File size: 31,937 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
;;; Attaching inlinable definitions of exported bindings to modules
;;; Copyright (C) 2021, 2022, 2024
;;; Free Software Foundation, Inc.
;;;
;;; This library is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU Lesser General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;;
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this program. If not, see
;;; <http://www.gnu.org/licenses/>.
(define-module (language tree-il inlinable-exports)
#:use-module (ice-9 control)
#:use-module (ice-9 match)
#:use-module (ice-9 binary-ports)
#:use-module (language tree-il)
#:use-module (language tree-il primitives)
#:use-module (language tree-il fix-letrec)
#:use-module (language scheme compile-tree-il)
#:use-module ((srfi srfi-1) #:select (filter-map))
#:use-module (srfi srfi-9)
#:use-module (system syntax)
#:use-module (rnrs bytevectors)
#:export (inlinable-exports))
;;;
;;; Inlining, as implemented by peval, is the mother of all
;;; optimizations. It opens up space for other optimizations to work,
;;; such as constant folding, conditional branch folding, and so on.
;;;
;;; Inlining works naturally for lexical bindings. Inlining of
;;; top-level binding is facilitated by letrectification, which turns
;;; top-level definition sequences to letrec*. Here we facilitate
;;; inlining across module boundaries, so that module boundaries aren't
;;; necessarily optimization boundaries.
;;;
;;; The high-level idea is to attach a procedure to the module being
;;; compiled, which when called with a name of an export of that module
;;; will return a Tree-IL expression that can be copied into the use
;;; site. There are two parts: first we determine the set of inlinable
;;; bindings, and then we compile that mapping to a procedure and attach
;;; it to the program being compiled.
;;;
;;; Because we don't want inter-module inlining to inhibit intra-module
;;; inlining, this pass is designed to run late in the Tree-IL
;;; optimization pipeline -- after letrectification, after peval, and so
;;; on. Unfortunately this does mean that we have to sometimes
;;; pattern-match to determine higher-level constructs from lower-level
;;; residual code, for example to map back from
;;; module-ensure-local-variable! + %variable-set! to toplevel-define,
;;; as reduced by letrectification. Ah well.
;;;
;;; Ultimately we want to leave the decision to peval as to what to
;;; inline or not to inline, based on its size and effort counters. But
;;; still we do need to impose some limits -- there's no sense in
;;; copying a large constant from one module to another, for example.
;;; Similarly there's no sense in copying a very large procedure.
;;; Inspired by peval, we bound size growth via a counter that will
;;; abort an inlinable attempt if the term is too large.
;;;
;;; Note that there are some semantic limitations -- you wouldn't want
;;; to copy a mutable value, nor would you want to copy a closure with
;;; free variables.
;;;
;;; Once the set of inlinables is determined, we copy them and rename
;;; their lexicals. Any reference to an exported binding by lexical
;;; variable is rewritten in terms of a reference to the exported
;;; binding.
;;;
;;; The result is then compiled to a procedure, which internally has a
;;; small interpreter for a bytecode, along with a set of constants.
;;; The assumption is that most of the constants will be written to the
;;; object file anyway, so we aren't taking up more space there. Any
;;; non-immediate is built on demand, so we limit the impact of
;;; including inlinable definitions on load-time relocations,
;;; allocations, and heap space.
;;;
(define (compute-assigned-lexicals exp)
(define assigned-lexicals '())
(define (add-assigned-lexical! var)
(set! assigned-lexicals (cons var assigned-lexicals)))
((make-tree-il-folder)
exp
(lambda (exp)
(match exp
(($ <lexical-set> _ _ var _)
(add-assigned-lexical! var)
(values))
(_ (values))))
(lambda (exp)
(values)))
assigned-lexicals)
(define (compute-assigned-toplevels exp)
(define assigned-toplevels '())
(define (add-assigned-toplevel! mod name)
(set! assigned-toplevels (acons mod name assigned-toplevels)))
((make-tree-il-folder)
exp
(lambda (exp)
(match exp
(($ <toplevel-set> _ mod name _)
(add-assigned-toplevel! mod name)
(values))
(($ <module-set> src mod name public? exp)
(unless public?
(add-assigned-toplevel! mod name))
(values))
(_ (values))))
(lambda (exp)
(values)))
assigned-toplevels)
;;; FIXME: Record all bindings in a module, to know whether a
;;; toplevel-ref is an import or not. If toplevel-ref to imported
;;; variable, transform to module-ref or primitive-ref. New pass before
;;; peval.
(define (compute-module-bindings exp)
(define assigned-lexicals (compute-assigned-lexicals exp))
(define assigned-toplevels (compute-assigned-toplevels exp))
(define module-definitions '())
(define lexicals (make-hash-table))
(define module-lexicals '())
(define variable-lexicals '())
(define binding-lexicals '())
(define binding-values '())
(define (add-module-definition! mod args)
(set! module-definitions (acons mod args module-definitions)))
(define (add-lexical! var val)
(unless (memq var assigned-lexicals)
(hashq-set! lexicals var val)))
(define (add-module-lexical! var mod)
(unless (memq var assigned-lexicals)
(set! module-lexicals (acons var mod module-lexicals))))
(define (add-variable-lexical! var mod name)
(unless (memq var assigned-lexicals)
(set! variable-lexicals (acons var (cons mod name) variable-lexicals))))
(define (add-binding-lexical! var mod name)
(unless (memq var assigned-lexicals)
(set! binding-lexicals (acons var (cons mod name) binding-lexicals))))
(define (add-binding-value! mod name val)
(set! binding-values (acons (cons mod name) val binding-values)))
(define (record-bindings! mod gensyms vals)
(for-each
(lambda (var val)
(add-lexical! var val)
(match val
(($ <call> _ ($ <module-ref> _ '(guile) 'define-module* #f)
(($ <const> _ mod) . args))
(add-module-definition! mod args)
(add-module-lexical! var mod))
(($ <primcall> _ 'current-module ())
(when mod
(add-module-lexical! var mod)))
(($ <primcall> _ 'module-ensure-local-variable!
(($ <lexical-ref> _ _ mod-var) ($ <const> _ name)))
(let ((mod (assq-ref module-lexicals mod-var)))
(when mod
(add-variable-lexical! var mod name))))
(_ #f)))
gensyms vals))
;; Thread a conservative idea of what the current module is through
;; the visit. Visiting an expression returns the name of the current
;; module when the expression completes, or #f if unknown. Record the
;; define-module* forms, if any, and note any assigned or
;; multiply-defined variables. Record definitions by matching
;; toplevel-define forms, but also by matching separate
;; module-ensure-local-variable! + %variable-set, as residualized by
;; letrectification.
(define (visit exp) (visit/mod exp #f))
(define (visit* exps)
(unless (null? exps)
(visit (car exps))
(visit* (cdr exps))))
(define (visit+ exps mod)
(match exps
(() mod)
((exp . exps)
(let lp ((mod' (visit/mod exp mod)) (exps exps))
(match exps
(() mod')
((exp . exps)
(lp (and (equal? mod' (visit/mod exp mod)) mod')
exps)))))))
(define (visit/mod exp mod)
(match exp
((or ($ <void>) ($ <const>) ($ <primitive-ref>) ($ <lexical-ref>)
($ <module-ref>) ($ <toplevel-ref>))
mod)
(($ <call> _ ($ <module-ref> _ '(guile) 'set-current-module #f)
(($ <lexical-ref> _ _ var)))
(assq-ref module-lexicals var))
(($ <primcall> src '%variable-set! (($ <lexical-ref> _ _ var)
val))
(match (assq-ref variable-lexicals var)
((mod . name)
(add-binding-value! mod name val)
;; Also record lexical for eta-expanded bindings.
(match val
(($ <lambda> _ _
($ <lambda-case> _ req #f #f #f () (arg ...)
($ <call> _
(and eta ($ <lexical-ref> _ _ var))
(($ <lexical-ref> _ _ arg) ...))
#f))
(add-binding-lexical! var mod name))
(($ <lambda> _ _
($ <lambda-case> _ req #f (not #f) #f () (arg ...)
($ <primcall> _ 'apply
((and eta ($ <lexical-ref> _ _ var))
($ <lexical-ref> _ _ arg) ...))
#f))
(add-binding-lexical! var mod name))
(($ <lexical-ref> _ _ var)
(add-binding-lexical! var mod name))
(_ #f)))
(_ #f))
(visit/mod val mod))
(($ <call> _ proc args)
(visit proc)
(visit* args)
#f)
(($ <primcall> _ _ args)
;; There is no primcall that sets the current module.
(visit+ args mod))
(($ <conditional> src test consequent alternate)
(visit+ (list consequent alternate) (visit/mod test mod)))
(($ <lexical-set> src name gensym exp)
(visit/mod exp mod))
(($ <toplevel-set> src mod name exp)
(visit/mod exp mod))
(($ <module-set> src mod name public? exp)
(visit/mod exp mod))
(($ <toplevel-define> src mod name exp)
(add-binding-value! mod name exp)
(visit/mod exp mod))
(($ <lambda> src meta body)
(when body (visit body))
mod)
(($ <lambda-case> src req opt rest kw inits gensyms body alternate)
(visit* inits)
(visit body)
(when alternate (visit alternate))
(values))
(($ <seq> src head tail)
(visit/mod tail (visit/mod head mod)))
(($ <let> src names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <letrec> src in-order? names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <fix> src names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <let-values> src exp body)
(visit/mod body (visit/mod exp mod))
#f)
(($ <prompt> src escape-only? tag body handler)
(visit tag)
(visit body)
(visit handler)
#f)
(($ <abort> src tag args tail)
(visit tag)
(visit* args)
(visit tail)
#f)))
(visit exp)
(values module-definitions lexicals binding-lexicals binding-values))
;; - define inlinable? predicate:
;; exported && declarative && only references public vars && not too big
;;
;; - public := exported from a module, at -O2 and less.
;; at -O3 and higher public just means defined in any module.
(define (inlinable-exp mod exports lexicals binding-lexicals exp)
(define fresh-var!
(let ((counter 0))
(lambda ()
(let ((name (string-append "t" (number->string counter))))
(set! counter (1+ counter))
(string->symbol name)))))
(define (fresh-vars vars)
(match vars
(() '())
((_ . vars) (cons (fresh-var!) (fresh-vars vars)))))
(define (add-bound-vars old new bound)
(match (vector old new)
(#(() ()) bound)
(#((old . old*) (new . new*))
(add-bound-vars old* new* (acons old new bound)))))
(let/ec return
(define (abort!) (return #f))
(define count!
;; Same as default operator size limit for peval.
(let ((counter 40))
(lambda ()
(set! counter (1- counter))
(when (zero? counter) (abort!)))))
(define (residualize-module-private-ref src mod' name)
;; TODO: At -O3, we could residualize a private
;; reference. But that could break peoples'
;; expectations.
(abort!))
(define (eta-reduce exp)
;; Undo the result of eta-expansion pass.
(match exp
(($ <lambda> _ _
($ <lambda-case> _ req #f #f #f () (sym ...)
($ <call> _
(and eta ($ <lexical-ref>)) (($ <lexical-ref> _ _ sym) ...))
#f))
eta)
(($ <lambda> _ _
($ <lambda-case> _ req #f (not #f) #f () (sym ...)
($ <primcall> _ 'apply
((and eta ($ <lexical-ref>)) ($ <lexical-ref> _ _ sym) ...))
#f))
eta)
(_ exp)))
(let copy ((exp (eta-reduce exp)) (bound '()) (in-lambda? #f))
(define (recur exp) (copy exp bound in-lambda?))
(count!)
(match exp
((or ($ <void>) ($ <primitive-ref>) ($ <module-ref>))
exp)
(($ <const> src val)
(match val
;; Don't copy values that could be "too big".
((? string?) exp) ; Oddly, (array? "") => #t.
((or (? pair?) (? syntax?) (? array?))
(abort!))
(_ exp)))
(($ <lexical-ref> src name var)
(cond
;; Rename existing lexicals.
((assq-ref bound var)
=> (lambda (var)
(make-lexical-ref src name var)))
;; A free variable reference to a lambda, outside a lambda.
;; Could be the lexical-ref residualized by letrectification.
;; Copy and rely on size limiter to catch runaways.
((and (not in-lambda?) (lambda? (hashq-ref lexicals var)))
(recur (hashq-ref lexicals var)))
((not in-lambda?)
;; No advantage to "inline" a toplevel to another toplevel.
(abort!))
;; Some letrectified toplevels will be bound to lexical
;; variables, but unless the module has sealed private
;; bindings, there may be an associated top-level variable
;; as well.
((assq-ref binding-lexicals var)
=> (match-lambda
((mod' . name)
(cond
((and (equal? mod' mod) (assq-ref exports name))
=> (lambda (public-name)
(make-module-ref src mod public-name #t)))
(else
(residualize-module-private-ref src mod' name))))))
;; A free variable reference. If it's in the program at this
;; point, that means that peval didn't see fit to copy it, so
;; there's no point in trying to do so here.
(else (abort!))))
(($ <toplevel-ref> src mod' name)
(cond
;; Rewrite private references to exported bindings into public
;; references. Peval can decide whether to continue inlining
;; or not.
((and (equal? mod mod') (assq-ref exports name))
=> (lambda (public-name)
(make-module-ref src mod public-name #t)))
(else
(residualize-module-private-ref src mod' name))))
(($ <call> src proc args)
(unless in-lambda? (abort!))
(make-call src (recur proc) (map recur args)))
(($ <primcall> src name args)
(unless in-lambda? (abort!))
(make-primcall src name (map recur args)))
(($ <conditional> src test consequent alternate)
(unless in-lambda? (abort!))
(make-conditional src (recur test)
(recur consequent) (recur alternate)))
(($ <lexical-set> src name var exp)
(unless in-lambda? (abort!))
(cond
((assq-ref bound var)
=> (lambda (var)
(make-lexical-set src name var (recur exp))))
(else
(abort!))))
((or ($ <toplevel-set>)
($ <module-set>)
($ <toplevel-define>))
(abort!))
(($ <lambda> src meta body)
;; Remove any lengthy docstring.
(let ((meta (filter-map (match-lambda
(('documentation . _) #f)
(pair pair))
meta)))
(make-lambda src meta (and body (copy body bound #t)))))
(($ <lambda-case> src req opt rest kw inits vars body alternate)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-lambda-case src req opt rest
(match kw
(#f #f)
((aok? . kws)
(cons aok?
(map
(match-lambda
((kw name var)
(list kw name (assq-ref bound var))))
kws))))
(map recur* inits)
vars*
(recur* body)
(and alternate (recur alternate)))))
(($ <seq> src head tail)
(unless in-lambda? (abort!))
(make-seq src (recur head) (recur tail)))
(($ <let> src names vars vals body)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-let src names vars* (map recur vals) (recur* body))))
(($ <letrec> src in-order? names vars vals body)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-letrec src in-order? names vars* (map recur* vals)
(recur* body))))
(($ <fix> src names vars vals body)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-fix src names vars* (map recur* vals)
(recur* body))))
(($ <let-values> src exp body)
(unless in-lambda? (abort!))
(make-let-values src (recur exp) (recur body)))
(($ <prompt> src escape-only? tag body handler)
(unless in-lambda? (abort!))
(make-prompt src escape-only?
(recur tag) (recur body) (recur handler)))
(($ <abort> src tag args tail)
(unless in-lambda? (abort!))
(make-abort src (recur tag) (map recur args) (recur tail)))))))
(define (compute-inlinable-bindings exp)
"Traverse @var{exp}, extracting module-level definitions."
(define-values (modules lexicals binding-lexicals bindings)
(compute-module-bindings exp))
(define (kwarg-ref args kw kt kf)
(let lp ((args args))
(match args
(() (kf))
((($ <const> _ (? keyword? kw')) val . args)
(if (eq? kw' kw)
(kt val)
(lp args)))
((_ _ . args)
(lp args)))))
(define (kwarg-ref/const args kw kt kf)
(kwarg-ref args kw
(lambda (exp)
(match exp
(($ <const> _ val') (kt val'))
(_ (kf))))
kf))
(define (has-constant-initarg? args kw val)
(kwarg-ref/const args kw
(lambda (val')
(equal? val val'))
(lambda () #f)))
;; Collect declarative modules defined once in this compilation unit.
(define modules-with-inlinable-exports
(let lp ((defs modules) (not-inlinable '()) (inlinable '()))
(match defs
(() inlinable)
(((mod . args) . defs)
(cond ((member mod not-inlinable)
(lp defs not-inlinable inlinable))
((or (assoc mod defs) ;; doubly defined?
(not (has-constant-initarg? args #:declarative? #t)))
(lp defs (cons mod not-inlinable) inlinable))
(else
(lp defs not-inlinable (cons mod inlinable))))))))
;; Omit multiply-defined bindings, and definitions not in declarative
;; modules.
(define non-declarative-definitions
(let lp ((bindings bindings) (non-declarative '()))
(match bindings
(() non-declarative)
((((and mod+name (mod . name)) . val) . bindings)
(cond
((member mod+name non-declarative)
(lp bindings non-declarative))
((or (assoc mod+name bindings)
(not (member mod modules-with-inlinable-exports)))
(lp bindings (cons mod+name non-declarative)))
(else
(lp bindings non-declarative)))))))
(define exports
(map (lambda (module)
(define args (assoc-ref modules module))
;; Return list of (PRIVATE-NAME . PUBLIC-NAME) pairs.
(define (extract-exports kw)
(kwarg-ref/const args kw
(lambda (val)
(map (match-lambda
((and pair (private . public)) pair)
(name (cons name name)))
val))
(lambda () '())))
(cons module
(append (extract-exports #:exports)
(extract-exports #:replacements))))
modules-with-inlinable-exports))
;; Compute ((PRIVATE-NAME . PUBLIC-NAME) . VALUE) pairs for each
;; module with inlinable bindings, for exported bindings only.
(define inlinable-candidates
(map
(lambda (module)
(define name-pairs (assoc-ref exports module))
(define (name-pair private-name)
(assq private-name name-pairs))
(cons module
(filter-map
(match-lambda
(((and mod+name (mod . name)) . val)
(and (equal? module mod)
(not (member mod+name non-declarative-definitions))
(and=> (name-pair name)
(lambda (pair) (cons pair val))))))
bindings)))
modules-with-inlinable-exports))
(define inlinables
(filter-map
(match-lambda
((mod . exports)
(let ((name-pairs (map car exports)))
(match (filter-map
(match-lambda
(((private . public) . val)
(match (inlinable-exp mod name-pairs lexicals
binding-lexicals val)
(#f #f)
(val (cons public val)))))
exports)
(() #f)
(exports (cons mod exports))))))
inlinable-candidates))
inlinables)
(define (put-uleb port val)
(let lp ((val val))
(let ((next (ash val -7)))
(if (zero? next)
(put-u8 port val)
(begin
(put-u8 port (logior #x80 (logand val #x7f)))
(lp next))))))
(define (known-vtable vtable)
(define-syntax-rule (tree-il-case vt ...)
(cond
((eq? vtable vt) (values '(language tree-il) 'vt))
...
(else (values #f #f))))
(tree-il-case <void>
<const>
<primitive-ref>
<lexical-ref>
<lexical-set>
<module-ref>
<module-set>
<toplevel-ref>
<toplevel-set>
<toplevel-define>
<conditional>
<call>
<primcall>
<seq>
<lambda>
<lambda-case>
<let>
<letrec>
<fix>
<let-values>
<prompt>
<abort>))
(define-record-type <encoding>
(%make-encoding constants vtables pair-code vector-code symbol-code next-code)
encoding?
(constants constants)
(vtables vtables)
(pair-code pair-code set-pair-code!)
(vector-code vector-code set-vector-code!)
(symbol-code symbol-code set-symbol-code!)
(next-code next-code set-next-code!))
(define (make-encoding)
(%make-encoding (make-hash-table) (make-hash-table) #f #f #f 0))
(define (vtable-nfields vtable)
(define vtable-index-size 5) ; FIXME: pull from struct.h
(struct-ref/unboxed vtable vtable-index-size))
(define (build-encoding! term encoding)
(define (next-code!)
(let ((code (next-code encoding)))
(set-next-code! encoding (1+ code))
code))
(define (intern-constant! x)
(unless (hash-ref (constants encoding) x)
(hash-set! (constants encoding) x (next-code!))))
(define (intern-vtable! x)
(unless (hashq-ref (vtables encoding) x)
(hashq-set! (vtables encoding) x (next-code!))))
(define (ensure-pair-code!)
(unless (pair-code encoding)
(set-pair-code! encoding (next-code!))))
(define (ensure-vector-code!)
(unless (vector-code encoding)
(set-vector-code! encoding (next-code!))))
(define (ensure-symbol-code!)
(unless (symbol-code encoding)
(set-symbol-code! encoding (next-code!))))
(let visit ((term term))
(cond
((pair? term)
(ensure-pair-code!)
(visit (car term))
(visit (cdr term)))
((vector? term)
(ensure-vector-code!)
(visit (vector-length term))
(let lp ((i 0))
(when (< i (vector-length term))
(visit (vector-ref term i))
(lp (1+ i)))))
((symbol? term)
(ensure-symbol-code!)
(visit (symbol->string term)))
((struct? term)
(let ((vtable (struct-vtable term)))
(unless (known-vtable vtable)
(error "struct of unknown type" term))
(intern-vtable! vtable)
(let ((nfields (vtable-nfields vtable)))
(let lp ((i 0))
(when (< i nfields)
(visit (struct-ref term i))
(lp (1+ i)))))))
(else
(intern-constant! term)))))
(define (compute-decoder encoding)
(define (pair-clause code)
`((eq? code ,code)
(let* ((car (lp))
(cdr (lp)))
(cons car cdr))))
(define (vector-clause code)
`((eq? code ,code)
(let* ((len (lp))
(v (make-vector len)))
(let init ((i 0))
(when (< i len)
(vector-set! v i (lp))
(init (1+ i))))
v)))
(define (symbol-clause code)
`((eq? code ,code)
(string->symbol (lp))))
(define (vtable-clause vtable code)
(call-with-values (lambda () (known-vtable vtable))
(lambda (mod name)
(let ((fields (map (lambda (i) (string->symbol (format #f "f~a" i)))
(iota (vtable-nfields vtable)))))
`((eq? code ,code)
(let* (,@(map (lambda (field) `(,field (lp))) fields))
(make-struct/simple (@ ,mod ,name) ,@fields)))))))
(define (constant-clause constant code)
`((eq? code ,code) ',constant))
(define (map-encodings f table)
(map (match-lambda
((value . code) (f value code)))
(sort (hash-map->list cons table)
(match-lambda*
(((_ . code1) (_ . code2)) (< code1 code2))))))
`(lambda (bv)
(define pos 0)
(define (next-u8!)
(let ((u8 (bytevector-u8-ref bv pos)))
(set! pos (1+ pos))
u8))
(define (next-uleb!)
,(if (< (next-code encoding) #x80)
;; No need for uleb decoding in this case.
'(next-u8!)
;; FIXME: We have a maximum code length and probably we
;; should just inline the corresponding decoder instead of
;; looping.
'(let lp ((n 0) (shift 0))
(let ((b (next-u8!)))
(if (zero? (logand b #x80))
(logior (ash b shift) n)
(lp (logior (ash (logxor #x80 b) shift) n)
(+ shift 7)))))))
(let lp ()
(let ((code (next-uleb!)))
(cond
,@(if (pair-code encoding)
(list (pair-clause (pair-code encoding)))
'())
,@(if (vector-code encoding)
(list (vector-clause (vector-code encoding)))
'())
,@(if (symbol-code encoding)
(list (symbol-clause (symbol-code encoding)))
'())
,@(map-encodings vtable-clause (vtables encoding))
,@(map-encodings constant-clause (constants encoding))
(else (error "bad code" code)))))))
(define (encode term encoding)
(call-with-output-bytevector
(lambda (port)
(define (put x) (put-uleb port x))
(let visit ((term term))
(cond
((pair? term)
(put (pair-code encoding))
(visit (car term))
(visit (cdr term)))
((vector? term)
(put (vector-code encoding))
(visit (vector-length term))
(let lp ((i 0))
(when (< i (vector-length term))
(visit (vector-ref term i))
(lp (1+ i)))))
((symbol? term)
(put (symbol-code encoding))
(visit (symbol->string term)))
((struct? term)
(let* ((vtable (struct-vtable term))
(nfields (vtable-nfields vtable)))
(put (hashq-ref (vtables encoding) vtable))
(let lp ((i 0))
(when (< i nfields)
(visit (struct-ref term i))
(lp (1+ i))))))
(else
(put (hash-ref (constants encoding) term))))))))
(define (compute-encoding bindings)
(let ((encoding (make-encoding)))
(for-each (match-lambda
((name . expr) (build-encoding! expr encoding)))
bindings)
(let ((encoded (map (match-lambda
((name . expr) (cons name (encode expr encoding))))
bindings)))
`(lambda (name)
(define decode ,(compute-decoder encoding))
(cond
,@(map (match-lambda
((name . bv)
`((eq? name ',name) (decode ,bv))))
encoded)
(else #f))))))
(define encoding-module (current-module))
(define (compile-inlinable-exports bindings)
(let ((exp (compute-encoding bindings)))
(fix-letrec
(expand-primitives
(resolve-primitives
(compile-tree-il exp encoding-module '())
encoding-module)))))
(define (attach-inlinables exp inlinables)
(post-order
(lambda (exp)
(match exp
(($ <call> src (and proc ($ <module-ref> _ '(guile) 'define-module* #f))
((and m ($ <const> _ mod)) . args))
(cond
((assoc-ref inlinables mod)
=> (lambda (bindings)
(let ((inlinables (compile-inlinable-exports bindings)))
(make-call src proc
(cons* m
(make-const #f #:inlinable-exports)
inlinables
args)))))
(else exp)))
(exp exp)))
exp))
(define (inlinable-exports exp)
(attach-inlinables exp (compute-inlinable-bindings exp)))
|