Datasets:

License:
File size: 29,027 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
;;; Functional name maps
;;; Copyright (C) 2014-2017,2019 Free Software Foundation, Inc.
;;;
;;; This library is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU Lesser General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;; 
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;; Lesser General Public License for more details.
;;; 
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this program.  If not, see
;;; <http://www.gnu.org/licenses/>.

;;; Commentary:
;;;
;;; Some CPS passes need to perform a flow analysis in which every
;;; program point has an associated map over some set of labels or
;;; variables.  The naive way to implement this is with an array of
;;; arrays, but this has N^2 complexity, and it really can hurt us.
;;;
;;; Instead, this module provides a functional map that can share space
;;; between program points, reducing the amortized space complexity of
;;; the representations down to O(n log n).  Adding entries to the
;;; mapping and lookup are O(log n).  Intersection and union between
;;; intmaps that share state are fast, too. 
;;;
;;; Code:

(define-module (language cps intmap)
  #:use-module (srfi srfi-9)
  #:use-module (srfi srfi-9 gnu)
  #:use-module (ice-9 match)
  #:use-module ((ice-9 threads) #:select (current-thread))
  #:export (empty-intmap
            intmap?
            transient-intmap?
            persistent-intmap
            transient-intmap
            intmap-add
            intmap-add!
            intmap-replace
            intmap-replace!
            intmap-remove
            intmap-ref
            intmap-next
            intmap-prev
            intmap-fold
            intmap-fold-right
            intmap-union
            intmap-intersect))

;; Persistent sparse intmaps.

(define-syntax-rule (define-inline name val)
  (define-syntax name (identifier-syntax val)))

;; FIXME: This should make an actual atomic reference.
(define-inlinable (make-atomic-reference value)
  (list value))
(define-inlinable (get-atomic-reference reference)
  (car reference))
(define-inlinable (set-atomic-reference! reference value)
  (set-car! reference value))

(define-inline *branch-bits* 5)
(define-inline *branch-size* (ash 1 *branch-bits*))
(define-inline *branch-size-with-edit* (1+ *branch-size*))
(define-inline *edit-index* *branch-size*)
(define-inline *branch-mask* (1- *branch-size*))

(define-record-type <intmap>
  (make-intmap min shift root)
  intmap?
  (min intmap-min)
  (shift intmap-shift)
  (root intmap-root))

(define-record-type <transient-intmap>
  (make-transient-intmap min shift root edit)
  transient-intmap?
  (min transient-intmap-min set-transient-intmap-min!)
  (shift transient-intmap-shift set-transient-intmap-shift!)
  (root transient-intmap-root set-transient-intmap-root!)
  (edit transient-intmap-edit set-transient-intmap-edit!))

(define *absent* (list 'absent))
(define-inlinable (absent? x)
  (eq? x *absent*))
(define-inlinable (present? x)
  (not (absent? x)))

(define-inlinable (new-branch edit)
  (let ((vec (make-vector *branch-size-with-edit* *absent*)))
    (vector-set! vec *edit-index* edit)
    vec))
(define-inlinable (clone-branch-with-edit branch edit)
  (let ((new (vector-copy branch)))
    (vector-set! new *edit-index* edit)
    new))
(define (clone-branch-and-set branch i elt)
  (let ((new (clone-branch-with-edit branch #f)))
    (vector-set! new i elt)
    new))
(define-inlinable (assert-readable! root-edit)
  (unless (eq? (get-atomic-reference root-edit) (current-thread))
    (error "Transient intmap owned by another thread" root-edit)))
(define-inlinable (writable-branch branch root-edit)
  (let ((edit (vector-ref branch *edit-index*)))
    (if (eq? root-edit edit)
        branch
        (clone-branch-with-edit branch root-edit))))
(define (branch-empty? branch)
  (let lp ((i 0))
    (or (= i *branch-size*)
        (and (absent? (vector-ref branch i))
             (lp (1+ i))))))

(define-inlinable (round-down min shift)
  (logand min (lognot (1- (ash 1 shift)))))

(define empty-intmap (make-intmap 0 0 *absent*))

(define (add-level min shift root)
  (let* ((shift* (+ shift *branch-bits*))
         (min* (round-down min shift*))
         (idx (logand (ash (- min min*) (- shift))
                      *branch-mask*))
         (root* (new-branch #f)))
    (vector-set! root* idx root)
    (make-intmap min* shift* root*)))

(define (make-intmap/prune min shift root)
  (if (zero? shift)
      (make-intmap min shift root)
      (let lp ((i 0) (elt #f))
        (cond
         ((< i *branch-size*)
          (if (present? (vector-ref root i))
              (if elt
                  (make-intmap min shift root)
                  (lp (1+ i) i))
              (lp (1+ i) elt)))
         (elt
          (let ((shift (- shift *branch-bits*)))
            (make-intmap/prune (+ min (ash elt shift))
                               shift
                               (vector-ref root elt))))
         ;; Shouldn't be reached...
         (else empty-intmap)))))

(define (meet-error old new)
  (error "Multiple differing values and no meet procedure defined" old new))

(define* (transient-intmap #:optional (source empty-intmap))
  (match source
    (($ <transient-intmap> min shift root edit)
     (assert-readable! edit)
     source)
    (($ <intmap> min shift root)
     (let ((edit (make-atomic-reference (current-thread))))
       (make-transient-intmap min shift root edit)))))

(define* (persistent-intmap #:optional (source empty-intmap))
  (match source
    (($ <transient-intmap> min shift root edit)
     (assert-readable! edit)
     ;; Make a fresh reference, causing any further operations on this
     ;; transient to clone its root afresh.
     (set-transient-intmap-edit! source
                                 (make-atomic-reference (current-thread)))
     ;; Clear the reference to the current thread, causing our edited
     ;; data structures to be persistent again.
     (set-atomic-reference! edit #f)
     (if min
         (make-intmap min shift root)
         empty-intmap))
    (($ <intmap>)
     source)))

(define* (intmap-add! map i val #:optional (meet meet-error))
  (define (ensure-branch! root idx)
    (let ((edit (vector-ref root *edit-index*))
          (v (vector-ref root idx)))
      (if (absent? v)
          (let ((v (new-branch edit)))
            (vector-set! root idx v)
            v)
          (let ((v* (writable-branch v edit)))
            (unless (eq? v v*)
              (vector-set! root idx v*))
            v*))))
  (define (adjoin! i shift root)
    (let* ((shift (- shift *branch-bits*))
           (idx (logand (ash i (- shift)) *branch-mask*)))
      (if (zero? shift)
          (let ((node (vector-ref root idx)))
            (unless (eq? node val)
              (vector-set! root idx (if (present? node) (meet node val) val))))
          (adjoin! i shift (ensure-branch! root idx)))))
  (match map
    (($ <transient-intmap> min shift root edit)
     (assert-readable! edit)
     (cond
      ((< i 0)
       ;; The power-of-two spanning trick doesn't work across 0.
       (error "Intmaps can only map non-negative integers." i))
      ((absent? root)
       (set-transient-intmap-min! map i)
       (set-transient-intmap-shift! map 0)
       (set-transient-intmap-root! map val))
      ((and (<= min i) (< i (+ min (ash 1 shift))))
       ;; Add element to map; level will not change.
       (if (zero? shift)
           (unless (eq? root val)
             (set-transient-intmap-root! map (meet root val)))
           (let ((root* (writable-branch root edit)))
             (unless (eq? root root*)
               (set-transient-intmap-root! map root*))
             (adjoin! (- i min) shift root*))))
      (else
       (let lp ((min min)
                (shift shift)
                (root root))
         (let* ((shift* (+ shift *branch-bits*))
                (min* (round-down min shift*))
                (idx (logand (ash (- min min*) (- shift))
                             *branch-mask*))
                (root* (new-branch edit)))
           (vector-set! root* idx root)
           (cond
            ((and (<= min* i) (< i (+ min* (ash 1 shift*))))
             (set-transient-intmap-min! map min*)
             (set-transient-intmap-shift! map shift*)
             (set-transient-intmap-root! map root*)
             (adjoin! (- i min*) shift* root*))
            (else
             (lp min* shift* root*)))))))
     map)
    (($ <intmap>)
     (intmap-add! (transient-intmap map) i val meet))))

(define* (intmap-add map i val #:optional (meet meet-error))
  (define (adjoin i shift root)
    (if (zero? shift)
        (cond
         ((eq? root val) root)
         ((absent? root) val)
         (else (meet root val)))
        (let* ((shift (- shift *branch-bits*))
               (idx (logand (ash i (- shift)) *branch-mask*)))
          (if (absent? root)
              (let ((root* (new-branch #f))
                    (node* (adjoin i shift root)))
                (vector-set! root* idx node*)
                root*)
              (let* ((node (vector-ref root idx))
                     (node* (adjoin i shift node)))
                (if (eq? node node*)
                    root
                    (clone-branch-and-set root idx node*)))))))
  (match map
    (($ <intmap> min shift root)
     (cond
      ((< i 0)
       ;; The power-of-two spanning trick doesn't work across 0.
       (error "Intmaps can only map non-negative integers." i))
      ((absent? root)
       ;; Add first element.
       (make-intmap i 0 val))
      ((and (<= min i) (< i (+ min (ash 1 shift))))
       ;; Add element to map; level will not change.
       (let ((old-root root)
             (root (adjoin (- i min) shift root)))
         (if (eq? root old-root)
             map
             (make-intmap min shift root))))
      ((< i min)
       ;; Rebuild the tree by unioning two intmaps.
       (intmap-union (intmap-add empty-intmap i val error) map error))
      (else
       ;; Add a new level and try again.
       (intmap-add (add-level min shift root) i val error))))
    (($ <transient-intmap>)
     (intmap-add (persistent-intmap map) i val meet))))

(define* (intmap-replace! map i val #:optional (meet (lambda (old new) new)))
  "Like intmap-add!, but requires that @var{i} was present in the map
already, and always calls the meet procedure."
  (define (not-found)
    (error "not found" i))
  (define (ensure-branch! root idx)
    (let ((edit (vector-ref root *edit-index*))
          (v (vector-ref root idx)))
      (when (absent? v) (not-found))
      (let ((v* (writable-branch v edit)))
        (unless (eq? v v*)
          (vector-set! root idx v*))
        v*)))
  (define (adjoin! i shift root)
    (let* ((shift (- shift *branch-bits*))
           (idx (logand (ash i (- shift)) *branch-mask*)))
      (if (zero? shift)
          (let ((node (vector-ref root idx)))
            (when (absent? node) (not-found))
            (vector-set! root idx (meet node val)))
          (adjoin! i shift (ensure-branch! root idx)))))
  (match map
    (($ <transient-intmap> min shift root edit)
     (assert-readable! edit)
     (cond
      ((< i 0)
       ;; The power-of-two spanning trick doesn't work across 0.
       (error "Intmaps can only map non-negative integers." i))
      ((and (present? root) (<= min i) (< i (+ min (ash 1 shift))))
       (if (zero? shift)
           (set-transient-intmap-root! map (meet root val))
           (let ((root* (writable-branch root edit)))
             (unless (eq? root root*)
               (set-transient-intmap-root! map root*))
             (adjoin! (- i min) shift root*))))
      (else
       (not-found)))
     map)
    (($ <intmap>)
     (intmap-add! (transient-intmap map) i val meet))))

(define* (intmap-replace map i val #:optional (meet (lambda (old new) new)))
  "Like intmap-add, but requires that @var{i} was present in the map
already, and always calls the meet procedure."
  (define (not-found)
    (error "not found" i))
  (define (adjoin i shift root)
    (if (zero? shift)
        (if (absent? root)
            (not-found)
            (meet root val))
        (let* ((shift (- shift *branch-bits*))
               (idx (logand (ash i (- shift)) *branch-mask*)))
          (if (absent? root)
              (not-found)
              (let* ((node (vector-ref root idx))
                     (node* (adjoin i shift node)))
                (if (eq? node node*)
                    root
                    (clone-branch-and-set root idx node*)))))))
  (match map
    (($ <intmap> min shift root)
     (cond
      ((< i 0)
       ;; The power-of-two spanning trick doesn't work across 0.
       (error "Intmaps can only map non-negative integers." i))
      ((and (present? root) (<= min i) (< i (+ min (ash 1 shift))))
       (let ((old-root root)
             (root (adjoin (- i min) shift root)))
         (if (eq? root old-root)
             map
             (make-intmap min shift root))))
      (else (not-found))))
    (($ <transient-intmap>)
     (intmap-replace (persistent-intmap map) i val meet))))

(define (intmap-remove map i)
  (define (remove i shift root)
    (cond
     ((zero? shift) *absent*)
     (else
      (let* ((shift (- shift *branch-bits*))
             (idx (logand (ash i (- shift)) *branch-mask*))
             (node (vector-ref root idx)))
        (if (absent? node)
            root
            (let ((node* (remove i shift node)))
              (if (eq? node node*)
                  root
                  (clone-branch-and-set root idx node*))))))))
  (match map
    (($ <intmap> min shift root)
     (cond
      ((absent? root) map)
      ((and (<= min i) (< i (+ min (ash 1 shift))))
       ;; Add element to map; level will not change.
       (let ((root* (remove (- i min) shift root)))
         (if (eq? root root*)
             map
             (if (absent? root*)
                 empty-intmap
                 (make-intmap/prune min shift root*)))))
      (else map)))
    (($ <transient-intmap>)
     (intmap-remove (persistent-intmap map) i))))

(define* (intmap-ref map i #:optional (not-found (lambda (i)
                                                   (error "not found" i))))
  (define (absent) (not-found i))
  (define (ref min shift root)
    (if (zero? shift)
        (if (and min (= i min) (present? root))
            root
            (absent))
        (if (and (<= min i) (< i (+ min (ash 1 shift))))
            (let ((i (- i min)))
              (let lp ((node root) (shift shift))
                (if (present? node)
                    (if (= shift *branch-bits*)
                        (let ((node (vector-ref node (logand i *branch-mask*))))
                          (if (present? node)
                              node
                              (absent)))
                        (let* ((shift (- shift *branch-bits*))
                               (idx (logand (ash i (- shift))
                                            *branch-mask*)))
                          (lp (vector-ref node idx) shift)))
                    (absent))))
            (absent))))
  (match map
    (($ <intmap> min shift root)
     (ref min shift root))
    (($ <transient-intmap> min shift root edit)
     (assert-readable! edit)
     (ref min shift root))))

(define* (intmap-next map #:optional i)
  (define (visit-branch node shift i)
    (let lp ((i i) (idx (logand (ash i (- shift)) *branch-mask*)))
      (and (< idx *branch-size*)
           (or (visit-node (vector-ref node idx) shift i)
               (let ((inc (ash 1 shift)))
                 (lp (+ (round-down i shift) inc) (1+ idx)))))))
  (define (visit-node node shift i)
    (and (present? node)
         (if (zero? shift)
             i
             (visit-branch node (- shift *branch-bits*) i))))
  (define (next min shift root)
    (let ((i (if (and i (< min i))
                 (- i min)
                 0)))
      (and (< i (ash 1 shift))
           (let ((i (visit-node root shift i)))
             (and i (+ min i))))))
  (match map
    (($ <intmap> min shift root)
     (next min shift root))
    (($ <transient-intmap> min shift root edit)
     (assert-readable! edit)
     (next min shift root))))

(define* (intmap-prev map #:optional i)
  (define (visit-branch node shift i)
    (let lp ((i i) (idx (logand (ash i (- shift)) *branch-mask*)))
      (and (<= 0 idx)
           (or (visit-node (vector-ref node idx) shift i)
               (lp (1- (round-down i shift)) (1- idx))))))
  (define (visit-node node shift i)
    (and (present? node)
         (if (zero? shift)
             i
             (visit-branch node (- shift *branch-bits*) i))))
  (define (prev min shift root)
    (let* ((i (if (and i (< i (+ min (ash 1 shift))))
                  (- i min)
                  (1- (ash 1 shift)))))
      (and (<= 0 i)
           (let ((i (visit-node root shift i)))
             (and i (+ min i))))))
  (match map
    (($ <intmap> min shift root)
     (prev min shift root))
    (($ <transient-intmap> min shift root edit)
     (assert-readable! edit)
     (prev min shift root))))

(define-syntax-rule (make-intmap-folder forward? seed ...)
  (lambda (f map seed ...)
    (define (visit-branch node shift min seed ...)
      (let ((shift (- shift *branch-bits*)))
        (if (zero? shift)
            (let lp ((i (if forward? 0 (1- *branch-size*))) (seed seed) ...)
              (if (if forward? (< i *branch-size*) (<= 0 i))
                  (let ((elt (vector-ref node i)))
                    (call-with-values (lambda ()
                                        (if (present? elt)
                                            (f (+ i min) elt seed ...)
                                            (values seed ...)))
                      (lambda (seed ...)
                        (lp (if forward? (1+ i) (1- i)) seed ...))))
                  (values seed ...)))
            (let lp ((i (if forward? 0 (1- *branch-size*))) (seed seed) ...)
              (if (if forward? (< i *branch-size*) (<= 0 i))
                  (let ((elt (vector-ref node i)))
                    (call-with-values
                        (lambda ()
                          (if (present? elt)
                              (visit-branch elt shift (+ min (ash i shift))
                                            seed ...)
                              (values seed ...)))
                      (lambda (seed ...)
                        (lp (if forward? (1+ i) (1- i)) seed ...))))
                  (values seed ...))))))
    (let fold ((map map))
      (match map
        (($ <intmap> min shift root)
         (cond
          ((absent? root) (values seed ...))
          ((zero? shift) (f min root seed ...))
          (else (visit-branch root shift min seed ...))))
        (($ <transient-intmap>)
         (fold (persistent-intmap map)))))))

(define intmap-fold
  (case-lambda
    ((f map)
     ((make-intmap-folder #t) f map))
    ((f map seed)
     ((make-intmap-folder #t seed) f map seed))
    ((f map seed0 seed1)
     ((make-intmap-folder #t seed0 seed1) f map seed0 seed1))
    ((f map seed0 seed1 seed2)
     ((make-intmap-folder #t seed0 seed1 seed2) f map seed0 seed1 seed2))))

(define intmap-fold-right
  (case-lambda
    ((f map)
     ((make-intmap-folder #f) f map))
    ((f map seed)
     ((make-intmap-folder #f seed) f map seed))
    ((f map seed0 seed1)
     ((make-intmap-folder #f seed0 seed1) f map seed0 seed1))
    ((f map seed0 seed1 seed2)
     ((make-intmap-folder #f seed0 seed1 seed2) f map seed0 seed1 seed2))))

(define* (intmap-union a b #:optional (meet meet-error))
  ;; Union A and B from index I; the result will be fresh.
  (define (union-branches/fresh shift a b i fresh)
    (let lp ((i 0))
      (cond
       ((< i *branch-size*)
        (let* ((a-child (vector-ref a i))
               (b-child (vector-ref b i)))
          (vector-set! fresh i (union shift a-child b-child))
          (lp (1+ i))))
       (else fresh))))
  ;; Union A and B from index I; the result may be eq? to A.
  (define (union-branches/a shift a b i)
    (let lp ((i i))
      (cond
       ((< i *branch-size*)
        (let* ((a-child (vector-ref a i))
               (b-child (vector-ref b i)))
          (if (eq? a-child b-child)
              (lp (1+ i))
              (let ((child (union shift a-child b-child)))
                (cond
                 ((eq? a-child child)
                  (lp (1+ i)))
                 (else
                  (let ((result (clone-branch-and-set a i child)))
                    (union-branches/fresh shift a b (1+ i) result))))))))
       (else a))))
  ;; Union A and B; the may could be eq? to either.
  (define (union-branches shift a b)
    (let lp ((i 0))
      (cond
       ((< i *branch-size*)
        (let* ((a-child (vector-ref a i))
               (b-child (vector-ref b i)))
          (if (eq? a-child b-child)
              (lp (1+ i))
              (let ((child (union shift a-child b-child)))
                (cond
                 ((eq? a-child child)
                  (union-branches/a shift a b (1+ i)))
                 ((eq? b-child child)
                  (union-branches/a shift b a (1+ i)))
                 (else
                  (let ((result (clone-branch-and-set a i child)))
                    (union-branches/fresh shift a b (1+ i) result))))))))
       ;; Seems they are the same but not eq?.  Odd.
       (else a))))
  (define (union shift a-node b-node)
    (cond
     ((absent? a-node) b-node)
     ((absent? b-node) a-node)
     ((eq? a-node b-node) a-node)
     ((zero? shift) (meet a-node b-node))
     (else (union-branches (- shift *branch-bits*) a-node b-node))))
  (match (cons a b)
    ((($ <intmap> a-min a-shift a-root) . ($ <intmap> b-min b-shift b-root))
     (cond
      ((not (= b-shift a-shift))
       ;; Hoist the map with the lowest shift to meet the one with the
       ;; higher shift.
       (if (< b-shift a-shift)
           (intmap-union a (add-level b-min b-shift b-root) meet)
           (intmap-union (add-level a-min a-shift a-root) b meet)))
      ((not (= b-min a-min))
       ;; Nodes at the same shift but different minimums will cover
       ;; disjoint ranges (due to the round-down call on min).  Hoist
       ;; both until they cover the same range.
       (intmap-union (add-level a-min a-shift a-root)
                     (add-level b-min b-shift b-root)
                     meet))
      (else
       ;; At this point, A and B cover the same range.
       (let ((root (union a-shift a-root b-root)))
         (cond
          ((eq? root a-root) a)
          ((eq? root b-root) b)
          (else (make-intmap a-min a-shift root)))))))))

(define* (intmap-intersect a b #:optional (meet meet-error))
  ;; Intersect A and B from index I; the result will be fresh.
  (define (intersect-branches/fresh shift a b i fresh)
    (let lp ((i 0))
      (cond
       ((< i *branch-size*)
        (let* ((a-child (vector-ref a i))
               (b-child (vector-ref b i)))
          (vector-set! fresh i (intersect shift a-child b-child))
          (lp (1+ i))))
       ((branch-empty? fresh) *absent*)
       (else fresh))))
  ;; Intersect A and B from index I; the result may be eq? to A.
  (define (intersect-branches/a shift a b i)
    (let lp ((i i))
      (cond
       ((< i *branch-size*)
        (let* ((a-child (vector-ref a i))
               (b-child (vector-ref b i)))
          (if (eq? a-child b-child)
              (lp (1+ i))
              (let ((child (intersect shift a-child b-child)))
                (cond
                 ((eq? a-child child)
                  (lp (1+ i)))
                 (else
                  (let ((result (clone-branch-and-set a i child)))
                    (intersect-branches/fresh shift a b (1+ i) result))))))))
       (else a))))
  ;; Intersect A and B; the may could be eq? to either.
  (define (intersect-branches shift a b)
    (let lp ((i 0))
      (cond
       ((< i *branch-size*)
        (let* ((a-child (vector-ref a i))
               (b-child (vector-ref b i)))
          (if (eq? a-child b-child)
              (lp (1+ i))
              (let ((child (intersect shift a-child b-child)))
                (cond
                 ((eq? a-child child)
                  (intersect-branches/a shift a b (1+ i)))
                 ((eq? b-child child)
                  (intersect-branches/a shift b a (1+ i)))
                 (else
                  (let ((result (clone-branch-and-set a i child)))
                    (intersect-branches/fresh shift a b (1+ i) result))))))))
       ;; Seems they are the same but not eq?.  Odd.
       (else a))))
  (define (intersect shift a-node b-node)
    (cond
     ((or (absent? a-node) (absent? b-node)) *absent*)
     ((eq? a-node b-node) a-node)
     ((zero? shift) (meet a-node b-node))
     (else (intersect-branches (- shift *branch-bits*) a-node b-node))))

  (define (different-mins lo-min lo-shift lo-root hi-min hi-shift hi lo-is-a?)
    (cond
     ((<= lo-shift hi-shift)
      ;; If LO has a lower shift and a lower min, it is disjoint.  If
      ;; it has the same shift and a different min, it is also
      ;; disjoint.
      empty-intmap)
     (else
      (let* ((lo-shift (- lo-shift *branch-bits*))
             (lo-idx (ash (- hi-min lo-min) (- lo-shift))))
        (if (>= lo-idx *branch-size*)
            ;; HI has a lower shift, but it not within LO.
            empty-intmap
            (let ((lo-root (vector-ref lo-root lo-idx)))
              (if (absent? lo-root)
                  empty-intmap
                  (let ((lo (make-intmap (+ lo-min (ash lo-idx lo-shift))
                                         lo-shift
                                         lo-root)))
                    (if lo-is-a?
                        (intmap-intersect lo hi meet)
                        (intmap-intersect hi lo meet))))))))))

  (define (different-shifts-same-min min hi-shift hi-root lo lo-is-a?)
    (let ((hi-root (vector-ref hi-root 0)))
      (if (absent? hi-root)
          empty-intmap
          (let ((hi (make-intmap min
                                 (- hi-shift *branch-bits*)
                                 hi-root)))
            (if lo-is-a?
                (intmap-intersect lo hi meet)
                (intmap-intersect hi lo meet))))))

  (match (cons a b)
    ((($ <intmap> a-min a-shift a-root) . ($ <intmap> b-min b-shift b-root))
     (cond
      ((< a-min b-min)
       (different-mins a-min a-shift a-root b-min b-shift b #t))
      ((< b-min a-min)
       (different-mins b-min b-shift b-root a-min a-shift a #f))
      ((< a-shift b-shift)
       (different-shifts-same-min b-min b-shift b-root a #t))
      ((< b-shift a-shift)
       (different-shifts-same-min a-min a-shift a-root b #f))
      (else
       ;; At this point, A and B cover the same range.
       (let ((root (intersect a-shift a-root b-root)))
         (cond
          ((absent? root) empty-intmap)
          ((eq? root a-root) a)
          ((eq? root b-root) b)
          (else (make-intmap/prune a-min a-shift root)))))))))

(define (intmap->alist intmap)
  (reverse (intmap-fold acons intmap '())))

(define (intmap-key-ranges intmap)
  (call-with-values
      (lambda ()
        (intmap-fold (lambda (k v start end closed)
                       (cond
                        ((not start) (values k k closed))
                        ((= k (1+ end)) (values start k closed))
                        (else (values k k (acons start end closed)))))
                     intmap #f #f '()))
    (lambda (start end closed)
      (reverse (if start (acons start end closed) closed)))))

(define (range-string ranges)
  (string-join (map (match-lambda
                      ((start . start)
                       (format #f "~a" start))
                      ((start . end)
                       (format #f "~a-~a" start end)))
                    ranges)
               ","))

(define (print-helper port tag intmap)
  (let ((ranges (intmap-key-ranges intmap)))
    (match ranges
      (()
       (format port "#<~a>" tag))
      (((0 . _) . _)
       (format port "#<~a ~a>" tag (range-string ranges)))
      (((min . end) . ranges)
       (let ((ranges (map (match-lambda
                            ((start . end) (cons (- start min) (- end min))))
                          (acons min end ranges))))
         (format port "#<~a ~a+~a>" tag min (range-string ranges)))))))

(define (print-intmap intmap port)
  (print-helper port "intmap" intmap))
(define (print-transient-intmap intmap port)
  (print-helper port "transient-intmap" intmap))

(set-record-type-printer! <intmap> print-intmap)
(set-record-type-printer! <transient-intmap> print-transient-intmap)