96+0.01
841
+ −0.01
842
+ 5.63+0.35
843
+ −0.31 1.92+0.30
844
+ −0.25
845
+ 20f
846
+ 0.11+0.05
847
+ −0.03
848
+ -
849
+ -
850
+ 10.1+0.2
851
+ −0.2
852
+ 1.56+0.20
853
+ −0.18 2.13+0.39
854
+ −0.32 1.28
855
+ 7.59+0.04
856
+ −0.03
857
+ 0.40+0.001
858
+ −0.001
859
+ 13
860
+ 0.52+0.01
861
+ −0.01
862
+ 0.91+0.01
863
+ −0.01
864
+ 7.48+0.24
865
+ −0.23 1.77+0.03
866
+ −0.03
867
+ 20f
868
+ 0.12+0.05
869
+ −0.05
870
+ -
871
+ -
872
+ 9.42+0.27
873
+ −0.27 0.75+0.30
874
+ −0.28 0.47+0.13
875
+ −0.11 1.10
876
+ 6.59+0.06
877
+ −0.07
878
+ 0.36+0.002
879
+ −0.003
880
+ 14
881
+ 0.48+0.01
882
+ −0.01
883
+ 0.91+0.01
884
+ −0.01
885
+ 7.92+0.58
886
+ −0.53 1.94+0.02
887
+ −0.02
888
+ 20f
889
+ 0.4f
890
+ -
891
+ -
892
+ 10.7+0.24
893
+ −0.21 1.34+0.18
894
+ −0.17 1.47+0.18
895
+ −0.18 1.31
896
+ 6.22+1.89
897
+ −6.56
898
+ 0.34+0.08
899
+ −0.29
900
+ 15
901
+ 0.465+0.004
902
+ −0.010 0.904+0.030
903
+ −0.004 6.10+0.09
904
+ −0.69 2.09+0.04
905
+ −0.04
906
+ 20f
907
+ 1.6+0.1
908
+ −0.1
909
+ 7.31+0.08
910
+ −0.14 0.10+0.05
911
+ −0.03
912
+ 9.6+0.3
913
+ −0.3
914
+ 2.1+1.2
915
+ −0.4
916
+ 1.1+1.1
917
+ −0.3
918
+ 1.27
919
+ 5.66+0.02
920
+ −0.02
921
+ 0.31+0.03
922
+ −0.03
923
+ 16
924
+ 0.471+0.002
925
+ −0.002 0.897+0.002
926
+ −0.001 6.22+0.05
927
+ −0.05 2.04+0.04
928
+ −0.06
929
+ 20f
930
+ 1.6+0.1
931
+ −0.1
932
+ 7.35+0.06
933
+ −0.03 0.12+0.02
934
+ −0.03
935
+ 9.4+0.4
936
+ −0.3
937
+ 1.5+0.4
938
+ −0.3
939
+ 0.5+0.1
940
+ −0.1
941
+ 1.00
942
+ 5.39+0.01
943
+ −0.01
944
+ 0.30+0.03
945
+ −0.03
946
+ ∗ edge is used for NICER-NuSTAR pairs whereas gauss component is used only for Epoch 3 & 6 of AstroSat data.
947
+ f Frozen parameters
948
+ MNRAS 000, 1–14 (2022)
949
+
950
+ Disk-wind regulated accretion in 4U 1543−47
951
+ 7
952
+ 20
953
+ 40
954
+ 60
955
+ 80
956
+ 100
957
+ 1.0
958
+ 1.2
959
+ Tin (keV)
960
+ (a)
961
+ 20
962
+ 40
963
+ 60
964
+ 80
965
+ 100
966
+ 2.0
967
+ 2.5
968
+ 3.0
969
+ Γ
970
+ (b)
971
+ 20
972
+ 40
973
+ 60
974
+ 80
975
+ 100
976
+ Time (days since MJD 59370)
977
+ 0.25
978
+ 0.50
979
+ τ0
980
+ (c)
981
+ Figure 4. Evolution of (a) Tin and (b) Γ from simultaneous NICER-NuSTAR
982
+ pairs (green in colour) and AstroSat observations (red in colour) fitted using
983
+ the model M1. We calculate the (c) optical depth (τ0) of the absorber from
984
+ gabs components for each epoch. The Γ of Epoch 13 marked with a blue
985
+ circle carries a special signature that is discussed in §5.
986
+ of various parameters with the progress of the outburst. Fig. 4 gives
987
+ the variation of the inner disk temperature Tin, photon index Γ and
988
+ optical depth (τ0) with time. Here, points in green and red colour
989
+ represent the parameter value estimated from NICER-NuSTAR and
990
+ AstroSat spectral modelling respectively.
991
+ We find that the inner disk temperature (Fig. 4a and Table 2)
992
+ monotonically decreases throughout the outburst decay. The evolu-
993
+ tion of the diskbb norm (Table 2) estimated using NICER-NuSTAR
994
+ decreases till Epoch 9 and a reverse trend is observed for later
995
+ epochs. The diskbb norm from the AstroSat data also shows a sim-
996
+ ilar pattern though AstroSat values are higher than that of NICER-
997
+ NuSTAR. The variation of photon index Γ is presented in Fig. 4b. The
998
+ value of Γ estimated from AstroSat data (red square) differs from that
999
+ of NICER-NuSTAR pairs (green square). This can be due to the non-
1000
+ availability of the high energy contribution (beyond 30 keV) in the
1001
+ LAXPC data. From NICER-NuSTAR fitting, Γ varies between 2−2.6,
1002
+ and it shows spectral softening till Epoch 9. We wanted to estimate
1003
+ the electron temperature (kTe) of the corona using the thcomp model.
1004
+ But the broadband spectral fitting could not constrain the value of
1005
+ kTe, except for Epoch 2, for which we obtained kTe = 11.6+3.9
1006
+ −1.9 keV
1007
+ (Table 2). For all the remaining epochs, we freeze kTe at 20 keV.
1008
+ Only a tiny fraction, cov_frac < 3 % (Table 2), of the soft photons
1009
+ Comptonized in the corona. It gradually decreases till Epoch 10 and
1010
+ increases afterwards. This behaviour is consistent with the spectral
1011
+ softening trend shown in Fig. 4b.
1012
+ The broad absorption feature at ∼ 8−11 keV in the spectrum is
1013
+ well represented by the gabs model. The strength shows an increas-
1014
+ ing trend and reaches the maximum in Epoch 9 and declines beyond
1015
+ that. We calculate the optical depth (τ0) associated with the gabs
1016
+ component using gabs strength and σ as τ0 = strength/σ
1017
+
1018
+ 2π. The
1019
+ evolution of τ0 is shown in Fig. 4c, which shows that the absorption
1020
+ optical depth increases and reaches a maximum on Epoch 9 and then
1021
+ decreases. The dynamic behaviour of the absorption strength seems
1022
+ 10−4
1023
+ 10−3
1024
+ 10−2
1025
+ 10−1
1026
+ 100
1027
+ 101
1028
+ Photons cm−2 s−1 keV−1
1029
+ 1.00
1030
+ 1.25
1031
+ (a)
1032
+ χ2
1033
+ red =2.46
1034
+ tbabs(diskbb+relxill)
1035
+ 0.75
1036
+ 1.00
1037
+ 1.25
1038
+ (b)
1039
+ χ2
1040
+ red =1.60
1041
+ tbabs(diskbb+relxill)gabs
1042
+ 0.8
1043
+ 1.0
1044
+ 1.2
1045
+ (c)
1046
+ χ2
1047
+ red =1.63
1048
+ tbabs(diskbb+relxillCp)gabs
1049
+ 0.75
1050
+ 1.00
1051
+ 1.25
1052
+ (d)
1053
+ χ2
1054
+ red =1.79
1055
+ tbabs(diskbb+relxilllpCp)gabs
1056
+ 100
1057
+ 101
1058
+ Energy (keV)
1059
+ 1.0
1060
+ 1.2
1061
+ (e)
1062
+ χ2
1063
+ red =0.91
1064
+ tbabs(diskbb+relxilllp)gabs
1065
+ Ratio
1066
+ Figure 5. Unfolded spectrum (top panel) of simultaneous NICER-NuSTAR
1067
+ pair on Epoch 2 and ratio of the model to the data using various re-
1068
+ flection models (a) tbabs(diskbb+relxill), (b) tbabs(diskbb+relxill)gabs,
1069
+ (c) tbabs(diskbb+relxillCp)gabs, (d) tbabs(diskbb+relxilllpCp)gabs and (e)
1070
+ tbabs(diskbb+relxilllp)gabs. The model and the value of χ2
1071
+ red are mentioned
1072
+ at the top left and bottom left corners, respectively, in each case.
1073
+ interesting. We attempt to characterize the strong and dynamic ab-
1074
+ sorption features in §4.3. The evolution of the edge component is
1075
+ listed in Table 2. We discuss a possible connection between edge
1076
+ and gabs components in §5.
1077
+ We estimate the observed bolometric flux (Fbol) in 0.5 − 100
1078
+ keV with uncertainty in 90% confidence interval from the wide-
1079
+ band simultaneous spectral data, which is also shown in Table 2.
1080
+ Corresponding bolometric luminosity (Lbol) of the source is also
1081
+ calculated by assuming the distance to the source as 7.5 ± 0.5 kpc
1082
+ (Jonker & Nelemans 2004). The Eddington luminosity of the source
1083
+ is LEdd = 1.22±1×1039 ergs s−1 with an assumed BH mass of 9.4±1
1084
+ M⊙ (Russell et al. 2006). It can be seen from Table 2 that the lumi-
1085
+ nosity of the source exceeds the LEdd at the peak (Epoch 1 is close
1086
+ to the peak) of the outburst, and the luminosity decreases gradually
1087
+ with the decay of the outburst.
1088
+ MNRAS 000, 1–14 (2022)
1089
+
1090
+ 8
1091
+ Prabhakar et al.
1092
+ 4.2 Spectral Modelling for Reflection Studies
1093
+ To understand the reflection features in the spectra of 4U 1543 − 47,
1094
+ we use the relativistic reflection model RELXILL11v1.4.3. Dif-
1095
+ ferent flavours of the RELXILL model are tried. The unfolded
1096
+ NICER-NuSTAR spectra and data-to-model ratios using various re-
1097
+ flection models are shown in Fig. 5 for Epoch 2. We started with
1098
+ the model tbabs(diskbb+relxill) which gives a χ2
1099
+ red of 2.46. The
1100
+ data-to-model ratio (Fig. 5a) shows that the absorption feature at
1101
+ ∼ 8 − 11 keV in the spectrum cannot be fitted by the reflection
1102
+ model. We added the absorption model gabs with this, and the model
1103
+ tbabs(diskbb+relxill)gabs (Fig. 5b) improves the residual but still
1104
+ the χ2
1105
+ red for this combination is 1.6. Then, we replaced the model
1106
+ relxill with relxillCp (Fig. 5c) where a thermal Comptonizing con-
1107
+ tinuum is assumed for the illuminating flux. This combination has
1108
+ χ2
1109
+ red = 1.63, which is also unacceptable. Then, we used relxilllpCp
1110
+ (Fig. 5d) as the reflection model, where a lamp-post (lp) geome-
1111
+ try is assumed for the corona. In all the ‘lp’ flavours of the RELX-
1112
+ ILL model, the inner disk is illuminated by a point-like corona sit-
1113
+ uated at a height ‘h’ from the disk surface on the axis of rotation.
1114
+ The modelling with relxilllpCp also resulted in a large residual, with
1115
+ χ2
1116
+ red = 1.79. We replaced relxilllpCp with relxilllp (Fig. 5e) where
1117
+ the illuminating flux is modelled as a powerlaw with a high-energy
1118
+ cutoff just like the relxill. For this trial, we got a reasonable fit with
1119
+ χ2
1120
+ red = 0.91, and we decided to proceed with the model combina-
1121
+ tion, tbabs(diskbb+relxilllp)gabs (model M2, hereafter) as the final
1122
+ model to study the reflection features in the spectra. Note that, no ad-
1123
+ ditional edge or gauss component is required in the reflection mod-
1124
+ elling.
1125
+ Using the model M2, we did the spectral fitting of the simultane-
1126
+ ous NICER-NuSTAR pairs and AstroSat observations. Here, nH is a
1127
+ free parameter. Inner and outer disk radii are frozen at the innermost
1128
+ stable circular orbit RISCO and 400 rg (where rg ≡ GM/c2, the gravi-
1129
+ tational radius of the BH), respectively. The powerlaw cutoff energy,
1130
+ Ecut, is fixed at 60 keV since it is hitting the upper limit. All other
1131
+ parameters of relxilllp are kept free; the lamp-post height h (in units
1132
+ of rg), inclination angle of the system θ (in degree), Γ of the incident
1133
+ radiation, ionization parameter log ξ (erg cm s−1), iron abundance
1134
+ (AFe) of the accretion disk in terms of the solar abundance AFe,⊙, and
1135
+ the reflection fraction Rf. Here, Rf is defined as the ratio of the pri-
1136
+ mary photon flux illuminating the disk to that reach the observer at
1137
+ infinity (Dauser et al. 2016). We wish to estimate the spin parameter,
1138
+ a∗, of the system, but it is found to hit the upper limit for almost all
1139
+ the epochs. Based on previous studies (Morningstar & Miller 2014;
1140
+ Dong et al. 2020), we freeze a∗ = 0.4 for this study.
1141
+ The estimated reflection model (M2) parameters are listed in Ta-
1142
+ ble 3. The errors represent 90% confidence interval. The evolution
1143
+ of Tin follows the same trend as that observed in the phenomeno-
1144
+ logical spectral modelling (Table 2). The value of Γ varies between
1145
+ 2 − 3.3 and appears slightly steeper than that of phenomenologi-
1146
+ cal modelling (Table 2). It may be due to the additional low energy
1147
+ contribution from the reflection component over the diskbb compo-
1148
+ nent. However, reflection modelling also shows spectral softening
1149
+ till Epoch 9. The NICER-NuSTAR results suggest that 4U 1543 − 47
1150
+ is a low inclination system with θ varies between ∼ 32◦ − 40◦. We
1151
+ could not constrain the inclination angle from AstroSat data and
1152
+ freeze it to 40◦.
1153
+ The evolution of few important model parameters (h, log ξ
1154
+ and Rf ) are shown in Fig. 6 for better presentation. Simultane-
1155
+ ous NICER-NuSTAR pairs and AstroSat observations are marked in
1156
+ 11 http://www.sternwarte.uni-erlangen.de/~dauser/research/relxill/index.html
1157
+ 20
1158
+ 40
1159
+ 60
1160
+ 80
1161
+ 100
1162
+ 0
1163
+ 50
1164
+ 100
1165
+ h
1166
+ (a)
1167
+ 20
1168
+ 40
1169
+ 60
1170
+ 80
1171
+ 100
1172
+ 2
1173
+ 4
1174
+ log ξ
1175
+ (b)
1176
+ 20
1177
+ 40
1178
+ 60
1179
+ 80
1180
+ 100
1181
+ Time (days since MJD 59370)
1182
+ 1
1183
+ 5
1184
+ 10
1185
+ Rf
1186
+ (c)
1187
+ Figure 6. Evolution of (a) h, (b) log ξ and (c) Rf from reflection modelling
1188
+ of simultaneous NICER-NuSTAR pairs (green in colour) and AstroSat obser-
1189
+ vations (red in colour) using the model tbabs(diskbb + relxilllp)gabs. See
1190
+ text for details.
1191
+ green and red colour, respectively. We could not estimate the un-
1192
+ certainty of h in most of the epochs. The evolution of h (Fig. 6a)
1193
+ indicates that the primary source is moving away from the BH till
1194
+ Epoch 6 and then gradually coming closer to the central object. The
1195
+ ionization structure of the disk is established through the parameter
1196
+ log ξ. Its value gradually increases (Fig. 6b) and reaches the maxi-
1197
+ mum around Epoch 10 and then gradually decreases. The high value
1198
+ of log ξ (>3) suggests a highly ionized disc material throughout the
1199
+ outburst. We could estimate iron abundance AFe for Epoch 1, 2, 4
1200
+ and 5, and it hits the upper limit during the rest of the epochs. Our
1201
+ study reveals an overabundance (3.6−10 AFe,⊙) of iron in the disk.
1202
+ The reflection fraction Rf is estimated well at the first three and
1203
+ last two epochs only. Fig. 6c suggests that the fraction of primary
1204
+ photons reaching the disk increases till Epoch 9, and it decreases af-
1205
+ terwards. The gabs strength shows a similar behaviour found in the
1206
+ phenomenological modelling. We have discussed more on this result
1207
+ in §4.3.
1208
+ Very recently, the RELXILL model (version v2.2) has undergone
1209
+ some modifications by considering the effect of returning radiation
1210
+ in the calculation of reflected flux. Particularly in relxilllpCp, where
1211
+ the effects of returning radiation, the density profile and ionization
1212
+ gradient of the disk and the velocity of the primary source are also
1213
+ included. However, the velocity of the primary source and the effects
1214
+ of returning radiation are the new parameters added to the relxilllp
1215
+ model. We applied this modified relxilllp model to the broadband
1216
+ NICER-NuSTAR data but could not constrain the source velocity.
1217
+ Also, we tried to estimate the parameters using the v2.2 flavour of
1218
+ relxilllpCp. We fitted all the wideband NICER-NuSTAR observations
1219
+ using the model tbabs(diskbb+relxilllpCp)gabs. But, we could not
1220
+ constrain most of the parameters since the number of free parameters
1221
+ is very large. Therefore, we need to essentially freeze all the new
1222
+ parameters introduced in the updated version, and RELXILL v2.2
1223
+ does not bring any improvement in the result.
1224
+ MNRAS 000, 1–14 (2022)
1225
+
1226
+ Disk-wind regulated accretion in 4U 1543−47
1227
+ 9
1228
+ Table 3. Reflection modelling of NICER-NuSTAR simultaneous pairs and AstroSat observations (highlighted with grey colour) using the model
1229
+ tbabs(diskbb+relxilllp)gabs. The error values represent 90% confidence interval. The NuSTAR data on Epoch 8, 11 & 12 are not included here as no si-
1230
+ multaneous NICER observations available.
1231
+ Epoch
1232
+ nH
1233
+ Model
1234
+ χ2
1235
+ red
1236
+ diskbb
1237
+ relxilllp
1238
+ gabs
1239
+ (×1022
1240
+ Tin
1241
+ norm
1242
+ h
1243
+ θ
1244
+ Γ
1245
+ log ξ
1246
+ AFe
1247
+ Rf
1248
+ norm
1249
+ line E
1250
+ σ
1251
+ strength
1252
+ cm−2)
1253
+ (keV)
1254
+ (×103)
1255
+ (GM/c2)
1256
+ (deg)
1257
+ (erg cm s−1)
1258
+ (AFe,⊙)
1259
+ (×10−3)
1260
+ (keV)
1261
+ (keV)
1262
+ (keV)
1263
+ 1
1264
+ 0.49+0.01
1265
+ −0.01
1266
+ 1.276+0.001
1267
+ −0.001 6.31+0.03
1268
+ −0.03
1269
+ 25.50a
1270
+ 32.7+3.4
1271
+ −2.9
1272
+ 2.81+0.03
1273
+ −0.03
1274
+ 3.58+0.09
1275
+ −0.07
1276
+ 8.5+1.2
1277
+ −1.3
1278
+ 1.4+0.1
1279
+ −0.2
1280
+ 282.7+84.3
1281
+ −46.1
1282
+ 9.9+0.1
1283
+ −0.1
1284
+ 2.05+0.1
1285
+ −0.03
1286
+ 1.1+0.1
1287
+ −0.1
1288
+ 0.80
1289
+ 2
1290
+ 0.70+0.04
1291
+ −0.05
1292
+ 1.151+0.006
1293
+ −0.005
1294
+ 6.3+0.2
1295
+ −0.2
1296
+ 9.4a
1297
+ 36.3+1.6
1298
+ −1.8
1299
+ 2.94+0.04
1300
+ −0.08
1301
+ 3.65+0.05
1302
+ −0.08
1303
+ 7.7+1.2
1304
+ −1.1
1305
+ 3.5+0.9
1306
+ −0.7
1307
+ 200.4+47.8
1308
+ −53.9
1309
+ 9.8+0.1
1310
+ −0.1
1311
+ 1.94+0.09
1312
+ −0.09
1313
+ 1.3+0.2
1314
+ −0.2
1315
+ 0.91
1316
+ 3
1317
+ 0.46+0.02
1318
+ −0.01
1319
+ 1.01+0.006
1320
+ −0.006
1321
+ 11.7+0.76
1322
+ −0.44
1323
+ 30f
1324
+ 40f
1325
+ 3.0f
1326
+ 4.7b
1327
+ 9.37b
1328
+ −0.40 5.59+1.85
1329
+ −3.48 0.32+0.08
1330
+ −0.08
1331
+ 9.37+0.27
1332
+ −0.13 0.75+0.37
1333
+ −0.64 0.48+0.03
1334
+ −0.19 1.37
1335
+ 4
1336
+ 0.683+0.004
1337
+ −0.03
1338
+ 1.081+0.001
1339
+ −0.001 6.14+0.008
1340
+ −0.04
1341
+ 30.5+24.3
1342
+ −2.0
1343
+ 35.7+2.2
1344
+ −2.7
1345
+ 3.23+0.01
1346
+ −0.06
1347
+ 4.23+0.05
1348
+ −0.04
1349
+ 5.8+0.8
1350
+ −0.7
1351
+ 10.0a
1352
+ 41.1+20.3
1353
+ −2.0
1354
+ 10.04+0.04
1355
+ −0.07 1.92+0.04
1356
+ −0.06 1.99+0.2
1357
+ −0.08 0.83
1358
+ 5
1359
+ 0.67+0.01
1360
+ −0.03
1361
+ 1.044+0.001
1362
+ −0.001 5.83+0.01
1363
+ −0.04 84.0+56.6
1364
+ −18.3 39.6+2.6
1365
+ −3.1 3.385+0.006
1366
+ −0.05
1367
+ 4.7b
1368
+ 7.1+0.6
1369
+ −0.7
1370
+ 10.0a
1371
+ 33.6+3.7
1372
+ −2.5
1373
+ 10.33+0.03
1374
+ −0.03 2.06+0.03
1375
+ −0.05 2.76+0.02
1376
+ −0.06 0.83
1377
+ 6
1378
+ 0.49+0.01
1379
+ −0.02
1380
+ 0.99+0.07
1381
+ −0.01
1382
+ 9.23+1.46
1383
+ −0.19
1384
+ 100f
1385
+ 40f
1386
+ 3f
1387
+ 4.30+0.21
1388
+ −0.21
1389
+ 10b
1390
+ 7.18a
1391
+ 7.11+1.95
1392
+ −4.1
1393
+ 10.0+0.13
1394
+ −0.14 1.30+0.13
1395
+ −0.13 1.39+0.28
1396
+ −0.11 1.30
1397
+ 7
1398
+ 0.53+0.03
1399
+ −0.01
1400
+ 0.99+0.003
1401
+ −0.003
1402
+ 6.94+0.16
1403
+ −0.27
1404
+ 8.26a
1405
+ 40f
1406
+ 2.46+0.36
1407
+ −0.25
1408
+ 3.70+0.75
1409
+ −0.68
1410
+ 10b
1411
+ 9.99a
1412
+ 5.75+0.55
1413
+ −0.69
1414
+ 10.5+0.16
1415
+ −0.14 1.45+0.20
1416
+ −0.17 1.65+0.30
1417
+ −0.25 1.44
1418
+ 9
1419
+ 0.496+0.01
1420
+ −0.007 0.958+0.001
1421
+ −0.001 5.85+0.04
1422
+ −0.04
1423
+ 40.29a
1424
+ 40f
1425
+ 3.17+0.1
1426
+ −0.06
1427
+ 4.7b
1428
+ 10b
1429
+ 10f
1430
+ 4.0+2.3
1431
+ −1.0
1432
+ 10.11+0.08
1433
+ −0.08 1.86+0.06
1434
+ −0.06
1435
+ 3.1+0.2
1436
+ −0.2
1437
+ 1.10
1438
+ 10
1439
+ 0.44+0.03
1440
+ −0.01
1441
+ 0.98+0.004
1442
+ −0.004
1443
+ 4.95+0.10
1444
+ −0.90
1445
+ 70f
1446
+ 40f
1447
+ 2.87+0.33
1448
+ −0.24
1449
+ 4.7b
1450
+ 10b
1451
+ 8.10a
1452
+ 1.33+0.28
1453
+ −0.12
1454
+ 10.2+0.13
1455
+ −0.12 1.78+0.16
1456
+ −0.19 2.76+0.36
1457
+ −0.38 1.19
1458
+ 13
1459
+ 0.47+0.01
1460
+ −0.01
1461
+ 0.94+0.002
1462
+ −0.003
1463
+ 5.90+0.08
1464
+ −0.09
1465
+ 44.3a
1466
+ 40f
1467
+ 2.25f
1468
+ 3.64+0.09
1469
+ −0.18
1470
+ 3.56+0.56
1471
+ −0.46
1472
+ 8.10a
1473
+ 1.11+0.07
1474
+ −0.16
1475
+ 9.22+0.21
1476
+ −0.18 0.84+0.20
1477
+ −0.21 0.74+0.10
1478
+ −0.13 1.11
1479
+ 14
1480
+ 0.48+0.01
1481
+ −0.01
1482
+ 0.91+0.002
1483
+ −0.002
1484
+ 7.95+0.21
1485
+ −0.12
1486
+ 6.69a
1487
+ 40f
1488
+ 2.61+0.08
1489
+ −0.19
1490
+ 3.96+0.07
1491
+ −0.26
1492
+ 10b
1493
+ 10.6a
1494
+ 0.14+0.01
1495
+ −0.01
1496
+ 10.1+0.13
1497
+ −0.13 1.03+0.12
1498
+ −0.13 1.25+0.14
1499
+ −0.14 1.24
1500
+ 15
1501
+ 0.475+0.004
1502
+ −0.003 0.906+0.001
1503
+ −0.001 5.91+0.04
1504
+ −0.04
1505
+ 33.74a
1506
+ 38.0+8.5
1507
+ −4.4
1508
+ 2.07+0.06
1509
+ −0.06
1510
+ 2.7+0.1
1511
+ −0.3
1512
+ 10.0b
1513
+ 0.9+0.2
1514
+ −0.2
1515
+ 4.9+1.5
1516
+ −0.7
1517
+ 9.1+0.1
1518
+ −0.1
1519
+ 1.5+0.1
1520
+ −0.2
1521
+ 1.0+0.1
1522
+ −0.1
1523
+ 1.12
1524
+ 16
1525
+ 0.482+0.004
1526
+ −0.004 0.904+0.001
1527
+ −0.001 5.63+0.05
1528
+ −0.05
1529
+ 50.01a
1530
+ 36.7+9.4
1531
+ −5.5
1532
+ 2.05+0.05
1533
+ −0.05
1534
+ 3.7+0.1
1535
+ −0.2
1536
+ 10.0b
1537
+ 0.9+0.2
1538
+ −0.1
1539
+ 4.2+0.8
1540
+ −0.6
1541
+ 8.7+0.1
1542
+ −0.1
1543
+ 1.49+0.08
1544
+ −0.08
1545
+ 1.2+0.2
1546
+ −0.2
1547
+ 0.87
1548
+ a Parameter uncertainty can’t be estimated.
1549
+ b Parameter hits the boundary.
1550
+ f Frozen parameters.
1551
+ 4.3 Absorption Features in the Spectra of 4U 1543−47
1552
+ The wideband spectral analysis of 4U 1543 − 47 reveals the pres-
1553
+ ence of a very strong absorption feature (Fig. 2, Table 2, Table 3)
1554
+ whose strength changes throughout the outburst. We use gabs model
1555
+ to characterize the absorption feature in phenomenological and re-
1556
+ flection modelling. The gabs strength estimated from both methods
1557
+ follow the same trend; getting more stronger as the outburst pro-
1558
+ gresses and reaches the maximum value on Epoch 9, then declines
1559
+ gradually.
1560
+ In general, the absorption features in the spectrum can be due to
1561
+ multiple reasons like the presence of obscuring cloud in the line-
1562
+ of-sight, occultation due to the companion star, strong accretion
1563
+ disk-wind and/or the stellar wind from the companion (Miller et al.
1564
+ 2008; Szostek & Zdziarski 2008; Koljonen & Tomsick 2020). We
1565
+ have discarded the chances of absorption due to obscuring cloud in
1566
+ the line-of-sight by fitting the data with the partial covering fraction
1567
+ model pcfabs and found no improvement in the fitting. If the ab-
1568
+ sorption feature is produced by the occultation or stellar wind of the
1569
+ binary companion, the features must show some orbital variations.
1570
+ Precise diagnostic of the orbital variations provide significant insight
1571
+ into the understanding of the nature and origin of the absorption fea-
1572
+ tures. Since 4U 1543−47 is a low inclination system (θ ∼ 32◦ −40◦),
1573
+ the expected orbital variation of the absorption feature, if any, will be
1574
+ weak. Therefore, we avoid using multi-instrument data to check the
1575
+ orbital variation of the absorption feature, as the differences in the
1576
+ estimated parameters between instruments may screw up the varia-
1577
+ tion. We use only the NuSTAR observations for this purpose.
1578
+ We extracted the spectrum from different patches of GTIs of each
1579
+ NuSTAR observation epoch. Since the GTI-patches have low expo-
1580
+ sure time, we grouped the spectrum with only 30 counts per bin.
1581
+ Patches with an exposure time less than 500 seconds are merged to-
1582
+ gether before extracting the spectrum. We did a simultaneous joint
1583
+ fitting of all the GTI-patches under each epoch using the model M1.
1584
+ In the joint fitting, all parameters are tied between the patches ex-
1585
+ cept gabs strength. The line-of-sight column density, nH, is frozen
1586
+ at 0.45 × 1022 cm−2 found from broadband NICER-NuSTAR spec-
1587
+ tral modelling. In Fig. 7, we plot the simultaneous joint fitting of the
1588
+ spectra for Epoch 9, which has 7 patches of GTIs. The black, red,
1589
+ green, blue, cyan, magenta and yellow colours represent them in the
1590
+ ascending order of time.
1591
+ We also fitted all the 10 epochs (Table 1) of NuSTAR observations
1592
+ using the models M1 and M2 discussed before. We calculated the
1593
+ gabs strength (Si) for each NuSTAR epoch using both models. The
1594
+ evolution of Si is shown in Fig. 8a. The colours black, red, green,
1595
+ blue, cyan, pink, magenta, orange, yellow and grey indicate the NuS-
1596
+ TAR epochs in chronological order. The gabs strength of NuSTAR
1597
+ data is showing the same trend of wideband spectral data; reach-
1598
+ ing maximum on Epoch 9 (pink in colour). The absorption strength
1599
+ MNRAS 000, 1–14 (2022)
1600
+
1601
+ 10
1602
+ Prabhakar et al.
1603
+ 10−5
1604
+ 10−4
1605
+ 10−3
1606
+ 0.01
1607
+ 0.1
1608
+ 1
1609
+ Photons cm−2 s−1 keV−1
1610
+ 10
1611
+ 5
1612
+ 20
1613
+ 1
1614
+ 1.2
1615
+ Ratio
1616
+ Energy (keV)
1617
+ Figure 7. Folded spectra of different patches in NuSTAR observation of
1618
+ Epoch 9 using the model tbabs(thcomp × diskbb)edge × gabs. The param-
1619
+ eters, except the gabs strength, are tied between the patches. See text for
1620
+ details.
1621
+ 0
1622
+ 20
1623
+ 40
1624
+ 60
1625
+ 80
1626
+ 100
1627
+ Time (days since MJD 59370)
1628
+ 1
1629
+ 2
1630
+ (a)
1631
+ 0
1632
+ 100
1633
+ 200
1634
+ 300
1635
+ Phase (degree)
1636
+ −0.5
1637
+ 0.0
1638
+ 0.5
1639
+ 1.0
1640
+ Residual Strength (keV)
1641
+ (b)
1642
+ Strength (keV)
1643
+ Figure 8. (a) Evolution of gabs strength (Si) estimated from NuSTAR us-
1644
+ ing the models tbabs(thcomp × diskbb)edge × gabs (square symbol) and
1645
+ tbabs(diskbb + relxilllp) × gabs (star symbol). (b) Residual strength (Sp -
1646
+ Si) for different patches in each NuSTAR epoch with the orbital phase. The
1647
+ colours black, red, green, blue, cyan, pink, magenta, orange, yellow and grey
1648
+ represent the NuSTAR epochs in chronological order. See text for details.
1649
+ represented by the square symbol is estimated using the model M1,
1650
+ whereas the same using M2 are denoted by the star symbol. We no-
1651
+ tice that the value estimated using M2 are marginally higher than the
1652
+ same from M1. This can be the effect of an additional edge compo-
1653
+ nent used in the M1 model. Similarly, we estimated the gabs strength
1654
+ (Sp) corresponding to each GTI-patch for a given epoch from the
1655
+ patch-spectra modelling using M1. The residual strength (Sp - Si) is
1656
+ measured for each patches inside an epoch and are plotted against
1657
+ the orbital phase in Fig. 8b. The binary orbital period (P) of 4U
1658
+ 1543 − 47 is 26.79377 ± 0.00007 hours (Orosz et al. 1998; Orosz
1659
+ 2003). The orbital position of each NuSTAR patch has been identi-
1660
+ fied based on the start time (MJD 59382.42) of Epoch 1 as the refer-
1661
+ ence time. For Epoch 12 (data in orange colour in Fig. 8a), the value
1662
+ of Si is unusually low, and the estimated Sp from the patch-spectra
1663
+ modelling of this epoch is not reliable. Therefore, we ignore Epoch
1664
+ 12 from Fig. 8b. The residual varies within ±0.5 keV (except one
1665
+ patch), and we see only a marginal variation (within uncertainties)
1666
+ in strength within an orbit. This implies that the orbital position of
1667
+ the BH and the companion is not responsible for the dynamic nature
1668
+ of the absorption features. In fact, we do not expect such behaviour
1669
+ for a low inclination system.
1670
+ The X-ray luminosity of the source at the peak (see Epoch 1 in
1671
+ Table 2) of the outburst is extremely high, and it may irradiate (see
1672
+ Lasota (2001) for a review) the outer accretion disk and the compan-
1673
+ ion star. If the irradiation affects the companion star, either a fresh
1674
+ accretion of matter starts at the hot spot or enhances the stellar wind
1675
+ in the companion star. The former may produce multiple trigger-
1676
+ ing in the same outburst event, which has been observed, for exam-
1677
+ ple, in GX 339 − 4 (Aneesha et al. 2019). If the latter happens, the
1678
+ highly ionized wind material may absorb the X-ray emission from
1679
+ the primary to produce the broad absorption feature. The compan-
1680
+ ion of 4U 1543 − 47 is an A2V type star with a mass Mc=2.45 M⊙
1681
+ (Russell et al. 2006) and radius Rc=2.84 R⊙ (Orosz et al. 1998). The
1682
+ escape velocity (ve) of the stellar material from the surface of the
1683
+ companion is calculated as 573 km s−1. The binary separation (a)
1684
+ between the BH and the companion is estimated as 7.18 ×1011 cm
1685
+ by considering a BH mass, MBH=9.4 M⊙ (Russell et al. 2006) using
1686
+ the relation P2/a3 = 4π2/ G(MBH + Mc), where G is the Gravitational
1687
+ constant. We observe that the stellar wind takes only a few hours to
1688
+ reach the primary. The column density of stellar wind and the ion-
1689
+ ization state should reduce with the decrease of the X-ray luminosity
1690
+ of the primary. Therefore, we expect that the strength of the broad
1691
+ absorption feature should reduce along with the progress of the out-
1692
+ burst. Instead, we observe that the absorption strength enhances and
1693
+ becomes strongest during Epoch 9. Moreover, the estimated stellar
1694
+ wind speed is not sufficient to blue shift the highest ionized lines
1695
+ of Fe XXVI, to produce the observed absorption feature. Therefore,
1696
+ the stellar wind has no role in the dynamic absorption features in the
1697
+ spectra of 4U 1543 − 47.
1698
+ The irradiation of the outer accretion disk enhances the accre-
1699
+ tion rate; therefore, the outburst source stays in the high luminosity
1700
+ state for a longer duration (King 1998; Lasota 2001; Aneesha et al.
1701
+ 2019; Aneesha & Mandal 2020). This is possibly causing 2021 out-
1702
+ burst of 4U 1543 − 47 to decline very slowly (over ∼ 175 days,
1703
+ see Fig. 1). The super Eddington peak luminosity (Epoch 1 in Ta-
1704
+ ble 2) of the source can launch strong disk-wind (e.g., King et al.
1705
+ (2015); Muñoz-Darias et al. (2018)). The presence of the accre-
1706
+ tion disk-wind is more prominent in the soft state of X-ray bi-
1707
+ naries (Miller et al. 2008; Neilsen & Lee 2009; Ponti et al. 2012),
1708
+ though disk-winds are not exclusively confined to soft spectral state
1709
+ (Lee et al. 2002). Spectral analysis of 4U 1543 − 47 (Table 2) sug-
1710
+ gests that the source was in the HSS during our study. Also, we no-
1711
+ tice spectral softening happens till Epoch 9 (∼ day 60) and beyond
1712
+ which spectra gradually become harder (Table 2 & Table 3). If the
1713
+ disk-ionized winds are responsible for the absorption features, then
1714
+ the strength of the features would be maximum when the source is
1715
+ softer. Surprisingly the strength of the absorption feature is maxi-
1716
+ mum on ∼ day 60 as per our analysis (Fig. 8a), and it is keeps-on
1717
+ decreasing further. The optical depth (τ0) evolution (Fig. 4c) also
1718
+ suggests that the absorption column is maximally populated on ∼
1719
+ day 60.
1720
+ The transition energy of the most ionized line with the highest
1721
+ absorption yield, i.e., Fe XXV and Fe XXVI, are 6.68 keV and 6.97
1722
+ MNRAS 000, 1–14 (2022)
1723
+
1724
+ Disk-wind regulated accretion in 4U 1543−47
1725
+ 11
1726
+ keV respectively (provided by XSTAR line finding list12). Assuming
1727
+ the absorption feature (with line E ∼ 10 keV) in the NuSTAR spectra
1728
+ is produced due to the absorption of the accretion disk photons by
1729
+ the highly ionized blue shifted disk-wind, the estimated wind speed
1730
+ is reaching 30% of the speed of light to blue shift the Fe XXVI line
1731
+ energy to 10 keV. Such a fast disk-wind has never been observed in
1732
+ X-ray binary systems. In fact, highly ionized wind (say, Fe XXVI)
1733
+ is never detected (Ponti et al. 2012) in BH-XRB systems with low
1734
+ inclination angle; for example, GX 339 − 4, XTE J1817 − 330, 4U
1735
+ 1957 + 115, XTE J1650 − 500, GRS 1758 − 258 etc. Therefore,
1736
+ this detection is the first of its kind for X-ray binaries. However,
1737
+ mildly relativistic disk-wind is not uncommon in quasars and AGNs
1738
+ (Reeves et al. 2009; Tombesi et al. 2015; Hagino et al. 2017). The
1739
+ other difficulty is the width (σ) of the absorption feature, which is
1740
+ as broad as 2 keV on Epoch 9 (Table 2). Known line-broadening
1741
+ processes due to turbulence or scattering will face serious challenges
1742
+ in explaining the line width if it is from a single line. Instead, it is
1743
+ more likely that the broad feature can be produced by combining
1744
+ multiple lines of various ionization states of iron.
1745
+ The phenomenological spectral fitting of NuSTAR data with
1746
+ model M1 reveals the presence of neutral Fe K−α absorption edge
1747
+ and the broad ionized absorption features. We calculate the equiv-
1748
+ alent width (EW), which is a measure of the strength of an ab-
1749
+ sorption line, of both absorption features to find if there exists any
1750
+ connection between these two components. The EW is defined as
1751
+ (Arumugasamy et al. 2018),
1752
+ EW =
1753
+ � ∞
1754
+ 0
1755
+ [1 − F(E)] dE.
1756
+ (1)
1757
+ The energy dependent function F(E) for the gabs component is
1758
+ given by,
1759
+ F(E) = exp(−τ);
1760
+ τ = τ0 exp
1761
+
1762
+ −(E − Eg)2/2σ2�
1763
+ ,
1764
+ (2)
1765
+ where τ0, Eg and σ are the optical depth, line energy and line width
1766
+ respectively. Similarly, F(E) corresponds to the edge component in
1767
+ XSPEC is given by,
1768
+ I(E) =
1769
+ 
1770
+ 1
1771
+ if E ≤ Ee
1772
+ exp[−D (E/Ee)−3]
1773
+ if E ≥ Ee,
1774
+ (3)
1775
+ where Ee and D are the threshold energy and absorption depth, re-
1776
+ spectively.
1777
+ The evolution of EW calculated based on NuSTAR phenomeno-
1778
+ logical modelling is shown in Fig. 9 for both edge (red in colour)
1779
+ and gabs (blue in colour) components. The gabs EW increases till
1780
+ Epoch 9 and then gradually decline, except for Epoch 12 (Fig. 8a)
1781
+ & 13 (Table 2). The implication of this result and the connection
1782
+ between both components (gabs and edge) are discussed in §5.
1783
+ 5 DISCUSSION
1784
+ The wideband spectral modelling of NICER-NuSTAR and AstroSat
1785
+ data reveals that the inner disc temperature Tin is highest (1.27 keV)
1786
+ on Epoch 1, and it keeps on decreasing during the decay of the out-
1787
+ burst (Fig. 4a). The estimated diskbb norm (Table 2, Table 3) sug-
1788
+ gests a marginal inward movement of the inner disk radius rin since
1789
+ diskbb norm ∝ r2
1790
+ in. However, the decrease in rin could not prevent
1791
+ the drop in Tin due to the gradual decline in ˙M as Tin ∝ ˙M1/4 r−3/4
1792
+ in
1793
+ 12 https://heasarc.gsfc.nasa.gov/docs/software/xstar/xstar.html
1794
+ 20
1795
+ 40
1796
+ 60
1797
+ 80
1798
+ 100
1799
+ Time (days since MJD 59370)
1800
+ 0.1
1801
+ 0.5
1802
+ 1
1803
+ 2
1804
+ 3
1805
+ EW (keV)
1806
+ A
1807
+ B C
1808
+ D
1809
+ E
1810
+ Figure 9. Evolution of equivalent width of gabs (blue in colour) and edge
1811
+ (red in colour) components from the NuSTAR epochs. The vertical lines (A-
1812
+ E) are used to explain the figure in the description.
1813
+ (Frank et al. 2002). The extreme luminosity in the inner disk may
1814
+ slow down the accretion of matter to the BH. On the other hand,
1815
+ the high accretion disk luminosity (Table 2) can irradiate the outer
1816
+ accretion disk, enhancing the accretion of matter. If most of the ac-
1817
+ creted matter is released as the disk-wind, the amount of matter ac-
1818
+ tually transfers to the inner disk for falling onto the BH is much less.
1819
+ Therefore, the gradual decline of Tin is due to the reduction of effec-
1820
+ tive infall of matter onto the BH through the inner disk. The source
1821
+ luminosity is completely soft-photons-dominated due to very little
1822
+ fractional Comptonization (cov_frac in Table 2), low corona tem-
1823
+ perature, and steeper photon index Γ (Fig. 4b). Therefore, the source
1824
+ was in the high/soft spectral state during our study, and it was the
1825
+ softest on Epoch 9.
1826
+ The important parameters for reflection modelling are shown in
1827
+ Table 3 and in Fig. 6. The lamp-post height comes closer to the
1828
+ central object as the source becomes softer. The reflection fraction
1829
+ (Rf) increases and hits the boundary when the source is softest.
1830
+ If the value of ionization parameter, log ξ ≳ 3, the fluorescence
1831
+ yield of the highly ionized Fe line (more ionized than Fe XXIII)
1832
+ increases (Matt et al. 1993). The high value of log ξ (Table 3) ob-
1833
+ tained from reflection modelling suggests a highly ionized accretion
1834
+ disk throughout the outburst. Combining all the factors like extreme
1835
+ luminosity, high log ξ, and an overabundance of Fe (parameter AFe
1836
+ in Table 3) refer to a highly ionized disk-wind having a significant
1837
+ yield of Fe XXV, Fe XXVI etc.
1838
+ An important characteristic of this source is the presence of a
1839
+ broad, symmetric and dynamic absorption feature in the spectrum
1840
+ ∼ 8−11 keV. We presented various possibilities regarding the origin
1841
+ of this absorption feature in §4.3. Finally, we concluded that the fast
1842
+ moving ionized disk-wind could absorb the primary X-ray photons
1843
+ and produce this broad absorption feature. The phenomenological
1844
+ modelling shows the presence of the neutral Fe Kα absorption (edge)
1845
+ at ∼ 7.1 − 7.4 keV, originating from the outer part of the accretion
1846
+ disk. The initial steep rise of the EW of the neutral component (red
1847
+ star in Fig. 9) indicates the enhancement of disk matter due to irra-
1848
+ diation of the outer disk. Due to the availability of more matter, the
1849
+ radiation pressure of the highly luminous inner part could release
1850
+ more ionized matter. The source enters to the HSS, and the disk-
1851
+ wind gradually becomes very active till Epoch 9 (possibly Epoch
1852
+ MNRAS 000, 1–14 (2022)
1853
+
1854
+ 12
1855
+ Prabhakar et al.
1856
+ 10 also) where the gabs EW is maximum (marked A in Fig. 9) and
1857
+ the disk spectrum is the softest (Fig. 4b). Therefore, the evolution
1858
+ of the ionized EW (blue square in Fig. 9) followed the neutral com-
1859
+ ponent till day 60 (Epoch 9). After that, EW of the ionized compo-
1860
+ nent declines gradually (AB in Fig. 9) because the disk luminosity
1861
+ has reduced significantly, and a good fraction of inner disk matter
1862
+ has already been lost in the form of wind. The neutral component
1863
+ remains unaffected as it takes a viscous timescale to propagate the
1864
+ same to the outer disk. The NuSTAR data on Epoch 12 reveals a sud-
1865
+ den drop of the strength (orange points in Fig. 8a) and EW (marked
1866
+ ‘C’ in Fig. 9) of gabs component. We also notice the same signature
1867
+ in the AstroSat data on Epoch 13, observed after 2 days of the NuS-
1868
+ TAR’s Epoch 12 observation; the gabs strength (Table 2) on Epoch
1869
+ 13 is smaller by a few factor compared to the nearby observations.
1870
+ We identify this sudden drop of ionized EW can be due to the evacu-
1871
+ ation of the inner disk. The huge central luminosity may slow down
1872
+ the accretion onto the central object, and most of the accreted mat-
1873
+ ter is released through disk-wind. Once the disk luminosity reduces,
1874
+ there is a sudden infall of matter onto the BH, leading to an evacua-
1875
+ tion of the inner disk.
1876
+ If this interpretation is correct, we expect a relatively harder spec-
1877
+ trum due to a significant drop of soft photon flux during Epochs 12
1878
+ & 13. To characterise this, we calculate the observed flux in 0.5 − 7
1879
+ keV (soft) and 7−20 keV (hard) band for NuSTAR and AstroSat data.
1880
+ The AstroSat soft and hard fluxes on Epoch 10 are 7.45 × 10−8 erg
1881
+ cm−2 s−1 and 1.23 × 10−9 erg cm−2 s−1 respectively. The drop of As-
1882
+ troSat soft flux on the next observation (Epoch 13) is 14%, whereas
1883
+ the hard flux increases by 5%. This resulted in a relatively harder
1884
+ spectral index (marked by a blue circle in Fig. 4b) on Epoch 13. Sim-
1885
+ ilarly, the NuSTAR soft and hard fluxes on Epoch 11 are 6.48 × 10−8
1886
+ erg cm−2 s−1 and 1.1 × 10−9 erg cm−2 s−1 respectively. The drop of
1887
+ NuSTAR soft flux on Epoch 12 is 10%, whereas the hard flux in-
1888
+ creases by a factor of 2. Therefore, the suddenly enhanced accretion
1889
+ at the inner disk resulted in these dramatic changes in the EW and
1890
+ spectral properties. However, the inner accretion disk recovers over
1891
+ the next 10 days (marked CD) due to the transfer of matter from
1892
+ the outer disk, and the ionized component returns back to a gradual
1893
+ declination. Interestingly, the neutral component (or the outer disk)
1894
+ follows the same trend as the ionized component, namely the de-
1895
+ cline and refilling signature (red stars between BE), with a delay of
1896
+ the typical viscous timescale of 10 − 15 days.
1897
+ 6 SUMMARY AND CONCLUSION
1898
+ We study the wideband spectral properties of the 2021 outburst of
1899
+ 4U 1543 − 47. The MAXI/GSC lightcurve (Fig. 1) shows that the
1900
+ outburst rises over 9 days followed by a slow decay over ∼ 175 days.
1901
+ We use multi-instruments data (NICER, NuSTAR and AstroSat) for
1902
+ simultaneous broadband spectral study over a period of 100 days
1903
+ from MJD 59370. We have performed the spectral study using the
1904
+ phenomenological model M1 and reflection model M2. The major
1905
+ findings from our study are summarized below:
1906
+ • The source generally remains very bright during this outburst
1907
+ with a super Eddington peak luminosity on Epoch 1 (Table 2).
1908
+ • The source was in the HSS during our study, with a steep pho-
1909
+ ton index (Fig. 4b) due to a very small fraction (< 3%) of inverse-
1910
+ Comptonized photons and low corona temperature.
1911
+ • The reflection modelling reveals that the inclination of the sys-
1912
+ tem is between 32◦−40◦.
1913
+ • The extreme luminosity, high ionization (log ξ > 3) and over-
1914
+ abundance of iron (3.6−10 AFe,⊙) indicate the presence of disk-wind
1915
+ with a significant yield of highly ionized iron species.
1916
+ • Presence of a broad, dynamic absorption feature at ∼ 8 − 11
1917
+ keV is observed throughout our study. This detection is the first of
1918
+ its kind for X-ray binaries. We propose that this feature is due to
1919
+ the absorption of the accretion disk photons by the highly ionized,
1920
+ blue shifted disk-wind. The strength of the ionized absorption fea-
1921
+ ture (Table 2 & Table 3) increases between Epoch 1 to Epoch 9 as the
1922
+ disk-wind column density is expected to increase with the spectral
1923
+ softening of the source.
1924
+ • The observed line energy of the absorption feature suggests an
1925
+ estimated wind speed of nearly 30% of the speed of light to blue
1926
+ shift the most ionized line with the highest absorption yield like Fe
1927
+ XXVI. Hence it would become the first X-ray binary source to show
1928
+ a highly relativistic disk-wind.
1929
+ • The initial steep rise of the neutral component EW (red star
1930
+ in Fig. 9) is an indication of the enhancement of disk matter due
1931
+ to irradiation of the outer disk. It enhances the accretion rate and
1932
+ hence the source remains in the high luminosity state and decays
1933
+ very slowly.
1934
+ • The evolution of EW (Fig. 9) of the neutral absorption compo-
1935
+ nent (edge) and the same of the ionized component (gabs), follow
1936
+ each other with a delay of the typical viscous timescale of 10 − 15
1937
+ days.
1938
+ • An evacuation of the inner accretion disk is observed during
1939
+ Epoch 12 − 13. This event leaves a signature of the drop in the soft
1940
+ photon flux and an enhancement of hard flux. Therefore, the spec-
1941
+ trum becomes relatively harder (blue circle in Fig. 4b).
1942
+ Finally, this study suggests that accretion dynamics of 4U 1543 −
1943
+ 47 during 2021 outburst is regulated by the disk-wind.
1944
+ ACKNOWLEDGEMENTS
1945
+ The authors wish to thank the anonymous reviewer for the insightful
1946
+ suggestions which significantly improved the quality of the publi-
1947
+ cation. This work uses data from the NICER and NuSTAR mission
1948
+ by the National Aeronautics and Space Administration. This work
1949
+ also has used data from the AstroSat mission of the ISRO archived
1950
+ at the Indian Space Science Data Centre (ISSDC). The work has
1951
+ been performed utilizing the calibration databases, and auxiliary
1952
+ analysis tools developed, maintained and distributed by AstroSat-
1953
+ SXT team with members from various institutions in India and
1954
+ abroad. The High Energy Astrophysics Science Archive Research
1955
+ Center (HEASARC), which provides the software and NASA’s As-
1956
+ trophysics Data System Bibliographic Services are also acknowl-
1957
+ edged. BGR acknowledges the financial support of ISRO under As-
1958
+ troSat archival data utilization program Sanction order No. DS-2B-
1959
+ 13013(2)/13/2019-Sec.2. AN thanks GH, SAG, DD, PDMSA, and
1960
+ Director, URSC for the support to carry out this research.
1961
+ DATA AVAILABILITY
1962
+ The
1963
+ data
1964
+ from
1965
+ NICER
1966
+ and
1967
+ NuSTAR
1968
+ underly-
1969
+ ing
1970
+ this
1971
+ article
1972
+ are
1973
+ available
1974
+ in
1975
+ HEASARC,
1976
+ at
1977
+ https://heasarc.gsfc.nasa.gov/docs/archive.html.
1978
+ AstroSat
1979
+ data
1980
+ archive
1981
+ is
1982
+ available
1983
+ at
1984
+ https://astrobrowse.issdc.gov.in/astro_archive/archive/Home.jsp.
1985
+ MNRAS 000, 1–14 (2022)
1986
+
1987
+ Disk-wind regulated accretion in 4U 1543−47
1988
+ 13
1989
+ REFERENCES
1990
+ Agrawal P. C., et al., 2017, Journal of Astrophysics and Astronomy, 38, 30
1991
+ Aneesha U., Mandal S., 2020, A&A, 637, A47
1992
+ Aneesha U., Mandal S., Sreehari H., 2019, MNRAS, 486, 2705
1993
+ Antia H. M., Agrawal P. C., Katoch T., Manchanda R. K., Mukerjee K., Shah
1994
+ P., 2022, ApJS, 260, 40
1995
+ Arumugasamy P., Kargaltsev O., Posselt B., Pavlov G. G., Hare J., 2018,
1996
+ ApJ, 869, 97
1997
+ Athulya M. P., Radhika D., Agrawal V. K., Ravishankar B. T., Naik S., Man-
1998
+ dal S., Nandi A., 2022, MNRAS, 510, 3019
1999
+ Baby B. E., Agrawal V. K., Ramadevi M. C., Katoch T., Antia H. M., Mandal
2000
+ S., Nandi A., 2020, MNRAS, 497, 1197
2001
+ Baby B. E., Bhuvana G. R., Radhika D., Katoch T., Mandal S., Nandi A.,
2002
+ 2021, MNRAS, 508, 2447
2003
+ Barret D., Olive J.-F., 2002, ApJ, 576, 391
2004
+ Basko M. M., Sunyaev R. A., Titarchuk L. G., 1974, A&A, 31, 249
2005
+ Bhuvana G. R., Radhika D., Agrawal V. K., Mandal S., Nandi A., 2021,
2006
+ MNRAS, 501, 5457
2007
+ Bhuvana G. R., Radhika D., Nandi A., 2022, Advances in Space Research,
2008
+ 69, 483
2009
+ Burhop E. H. S., 1952, The Auger effect and other radiationless transition.
2010
+ Cambridge University Press
2011
+ Chakrabarti S. K., Mandal S., 2006, ApJ, 642, L49
2012
+ Chakrabarti S., Titarchuk L. G., 1995, ApJ, 455, 623
2013
+ Dauser T., García J., Walton D. J., Eikmann W., Kallman T., McClintock J.,
2014
+ Wilms J., 2016, A&A, 590, A76
2015
+ Debnath D., Molla A. A., Chakrabarti S. K., Mondal S., 2015, ApJ, 803, 59
2016
+ Di Salvo T., Iaria R., Méndez M., Burderi L., Lavagetto G., Robba N. R.,
2017
+ Stella L., van der Klis M., 2005, ApJ, 623, L121
2018
+ Dong Y., García J. A., Steiner J. F., Gou L., 2020, MNRAS, 493, 4409
2019
+ Ebisawa K., 1997, in Makino F., Mitsuda K., eds, X-Ray Imaging and Spec-
2020
+ troscopy of Cosmic Hot Plasmas. p. 427
2021
+ Ebisawa K., et al., 1994, PASJ, 46, 375
2022
+ Fabian A. C., Rees M. J., Stella L., White N. E., 1989, MNRAS, 238, 729
2023
+ Fabian A. C., Iwasawa K., Reynolds C. S., Young A. J., 2000, PASP,
2024
+ 112, 1145
2025
+ Fender R. P., Garrington S. T., McKay D. J., Muxlow T. W. B., Pooley G. G.,
2026
+ Spencer R. E., Stirling A. M., Waltman E. B., 1999, MNRAS, 304, 865
2027
+ Fender R. P., Belloni T. M., Gallo E., 2004, MNRAS, 355, 1105
2028
+ Fender R. P., Gallo E., Russell D., 2010, MNRAS, 406, 1425
2029
+ Frank J., King A. R., Lasota J. P., 1987, A&A, 178, 137
2030
+ Frank J., King A., Raine D., 2002, Accretion Power in Astrophysics, 3 edn.
2031
+ Cambridge University Press, doi:10.1017/CBO9781139164245
2032
+ García J. A., et al., 2019, ApJ, 885, 48
2033
+ Garg A., et al., 2021, The Astronomer’s Telegram, 14749, 1
2034
+ Gendreau K. C., et al., 2016, in den Herder J.-W. A., Takahashi T., Bautz M.,
2035
+ eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
2036
+ ference Series Vol. 9905, Space Telescopes and Instrumentation 2016:
2037
+ Ultraviolet to Gamma Ray. p. 99051H, doi:10.1117/12.2231304
2038
+ Hagino K., Done C., Odaka H., Watanabe S., Takahashi T., 2017, MNRAS,
2039
+ 468, 1442
2040
+ Harmon B. A., Wilson R. B., Finger M. H., Paciesas W. S., Rubin B. C.,
2041
+ Fishman G. J., 1992, IAU Circ., 5504, 1
2042
+ Harrison F. A., et al., 2013, ApJ, 770, 103
2043
+ Homan J., Belloni T., 2005, Ap&SS, 300, 107
2044
+ Homan J., Wijnands R., van der Klis M., Belloni T., van Paradijs J., Klein-
2045
+ Wolt M., Fender R., Méndez M., 2001, ApJS, 132, 377
2046
+ Iyer N., Nandi A., Mandal S., 2015, ApJ, 807, 108
2047
+ Jonker P. G., Nelemans G., 2004, MNRAS, 354, 355
2048
+ Katoch T., Baby B. E., Nandi A., Agrawal V. K., Antia H. M., Mukerjee K.,
2049
+ 2021, MNRAS, 501, 6123
2050
+ King A. R., 1998, MNRAS, 296, L45
2051
+ King A. L., et al., 2014, ApJ, 784, L2
2052
+ King A. L., Miller J. M., Raymond J., Reynolds M. T., Morningstar W., 2015,
2053
+ ApJ, 813, L37
2054
+ Kitamoto S., Miyamoto S., Tsunemi H., Makishima K., Nakagawa M., 1984,
2055
+ PASJ, 36, 799
2056
+ Koljonen K. I. I., Tomsick J. A., 2020, A&A, 639, A13
2057
+ Kotani T., et al., 1997, in Dermer C. D., Strickman M. S., Kurfess J. D., eds,
2058
+ American Institute of Physics Conference Series Vol. 410, Proceedings
2059
+ of the Fourth Compton Symposium. pp 922–926, doi:10.1063/1.53963
2060
+ Kotani T., Ebisawa K., Dotani T., Inoue H., Nagase F., Tanaka Y., Ueda Y.,
2061
+ 2000, ApJ, 539, 413
2062
+ Kuulkers E., Wijnands R., Belloni T., Méndez M., van der Klis M., van
2063
+ Paradijs J., 1998, ApJ, 494, 753
2064
+ Lasota J.-P., 2001, New Astron. Rev., 45, 449
2065
+ Leahy D. A., 1997, MNRAS, 287, 622
2066
+ Lee J. C., Reynolds C. S., Remillard R., Schulz N. S., Blackman E. G., Fabian
2067
+ A. C., 2002, ApJ, 567, 1102
2068
+ Li L.-X., Zimmerman E. R., Narayan R., McClintock J. E., 2005, ApJS,
2069
+ 157, 335
2070
+ Matilsky T. A., Giacconi R., Gursky H., Kellogg E. M., Tananbaum H. D.,
2071
+ 1972, ApJ, 174, L53
2072
+ Matt G., Fabian A. C., Ross R. R., 1993, MNRAS, 262, 179
2073
+ Miller J. M., Raymond J., Reynolds C. S., Fabian A. C., Kallman T. R.,
2074
+ Homan J., 2008, ApJ, 680, 1359
2075
+ Miller J. M., Reynolds C. S., Fabian A. C., Miniutti G., Gallo L. C., 2009,
2076
+ ApJ, 697, 900
2077
+ Miller J. M., et al., 2012, ApJ, 759, L6
2078
+ Miller J. M., et al., 2013, ApJ, 775, L45
2079
+ Mitsuda K., et al., 1984, PASJ, 36, 741
2080
+ Morningstar W. R., Miller J. M., 2014, ApJ, 793, L33
2081
+ Muñoz-Darias T., et al., 2016, Nature, 534, 75
2082
+ Muñoz-Darias T., Torres M. A. P., Garcia M. R., 2018, MNRAS, 479, 3987
2083
+ Nandi A., Debnath D., Mandal S., Chakrabarti S. K., 2012, A&A, 542, A56
2084
+ Negoro H., et al., 2021a, The Astronomer’s Telegram, 14701, 1
2085
+ Negoro H., et al., 2021b, The Astronomer’s Telegram, 14708, 1
2086
+ Neilsen J., 2013, Advances in Space Research, 52, 732
2087
+ Neilsen J., Lee J. C., 2009, Nature, 458, 481
2088
+ Orosz J. A., 2003, in van der Hucht K., Herrero A., Esteban C., eds, Vol. 212,
2089
+ A Massive Star Odyssey: From Main Sequence to Supernova. p. 365
2090
+ (arXiv:astro-ph/0209041)
2091
+ Orosz J. A., Jain R. K., Bailyn C. D., McClintock J. E., Remillard R. A.,
2092
+ 1998, ApJ, 499, 375
2093
+ Park S. Q., et al., 2004, ApJ, 610, 378
2094
+ Pedersen H., 1983, The Messenger, 34, 21
2095
+ Petrucci P. O., Merloni A., Fabian A., Haardt F., Gallo E., 2001, MNRAS,
2096
+ 328, 501
2097
+ Ponti G., Fender R. P., Begelman M. C., Dunn R. J. H., Neilsen J., Coriat M.,
2098
+ 2012, MNRAS, 422, L11
2099
+ Poutanen J., Coppi P. S., 1998, Physica Scripta Volume T, 77, 57
2100
+ Poutanen J., Veledina A., Zdziarski A. A., 2018, A&A, 614, A79
2101
+ Prabhakar G., Mandal S., Athulya M. P., Nandi A., 2022, MNRAS,
2102
+ 514, 6102
2103
+ Radhika D., Nandi A., 2014, Advances in Space Research, 54, 1678
2104
+ Radhika D., Nandi A., Agrawal V. K., Seetha S., 2016, MNRAS, 460, 4403
2105
+ Reeves J. N., et al., 2009, ApJ, 701, 493
2106
+ Remillard R. A., McClintock J. E., 2006, ARA&A, 44, 49
2107
+ Remillard R. A., et al., 2021, arXiv e-prints, p. arXiv:2105.09901
2108
+ Russell D. M., Fender R. P., Hynes R. I., Brocksopp C., Homan J., Jonker
2109
+ P. G., Buxton M. M., 2006, MNRAS, 371, 1334
2110
+ Russell D. M., Casella P., Kalemci E., Vahdat Motlagh A., Saikia P., Pirbhoy
2111
+ S. F., Maitra D., 2020, MNRAS, 495, 182
2112
+ Shafee R., McClintock J. E., Narayan R., Davis S. W., Li L.-X., Remillard
2113
+ R. A., 2006, ApJ, 636, L113
2114
+ Shakura N. I., Sunyaev R. A., 1973, A&A, 500, 33
2115
+ Shidatsu M., et al., 2013, ApJ, 779, 26
2116
+ Singh
2117
+ K.
2118
+ P.,
2119
+ Stewart
2120
+ G.,
2121
+ Chandra
2122
+ S.,
2123
+ Dewangan
2124
+ G.
2125
+ C.,
2126
+ Bhat-
2127
+ tacharyya S., Kamble N. S., Vishwakarma S., Koyande J. G., 2021,
2128
+ Journal of Astrophysics and Astronomy, 42, 77
2129
+ Sreehari H., Ravishankar B. T., Iyer N., Agrawal V. K., Katoch T. B., Mandal
2130
+ S., Nandi A., 2019, MNRAS, 487, 928
2131
+ Sunyaev R. A., Titarchuk L. G., 1980, A&A, 500, 167
2132
+ Sunyaev R. A., Titarchuk L. G., 1985, A&A, 143, 374
2133
+ Szostek A., Zdziarski A. A., 2008, MNRAS, 386, 593
2134
+ MNRAS 000, 1–14 (2022)
2135
+
2136
+ 14
2137
+ Prabhakar et al.
2138
+ Tombesi F., Meléndez M., Veilleux S., Reeves J. N., González-Alfonso E.,
2139
+ Reynolds C. S., 2015, Nature, 519, 436
2140
+ Ueda Y., Inoue H., Tanaka Y., Ebisawa K., Nagase F., Kotani T., Gehrels N.,
2141
+ 1998, ApJ, 492, 782
2142
+ White N. E., Peacock A., Hasinger G., Mason K. O., Manzo G., Taylor B. G.,
2143
+ Branduardi-Raymont G., 1986, MNRAS, 218, 129
2144
+ Wilms J., Allen A., McCray R., 2000, ApJ, 542, 914
2145
+ Xu Y., et al., 2018, ApJ, 865, 18
2146
+ Yadav J. S., et al., 2016, ApJ, 833, 27
2147
+ Zdziarski A. A., Fabian A. C., Nandra K., Celotti A., Rees M. J., Done C.,
2148
+ Coppi P. S., Madejski G. M., 1994, MNRAS, 269, L55
2149
+ Zdziarski A. A., Johnson W. N., Magdziarz P., 1996, MNRAS, 283, 193
2150
+ Zdziarski A. A., Szanecki M., Poutanen J., Gierli´nski M., Biernacki P., 2020,
2151
+ MNRAS, 492, 5234
2152
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
2153
+ MNRAS 000, 1–14 (2022)
2154
+