File size: 32,454 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
;;; Effects analysis on CPS
;; Copyright (C) 2011-2015,2017-2021,2023 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; A helper module to compute the set of effects caused by an
;;; expression. This information is useful when writing algorithms that
;;; move code around, while preserving the semantics of an input
;;; program.
;;;
;;; The effects set is represented as an integer with three parts. The
;;; low 4 bits indicate effects caused by an expression, as a bitfield.
;;; The next 4 bits indicate the kind of memory accessed by the
;;; expression, if it accesses mutable memory. Finally the rest of the
;;; bits indicate the field in the object being accessed, if known, or
;;; -1 for unknown.
;;;
;;; In this way we embed a coarse type-based alias analysis in the
;;; effects analysis. For example, a "car" call is modelled as causing
;;; a read to field 0 on a &pair, and causing a &type-check effect. If
;;; any intervening code sets the car of any pair, that will block
;;; motion of the "car" call, because any write to field 0 of a pair is
;;; seen by effects analysis as being a write to field 0 of all pairs.
;;;
;;; Code:
(define-module (language cps effects-analysis)
#:use-module (language cps)
#:use-module (language cps utils)
#:use-module (language cps intset)
#:use-module (language cps intmap)
#:use-module (ice-9 match)
#:export (expression-effects
compute-effects
synthesize-definition-effects
&allocation
&type-check
&read
&write
&fluid
&prompt
&vector
&box
&module
&struct
&string
&thread
&bytevector
&closure
&header
&object
&field
&allocate
&read-object
&read-field
&write-object
&write-field
&no-effects
&all-effects
causes-effect?
causes-all-effects?
effect-clobbers?
compute-clobber-map))
(define-syntax define-flags
(lambda (x)
(syntax-case x ()
((_ all shift name ...)
(let ((count (length #'(name ...))))
(with-syntax (((n ...) (iota count))
(count count))
#'(begin
(define-syntax name (identifier-syntax (ash 1 n)))
...
(define-syntax all (identifier-syntax (1- (ash 1 count))))
(define-syntax shift (identifier-syntax count)))))))))
(define-syntax define-enumeration
(lambda (x)
(define (count-bits n)
(let lp ((out 1))
(if (< n (ash 1 (1- out)))
out
(lp (1+ out)))))
(syntax-case x ()
((_ mask shift name ...)
(let* ((len (length #'(name ...)))
(bits (count-bits len)))
(with-syntax (((n ...) (iota len))
(bits bits))
#'(begin
(define-syntax name (identifier-syntax n))
...
(define-syntax mask (identifier-syntax (1- (ash 1 bits))))
(define-syntax shift (identifier-syntax bits)))))))))
(define-flags &all-effect-kinds &effect-kind-bits
;; Indicates that an expression may cause a type check. A type check,
;; for the purposes of this analysis, is the possibility of throwing
;; an exception the first time an expression is evaluated. If the
;; expression did not cause an exception to be thrown, users can
;; assume that evaluating the expression again will not cause an
;; exception to be thrown.
;;
;; For example, (+ x y) might throw if X or Y are not numbers. But if
;; it doesn't throw, it should be safe to elide a dominated, common
;; subexpression (+ x y).
&type-check
;; Indicates that an expression may return a fresh object. The kind
;; of object is indicated in the object kind field.
&allocation
;; Indicates that an expression may cause a read from memory. The
;; kind of memory is given in the object kind field. Some object
;; kinds have finer-grained fields; those are expressed in the "field"
;; part of the effects value. -1 indicates "the whole object".
&read
;; Indicates that an expression may cause a write to memory.
&write)
(define-enumeration &memory-kind-mask &memory-kind-bits
;; Indicates than an expression may access unknown kinds of memory.
&unknown-memory-kinds
;; Indicates that an expression depends on the value of a fluid
;; variable, or on the current fluid environment.
&fluid
;; Indicates that an expression depends on the current prompt
;; stack.
&prompt
;; Indicates that an expression depends on the value of the car or cdr
;; of a pair.
&pair
;; Indicates that an expression depends on the value of a vector
;; field. The effect field indicates the specific field, or zero for
;; an unknown field.
&vector
;; Indicates that an expression depends on the value of a variable
;; cell.
&box
;; Indicates that an expression depends on the current module.
&module
;; Indicates that an expression depends on the current thread.
&thread
;; Indicates that an expression depends on the value of a struct
;; field. The effect field indicates the specific field, or zero for
;; an unknown field.
&struct
;; Indicates that an expression depends on the contents of a string.
&string
;; Indicates that an expression depends on the contents of a
;; bytevector. We cannot be more precise, as bytevectors may alias
;; other bytevectors.
&bytevector
;; Indicates a dependency on a free variable of a closure.
&closure
;; Indicates a dependency on a raw bitmask, measured in 32-bit units.
&bitmask
;; Indicates a dependency on the value of a cache cell.
&cache
;; Indicates that an expression depends on a value extracted from the
;; fixed, unchanging part of an object -- for example the length of a
;; vector or the vtable of a struct.
&header)
(define-inlinable (&field kind field)
(ash (logior (ash field &memory-kind-bits) kind) &effect-kind-bits))
(define-inlinable (&object kind)
(&field kind -1))
(define-inlinable (&allocate kind)
(logior &allocation (&object kind)))
(define-inlinable (&read-field kind field)
(logior &read (&field kind field)))
(define-inlinable (&read-object kind)
(logior &read (&object kind)))
(define-inlinable (&write-field kind field)
(logior &write (&field kind field)))
(define-inlinable (&write-object kind)
(logior &write (&object kind)))
(define-syntax &no-effects (identifier-syntax 0))
(define-syntax &all-effects
(identifier-syntax
(logior &all-effect-kinds (&object &unknown-memory-kinds))))
(define-inlinable (causes-effect? x effects)
(logtest x effects))
(define-inlinable (causes-all-effects? x)
(eqv? x &all-effects))
(define (effect-clobbers? a b)
"Return true if A clobbers B. This is the case if A is a write, and B
is or might be a read or a write to the same location as A."
(define (locations-same?)
(let ((a (ash a (- &effect-kind-bits)))
(b (ash b (- &effect-kind-bits))))
(or (eqv? &unknown-memory-kinds (logand a &memory-kind-mask))
(eqv? &unknown-memory-kinds (logand b &memory-kind-mask))
(and (eqv? (logand a &memory-kind-mask) (logand b &memory-kind-mask))
;; A negative field indicates "the whole object".
;; Non-negative fields indicate only part of the object.
(or (< a 0) (< b 0) (= a b))))))
(and (logtest a &write)
(logtest b (logior &read &write))
(locations-same?)))
(define (compute-known-allocations conts effects)
"Return a map of ACCESS-LABEL to ALLOC-LABEL, indicating stores to and
loads from objects created at known allocation sites."
;; VAR -> ALLOC map of defining allocations, where ALLOC is a label or
;; #f. Possibly sparse.
(define allocations
(intmap-fold
(lambda (label fx out)
(match (intmap-ref conts label)
(($ $kargs _ _ ($ $continue k))
(match (intmap-ref conts k)
(($ $kargs (_) (var))
(intmap-add out var
(and (not (causes-all-effects? fx))
(logtest fx &allocation)
label)
(lambda (old new) #f)))
(_ out)))
(_ out)))
effects empty-intmap))
(persistent-intmap
(intmap-fold
(lambda (label fx out)
(cond
((causes-all-effects? fx) out)
((logtest fx &allocation) out)
((logtest fx (logior &read &write))
(match (intmap-ref conts label)
;; Assume that instructions which cause a known set of effects
;; and which
(($ $kargs names vars
($ $continue k src
($ $primcall name param (obj . args))))
(match (intmap-ref allocations obj (lambda (_) #f))
(#f out)
(allocation-label
(intmap-add! out label allocation-label))))
(_ out)))
(else out)))
effects empty-intmap)))
(define (compute-clobber-map conts effects)
"For the map LABEL->EFFECTS, compute a map LABEL->LABELS indicating
the LABELS that are clobbered by the effects of LABEL."
(define known-allocations (compute-known-allocations conts effects))
(define (filter-may-alias write-label clobbered-labels)
;; We may be able to remove some entries from CLOBBERED-LABELS, if
;; we can prove they are not aliased by WRITE-LABEL.
(match (intmap-ref known-allocations write-label (lambda (_) #f))
(#f
;; We don't know what object WRITE-LABEL refers to; can't refine.
clobbered-labels)
(clobber-alloc
(intset-fold
(lambda (clobbered-label clobbered-labels)
(match (intmap-ref known-allocations clobbered-label (lambda (_) #f))
(#f
;; We don't know what object CLOBBERED-LABEL refers to;
;; can't refine.
clobbered-labels)
(clobbered-alloc
;; We know that WRITE-LABEL and CLOBBERED-LABEL refer to
;; known allocations. The write will only clobber the read
;; if the two allocations are the same.
(if (eqv? clobber-alloc clobbered-alloc)
clobbered-labels
(intset-remove clobbered-labels clobbered-label)))))
clobbered-labels clobbered-labels))))
(define (make-clobber-vector) (make-vector &memory-kind-mask empty-intset))
(define clobbered-by-write-to-unknown empty-intset)
(define clobbered-by-write-to-any-field (make-clobber-vector))
(define clobbered-by-write-to-all-fields (make-clobber-vector))
(define clobbered-by-write-to-specific-field (make-hash-table))
(define (adjoin-to-clobber-vector! v k id)
(vector-set! v k (intset-union (vector-ref v k) (intset id))))
(define (add-clobbered-by-write-to-any-field! kind label)
(adjoin-to-clobber-vector! clobbered-by-write-to-any-field kind label))
(define (add-clobbered-by-write-to-all-fields! kind label)
(adjoin-to-clobber-vector! clobbered-by-write-to-all-fields kind label))
(define (adjoin-to-clobber-hash! h k id)
(hashv-set! h k (intset-union (hashv-ref h k empty-intset) (intset id))))
(define (add-clobbered-by-write-to-specific-field! kind+field label)
(adjoin-to-clobber-hash! clobbered-by-write-to-specific-field
kind+field label))
(intmap-fold
(lambda (label fx)
;; Unless an expression causes a read, it isn't clobbered by
;; anything.
(when (causes-effect? fx &read)
(define kind+field (ash fx (- &effect-kind-bits)))
(define kind (logand &memory-kind-mask kind+field))
(define field (ash kind+field (- &memory-kind-bits)))
(cond
((eqv? field -1)
;; A read of the whole object is clobbered by a write to any
;; field.
(add-clobbered-by-write-to-all-fields! kind label)
(add-clobbered-by-write-to-any-field! kind label))
((negative? field) (error "unexpected field"))
(else
;; A read of a specific field is clobbered by a write to that
;; specific field, or a write to all fields.
(add-clobbered-by-write-to-all-fields! kind label)
(add-clobbered-by-write-to-specific-field! kind+field label)))
;; Also clobbered by write to any field of unknown memory kinds.
(add-clobbered-by-write-to-any-field! &unknown-memory-kinds label))
(values))
effects)
(define (lookup-clobbers fx)
(define kind+field (ash fx (- &effect-kind-bits)))
(define kind (logand &memory-kind-mask kind+field))
(define field (ash kind+field (- &memory-kind-bits)))
(cond
((eqv? field -1)
;; A write to the whole object.
(intset-union
(vector-ref clobbered-by-write-to-any-field kind)
(vector-ref clobbered-by-write-to-all-fields kind)))
((negative? field) (error "unexpected field"))
(else
;; A write to a specific field. In addition to clobbering reads
;; of this specific field, we clobber reads of the whole object,
;; for example the ones that correspond to the synthesized "car"
;; and "cdr" definitions that are associated with a "cons" expr.
(intset-union
(vector-ref clobbered-by-write-to-any-field kind)
(hashv-ref clobbered-by-write-to-specific-field kind+field)))))
(intmap-map (lambda (label fx)
(if (causes-effect? fx &write)
(filter-may-alias label (lookup-clobbers fx))
empty-intset))
effects))
(define *primitive-effects* (make-hash-table))
(define-syntax-rule (define-primitive-effects* param
((name . args) effects ...)
...)
(begin
(hashq-set! *primitive-effects* 'name
(case-lambda*
((param . args) (logior effects ...))
(_ &all-effects)))
...))
(define-syntax-rule (define-primitive-effects ((name . args) effects ...) ...)
(define-primitive-effects* param ((name . args) effects ...) ...))
;; Miscellaneous.
(define-primitive-effects
((load-const/unlikely))
((values . _)))
;; Generic effect-free predicates.
(define-primitive-effects
((eq? x y))
((equal? x y))
((bignum? arg))
((bitvector? arg))
((bytevector? arg))
((char? arg))
((compnum? arg))
((eq-constant? arg))
((false? arg))
((fixnum? arg))
((flonum? arg))
((fluid? arg))
((fracnum? arg))
((heap-number? arg))
((heap-object? arg))
((immutable-vector? arg))
((keyword? arg))
((nil? arg))
((null? arg))
((mutable-vector? arg))
((pair? arg))
((pointer? arg))
((procedure? arg))
((program? arg))
((string? arg))
((struct? arg))
((symbol? arg))
((syntax? arg))
((thunk? arg))
((undefined? arg))
((variable? arg))
((vector? arg)))
;; Fluids.
(define-primitive-effects
((fluid-ref f) (&read-object &fluid) &type-check)
((fluid-set! f v) (&write-object &fluid) &type-check)
((push-fluid f v) (&write-object &fluid) &type-check)
((pop-fluid) (&write-object &fluid))
((push-dynamic-state state) (&write-object &fluid) &type-check)
((pop-dynamic-state) (&write-object &fluid)))
(define-primitive-effects
((symbol->string x)) ;; CPS lowering includes symbol? type check.
((symbol->keyword)) ;; Same.
((keyword->symbol)) ;; Same, for keyword?.
((string->symbol) (&read-object &string) &type-check)
((string->utf8) (&read-object &string))
((utf8->string) (&read-object &bytevector) &type-check)
((string-utf8-length) (&read-object &string)))
;; Threads. Calls cause &all-effects, which reflects the fact that any
;; call can capture a partial continuation and reinstate it on another
;; thread.
(define-primitive-effects
((current-thread) (&read-object &thread)))
;; Prompts.
(define-primitive-effects
((make-prompt-tag #:optional arg) (&allocate &unknown-memory-kinds)))
;; Generic objects.
(define (annotation->memory-kind* annotation idx)
;; Lowering from Tree-IL to CPS reifies type-specific constructors and
;; accessors. For these we can treat e.g. vector-length as completely
;; constant as it can commute with any other instruction: the header
;; initialization write of a vector is not visible.
;;
;; However when these instructions are later lowered to allocate-words
;; with explicit initializers, we need to model the header reads and
;; writes as non-commutative.
(match (cons annotation idx)
(('vector . 0) &header)
(('string . (or 0 1 2 3)) &header)
(('stringbuf . (or 0 1)) &header)
(('bytevector . (or 0 1 2 3)) &header)
(('symbol . (or 0 1 2)) &header)
(('box . 0) &header)
(('closure . (or 0 1)) &header)
(('struct . 0) &header)
(('atomic-box . 0) &header)
(_ (annotation->memory-kind annotation))))
(define (annotation->memory-kind annotation)
(match annotation
('pair &pair)
('vector &vector)
('string &string)
('stringbuf &string)
('symbol &unknown-memory-kinds)
('bytevector &bytevector)
('bitmask &bitmask)
('box &box)
('closure &closure)
('struct &struct)
('atomic-box &unknown-memory-kinds)
('keyword &unknown-memory-kinds)))
(define-primitive-effects* param
((allocate-vector size) (&allocate &vector))
((allocate-vector/immediate) (&allocate &vector))
((vector-length v))
((vector-ref/immediate v) (&read-field &vector param))
((vector-ref v idx) (&read-object &vector))
((vector-set!/immediate v val) (&write-field &vector param))
((vector-set! v idx val) (&write-object &vector))
((cons x y) (&allocate &pair))
((car pair) (&read-field &pair 0))
((cdr pair) (&read-field &pair 1))
((set-car! pair val) (&write-field &pair 0))
((set-cdr! pair val) (&write-field &pair 1))
((box val) (&allocate &box))
((box-ref b) (&read-object &box))
((box-set! b val) (&write-object &box))
((allocate-struct vtable) (&allocate &struct))
((vtable-size x))
((vtable-has-unboxed-fields? x))
((vtable-field-boxed? x))
((struct-vtable x))
((struct-ref x) (&read-field &struct param))
((struct-set! x y) (&write-field &struct param))
((bv-contents bv))
((bv-length bv))
((string-length str))
((string-ref str idx) (&read-object &string))
((string-set! str idx cp) (&write-object &string))
((symbol-hash))
((make-closure code) (&allocate &closure))
((closure-ref code) (match param
((idx . nfree)
(&read-field &closure idx))))
((closure-set! code) (match param
((idx . nfree)
(&write-field &closure idx)))))
(define-primitive-effects* param
((allocate-words size) (&allocate (annotation->memory-kind param)))
((allocate-words/immediate) (match param
((ann . size)
(&allocate
(annotation->memory-kind ann)))))
((allocate-pointerless-words size)
(&allocate (annotation->memory-kind param)))
((allocate-pointerless-words/immediate)
(match param
((ann . size)
(&allocate
(annotation->memory-kind ann)))))
((scm-ref obj idx) (&read-object
(annotation->memory-kind param)))
((scm-ref/tag obj) (&read-field
(annotation->memory-kind* param 0) 0))
((scm-ref/immediate obj) (match param
((ann . idx)
(&read-field
(annotation->memory-kind* ann idx) idx))))
((scm-set! obj idx val) (&write-object
(annotation->memory-kind param)))
((scm-set/tag! obj val) (&write-field
(annotation->memory-kind* param 0) 0))
((scm-set!/immediate obj val) (match param
((ann . idx)
(&write-field
(annotation->memory-kind* ann idx) idx))))
((word-ref obj idx) (&read-object
(annotation->memory-kind param)))
((word-ref/immediate obj) (match param
((ann . idx)
(&read-field
(annotation->memory-kind* ann idx) idx))))
((word-set! obj idx val) (&read-object
(annotation->memory-kind param)))
((word-set!/immediate obj val) (match param
((ann . idx)
(&write-field
(annotation->memory-kind* ann idx) idx))))
((pointer-ref/immediate obj) (match param
((ann . idx)
(&read-field
(annotation->memory-kind* ann idx) idx))))
((pointer-set!/immediate obj val)
(match param
((ann . idx)
(&write-field
(annotation->memory-kind* ann idx) idx))))
((tail-pointer-ref/immediate obj)))
;; Strings.
(define-primitive-effects
((string-set! s n c) (&write-object &string) &type-check)
((number->string _) (&allocate &string) &type-check)
((string->number _) (&read-object &string) &type-check))
;; Unboxed floats and integers.
(define-primitive-effects
((scm->f64 _) &type-check)
((load-f64))
((f64->scm _))
((scm->u64 _) &type-check)
((scm->u64/truncate _) &type-check)
((load-u64))
((u64->scm _))
((u64->scm/unlikely _))
((scm->s64 _) &type-check)
((load-s64))
((s64->scm _))
((s64->scm/unlikely _))
((u64->s64 _))
((s64->u64 _))
((assume-u64 _))
((assume-s64 _))
((untag-fixnum _))
((tag-fixnum _))
((tag-fixnum/unlikely _)))
;; Pointers.
(define-primitive-effects* param
((u8-ref obj bv n) (&read-object (annotation->memory-kind param)))
((s8-ref obj bv n) (&read-object (annotation->memory-kind param)))
((u16-ref obj bv n) (&read-object (annotation->memory-kind param)))
((s16-ref obj bv n) (&read-object (annotation->memory-kind param)))
((u32-ref obj bv n) (&read-object (annotation->memory-kind param)))
((s32-ref obj bv n) (&read-object (annotation->memory-kind param)))
((u64-ref obj bv n) (&read-object (annotation->memory-kind param)))
((s64-ref obj bv n) (&read-object (annotation->memory-kind param)))
((f32-ref obj bv n) (&read-object (annotation->memory-kind param)))
((f64-ref obj bv n) (&read-object (annotation->memory-kind param)))
((u8-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((s8-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((u16-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((s16-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((u32-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((s32-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((u64-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((s64-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((f32-set! obj bv n x) (&write-object (annotation->memory-kind param)))
((f64-set! obj bv n x) (&write-object (annotation->memory-kind param))))
;; Modules.
(define-primitive-effects
((current-module) (&read-object &module))
((cache-current-module! m) (&write-object &cache))
((resolve name) (&read-object &module) &type-check)
((resolve-module mod) (&read-object &module) &type-check)
((module-variable mod name) (&read-object &module) &type-check)
((lookup mod name) (&read-object &module) &type-check)
((lookup-bound mod name) (&read-object &module) &type-check)
((lookup-bound-public) &type-check)
((lookup-bound-private) &type-check)
((cached-toplevel-box) &type-check)
((cached-module-box) &type-check)
((define! mod name) (&read-object &module)))
;; Cache cells.
(define-primitive-effects
((cache-ref) (&read-object &cache))
((cache-set! x) (&write-object &cache)))
;; Numbers.
(define-primitive-effects
((heap-numbers-equal? . _))
((= . _) &type-check)
((<= . _) &type-check)
((< . _) &type-check)
((u64-= . _))
((u64-imm-= . _))
((u64-< . _))
((u64-imm-< . _))
((imm-u64-< . _))
((s64-= . _))
((s64-imm-= . _))
((s64-< . _))
((s64-imm-< . _))
((imm-s64-< . _))
((f64-= . _))
((f64-< . _))
((f64-<= . _))
((zero? . _) &type-check)
((add . _) &type-check)
((add/immediate . _) &type-check)
((mul . _) &type-check)
((sub . _) &type-check)
((sub/immediate . _) &type-check)
((div . _) &type-check)
((fadd . _))
((fsub . _))
((fmul . _))
((fdiv . _))
((uadd . _))
((usub . _))
((umul . _))
((uadd/immediate . _))
((usub/immediate . _))
((umul/immediate . _))
((sadd . _))
((ssub . _))
((smul . _))
((sadd/immediate . _))
((ssub/immediate . _))
((smul/immediate . _))
((quo . _) &type-check)
((rem . _) &type-check)
((mod . _) &type-check)
((inexact _) &type-check)
((s64->f64 _))
((number? _))
((complex? _))
((real? _))
((rational? _))
((integer? _))
((exact? _))
((inexact? _))
((inf? _) &type-check)
((nan? _) &type-check)
((even? _) &type-check)
((odd? _) &type-check)
((rsh n m) &type-check)
((lsh n m) &type-check)
((rsh/immediate n) &type-check)
((lsh/immediate n) &type-check)
((logand . _) &type-check)
((logand/immediate . _) &type-check)
((logior . _) &type-check)
((logxor . _) &type-check)
((logsub . _) &type-check)
((lognot . _) &type-check)
((ulogand . _))
((ulogand/immediate . _))
((ulogior . _))
((ulogxor . _))
((ulogsub . _))
((ursh . _))
((srsh . _))
((ulsh . _))
((slsh . _))
((ursh/immediate . _))
((srsh/immediate . _))
((ulsh/immediate . _))
((slsh/immediate . _))
((logtest a b) &type-check)
((logbit? a b) &type-check)
((sqrt _) &type-check)
((abs _) &type-check)
((floor _) &type-check)
((ceiling _) &type-check)
((sin _) &type-check)
((cos _) &type-check)
((tan _) &type-check)
((asin _) &type-check)
((acos _) &type-check)
((atan _) &type-check)
((atan2 x y) &type-check)
((fsqrt _))
((fabs _))
((ffloor _))
((fceiling _))
((fsin _))
((fcos _))
((ftan _))
((fasin _))
((facos _))
((fatan _))
((fatan2 x y)))
;; Characters.
(define-primitive-effects
((untag-char _))
((tag-char _)))
;; Atomics are a memory and a compiler barrier; they cause all effects
;; so no need to have a case for them here. (Though, see
;; https://jfbastien.github.io/no-sane-compiler/.)
(define (primitive-effects param name args)
(let ((proc (hashq-ref *primitive-effects* name)))
(if proc
(apply proc param args)
&all-effects)))
(define (expression-effects exp)
(match exp
((or ($ $const) ($ $prim) ($ $values) ($ $code) ($ $const-fun))
&no-effects)
((or ($ $fun) ($ $rec))
(&allocate &unknown-memory-kinds))
((or ($ $call) ($ $callk) ($ $calli))
&all-effects)
(($ $primcall name param args)
(primitive-effects param name args))))
(define (compute-effects conts)
(intmap-map
(lambda (label cont)
(match cont
(($ $kargs names syms ($ $continue k src exp))
(expression-effects exp))
(($ $kargs names syms ($ $branch kf kt src op param args))
(primitive-effects param op args))
(($ $kargs names syms ($ $switch)) &no-effects)
(($ $kargs names syms ($ $prompt))
;; Although the "main" path just writes &prompt, we don't know
;; what nonlocal predecessors of the handler do, so we
;; conservatively assume &all-effects.
&all-effects)
(($ $kargs names syms ($ $throw))
;; A reachable "throw" term can never be elided.
&all-effects)
(($ $kreceive arity kargs)
(match arity
(($ $arity _ () #f () #f) &type-check)
(($ $arity () () _ () #f) (&allocate &pair))
(($ $arity _ () _ () #f) (logior (&allocate &pair) &type-check))))
(($ $kfun) &type-check)
(($ $kclause) &type-check)
(($ $ktail) &no-effects)))
conts))
;; There is a way to abuse effects analysis in CSE to also do scalar
;; replacement, effectively adding `car' and `cdr' expressions to `cons'
;; expressions, and likewise with other constructors and setters. This
;; routine adds appropriate effects to `cons' and `set-car!' and the
;; like.
;;
;; This doesn't affect CSE's ability to eliminate expressions, given
;; that allocations aren't eliminated anyway, and the new effects will
;; just cause the allocations not to commute with e.g. set-car! which
;; is what we want anyway.
(define (synthesize-definition-effects effects)
(intmap-map (lambda (label fx)
(if (logtest (logior &write &allocation) fx)
(logior fx &read)
fx))
effects))
|