clueweb12_b13_clef-ehealth_fr / clueweb12_b13_clef-ehealth_fr.py
Sean MacAvaney
commit files to HF hub
73be0c1
"""
""" # TODO
try:
import ir_datasets
except ImportError as e:
raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
import datasets
IRDS_ID = 'clueweb12/b13/clef-ehealth/fr'
IRDS_ENTITY_TYPES = {'queries': {'query_id': 'string', 'text': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64', 'trustworthiness': 'int64', 'understandability': 'int64', 'iteration': 'string'}}
_CITATION = '@inproceedings{Zuccon2016ClefEhealth,\n title={The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval},\n author={Guido Zuccon and Joao Palotti and Lorraine Goeuriot and Liadh Kelly and Mihai Lupu and Pavel Pecina and Henning M{\\"u}ller and Julie Budaher and Anthony Deacon},\n booktitle={CLEF},\n year={2016}\n}\n@inproceedings{Palotti2017ClefEhealth,\n title={CLEF 2017 Task Overview: The IR Task at the eHealth Evaluation Lab - Evaluating Retrieval Methods for Consumer Health Search},\n author={Joao Palotti and Guido Zuccon and Jimmy and Pavel Pecina and Mihai Lupu and Lorraine Goeuriot and Liadh Kelly and Allan Hanbury},\n booktitle={CLEF},\n year={2017}\n}'
_DESCRIPTION = "" # TODO
class clueweb12_b13_clef_ehealth_fr(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
homepage=f"https://ir-datasets.com/clueweb12#clueweb12/b13/clef-ehealth/fr",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [datasets.SplitGenerator(name=self.config.name)]
def _generate_examples(self):
dataset = ir_datasets.load(IRDS_ID)
for i, item in enumerate(getattr(dataset, self.config.name)):
key = i
if self.config.name == 'docs':
key = item.doc_id
elif self.config.name == 'queries':
key = item.query_id
yield key, item._asdict()
def as_dataset(self, split=None, *args, **kwargs):
split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
return super().as_dataset(split, *args, **kwargs)