Datasets:

License:
mike dupont
update
3dcad1f
;;; Resolving free top-level references to modules
;;; Copyright (C) 2021-2022
;;; Free Software Foundation, Inc.
;;;
;;; This library is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU Lesser General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;;
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this program. If not, see
;;; <http://www.gnu.org/licenses/>.
(define-module (language tree-il resolve-free-vars)
#:use-module (ice-9 match)
#:use-module (language tree-il)
#:use-module ((srfi srfi-1) #:select (filter-map))
#:export (resolve-free-vars))
(define (compute-assigned-lexicals exp)
(define assigned-lexicals '())
(define (add-assigned-lexical! var)
(set! assigned-lexicals (cons var assigned-lexicals)))
((make-tree-il-folder)
exp
(lambda (exp)
(match exp
(($ <lexical-set> _ _ var _)
(add-assigned-lexical! var)
(values))
(_ (values))))
(lambda (exp)
(values)))
assigned-lexicals)
(define (make-resolver mod local-definitions)
;; Given that module A imports B and C, and X is free in A,
;; unfortunately there are a few things preventing us from knowing
;; whether the binding proceeds from B or C, just based on the text:
;;
;; - Renamers are evaluated at run-time.
;; - Just using B doesn't let us know what definitions are in B.
;;
;; So instead of using the source program to determine where a binding
;; comes from, we use the first-class module interface.
(define (imported-resolver iface)
(let ((by-var (make-hash-table)))
;; When resolving a free variable, Guile visits all used modules
;; to see if there is a binding. If one of those imports is an
;; autoload, it's possible that the autoload interface fails to
;; load. In that case Guile will issue a warning and consider the
;; binding not found in that module. Here we try to produce the
;; same behavior at optimization time that we do at expand time
;; that we would do at run time.
(false-if-exception
(let ((public-iface (resolve-interface (module-name iface))))
(module-for-each (lambda (name var)
(hashq-set! by-var var name))
public-iface))
#:warning "Failed to determine exported bindings from module ~a:\n"
(module-name iface))
(lambda (name)
(let ((var (module-variable iface name)))
(and var
(cons (module-name iface)
(hashq-ref by-var var)))))))
(define the-module (resolve-module mod))
(define resolvers
(map imported-resolver (module-uses the-module)))
(lambda (name)
(cond
((or (module-local-variable the-module name)
(memq name local-definitions))
'local)
(else
(match (filter-map (lambda (resolve) (resolve name)) resolvers)
(() 'unknown)
(((mod . #f)) 'unknown)
(((mod . public-name)) (cons mod public-name))
((_ _ . _) 'duplicate))))))
;;; Record all bindings in a module, to know whether a toplevel-ref is
;;; an import or not. If toplevel-ref to imported variable, transform
;;; to module-ref or primitive-ref. New pass before peval.
(define (compute-free-var-resolver exp)
(define assigned-lexicals (compute-assigned-lexicals exp))
(define module-definitions '())
(define module-lexicals '())
(define bindings '())
(define (add-module-definition! mod args)
(set! module-definitions (acons mod args module-definitions)))
(define (add-module-lexical! var mod)
(unless (memq var assigned-lexicals)
(set! module-lexicals (acons var mod module-lexicals))))
(define (add-binding! mod name)
(set! bindings (acons mod name bindings)))
(define (record-bindings! mod vars vals)
(for-each
(lambda (var val)
(match val
(($ <call> _ ($ <module-ref> _ '(guile) 'define-module* #f)
(($ <const> _ mod) . args))
(add-module-definition! mod args)
(add-module-lexical! var mod))
(($ <primcall> _ 'current-module ())
(when mod
(add-module-lexical! var mod)))
(_ #f)))
vars vals))
;; Thread a conservative idea of what the current module is through
;; the visit. Visiting an expression returns the name of the current
;; module when the expression completes, or #f if unknown. Record the
;; define-module* forms, if any, and note any toplevel definitions.
(define (visit exp) (visit/mod exp #f))
(define (visit* exps)
(unless (null? exps)
(visit (car exps))
(visit* (cdr exps))))
(define (visit+ exps mod)
(match exps
(() mod)
((exp . exps)
(let lp ((mod' (visit/mod exp mod)) (exps exps))
(match exps
(() mod')
((exp . exps)
(lp (and (equal? mod' (visit/mod exp mod)) mod')
exps)))))))
(define (visit/mod exp mod)
(match exp
((or ($ <void>) ($ <const>) ($ <primitive-ref>) ($ <lexical-ref>)
($ <module-ref>) ($ <toplevel-ref>))
mod)
(($ <call> _ ($ <module-ref> _ '(guile) 'set-current-module #f)
(($ <lexical-ref> _ _ var)))
(assq-ref module-lexicals var))
(($ <call> _ proc args)
(visit proc)
(visit* args)
#f)
(($ <primcall> _ _ args)
;; There is no primcall that sets the current module.
(visit+ args mod))
(($ <conditional> src test consequent alternate)
(visit+ (list consequent alternate) (visit/mod test mod)))
(($ <lexical-set> src name gensym exp)
(visit/mod exp mod))
(($ <toplevel-set> src mod name exp)
(visit/mod exp mod))
(($ <module-set> src mod name public? exp)
(visit/mod exp mod))
(($ <toplevel-define> src mod name exp)
(add-binding! mod name)
(visit/mod exp mod))
(($ <lambda> src meta body)
(when body (visit body))
mod)
(($ <lambda-case> src req opt rest kw inits gensyms body alternate)
(visit* inits)
(let* ((bodies (cons body inits))
(bodies (if alternate (cons alternate bodies) bodies)))
(visit+ bodies mod)))
(($ <seq> src head tail)
(visit/mod tail (visit/mod head mod)))
(($ <let> src names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <letrec> src in-order? names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <fix> src names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <let-values> src exp body)
(visit/mod body (visit/mod exp mod)))
(($ <prompt> src escape-only? tag body handler)
(visit+ (list body handler) (visit/mod tag mod)))
(($ <abort> src tag args tail)
(visit tag)
(visit* args)
(visit tail)
#f)))
(visit exp)
(define (kwarg-ref args kw kt kf)
(let lp ((args args))
(match args
(() (kf))
((($ <const> _ (? keyword? kw')) val . args)
(if (eq? kw' kw)
(kt val)
(lp args)))
((_ _ . args)
(lp args)))))
(define (kwarg-ref/const args kw kt kf)
(kwarg-ref args kw
(lambda (exp)
(match exp
(($ <const> _ val') (kt val'))
(_ (kf))))
kf))
(define (has-constant-initarg? args kw val)
(kwarg-ref/const args kw
(lambda (val')
(equal? val val'))
(lambda () #f)))
;; Collect declarative modules defined once in this compilation unit.
(define declarative-modules
(let lp ((defs module-definitions) (not-declarative '()) (declarative '()))
(match defs
(() declarative)
(((mod . args) . defs)
(cond ((member mod not-declarative)
(lp defs not-declarative declarative))
((or (assoc mod defs) ;; doubly defined?
(not (has-constant-initarg? args #:declarative? #t)))
(lp defs (cons mod not-declarative) declarative))
(else
(lp defs not-declarative (cons mod declarative))))))))
(define resolvers
(map (lambda (mod)
(define resolve
(make-resolver mod
(filter-map (match-lambda
((mod' . name)
(and (equal? mod mod') name)))
bindings)))
(cons mod resolve))
declarative-modules))
(lambda (mod name)
(cond
((assoc-ref resolvers mod)
=> (lambda (resolve) (resolve name)))
(else 'unknown))))
(define (resolve-free-vars exp)
"Traverse @var{exp}, extracting module-level definitions."
(define resolve
(compute-free-var-resolver exp))
(post-order
(lambda (exp)
(match exp
(($ <toplevel-ref> src mod name)
(match (resolve mod name)
((or 'unknown 'duplicate 'local) exp)
((mod . name)
(make-module-ref src mod name #t))))
(($ <toplevel-set> src mod name val)
(match (resolve mod name)
((or 'unknown 'duplicate 'local) exp)
((mod . name)
(make-module-set src mod name #t val))))
(exp exp)))
exp))