Datasets:

License:
mike dupont
update
3dcad1f
/* Copyright 1996,1998,2000-2001,2004-2006,2008-2015,2018-2019
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
<https://www.gnu.org/licenses/>. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <assert.h>
#include <string.h>
#include "arrays.h"
#include "bitvectors.h"
#include "boolean.h"
#include "chars.h"
#include "eq.h"
#include "eval.h"
#include "feature.h"
#include "gsubr.h"
#include "list.h"
#include "numbers.h"
#include "pairs.h"
#include "procs.h"
#include "smob.h"
#include "srfi-4.h"
#include "strings.h"
#include "symbols.h"
#include "vectors.h"
#include "array-map.h"
/* The WHAT argument for `scm_gc_malloc ()' et al. */
static const char vi_gc_hint[] = "array-indices";
static SCM
make1array (SCM v, ssize_t inc)
{
SCM a = scm_i_make_array (1);
SCM_I_ARRAY_SET_BASE (a, 0);
SCM_I_ARRAY_DIMS (a)->lbnd = 0;
SCM_I_ARRAY_DIMS (a)->ubnd = scm_c_array_length (v) - 1;
SCM_I_ARRAY_DIMS (a)->inc = inc;
SCM_I_ARRAY_SET_V (a, v);
return a;
}
/* Linear index of not-unrolled index set. */
static size_t
cindk (SCM ra, ssize_t *ve, int kend)
{
if (SCM_I_ARRAYP (ra))
{
int k;
size_t i = SCM_I_ARRAY_BASE (ra);
for (k = 0; k < kend; ++k)
i += (ve[k] - SCM_I_ARRAY_DIMS (ra)[k].lbnd) * SCM_I_ARRAY_DIMS (ra)[k].inc;
return i;
}
else
return 0; /* this is BASE */
}
/* array mapper: apply cproc to each dimension of the given arrays?.
int (*cproc) (); procedure to call on unrolled arrays?
cproc (dest, source list) or
cproc (dest, data, source list).
SCM data; data to give to cproc or unbound.
SCM ra0; destination array.
SCM lra; list of source arrays.
const char *what; caller, for error reporting. */
#define LBND(ra, k) SCM_I_ARRAY_DIMS (ra)[k].lbnd
#define UBND(ra, k) SCM_I_ARRAY_DIMS (ra)[k].ubnd
#define MAX(A, B) ((A) >= (B) ? (A) : (B))
/* scm_ramapc() always calls cproc with rank-1 arrays created by
make1array. cproc (rafe, ramap, rafill, racp) can assume that the
dims[0].lbnd of these arrays is always 0. */
int
scm_ramapc (void *cproc_ptr, SCM data, SCM ra0, SCM lra, const char *what)
{
int (*cproc) () = cproc_ptr;
SCM z, va0, lva, *plva;
int k, kmax, kroll;
ssize_t *vi, inc;
size_t len;
/* Prepare reference argument. */
if (SCM_I_ARRAYP (ra0))
{
kmax = SCM_I_ARRAY_NDIM (ra0)-1;
inc = kmax < 0 ? 0 : SCM_I_ARRAY_DIMS (ra0)[kmax].inc;
va0 = make1array (SCM_I_ARRAY_V (ra0), inc);
/* Find unroll depth */
for (kroll = MAX (0, kmax); kroll > 0; --kroll)
{
inc *= (UBND (ra0, kroll) - LBND (ra0, kroll) + 1);
if (inc != SCM_I_ARRAY_DIMS (ra0)[kroll-1].inc)
break;
}
}
else
{
kroll = kmax = 0;
va0 = ra0 = make1array (ra0, 1);
}
/* Prepare rest arguments. */
lva = SCM_EOL;
plva = &lva;
for (z = lra; !scm_is_null (z); z = SCM_CDR (z))
{
SCM va1, ra1 = SCM_CAR (z);
if (SCM_I_ARRAYP (ra1))
{
if (kmax != SCM_I_ARRAY_NDIM (ra1) - 1)
scm_misc_error (what, "array shape mismatch: ~S", scm_list_1 (ra0));
inc = kmax < 0 ? 0 : SCM_I_ARRAY_DIMS (ra1)[kmax].inc;
va1 = make1array (SCM_I_ARRAY_V (ra1), inc);
/* Check unroll depth. */
for (k = kmax; k > kroll; --k)
{
ssize_t l0 = LBND (ra0, k), u0 = UBND (ra0, k);
if (l0 < LBND (ra1, k) || u0 > UBND (ra1, k))
scm_misc_error (what, "array shape mismatch: ~S", scm_list_1 (ra0));
inc *= (u0 - l0 + 1);
if (inc != SCM_I_ARRAY_DIMS (ra1)[k-1].inc)
{
kroll = k;
break;
}
}
/* Check matching of not-unrolled axes. */
for (; k>=0; --k)
if (LBND (ra0, k) < LBND (ra1, k) || UBND (ra0, k) > UBND (ra1, k))
scm_misc_error (what, "array shape mismatch: ~S", scm_list_1 (ra0));
}
else
{
if (kmax != 0)
scm_misc_error (what, "array shape mismatch: ~S", scm_list_1 (ra0));
va1 = make1array (ra1, 1);
if (LBND (ra0, 0) < 0 /* LBND (va1, 0) */ || UBND (ra0, 0) > UBND (va1, 0))
scm_misc_error (what, "array shape mismatch: ~S", scm_list_1 (ra0));
}
*plva = scm_cons (va1, SCM_EOL);
plva = SCM_CDRLOC (*plva);
}
/* Check emptiness of not-unrolled axes. */
for (k = 0; k < kroll; ++k)
if (0 == (UBND (ra0, k) - LBND (ra0, k) + 1))
return 1;
/* Set unrolled size. */
for (len = 1; k <= kmax; ++k)
len *= (UBND (ra0, k) - LBND (ra0, k) + 1);
UBND (va0, 0) = len - 1;
for (z = lva; !scm_is_null (z); z = SCM_CDR (z))
UBND (SCM_CAR (z), 0) = len - 1;
/* Set starting indices and go. */
vi = scm_gc_malloc_pointerless (sizeof(ssize_t) * kroll, vi_gc_hint);
for (k = 0; k < kroll; ++k)
vi[k] = LBND (ra0, k);
do
{
if (k == kroll)
{
SCM y = lra;
SCM_I_ARRAY_SET_BASE (va0, cindk (ra0, vi, kroll));
for (z = lva; !scm_is_null (z); z = SCM_CDR (z), y = SCM_CDR (y))
SCM_I_ARRAY_SET_BASE (SCM_CAR (z), cindk (SCM_CAR (y), vi, kroll));
if (! (SCM_UNBNDP (data) ? cproc (va0, lva) : cproc (va0, data, lva)))
return 0;
--k;
}
else if (vi[k] < UBND (ra0, k))
{
++vi[k];
++k;
}
else
{
vi[k] = LBND (ra0, k) - 1;
--k;
}
}
while (k >= 0);
return 1;
}
#undef UBND
#undef LBND
static int
rafill (SCM dst, SCM fill)
{
size_t n = SCM_I_ARRAY_DIMS (dst)->ubnd + 1;
size_t i = SCM_I_ARRAY_BASE (dst);
ssize_t inc = SCM_I_ARRAY_DIMS (dst)->inc;
scm_t_array_handle h;
dst = SCM_I_ARRAY_V (dst);
scm_array_get_handle (dst, &h);
for (; n-- > 0; i += inc)
h.vset (h.vector, i, fill);
scm_array_handle_release (&h);
return 1;
}
SCM_DEFINE (scm_array_fill_x, "array-fill!", 2, 0, 0,
(SCM ra, SCM fill),
"Store @var{fill} in every element of array @var{ra}. The value\n"
"returned is unspecified.")
#define FUNC_NAME s_scm_array_fill_x
{
scm_ramapc (rafill, fill, ra, SCM_EOL, FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
static int
racp (SCM src, SCM dst)
{
size_t i_s, i_d, n;
ssize_t inc_s, inc_d;
scm_t_array_handle h_s, h_d;
dst = SCM_CAR (dst);
i_s = SCM_I_ARRAY_BASE (src);
i_d = SCM_I_ARRAY_BASE (dst);
n = (SCM_I_ARRAY_DIMS (src)->ubnd + 1);
inc_s = SCM_I_ARRAY_DIMS (src)->inc;
inc_d = SCM_I_ARRAY_DIMS (dst)->inc;
src = SCM_I_ARRAY_V (src);
dst = SCM_I_ARRAY_V (dst);
scm_array_get_handle (src, &h_s);
scm_array_get_handle (dst, &h_d);
if (h_s.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM
&& h_d.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
{
SCM const * el_s = h_s.elements;
SCM * el_d = h_d.writable_elements;
if (!el_d && n>0)
scm_wrong_type_arg_msg ("array-copy!", SCM_ARG2, dst, "mutable array");
for (; n-- > 0; i_s += inc_s, i_d += inc_d)
el_d[i_d] = el_s[i_s];
}
else
for (; n-- > 0; i_s += inc_s, i_d += inc_d)
h_d.vset (h_d.vector, i_d, h_s.vref (h_s.vector, i_s));
scm_array_handle_release (&h_d);
scm_array_handle_release (&h_s);
return 1;
}
SCM_REGISTER_PROC(s_array_copy_in_order_x, "array-copy-in-order!", 2, 0, 0, scm_array_copy_x);
SCM_DEFINE (scm_array_copy_x, "array-copy!", 2, 0, 0,
(SCM src, SCM dst),
"@deffnx {Scheme Procedure} array-copy-in-order! src dst\n"
"Copy every element from vector or array @var{src} to the\n"
"corresponding element of @var{dst}. @var{dst} must have the\n"
"same rank as @var{src}, and be at least as large in each\n"
"dimension. The order is unspecified.")
#define FUNC_NAME s_scm_array_copy_x
{
scm_ramapc (racp, SCM_UNDEFINED, src, scm_cons (dst, SCM_EOL), FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
static int
ramap (SCM ra0, SCM proc, SCM ras)
{
size_t i0 = SCM_I_ARRAY_BASE (ra0);
ssize_t inc0 = SCM_I_ARRAY_DIMS (ra0)->inc;
size_t n = SCM_I_ARRAY_DIMS (ra0)->ubnd + 1;
scm_t_array_handle h0;
ra0 = SCM_I_ARRAY_V (ra0);
scm_array_get_handle (ra0, &h0);
if (scm_is_null (ras))
for (; n--; i0 += inc0)
h0.vset (h0.vector, i0, scm_call_0 (proc));
else
{
SCM ra1 = SCM_CAR (ras);
size_t i1 = SCM_I_ARRAY_BASE (ra1);
ssize_t inc1 = SCM_I_ARRAY_DIMS (ra1)->inc;
scm_t_array_handle h1;
ra1 = SCM_I_ARRAY_V (ra1);
scm_array_get_handle (ra1, &h1);
ras = SCM_CDR (ras);
if (scm_is_null (ras))
for (; n--; i0 += inc0, i1 += inc1)
h0.vset (h0.vector, i0, scm_call_1 (proc, h1.vref (h1.vector, i1)));
else
{
SCM ra2 = SCM_CAR (ras);
size_t i2 = SCM_I_ARRAY_BASE (ra2);
ssize_t inc2 = SCM_I_ARRAY_DIMS (ra2)->inc;
scm_t_array_handle h2;
ra2 = SCM_I_ARRAY_V (ra2);
scm_array_get_handle (ra2, &h2);
ras = SCM_CDR (ras);
if (scm_is_null (ras))
for (; n--; i0 += inc0, i1 += inc1, i2 += inc2)
h0.vset (h0.vector, i0, scm_call_2 (proc, h1.vref (h1.vector, i1), h2.vref (h2.vector, i2)));
else
{
scm_t_array_handle *hs;
size_t restn = scm_ilength (ras);
SCM args = SCM_EOL;
SCM *p = &args;
SCM **sa = scm_gc_malloc (sizeof(SCM *) * restn, vi_gc_hint);
size_t k;
ssize_t i;
for (k = 0; k < restn; ++k)
{
*p = scm_cons (SCM_UNSPECIFIED, SCM_EOL);
sa[k] = SCM_CARLOC (*p);
p = SCM_CDRLOC (*p);
}
hs = scm_gc_malloc (sizeof(scm_t_array_handle) * restn, vi_gc_hint);
for (k = 0; k < restn; ++k, ras = scm_cdr (ras))
scm_array_get_handle (scm_car (ras), hs+k);
for (i = 0; n--; i0 += inc0, i1 += inc1, i2 += inc2, ++i)
{
for (k = 0; k < restn; ++k)
*(sa[k]) = scm_array_handle_ref (hs+k, i*hs[k].dims[0].inc);
h0.vset (h0.vector, i0, scm_apply_2 (proc, h1.vref (h1.vector, i1), h2.vref (h2.vector, i2), args));
}
for (k = 0; k < restn; ++k)
scm_array_handle_release (hs+k);
}
scm_array_handle_release (&h2);
}
scm_array_handle_release (&h1);
}
scm_array_handle_release (&h0);
return 1;
}
SCM_REGISTER_PROC(s_array_map_in_order_x, "array-map-in-order!", 2, 0, 1, scm_array_map_x);
SCM_SYMBOL (sym_b, "b");
SCM_DEFINE (scm_array_map_x, "array-map!", 2, 0, 1,
(SCM ra0, SCM proc, SCM lra),
"@deffnx {Scheme Procedure} array-map-in-order! ra0 proc . lra\n"
"@var{array1}, @dots{} must have the same number of dimensions\n"
"as @var{ra0} and have a range for each index which includes the\n"
"range for the corresponding index in @var{ra0}. @var{proc} is\n"
"applied to each tuple of elements of @var{array1}, @dots{} and\n"
"the result is stored as the corresponding element in @var{ra0}.\n"
"The value returned is unspecified. The order of application is\n"
"unspecified.")
#define FUNC_NAME s_scm_array_map_x
{
SCM_VALIDATE_PROC (2, proc);
SCM_VALIDATE_REST_ARGUMENT (lra);
scm_ramapc (ramap, proc, ra0, lra, FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
static int
rafe (SCM ra0, SCM proc, SCM ras)
{
size_t i0 = SCM_I_ARRAY_BASE (ra0);
ssize_t inc0 = SCM_I_ARRAY_DIMS (ra0)->inc;
size_t n = SCM_I_ARRAY_DIMS (ra0)->ubnd + 1;
scm_t_array_handle h0;
ra0 = SCM_I_ARRAY_V (ra0);
scm_array_get_handle (ra0, &h0);
if (scm_is_null (ras))
for (; n--; i0 += inc0)
scm_call_1 (proc, h0.vref (h0.vector, i0));
else
{
scm_t_array_handle *hs;
size_t restn = scm_ilength (ras);
SCM args = SCM_EOL;
SCM *p = &args;
SCM **sa = scm_gc_malloc (sizeof(SCM *) * restn, vi_gc_hint);
for (size_t k = 0; k < restn; ++k)
{
*p = scm_cons (SCM_UNSPECIFIED, SCM_EOL);
sa[k] = SCM_CARLOC (*p);
p = SCM_CDRLOC (*p);
}
hs = scm_gc_malloc (sizeof(scm_t_array_handle) * restn, vi_gc_hint);
for (size_t k = 0; k < restn; ++k, ras = scm_cdr (ras))
scm_array_get_handle (scm_car (ras), hs+k);
for (ssize_t i = 0; n--; i0 += inc0, ++i)
{
for (size_t k = 0; k < restn; ++k)
*(sa[k]) = scm_array_handle_ref (hs+k, i*hs[k].dims[0].inc);
scm_apply_1 (proc, h0.vref (h0.vector, i0), args);
}
for (size_t k = 0; k < restn; ++k)
scm_array_handle_release (hs+k);
}
scm_array_handle_release (&h0);
return 1;
}
SCM_DEFINE (scm_array_for_each, "array-for-each", 2, 0, 1,
(SCM proc, SCM ra0, SCM lra),
"Apply @var{proc} to each tuple of elements of @var{ra0} @dots{}\n"
"in row-major order. The value returned is unspecified.")
#define FUNC_NAME s_scm_array_for_each
{
SCM_VALIDATE_PROC (1, proc);
SCM_VALIDATE_REST_ARGUMENT (lra);
scm_ramapc (rafe, proc, ra0, lra, FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
static void
array_index_map_1 (SCM ra, SCM proc)
{
scm_t_array_handle h;
ssize_t i, inc;
size_t p;
scm_array_get_handle (ra, &h);
inc = h.dims[0].inc;
for (i = h.dims[0].lbnd, p = h.base; i <= h.dims[0].ubnd; ++i, p += inc)
h.vset (h.vector, p, scm_call_1 (proc, scm_from_ssize_t (i)));
scm_array_handle_release (&h);
}
/* Here we assume that the array is a scm_tc7_array, as that is the only
kind of array in Guile that supports rank > 1. */
static void
array_index_map_n (SCM ra, SCM proc)
{
scm_t_array_handle h;
int k, kmax = SCM_I_ARRAY_NDIM (ra) - 1;
SCM args = SCM_EOL;
SCM *p = &args;
ssize_t *vi = scm_gc_malloc_pointerless (sizeof(ssize_t) * (kmax + 1), vi_gc_hint);
SCM **si = scm_gc_malloc_pointerless (sizeof(SCM *) * (kmax + 1), vi_gc_hint);
for (k = 0; k <= kmax; k++)
{
vi[k] = SCM_I_ARRAY_DIMS (ra)[k].lbnd;
if (vi[k] > SCM_I_ARRAY_DIMS (ra)[k].ubnd)
return;
*p = scm_cons (scm_from_ssize_t (vi[k]), SCM_EOL);
si[k] = SCM_CARLOC (*p);
p = SCM_CDRLOC (*p);
}
scm_array_get_handle (ra, &h);
k = kmax;
do
{
if (k == kmax)
{
size_t i;
vi[kmax] = SCM_I_ARRAY_DIMS (ra)[kmax].lbnd;
i = cindk (ra, vi, kmax+1);
for (; vi[kmax] <= SCM_I_ARRAY_DIMS (ra)[kmax].ubnd; ++vi[kmax])
{
*(si[kmax]) = scm_from_ssize_t (vi[kmax]);
h.vset (h.vector, i, scm_apply_0 (proc, args));
i += SCM_I_ARRAY_DIMS (ra)[kmax].inc;
}
k--;
}
else if (vi[k] < SCM_I_ARRAY_DIMS (ra)[k].ubnd)
{
*(si[k]) = scm_from_ssize_t (++vi[k]);
k++;
}
else
{
vi[k] = SCM_I_ARRAY_DIMS (ra)[k].lbnd - 1;
k--;
}
}
while (k >= 0);
scm_array_handle_release (&h);
}
SCM_DEFINE (scm_array_index_map_x, "array-index-map!", 2, 0, 0,
(SCM ra, SCM proc),
"Apply @var{proc} to the indices of each element of @var{ra} in\n"
"turn, storing the result in the corresponding element. The value\n"
"returned and the order of application are unspecified.\n\n"
"One can implement @var{array-indexes} as\n"
"@lisp\n"
"(define (array-indexes array)\n"
" (let ((ra (apply make-array #f (array-shape array))))\n"
" (array-index-map! ra (lambda x x))\n"
" ra))\n"
"@end lisp\n"
"Another example:\n"
"@lisp\n"
"(define (apl:index-generator n)\n"
" (let ((v (make-uniform-vector n 1)))\n"
" (array-index-map! v (lambda (i) i))\n"
" v))\n"
"@end lisp")
#define FUNC_NAME s_scm_array_index_map_x
{
SCM_VALIDATE_PROC (2, proc);
switch (scm_c_array_rank (ra))
{
case 0:
scm_array_set_x (ra, scm_call_0 (proc), SCM_EOL);
break;
case 1:
array_index_map_1 (ra, proc);
break;
default:
array_index_map_n (ra, proc);
break;
}
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
static int
array_compare (scm_t_array_handle *hx, scm_t_array_handle *hy,
size_t dim, unsigned long posx, unsigned long posy)
{
if (dim == scm_array_handle_rank (hx))
return scm_is_true (scm_equal_p (scm_array_handle_ref (hx, posx),
scm_array_handle_ref (hy, posy)));
else
{
long incx, incy;
size_t i;
if (hx->dims[dim].lbnd != hy->dims[dim].lbnd
|| hx->dims[dim].ubnd != hy->dims[dim].ubnd)
return 0;
i = hx->dims[dim].ubnd - hx->dims[dim].lbnd + 1;
incx = hx->dims[dim].inc;
incy = hy->dims[dim].inc;
posx += (i - 1) * incx;
posy += (i - 1) * incy;
for (; i > 0; i--, posx -= incx, posy -= incy)
if (!array_compare (hx, hy, dim + 1, posx, posy))
return 0;
return 1;
}
}
SCM
scm_array_equal_p (SCM x, SCM y)
{
scm_t_array_handle hx, hy;
SCM res;
scm_array_get_handle (x, &hx);
scm_array_get_handle (y, &hy);
scm_t_array_element_type t1 = hx.element_type;
scm_t_array_element_type t2 = hy.element_type;
/* R6RS and Guile mostly use #vu8(...) as the literal syntax for
bytevectors, but R7RS uses #u8. To allow R7RS users to re-use the
various routines implemented on bytevectors which return vu8-tagged
values and to also be able to do (equal? #u8(1 2 3) (bytevector 1 2
3)), we allow equality comparisons between vu8 and u8. */
if (t1 == SCM_ARRAY_ELEMENT_TYPE_VU8)
t1 = SCM_ARRAY_ELEMENT_TYPE_U8;
if (t2 == SCM_ARRAY_ELEMENT_TYPE_VU8)
t2 = SCM_ARRAY_ELEMENT_TYPE_U8;
res = scm_from_bool (hx.ndims == hy.ndims && t1 == t2);
if (scm_is_true (res))
res = scm_from_bool (array_compare (&hx, &hy, 0, 0, 0));
scm_array_handle_release (&hy);
scm_array_handle_release (&hx);
return res;
}
static SCM scm_i_array_equal_p (SCM, SCM, SCM);
SCM_DEFINE (scm_i_array_equal_p, "array-equal?", 0, 2, 1,
(SCM ra0, SCM ra1, SCM rest),
"Return @code{#t} iff all arguments are arrays with the same\n"
"shape, the same type, and have corresponding elements which are\n"
"either @code{equal?} or @code{array-equal?}. This function\n"
"differs from @code{equal?} in that all arguments must be arrays.")
#define FUNC_NAME s_scm_i_array_equal_p
{
if (SCM_UNBNDP (ra0) || SCM_UNBNDP (ra1))
return SCM_BOOL_T;
while (!scm_is_null (rest))
{
if (scm_is_false (scm_array_equal_p (ra0, ra1)))
return SCM_BOOL_F;
ra0 = ra1;
ra1 = scm_car (rest);
rest = scm_cdr (rest);
}
return scm_array_equal_p (ra0, ra1);
}
#undef FUNC_NAME
/* Copy array descriptor with different base. */
SCM
scm_i_array_rebase (SCM a, size_t base)
{
size_t ndim = SCM_I_ARRAY_NDIM (a);
SCM b = scm_i_raw_array (ndim);
SCM_I_ARRAY_SET_V (b, SCM_I_ARRAY_V (a));
/* FIXME do check base */
SCM_I_ARRAY_SET_BASE (b, base);
memcpy (SCM_I_ARRAY_DIMS (b), SCM_I_ARRAY_DIMS (a), sizeof (scm_t_array_dim)*ndim);
return b;
}
static inline size_t padtoptr(size_t d) { return (d + (sizeof (void *) - 1)) & ~(sizeof (void *) - 1); }
SCM_DEFINE (scm_array_slice_for_each, "array-slice-for-each", 2, 0, 1,
(SCM frame_rank, SCM op, SCM args),
"Apply @var{op} to each of the cells of rank rank(@var{arg})-@var{frame_rank}\n"
"of the arrays @var{args}, in unspecified order. The first\n"
"@var{frame_rank} dimensions of each @var{arg} must match.\n"
"Rank-0 cells are passed as rank-0 arrays.\n\n"
"The value returned is unspecified.\n\n"
"For example:\n"
"@lisp\n"
";; Sort the rows of rank-2 array A.\n\n"
"(array-slice-for-each 1 (lambda (x) (sort! x <)) a)\n"
"\n"
";; Compute the arguments of the (x y) vectors in the rows of rank-2\n"
";; array XYS and store them in rank-1 array ANGLES. Inside OP,\n"
";; XY is a rank-1 (2-1) array, and ANGLE is a rank-0 (1-1) array.\n\n"
"(array-slice-for-each 1 \n"
" (lambda (xy angle)\n"
" (array-set! angle (atan (array-ref xy 1) (array-ref xy 0))))\n"
" xys angles)\n"
"@end lisp")
#define FUNC_NAME s_scm_array_slice_for_each
{
SCM xargs = args;
int const N = scm_ilength (args);
int const frank = scm_to_int (frame_rank);
int ocd;
ssize_t step;
SCM dargs_ = SCM_EOL;
char const * msg;
scm_t_array_dim * ais;
int n, k;
ssize_t z;
/* to be allocated inside the pool */
scm_t_array_handle * ah;
SCM * args_;
scm_t_array_dim ** as;
int * rank;
ssize_t * s;
SCM * ai;
SCM ** dargs;
ssize_t * i;
int * order;
size_t * base;
/* size the pool */
char * pool;
char * pool0;
size_t pool_size = 0;
pool_size += padtoptr(N*sizeof (scm_t_array_handle));
pool_size += padtoptr(N*sizeof (SCM));
pool_size += padtoptr(N*sizeof (scm_t_array_dim *));
pool_size += padtoptr(N*sizeof (int));
pool_size += padtoptr(frank*sizeof (ssize_t));
pool_size += padtoptr(N*sizeof (SCM));
pool_size += padtoptr(N*sizeof (SCM *));
pool_size += padtoptr(frank*sizeof (ssize_t));
pool_size += padtoptr(frank*sizeof (int));
pool_size += padtoptr(N*sizeof (size_t));
pool = scm_gc_malloc (pool_size, "pool");
/* place the items in the pool */
#define AFIC_ALLOC_ADVANCE(pool, count, type, name) \
name = (void *)pool; \
pool += padtoptr(count*sizeof (type));
pool0 = pool;
AFIC_ALLOC_ADVANCE (pool, N, scm_t_array_handle, ah);
AFIC_ALLOC_ADVANCE (pool, N, SCM, args_);
AFIC_ALLOC_ADVANCE (pool, N, scm_t_array_dim *, as);
AFIC_ALLOC_ADVANCE (pool, N, int, rank);
AFIC_ALLOC_ADVANCE (pool, frank, ssize_t, s);
AFIC_ALLOC_ADVANCE (pool, N, SCM, ai);
AFIC_ALLOC_ADVANCE (pool, N, SCM *, dargs);
AFIC_ALLOC_ADVANCE (pool, frank, ssize_t, i);
AFIC_ALLOC_ADVANCE (pool, frank, int, order);
AFIC_ALLOC_ADVANCE (pool, N, size_t, base);
assert((pool0+pool_size==pool) && "internal error");
#undef AFIC_ALLOC_ADVANCE
for (n=0, xargs=args; scm_is_pair(xargs); xargs=scm_cdr(xargs), ++n)
{
args_[n] = scm_car(xargs);
scm_array_get_handle(args_[n], ah+n);
as[n] = scm_array_handle_dims(ah+n);
rank[n] = scm_array_handle_rank(ah+n);
}
/* checks */
msg = NULL;
if (frank<0)
msg = "bad frame rank ~S, ~S";
else
{
for (n=0; n!=N; ++n)
{
if (rank[n]<frank)
{
msg = "frame too large for arguments: ~S, ~S";
goto check_msg;
}
for (k=0; k!=frank; ++k)
{
if (as[0][k].lbnd!=as[n][k].lbnd || as[0][k].ubnd!=as[n][k].ubnd)
{
msg = "mismatched frames: ~S, ~S";
goto check_msg;
}
s[k] = as[n][k].ubnd - as[n][k].lbnd + 1;
/* this check is needed if the array cannot be entirely */
/* unrolled, because the unrolled subloop will be run before */
/* checking the dimensions of the frame. */
if (s[k]==0)
goto end;
}
}
}
check_msg: ;
if (msg!=NULL)
{
for (n=0; n!=N; ++n)
scm_array_handle_release(ah+n);
scm_misc_error("array-slice-for-each", msg, scm_cons(frame_rank, args));
}
/* prepare moving cells. */
for (n=0; n!=N; ++n)
{
ai[n] = scm_i_make_array(rank[n]-frank);
SCM_I_ARRAY_SET_V (ai[n], scm_shared_array_root(args_[n]));
/* FIXME scm_array_handle_base (ah+n) should be in Guile */
SCM_I_ARRAY_SET_BASE (ai[n], ah[n].base);
ais = SCM_I_ARRAY_DIMS(ai[n]);
for (k=frank; k!=rank[n]; ++k)
{
ais[k-frank] = as[n][k];
}
}
/* prepare rest list for callee. */
{
SCM *p = &dargs_;
for (n=0; n<N; ++n)
{
*p = scm_cons (SCM_UNSPECIFIED, SCM_EOL);
dargs[n] = SCM_CARLOC (*p);
p = SCM_CDRLOC (*p);
}
}
/* special case for rank 0. */
if (frank==0)
{
for (n=0; n<N; ++n)
*dargs[n] = ai[n];
scm_apply_0(op, dargs_);
for (n=0; n<N; ++n)
scm_array_handle_release(ah+n);
return SCM_UNSPECIFIED;
}
/* FIXME determine best looping order. */
for (k=0; k!=frank; ++k)
{
i[k] = 0;
order[k] = frank-1-k;
}
/* find outermost compact dim. */
step = s[order[0]];
ocd = 1;
for (; ocd<frank; step *= s[order[ocd]], ++ocd)
for (n=0; n!=N; ++n)
if (step*as[n][order[0]].inc!=as[n][order[ocd]].inc)
goto ocd_reached;
ocd_reached: ;
/* rank loop. */
for (n=0; n!=N; ++n)
base[n] = SCM_I_ARRAY_BASE(ai[n]);
for (;;)
{
/* unrolled loop. */
for (z=0; z!=step; ++z)
{
/* we are forced to create fresh array descriptors for each */
/* call since we don't know whether the callee will keep them, */
/* and Guile offers no way to copy the descriptor (since */
/* descriptors are immutable). Yet another reason why this */
/* should be in Scheme. */
for (n=0; n<N; ++n)
{
*dargs[n] = scm_i_array_rebase(ai[n], base[n]);
base[n] += as[n][order[0]].inc;
}
scm_apply_0(op, dargs_);
}
for (n=0; n<N; ++n)
base[n] -= step*as[n][order[0]].inc;
for (k=ocd; ; ++k)
{
if (k==frank)
goto end;
else if (i[order[k]]<s[order[k]]-1)
{
++i[order[k]];
for (n=0; n<N; ++n)
base[n] += as[n][order[k]].inc;
break;
}
else
{
i[order[k]] = 0;
for (n=0; n<N; ++n)
base[n] += as[n][order[k]].inc*(1-s[order[k]]);
}
}
}
end:;
for (n=0; n<N; ++n)
scm_array_handle_release(ah+n);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_array_slice_for_each_in_order, "array-slice-for-each-in-order", 2, 0, 1,
(SCM frank, SCM op, SCM a),
"Same as array-slice-for-each, but visit the cells sequentially\n"
"and in row-major order.\n")
#define FUNC_NAME s_scm_array_slice_for_each_in_order
{
return scm_array_slice_for_each (frank, op, a);
}
#undef FUNC_NAME
void
scm_init_array_map (void)
{
#include "array-map.x"
scm_add_feature (s_scm_array_for_each);
}