code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Dict = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
133
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=True , snake_case_="pt" ): '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(snake_case_ , snake_case_ ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=snake_case_ , padding="max_length" if pad_to_max_length else None , truncation=snake_case_ , return_tensors=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=None , ): '''simple docstring''' _UpperCAmelCase = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str]="train" , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]="" , ): """simple docstring""" super().__init__() _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Optional[int] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : Optional[Any] ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCamelCase ( self : Any , snake_case__ : List[Any] ): """simple docstring""" _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase_ : Dict = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return list(itertools.chain.from_iterable(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(snake_case_ , os.path.join(snake_case_ , "git_log.json" ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=4 , **snake_case_ ): '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=snake_case_ , **snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(snake_case_ ) as f: return json.load(snake_case_ ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=snake_case_ ) _UpperCAmelCase = { "repo_id": str(snake_case_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return list(map(snake_case_ , snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' with open(snake_case_ , "wb" ) as f: return pickle.dump(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def remove_articles(snake_case_ ): return re.sub(R"\b(a|an|the)\b" , " " , snake_case_ ) def white_space_fix(snake_case_ ): return " ".join(text.split() ) def remove_punc(snake_case_ ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = Counter(snake_case_ ) & Counter(snake_case_ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = 0 for hypo, pred in zip(snake_case_ , snake_case_ ): em += exact_match_score(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return model_prefix.startswith("rag" ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): if not hasattr(snake_case_ , snake_case_ ) and not hasattr(snake_case_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case_ ) ) delattr(snake_case_ , snake_case_ ) continue _UpperCAmelCase = p if hasattr(snake_case_ , snake_case_ ) else equivalent_param[p] setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) delattr(snake_case_ , snake_case_ ) return hparams, config
133
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase__ =version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __UpperCamelCase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : tuple , lowerCAmelCase__ : Path , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=False , ): output_path.parent.mkdir(parents=_a , exist_ok=_a ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _a , _a , f=output_path.as_posix() , input_names=_a , output_names=_a , dynamic_axes=_a , do_constant_folding=_a , use_external_data_format=_a , enable_onnx_checker=_a , opset_version=_a , ) else: export( _a , _a , f=output_path.as_posix() , input_names=_a , output_names=_a , dynamic_axes=_a , do_constant_folding=_a , opset_version=_a , ) @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): __a : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a : str = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __a : Any = '''cpu''' __a : List[str] = Path(_a ) # VAE DECODER __a : List[str] = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __a : Optional[int] = vae_decoder.config.latent_channels # forward only through the decoder part __a : int = vae_decoder.decode onnx_export( _a , model_args=( torch.randn(1 , _a , 2_5 , 2_5 ).to(device=_a , dtype=_a ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=_a , ) del vae_decoder if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowercase__ =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
361
import os import sys import unittest lowercase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase__ =os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase__ =os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[Any] ): __a : str = get_test_to_tester_mapping(snake_case_ ) __a : Tuple = get_test_to_tester_mapping(snake_case_ ) __a : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} __a : Tuple = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : str ): __a : Optional[int] = get_model_to_test_mapping(snake_case_ ) __a : Any = get_model_to_test_mapping(snake_case_ ) __a : List[Any] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __a : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : int ): __a : Any = get_model_to_tester_mapping(snake_case_ ) __a : List[str] = get_model_to_tester_mapping(snake_case_ ) __a : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __a : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ )
90
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase__ : str = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } lowerCAmelCase__ : Union[str, Any] = { '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def UpperCamelCase__ ( A__ ) -> List[Any]: snake_case__ : Tuple = list(state_dict.keys() ) for name in state_dict_keys: snake_case__ : int = state_dict.pop(A__ ) # emb -> embedding if name.startswith('emb.' ): snake_case__ : int = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): snake_case__ : Any = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention snake_case__ : List[Any] = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , A__ ) # ffn -> feed_forward snake_case__ : str = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , A__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): snake_case__ : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): snake_case__ : Any = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): snake_case__ : str = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": snake_case__ : Optional[int] = 'rwkv.' + name snake_case__ : Any = weight return state_dict def UpperCamelCase__ ( A__ , A__ , A__ , A__=None , A__=None , A__=False , A__=None ) -> Union[str, Any]: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) snake_case__ : int = 5_0277 snake_case__ : List[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: snake_case__ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=A__ ) snake_case__ : List[str] = len(A__ ) tokenizer.save_pretrained(A__ ) # 2. Build the config snake_case__ : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case__ : int = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) snake_case__ : Dict = RwkvConfig( vocab_size=A__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(A__ ) # 3. Download model file then convert state_dict snake_case__ : List[Any] = hf_hub_download(A__ , A__ ) snake_case__ : int = torch.load(A__ , map_location='cpu' ) snake_case__ : Any = convert_state_dict(A__ ) # 4. Split in shards and save snake_case__ , snake_case__ : Any = shard_checkpoint(A__ ) for shard_file, shard in shards.items(): torch.save(A__ , os.path.join(A__ , A__ ) ) if index is not None: snake_case__ : str = os.path.join(A__ , A__ ) # Save the index as well with open(A__ , 'w' , encoding='utf-8' ) as f: snake_case__ : Union[str, Any] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '\n' f.write(A__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) snake_case__ : Optional[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case__ : Union[str, Any] = torch.load(os.path.join(A__ , A__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(A__ , A__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) snake_case__ : List[Any] = AutoModelForCausalLM.from_pretrained(A__ ) model.push_to_hub(A__ , max_shard_size='2GB' ) tokenizer.push_to_hub(A__ ) if __name__ == "__main__": lowerCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) lowerCAmelCase__ : int = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
143
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __snake_case ( unittest.TestCase ): @require_torch def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[Any] = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) snake_case__ : Union[str, Any] = load_dataset('ashraq/esc50' ) snake_case__ : List[Any] = dataset['train']['audio'][-1]['array'] snake_case__ : Tuple = audio_classifier(__UpperCamelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [{'score': 0.5_0_1, 'label': 'Sound of a dog'}, {'score': 0.4_9_9, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def __a ( self ) -> List[str]: '''simple docstring''' pass @slow @require_torch def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog snake_case__ : Dict = load_dataset('ashraq/esc50' ) snake_case__ : Optional[int] = dataset['train']['audio'][-1]['array'] snake_case__ : Tuple = audio_classifier(__UpperCamelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ] , ) snake_case__ : str = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) snake_case__ : Tuple = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def __a ( self ) -> Any: '''simple docstring''' pass
143
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """num_attention_heads""" ) ) class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[1_28, 2_56, 3_84] , __UpperCAmelCase=[4, 6, 8] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) -> List[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =num_channels _lowerCAmelCase =kernel_size _lowerCAmelCase =stride _lowerCAmelCase =padding _lowerCAmelCase =hidden_sizes _lowerCAmelCase =num_attention_heads _lowerCAmelCase =depths _lowerCAmelCase =key_dim _lowerCAmelCase =drop_path_rate _lowerCAmelCase =patch_size _lowerCAmelCase =attention_ratio _lowerCAmelCase =mlp_ratio _lowerCAmelCase =initializer_range _lowerCAmelCase =[ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =num_labels _lowerCAmelCase =initializer_range def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ) -> str: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _lowerCAmelCase =LevitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =(self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase =floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _lowerCAmelCase =floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =self.num_labels _lowerCAmelCase =LevitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =LevitModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _lowerCAmelCase ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self ) -> List[str]: return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def _lowerCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def _lowerCAmelCase ( self ) -> str: pass @unittest.skip(reason="""Levit does not output attentions""" ) def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(__UpperCAmelCase ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowerCAmelCase =model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _lowerCAmelCase =outputs.hidden_states _lowerCAmelCase =len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) _lowerCAmelCase =(self.model_tester.image_size, self.model_tester.image_size) _lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase =floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _lowerCAmelCase =floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ) -> str: pass def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: _lowerCAmelCase =super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Any: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowerCAmelCase =model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() _lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) _lowerCAmelCase =model(**__UpperCAmelCase ).loss loss.backward() def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase =False _lowerCAmelCase =True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowerCAmelCase =model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() _lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) _lowerCAmelCase =model(**__UpperCAmelCase ).loss loss.backward() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =[ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ): _lowerCAmelCase =problem_type["""title"""] _lowerCAmelCase =problem_type["""num_labels"""] _lowerCAmelCase =model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() _lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if problem_type["num_labels"] > 1: _lowerCAmelCase =inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) _lowerCAmelCase =inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list: _lowerCAmelCase =model(**__UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _lowerCAmelCase ( self ) -> str: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =LevitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _lowerCamelCase() -> Dict: _lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ) -> Optional[Any]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**__UpperCAmelCase ) # verify the logits _lowerCAmelCase =torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _lowerCAmelCase =torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['PerceiverFeatureExtractor'] __A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = len(UpperCAmelCase ) while cur > 1: # Find the maximum number in arr snake_case_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi snake_case_ = arr[mi::-1] + arr[mi + 1 : len(UpperCAmelCase )] # Reverse whole list snake_case_ = arr[cur - 1 :: -1] + arr[cur : len(UpperCAmelCase )] cur -= 1 return arr if __name__ == "__main__": __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
69
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """pegasus""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: List[str] , __lowerCamelCase: Dict=5_0265 , __lowerCamelCase: int=1024 , __lowerCamelCase: Dict=12 , __lowerCamelCase: Dict=4096 , __lowerCamelCase: str=16 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: int=4096 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: List[Any]=1024 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: str=False , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Optional[int]=1 , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = vocab_size UpperCamelCase__: List[Any] = max_position_embeddings UpperCamelCase__: Tuple = d_model UpperCamelCase__: str = encoder_ffn_dim UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: int = decoder_layers UpperCamelCase__: List[str] = decoder_attention_heads UpperCamelCase__: int = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: Tuple = activation_dropout UpperCamelCase__: Optional[int] = activation_function UpperCamelCase__: Dict = init_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: Any = decoder_layerdrop UpperCamelCase__: Optional[int] = use_cache UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.d_model
149
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss a_ = pytest.mark.integration @require_faiss class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(snake_case ) for x in np.arange(3_0 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict: """simple docstring""" import faiss UpperCamelCase_ : Dataset = self._create_dummy_dataset() UpperCamelCase_ : Optional[Any] = dset.map( lambda snake_case , snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=snake_case , keep_in_memory=snake_case ) UpperCamelCase_ : List[Any] = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase_, UpperCamelCase_ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: """simple docstring""" import faiss UpperCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: """simple docstring""" import faiss UpperCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase_, UpperCamelCase_ : Tuple = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: """simple docstring""" from elasticsearch import Elasticsearch UpperCamelCase_ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCamelCase_ : Any = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0 ) UpperCamelCase_ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} UpperCamelCase_ : List[Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=snake_case ) UpperCamelCase_, UpperCamelCase_ : int = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: """simple docstring""" import faiss UpperCamelCase_ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query UpperCamelCase_ : List[str] = np.zeros(5 , dtype=np.floataa ) UpperCamelCase_ : int = 1 UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = index.search(snake_case ) self.assertRaises(snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCamelCase_ : Any = np.eye(5 , dtype=np.floataa )[::-1] UpperCamelCase_, UpperCamelCase_ : Optional[Any] = index.search_batch(snake_case ) self.assertRaises(snake_case , index.search_batch , queries[0] ) UpperCamelCase_ : Optional[int] = [scores[0] for scores in total_scores] UpperCamelCase_ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" import faiss UpperCamelCase_ : Tuple = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCamelCase_ : int = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(snake_case ): UpperCamelCase_ : Union[str, Any] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" import faiss UpperCamelCase_ : Any = faiss.IndexFlat(5 ) UpperCamelCase_ : int = FaissIndex(custom_index=snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: """simple docstring""" import faiss UpperCamelCase_ : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=snake_case ) as tmp_file: index.save(tmp_file.name ) UpperCamelCase_ : str = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase_ : int = np.zeros(5 , dtype=np.floataa ) UpperCamelCase_ : Tuple = 1 UpperCamelCase_, UpperCamelCase_ : Any = index.search(snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __lowercase ( lowerCamelCase : Any ): import faiss UpperCamelCase_ : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCamelCase_ : List[str] = 'index.faiss' UpperCamelCase_ : Tuple = F"mock://{index_name}" index.save(lowerCamelCase , storage_options=mockfs.storage_options ) UpperCamelCase_ : List[str] = FaissIndex.load(lowerCamelCase , storage_options=mockfs.storage_options ) UpperCamelCase_ : List[Any] = np.zeros(5 , dtype=np.floataa ) UpperCamelCase_ : List[str] = 1 UpperCamelCase_, UpperCamelCase_ : int = index.search(lowerCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCamelCase_ : str = Elasticsearch() UpperCamelCase_ : List[str] = {'acknowledged': True} UpperCamelCase_ : Optional[Any] = ElasticSearchIndex(es_client=snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query UpperCamelCase_ : int = 'foo' UpperCamelCase_ : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = index.search(snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCamelCase_ : List[Any] = 'foo' UpperCamelCase_ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = index.search(snake_case , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCamelCase_ : List[Any] = ['foo', 'bar', 'foobar'] UpperCamelCase_ : Optional[int] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = index.search_batch(snake_case ) UpperCamelCase_ : Optional[Any] = [scores[0] for scores in total_scores] UpperCamelCase_ : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , snake_case ) # batched queries with timeout UpperCamelCase_ : Any = ['foo', 'bar', 'foobar'] UpperCamelCase_ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCamelCase_, UpperCamelCase_ : Optional[int] = index.search_batch(snake_case , request_timeout=3_0 ) UpperCamelCase_ : Optional[Any] = [scores[0] for scores in total_scores] UpperCamelCase_ : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , snake_case )
50
from __future__ import annotations import numpy as np def __lowercase ( lowerCamelCase : list[float] ): return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
1
"""simple docstring""" def _snake_case ( snake_case__ : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) A = sum(__lowercase ) / len(__lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
74
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCamelCase : int = None _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Tuple = '''▁''' _lowerCamelCase : Optional[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Any = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } _lowerCamelCase : Optional[int] = { '''google/pegasus-xsum''': 512, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Any = PegasusTokenizer _UpperCAmelCase : Dict = ["input_ids", "attention_mask"] def __init__( self : Tuple , lowercase : str=None , lowercase : Any=None , lowercase : List[Any]="<pad>" , lowercase : List[Any]="</s>" , lowercase : Tuple="<unk>" , lowercase : Any="<mask_2>" , lowercase : List[str]="<mask_1>" , lowercase : List[Any]=None , lowercase : Dict=103 , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowercase )}, but is''' f''' {type(lowercase )}''' ) _snake_case = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _snake_case = additional_special_tokens_extended else: _snake_case = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowercase , tokenizer_file=lowercase , pad_token=lowercase , eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , **lowercase , ) _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def A ( self : List[str] , lowercase : Optional[int] ): '''simple docstring''' _snake_case = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def A ( self : List[Any] , lowercase : List , lowercase : Optional[List] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A ( self : Any , lowercase : Tuple , lowercase : Any=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A ( self : int , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
282
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], 'do_convert_rgb': True, } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def _A ( self , **_A ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_A ) def _A ( self , **_A ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def _A ( self , **_A ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_A ) def _A ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=_A ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(_A , return_tensors='np' ) __SCREAMING_SNAKE_CASE = processor(images=_A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE = 'Alexandra,T-shirt的价格是15便士。' __SCREAMING_SNAKE_CASE = processor(text=_A ) __SCREAMING_SNAKE_CASE = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE = 'Alexandra,T-shirt的价格是15便士。' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(_A ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE = 'Alexandra,T-shirt的价格是15便士。' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
118
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__) def __lowercase ( a__ , a__=False ) -> Tuple: __SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def __lowercase ( a__ , a__ , a__=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: __SCREAMING_SNAKE_CASE = '' else: __SCREAMING_SNAKE_CASE = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowercase ( a__ , a__ , a__ ) -> str: __SCREAMING_SNAKE_CASE = dct.pop(a__ ) __SCREAMING_SNAKE_CASE = val def __lowercase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def __lowercase ( a__ , a__ ) -> Dict: __SCREAMING_SNAKE_CASE = DeiTConfig() # all deit models have fine-tuned heads __SCREAMING_SNAKE_CASE = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = 'huggingface/label-files' __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = int(deit_name[-6:-4] ) __SCREAMING_SNAKE_CASE = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): __SCREAMING_SNAKE_CASE = 1_92 __SCREAMING_SNAKE_CASE = 7_68 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 3 elif deit_name[9:].startswith('small' ): __SCREAMING_SNAKE_CASE = 3_84 __SCREAMING_SNAKE_CASE = 15_36 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): __SCREAMING_SNAKE_CASE = 10_24 __SCREAMING_SNAKE_CASE = 40_96 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 # load original model from timm __SCREAMING_SNAKE_CASE = timm.create_model(a__ , pretrained=a__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __SCREAMING_SNAKE_CASE = timm_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(a__ , a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , a__ ) # load HuggingFace model __SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher(a__ ).eval() model.load_state_dict(a__ ) # Check outputs on an image, prepared by DeiTImageProcessor __SCREAMING_SNAKE_CASE = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=a__ , crop_size=config.image_size ) __SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = encoding['pixel_values'] __SCREAMING_SNAKE_CASE = model(a__ ) __SCREAMING_SNAKE_CASE = timm_model(a__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1E-3 ) Path(a__ ).mkdir(exist_ok=a__ ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : str =parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
118
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase__ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowerCAmelCase (): _UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _UpperCAmelCase : Tuple = bs[:] _UpperCAmelCase : int = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase : Dict = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = set() _UpperCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : List[Any] = char return pairs class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = VOCAB_FILES_NAMES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Tuple = ["input_ids", "attention_mask"] def __init__( self : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]="replace" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : Optional[Any]="</s>" , lowerCamelCase__ : str="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Optional[Any]="<pad>" , lowerCamelCase__ : Dict="<mask>" , lowerCamelCase__ : int=False , **lowerCamelCase__ : int , ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token _UpperCAmelCase : Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token _UpperCAmelCase : Tuple = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token _UpperCAmelCase : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token _UpperCAmelCase : Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token _UpperCAmelCase : int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : Tuple = json.load(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : Optional[int] = errors # how to handle errors in decoding _UpperCAmelCase : int = bytes_to_unicode() _UpperCAmelCase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding="utf-8" ) as merges_handle: _UpperCAmelCase : Tuple = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase : str = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase : Dict = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase : str = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase__ ( self : str ) ->Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[Any] ) ->Dict: '''simple docstring''' if token in self.cache: return self.cache[token] _UpperCAmelCase : Optional[int] = tuple(lowerCamelCase__ ) _UpperCAmelCase : int = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: _UpperCAmelCase : Union[str, Any] = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase : List[str] = bigram _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[Any] = 0 while i < len(lowerCamelCase__ ): try: _UpperCAmelCase : str = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase : Any = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : Any = tuple(lowerCamelCase__ ) _UpperCAmelCase : Tuple = new_word if len(lowerCamelCase__ ) == 1: break else: _UpperCAmelCase : Any = get_pairs(lowerCamelCase__ ) _UpperCAmelCase : str = " ".join(lowerCamelCase__ ) _UpperCAmelCase : int = word return word def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = [] for token in re.findall(self.pat , lowerCamelCase__ ): _UpperCAmelCase : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(" " ) ) return bpe_tokens def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) ->str: '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' return self.decoder.get(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = "".join(lowerCamelCase__ ) _UpperCAmelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : str = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : int = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + "\n" ) _UpperCAmelCase : List[str] = 0 with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase : int = token_index writer.write(" ".join(lowerCamelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] _UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any]=False , **lowerCamelCase__ : Union[str, Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): _UpperCAmelCase : Optional[int] = " " + text return (text, kwargs) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ) ->dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: _UpperCAmelCase : Tuple = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCAmelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCAmelCase : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: _UpperCAmelCase : Optional[Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCAmelCase : str = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _UpperCAmelCase : str = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
234
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase__ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCamelCase__ = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } lowerCamelCase__ = '▁' class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : Dict="</s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Dict , ) ->None: '''simple docstring''' _UpperCAmelCase : Dict = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase : List[str] = len(self.sp_model ) - 1 _UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] _UpperCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self : int , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] ) ->List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Any ) ->Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = "" _UpperCAmelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Union[str, Any] = [] else: current_sub_tokens.append(lowerCamelCase__ ) _UpperCAmelCase : int = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.__dict__.copy() _UpperCAmelCase : Optional[int] = None return state def __setstate__( self : Any , lowerCamelCase__ : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , "wb" ) as fi: _UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
234
1
from itertools import permutations def UpperCamelCase__ ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE = [7, 11, 13, 17] for i, test in enumerate(_SCREAMING_SNAKE_CASE ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCamelCase__ ( _SCREAMING_SNAKE_CASE = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(_SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(F'''{solution() = }''')
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : str = AltDiffusionPipeline __snake_case : int = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5002 ,) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) SCREAMING_SNAKE_CASE = 77 SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : int=0 ) -> Any: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = text_encoder SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A photo of an astronaut""" SCREAMING_SNAKE_CASE = alt_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = text_encoder SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,safety_checker=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = alt_pipe([prompt] ,generator=lowerCamelCase__ ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type="""np""" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" ,subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,scheduler=lowerCamelCase__ ,safety_checker=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = alt_pipe([prompt] ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""numpy""" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
193
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( snake_case ): def __init__( self , _a , _a , _a , _a = None , ): super().__init__() self.register_modules(transformer=_lowerCAmelCase , vae=_lowerCAmelCase , scheduler=_lowerCAmelCase ) # create a imagenet -> id dictionary for easier use __magic_name__ : Dict = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __magic_name__ : List[Any] = int(_lowerCAmelCase ) __magic_name__ : str = dict(sorted(self.labels.items() ) ) def SCREAMING_SNAKE_CASE ( self , _a ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __magic_name__ : Dict = list(_lowerCAmelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _a , _a = 4.0 , _a = None , _a = 50 , _a = "pil" , _a = True , ): __magic_name__ : Optional[Any] = len(_lowerCAmelCase ) __magic_name__ : str = self.transformer.config.sample_size __magic_name__ : Dict = self.transformer.config.in_channels __magic_name__ : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowerCAmelCase , device=self.device , dtype=self.transformer.dtype , ) __magic_name__ : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __magic_name__ : Optional[Any] = torch.tensor(_lowerCAmelCase , device=self.device ).reshape(-1 ) __magic_name__ : List[Any] = torch.tensor([1_000] * batch_size , device=self.device ) __magic_name__ : Optional[int] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __magic_name__ : Dict = latent_model_input[: len(_lowerCAmelCase ) // 2] __magic_name__ : List[str] = torch.cat([half, half] , dim=0 ) __magic_name__ : Optional[int] = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : Tuple = t if not torch.is_tensor(_lowerCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __magic_name__ : str = latent_model_input.device.type == "mps" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __magic_name__ : str = torch.floataa if is_mps else torch.floataa else: __magic_name__ : List[Any] = torch.intaa if is_mps else torch.intaa __magic_name__ : List[str] = torch.tensor([timesteps] , dtype=_lowerCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __magic_name__ : Optional[int] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ : List[str] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __magic_name__ : Optional[int] = self.transformer( _lowerCAmelCase , timestep=_lowerCAmelCase , class_labels=_lowerCAmelCase ).sample # perform guidance if guidance_scale > 1: __magic_name__ , __magic_name__ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __magic_name__ , __magic_name__ : Optional[Any] = torch.split(_lowerCAmelCase , len(_lowerCAmelCase ) // 2 , dim=0 ) __magic_name__ : Optional[int] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __magic_name__ : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __magic_name__ : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __magic_name__ , __magic_name__ : List[str] = torch.split(_lowerCAmelCase , _lowerCAmelCase , dim=1 ) else: __magic_name__ : Tuple = noise_pred # compute previous image: x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample if guidance_scale > 1: __magic_name__ , __magic_name__ : Dict = latent_model_input.chunk(2 , dim=0 ) else: __magic_name__ : Optional[int] = latent_model_input __magic_name__ : List[Any] = 1 / self.vae.config.scaling_factor * latents __magic_name__ : List[Any] = self.vae.decode(_lowerCAmelCase ).sample __magic_name__ : str = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __magic_name__ : Optional[int] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : List[Any] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_lowerCAmelCase )
281
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowerCAmelCase ( )->Any: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=lowerCAmelCase_ , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=lowerCAmelCase_ , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=lowerCAmelCase_ , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=lowerCAmelCase_ , default=0 , help="cuda_id." , ) snake_case_ = parser.parse_args() return args def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Union[str, Any] )->Union[str, Any]: '''simple docstring''' if not len(lowerCAmelCase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) snake_case_ , snake_case_ = imgs[0].size snake_case_ = Image.new("RGB" , size=(cols * w, rows * h) ) snake_case_ , snake_case_ = grid.size for i, img in enumerate(lowerCAmelCase_ ): grid.paste(lowerCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Union[str, Any]="robotic cat with wings" , lowerCAmelCase_ :Any=7.5 , lowerCAmelCase_ :Dict=50 , lowerCAmelCase_ :int=1 , lowerCAmelCase_ :Union[str, Any]=42 , )->str: '''simple docstring''' snake_case_ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase_ ) snake_case_ = pipeline( lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , ).images snake_case_ = int(math.sqrt(lowerCAmelCase_ ) ) snake_case_ = image_grid(lowerCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE :Dict = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE :Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') SCREAMING_SNAKE_CASE :Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') SCREAMING_SNAKE_CASE :List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') SCREAMING_SNAKE_CASE :Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') SCREAMING_SNAKE_CASE :List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE :Dict = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): SCREAMING_SNAKE_CASE :Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: SCREAMING_SNAKE_CASE :Union[str, Any] = unet.to(torch.device('''cuda''', args.cuda_id)) SCREAMING_SNAKE_CASE :Optional[int] = pipeline.to(unet.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) SCREAMING_SNAKE_CASE :Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
159
0
"""simple docstring""" def lowercase__(A , A ) ->float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__A , __A ) ) ) def lowercase__(A ) ->None: """simple docstring""" if point: if isinstance(__A , __A ): for item in point: if not isinstance(__A , (int, float) ): lowercase__ : str= ( "Expected a list of numbers as input, found " f'''{type(__A ).__name__}''' ) raise TypeError(__A ) else: lowercase__ : Any= f'''Expected a list of numbers as input, found {type(__A ).__name__}''' raise TypeError(__A ) else: raise ValueError("Missing an input" ) def lowercase__(A , A ) ->float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__A , __A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a : Optional[Any] = """pt""" elif is_tf_available(): a : Union[str, Any] = """tf""" else: a : Any = """jax""" class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = PerceiverTokenizer __lowerCamelCase = False def UpperCAmelCase_ ( self ): '''simple docstring''' super().setUp() lowercase__ : str= PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__=False , snake_case__=20 , snake_case__=5 ): '''simple docstring''' # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowercase__ : Union[str, Any]= [] for i in range(len(snake_case__ ) ): try: lowercase__ : Any= tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ : int= list(filter(lambda snake_case__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , snake_case__ ) ) lowercase__ : Union[str, Any]= list(filter(lambda snake_case__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=snake_case__ ) , snake_case__ ) ) if max_length is not None and len(snake_case__ ) > max_length: lowercase__ : int= toks[:max_length] if min_length is not None and len(snake_case__ ) < min_length and len(snake_case__ ) > 0: while len(snake_case__ ) < min_length: lowercase__ : List[str]= toks + toks # toks_str = [t[1] for t in toks] lowercase__ : str= [t[0] for t in toks] # Ensure consistency lowercase__ : Optional[Any]= tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) if " " not in output_txt and len(snake_case__ ) > 1: lowercase__ : Dict= ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case__ ) ) if with_prefix_space: lowercase__ : List[Any]= " " + output_txt lowercase__ : Any= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) return output_txt, output_ids def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.perceiver_tokenizer lowercase__ : Union[str, Any]= "Unicode €." lowercase__ : Tuple= tokenizer(snake_case__ ) lowercase__ : Dict= [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowercase__ : List[str]= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]Unicode €.[SEP]" ) lowercase__ : List[str]= tokenizer("e è é ê ë" ) lowercase__ : int= [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowercase__ : Any= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.perceiver_tokenizer lowercase__ : Tuple= ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ : List[Any]= [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase__ : Dict= tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) if FRAMEWORK != "jax": lowercase__ : List[Any]= list(batch.input_ids.numpy()[0] ) else: lowercase__ : str= list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.perceiver_tokenizer lowercase__ : int= ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : Union[str, Any]= tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , snake_case__ ) self.assertIn("attention_mask" , snake_case__ ) self.assertNotIn("decoder_input_ids" , snake_case__ ) self.assertNotIn("decoder_attention_mask" , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.perceiver_tokenizer lowercase__ : int= [ "Summary of the text.", "Another summary.", ] lowercase__ : List[Any]= tokenizer( text_target=snake_case__ , max_length=32 , padding="max_length" , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def UpperCAmelCase_ ( self ): '''simple docstring''' # safety check on max_len default value so we are sure the test works lowercase__ : Union[str, Any]= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase__ : List[str]= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : str= tempfile.mkdtemp() lowercase__ : str= " He is very happy, UNwant\u00E9d,running" lowercase__ : int= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowercase__ : List[str]= tokenizer.__class__.from_pretrained(snake_case__ ) lowercase__ : Tuple= after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) shutil.rmtree(snake_case__ ) lowercase__ : List[str]= self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : Tuple= tempfile.mkdtemp() lowercase__ : List[Any]= " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ : Tuple= tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ : List[str]= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowercase__ : Tuple= tokenizer.__class__.from_pretrained(snake_case__ ) lowercase__ : Tuple= after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase__ : Tuple= tokenizer.__class__.from_pretrained(snake_case__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowercase__ : Optional[Any]= json.load(snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowercase__ : Optional[Any]= json.load(snake_case__ ) lowercase__ : List[str]= [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ : Optional[int]= added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ : Union[str, Any]= added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ : Optional[int]= tokenizer_class.from_pretrained( snake_case__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ : int= added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=snake_case__ )] lowercase__ : int= tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowercase__ : Optional[int]= self.get_tokenizers(fast=snake_case__ , do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ : Optional[int]= ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] lowercase__ : Optional[int]= tokenizer.convert_tokens_to_string(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ )
150
0
import numpy as np def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
345
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip_2_vision_model''' def __init__( self , lowerCAmelCase__=1_4_0_8 , lowerCAmelCase__=6_1_4_4 , lowerCAmelCase__=3_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0_00_01 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = qkv_bias @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = '''blip_2_qformer''' def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=2 , lowerCAmelCase__=1_4_0_8 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = cross_attention_frequency __SCREAMING_SNAKE_CASE = encoder_hidden_size @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip-2''' __lowercase : Any = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=3_2 , **lowerCAmelCase__): super().__init__(**lowerCAmelCase__) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""") if qformer_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""") if text_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""") __SCREAMING_SNAKE_CASE = BlipaVisionConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = BlipaQFormerConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.text_config.tie_word_embeddings __SCREAMING_SNAKE_CASE = self.text_config.is_encoder_decoder __SCREAMING_SNAKE_CASE = num_query_tokens __SCREAMING_SNAKE_CASE = self.vision_config.hidden_size __SCREAMING_SNAKE_CASE = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __SCREAMING_SNAKE_CASE = 1.0 __SCREAMING_SNAKE_CASE = 0.02 @classmethod def snake_case_ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.qformer_config.to_dict() __SCREAMING_SNAKE_CASE = self.text_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
100
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : def __init__( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=13 , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=99 , lowerCAmelCase_ : Any=32 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : List[str]=37 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : int=50 , lowerCAmelCase_ : Union[str, Any]=0.0_2 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=None , ) -> Optional[int]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = use_labels _a = scope def __lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.prepare_config_and_inputs() _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" _a = BertGenerationEncoder(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Any , ) -> Dict: """simple docstring""" _a = True _a = BertGenerationEncoder(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) _a = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , **lowerCAmelCase_ : Dict , ) -> List[Any]: """simple docstring""" _a = True _a = True _a = BertGenerationDecoder(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() # first forward pass _a = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['''hidden_states'''][0] _a = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , *lowerCAmelCase_ : Optional[int] , ) -> Optional[int]: """simple docstring""" _a = BertGenerationDecoder(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : int ) -> int: """simple docstring""" _a , _a , _a , _a = self.prepare_config_and_inputs() _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( _a ,_a ,_a ,unittest.TestCase ): lowercase_ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase_ = (BertGenerationDecoder,) if is_torch_available() else () lowercase_ = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" _a = BertGenerationEncoderTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() _a = '''bert''' self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _a = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) def __lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _a = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _a = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _a = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): _a = model(lowerCAmelCase_ )[0] _a = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , lowerCAmelCase_ ) _a = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _a = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _a = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): _a = model(lowerCAmelCase_ )[0] _a = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , lowerCAmelCase_ ) _a = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
363
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Optional[Any]=10 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Dict=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Union[str, Any]=0.9 , lowerCAmelCase_ : str=None , ) -> int: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = patch_size _a = tubelet_size _a = num_frames _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _a = (image_size // patch_size) ** 2 _a = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _a = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.batch_size , -1 ).bool() _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches _a = mask.sum().item() _a = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase_ = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = VideoMAEModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False ) -> Tuple: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.model_tester.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.model_tester.batch_size , -1 ).bool() _a = bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" if not self.has_attentions: pass else: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = self.model_tester.seq_length - self.model_tester.num_masks _a = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _a = True _a = False _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _a = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ): _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.hidden_states _a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _a = self.model_tester.seq_length - self.model_tester.num_masks _a = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _a = np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask _a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) _a = torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size([1, 14_08, 15_36] ) _a = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _a = torch.tensor([0.5_1_4_2] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): _a = model(**lowerCAmelCase_ ) _a = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
179
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor A_ : List[Any] = logging.get_logger(__name__) class A_ ( a__ ): '''simple docstring''' def __init__(self , *lowercase__ , **lowercase__ ) -> Optional[int]: warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
333
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple=False ): lowerCAmelCase : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Tuple=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[int] = '''''' else: lowerCAmelCase : Union[str, Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : Tuple = in_proj_bias[: config.hidden_size] lowerCAmelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : List[Any] = in_proj_bias[-config.hidden_size :] def _snake_case ( _snake_case : Tuple ): lowerCAmelCase : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[Any] ): lowerCAmelCase : Optional[int] = dct.pop(_snake_case ) lowerCAmelCase : Union[str, Any] = val def _snake_case ( ): lowerCAmelCase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Any = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ): lowerCAmelCase : Any = ViTConfig() lowerCAmelCase : Any = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase : List[str] = True lowerCAmelCase : int = int(vit_name[-12:-10] ) lowerCAmelCase : List[Any] = int(vit_name[-9:-6] ) else: lowerCAmelCase : str = 1000 lowerCAmelCase : Optional[int] = '''huggingface/label-files''' lowerCAmelCase : Any = '''imagenet-1k-id2label.json''' lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : Optional[Any] = {int(_snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : List[str] = int(vit_name[-6:-4] ) lowerCAmelCase : int = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase : str = 192 lowerCAmelCase : int = 768 lowerCAmelCase : List[str] = 12 lowerCAmelCase : str = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase : List[str] = 384 lowerCAmelCase : Optional[int] = 1536 lowerCAmelCase : int = 12 lowerCAmelCase : str = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase : List[str] = 768 lowerCAmelCase : Dict = 2304 lowerCAmelCase : Dict = 8 lowerCAmelCase : Tuple = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase : Union[str, Any] = 1024 lowerCAmelCase : List[Any] = 4096 lowerCAmelCase : Union[str, Any] = 24 lowerCAmelCase : Any = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase : Any = 1280 lowerCAmelCase : str = 5120 lowerCAmelCase : Tuple = 32 lowerCAmelCase : Tuple = 16 # load original model from timm lowerCAmelCase : Any = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : int = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) lowerCAmelCase : Optional[Any] = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Any = ViTModel(_snake_case ).eval() else: lowerCAmelCase : Any = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase : Dict = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase : Dict = encoding['''pixel_values'''] lowerCAmelCase : List[Any] = model(_snake_case ) if base_model: lowerCAmelCase : Dict = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase : Dict = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case__ : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
60
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '''▁''' _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''spiece.model'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } _SCREAMING_SNAKE_CASE = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[str] = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Any = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase="</s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase=[] ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _UpperCAmelCase (self ) -> Dict[str, int]: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Any: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__(self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase ,out_type=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = [] __lowercase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token __lowercase = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
368
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = 1 __lowercase = 2 while i * i <= n: __lowercase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowerCAmelCase ( ): __lowercase = 1 __lowercase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase_ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
217
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Any: '''simple docstring''' a__ : int = 'hf-internal-testing/tiny-random-t5' a__ : List[str] = AutoTokenizer.from_pretrained(lowercase) a__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowercase) a__ : List[str] = tokenizer('This is me' , return_tensors='pt') a__ : List[Any] = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules())) a__ : List[str] = model.generate(**lowercase) a__ : Tuple = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules())) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase) a__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(lowercase) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules())) a__ : Tuple = model_reloaded.generate(**lowercase) self.assertTrue(torch.allclose(lowercase , lowercase)) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = 'hf-internal-testing/tiny-random-t5' a__ : str = AutoModelForSeqaSeqLM.from_pretrained(lowercase) a__ : Optional[Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowercase): model.save_pretrained(lowercase) a__ : str = model.reverse_bettertransformer() model.save_pretrained(lowercase)
99
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class lowerCAmelCase__ ( A_ ): __a = """masked_bert""" def __init__( self : Union[str, Any] , _lowerCamelCase : Any=30522 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Tuple=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : str=3072 , _lowerCamelCase : str="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : int=0.0_2 , _lowerCamelCase : Union[str, Any]=1e-12 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : List[str]="topK" , _lowerCamelCase : Optional[Any]="constant" , _lowerCamelCase : Optional[Any]=0.0 , **_lowerCamelCase : str , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = pruning_method _snake_case = mask_init _snake_case = mask_scale
288
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): snake_case : Dict = ["""input_values""", """padding_mask"""] def __init__(self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 2_4_0_0_0 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Dict = chunk_length_s _UpperCAmelCase : Dict = overlap @property def snake_case_ (self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case_ (self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Union[str, Any] = bool( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Optional[int] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : str = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Union[str, Any] = [np.asarray(lowerCAmelCase__ ).T] # verify inputs are valid for idx, example in enumerate(lowerCAmelCase__ ): if example.ndim > 2: raise ValueError(F"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"Expected stereo audio but example has {example.shape[-1]} channels" ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _UpperCAmelCase : List[str] = min(array.shape[0] for array in raw_audio ) _UpperCAmelCase : List[Any] = int(np.floor(max_length / self.chunk_stride ) ) _UpperCAmelCase : List[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _UpperCAmelCase : Union[str, Any] = max(array.shape[0] for array in raw_audio ) _UpperCAmelCase : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) _UpperCAmelCase : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length _UpperCAmelCase : List[str] = """max_length""" else: _UpperCAmelCase : List[Any] = input_values # normal padding on batch if padded_inputs is None: _UpperCAmelCase : Any = self.pad( lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) if padding: _UpperCAmelCase : Any = padded_inputs.pop("""attention_mask""" ) _UpperCAmelCase : Dict = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _UpperCAmelCase : List[Any] = example[..., None] input_values.append(example.T ) _UpperCAmelCase : List[Any] = input_values if return_tensors is not None: _UpperCAmelCase : int = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
170
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowerCAmelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = None , ): super().__init__() _UpperCAmelCase : str = initial_learning_rate _UpperCAmelCase : str = warmup_steps _UpperCAmelCase : str = power _UpperCAmelCase : Any = decay_schedule_fn _UpperCAmelCase : List[Any] = name def __call__(self , lowerCAmelCase__ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _UpperCAmelCase : List[Any] = tf.cast(lowerCAmelCase__ , tf.floataa ) _UpperCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) _UpperCAmelCase : Union[str, Any] = global_step_float / warmup_steps_float _UpperCAmelCase : List[Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCAmelCase__ , ) def snake_case_ (self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0.9 , lowerCAmelCase_ = 0.999 , lowerCAmelCase_ = 1e-8 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = None , ): _UpperCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCAmelCase_ , ) if num_warmup_steps: _UpperCAmelCase : Optional[int] = WarmUp( initial_learning_rate=lowerCAmelCase_ , decay_schedule_fn=lowerCAmelCase_ , warmup_steps=lowerCAmelCase_ , ) if weight_decay_rate > 0.0: _UpperCAmelCase : Any = AdamWeightDecay( learning_rate=lowerCAmelCase_ , weight_decay_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowerCAmelCase_ , ) else: _UpperCAmelCase : str = tf.keras.optimizers.Adam( learning_rate=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , beta_a=lowerCAmelCase_ , epsilon=lowerCAmelCase_ , clipnorm=lowerCAmelCase_ , global_clipnorm=lowerCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ = 0.0_0_1 , lowerCAmelCase__ = 0.9 , lowerCAmelCase__ = 0.9_9_9 , lowerCAmelCase__ = 1e-7 , lowerCAmelCase__ = False , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "AdamWeightDecay" , **lowerCAmelCase__ , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = weight_decay_rate _UpperCAmelCase : Tuple = include_in_weight_decay _UpperCAmelCase : List[Any] = exclude_from_weight_decay @classmethod def snake_case_ (cls , lowerCAmelCase__ ): _UpperCAmelCase : str = {"""WarmUp""": WarmUp} return super(lowerCAmelCase__ , cls ).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): super(lowerCAmelCase__ , self )._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): _UpperCAmelCase , _UpperCAmelCase : Dict = list(zip(*lowerCAmelCase__ ) ) return super(lowerCAmelCase__ , self ).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , name=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} _UpperCAmelCase : List[Any] = apply_state or {} _UpperCAmelCase : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: _UpperCAmelCase : Dict = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def snake_case_ (self , lowerCAmelCase__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return False return True class __lowerCAmelCase ( __a ): def __init__(self ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = None @property def snake_case_ (self ): if self._accum_steps is None: _UpperCAmelCase : str = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def snake_case_ (self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__(self , lowerCAmelCase__ ): if not self._gradients: _UpperCAmelCase : Optional[int] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__ ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCAmelCase__ ) != len(self._gradients ): raise ValueError(F"Expected {len(self._gradients )} gradients, but got {len(lowerCAmelCase__ )}" ) for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__ ) self._accum_steps.assign_add(1 ) def snake_case_ (self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__ ) )
170
1
import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class A ( unittest.TestCase ): def _A (self ): __lowercase= tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) __lowercase= self.diffusers_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def _A (self ): __lowercase= 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): __lowercase= comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowercase= comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowercase= black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __lowercase= black.format_str(SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ ) __lowercase= os.path.join(self.diffusers_dir , 'new_code.py' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , newline='\n' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , 'r' ) as f: self.assertTrue(f.read() , SCREAMING_SNAKE_CASE_ ) def _A (self ): __lowercase= check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _A (self ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , SCREAMING_SNAKE_CASE_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , SCREAMING_SNAKE_CASE_ ) , ) # Copy consistency with a really long name __lowercase= 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , f'{long_class_name}SchedulerOutput' , re.sub('Bert' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , SCREAMING_SNAKE_CASE_ , overwrite_result=re.sub('DDPM' , 'Test' , SCREAMING_SNAKE_CASE_ ) , )
295
from __future__ import annotations from typing import Generic, TypeVar lowerCamelCase_ = TypeVar('''T''') class __A( Generic[T] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __A( Generic[T] ): """simple docstring""" def __init__(self ): # map from node name to the node object UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # merge 2 disjoint sets self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) , self.find_set(SCREAMING_SNAKE_CASE_ ) ) class __A( Generic[T] ): """simple docstring""" def __init__(self ): # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # add an edge with the given weight self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return graph
244
0
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =len(_lowerCAmelCase ) # We need to create solution object to save path. __lowercase =[[0 for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )] __lowercase =run_maze(_lowerCAmelCase , 0 , 0 , _lowerCAmelCase ) if solved: print('\n'.join(str(_lowerCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =len(_lowerCAmelCase ) # Final check point. if i == j == (size - 1): __lowercase =1 return True __lowercase =(not i < 0) and (not j < 0) # Check lower bounds __lowercase =(i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase =(not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase =1 # check for directions if ( run_maze(_lowerCAmelCase , i + 1 , _lowerCAmelCase , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , _lowerCAmelCase , j + 1 , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , i - 1 , _lowerCAmelCase , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , _lowerCAmelCase , j - 1 , _lowerCAmelCase ) ): return True __lowercase =0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict=False ): if isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ): lowerCAmelCase : str = len(set_a.intersection(_snake_case ) ) if alternative_union: lowerCAmelCase : Union[str, Any] = len(_snake_case ) + len(_snake_case ) else: lowerCAmelCase : List[Any] = len(set_a.union(_snake_case ) ) return intersection / union if isinstance(_snake_case , (list, tuple) ) and isinstance(_snake_case , (list, tuple) ): lowerCAmelCase : Dict = [element for element in set_a if element in set_b] if alternative_union: lowerCAmelCase : Optional[Any] = len(_snake_case ) + len(_snake_case ) return len(_snake_case ) / union else: lowerCAmelCase : Tuple = set_a + [element for element in set_b if element not in set_a] return len(_snake_case ) / len(_snake_case ) return len(_snake_case ) / len(_snake_case ) return None if __name__ == "__main__": snake_case__ : List[Any] = {'''a''', '''b''', '''c''', '''d''', '''e'''} snake_case__ : int = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
60
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Dict = logging.getLogger(__name__) def _snake_case ( _snake_case : Any , _snake_case : Any ): return (preds == labels).mean() @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case_: __UpperCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase : Tuple = processors[data_args.task_name]() lowerCAmelCase : Any = processor.get_labels() lowerCAmelCase : Union[str, Any] = len(_snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_snake_case , p.label_ids )} # Data collator lowerCAmelCase : List[Any] = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : Union[str, Any] = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Any = trainer.evaluate() lowerCAmelCase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_snake_case ) return results def _snake_case ( _snake_case : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
60
1
from __future__ import annotations from fractions import Fraction def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Tuple = 11 UpperCAmelCase_ : int = int('''1''' + '''0''' * digit_len ) for num in range(_lowercase , _lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowercase , _lowercase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 UpperCAmelCase_ : Any = 10 return solutions def lowerCamelCase__ ( _lowercase = 2 ): '''simple docstring''' UpperCAmelCase_ : Tuple = 1.0 for fraction in fraction_list(_lowercase ): UpperCAmelCase_ : Optional[Any] = Fraction(_lowercase ) result *= frac.denominator / frac.numerator return int(_lowercase ) if __name__ == "__main__": print(solution())
352
from dataclasses import dataclass, field from typing import Optional @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) lowerCAmelCase = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) lowerCAmelCase = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) lowerCAmelCase = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) lowerCAmelCase = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) lowerCAmelCase = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) lowerCAmelCase = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) lowerCAmelCase = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) lowerCAmelCase = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Training seed.'''} ) lowerCAmelCase = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) lowerCAmelCase = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) lowerCAmelCase = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) lowerCAmelCase = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) lowerCAmelCase = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) lowerCAmelCase = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) lowerCAmelCase = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) lowerCAmelCase = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default=_a , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) lowerCAmelCase = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) lowerCAmelCase = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) lowerCAmelCase = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) lowerCAmelCase = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) lowerCAmelCase = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) lowerCAmelCase = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) lowerCAmelCase = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
235
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _lowercase : Optional[int] = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def lowercase__ ( ): __UpperCAmelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __UpperCAmelCase = g.get_repo('''huggingface/diffusers''' ) __UpperCAmelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __UpperCAmelCase = sorted(issue.get_comments() , key=lambda snake_case_ : i.created_at , reverse=snake_case_ ) __UpperCAmelCase = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
332
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _a ( _snake_case ): _lowercase : Dict = '''poolformer''' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Dict=16 , UpperCamelCase_: List[str]=16 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Any=4.0 , UpperCamelCase_: Tuple=[2, 2, 6, 2] , UpperCamelCase_: Union[str, Any]=[64, 128, 320, 512] , UpperCamelCase_: Union[str, Any]=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[2, 1, 1, 1] , UpperCamelCase_: int=4 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Optional[Any]="gelu" , UpperCamelCase_: Dict=True , UpperCamelCase_: Any=1E-5 , UpperCamelCase_: List[str]=0.02 , **UpperCamelCase_: Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**UpperCamelCase__ ) class _a ( _snake_case ): _lowercase : Union[str, Any] = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self: List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase_ ( self: Dict ) -> float: """simple docstring""" return 2E-3
362
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : int = '''git_vision_model''' def __init__( self: Tuple , UpperCamelCase_: Optional[int]=768 , UpperCamelCase_: Optional[int]=3_072 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Any=3 , UpperCamelCase_: str=224 , UpperCamelCase_: int=16 , UpperCamelCase_: Any="quick_gelu" , UpperCamelCase_: Union[str, Any]=1E-5 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Tuple=0.02 , **UpperCamelCase_: str , ) -> Optional[int]: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def lowerCamelCase_ ( cls: Optional[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase_ ) lowercase__ , lowercase__ = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": lowercase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''git''' def __init__( self: Optional[Any] , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[str]=30_522 , UpperCamelCase_: List[Any]=768 , UpperCamelCase_: List[Any]=6 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Any=3_072 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: str=1_024 , UpperCamelCase_: Any=0.02 , UpperCamelCase_: str=1E-1_2 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: Optional[Any]="absolute" , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: List[Any]=False , UpperCamelCase_: List[Any]=101 , UpperCamelCase_: int=102 , UpperCamelCase_: List[str]=None , **UpperCamelCase_: int , ) -> Union[str, Any]: """simple docstring""" super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) if vision_config is None: lowercase__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) lowercase__ = GitVisionConfig(**UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
93
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __a: Union[str, Any] = logging.get_logger(__name__) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : str = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) lowercase__ : Union[str, Any] = DetaConfig( backbone_config=lowerCamelCase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCamelCase__ , with_box_refine=lowerCamelCase__ , two_stage=lowerCamelCase__ , ) # set labels lowercase__ : Union[str, Any] = """huggingface/label-files""" if "o365" in model_name: lowercase__ : List[Any] = 366 lowercase__ : str = """object365-id2label.json""" else: lowercase__ : int = 91 lowercase__ : Optional[Any] = """coco-detection-id2label.json""" lowercase__ : Dict = num_labels lowercase__ : str = json.load(open(cached_download(hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : Tuple = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : int = idalabel lowercase__ : Any = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Dict = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.reduction.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.bias""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", F"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", F"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", F"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", F"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", F"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", F"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.weight""", F"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.weight""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.weight""", F"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.bias""", F"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[Any] = dct.pop(lowerCamelCase__ ) lowercase__ : Optional[Any] = val def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ : int = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) lowercase__ : str = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Any = in_proj_weight[:dim, :] lowercase__ : Tuple = in_proj_bias[: dim] lowercase__ : int = in_proj_weight[ dim : dim * 2, : ] lowercase__ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] lowercase__ : Union[str, Any] = in_proj_weight[ -dim :, : ] lowercase__ : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowercase__ : List[Any] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : Optional[Any] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : List[Any] = in_proj_weight[:hidden_size, :] lowercase__ : Any = in_proj_bias[:hidden_size] lowercase__ : List[Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowercase__ : str = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ : Dict = in_proj_weight[-hidden_size:, :] lowercase__ : List[Any] = in_proj_bias[-hidden_size:] def __UpperCamelCase ( ): lowercase__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ : List[Any] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : int = get_deta_config(lowerCamelCase__ ) # load original state dict if model_name == "deta-swin-large": lowercase__ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": lowercase__ : Union[str, Any] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(F"""Model name {model_name} not supported""" ) lowercase__ : Dict = torch.load(lowerCamelCase__ , map_location='''cpu''' )["""model"""] # original state dict for name, param in state_dict.items(): print(lowerCamelCase__ , param.shape ) # rename keys lowercase__ : List[str] = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_swin_q_k_v(lowerCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase__ , lowerCamelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowercase__ : Dict = state_dict.pop(lowerCamelCase__ ) lowercase__ : Dict = val if "input_proj" in key: lowercase__ : List[Any] = state_dict.pop(lowerCamelCase__ ) lowercase__ : Optional[int] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowercase__ : Optional[int] = state_dict.pop(lowerCamelCase__ ) lowercase__ : Tuple = val # finally, create HuggingFace model and load state dict lowercase__ : List[str] = DetaForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() lowercase__ : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(lowerCamelCase__ ) # load image processor lowercase__ : Dict = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image lowercase__ : List[str] = prepare_img() lowercase__ : List[Any] = processor(images=lowerCamelCase__ , return_tensors='''pt''' ) lowercase__ : int = encoding["""pixel_values"""] lowercase__ : Optional[Any] = model(pixel_values.to(lowerCamelCase__ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowercase__ : str = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) lowercase__ : List[str] = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": lowercase__ : Dict = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) lowercase__ : Union[str, Any] = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCamelCase__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCamelCase__ ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(F"""jozhang97/{model_name}""" ) processor.push_to_hub(F"""jozhang97/{model_name}""" ) if __name__ == "__main__": __a: Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __a: List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
198
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0.2 , lowercase=0.2 ): A_ : str = bp_numa A_ : Optional[int] = bp_numa A_ : Optional[Any] = bp_numa A_ : str = conva_get[:2] A_ : Union[str, Any] = conva_get[2] A_ : Union[str, Any] = size_pa A_ : List[str] = rate_w A_ : Dict = rate_t A_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A_ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ : Tuple = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ : List[Any] = -2 * np.random.rand(self.conva[1] ) + 1 A_ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 A_ : Any = -2 * np.random.rand(self.num_bpa ) + 1 def _a (self , lowercase ): # save model dict with pickle A_ : Union[str, Any] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowercase , """wb""" ) as f: pickle.dump(lowercase , lowercase ) print(F'Model saved: {save_path}' ) @classmethod def _a (cls , lowercase ): # read saved model with open(lowercase , """rb""" ) as f: A_ : Optional[int] = pickle.load(lowercase ) # noqa: S301 A_ : Optional[int] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) A_ : Tuple = model_dic.get("""size_pooling1""" ) A_ : Optional[Any] = model_dic.get("""num_bp1""" ) A_ : List[str] = model_dic.get("""num_bp2""" ) A_ : Dict = model_dic.get("""num_bp3""" ) A_ : Tuple = model_dic.get("""rate_weight""" ) A_ : List[Any] = model_dic.get("""rate_thre""" ) # create model instance A_ : List[str] = CNN(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) # modify model parameter A_ : int = model_dic.get("""w_conv1""" ) A_ : str = model_dic.get("""wkj""" ) A_ : str = model_dic.get("""vji""" ) A_ : int = model_dic.get("""thre_conv1""" ) A_ : Union[str, Any] = model_dic.get("""thre_bp2""" ) A_ : List[Any] = model_dic.get("""thre_bp3""" ) return conv_ins def _a (self , lowercase ): return 1 / (1 + np.exp(-1 * x )) def _a (self , lowercase ): return round(lowercase , 3 ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase ): # convolution process A_ : Dict = convs[0] A_ : Any = convs[1] A_ : Tuple = np.shape(lowercase )[0] # get the data slice of original image data, data_focus A_ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase ): A_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix A_ : int = [] A_ : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase ): A_ : List[Any] = [] for i_focus in range(len(lowercase ) ): A_ : List[str] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase ) ) A_ : Tuple = np.asmatrix(lowercase ).reshape( lowercase , lowercase ) data_featuremap.append(lowercase ) # expanding the data slice to One dimenssion A_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase ) ) A_ : Dict = np.asarray(lowercase ) return focus_list, data_featuremap def _a (self , lowercase , lowercase , lowercase="average_pool" ): # pooling process A_ : Union[str, Any] = len(featuremaps[0] ) A_ : str = int(size_map / size_pooling ) A_ : List[str] = [] for i_map in range(len(lowercase ) ): A_ : Any = featuremaps[i_map] A_ : Any = [] for i_focus in range(0 , lowercase , lowercase ): for j_focus in range(0 , lowercase , lowercase ): A_ : Tuple = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase ) ) A_ : List[str] = np.asmatrix(lowercase ).reshape(lowercase , lowercase ) featuremap_pooled.append(lowercase ) return featuremap_pooled def _a (self , lowercase ): # expanding three dimension data to one dimension list A_ : List[Any] = [] for i in range(len(lowercase ) ): A_ : Tuple = np.shape(data[i] ) A_ : str = data[i].reshape(1 , shapes[0] * shapes[1] ) A_ : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(lowercase ) A_ : Optional[Any] = np.asarray(lowercase ) return data_expanded def _a (self , lowercase ): # expanding matrix to one dimension list A_ : str = np.asarray(lowercase ) A_ : Any = np.shape(lowercase ) A_ : int = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[str] = [] A_ : Union[str, Any] = 0 for i_map in range(lowercase ): A_ : Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , lowercase , lowercase ): for j in range(0 , lowercase , lowercase ): A_ : str = pd_pool[ i_pool ] A_ : Optional[Any] = i_pool + 1 A_ : Union[str, Any] = np.multiply( lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase ) return pd_all def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=bool ): # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowercase )) ) print((""" - - Shape: Teach_Data """, np.shape(lowercase )) ) A_ : Optional[Any] = 0 A_ : Dict = [] A_ : List[Any] = 10000 while rp < n_repeat and mse >= error_accuracy: A_ : List[Any] = 0 print(F'-------------Learning Time {rp}--------------' ) for p in range(len(lowercase ) ): # print('------------Learning Image: %d--------------'%p) A_ : Optional[Any] = np.asmatrix(datas_train[p] ) A_ : str = np.asarray(datas_teach[p] ) A_, A_ : Dict = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Any = self.pooling(lowercase , self.size_poolinga ) A_ : int = np.shape(lowercase ) A_ : Union[str, Any] = self._expand(lowercase ) A_ : Dict = data_bp_input A_ : int = np.dot(lowercase , self.vji.T ) - self.thre_bpa A_ : Any = self.sig(lowercase ) A_ : Optional[int] = np.dot(lowercase , self.wkj.T ) - self.thre_bpa A_ : List[str] = self.sig(lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A_ : Optional[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase , (1 - bp_outa) ) ) A_ : Tuple = np.multiply( np.dot(lowercase , self.wkj ) , np.multiply(lowercase , (1 - bp_outa) ) ) A_ : Union[str, Any] = np.dot(lowercase , self.vji ) A_ : int = pd_i_all / (self.size_poolinga * self.size_poolinga) A_ : str = pd_conva_pooled.T.getA().tolist() A_ : List[Any] = self._calculate_gradient_from_pool( lowercase , lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A_ : int = self._expand_mat(pd_conva_all[k_conv] ) A_ : Any = self.rate_weight * np.dot(lowercase , lowercase ) A_ : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A_ : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A_ : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight A_ : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre A_ : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A_ : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A_ : List[Any] = rp + 1 A_ : Union[str, Any] = error_count / patterns all_mse.append(lowercase ) def draw_error(): A_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase , """+-""" ) plt.plot(lowercase , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowercase , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def _a (self , lowercase ): # model predict A_ : Tuple = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowercase )) ) for p in range(len(lowercase ) ): A_ : int = np.asmatrix(datas_test[p] ) A_, A_ : str = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Dict = self.pooling(lowercase , self.size_poolinga ) A_ : Tuple = self._expand(lowercase ) A_ : int = data_bp_input A_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa A_ : List[str] = self.sig(lowercase ) A_ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa A_ : List[Any] = self.sig(lowercase ) produce_out.extend(bp_outa.getA().tolist() ) A_ : Any = [list(map(self.do_round , lowercase ) ) for each in produce_out] return np.asarray(lowercase ) def _a (self , lowercase ): # return the data of image after convoluting process so we can check it out A_ : Optional[Any] = np.asmatrix(lowercase ) A_, A_ : Optional[Any] = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Union[str, Any] = self.pooling(lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
206
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __UpperCAmelCase : Dict = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __snake_case : '''simple docstring''' def __init__( self : Optional[int] , A : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) __snake_case: Any = primes[group]["""prime"""] __snake_case: List[str] = primes[group]["""generator"""] __snake_case: str = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCAmelCase__ ( self : List[str] ): return hex(self.__private_key )[2:] def UpperCAmelCase__ ( self : str ): __snake_case: Union[str, Any] = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def UpperCAmelCase__ ( self : Any , A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase__ ( self : Dict , A : str ): __snake_case: Tuple = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError("""Invalid public key""" ) __snake_case: List[str] = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase__ ( A : int , A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def UpperCAmelCase__ ( A : str , A : str , A : int = 14 ): __snake_case: Optional[int] = int(A , base=16 ) __snake_case: Any = int(A , base=16 ) __snake_case: List[str] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError("""Invalid public key""" ) __snake_case: List[str] = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
293
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A__ ( SCREAMING_SNAKE_CASE__ = 3) -> qiskit.result.counts.Counts: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): raise TypeError("""number of qubits must be a integer.""") if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""") if math.floor(SCREAMING_SNAKE_CASE__) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""") if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""") __snake_case: int = QuantumRegister(SCREAMING_SNAKE_CASE__ , """qr""") __snake_case: List[str] = ClassicalRegister(SCREAMING_SNAKE_CASE__ , """cr""") __snake_case: Optional[Any] = QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: Tuple = number_of_qubits for i in range(SCREAMING_SNAKE_CASE__): quantum_circuit.h(number_of_qubits - i - 1) counter -= 1 for j in range(SCREAMING_SNAKE_CASE__): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) for k in range(number_of_qubits // 2): quantum_circuit.swap(SCREAMING_SNAKE_CASE__ , number_of_qubits - k - 1) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # simulate with 10000 shots __snake_case: Union[str, Any] = Aer.get_backend("""qasm_simulator""") __snake_case: Optional[Any] = execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=1_0000) return job.result().get_counts(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
293
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): @property def _lowercase (self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def _lowercase (self : Optional[int] ): torch.manual_seed(0 ) UpperCAmelCase_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def _lowercase (self : str ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__a ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.dummy_uncond_unet UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = self.dummy_vq_model UpperCAmelCase_ = LDMPipeline(unet=__a , vqvae=__a , scheduler=__a ) ldm.to(__a ) ldm.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = ldm(generator=__a , num_inference_steps=2 , output_type="numpy" ).images UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = ldm(generator=__a , num_inference_steps=2 , output_type="numpy" , return_dict=__a )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) UpperCAmelCase_ = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __A ( unittest.TestCase ): def _lowercase (self : str ): UpperCAmelCase_ = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(__a ) ldm.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = ldm(generator=__a , num_inference_steps=5 , output_type="numpy" ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) UpperCAmelCase_ = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCAmelCase_ ( _lowercase : str , _lowercase : str , **_lowercase : Optional[Any]) -> Optional[int]: """simple docstring""" a__ : List[Any] = AutoConfig.from_pretrained(_lowercase , **_lowercase) a__ : Dict = AutoModelForSeqaSeqLM.from_config(_lowercase) model.save_pretrained(_lowercase) AutoTokenizer.from_pretrained(_lowercase).save_pretrained(_lowercase) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
170
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ ( __lowercase , unittest.TestCase ): _lowerCamelCase = PhobertTokenizer _lowerCamelCase = False def UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Optional[int] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] _snake_case : Tuple = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _snake_case : int = ['''#version: 0.2''', '''l à</w>'''] _snake_case : List[Any] = {'''unk_token''': '''<unk>'''} _snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def UpperCamelCase ( self , **lowercase_ ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def UpperCamelCase ( self , lowercase_ ): _snake_case : Union[str, Any] = '''Tôi là VinAI Research''' _snake_case : int = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCamelCase ( self ): _snake_case : Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : Any = '''Tôi là VinAI Research''' _snake_case : Union[str, Any] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() _snake_case : List[str] = tokenizer.tokenize(snake_case_ ) print(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _snake_case : str = tokens + [tokenizer.unk_token] _snake_case : str = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
352
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) @dataclass class lowercase_ ( __snake_case ): _lowerCamelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **lowercase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : List[str] = deprecated_arg[3:] _snake_case : Optional[int] = not kwargs.pop(lowercase_ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _snake_case : Tuple = kwargs.pop("tpu_name" , self.tpu_name ) _snake_case : Any = kwargs.pop("device_idx" , self.device_idx ) _snake_case : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) _snake_case : List[str] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**lowercase_ ) _lowerCamelCase = field( default=__snake_case , metadata={'help': 'Name of TPU'} , ) _lowerCamelCase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _lowerCamelCase = field(default=__snake_case , metadata={'help': 'Benchmark models in eager model.'} ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) _snake_case : str = None if self.tpu: try: if self.tpu_name: _snake_case : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _snake_case : Union[str, Any] = None return tpu @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _snake_case : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase ( self ): return self.n_gpu > 0
284
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class a : __lowerCAmelCase : int __lowerCAmelCase : TreeNode | None = None __lowerCAmelCase : TreeNode | None = None A__ = namedtuple('''CoinsDistribResult''', '''moves excess''') def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(__lowerCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__lowerCAmelCase ) != count_coins(__lowerCAmelCase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__lowerCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case__ , snake_case__ : Union[str, Any] = get_distrib(node.left ) snake_case__ , snake_case__ : str = get_distrib(node.right ) snake_case__ : List[str] = 1 - left_distrib_excess snake_case__ : Any = 1 - right_distrib_excess snake_case__ : Optional[Any] = ( left_distrib_moves + right_distrib_moves + abs(__lowerCAmelCase ) + abs(__lowerCAmelCase ) ) snake_case__ : List[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__lowerCAmelCase , __lowerCAmelCase ) return get_distrib(__lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
230
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a ( unittest.TestCase ): __lowerCAmelCase : Any = MODEL_FOR_MASKED_LM_MAPPING __lowerCAmelCase : Optional[Any] = TF_MODEL_FOR_MASKED_LM_MAPPING def __lowerCamelCase ( self :str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __lowerCamelCase ( self :Any ): snake_case__ : Optional[Any] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,top_k=2 ,framework='''tf''' ) snake_case__ : int = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__lowercase ,decimals=6 ) ,[ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-0_5, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-0_5, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''}, ] ,) snake_case__ : int = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__lowercase ,decimals=6 ) ,[ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-0_5, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-0_5, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser''', }, ] ,) snake_case__ : Optional[int] = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 ) self.assertEqual( nested_simplify(__lowercase ,decimals=6 ) ,[ {'''sequence''': '''My name is Clara''', '''score''': 2e-0_5, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-0_5, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-0_5, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] ,) @require_torch def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,top_k=2 ,framework='''pt''' ) snake_case__ : str = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__lowercase ,decimals=6 ) ,[ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-0_5, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] ,) snake_case__ : List[str] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__lowercase ,decimals=6 ) ,[ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-0_5, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] ,) snake_case__ : Union[str, Any] = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 ) self.assertEqual( nested_simplify(__lowercase ,decimals=6 ) ,[ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-0_5, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-0_5, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-0_5, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, ] ,) snake_case__ : Optional[int] = unmasker('''My name is <mask> <mask>''' ,top_k=2 ) self.assertEqual( nested_simplify(__lowercase ,decimals=6 ) ,[ [ { '''score''': 2.2e-0_5, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-0_5, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] ,) @require_torch_gpu def __lowerCamelCase ( self :int ): snake_case__ : Optional[int] = pipeline('''fill-mask''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,device=0 ,framework='''pt''' ) # convert model to fp16 pipe.model.half() snake_case__ : List[str] = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__lowercase ,__lowercase ) @slow @require_torch def __lowerCamelCase ( self :str ): snake_case__ : List[str] = pipeline(task='''fill-mask''' ,model='''distilroberta-base''' ,top_k=2 ,framework='''pt''' ) self.run_large_test(__lowercase ) @slow @require_tf def __lowerCamelCase ( self :Any ): snake_case__ : Optional[Any] = pipeline(task='''fill-mask''' ,model='''distilroberta-base''' ,top_k=2 ,framework='''tf''' ) self.run_large_test(__lowercase ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ): snake_case__ : Optional[Any] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__lowercase ) ,[ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 6_1_0, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''}, ] ,) snake_case__ : str = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__lowercase ) ,[ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 2_2_0_1, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_2_7_9_0, '''token_str''': ''' Lyon''', }, ] ,) snake_case__ : Dict = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 ) self.assertEqual( nested_simplify(__lowercase ) ,[ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] ,) @require_torch def __lowerCamelCase ( self :List[str] ): snake_case__ : List[Any] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,framework='''pt''' ) snake_case__ : str = None snake_case__ : int = None self.run_pipeline_test(__lowercase ,[] ) @require_tf def __lowerCamelCase ( self :int ): snake_case__ : Optional[int] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,framework='''tf''' ) snake_case__ : int = None snake_case__ : List[str] = None self.run_pipeline_test(__lowercase ,[] ) def __lowerCamelCase ( self :Any ,__lowercase :Any ,__lowercase :str ,__lowercase :Union[str, Any] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) snake_case__ : Optional[int] = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ) snake_case__ : List[str] = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ): snake_case__ : List[str] = fill_masker.tokenizer snake_case__ : List[Any] = fill_masker.model snake_case__ : Dict = fill_masker( F"""This is a {tokenizer.mask_token}""" ,) self.assertEqual( __lowercase ,[ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ] ,) snake_case__ : Tuple = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __lowercase ,[ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ] ,) snake_case__ : List[str] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __lowercase ,[ [ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ], [ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ], ] ,) with self.assertRaises(__lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__lowercase ): fill_masker('''This is''' ) self.run_test_top_k(__lowercase ,__lowercase ) self.run_test_targets(__lowercase ,__lowercase ) self.run_test_top_k_targets(__lowercase ,__lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(__lowercase ,__lowercase ) self.fill_mask_with_multiple_masks(__lowercase ,__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :int ): snake_case__ : int = tokenizer.get_vocab() snake_case__ : Dict = sorted(vocab.keys() )[:2] # Pipeline argument snake_case__ : List[Any] = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ,targets=__lowercase ) snake_case__ : str = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __lowercase ,[ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ] ,) snake_case__ : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} ,__lowercase ) snake_case__ : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} ,set(__lowercase ) ) # Call argument snake_case__ : str = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ) snake_case__ : int = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=__lowercase ) self.assertEqual( __lowercase ,[ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ] ,) snake_case__ : str = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} ,__lowercase ) snake_case__ : Optional[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} ,set(__lowercase ) ) # Score equivalence snake_case__ : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=__lowercase ) snake_case__ : Union[str, Any] = [top_mask['''token_str'''] for top_mask in outputs] snake_case__ : Tuple = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowercase ) == set(__lowercase ): snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=__lowercase ) snake_case__ : int = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__lowercase ) ,nested_simplify(__lowercase ) ) # Raises with invalid with self.assertRaises(__lowercase ): snake_case__ : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__lowercase ): snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=[''''''] ) with self.assertRaises(__lowercase ): snake_case__ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets='''''' ) def __lowerCamelCase ( self :Any ,__lowercase :Union[str, Any] ,__lowercase :Dict ): snake_case__ : int = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ,top_k=2 ) snake_case__ : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __lowercase ,[ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ] ,) snake_case__ : Any = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ) snake_case__ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=2 ) self.assertEqual( __lowercase ,[ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ] ,) self.assertEqual(nested_simplify(__lowercase ) ,nested_simplify(__lowercase ) ) def __lowerCamelCase ( self :List[Any] ,__lowercase :Tuple ,__lowercase :str ): snake_case__ : Optional[int] = tokenizer.get_vocab() snake_case__ : int = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ) # top_k=2, ntargets=3 snake_case__ : int = sorted(vocab.keys() )[:3] snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=2 ,targets=__lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case__ : Dict = [el['''token_str'''] for el in sorted(__lowercase ,key=lambda __lowercase : x["score"] ,reverse=__lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowercase ).issubset(__lowercase ): snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=3 ,targets=__lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__lowercase ) ,nested_simplify(__lowercase ) ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Dict ,__lowercase :Dict ): snake_case__ : Union[str, Any] = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ) snake_case__ : str = tokenizer.get_vocab() # String duplicates + id duplicates snake_case__ : int = sorted(vocab.keys() )[:3] snake_case__ : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case__ : Optional[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" ,targets=__lowercase ,top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__lowercase ) ,3 ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ): snake_case__ : Any = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ) snake_case__ : Tuple = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" ,top_k=2 ) self.assertEqual( __lowercase ,[ [ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ], [ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ], [ {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, {'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )}, ], ] ,)
230
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = RoFormerTokenizer _snake_case : str = RoFormerTokenizerFast _snake_case : List[Any] = True _snake_case : int = True def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' super().setUp() def snake_case__ ( self : int , **lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , **lowerCAmelCase__ : Dict ) -> List[Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = '''永和服装饰品有限公司,今天天气非常好''' _UpperCamelCase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase , _UpperCamelCase = self.get_chinese_input_output_texts() _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , output_text.split() ) _UpperCamelCase = tokens + [tokenizer.unk_token] _UpperCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase , _UpperCamelCase = self.get_chinese_input_output_texts() _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , output_text.split() ) _UpperCamelCase = tokens + [tokenizer.unk_token] _UpperCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' pass def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' pass
287
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowercase ): for j in range(lowercase ): _UpperCamelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowercase__ : Optional[int] = imread('image_data/lena.jpg', 1) # convert to its negative lowercase__ : Union[str, Any] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
287
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ViTImageProcessor if is_vision_available() else None @property def a_ ( self) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self) -> Optional[Any]: snake_case_ = (3, 32, 128) snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on snake_case_ = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__)))) snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase__) + '\n') snake_case_ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } snake_case_ = os.path.join(self.tmpdirname, lowerCAmelCase__) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self) -> Tuple: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Any: snake_case_ = np.random.randint(255, size=(3, 30, 400), dtype=np.uinta) snake_case_ = Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) return image_input def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) snake_case_ = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer, lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ = self.get_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') snake_case_ = self.get_image_processor(do_normalize=lowerCAmelCase__, padding_value=1.0) snake_case_ = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase__, padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer, lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> Any: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='np') snake_case_ = processor(images=lowerCAmelCase__, return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def a_ ( self) -> str: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'test' snake_case_ = processor(text=lowerCAmelCase__) snake_case_ = tokenizer(lowerCAmelCase__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def a_ ( self) -> Tuple: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'test' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), ['pixel_values', 'labels']) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__): processor() def a_ ( self) -> List[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.char_decode(lowerCAmelCase__) snake_case_ = tokenizer.batch_decode(lowerCAmelCase__) snake_case_ = [seq.replace(' ', '') for seq in decoded_tok] self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = None snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), processor.model_input_names) def a_ ( self) -> List[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = torch.randn(1, 27, 38) snake_case_ = torch.randn(1, 27, 5_0257) snake_case_ = torch.randn(1, 27, 3_0522) snake_case_ = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()), ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'])
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> list: if len(UpperCAmelCase ) <= 1: return [tuple(UpperCAmelCase )] snake_case_ = [] def generate(UpperCAmelCase , UpperCAmelCase ): snake_case_ = [0] * n res.append(tuple(UpperCAmelCase ) ) snake_case_ = 0 while i < n: if c[i] < i: if i % 2 == 0: snake_case_ , snake_case_ = arr[i], arr[0] else: snake_case_ , snake_case_ = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase ) ) c[i] += 1 snake_case_ = 0 else: snake_case_ = 0 i += 1 generate(len(UpperCAmelCase ) , UpperCAmelCase ) return res if __name__ == "__main__": __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
69
1
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" if n_term == "": return [] UpperCAmelCase_ : list = [] for temp in range(int(lowerCamelCase_ ) ): series.append(F'''1/{temp + 1}''' if series else '1' ) return series if __name__ == "__main__": snake_case__ : int = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
357
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_=None , snake_case_=None , *snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) if config is None: assert isinstance(self.model , snake_case_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) UpperCAmelCase_ : Tuple = self.model.config else: UpperCAmelCase_ : Optional[Any] = config UpperCAmelCase_ : Optional[Any] = data_args UpperCAmelCase_ : Dict = self.config.tgt_vocab_size if isinstance(self.config , snake_case_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ' padding..' ) if self.args.label_smoothing == 0: UpperCAmelCase_ : Dict = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase_ : Union[str, Any] = label_smoothed_nll_loss def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if self.optimizer is None: UpperCAmelCase_ : Optional[Any] = ['bias', 'LayerNorm.weight'] UpperCAmelCase_ : Union[str, Any] = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] UpperCAmelCase_ : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase_ : List[str] = Adafactor UpperCAmelCase_ : int = {'scale_parameter': False, 'relative_step': False} else: UpperCAmelCase_ : Union[str, Any] = AdamW UpperCAmelCase_ : Optional[int] = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } UpperCAmelCase_ : Optional[int] = self.args.learning_rate if self.sharded_ddp: UpperCAmelCase_ : Optional[Any] = OSS( params=snake_case_ , optim=snake_case_ , **snake_case_ , ) else: UpperCAmelCase_ : Tuple = optimizer_cls(snake_case_ , **snake_case_ ) if self.lr_scheduler is None: UpperCAmelCase_ : int = self._get_lr_scheduler(snake_case_ ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase_ : List[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase_ : Optional[Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase_ : int = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case_ ) return scheduler def _UpperCamelCase ( self ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase_ : Any = model(**snake_case_ , use_cache=snake_case_ )[0] UpperCAmelCase_ : int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase_ , UpperCAmelCase_ : List[str] = model(**snake_case_ , labels=snake_case_ , use_cache=snake_case_ )[:2] else: # compute label smoothed loss UpperCAmelCase_ : List[str] = model(**snake_case_ , use_cache=snake_case_ )[0] UpperCAmelCase_ : Optional[int] = torch.nn.functional.log_softmax(snake_case_ , dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.loss_fn(snake_case_ , snake_case_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = inputs.pop('labels' ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = self._compute_loss(snake_case_ , snake_case_ , snake_case_ ) return loss def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self._prepare_inputs(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase_ : Tuple = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **snake_case_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ : Tuple = self._pad_tensors_to_max_len(snake_case_ , gen_kwargs['max_length'] ) UpperCAmelCase_ : List[str] = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self._compute_loss(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase_ : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ : List[Any] = self._pad_tensors_to_max_len(snake_case_ , gen_kwargs['max_length'] ) return (loss, logits, labels) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F''' padded to `max_length`={max_length}''' ) UpperCAmelCase_ : Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase_ : Dict = tensor return padded_tensor
274
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: str =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) lowerCamelCase__: Dict =get_activation("gelu") self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase_) , torch_builtin(UpperCAmelCase_))) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase_) , gelu_new(UpperCAmelCase_))) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: List[str] =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) lowerCamelCase__: str =get_activation("gelu") lowerCamelCase__: Union[str, Any] =get_activation("gelu_10") lowerCamelCase__: Dict =torch_builtin(UpperCAmelCase_) lowerCamelCase__: Any =geluaa(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(UpperCAmelCase_).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' get_activation("gelu") get_activation("gelu_10") get_activation("gelu_fast") get_activation("gelu_new") get_activation("gelu_python") get_activation("gelu_pytorch_tanh") get_activation("linear") get_activation("mish") get_activation("quick_gelu") get_activation("relu") get_activation("sigmoid") get_activation("silu") get_activation("swish") get_activation("tanh") with self.assertRaises(UpperCAmelCase_): get_activation("bogus") with self.assertRaises(UpperCAmelCase_): get_activation(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =get_activation("gelu") lowerCamelCase__: str =1 lowerCamelCase__: Union[str, Any] =get_activation("gelu") self.assertEqual(acta.a , 1) with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =acta.a
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case ( _UpperCamelCase , unittest.TestCase): __UpperCamelCase = ShapEImgaImgPipeline __UpperCamelCase = ['image'] __UpperCamelCase = ['image'] __UpperCamelCase = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __UpperCamelCase = False @property def a_ ( self : Dict ) -> Any: '''simple docstring''' return 32 @property def a_ ( self : int ) -> Union[str, Any]: '''simple docstring''' return 32 @property def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def a_ ( self : Optional[int] ) -> str: '''simple docstring''' return 8 @property def a_ ( self : Tuple ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) _A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A = CLIPVisionModel(a__ ) return model @property def a_ ( self : Dict ) -> Tuple: '''simple docstring''' _A = CLIPImageProcessor( crop_size=2_24 , do_center_crop=a__ , do_normalize=a__ , do_resize=a__ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_24 , ) return image_processor @property def a_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _A = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _A = PriorTransformer(**a__ ) return model @property def a_ ( self : str ) -> str: '''simple docstring''' torch.manual_seed(0 ) _A = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _A = ShapERenderer(**a__ ) return model def a_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _A = self.dummy_prior _A = self.dummy_image_encoder _A = self.dummy_image_processor _A = self.dummy_renderer _A = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _A = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def a_ ( self : Optional[Any] , a__ : Dict , a__ : str=0 ) -> Any: '''simple docstring''' _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(a__ ) ).to(a__ ) if str(a__ ).startswith("mps" ): _A = torch.manual_seed(a__ ) else: _A = torch.Generator(device=a__ ).manual_seed(a__ ) _A = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def a_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A = "cpu" _A = self.get_dummy_components() _A = self.pipeline_class(**a__ ) _A = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _A = pipe(**self.get_dummy_inputs(a__ ) ) _A = output.images[0] _A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a_ ( self : int ) -> Optional[Any]: '''simple docstring''' _A = torch_device == "cpu" _A = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def a_ ( self : int ) -> Optional[Any]: '''simple docstring''' _A = self.get_dummy_components() _A = self.pipeline_class(**a__ ) _A = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _A = 1 _A = 2 _A = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _A = batch_size * [inputs[key]] _A = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case ( unittest.TestCase): def a_ ( self : str ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Optional[Any] ) -> int: '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) _A = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) _A = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _A = torch.Generator(device=a__ ).manual_seed(0 ) _A = pipe( a__ , generator=a__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
163
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( _UpperCamelCase , unittest.TestCase): __UpperCamelCase = GPTSanJapaneseTokenizer __UpperCamelCase = False __UpperCamelCase = {'do_clean_text': False, 'add_prefix_space': False} def a_ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # fmt: off _A = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _A = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _A = {"unk_token": "<unk>"} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(a__ ) ) def a_ ( self : str , **a__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self : Dict , a__ : str ) -> int: '''simple docstring''' _A = "こんにちは、世界。 \nこんばんは、㔺界。😀" _A = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def a_ ( self : Union[str, Any] , a__ : Optional[int] ) -> Any: '''simple docstring''' _A , _A = self.get_input_output_texts(a__ ) _A = tokenizer.encode(a__ , add_special_tokens=a__ ) _A = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) return text, ids def a_ ( self : List[Any] ) -> str: '''simple docstring''' pass # TODO add if relevant def a_ ( self : List[str] ) -> Dict: '''simple docstring''' pass # TODO add if relevant def a_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def a_ ( self : Any ) -> Optional[Any]: '''simple docstring''' _A = self.get_tokenizer() # Testing tokenization _A = "こんにちは、世界。 こんばんは、㔺界。" _A = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _A = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _A = tokens + [tokenizer.unk_token] _A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _A = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , a__ ) def a_ ( self : Optional[int] ) -> str: '''simple docstring''' _A = self.get_tokenizer() # Testing tokenization _A = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _A = "こんにちは、、、、世界。こんばんは、、、、世界。" _A = tokenizer.encode(a__ ) _A = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ ) @slow def a_ ( self : Any ) -> Optional[int]: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _A = "こんにちは、世界。" _A = "こんばんは、㔺界。😀" _A = "こんにちは、世界。こんばんは、世界。😀" _A = tokenizer.encode(prefix_text + input_text ) _A = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _A = tokenizer.encode(a__ , prefix_text=a__ ) _A = tokenizer.decode(a__ ) _A = tokenizer.decode(a__ ) _A = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) @slow def a_ ( self : str ) -> str: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _A = "こんにちは、世界。" _A = "こんばんは、㔺界。😀" _A = len(tokenizer.encode(a__ ) ) - 2 _A = len(tokenizer.encode(a__ ) ) - 2 _A = [1] + [0] * (len_prefix + len_text + 1) _A = [1] * (len_prefix + len_text + 1) + [0] _A = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A = tokenizer(prefix_text + input_text ).token_type_ids _A = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _A = tokenizer(a__ , prefix_text=a__ ).token_type_ids self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) @slow def a_ ( self : int ) -> Dict: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _A = tokenizer.encode("あンいワ" ) _A = tokenizer.encode("" , prefix_text="あンいワ" ) _A = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(a__ ) , tokenizer.decode(a__ ) ) self.assertEqual(tokenizer.decode(a__ ) , tokenizer.decode(a__ ) ) self.assertNotEqual(a__ , a__ ) self.assertNotEqual(a__ , a__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def a_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _A = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _A = tokenizer(a__ , padding=a__ ) _A = tokenizer.batch_encode_plus(a__ , padding=a__ ) # fmt: off _A = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] _A = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , a__ ) self.assertListEqual(x_token.token_type_ids , a__ ) self.assertListEqual(x_token.attention_mask , a__ ) self.assertListEqual(x_token_a.input_ids , a__ ) self.assertListEqual(x_token_a.token_type_ids , a__ ) self.assertListEqual(x_token_a.attention_mask , a__ ) def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass
163
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) UpperCamelCase_ = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase_ = model(_A )['''last_hidden_state'''] UpperCamelCase_ = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. UpperCamelCase_ = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
122
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Tuple , snake_case :Optional[Any]=13 , snake_case :List[str]=7 , snake_case :str=True , snake_case :List[str]=True , snake_case :Optional[int]=True , snake_case :Union[str, Any]=True , snake_case :Union[str, Any]=True , snake_case :Union[str, Any]=False , snake_case :Union[str, Any]=False , snake_case :List[Any]=False , snake_case :str=2 , snake_case :List[str]=99 , snake_case :Tuple=0 , snake_case :List[str]=32 , snake_case :Dict=5 , snake_case :Union[str, Any]=4 , snake_case :Union[str, Any]=0.1 , snake_case :Tuple=0.1 , snake_case :Union[str, Any]=512 , snake_case :Optional[int]=2 , snake_case :Any=0.02 , snake_case :List[str]=2 , snake_case :Dict=4 , snake_case :int="last" , snake_case :Optional[Any]=True , snake_case :str=None , snake_case :str=0 , ): '''simple docstring''' A_ : Dict = parent A_ : Tuple = batch_size A_ : List[Any] = seq_length A_ : Any = is_training A_ : List[Any] = use_input_lengths A_ : Optional[Any] = use_token_type_ids A_ : Tuple = use_labels A_ : Dict = gelu_activation A_ : int = sinusoidal_embeddings A_ : int = causal A_ : Any = asm A_ : Dict = n_langs A_ : str = vocab_size A_ : Optional[int] = n_special A_ : List[Any] = hidden_size A_ : Any = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : List[str] = type_sequence_label_size A_ : List[str] = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : List[str] = summary_type A_ : Optional[Any] = use_proj A_ : Dict = scope A_ : List[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None if self.use_input_lengths: A_ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A_ : Optional[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A_ : Any = None A_ : List[Any] = None A_ : Any = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() A_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Any , snake_case :str , snake_case :str , snake_case :List[Any] , snake_case :Optional[Any] , snake_case :Tuple , snake_case :List[Any] , snake_case :Optional[Any] , snake_case :List[Any] , ): '''simple docstring''' A_ : List[str] = XLMModel(config=_a ) model.to(_a ) model.eval() A_ : Union[str, Any] = model(_a , lengths=_a , langs=_a ) A_ : List[str] = model(_a , langs=_a ) A_ : Any = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Any , snake_case :int , snake_case :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :Optional[int] , snake_case :List[str] , snake_case :Dict , snake_case :str , ): '''simple docstring''' A_ : Union[str, Any] = XLMWithLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Tuple , snake_case :List[str] , snake_case :Optional[int] , snake_case :Optional[Any] , snake_case :Any , snake_case :int , snake_case :Dict , snake_case :Optional[int] , snake_case :Union[str, Any] , ): '''simple docstring''' A_ : str = XLMForQuestionAnsweringSimple(_a ) model.to(_a ) model.eval() A_ : int = model(_a ) A_ : int = model(_a , start_positions=_a , end_positions=_a ) A_ : Optional[int] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Optional[Any] , snake_case :Optional[int] , snake_case :Any , snake_case :Tuple , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :Union[str, Any] , snake_case :str , snake_case :List[Any] , ): '''simple docstring''' A_ : Tuple = XLMForQuestionAnswering(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ) A_ : Tuple = model( _a , start_positions=_a , end_positions=_a , cls_index=_a , is_impossible=_a , p_mask=_a , ) A_ : Tuple = model( _a , start_positions=_a , end_positions=_a , cls_index=_a , is_impossible=_a , ) (A_ ) : str = result_with_labels.to_tuple() A_ : int = model(_a , start_positions=_a , end_positions=_a ) (A_ ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Dict , snake_case :Optional[Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :str , ): '''simple docstring''' A_ : Dict = XLMForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ) A_ : Optional[int] = model(_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Optional[Any] , snake_case :int , snake_case :Optional[int] , snake_case :Dict , snake_case :int , snake_case :int , snake_case :Optional[int] , snake_case :Optional[Any] , snake_case :Union[str, Any] , ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : Optional[int] = XLMForTokenClassification(_a ) model.to(_a ) model.eval() A_ : Tuple = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[Any] , snake_case :Tuple , snake_case :List[Any] , snake_case :Optional[Any] , snake_case :List[str] , snake_case :Any , snake_case :Optional[int] , snake_case :int , snake_case :Tuple , ): '''simple docstring''' A_ : Tuple = self.num_choices A_ : Optional[Any] = XLMForMultipleChoice(config=_a ) model.to(_a ) model.eval() A_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Optional[int] = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() ( A_ ) : List[str] = config_and_inputs A_ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCamelCase = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :str , snake_case :Union[str, Any] , snake_case :Optional[int] , snake_case :Any , snake_case :Any ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[Any] , snake_case :Tuple , snake_case :Optional[Any]=False ): '''simple docstring''' A_ : Union[str, Any] = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) A_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Dict = XLMModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_a , emb_dim=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_a ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_a ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_a ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_a ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_a ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_a ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_a ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Tuple , snake_case :Dict , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :Dict , snake_case :List[str]=False , snake_case :str=1 ): '''simple docstring''' self.assertIsInstance(_a , _a ) self.assertListEqual( [isinstance(_a , _a ) for iter_attentions in attentions] , [True] * len(_a ) ) self.assertEqual(len(_a ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_a ): # adds PAD dummy token A_ : Optional[Any] = min_length + idx + 1 A_ : Optional[Any] = min_length + idx + 1 A_ : List[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_a ) ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :int , snake_case :int , snake_case :List[str] , snake_case :Tuple , snake_case :Union[str, Any] , snake_case :Optional[int]=False , snake_case :List[Any]=1 ): '''simple docstring''' self.assertIsInstance(_a , _a ) self.assertListEqual( [isinstance(_a , _a ) for iter_hidden_states in hidden_states] , [True] * len(_a ) , ) self.assertEqual(len(_a ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_a ): # adds PAD dummy token A_ : Dict = min_length + idx + 1 A_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_a ) , ) pass @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = XLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[Any] = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_a ) A_ : Optional[int] = torch.tensor([[14, 447]] , dtype=torch.long , device=_a ) # the president A_ : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A_ : Dict = model.generate(_a , do_sample=_a ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _a )
355
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''git_vision_model''' def __init__( self :Union[str, Any] , snake_case :str=768 , snake_case :str=3_072 , snake_case :Optional[Any]=12 , snake_case :Any=12 , snake_case :Dict=3 , snake_case :Union[str, Any]=224 , snake_case :Optional[int]=16 , snake_case :Union[str, Any]="quick_gelu" , snake_case :Optional[int]=1e-5 , snake_case :List[str]=0.0 , snake_case :Any=0.02 , **snake_case :str , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Optional[int] = hidden_size A_ : Optional[Any] = intermediate_size A_ : Dict = num_hidden_layers A_ : int = num_attention_heads A_ : int = num_channels A_ : Tuple = patch_size A_ : Dict = image_size A_ : Optional[int] = initializer_range A_ : str = attention_dropout A_ : Tuple = layer_norm_eps A_ : List[str] = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , snake_case :Union[str, os.PathLike] , **snake_case :List[str] ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) A_ , A_ : Optional[Any] = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": A_ : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case , **snake_case ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''git''' def __init__( self :List[str] , snake_case :Any=None , snake_case :int=30_522 , snake_case :Dict=768 , snake_case :List[Any]=6 , snake_case :Any=12 , snake_case :Any=3_072 , snake_case :List[Any]="gelu" , snake_case :Union[str, Any]=0.1 , snake_case :Any=0.1 , snake_case :Optional[int]=1_024 , snake_case :str=0.02 , snake_case :int=1e-12 , snake_case :Optional[int]=0 , snake_case :int="absolute" , snake_case :Tuple=True , snake_case :List[str]=False , snake_case :List[str]=101 , snake_case :int=102 , snake_case :str=None , **snake_case :List[Any] , ): '''simple docstring''' super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , pad_token_id=snake_case , **snake_case ) if vision_config is None: A_ : Union[str, Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) A_ : List[Any] = GitVisionConfig(**snake_case ) A_ : Optional[int] = vocab_size A_ : List[str] = hidden_size A_ : int = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[str] = hidden_act A_ : Dict = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : List[str] = initializer_range A_ : int = layer_norm_eps A_ : Dict = position_embedding_type A_ : str = use_cache A_ : str = tie_word_embeddings A_ : Optional[Any] = num_image_with_embedding A_ : int = bos_token_id A_ : Optional[int] = eos_token_id def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.vision_config.to_dict() A_ : Optional[Any] = self.__class__.model_type return output
70
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , __lowercase : Any , __lowercase : int=99 , __lowercase : Dict=13 , __lowercase : Tuple=16 , __lowercase : Union[str, Any]=7 , __lowercase : List[Any]=True , __lowercase : List[Any]=True , __lowercase : str=True , __lowercase : int=False , __lowercase : Optional[Any]=True , __lowercase : Any=2 , __lowercase : Optional[int]=32 , __lowercase : Dict=4 , __lowercase : Any=4 , __lowercase : Tuple=30 , __lowercase : int=0 , __lowercase : Any=1 , __lowercase : Dict=2 , __lowercase : Optional[Any]=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = decoder_seq_length # For common tests snake_case_ = self.decoder_seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = d_model snake_case_ = d_model snake_case_ = decoder_layers snake_case_ = decoder_layers snake_case_ = decoder_ffn_dim snake_case_ = decoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = eos_token_id snake_case_ = bos_token_id snake_case_ = pad_token_id snake_case_ = decoder_start_token_id snake_case_ = use_cache snake_case_ = max_position_embeddings snake_case_ = None snake_case_ = decoder_seq_length snake_case_ = 2 snake_case_ = 1 def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def snake_case__ ( self : str , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Optional[Any] , ): """simple docstring""" snake_case_ = True snake_case_ = TrOCRDecoder(config=_A ).to(_A ).eval() snake_case_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case_ = model(_A , use_cache=_A ) snake_case_ = model(_A ) snake_case_ = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) snake_case_ = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = model(_A )['last_hidden_state'] snake_case_ = model(_A , past_key_values=_A )['last_hidden_state'] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase_ = True lowerCAmelCase_ = False def snake_case__ ( self : str ): """simple docstring""" snake_case_ = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) snake_case_ = ConfigTester(self , config_class=_A ) def snake_case__ ( self : Optional[int] ): """simple docstring""" pass def snake_case__ ( self : Tuple ): """simple docstring""" pass def snake_case__ ( self : Any ): """simple docstring""" pass def snake_case__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" return @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def snake_case__ ( self : Optional[int] ): """simple docstring""" pass
187
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
0
from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( __snake_case : Dict, __snake_case : Dict, __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : List[str] =0 if start < end: A__ : Any =randint(__snake_case, __snake_case ) A__ : List[Any] =a[end] A__ : Union[str, Any] =a[pivot] A__ : Union[str, Any] =temp A__ : Optional[int] =_in_place_partition(__snake_case, __snake_case, __snake_case ) count += _in_place_quick_sort(__snake_case, __snake_case, p - 1 ) count += _in_place_quick_sort(__snake_case, p + 1, __snake_case ) return count def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Union[str, Any], __snake_case : int ) -> Optional[Any]: """simple docstring""" A__ : List[str] =0 A__ : Tuple =randint(__snake_case, __snake_case ) A__ : Tuple =a[end] A__ : Dict =a[pivot] A__ : Union[str, Any] =temp A__ : str =start - 1 for index in range(__snake_case, __snake_case ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A__ : Dict =new_pivot_index + 1 A__ : Dict =a[new_pivot_index] A__ : Dict =a[index] A__ : str =temp A__ : Optional[int] =a[new_pivot_index + 1] A__ : str =a[end] A__ : str =temp return new_pivot_index + 1, count __snake_case : List[Any] = TemporaryFile() __snake_case : Dict = 100 # 1000 elements are to be sorted __snake_case : Tuple = 0, 1 # mean and standard deviation __snake_case : Union[str, Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __snake_case : str = np.load(outfile) __snake_case : Optional[Any] = len(M) - 1 __snake_case : Optional[Any] = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
360
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __snake_case : Any = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
136
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["pixel_values"] def __init__( self : Any ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : bool = True ,**_snake_case : Union[str, Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[str] = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Optional[Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : Optional[int] = do_resize lowercase__ : str = size lowercase__ : Optional[Any] = resample lowercase__ : Optional[Any] = do_rescale lowercase__ : Union[str, Any] = rescale_factor lowercase__ : Dict = do_normalize lowercase__ : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Optional[Any] = do_convert_rgb def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[Any] ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowercase__ : Tuple = (size['''height'''], size['''width''']) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[Any] ,) -> int: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Union[str, Any] ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : bool = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : Dict ,) -> PIL.Image.Image: """simple docstring""" lowercase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Tuple = image_mean if image_mean is not None else self.image_mean lowercase__ : str = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : List[Any] = size if size is not None else self.size lowercase__ : str = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : List[str] = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : Optional[Any] = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_rescale: lowercase__ : Tuple = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : Dict = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : List[str] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Optional[Any] = BatchFeature(data={'''pixel_values''': images} ,tensor_type=_snake_case ) return encoded_outputs
16
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): UpperCAmelCase_ : str = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: UpperCAmelCase_ : Any = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_ : str = numpy_to_pil(__a ) return images def _A (__a ) -> List[str]: """simple docstring""" if images.ndim == 3: SCREAMING_SNAKE_CASE_ : Tuple = images[None, ...] SCREAMING_SNAKE_CASE_ : Optional[Any] = (images * 2_55).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE_ : List[Any] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: SCREAMING_SNAKE_CASE_ : str = [Image.fromarray(__a ) for image in images] return pil_images
351
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = max_length SCREAMING_SNAKE_CASE_ : Dict = vocab SCREAMING_SNAKE_CASE_ : Dict = merges SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A : Dict = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" __a =old_name if "patch_embed" in old_name: __a , __a , __a =old_name.split('.' ) if layer == "0": __a =old_name.replace('0' , 'convolution1' ) elif layer == "1": __a =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __a =old_name.replace('3' , 'convolution2' ) else: __a =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , _snake_case ): __a =r'\b\d{2}\b' if bool(re.search(_snake_case , _snake_case ) ): __a =re.search(r'\d\.\d\d.' , _snake_case ).group() else: __a =re.search(r'\d\.\d.' , _snake_case ).group() if int(match[0] ) < 6: __a =old_name.replace(_snake_case , '' ) __a =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __a ='intermediate_stages.' + trimmed_name else: __a =old_name.replace(_snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __a =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __a =str(int(match[2] ) - num_meta4D_last_stage ) __a =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __a =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __a =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __a =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __a =trimmed_name.replace('fc2' , 'linear_out' ) __a ='last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , _snake_case ): __a =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __a =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __a =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __a =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __a =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __a ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a =new_name.replace('norm' , 'layernorm' ) __a ='efficientformer.' + new_name else: __a ='efficientformer.encoder.' + new_name return new_name def UpperCamelCase_( _snake_case : List[str] , _snake_case : Dict ): """simple docstring""" for key in checkpoint.copy().keys(): __a =checkpoint.pop(_snake_case ) __a =val return checkpoint def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image def UpperCamelCase_( _snake_case : Path , _snake_case : Path , _snake_case : Path , _snake_case : bool ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' )['model'] __a =EfficientFormerConfig.from_json_file(_snake_case ) __a =EfficientFormerForImageClassificationWithTeacher(_snake_case ) __a ='_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __a =config.depths[-1] - config.num_metaad_blocks + 1 __a =convert_torch_checkpoint(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __a =prepare_img() __a =256 __a =224 __a =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __a =Compose( [ Resize(_snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_snake_case ), ToTensor(), Normalize(_snake_case , _snake_case ), ] ) __a =image_transforms(_snake_case ).unsqueeze(0 ) assert torch.allclose(_snake_case , _snake_case ) __a =model(_snake_case ) __a =outputs.logits __a =(1, 1000) if "l1" in model_name: __a =torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a =torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a =torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_snake_case , ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
218
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = [] for part_id in partition_order: __lowerCamelCase = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(UpperCamelCase__ ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(UpperCamelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(2 ) __lowerCamelCase = [1, 0] __lowerCamelCase = _generate_iterable_examples(UpperCamelCase__ , UpperCamelCase__ ) # Reverse the partitions. __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , UpperCamelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(1 ) __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> int: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: __lowerCamelCase = lambda UpperCamelCase__ : x.reverse() __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [2, 1, 0] ) __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ).shuffle_data_sources(UpperCamelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(UpperCamelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
348
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
1
'''simple docstring''' def lowercase ( __magic_name__ = 5000_0000 ): '''simple docstring''' UpperCAmelCase : Any = set() UpperCAmelCase : Optional[Any] = int((limit - 24) ** (1 / 2) ) UpperCAmelCase : str = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCamelCase__ ) ) ) for primea in primes: UpperCAmelCase : List[str] = primea * primea for primea in primes: UpperCAmelCase : int = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCAmelCase : Any = primea * primea * primea * primea UpperCAmelCase : List[Any] = square + cube + tetr if total >= limit: break ret.add(lowerCamelCase__ ) return len(lowerCamelCase__ ) if __name__ == "__main__": print(F'{solution() = }')
311
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 6_4, 6_4) lowerCAmelCase__ = torch.rand(1) * 9_9_9 lowerCAmelCase__ = torch.randn(2, 7_7, 7_6_8) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 6_6_6 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
130
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(R'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(R'''^\s*else:''') def snake_case_ ( A_ : Dict ): '''simple docstring''' if _re_test_backend.search(A_ ) is None: return None _lowerCamelCase : int = [b[0] for b in _re_backend.findall(A_ )] backends.sort() return "_and_".join(A_ ) def snake_case_ ( A_ : Dict ): '''simple docstring''' with open(A_, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _lowerCamelCase : Dict = f.readlines() _lowerCamelCase : Tuple = 0 while line_index < len(A_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A_ ): return None # First grab the objects without a specific backend in _import_structure _lowerCamelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _lowerCamelCase : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A_ ): _lowerCamelCase : str = _re_one_line_import_struct.search(A_ ).groups()[0] _lowerCamelCase : int = re.findall('''\[([^\]]+)\]''', A_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _lowerCamelCase : Optional[int] = _re_import_struct_key_value.search(A_ ) if single_line_import_search is not None: _lowerCamelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(A_ ) > 0] objects.extend(A_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _lowerCamelCase : Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCamelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _lowerCamelCase : Any = lines[line_index] if _re_import_struct_add_one.search(A_ ) is not None: objects.append(_re_import_struct_add_one.search(A_ ).groups()[0] ) elif _re_import_struct_add_many.search(A_ ) is not None: _lowerCamelCase : List[str] = _re_import_struct_add_many.search(A_ ).groups()[0].split(''', ''' ) _lowerCamelCase : Dict = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_between_brackets.search(A_ ) is not None: _lowerCamelCase : Optional[int] = _re_between_brackets.search(A_ ).groups()[0].split(''', ''' ) _lowerCamelCase : Optional[int] = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_quote_object.search(A_ ) is not None: objects.append(_re_quote_object.search(A_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _lowerCamelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCamelCase : Tuple = [] while ( line_index < len(A_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _lowerCamelCase : str = lines[line_index] _lowerCamelCase : Any = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCamelCase : int = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(A_ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCamelCase : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _lowerCamelCase : Union[str, Any] = lines[line_index] _lowerCamelCase : Optional[Any] = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCamelCase : Any = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case_ ( A_ : int, A_ : str ): '''simple docstring''' def find_duplicates(A_ : List[Any] ): return [k for k, v in collections.Counter(A_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCamelCase : int = [] for key in import_dict_objects.keys(): _lowerCamelCase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _lowerCamelCase : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCamelCase : List[str] = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : str = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: _lowerCamelCase : Any = os.path.join(A_, '''__init__.py''' ) _lowerCamelCase : Union[str, Any] = parse_init(A_ ) if objects is not None: _lowerCamelCase : str = analyze_results(*A_ ) if len(A_ ) > 0: _lowerCamelCase : List[str] = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(A_ ) ) if len(A_ ) > 0: raise ValueError('''\n\n'''.join(A_ ) ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : int = [] for path, directories, files in os.walk(A_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(A_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A_ ) / folder).glob('''*.py''' ) ) ) == 0: continue _lowerCamelCase : Tuple = str((Path(A_ ) / folder).relative_to(A_ ) ) _lowerCamelCase : Tuple = short_path.replace(os.path.sep, '''.''' ) submodules.append(A_ ) for fname in files: if fname == "__init__.py": continue _lowerCamelCase : Tuple = str((Path(A_ ) / fname).relative_to(A_ ) ) _lowerCamelCase : Any = short_path.replace('''.py''', '''''' ).replace(os.path.sep, '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(A_ ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Optional[Any] = importlib.util.spec_from_file_location( '''transformers''', os.path.join(A_, '''__init__.py''' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowerCamelCase : Union[str, Any] = spec.loader.load_module() _lowerCamelCase : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A_ ) > 0: _lowerCamelCase : str = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
175
"""simple docstring""" from maths.prime_factors import prime_factors def snake_case_ ( A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): _lowerCamelCase : str = F'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(A_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
175
1
"""simple docstring""" from collections import deque class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = process_name # process name lowerCamelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase = arrival_time lowerCamelCase = burst_time # remaining burst time lowerCamelCase = 0 # total time of the process wait in ready queue lowerCamelCase = 0 # time from arrival time to completion time class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a , _a , _a , ): """simple docstring""" # total number of mlfq's queues lowerCamelCase = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase = time_slices # unfinished process is in this ready_queue lowerCamelCase = queue # current time lowerCamelCase = current_time # finished process is in this sequence queue lowerCamelCase = deque() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = [] for i in range(len(__lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = [] for i in range(len(__lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = [] for i in range(len(__lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def _lowerCAmelCase ( self , _a ): """simple docstring""" return [q.burst_time for q in queue] def _lowerCAmelCase ( self , _a ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = deque() # sequence deque of finished process while len(__lowerCamelCase ) != 0: lowerCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase = 0 # set the process's turnaround time because it is finished lowerCamelCase = self.current_time - cp.arrival_time # set the completion time lowerCamelCase = self.current_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCamelCase ) ): lowerCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase = 0 # set the finish time lowerCamelCase = self.current_time # update the process' turnaround time because it is finished lowerCamelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _lowerCAmelCase ( self ): """simple docstring""" # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase : List[str] = Process("""P1""", 0, 53) lowerCAmelCase : List[str] = Process("""P2""", 0, 17) lowerCAmelCase : Dict = Process("""P3""", 0, 68) lowerCAmelCase : Any = Process("""P4""", 0, 24) lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = [17, 25] lowerCAmelCase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase : Dict = Process("""P1""", 0, 53) lowerCAmelCase : Any = Process("""P2""", 0, 17) lowerCAmelCase : Optional[Any] = Process("""P3""", 0, 68) lowerCAmelCase : List[Any] = Process("""P4""", 0, 24) lowerCAmelCase : List[str] = 3 lowerCAmelCase : Optional[Any] = [17, 25] lowerCAmelCase : Any = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase : str = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
291
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = ["input_features"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=80 , __lowerCamelCase: Optional[Any]=1_60_00 , __lowerCamelCase: Any=1_60 , __lowerCamelCase: Optional[int]=30 , __lowerCamelCase: List[str]=4_00 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=False , **__lowerCamelCase: Dict , ) -> Any: super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = n_fft __UpperCAmelCase : List[str] = hop_length __UpperCAmelCase : Optional[Any] = chunk_length __UpperCAmelCase : Union[str, Any] = chunk_length * sampling_rate __UpperCAmelCase : Any = self.n_samples // hop_length __UpperCAmelCase : Tuple = sampling_rate __UpperCAmelCase : List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: np.array ) -> np.ndarray: __UpperCAmelCase : List[Any] = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) __UpperCAmelCase : Union[str, Any] = log_spec[:, :-1] __UpperCAmelCase : List[Any] = np.maximum(__lowerCamelCase , log_spec.max() - 8.0 ) __UpperCAmelCase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCamelCase ( __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __UpperCAmelCase : Tuple = np.array(__lowerCamelCase , np.intaa ) __UpperCAmelCase : Dict = [] for vector, length in zip(__lowerCamelCase , attention_mask.sum(-1 ) ): __UpperCAmelCase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase : Dict = padding_value normed_input_values.append(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: Dict , __lowerCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[str] = "max_length" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCAmelCase : List[Any] = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : str = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T] __UpperCAmelCase : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding __UpperCAmelCase : List[str] = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase : List[Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) __UpperCAmelCase : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format __UpperCAmelCase : Any = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) __UpperCAmelCase : Dict = [self._np_extract_fbank_features(__lowerCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCamelCase ): __UpperCAmelCase : str = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase : int = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs def _lowerCamelCase ( self: str ) -> Dict[str, Any]: __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
157
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename SCREAMING_SNAKE_CASE : str = """http://www.mocksite.com/file1.txt""" SCREAMING_SNAKE_CASE : Tuple = """\"text\": [\"foo\", \"foo\"]""" SCREAMING_SNAKE_CASE : int = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =200 lowerCamelCase__ ={'Content-Length': '100'} lowerCamelCase__ ={} def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return [bytes(a_ , '''utf-8''' )] def lowercase ( *_snake_case : Union[str, Any] , **_snake_case : Optional[int] ) ->Union[str, Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def lowercase ( _snake_case : str , _snake_case : List[str] , _snake_case : int ) ->Optional[int]: """simple docstring""" import requests monkeypatch.setattr(_snake_case , '''request''' , _snake_case ) __snake_case : Any = URL if issubclass(_snake_case , _snake_case ): __snake_case : Any = url elif issubclass(_snake_case , _snake_case ): __snake_case : List[Any] = [url] elif issubclass(_snake_case , _snake_case ): __snake_case : Optional[int] = {'''train''': url} __snake_case : Union[str, Any] = '''dummy''' __snake_case : str = '''downloads''' __snake_case : Union[str, Any] = tmp_path __snake_case : Tuple = DownloadConfig( cache_dir=os.path.join(_snake_case , _snake_case ) , use_etag=_snake_case , ) __snake_case : Optional[int] = DownloadManager(dataset_name=_snake_case , download_config=_snake_case ) __snake_case : Union[str, Any] = dl_manager.download(_snake_case ) __snake_case : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(_snake_case , _snake_case ): __snake_case : Dict = [downloaded_paths] __snake_case : Optional[int] = [urls] elif isinstance(_snake_case , _snake_case ): assert "train" in downloaded_paths.keys() __snake_case : str = downloaded_paths.values() __snake_case : List[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_snake_case , _snake_case ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : Any = Path(_snake_case ) __snake_case : Dict = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : List[Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : int = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() __snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def lowercase ( _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = str(_snake_case ) if issubclass(_snake_case , _snake_case ): __snake_case : List[str] = filename elif issubclass(_snake_case , _snake_case ): __snake_case : Tuple = [filename] elif issubclass(_snake_case , _snake_case ): __snake_case : Tuple = {'''train''': filename} __snake_case : Tuple = '''dummy''' __snake_case : Optional[Any] = xz_file.parent __snake_case : str = '''extracted''' __snake_case : int = DownloadConfig( cache_dir=_snake_case , use_etag=_snake_case , ) __snake_case : Dict = DownloadManager(dataset_name=_snake_case , download_config=_snake_case ) __snake_case : int = dl_manager.extract(_snake_case ) __snake_case : Tuple = paths for extracted_paths in [extracted_paths]: if isinstance(_snake_case , _snake_case ): __snake_case : Optional[Any] = [extracted_paths] __snake_case : Optional[Any] = [paths] elif isinstance(_snake_case , _snake_case ): assert "train" in extracted_paths.keys() __snake_case : Dict = extracted_paths.values() __snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(_snake_case , _snake_case ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : List[Any] = Path(_snake_case ) __snake_case : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_snake_case , etag=_snake_case ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : List[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def lowercase ( _snake_case : int , _snake_case : List[str] ) ->Optional[Any]: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(_snake_case , start=1 ): __snake_case : List[str] = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def lowercase ( _snake_case : int , _snake_case : List[Any] ) ->Dict: """simple docstring""" __snake_case : List[str] = request.getfixturevalue(_snake_case ) __snake_case : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): _test_jsonl(_snake_case , _snake_case ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def lowercase ( _snake_case : Any , _snake_case : List[Any] ) ->str: """simple docstring""" __snake_case : Dict = request.getfixturevalue(_snake_case ) __snake_case : str = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): _test_jsonl(_snake_case , _snake_case ) assert num_tar == 1 assert num_jsonl == 2 def lowercase ( _snake_case : List[Any] ) ->Dict: """simple docstring""" __snake_case : Optional[int] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_snake_case ) , start=1 ): assert os.path.basename(_snake_case ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
'''simple docstring''' # Imports import numpy as np class A_ : def __init__( self : str , snake_case_ : int=None , snake_case_ : Any=None , snake_case_ : str=None , snake_case_ : Tuple=None , snake_case_ : Any=None ): self.set_matricies(red=snake_case_ , green=snake_case_ , blue=snake_case_ , red_edge=snake_case_ , nir=snake_case_ ) def lowercase ( self : List[Any] , snake_case_ : Dict=None , snake_case_ : int=None , snake_case_ : Any=None , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=None ): if red is not None: _UpperCAmelCase = red if green is not None: _UpperCAmelCase = green if blue is not None: _UpperCAmelCase = blue if red_edge is not None: _UpperCAmelCase = red_edge if nir is not None: _UpperCAmelCase = nir return True def lowercase ( self : Any , snake_case_ : Optional[int]="" , snake_case_ : Any=None , snake_case_ : Tuple=None , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None ): self.set_matricies(red=snake_case_ , green=snake_case_ , blue=snake_case_ , red_edge=snake_case_ , nir=snake_case_ ) _UpperCAmelCase = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def lowercase ( self : Tuple ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase ( self : str ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase ( self : Optional[Any] ): return self.nir * (self.red / (self.green**2)) def lowercase ( self : Tuple ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase ( self : Optional[int] ): return (self.nir - self.red) / (self.nir + self.red) def lowercase ( self : List[Any] ): return (self.nir - self.blue) / (self.nir + self.blue) def lowercase ( self : List[str] ): return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase ( self : str ): return (self.nir - self.green) / (self.nir + self.green) def lowercase ( self : str ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase ( self : str ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase ( self : int ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase ( self : List[str] ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase ( self : int , snake_case_ : List[Any]=0.0_8 , snake_case_ : Any=1.2_2 , snake_case_ : List[str]=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase ( self : str ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase ( self : Optional[Any] ): return (self.nir / self.green) - 1 def lowercase ( self : List[str] ): return (self.nir / self.redEdge) - 1 def lowercase ( self : str ): return (self.red - self.blue) / self.red def lowercase ( self : List[Any] ): _UpperCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase ( self : Dict ): return self.nir - self.green def lowercase ( self : List[Any] ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def lowercase ( self : Optional[int] , snake_case_ : Optional[int]=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def lowercase ( self : Optional[int] , snake_case_ : int=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase ( self : Optional[int] ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def lowercase ( self : Any , snake_case_ : Tuple=None , snake_case_ : Tuple=None ): return (self.nir - b) / (a * self.red) def lowercase ( self : Optional[Any] ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase ( self : List[Any] ): return (self.red + self.green + self.blue) / 3_0.5 def lowercase ( self : str ): return self.nir / self.red def lowercase ( self : Union[str, Any] ): return (self.rvi() - 1) / (self.rvi() + 1) def lowercase ( self : Optional[int] ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase ( self : Dict ): return self.green / (self.nir + self.red + self.green) def lowercase ( self : List[Any] ): return self.nir / (self.nir + self.red + self.green) def lowercase ( self : Union[str, Any] ): return self.red / (self.nir + self.red + self.green) def lowercase ( self : List[str] ): return (self.green - self.red) / (self.green + self.red) def lowercase ( self : List[str] ): return (self.red - self.green) / (self.red + self.green) def lowercase ( self : Tuple ): _UpperCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _UpperCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase ( self : List[Any] ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase ( self : Tuple ): return self.nir / self.red def lowercase ( self : Union[str, Any] ): return (self.ndvi() + 0.5) ** (1 / 2) def lowercase ( self : Any ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
22
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowercase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = _distribute_shards(**__lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : int ) -> str: '''simple docstring''' _UpperCAmelCase = _split_gen_kwargs(__lowercase , __lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : List[Any] ) -> List[Any]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__lowercase ): _number_of_shards_in_gen_kwargs(__lowercase ) else: _UpperCAmelCase = _number_of_shards_in_gen_kwargs(__lowercase ) assert out == expected
22
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ = "auto" ) -> Any: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' self.enable_attention_slicing(UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = 1 elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = len(UpperCamelCase__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(UpperCamelCase__ )}.''' ) # get prompt text embeddings A_ = self.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) A_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ = text_embeddings.shape A_ = text_embeddings.repeat(1 , UpperCamelCase__ , 1 ) A_ = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCamelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ = 42 if negative_prompt is None: A_ = [""""""] elif type(UpperCamelCase__ ) is not type(UpperCamelCase__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase__ )} !=''' f''' {type(UpperCamelCase__ )}.''' ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [negative_prompt] elif batch_size != len(UpperCamelCase__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: A_ = negative_prompt A_ = text_input_ids.shape[-1] A_ = self.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" , ) A_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ = uncond_embeddings.shape[1] A_ = uncond_embeddings.repeat(UpperCamelCase__ , UpperCamelCase__ , 1 ) A_ = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCamelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ = torch.randn( UpperCamelCase__ , generator=UpperCamelCase__ , device="""cpu""" , dtype=UpperCamelCase__ ).to(self.device ) A_ = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device="""cpu""" , dtype=UpperCamelCase__ ).to( self.device ) else: A_ = torch.randn( UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) A_ = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) A_ = latents_reference.to(self.device ) A_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ = 0 if dx < 0 else dx A_ = 0 if dy < 0 else dy A_ = max(-dx , 0 ) A_ = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(UpperCamelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ = {} if accepts_eta: A_ = eta for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance A_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual A_ = self.unet(UpperCamelCase__ , UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ = noise_pred.chunk(2 ) A_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = 1 / 0.18215 * latents A_ = self.vae.decode(UpperCamelCase__ ).sample A_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ = self.feature_extractor(self.numpy_to_pil(UpperCamelCase__ ) , return_tensors="""pt""" ).to( self.device ) A_ , A_ = self.safety_checker( images=UpperCamelCase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ = None if output_type == "pil": A_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=UpperCamelCase__ , nsfw_content_detected=UpperCamelCase__ )
101
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A__ ( _snake_case , unittest.TestCase ): lowercase = ReformerTokenizer lowercase = ReformerTokenizerFast lowercase = True lowercase = False lowercase = True def snake_case_ ( self ) -> str: '''simple docstring''' super().setUp() A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """<s>""" A_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCamelCase__ ) , 1000 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = """I was born in 92000, and this is falsé.""" A_ = tokenizer.tokenize(UpperCamelCase__ ) A_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(UpperCamelCase__ ) A_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__=15 ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # Simple input A_ = """This is a simple input""" A_ = ["""This is a simple input 1""", """This is a simple input 2"""] A_ = ("""This is a simple input""", """This is a pair""") A_ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [285, 46, 10, 170, 382] , ) A_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = """Hello World!""" A_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def snake_case_ ( self ) -> str: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A_ = list(self.big_tokenizer.get_vocab().keys() )[:10] A_ = """ """.join(UpperCamelCase__ ) A_ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="""pt""" ) A_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) A_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A_ = encoded_sequence["""input_ids"""].shape A_ = ReformerModel(UpperCamelCase__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # fmt: off A_ = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A_ = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=UpperCamelCase__ , sequences=UpperCamelCase__ , )
101
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=_UpperCAmelCase ): """simple docstring""" __a = ["""note_seq"""] def __init__( self : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Any , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
115
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
0
"""simple docstring""" from __future__ import annotations import time import numpy as np _lowerCAmelCase : Union[str, Any] = [8, 5, 9, 7] _lowerCAmelCase : Union[str, Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : list[int] , snake_case__ : list[list[int]] , snake_case__ : list[list[int]] , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = claim_vector UpperCAmelCase__ : Tuple = allocated_resources_table UpperCAmelCase__ : List[Any] = maximum_claim_table def __a ( self : Optional[int] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __a ( self : Tuple ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __a ( self : Optional[int] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __a ( self : Optional[Any] ): '''simple docstring''' return {self.__need().index(snake_case__ ): i for i in self.__need()} def __a ( self : Union[str, Any] , **snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.__need() UpperCAmelCase__ : List[str] = self.__allocated_resources_table UpperCAmelCase__ : List[Any] = self.__available_resources() UpperCAmelCase__ : Any = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 5_0 + "\n" ) while need_list: UpperCAmelCase__ : Dict = False for each_need in need_list: UpperCAmelCase__ : str = True for index, need in enumerate(snake_case__ ): if need > available_resources[index]: UpperCAmelCase__ : Tuple = False break if execution: UpperCAmelCase__ : Optional[Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCAmelCase__ : Union[str, Any] = original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(snake_case__ ) # update available/freed resources stack UpperCAmelCase__ : int = np.array(snake_case__ ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(snake_case__ ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def __a ( self : Dict ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(snake_case__ ) + 1}' + " ".join(f'{it:>8}' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(snake_case__ ) + 1}' + " ".join(f'{it:>8}' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(snake_case__ ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(snake_case__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class _snake_case : snake_case__ = field( metadata={"help": "The output directory where the model will be written."} , ) snake_case__ = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) snake_case__ = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) snake_case__ = field( default=_UpperCamelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) snake_case__ = field( default=_UpperCamelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def lowercase_ ( ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : Optional[Any] = HfArgumentParser((ModelArguments,) ) ((__lowerCamelCase ) , ) : Optional[Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __lowerCamelCase : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __lowerCamelCase : Dict = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __lowerCamelCase : str = True __lowerCamelCase : Optional[Any] = True __lowerCamelCase : int = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_lowerCamelCase , decoder_config=_lowerCamelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __lowerCamelCase : Tuple = decoder_config.decoder_start_token_id __lowerCamelCase : Union[str, Any] = decoder_config.pad_token_id if decoder_start_token_id is None: __lowerCamelCase : Dict = decoder_config.bos_token_id if pad_token_id is None: __lowerCamelCase : List[Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __lowerCamelCase : Union[str, Any] = decoder_config.eos_token_id __lowerCamelCase : Dict = decoder_start_token_id __lowerCamelCase : Dict = pad_token_id __lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __lowerCamelCase : Dict = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __lowerCamelCase : str = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
135
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : List[str] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
107
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS a : Any = logging.get_logger(__name__) a : int = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class UpperCamelCase_ ( lowerCAmelCase_ ): def __init__( self , A=None , A=None , *A , **A ) -> Union[str, Any]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) UpperCAmelCase : Union[str, Any] = self.model.config else: UpperCAmelCase : List[Any] = config UpperCAmelCase : str = data_args UpperCAmelCase : str = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: UpperCAmelCase : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase : List[Any] = label_smoothed_nll_loss def _lowercase( self , A ) -> Tuple: if self.optimizer is None: UpperCAmelCase : Optional[int] = ["""bias""", """LayerNorm.weight"""] UpperCAmelCase : Dict = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] UpperCAmelCase : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase : Optional[int] = Adafactor UpperCAmelCase : List[str] = {"""scale_parameter""": False, """relative_step""": False} else: UpperCAmelCase : Tuple = AdamW UpperCAmelCase : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } UpperCAmelCase : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: UpperCAmelCase : Dict = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: UpperCAmelCase : List[str] = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: UpperCAmelCase : List[Any] = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase : int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def _lowercase( self ) -> List[Any]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowercase( self , A , A , A ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase : Dict = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] UpperCAmelCase : Tuple = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase , UpperCAmelCase : Any = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss UpperCAmelCase : int = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] UpperCAmelCase : Dict = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) UpperCAmelCase , UpperCAmelCase : int = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowercase( self , A , A ) -> Tuple: UpperCAmelCase : Any = inputs.pop("""labels""" ) UpperCAmelCase , UpperCAmelCase : str = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def _lowercase( self , A , A , A , A = None , ) -> List[Any]: UpperCAmelCase : Dict = self._prepare_inputs(__lowerCAmelCase ) UpperCAmelCase : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase : Union[str, Any] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase : str = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) UpperCAmelCase : int = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase , UpperCAmelCase : List[Any] = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase : Optional[Any] = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def _lowercase( self , A , A ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined UpperCAmelCase : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) UpperCAmelCase : int = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase : Dict = tensor return padded_tensor
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } UpperCAmelCase_ = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } UpperCAmelCase_ = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__a ) return pairs class lowerCamelCase__( A__): UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Dict , UpperCamelCase_: int="<s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: int="</s>" , UpperCamelCase_: Optional[int]="<s>" , UpperCamelCase_: Optional[Any]="<unk>" , UpperCamelCase_: int="<pad>" , UpperCamelCase_: Union[str, Any]="<mask>" , **UpperCamelCase_: Union[str, Any] , ): super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = vocab_file __lowerCamelCase = merges_file __lowerCamelCase = {} __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = 3 self.add_from_file(UpperCamelCase_ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding="""utf-8""" ) as merges_handle: __lowerCamelCase = merges_handle.read().split("""\n""" )[:-1] __lowerCamelCase = [tuple(merge.split()[:-1] ) for merge in merges] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = {} def lowerCAmelCase__ ( self: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] = None , UpperCamelCase_: Optional[Any] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self: List[str] ): return len(self.encoder ) def lowerCAmelCase__ ( self: Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(UpperCamelCase_ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowerCamelCase = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __lowerCamelCase = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(UpperCamelCase_ ): try: __lowerCamelCase = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(UpperCamelCase_ ) __lowerCamelCase = new_word if len(UpperCamelCase_ ) == 1: break else: __lowerCamelCase = get_pairs(UpperCamelCase_ ) __lowerCamelCase = '''@@ '''.join(UpperCamelCase_ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word return word def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = [] __lowerCamelCase = re.findall(r"""\S+\n?""" , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase__ ( self: str , UpperCamelCase_: Optional[int] ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Optional[Any] ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): __lowerCamelCase = ''' '''.join(UpperCamelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.merges_file , UpperCamelCase_ ) return out_vocab_file, out_merge_file def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Tuple ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): try: with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(UpperCamelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'Incorrect encoding detected in {f}, please rebuild the dataset' ) return __lowerCamelCase = f.readlines() for lineTmp in lines: __lowerCamelCase = lineTmp.strip() __lowerCamelCase = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected \'<token> <cnt>\'""" ) __lowerCamelCase = line[:idx] __lowerCamelCase = len(self.encoder )
12
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def a ( __a="ro" , __a="en" , __a="wmt16" , __a=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) UpperCamelCase__ :int = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) UpperCamelCase__ :Tuple = datasets.load_dataset(__a , __a ) if save_dir is None: UpperCamelCase__ :Any = f'''{dataset}-{pair}''' UpperCamelCase__ :Dict = Path(__a ) save_dir.mkdir(exist_ok=__a ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets UpperCamelCase__ :Dict = '''val''' if split == '''validation''' else split UpperCamelCase__ :List[Any] = save_dir.joinpath(f'''{fn}.source''' ) UpperCamelCase__ :int = save_dir.joinpath(f'''{fn}.target''' ) UpperCamelCase__ :Union[str, Any] = src_path.open('''w+''' ) UpperCamelCase__ :Tuple = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCamelCase__ :Union[str, Any] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
97
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( __snake_case ): A__ : Any = ['image_processor', 'tokenizer'] A__ : List[Any] = 'FlavaImageProcessor' A__ : Tuple = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Any: __a = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCAmelCase , ) __a = kwargs.pop('feature_extractor' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowerCAmelCase , _lowerCAmelCase ) __a = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[str]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __a = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) if images is not None: __a = self.image_processor( _lowerCAmelCase , return_image_mask=_lowerCAmelCase , return_codebook_pixels=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) if text is not None and images is not None: encoding.update(_lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCAmelCase , ) return self.image_processor_class @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCAmelCase , ) return self.image_processor
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[int] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} __A = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } __A = {"vinai/bartpho-syllable": 1_0_2_4} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase = None , **_UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it lowercase__: Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token lowercase__: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) lowercase__: Tuple = vocab_file lowercase__: Tuple = monolingual_vocab_file lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__: List[Any] = {} lowercase__: Optional[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowercase__: Union[str, Any] = cnt cnt += 1 with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__: int = line.strip().split()[0] lowercase__: str = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowercase__: Optional[int] = len(self.fairseq_tokens_to_ids ) lowercase__: Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): lowercase__: Dict = self.__dict__.copy() lowercase__: int = None lowercase__: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCAmelCase ): lowercase__: List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__: Optional[int] = {} lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: int = [self.cls_token_id] lowercase__: int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: str = [self.sep_token_id] lowercase__: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.fairseq_ids_to_tokens ) def _snake_case ( self ): lowercase__: Optional[Any] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _UpperCAmelCase ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _snake_case ( self , _UpperCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _snake_case ( self , _UpperCAmelCase ): return self.fairseq_ids_to_tokens[index] def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[Any] = "".join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__: Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: Optional[int] = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: lowercase__: int = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(__lowerCamelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
177
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : List[str] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import sys __snake_case : List[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : int = 1 for digit in s: product *= int(__snake_case ) return product def _lowercase ( __snake_case = N ) -> int: __lowerCAmelCase : Optional[Any] = -sys.maxsize - 1 __lowerCAmelCase : Union[str, Any] = n[:13] __lowerCAmelCase : Dict = 13 while cur_index < len(__snake_case ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __lowerCAmelCase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: __lowerCAmelCase : Dict = max(__snake_case ,str_eval(__snake_case ) ) __lowerCAmelCase : Optional[int] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
58
0
from __future__ import annotations class _snake_case : def __init__( self , _a , _a ): __magic_name__ , __magic_name__ : Dict = text, pattern __magic_name__ , __magic_name__ : int = len(_a ), len(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE ( self , _a ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE ( self ): # searches pattern in text and returns index positions __magic_name__ : Optional[int] = [] for i in range(self.textLen - self.patLen + 1 ): __magic_name__ : Any = self.mismatch_in_text(_a ) if mismatch_index == -1: positions.append(_a ) else: __magic_name__ : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) __magic_name__ : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case : Any = "ABAABA" snake_case : List[str] = "AB" snake_case : Tuple = BoyerMooreSearch(text, pattern) snake_case : str = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
281
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : Union[str, Any] = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } snake_case : Dict = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } snake_case : Union[str, Any] = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def lowerCAmelCase_ ( _snake_case : str ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : int = char __magic_name__ : List[str] = set(_snake_case ) return pairs class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , **_a , ): super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , **_a , ) __magic_name__ : Dict = vocab_file __magic_name__ : Tuple = merges_file __magic_name__ : List[Any] = {} __magic_name__ : List[Any] = 0 __magic_name__ : Tuple = 1 __magic_name__ : int = 2 __magic_name__ : Union[str, Any] = 3 self.add_from_file(_a ) __magic_name__ : Optional[int] = {v: k for k, v in self.encoder.items()} with open(_a , encoding="utf-8" ) as merges_handle: __magic_name__ : List[str] = merges_handle.read().split("\n" )[:-1] __magic_name__ : Union[str, Any] = [tuple(merge.split()[:-1] ) for merge in merges] __magic_name__ : Union[str, Any] = dict(zip(_a , range(len(_a ) ) ) ) __magic_name__ : Optional[int] = {} def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] __magic_name__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Optional[Any] = [self.sep_token_id] __magic_name__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ): return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self , _a ): if token in self.cache: return self.cache[token] __magic_name__ : List[Any] = tuple(_a ) __magic_name__ : List[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __magic_name__ : Any = get_pairs(_a ) if not pairs: return token while True: __magic_name__ : str = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ , __magic_name__ : List[str] = bigram __magic_name__ : List[str] = [] __magic_name__ : List[str] = 0 while i < len(_a ): try: __magic_name__ : Any = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Tuple = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : Union[str, Any] = tuple(_a ) __magic_name__ : Optional[int] = new_word if len(_a ) == 1: break else: __magic_name__ : List[Any] = get_pairs(_a ) __magic_name__ : Optional[int] = "@@ ".join(_a ) __magic_name__ : Tuple = word[:-4] __magic_name__ : str = word return word def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = [] __magic_name__ : Dict = re.findall(r"\S+\n?" , _a ) for token in words: split_tokens.extend(list(self.bpe(_a ).split(" " ) ) ) return split_tokens def SCREAMING_SNAKE_CASE ( self , _a ): return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _a ): return self.decoder.get(_a , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Tuple = " ".join(_a ).replace("@@ " , "" ).strip() return out_string def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : Optional[int] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __magic_name__ : Union[str, Any] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) if os.path.abspath(self.merges_file ) != os.path.abspath(_a ): copyfile(self.merges_file , _a ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE ( self , _a ): if isinstance(_a , _a ): try: with open(_a , "r" , encoding="utf-8" ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return __magic_name__ : List[Any] = f.readlines() for lineTmp in lines: __magic_name__ : Optional[Any] = lineTmp.strip() __magic_name__ : Union[str, Any] = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) __magic_name__ : Optional[int] = line[:idx] __magic_name__ : Dict = len(self.encoder )
281
1
from __future__ import annotations from random import random from typing import Generic, TypeVar __A =TypeVar('''KT''') __A =TypeVar('''VT''') class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ): def __init__( self , lowercase = "root" , lowercase = None ) -> Optional[int]: lowerCamelCase_ = key lowerCamelCase_ = value lowerCamelCase_ = [] def __repr__( self ) -> str: return f'Node({self.key}: {self.value})' @property def SCREAMING_SNAKE_CASE_( self ) -> int: return len(self.forward ) class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ): def __init__( self , lowercase = 0.5 , lowercase = 16 ) -> Union[str, Any]: lowerCamelCase_ = Node[KT, VT]() lowerCamelCase_ = 0 lowerCamelCase_ = p lowerCamelCase_ = max_level def __str__( self ) -> str: lowerCamelCase_ = list(self ) if len(lowercase ) == 0: return f'SkipList(level={self.level})' lowerCamelCase_ = max((len(str(lowercase ) ) for item in items) , default=4 ) lowerCamelCase_ = max(lowercase , 4 ) + 4 lowerCamelCase_ = self.head lowerCamelCase_ = [] lowerCamelCase_ = node.forward.copy() lines.append(f'[{node.key}]'.ljust(lowercase , "-" ) + "* " * len(lowercase ) ) lines.append(" " * label_size + "| " * len(lowercase ) ) while len(node.forward ) != 0: lowerCamelCase_ = node.forward[0] lines.append( f'[{node.key}]'.ljust(lowercase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(lowercase ) ) lowerCamelCase_ = node.forward lines.append("None".ljust(lowercase ) + "* " * len(lowercase ) ) return f'SkipList(level={self.level})\n' + "\n".join(lowercase ) def __iter__( self ) -> str: lowerCamelCase_ = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCamelCase_ = node.forward[0] def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = 1 while random() < self.p and level < self.max_level: level += 1 return level def SCREAMING_SNAKE_CASE_( self , lowercase ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: lowerCamelCase_ = [] lowerCamelCase_ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCamelCase_ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowercase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ , lowerCamelCase_ = self._locate_node(lowercase ) if node is not None: for i, update_node in enumerate(lowercase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCamelCase_ = node.forward[i] else: lowerCamelCase_ = update_node.forward[:i] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ = self._locate_node(lowercase ) if node is not None: lowerCamelCase_ = value else: lowerCamelCase_ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , lowercase ): update_vector.append(self.head ) lowerCamelCase_ = level lowerCamelCase_ = Node(lowercase , lowercase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowercase ) else: lowerCamelCase_ = new_node def SCREAMING_SNAKE_CASE_( self , lowercase ) -> VT | None: lowerCamelCase_ , lowerCamelCase_ = self._locate_node(lowercase ) if node is not None: return node.value return None def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 1_2 ) skip_list.insert("Key3" , 4_1 ) skip_list.insert("Key4" , -1_9 ) lowerCamelCase_ = skip_list.head lowerCamelCase_ = {} while node.level != 0: lowerCamelCase_ = node.forward[0] lowerCamelCase_ = node.value assert len(lowerCamelCase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.insert("Key1" , 1_0 ) skip_list.insert("Key1" , 1_2 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 1_0 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 1_0 ) lowerCamelCase_ = skip_list.head lowerCamelCase_ = {} while node.level != 0: lowerCamelCase_ = node.forward[0] lowerCamelCase_ = node.value if len(lowerCamelCase__ ) != 4: print() assert len(lowerCamelCase__ ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() assert skip_list.find("Some key" ) is None def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.insert("Key2" , 2_0 ) assert skip_list.find("Key2" ) == 2_0 skip_list.insert("Some Key" , 1_0 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 1_3 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 1_0 assert skip_list.find("V" ) == 1_3 def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 1_4 assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4_2 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("X" ) def traverse_keys(lowerCamelCase__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(lowerCamelCase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def lowerCamelCase_ ( ): def is_sorted(lowerCamelCase__ ): return all(next_item >= item for item, next_item in zip(lowerCamelCase__ , lst[1:] ) ) lowerCamelCase_ = SkipList() for i in range(1_0 ): skip_list.insert(lowerCamelCase__ , lowerCamelCase__ ) assert is_sorted(list(lowerCamelCase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(lowerCamelCase__ ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def lowerCamelCase_ ( ): lowerCamelCase_ = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
47
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A =True except ImportError: __A =False __A =logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( lowerCamelCase__ ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: lowerCamelCase_ = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowercase , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowercase , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowercase ) def __init__( self , lowercase , lowercase , lowercase=None , *lowercase ) -> List[str]: lowerCamelCase_ = testing lowerCamelCase_ = testing_file lowerCamelCase_ = path def SCREAMING_SNAKE_CASE_( self ) -> str: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCamelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(lowercase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowerCamelCase_ = ( Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCamelCase_ = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowerCamelCase_ = json.load(lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , ) lowerCamelCase_ = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowerCamelCase_ = json.load(lowercase ) lowerCamelCase_ = configuration["lowercase_modelname"] lowerCamelCase_ = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) lowerCamelCase_ = "PyTorch" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = "TensorFlow" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = "Flax" in generate_tensorflow_pytorch_and_flax lowerCamelCase_ = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowercase , exist_ok=lowercase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowercase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , "w" ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowercase ): with open(lowercase , "r" ) as f: lowerCamelCase_ = f.readlines() with open(lowercase , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase , lowercase , lowercase ): # Create temp file lowerCamelCase_ , lowerCamelCase_ = mkstemp() lowerCamelCase_ = False with fdopen(lowercase , "w" ) as new_file: with open(lowercase ) as old_file: for line in old_file: new_file.write(lowercase ) if line_to_copy_below in line: lowerCamelCase_ = True for line_to_copy in lines_to_copy: new_file.write(lowercase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowercase , lowercase ) # Remove original file remove(lowercase ) # Move new file move(lowercase , lowercase ) def skip_units(lowercase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase ): with open(lowercase ) as datafile: lowerCamelCase_ = [] lowerCamelCase_ = False lowerCamelCase_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCamelCase_ = line.split("\"" )[1] lowerCamelCase_ = skip_units(lowercase ) elif "# Below: " in line and "##" not in line: lowerCamelCase_ = line.split("\"" )[1] lowerCamelCase_ = skip_units(lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase , lowercase , lowercase ) lowerCamelCase_ = [] elif "# Replace with" in line and "##" not in line: lowerCamelCase_ = [] elif "##" not in line: lines_to_copy.append(lowercase ) remove(lowercase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowercase )
47
1
import os import jsonlines import numpy as np from tqdm import tqdm _SCREAMING_SNAKE_CASE : Union[str, Any] = 20_48 _SCREAMING_SNAKE_CASE : Tuple = 40_96 _SCREAMING_SNAKE_CASE : Tuple = 42 _SCREAMING_SNAKE_CASE : Optional[Any] = os.environ.pop("PROCESS_TRAIN", "false") _SCREAMING_SNAKE_CASE : List[Any] = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" def choose_first(UpperCamelCase_ ,UpperCamelCase_=False ): assert isinstance(A__ ,A__ ) if len(A__ ) == 1: snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a snake_case = {'''id''': example['''id''']} snake_case = example['''annotations'''] snake_case = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case = ['''yes'''] if 1 in yes_no_answer else ['''no'''] snake_case = snake_case = [] snake_case = snake_case = [] snake_case = ['''<cls>'''] else: snake_case = ['''short'''] snake_case = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available snake_case = ['''long'''] snake_case = choose_first(annotation['''long_answer'''] ,is_long_answer=A__ ) snake_case = [] answer.update(A__ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case = True else: snake_case = False snake_case = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] ,A__ ) for k in cols ): raise ValueError('''Issue in ID''' ,example['''id'''] ) return answer def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" snake_case = _get_single_answer(A__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case = example['''document''']['''tokens'''] snake_case = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(A__ ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case = example['''document''']['''tokens'''] snake_case = answer['''start_token'''] snake_case = answer['''end_token'''] snake_case = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: snake_case = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] snake_case = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] snake_case = ''' '''.join([old[i] for i in range(len(A__ ) ) if not is_html[i]] ) if new != old: print('''ID:''' ,example['''id'''] ) print('''New:''' ,A__ ,end='''\n''' ) print('''Old:''' ,A__ ,end='''\n\n''' ) return { "context": " ".join(A__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=20_48 ,UpperCamelCase_=40_96 ,UpperCamelCase_=True ): """simple docstring""" snake_case = get_context_and_ans(A__ ,assertion=A__ ) snake_case = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case = tokenizer(example['''question''']['''text'''] ,out['''context'''] ).input_ids snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case = [] snake_case = [] snake_case = input_ids[:q_len] snake_case = range(A__ ,len(A__ ) ,max_length - doc_stride ) for i in doc_start_indices: snake_case = i + max_length - q_len snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(A__ ), "end_token": [-1_00] * len(A__ ), "category": category, }, } snake_case = out['''context'''].split() snake_case = splitted_context[answer['''end_token''']] snake_case = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) ,add_special_tokens=A__ ,).input_ids ) snake_case = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) ,add_special_tokens=A__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case = len(tokenizer(A__ ,add_special_tokens=A__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive snake_case = answer['''start_token'''] snake_case = answer['''end_token'''] if assertion: snake_case = tokenizer.decode(A__ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' ,answer['''span'''] ) print('''NEW:''' ,A__ ,end='''\n\n''' ) if len(A__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case = input_ids[:q_len] snake_case = range(A__ ,len(A__ ) ,max_length - doc_stride ) snake_case = [] snake_case = [] snake_case = [] snake_case = [] # null, yes, no, long, short for i in doc_start_indices: snake_case = i + max_length - q_len snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case = start_token - i + q_len snake_case = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: snake_case = -1_00 snake_case = -1_00 answers_category.append('''null''' ) snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(A__ ) answers_end_token.append(A__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' ,example['''id'''] ) print('''New:''' ,tokenizer.decode(A__ ) ) print('''Old:''' ,tokenizer.decode(A__ ) ,end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=20_48 ,UpperCamelCase_=40_96 ,UpperCamelCase_=False ): """simple docstring""" snake_case = get_strided_contexts_and_ans( A__ ,A__ ,doc_stride=A__ ,max_length=A__ ,assertion=A__ ,) return example def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" with jsonlines.open(A__ ,'''a''' ) as writer: for example in tqdm(A__ ,total=len(A__ ) ,desc='''Saving samples ... ''' ): snake_case = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] ,labels['''start_token'''] ,labels['''end_token'''] ,labels['''category'''] ,): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _SCREAMING_SNAKE_CASE : Tuple = load_dataset("natural_questions") _SCREAMING_SNAKE_CASE : str = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") _SCREAMING_SNAKE_CASE : List[Any] = data["train" if PROCESS_TRAIN == "true" else "validation"] _SCREAMING_SNAKE_CASE : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } _SCREAMING_SNAKE_CASE : Optional[int] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _SCREAMING_SNAKE_CASE : str = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) _SCREAMING_SNAKE_CASE : str = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
127
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None ) -> List[str]: '''simple docstring''' _lowercase =self.layer[current_layer](lowerCAmelCase , lowerCAmelCase , head_mask[current_layer] ) _lowercase =layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =BertEncoderWithPabee(lowerCAmelCase ) self.init_weights() _lowercase =0 _lowercase =0 _lowercase =0 _lowercase =0 def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =threshold def A__ ( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =patience def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =0 _lowercase =0 def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.inference_layers_num / self.inference_instances_num _lowercase =( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase ) @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=False , ) -> str: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase =input_ids.size() elif inputs_embeds is not None: _lowercase =inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) if token_type_ids is None: _lowercase =torch.zeros(lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase =self.get_extended_attention_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowercase , _lowercase , _lowercase =encoder_hidden_states.size() _lowercase =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) _lowercase =self.invert_attention_mask(lowerCAmelCase ) else: _lowercase =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase =self.get_head_mask(lowerCAmelCase , self.config.num_hidden_layers ) _lowercase =self.embeddings( input_ids=lowerCAmelCase , position_ids=lowerCAmelCase , token_type_ids=lowerCAmelCase , inputs_embeds=lowerCAmelCase ) _lowercase =embedding_output if self.training: _lowercase =[] for i in range(self.config.num_hidden_layers ): _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](output_dropout(lowerCAmelCase ) ) res.append(lowerCAmelCase ) elif self.patience == 0: # Use all layers for inference _lowercase =self.encoder( lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) _lowercase =self.pooler(encoder_outputs[0] ) _lowercase =[output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase )] else: _lowercase =0 _lowercase =None _lowercase =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](lowerCAmelCase ) if regression: _lowercase =logits.detach() if patient_result is not None: _lowercase =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _lowercase =0 else: _lowercase =logits.detach().argmax(dim=1 ) if patient_result is not None: _lowercase =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase ) ): patient_counter += 1 else: _lowercase =0 _lowercase =logits if patient_counter == self.patience: break _lowercase =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =config.num_labels _lowercase =BertModelWithPabee(lowerCAmelCase ) _lowercase =nn.Dropout(config.hidden_dropout_prob ) _lowercase =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.bert( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , position_ids=lowerCAmelCase , head_mask=lowerCAmelCase , inputs_embeds=lowerCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _lowercase =(logits[-1],) if labels is not None: _lowercase =None _lowercase =0 for ix, logits_item in enumerate(lowerCAmelCase ): if self.num_labels == 1: # We are doing regression _lowercase =MSELoss() _lowercase =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _lowercase =CrossEntropyLoss() _lowercase =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _lowercase =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowercase =(total_loss / total_weights,) + outputs return outputs
205
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( A__ : str , A__ : Union[str, Any]=None ): '''simple docstring''' __lowerCamelCase = None if token is not None: __lowerCamelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} __lowerCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __lowerCamelCase = requests.get(A__ , headers=A__ ).json() __lowerCamelCase = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) __lowerCamelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(A__ ): __lowerCamelCase = requests.get(url + f'&page={i + 2}' , headers=A__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=None ): '''simple docstring''' __lowerCamelCase = None if token is not None: __lowerCamelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} __lowerCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' __lowerCamelCase = requests.get(A__ , headers=A__ ).json() __lowerCamelCase = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) __lowerCamelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(A__ ): __lowerCamelCase = requests.get(url + f'&page={i + 2}' , headers=A__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def lowerCamelCase__ ( A__ : List[Any] , A__ : int , A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = None if token is not None: __lowerCamelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} __lowerCamelCase = requests.get(A__ , headers=A__ , allow_redirects=A__ ) __lowerCamelCase = result.headers["""Location"""] __lowerCamelCase = requests.get(A__ , allow_redirects=A__ ) __lowerCamelCase = os.path.join(A__ , f'{artifact_name}.zip' ) with open(A__ , """wb""" ) as fp: fp.write(response.content ) def lowerCamelCase__ ( A__ : int , A__ : List[str]=None ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: __lowerCamelCase = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __lowerCamelCase = line[: line.index(""": """ )] __lowerCamelCase = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed __lowerCamelCase = line[len("""FAILED """ ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": __lowerCamelCase = line if len(A__ ) != len(A__ ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` ' f'and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' """ problem.""" ) __lowerCamelCase = None if job_name and job_links: __lowerCamelCase = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) __lowerCamelCase = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def lowerCamelCase__ ( A__ : List[str] , A__ : str=None ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=None ): '''simple docstring''' __lowerCamelCase = Counter() counter.update([x[1] for x in logs] ) __lowerCamelCase = counter.most_common() __lowerCamelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: __lowerCamelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} __lowerCamelCase = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): __lowerCamelCase = test.split("""/""" )[2] else: __lowerCamelCase = None return test def lowerCamelCase__ ( A__ : List[str] , A__ : str=None ): '''simple docstring''' __lowerCamelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] __lowerCamelCase = [x for x in logs if x[2] is not None] __lowerCamelCase = {x[2] for x in logs} __lowerCamelCase = {} for test in tests: __lowerCamelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __lowerCamelCase = counter.most_common() __lowerCamelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __lowerCamelCase = sum(error_counts.values() ) if n_errors > 0: __lowerCamelCase = {"""count""": n_errors, """errors""": error_counts} __lowerCamelCase = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = """| no. | error | status |""" __lowerCamelCase = """|-:|:-|:-|""" __lowerCamelCase = [header, sep] for error in reduced_by_error: __lowerCamelCase = reduced_by_error[error]["""count"""] __lowerCamelCase = f'| {count} | {error[:100]} | |' lines.append(A__ ) return "\n".join(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = """| model | no. of errors | major error | count |""" __lowerCamelCase = """|-:|-:|-:|-:|""" __lowerCamelCase = [header, sep] for model in reduced_by_model: __lowerCamelCase = reduced_by_model[model]["""count"""] __lowerCamelCase, __lowerCamelCase = list(reduced_by_model[model]["""errors"""].items() )[0] __lowerCamelCase = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') UpperCAmelCase_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCAmelCase_ = get_job_links(args.workflow_run_id, token=args.token) UpperCAmelCase_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCAmelCase_ = k.find(' / ') UpperCAmelCase_ = k[index + len(' / ') :] UpperCAmelCase_ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCAmelCase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCAmelCase_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCAmelCase_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCAmelCase_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCAmelCase_ = reduce_by_error(errors) UpperCAmelCase_ = reduce_by_model(errors) UpperCAmelCase_ = make_github_table(reduced_by_error) UpperCAmelCase_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
350
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
155
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int]=7 , UpperCamelCase: str=3 , UpperCamelCase: int=30 , UpperCamelCase: int=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=None , UpperCamelCase: Any=True , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[Any]=1 / 2_55 , UpperCamelCase: Tuple=True , ): """simple docstring""" A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Any , UpperCamelCase: List[str] , UpperCamelCase: int=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) A__ = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def UpperCamelCase ( self: str ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def UpperCamelCase ( self: int ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = YolosImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
335
0
def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: snake_case_ = f'''Input value of [number={number}] must be > 0''' raise ValueError(SCREAMING_SNAKE_CASE ) snake_case_ = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
267
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "wavlm" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=7_68 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=30_72 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=1_28 , _UpperCAmelCase=16 , _UpperCAmelCase=3_20 , _UpperCAmelCase=8_00 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=3_20 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1_00 , _UpperCAmelCase=2_56 , _UpperCAmelCase=2_56 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=2_56 , _UpperCAmelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=5_12 , _UpperCAmelCase=80 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = conv_bias snake_case_ = num_buckets snake_case_ = max_bucket_distance snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = num_ctc_classes snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = xvector_output_dim @property def UpperCamelCase__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
267
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case : Optional[int] = TypeVar('''T''') class _snake_case ( Generic[T] ): SCREAMING_SNAKE_CASE__ = 42 # Cache store of keys SCREAMING_SNAKE_CASE__ = 42 # References of the keys in cache SCREAMING_SNAKE_CASE__ = 10 # Maximum capacity of cache def __init__( self , _lowerCamelCase ): a :Optional[int] = deque() a :int = set() if not n: a :Dict = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: a :int = n def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: a :str = self.dq_store.pop() self.key_reference.remove(_lowerCamelCase ) else: self.dq_store.remove(_lowerCamelCase ) self.dq_store.appendleft(_lowerCamelCase ) self.key_reference.add(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): for k in self.dq_store: print(_lowerCamelCase ) def __repr__( self ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() snake_case : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
94
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Tuple = {'UserAgent': UserAgent().random} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' UpperCamelCase__ = script.contents[0] UpperCamelCase__ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : def __init__( self , a ): UpperCamelCase__ = f'''https://www.instagram.com/{username}/''' UpperCamelCase__ = self.get_json() def __a ( self ): UpperCamelCase__ = requests.get(self.url , headers=a ).text UpperCamelCase__ = BeautifulSoup(a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __a ( self ): return self.user_data["username"] @property def __a ( self ): return self.user_data["full_name"] @property def __a ( self ): return self.user_data["biography"] @property def __a ( self ): return self.user_data["business_email"] @property def __a ( self ): return self.user_data["external_url"] @property def __a ( self ): return self.user_data["edge_followed_by"]["count"] @property def __a ( self ): return self.user_data["edge_follow"]["count"] @property def __a ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self ): return self.user_data["profile_pic_url_hd"] @property def __a ( self ): return self.user_data["is_verified"] @property def __a ( self ): return self.user_data["is_private"] def _UpperCamelCase ( __A = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase__ = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : Any = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
80
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __a = get_tests_dir('fixtures') __a = get_tests_dir('fixtures/dummy_feature_extractor_config.json') __a = get_tests_dir('fixtures/dummy-config.json') class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 0 def a__ ( self ) -> int: UpperCAmelCase_ : int = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase_ : List[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('''feature_extractor_type''' ) UpperCAmelCase_ : Dict = WavaVecaFeatureExtractor(**_SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved UpperCAmelCase_ : List[str] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: UpperCAmelCase_ : Optional[int] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : int = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def a__ ( self ) -> Tuple: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def a__ ( self ) -> List[str]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' ,): UpperCAmelCase_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def a__ ( self ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) def a__ ( self ) -> int: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ : Optional[int] = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> List[Any]: class __a( __snake_case ): """simple docstring""" lowerCAmelCase = True try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(not hasattr(_SCREAMING_SNAKE_CASE ,'''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
362
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __a( _a ): """simple docstring""" lowerCAmelCase = (IPNDMScheduler,) lowerCAmelCase = (('''num_inference_steps''', 50),) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : Tuple = {'''num_train_timesteps''': 1_000} config.update(**_SCREAMING_SNAKE_CASE ) return config def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : int = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : Optional[Any] = 0.1 * sample UpperCAmelCase_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Tuple = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCAmelCase_ : Optional[int] = dummy_past_residuals[:] UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : str = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Union[str, Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Optional[int] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self ) -> List[Any]: pass def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : List[str] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Tuple = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = self.dummy_sample UpperCAmelCase_ : Tuple = 0.1 * sample UpperCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : Tuple = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : Dict = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : str = dummy_past_residuals[:] UpperCAmelCase_ : Tuple = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Optional[int] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase_ : str = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : List[str] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = 10 UpperCAmelCase_ : Tuple = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : int = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample return sample def a__ ( self ) -> str: UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Any = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : int = self.get_scheduler_config() UpperCAmelCase_ : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ): scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ): UpperCAmelCase_ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[Any] = scheduler.timesteps[5] UpperCAmelCase_ : Dict = scheduler.timesteps[6] UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def a__ ( self ) -> Any: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.full_loop() UpperCAmelCase_ : str = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
235
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """sew""" def __init__( self , lowerCAmelCase=32 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3_072 , lowerCAmelCase=2 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-5 , lowerCAmelCase="group" , lowerCAmelCase="gelu" , lowerCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCAmelCase=False , lowerCAmelCase=128 , lowerCAmelCase=16 , lowerCAmelCase=True , lowerCAmelCase=0.05 , lowerCAmelCase=10 , lowerCAmelCase=2 , lowerCAmelCase=0.0 , lowerCAmelCase=10 , lowerCAmelCase=0 , lowerCAmelCase="mean" , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=256 , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , **lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase , pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(lowerCAmelCase ) _lowercase =list(lowerCAmelCase ) _lowercase =list(lowerCAmelCase ) _lowercase =conv_bias _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =squeeze_factor _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length _lowercase =mask_feature_min_masks # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # sequence classification _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size @property def A__ ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
205
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = ["""input_features"""] def __init__( self , lowerCAmelCase=80 , lowerCAmelCase=16_000 , lowerCAmelCase=160 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=0.0 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) _lowercase =n_fft _lowercase =hop_length _lowercase =chunk_length _lowercase =chunk_length * sampling_rate _lowercase =self.n_samples // hop_length _lowercase =sampling_rate _lowercase =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def A__ ( self , lowerCAmelCase ) -> np.ndarray: '''simple docstring''' _lowercase =spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _lowercase =log_spec[:, :-1] _lowercase =np.maximum(lowerCAmelCase , log_spec.max() - 8.0 ) _lowercase =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: _lowercase =np.array(lowerCAmelCase , np.intaa ) _lowercase =[] for vector, length in zip(lowerCAmelCase , attention_mask.sum(-1 ) ): _lowercase =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _lowercase =padding_value normed_input_values.append(lowerCAmelCase ) else: _lowercase =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "max_length" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase =isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase =is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): _lowercase =np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase =[np.asarray([raw_speech] ).T] _lowercase =BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _lowercase =self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowercase =self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _lowercase =np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _lowercase =padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _lowercase =[self._np_extract_fbank_features(lowerCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase ): _lowercase =[np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_features] else: _lowercase =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase =padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: _lowercase =padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
205
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : Dict ={"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :List[str] = "ctrl" __lowerCAmelCase :Union[str, Any] = ["past_key_values"] __lowerCAmelCase :Union[str, Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __lowercase=2_4_6_5_3_4 , __lowercase=2_5_6 , __lowercase=1_2_8_0 , __lowercase=8_1_9_2 , __lowercase=4_8 , __lowercase=1_6 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-6 , __lowercase=0.0_2 , __lowercase=True , **__lowercase , ) -> Dict: """simple docstring""" a__ : List[str] = vocab_size a__ : str = n_positions a__ : Tuple = n_embd a__ : Optional[int] = n_layer a__ : int = n_head a__ : Union[str, Any] = dff a__ : List[str] = resid_pdrop a__ : List[Any] = embd_pdrop a__ : Optional[int] = layer_norm_epsilon a__ : List[str] = initializer_range a__ : str = use_cache super().__init__(**__lowercase )
356
from __future__ import annotations import math def lowerCAmelCase_ ( _lowercase : float , _lowercase : int) -> float: """simple docstring""" a__ : Union[str, Any] = u for i in range(1 , _lowercase): a__ : Optional[int] = temp * (u - i) return temp def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : Tuple = int(input("""enter the numbers of values: """)) a__ : list[list[float]] = [] for _ in range(_lowercase): y.append([]) for i in range(_lowercase): for j in range(_lowercase): y[i].append(_lowercase) a__ : Optional[Any] = 0 print("""enter the values of parameters in a list: """) a__ : List[Any] = list(map(_lowercase , input().split())) print("""enter the values of corresponding parameters: """) for i in range(_lowercase): a__ : Optional[Any] = float(input()) a__ : Tuple = int(input("""enter the value to interpolate: """)) a__ : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowercase): for j in range(n - i): a__ : int = y[j + 1][i - 1] - y[j][i - 1] a__ : Optional[int] = y[0][0] for i in range(1 , _lowercase): summ += (ucal(_lowercase , _lowercase) * y[0][i]) / math.factorial(_lowercase) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
266
0
'''simple docstring''' import operator as op __UpperCAmelCase = """scaler.pt""" __UpperCAmelCase = """pytorch_model""" __UpperCAmelCase = """random_states""" __UpperCAmelCase = """optimizer""" __UpperCAmelCase = """scheduler""" __UpperCAmelCase = """pytorch_model.bin""" __UpperCAmelCase = """pytorch_model.bin.index.json""" __UpperCAmelCase = """model.safetensors""" __UpperCAmelCase = """model.safetensors.index.json""" __UpperCAmelCase = """1.10.2""" __UpperCAmelCase = """py38""" __UpperCAmelCase = """4.17.0""" __UpperCAmelCase = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] __UpperCAmelCase = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] __UpperCAmelCase = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] __UpperCAmelCase = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] __UpperCAmelCase = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] __UpperCAmelCase = """2.0.1""" __UpperCAmelCase = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] __UpperCAmelCase = ["""default""", """reduce-overhead""", """max-autotune"""] __UpperCAmelCase = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __UpperCAmelCase = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] __UpperCAmelCase = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] __UpperCAmelCase = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
323
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCamelCase_ ) return config def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0] SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = 1 scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = scheduler.timesteps SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Dict = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
323
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _a ( snake_case_ ): """simple docstring""" def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ): A_ = dataset A_ = process A_ = params def __len__( self : List[str] ): return len(self.dataset ) def __getitem__( self : int , UpperCAmelCase : Tuple ): A_ = self.dataset[i] A_ = self.process(UpperCAmelCase , **self.params ) return processed class _a ( snake_case_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=None ): A_ = loader A_ = infer A_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether A_ = None A_ = loader_batch_size # Internal bookkeeping A_ = None A_ = None def __len__( self : Union[str, Any] ): return len(self.loader ) def __iter__( self : int ): A_ = iter(self.loader ) return self def __A ( self : int ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice A_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) A_ = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): # Convert ModelOutput to tuple first A_ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): A_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase , UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): A_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around A_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. A_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 A_ = self._loader_batch_data.__class__(UpperCAmelCase ) self._loader_batch_index += 1 return result def __A ( self : List[str] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch A_ = next(self.iterator ) A_ = self.infer(UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase , torch.Tensor ): A_ = processed else: A_ = list(processed.keys() )[0] A_ = processed[key] if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = len(UpperCAmelCase ) else: A_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ = observed_batch_size # Setting internal index to unwrap the batch A_ = processed A_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ): super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __iter__( self : Any ): A_ = iter(self.loader ) A_ = None return self def __A ( self : Dict ): if self.subiterator is None: A_ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item A_ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators A_ = self.infer(next(self.iterator ) , **self.params ) A_ = next(self.subiterator ) return processed class _a ( snake_case_ ): """simple docstring""" def __iter__( self : List[str] ): A_ = iter(self.loader ) return self def __A ( self : Optional[Any] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. A_ = False A_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: A_ = self.loader_batch_item() A_ = item.pop("is_last" ) accumulator.append(UpperCAmelCase ) if is_last: return accumulator while not is_last: A_ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase , torch.Tensor ): A_ = processed else: A_ = list(processed.keys() )[0] A_ = processed[key] if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = len(UpperCAmelCase ) else: A_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ = observed_batch_size A_ = processed A_ = 0 while self._loader_batch_index < self.loader_batch_size: A_ = self.loader_batch_item() A_ = item.pop("is_last" ) accumulator.append(UpperCAmelCase ) if is_last: return accumulator else: A_ = processed A_ = item.pop("is_last" ) accumulator.append(UpperCAmelCase ) return accumulator class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Dataset , UpperCAmelCase : str ): A_ = dataset A_ = key def __len__( self : Any ): return len(self.dataset ) def __getitem__( self : List[str] , UpperCAmelCase : Tuple ): return self.dataset[i][self.key] class _a ( snake_case_ ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : str , UpperCAmelCase : str ): A_ = dataset A_ = keya A_ = keya def __len__( self : List[str] ): return len(self.dataset ) def __getitem__( self : Optional[Any] , UpperCAmelCase : Tuple ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =["""image_processor""", """tokenizer"""] a_ ="""ViltImageProcessor""" a_ =("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] , _a : Optional[Any]=None , _a : int=None , **_a : int ) -> Dict: __lowerCamelCase : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _a , ) __lowerCamelCase : Any = kwargs.pop('feature_extractor' ) __lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_a , _a ) __lowerCamelCase : List[str] = self.image_processor def __call__( self : Any , _a : Any , _a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _a : bool = True , _a : Union[bool, str, PaddingStrategy] = False , _a : Union[bool, str, TruncationStrategy] = None , _a : Optional[int] = None , _a : int = 0 , _a : Optional[int] = None , _a : Optional[bool] = None , _a : Optional[bool] = None , _a : bool = False , _a : bool = False , _a : bool = False , _a : bool = False , _a : bool = True , _a : Optional[Union[str, TensorType]] = None , **_a : Dict , ) -> BatchEncoding: __lowerCamelCase : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask __lowerCamelCase : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def _lowercase ( self : Tuple , *_a : Optional[Any] , **_a : Union[str, Any] ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def _lowercase ( self : List[Any] , *_a : int , **_a : List[str] ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def _lowercase ( self : int ) -> Tuple: __lowerCamelCase : Any = self.tokenizer.model_input_names __lowerCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self : Dict ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _a , ) return self.image_processor_class @property def _lowercase ( self : Optional[int] ) -> Tuple: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _a , ) return self.image_processor
208
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase_ : """simple docstring""" def __init__( self : Tuple , _a : List[Any] , _a : Dict=2 , _a : Dict=32 , _a : int=16 , _a : str=3 , _a : Optional[int]=True , _a : List[Any]=True , _a : int=32 , _a : int=4 , _a : Optional[Any]=[0, 1, 2, 3] , _a : int=4 , _a : Union[str, Any]=37 , _a : List[str]="gelu" , _a : List[str]=0.1 , _a : List[str]=0.1 , _a : Union[str, Any]=0.02 , _a : str=3 , _a : int=[1, 384, 24, 24] , _a : Optional[Any]=True , _a : Tuple=None , ) -> Tuple: __lowerCamelCase : Dict = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : Any = patch_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Dict = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = backbone_out_indices __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Dict = num_labels __lowerCamelCase : List[Any] = backbone_featmap_shape __lowerCamelCase : Optional[int] = scope __lowerCamelCase : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[Any] = num_patches + 1 def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[Any] ) -> List[str]: __lowerCamelCase : Optional[Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_a , backbone_featmap_shape=self.backbone_featmap_shape , ) def _lowercase ( self : Optional[int] , _a : int , _a : str , _a : Optional[int] ) -> Optional[int]: __lowerCamelCase : Any = DPTModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : List[Any] ) -> List[Any]: __lowerCamelCase : Dict = self.num_labels __lowerCamelCase : List[Any] = DPTForDepthEstimation(_a ) model.to(_a ) model.eval() __lowerCamelCase : List[str] = model(_a ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _lowercase ( self : List[str] , _a : Optional[Any] , _a : Tuple , _a : Tuple ) -> List[Any]: __lowerCamelCase : Union[str, Any] = self.num_labels __lowerCamelCase : Optional[Any] = DPTForSemanticSegmentation(_a ) model.to(_a ) model.eval() __lowerCamelCase : int = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Tuple = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase : str = config_and_inputs __lowerCamelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ =( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ =False a_ =False a_ =False def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Optional[Any] = DPTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowercase ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def _lowercase ( self : Dict ) -> Union[str, Any]: pass def _lowercase ( self : Dict ) -> str: __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _lowercase ( self : List[str] ) -> Any: __lowerCamelCase ,__lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(_a ) __lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def _lowercase ( self : Dict ) -> Any: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : Union[str, Any] ) -> int: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_a ) def _lowercase ( self : List[Any] ) -> Any: __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) def _lowercase ( self : Optional[int] ) -> Dict: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[int] = True if model_class in get_values(_a ): continue __lowerCamelCase : Tuple = model_class(_a ) model.to(_a ) model.train() __lowerCamelCase : str = self._prepare_for_class(_a , _a , return_labels=_a ) __lowerCamelCase : Dict = model(**_a ).loss loss.backward() def _lowercase ( self : Union[str, Any] ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = False __lowerCamelCase : List[str] = True if model_class in get_values(_a ) or not model_class.supports_gradient_checkpointing: continue __lowerCamelCase : Optional[int] = model_class(_a ) model.to(_a ) model.gradient_checkpointing_enable() model.train() __lowerCamelCase : List[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) __lowerCamelCase : str = model(**_a ).loss loss.backward() def _lowercase ( self : Dict ) -> Optional[Any]: __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = _config_zero_init(_a ) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(config=_a ) # Skip the check for the backbone __lowerCamelCase : Any = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __lowerCamelCase : Dict = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowercase ( self : Dict ) -> Optional[int]: pass @slow def _lowercase ( self : Any ) -> int: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __lowerCamelCase : Union[str, Any] = DPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( self : List[Any] ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __lowerCamelCase ,__lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = 'add' with self.assertRaises(_a ): __lowerCamelCase : int = DPTForDepthEstimation(_a ) def a_ ( ) -> str: __lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ) -> Tuple: __lowerCamelCase : Any = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) __lowerCamelCase : Any = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_a ) __lowerCamelCase : Any = prepare_img() __lowerCamelCase : Dict = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): __lowerCamelCase : Any = model(**_a ) __lowerCamelCase : Any = outputs.predicted_depth # verify the predicted depth __lowerCamelCase : int = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _a ) __lowerCamelCase : Tuple = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_a ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _a , atol=1e-4 ) )
208
1
import collections import importlib.util import os import re from pathlib import Path __magic_name__: str = '''src/transformers''' # Matches is_xxx_available() __magic_name__: str = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __magic_name__: List[str] = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __magic_name__: Any = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __magic_name__: Any = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __magic_name__: Union[str, Any] = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __magic_name__: List[str] = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __magic_name__: str = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __magic_name__: str = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __magic_name__: Union[str, Any] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __magic_name__: str = re.compile(r"^\s*try:") # Catches a line with else: __magic_name__: Optional[int] = re.compile(r"^\s*else:") def UpperCamelCase ( _A ): """simple docstring""" if _re_test_backend.search(_UpperCAmelCase ) is None: return None __magic_name__ : Dict = [b[0] for b in _re_backend.findall(_UpperCAmelCase )] backends.sort() return "_and_".join(_UpperCAmelCase ) def UpperCamelCase ( _A ): """simple docstring""" with open(_UpperCAmelCase, """r""", encoding="""utf-8""", newline="""\n""" ) as f: __magic_name__ : Dict = f.readlines() __magic_name__ : Optional[int] = 0 while line_index < len(_UpperCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure __magic_name__ : Dict = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __magic_name__ : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_UpperCAmelCase ): __magic_name__ : Tuple = _re_one_line_import_struct.search(_UpperCAmelCase ).groups()[0] __magic_name__ : str = re.findall("""\[([^\]]+)\]""", _UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __magic_name__ : int = _re_import_struct_key_value.search(_UpperCAmelCase ) if single_line_import_search is not None: __magic_name__ : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __magic_name__ : Union[str, Any] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __magic_name__ : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __magic_name__ : List[str] = lines[line_index] if _re_import_struct_add_one.search(_UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_UpperCAmelCase ) is not None: __magic_name__ : Any = _re_import_struct_add_many.search(_UpperCAmelCase ).groups()[0].split(""", """ ) __magic_name__ : Optional[Any] = [obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif _re_between_brackets.search(_UpperCAmelCase ) is not None: __magic_name__ : List[Any] = _re_between_brackets.search(_UpperCAmelCase ).groups()[0].split(""", """ ) __magic_name__ : List[Any] = [obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif _re_quote_object.search(_UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(_UpperCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __magic_name__ : Tuple = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __magic_name__ : str = [] while ( line_index < len(_UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __magic_name__ : Any = lines[line_index] __magic_name__ : Tuple = _re_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __magic_name__ : List[str] = {'none': objects} # Let's continue with backend-specific objects while line_index < len(_UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. __magic_name__ : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __magic_name__ : Optional[int] = lines[line_index] __magic_name__ : Optional[int] = _re_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __magic_name__ : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase ( _A, _A ): """simple docstring""" def find_duplicates(_A ): return [k for k, v in collections.Counter(_UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __magic_name__ : Optional[Any] = [] for key in import_dict_objects.keys(): __magic_name__ : List[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) __magic_name__ : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __magic_name__ : Tuple = 'base imports' if key == 'none' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Tuple = [] for root, _, files in os.walk(_UpperCAmelCase ): if "__init__.py" in files: __magic_name__ : Any = os.path.join(_UpperCAmelCase, """__init__.py""" ) __magic_name__ : Union[str, Any] = parse_init(_UpperCAmelCase ) if objects is not None: __magic_name__ : Tuple = analyze_results(*_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: __magic_name__ : Any = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > 0: raise ValueError("""\n\n""".join(_UpperCAmelCase ) ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [] for path, directories, files in os.walk(_UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_UpperCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue __magic_name__ : Dict = str((Path(_UpperCAmelCase ) / folder).relative_to(_UpperCAmelCase ) ) __magic_name__ : Any = short_path.replace(os.path.sep, """.""" ) submodules.append(_UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue __magic_name__ : Any = str((Path(_UpperCAmelCase ) / fname).relative_to(_UpperCAmelCase ) ) __magic_name__ : Any = short_path.replace(""".py""", """""" ).replace(os.path.sep, """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_UpperCAmelCase ) return submodules __magic_name__: Tuple = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = importlib.util.spec_from_file_location( """transformers""", os.path.join(_UpperCAmelCase, """__init__.py""" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __magic_name__ : Tuple = spec.loader.load_module() __magic_name__ : Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_UpperCAmelCase ) > 0: __magic_name__ : Any = '\n'.join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
350
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = StableUnCLIPImgaImgPipeline lowercase__ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ : Union[str, Any] = frozenset([] ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Any = 32 __magic_name__ : Union[str, Any] = embedder_hidden_size # image encoding components __magic_name__ : Optional[int] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase__ , projection_dim=lowerCAmelCase__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __magic_name__ : Any = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__ ) __magic_name__ : int = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) __magic_name__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __magic_name__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase__ , layers_per_block=1 , upcast_attention=lowerCAmelCase__ , use_linear_projection=lowerCAmelCase__ , ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) __magic_name__ : List[str] = AutoencoderKL() __magic_name__ : List[str] = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 , lowerCAmelCase__=True ) -> List[Any]: if str(lowerCAmelCase__ ).startswith("""mps""" ): __magic_name__ : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) else: __magic_name__ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __magic_name__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if pil_image: __magic_name__ : Optional[Any] = input_image * 0.5 + 0.5 __magic_name__ : int = input_image.clamp(0 , 1 ) __magic_name__ : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ : Optional[int] = DiffusionPipeline.numpy_to_pil(lowerCAmelCase__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : List[str] = self.get_dummy_components() __magic_name__ : int = StableUnCLIPImgaImgPipeline(**lowerCAmelCase__ ) __magic_name__ : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) inputs.update({"""image_embeds""": None} ) __magic_name__ : List[str] = sd_pipe(**lowerCAmelCase__ ).images __magic_name__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : int = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self ) -> Dict: __magic_name__ : int = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Tuple = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __magic_name__ ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase__ ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __magic_name__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) __magic_name__ : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __magic_name__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ : Union[str, Any] = pipe(lowerCAmelCase__ , """anime turle""" , generator=lowerCAmelCase__ , output_type="""np""" ) __magic_name__ : Optional[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __magic_name__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) __magic_name__ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __magic_name__ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ : Any = pipe(lowerCAmelCase__ , """anime turle""" , generator=lowerCAmelCase__ , output_type="""np""" ) __magic_name__ : Any = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) __magic_name__ : int = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __magic_name__ : List[Any] = pipe( lowerCAmelCase__ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) __magic_name__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
138
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _A = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( lowerCAmelCase ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : Optional[int] = False def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: if args.student_type == "roberta": UpperCAmelCase__ : Tuple = False def a__ ( ) -> int: UpperCAmelCase__ : Dict = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=lowerCAmelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=lowerCAmelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=lowerCAmelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=lowerCAmelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=lowerCAmelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=lowerCAmelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=lowerCAmelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=lowerCAmelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=lowerCAmelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=lowerCAmelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=lowerCAmelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=lowerCAmelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=lowerCAmelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=lowerCAmelCase , default=5_00 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=lowerCAmelCase , default=40_00 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : List[Any] = parser.parse_args() sanity_checks(lowerCAmelCase ) # ARGS # init_gpu_params(lowerCAmelCase ) set_seed(lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(lowerCAmelCase ) , lowerCAmelCase , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : List[Any] = tokenizer.all_special_tokens.index(lowerCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : List[str] = pickle.load(lowerCAmelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : List[Any] = pickle.load(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.maximum(lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : int = 0.0 # do not predict special tokens UpperCAmelCase__ : str = torch.from_numpy(lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = LmSeqsDataset(params=lowerCAmelCase , data=lowerCAmelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCAmelCase__ : List[str] = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : List[Any] = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase__ : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = student_model_class(lowerCAmelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCAmelCase , lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCAmelCase , lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[int] = Distiller( params=lowerCAmelCase , dataset=lowerCAmelCase , token_probs=lowerCAmelCase , student=lowerCAmelCase , teacher=lowerCAmelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
171
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any]=13 , lowerCAmelCase_ : Optional[Any]=30 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : Optional[int]=5 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Dict=37 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[Any]=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=2 , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = scope _a = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _a = (image_size // patch_size) ** 2 _a = num_patches + 2 def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" _a = DeiTModel(config=a__ ) model.to(a__ ) model.eval() _a = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> int: """simple docstring""" _a = DeiTForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() _a = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a = 1 _a = DeiTForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> List[Any]: """simple docstring""" _a = self.type_sequence_label_size _a = DeiTForImageClassification(a__ ) model.to(a__ ) model.eval() _a = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = DeiTForImageClassification(a__ ) model.to(a__ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( lowercase_ ,lowercase_ ,unittest.TestCase ): lowercase_ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = DeiTModelTester(self ) _a = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(a__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=False ) -> str: """simple docstring""" _a = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" if not self.model_tester.is_training: return _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _a = model_class(a__ ) model.to(a__ ) model.train() _a = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _a = model(**a__ ).loss loss.backward() def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _a = False _a = True for model_class in self.all_model_classes: if model_class in get_values(a__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _a = model_class(a__ ) model.gradient_checkpointing_enable() model.to(a__ ) model.train() _a = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _a = model(**a__ ).loss loss.backward() def __lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a__ ), *get_values(a__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): _a = problem_type['''title'''] _a = problem_type['''num_labels'''] _a = model_class(a__ ) model.to(a__ ) model.train() _a = self._prepare_for_class(a__ , a__ , return_labels=a__ ) if problem_type["num_labels"] > 1: _a = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _a = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a__ ) as warning_list: _a = model(**a__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DeiTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def snake_case_ (): '''simple docstring''' _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _a = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( a__ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): _a = model(**a__ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a__ ) _a = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _a = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=a__ , return_tensors='''pt''' ) _a = inputs.pixel_values.to(a__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _a = model(a__ )
354
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
179
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = ["""pixel_values"""] def __init__( self : List[str] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : float = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : Tuple , ): super().__init__(**snake_case_ ) _UpperCAmelCase = size if size is not None else {"shortest_edge": 3_8_4} _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = do_resize _UpperCAmelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCAmelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : Any , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : float , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Optional[int] , ): _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _UpperCAmelCase = size["shortest_edge"] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCAmelCase = int(shortest_edge / crop_pct ) _UpperCAmelCase = get_resize_output_image_size(snake_case_ , size=snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=snake_case_ , size=(shortest_edge, shortest_edge) , data_format=snake_case_ , **snake_case_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( snake_case_ , size=(shortest_edge, shortest_edge) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : int , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Union[str, Any] , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Any , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : float = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _UpperCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , crop_pct=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
22
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): lowerCAmelCase = None class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): lowerCAmelCase = PandasConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') __A : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_UpperCAmelCase , (str, list, tuple)): __A : Union[str, Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A : List[str] = table_cast(_UpperCAmelCase , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)): with open(_UpperCAmelCase , 'rb') as f: __A : Optional[int] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase)) yield i, self._cast_table(_UpperCAmelCase)
190
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( A_): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead.", _lowerCamelCase, ) super().__init__(*_lowerCamelCase, **_lowerCamelCase)
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _SCREAMING_SNAKE_CASE = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE__ ( __a=None , __a=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Dict = 42 __magic_name__: Optional[Any] = 42 __magic_name__: List[str] = 42 __magic_name__: int = 42 @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = 42 __magic_name__: str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[str] = False __magic_name__: Optional[Any] = True __magic_name__: Optional[Any] = None class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: List[str] = "titi" __magic_name__: Any = "toto" class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __magic_name__: List[str] = "titi" __magic_name__: List[str] = "toto" __magic_name__: Tuple = 42 @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Any = "toto" def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = BasicEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Union[str, Any] = "toto" def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ : str = MixedTypeEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Optional[Any] = None __magic_name__: Union[str, Any] = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __magic_name__: Optional[Any] = None __magic_name__: Dict = list_field(default=[] ) __magic_name__: List[str] = list_field(default=[] ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[Any] = list_field(default=[] ) __magic_name__: Any = list_field(default=[1, 2, 3] ) __magic_name__: List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) __magic_name__: Union[str, Any] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field() __magic_name__: Dict = field() __magic_name__: int = field() def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case_ : Dict = BasicEnum(self.required_enum ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Optional[Any] = 42 __magic_name__: Optional[Any] = field() __magic_name__: Any = None __magic_name__: List[str] = field(default="toto" , metadata={"help": "help message"} ) __magic_name__: Optional[Any] = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Optional[Any] = False __magic_name__: List[str] = True __magic_name__: Tuple = None @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[Any] = None __magic_name__: Optional[int] = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __magic_name__: str = None __magic_name__: str = list_field(default=[] ) __magic_name__: List[str] = list_field(default=[] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict , _A : argparse.ArgumentParser , _A : argparse.ArgumentParser ) -> Union[str, Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ : Tuple = {k: v for k, v in vars(_UpperCAmelCase ).items() if k != 'container'} snake_case_ : Any = {k: v for k, v in vars(_UpperCAmelCase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , _UpperCAmelCase ) and yy.get('choices' , _UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](_UpperCAmelCase ) , yy['type'](_UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case_ : Optional[int] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--bar' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--baz' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--flag' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?' ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Union[str, Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((snake_case_ ) , ) : Dict = parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase ) self.assertFalse(example.flag ) def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" snake_case_ : Any = HfArgumentParser(_UpperCAmelCase ) snake_case_ : str = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=_UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message' ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: """simple docstring""" snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?' ) expected.add_argument('--baz' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=_UpperCAmelCase , dest='baz' ) expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase ) snake_case_ : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: snake_case_ : int = HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : str = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : int = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : str = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) snake_case_ : int = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) def UpperCAmelCase_ ( self : int ) -> List[Any]: """simple docstring""" snake_case_ : int = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : List[str] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) snake_case_ : Dict = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ : Dict = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) snake_case_ : Tuple = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ : List[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) snake_case_ : Tuple = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Dict = "toto" snake_case_ : Optional[int] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : int = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) snake_case_ : Optional[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) snake_case_ : Optional[int] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : str = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_UpperCAmelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_UpperCAmelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Tuple = parser.parse_args([] ) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ : List[Any] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" snake_case_ : int = argparse.ArgumentParser() expected.add_argument('--foo' , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument('--bar' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='help message' ) expected.add_argument('--baz' , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=_UpperCAmelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=_UpperCAmelCase ) snake_case_ : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: snake_case_ : Tuple = HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[] ) ) snake_case_ : Dict = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.1_4 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Tuple = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument('--required_str' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ : List[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Tuple ) -> int: """simple docstring""" snake_case_ : List[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Tuple = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } snake_case_ : Any = parser.parse_dict(_UpperCAmelCase )[0] snake_case_ : List[Any] = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : Tuple = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Optional[Any] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser(_UpperCAmelCase ) snake_case_ : Any = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Tuple = os.path.join(_UpperCAmelCase , 'temp_json' ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] snake_case_ : Tuple = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" snake_case_ : str = HfArgumentParser(_UpperCAmelCase ) snake_case_ : int = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[int] = os.path.join(_UpperCAmelCase , 'temp_yaml' ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : int = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] snake_case_ : str = BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" snake_case_ : Any = HfArgumentParser(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
327
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCAmelCase_ ( A_ ): lowercase__ = '''''' lowercase__ = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : List[Any] , snake_case_ : Optional[DatasetInfo] = None , snake_case_ : Optional[str] = None , **snake_case_ : Dict , ) -> str: '''simple docstring''' super().__init__(self , **snake_case_ ) A__ = repo_info A__ = token A__ = None def __magic_name__ ( self : Tuple ) -> Any: '''simple docstring''' if self.dir_cache is None: A__ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes A__ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(snake_case_ ): {"name": str(snake_case_ ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __magic_name__ ( self : List[Any] , snake_case_ : str , snake_case_ : str = "rb" , **snake_case_ : str , ) -> Union[str, Any]: '''simple docstring''' if not isinstance(self.repo_info , snake_case_ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) A__ = hf_hub_url(self.repo_info.id , snake_case_ , revision=self.repo_info.sha ) return fsspec.open( snake_case_ , mode=snake_case_ , headers=get_authentication_headers_for_url(snake_case_ , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def __magic_name__ ( self : Union[str, Any] , snake_case_ : Dict , **snake_case_ : Dict ) -> Dict: '''simple docstring''' self._get_dirs() A__ = self._strip_protocol(snake_case_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(snake_case_ ) def __magic_name__ ( self : str , snake_case_ : str , snake_case_ : Optional[Any]=False , **snake_case_ : List[str] ) -> str: '''simple docstring''' self._get_dirs() A__ = PurePosixPath(path.strip("/" ) ) A__ = {} for p, f in self.dir_cache.items(): A__ = PurePosixPath(p.strip("/" ) ) A__ = p.parent if root == path: A__ = f A__ = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
371
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: A__ = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) A__ = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(lowercase_ ) # Let's go A__ = parser.parse_args() if not hasattr(lowercase_ , "func" ): parser.print_help() exit(1 ) # Run A__ = args.func(lowercase_ ) service.run() if __name__ == "__main__": main()
230
0
import warnings from ..trainer import Trainer from ..utils import logging snake_case_ : str = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : Optional[Any] , _snake_case : List[str]=None , **_snake_case : Any): """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , _snake_case , ) super().__init__(args=_snake_case , **_snake_case)
51
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : int = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : int = logging.get_logger(__name__) A : List[str] = "▁" A : Any = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } A : Any = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } A : Optional[Any] = { "facebook/s2t-small-librispeech-asr": 1_0_2_4, } A : Optional[int] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] A : Dict = {"mustc": MUSTC_LANGS} class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =VOCAB_FILES_NAMES __UpperCAmelCase : str =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] =MAX_MODEL_INPUT_SIZES __UpperCAmelCase : Optional[int] =["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[int] =[] def __init__( self , __a , __a , __a="<s>" , __a="</s>" , __a="<pad>" , __a="<unk>" , __a=False , __a=False , __a=None , __a=None , __a = None , **__a , ): __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowerCAmelCase = do_upper_case __lowerCAmelCase = do_lower_case __lowerCAmelCase = load_json(__a ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = spm_file __lowerCAmelCase = load_spm(__a , self.sp_model_kwargs ) if lang_codes is not None: __lowerCAmelCase = lang_codes __lowerCAmelCase = LANGUAGES[lang_codes] __lowerCAmelCase = [f"<lang:{lang}>" for lang in self.langs] __lowerCAmelCase = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} __lowerCAmelCase = self.lang_tokens __lowerCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __lowerCAmelCase = {} @property def snake_case ( self ): return len(self.encoder ) @property def snake_case ( self ): return self._tgt_lang @tgt_lang.setter def snake_case ( self , __a ): __lowerCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(__a ) def snake_case ( self , __a ): __lowerCAmelCase = self.lang_code_to_id[tgt_lang] __lowerCAmelCase = [lang_code_id] def snake_case ( self , __a ): return self.sp_model.encode(__a , out_type=__a ) def snake_case ( self , __a ): return self.encoder.get(__a , self.encoder[self.unk_token] ) def snake_case ( self , __a ): return self.decoder.get(__a , self.unk_token ) def snake_case ( self , __a ): __lowerCAmelCase = [] __lowerCAmelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __lowerCAmelCase = self.sp_model.decode(__a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __lowerCAmelCase = [] else: current_sub_tokens.append(__a ) __lowerCAmelCase = self.sp_model.decode(__a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case ( self , __a , __a=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self , __a , __a = None , __a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) __lowerCAmelCase = [1] * len(self.prefix_tokens ) __lowerCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def snake_case ( self ): __lowerCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self , __a ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowerCAmelCase = {} __lowerCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case ( self , __a , __a = None ): __lowerCAmelCase = Path(__a ) assert save_dir.is_dir(), f"{save_directory} should be a directory" __lowerCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) __lowerCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , "wb" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = sentencepiece.SentencePieceProcessor(**_UpperCamelCase ) spm.Load(str(_UpperCamelCase ) ) return spm def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "r" ) as f: return json.load(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "w" ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=2 )
259
"""simple docstring""" import random def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ): '''simple docstring''' __lowerCAmelCase = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
259
1
from collections import deque from math import floor from random import random from time import time class a__ : """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' A__ = {} def UpperCamelCase ( self , lowercase , lowercase , lowercase=1 ) -> Tuple: '''simple docstring''' if self.graph.get(lowercase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A__ = [[w, v]] if not self.graph.get(lowercase ): A__ = [] def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return list(self.graph ) def UpperCamelCase ( self , lowercase , lowercase ) -> int: '''simple docstring''' if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> Any: '''simple docstring''' if s == d: return [] A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def UpperCamelCase ( self , lowercase=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: A__ = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A__ = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def UpperCamelCase ( self , lowercase=-2 ) -> Any: '''simple docstring''' A__ = deque() A__ = [] if s == -2: A__ = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' A__ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' return len(self.graph[u] ) def UpperCamelCase ( self , lowercase=-2 ) -> str: '''simple docstring''' A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = s A__ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return sorted_nodes def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> Any: '''simple docstring''' A__ = time() self.dfs(lowercase , lowercase ) A__ = time() return end - begin def UpperCamelCase ( self , lowercase=-2 ) -> int: '''simple docstring''' A__ = time() self.bfs(lowercase ) A__ = time() return end - begin class a__ : """simple docstring""" def __init__( self ) -> int: '''simple docstring''' A__ = {} def UpperCamelCase ( self , lowercase , lowercase , lowercase=1 ) -> Union[str, Any]: '''simple docstring''' if self.graph.get(lowercase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A__ = [[w, v]] # add the other way if self.graph.get(lowercase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A__ = [[w, u]] def UpperCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) # the other way round if self.graph.get(lowercase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase ) def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def UpperCamelCase ( self , lowercase=-1 ) -> str: '''simple docstring''' if c == -1: A__ = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A__ = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def UpperCamelCase ( self , lowercase=-2 ) -> Dict: '''simple docstring''' A__ = deque() A__ = [] if s == -2: A__ = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' return len(self.graph[u] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return list(self.graph ) def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> Optional[Any]: '''simple docstring''' A__ = time() self.dfs(lowercase , lowercase ) A__ = time() return end - begin def UpperCamelCase ( self , lowercase=-2 ) -> List[Any]: '''simple docstring''' A__ = time() self.bfs(lowercase ) A__ = time() return end - begin
68
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return input_list UpperCamelCase = list(UpperCamelCase_ ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(UpperCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
343
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __snake_case = datasets.load_iris() __snake_case = np.array(data['''data''']) __snake_case = np.array(data['''target''']) __snake_case = data['''target_names'''] __snake_case , __snake_case , __snake_case , __snake_case = train_test_split(X, y) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Union[str, Any] ): """simple docstring""" return np.linalg.norm(np.array(_lowerCAmelCase ) - np.array(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : str=5 ): """simple docstring""" _a = zip(_lowerCAmelCase, _lowerCAmelCase ) # List of distances of all points from the point to be classified _a = [] for data_point in data: _a = euclidean_distance(data_point[0], _lowerCAmelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _a = [i[1] for i in sorted(_lowerCAmelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _a = Counter(_lowerCAmelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
357
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __snake_case = datasets.load_iris() __snake_case = np.array(data['''data''']) __snake_case = np.array(data['''target''']) __snake_case = data['''target_names'''] __snake_case ,__snake_case ,__snake_case ,__snake_case = train_test_split(X, y) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Union[str, Any] ): """simple docstring""" return np.linalg.norm(np.array(_lowerCAmelCase ) - np.array(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : str=5 ): """simple docstring""" _a = zip(_lowerCAmelCase, _lowerCAmelCase ) # List of distances of all points from the point to be classified _a = [] for data_point in data: _a = euclidean_distance(data_point[0], _lowerCAmelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _a = [i[1] for i in sorted(_lowerCAmelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _a = Counter(_lowerCAmelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
153
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : Optional[int] = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Dict , UpperCamelCase : PriorTransformer , UpperCamelCase : CLIPVisionModel , UpperCamelCase : CLIPImageProcessor , UpperCamelCase : HeunDiscreteScheduler , UpperCamelCase : ShapERenderer , ): '''simple docstring''' super().__init__() self.register_modules( prior=UpperCamelCase , image_encoder=UpperCamelCase , image_processor=UpperCamelCase , scheduler=UpperCamelCase , renderer=UpperCamelCase , ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] ): '''simple docstring''' if latents is None: __UpperCAmelCase : str = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __UpperCAmelCase : Any = latents.to(UpperCamelCase ) __UpperCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __UpperCAmelCase : Optional[int] = torch.device(f'''cuda:{gpu_id}''' ) __UpperCAmelCase : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase , UpperCamelCase ) @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase__ ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): __UpperCAmelCase : Dict = torch.cat(UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase , axis=0 ) if not isinstance(UpperCamelCase , torch.Tensor ): __UpperCAmelCase : Dict = self.image_processor(UpperCamelCase , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) __UpperCAmelCase : str = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase ) __UpperCAmelCase : List[Any] = self.image_encoder(UpperCamelCase )["""last_hidden_state"""] __UpperCAmelCase : int = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __UpperCAmelCase : Any = image_embeds.repeat_interleave(UpperCamelCase , dim=0 ) if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = torch.zeros_like(UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase ) def __call__( self : Union[str, Any] , UpperCamelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase : int = 1 , UpperCamelCase : int = 25 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : float = 4.0 , UpperCamelCase : int = 64 , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , ): '''simple docstring''' if isinstance(UpperCamelCase , PIL.Image.Image ): __UpperCAmelCase : Any = 1 elif isinstance(UpperCamelCase , torch.Tensor ): __UpperCAmelCase : Optional[Any] = image.shape[0] elif isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __UpperCAmelCase : List[Any] = len(UpperCamelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase )}''' ) __UpperCAmelCase : List[Any] = self._execution_device __UpperCAmelCase : List[str] = batch_size * num_images_per_prompt __UpperCAmelCase : int = guidance_scale > 1.0 __UpperCAmelCase : Optional[int] = self._encode_image(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # prior self.scheduler.set_timesteps(UpperCamelCase , device=UpperCamelCase ) __UpperCAmelCase : Any = self.scheduler.timesteps __UpperCAmelCase : List[str] = self.prior.config.num_embeddings __UpperCAmelCase : Optional[int] = self.prior.config.embedding_dim __UpperCAmelCase : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase , UpperCamelCase , UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __UpperCAmelCase : Tuple = latents.reshape(latents.shape[0] , UpperCamelCase , UpperCamelCase ) for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Dict = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Tuple = self.prior( UpperCamelCase , timestep=UpperCamelCase , proj_embedding=UpperCamelCase , ).predicted_image_embedding # remove the variance __UpperCAmelCase ,__UpperCAmelCase : List[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = noise_pred.chunk(2 ) __UpperCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __UpperCAmelCase : List[str] = self.scheduler.step( UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase ) __UpperCAmelCase : List[str] = [] for i, latent in enumerate(UpperCamelCase ): print() __UpperCAmelCase : Tuple = self.renderer.decode( latent[None, :] , UpperCamelCase , size=UpperCamelCase , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase ) __UpperCAmelCase : Optional[int] = torch.stack(UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) __UpperCAmelCase : List[Any] = images.cpu().numpy() if output_type == "pil": __UpperCAmelCase : Union[str, Any] = [self.numpy_to_pil(UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase )
115
"""simple docstring""" import math def lowerCamelCase ( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Dict = 2 __UpperCAmelCase : Union[str, Any] = int(math.sqrt(_UpperCamelCase ) ) # Size of every segment __UpperCAmelCase : Tuple = [True] * (end + 1) __UpperCAmelCase : int = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase ) for i in range(start * start , end + 1 , _UpperCamelCase ): __UpperCAmelCase : Dict = False start += 1 prime += in_prime __UpperCAmelCase : Optional[int] = end + 1 __UpperCAmelCase : Dict = min(2 * end , _UpperCamelCase ) while low <= n: __UpperCAmelCase : Union[str, Any] = [True] * (high - low + 1) for each in in_prime: __UpperCAmelCase : Dict = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase ): __UpperCAmelCase : Tuple = False for j in range(len(_UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) __UpperCAmelCase : Tuple = high + 1 __UpperCAmelCase : Optional[int] = min(high + end , _UpperCamelCase ) return prime print(sieve(10**6))
115
1
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = "align_text_model" def __init__( self , lowerCamelCase_=3_05_22 , lowerCamelCase_=7_68 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=30_72 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=0 , lowerCamelCase_="absolute" , lowerCamelCase_=True , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = pad_token_id @classmethod def __SCREAMING_SNAKE_CASE ( cls , lowerCamelCase_ , **lowerCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": lowerCAmelCase__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class a__ ( a__ ): '''simple docstring''' lowercase__ : List[Any] = "align_vision_model" def __init__( self , lowerCamelCase_ = 3 , lowerCamelCase_ = 6_00 , lowerCamelCase_ = 2.0 , lowerCamelCase_ = 3.1 , lowerCamelCase_ = 8 , lowerCamelCase_ = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ = [] , lowerCamelCase_ = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ = 0.25 , lowerCamelCase_ = "swish" , lowerCamelCase_ = 25_60 , lowerCamelCase_ = "mean" , lowerCamelCase_ = 0.02 , lowerCamelCase_ = 0.001 , lowerCamelCase_ = 0.99 , lowerCamelCase_ = 0.2 , **lowerCamelCase_ , ) -> List[Any]: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = width_coefficient lowerCAmelCase__ = depth_coefficient lowerCAmelCase__ = depth_divisor lowerCAmelCase__ = kernel_sizes lowerCAmelCase__ = in_channels lowerCAmelCase__ = out_channels lowerCAmelCase__ = depthwise_padding lowerCAmelCase__ = strides lowerCAmelCase__ = num_block_repeats lowerCAmelCase__ = expand_ratios lowerCAmelCase__ = squeeze_expansion_ratio lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dim lowerCAmelCase__ = pooling_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = batch_norm_eps lowerCAmelCase__ = batch_norm_momentum lowerCAmelCase__ = drop_connect_rate lowerCAmelCase__ = sum(lowerCamelCase_ ) * 4 @classmethod def __SCREAMING_SNAKE_CASE ( cls , lowerCamelCase_ , **lowerCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": lowerCAmelCase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = "align" lowercase__ : str = True def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=6_40 , lowerCamelCase_=1.0 , lowerCamelCase_=0.02 , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__(**lowerCamelCase_ ) if text_config is None: lowerCAmelCase__ = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: lowerCAmelCase__ = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) lowerCAmelCase__ = AlignTextConfig(**lowerCamelCase_ ) lowerCAmelCase__ = AlignVisionConfig(**lowerCamelCase_ ) lowerCAmelCase__ = projection_dim lowerCAmelCase__ = temperature_init_value lowerCAmelCase__ = initializer_range @classmethod def __SCREAMING_SNAKE_CASE ( cls , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.text_config.to_dict() lowerCAmelCase__ = self.vision_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
228
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class a__ ( a__ ): '''simple docstring''' lowercase__ : Dict = "" lowercase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ : str = None # compression type in fsspec. ex: "gzip" lowercase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , lowerCamelCase_ = "" , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ ) -> Any: super().__init__(self , **lowerCamelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase__ = fsspec.open( lowerCamelCase_ , mode='''rb''' , protocol=lowerCamelCase_ , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase__ = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCAmelCase__ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCAmelCase__ = None @classmethod def __SCREAMING_SNAKE_CASE ( cls , lowerCamelCase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase_ ).lstrip('''/''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if self.dir_cache is None: lowerCAmelCase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCAmelCase__ = {f['''name''']: f} def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: return self.file.open().read() def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = "rb" , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[str]: lowerCAmelCase__ = self._strip_protocol(lowerCamelCase_ ) if mode != "rb": raise ValueError(F"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[Any] = "bz2" lowercase__ : str = "bz2" lowercase__ : Optional[int] = ".bz2" class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = "gzip" lowercase__ : int = "gzip" lowercase__ : int = ".gz" class a__ ( a__ ): '''simple docstring''' lowercase__ : Tuple = "lz4" lowercase__ : Optional[Any] = "lz4" lowercase__ : int = ".lz4" class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[int] = "xz" lowercase__ : str = "xz" lowercase__ : List[Any] = ".xz" class a__ ( a__ ): '''simple docstring''' lowercase__ : Union[str, Any] = "zstd" lowercase__ : Union[str, Any] = "zstd" lowercase__ : Dict = ".zst" def __init__( self , lowerCamelCase_ , lowerCamelCase_ = "rb" , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = DEFAULT_BLOCK_SIZE , **lowerCamelCase_ , ) -> List[Any]: super().__init__( fo=lowerCamelCase_ , mode=lowerCamelCase_ , target_protocol=lowerCamelCase_ , target_options=lowerCamelCase_ , block_size=lowerCamelCase_ , **lowerCamelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase__ = self.file.__enter__ class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = file_ def __enter__( self ) -> Tuple: self._file.__enter__() return self def __exit__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: self._file.__exit__(*lowerCamelCase_ , **lowerCamelCase_ ) def __iter__( self ) -> Any: return iter(self._file ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return next(self._file ) def __getattr__( self , lowerCamelCase_ ) -> str: return getattr(self._file , lowerCamelCase_ ) def fixed_enter(*lowerCamelCase_ , **lowerCamelCase_ ): return WrappedFile(_enter(*lowerCamelCase_ , **lowerCamelCase_ ) ) lowerCAmelCase__ = fixed_enter
228
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _A = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A = 0 _A = 0xe_0_0_0 _A = 0xe_0_0_1 _A = 0xe_0_0_2 _A = 0xe_0_0_3 _A = 0xe_0_0_4 # Maps special codepoints to human-readable names. _A = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=False , A_=2048 , **A_ , ) -> str: __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , model_max_length=A_ , **A_ , ) # Creates a mapping for looking up the IDs of special symbols. __UpperCamelCase ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): __UpperCamelCase =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __UpperCamelCase ={ codepoint: name for name, codepoint in self._special_codepoints.items() } __UpperCamelCase =UNICODE_VOCAB_SIZE __UpperCamelCase =len(self._special_codepoints ) @property def _a ( self ) -> int: return self._unicode_vocab_size def _a ( self , A_ ) -> List[str]: return list(A_ ) def _a ( self , A_ ) -> int: try: return ord(A_ ) except TypeError: raise ValueError(f'invalid token: \'{token}\'' ) def _a ( self , A_ ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(A_ ) except TypeError: raise ValueError(f'invalid id: {index}' ) def _a ( self , A_ ) -> List[str]: return "".join(A_ ) def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] + ([0] * len(A_ )) + [1] if token_ids_a is not None: result += ([0] * len(A_ )) + [1] return result def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _a ( self , A_ , A_ = None ) -> List[Any]: return ()
62
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class a__: def __init__( self : List[Any] , __snake_case : Union[str, Any] ): if isinstance(__snake_case , __snake_case ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : str = deepcopy(__snake_case ) elif os.path.exists(__snake_case ): with io.open(__snake_case , 'r' , encoding='utf-8' ) as f: a : Optional[Any] = json.load(__snake_case ) else: try: a : Any = baseaa.urlsafe_baadecode(__snake_case ).decode('utf-8' ) a : Union[str, Any] = json.loads(__snake_case ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) a : List[str] = config self.set_stage_and_offload() def lowercase_ ( self : List[str] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. a : Dict = self.get_value('zero_optimization.stage' , -1 ) # offload a : str = False if self.is_zeroa() or self.is_zeroa(): a : Union[str, Any] = set(['cpu', 'nvme'] ) a : Optional[Any] = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: a : List[str] = True def lowercase_ ( self : Optional[Any] , __snake_case : Optional[Any] ): a : str = self.config # find the config node of interest if it exists a : List[str] = ds_key_long.split('.' ) a : Dict = nodes.pop() for node in nodes: a : List[Any] = config.get(__snake_case ) if config is None: return None, ds_key return config, ds_key def lowercase_ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Any=None ): a , a : List[Any] = self.find_config_node(__snake_case ) if config is None: return default return config.get(__snake_case , __snake_case ) def lowercase_ ( self : int , __snake_case : Optional[Any] , __snake_case : List[str]=False ): a : Optional[Any] = self.config # find the config node of interest if it exists a : List[str] = ds_key_long.split('.' ) for node in nodes: a : str = config a : Dict = config.get(__snake_case ) if config is None: if must_exist: raise ValueError(F"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : Optional[int] ): a : Union[str, Any] = self.get_value(__snake_case ) return False if value is None else bool(__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : str ): a : Optional[Any] = self.get_value(__snake_case ) return False if value is None else not bool(__snake_case ) def lowercase_ ( self : Optional[Any] ): return self._stage == 2 def lowercase_ ( self : Union[str, Any] ): return self._stage == 3 def lowercase_ ( self : str ): return self._offload class a__: def __init__( self : Tuple , __snake_case : str ): a : Optional[Any] = engine def lowercase_ ( self : Union[str, Any] , __snake_case : str , **__snake_case : Tuple ): # runs backpropagation and handles mixed precision self.engine.backward(__snake_case , **__snake_case ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class a__( lowerCamelCase__ ): def __init__( self : str , __snake_case : List[str] ): super().__init__(__snake_case , device_placement=__snake_case , scaler=__snake_case ) a : Optional[Any] = hasattr(self.optimizer , 'overflow' ) def lowercase_ ( self : Dict , __snake_case : Dict=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowercase_ ( self : Optional[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowercase_ ( self : Tuple ): if self.__has_overflow__: return self.optimizer.overflow return False class a__( lowerCamelCase__ ): def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ): super().__init__(__snake_case , __snake_case ) def lowercase_ ( self : Any ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class a__: def __init__( self : List[Any] , __snake_case : str , __snake_case : Dict=0.001 , __snake_case : Union[str, Any]=0 , **__snake_case : List[Any] ): a : Optional[Any] = params a : str = lr a : List[str] = weight_decay a : str = kwargs class a__: def __init__( self : str , __snake_case : Optional[Any] , __snake_case : List[str]=None , __snake_case : Tuple=0 , **__snake_case : Any ): a : Union[str, Any] = optimizer a : Any = total_num_steps a : List[str] = warmup_num_steps a : int = kwargs
297
0
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = 1 UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None def lowercase__ ( self : Any )->"DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCamelCase ) for k, v in self.__dict__.items()} )
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class _a : '''simple docstring''' def __init__( self, A, A, A, A, A, A=0.2, A=0.2 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = bp_numa SCREAMING_SNAKE_CASE : List[str] = bp_numa SCREAMING_SNAKE_CASE : Dict = bp_numa SCREAMING_SNAKE_CASE : List[Any] = conva_get[:2] SCREAMING_SNAKE_CASE : Any = conva_get[2] SCREAMING_SNAKE_CASE : Optional[Any] = size_pa SCREAMING_SNAKE_CASE : Tuple = rate_w SCREAMING_SNAKE_CASE : Optional[Any] = rate_t SCREAMING_SNAKE_CASE : List[str] = [ np.mat(-1 * np.random.rand(self.conva[0], self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : str = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : Optional[Any] = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(A, 'wb' ) as f: pickle.dump(A, A ) print(F"Model saved: {save_path}" ) @classmethod def UpperCamelCase_ ( cls, A ): '''simple docstring''' with open(A, 'rb' ) as f: SCREAMING_SNAKE_CASE : int = pickle.load(A ) # noqa: S301 SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('size_pooling1' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('num_bp1' ) SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('num_bp2' ) SCREAMING_SNAKE_CASE : Dict = model_dic.get('num_bp3' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('rate_weight' ) SCREAMING_SNAKE_CASE : Optional[int] = model_dic.get('rate_thre' ) # create model instance SCREAMING_SNAKE_CASE : str = CNN(A, A, A, A, A, A, A ) # modify model parameter SCREAMING_SNAKE_CASE : List[str] = model_dic.get('w_conv1' ) SCREAMING_SNAKE_CASE : Optional[int] = model_dic.get('wkj' ) SCREAMING_SNAKE_CASE : int = model_dic.get('vji' ) SCREAMING_SNAKE_CASE : Optional[int] = model_dic.get('thre_conv1' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('thre_bp2' ) SCREAMING_SNAKE_CASE : str = model_dic.get('thre_bp3' ) return conv_ins def UpperCamelCase_ ( self, A ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def UpperCamelCase_ ( self, A ): '''simple docstring''' return round(A, 3 ) def UpperCamelCase_ ( self, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = convs[0] SCREAMING_SNAKE_CASE : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE : str = np.shape(A )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE : Optional[int] = [] for i_focus in range(0, size_data - size_conv + 1, A ): for j_focus in range(0, size_data - size_conv + 1, A ): SCREAMING_SNAKE_CASE : str = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(A ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(A ): SCREAMING_SNAKE_CASE : Any = [] for i_focus in range(len(A ) ): SCREAMING_SNAKE_CASE : List[Any] = ( np.sum(np.multiply(data_focus[i_focus], w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(A ) ) SCREAMING_SNAKE_CASE : int = np.asmatrix(A ).reshape( A, A ) data_featuremap.append(A ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(A ) ) SCREAMING_SNAKE_CASE : List[str] = np.asarray(A ) return focus_list, data_featuremap def UpperCamelCase_ ( self, A, A, A="average_pool" ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = len(featuremaps[0] ) SCREAMING_SNAKE_CASE : Any = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for i_map in range(len(A ) ): SCREAMING_SNAKE_CASE : Tuple = featuremaps[i_map] SCREAMING_SNAKE_CASE : int = [] for i_focus in range(0, A, A ): for j_focus in range(0, A, A ): SCREAMING_SNAKE_CASE : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(A ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(A ) ) SCREAMING_SNAKE_CASE : Optional[int] = np.asmatrix(A ).reshape(A, A ) featuremap_pooled.append(A ) return featuremap_pooled def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Any = np.shape(data[i] ) SCREAMING_SNAKE_CASE : Optional[Any] = data[i].reshape(1, shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(A ) SCREAMING_SNAKE_CASE : List[Any] = np.asarray(A ) return data_expanded def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = np.asarray(A ) SCREAMING_SNAKE_CASE : Any = np.shape(A ) SCREAMING_SNAKE_CASE : Optional[int] = data_mat.reshape(1, shapes[0] * shapes[1] ) return data_expanded def UpperCamelCase_ ( self, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i_map in range(A ): SCREAMING_SNAKE_CASE : str = np.ones((size_map, size_map) ) for i in range(0, A, A ): for j in range(0, A, A ): SCREAMING_SNAKE_CASE : List[str] = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE : List[Any] = i_pool + 1 SCREAMING_SNAKE_CASE : Dict = np.multiply( A, np.multiply(out_map[i_map], (1 - out_map[i_map]) ) ) pd_all.append(A ) return pd_all def UpperCamelCase_ ( self, A, A, A, A, A, A=bool ): '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(A )) ) print((' - - Shape: Teach_Data ', np.shape(A )) ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[int] = 10_000 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE : Any = 0 print(F"-------------Learning Time {rp}--------------" ) for p in range(len(A ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE : Optional[Any] = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE : Dict = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.convolute( A, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : Tuple = self.pooling(A, self.size_poolinga ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.shape(A ) SCREAMING_SNAKE_CASE : str = self._expand(A ) SCREAMING_SNAKE_CASE : List[Any] = data_bp_input SCREAMING_SNAKE_CASE : List[Any] = np.dot(A, self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : Optional[int] = self.sig(A ) SCREAMING_SNAKE_CASE : int = np.dot(A, self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(A ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE : Any = np.multiply( (data_teach - bp_outa), np.multiply(A, (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : Optional[int] = np.multiply( np.dot(A, self.wkj ), np.multiply(A, (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : List[Any] = np.dot(A, self.vji ) SCREAMING_SNAKE_CASE : str = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE : str = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE : str = self._calculate_gradient_from_pool( A, A, shape_featuremapa[0], shape_featuremapa[1], self.size_poolinga, ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE : int = self.rate_weight * np.dot(A, A ) SCREAMING_SNAKE_CASE : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE : Optional[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : Union[str, Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE : Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE : List[str] = rp + 1 SCREAMING_SNAKE_CASE : str = error_count / patterns all_mse.append(A ) def draw_error(): SCREAMING_SNAKE_CASE : Optional[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(A, '+-' ) plt.plot(A, 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(A, alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, F" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(A )) ) for p in range(len(A ) ): SCREAMING_SNAKE_CASE : List[Any] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.convolute( A, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : str = self.pooling(A, self.size_poolinga ) SCREAMING_SNAKE_CASE : List[Any] = self._expand(A ) SCREAMING_SNAKE_CASE : Dict = data_bp_input SCREAMING_SNAKE_CASE : Tuple = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE : List[str] = self.sig(A ) SCREAMING_SNAKE_CASE : List[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE : List[str] = self.sig(A ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE : Dict = [list(map(self.do_round, A ) ) for each in produce_out] return np.asarray(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = np.asmatrix(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.convolute( A, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : str = self.pooling(A, self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
251
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _a ( unittest.TestCase ): '''simple docstring''' A : List[Any] = inspect.getfile(accelerate.test_utils ) A : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) A : List[str] = ['''accelerate''', '''launch'''] A : List[Any] = Path.home() / '''.cache/huggingface/accelerate''' A : Any = '''default_config.yaml''' A : Dict = config_folder / config_file A : Union[str, Any] = config_folder / '''_default_config.yaml''' A : int = Path('''tests/test_configs''' ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=A ): execute_subprocess_async( self.base_cmd + ['--config_file', str(A ), self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'], env=os.environ.copy() ) class _a ( unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = '''test-tpu''' A : List[str] = '''us-central1-a''' A : List[str] = '''ls''' A : List[str] = ['''accelerate''', '''tpu-config'''] A : List[str] = '''cd /usr/share''' A : Optional[int] = '''tests/test_samples/test_command_file.sh''' A : Optional[int] = '''Running gcloud compute tpus tpu-vm ssh''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'], return_stdout=A ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
251
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = '''lilt''' def __init__( self , _UpperCamelCase=3_0_5_2_2 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=4 , _UpperCamelCase=1_0_2_4 , **_UpperCamelCase , ) -> Optional[int]: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = position_embedding_type UpperCAmelCase_ : Optional[int] = classifier_dropout UpperCAmelCase_ : List[Any] = channel_shrink_ratio UpperCAmelCase_ : Optional[Any] = max_ad_position_embeddings
145
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[str] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : str = VideoClassificationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase , top_k=2 ) UpperCAmelCase_ : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: for example in examples: UpperCAmelCase_ : str = video_classifier(_UpperCamelCase ) self.assertEqual( _UpperCamelCase , [ {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, ] , ) @require_torch def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCAmelCase_ : Optional[Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0} ) UpperCAmelCase_ : str = pipeline( 'video-classification' , model=_UpperCamelCase , feature_extractor=_UpperCamelCase , frame_sampling_rate=4 ) UpperCAmelCase_ : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : List[str] = video_classifier(_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) UpperCAmelCase_ : Tuple = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCAmelCase ( self ) -> Dict: pass
145
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowerCAmelCase : _lowercase : Optional[int] = LEDConfig _lowercase : Optional[Any] = {} _lowercase : Optional[int] = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=4 , ) -> int: '''simple docstring''' a__ : int =parent a__ : int =batch_size a__ : Dict =seq_length a__ : str =is_training a__ : Optional[int] =use_labels a__ : Optional[Any] =vocab_size a__ : List[str] =hidden_size a__ : Dict =num_hidden_layers a__ : str =num_attention_heads a__ : str =intermediate_size a__ : Dict =hidden_dropout_prob a__ : Tuple =attention_probs_dropout_prob a__ : List[str] =max_position_embeddings a__ : Dict =eos_token_id a__ : Tuple =pad_token_id a__ : Optional[Any] =bos_token_id a__ : int =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a__ : Union[str, Any] =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a__ : List[str] =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a__ : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a__ : List[Any] =tf.concat([input_ids, eos_tensor] , axis=1 ) a__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Tuple =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a__ : int =prepare_led_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : str =tf.concat( [tf.zeros_like(lowerCAmelCase__ )[:, :-1], tf.ones_like(lowerCAmelCase__ )[:, -1:]] , axis=-1 , ) a__ : Dict =global_attention_mask return config, inputs_dict def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : Any =TFLEDModel(config=lowerCAmelCase__ ).get_decoder() a__ : Tuple =inputs_dict["input_ids"] a__ : Any =input_ids[:1, :] a__ : List[str] =inputs_dict["attention_mask"][:1, :] a__ : List[Any] =1 # first forward pass a__ : Any =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) a__ , a__ : Optional[int] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a__ : Optional[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ : str =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a__ : Optional[int] =tf.concat([input_ids, next_tokens] , axis=-1 ) a__ : List[str] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a__ : List[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] a__ : Tuple =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a__ : Any =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a__ : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx] a__ : int =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" if attention_mask is None: a__ : Optional[int] =tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a__ : Any =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a__ : int =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : int = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : Union[str, Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Optional[int] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : Union[str, Any] = True _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : Dict = False def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[str] =TFLEDModelTester(self ) a__ : Any =ConfigTester(self , config_class=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ , a__ : Any =self.model_tester.prepare_config_and_inputs_for_common() a__ : List[str] =tf.zeros_like(inputs_dict["attention_mask"] ) a__ : Tuple =2 a__ : int =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) a__ : Dict =True a__ : List[Any] =self.model_tester.seq_length a__ : Dict =self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase__ ): a__ : List[Any] =outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase__ ): a__ : Optional[int] =[t.numpy() for t in outputs.encoder_attentions] a__ : Any =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a__ : Optional[int] =True a__ : List[Any] =False a__ : Any =False a__ : List[str] =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[int] =len(lowerCAmelCase__ ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) if self.is_encoder_decoder: a__ : Union[str, Any] =model_class(lowerCAmelCase__ ) a__ : Dict =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_decoder_attentions_output(lowerCAmelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a__ : str =True a__ : Union[str, Any] =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) # Check attention is always last and order is fine a__ : int =True a__ : Tuple =True a__ : Tuple =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase__ ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' pass def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Tuple =TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here a__ : Any =_long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : int =_long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : List[str] =prepare_led_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple =model(**lowerCAmelCase__ )[0] a__ : Optional[int] =(1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here a__ : Optional[int] =tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-3 ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Tuple =TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here a__ : Union[str, Any] =_long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : Dict =_long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : int =prepare_led_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[int] =model(**lowerCAmelCase__ )[0] a__ : Any =(1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here a__ : Dict =tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-3 , rtol=1E-3 )
95
class A : '''simple docstring''' def __init__(self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : Optional[Any] ) -> str: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
305
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __magic_name__ = MgpstrTokenizer __magic_name__ = False __magic_name__ = {} __magic_name__ = False def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" super().setUp() # fmt: off A : str = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on A : List[str] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[int] = '''tester''' A : List[str] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A : Dict = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) A : int = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) A : Any = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A : List[str] = self.get_input_output_texts(UpperCamelCase__ ) A : Optional[int] = tokenizer.tokenize(UpperCamelCase__ ) A : List[str] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) A : Optional[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A : int = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) A : List[str] = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , UpperCamelCase__ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" pass
367
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str, **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__, **SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = AutoModelForSeqaSeqLM.from_config(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).save_pretrained(SCREAMING_SNAKE_CASE__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
125
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 100 ) -> int: UpperCAmelCase_ : Tuple = n * (n + 1) * (2 * n + 1) / 6 UpperCAmelCase_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
125
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Dict: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Dict: """simple docstring""" return (-y * np.log(SCREAMING_SNAKE_CASE_ ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" UpperCamelCase_ = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return np.sum(y * scores - np.log(1 + np.exp(SCREAMING_SNAKE_CASE_ ) ) ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7_0_0_0_0 )-> Dict: """simple docstring""" UpperCamelCase_ = np.zeros(x.shape[1] ) for iterations in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = sigmoid_function(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = np.dot(x.T , h - y ) / y.size UpperCamelCase_ = theta - alpha * gradient # updating the weights UpperCamelCase_ = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = sigmoid_function(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = cost_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if iterations % 1_0_0 == 0: print(f"loss: {j} \t" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[int] = datasets.load_iris() SCREAMING_SNAKE_CASE :Optional[Any] = iris.data[:, :2] SCREAMING_SNAKE_CASE :str = (iris.target != 0) * 1 SCREAMING_SNAKE_CASE :Tuple = 0.1 SCREAMING_SNAKE_CASE :Optional[int] = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" return sigmoid_function( np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) :List[str] = (x[:, 0].min(), x[:, 0].max()) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) :List[Any] = (x[:, 1].min(), x[:, 1].max()) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) :int = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) SCREAMING_SNAKE_CASE :List[Any] = np.c_[xxa.ravel(), xxa.ravel()] SCREAMING_SNAKE_CASE :List[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
60
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower_vision_model""" def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=3 , _lowercase=16 , _lowercase=288 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase=True , _lowercase=False , **_lowercase , )-> Optional[Any]: super().__init__(**_lowercase ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = image_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = stop_gradient UpperCamelCase_ = share_layernorm UpperCamelCase_ = remove_last_layer @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = """bridgetower_text_model""" def __init__( self , _lowercase=50_265 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=1 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=514 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , **_lowercase , )-> Optional[int]: super().__init__(**_lowercase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_factor UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = eos_token_id @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower""" def __init__( self , _lowercase=True , _lowercase="gelu" , _lowercase=768 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase="add" , _lowercase=12 , _lowercase=6 , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , )-> List[Any]: # TODO: remove this once the Hub files are updated. UpperCamelCase_ = kwargs.pop("text_config_dict" , _lowercase ) UpperCamelCase_ = kwargs.pop("vision_config_dict" , _lowercase ) super().__init__(**_lowercase ) UpperCamelCase_ = share_cross_modal_transformer_layers UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = share_link_tower_layers UpperCamelCase_ = link_tower_type UpperCamelCase_ = num_attention_heads UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = tie_word_embeddings UpperCamelCase_ = init_layernorm_from_vision_encoder if text_config is None: UpperCamelCase_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: UpperCamelCase_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) UpperCamelCase_ = BridgeTowerTextConfig(**_lowercase ) UpperCamelCase_ = BridgeTowerVisionConfig(**_lowercase ) @classmethod def UpperCAmelCase_ ( cls , _lowercase , _lowercase , **_lowercase )-> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
60
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : str = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : jnp.ndarray UpperCamelCase__ : jnp.ndarray class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' UpperCamelCase__ : int UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) UpperCamelCase__ : jnp.dtype = jnp.floataa def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = [] for i in range(len(self.block_out_channels ) - 1 ): __SCREAMING_SNAKE_CASE = self.block_out_channels[i] __SCREAMING_SNAKE_CASE = self.block_out_channels[i + 1] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = blocks __SCREAMING_SNAKE_CASE = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) for block in self.blocks: __SCREAMING_SNAKE_CASE = block(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) __SCREAMING_SNAKE_CASE = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCAmelCase_ ( nn.Module , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : int = 32 UpperCamelCase__ : int = 4 UpperCamelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Union[bool, Tuple[bool]] = False UpperCamelCase__ : Tuple[int] = (320, 640, 1280, 1280) UpperCamelCase__ : int = 2 UpperCamelCase__ : Union[int, Tuple[int]] = 8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] = None UpperCamelCase__ : int = 1280 UpperCamelCase__ : float = 0.0 UpperCamelCase__ : bool = False UpperCamelCase__ : jnp.dtype = jnp.floataa UpperCamelCase__ : bool = True UpperCamelCase__ : int = 0 UpperCamelCase__ : str = "rgb" UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = (1, 3, self.sample_size * 8, self.sample_size * 8) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = jax.random.split(_A ) __SCREAMING_SNAKE_CASE = {'params': params_rng, 'dropout': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.block_out_channels __SCREAMING_SNAKE_CASE = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE = FlaxTimestepEmbedding(_A , dtype=self.dtype ) __SCREAMING_SNAKE_CASE = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __SCREAMING_SNAKE_CASE = self.only_cross_attention if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = block_out_channels[0] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE = output_channel __SCREAMING_SNAKE_CASE = block_out_channels[i] __SCREAMING_SNAKE_CASE = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) __SCREAMING_SNAKE_CASE = down_blocks __SCREAMING_SNAKE_CASE = controlnet_down_blocks # mid __SCREAMING_SNAKE_CASE = block_out_channels[-1] __SCREAMING_SNAKE_CASE = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.controlnet_conditioning_channel_order if channel_order == "bgr": __SCREAMING_SNAKE_CASE = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): __SCREAMING_SNAKE_CASE = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(_A , 0 ) __SCREAMING_SNAKE_CASE = self.time_proj(_A ) __SCREAMING_SNAKE_CASE = self.time_embedding(_A ) # 2. pre-process __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down __SCREAMING_SNAKE_CASE = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , _A , deterministic=not train ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __SCREAMING_SNAKE_CASE = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks __SCREAMING_SNAKE_CASE = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): __SCREAMING_SNAKE_CASE = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE = controlnet_down_block_res_samples __SCREAMING_SNAKE_CASE = self.controlnet_mid_block(_A ) # 6. scaling __SCREAMING_SNAKE_CASE = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''swin''' lowerCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple , A : Union[str, Any]=224 , A : Optional[int]=4 , A : List[str]=3 , A : Dict=96 , A : int=[2, 2, 6, 2] , A : List[Any]=[3, 6, 12, 24] , A : Dict=7 , A : List[str]=4.0 , A : List[Any]=True , A : Any=0.0 , A : int=0.0 , A : Tuple=0.1 , A : str="gelu" , A : Tuple=False , A : Tuple=0.02 , A : Optional[int]=1E-5 , A : List[Any]=32 , A : int=None , A : Tuple=None , **A : str , ): super().__init__(**_snake_case ) __snake_case: Tuple = image_size __snake_case: Any = patch_size __snake_case: Optional[Any] = num_channels __snake_case: List[str] = embed_dim __snake_case: int = depths __snake_case: Tuple = len(_snake_case ) __snake_case: List[str] = num_heads __snake_case: List[str] = window_size __snake_case: Any = mlp_ratio __snake_case: Optional[Any] = qkv_bias __snake_case: Any = hidden_dropout_prob __snake_case: List[Any] = attention_probs_dropout_prob __snake_case: Tuple = drop_path_rate __snake_case: Optional[int] = hidden_act __snake_case: int = use_absolute_embeddings __snake_case: Any = layer_norm_eps __snake_case: str = initializer_range __snake_case: Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case: Optional[Any] = int(embed_dim * 2 ** (len(_snake_case ) - 1) ) __snake_case: Optional[Any] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_snake_case ) + 1 )] __snake_case , __snake_case: Any = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self : Optional[Any] ): return 1E-4
357
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
293
0
from datetime import datetime import matplotlib.pyplot as plt import torch def A_ ( A__ ) -> Dict: for param in module.parameters(): a__ : Union[str, Any] = False def A_ ( ) -> Any: a__ : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): a__ : Union[str, Any] = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A_ ( A__ ) -> Any: a__ : int = plt.imshow(A__ ) fig.axes.get_xaxis().set_visible(A__ ) fig.axes.get_yaxis().set_visible(A__ ) plt.show() def A_ ( ) -> Any: a__ : Dict = datetime.now() a__ : Union[str, Any] = current_time.strftime('%H:%M:%S' ) return timestamp
99
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase__ : Dict = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Any ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : int=None ): SCREAMING_SNAKE_CASE_ = {} if top_k is not None: SCREAMING_SNAKE_CASE_ = top_k return {}, {}, postprocess_params def __call__( self : Dict , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Optional[Any] ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = load_image(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = self.model(**_lowerCAmelCase ) return model_outputs def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=5 ): if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE_ = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE_ = model_outputs.logits.softmax(-1 )[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = probs.topk(_lowerCAmelCase ) elif self.framework == "tf": SCREAMING_SNAKE_CASE_ = stable_softmax(model_outputs.logits , axis=-1 )[0] SCREAMING_SNAKE_CASE_ = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) SCREAMING_SNAKE_CASE_ = scores.tolist() SCREAMING_SNAKE_CASE_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCAmelCase , _lowerCAmelCase )]
210
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ : str = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : Optional[int] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = AutoConfig.for_model('roberta' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , 'fake-roberta' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertEqual(type(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('model' , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('bert' , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self : Optional[int] ): with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self : int ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowerCAmelCase_ ( self : Union[str, Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowerCAmelCase_ ( self : Any ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "new-model" try: AutoConfig.register('new-model' , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
210
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : list ) -> bool: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(snake_case_ ) == 0: raise ValueError("Input list must be a non empty list" ) if len(snake_case_ ) == 1: return True UpperCAmelCase_ = series[1] - series[0] for index in range(len(snake_case_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCAmelCase_ ( snake_case_ : list ) -> float: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(snake_case_ ) == 0: raise ValueError("Input list must be a non empty list" ) UpperCAmelCase_ = 0 for val in series: answer += val return answer / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ReformerTokenizer lowerCamelCase = ReformerTokenizerFast lowerCamelCase = True lowerCamelCase = False lowerCamelCase = True def snake_case__ ( self : Any )-> str: '''simple docstring''' super().setUp() A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<unk>' ) self.assertEqual(vocab_keys[1],'<s>' ) self.assertEqual(vocab_keys[-1],'j' ) self.assertEqual(len(lowercase_ ),1_0_0_0 ) def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : Dict )-> str: '''simple docstring''' A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ],) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ],) @cached_property def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = 'Hello World!' A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @slow def snake_case__ ( self : Optional[int] )-> str: '''simple docstring''' A__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A__ = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def snake_case__ ( self : int )-> Any: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] A__ = ' '.join(lowercase_ ) A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence['input_ids'].shape A__ = ReformerModel(lowercase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
7
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _lowerCamelCase( _a ): lowercase_ : str = CustomTokenizer pass
350
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["DeiTFeatureExtractor"] SCREAMING_SNAKE_CASE : Dict = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
84
0
def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCAmelCase ) if number < 0: return False UpperCAmelCase__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
169
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : List[str] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCAmelCase__ ( self : Tuple , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : List[str] ): UpperCamelCase_: Any = TextaTextGenerationPipeline(model=snake_case_ , tokenizer=snake_case_ ) return generator, ["Something to write", "Something else"] def lowerCAmelCase__ ( self : str , snake_case_ : Dict , snake_case_ : Tuple ): UpperCamelCase_: int = generator("""Something there""" ) self.assertEqual(snake_case_ , [{"""generated_text""": ANY(snake_case_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) UpperCamelCase_: Dict = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [{"""generated_text""": ANY(snake_case_ )}, {"""generated_text""": ANY(snake_case_ )}], [{"""generated_text""": ANY(snake_case_ )}, {"""generated_text""": ANY(snake_case_ )}], ] , ) UpperCamelCase_: Optional[Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [{"""generated_text""": ANY(snake_case_ )}, {"""generated_text""": ANY(snake_case_ )}], [{"""generated_text""": ANY(snake_case_ )}, {"""generated_text""": ANY(snake_case_ )}], ] , ) with self.assertRaises(snake_case_ ): generator(4 ) @require_torch def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Union[str, Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility UpperCamelCase_: Union[str, Any] = generator("""Something there""" , do_sample=snake_case_ ) self.assertEqual(snake_case_ , [{"""generated_text""": """"""}] ) UpperCamelCase_: Dict = 3 UpperCamelCase_: Union[str, Any] = generator( """Something there""" , num_return_sequences=snake_case_ , num_beams=snake_case_ , ) UpperCamelCase_: Optional[Any] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(snake_case_ , snake_case_ ) UpperCamelCase_: Any = generator("""This is a test""" , do_sample=snake_case_ , num_return_sequences=2 , return_tensors=snake_case_ ) self.assertEqual( snake_case_ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) UpperCamelCase_: int = generator.model.config.eos_token_id UpperCamelCase_: Any = """<pad>""" UpperCamelCase_: Any = generator( ["""This is a test""", """This is a second test"""] , do_sample=snake_case_ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case_ , ) self.assertEqual( snake_case_ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: int = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility UpperCamelCase_: Tuple = generator("""Something there""" , do_sample=snake_case_ ) self.assertEqual(snake_case_ , [{"""generated_text""": """"""}] )
223
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Construct model if gpta_config_file == "": UpperCamelCase_: Union[str, Any] = GPTaConfig() else: UpperCamelCase_: Optional[Any] = GPTaConfig.from_json_file(lowerCamelCase ) UpperCamelCase_: List[Any] = GPTaModel(lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model UpperCamelCase_: int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase_: Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) lowerCamelCase_ : List[str] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
223
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A : Optional[Any] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A : Union[str, Any] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __lowerCamelCase ( __a :Optional[int] ) -> str: """simple docstring""" if "://" in dataset_path: A__ = dataset_path.split("""://""" )[1] return dataset_path def __lowerCamelCase ( __a :Union[str, Any] ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def __lowerCamelCase ( __a :Tuple , __a :str , __a :Any ) -> Optional[int]: """simple docstring""" A__ = not is_remote_filesystem(_lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowercase ) , fs._strip_protocol(_lowercase ) ) else: fs.mv(_lowercase , _lowercase , recursive=_lowercase ) def __lowerCamelCase ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: A__ = None A__ = None A__ = threading.Lock()
274
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case = parent def A ( self : Optional[int] ): '''simple docstring''' return {} def a_ ( ) -> Dict: _snake_case = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _snake_case = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def A ( self : str ): '''simple docstring''' _snake_case = MarkupLMFeatureExtractionTester(self ) @property def A ( self : Tuple ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def A ( self : int ): '''simple docstring''' _snake_case = self.feature_extraction_class() # Test not batched input _snake_case = get_html_strings()[0] _snake_case = feature_extractor(lowercase ) # fmt: off _snake_case = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _snake_case = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , lowercase ) self.assertEqual(encoding.xpaths , lowercase ) # Test batched _snake_case = get_html_strings() _snake_case = feature_extractor(lowercase ) # fmt: off _snake_case = expected_nodes + [['My First Heading', 'My first paragraph.']] _snake_case = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowercase ) self.assertEqual(encoding.xpaths , lowercase )
130
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a_ ( __lowercase : Dict ) -> int: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : List[str] ) -> str: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Optional[Any]="facebook/mbart-large-en-ro" , __lowercase : Union[str, Any]=False , __lowercase : Optional[Any]=False ) -> int: _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = state_dict['encoder.embed_tokens.weight'].shape[0] _snake_case = MBartConfig.from_pretrained(__lowercase , vocab_size=__lowercase ) if mbart_aa and finetuned: _snake_case = 'relu' _snake_case = state_dict['decoder.embed_tokens.weight'] _snake_case = MBartForConditionalGeneration(__lowercase ) model.model.load_state_dict(__lowercase ) if finetuned: _snake_case = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase : Tuple = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
130
1