File size: 12,352 Bytes
fdacc72 efa14a7 25c1246 d7573d9 0c28fe0 7bcdcd5 99cdb09 d7573d9 a441fee d7573d9 a441fee 99cdb09 a441fee 99cdb09 a441fee db992db 479a533 db992db eeec092 479a533 db992db 7bcdcd5 479a533 7bcdcd5 80f989d 479a533 656ae66 90196d2 656ae66 90196d2 656ae66 479a533 656ae66 90196d2 479a533 335a560 5347c94 335a560 5a3de8d 335a560 5347c94 5a3de8d 15da142 afe1d46 15da142 5a3de8d 15da142 afe1d46 5a3de8d f0dcb67 0e93511 f0dcb67 5a3de8d 324736f 0e93511 5a3de8d 724b9e3 b27028b b47a8ba b27028b b47a8ba 724b9e3 b47a8ba 724b9e3 b47a8ba 1df62a4 13a2186 1df62a4 13a2186 1df62a4 13a2186 31107bc 5a3de8d 31107bc 5a3de8d 7bcdcd5 99cdb09 db992db 7bcdcd5 656ae66 335a560 15da142 f0dcb67 724b9e3 1df62a4 31107bc fdacc72 dd16f41 479a533 3e3dd0b 5a4c096 de064ad 479a533 dd16f41 479a533 8f98373 4f4e8f4 8f98373 479a533 4e96068 3ec1a9d b76b31c 3ec1a9d b89cc2f a0e6592 b89cc2f 3ec1a9d bc4ea7f 3ec1a9d be81cb7 dd16f41 b76b31c dd16f41 b76b31c 479a533 dd16f41 479a533 be81cb7 479a533 dd16f41 bad1afc dd16f41 bc4ea7f dd16f41 bc4ea7f dd16f41 479a533 be81cb7 479a533 be81cb7 d98362d be81cb7 d98362d be81cb7 d98362d be81cb7 479a533 b055f70 d98362d 479a533 dd16f41 479a533 d98362d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
---
language:
- en
license: cc-by-sa-4.0
size_categories:
- 1K<n<10K
task_categories:
- text-classification
- zero-shot-classification
- image-classification
pretty_name: IsoBench
dataset_info:
- config_name: chemistry
features:
- name: image
dtype: image
- name: question
dtype: string
- name: choices
dtype: string
- name: label
dtype: int64
- name: description
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 2611154.0
num_examples: 75
download_size: 2517594
dataset_size: 2611154.0
- config_name: graph_connectivity
features:
- name: image
dtype: image
- name: query_nodes_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: query_node_1
dtype: int64
- name: query_node_2
dtype: int64
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 62682553
num_examples: 128
download_size: 19391513
dataset_size: 62682553
- config_name: graph_isomorphism
features:
- name: image
dtype: image
- name: adjacency_matrix_G
dtype: string
- name: adjacency_matrix_H
dtype: string
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 25082487
num_examples: 128
download_size: 8931620
dataset_size: 25082487
- config_name: graph_maxflow
features:
- name: image
dtype: image
- name: source_node
dtype: int64
- name: source_node_color
dtype: string
- name: sink_node
dtype: int64
- name: sink_node_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 44530168
num_examples: 128
download_size: 16112025
dataset_size: 44530168
- config_name: math_breakpoint
features:
- name: image
dtype: image
- name: domain
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 14120119
num_examples: 256
download_size: 12531449
dataset_size: 14120119
- config_name: math_convexity
features:
- name: image
dtype: image
- name: domain
dtype: string
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 11176740
num_examples: 256
download_size: 9253917
dataset_size: 11176740
- config_name: math_parity
features:
- name: image
dtype: image
- name: domain
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 17012598
num_examples: 384
download_size: 14230745
dataset_size: 17012598
- config_name: physics
features:
- name: image
dtype: image
- name: question
dtype: string
- name: choices
dtype: string
- name: label
dtype: int64
- name: description
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 2354556.0
num_examples: 75
download_size: 2156044
dataset_size: 2354556.0
- config_name: puzzle
features:
- name: image
dtype: image
- name: anl
dtype: string
- name: pgn
dtype: string
- name: fen
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 5192310.0
num_examples: 200
download_size: 4856203
dataset_size: 5192310.0
- config_name: winner_id
features:
- name: image
dtype: image
- name: anl
dtype: string
- name: pgn
dtype: string
- name: fen
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 6486731
num_examples: 257
download_size: 6026970
dataset_size: 6486731
configs:
- config_name: chemistry
data_files:
- split: validation
path: chemistry/validation-*
- config_name: graph_connectivity
data_files:
- split: validation
path: graph_connectivity/validation-*
- config_name: graph_isomorphism
data_files:
- split: validation
path: graph_isomorphism/validation-*
- config_name: graph_maxflow
data_files:
- split: validation
path: graph_maxflow/validation-*
- config_name: math_breakpoint
data_files:
- split: validation
path: math_breakpoint/validation-*
- config_name: math_convexity
data_files:
- split: validation
path: math_convexity/validation-*
- config_name: math_parity
data_files:
- split: validation
path: math_parity/validation-*
- config_name: physics
data_files:
- split: validation
path: physics/validation-*
- config_name: puzzle
data_files:
- split: validation
path: puzzle/validation-*
- config_name: winner_id
data_files:
- split: validation
path: winner_id/validation-*
---
# Dataset Card for IsoBench
<!-- Provide a quick summary of the dataset. -->
π [paper](https://arxiv.org/abs/2404.01266) π [website](https://isobench.github.io)
Introducing IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. Details of IsoBench can be found in our [paper](https://arxiv.org/abs/2404.01266) or [website](https://isobench.github.io)!
## Table of Contents
- [Dataset Details](#dataset-details)
- [Mathematics](#mathematics)
- [Algorithms](#algorithms)
- [Games](#games)
- [Science](#science)
- [Data Fields](#deta-fields)
- [Mathematics](#mathematics)
- [Convexity](#convexity)
- [Breakpoint](#breakpoint)
- [Parity](#parity)
- [Algorithms](#algorithms)
- [Connectivity](#connectivity)
- [Maxflow](#maxflow)
- [Isomorphism](#isomorphism)
- [Games](#games)
- [Winner Identification](#winner-identification)
- [Chess Puzzle](#chess-puzzle)
- [Science](#science)
- [Chemistry](#chemistry)
- [Physics](#physics)
- [Citation](#citation)
- [Contact](#contact)
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
There are 4 major domains: math, algorithm, game, and science. Each domain has several subtasks.
In tatal there are 1,887 samples in the `validation` split with ground-truth labels provided.
The `test` split without labels is coming soon......
We will show how to load the data for each subtask.
### TL;DR
There are 10 subtasks in total: `math_breakpoint, math_convexity, math_parity, graph_connectivity, graph_maxflow, graph_isomorphism, winner_id, puzzle, chemistry, physics`.
You can load a `subtask` via
```python
from datasets import load_dataset
ds_subtask = load_dataset('isobench/IsoBench', subtask, split='validation')
```
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
IsoBench is designed with two objectives, which are:
- Analyzing the behavior difference between language-only and multimodal foundation models, by prompting them with distinct (*e.g.* mathematical expression and plot of a function) representations of the same input.
- Contributing a language-only/multimodal benchmark in the science domain.
#### Mathematics
There are three mathematics tasks. Each task is structured as a classification problem and each class contains 128 samples.
- **Parity** implements a ternary classification problem. A model has to classify an input function into an even function, odd function, or neither.
- **Convexity** implements a binary classification problem for a model to classify an input function as convex or concave. **Note**: some functions are only convex (resp. concave) within a certain domain (*e.g.* `x > 0`), which is reported in the `domain` field of each sample. We recommend providing this information as part of the prompt!
- **Breakpoint** counts the number of breakpoints (*i.e.* intersections of a piecewise linear function). Each function contains either 2 or 3 breakpoints, which renders this task a binary classification problem.
```python
from datasets import load_dataset
dataset_parity = load_dataset('isobench/IsoBench', 'math_parity', split='validation')
dataset_convexity = load_dataset('isobench/IsoBench', 'math_convexity', split='validation')
dataset_breakpoint = load_dataset('isobench/IsoBench', 'math_breakpoint', split='validation')
```
### Algorithms
There are three algorithmic tasks, with ascending complexity: graph connectivity, graph maximum flow, and graph isomorphism.
You can download the data by
```python
from datasets import load_dataset
dataset_connectivity = load_dataset('isobench/IsoBench', 'graph_connectivity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'graph_maxflow', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'graph_isomorphism', split='validation')
```
Each task has 128 dev samples under the validation split.
### Games
[More Information Needed]
### Science
[More Information Needed]
## Data Fields
### Mathematics
- `image`: a PIL Image feature;
- `latex`: a `string` feature, containing the LateX definition of a function;
- `code`: a `string` feature, containing the `sympy` definition of a function;
- `label`: a `string` feature;
- `domain`: a `string` feature or `None`, denoting the domain of a function. This feature is only used for some of the Convexity problems.
- `id`: a `string` feature.
### Algorithms
#### Connectivity
- `image`: a PIL Image feature
- `query_nodes_color`: a `string` feature
- `adjacency_matrix`: a `string` feature, a string of an 2d array representing the adjacency matrix of a graph
- `query_node_1`: a `unit32` feature
- `query_node_2`: a `unit32` feature
- `label`: a `bool` feature, with possible values including `True` (query nodes connected) and `False` (query nodes not connected)
- `id`: a `string` feature
#### Maxflow
- `image`: a PIL Image feature
- `source_node`: a `unit32` feature, denoting the index of the source node
- `source_node_color`: a `string` feature, denoting the color of the `source_node` rendered in the `image`
- `sink_node`: a `unit32` feature, denoting the index of the sink node
- `sink_node_color`: a `string` feature, denoting the color of the `sink_node` rendered in the `image`
- `adjacency_matrix`: a `string` feature, a string of an 2d array representing the adjacency matrix of a graph. The value in entry (i,j) denotes the capacity of flowing from node `i` to node `j`.
- `label`: a `uint32` feature
- `id`: a `string` feature
#### Isomorphism
- `image`: a PIL Image feature, consisting of two graphs `G` and `H`
- `adjacency_matrix_G`: a `string` feature, a string of an 2d array representing the adjacency matrix of graph `G`
- `adjacency_matrix_H`: a `string` feature, a string of an 2d array representing the adjacency matrix of graph `H`
- `label`: a `bool` feature, with possible values including `True` (graphs `G` and `H` are isomorphic) and `False` (not isomorphic)
- `id`: a `string` feature
### Games
[More Information Needed]
### Science
[More Information Needed]
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```BibTeX
@inproceedings{fu2024isobench,
title={{I}so{B}ench: Benchmarking Multimodal Foundation Models on Isomorphic Representations},
author={Deqing Fu and Ruohao Guo and Ghazal Khalighinejad and Ollie Liu and Bhuwan Dhingra and Dani Yogatama and Robin Jia and Willie Neiswanger},
booktitle={First Conference on Language Modeling (COLM)},
year={2024},
note={First four authors contributed equally.}
}
```
**Chicago Style:**
Deqing Fu<sup>\*</sup>, Ruohao Guo<sup>\*</sup>, Ghazal Khalighinejad<sup>\*</sup>, Ollie Liu<sup>\*</sup>, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and Willie Neiswanger. "IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations." arXiv preprint arXiv:2404.01266 (2024).
## Contact
[email protected], [email protected], [email protected], [email protected] |