Datasets:

License:
File size: 27,909 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
;;; EARLEY -- Earley's parser, written by Marc Feeley.

; $Id: earley.sch,v 1.2 1999/07/12 18:05:19 lth Exp $
; 990708 / lth -- changed 'main' to 'earley-benchmark'.
;
; (make-parser grammar lexer) is used to create a parser from the grammar
; description `grammar' and the lexer function `lexer'.
;
; A grammar is a list of definitions.  Each definition defines a non-terminal
; by a set of rules.  Thus a definition has the form: (nt rule1 rule2...).
; A given non-terminal can only be defined once.  The first non-terminal
; defined is the grammar's goal.  Each rule is a possibly empty list of
; non-terminals.  Thus a rule has the form: (nt1 nt2...).  A non-terminal
; can be any scheme value.  Note that all grammar symbols are treated as
; non-terminals.  This is fine though because the lexer will be outputing
; non-terminals.
;
; The lexer defines what a token is and the mapping between tokens and
; the grammar's non-terminals.  It is a function of one argument, the input,
; that returns the list of tokens corresponding to the input.  Each token is
; represented by a list.  The first element is some `user-defined' information
; associated with the token and the rest represents the token's class(es) (as a
; list of non-terminals that this token corresponds to).
;
; The result of `make-parser' is a function that parses the single input it
; is given into the grammar's goal.  The result is a `parse' which can be
; manipulated with the procedures: `parse->parsed?', `parse->trees'
; and `parse->nb-trees' (see below).
;
; Let's assume that we want a parser for the grammar
;
;  S -> x = E
;  E -> E + E | V
;  V -> V y |
;
; and that the input to the parser is a string of characters.  Also, assume we
; would like to map the characters `x', `y', `+' and `=' into the corresponding
; non-terminals in the grammar.  Such a parser could be created with
;
; (make-parser
;   '(
;      (s (x = e))
;      (e (e + e) (v))
;      (v (v y) ())
;    )
;   (lambda (str)
;     (map (lambda (char)
;            (list char ; user-info = the character itself
;                  (case char
;                    ((#\x) 'x)
;                    ((#\y) 'y)
;                    ((#\+) '+)
;                    ((#\=) '=)
;                    (else (fatal-error "lexer error")))))
;          (string->list str)))
; )
;
; An alternative definition (that does not check for lexical errors) is
;
; (make-parser
;   '(
;      (s (#\x #\= e))
;      (e (e #\+ e) (v))
;      (v (v #\y) ())
;    )
;   (lambda (str) (map (lambda (char) (list char char)) (string->list str)))
; )
;
; To help with the rest of the discussion, here are a few definitions:
;
; An input pointer (for an input of `n' tokens) is a value between 0 and `n'.
; It indicates a point between two input tokens (0 = beginning, `n' = end).
; For example, if `n' = 4, there are 5 input pointers:
;
;   input                   token1     token2     token3     token4
;   input pointers       0          1          2          3          4
;
; A configuration indicates the extent to which a given rule is parsed (this
; is the common `dot notation').  For simplicity, a configuration is
; represented as an integer, with successive configurations in the same
; rule associated with successive integers.  It is assumed that the grammar
; has been extended with rules to aid scanning.  These rules are of the
; form `nt ->', and there is one such rule for every non-terminal.  Note
; that these rules are special because they only apply when the corresponding
; non-terminal is returned by the lexer.
;
; A configuration set is a configuration grouped with the set of input pointers
; representing where the head non-terminal of the configuration was predicted.
;
; Here are the rules and configurations for the grammar given above:
;
;  S -> .         \
;       0          |
;  x -> .          |
;       1          |
;  = -> .          |
;       2          |
;  E -> .          |
;       3           > special rules (for scanning)
;  + -> .          |
;       4          |
;  V -> .          |
;       5          |
;  y -> .          |
;       6         /
;  S -> .  x  .  =  .  E  .
;       7     8     9     10
;  E -> .  E  .  +  .  E  .
;       11    12    13    14
;  E -> .  V  .
;       15    16
;  V -> .  V  .  y  .
;       17    18    19
;  V -> .
;       20
;
; Starters of the non-terminal `nt' are configurations that are leftmost
; in a non-special rule for `nt'.  Enders of the non-terminal `nt' are
; configurations that are rightmost in any rule for `nt'.  Predictors of the
; non-terminal `nt' are configurations that are directly to the left of `nt'
; in any rule.
;
; For the grammar given above,
;
;   Starters of V   = (17 20)
;   Enders of V     = (5 19 20)
;   Predictors of V = (15 17)

(define (make-parser grammar lexer)

  (define (non-terminals grammar) ; return vector of non-terminals in grammar

    (define (add-nt nt nts)
      (if (member nt nts) nts (cons nt nts))) ; use equal? for equality tests

    (let def-loop ((defs grammar) (nts '()))
      (if (pair? defs)
        (let* ((def (car defs))
               (head (car def)))
          (let rule-loop ((rules (cdr def))
                          (nts (add-nt head nts)))
            (if (pair? rules)
              (let ((rule (car rules)))
                (let loop ((l rule) (nts nts))
                  (if (pair? l)
                    (let ((nt (car l)))
                      (loop (cdr l) (add-nt nt nts)))
                    (rule-loop (cdr rules) nts))))
              (def-loop (cdr defs) nts))))
        (list->vector (reverse nts))))) ; goal non-terminal must be at index 0

  (define (ind nt nts) ; return index of non-terminal `nt' in `nts'
    (let loop ((i (- (vector-length nts) 1)))
      (if (>= i 0)
        (if (equal? (vector-ref nts i) nt) i (loop (- i 1)))
        #f)))

  (define (nb-configurations grammar) ; return nb of configurations in grammar
    (let def-loop ((defs grammar) (nb-confs 0))
      (if (pair? defs)
        (let ((def (car defs)))
          (let rule-loop ((rules (cdr def)) (nb-confs nb-confs))
            (if (pair? rules)
              (let ((rule (car rules)))
                (let loop ((l rule) (nb-confs nb-confs))
                  (if (pair? l)
                    (loop (cdr l) (+ nb-confs 1))
                    (rule-loop (cdr rules) (+ nb-confs 1)))))
              (def-loop (cdr defs) nb-confs))))
      nb-confs)))

; First, associate a numeric identifier to every non-terminal in the
; grammar (with the goal non-terminal associated with 0).
;
; So, for the grammar given above we get:
;
; s -> 0   x -> 1   = -> 4   e ->3    + -> 4   v -> 5   y -> 6

  (let* ((nts (non-terminals grammar))          ; id map = list of non-terms
         (nb-nts (vector-length nts))           ; the number of non-terms
         (nb-confs (+ (nb-configurations grammar) nb-nts)) ; the nb of confs
         (starters (make-vector nb-nts '()))    ; starters for every non-term
         (enders (make-vector nb-nts '()))      ; enders for every non-term
         (predictors (make-vector nb-nts '()))  ; predictors for every non-term
         (steps (make-vector nb-confs #f))      ; what to do in a given conf
         (names (make-vector nb-confs #f)))     ; name of rules

    (define (setup-tables grammar nts starters enders predictors steps names)

      (define (add-conf conf nt nts class)
        (let ((i (ind nt nts)))
          (vector-set! class i (cons conf (vector-ref class i)))))

      (let ((nb-nts (vector-length nts)))

        (let nt-loop ((i (- nb-nts 1)))
          (if (>= i 0)
            (begin
              (vector-set! steps i (- i nb-nts))
              (vector-set! names i (list (vector-ref nts i) 0))
              (vector-set! enders i (list i))
              (nt-loop (- i 1)))))

        (let def-loop ((defs grammar) (conf (vector-length nts)))
          (if (pair? defs)
            (let* ((def (car defs))
                   (head (car def)))
              (let rule-loop ((rules (cdr def)) (conf conf) (rule-num 1))
                (if (pair? rules)
                  (let ((rule (car rules)))
                    (vector-set! names conf (list head rule-num))
                    (add-conf conf head nts starters)
                    (let loop ((l rule) (conf conf))
                      (if (pair? l)
                        (let ((nt (car l)))
                          (vector-set! steps conf (ind nt nts))
                          (add-conf conf nt nts predictors)
                          (loop (cdr l) (+ conf 1)))
                        (begin
                          (vector-set! steps conf (- (ind head nts) nb-nts))
                          (add-conf conf head nts enders)
                          (rule-loop (cdr rules) (+ conf 1) (+ rule-num 1))))))
                  (def-loop (cdr defs) conf))))))))

; Now, for each non-terminal, compute the starters, enders and predictors and
; the names and steps tables.

    (setup-tables grammar nts starters enders predictors steps names)

; Build the parser description

    (let ((parser-descr (vector lexer
                                nts
                                starters
                                enders
                                predictors
                                steps
                                names)))
      (lambda (input)

        (define (ind nt nts) ; return index of non-terminal `nt' in `nts'
          (let loop ((i (- (vector-length nts) 1)))
            (if (>= i 0)
              (if (equal? (vector-ref nts i) nt) i (loop (- i 1)))
              #f)))

        (define (comp-tok tok nts) ; transform token to parsing format
          (let loop ((l1 (cdr tok)) (l2 '()))
            (if (pair? l1)
              (let ((i (ind (car l1) nts)))
                (if i
                  (loop (cdr l1) (cons i l2))
                  (loop (cdr l1) l2)))
              (cons (car tok) (reverse l2)))))

        (define (input->tokens input lexer nts)
          (list->vector (map (lambda (tok) (comp-tok tok nts)) (lexer input))))

        (define (make-states nb-toks nb-confs)
          (let ((states (make-vector (+ nb-toks 1) #f)))
            (let loop ((i nb-toks))
              (if (>= i 0)
                (let ((v (make-vector (+ nb-confs 1) #f)))
                  (vector-set! v 0 -1)
                  (vector-set! states i v)
                  (loop (- i 1)))
                states))))

        (define (conf-set-get state conf)
          (vector-ref state (+ conf 1)))

        (define (conf-set-get* state state-num conf)
          (let ((conf-set (conf-set-get state conf)))
            (if conf-set
              conf-set
              (let ((conf-set (make-vector (+ state-num 6) #f)))
                (vector-set! conf-set 1 -3) ; old elems tail (points to head)
                (vector-set! conf-set 2 -1) ; old elems head
                (vector-set! conf-set 3 -1) ; new elems tail (points to head)
                (vector-set! conf-set 4 -1) ; new elems head
                (vector-set! state (+ conf 1) conf-set)
                conf-set))))

        (define (conf-set-merge-new! conf-set)
          (vector-set! conf-set
            (+ (vector-ref conf-set 1) 5)
            (vector-ref conf-set 4))
          (vector-set! conf-set 1 (vector-ref conf-set 3))
          (vector-set! conf-set 3 -1)
          (vector-set! conf-set 4 -1))

        (define (conf-set-head conf-set)
          (vector-ref conf-set 2))

        (define (conf-set-next conf-set i)
          (vector-ref conf-set (+ i 5)))

        (define (conf-set-member? state conf i)
          (let ((conf-set (vector-ref state (+ conf 1))))
            (if conf-set
              (conf-set-next conf-set i)
              #f)))

        (define (conf-set-adjoin state conf-set conf i)
          (let ((tail (vector-ref conf-set 3))) ; put new element at tail
            (vector-set! conf-set (+ i 5) -1)
            (vector-set! conf-set (+ tail 5) i)
            (vector-set! conf-set 3 i)
            (if (< tail 0)
              (begin
                (vector-set! conf-set 0 (vector-ref state 0))
                (vector-set! state 0 conf)))))

        (define (conf-set-adjoin* states state-num l i)
          (let ((state (vector-ref states state-num)))
            (let loop ((l1 l))
              (if (pair? l1)
                (let* ((conf (car l1))
                       (conf-set (conf-set-get* state state-num conf)))
                  (if (not (conf-set-next conf-set i))
                    (begin
                      (conf-set-adjoin state conf-set conf i)
                      (loop (cdr l1)))
                    (loop (cdr l1))))))))

        (define (conf-set-adjoin** states states* state-num conf i)
          (let ((state (vector-ref states state-num)))
            (if (conf-set-member? state conf i)
              (let* ((state* (vector-ref states* state-num))
                     (conf-set* (conf-set-get* state* state-num conf)))
                (if (not (conf-set-next conf-set* i))
                  (conf-set-adjoin state* conf-set* conf i))
                #t)
              #f)))

        (define (conf-set-union state conf-set conf other-set)
          (let loop ((i (conf-set-head other-set)))
            (if (>= i 0)
              (if (not (conf-set-next conf-set i))
                (begin
                  (conf-set-adjoin state conf-set conf i)
                  (loop (conf-set-next other-set i)))
                (loop (conf-set-next other-set i))))))

        (define (forw states state-num starters enders predictors steps nts)

          (define (predict state state-num conf-set conf nt starters enders)

            ; add configurations which start the non-terminal `nt' to the
            ; right of the dot

            (let loop1 ((l (vector-ref starters nt)))
              (if (pair? l)
                (let* ((starter (car l))
                       (starter-set (conf-set-get* state state-num starter)))
                  (if (not (conf-set-next starter-set state-num))
                    (begin
                      (conf-set-adjoin state starter-set starter state-num)
                      (loop1 (cdr l)))
                    (loop1 (cdr l))))))

            ; check for possible completion of the non-terminal `nt' to the
            ; right of the dot

            (let loop2 ((l (vector-ref enders nt)))
              (if (pair? l)
                (let ((ender (car l)))
                  (if (conf-set-member? state ender state-num)
                    (let* ((next (+ conf 1))
                           (next-set (conf-set-get* state state-num next)))
                      (conf-set-union state next-set next conf-set)
                      (loop2 (cdr l)))
                    (loop2 (cdr l)))))))

          (define (reduce states state state-num conf-set head preds)

            ; a non-terminal is now completed so check for reductions that
            ; are now possible at the configurations `preds'

            (let loop1 ((l preds))
              (if (pair? l)
                (let ((pred (car l)))
                  (let loop2 ((i head))
                    (if (>= i 0)
                      (let ((pred-set (conf-set-get (vector-ref states i) pred)))
                        (if pred-set
                          (let* ((next (+ pred 1))
                                 (next-set (conf-set-get* state state-num next)))
                            (conf-set-union state next-set next pred-set)))
                        (loop2 (conf-set-next conf-set i)))
                      (loop1 (cdr l))))))))

          (let ((state (vector-ref states state-num))
                (nb-nts (vector-length nts)))
            (let loop ()
              (let ((conf (vector-ref state 0)))
                (if (>= conf 0)
                  (let* ((step (vector-ref steps conf))
                         (conf-set (vector-ref state (+ conf 1)))
                         (head (vector-ref conf-set 4)))
                    (vector-set! state 0 (vector-ref conf-set 0))
                    (conf-set-merge-new! conf-set)
                    (if (>= step 0)
                      (predict state state-num conf-set conf step starters enders)
                      (let ((preds (vector-ref predictors (+ step nb-nts))))
                        (reduce states state state-num conf-set head preds)))
                    (loop)))))))

        (define (forward starters enders predictors steps nts toks)
          (let* ((nb-toks (vector-length toks))
                 (nb-confs (vector-length steps))
                 (states (make-states nb-toks nb-confs))
                 (goal-starters (vector-ref starters 0)))
            (conf-set-adjoin* states 0 goal-starters 0) ; predict goal
            (forw states 0 starters enders predictors steps nts)
            (let loop ((i 0))
              (if (< i nb-toks)
                (let ((tok-nts (cdr (vector-ref toks i))))
                  (conf-set-adjoin* states (+ i 1) tok-nts i) ; scan token
                  (forw states (+ i 1) starters enders predictors steps nts)
                  (loop (+ i 1)))))
            states))

        (define (produce conf i j enders steps toks states states* nb-nts)
          (let ((prev (- conf 1)))
            (if (and (>= conf nb-nts) (>= (vector-ref steps prev) 0))
              (let loop1 ((l (vector-ref enders (vector-ref steps prev))))
                (if (pair? l)
                  (let* ((ender (car l))
                         (ender-set (conf-set-get (vector-ref states j)
                                                  ender)))
                    (if ender-set
                      (let loop2 ((k (conf-set-head ender-set)))
                        (if (>= k 0)
                          (begin
                            (and (>= k i)
                                 (conf-set-adjoin** states states* k prev i)
                                 (conf-set-adjoin** states states* j ender k))
                            (loop2 (conf-set-next ender-set k)))
                          (loop1 (cdr l))))
                      (loop1 (cdr l)))))))))

        (define (back states states* state-num enders steps nb-nts toks)
          (let ((state* (vector-ref states* state-num)))
            (let loop1 ()
              (let ((conf (vector-ref state* 0)))
                (if (>= conf 0)
                  (let* ((conf-set (vector-ref state* (+ conf 1)))
                         (head (vector-ref conf-set 4)))
                    (vector-set! state* 0 (vector-ref conf-set 0))
                    (conf-set-merge-new! conf-set)
                    (let loop2 ((i head))
                      (if (>= i 0)
                        (begin
                          (produce conf i state-num enders steps
                                   toks states states* nb-nts)
                          (loop2 (conf-set-next conf-set i)))
                        (loop1)))))))))

        (define (backward states enders steps nts toks)
          (let* ((nb-toks (vector-length toks))
                 (nb-confs (vector-length steps))
                 (nb-nts (vector-length nts))
                 (states* (make-states nb-toks nb-confs))
                 (goal-enders (vector-ref enders 0)))
            (let loop1 ((l goal-enders))
              (if (pair? l)
                (let ((conf (car l)))
                  (conf-set-adjoin** states states* nb-toks conf 0)
                  (loop1 (cdr l)))))
            (let loop2 ((i nb-toks))
              (if (>= i 0)
                (begin
                  (back states states* i enders steps nb-nts toks)
                  (loop2 (- i 1)))))
            states*))

        (define (parsed? nt i j nts enders states)
          (let ((nt* (ind nt nts)))
            (if nt*
              (let ((nb-nts (vector-length nts)))
                (let loop ((l (vector-ref enders nt*)))
                  (if (pair? l)
                    (let ((conf (car l)))
                      (if (conf-set-member? (vector-ref states j) conf i)
                        #t
                        (loop (cdr l))))
                    #f)))
              #f)))

        (define (deriv-trees conf i j enders steps names toks states nb-nts)
          (let ((name (vector-ref names conf)))

            (if name ; `conf' is at the start of a rule (either special or not)
              (if (< conf nb-nts)
                (list (list name (car (vector-ref toks i))))
                (list (list name)))

              (let ((prev (- conf 1)))
                (let loop1 ((l1 (vector-ref enders (vector-ref steps prev)))
                            (l2 '()))
                  (if (pair? l1)
                    (let* ((ender (car l1))
                           (ender-set (conf-set-get (vector-ref states j)
                                                    ender)))
                      (if ender-set
                        (let loop2 ((k (conf-set-head ender-set)) (l2 l2))
                          (if (>= k 0)
                            (if (and (>= k i)
                                     (conf-set-member? (vector-ref states k)
                                                       prev i))
                              (let ((prev-trees
                                      (deriv-trees prev i k enders steps names
                                                   toks states nb-nts))
                                    (ender-trees
                                      (deriv-trees ender k j enders steps names
                                                   toks states nb-nts)))
                                (let loop3 ((l3 ender-trees) (l2 l2))
                                  (if (pair? l3)
                                    (let ((ender-tree (list (car l3))))
                                      (let loop4 ((l4 prev-trees) (l2 l2))
                                        (if (pair? l4)
                                          (loop4 (cdr l4)
                                                 (cons (append (car l4)
                                                               ender-tree)
                                                       l2))
                                          (loop3 (cdr l3) l2))))
                                    (loop2 (conf-set-next ender-set k) l2))))
                              (loop2 (conf-set-next ender-set k) l2))
                            (loop1 (cdr l1) l2)))
                        (loop1 (cdr l1) l2)))
                    l2))))))

        (define (deriv-trees* nt i j nts enders steps names toks states)
          (let ((nt* (ind nt nts)))
            (if nt*
              (let ((nb-nts (vector-length nts)))
                (let loop ((l (vector-ref enders nt*)) (trees '()))
                  (if (pair? l)
                    (let ((conf (car l)))
                      (if (conf-set-member? (vector-ref states j) conf i)
                        (loop (cdr l)
                              (append (deriv-trees conf i j enders steps names
                                                   toks states nb-nts)
                                      trees))
                        (loop (cdr l) trees)))
                    trees)))
              #f)))

        (define (nb-deriv-trees conf i j enders steps toks states nb-nts)
          (let ((prev (- conf 1)))
            (if (or (< conf nb-nts) (< (vector-ref steps prev) 0))
              1
              (let loop1 ((l (vector-ref enders (vector-ref steps prev)))
                          (n 0))
                (if (pair? l)
                  (let* ((ender (car l))
                         (ender-set (conf-set-get (vector-ref states j)
                                                  ender)))
                    (if ender-set
                      (let loop2 ((k (conf-set-head ender-set)) (n n))
                        (if (>= k 0)
                          (if (and (>= k i)
                                   (conf-set-member? (vector-ref states k)
                                                     prev i))
                            (let ((nb-prev-trees
                                    (nb-deriv-trees prev i k enders steps
                                                    toks states nb-nts))
                                  (nb-ender-trees
                                    (nb-deriv-trees ender k j enders steps
                                                    toks states nb-nts)))
                              (loop2 (conf-set-next ender-set k)
                                     (+ n (* nb-prev-trees nb-ender-trees))))
                            (loop2 (conf-set-next ender-set k) n))
                          (loop1 (cdr l) n)))
                      (loop1 (cdr l) n)))
                  n)))))

        (define (nb-deriv-trees* nt i j nts enders steps toks states)
          (let ((nt* (ind nt nts)))
            (if nt*
              (let ((nb-nts (vector-length nts)))
                (let loop ((l (vector-ref enders nt*)) (nb-trees 0))
                  (if (pair? l)
                    (let ((conf (car l)))
                      (if (conf-set-member? (vector-ref states j) conf i)
                        (loop (cdr l)
                              (+ (nb-deriv-trees conf i j enders steps
                                                 toks states nb-nts)
                                 nb-trees))
                        (loop (cdr l) nb-trees)))
                    nb-trees)))
              #f)))

        (let* ((lexer      (vector-ref parser-descr 0))
               (nts        (vector-ref parser-descr 1))
               (starters   (vector-ref parser-descr 2))
               (enders     (vector-ref parser-descr 3))
               (predictors (vector-ref parser-descr 4))
               (steps      (vector-ref parser-descr 5))
               (names      (vector-ref parser-descr 6))
               (toks       (input->tokens input lexer nts)))

          (vector nts
                  starters
                  enders
                  predictors
                  steps
                  names
                  toks
                  (backward (forward starters enders predictors steps nts toks)
                            enders steps nts toks)
                  parsed?
                  deriv-trees*
                  nb-deriv-trees*))))))

(define (parse->parsed? parse nt i j)
  (let* ((nts     (vector-ref parse 0))
         (enders  (vector-ref parse 2))
         (states  (vector-ref parse 7))
         (parsed? (vector-ref parse 8)))
    (parsed? nt i j nts enders states)))

(define (parse->trees parse nt i j)
  (let* ((nts          (vector-ref parse 0))
         (enders       (vector-ref parse 2))
         (steps        (vector-ref parse 4))
         (names        (vector-ref parse 5))
         (toks         (vector-ref parse 6))
         (states       (vector-ref parse 7))
         (deriv-trees* (vector-ref parse 9)))
    (deriv-trees* nt i j nts enders steps names toks states)))

(define (parse->nb-trees parse nt i j)
  (let* ((nts             (vector-ref parse 0))
         (enders          (vector-ref parse 2))
         (steps           (vector-ref parse 4))
         (toks            (vector-ref parse 6))
         (states          (vector-ref parse 7))
         (nb-deriv-trees* (vector-ref parse 10)))
    (nb-deriv-trees* nt i j nts enders steps toks states)))

(define (test k)
  (let ((p (make-parser '( (s (a) (s s)) )
                        (lambda (l) (map (lambda (x) (list x x)) l)))))
    (let ((x (p (vector->list (make-vector k 'a)))))
      (length (parse->trees x 's 0 k)))))

(define (earley-benchmark . args)
  (let ((k (if (null? args) 9 (car args))))
    (run-benchmark
     "earley"
     1
     (lambda () (test k))
     (lambda (result) 
       (display result)
       (newline)
       #t))))