iszhaoxin commited on
Commit
c812221
·
1 Parent(s): f941295
.DS_Store ADDED
Binary file (6.15 kB). View file
 
customers/test.csv ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,customer_id,name,age
2
+ 96,97,Customer_97,40
3
+ 4,5,Customer_5,26
4
+ 42,43,Customer_43,35
5
+ 77,78,Customer_78,32
6
+ 10,11,Customer_11,71
7
+ 0,1,Customer_1,55
8
+ 9,10,Customer_10,71
9
+ 69,70,Customer_70,54
10
+ 73,74,Customer_74,21
11
+ 83,84,Customer_84,22
12
+ 44,45,Customer_45,65
13
+ 76,77,Customer_77,40
14
+ 39,40,Customer_40,29
15
+ 33,34,Customer_34,31
16
+ 30,31,Customer_31,67
customers/train.csv ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,customer_id,name,age
2
+ 11,12,Customer_12,52
3
+ 47,48,Customer_48,40
4
+ 85,86,Customer_86,24
5
+ 28,29,Customer_29,38
6
+ 93,94,Customer_94,66
7
+ 5,6,Customer_6,46
8
+ 66,67,Customer_67,31
9
+ 65,66,Customer_66,24
10
+ 35,36,Customer_36,62
11
+ 16,17,Customer_17,39
12
+ 49,50,Customer_50,69
13
+ 34,35,Customer_35,51
14
+ 7,8,Customer_8,70
15
+ 95,96,Customer_96,29
16
+ 27,28,Customer_28,79
17
+ 19,20,Customer_20,56
18
+ 81,82,Customer_82,69
19
+ 25,26,Customer_26,50
20
+ 62,63,Customer_63,68
21
+ 13,14,Customer_14,21
22
+ 24,25,Customer_25,57
23
+ 3,4,Customer_4,30
24
+ 17,18,Customer_18,23
25
+ 38,39,Customer_39,22
26
+ 8,9,Customer_9,71
27
+ 78,79,Customer_79,35
28
+ 6,7,Customer_7,53
29
+ 64,65,Customer_65,68
30
+ 36,37,Customer_37,68
31
+ 89,90,Customer_90,70
32
+ 56,57,Customer_57,28
33
+ 99,100,Customer_100,58
34
+ 54,55,Customer_55,53
35
+ 43,44,Customer_44,51
36
+ 50,51,Customer_51,45
37
+ 67,68,Customer_68,60
38
+ 46,47,Customer_47,46
39
+ 68,69,Customer_69,46
40
+ 61,62,Customer_62,52
41
+ 97,98,Customer_98,35
42
+ 79,80,Customer_80,30
43
+ 41,42,Customer_42,72
44
+ 58,59,Customer_59,64
45
+ 48,49,Customer_49,37
46
+ 98,99,Customer_99,46
47
+ 57,58,Customer_58,65
48
+ 75,76,Customer_76,27
49
+ 32,33,Customer_33,79
50
+ 94,95,Customer_95,49
51
+ 59,60,Customer_60,56
52
+ 63,64,Customer_64,59
53
+ 84,85,Customer_85,21
54
+ 37,38,Customer_38,69
55
+ 29,30,Customer_30,77
56
+ 1,2,Customer_2,56
57
+ 52,53,Customer_53,30
58
+ 21,22,Customer_22,52
59
+ 2,3,Customer_3,55
60
+ 23,24,Customer_24,71
61
+ 87,88,Customer_88,36
62
+ 91,92,Customer_92,76
63
+ 74,75,Customer_75,44
64
+ 86,87,Customer_87,30
65
+ 82,83,Customer_83,37
66
+ 20,21,Customer_21,51
67
+ 60,61,Customer_61,51
68
+ 71,72,Customer_72,49
69
+ 14,15,Customer_15,23
70
+ 92,93,Customer_93,24
71
+ 51,52,Customer_52,29
customers/val.csv ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,customer_id,name,age
2
+ 26,27,Customer_27,58
3
+ 53,54,Customer_54,43
4
+ 70,71,Customer_71,22
5
+ 15,16,Customer_16,49
6
+ 45,46,Customer_46,57
7
+ 88,89,Customer_89,73
8
+ 40,41,Customer_41,79
9
+ 12,13,Customer_13,69
10
+ 72,73,Customer_73,79
11
+ 55,56,Customer_56,43
12
+ 80,81,Customer_81,27
13
+ 18,19,Customer_19,58
14
+ 90,91,Customer_91,23
15
+ 31,32,Customer_32,33
16
+ 22,23,Customer_23,53
products/test.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,product_id,name,price
2
+ 4,5,Product_5,269.37079112122996
3
+ 73,74,Product_74,685.4914088169825
4
+ 30,31,Product_31,455.75885589146424
5
+ 55,56,Product_56,417.2148362971622
6
+ 33,34,Product_34,535.8877036986996
7
+ 12,13,Product_13,850.2555800942548
8
+ 35,36,Product_36,884.8205869267379
9
+ 0,1,Product_1,781.976413555275
10
+ 64,65,Product_65,343.7487279386133
11
+ 28,29,Product_29,744.4778261439482
12
+ 22,23,Product_23,245.88954088766758
13
+ 67,68,Product_68,675.1697127782456
products/train.csv ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,product_id,name,price
2
+ 34,35,Product_35,627.0339105804485
3
+ 62,63,Product_63,795.2203625971675
4
+ 42,43,Product_43,431.42174870634176
5
+ 54,55,Product_55,171.29278952097133
6
+ 16,17,Product_17,727.2072210972166
7
+ 39,40,Product_40,488.4934137670739
8
+ 56,57,Product_57,232.33327948040628
9
+ 79,80,Product_80,818.5325554700922
10
+ 7,8,Product_8,172.55514641687452
11
+ 50,51,Product_51,484.58955660187667
12
+ 53,54,Product_54,104.3223454128037
13
+ 19,20,Product_20,627.8929825553761
14
+ 66,67,Product_67,160.2453054361185
15
+ 25,26,Product_26,733.2758690991045
16
+ 44,45,Product_45,221.6231309201294
17
+ 13,14,Product_14,646.7432023479928
18
+ 76,77,Product_77,343.43198976410105
19
+ 3,4,Product_4,472.5873287639955
20
+ 17,18,Product_18,289.6892006326001
21
+ 38,39,Product_39,935.7701837570473
22
+ 8,9,Product_9,711.887311071343
23
+ 65,66,Product_66,580.6405432081264
24
+ 6,7,Product_7,267.3146277123249
25
+ 36,37,Product_37,30.57509848504054
26
+ 72,73,Product_73,893.1409905386581
27
+ 58,59,Product_59,691.6589417200158
28
+ 46,47,Product_47,136.55068856676792
29
+ 78,79,Product_79,853.188338930974
30
+ 15,16,Product_16,450.0831695158656
31
+ 27,28,Product_28,881.2456312569794
32
+ 41,42,Product_42,566.9732082525446
33
+ 26,27,Product_27,742.0870715920396
34
+ 48,49,Product_49,894.6951757165921
35
+ 24,25,Product_25,794.4546339940993
36
+ 43,44,Product_44,587.238548414977
37
+ 77,78,Product_78,524.5048062872403
38
+ 57,58,Product_58,590.7441471934189
39
+ 11,12,Product_12,290.99334081899434
40
+ 32,33,Product_33,10.535300745444836
41
+ 75,76,Product_76,965.8899199420919
42
+ 59,60,Product_60,821.4789406713716
43
+ 63,64,Product_64,703.1451760515428
44
+ 69,70,Product_70,878.63055771838
45
+ 37,38,Product_38,475.778730622188
46
+ 29,30,Product_30,911.5928884027744
47
+ 1,2,Product_2,607.9732982452558
48
+ 52,53,Product_53,669.7002011972322
49
+ 21,22,Product_22,170.68073655716717
50
+ 2,3,Product_3,521.0349099965142
51
+ 23,24,Product_24,704.275434148361
52
+ 74,75,Product_75,338.606477325675
53
+ 20,21,Product_21,89.88173740252655
54
+ 60,61,Product_61,666.7241424290982
55
+ 71,72,Product_72,798.0284175208953
56
+ 14,15,Product_15,646.53290939936
57
+ 51,52,Product_52,319.54741973678875
products/val.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,product_id,name,price
2
+ 45,46,Product_46,238.7534646641605
3
+ 31,32,Product_32,272.12339271529373
4
+ 18,19,Product_19,702.6422504593837
5
+ 5,6,Product_6,286.3477557446952
6
+ 61,62,Product_62,876.9379619780921
7
+ 9,10,Product_10,507.5089689086898
8
+ 47,48,Product_48,457.126492113172
9
+ 70,71,Product_71,704.57755157279
10
+ 49,50,Product_50,622.5561531442168
11
+ 68,69,Product_69,809.4552429423823
12
+ 40,41,Product_41,553.2586258624842
13
+ 10,11,Product_11,347.22224358729665
test.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import datasets
3
+
4
+ _CITATION = """\
5
+ Put your dataset citation here.
6
+ """
7
+
8
+ _DESCRIPTION = """\
9
+ Description of your dataset goes here.
10
+ """
11
+
12
+ _HOMEPAGE = "https://your-dataset-homepage.com"
13
+
14
+ _LICENSE = "License information goes here."
15
+
16
+
17
+ class Test(datasets.GeneratorBasedBuilder):
18
+ """Your dataset description"""
19
+
20
+ BUILDER_CONFIGS = [
21
+ datasets.BuilderConfig(name="customers", version=datasets.Version("1.0.0"), description="This is subset A"),
22
+ datasets.BuilderConfig(name="products", version=datasets.Version("1.0.0"), description="This is subset B"),
23
+ ]
24
+
25
+ def _info(self):
26
+ if self.config.name == "customers":
27
+ features = datasets.Features(
28
+ {
29
+ "customer_id": datasets.Value("string"),
30
+ "name": datasets.Value("string"),
31
+ "age": datasets.Value("int32"),
32
+ }
33
+ )
34
+ elif self.config.name == "products":
35
+ features = datasets.Features(
36
+ {
37
+ "product_id": datasets.Value("float32"),
38
+ "name": datasets.Value("string"),
39
+ "price": datasets.Value("float32"),
40
+ }
41
+ )
42
+ else:
43
+ raise ValueError(f"Unknown subset: {self.config.name}")
44
+
45
+ return datasets.DatasetInfo(
46
+ description=_DESCRIPTION,
47
+ features=features,
48
+ supervised_keys=None,
49
+ homepage=_HOMEPAGE,
50
+ license=_LICENSE,
51
+ citation=_CITATION,
52
+ )
53
+
54
+ def _split_generators(self, dl_manager):
55
+ data_dir = os.path.join(self.config.data_dir, self.config.name)
56
+ return [
57
+ datasets.SplitGenerator(
58
+ name=datasets.Split.TRAIN,
59
+ gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")},
60
+ ),
61
+ datasets.SplitGenerator(
62
+ name=datasets.Split.VALIDATION,
63
+ gen_kwargs={"filepath": os.path.join(data_dir, "val.csv")},
64
+ ),
65
+ datasets.SplitGenerator(
66
+ name=datasets.Split.TEST,
67
+ gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")},
68
+ ),
69
+ ]
70
+
71
+ def _generate_examples(self, filepath):
72
+ with open(filepath, encoding="utf-8") as f:
73
+ for id_, line in enumerate(f):
74
+ # Example: Parsing CSV file based on the subset name
75
+ if self.config.name == "customers":
76
+ # Subset A expects three columns: feature_a1, feature_a2, label
77
+ feature_a1, feature_a2, label = line.strip().split(",")
78
+ yield id_, {
79
+ "customer_id": feature_a1,
80
+ "name": feature_a2,
81
+ "age": int(label),
82
+ }
83
+ elif self.config.name == "products":
84
+ # Subset B expects four columns: feature_b1, feature_b2, additional_info, label
85
+ feature_b1, feature_b2, additional_info = line.strip().split(",")
86
+ yield id_, {
87
+ "product_id": feature_b1,
88
+ "name": feature_b2,
89
+ "price": float(additional_info),
90
+ }