Datasets:

License:
File size: 31,937 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
;;; Attaching inlinable definitions of exported bindings to modules
;;; Copyright (C) 2021, 2022, 2024
;;;   Free Software Foundation, Inc.
;;;
;;; This library is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU Lesser General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;; Lesser General Public License for more details.
;;;
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this program.  If not, see
;;; <http://www.gnu.org/licenses/>.



(define-module (language tree-il inlinable-exports)
  #:use-module (ice-9 control)
  #:use-module (ice-9 match)
  #:use-module (ice-9 binary-ports)
  #:use-module (language tree-il)
  #:use-module (language tree-il primitives)
  #:use-module (language tree-il fix-letrec)
  #:use-module (language scheme compile-tree-il)
  #:use-module ((srfi srfi-1) #:select (filter-map))
  #:use-module (srfi srfi-9)
  #:use-module (system syntax)
  #:use-module (rnrs bytevectors)
  #:export (inlinable-exports))

;;;
;;; Inlining, as implemented by peval, is the mother of all
;;; optimizations.  It opens up space for other optimizations to work,
;;; such as constant folding, conditional branch folding, and so on.
;;;
;;; Inlining works naturally for lexical bindings.  Inlining of
;;; top-level binding is facilitated by letrectification, which turns
;;; top-level definition sequences to letrec*.  Here we facilitate
;;; inlining across module boundaries, so that module boundaries aren't
;;; necessarily optimization boundaries.
;;;
;;; The high-level idea is to attach a procedure to the module being
;;; compiled, which when called with a name of an export of that module
;;; will return a Tree-IL expression that can be copied into the use
;;; site.  There are two parts: first we determine the set of inlinable
;;; bindings, and then we compile that mapping to a procedure and attach
;;; it to the program being compiled.
;;;
;;; Because we don't want inter-module inlining to inhibit intra-module
;;; inlining, this pass is designed to run late in the Tree-IL
;;; optimization pipeline -- after letrectification, after peval, and so
;;; on.  Unfortunately this does mean that we have to sometimes
;;; pattern-match to determine higher-level constructs from lower-level
;;; residual code, for example to map back from
;;; module-ensure-local-variable! + %variable-set! to toplevel-define,
;;; as reduced by letrectification.  Ah well.
;;;
;;; Ultimately we want to leave the decision to peval as to what to
;;; inline or not to inline, based on its size and effort counters.  But
;;; still we do need to impose some limits -- there's no sense in
;;; copying a large constant from one module to another, for example.
;;; Similarly there's no sense in copying a very large procedure.
;;; Inspired by peval, we bound size growth via a counter that will
;;; abort an inlinable attempt if the term is too large.
;;;
;;; Note that there are some semantic limitations -- you wouldn't want
;;; to copy a mutable value, nor would you want to copy a closure with
;;; free variables.
;;;
;;; Once the set of inlinables is determined, we copy them and rename
;;; their lexicals.  Any reference to an exported binding by lexical
;;; variable is rewritten in terms of a reference to the exported
;;; binding.
;;;
;;; The result is then compiled to a procedure, which internally has a
;;; small interpreter for a bytecode, along with a set of constants.
;;; The assumption is that most of the constants will be written to the
;;; object file anyway, so we aren't taking up more space there.  Any
;;; non-immediate is built on demand, so we limit the impact of
;;; including inlinable definitions on load-time relocations,
;;; allocations, and heap space.
;;;

(define (compute-assigned-lexicals exp)
  (define assigned-lexicals '())
  (define (add-assigned-lexical! var)
    (set! assigned-lexicals (cons var assigned-lexicals)))
  ((make-tree-il-folder)
   exp
   (lambda (exp)
     (match exp
       (($ <lexical-set> _ _ var _)
        (add-assigned-lexical! var)
        (values))
       (_ (values))))
   (lambda (exp)
     (values)))
  assigned-lexicals)

(define (compute-assigned-toplevels exp)
  (define assigned-toplevels '())
  (define (add-assigned-toplevel! mod name)
    (set! assigned-toplevels (acons mod name assigned-toplevels)))
  ((make-tree-il-folder)
   exp
   (lambda (exp)
     (match exp
       (($ <toplevel-set> _ mod name _)
        (add-assigned-toplevel! mod name)
        (values))
       (($ <module-set> src mod name public? exp)
        (unless public?
          (add-assigned-toplevel! mod name))
        (values))
       (_ (values))))
   (lambda (exp)
     (values)))
  assigned-toplevels)

;;; FIXME: Record all bindings in a module, to know whether a
;;; toplevel-ref is an import or not.  If toplevel-ref to imported
;;; variable, transform to module-ref or primitive-ref.  New pass before
;;; peval.

(define (compute-module-bindings exp)
  (define assigned-lexicals (compute-assigned-lexicals exp))
  (define assigned-toplevels (compute-assigned-toplevels exp))
  (define module-definitions '())
  (define lexicals (make-hash-table))
  (define module-lexicals '())
  (define variable-lexicals '())
  (define binding-lexicals '())
  (define binding-values '())
  (define (add-module-definition! mod args)
    (set! module-definitions (acons mod args module-definitions)))
  (define (add-lexical! var val)
    (unless (memq var assigned-lexicals)
      (hashq-set! lexicals var val)))
  (define (add-module-lexical! var mod)
    (unless (memq var assigned-lexicals)
      (set! module-lexicals (acons var mod module-lexicals))))
  (define (add-variable-lexical! var mod name)
    (unless (memq var assigned-lexicals)
      (set! variable-lexicals (acons var (cons mod name) variable-lexicals))))
  (define (add-binding-lexical! var mod name)
    (unless (memq var assigned-lexicals)
      (set! binding-lexicals (acons var (cons mod name) binding-lexicals))))
  (define (add-binding-value! mod name val)
    (set! binding-values (acons (cons mod name) val binding-values)))

  (define (record-bindings! mod gensyms vals)
    (for-each
     (lambda (var val)
       (add-lexical! var val)
       (match val
         (($ <call> _ ($ <module-ref> _ '(guile) 'define-module* #f)
             (($ <const> _ mod) . args))
          (add-module-definition! mod args)
          (add-module-lexical! var mod))
         (($ <primcall> _ 'current-module ())
          (when mod
            (add-module-lexical! var mod)))
         (($ <primcall> _ 'module-ensure-local-variable!
             (($ <lexical-ref> _ _ mod-var) ($ <const> _ name)))
          (let ((mod (assq-ref module-lexicals mod-var)))
            (when mod
              (add-variable-lexical! var mod name))))
         (_ #f)))
     gensyms vals))

  ;; Thread a conservative idea of what the current module is through
  ;; the visit.  Visiting an expression returns the name of the current
  ;; module when the expression completes, or #f if unknown.  Record the
  ;; define-module* forms, if any, and note any assigned or
  ;; multiply-defined variables.  Record definitions by matching
  ;; toplevel-define forms, but also by matching separate
  ;; module-ensure-local-variable! + %variable-set, as residualized by
  ;; letrectification.
  (define (visit exp) (visit/mod exp #f))
  (define (visit* exps)
    (unless (null? exps)
      (visit (car exps))
      (visit* (cdr exps))))
  (define (visit+ exps mod)
    (match exps
      (() mod)
      ((exp . exps)
       (let lp ((mod' (visit/mod exp mod)) (exps exps))
         (match exps
           (() mod')
           ((exp . exps)
            (lp (and (equal? mod' (visit/mod exp mod)) mod')
                exps)))))))
  (define (visit/mod exp mod)
    (match exp
      ((or ($ <void>) ($ <const>) ($ <primitive-ref>) ($ <lexical-ref>)
           ($ <module-ref>) ($ <toplevel-ref>))
       mod)

      (($ <call> _ ($ <module-ref> _ '(guile) 'set-current-module #f)
          (($ <lexical-ref> _ _ var)))
       (assq-ref module-lexicals var))

      (($ <primcall> src '%variable-set! (($ <lexical-ref> _ _ var)
                                          val))
       (match (assq-ref variable-lexicals var)
         ((mod . name)
          (add-binding-value! mod name val)
          ;; Also record lexical for eta-expanded bindings.
          (match val
            (($ <lambda> _ _
                ($ <lambda-case> _ req #f #f #f () (arg ...)
                   ($ <call> _
                      (and eta ($ <lexical-ref> _ _ var))
                      (($ <lexical-ref> _ _ arg) ...))
                   #f))
             (add-binding-lexical! var mod name))
            (($ <lambda> _ _
                ($ <lambda-case> _ req #f (not #f) #f () (arg ...)
                   ($ <primcall> _ 'apply
                      ((and eta ($ <lexical-ref> _ _ var))
                       ($ <lexical-ref> _ _ arg) ...))
                   #f))
             (add-binding-lexical! var mod name))
            (($ <lexical-ref> _ _ var)
             (add-binding-lexical! var mod name))
            (_ #f)))
         (_ #f))
       (visit/mod val mod))

      (($ <call> _ proc args)
       (visit proc)
       (visit* args)
       #f)

      (($ <primcall> _ _ args)
       ;; There is no primcall that sets the current module.
       (visit+ args mod))

      (($ <conditional> src test consequent alternate)
       (visit+ (list consequent alternate) (visit/mod test mod)))

      (($ <lexical-set> src name gensym exp)
       (visit/mod exp mod))

      (($ <toplevel-set> src mod name exp)
       (visit/mod exp mod))

      (($ <module-set> src mod name public? exp)
       (visit/mod exp mod))

      (($ <toplevel-define> src mod name exp)
       (add-binding-value! mod name exp)
       (visit/mod exp mod))

      (($ <lambda> src meta body)
       (when body (visit body))
       mod)

      (($ <lambda-case> src req opt rest kw inits gensyms body alternate)
       (visit* inits)
       (visit body)
       (when alternate (visit alternate))
       (values))

      (($ <seq> src head tail)
       (visit/mod tail (visit/mod head mod)))
      
      (($ <let> src names gensyms vals body)
       (record-bindings! mod gensyms vals)
       (visit/mod body (visit+ vals mod)))

      (($ <letrec> src in-order? names gensyms vals body)
       (record-bindings! mod gensyms vals)
       (visit/mod body (visit+ vals mod)))

      (($ <fix> src names gensyms vals body)
       (record-bindings! mod gensyms vals)
       (visit/mod body (visit+ vals mod)))

      (($ <let-values> src exp body)
       (visit/mod body (visit/mod exp mod))
       #f)

      (($ <prompt> src escape-only? tag body handler)
       (visit tag)
       (visit body)
       (visit handler)
       #f)

      (($ <abort> src tag args tail)
       (visit tag)
       (visit* args)
       (visit tail)
       #f)))

  (visit exp)
  (values module-definitions lexicals binding-lexicals binding-values))

;; - define inlinable? predicate:
;;     exported && declarative && only references public vars && not too big
;;
;; - public := exported from a module, at -O2 and less.
;;   at -O3 and higher public just means defined in any module.
(define (inlinable-exp mod exports lexicals binding-lexicals exp)
  (define fresh-var!
    (let ((counter 0))
      (lambda ()
        (let ((name (string-append "t" (number->string counter))))
          (set! counter (1+ counter))
          (string->symbol name)))))
  (define (fresh-vars vars)
    (match vars
      (() '())
      ((_ . vars) (cons (fresh-var!) (fresh-vars vars)))))
  (define (add-bound-vars old new bound)
    (match (vector old new)
      (#(() ()) bound)
      (#((old . old*) (new . new*))
       (add-bound-vars old* new* (acons old new bound)))))
  (let/ec return
    (define (abort!) (return #f))
    (define count!
      ;; Same as default operator size limit for peval.
      (let ((counter 40))
        (lambda ()
          (set! counter (1- counter))
          (when (zero? counter) (abort!)))))
    (define (residualize-module-private-ref src mod' name)
      ;; TODO: At -O3, we could residualize a private
      ;; reference.  But that could break peoples'
      ;; expectations.
      (abort!))
    (define (eta-reduce exp)
      ;; Undo the result of eta-expansion pass.
      (match exp
        (($ <lambda> _ _
            ($ <lambda-case> _ req #f #f #f () (sym ...)
               ($ <call> _
                  (and eta ($ <lexical-ref>)) (($ <lexical-ref> _ _ sym) ...))
               #f))
         eta)
        (($ <lambda> _ _
            ($ <lambda-case> _ req #f (not #f) #f () (sym ...)
               ($ <primcall> _ 'apply 
                  ((and eta ($ <lexical-ref>)) ($ <lexical-ref> _ _ sym) ...))
               #f))
         eta)
        (_ exp)))

    (let copy ((exp (eta-reduce exp)) (bound '()) (in-lambda? #f))
      (define (recur exp) (copy exp bound in-lambda?))
      (count!)
      (match exp
        ((or ($ <void>) ($ <primitive-ref>) ($ <module-ref>))
         exp)

        (($ <const> src val)
         (match val
           ;; Don't copy values that could be "too big".
           ((? string?) exp) ; Oddly, (array? "") => #t.
           ((or (? pair?) (? syntax?) (? array?))
            (abort!))
           (_ exp)))

        (($ <lexical-ref> src name var)
         (cond
          ;; Rename existing lexicals.
          ((assq-ref bound var)
           => (lambda (var)
                (make-lexical-ref src name var)))
          ;; A free variable reference to a lambda, outside a lambda.
          ;; Could be the lexical-ref residualized by letrectification.
          ;; Copy and rely on size limiter to catch runaways.
          ((and (not in-lambda?) (lambda? (hashq-ref lexicals var)))
           (recur (hashq-ref lexicals var)))
          ((not in-lambda?)
           ;; No advantage to "inline" a toplevel to another toplevel.
           (abort!))
          ;; Some letrectified toplevels will be bound to lexical
          ;; variables, but unless the module has sealed private
          ;; bindings, there may be an associated top-level variable
          ;; as well.
          ((assq-ref binding-lexicals var)
           => (match-lambda
                ((mod' . name)
                 (cond
                  ((and (equal? mod' mod) (assq-ref exports name))
                   => (lambda (public-name)
                        (make-module-ref src mod public-name #t)))
                  (else
                   (residualize-module-private-ref src mod' name))))))
          ;; A free variable reference.  If it's in the program at this
          ;; point, that means that peval didn't see fit to copy it, so
          ;; there's no point in trying to do so here.
          (else (abort!))))

        (($ <toplevel-ref> src mod' name)
         (cond
          ;; Rewrite private references to exported bindings into public
          ;; references.  Peval can decide whether to continue inlining
          ;; or not.
          ((and (equal? mod mod') (assq-ref exports name))
           => (lambda (public-name)
                (make-module-ref src mod public-name #t)))
          (else
           (residualize-module-private-ref src mod' name))))

        (($ <call> src proc args)
         (unless in-lambda? (abort!))
         (make-call src (recur proc) (map recur args)))

        (($ <primcall> src name args)
         (unless in-lambda? (abort!))
         (make-primcall src name (map recur args)))

        (($ <conditional> src test consequent alternate)
         (unless in-lambda? (abort!))
         (make-conditional src (recur test)
                           (recur consequent) (recur alternate)))

        (($ <lexical-set> src name var exp)
         (unless in-lambda? (abort!))
         (cond
          ((assq-ref bound var)
           => (lambda (var)
                (make-lexical-set src name var (recur exp))))
          (else
           (abort!))))

        ((or ($ <toplevel-set>)
             ($ <module-set>)
             ($ <toplevel-define>))
         (abort!))

        (($ <lambda> src meta body)
         ;; Remove any lengthy docstring.
         (let ((meta (filter-map (match-lambda
                                   (('documentation . _) #f)
                                   (pair pair))
                                 meta)))
           (make-lambda src meta (and body (copy body bound #t)))))

        (($ <lambda-case> src req opt rest kw inits vars body alternate)
         (unless in-lambda? (abort!))
         (let* ((vars* (fresh-vars vars))
                (bound (add-bound-vars vars vars* bound)))
           (define (recur* exp) (copy exp bound #t))
           (make-lambda-case src req opt rest
                             (match kw
                               (#f #f)
                               ((aok? . kws)
                                (cons aok?
                                      (map
                                       (match-lambda
                                         ((kw name var)
                                          (list kw name (assq-ref bound var))))
                                       kws))))
                             (map recur* inits)
                             vars*
                             (recur* body)
                             (and alternate (recur alternate)))))

        (($ <seq> src head tail)
         (unless in-lambda? (abort!))
         (make-seq src (recur head) (recur tail)))
        
        (($ <let> src names vars vals body)
         (unless in-lambda? (abort!))
         (let* ((vars* (fresh-vars vars))
                (bound (add-bound-vars vars vars* bound)))
           (define (recur* exp) (copy exp bound #t))
           (make-let src names vars* (map recur vals) (recur* body))))

        (($ <letrec> src in-order? names vars vals body)
         (unless in-lambda? (abort!))
         (let* ((vars* (fresh-vars vars))
                (bound (add-bound-vars vars vars* bound)))
           (define (recur* exp) (copy exp bound #t))
           (make-letrec src in-order? names vars* (map recur* vals)
                        (recur* body))))

        (($ <fix> src names vars vals body)
         (unless in-lambda? (abort!))
         (let* ((vars* (fresh-vars vars))
                (bound (add-bound-vars vars vars* bound)))
           (define (recur* exp) (copy exp bound #t))
           (make-fix src names vars* (map recur* vals)
                     (recur* body))))

        (($ <let-values> src exp body)
         (unless in-lambda? (abort!))
         (make-let-values src (recur exp) (recur body)))

        (($ <prompt> src escape-only? tag body handler)
         (unless in-lambda? (abort!))
         (make-prompt src escape-only?
                      (recur tag) (recur body) (recur handler)))

        (($ <abort> src tag args tail)
         (unless in-lambda? (abort!))
         (make-abort src (recur tag) (map recur args) (recur tail)))))))

(define (compute-inlinable-bindings exp)
  "Traverse @var{exp}, extracting module-level definitions."

  (define-values (modules lexicals binding-lexicals bindings)
    (compute-module-bindings exp))

  (define (kwarg-ref args kw kt kf)
    (let lp ((args args))
      (match args
        (() (kf))
        ((($ <const> _ (? keyword? kw')) val . args)
         (if (eq? kw' kw)
             (kt val)
             (lp args)))
        ((_ _ . args)
         (lp args)))))
  (define (kwarg-ref/const args kw kt kf)
    (kwarg-ref args kw
               (lambda (exp)
                 (match exp
                   (($ <const> _ val') (kt val'))
                   (_ (kf))))
               kf))
  (define (has-constant-initarg? args kw val)
    (kwarg-ref/const args kw
                     (lambda (val')
                       (equal? val val'))
                     (lambda () #f)))

  ;; Collect declarative modules defined once in this compilation unit.
  (define modules-with-inlinable-exports
    (let lp ((defs modules) (not-inlinable '()) (inlinable '()))
      (match defs
        (() inlinable)
        (((mod . args) . defs)
         (cond ((member mod not-inlinable)
                (lp defs not-inlinable inlinable))
               ((or (assoc mod defs) ;; doubly defined?
                    (not (has-constant-initarg? args #:declarative? #t)))
                (lp defs (cons mod not-inlinable) inlinable))
               (else
                (lp defs not-inlinable (cons mod inlinable))))))))

  ;; Omit multiply-defined bindings, and definitions not in declarative
  ;; modules.
  (define non-declarative-definitions
    (let lp ((bindings bindings) (non-declarative '()))
      (match bindings
        (() non-declarative)
        ((((and mod+name (mod . name)) . val) . bindings)
         (cond
          ((member mod+name non-declarative)
           (lp bindings non-declarative))
          ((or (assoc mod+name bindings)
               (not (member mod modules-with-inlinable-exports)))
           (lp bindings (cons mod+name non-declarative)))
          (else
           (lp bindings non-declarative)))))))

  (define exports
    (map (lambda (module)
           (define args (assoc-ref modules module))
           ;; Return list of (PRIVATE-NAME . PUBLIC-NAME) pairs.
           (define (extract-exports kw)
             (kwarg-ref/const args kw
                              (lambda (val)
                                (map (match-lambda
                                       ((and pair (private . public)) pair)
                                       (name (cons name name)))
                                     val))
                              (lambda () '())))
           (cons module
                 (append (extract-exports #:exports)
                         (extract-exports #:replacements))))
         modules-with-inlinable-exports))

  ;; Compute ((PRIVATE-NAME . PUBLIC-NAME) . VALUE) pairs for each
  ;; module with inlinable bindings, for exported bindings only.
  (define inlinable-candidates
    (map
     (lambda (module)
       (define name-pairs (assoc-ref exports module))
       (define (name-pair private-name)
         (assq private-name name-pairs))
       (cons module
             (filter-map
              (match-lambda
                (((and mod+name (mod . name)) . val)
                 (and (equal? module mod)
                      (not (member mod+name non-declarative-definitions))
                      (and=> (name-pair name)
                             (lambda (pair) (cons pair val))))))
              bindings)))
     modules-with-inlinable-exports))

  (define inlinables
    (filter-map
     (match-lambda
       ((mod . exports)
        (let ((name-pairs (map car exports)))
          (match (filter-map
                  (match-lambda
                    (((private . public) . val)
                     (match (inlinable-exp mod name-pairs lexicals
                                           binding-lexicals val)
                       (#f #f)
                       (val (cons public val)))))
                  exports)
            (() #f)
            (exports (cons mod exports))))))
     inlinable-candidates))

  inlinables)

(define (put-uleb port val)
  (let lp ((val val))
    (let ((next (ash val -7)))
      (if (zero? next)
          (put-u8 port val)
          (begin
            (put-u8 port (logior #x80 (logand val #x7f)))
            (lp next))))))

(define (known-vtable vtable)
  (define-syntax-rule (tree-il-case vt ...)
    (cond
     ((eq? vtable vt) (values '(language tree-il) 'vt))
     ...
     (else (values #f #f))))
  (tree-il-case <void>
                <const>
                <primitive-ref>
                <lexical-ref>
                <lexical-set>
                <module-ref>
                <module-set>
                <toplevel-ref>
                <toplevel-set>
                <toplevel-define>
                <conditional>
                <call>
                <primcall>
                <seq>
                <lambda>
                <lambda-case>
                <let>
                <letrec>
                <fix>
                <let-values>
                <prompt>
                <abort>))

(define-record-type <encoding>
  (%make-encoding constants vtables pair-code vector-code symbol-code next-code)
  encoding?
  (constants constants)
  (vtables vtables)
  (pair-code pair-code set-pair-code!)
  (vector-code vector-code set-vector-code!)
  (symbol-code symbol-code set-symbol-code!)
  (next-code next-code set-next-code!))

(define (make-encoding)
  (%make-encoding (make-hash-table) (make-hash-table) #f #f #f 0))

(define (vtable-nfields vtable)
  (define vtable-index-size 5) ; FIXME: pull from struct.h
  (struct-ref/unboxed vtable vtable-index-size))

(define (build-encoding! term encoding)
  (define (next-code!)
    (let ((code (next-code encoding)))
      (set-next-code! encoding (1+ code))
      code))

  (define (intern-constant! x)
    (unless (hash-ref (constants encoding) x)
      (hash-set! (constants encoding) x (next-code!))))
  (define (intern-vtable! x)
    (unless (hashq-ref (vtables encoding) x)
      (hashq-set! (vtables encoding) x (next-code!))))
  (define (ensure-pair-code!)
    (unless (pair-code encoding)
      (set-pair-code! encoding (next-code!))))
  (define (ensure-vector-code!)
    (unless (vector-code encoding)
      (set-vector-code! encoding (next-code!))))
  (define (ensure-symbol-code!)
    (unless (symbol-code encoding)
      (set-symbol-code! encoding (next-code!))))

  (let visit ((term term))
    (cond
     ((pair? term)
      (ensure-pair-code!)
      (visit (car term))
      (visit (cdr term)))
     ((vector? term)
      (ensure-vector-code!)
      (visit (vector-length term))
      (let lp ((i 0))
        (when (< i (vector-length term))
          (visit (vector-ref term i))
          (lp (1+ i)))))
     ((symbol? term)
      (ensure-symbol-code!)
      (visit (symbol->string term)))
     ((struct? term)
      (let ((vtable (struct-vtable term)))
        (unless (known-vtable vtable)
          (error "struct of unknown type" term))
        (intern-vtable! vtable)
        (let ((nfields (vtable-nfields vtable)))
          (let lp ((i 0))
            (when (< i nfields)
              (visit (struct-ref term i))
              (lp (1+ i)))))))
     (else
      (intern-constant! term)))))

(define (compute-decoder encoding)
  (define (pair-clause code)
    `((eq? code ,code)
      (let* ((car (lp))
             (cdr (lp)))
        (cons car cdr))))
  (define (vector-clause code)
    `((eq? code ,code)
      (let* ((len (lp))
             (v (make-vector len)))
        (let init ((i 0))
          (when (< i len)
            (vector-set! v i (lp))
            (init (1+ i))))
        v)))
  (define (symbol-clause code)
    `((eq? code ,code)
      (string->symbol (lp))))
  (define (vtable-clause vtable code)
    (call-with-values (lambda () (known-vtable vtable))
      (lambda (mod name)
        (let ((fields (map (lambda (i) (string->symbol (format #f "f~a" i)))
                           (iota (vtable-nfields vtable)))))
          `((eq? code ,code)
            (let* (,@(map (lambda (field) `(,field (lp))) fields))
              (make-struct/simple (@ ,mod ,name) ,@fields)))))))
  (define (constant-clause constant code)
    `((eq? code ,code) ',constant))
  (define (map-encodings f table)
    (map (match-lambda
          ((value . code) (f value code)))
         (sort (hash-map->list cons table)
               (match-lambda*
                (((_ . code1) (_ . code2)) (< code1 code2))))))

  `(lambda (bv)
     (define pos 0)
     (define (next-u8!)
       (let ((u8 (bytevector-u8-ref bv pos)))
         (set! pos (1+ pos))
         u8))
     (define (next-uleb!)
       ,(if (< (next-code encoding) #x80)
            ;; No need for uleb decoding in this case.
            '(next-u8!)
            ;; FIXME: We have a maximum code length and probably we
            ;; should just inline the corresponding decoder instead of
            ;; looping.
            '(let lp ((n 0) (shift 0))
               (let ((b (next-u8!)))
                 (if (zero? (logand b #x80))
                     (logior (ash b shift) n)
                     (lp (logior (ash (logxor #x80 b) shift) n)
                         (+ shift 7)))))))
     (let lp ()
       (let ((code (next-uleb!)))
         (cond
          ,@(if (pair-code encoding)
                (list (pair-clause (pair-code encoding)))
                '())
          ,@(if (vector-code encoding)
                (list (vector-clause (vector-code encoding)))
                '())
          ,@(if (symbol-code encoding)
                (list (symbol-clause (symbol-code encoding)))
                '())
          ,@(map-encodings vtable-clause (vtables encoding))
          ,@(map-encodings constant-clause (constants encoding))
          (else (error "bad code" code)))))))

(define (encode term encoding)
  (call-with-output-bytevector
   (lambda (port)
     (define (put x) (put-uleb port x))
     (let visit ((term term))
       (cond
        ((pair? term)
         (put (pair-code encoding))
         (visit (car term))
         (visit (cdr term)))
        ((vector? term)
         (put (vector-code encoding))
         (visit (vector-length term))
         (let lp ((i 0))
           (when (< i (vector-length term))
             (visit (vector-ref term i))
             (lp (1+ i)))))
        ((symbol? term)
         (put (symbol-code encoding))
         (visit (symbol->string term)))
        ((struct? term)
         (let* ((vtable (struct-vtable term))
                (nfields (vtable-nfields vtable)))
           (put (hashq-ref (vtables encoding) vtable))
           (let lp ((i 0))
             (when (< i nfields)
               (visit (struct-ref term i))
               (lp (1+ i))))))
        (else
         (put (hash-ref (constants encoding) term))))))))

(define (compute-encoding bindings)
  (let ((encoding (make-encoding)))
    (for-each (match-lambda
                ((name . expr) (build-encoding! expr encoding)))
              bindings)
    (let ((encoded (map (match-lambda
                          ((name . expr) (cons name (encode expr encoding))))
                        bindings)))
      `(lambda (name)
         (define decode ,(compute-decoder encoding))
         (cond
          ,@(map (match-lambda
                   ((name . bv)
                    `((eq? name ',name) (decode ,bv))))
                 encoded)
          (else #f))))))

(define encoding-module (current-module))
(define (compile-inlinable-exports bindings)
  (let ((exp (compute-encoding bindings)))
    (fix-letrec
     (expand-primitives
      (resolve-primitives
       (compile-tree-il exp encoding-module '())
       encoding-module)))))

(define (attach-inlinables exp inlinables)
  (post-order
   (lambda (exp)
     (match exp
       (($ <call> src (and proc ($ <module-ref> _ '(guile) 'define-module* #f))
           ((and m ($ <const> _ mod)) . args))
        (cond
         ((assoc-ref inlinables mod)
          => (lambda (bindings)
               (let ((inlinables (compile-inlinable-exports bindings)))
                 (make-call src proc
                            (cons* m
                                   (make-const #f #:inlinable-exports)
                                   inlinables
                                   args)))))
         (else exp)))
       (exp exp)))
   exp))

(define (inlinable-exports exp)
  (attach-inlinables exp (compute-inlinable-bindings exp)))