code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger("transformers.models.speecht5") _SCREAMING_SNAKE_CASE : int = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } _SCREAMING_SNAKE_CASE : Tuple = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } _SCREAMING_SNAKE_CASE : Optional[Any] = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } _SCREAMING_SNAKE_CASE : List[Any] = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } _SCREAMING_SNAKE_CASE : Optional[int] = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } _SCREAMING_SNAKE_CASE : Union[str, Any] = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } _SCREAMING_SNAKE_CASE : int = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } _SCREAMING_SNAKE_CASE : Union[str, Any] = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } _SCREAMING_SNAKE_CASE : List[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _SCREAMING_SNAKE_CASE : List[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _SCREAMING_SNAKE_CASE : int = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : str = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] _SCREAMING_SNAKE_CASE : str = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] _SCREAMING_SNAKE_CASE : Tuple = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] _SCREAMING_SNAKE_CASE : List[Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def UpperCamelCase_( snake_case : Any , snake_case : Any , snake_case : Union[str, Any] , snake_case : Any , snake_case : str ): '''simple docstring''' for attribute in key.split("." ): snake_case_ = getattr(snake_case , snake_case ) if weight_type is not None: snake_case_ = getattr(snake_case , snake_case ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "running_mean": snake_case_ = value elif weight_type == "running_var": snake_case_ = value elif weight_type == "num_batches_tracked": snake_case_ = value else: snake_case_ = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def UpperCamelCase_( snake_case : Tuple , snake_case : Optional[int] ): '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_ , snake_case_ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase_( snake_case : int , snake_case : List[Any] , snake_case : str ): '''simple docstring''' snake_case_ = [] if task == "s2t": snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ = MAPPING_S2T snake_case_ = IGNORE_KEYS_S2T elif task == "t2s": snake_case_ = None snake_case_ = MAPPING_T2S snake_case_ = IGNORE_KEYS_T2S elif task == "s2s": snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ = MAPPING_S2S snake_case_ = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(snake_case , snake_case ): logger.info(f'{name} was ignored' ) continue snake_case_ = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == "group" , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: snake_case_ , snake_case_ = key.split(".*." ) if prefix in name and suffix in name: snake_case_ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(snake_case )[0].split("." )[-2] snake_case_ = mapped_key.replace("*" , snake_case ) if "weight_g" in name: snake_case_ = "weight_g" elif "weight_v" in name: snake_case_ = "weight_v" elif "bias" in name: snake_case_ = "bias" elif "weight" in name: snake_case_ = "weight" elif "running_mean" in name: snake_case_ = "running_mean" elif "running_var" in name: snake_case_ = "running_var" elif "num_batches_tracked" in name: snake_case_ = "num_batches_tracked" else: snake_case_ = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Dict ): '''simple docstring''' snake_case_ = full_name.split("conv_layers." )[-1] snake_case_ = name.split("." ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case ) @torch.no_grad() def UpperCamelCase_( snake_case : Dict , snake_case : int , snake_case : Dict , snake_case : Union[str, Any]=None , snake_case : Dict=None , snake_case : List[Any]=None , ): '''simple docstring''' if config_path is not None: snake_case_ = SpeechTaConfig.from_pretrained(snake_case ) else: snake_case_ = SpeechTaConfig() if task == "s2t": snake_case_ = config.max_text_positions snake_case_ = SpeechTaForSpeechToText(snake_case ) elif task == "t2s": snake_case_ = 1_8_7_6 snake_case_ = 6_0_0 snake_case_ = config.max_speech_positions snake_case_ = SpeechTaForTextToSpeech(snake_case ) elif task == "s2s": snake_case_ = 1_8_7_6 snake_case_ = config.max_speech_positions snake_case_ = SpeechTaForSpeechToSpeech(snake_case ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: snake_case_ = SpeechTaTokenizer(snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it snake_case_ = AddedToken("<mask>" , lstrip=snake_case , rstrip=snake_case ) snake_case_ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) snake_case_ = SpeechTaFeatureExtractor() snake_case_ = SpeechTaProcessor(tokenizer=snake_case , feature_extractor=snake_case ) processor.save_pretrained(snake_case ) snake_case_ = torch.load(snake_case ) recursively_load_weights(fairseq_checkpoint["model"] , snake_case , snake_case ) model.save_pretrained(snake_case ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(snake_case ) model.push_to_hub(snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
85
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
365
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = 0 def A ( self : Dict ): """simple docstring""" UpperCamelCase = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ).to_dict() config_dict.pop('image_processor_type' ) UpperCamelCase = CLIPImageProcessor(**UpperCamelCase__ ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) config.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'clip-base is not a local folder and is not a valid model identifier' ): UpperCamelCase = AutoImageProcessor.from_pretrained('clip-base' ) def A ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , revision='aaaaaa' ) def A ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def A ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = CustomImageProcessor.from_pretrained(UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : Optional[int] ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = True try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(UpperCamelCase__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
249
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[str] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : Dict = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } SCREAMING_SNAKE_CASE : Tuple = f"""{src_lang}-{tgt_lang}""" SCREAMING_SNAKE_CASE : Any = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(_lowercase , exist_ok=_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(_lowercase , '''README.md''' ) print(f"""Generating {path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(_lowercase ) # make sure we are under the root of the project __UpperCamelCase : List[str] = Path(__file__).resolve().parent.parent.parent __UpperCamelCase : int = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple = model_name.split('-') __UpperCamelCase : Dict = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
182
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : @staticmethod def __A ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class lowercase__ ( unittest.TestCase): UpperCamelCase_ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) SCREAMING_SNAKE_CASE : List[str] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def __A ( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = object_detector(examples[0] , threshold=0.0 ) SCREAMING_SNAKE_CASE : Tuple = len(UpperCamelCase__ ) self.assertGreater(UpperCamelCase__ , 0 ) self.assertEqual( UpperCamelCase__ , [ { '''score''': ANY(UpperCamelCase__ ), '''label''': ANY(UpperCamelCase__ ), '''box''': {'''xmin''': ANY(UpperCamelCase__ ), '''ymin''': ANY(UpperCamelCase__ ), '''xmax''': ANY(UpperCamelCase__ ), '''ymax''': ANY(UpperCamelCase__ )}, } for i in range(UpperCamelCase__ ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @require_torch def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) SCREAMING_SNAKE_CASE : str = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = pipeline('''zero-shot-object-detection''' ) SCREAMING_SNAKE_CASE : Optional[int] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __A ( self : str ): '''simple docstring''' pass @require_torch @slow def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 0.2 SCREAMING_SNAKE_CASE : Optional[int] = pipeline('''zero-shot-object-detection''' ) SCREAMING_SNAKE_CASE : Dict = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Optional[Any] = pipeline('''zero-shot-object-detection''' ) SCREAMING_SNAKE_CASE : List[str] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
182
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase: Any = None lowerCAmelCase: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase: List[str] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase: Any = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } lowerCAmelCase: List[Any] = { 'camembert-base': 5_1_2, } lowerCAmelCase: Union[str, Any] = '▁' class a__( lowercase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['input_ids', 'attention_mask'] lowercase__ = CamembertTokenizer def __init__( self : Optional[Any] , __snake_case : Dict=None , __snake_case : Any=None , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : List[str]="</s>" , __snake_case : Dict="<s>" , __snake_case : str="<unk>" , __snake_case : List[str]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **__snake_case : str , ): # Mask token behave like a normal word, i.e. include the space before it a : List[str] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) a : Dict = vocab_file a : Tuple = False if not self.vocab_file else True def lowercase_ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a : Optional[int] = [self.cls_token_id] a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : Optional[Any] = [self.sep_token_id] a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : Any , __snake_case : str , __snake_case : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a : Any = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ): copyfile(self.vocab_file , _UpperCamelCase ) return (out_vocab_file,)
358
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCamelCase__ ( _A=None , _A=None ): return field(default_factory=lambda: default , metadata=_A ) @dataclass class a__: lowercase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowercase__ = list_field( default=lowerCamelCase__ , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def lowerCamelCase__ ( _A ): try: int(_A ) return True except ValueError: return False def lowerCamelCase__ ( _A ): try: float(_A ) return True except ValueError: return False class a__: def __init__( self : Union[str, Any] , __snake_case : Optional[int] ): a : int = args a : Dict = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: a : List[Any] = csv.DictReader(__snake_case ) for row in reader: a : Dict = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None a : Dict = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None a : int = float(row['result'] ) def lowercase_ ( self : int ): a , a : Dict = plt.subplots() a : int = 'Time usage' if self.args.is_time else 'Memory usage' a : int = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): a : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) a : Any = sorted(set(self.result_dict[model_name]['seq_len'] ) ) a : Any = self.result_dict[model_name]['result'] ((a) , (a)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) a : int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: a : Dict = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__snake_case , ) else: a : int = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((a) , (a)) : Optional[int] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) a : List[str] = np.asarray(__snake_case , __snake_case )[: len(__snake_case )] plt.scatter( __snake_case , __snake_case , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__snake_case , __snake_case , '--' ) title_str += F""" {label_model_name} vs.""" a : List[Any] = title_str[:-4] a : Optional[Any] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__snake_case ) plt.xlabel(__snake_case ) plt.ylabel(__snake_case ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCamelCase__ ( ): a : Dict = HfArgumentParser(_A ) a : List[str] = parser.parse_args_into_dataclasses()[0] a : Dict = Plot(args=_A ) plot.plot() if __name__ == "__main__": main()
96
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :Optional[int] = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' if "cls_token" in name: lowercase_ = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase_ = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase_ = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase_ = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase_ = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase_ = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase_ = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase_ = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase_ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase_ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase_ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase_ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase_ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase_ = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase_ = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase_ = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase_ = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase_ = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase_ = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowercase_ = key.split(""".""" ) lowercase_ = int(key_split[1] ) if "decoder_blocks" in key: lowercase_ = config.decoder_hidden_size lowercase_ = "decoder.decoder_layers." if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] elif "bias" in key: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = config.hidden_size lowercase_ = "vit.encoder.layer." if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] elif "bias" in key: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = val return orig_state_dict def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMAEConfig() if "large" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 elif "huge" in checkpoint_url: lowercase_ = 14 lowercase_ = 12_80 lowercase_ = 51_20 lowercase_ = 32 lowercase_ = 16 lowercase_ = ViTMAEForPreTraining(_UpperCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="""cpu""" )["model"] lowercase_ = ViTMAEImageProcessor(size=config.image_size ) lowercase_ = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowercase_ = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" lowercase_ = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) lowercase_ = ViTMAEImageProcessor(size=config.image_size ) lowercase_ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**_UpperCAmelCase ) lowercase_ = outputs.logits if "large" in checkpoint_url: lowercase_ = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: lowercase_ = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: lowercase_ = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
365
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _a ( ctypes.Structure ): # _fields is a specific attr expected by ctypes A = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCAmelCase_ (): """simple docstring""" if os.name == "nt": UpperCAmelCase_: Optional[int] = CursorInfo() UpperCAmelCase_: Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) UpperCAmelCase_: Optional[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCAmelCase_ (): """simple docstring""" if os.name == "nt": UpperCAmelCase_: List[str] = CursorInfo() UpperCAmelCase_: int = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) UpperCAmelCase_: Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase__ , ctypes.byref(lowerCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCAmelCase_ (): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
147
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : Optional[Any] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase__ = logging.get_logger(__name__) # General docstring lowercase__ = """RegNetConfig""" # Base docstring lowercase__ = """facebook/regnet-y-040""" lowercase__ = [1, 1088, 7, 7] # Image classification docstring lowercase__ = """facebook/regnet-y-040""" lowercase__ = """tabby, tabby cat""" lowercase__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowerCamelCase : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowerCamelCase : List[str] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) _lowerCamelCase : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) _lowerCamelCase : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity def A_ ( self , lowercase ): _lowerCamelCase : Any = self.convolution(self.padding(lowercase ) ) _lowerCamelCase : List[str] = self.normalization(lowercase ) _lowerCamelCase : Tuple = self.activation(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : int = config.num_channels _lowerCamelCase : int = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def A_ ( self , lowercase ): _lowerCamelCase : Optional[Any] = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowerCamelCase : Optional[int] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) _lowerCamelCase : Dict = self.embedder(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : List[str] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) _lowerCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def A_ ( self , lowercase , lowercase = False ): return self.normalization(self.convolution(lowercase ) , training=lowercase ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) _lowerCamelCase : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def A_ ( self , lowercase ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _lowerCamelCase : Tuple = self.pooler(lowercase ) for layer_module in self.attention: _lowerCamelCase : List[str] = layer_module(lowercase ) _lowerCamelCase : Tuple = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Dict = in_channels != out_channels or stride != 1 _lowerCamelCase : Dict = max(1 , out_channels // config.groups_width ) _lowerCamelCase : Any = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowerCamelCase : str = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] _lowerCamelCase : Union[str, Any] = ACTaFN[config.hidden_act] def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = hidden_state for layer_module in self.layers: _lowerCamelCase : Optional[int] = layer_module(lowercase ) _lowerCamelCase : str = self.shortcut(lowercase ) hidden_state += residual _lowerCamelCase : Tuple = self.activation(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Tuple = in_channels != out_channels or stride != 1 _lowerCamelCase : List[Any] = max(1 , out_channels // config.groups_width ) _lowerCamelCase : List[Any] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) _lowerCamelCase : List[str] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] _lowerCamelCase : List[str] = ACTaFN[config.hidden_act] def A_ ( self , lowercase ): _lowerCamelCase : Optional[Any] = hidden_state for layer_module in self.layers: _lowerCamelCase : Optional[Any] = layer_module(lowercase ) _lowerCamelCase : Any = self.shortcut(lowercase ) hidden_state += residual _lowerCamelCase : Tuple = self.activation(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Dict = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _lowerCamelCase : List[Any] = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def A_ ( self , lowercase ): for layer_module in self.layers: _lowerCamelCase : Dict = layer_module(lowercase ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) _lowerCamelCase : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) ) def A_ ( self , lowercase , lowercase = False , lowercase = True ): _lowerCamelCase : int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCamelCase : List[Any] = hidden_states + (hidden_state,) _lowerCamelCase : Any = stage_module(lowercase ) if output_hidden_states: _lowerCamelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase__ = RegNetConfig def __init__( self , lowercase , **lowercase ): super().__init__(**lowercase ) _lowerCamelCase : Dict = config _lowerCamelCase : Optional[Any] = TFRegNetEmbeddings(lowercase , name='embedder' ) _lowerCamelCase : int = TFRegNetEncoder(lowercase , name='encoder' ) _lowerCamelCase : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): _lowerCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Dict = self.embedder(lowercase , training=lowercase ) _lowerCamelCase : List[Any] = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) _lowerCamelCase : Optional[Any] = encoder_outputs[0] _lowerCamelCase : str = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules _lowerCamelCase : Any = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) _lowerCamelCase : List[str] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowerCamelCase : int = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = RegNetConfig lowerCamelCase__ = """regnet""" lowerCamelCase__ = """pixel_values""" @property def A_ ( self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowercase__ = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase__ = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""", lowercase, ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): super().__init__(lowercase , *lowercase , **lowercase ) _lowerCamelCase : Any = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): _lowerCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : List[Any] = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, lowercase, ) class lowerCAmelCase__ ( lowercase, lowercase ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): super().__init__(lowercase , *lowercase , **lowercase ) _lowerCamelCase : List[Any] = config.num_labels _lowerCamelCase : int = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head _lowerCamelCase : List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): _lowerCamelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Tuple = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) _lowerCamelCase : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] _lowerCamelCase : Any = self.classifier[0](lowercase ) _lowerCamelCase : Dict = self.classifier[1](lowercase ) _lowerCamelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: _lowerCamelCase : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase_ : int = start lowercase_ : List[Any] = end lowercase_ : Tuple = val lowercase_ : List[str] = (start + end) // 2 lowercase_ : Dict = left lowercase_ : Dict = right def __repr__( self ): """simple docstring""" return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = collection lowercase_ : int = function if self.collection: lowercase_ : List[Any] = self._build_tree(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" self._update_tree(self.root , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self._query_range(self.root , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if start == end: return SegmentTreeNode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.collection[start] ) lowercase_ : Union[str, Any] = (start + end) // 2 lowercase_ : int = self._build_tree(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = self._build_tree(mid + 1 , __SCREAMING_SNAKE_CASE ) return SegmentTreeNode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.fn(left.val , right.val ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if node.start == i and node.end == i: lowercase_ : List[Any] = val return if i <= node.mid: self._update_tree(node.left , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: self._update_tree(node.right , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.fn(node.left.val , node.right.val ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __SCREAMING_SNAKE_CASE , node.mid ) , self._query_range(node.right , node.mid + 1 , __SCREAMING_SNAKE_CASE ) , ) else: # range in right child tree return self._query_range(node.right , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" if self.root is not None: lowercase_ : Dict = Queue() queue.put(self.root ) while not queue.empty(): lowercase_ : Optional[Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 5_0) _lowercase : List[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
93
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : Tuple = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : List[str] = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } _lowercase : List[str] = { "facebook/m2m100_418M": 1_0_2_4, } # fmt: off _lowercase : Tuple = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="m2m100" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=8 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : List[Any] = language_codes lowercase_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase_ : List[Any] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} lowercase_ : Union[str, Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__SCREAMING_SNAKE_CASE ) for lang_code in fairseq_language_code if self.get_lang_token(__SCREAMING_SNAKE_CASE ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , language_codes=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = vocab_file lowercase_ : Any = load_json(__SCREAMING_SNAKE_CASE ) lowercase_ : str = {v: k for k, v in self.encoder.items()} lowercase_ : Optional[int] = spm_file lowercase_ : Any = load_spm(__SCREAMING_SNAKE_CASE , self.sp_model_kwargs ) lowercase_ : List[Any] = len(self.encoder ) lowercase_ : Dict = { self.get_lang_token(__SCREAMING_SNAKE_CASE ): self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : Optional[int] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE )} lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_token_to_id.items()} lowercase_ : Tuple = src_lang if src_lang is not None else '''en''' lowercase_ : Optional[int] = tgt_lang lowercase_ : Any = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase_ : Dict = num_madeup_words @property def _snake_case ( self ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder[self.unk_token] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = [] lowercase_ : List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token lowercase_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [1] * len(self.prefix_tokens ) lowercase_ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : List[Any] = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : List[Any] = {} lowercase_ : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Tuple = Path(__SCREAMING_SNAKE_CASE ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) lowercase_ : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowercase_ : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.spm_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.spm_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : int = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (str(__SCREAMING_SNAKE_CASE ), str(__SCREAMING_SNAKE_CASE )) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = src_lang lowercase_ : List[str] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Tuple = src_lang lowercase_ : Any = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = self.get_lang_id(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = self.get_lang_token(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = self.lang_token_to_id[lang_token] lowercase_ : Optional[Any] = [self.cur_lang_id] lowercase_ : Union[str, Any] = [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = self.get_lang_token(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = self.lang_token_to_id[lang_token] lowercase_ : str = [self.cur_lang_id] lowercase_ : List[str] = [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.lang_code_to_token[lang] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.get_lang_token(__SCREAMING_SNAKE_CASE ) return self.lang_token_to_id[lang_token] def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict[str, Any] ): """simple docstring""" lowercase_ : Optional[int] = sentencepiece.SentencePieceProcessor(**__SCREAMING_SNAKE_CASE ) spm.Load(str(__SCREAMING_SNAKE_CASE ) ) return spm def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: return json.load(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , indent=2 )
93
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCamelCase ( ): __UpperCAmelCase : List[str] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __UpperCAmelCase : int = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ).convert("RGB" ) return image def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Tuple = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : str = dct.pop(_UpperCAmelCase ) __UpperCAmelCase : Optional[int] = val def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCAmelCase : Any = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) __UpperCAmelCase : Any = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict __UpperCAmelCase : Tuple = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase, requires_grad=_UpperCAmelCase ), v_bias) ) __UpperCAmelCase : Optional[Any] = qkv_bias def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = 364 if "coco" in model_name else 224 __UpperCAmelCase : Optional[int] = InstructBlipVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __UpperCAmelCase : int = TaConfig.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCAmelCase : Dict = TaConfig.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __UpperCAmelCase : Tuple = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf", vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: __UpperCAmelCase : Optional[int] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf", vocab_size=32001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __UpperCAmelCase : Optional[int] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() __UpperCAmelCase : int = InstructBlipConfig(vision_config=_UpperCAmelCase, text_config=_UpperCAmelCase, qformer_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=False ): __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("bert-base-uncased", truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __UpperCAmelCase : int = TaTokenizerFast.from_pretrained("google/flan-t5-xl", truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __UpperCAmelCase : Union[str, Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b", truncation_side="left", bos_token="</s>", unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __UpperCAmelCase , __UpperCAmelCase : str = get_blipa_config(_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = InstructBlipForConditionalGeneration(_UpperCAmelCase ).eval() __UpperCAmelCase : str = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __UpperCAmelCase , __UpperCAmelCase : Any = model_name_to_original[model_name] # load original model print("Loading original model..." ) __UpperCAmelCase : Tuple = "cuda:1" if torch.cuda.is_available() else "cpu" __UpperCAmelCase : str = "cuda:2" if torch.cuda.is_available() else "cpu" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = load_model_and_preprocess( name=_UpperCAmelCase, model_type=_UpperCAmelCase, is_eval=_UpperCAmelCase, device=_UpperCAmelCase ) original_model.eval() print("Done!" ) # update state dict keys __UpperCAmelCase : Any = original_model.state_dict() __UpperCAmelCase : Any = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCAmelCase : str = state_dict.pop(_UpperCAmelCase ) if key.startswith("Qformer.bert" ): __UpperCAmelCase : Any = key.replace("Qformer.bert", "qformer" ) if "attention.self" in key: __UpperCAmelCase : Any = key.replace("self", "attention" ) if "llm_proj" in key: __UpperCAmelCase : Optional[int] = key.replace("llm_proj", "language_projection" ) if "t5_proj" in key: __UpperCAmelCase : Tuple = key.replace("t5_proj", "language_projection" ) if key.startswith("llm_model" ): __UpperCAmelCase : Any = key.replace("llm_model", "language_model" ) if key.startswith("t5" ): __UpperCAmelCase : str = key.replace("t5", "language" ) __UpperCAmelCase : Dict = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase, _UpperCAmelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) __UpperCAmelCase : Dict = load_demo_image() __UpperCAmelCase : Dict = "What is unusual about this image?" # create processor __UpperCAmelCase : Dict = BlipImageProcessor( size={"height": image_size, "width": image_size}, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) __UpperCAmelCase : List[str] = InstructBlipProcessor( image_processor=_UpperCAmelCase, tokenizer=_UpperCAmelCase, qformer_tokenizer=_UpperCAmelCase, ) __UpperCAmelCase : Any = processor(images=_UpperCAmelCase, text=_UpperCAmelCase, return_tensors="pt" ).to(_UpperCAmelCase ) # make sure processor creates exact same pixel values __UpperCAmelCase : List[Any] = vis_processors["eval"](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) __UpperCAmelCase : Dict = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ), _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "vicuna" in model_name: __UpperCAmelCase : Optional[Any] = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __UpperCAmelCase : Optional[Any] = hf_model(**_UpperCAmelCase ).logits else: __UpperCAmelCase : str = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __UpperCAmelCase : Optional[Any] = tokenizer("\n", return_tensors="pt" ).input_ids.to(_UpperCAmelCase ) __UpperCAmelCase : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -100 ) __UpperCAmelCase : List[str] = hf_model(**_UpperCAmelCase, labels=_UpperCAmelCase ).logits print("First values of original logits:", original_logits[0, :3, :3] ) print("First values of HF logits:", logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __UpperCAmelCase : Any = 1E-4 if "vicuna" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ), _UpperCAmelCase, atol=_UpperCAmelCase ) print("Looks ok!" ) print("Generating with original model..." ) __UpperCAmelCase : List[Any] = original_model.generate({"image": original_pixel_values, "prompt": prompt}, num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __UpperCAmelCase : Tuple = hf_model.generate( **_UpperCAmelCase, do_sample=_UpperCAmelCase, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __UpperCAmelCase : int = 2 print("Original generation:", _UpperCAmelCase ) __UpperCAmelCase : str = processor.batch_decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) __UpperCAmelCase : Dict = [text.strip() for text in output_text] print("HF generation:", _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F"Salesforce/{model_name}" ) hf_model.push_to_hub(F"Salesforce/{model_name}" ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() lowerCAmelCase__ : Any = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __UpperCamelCase ( _UpperCAmelCase=None ): if subparsers is not None: __UpperCAmelCase : Optional[int] = subparsers.add_parser("env" ) else: __UpperCAmelCase : List[Any] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file", default=_UpperCAmelCase, help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Dict = torch.__version__ __UpperCAmelCase : str = torch.cuda.is_available() __UpperCAmelCase : str = is_xpu_available() __UpperCAmelCase : List[Any] = is_npu_available() __UpperCAmelCase : Union[str, Any] = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase : List[str] = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_UpperCAmelCase ), "PyTorch NPU available": str(_UpperCAmelCase ), "System RAM": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: __UpperCAmelCase : int = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) __UpperCAmelCase : Tuple = ( "\n".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else F"\t{accelerate_config}" ) print(_UpperCAmelCase ) __UpperCAmelCase : Any = accelerate_config return info def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = env_command_parser() __UpperCAmelCase : Dict = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
37
1
"""simple docstring""" from __future__ import annotations A_ = '''Muhammad Umer Farooq''' A_ = '''MIT''' A_ = '''1.0.0''' A_ = '''Muhammad Umer Farooq''' A_ = '''[email protected]''' A_ = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class lowercase( UpperCAmelCase_ ): '''simple docstring''' def __init__( self: Optional[int], a_: str ): '''simple docstring''' super().__init__() _snake_case : List[Any] = [] _snake_case : List[str] = domain def UpperCamelCase_ ( self: List[Any], a_: str, a_: list[tuple[str, str | None]] ): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _snake_case : List[Any] = parse.urljoin(self.domain, __UpperCAmelCase ) self.urls.append(__UpperCAmelCase ) def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" return ".".join(get_sub_domain_name(__A ).split(""".""" )[-2:] ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] ): """simple docstring""" return parse.urlparse(__A ).netloc def UpperCAmelCase__ (snake_case__ : List[str] = "https://github.com" ): """simple docstring""" _snake_case : Dict = get_domain_name(__A ) # Initialize the parser _snake_case : List[str] = Parser(__A ) try: # Open URL _snake_case : Union[str, Any] = requests.get(__A ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _snake_case : Union[str, Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _snake_case : List[Any] = requests.get(__A ) # Get the valid email. _snake_case : Dict = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__A ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__A ) if __name__ == "__main__": A_ = emails_from_url('''https://github.com''') print(F'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
64
import math def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return math.sqrt(__A ) * math.sqrt(__A ) == num def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = n while left <= right: UpperCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase__ = mid - 1 else: UpperCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
65
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCamelCase (a_ :Optional[Any] , a_ :List[Any]) -> List[Any]: lowercase :Dict = checkpoint lowercase :Tuple = {} lowercase :Optional[Any] = vae_state_dict['''encoder.conv_in.weight'''] lowercase :List[str] = vae_state_dict['''encoder.conv_in.bias'''] lowercase :List[str] = vae_state_dict['''encoder.conv_out.weight'''] lowercase :Optional[Any] = vae_state_dict['''encoder.conv_out.bias'''] lowercase :Optional[Any] = vae_state_dict['''encoder.norm_out.weight'''] lowercase :Tuple = vae_state_dict['''encoder.norm_out.bias'''] lowercase :Any = vae_state_dict['''decoder.conv_in.weight'''] lowercase :Dict = vae_state_dict['''decoder.conv_in.bias'''] lowercase :Dict = vae_state_dict['''decoder.conv_out.weight'''] lowercase :List[str] = vae_state_dict['''decoder.conv_out.bias'''] lowercase :str = vae_state_dict['''decoder.norm_out.weight'''] lowercase :int = vae_state_dict['''decoder.norm_out.bias'''] lowercase :List[Any] = vae_state_dict['''quant_conv.weight'''] lowercase :Optional[Any] = vae_state_dict['''quant_conv.bias'''] lowercase :Optional[Any] = vae_state_dict['''post_quant_conv.weight'''] lowercase :int = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only lowercase :List[str] = len({'''.'''.join(layer.split('''.''')[:3]) for layer in vae_state_dict if '''encoder.down''' in layer}) lowercase :Optional[int] = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(a_) } # Retrieves the keys for the decoder up blocks only lowercase :List[Any] = len({'''.'''.join(layer.split('''.''')[:3]) for layer in vae_state_dict if '''decoder.up''' in layer}) lowercase :Any = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(a_) } for i in range(a_): lowercase :Dict = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: lowercase :Dict = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""") lowercase :Optional[int] = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""") lowercase :Optional[Any] = renew_vae_resnet_paths(a_) lowercase :Dict = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_) lowercase :str = [key for key in vae_state_dict if '''encoder.mid.block''' in key] lowercase :Union[str, Any] = 2 for i in range(1 , num_mid_res_blocks + 1): lowercase :Tuple = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] lowercase :Any = renew_vae_resnet_paths(a_) lowercase :Any = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_) lowercase :Optional[Any] = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] lowercase :List[str] = renew_vae_attention_paths(a_) lowercase :Optional[Any] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_) conv_attn_to_linear(a_) for i in range(a_): lowercase :Any = num_up_blocks - 1 - i lowercase :Optional[Any] = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: lowercase :List[Any] = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] lowercase :int = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] lowercase :str = renew_vae_resnet_paths(a_) lowercase :List[str] = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_) lowercase :int = [key for key in vae_state_dict if '''decoder.mid.block''' in key] lowercase :int = 2 for i in range(1 , num_mid_res_blocks + 1): lowercase :Tuple = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] lowercase :int = renew_vae_resnet_paths(a_) lowercase :List[str] = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_) lowercase :str = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] lowercase :str = renew_vae_attention_paths(a_) lowercase :Optional[int] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_) conv_attn_to_linear(a_) return new_checkpoint def lowerCamelCase (a_ :Optional[Any] , a_ :Tuple , ) -> List[Any]: # Only support V1 lowercase :int = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''') lowercase :List[Any] = io.BytesIO(r.content) lowercase :Optional[int] = OmegaConf.load(a_) lowercase :Any = 512 lowercase :Dict = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors'''): from safetensors import safe_open lowercase :Optional[int] = {} with safe_open(a_ , framework='''pt''' , device='''cpu''') as f: for key in f.keys(): lowercase :str = f.get_tensor(a_) else: lowercase :Optional[Any] = torch.load(a_ , map_location=a_)['''state_dict'''] # Convert the VAE model. lowercase :str = create_vae_diffusers_config(a_ , image_size=a_) lowercase :Dict = custom_convert_ldm_vae_checkpoint(a_ , a_) lowercase :Optional[int] = AutoencoderKL(**a_) vae.load_state_dict(a_) vae.save_pretrained(a_) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') UpperCAmelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
364
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' UpperCAmelCase = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' UpperCAmelCase = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' UpperCAmelCase = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' UpperCAmelCase = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __snake_case ( self : Any ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple=[1, 1_0, 1_0_0] , snake_case__ : List[str]=4 , snake_case__ : Tuple=3.0 ): '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=snake_case__ ) as executor: lowercase :Optional[Any] = [] lowercase :Optional[Any] = Counter() lowercase :Optional[int] = 0 lowercase :int = defaultdict(snake_case__ ) for task_id, (candidates, test_case) in enumerate(zip(snake_case__ , snake_case__ ) ): for candidate in candidates: lowercase :int = candidate + '''\n''' + test_case lowercase :int = (test_program, timeout, task_id, completion_id[task_id]) lowercase :Optional[int] = executor.submit(snake_case__ , *snake_case__ ) futures.append(snake_case__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(snake_case__ ): lowercase :Dict = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) lowercase , lowercase :List[str] = [], [] for result in results.values(): result.sort() lowercase :int = [r[1]['''passed'''] for r in result] total.append(len(snake_case__ ) ) correct.append(sum(snake_case__ ) ) lowercase :List[str] = np.array(snake_case__ ) lowercase :Optional[Any] = np.array(snake_case__ ) lowercase :str = k lowercase :int = {f"""pass@{k}""": estimate_pass_at_k(snake_case__ , snake_case__ , snake_case__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCamelCase (a_ :Optional[Any] , a_ :Any , a_ :Any) -> List[Any]: def estimator(a_ :int , a_ :int , a_ :int) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1)) if isinstance(a_ , a_): lowercase :Optional[int] = itertools.repeat(a_ , len(a_)) else: assert len(a_) == len(a_) lowercase :List[Any] = iter(a_) return np.array([estimator(int(a_) , int(a_) , a_) for n, c in zip(a_ , a_)])
172
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase__ ( a__: int = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(a__ , a__ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a__ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 1_0: raise ValueError('number of qubits too large to simulate(>10).' ) _UpperCAmelCase = QuantumRegister(a__ , 'qr' ) _UpperCAmelCase = ClassicalRegister(a__ , 'cr' ) _UpperCAmelCase = QuantumCircuit(a__ , a__ ) _UpperCAmelCase = number_of_qubits for i in range(a__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , a__ , a__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a__ , a__ ) # simulate with 10000 shots _UpperCAmelCase = Aer.get_backend('qasm_simulator' ) _UpperCAmelCase = execute(a__ , a__ , shots=1_0_0_0_0 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
329
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
1
'''simple docstring''' from datetime import datetime import requests def __magic_name__ ( A ) -> bytes: snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(A ).content if __name__ == "__main__": lowerCAmelCase_ = input("Enter Video/IGTV url: ").strip() lowerCAmelCase_ = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
332
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[str] = '''efficientformer''' def __init__(self , SCREAMING_SNAKE_CASE__ = [3, 2, 6, 4] , SCREAMING_SNAKE_CASE__ = [48, 96, 2_24, 4_48] , SCREAMING_SNAKE_CASE__ = [True, True, True, True] , SCREAMING_SNAKE_CASE__ = 4_48 , SCREAMING_SNAKE_CASE__ = 32 , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 7 , SCREAMING_SNAKE_CASE__ = 5 , SCREAMING_SNAKE_CASE__ = 8 , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = 16 , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 2 , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = 1E-5 , SCREAMING_SNAKE_CASE__ = "gelu" , SCREAMING_SNAKE_CASE__ = 0.02 , SCREAMING_SNAKE_CASE__ = 1E-12 , SCREAMING_SNAKE_CASE__ = 2_24 , SCREAMING_SNAKE_CASE__ = 1E-05 , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = hidden_sizes SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = patch_size SCREAMING_SNAKE_CASE__ : Tuple = num_channels SCREAMING_SNAKE_CASE__ : Any = depths SCREAMING_SNAKE_CASE__ : Dict = mlp_expansion_ratio SCREAMING_SNAKE_CASE__ : int = downsamples SCREAMING_SNAKE_CASE__ : Optional[int] = dim SCREAMING_SNAKE_CASE__ : Tuple = key_dim SCREAMING_SNAKE_CASE__ : Tuple = attention_ratio SCREAMING_SNAKE_CASE__ : Union[str, Any] = resolution SCREAMING_SNAKE_CASE__ : List[str] = pool_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = downsample_patch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = downsample_stride SCREAMING_SNAKE_CASE__ : int = downsample_pad SCREAMING_SNAKE_CASE__ : List[str] = drop_path_rate SCREAMING_SNAKE_CASE__ : Any = num_metaad_blocks SCREAMING_SNAKE_CASE__ : List[Any] = distillation SCREAMING_SNAKE_CASE__ : Tuple = use_layer_scale SCREAMING_SNAKE_CASE__ : List[Any] = layer_scale_init_value SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : str = batch_norm_eps
25
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: List[str] , snake_case: Optional[Any]=13 , snake_case: List[str]=7 , snake_case: Dict=True , snake_case: List[str]=True , snake_case: Optional[int]=True , snake_case: Any=True , snake_case: Optional[Any]=99 , snake_case: Tuple=32 , snake_case: Tuple=5 , snake_case: Dict=4 , snake_case: Optional[Any]=37 , snake_case: Union[str, Any]="gelu" , snake_case: Tuple=0.1 , snake_case: List[Any]=0.1 , snake_case: List[str]=512 , snake_case: Optional[int]=16 , snake_case: int=2 , snake_case: List[Any]=0.0_2 , snake_case: Union[str, Any]=4 , ) -> List[str]: snake_case_ :Dict = parent snake_case_ :Any = batch_size snake_case_ :Any = seq_length snake_case_ :List[str] = is_training snake_case_ :Optional[Any] = use_attention_mask snake_case_ :Dict = use_token_type_ids snake_case_ :Union[str, Any] = use_labels snake_case_ :str = vocab_size snake_case_ :int = hidden_size snake_case_ :List[str] = num_hidden_layers snake_case_ :Dict = num_attention_heads snake_case_ :Any = intermediate_size snake_case_ :Tuple = hidden_act snake_case_ :int = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Any = max_position_embeddings snake_case_ :Union[str, Any] = type_vocab_size snake_case_ :Optional[int] = type_sequence_label_size snake_case_ :Union[str, Any] = initializer_range snake_case_ :Tuple = num_choices def lowerCAmelCase_ ( self: Tuple ) -> str: snake_case_ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ :Union[str, Any] = None if self.use_attention_mask: snake_case_ :str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ :Any = None if self.use_token_type_ids: snake_case_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ :int = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self: Optional[int] ) -> int: snake_case_ :str = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Optional[int] = config_and_inputs snake_case_ :Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self: Optional[Any] ) -> Any: snake_case_ :int = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Dict = config_and_inputs snake_case_ :Union[str, Any] = True snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : List[str] = True _A : Dict = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = FlaxBertModelTester(self ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ :Dict = FlaxBertModel.from_pretrained("""bert-base-cased""" ) snake_case_ :Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case )
66
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCamelCase : List[str] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __UpperCamelCase : Tuple = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __UpperCamelCase : Dict = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __UpperCamelCase : Union[str, Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __UpperCamelCase : List[str] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __UpperCamelCase : List[Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __UpperCamelCase : Union[str, Any] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: lowerCAmelCase ,lowerCAmelCase = randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) lowerCAmelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowerCAmelCase ,lowerCAmelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ) -> Any: return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Dict: assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Optional[int]: assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Optional[Any]: assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: lowerCAmelCase = [PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase = poker_hands.copy() shuffle(_UpperCAmelCase ) lowerCAmelCase = chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: # Test that five high straights are compared correctly. lowerCAmelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> Dict: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowerCAmelCase = PokerHand('2C 4S AS 3D 5C' ) lowerCAmelCase = True lowerCAmelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowerCAmelCase = 0 lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'poker_hands.txt' ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase = line[:14].strip() lowerCAmelCase = line[15:].strip() lowerCAmelCase ,lowerCAmelCase = PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) lowerCAmelCase = player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
371
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) SCREAMING_SNAKE_CASE__ = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) SCREAMING_SNAKE_CASE__ = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) SCREAMING_SNAKE_CASE__ = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) SCREAMING_SNAKE_CASE__ = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) SCREAMING_SNAKE_CASE__ = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) SCREAMING_SNAKE_CASE__ = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) SCREAMING_SNAKE_CASE__ = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) SCREAMING_SNAKE_CASE__ = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) SCREAMING_SNAKE_CASE__ = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) SCREAMING_SNAKE_CASE__ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) SCREAMING_SNAKE_CASE__ = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) SCREAMING_SNAKE_CASE__ = field(default=1 , metadata={'''help''': '''Training seed.'''} ) SCREAMING_SNAKE_CASE__ = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) SCREAMING_SNAKE_CASE__ = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) SCREAMING_SNAKE_CASE__ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) SCREAMING_SNAKE_CASE__ = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) SCREAMING_SNAKE_CASE__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) SCREAMING_SNAKE_CASE__ = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) SCREAMING_SNAKE_CASE__ = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) SCREAMING_SNAKE_CASE__ = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) SCREAMING_SNAKE_CASE__ = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) SCREAMING_SNAKE_CASE__ = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) SCREAMING_SNAKE_CASE__ = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) SCREAMING_SNAKE_CASE__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) SCREAMING_SNAKE_CASE__ = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) SCREAMING_SNAKE_CASE__ = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) SCREAMING_SNAKE_CASE__ = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) SCREAMING_SNAKE_CASE__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) SCREAMING_SNAKE_CASE__ = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) SCREAMING_SNAKE_CASE__ = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) SCREAMING_SNAKE_CASE__ = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) SCREAMING_SNAKE_CASE__ = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) SCREAMING_SNAKE_CASE__ = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) SCREAMING_SNAKE_CASE__ = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) SCREAMING_SNAKE_CASE__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) SCREAMING_SNAKE_CASE__ = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) SCREAMING_SNAKE_CASE__ = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) SCREAMING_SNAKE_CASE__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) SCREAMING_SNAKE_CASE__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
323
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small""" SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : str = """en_speaker_1""" SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string""" SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json""" SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings""" def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE : List[str] = 35 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : int = 8 SCREAMING_SNAKE_CASE : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string ) SCREAMING_SNAKE_CASE : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
323
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __A = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] __A = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] __A = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __A = f'down_blocks.{i}.resnets.{j}.' __A = f'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __A = f'down_blocks.{i}.attentions.{j}.' __A = f'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __A = f'up_blocks.{i}.resnets.{j}.' __A = f'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __A = f'up_blocks.{i}.attentions.{j}.' __A = f'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __A = f'down_blocks.{i}.downsamplers.0.conv.' __A = f'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __A = f'up_blocks.{i}.upsamplers.0.' __A = f'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __A = '''mid_block.attentions.0.''' __A = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __A = f'mid_block.resnets.{j}.' __A = f'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __a ( lowerCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_= {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase_= sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase_= v.replace(a__ ,a__ ) UpperCAmelCase_= v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase_= v.replace(a__ ,a__ ) UpperCAmelCase_= v UpperCAmelCase_= {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __A = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): __A = f'encoder.down_blocks.{i}.resnets.{j}.' __A = f'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __A = f'down_blocks.{i}.downsamplers.0.' __A = f'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __A = f'up_blocks.{i}.upsamplers.0.' __A = f'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __A = f'decoder.up_blocks.{i}.resnets.{j}.' __A = f'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __A = f'mid_block.resnets.{i}.' __A = f'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __A = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __a ( lowerCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return w.reshape(*w.shape ,1 ,1 ) def __a ( lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_= {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase_= v.replace(a__ ,a__ ) UpperCAmelCase_= v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase_= v.replace(a__ ,a__ ) UpperCAmelCase_= v UpperCAmelCase_= {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase_= ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) UpperCAmelCase_= reshape_weight_for_sd(a__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __A = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] __A = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __A = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __A = {'''q''': 0, '''k''': 1, '''v''': 2} def __a ( lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_= {} UpperCAmelCase_= {} UpperCAmelCase_= {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): UpperCAmelCase_= k[: -len(""".q_proj.weight""" )] UpperCAmelCase_= k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: UpperCAmelCase_= [None, None, None] UpperCAmelCase_= v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): UpperCAmelCase_= k[: -len(""".q_proj.bias""" )] UpperCAmelCase_= k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: UpperCAmelCase_= [None, None, None] UpperCAmelCase_= v continue UpperCAmelCase_= textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] ,a__ ) UpperCAmelCase_= v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCAmelCase_= textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] ,a__ ) UpperCAmelCase_= torch.cat(a__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCAmelCase_= textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] ,a__ ) UpperCAmelCase_= torch.cat(a__ ) return new_state_dict def __a ( lowerCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return text_enc_dict if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) __A = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __A = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') __A = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') __A = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __A = load_file(unet_path, device='''cpu''') else: __A = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') __A = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): __A = load_file(vae_path, device='''cpu''') else: __A = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') __A = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): __A = load_file(text_enc_path, device='''cpu''') else: __A = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') __A = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model __A = convert_unet_state_dict(unet_state_dict) __A = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __A = convert_vae_state_dict(vae_state_dict) __A = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __A = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __A = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} __A = convert_text_enc_state_dict_vaa(text_enc_dict) __A = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: __A = convert_text_enc_state_dict(text_enc_dict) __A = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __A = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __A = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __A = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
360
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 16 __A = 32 def __a ( lowerCAmelCase_ : Accelerator ,lowerCAmelCase_ : int = 16 ,lowerCAmelCase_ : str = "bert-base-cased" ) -> Tuple: '''simple docstring''' UpperCAmelCase_= AutoTokenizer.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_= load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowerCAmelCase_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_= tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_= datasets.map( lowerCAmelCase_ ,batched=lowerCAmelCase_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_= tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowerCAmelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ ,padding="""max_length""" ,max_length=1_28 ,return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. UpperCAmelCase_= DataLoader( tokenized_datasets["""train"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) UpperCAmelCase_= DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_= Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_= config["""lr"""] UpperCAmelCase_= int(config["""num_epochs"""] ) UpperCAmelCase_= int(config["""seed"""] ) UpperCAmelCase_= int(config["""batch_size"""] ) UpperCAmelCase_= args.model_name_or_path set_seed(lowerCAmelCase_ ) UpperCAmelCase_, UpperCAmelCase_= get_dataloaders(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ ,return_dict=lowerCAmelCase_ ) # Instantiate optimizer UpperCAmelCase_= ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_= optimizer_cls(params=model.parameters() ,lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_= accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase_= 1 UpperCAmelCase_= (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_= get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ ,num_warmup_steps=0 ,num_training_steps=lowerCAmelCase_ ,) else: UpperCAmelCase_= DummyScheduler(lowerCAmelCase_ ,total_num_steps=lowerCAmelCase_ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_= 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_= 0 # Now we train the model UpperCAmelCase_= evaluate.load("""glue""" ,"""mrpc""" ) UpperCAmelCase_= 0 UpperCAmelCase_= {} for epoch in range(lowerCAmelCase_ ,lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.loss UpperCAmelCase_= loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase_= 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_, UpperCAmelCase_= accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: UpperCAmelCase_= predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_= references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ ,references=lowerCAmelCase_ ,) UpperCAmelCase_= metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,lowerCAmelCase_ ) UpperCAmelCase_= eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCAmelCase_= eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(lowerCAmelCase_ ,lowerCAmelCase_ ) def __a ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=lowerCAmelCase_ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=lowerCAmelCase_ ,) parser.add_argument( """--output_dir""" ,type=lowerCAmelCase_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=lowerCAmelCase_ ,default=lowerCAmelCase_ ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=lowerCAmelCase_ ,default=3 ,help="""Number of train epochs.""" ,) UpperCAmelCase_= parser.parse_args() UpperCAmelCase_= {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ ,lowerCAmelCase_ ) if __name__ == "__main__": main()
277
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,_a : Optional[int] = 16 ,_a : Optional[int] = 88 ,_a : Any = None ,_a : Any = 1 ,_a : Optional[int] = 0.0 ,_a : Tuple = 32 ,_a : List[str] = None ,_a : Union[str, Any] = False ,_a : Union[str, Any] = None ,_a : Optional[Any] = None ,_a : Dict = "geglu" ,_a : str = None ,): '''simple docstring''' super().__init__() _a : Optional[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=a_ ,attention_head_dim=a_ ,in_channels=a_ ,num_layers=a_ ,dropout=a_ ,norm_num_groups=a_ ,cross_attention_dim=a_ ,attention_bias=a_ ,sample_size=a_ ,num_vector_embeds=a_ ,activation_fn=a_ ,num_embeds_ada_norm=a_ ,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _a : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _a : List[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _a : int = [1, 0] def __lowercase ( self : Dict ,_a : Dict ,_a : Optional[int] ,_a : Dict=None ,_a : Any=None ,_a : List[Any]=None ,_a : Optional[Any] = True ,): '''simple docstring''' _a : Tuple = hidden_states _a : Tuple = [] _a : Optional[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _a : Any = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _a : Any = self.transformer_index_for_condition[i] _a : Optional[Any] = self.transformers[transformer_index]( a_ ,encoder_hidden_states=a_ ,timestep=a_ ,cross_attention_kwargs=a_ ,return_dict=a_ ,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _a : List[str] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _a : Union[str, Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=a_ )
271
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : List[str] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A_ : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) A_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING A_ : Dict = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): _UpperCAmelCase : Tuple = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCAmelCase_ , ) is not None ): _UpperCAmelCase : Any = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _UpperCAmelCase : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _UpperCAmelCase : Dict = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] _UpperCAmelCase : int = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed _UpperCAmelCase : Optional[Any] = True if not attribute_used: _UpperCAmelCase : List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _UpperCAmelCase : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: _UpperCAmelCase : Any = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _UpperCAmelCase : Dict = True elif attribute.endswith("""_token_id""" ): _UpperCAmelCase : Optional[int] = True # configuration class specific cases if not case_allowed: _UpperCAmelCase : int = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _UpperCAmelCase : Union[str, Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) _UpperCAmelCase : Optional[int] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] _UpperCAmelCase : Optional[int] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _UpperCAmelCase : List[Any] = {} if len(config_class.attribute_map ) > 0: _UpperCAmelCase : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _UpperCAmelCase : int = inspect.getsourcefile(lowerCAmelCase_ ) _UpperCAmelCase : str = os.path.dirname(lowerCAmelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _UpperCAmelCase : Optional[int] = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for fn in os.listdir(lowerCAmelCase_ ) if fn.startswith("""modeling_""" )] # Get the source code strings _UpperCAmelCase : str = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ ) as fp: modeling_sources.append(fp.read() ) _UpperCAmelCase : Any = [] for config_param, default_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): # `attributes` here is all the variant names for `config_param` _UpperCAmelCase : List[str] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase_ ) def snake_case_ ( )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _UpperCAmelCase : List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase_ : inspect.isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) and inspect.getmodule(lowerCAmelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _UpperCAmelCase : Optional[int] = check_config_attributes_being_used(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _UpperCAmelCase : Tuple = unused_attributes if len(lowerCAmelCase_ ) > 0: _UpperCAmelCase : Dict = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": check_config_attributes()
215
0
import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCamelCase__ ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase_ =1 @register_to_config def __init__( self , _A=2000 , _A=0.1 , _A=20 , _A=1E-3 ) -> Tuple: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def _UpperCamelCase ( self , _A , _A = None ) -> str: SCREAMING_SNAKE_CASE_ = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase__ , device=UpperCamelCase__ ) def _UpperCamelCase ( self , _A , _A , _A , _A=None ) -> Any: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score SCREAMING_SNAKE_CASE_ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) SCREAMING_SNAKE_CASE_ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) SCREAMING_SNAKE_CASE_ = std.flatten() while len(std.shape ) < len(score.shape ): SCREAMING_SNAKE_CASE_ = std.unsqueeze(-1 ) SCREAMING_SNAKE_CASE_ = -score / std # compute SCREAMING_SNAKE_CASE_ = -1.0 / len(self.timesteps ) SCREAMING_SNAKE_CASE_ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) SCREAMING_SNAKE_CASE_ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): SCREAMING_SNAKE_CASE_ = beta_t.unsqueeze(-1 ) SCREAMING_SNAKE_CASE_ = -0.5 * beta_t * x SCREAMING_SNAKE_CASE_ = torch.sqrt(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ = drift - diffusion**2 * score SCREAMING_SNAKE_CASE_ = x + drift * dt # add noise SCREAMING_SNAKE_CASE_ = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase__ , device=x.device , dtype=x.dtype ) SCREAMING_SNAKE_CASE_ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type='''dataset''' ), '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE_ = BitConfig( conv_layer=__lowerCamelCase, num_labels=10_00, idalabel=__lowerCamelCase, labelaid=__lowerCamelCase, ) return config def A__ ( __lowerCamelCase ): if "stem.conv" in name: SCREAMING_SNAKE_CASE_ = name.replace('''stem.conv''', '''bit.embedder.convolution''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ = name.replace('''blocks''', '''layers''' ) if "head.fc" in name: SCREAMING_SNAKE_CASE_ = name.replace('''head.fc''', '''classifier.1''' ) if name.startswith('''norm''' ): SCREAMING_SNAKE_CASE_ = '''bit.''' + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE_ = '''bit.encoder.''' + name return name def A__ ( ): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): SCREAMING_SNAKE_CASE_ = get_config(__lowerCamelCase ) # load original model from timm SCREAMING_SNAKE_CASE_ = create_model(__lowerCamelCase, pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE_ = timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = state_dict.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = val.squeeze() if '''head''' in key else val # load HuggingFace model SCREAMING_SNAKE_CASE_ = BitForImageClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # create image processor SCREAMING_SNAKE_CASE_ = create_transform(**resolve_data_config({}, model=__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = transform.transforms SCREAMING_SNAKE_CASE_ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_ = BitImageProcessor( do_resize=__lowerCamelCase, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=__lowerCamelCase, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=__lowerCamelCase, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = transform(__lowerCamelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = processor(__lowerCamelCase, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__lowerCamelCase, __lowerCamelCase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits print('''Logits:''', logits[0, :3] ) print('''Predicted class:''', model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE_ = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase, outputs.logits, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(F'''ybelkada/{model_name}''' ) processor.push_to_hub(F'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
257
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: _a : List[str] = 0 for ch in input_str: _a : Optional[Any] = ord(lowerCAmelCase_ ) _a : Tuple = pow(2 , lowerCAmelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
89
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A_ :List[str] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] A_ :Optional[Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def A ( a_ ,a_ ) -> str: __UpperCamelCase : Any ={ 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __UpperCamelCase : Tuple =int(re.match(r'.*layer_(\d*).*' ,a_ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def A ( a_ ) -> Any: if dtype == torch.bool: return 1 / 8 __UpperCamelCase : Dict =re.search(r'[^\d](\d+)$' ,str(a_ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) __UpperCamelCase : Tuple =int(bit_search.groups()[0] ) return bit_size // 8 def A ( a_ ,a_ ,a_ ,a_ ,a_ ) -> Dict: # Construct model if bloom_config_file == "": __UpperCamelCase : List[Any] =BloomConfig() else: __UpperCamelCase : List[str] =BloomConfig.from_json_file(a_ ) if shard_model: __UpperCamelCase : int =os.listdir(a_ ) __UpperCamelCase : Union[str, Any] =sorted(filter(lambda a_ : s.startswith('layer' ) and "model_00" in s ,a_ ) ) __UpperCamelCase : Optional[Any] ={'weight_map': {}, 'metadata': {}} __UpperCamelCase : Dict =0 __UpperCamelCase : int =None __UpperCamelCase : Any =BloomConfig() for j, file in enumerate(a_ ): print('Processing file: {}'.format(a_ ) ) __UpperCamelCase : Optional[int] =None for i in range(a_ ): # load all TP files __UpperCamelCase : Dict =file.replace('model_00' ,F'model_0{i}' ) __UpperCamelCase : Optional[Any] =torch.load(os.path.join(a_ ,a_ ) ,map_location='cpu' ) # Rename keys in the transformers names __UpperCamelCase : int =list(temp.keys() ) for key in keys: __UpperCamelCase : Dict =temp.pop(a_ ) if tensors is None: __UpperCamelCase : Any =temp else: for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __UpperCamelCase : List[Any] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __UpperCamelCase : Any =torch.cat([tensors[key], temp[key]] ,dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __UpperCamelCase : Optional[Any] =tensors[key] / pretraining_tp torch.save( a_ ,os.path.join( a_ ,'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) ,str(len(a_ ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): __UpperCamelCase : Union[str, Any] =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __UpperCamelCase : int ='pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) ,str(len(a_ ) ).zfill(5 ) ) __UpperCamelCase : Union[str, Any] =BloomConfig() __UpperCamelCase : Tuple =pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase : Optional[int] =total_size with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(a_ ,WEIGHTS_NAME + '.index.json' ) ,'w' ,encoding='utf-8' ) as f: __UpperCamelCase : List[Any] =json.dumps(a_ ,indent=2 ,sort_keys=a_ ) + '\n' f.write(a_ ) else: __UpperCamelCase : List[Any] =BloomModel(a_ ) __UpperCamelCase : Optional[Any] =os.listdir(a_ ) __UpperCamelCase : Dict =sorted(filter(lambda a_ : s.startswith('layer' ) and "model_00" in s ,a_ ) ) __UpperCamelCase : Any =None for i, file in enumerate(a_ ): __UpperCamelCase : Union[str, Any] =None for i in range(a_ ): # load all TP files __UpperCamelCase : Optional[Any] =file.replace('model_00' ,F'model_0{i}' ) __UpperCamelCase : str =torch.load(os.path.join(a_ ,a_ ) ,map_location='cpu' ) # Rename keys in the transformers names __UpperCamelCase : List[str] =list(temp.keys() ) for key in keys: __UpperCamelCase : Union[str, Any] =temp.pop(a_ ) if tensors is None: __UpperCamelCase : Optional[Any] =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __UpperCamelCase : Optional[int] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __UpperCamelCase : int =torch.cat([tensors[key], temp[key]] ,dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __UpperCamelCase : Dict =tensors[key] / pretraining_tp __UpperCamelCase : str =model.load_state_dict(a_ ,strict=a_ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __UpperCamelCase : str =set(other_keys.missing_keys ) else: __UpperCamelCase : int =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(a_ ,exist_ok=a_ ) __UpperCamelCase : Optional[int] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase : Dict =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __UpperCamelCase : List[str] =model.to(config.torch_dtype ) torch.save(model.state_dict() ,a_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) A_ :str = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
71
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example lowercase : Optional[int] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase : Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE__ ( __A ) -> list[list[int]]: _snake_case = [] for i in range(len(__A ) ): _snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__A ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__A ) - 1: neighbour_count += cells[i + 1][j] if i < len(__A ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__A ) return next_generation def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list[Image.Image]: _snake_case = [] for _ in range(__A ): # Create output image _snake_case = Image.new('RGB' , (len(cells[0] ), len(__A )) ) _snake_case = img.load() # Save cells to image for x in range(len(__A ) ): for y in range(len(cells[0] ) ): _snake_case = 255 - cells[y][x] * 255 _snake_case = (colour, colour, colour) # Save image images.append(__A ) _snake_case = new_generation(__A ) return images if __name__ == "__main__": lowercase : str = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
160
'''simple docstring''' import os import sys import unittest lowercase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase : List[Any] = os.path.join(git_repo_path, "src", "diffusers") class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = find_backend(' if not is_torch_available():' ) self.assertEqual(lowerCAmelCase_ , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(lowerCAmelCase_ , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(lowerCAmelCase_ , 'torch_and_transformers_and_onnx' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowerCAmelCase_ ) self.assertIn('torch_and_transformers' , lowerCAmelCase_ ) self.assertIn('flax_and_transformers' , lowerCAmelCase_ ) self.assertIn('torch_and_transformers_and_onnx' , lowerCAmelCase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowerCAmelCase_ , '\nCONSTANT = None\n' ) _snake_case = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowerCAmelCase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _snake_case = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' _snake_case = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' _snake_case = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowerCAmelCase_ )
160
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _SCREAMING_SNAKE_CASE (A , A , A , A ) -> Optional[int]: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def _SCREAMING_SNAKE_CASE (A , A , A , A , A=True ) -> Any: """simple docstring""" model.train() lowercase__ = model(A ) lowercase__ = F.mse_loss(A , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(A ) def _SCREAMING_SNAKE_CASE (A , A=False ) -> Optional[int]: """simple docstring""" set_seed(42 ) lowercase__ = RegressionModel() lowercase__ = deepcopy(A ) lowercase__ = RegressionDataset(length=80 ) lowercase__ = DataLoader(A , batch_size=16 ) model.to(accelerator.device ) if sched: lowercase__ = AdamW(params=model.parameters() , lr=1E-3 ) lowercase__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) lowercase__ = LambdaLR(A , lr_lambda=lambda A : epoch**0.65 ) lowercase__ = LambdaLR(A , lr_lambda=lambda A : epoch**0.65 ) # Make a copy of `model` if sched: lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = accelerator.prepare(A , A , A , A ) else: lowercase__ ,lowercase__ = accelerator.prepare(A , A ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A ) # Use a single batch lowercase__ ,lowercase__ = next(iter(A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(A ): step_model(A , A , A , A ) else: # Sync grads step_model(A , A , A , A ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(A , A , A , A ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase__ = ddp_input[torch.randperm(len(A ) )] def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A ) # Use a single batch lowercase__ ,lowercase__ = next(iter(A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(A ): step_model(A , A , A , A ) else: # Sync grads step_model(A , A , A , A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase__ = ddp_input[torch.randperm(len(A ) )] def _SCREAMING_SNAKE_CASE (A=False , A=False ) -> Tuple: """simple docstring""" lowercase__ = Accelerator( split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A ) for iteration, batch in enumerate(A ): lowercase__ ,lowercase__ = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A , A ) # Do "gradient accumulation" (noop) with accelerator.accumulate(A ): step_model(A , A , A , A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(A ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase__ = ddp_input[torch.randperm(len(A ) )] GradientState._reset_state() def _SCREAMING_SNAKE_CASE (A=False , A=False ) -> str: """simple docstring""" lowercase__ = Accelerator( split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A , A ) for iteration, batch in enumerate(A ): lowercase__ ,lowercase__ = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(A , A , A , A , A ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(A )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(A ): step_model(A , A , A , A ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" lowercase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(A )) if accelerator.num_processes > 1: check_model_parameters(A , A , A , A ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def _SCREAMING_SNAKE_CASE () -> str: """simple docstring""" lowercase__ = Accelerator() lowercase__ = RegressionDataset(length=80 ) lowercase__ = DataLoader(A , batch_size=16 ) lowercase__ = RegressionDataset(length=96 ) lowercase__ = DataLoader(A , batch_size=16 ) lowercase__ ,lowercase__ = accelerator.prepare(A , A ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(A ): assert id(accelerator.gradient_state.active_dataloader ) == id(A ) if iteration < len(A ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(A ): assert id(accelerator.gradient_state.active_dataloader ) == id(A ) if batch_num < len(A ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = Accelerator() lowercase__ = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(A ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(A ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(A , A ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
2
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _A ( SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : str = ComputeEnvironment.AMAZON_SAGEMAKER _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : List[Any] = "ml.p3.2xlarge" _SCREAMING_SNAKE_CASE : Dict = "accelerate_sagemaker_execution_role" _SCREAMING_SNAKE_CASE : Dict = "hf-sm" _SCREAMING_SNAKE_CASE : List[str] = "us-east-1" _SCREAMING_SNAKE_CASE : str = 1 _SCREAMING_SNAKE_CASE : int = "accelerate-sagemaker-1" _SCREAMING_SNAKE_CASE : str = "1.6" _SCREAMING_SNAKE_CASE : Any = "4.4" _SCREAMING_SNAKE_CASE : List[str] = "train.py" _SCREAMING_SNAKE_CASE : Optional[Any] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] _SCREAMING_SNAKE_CASE : Any = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class _A ( unittest.TestCase ): def __A ( self ) -> int: '''simple docstring''' # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCAmelCase : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , __UpperCAmelCase ) assert isinstance(converted_args["""do_train"""] , __UpperCAmelCase ) assert isinstance(converted_args["""epochs"""] , __UpperCAmelCase ) assert isinstance(converted_args["""learning_rate"""] , __UpperCAmelCase ) assert isinstance(converted_args["""max_steps"""] , __UpperCAmelCase ) with pytest.raises(__UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
130
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ : Union[str, Any] = timm.create_model("levit_128s" , pretrained=lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = timm.create_model("levit_128" , pretrained=lowerCamelCase__ ) if hidden_sizes == 192: lowercase__ : Dict = timm.create_model("levit_192" , pretrained=lowerCamelCase__ ) if hidden_sizes == 256: lowercase__ : Optional[Any] = timm.create_model("levit_256" , pretrained=lowerCamelCase__ ) if hidden_sizes == 384: lowercase__ : List[str] = timm.create_model("levit_384" , pretrained=lowerCamelCase__ ) from_model.eval() lowercase__ : Union[str, Any] = LevitForImageClassificationWithTeacher(lowerCamelCase__ ).eval() lowercase__ : Tuple = OrderedDict() lowercase__ : Dict = from_model.state_dict() lowercase__ : Union[str, Any] = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase__ ) lowercase__ : List[str] = torch.randn((2, 3, 224, 224) ) lowercase__ : Optional[Any] = from_model(lowerCamelCase__ ) lowercase__ : Optional[Any] = our_model(lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), "The model logits don't match the original one." lowercase__ : Optional[Any] = name print(lowerCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ): """simple docstring""" lowercase__ : Optional[Any] = "imagenet-1k-id2label.json" lowercase__ : str = 1_000 lowercase__ : Any = (1, num_labels) lowercase__ : Optional[Any] = "huggingface/label-files" lowercase__ : Optional[Any] = num_labels lowercase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = partial(lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ ) lowercase__ : List[str] = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } lowercase__ : int = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase__ , names_to_config[model_name] , lowerCamelCase__ , lowerCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
130
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( a__ ): '''simple docstring''' lowerCAmelCase : int = ["""image_processor""", """tokenizer"""] lowerCAmelCase : List[Any] = """CLIPImageProcessor""" lowerCAmelCase : Any = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Dict ,_snake_case : Optional[Any]=None ,_snake_case : Dict=None ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowerCAmelCase__ ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ ,lowerCAmelCase__ ) def __call__( self : Optional[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : int = self.tokenizer(lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ,**lowerCAmelCase__ ) if images is not None: lowercase__ : List[str] = self.image_processor(lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ,**lowerCAmelCase__ ) if text is not None and images is not None: lowercase__ : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) ,tensor_type=lowerCAmelCase__ ) def UpperCAmelCase ( self : Optional[Any] ,*_snake_case : Tuple ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase ( self : int ,*_snake_case : Optional[int] ,**_snake_case : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) @property def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = self.tokenizer.model_input_names lowercase__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A_ ( _lowercase ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[Any] = np.max(_outputs, axis=-1, keepdims=_lowercase ) snake_case_ :Optional[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=_lowercase ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : List[str] = """sigmoid""" _A : Union[str, Any] = """softmax""" _A : Tuple = """none""" @add_end_docstrings( _lowerCAmelCase , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Optional[int] = False _A : Any = ClassificationFunction.NONE def __init__( self: Tuple , **snake_case: Any ) -> List[Any]: super().__init__(**snake_case ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCAmelCase_ ( self: str , snake_case: str=None , snake_case: Any=None , snake_case: Union[str, Any]="" , **snake_case: List[str] ) -> Union[str, Any]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" snake_case_ :List[Any] = tokenizer_kwargs snake_case_ :int = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: snake_case_ :List[str] = self.model.config.return_all_scores if isinstance(snake_case , snake_case ) or top_k is None: snake_case_ :Optional[int] = top_k snake_case_ :Optional[Any] = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , snake_case , ) if return_all_scores: snake_case_ :str = None else: snake_case_ :Tuple = 1 if isinstance(snake_case , snake_case ): snake_case_ :List[Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: snake_case_ :Tuple = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int , *snake_case: List[str] , **snake_case: List[Any] ) -> Union[str, Any]: snake_case_ :str = super().__call__(*snake_case , **snake_case ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. snake_case_ :Any = """top_k""" not in kwargs if isinstance(args[0] , snake_case ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCAmelCase_ ( self: Tuple , snake_case: str , **snake_case: int ) -> Dict[str, GenericTensor]: snake_case_ :int = self.framework if isinstance(snake_case , snake_case ): return self.tokenizer(**snake_case , return_tensors=snake_case , **snake_case ) elif isinstance(snake_case , snake_case ) and len(snake_case ) == 1 and isinstance(inputs[0] , snake_case ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case , **snake_case ) elif isinstance(snake_case , snake_case ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(snake_case , return_tensors=snake_case , **snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: List[str] ) -> List[str]: return self.model(**snake_case ) def lowerCAmelCase_ ( self: Tuple , snake_case: List[str] , snake_case: Optional[int]=None , snake_case: List[Any]=1 , snake_case: str=True ) -> int: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: snake_case_ :Optional[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: snake_case_ :Union[str, Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: snake_case_ :int = self.model.config.function_to_apply else: snake_case_ :Tuple = ClassificationFunction.NONE snake_case_ :str = model_outputs["""logits"""][0] snake_case_ :List[str] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: snake_case_ :List[str] = sigmoid(snake_case ) elif function_to_apply == ClassificationFunction.SOFTMAX: snake_case_ :Any = softmax(snake_case ) elif function_to_apply == ClassificationFunction.NONE: snake_case_ :Tuple = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} snake_case_ :Union[str, Any] = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(snake_case ) ] if not _legacy: dict_scores.sort(key=lambda snake_case : x["score"] , reverse=snake_case ) if top_k is not None: snake_case_ :int = dict_scores[:top_k] return dict_scores
66
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
1
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=64 , A_=5 , A_=4 , A_=64 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=3 , A_=4 , A_=None , ) -> List[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __snake_case ( self ) -> Optional[int]: return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def __snake_case ( self ) -> str: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ) -> str: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: lowerCAmelCase = MPNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = MPNetForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = MPNetForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = MPNetForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: lowerCAmelCase = self.num_labels lowerCAmelCase = MPNetForTokenClassification(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.prepare_config_and_inputs() ((lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase)) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) UpperCAmelCase : List[str] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Union[str, Any] = True def __snake_case ( self ) -> int: lowerCAmelCase = MPNetModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __snake_case ( self ) -> int: self.config_tester.run_common_tests() def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*A_ ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*A_ ) def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*A_ ) @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase = model(A_ )[0] lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A_ ) lowerCAmelCase = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4 ) )
358
'''simple docstring''' from torch import nn def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
187
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Any = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "swinv2" UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Tuple , UpperCamelCase: int=2_24 , UpperCamelCase: Any=4 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=96 , UpperCamelCase: Union[str, Any]=[2, 2, 6, 2] , UpperCamelCase: Any=[3, 6, 12, 24] , UpperCamelCase: int=7 , UpperCamelCase: Dict=4.0 , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[str]=0.0 , UpperCamelCase: List[str]=0.0 , UpperCamelCase: List[str]=0.1 , UpperCamelCase: Any="gelu" , UpperCamelCase: List[Any]=False , UpperCamelCase: Any=0.02 , UpperCamelCase: Tuple=1e-5 , UpperCamelCase: str=32 , **UpperCamelCase: Dict , ): """simple docstring""" super().__init__(**UpperCamelCase ) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(UpperCamelCase ) A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = layer_norm_eps A__ = initializer_range A__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(UpperCamelCase ) - 1) ) A__ = (0, 0, 0, 0)
335
"""simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = tuple[float, float, float] SCREAMING_SNAKE_CASE_ : Optional[int] = tuple[float, float, float] def _snake_case ( UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad ): A__ = end_pointa[0] - end_pointa[0] A__ = end_pointa[1] - end_pointa[1] A__ = end_pointa[2] - end_pointa[2] return (x, y, z) def _snake_case ( UpperCAmelCase_ : Vectorad , UpperCAmelCase_ : Vectorad ): A__ = ab[1] * ac[2] - ab[2] * ac[1] # *i A__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j A__ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _snake_case ( UpperCAmelCase_ : Vectorad , UpperCAmelCase_ : int ): return tuple(round(UpperCAmelCase_ , UpperCAmelCase_ ) for x in vector ) == (0, 0, 0) def _snake_case ( UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad , UpperCAmelCase_ : int = 10 ): A__ = create_vector(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = create_vector(UpperCAmelCase_ , UpperCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ )
335
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A__ = 8 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=BITS ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = x.device snake_case__ : Dict = (x * 255).int().clamp(0 , 255 ) snake_case__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase ) snake_case__ : Optional[int] = rearrange(__lowerCAmelCase , '''d -> d 1 1''' ) snake_case__ : Dict = rearrange(__lowerCAmelCase , '''b c h w -> b c 1 h w''' ) snake_case__ : Tuple = ((x & mask) != 0).float() snake_case__ : str = rearrange(__lowerCAmelCase , '''b c d h w -> b (c d) h w''' ) snake_case__ : List[Any] = bits * 2 - 1 return bits def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=BITS ) -> List[str]: """simple docstring""" snake_case__ : Any = x.device snake_case__ : Union[str, Any] = (x > 0).int() snake_case__ : List[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase , dtype=torch.intaa ) snake_case__ : str = rearrange(__lowerCAmelCase , '''d -> d 1 1''' ) snake_case__ : List[str] = rearrange(__lowerCAmelCase , '''b (c d) h w -> b c d h w''' , d=8 ) snake_case__ : int = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def _lowerCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = True , __lowerCAmelCase=None , __lowerCAmelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case__ : Optional[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case__ : Optional[int] = self.alphas_cumprod[timestep] snake_case__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case__ : Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case__ : Optional[int] = self.bit_scale if self.config.clip_sample: snake_case__ : Tuple = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case__ : Union[str, Any] = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Optional[Any] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case__ : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ : int = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case__ : List[Any] = model_output.device if torch.is_tensor(__lowerCAmelCase ) else '''cpu''' snake_case__ : Optional[int] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase ).to(__lowerCAmelCase ) snake_case__ : List[str] = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) ** 0.5 * eta * noise snake_case__ : Optional[int] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def _lowerCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="epsilon" , __lowerCAmelCase=None , __lowerCAmelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" snake_case__ : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case__ , snake_case__ : Tuple = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: snake_case__ : Dict = None # 1. compute alphas, betas snake_case__ : Tuple = self.alphas_cumprod[t] snake_case__ : str = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case__ : int = 1 - alpha_prod_t snake_case__ : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case__ : Optional[int] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" snake_case__ : Optional[int] = self.bit_scale if self.config.clip_sample: snake_case__ : str = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ : str = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case__ : List[Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case__ : List[str] = 0 if t > 0: snake_case__ : Any = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCAmelCase ).to(model_output.device ) snake_case__ : str = (self._get_variance(__lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise snake_case__ : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) class a ( __lowerCamelCase ): def __init__( self :List[Any] ,__lowercase :UNetaDConditionModel ,__lowercase :Union[DDIMScheduler, DDPMScheduler] ,__lowercase :Optional[float] = 1.0 ,): super().__init__() snake_case__ : Optional[int] = bit_scale snake_case__ : Optional[Any] = ( ddim_bit_scheduler_step if isinstance(__lowercase ,__lowercase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__lowercase ,scheduler=__lowercase ) @torch.no_grad() def __call__( self :Union[str, Any] ,__lowercase :Optional[int] = 2_5_6 ,__lowercase :Optional[int] = 2_5_6 ,__lowercase :Optional[int] = 5_0 ,__lowercase :Optional[torch.Generator] = None ,__lowercase :Optional[int] = 1 ,__lowercase :Optional[str] = "pil" ,__lowercase :bool = True ,**__lowercase :Optional[Any] ,): snake_case__ : Tuple = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=__lowercase ,) snake_case__ : int = decimal_to_bits(__lowercase ) * self.bit_scale snake_case__ : Optional[Any] = latents.to(self.device ) self.scheduler.set_timesteps(__lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case__ : List[Any] = self.unet(__lowercase ,__lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case__ : Optional[Any] = self.scheduler.step(__lowercase ,__lowercase ,__lowercase ).prev_sample snake_case__ : List[str] = bits_to_decimal(__lowercase ) if output_type == "pil": snake_case__ : Optional[int] = self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
44
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] = original_name.split('''.''' )[0] snake_case__ : List[str] = key.split('''.''' ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 2] ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 1] ) snake_case__ : Any = orig_block_num - offset snake_case__ : Tuple = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = OrderedDict() snake_case__ , snake_case__ : List[str] = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case__ : int = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case__ : Tuple = key[: key.find('''proj''' )] snake_case__ : Union[str, Any] = key.replace(__lowerCAmelCase , f"""patch_embeddings.{total_embed_found}.""" ) snake_case__ : Dict = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case__ : Optional[int] = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case__ : Optional[Any] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case__ : int = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case__ : Tuple = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case__ : str = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case__ : Union[str, Any] = key.replace('''head''' , '''classifier''' ) snake_case__ : Union[str, Any] = value return new_state_dict def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : List[str] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = PoolFormerConfig() # set attributes based on model_name snake_case__ : List[Any] = '''huggingface/label-files''' snake_case__ : Union[str, Any] = model_name[-3:] snake_case__ : List[Any] = 1000 snake_case__ : Tuple = '''imagenet-1k-id2label.json''' snake_case__ : Optional[int] = (1, 1000) # set config attributes snake_case__ : Dict = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Tuple = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} if size == "s12": snake_case__ : List[str] = [2, 2, 6, 2] snake_case__ : Union[str, Any] = [64, 128, 320, 512] snake_case__ : Optional[int] = 4.0 snake_case__ : Tuple = 0.9 elif size == "s24": snake_case__ : Tuple = [4, 4, 12, 4] snake_case__ : Tuple = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Dict = 0.9 elif size == "s36": snake_case__ : Optional[Any] = [6, 6, 18, 6] snake_case__ : str = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Any = 1E-6 snake_case__ : Any = 0.9 elif size == "m36": snake_case__ : Any = [6, 6, 18, 6] snake_case__ : Union[str, Any] = [96, 192, 384, 768] snake_case__ : Dict = 4.0 snake_case__ : Union[str, Any] = 1E-6 snake_case__ : List[Any] = 0.95 elif size == "m48": snake_case__ : Optional[int] = [8, 8, 24, 8] snake_case__ : List[str] = [96, 192, 384, 768] snake_case__ : str = 4.0 snake_case__ : str = 1E-6 snake_case__ : Any = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor snake_case__ : Optional[Any] = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) # Prepare image snake_case__ : Optional[int] = prepare_img() snake_case__ : str = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict snake_case__ : List[str] = torch.load(__lowerCAmelCase , map_location=torch.device('''cpu''' ) ) # rename keys snake_case__ : str = rename_keys(__lowerCAmelCase ) # create HuggingFace model and load state dict snake_case__ : List[str] = PoolFormerForImageClassification(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Define image processor snake_case__ : int = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case__ : Dict = model(__lowerCAmelCase ) snake_case__ : str = outputs.logits # define expected logit slices for different models if size == "s12": snake_case__ : Tuple = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": snake_case__ : Optional[int] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": snake_case__ : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": snake_case__ : Optional[int] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": snake_case__ : List[str] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
146
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=13 , lowerCamelCase__ : Union[str, Any]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : str=0.6 , lowerCamelCase__ : int=None , ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : List[Any] = image_size UpperCamelCase__ : str = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : int = is_training UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : int = hidden_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = type_sequence_label_size UpperCamelCase__ : str = initializer_range UpperCamelCase__ : str = mask_ratio UpperCamelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : Optional[int] = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = ViTMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) UpperCamelCase__ : int = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : int = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Any = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = config_and_inputs UpperCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A: Union[str, Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} A: Any = False A: str = False A: Optional[int] = False A: Any = False def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = ViTMAEModelTester(self ) UpperCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : List[str] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ : Optional[Any] = torch.from_numpy(lowerCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : Union[str, Any] = pt_noise super().check_pt_tf_models(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ : int = outputs[0].cpu().numpy() UpperCamelCase__ : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Any = model_class.from_pretrained(lowerCamelCase__ ) model.to(lowerCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) # Make sure we don't have nans UpperCamelCase__ : Union[str, Any] = after_outputs[0].cpu().numpy() UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = ViTMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ : Dict = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.default_image_processor UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : str = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Tuple = ViTMAEConfig() UpperCamelCase__ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowerCamelCase__ , noise=torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) ) # verify the logits UpperCamelCase__ : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase__ ) , atol=1E-4 ) )
146
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Dict=[1, 2, 1] , _UpperCAmelCase : Dict=[2, 2, 4] , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[Any]=2.0 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Union[str, Any]=1E-5 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Optional[Any]=8 , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = embed_dim _A = depths _A = num_heads _A = window_size _A = mlp_ratio _A = qkv_bias _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = drop_path_rate _A = hidden_act _A = use_absolute_embeddings _A = patch_norm _A = layer_norm_eps _A = initializer_range _A = is_training _A = scope _A = use_labels _A = type_sequence_label_size _A = encoder_stride def lowerCAmelCase_ ( self : int ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[Any] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any ): _A = SwinvaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _A = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ): _A = SwinvaForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _A = 1 _A = SwinvaForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ): _A = self.type_sequence_label_size _A = SwinvaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCAmelCase : Dict = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : List[str] = False UpperCAmelCase : List[str] = False UpperCAmelCase : Any = False UpperCAmelCase : Tuple = False def lowerCAmelCase_ ( self : str ): _A = SwinvaModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def lowerCAmelCase_ ( self : int ): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Tuple ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : Dict ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: _A = True _A = False _A = True _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs.attentions _A = len(self.model_tester.depths ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = config.window_size**2 _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _A = len(_UpperCAmelCase ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _A = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _A = 2 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase ) ) _A = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ): _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs.hidden_states _A = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # Swinv2 has a different seq_length _A = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _A = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _A , _A , _A , _A = reshaped_hidden_states[0].shape _A = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = 3 _A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _A = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : str ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = SwinvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _A = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Dict ): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _UpperCAmelCase ) _A = self.default_image_processor _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) # verify the logits _A = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _A = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
360
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = (IPNDMScheduler,) UpperCAmelCase : Optional[Any] = (('''num_inference_steps''', 50),) def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : List[Any] ): _A = {'num_train_timesteps': 1_000} config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Any ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCAmelCase_ ( self : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _A = dummy_past_residuals[:] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self : Tuple ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.full_loop() _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
271
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ ): """simple docstring""" __lowercase = '''huggingface/label-files''' __lowercase = '''imagenet-1k-id2label.json''' __lowercase = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) __lowercase = {int(A__ ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowercase = BitConfig( conv_layer=A__ , num_labels=1000 , idalabel=A__ , labelaid=A__ , ) return config def _A ( A__ ): """simple docstring""" if "stem.conv" in name: __lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: __lowercase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: __lowercase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): __lowercase = '''bit.''' + name if "bit" not in name and "classifier" not in name: __lowercase = '''bit.encoder.''' + name return name def _A ( ): """simple docstring""" __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def _A ( A__ , A__ , A__=False ): """simple docstring""" __lowercase = get_config(A__ ) # load original model from timm __lowercase = create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model __lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): __lowercase = state_dict.pop(A__ ) __lowercase = val.squeeze() if '''head''' in key else val # load HuggingFace model __lowercase = BitForImageClassification(A__ ) model.eval() model.load_state_dict(A__ ) # create image processor __lowercase = create_transform(**resolve_data_config({} , model=A__ ) ) __lowercase = transform.transforms __lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __lowercase = BitImageProcessor( do_resize=A__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=A__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowercase = prepare_img() __lowercase = transform(A__ ).unsqueeze(0 ) __lowercase = processor(A__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(A__ , A__ ) # verify logits with torch.no_grad(): __lowercase = model(A__ ) __lowercase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowercase = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if push_to_hub: print(F"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(F"ybelkada/{model_name}" ) processor.push_to_hub(F"ybelkada/{model_name}" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) lowerCAmelCase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
104
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase__ : str = NewType("DataClass", Any) lowercase__ : Union[str, Any] = NewType("DataClassType", Any) def lowerCamelCase__ ( _A ): '''simple docstring''' if isinstance(_A , _A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {str(_A ): choice for choice in choices} return lambda _A : str_to_choice.get(_A , _A ) def lowerCamelCase__ ( *, _A = None , _A = None , _A = dataclasses.MISSING , _A = dataclasses.MISSING , _A = None , **_A , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case_ = {} if aliases is not None: snake_case_ = aliases if help is not None: snake_case_ = help return dataclasses.field(metadata=_A , default=_A , default_factory=_A , **_A ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = 42 def __init__( self : Optional[Any] , __lowercase : Union[DataClassType, Iterable[DataClassType]] , **__lowercase : Optional[int] ): """simple docstring""" if "formatter_class" not in kwargs: snake_case_ = ArgumentDefaultsHelpFormatter super().__init__(**__lowercase ) if dataclasses.is_dataclass(__lowercase ): snake_case_ = [dataclass_types] snake_case_ = list(__lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowercase ) @staticmethod def snake_case__ ( __lowercase : ArgumentParser , __lowercase : dataclasses.Field ): """simple docstring""" snake_case_ = f"--{field.name}" snake_case_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowercase ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) snake_case_ = kwargs.pop("aliases" , [] ) if isinstance(__lowercase , __lowercase ): snake_case_ = [aliases] snake_case_ = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__lowercase , "UnionType" ) and isinstance(__lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f" Problem encountered in field '{field.name}'." ) if type(__lowercase ) not in field.type.__args__: # filter `str` in Union snake_case_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case_ = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case_ = ( field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case_ = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case_ = {} if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )): if origin_type is Literal: snake_case_ = field.type.__args__ else: snake_case_ = [x.value for x in field.type] snake_case_ = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: snake_case_ = field.default else: snake_case_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case_ = copy(__lowercase ) # Hack because type=bool in argparse does not behave as we want. snake_case_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case_ = default # This tells argparse we accept 0 or 1 value after --field_name snake_case_ = "?" # This is the value that will get picked if we do --field_name (without value) snake_case_ = True elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ): snake_case_ = field.type.__args__[0] snake_case_ = "+" if field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() elif field.default is dataclasses.MISSING: snake_case_ = True else: snake_case_ = field.type if field.default is not dataclasses.MISSING: snake_case_ = field.default elif field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() else: snake_case_ = True parser.add_argument(__lowercase , *__lowercase , **__lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case_ = False parser.add_argument(f"--no_{field.name}" , action="store_false" , dest=field.name , **__lowercase ) def snake_case__ ( self : List[str] , __lowercase : DataClassType ): """simple docstring""" if hasattr(__lowercase , "_argument_group_name" ): snake_case_ = self.add_argument_group(dtype._argument_group_name ) else: snake_case_ = self try: snake_case_ = get_type_hints(__lowercase ) except NameError: raise RuntimeError( f"Type resolution failed for {dtype}. Try declaring the class in global scope or " "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__lowercase ): snake_case_ = ".".join(map(__lowercase , sys.version_info[:3] ) ) raise RuntimeError( f"Type resolution failed for {dtype} on Python {python_version}. Try removing " "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__lowercase ): if not field.init: continue snake_case_ = type_hints[field.name] self._parse_dataclass_field(__lowercase , __lowercase ) def snake_case__ ( self : Union[str, Any] , __lowercase : Union[str, Any]=None , __lowercase : Union[str, Any]=False , __lowercase : List[str]=True , __lowercase : int=None , __lowercase : Optional[int]=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case_ = [] if args_filename: args_files.append(Path(__lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case_ = ArgumentParser() args_file_parser.add_argument(__lowercase , type=__lowercase , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case_ , snake_case_ = args_file_parser.parse_known_args(args=__lowercase ) snake_case_ = vars(__lowercase ).get(args_file_flag.lstrip("-" ) , __lowercase ) if cmd_args_file_paths: args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] ) snake_case_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case_ = file_args + args if args is not None else file_args + sys.argv[1:] snake_case_ , snake_case_ = self.parse_known_args(args=__lowercase ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(__lowercase ) if f.init} snake_case_ = {k: v for k, v in vars(__lowercase ).items() if k in keys} for k in keys: delattr(__lowercase , __lowercase ) snake_case_ = dtype(**__lowercase ) outputs.append(__lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def snake_case__ ( self : int , __lowercase : Dict[str, Any] , __lowercase : bool = False ): """simple docstring""" snake_case_ = set(args.keys() ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(__lowercase ) if f.init} snake_case_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case_ = dtype(**__lowercase ) outputs.append(__lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}" ) return tuple(__lowercase ) def snake_case__ ( self : List[Any] , __lowercase : str , __lowercase : bool = False ): """simple docstring""" with open(Path(__lowercase ) , encoding="utf-8" ) as open_json_file: snake_case_ = json.loads(open_json_file.read() ) snake_case_ = self.parse_dict(__lowercase , allow_extra_keys=__lowercase ) return tuple(__lowercase ) def snake_case__ ( self : int , __lowercase : str , __lowercase : bool = False ): """simple docstring""" snake_case_ = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase ) return tuple(__lowercase )
187
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _A = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
137
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _A = logging.get_logger(__name__) def lowercase_ ( A__ , A__ , A__ , A__=None , A__=None ) -> str: """simple docstring""" if "." in tensor_name: snake_case = tensor_name.split("." ) for split in splits[:-1]: snake_case = getattr(A__ , A__ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) snake_case = new_module snake_case = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) snake_case = tensor_name in module._buffers snake_case = getattr(A__ , A__ ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) snake_case = False snake_case = False if is_buffer or not is_bitsandbytes_available(): snake_case = False snake_case = False else: snake_case = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): snake_case = value.to("cpu" ) if value.dtype == torch.inta: snake_case = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: snake_case = torch.tensor(A__ , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A__ ) and fpaa_statistics is None: snake_case = new_value.T snake_case = old_value.__dict__ if is_abit: snake_case = bnb.nn.IntaParams(A__ , requires_grad=A__ , **A__ ).to(A__ ) elif is_abit: snake_case = bnb.nn.Paramsabit(A__ , requires_grad=A__ , **A__ ).to(A__ ) snake_case = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(A__ ) ) else: if value is None: snake_case = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): snake_case = value.to(A__ ) else: snake_case = torch.tensor(A__ , device=A__ ) if is_buffer: snake_case = new_value else: snake_case = nn.Parameter(A__ , requires_grad=old_value.requires_grad ) snake_case = new_value def lowercase_ ( A__ , A__=None , A__=None , A__=None , A__=False ) -> Optional[Any]: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: snake_case = [] current_key_name.append(A__ ) if (isinstance(A__ , nn.Linear ) or isinstance(A__ , A__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(A__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A__ , A__ ): snake_case , snake_case = module.weight.shape else: snake_case = module.in_features snake_case = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case = bnb.nn.LinearabitLt( A__ , A__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case = bnb.nn.Linearabit( A__ , A__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case = True # Store the module class in case we need to transpose the weight later snake_case = type(A__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A__ ) if len(list(module.children() ) ) > 0: snake_case , snake_case = _replace_with_bnb_linear( A__ , A__ , A__ , A__ , has_been_replaced=A__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( A__ , A__=None , A__=None , A__=None ) -> List[str]: """simple docstring""" snake_case = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert snake_case , snake_case = _replace_with_bnb_linear( A__ , A__ , A__ , A__ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowercase_ ( *A__ , **A__ ) -> Optional[int]: """simple docstring""" warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , A__ , ) return replace_with_bnb_linear(*A__ , **A__ ) def lowercase_ ( *A__ , **A__ ) -> Any: """simple docstring""" warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , A__ , ) return set_module_quantized_tensor_to_device(*A__ , **A__ ) def lowercase_ ( A__ ) -> Union[str, Any]: """simple docstring""" snake_case = deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case = find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__ , A__ ): snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case = sum(A__ , [] ) snake_case = len(A__ ) > 0 # Check if it is a base model snake_case = not hasattr(A__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case = list(model.named_children() ) snake_case = [list_modules[-1][0]] # add last module together with tied weights snake_case = set(A__ ) - set(A__ ) snake_case = list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys snake_case = [".weight", ".bias"] snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case = name.replace(A__ , "" ) filtered_module_names.append(A__ ) return filtered_module_names
137
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __snake_case =[ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def a_ ( lowerCamelCase : Optional[Any]=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = None lowerCamelCase : Dict = None def __UpperCAmelCase ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> int: with TemporaryDirectory() as tmp_dir: lowerCAmelCase = dataset_module_factory(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase__ ) lowerCAmelCase = builder_cls( cache_dir=UpperCAmelCase__ , config_name=UpperCAmelCase__ , hash=dataset_module.hash , ) lowerCAmelCase = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase__ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowerCAmelCase = cached_path(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) self.assertTrue(os.path.exists(UpperCAmelCase__ ) ) @pytest.mark.integration def a_ ( lowerCamelCase : Tuple ): lowerCAmelCase = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path ) lowerCAmelCase = builder_cls( cache_dir=lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCAmelCase = None builder_instance.download_and_prepare() lowerCAmelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=lowerCamelCase ) lowerCAmelCase = builder_cls( cache_dir=lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowerCAmelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase , lowerCamelCase ) assert "train" in ds assert isinstance(ds['train'] , lowerCamelCase ) assert next(iter(ds['train'] ) )
4
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCAmelCase__ : List[str] ='''src/diffusers''' # Matches is_xxx_available() UpperCAmelCase__ : int =re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla UpperCAmelCase__ : Union[str, Any] =re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') UpperCAmelCase__ : Tuple =''' {0} = None ''' UpperCAmelCase__ : List[str] =''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' UpperCAmelCase__ : List[str] =''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _lowercase ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase =_re_backend.findall(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None return "_and_".join(_UpperCAmelCase ) def _lowercase ( ) -> Tuple: with open(os.path.join(_UpperCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase =0 lowerCamelCase ={} # Go through the end of the file while line_index < len(_UpperCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase =[] # Until we unindent, add backend objects to the list while line_index < len(_UpperCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase =lines[line_index] lowerCamelCase =_re_single_line_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_UpperCAmelCase ) > 0: lowerCamelCase =objects else: line_index += 1 return backend_specific_objects def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: if name.isupper(): return DUMMY_CONSTANT.format(_UpperCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_UpperCAmelCase , _UpperCAmelCase ) else: return DUMMY_CLASS.format(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( _UpperCAmelCase=None ) -> Tuple: if backend_specific_objects is None: lowerCamelCase =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase ="""[""" + """, """.join(F"""\"{b}\"""" for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase ="""# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_UpperCAmelCase , _UpperCAmelCase ) for o in objects] ) lowerCamelCase =dummy_file return dummy_files def _lowercase ( _UpperCAmelCase=False ) -> Optional[Any]: lowerCamelCase =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase ={"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase =os.path.join(_UpperCAmelCase , """utils""" ) lowerCamelCase ={ backend: os.path.join(_UpperCAmelCase , F"""dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py""" ) for backend in dummy_files.keys() } lowerCamelCase ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase =f.read() else: lowerCamelCase ="""""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py as the main """ """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F"""diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py. Run `make fix-copies` """ """to fix this.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase__ : str =parser.parse_args() check_dummies(args.fix_and_overwrite)
367
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowercase ( ) -> str: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_UpperCAmelCase ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def _lowercase ( ) -> Union[str, Any]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def _lowercase ( ) -> int: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_UpperCAmelCase ): http_head("""https://huggingface.co""" )
262
0
'''simple docstring''' def __magic_name__( lowerCamelCase): if any(not isinstance(lowerCamelCase, lowerCamelCase) or x < 0 for x in sequence): raise TypeError('''Sequence must be list of non-negative integers''') for _ in range(len(lowerCamelCase)): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCamelCase, sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
174
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _UpperCAmelCase : int = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a__ ( datasets.BuilderConfig ): """simple docstring""" __UpperCamelCase : Optional[datasets.Features] = None def __magic_name__( lowerCamelCase, lowerCamelCase, ): import pyspark def generate_fn(): __lowerCAmelCase = df.select('''*''', pyspark.sql.functions.spark_partition_id().alias('''part_id''')) for partition_id in partition_order: __lowerCAmelCase = df_with_partition_id.select('''*''').where(F"""part_id = {partition_id}""").drop('''part_id''') __lowerCAmelCase = partition_df.collect() __lowerCAmelCase = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class a__ ( _BaseExamplesIterable ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , ): __lowerCAmelCase = df __lowerCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__(self ): yield from self.generate_examples_fn() def _snake_case (self , __lowercase ): __lowerCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowercase ) return SparkExamplesIterable(self.df , partition_order=__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.split_shard_indices_by_worker(__lowercase , __lowercase ) return SparkExamplesIterable(self.df , partition_order=__lowercase ) @property def _snake_case (self ): return len(self.partition_order ) class a__ ( datasets.DatasetBuilder ): """simple docstring""" __UpperCamelCase : int = SparkConfig def __init__(self , __lowercase , __lowercase = None , __lowercase = None , **__lowercase , ): import pyspark __lowerCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCAmelCase = df __lowerCAmelCase = working_dir super().__init__( cache_dir=__lowercase , config_name=str(self.df.semanticHash() ) , **__lowercase , ) def _snake_case (self ): # Returns the path of the created file. def create_cache_and_write_probe(__lowercase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowercase ) __lowerCAmelCase = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowercase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowercase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def _snake_case (self ): return datasets.DatasetInfo(features=self.config.features ) def _snake_case (self , __lowercase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _snake_case (self , __lowercase ): import pyspark def get_arrow_batch_size(__lowercase ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) __lowerCAmelCase = self.df.count() __lowerCAmelCase = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCAmelCase = ( self.df.limit(__lowercase ) .repartition(1 ) .mapInArrow(__lowercase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCAmelCase = min(__lowercase , int(approx_total_size / max_shard_size ) ) __lowerCAmelCase = self.df.repartition(__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , ): import pyspark __lowerCAmelCase = ParquetWriter if file_format == '''parquet''' else ArrowWriter __lowerCAmelCase = os.path.join(self._working_dir , os.path.basename(__lowercase ) ) if self._working_dir else fpath __lowerCAmelCase = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCAmelCase = self.config.features __lowerCAmelCase = self._writer_batch_size __lowerCAmelCase = self._fs.storage_options def write_arrow(__lowercase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCAmelCase = pyspark.TaskContext().taskAttemptId() __lowerCAmelCase = next(__lowercase , __lowercase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) __lowerCAmelCase = 0 __lowerCAmelCase = writer_class( features=__lowercase , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=__lowercase , storage_options=__lowercase , embed_local_files=__lowercase , ) __lowerCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(__lowercase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 __lowerCAmelCase = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=__lowercase , storage_options=__lowercase , embed_local_files=__lowercase , ) __lowerCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(__lowercase ) if writer._num_bytes > 0: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowercase ) ): __lowerCAmelCase = os.path.join(os.path.dirname(__lowercase ) , os.path.basename(__lowercase ) ) shutil.move(__lowercase , __lowercase ) __lowerCAmelCase = ( self.df.mapInArrow(__lowercase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _snake_case (self , __lowercase , __lowercase = "arrow" , __lowercase = None , __lowercase = None , **__lowercase , ): self._validate_cache_dir() __lowerCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowercase ) __lowerCAmelCase = not is_remote_filesystem(self._fs ) __lowerCAmelCase = os.path.join if is_local else posixpath.join __lowerCAmelCase = '''-TTTTT-SSSSS-of-NNNNN''' __lowerCAmelCase = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __lowerCAmelCase = path_join(self._output_dir , __lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] for task_id, content in self._prepare_split_single(__lowercase , __lowercase , __lowercase ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowercase ) __lowerCAmelCase = total_num_examples __lowerCAmelCase = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: __lowerCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowercase , __lowercase , __lowercase , ): rename( __lowercase , fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , F"""{global_shard_id:05d}""" ).replace('''NNNNN''' , F"""{total_shards:05d}""" ) , ) __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(__lowercase ) ): __lowerCAmelCase , __lowerCAmelCase = task_id_and_num_shards[i] for shard_id in range(__lowercase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowercase , len(__lowercase ) ).map(lambda __lowercase : _rename_shard(*__lowercase ) ).collect() else: # don't use any pattern __lowerCAmelCase = 0 __lowerCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace(__lowercase , '''''' ) , ) def _snake_case (self , __lowercase , ): return SparkExamplesIterable(self.df )
174
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _a ( lowerCamelCase: List[Any] ) -> List[Any]: '''simple docstring''' __A = SwinConfig(image_size=1_92 ) if "base" in model_name: __A = 6 __A = 1_28 __A = (2, 2, 18, 2) __A = (4, 8, 16, 32) elif "large" in model_name: __A = 12 __A = 1_92 __A = (2, 2, 18, 2) __A = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __A = window_size __A = embed_dim __A = depths __A = num_heads return config def _a ( lowerCamelCase: Union[str, Any] ) -> List[Any]: '''simple docstring''' if "encoder.mask_token" in name: __A = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __A = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __A = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __A = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __A = "layernorm.weight" if name == "encoder.norm.bias": __A = "layernorm.bias" if "decoder" in name: pass else: __A = "swin." + name return name def _a ( lowerCamelCase: Tuple , lowerCamelCase: int ) -> Tuple: '''simple docstring''' for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(__lowerCamelCase ) if "attn_mask" in key: pass elif "qkv" in key: __A = key.split('''.''' ) __A = int(key_split[2] ) __A = int(key_split[4] ) __A = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __A = val[:dim, :] __A = val[ dim : dim * 2, : ] __A = val[-dim:, :] else: __A = val[ :dim ] __A = val[ dim : dim * 2 ] __A = val[ -dim: ] else: __A = val return orig_state_dict def _a ( lowerCamelCase: Any , lowerCamelCase: List[Any] , lowerCamelCase: int , lowerCamelCase: Optional[int] ) -> List[Any]: '''simple docstring''' __A = torch.load(__lowerCamelCase , map_location='''cpu''' )["model"] __A = get_swin_config(__lowerCamelCase ) __A = SwinForMaskedImageModeling(__lowerCamelCase ) model.eval() __A = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) __A = "http://images.cocodataset.org/val2017/000000039769.jpg" __A = ViTImageProcessor(size={'''height''': 1_92, '''width''': 1_92} ) __A = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) __A = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) with torch.no_grad(): __A = model(**__lowerCamelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you\'d like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case__ : List[str] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
351
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Optional[int] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct_text_model""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self :Any , _UpperCamelCase :int=5_0244 , _UpperCamelCase :Optional[Any]=768 , _UpperCamelCase :Optional[Any]=64 , _UpperCamelCase :Dict=2048 , _UpperCamelCase :int=12 , _UpperCamelCase :Optional[int]=12 , _UpperCamelCase :Optional[int]=32 , _UpperCamelCase :Dict=128 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :List[str]=1e-6 , _UpperCamelCase :Optional[Any]=1.0 , _UpperCamelCase :Union[str, Any]="gelu_new" , _UpperCamelCase :int=0 , _UpperCamelCase :int=False , _UpperCamelCase :int=0 , _UpperCamelCase :Dict=1 , _UpperCamelCase :Any=False , _UpperCamelCase :Optional[Any]=True , **_UpperCamelCase :Tuple , )-> Dict: __A = vocab_size __A = hidden_size __A = d_kv __A = d_ff __A = num_layers __A = num_heads __A = relative_attention_num_buckets __A = relative_attention_max_distance __A = dropout_rate __A = layer_norm_epsilon __A = initializer_factor __A = use_cache __A = eos_token_id __A = decoder_start_token_id # for backwards compatibility __A = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , is_decoder=_UpperCamelCase , **_UpperCamelCase , ) @classmethod def _lowerCAmelCase (cls :List[str] , _UpperCamelCase :Union[str, os.PathLike] , **_UpperCamelCase :List[Any] )-> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCamelCase ) __A , __A = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __A = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct_vision_model""" def __init__(self :Dict , _UpperCamelCase :Optional[Any]=768 , _UpperCamelCase :List[str]=768 , _UpperCamelCase :Any=2048 , _UpperCamelCase :Tuple=64 , _UpperCamelCase :int=12 , _UpperCamelCase :Optional[int]=12 , _UpperCamelCase :Tuple="gelu_new" , _UpperCamelCase :Dict=1e-6 , _UpperCamelCase :int=0.0 , _UpperCamelCase :int=0.0 , _UpperCamelCase :Union[str, Any]=1e-10 , _UpperCamelCase :Tuple=1.0 , _UpperCamelCase :Tuple=4096 , _UpperCamelCase :List[str]=32 , _UpperCamelCase :Optional[Any]=128 , **_UpperCamelCase :List[str] , )-> Any: super().__init__(**_UpperCamelCase ) __A = hidden_size __A = patch_embed_hidden_size __A = d_ff __A = dropout_rate __A = num_hidden_layers __A = num_attention_heads __A = initializer_range __A = initializer_factor __A = attention_dropout __A = layer_norm_eps __A = dense_act_fn __A = seq_len __A = relative_attention_num_buckets __A = relative_attention_max_distance __A = d_kv @classmethod def _lowerCAmelCase (cls :List[str] , _UpperCamelCase :Union[str, os.PathLike] , **_UpperCamelCase :List[str] )-> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCamelCase ) __A , __A = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __A = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct""" lowerCAmelCase__ = True def __init__(self :List[Any] , _UpperCamelCase :str=None , _UpperCamelCase :int=None , _UpperCamelCase :List[Any]=1.0 , _UpperCamelCase :int=0.0_2 , _UpperCamelCase :List[str]=False , _UpperCamelCase :Optional[Any]=False , _UpperCamelCase :int=True , **_UpperCamelCase :Any , )-> Optional[Any]: super().__init__(tie_word_embeddings=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) if text_config is None: __A = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __A = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __A = PixaStructTextConfig(**_UpperCamelCase ) __A = PixaStructVisionConfig(**_UpperCamelCase ) __A = self.text_config.decoder_start_token_id __A = self.text_config.pad_token_id __A = self.text_config.eos_token_id __A = initializer_factor __A = initializer_range __A = self.initializer_range __A = self.initializer_range __A = is_vqa @classmethod def _lowerCAmelCase (cls :str , _UpperCamelCase :PixaStructTextConfig , _UpperCamelCase :PixaStructVisionConfig , **_UpperCamelCase :Union[str, Any] )-> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] )-> int: __A = copy.deepcopy(self.__dict__ ) __A = self.text_config.to_dict() __A = self.vision_config.to_dict() __A = self.__class__.model_type return output
250
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : str , a__ : Union[str, "sqlalchemy.sql.Selectable"] , a__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , a__ : Optional[Features] = None , a__ : str = None , a__ : bool = False , **a__ : Dict , ): """simple docstring""" super().__init__(features=a__ , cache_dir=a__ , keep_in_memory=a__ , **a__ ) __snake_case = Sql( cache_dir=a__ , features=a__ , sql=a__ , con=a__ , **a__ , ) def a (self : int ): """simple docstring""" __snake_case = None __snake_case = None __snake_case = None __snake_case = None self.builder.download_and_prepare( download_config=a__ , download_mode=a__ , verification_mode=a__ , base_path=a__ , ) # Build dataset for splits __snake_case = self.builder.as_dataset( split='''train''' , verification_mode=a__ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : def __init__(self : int , a__ : Dataset , a__ : str , a__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , a__ : Optional[int] = None , a__ : Optional[int] = None , **a__ : str , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case = dataset __snake_case = name __snake_case = con __snake_case = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case = num_proc __snake_case = to_sql_kwargs def a (self : List[str] ): """simple docstring""" __snake_case = self.to_sql_kwargs.pop('''sql''' , a__ ) __snake_case = self.to_sql_kwargs.pop('''con''' , a__ ) __snake_case = self.to_sql_kwargs.pop('''index''' , a__ ) __snake_case = self._write(index=a__ , **self.to_sql_kwargs ) return written def a (self : Optional[Any] , a__ : List[str] ): """simple docstring""" __snake_case , __snake_case , __snake_case = args __snake_case = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case = query_table( table=self.dataset.data , key=slice(a__ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case = batch.to_pandas() __snake_case = df.to_sql(self.name , self.con , index=a__ , **a__ ) return num_rows or len(a__ ) def a (self : Union[str, Any] , a__ : Dict , **a__ : Union[str, Any] ): """simple docstring""" __snake_case = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a__ , a__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp _UpperCAmelCase = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """RUCAIBox/mvp""": 1024, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) A_ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : int = getattr(lowercase , pre_tok_state.pop('type' ) ) A_ : Union[str, Any] = add_prefix_space A_ : Dict = pre_tok_class(**lowercase ) A_ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ : Any = 'post_processor' A_ : List[str] = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: A_ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : int = tuple(state['sep'] ) if "cls" in state: A_ : Optional[int] = tuple(state['cls'] ) A_ : Tuple = False if state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : Union[str, Any] = add_prefix_space A_ : Tuple = True if state.get('trim_offsets' , lowercase ) != trim_offsets: A_ : str = trim_offsets A_ : str = True if changes_to_apply: A_ : List[str] = getattr(lowercase , state.pop('type' ) ) A_ : List[str] = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value A_ : Dict = value def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Any = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Dict = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Any = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Union[str, Any] = [self.sep_token_id] A_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
140
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _A = AutoTokenizer.from_pretrained("google/mt5-small" ) _A = tokenizer("Hello there" , return_tensors="pt" ).input_ids _A = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _A = model(input_ids.to(__UpperCAmelCase ) , labels=labels.to(__UpperCAmelCase ) ).loss _A = -(labels.shape[-1] * loss.item()) _A = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
174
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''T5Config''' def __lowercase ( __lowercase , __lowercase , __lowercase ) -> jnp.ndarray: '''simple docstring''' _A = jnp.zeros_like(__lowercase ) _A = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _A = shifted_input_ids.at[:, 0].set(__lowercase ) _A = jnp.where(shifted_input_ids == -100 , __lowercase , __lowercase ) return shifted_input_ids class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig
174
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( A_, A_, A_=None, A_=None ): '''simple docstring''' if attention_mask is None: __magic_name__ = tf.cast(tf.math.not_equal(A_, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCAmelCase_ : '''simple docstring''' a__ = OPTConfig a__ = {} a__ = """gelu""" def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any]=13 , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : Tuple=99 , UpperCamelCase__ : str=16 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[str]=20 , UpperCamelCase__ : int=2 , UpperCamelCase__ : str=1 , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : List[Any]=16 , UpperCamelCase__ : str=16 , ) -> str: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = embed_dim __magic_name__ = word_embed_proj_dim __magic_name__ = False def _lowercase ( self : int ) -> Optional[Any]: """simple docstring""" __magic_name__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCamelCase__ , **self.config_updates , ) __magic_name__ = prepare_opt_inputs_dict(UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def _lowercase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ = TFOPTModel(config=UpperCamelCase__ ) __magic_name__ = inputs_dict["""input_ids"""] __magic_name__ = input_ids[:1, :] __magic_name__ = inputs_dict["""attention_mask"""][:1, :] __magic_name__ = 1 # first forward pass __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __magic_name__ , __magic_name__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3 ) @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () a__ = (TFOPTForCausalLM,) if is_tf_available() else () a__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) a__ = False a__ = False a__ = False a__ = 10 def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" __magic_name__ = TFOPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : Any ) -> Any: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCamelCase__ : Any , UpperCamelCase__ : str ): if hasattr(UpperCamelCase__ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCamelCase__ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __magic_name__ = model_class(config=UpperCamelCase__ ) __magic_name__ = _get_word_embedding_weight(UpperCamelCase__ , model.get_input_embeddings() ) __magic_name__ = _get_word_embedding_weight(UpperCamelCase__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(UpperCamelCase__ ) __magic_name__ = _get_word_embedding_weight(UpperCamelCase__ , model.get_input_embeddings() ) __magic_name__ = _get_word_embedding_weight(UpperCamelCase__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __magic_name__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCamelCase__ ) # check that weights remain the same after resizing __magic_name__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __magic_name__ = False self.assertTrue(UpperCamelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCamelCase__ ) __magic_name__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __magic_name__ = False self.assertTrue(UpperCamelCase__ ) def a__ ( A_ ): '''simple docstring''' return tf.constant(A_, dtype=tf.intaa ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = 99 def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __magic_name__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __magic_name__ = input_ids.shape[0] __magic_name__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) __magic_name__ = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __magic_name__ = tf.not_equal(UpperCamelCase__ , model.config.pad_token_id ) with tf.GradientTape(): __magic_name__ = model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ ).last_hidden_state __magic_name__ = (1, 11, 512) self.assertEqual(output.shape , UpperCamelCase__ ) __magic_name__ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=4E-3 ) ) __magic_name__ = tf.function(UpperCamelCase__ , jit_compile=UpperCamelCase__ ) __magic_name__ = xla_generate(UpperCamelCase__ , UpperCamelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=4E-2 ) ) @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() __magic_name__ = """facebook/opt-350m""" def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = TFOPTForCausalLM.from_pretrained(self.path_model ) __magic_name__ = GPTaTokenizer.from_pretrained(self.path_model ) __magic_name__ = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __magic_name__ = tokenizer(UpperCamelCase__ , return_tensors="""tf""" , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) __magic_name__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __magic_name__ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-4 ) ) __magic_name__ = tf.function(UpperCamelCase__ , jit_compile=UpperCamelCase__ ) __magic_name__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-4 ) ) @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self : Any ) -> int: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = """facebook/opt-125m""" __magic_name__ = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __magic_name__ = [] __magic_name__ = GPTaTokenizer.from_pretrained(UpperCamelCase__ ) __magic_name__ = TFOPTForCausalLM.from_pretrained(UpperCamelCase__ ) for prompt in self.prompts: __magic_name__ = tokenizer(UpperCamelCase__ , return_tensors="""tf""" ).input_ids __magic_name__ = model.generate(UpperCamelCase__ , max_length=10 ) __magic_name__ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" __magic_name__ = """facebook/opt-350m""" __magic_name__ = GPTaTokenizer.from_pretrained(UpperCamelCase__ ) __magic_name__ = TFOPTForCausalLM.from_pretrained(UpperCamelCase__ ) __magic_name__ = """left""" # use different length sentences to test batching __magic_name__ = [ """Hello, my dog is a little""", """Today, I""", ] __magic_name__ = tokenizer(UpperCamelCase__ , return_tensors="""tf""" , padding=UpperCamelCase__ ) __magic_name__ = inputs["""input_ids"""] __magic_name__ = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs["""attention_mask"""] ) __magic_name__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __magic_name__ = model.generate(input_ids=UpperCamelCase__ ) __magic_name__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) __magic_name__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __magic_name__ = model.generate(input_ids=UpperCamelCase__ , max_length=model.config.max_length - num_paddings ) __magic_name__ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) __magic_name__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) __magic_name__ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) __magic_name__ = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __magic_name__ = """facebook/opt-350m""" __magic_name__ = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __magic_name__ = [] __magic_name__ = GPTaTokenizer.from_pretrained(UpperCamelCase__ ) __magic_name__ = TFOPTForCausalLM.from_pretrained(UpperCamelCase__ ) for prompt in self.prompts: __magic_name__ = tokenizer(UpperCamelCase__ , return_tensors="""tf""" ).input_ids __magic_name__ = model.generate(UpperCamelCase__ , max_length=10 ) __magic_name__ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
88
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = torch.nn.Linear(10 , 10 ) __magic_name__ = torch.optim.SGD(model.parameters() , 0.1 ) __magic_name__ = Accelerator() __magic_name__ = accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
88
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__: str ={"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] =["GLPNFeatureExtractor"] __magic_name__: Dict =["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Any =[ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __magic_name__: int =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __magic_name__ : Dict = precision __magic_name__ : str = ceil(precision / 14 ) __magic_name__ : List[str] = 426880 * Decimal(10005 ).sqrt() __magic_name__ : List[Any] = 1 __magic_name__ : Dict = 13591409 __magic_name__ : Tuple = Decimal(_A ) for k in range(1, _A ): __magic_name__ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_A ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __magic_name__: Tuple = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
138
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class A__ ( __magic_name__ ): @staticmethod def _lowerCamelCase ( a : ArgumentParser ): '''simple docstring''' lowerCAmelCase__ : str = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=a , default=a , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=a , help='Name of the model to download' ) download_parser.set_defaults(func=a ) def __init__( self : Optional[int] , a : str , a : str , a : bool , a : bool ): '''simple docstring''' lowerCAmelCase__ : str = model lowerCAmelCase__ : str = cache lowerCAmelCase__ : Optional[Any] = force lowerCAmelCase__ : int = trust_remote_code def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
212
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list: if len(SCREAMING_SNAKE_CASE_ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : Optional[Any] = [] def generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , SCREAMING_SNAKE_CASE_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase__ , lowerCAmelCase__ : str = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , SCREAMING_SNAKE_CASE_ ) generate(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
212
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> None: warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , A , ) super().__init__(*A , **A )
176
def SCREAMING_SNAKE_CASE__ ( lowercase = 1000 ) -> int: snake_case : Optional[int] = 3 snake_case : List[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
176
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : Any = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ['GLPNFeatureExtractor'] __lowercase : Union[str, Any] = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Optional[int] = "M-CLIP" def __init__( self , __A=1024 , __A=768 , **__A ): """simple docstring""" lowerCamelCase : str = transformerDimSize lowerCamelCase : Any = imageDimSize super().__init__(**__A ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Tuple = MCLIPConfig def __init__( self , __A , *__A , **__A ): """simple docstring""" super().__init__(__A , *__A , **__A ) lowerCamelCase : Tuple = XLMRobertaModel(__A ) lowerCamelCase : Optional[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _snake_case ( self , __A , __A ): """simple docstring""" lowerCamelCase : Any = self.transformer(input_ids=__A , attention_mask=__A )[0] lowerCamelCase : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__A ), embs
283
0
from ....utils import logging lowerCAmelCase__ : Union[str, Any] =logging.get_logger(__name__) class UpperCAmelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , _A , _A=None , _A=2_048 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = config.__dict__ __SCREAMING_SNAKE_CASE = modal_hidden_size if num_labels: __SCREAMING_SNAKE_CASE = num_labels
350
import os def __lowercase ( a__ = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(',' )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
118
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): return list(tensor.shape ) lowercase = tf.shape(__SCREAMING_SNAKE_CASE ) if tensor.shape == tf.TensorShape(__SCREAMING_SNAKE_CASE ): return dynamic lowercase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__SCREAMING_SNAKE_CASE )] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized lowercase , lowercase = tf.nn.moments(__SCREAMING_SNAKE_CASE , axes=[axis] , keepdims=__SCREAMING_SNAKE_CASE ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase = [1] * inputs.shape.rank lowercase = shape_list(__SCREAMING_SNAKE_CASE )[axis] lowercase = tf.reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = tf.reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Compute layer normalization using the batch_normalization # function. lowercase = tf.nn.batch_normalization( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , variance_epsilon=__SCREAMING_SNAKE_CASE , ) return outputs def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase = tf.shape(__SCREAMING_SNAKE_CASE ) lowercase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , tf.Tensor ): lowercase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "input_ids" ): tf.debugging.assert_less( __SCREAMING_SNAKE_CASE , tf.cast(__SCREAMING_SNAKE_CASE , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(__SCREAMING_SNAKE_CASE )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase = [x for x in data if len(__SCREAMING_SNAKE_CASE ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase = np.asarray(__SCREAMING_SNAKE_CASE ) lowercase = 1 lowercase = np.array_split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase = np.array_split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__SCREAMING_SNAKE_CASE ): lowercase = chunk_data else: lowercase = data def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if name in group.attrs: lowercase = [n.decode('utf8' ) if hasattr(__SCREAMING_SNAKE_CASE , 'decode' ) else n for n in group.attrs[name]] else: lowercase = [] lowercase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(__SCREAMING_SNAKE_CASE , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): def _expand_single_ad_tensor(__SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__SCREAMING_SNAKE_CASE , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __SCREAMING_SNAKE_CASE )
195
import pprint import requests UpperCAmelCase = '''https://zenquotes.io/api''' def UpperCAmelCase_ ( ): return requests.get(API_ENDPOINT_URL + '/today' ).json() def UpperCAmelCase_ ( ): return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": UpperCAmelCase = random_quotes() pprint.pprint(response)
195
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _A = "\\n Text data.\n Second line of data." _A = "file" @pytest.fixture(scope='''session''' ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowerCAmelCase_ = bytes(_A , '''utf-8''' ) with zstd.open(_A , '''wb''' ) as f: f.write(_A ) return path @pytest.fixture def __UpperCamelCase ( _A ): with open(os.path.join(tmpfs.local_root_dir , _A ) , '''w''' ) as f: f.write(_A ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def __UpperCamelCase ( _A , _A , _A , _A , _A , _A ): lowerCAmelCase_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowerCAmelCase_ = input_paths[compression_format] lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = DownloadConfig(cache_dir=_A , extract_compressed_file=_A ) lowerCAmelCase_ = cached_path(_A , download_config=_A ) with open(_A ) as f: lowerCAmelCase_ = f.read() with open(_A ) as f: lowerCAmelCase_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def __UpperCamelCase ( _A , _A , _A , _A , _A ): lowerCAmelCase_ = '''custom_cache''' lowerCAmelCase_ = '''custom_extracted_dir''' lowerCAmelCase_ = tmp_path / '''custom_extracted_path''' if default_extracted: lowerCAmelCase_ = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _A ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_A ) ) lowerCAmelCase_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCAmelCase_ = xz_file lowerCAmelCase_ = ( DownloadConfig(extract_compressed_file=_A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_A ) ) lowerCAmelCase_ = cached_path(_A , download_config=_A ) assert Path(_A ).parent.parts[-2:] == expected def __UpperCamelCase ( _A ): lowerCAmelCase_ = str(Path(_A ).resolve() ) assert cached_path(_A ) == text_file # relative path lowerCAmelCase_ = str(Path(_A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_A ) == text_file def __UpperCamelCase ( _A ): lowerCAmelCase_ = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_A ): cached_path(_A ) # relative path lowerCAmelCase_ = '''./__missing_file__.txt''' with pytest.raises(_A ): cached_path(_A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = get_from_cache(f"tmp://{tmpfs_file}" ) with open(_A ) as f: lowerCAmelCase_ = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _A ) def __UpperCamelCase ( ): with pytest.raises(_A ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_A ): http_get('''https://huggingface.co''' , temp_file=_A ) with pytest.raises(_A ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_A ): ftp_get('''ftp://huggingface.co''' , temp_file=_A ) with pytest.raises(_A ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_A ): fsspec_get('''s3://huggingface.co''' , temp_file=_A ) with pytest.raises(_A ): fsspec_head('''s3://huggingface.co''' )
357
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) lowerCAmelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase_ = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowerCAmelCase_ = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = processor(text=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=UpperCamelCase__, visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ )
167
0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: while b: UpperCamelCase__ , UpperCamelCase__ : int = b, a % b return a def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def SCREAMING_SNAKE_CASE ( ) -> str: print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
189
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[Any] =logging.get_logger(__name__) lowerCamelCase : Optional[int] ={ '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class __a ( A__ ): _lowerCAmelCase : Optional[int] = '''owlvit_text_model''' def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any]=4_94_08 , SCREAMING_SNAKE_CASE : List[str]=5_12 , SCREAMING_SNAKE_CASE : List[Any]=20_48 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Any=8 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : Union[str, Any]="quick_gelu" , SCREAMING_SNAKE_CASE : List[str]=1e-5 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : Any=0.0_2 , SCREAMING_SNAKE_CASE : int=1.0 , SCREAMING_SNAKE_CASE : Any=0 , SCREAMING_SNAKE_CASE : int=4_94_06 , SCREAMING_SNAKE_CASE : List[str]=4_94_07 , **SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = vocab_size UpperCamelCase__ : int = hidden_size UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : Tuple = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : Any = max_position_embeddings UpperCamelCase__ : List[Any] = hidden_act UpperCamelCase__ : str = layer_norm_eps UpperCamelCase__ : List[Any] = attention_dropout UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Optional[Any] = initializer_factor @classmethod def __lowercase ( cls : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Any = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCamelCase__ : Dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class __a ( A__ ): _lowerCAmelCase : str = '''owlvit_vision_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : str=7_68 , SCREAMING_SNAKE_CASE : Dict=30_72 , SCREAMING_SNAKE_CASE : int=12 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Union[str, Any]=7_68 , SCREAMING_SNAKE_CASE : Optional[int]=32 , SCREAMING_SNAKE_CASE : Dict="quick_gelu" , SCREAMING_SNAKE_CASE : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE : List[str]=0.0 , SCREAMING_SNAKE_CASE : Dict=0.0_2 , SCREAMING_SNAKE_CASE : Optional[int]=1.0 , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = hidden_size UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : int = num_channels UpperCamelCase__ : Union[str, Any] = image_size UpperCamelCase__ : List[Any] = patch_size UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : Optional[int] = layer_norm_eps UpperCamelCase__ : Optional[Any] = attention_dropout UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : int = initializer_factor @classmethod def __lowercase ( cls : Dict , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : List[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCamelCase__ : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class __a ( A__ ): _lowerCAmelCase : str = '''owlvit''' _lowerCAmelCase : Tuple = True def __init__( self : Any , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=5_12 , SCREAMING_SNAKE_CASE : Any=2.6_5_9_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , **SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) if text_config is None: UpperCamelCase__ : str = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCamelCase__ : List[str] = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCamelCase__ : Dict = OwlViTTextConfig(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = projection_dim UpperCamelCase__ : Union[str, Any] = logit_scale_init_value UpperCamelCase__ : int = return_dict UpperCamelCase__ : Tuple = 1.0 @classmethod def __lowercase ( cls : Any , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @classmethod def __lowercase ( cls : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : List[Any] = {} UpperCamelCase__ : Union[str, Any] = text_config UpperCamelCase__ : Optional[int] = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCamelCase__ : Union[str, Any] = self.text_config.to_dict() UpperCamelCase__ : List[str] = self.vision_config.to_dict() UpperCamelCase__ : Optional[int] = self.__class__.model_type return output class __a ( A__ ): @property def __lowercase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def __lowercase ( self : Dict ): '''simple docstring''' return 1e-4 def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : "ProcessorMixin" , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ): '''simple docstring''' UpperCamelCase__ : Optional[int] = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) return {**text_input_dict, **image_input_dict} @property def __lowercase ( self : Tuple ): '''simple docstring''' return 14
189
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowercase__ = {"""facebook/blenderbot-3B""": 128} class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = VOCAB_FILES_NAMES a_ : Tuple = PRETRAINED_VOCAB_FILES_MAP a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] = ["""input_ids""", """attention_mask"""] a_ : int = BlenderbotTokenizer def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Any=None , a_ : int=None , a_ : str="replace" , a_ : Tuple="<s>" , a_ : Optional[int]="</s>" , a_ : Union[str, Any]="</s>" , a_ : Union[str, Any]="<s>" , a_ : Optional[Any]="<unk>" , a_ : str="<pad>" , a_ : List[Any]="<mask>" , a_ : Tuple=False , a_ : Dict=True , **a_ : str , ): super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) lowerCAmelCase_ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : str = getattr(a_ , pre_tok_state.pop("type" ) ) lowerCAmelCase_ : int = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**a_ ) lowerCAmelCase_ : Any = add_prefix_space lowerCAmelCase_ : str = "post_processor" lowerCAmelCase_ : str = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: lowerCAmelCase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Dict = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : Optional[int] = tuple(state["cls"] ) lowerCAmelCase_ : Optional[int] = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : Any = True if state.get("trim_offsets" , a_ ) != trim_offsets: lowerCAmelCase_ : int = trim_offsets lowerCAmelCase_ : List[str] = True if changes_to_apply: lowerCAmelCase_ : Optional[Any] = getattr(a_ , state.pop("type" ) ) lowerCAmelCase_ : Tuple = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase ( self : int ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase ( self : int , a_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value lowerCAmelCase_ : Tuple = value def lowerCamelCase ( self : int , *a_ : List[str] , **a_ : Optional[int] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : str , *a_ : Union[str, Any] , **a_ : List[str] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : str , a_ : Optional[str] = None ): lowerCAmelCase_ : str = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def lowerCamelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Union[str, Any] , a_ : "Conversation" ): lowerCAmelCase_ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) lowerCAmelCase_ : Tuple = " ".join(a_ ) lowerCAmelCase_ : Any = self.encode(a_ ) if len(a_ ) > self.model_max_length: lowerCAmelCase_ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
161
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase__ = random.Random() if is_torch_available(): import torch def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=1.0 , __UpperCamelCase=None , __UpperCamelCase=None ) -> Dict: """simple docstring""" if rng is None: lowerCAmelCase_ : int = global_rng lowerCAmelCase_ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Dict=7 , a_ : int=4_00 , a_ : Union[str, Any]=20_00 , a_ : Any=1 , a_ : Optional[int]=0.0 , a_ : str=1_60_00 , a_ : Optional[int]=True , a_ : Dict=True , ): lowerCAmelCase_ : Tuple = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Optional[int] = min_seq_length lowerCAmelCase_ : List[Any] = max_seq_length lowerCAmelCase_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : Dict = feature_size lowerCAmelCase_ : Tuple = padding_value lowerCAmelCase_ : int = sampling_rate lowerCAmelCase_ : str = return_attention_mask lowerCAmelCase_ : Union[str, Any] = do_normalize def lowerCamelCase ( self : Dict ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self : List[Any] , a_ : List[Any]=False , a_ : Optional[int]=False ): def _flatten(a_ : Optional[Any] ): return list(itertools.chain(*a_ ) ) if equal_length: lowerCAmelCase_ : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase_ : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_ : List[Any] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Tuple = ASTFeatureExtractor def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = ASTFeatureExtractionTester(self ) def lowerCamelCase ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : str = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : Optional[Any] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase_ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched lowerCAmelCase_ : Tuple = feat_extract(a_ , padding=a_ , return_tensors="np" ).input_values lowerCAmelCase_ : int = feat_extract(a_ , padding=a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase_ : Union[str, Any] = np.asarray(a_ ) lowerCAmelCase_ : str = feat_extract(a_ , return_tensors="np" ).input_values lowerCAmelCase_ : List[Any] = feat_extract(a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) @require_torch def lowerCamelCase ( self : List[str] ): import torch lowerCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Tuple = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase_ : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase ( self : List[Any] , a_ : List[str] ): from datasets import load_dataset lowerCAmelCase_ : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase_ : Optional[int] = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase ( self : str ): # fmt: off lowerCAmelCase_ : Tuple = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on lowerCAmelCase_ : Dict = self._load_datasamples(1 ) lowerCAmelCase_ : Union[str, Any] = ASTFeatureExtractor() lowerCAmelCase_ : int = feature_extractor(a_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
161
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 10, _UpperCAmelCase = 22 ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = range(1, _UpperCAmelCase ) lowerCAmelCase : str = range(1, _UpperCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'{solution(10, 22) = }')
138
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : int = (KDPMaDiscreteScheduler,) a_ : List[str] = 10 def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Tuple: a_ = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__UpperCAmelCase) return config def UpperCAmelCase__ ( self) ->Optional[Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02]): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(prediction_type="v_prediction") a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) a_ = self.dummy_model() a_ = self.dummy_sample_deter * scheduler.init_noise_sigma a_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07) < 1E-2 assert abs(result_mean.item() - 6.1112E-10) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07) < 1E-2 assert abs(result_mean.item() - 0.0_002) < 1E-3 def UpperCAmelCase__ ( self) ->str: if torch_device == "mps": return a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) a_ = self.dummy_model() a_ = self.dummy_sample_deter * scheduler.init_noise_sigma a_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 def UpperCAmelCase__ ( self) ->Any: if torch_device == "mps": return a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCAmelCase) a_ = self.dummy_model() a_ = self.dummy_sample_deter.to(__UpperCAmelCase) * scheduler.init_noise_sigma for t in scheduler.timesteps: a_ = scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = output.prev_sample a_ = torch.sum(torch.abs(__UpperCAmelCase)) a_ = torch.mean(torch.abs(__UpperCAmelCase)) if str(__UpperCAmelCase).startswith("cpu"): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3
243
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=5 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=512 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=4 ,) -> Optional[int]: lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Dict = seq_length lowerCAmelCase__ : List[str] = is_training lowerCAmelCase__ : List[Any] = use_attention_mask lowerCAmelCase__ : Optional[int] = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : int = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : Optional[Any] = type_vocab_size lowerCAmelCase__ : List[Any] = type_sequence_label_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : str = num_choices def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : List[str] = None if self.use_attention_mask: lowerCAmelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ : Optional[Any] = config_and_inputs lowerCAmelCase__ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ : Dict = config_and_inputs lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Any = True __lowercase : int = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : str = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase_ ( self ) -> List[str]: for model_class_name in self.all_model_classes: lowerCAmelCase__ : int = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" ,from_pt=__UpperCAmelCase ) lowerCAmelCase__ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase ) @require_flax class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" ,from_pt=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ,dtype=jnp.intaa ) lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase )[0] lowerCAmelCase__ : Optional[Any] = [1, 11, 5_0265] self.assertEqual(list(output.shape ) ,__UpperCAmelCase ) # compare the actual values for a slice. lowerCAmelCase__ : Dict = np.array( [[[40.4880, 18.0199, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 10.7085], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Tuple = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" ,from_pt=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ,dtype=jnp.intaa ) lowerCAmelCase__ : Any = model(__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ : List[str] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,__UpperCAmelCase ,atol=1E-4 ) )
351
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''convnextv2''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-12 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=224 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : Union[str, Any] = num_stages lowerCAmelCase__ : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowerCAmelCase__ : str = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : Dict = drop_path_rate lowerCAmelCase__ : int = image_size lowerCAmelCase__ : int = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase ,out_indices=__UpperCAmelCase ,stage_names=self.stage_names )
184
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase__ = logging.get_logger(__name__) # General docstring lowercase__ = """RegNetConfig""" # Base docstring lowercase__ = """facebook/regnet-y-040""" lowercase__ = [1, 1088, 7, 7] # Image classification docstring lowercase__ = """facebook/regnet-y-040""" lowercase__ = """tabby, tabby cat""" lowercase__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , a_ : int , a_ : int = 3 , a_ : int = 1 , a_ : int = 1 , a_ : Optional[str] = "relu" , **a_ : int , ): super().__init__(**a_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase_ : Tuple = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase_ : List[Any] = tf.keras.layers.ConvaD( filters=a_ , kernel_size=a_ , strides=a_ , padding="VALID" , groups=a_ , use_bias=a_ , name="convolution" , ) lowerCAmelCase_ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase_ : Dict = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase ( self : str , a_ : Any ): lowerCAmelCase_ : Optional[int] = self.convolution(self.padding(a_ ) ) lowerCAmelCase_ : int = self.normalization(a_ ) lowerCAmelCase_ : Optional[Any] = self.activation(a_ ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , a_ : RegNetConfig , **a_ : Tuple ): super().__init__(**a_ ) lowerCAmelCase_ : Union[str, Any] = config.num_channels lowerCAmelCase_ : Union[str, Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCamelCase ( self : Union[str, Any] , a_ : Any ): lowerCAmelCase_ : int = shape_list(a_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase_ : Dict = tf.transpose(a_ , perm=(0, 2, 3, 1) ) lowerCAmelCase_ : Any = self.embedder(a_ ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , a_ : int , a_ : int = 2 , **a_ : Optional[Any] ): super().__init__(**a_ ) lowerCAmelCase_ : Optional[int] = tf.keras.layers.ConvaD( filters=a_ , kernel_size=1 , strides=a_ , use_bias=a_ , name="convolution" ) lowerCAmelCase_ : Union[str, Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def lowerCamelCase ( self : Tuple , a_ : tf.Tensor , a_ : bool = False ): return self.normalization(self.convolution(a_ ) , training=a_ ) class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , a_ : int , a_ : int , **a_ : Any ): super().__init__(**a_ ) lowerCAmelCase_ : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name="pooler" ) lowerCAmelCase_ : int = [ tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCamelCase ( self : Dict , a_ : List[str] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowerCAmelCase_ : Optional[Any] = self.pooler(a_ ) for layer_module in self.attention: lowerCAmelCase_ : List[Any] = layer_module(a_ ) lowerCAmelCase_ : str = hidden_state * pooled return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , a_ : RegNetConfig , a_ : int , a_ : int , a_ : int = 1 , **a_ : Any ): super().__init__(**a_ ) lowerCAmelCase_ : List[str] = in_channels != out_channels or stride != 1 lowerCAmelCase_ : Optional[int] = max(1 , out_channels // config.groups_width ) lowerCAmelCase_ : Optional[Any] = ( TFRegNetShortCut(a_ , stride=a_ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase_ : Dict = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name="layer.2" ), ] lowerCAmelCase_ : List[Any] = ACTaFN[config.hidden_act] def lowerCamelCase ( self : Any , a_ : int ): lowerCAmelCase_ : str = hidden_state for layer_module in self.layers: lowerCAmelCase_ : Any = layer_module(a_ ) lowerCAmelCase_ : List[str] = self.shortcut(a_ ) hidden_state += residual lowerCAmelCase_ : Tuple = self.activation(a_ ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , a_ : RegNetConfig , a_ : int , a_ : int , a_ : int = 1 , **a_ : List[Any] ): super().__init__(**a_ ) lowerCAmelCase_ : Optional[Any] = in_channels != out_channels or stride != 1 lowerCAmelCase_ : List[Any] = max(1 , out_channels // config.groups_width ) lowerCAmelCase_ : List[Any] = ( TFRegNetShortCut(a_ , stride=a_ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase_ : Tuple = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(a_ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name="layer.3" ), ] lowerCAmelCase_ : Any = ACTaFN[config.hidden_act] def lowerCamelCase ( self : Dict , a_ : Tuple ): lowerCAmelCase_ : str = hidden_state for layer_module in self.layers: lowerCAmelCase_ : Tuple = layer_module(a_ ) lowerCAmelCase_ : int = self.shortcut(a_ ) hidden_state += residual lowerCAmelCase_ : Tuple = self.activation(a_ ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , a_ : RegNetConfig , a_ : int , a_ : int , a_ : int = 2 , a_ : int = 2 , **a_ : str ): super().__init__(**a_ ) lowerCAmelCase_ : Optional[int] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase_ : Union[str, Any] = [ # downsampling is done in the first layer with stride of 2 layer(a_ , a_ , a_ , stride=a_ , name="layers.0" ), *[layer(a_ , a_ , a_ , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCamelCase ( self : int , a_ : List[Any] ): for layer_module in self.layers: lowerCAmelCase_ : Optional[Any] = layer_module(a_ ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , a_ : RegNetConfig , **a_ : Optional[Any] ): super().__init__(**a_ ) lowerCAmelCase_ : Optional[int] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase_ : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(a_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(a_ , a_ , a_ , depth=a_ , name=f'''stages.{i+1}''' ) ) def lowerCamelCase ( self : Tuple , a_ : tf.Tensor , a_ : bool = False , a_ : bool = True ): lowerCAmelCase_ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase_ : str = hidden_states + (hidden_state,) lowerCAmelCase_ : List[Any] = stage_module(a_ ) if output_hidden_states: lowerCAmelCase_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=a_ , hidden_states=a_ ) @keras_serializable class __lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' a_ : Optional[int] = RegNetConfig def __init__( self : List[Any] , a_ : List[Any] , **a_ : Optional[Any] ): super().__init__(**a_ ) lowerCAmelCase_ : int = config lowerCAmelCase_ : Dict = TFRegNetEmbeddings(a_ , name="embedder" ) lowerCAmelCase_ : List[Any] = TFRegNetEncoder(a_ , name="encoder" ) lowerCAmelCase_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name="pooler" ) @unpack_inputs def lowerCamelCase ( self : List[str] , a_ : tf.Tensor , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : bool = False , ): lowerCAmelCase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : str = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : List[str] = self.embedder(a_ , training=a_ ) lowerCAmelCase_ : Union[str, Any] = self.encoder( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) lowerCAmelCase_ : str = encoder_outputs[0] lowerCAmelCase_ : Any = self.pooler(a_ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase_ : str = tf.transpose(a_ , perm=(0, 3, 1, 2) ) lowerCAmelCase_ : int = tf.transpose(a_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase_ : Optional[Any] = tuple([tf.transpose(a_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ , pooler_output=a_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = RegNetConfig a_ : List[str] = """regnet""" a_ : Union[str, Any] = """pixel_values""" @property def lowerCamelCase ( self : Dict ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowercase__ = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase__ = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , A__ , ) class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : List[Any] , a_ : RegNetConfig , *a_ : str , **a_ : int ): super().__init__(a_ , *a_ , **a_ ) lowerCAmelCase_ : Optional[Any] = TFRegNetMainLayer(a_ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase ( self : Dict , a_ : tf.Tensor , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : int=False , ): lowerCAmelCase_ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : str = self.regnet( pixel_values=a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , A__ , ) class __lowerCamelCase ( A__ , A__ ): '''simple docstring''' def __init__( self : Any , a_ : RegNetConfig , *a_ : str , **a_ : Union[str, Any] ): super().__init__(a_ , *a_ , **a_ ) lowerCAmelCase_ : List[str] = config.num_labels lowerCAmelCase_ : Dict = TFRegNetMainLayer(a_ , name="regnet" ) # classification head lowerCAmelCase_ : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase ( self : List[str] , a_ : tf.Tensor = None , a_ : tf.Tensor = None , a_ : bool = None , a_ : bool = None , a_ : List[str]=False , ): lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Tuple = self.regnet( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) lowerCAmelCase_ : Dict = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ : List[Any] = self.classifier[0](a_ ) lowerCAmelCase_ : Union[str, Any] = self.classifier[1](a_ ) lowerCAmelCase_ : Any = None if labels is None else self.hf_compute_loss(labels=a_ , logits=a_ ) if not return_dict: lowerCAmelCase_ : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a_ , logits=a_ , hidden_states=outputs.hidden_states )
241
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" return EnvironmentCommand() def __lowerCamelCase ( __UpperCamelCase ) -> Optional[int]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __lowerCamelCase ( A__ ): '''simple docstring''' @staticmethod def lowerCamelCase ( a_ : ArgumentParser ): lowerCAmelCase_ : str = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) download_parser.add_argument( "--accelerate-config_file" , default=a_ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a_ ) def __init__( self : Dict , a_ : Dict , *a_ : str ): lowerCAmelCase_ : Union[str, Any] = accelerate_config_file def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[int] = "not installed" if is_safetensors_available(): import safetensors lowerCAmelCase_ : int = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors lowerCAmelCase_ : Optional[Any] = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' lowerCAmelCase_ : List[Any] = "not installed" lowerCAmelCase_ : Dict = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase_ : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a_ ): lowerCAmelCase_ : int = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCAmelCase_ : Any = ( "\n".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(a_ , a_ ) else f'''\t{accelerate_config}''' ) lowerCAmelCase_ : Union[str, Any] = "not installed" lowerCAmelCase_ : Dict = "NA" if is_torch_available(): import torch lowerCAmelCase_ : Tuple = torch.__version__ lowerCAmelCase_ : Union[str, Any] = torch.cuda.is_available() lowerCAmelCase_ : List[str] = "not installed" lowerCAmelCase_ : Tuple = "NA" if is_tf_available(): import tensorflow as tf lowerCAmelCase_ : Union[str, Any] = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase_ : Tuple = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase_ : List[str] = bool(tf.config.list_physical_devices("GPU" ) ) lowerCAmelCase_ : Optional[Any] = "not installed" lowerCAmelCase_ : Optional[int] = "not installed" lowerCAmelCase_ : Tuple = "not installed" lowerCAmelCase_ : Tuple = "NA" if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase_ : List[Any] = flax.__version__ lowerCAmelCase_ : Tuple = jax.__version__ lowerCAmelCase_ : List[Any] = jaxlib.__version__ lowerCAmelCase_ : str = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase_ : Dict = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'''{safetensors_version}''', "Accelerate version": f'''{accelerate_version}''', "Accelerate config": f'''{accelerate_config_str}''', "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Tensorflow version (GPU?)": f'''{tf_version} ({tf_cuda_available})''', "Flax version (CPU?/GPU?/TPU?)": f'''{flax_version} ({jax_backend})''', "Jax version": f'''{jax_version}''', "JaxLib version": f'''{jaxlib_version}''', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def lowerCamelCase ( a_ : Tuple ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
241
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _lowerCAmelCase ( lowercase ) -> List[str]: return 1.0 / (1.0 + np.exp(-_outputs )) def _lowerCAmelCase ( lowercase ) -> Optional[int]: __lowerCAmelCase = np.max(_outputs , axis=-1 , keepdims=lowercase ) __lowerCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Dict ="""sigmoid""" a : Optional[int] ="""softmax""" a : List[str] ="""none""" @add_end_docstrings( lowerCAmelCase_ , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] =False a : Optional[int] =ClassificationFunction.NONE def __init__( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="",**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = tokenizer_kwargs __lowerCAmelCase = {} if hasattr(self.model.config,"""return_all_scores""" ) and return_all_scores is None: __lowerCAmelCase = self.model.config.return_all_scores if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or top_k is None: __lowerCAmelCase = top_k __lowerCAmelCase = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""",__SCREAMING_SNAKE_CASE,) if return_all_scores: __lowerCAmelCase = None else: __lowerCAmelCase = 1 if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowerCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = super().__call__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowerCAmelCase = """top_k""" not in kwargs if isinstance(args[0],__SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.framework if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): return self.tokenizer(**__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0],__SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0],text_pair=inputs[0][1],return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowerCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowerCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config,"""function_to_apply""" ) and function_to_apply is None: __lowerCAmelCase = self.model.config.function_to_apply else: __lowerCAmelCase = ClassificationFunction.NONE __lowerCAmelCase = model_outputs["""logits"""][0] __lowerCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowerCAmelCase = sigmoid(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowerCAmelCase = softmax(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: __lowerCAmelCase = outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowerCAmelCase = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(__SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda __SCREAMING_SNAKE_CASE : x["score"],reverse=__SCREAMING_SNAKE_CASE ) if top_k is not None: __lowerCAmelCase = dict_scores[:top_k] return dict_scores
46
'''simple docstring''' import sys def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] for chain_length in range(2 , lowercase ): for a in range(1 , n - chain_length + 1 ): __lowerCAmelCase = a + chain_length - 1 __lowerCAmelCase = sys.maxsize for c in range(lowercase , lowercase ): __lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCAmelCase = cost __lowerCAmelCase = c return matrix, sol def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: if i == j: print("""A""" + str(lowercase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(lowercase , lowercase , optimal_solution[i][j] ) print_optiomal_solution(lowercase , optimal_solution[i][j] + 1 , lowercase ) print(""")""" , end=""" """ ) def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCAmelCase = len(lowercase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCAmelCase , __lowerCAmelCase = matrix_chain_order(lowercase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase , 1 , n - 1 ) if __name__ == "__main__": main()
46
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : int = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase__ ( A ): """simple docstring""" __a = """conditional_detr""" __a = ["""past_key_values"""] __a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , UpperCamelCase : int=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : int=3 , UpperCamelCase : List[str]=300 , UpperCamelCase : Optional[Any]=6 , UpperCamelCase : int=2_048 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Any=6 , UpperCamelCase : str=2_048 , UpperCamelCase : Optional[int]=8 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : Any=True , UpperCamelCase : Optional[int]="relu" , UpperCamelCase : Any=256 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Any=0.02 , UpperCamelCase : List[str]=1.0 , UpperCamelCase : List[str]=False , UpperCamelCase : List[str]="sine" , UpperCamelCase : Any="resnet50" , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[int]=False , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=5 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Any=1 , UpperCamelCase : int=2 , UpperCamelCase : List[Any]=5 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Dict=0.25 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __UpperCAmelCase : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Any = backbone_config.get("""model_type""" ) __UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Dict = config_class.from_dict(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = use_timm_backbone __UpperCAmelCase : Tuple = backbone_config __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[int] = num_queries __UpperCAmelCase : List[Any] = d_model __UpperCAmelCase : List[str] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : int = encoder_attention_heads __UpperCAmelCase : Union[str, Any] = decoder_ffn_dim __UpperCAmelCase : Any = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : Optional[Any] = dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : Optional[Any] = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : Tuple = init_xavier_std __UpperCAmelCase : str = encoder_layerdrop __UpperCAmelCase : str = decoder_layerdrop __UpperCAmelCase : int = encoder_layers __UpperCAmelCase : List[Any] = auxiliary_loss __UpperCAmelCase : Dict = position_embedding_type __UpperCAmelCase : List[str] = backbone __UpperCAmelCase : Any = use_pretrained_backbone __UpperCAmelCase : List[Any] = dilation # Hungarian matcher __UpperCAmelCase : List[str] = class_cost __UpperCAmelCase : Any = bbox_cost __UpperCAmelCase : str = giou_cost # Loss coefficients __UpperCAmelCase : str = mask_loss_coefficient __UpperCAmelCase : List[str] = dice_loss_coefficient __UpperCAmelCase : List[Any] = cls_loss_coefficient __UpperCAmelCase : List[Any] = bbox_loss_coefficient __UpperCAmelCase : str = giou_loss_coefficient __UpperCAmelCase : int = focal_alpha super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return self.d_model def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __UpperCAmelCase : Any = self.backbone_config.to_dict() __UpperCAmelCase : Optional[int] = self.__class__.model_type return output class lowerCamelCase__ ( A ): """simple docstring""" __a = version.parse("""1.11""" ) @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return 1e-5 @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return 12
115
"""simple docstring""" import numpy as np UpperCAmelCase : Optional[Any] = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = np.array(UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = np.where(letter == self.SQUARE ) __UpperCAmelCase : Optional[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCamelCase__ ( self : Any , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : str = message.lower() __UpperCAmelCase : List[Any] = message.replace(""" """ , """""" ) __UpperCAmelCase : List[Any] = message.replace("""j""" , """i""" ) __UpperCAmelCase : Optional[int] = np.empty((2, len(UpperCamelCase )) ) for letter_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : List[Any] = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : str = numbers[0] __UpperCAmelCase : int = numbers[1] __UpperCAmelCase : Union[str, Any] = first_step.reshape(2 * len(UpperCamelCase ) ) __UpperCAmelCase : Optional[Any] = """""" for numbers_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Any = int(second_step[numbers_index * 2] ) __UpperCAmelCase : Any = int(second_step[(numbers_index * 2) + 1] ) __UpperCAmelCase : str = self.numbers_to_letter(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = encoded_message + letter return encoded_message def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = message.lower() message.replace(""" """ , """""" ) __UpperCAmelCase : int = np.empty(2 * len(UpperCamelCase ) ) for letter_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Any = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : Any = numbers[0] __UpperCAmelCase : Dict = numbers[1] __UpperCAmelCase : str = first_step.reshape((2, len(UpperCamelCase )) ) __UpperCAmelCase : Union[str, Any] = """""" for numbers_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Optional[int] = int(second_step[0, numbers_index] ) __UpperCAmelCase : Tuple = int(second_step[1, numbers_index] ) __UpperCAmelCase : Tuple = self.numbers_to_letter(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = decoded_message + letter return decoded_message
115
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" __A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(a_ , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A , __A = emb.weight.shape __A = nn.Linear(a_ , a_ , bias=a_ ) __A = emb.weight.data return lin_layer def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = torch.load(a_ , map_location="cpu" ) __A = mam_aaa["args"] or mam_aaa["cfg"]["model"] __A = mam_aaa["model"] remove_ignore_keys_(a_ ) __A = state_dict["encoder.embed_tokens.weight"].shape[0] __A = MaMaaaConfig( vocab_size=a_ , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) __A = state_dict["decoder.embed_tokens.weight"] __A = MaMaaaForConditionalGeneration(a_ ) model.model.load_state_dict(a_ , strict=a_ ) __A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
355
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"text": Value("string" )} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "text" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Dict ): return { self.text_column: "text", self.label_column: "labels", }
124
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : __magic_name__ = 42 __magic_name__ = None __magic_name__ = None def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = Node(1 ) A : List[Any] = Node(2 ) A : Any = Node(3 ) A : Tuple = Node(4 ) A : Tuple = Node(5 ) return tree def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Union[str, Any] = [] if root is None: return output A : Optional[Any] = deque([root] ) while process_queue: A : Any = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : int = [] def populate_output(snake_case__ , snake_case__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__A , __A ) return output def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = [] def populate_output(snake_case__ , snake_case__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__A , __A ) return output def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if root is None: return [] A : List[Any] = [] A : Dict = 0 A : Union[str, Any] = height(__A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__A , __A ) ) A : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__A , __A ) ) A : Tuple = 0 return output def lowerCAmelCase_ ( ): # Main function for testing. '''simple docstring''' A : Optional[Any] = make_tree() print(F'In-order Traversal: {inorder(__A )}' ) print(F'Pre-order Traversal: {preorder(__A )}' ) print(F'Post-order Traversal: {postorder(__A )}' , '''\n''' ) print(F'Height of Tree: {height(__A )}' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(__A ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(__A ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(__A , level=__A ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
3
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Any: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> Optional[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Dict: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
349
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _snake_case = [144, 192, 240] _snake_case = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _snake_case = [96, 120, 144] _snake_case = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _snake_case = [64, 80, 96] _snake_case = [16, 16, 24, 48, 64, 80, 320] _snake_case = 0.05 _snake_case = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): _snake_case = 512 _snake_case = 16 _snake_case = 21 _snake_case = """pascal-voc-id2label.json""" else: _snake_case = 1000 _snake_case = """imagenet-1k-id2label.json""" _snake_case = """huggingface/label-files""" _snake_case = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) _snake_case = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): for i in range(1 , 6 ): if f"""layer_{i}.""" in name: _snake_case = name.replace(f"""layer_{i}.""" , f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: _snake_case = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: _snake_case = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: _snake_case = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: _snake_case = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: _snake_case = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: _snake_case = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: _snake_case = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: _snake_case = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: _snake_case = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: _snake_case = name.replace(f""".{i}.{j}.""" , f""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: _snake_case = name.replace(f""".{i}.{j}.""" , f""".{i}.""" ) if "expand_1x1" in name: _snake_case = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: _snake_case = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: _snake_case = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f""".global_rep.{i}.weight""" in name: _snake_case = name.replace(f""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if f""".global_rep.{i}.bias""" in name: _snake_case = name.replace(f""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: _snake_case = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: _snake_case = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: _snake_case = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: _snake_case = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: _snake_case = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: _snake_case = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: _snake_case = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: _snake_case = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: _snake_case = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: _snake_case = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: _snake_case = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: _snake_case = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): _snake_case = """mobilevit.""" + name return name def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): if base_model: _snake_case = """""" else: _snake_case = """mobilevit.""" for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if key[:8] == "encoder.": _snake_case = key[8:] if "qkv" in key: _snake_case = key.split(""".""" ) _snake_case = int(key_split[0][6:] ) - 1 _snake_case = int(key_split[3] ) _snake_case = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) _snake_case = layer.transformer.layer[transformer_num].attention.attention.all_head_size _snake_case = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] else: _snake_case = val return orig_state_dict def __SCREAMING_SNAKE_CASE ( ): _snake_case = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): _snake_case = get_mobilevit_config(_SCREAMING_SNAKE_CASE ) # load original state_dict _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): _snake_case = MobileViTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ).eval() else: _snake_case = MobileViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() _snake_case = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case = model(**_SCREAMING_SNAKE_CASE ) _snake_case = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _snake_case = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _snake_case = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _snake_case = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _snake_case = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": _snake_case = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": _snake_case = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: _snake_case = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) _snake_case = model_mapping[mobilevit_name] image_processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""apple""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""apple""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
270
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _snake_case = 0 _snake_case = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _snake_case = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _snake_case = i _snake_case = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
270
1
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __lowerCAmelCase ,unittest.TestCase ): __lowerCamelCase : Any = AudioLDMPipeline __lowerCamelCase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS __lowerCamelCase : Dict = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCamelCase : List[Any] = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase_ , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _lowerCAmelCase = ClapTextModelWithProjection(lowerCamelCase_ ) _lowerCAmelCase = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 ) _lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase_ , ) _lowerCAmelCase = SpeechTaHifiGan(lowerCamelCase_ ) _lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Any: if str(lowerCamelCase_ ).startswith("mps" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase_ ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowerCAmelCase = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def _snake_case ( self ) -> int: _lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase = 3 * [inputs["prompt"]] # forward _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase = 3 * [inputs.pop("prompt" )] _lowerCAmelCase = audioldm_pipe.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="pt" , ) _lowerCAmelCase = text_inputs["input_ids"].to(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.text_encoder( lowerCamelCase_ , ) _lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(lowerCamelCase_ , dim=-1 ) _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase = 3 * ["this is a negative prompt"] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["prompt"]] # forward _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase = 3 * [inputs.pop("prompt" )] _lowerCAmelCase = [] for p in [prompt, negative_prompt]: _lowerCAmelCase = audioldm_pipe.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="pt" , ) _lowerCAmelCase = text_inputs["input_ids"].to(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.text_encoder( lowerCamelCase_ , ) _lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(lowerCamelCase_ , dim=-1 ) embeds.append(lowerCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase = embeds # forward _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _snake_case ( self ) -> int: _lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase = "egg cracking" _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> str: _lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def _snake_case ( self ) -> int: _lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.016 _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **lowerCamelCase_ ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.032 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = ["hey"] _lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase = SpeechTaHifiGan(lowerCamelCase_ ).to(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def _snake_case ( self ) -> List[str]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase_ ) def _snake_case ( self ) -> Optional[Any]: self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase_ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase_ ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase="cpu" , _lowerCAmelCase=torch.floataa , _lowerCAmelCase=0 ) -> Dict: _lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowerCAmelCase = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 8, 128, 16) ) _lowerCAmelCase = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) _lowerCAmelCase = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def _snake_case ( self ) -> str: _lowerCAmelCase = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = self.get_inputs(lowerCamelCase_ ) _lowerCAmelCase = 25 _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 81920 _lowerCAmelCase = audio[77230:77240] _lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def _snake_case ( self ) -> Dict: _lowerCAmelCase = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase = self.get_inputs(lowerCamelCase_ ) _lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 81920 _lowerCAmelCase = audio[27780:27790] _lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
158
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
0
from math import ceil def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_001 ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = 1 for i in range(1, int(ceil(n / 2.0 ) ) ): lowerCAmelCase : str = 2 * i + 1 lowerCAmelCase : str = 2 * i lowerCAmelCase : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __A : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
323
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
1
'''simple docstring''' from __future__ import annotations def _A (lowerCAmelCase__ :list[int] , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int ) -> tuple[float, list[float]]: '''simple docstring''' _a = list(range(len(lowerCAmelCase__ ) ) ) _a = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) _a = 0 _a = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: _a = 1 max_value += value[i] capacity -= weight[i] else: _a = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """openai/whisper-base""" _lowerCAmelCase = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _lowerCAmelCase = """transcriber""" _lowerCAmelCase = WhisperProcessor _lowerCAmelCase = WhisperForConditionalGeneration _lowerCAmelCase = ["""audio"""] _lowerCAmelCase = ["""text"""] def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: return self.pre_processor(__magic_name__ , return_tensors='pt' ).input_features def __UpperCAmelCase ( self , __magic_name__ ) -> Any: return self.model.generate(inputs=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
168
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ : Any = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase ) else: lowerCAmelCase__ : Optional[int] = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase ) for i, tensor in enumerate(__lowerCAmelCase ): if padding_side == "right": if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ : Tuple = tensor[:sequence_length] else: lowerCAmelCase__ : Any = tensor[:sequence_length] else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ : List[Any] = tensor[:sequence_length] else: lowerCAmelCase__ : List[Any] = tensor[:sequence_length] return out_tensor.tolist() def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = ord(__lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowerCAmelCase__ : List[Any] = unicodedata.category(__lowerCAmelCase ) if cat.startswith("""P""" ): return True return False @dataclass class lowerCAmelCase_( UpperCamelCase_ ): '''simple docstring''' __lowercase : PreTrainedTokenizerBase __lowercase : Union[bool, str, PaddingStrategy] = True __lowercase : Optional[int] = None __lowercase : Optional[int] = None __lowercase : int = -1_0_0 __lowercase : str = "pt" def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: import torch lowerCAmelCase__ : Tuple = """label""" if """label""" in features[0].keys() else """labels""" lowerCAmelCase__ : int = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCAmelCase__ : List[str] = self.tokenizer.pad( _a ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" if labels is None else None ,) if labels is None: return batch lowerCAmelCase__ : List[Any] = torch.tensor(batch["""entity_ids"""] ).shape[1] lowerCAmelCase__ : Dict = self.tokenizer.padding_side if padding_side == "right": lowerCAmelCase__ : Any = [ list(_a ) + [self.label_pad_token_id] * (sequence_length - len(_a )) for label in labels ] else: lowerCAmelCase__ : List[str] = [ [self.label_pad_token_id] * (sequence_length - len(_a )) + list(_a ) for label in labels ] lowerCAmelCase__ : List[str] = [feature["""ner_tags"""] for feature in features] lowerCAmelCase__ : List[str] = padding_tensor(_a ,-1 ,_a ,_a ) lowerCAmelCase__ : Tuple = [feature["""original_entity_spans"""] for feature in features] lowerCAmelCase__ : Tuple = padding_tensor(_a ,(-1, -1) ,_a ,_a ) lowerCAmelCase__ : Optional[Any] = {k: torch.tensor(_a ,dtype=torch.intaa ) for k, v in batch.items()} return batch
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 100 * 2**20, 900 * 2**20] ) def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] =datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a__ : List[str] =dataset_size < in_memory_max_size else: a__ : Any =False a__ : List[str] =is_small_dataset(SCREAMING_SNAKE_CASE ) assert result == expected
95
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase : List[Any] = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] UpperCAmelCase : Optional[int] = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : Optional[int] = {F"""funnel-transformer/{name}""": 512 for name in _model_names} UpperCAmelCase : Optional[int] = {F"""funnel-transformer/{name}""": {"""do_lower_case""": True} for name in _model_names} class __lowerCAmelCase ( UpperCamelCase__): _lowercase : str = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_INIT_CONFIGURATION _lowercase : Union[str, Any] = FunnelTokenizer _lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : int = 2 def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<sep>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<cls>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__="##" , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Optional[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): a__ : List[str] =getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) a__ : Union[str, Any] =do_lower_case a__ : Any =strip_accents a__ : Optional[Any] =tokenize_chinese_chars a__ : Dict =normalizer_class(**lowerCAmelCase__ ) a__ : Any =do_lower_case def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> str: '''simple docstring''' a__ : Dict =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] =[self.sep_token_id] a__ : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' a__ : Tuple =self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
95
1
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCamelCase_ : def __init__( self , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = data UpperCAmelCase = [0x6_7_4_5_2_3_0_1, 0xE_F_C_D_A_B_8_9, 0x9_8_B_A_D_C_F_E, 0x1_0_3_2_5_4_7_6, 0xC_3_D_2_E_1_F_0] @staticmethod def UpperCamelCase_ ( snake_case__ , snake_case__ ) -> List[str]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0xF_F_F_F_F_F_F_F def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase_ ( self , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = list(struct.unpack(""">16L""" , snake_case__ ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.padding() UpperCAmelCase = self.split_blocks() for block in self.blocks: UpperCAmelCase = self.expand_block(snake_case__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase = (b & c) | ((~b) & d) UpperCAmelCase = 0x5_A_8_2_7_9_9_9 elif 20 <= i < 40: UpperCAmelCase = b ^ c ^ d UpperCAmelCase = 0x6_E_D_9_E_B_A_1 elif 40 <= i < 60: UpperCAmelCase = (b & c) | (b & d) | (c & d) UpperCAmelCase = 0x8_F_1_B_B_C_D_C elif 60 <= i < 80: UpperCAmelCase = b ^ c ^ d UpperCAmelCase = 0xC_A_6_2_C_1_D_6 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( self.rotate(snake_case__ , 5 ) + f + e + k + expanded_block[i] & 0xF_F_F_F_F_F_F_F, a, self.rotate(snake_case__ , 30 ), c, d, ) UpperCAmelCase = ( self.h[0] + a & 0xF_F_F_F_F_F_F_F, self.h[1] + b & 0xF_F_F_F_F_F_F_F, self.h[2] + c & 0xF_F_F_F_F_F_F_F, self.h[3] + d & 0xF_F_F_F_F_F_F_F, self.h[4] + e & 0xF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = b"""Test String""" assert SHAaHash(lowerCAmelCase ).final_hash() == hashlib.shaa(lowerCAmelCase ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = bytes(lowerCAmelCase , """utf-8""" ) print(SHAaHash(lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
248
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = math.inf , lowerCAmelCase = -math.inf , lowerCAmelCase = math.inf , lowerCAmelCase = -math.inf , lowerCAmelCase = False , lowerCAmelCase = 100 , lowerCAmelCase = 0.01 , lowerCAmelCase = 1 , ): '''simple docstring''' UpperCAmelCase = False UpperCAmelCase = search_prob UpperCAmelCase = start_temperate UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = None while not search_end: UpperCAmelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase = current_state scores.append(lowerCAmelCase ) iterations += 1 UpperCAmelCase = None UpperCAmelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor UpperCAmelCase = neighbors.pop(lowerCAmelCase ) UpperCAmelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase = picked_neighbor else: UpperCAmelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase = picked_neighbor UpperCAmelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase = True else: UpperCAmelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : List[str] = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ : int = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : Optional[Any] = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' return (3 * x**2) - (6 * y) lowerCAmelCase_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : List[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) lowerCAmelCase_ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
248
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _UpperCamelCase ( A ): '''simple docstring''' def __get__( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Any=None): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') __lowercase ='__cached_' + self.fget.__name__ __lowercase =getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if cached is None: __lowercase =self.fget(_lowerCAmelCase) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) return cached def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def _A ( _lowerCAmelCase ): """simple docstring""" if is_torch_fx_proxy(_lowerCAmelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCAmelCase , np.ndarray ) def _A ( _lowerCAmelCase ): """simple docstring""" return isinstance(_lowerCAmelCase , np.ndarray ) def _A ( _lowerCAmelCase ): """simple docstring""" return _is_numpy(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" import torch return isinstance(_lowerCAmelCase , torch.Tensor ) def _A ( _lowerCAmelCase ): """simple docstring""" return False if not is_torch_available() else _is_torch(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" import torch return isinstance(_lowerCAmelCase , torch.device ) def _A ( _lowerCAmelCase ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if hasattr(_lowerCAmelCase , _lowerCAmelCase ): __lowercase =getattr(_lowerCAmelCase , _lowerCAmelCase ) else: return False return isinstance(_lowerCAmelCase , torch.dtype ) def _A ( _lowerCAmelCase ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" import tensorflow as tf return isinstance(_lowerCAmelCase , tf.Tensor ) def _A ( _lowerCAmelCase ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCAmelCase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(_lowerCAmelCase ) return type(_lowerCAmelCase ) == tf.Tensor def _A ( _lowerCAmelCase ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCAmelCase , jnp.ndarray ) def _A ( _lowerCAmelCase ): """simple docstring""" return False if not is_flax_available() else _is_jax(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" if isinstance(_lowerCAmelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCAmelCase ) for k, v in obj.items()} elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_py_obj(_lowerCAmelCase ) for o in obj] elif is_tf_tensor(_lowerCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCAmelCase ): return np.asarray(_lowerCAmelCase ).tolist() elif isinstance(_lowerCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _A ( _lowerCAmelCase ): """simple docstring""" if isinstance(_lowerCAmelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCAmelCase ) for k, v in obj.items()} elif isinstance(_lowerCAmelCase , (list, tuple) ): return np.array(_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): return obj.numpy() elif is_torch_tensor(_lowerCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCAmelCase ): return np.asarray(_lowerCAmelCase ) else: return obj class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =fields(self) # Safety and consistency checks if not len(_lowerCAmelCase): raise ValueError(f"""{self.__class__.__name__} has no fields.""") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""") __lowercase =getattr(self , class_fields[0].name) __lowercase =all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(_lowerCAmelCase): if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =first_field.items() __lowercase =True else: try: __lowercase =iter(_lowerCAmelCase) __lowercase =True except TypeError: __lowercase =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_lowerCAmelCase): if ( not isinstance(_lowerCAmelCase , (list, tuple)) or not len(_lowerCAmelCase) == 2 or not isinstance(element[0] , _lowerCAmelCase) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __lowercase =first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""") break setattr(self , element[0] , element[1]) if element[1] is not None: __lowercase =element[1] elif first_field is not None: __lowercase =first_field else: for field in class_fields: __lowercase =getattr(self , field.name) if v is not None: __lowercase =v def __delitem__( self : str , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""") def __lowerCamelCase ( self : int , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""") def __lowerCamelCase ( self : Optional[Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : int): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""") def __lowerCamelCase ( self : str , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str]): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""") def __getitem__( self : str , _lowerCAmelCase : Optional[Any]): '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_lowerCAmelCase , _lowerCAmelCase) super().__setattr__(_lowerCAmelCase , _lowerCAmelCase) def __setitem__( self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' super().__setitem__(_lowerCAmelCase , _lowerCAmelCase) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : int): '''simple docstring''' return tuple(self[k] for k in self.keys()) class _UpperCamelCase ( A , A ): '''simple docstring''' @classmethod def __lowerCamelCase ( cls : List[str] , _lowerCAmelCase : List[str]): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}""") class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """longest""" lowerCAmelCase__ = """max_length""" lowerCAmelCase__ = """do_not_pad""" class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """pt""" lowerCAmelCase__ = """tf""" lowerCAmelCase__ = """np""" lowerCAmelCase__ = """jax""" class _UpperCamelCase : '''simple docstring''' def __init__( self : str , _lowerCAmelCase : List[ContextManager]): '''simple docstring''' __lowercase =context_managers __lowercase =ExitStack() def __enter__( self : Union[str, Any]): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_lowerCAmelCase) def __exit__( self : Tuple , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : str): '''simple docstring''' self.stack.__exit__(*_lowerCAmelCase , **_lowerCAmelCase) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =infer_framework(_lowerCAmelCase ) if framework == "tf": __lowercase =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __lowercase =inspect.signature(model_class.forward ) # PyTorch models else: __lowercase =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =model_class.__name__ __lowercase =infer_framework(_lowerCAmelCase ) if framework == "tf": __lowercase =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __lowercase =inspect.signature(model_class.forward ) # PyTorch models else: __lowercase =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _A ( _lowerCAmelCase , _lowerCAmelCase = "" , _lowerCAmelCase = "." ): """simple docstring""" def _flatten_dict(_lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase="." ): for k, v in d.items(): __lowercase =str(_lowerCAmelCase ) + delimiter + str(_lowerCAmelCase ) if parent_key else k if v and isinstance(_lowerCAmelCase , _lowerCAmelCase ): yield from flatten_dict(_lowerCAmelCase , _lowerCAmelCase , delimiter=_lowerCAmelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) @contextmanager def _A ( _lowerCAmelCase , _lowerCAmelCase = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _A ( _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" if is_numpy_array(_lowerCAmelCase ): return np.transpose(_lowerCAmelCase , axes=_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.T if axes is None else array.permute(*_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.transpose(_lowerCAmelCase , perm=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.transpose(_lowerCAmelCase , axes=_lowerCAmelCase ) else: raise ValueError(f"""Type not supported for transpose: {type(_lowerCAmelCase )}.""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if is_numpy_array(_lowerCAmelCase ): return np.reshape(_lowerCAmelCase , _lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.reshape(*_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.reshape(_lowerCAmelCase , _lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.reshape(_lowerCAmelCase , _lowerCAmelCase ) else: raise ValueError(f"""Type not supported for reshape: {type(_lowerCAmelCase )}.""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" if is_numpy_array(_lowerCAmelCase ): return np.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) else: raise ValueError(f"""Type not supported for squeeze: {type(_lowerCAmelCase )}.""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if is_numpy_array(_lowerCAmelCase ): return np.expand_dims(_lowerCAmelCase , _lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.unsqueeze(dim=_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.expand_dims(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.expand_dims(_lowerCAmelCase , axis=_lowerCAmelCase ) else: raise ValueError(f"""Type not supported for expand_dims: {type(_lowerCAmelCase )}.""" ) def _A ( _lowerCAmelCase ): """simple docstring""" if is_numpy_array(_lowerCAmelCase ): return np.size(_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.numel() elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.size(_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(_lowerCAmelCase )}.""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for key, value in auto_map.items(): if isinstance(_lowerCAmelCase , (tuple, list) ): __lowercase =[f"""{repo_id}--{v}""" if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: __lowercase =f"""{repo_id}--{value}""" return auto_map def _A ( _lowerCAmelCase ): """simple docstring""" for base_class in inspect.getmro(_lowerCAmelCase ): __lowercase =base_class.__module__ __lowercase =base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
166
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """OwlViTImageProcessor""" lowerCAmelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[str] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , **_lowerCAmelCase : Any): '''simple docstring''' __lowercase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCAmelCase , ) __lowercase =kwargs.pop('feature_extractor') __lowercase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : Dict , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]="max_length" , _lowerCAmelCase : Optional[Any]="np" , **_lowerCAmelCase : Any): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.') if text is not None: if isinstance(_lowerCAmelCase , _lowerCAmelCase) or (isinstance(_lowerCAmelCase , _lowerCAmelCase) and not isinstance(text[0] , _lowerCAmelCase)): __lowercase =[self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase)] elif isinstance(_lowerCAmelCase , _lowerCAmelCase) and isinstance(text[0] , _lowerCAmelCase): __lowercase =[] # Maximum number of queries across batch __lowercase =max([len(_lowerCAmelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCAmelCase) != max_num_queries: __lowercase =t + [' '] * (max_num_queries - len(_lowerCAmelCase)) __lowercase =self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase) encodings.append(_lowerCAmelCase) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings') if return_tensors == "np": __lowercase =np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) __lowercase =np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowercase =jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) __lowercase =jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch __lowercase =torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0) __lowercase =torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowercase =tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0) __lowercase =tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0) else: raise ValueError('Target return tensor type could not be returned') __lowercase =BatchEncoding() __lowercase =input_ids __lowercase =attention_mask if query_images is not None: __lowercase =BatchEncoding() __lowercase =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase).pixel_values __lowercase =query_pixel_values if images is not None: __lowercase =self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase) if text is not None and images is not None: __lowercase =image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowercase =image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase) , tensor_type=_lowerCAmelCase) def __lowerCamelCase ( self : int , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Any): '''simple docstring''' return self.image_processor.post_process(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[Any]): '''simple docstring''' return self.image_processor.post_process_object_detection(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Any): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : str , *_lowerCAmelCase : int , **_lowerCAmelCase : Dict): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCAmelCase , ) return self.image_processor_class @property def __lowerCamelCase ( self : Any): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCAmelCase , ) return self.image_processor
166
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __A = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' __A = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' __A = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def __A ( _lowercase , _lowercase ): '''simple docstring''' return float((preds == labels).mean() ) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = simple_accuracy(lowercase_ , lowercase_ ) _A = float(fa_score(y_true=lowercase_ , y_pred=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = np.array(lowercase_ ) _A = np.array(lowercase_ ) _A = en_sentvecs.shape[0] # mean centering _A = en_sentvecs - np.mean(lowercase_ , axis=0 ) _A = in_sentvecs - np.mean(lowercase_ , axis=0 ) _A = cdist(lowercase_ , lowercase_ , '''cosine''' ) _A = np.array(range(lowercase_ ) ) _A = sim.argsort(axis=1 )[:, :10] _A = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def __A ( self: List[str] ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __A ( self: List[Any] , __A: Optional[Any] , __A: str ) -> Dict: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
357
from __future__ import annotations import math def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) ) def __A ( ): '''simple docstring''' _A = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] _A = math.log(len(_lowercase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , _lowercase , _lowercase , _lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
75
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCAmelCase : Any =get_tests_dir("""fixtures""") _UpperCAmelCase : List[Any] =get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _UpperCAmelCase : Optional[int] =get_tests_dir("""fixtures/dummy-config.json""") class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> Any: lowerCAmelCase_ : List[str] = 0 def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : List[Any] = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ).to_dict() config_dict.pop('''feature_extractor_type''' ) lowerCAmelCase_ : int = WavaVecaFeatureExtractor(**SCREAMING_SNAKE_CASE_ ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) config.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # make sure private variable is not incorrectly saved lowerCAmelCase_ : Union[str, Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Tuple: lowerCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def lowercase_ ( self ) -> str: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ , revision='''aaaaaa''' ) def lowercase_ ( self ) -> Optional[int]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowerCAmelCase_ : str = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def lowercase_ ( self ) -> Tuple: try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ : str = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self ) -> Dict: class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = True try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # If remote code is not set, the default is to use local lowerCAmelCase_ : int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase_ : List[str] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(SCREAMING_SNAKE_CASE_ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
262
import logging from transformers.configuration_utils import PretrainedConfig __a = logging.getLogger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[int] = 'masked_bert' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE_ : List[str]=7_6_8 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE_ : Any=1_2 , SCREAMING_SNAKE_CASE_ : str=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=5_1_2 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Dict=0.02 , SCREAMING_SNAKE_CASE_ : Any=1e-12 , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : Optional[int]="topK" , SCREAMING_SNAKE_CASE_ : Dict="constant" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = pruning_method lowercase_ = mask_init lowercase_ = mask_scale
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ : str = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar lowerCamelCase_ : List[Any] = TypeVar("""T""") class __A ( Generic[T] ): """simple docstring""" def __init__( self , __A ) -> None: a =data a =self a =0 class __A ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: # map from node name to the node object a ={} def SCREAMING_SNAKE_CASE ( self , __A ) -> None: # create a new set with x as its member a =DisjointSetTreeNode(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) a =self.map[data] if elem_ref != elem_ref.parent: a =self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> None: # helper function for union operation if nodea.rank > nodea.rank: a =nodea else: a =nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> None: # merge 2 disjoint sets self.link(self.find_set(__A ) , self.find_set(__A ) ) class __A ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) a ={} def SCREAMING_SNAKE_CASE ( self , __A ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: a ={} def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> None: # add an edge with the given weight self.add_node(__A ) self.add_node(__A ) a =weight a =weight def SCREAMING_SNAKE_CASE ( self ) -> GraphUndirectedWeighted[T]: a =[] a =set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __A : x[2] ) # creating the disjoint set a =DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__A ) # MST generation a =0 a =0 a =GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: a , a , a =edges[index] index += 1 a =disjoint_set.find_set(__A ) a =disjoint_set.find_set(__A ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__A , __A , __A ) disjoint_set.union(__A , __A ) return graph
215
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class snake_case__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any=13 , SCREAMING_SNAKE_CASE : List[str]=7 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=99 , SCREAMING_SNAKE_CASE : Optional[int]=32 , SCREAMING_SNAKE_CASE : List[Any]=2 , SCREAMING_SNAKE_CASE : Tuple=4 , SCREAMING_SNAKE_CASE : List[str]=37 , SCREAMING_SNAKE_CASE : str="gelu" , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : int=512 , SCREAMING_SNAKE_CASE : Tuple=16 , SCREAMING_SNAKE_CASE : List[Any]=2 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : Optional[Any]=3 , SCREAMING_SNAKE_CASE : List[str]=4 , SCREAMING_SNAKE_CASE : Tuple=None , ): lowercase__ : List[Any] = parent lowercase__ : List[str] = 13 lowercase__ : Optional[Any] = 7 lowercase__ : List[str] = True lowercase__ : List[str] = True lowercase__ : Any = True lowercase__ : Optional[int] = True lowercase__ : Optional[int] = 99 lowercase__ : List[Any] = 384 lowercase__ : List[Any] = 2 lowercase__ : Union[str, Any] = 4 lowercase__ : str = 37 lowercase__ : Tuple = "gelu" lowercase__ : int = 0.1 lowercase__ : Tuple = 0.1 lowercase__ : List[Any] = 512 lowercase__ : Optional[int] = 16 lowercase__ : List[str] = 2 lowercase__ : str = 0.02 lowercase__ : List[str] = 3 lowercase__ : Any = 4 lowercase__ : Optional[Any] = 128 lowercase__ : Optional[int] = 2 lowercase__ : Optional[Any] = 9 lowercase__ : Any = 1 lowercase__ : Dict = None def snake_case ( self : Union[str, Any] ): lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Union[str, Any] = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Union[str, Any] = None if self.use_token_type_ids: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Dict = None lowercase__ : Optional[int] = None lowercase__ : str = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : str = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCAmelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Optional[int] = TFConvBertModel(config=lowerCAmelCase__ ) lowercase__ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase__ : List[str] = [input_ids, input_mask] lowercase__ : Any = model(lowerCAmelCase__ ) lowercase__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : str = TFConvBertForMaskedLM(config=lowerCAmelCase__ ) lowercase__ : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : List[Any] = self.num_labels lowercase__ : Tuple = TFConvBertForSequenceClassification(config=lowerCAmelCase__ ) lowercase__ : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : Union[str, Any] = self.num_choices lowercase__ : int = TFConvBertForMultipleChoice(config=lowerCAmelCase__ ) lowercase__ : Dict = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) lowercase__ : List[str] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) lowercase__ : List[str] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase__ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = TFConvBertForTokenClassification(config=lowerCAmelCase__ ) lowercase__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : List[Any] = TFConvBertForQuestionAnswering(config=lowerCAmelCase__ ) lowercase__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : Any ): lowercase__ : Any = self.prepare_config_and_inputs() ( lowercase__ ) : Union[str, Any] = config_and_inputs lowercase__ : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase_ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : Any ): lowercase__ : Union[str, Any] = TFConvBertModelTester(self ) lowercase__ : str = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def snake_case ( self : List[Any] ): self.config_tester.run_common_tests() def snake_case ( self : int ): lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case ( self : Tuple ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def snake_case ( self : List[Any] ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def snake_case ( self : Dict ): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def snake_case ( self : List[str] ): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def snake_case ( self : Dict ): lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def snake_case ( self : Any ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = True lowercase__ : str = True if hasattr(lowerCAmelCase__ , "use_cache" ): lowercase__ : Union[str, Any] = True lowercase__ : str = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Optional[Any] = getattr(self.model_tester , "key_length" , lowerCAmelCase__ ) for model_class in self.all_model_classes: lowercase__ : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__ : List[Any] = model_class(lowerCAmelCase__ ) lowercase__ : Optional[int] = len(model(lowerCAmelCase__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ , saved_model=lowerCAmelCase__ ) lowercase__ : List[Any] = os.path.join(lowerCAmelCase__ , "saved_model" , "1" ) lowercase__ : Any = tf.keras.models.load_model(lowerCAmelCase__ ) lowercase__ : Optional[Any] = model(lowerCAmelCase__ ) if self.is_encoder_decoder: lowercase__ : Optional[Any] = outputs["encoder_hidden_states"] lowercase__ : Optional[Any] = outputs["encoder_attentions"] else: lowercase__ : Any = outputs["hidden_states"] lowercase__ : str = outputs["attentions"] self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) lowercase__ : Any = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def snake_case ( self : Optional[int] ): lowercase__ : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(lowerCAmelCase__ ) def snake_case ( self : Optional[Any] ): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True lowercase__ : Union[str, Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowercase__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Dict = getattr(self.model_tester , "key_length" , lowerCAmelCase__ ) lowercase__ : Optional[Any] = getattr(self.model_tester , "key_length" , lowerCAmelCase__ ) def check_decoder_attentions_output(SCREAMING_SNAKE_CASE : List[Any] ): lowercase__ : Optional[int] = len(lowerCAmelCase__ ) self.assertEqual(out_len % 2 , 0 ) lowercase__ : str = outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(SCREAMING_SNAKE_CASE : int ): lowercase__ : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : Optional[Any] = False lowercase__ : str = model_class(lowerCAmelCase__ ) lowercase__ : Any = model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase__ : List[str] = len(lowerCAmelCase__ ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) if self.is_encoder_decoder: lowercase__ : Tuple = model_class(lowerCAmelCase__ ) lowercase__ : Any = model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_decoder_attentions_output(lowerCAmelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ : int = True lowercase__ : Optional[int] = model_class(lowerCAmelCase__ ) lowercase__ : List[str] = model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) # Check attention is always last and order is fine lowercase__ : Tuple = True lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(lowerCAmelCase__ ) lowercase__ : Tuple = model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase__ ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) @require_tf class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : int ): lowercase__ : Union[str, Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowercase__ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ : Optional[Any] = model(lowerCAmelCase__ )[0] lowercase__ : List[str] = [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__ : Optional[Any] = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
130
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-m", "--pretrained_model_name_or_path", type=a_, default=a_, required=a_, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "-c", "--caption", type=a_, default="robotic cat with wings", help="Text used to generate images.", ) parser.add_argument( "-n", "--images_num", type=a_, default=4, help="How much images to generate.", ) parser.add_argument( "-s", "--seed", type=a_, default=42, help="Seed for random process.", ) parser.add_argument( "-ci", "--cuda_id", type=a_, default=0, help="cuda_id.", ) _UpperCAmelCase : Any = parser.parse_args() return args def __UpperCAmelCase ( a_: Any, a_: List[Any], a_: Optional[Any] ): if not len(a_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = imgs[0].size _UpperCAmelCase : Union[str, Any] = Image.new("RGB", size=(cols * w, rows * h) ) _UpperCAmelCase , _UpperCAmelCase : Any = grid.size for i, img in enumerate(a_ ): grid.paste(a_, box=(i % cols * w, i // cols * h) ) return grid def __UpperCAmelCase ( a_: List[str], a_: Optional[int]="robotic cat with wings", a_: List[str]=7.5, a_: Optional[int]=50, a_: List[Any]=1, a_: Union[str, Any]=42, ): _UpperCAmelCase : Optional[Any] = torch.Generator(pipeline.device ).manual_seed(a_ ) _UpperCAmelCase : Dict = pipeline( a_, guidance_scale=a_, num_inference_steps=a_, generator=a_, num_images_per_prompt=a_, ).images _UpperCAmelCase : Any = int(math.sqrt(a_ ) ) _UpperCAmelCase : List[Any] = image_grid(a_, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images __a = parse_args() # Load models and create wrapper for stable diffusion __a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __a = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __a = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __a = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __a = unet.to(torch.device('cuda', args.cuda_id)) __a = pipeline.to(unet.device) __a , __a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __a = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
145
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]=13 , lowerCAmelCase_ : Dict=30 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : Optional[Any]=37 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=2 , ) -> Optional[int]: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = scope _a = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _a = (image_size // patch_size) ** 2 _a = num_patches + 2 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] ) -> Any: """simple docstring""" _a = DeiTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = DeiTForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a = 1 _a = DeiTForMaskedImageModeling(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = self.type_sequence_label_size _a = DeiTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = DeiTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = DeiTModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=False ) -> Union[str, Any]: """simple docstring""" _a = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" if not self.model_tester.is_training: return _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _a = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _a = model(**lowerCAmelCase_ ).loss loss.backward() def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _a = False _a = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _a = model_class(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_ ) model.train() _a = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _a = model(**lowerCAmelCase_ ).loss loss.backward() def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase_ ), *get_values(lowerCAmelCase_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): _a = problem_type['''title'''] _a = problem_type['''num_labels'''] _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _a = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if problem_type["num_labels"] > 1: _a = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _a = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase_ ) as warning_list: _a = model(**lowerCAmelCase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DeiTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case_ (): '''simple docstring''' _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _a = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) _a = inputs.pixel_values.to(lowerCAmelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _a = model(lowerCAmelCase_ )
179
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
179
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = logging.get_logger("transformers.models.speecht5") def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" hf_model.apply_weight_norm() UpperCamelCase = checkpoint['input_conv.weight_g'] UpperCamelCase = checkpoint['input_conv.weight_v'] UpperCamelCase = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): UpperCamelCase = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCamelCase = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCamelCase = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCamelCase = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCamelCase = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCamelCase = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCamelCase = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCamelCase = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCamelCase = checkpoint['output_conv.1.weight_g'] UpperCamelCase = checkpoint['output_conv.1.weight_v'] UpperCamelCase = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__=None , A__=None , ) -> int: """simple docstring""" if config_path is not None: UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(A__ ) else: UpperCamelCase = SpeechTaHifiGanConfig() UpperCamelCase = SpeechTaHifiGan(A__ ) UpperCamelCase = torch.load(A__ ) load_weights(orig_checkpoint['model']['generator'] , A__ , A__ ) UpperCamelCase = np.load(A__ ) UpperCamelCase = stats[0].reshape(-1 ) UpperCamelCase = stats[1].reshape(-1 ) UpperCamelCase = torch.from_numpy(A__ ).float() UpperCamelCase = torch.from_numpy(A__ ).float() model.save_pretrained(A__ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(A__ ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a :List[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _lowercase ( __lowerCAmelCase ) -> List[str]: for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: SCREAMING_SNAKE_CASE__ : str = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = PegasusConfig(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusForConditionalGeneration(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch_model.model.state_dict() SCREAMING_SNAKE_CASE__ : Any = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE__ : Tuple = v.T SCREAMING_SNAKE_CASE__ : Any = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : Any = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : int = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _lowercase ( __lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] = tf.train.list_variables(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Any = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): SCREAMING_SNAKE_CASE__ : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE__ : str = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = array return tf_weights def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: # save tokenizer first SCREAMING_SNAKE_CASE__ : Any = Path(__lowerCAmelCase ).parent.name SCREAMING_SNAKE_CASE__ : Dict = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] SCREAMING_SNAKE_CASE__ : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tf_weights_as_numpy(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": SCREAMING_SNAKE_CASE__ : Tuple = task_specific_params SCREAMING_SNAKE_CASE__ : str = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": a :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") a :Optional[Any] = parser.parse_args() if args.save_dir is None: a :List[Any] = Path(args.tf_ckpt_path).parent.name a :Optional[Any] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
132
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __a: Optional[Any] = 637_8137.0 __a: Dict = 635_6752.31_4245 __a: int = 6_37_81_37 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[str] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowercase__ : str = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) lowercase__ : Union[str, Any] = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowercase__ : List[str] = haversine_distance(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowercase__ : Optional[Any] = (b_lata + b_lata) / 2 lowercase__ : List[str] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowercase__ : Any = (sin(UpperCAmelCase ) ** 2) * (cos(UpperCAmelCase ) ** 2) lowercase__ : Optional[Any] = cos(sigma / 2 ) ** 2 lowercase__ : List[str] = (sigma - sin(UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowercase__ : int = (cos(UpperCAmelCase ) ** 2) * (sin(UpperCAmelCase ) ** 2) lowercase__ : Union[str, Any] = sin(sigma / 2 ) ** 2 lowercase__ : str = (sigma + sin(UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
214
'''simple docstring''' from manim import * class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : int = Rectangle(height=0.5 , width=0.5 ) lowercase__ : Optional[int] = Rectangle(height=0.2_5 , width=0.2_5 ) lowercase__ : Tuple = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase__ : str = [mem.copy() for i in range(6 )] lowercase__ : Dict = [mem.copy() for i in range(6 )] lowercase__ : Tuple = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : List[str] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : str = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : str = Text('''CPU''' , font_size=24 ) lowercase__ : List[Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) lowercase__ : Any = [mem.copy() for i in range(4 )] lowercase__ : int = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Optional[int] = Text('''GPU''' , font_size=24 ) lowercase__ : Tuple = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) lowercase__ : int = [mem.copy() for i in range(6 )] lowercase__ : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Any = Text('''Model''' , font_size=24 ) lowercase__ : Optional[Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) lowercase__ : int = [] lowercase__ : int = [] lowercase__ : Any = [] for i, rect in enumerate(__lowerCAmelCase ): rect.set_stroke(__lowerCAmelCase ) lowercase__ : Optional[int] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCAmelCase , buff=0.0 ) self.add(__lowerCAmelCase ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) lowercase__ : Optional[int] = [mem.copy() for i in range(6 )] lowercase__ : List[Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Optional[Any] = Text('''Loaded Checkpoint''' , font_size=24 ) lowercase__ : Dict = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCAmelCase ) lowercase__ : str = [] lowercase__ : List[str] = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase__ : List[str] = fill.copy().set_fill(__lowerCAmelCase , opacity=0.7 ) target.move_to(__lowerCAmelCase ) ckpt_arr.append(__lowerCAmelCase ) lowercase__ : Any = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) lowercase__ : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : str = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) lowercase__ : Union[str, Any] = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase__ : Tuple = [meta_mem.copy() for i in range(6 )] lowercase__ : Any = [meta_mem.copy() for i in range(6 )] lowercase__ : str = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Any = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Union[str, Any] = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Union[str, Any] = Text('''Disk''' , font_size=24 ) lowercase__ : Tuple = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , Write(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) ) lowercase__ : Tuple = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase__ : Dict = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(FadeOut(__lowerCAmelCase ) ) lowercase__ : Dict = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) self.play( FadeOut(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) , ) self.wait()
214
1
'''simple docstring''' import math def a ( __a , __a = 0 , __a = 0 ) -> list: '''simple docstring''' UpperCamelCase__ :Dict = end or len(__a ) for i in range(__a , __a ): UpperCamelCase__ :Tuple = i UpperCamelCase__ :Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCamelCase__ :Any = array[temp_index - 1] temp_index -= 1 UpperCamelCase__ :Union[str, Any] = temp_index_value return array def a ( __a , __a , __a ) -> None: # Max Heap '''simple docstring''' UpperCamelCase__ :Dict = index UpperCamelCase__ :Optional[Any] = 2 * index + 1 # Left Node UpperCamelCase__ :Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCamelCase__ :Any = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCamelCase__ :Dict = right_index if largest != index: UpperCamelCase__ , UpperCamelCase__ :Tuple = array[largest], array[index] heapify(__a , __a , __a ) def a ( __a ) -> list: '''simple docstring''' UpperCamelCase__ :List[str] = len(__a ) for i in range(n // 2 , -1 , -1 ): heapify(__a , __a , __a ) for i in range(n - 1 , 0 , -1 ): UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = array[0], array[i] heapify(__a , 0 , __a ) return array def a ( __a , __a , __a , __a ) -> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a ( __a , __a , __a , __a ) -> int: '''simple docstring''' UpperCamelCase__ :str = low UpperCamelCase__ :Dict = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCamelCase__ , UpperCamelCase__ :int = array[j], array[i] i += 1 def a ( __a ) -> list: '''simple docstring''' if len(__a ) == 0: return array UpperCamelCase__ :Tuple = 2 * math.ceil(math.loga(len(__a ) ) ) UpperCamelCase__ :Optional[Any] = 16 return intro_sort(__a , 0 , len(__a ) , __a , __a ) def a ( __a , __a , __a , __a , __a ) -> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(__a ) max_depth -= 1 UpperCamelCase__ :Any = median_of_a(__a , __a , start + ((end - start) // 2) + 1 , end - 1 ) UpperCamelCase__ :int = partition(__a , __a , __a , __a ) intro_sort(__a , __a , __a , __a , __a ) UpperCamelCase__ :Union[str, Any] = p return insertion_sort(__a , __a , __a ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma : ''').strip() __snake_case = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
97
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' def a ( __a ) -> None: '''simple docstring''' UpperCamelCase__ :List[Any] = tweepy.OAuthHandler(__a , __a ) auth.set_access_token(__a , __a ) UpperCamelCase__ :List[str] = tweepy.API(__a ) # initialize a list to hold all the tweepy Tweets UpperCamelCase__ :Dict = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCamelCase__ :Tuple = api.user_timeline(screen_name=__a , count=200 ) # save most recent tweets alltweets.extend(__a ) # save the id of the oldest tweet less one UpperCamelCase__ :Union[str, Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__a ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCamelCase__ :Union[str, Any] = api.user_timeline( screen_name=__a , count=200 , max_id=__a ) # save most recent tweets alltweets.extend(__a ) # update the id of the oldest tweet less one UpperCamelCase__ :Tuple = alltweets[-1].id - 1 print(f'''...{len(__a )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCamelCase__ :int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: UpperCamelCase__ :Tuple = csv.writer(__a ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
97
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Any = """mobilenet_v1""" def __init__( self : List[Any] , a__ : Tuple=3 , a__ : Union[str, Any]=224 , a__ : int=1.0 , a__ : Tuple=8 , a__ : Optional[int]="relu6" , a__ : Any=True , a__ : str=0.999 , a__ : Optional[int]=0.02 , a__ : Optional[int]=0.001 , **a__ : int , ): super().__init__(**a__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = depth_multiplier __magic_name__ = min_depth __magic_name__ = hidden_act __magic_name__ = tf_padding __magic_name__ = classifier_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[Any] = version.parse("""1.11""" ) @property def snake_case__ ( self : Union[str, Any] ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def snake_case__ ( self : Any ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def snake_case__ ( self : Optional[Any] ): return 1E-4
363
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase = get_tests_dir("fixtures") _lowerCAmelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowerCAmelCase = get_tests_dir("fixtures/dummy-config.json") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : Union[str, Any] ): __magic_name__ = 0 def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ).to_dict() config_dict.pop('''feature_extractor_type''' ) __magic_name__ = WavaVecaFeatureExtractor(**a__ ) # save in new folder model_config.save_pretrained(a__ ) config.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) # make sure private variable is not incorrectly saved __magic_name__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def snake_case__ ( self : str ): with self.assertRaisesRegex( a__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , revision='''aaaaaa''' ) def snake_case__ ( self : Union[str, Any] ): with self.assertRaisesRegex( a__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __magic_name__ = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def snake_case__ ( self : Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a__ ): __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ , trust_remote_code=a__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def snake_case__ ( self : int ): try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): AutoFeatureExtractor.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __magic_name__ = CustomFeatureExtractor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : int ): class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = True try: AutoConfig.register('''custom''' , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # If remote code is not set, the default is to use local __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __magic_name__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(a__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
98
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : int = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase ( lowercase_ ): '''simple docstring''' __UpperCamelCase : int = '''wav2vec2''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : List[str]=7_6_8 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Tuple=1_2 , lowerCAmelCase_ : List[str]=3_0_7_2 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : List[str]=1e-5 , lowerCAmelCase_ : Union[str, Any]="group" , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Union[str, Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase_ : Any=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase_ : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=1_2_8 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=0.05 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : List[str]=1_0 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=3_2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Union[str, Any]=1_0_0 , lowerCAmelCase_ : Dict=2_5_6 , lowerCAmelCase_ : Tuple=2_5_6 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Tuple="sum" , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Any=2_5_6 , lowerCAmelCase_ : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCAmelCase_ : Optional[int]=(5, 3, 3, 1, 1) , lowerCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) _A: str = hidden_size _A: Optional[int] = feat_extract_norm _A: Dict = feat_extract_activation _A: str = list(lowerCAmelCase_ ) _A: Union[str, Any] = list(lowerCAmelCase_ ) _A: Union[str, Any] = list(lowerCAmelCase_ ) _A: Dict = conv_bias _A: Optional[int] = num_conv_pos_embeddings _A: List[str] = num_conv_pos_embedding_groups _A: Union[str, Any] = len(self.conv_dim ) _A: List[str] = num_hidden_layers _A: int = intermediate_size _A: Union[str, Any] = hidden_act _A: Union[str, Any] = num_attention_heads _A: List[str] = hidden_dropout _A: Dict = attention_dropout _A: Optional[Any] = activation_dropout _A: Union[str, Any] = feat_proj_dropout _A: List[Any] = final_dropout _A: Optional[Any] = layerdrop _A: Tuple = layer_norm_eps _A: Dict = initializer_range _A: Dict = vocab_size _A: int = do_stable_layer_norm _A: Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A: List[str] = apply_spec_augment _A: str = mask_time_prob _A: List[str] = mask_time_length _A: Tuple = mask_time_min_masks _A: Union[str, Any] = mask_feature_prob _A: List[Any] = mask_feature_length _A: Union[str, Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _A: Optional[int] = num_codevectors_per_group _A: Any = num_codevector_groups _A: str = contrastive_logits_temperature _A: List[str] = feat_quantizer_dropout _A: Dict = num_negatives _A: Tuple = codevector_dim _A: str = proj_codevector_dim _A: Any = diversity_loss_weight # ctc loss _A: List[Any] = ctc_loss_reduction _A: List[str] = ctc_zero_infinity # adapter _A: Dict = add_adapter _A: int = adapter_kernel_size _A: str = adapter_stride _A: Any = num_adapter_layers _A: int = output_hidden_size or hidden_size _A: Tuple = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A: List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A: Union[str, Any] = list(lowerCAmelCase_ ) _A: str = list(lowerCAmelCase_ ) _A: str = list(lowerCAmelCase_ ) _A: str = xvector_output_dim @property def __magic_name__ ( self : Dict ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
121
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(__snake_case : int, __snake_case : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ : int =update_area_of_max_square(__snake_case, col + 1 ) A__ : int =update_area_of_max_square(row + 1, col + 1 ) A__ : int =update_area_of_max_square(row + 1, __snake_case ) if mat[row][col]: A__ : Optional[Any] =1 + min([right, diagonal, down] ) A__ : Dict =max(largest_square_area[0], __snake_case ) return sub_problem_sol else: return 0 A__ : List[Any] =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ : str =update_area_of_max_square_using_dp_array(__snake_case, col + 1, __snake_case ) A__ : Any =update_area_of_max_square_using_dp_array(row + 1, col + 1, __snake_case ) A__ : List[str] =update_area_of_max_square_using_dp_array(row + 1, __snake_case, __snake_case ) if mat[row][col]: A__ : Optional[int] =1 + min([right, diagonal, down] ) A__ : Any =max(largest_square_area[0], __snake_case ) A__ : Union[str, Any] =sub_problem_sol return sub_problem_sol else: return 0 A__ : Any =[0] A__ : Optional[Any] =[[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0, 0, __snake_case ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[int] =[[0] * (cols + 1) for _ in range(rows + 1 )] A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : List[Any] =dp_array[row][col + 1] A__ : List[str] =dp_array[row + 1][col + 1] A__ : str =dp_array[row + 1][col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Optional[Any] =max(dp_array[row][col], __snake_case ) else: A__ : Tuple =0 return largest_square_area def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Union[str, Any] =[0] * (cols + 1) A__ : int =[0] * (cols + 1) A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : Union[str, Any] =current_row[col + 1] A__ : List[str] =next_row[col + 1] A__ : str =next_row[col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Dict =max(current_row[col], __snake_case ) else: A__ : str =0 A__ : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
134
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : int = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # convert bbox to numpy since TF does not support item assignment _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : List[Any] = bbox[i, j, 3] _lowerCAmelCase : str = bbox[i, j, 1] _lowerCAmelCase : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : Dict = bbox[i, j, 2] _lowerCAmelCase : int = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : Any = tf.convert_to_tensor(__a) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Dict = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : List[str] = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = TFLayoutLMModel(config=__a) _lowerCAmelCase : Any = model(__a, __a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, __a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, __a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMForMaskedLM(config=__a) _lowerCAmelCase : int = model(__a, __a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : Dict = TFLayoutLMForSequenceClassification(config=__a) _lowerCAmelCase : Optional[int] = model(__a, __a, attention_mask=__a, token_type_ids=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : List[str] = TFLayoutLMForTokenClassification(config=__a) _lowerCAmelCase : List[Any] = model(__a, __a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = TFLayoutLMForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = model(__a, __a, attention_mask=__a, token_type_ids=__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Dict = config_and_inputs _lowerCAmelCase : Optional[int] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = 10 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFLayoutLMModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFLayoutLMModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip("Onnx compliancy broke with TF 2.10") def snake_case__ ( self): '''simple docstring''' pass def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowerCAmelCase : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowerCAmelCase : str = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowerCAmelCase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowerCAmelCase : List[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") _lowerCAmelCase : Any = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : str = model(input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a) # test the sequence output on [0, :3, :3] _lowerCAmelCase : List[Any] = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], __a, atol=1E-3)) # test the pooled output on [1, :3] _lowerCAmelCase : Dict = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], __a, atol=1E-3)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2) _lowerCAmelCase : int = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : int = model( input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=tf.convert_to_tensor([1, 1]), ) # test whether we get a loss as a scalar _lowerCAmelCase : Dict = outputs.loss _lowerCAmelCase : str = (2,) self.assertEqual(loss.shape, __a) # test the shape of the logits _lowerCAmelCase : int = outputs.logits _lowerCAmelCase : int = (2, 2) self.assertEqual(logits.shape, __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13) _lowerCAmelCase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : Tuple = model( input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) # test the shape of the logits _lowerCAmelCase : int = outputs.logits _lowerCAmelCase : Optional[int] = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape, __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased") _lowerCAmelCase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : str = model(input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a) # test the shape of the logits _lowerCAmelCase : List[Any] = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape, __a) self.assertEqual(outputs.end_logits.shape, __a)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
from collections.abc import Generator from math import sin def lowerCAmelCase__( lowercase : str ) -> bytes: if len(UpperCamelCase__ ) != 32: raise ValueError("Input must be of length 32" ) __snake_case : Any = B"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCAmelCase__( lowercase : str ) -> bytes: if i < 0: raise ValueError("Input must be non-negative" ) __snake_case : Any = format(UpperCamelCase__ , "08x" )[-8:] __snake_case : List[str] = B"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowerCAmelCase__( lowercase : str ) -> bytes: __snake_case : List[Any] = B"" for char in message: bit_string += format(UpperCamelCase__ , "08b" ).encode("utf-8" ) __snake_case : List[str] = format(len(UpperCamelCase__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Generator[list[int], None, None]: if len(UpperCamelCase__ ) % 512 != 0: raise ValueError("Input must have length that\'s a multiple of 512" ) for pos in range(0 , len(UpperCamelCase__ ) , 512 ): __snake_case : int = bit_string[pos : pos + 512] __snake_case : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowerCAmelCase__( lowercase : Optional[Any] ) -> int: if i < 0: raise ValueError("Input must be non-negative" ) __snake_case : Any = format(UpperCamelCase__ , "032b" ) __snake_case : List[str] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase__ , 2 ) def lowerCAmelCase__( lowercase : Any , lowercase : Dict ) -> int: return (a + b) % 2**32 def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : List[str] ) -> int: if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCAmelCase__( lowercase : Optional[int] ) -> bytes: __snake_case : Union[str, Any] = preprocess(UpperCamelCase__ ) __snake_case : Optional[int] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __snake_case : Union[str, Any] = 0X67_452_301 __snake_case : List[Any] = 0Xef_cda_b89 __snake_case : Optional[int] = 0X98_bad_cfe __snake_case : List[Any] = 0X10_325_476 __snake_case : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase__ ): __snake_case : Tuple = aa __snake_case : str = ba __snake_case : Dict = ca __snake_case : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case : Optional[int] = d ^ (b & (c ^ d)) __snake_case : str = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case : Optional[int] = c ^ (d & (b ^ c)) __snake_case : Dict = (5 * i + 1) % 16 elif i <= 47: __snake_case : Tuple = b ^ c ^ d __snake_case : Optional[int] = (3 * i + 5) % 16 else: __snake_case : str = c ^ (b | not_aa(UpperCamelCase__ )) __snake_case : Union[str, Any] = (7 * i) % 16 __snake_case : Any = (f + a + added_consts[i] + block_words[g]) % 2**32 __snake_case : Any = d __snake_case : int = c __snake_case : int = b __snake_case : List[Any] = sum_aa(UpperCamelCase__ , left_rotate_aa(UpperCamelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case : Dict = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) __snake_case : Optional[int] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) __snake_case : Optional[int] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) __snake_case : Optional[Any] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) __snake_case : Optional[int] = reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
326
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def _lowercase ( self , _A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowercase ( self , _A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
273
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] lowerCAmelCase_ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = {f'''funnel-transformer/{name}''': 5_12 for name in _model_names} lowerCAmelCase_ = {f'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class _A ( _lowerCamelCase ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = FunnelTokenizer _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : int = 2 def __init__( self : List[Any] , _A : Union[str, Any]=None , _A : List[Any]=None , _A : Optional[int]=True , _A : Dict="<unk>" , _A : Optional[int]="<sep>" , _A : Tuple="<pad>" , _A : Union[str, Any]="<cls>" , _A : Dict="<mask>" , _A : List[Any]="<s>" , _A : Dict="</s>" , _A : Tuple=True , _A : Dict=True , _A : int=None , _A : List[Any]="##" , **_A : int , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , bos_token=_A , eos_token=_A , clean_text=_A , tokenize_chinese_chars=_A , strip_accents=_A , wordpieces_prefix=_A , **_A , ) lowercase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): lowercase : Union[str, Any] = getattr(_A , normalizer_state.pop('''type''' ) ) lowercase : int = do_lower_case lowercase : Optional[int] = strip_accents lowercase : str = tokenize_chinese_chars lowercase : Dict = normalizer_class(**_A ) lowercase : int = do_lower_case def __a ( self : int , _A : Optional[Any] , _A : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : Tuple = [self.sep_token_id] lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : List[str] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
116
lowerCAmelCase_ = range(2, 20 + 1) lowerCAmelCase_ = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase_ = {} def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : str = sum(a_i[j] for j in range(__magic_name__ , len(__magic_name__ ) ) ) lowercase : Any = sum(a_i[j] * base[j] for j in range(min(len(__magic_name__ ) , __magic_name__ ) ) ) lowercase , lowercase : Optional[int] = 0, 0 lowercase : str = n - i lowercase : Optional[int] = memo.get(__magic_name__ ) if sub_memo is not None: lowercase : List[str] = sub_memo.get(__magic_name__ ) if jumps is not None and len(__magic_name__ ) > 0: # find and make the largest jump without going over lowercase : Dict = -1 for _k in range(len(__magic_name__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase : Any = _k break if max_jump >= 0: lowercase , lowercase , lowercase : List[str] = jumps[max_jump] # since the difference between jumps is cached, add c lowercase : str = diff + c for j in range(min(__magic_name__ , len(__magic_name__ ) ) ): lowercase , lowercase : Optional[Any] = divmod(__magic_name__ , 10 ) if new_c > 0: add(__magic_name__ , __magic_name__ , __magic_name__ ) else: lowercase : Dict = [] else: lowercase : Union[str, Any] = {c: []} lowercase : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase , lowercase : str = next_term(__magic_name__ , k - 1 , i + dn , __magic_name__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase , lowercase : Optional[Any] = compute(__magic_name__ , __magic_name__ , i + dn , __magic_name__ ) diff += _diff dn += terms_jumped lowercase : Optional[Any] = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase : List[Any] = 0 while j < len(__magic_name__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__magic_name__ , (diff, dn, k) ) return (diff, dn) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' if i >= n: return 0, i if k > len(__magic_name__ ): a_i.extend([0 for _ in range(k - len(__magic_name__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase : Optional[Any] = i lowercase , lowercase , lowercase : List[str] = 0, 0, 0 for j in range(len(__magic_name__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase : List[str] = ds_c + ds_b diff += addend lowercase : Tuple = 0 for j in range(__magic_name__ ): lowercase : int = a_i[j] + addend lowercase , lowercase : Any = divmod(__magic_name__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__magic_name__ , __magic_name__ , __magic_name__ ) return diff, i - start_i def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' for j in range(__magic_name__ , len(__magic_name__ ) ): lowercase : Any = digits[j] + addend if s >= 10: lowercase , lowercase : List[str] = divmod(__magic_name__ , 10 ) lowercase : List[str] = addend // 10 + quotient else: lowercase : Optional[Any] = s lowercase : Tuple = addend // 10 if addend == 0: break while addend > 0: lowercase , lowercase : str = divmod(__magic_name__ , 10 ) digits.append(__magic_name__ ) def snake_case( __magic_name__ = 10**15 ) -> int: '''simple docstring''' lowercase : List[Any] = [1] lowercase : List[Any] = 1 lowercase : str = 0 while True: lowercase , lowercase : str = next_term(__magic_name__ , 20 , i + dn , __magic_name__ ) dn += terms_jumped if dn == n - i: break lowercase : str = 0 for j in range(len(__magic_name__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
116
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ): if start is None: _UpperCAmelCase : List[Any] = 0 if end is None: _UpperCAmelCase : Dict = len(__lowerCAmelCase ) - 1 if start >= end: return _UpperCAmelCase : List[str] = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
234
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } lowerCamelCase__ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Any = BertTokenizer def __init__( self : int , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple="[UNK]" , lowerCamelCase__ : str="[SEP]" , lowerCamelCase__ : Optional[Any]="[PAD]" , lowerCamelCase__ : List[str]="[CLS]" , lowerCamelCase__ : Union[str, Any]="[MASK]" , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase__ ) != tokenize_chinese_chars ): _UpperCAmelCase : str = getattr(lowerCamelCase__ , normalizer_state.pop("type" ) ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : Any = strip_accents _UpperCAmelCase : List[Any] = tokenize_chinese_chars _UpperCAmelCase : int = normalizer_class(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = do_lower_case def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=None ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
234
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _A : List[Any] =logging.get_logger(__name__) class _lowercase ( _lowercase ): def __init__( self: Dict , UpperCamelCase__: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() lowerCamelCase__ : Optional[int] = nn.ModuleList(UpperCamelCase__ ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: torch.FloatTensor , UpperCamelCase__: Union[torch.Tensor, float, int] , UpperCamelCase__: torch.Tensor , UpperCamelCase__: List[torch.tensor] , UpperCamelCase__: List[float] , UpperCamelCase__: Optional[torch.Tensor] = None , UpperCamelCase__: Optional[torch.Tensor] = None , UpperCamelCase__: Optional[torch.Tensor] = None , UpperCamelCase__: Optional[Dict[str, Any]] = None , UpperCamelCase__: bool = False , UpperCamelCase__: bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ , self.nets ) ): lowerCamelCase__ : Optional[Any] = controlnet( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) # merge samples if i == 0: lowerCamelCase__ : int = down_samples, mid_sample else: lowerCamelCase__ : Tuple = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase__ , UpperCamelCase__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCamelCase_ ( self: int , UpperCamelCase__: Union[str, os.PathLike] , UpperCamelCase__: bool = True , UpperCamelCase__: Callable = None , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[str] = None , ): lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase__ , is_main_process=UpperCamelCase__ , save_function=UpperCamelCase__ , safe_serialization=UpperCamelCase__ , variant=UpperCamelCase__ , ) idx += 1 lowerCamelCase__ : int = model_path_to_save + F'''_{idx}''' @classmethod def lowerCamelCase_ ( cls: Tuple , UpperCamelCase__: Optional[Union[str, os.PathLike]] , **UpperCamelCase__: int ): lowerCamelCase__ : str = 0 lowerCamelCase__ : List[str] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCamelCase__ : Optional[int] = pretrained_model_path while os.path.isdir(UpperCamelCase__ ): lowerCamelCase__ : List[str] = ControlNetModel.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) controlnets.append(UpperCamelCase__ ) idx += 1 lowerCamelCase__ : Optional[int] = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(UpperCamelCase__ )} controlnets loaded from {pretrained_model_path}.''' ) if len(UpperCamelCase__ ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(UpperCamelCase__ )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(UpperCamelCase__ )
364
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _A : Optional[Any] =typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _A : Optional[int] =typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> VectorOut: return np.sqrt(np.sum((np.asarray(UpperCamelCase ) - np.asarray(UpperCamelCase )) ** 2 ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(UpperCamelCase , UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ () -> None: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
129
0
def A ( a_ = 1_000 ) -> int: return sum(e for e in range(3 ,a_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"{solution() = }")
71
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts: A__ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register A__ = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A__ = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
247
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase :int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase :Optional[Any] = 5_0_0_0_3 lowerCamelCase :List[Any] = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = PLBartTokenizer __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : str = False def _a (self ): super().setUp() # We have a SentencePiece fixture for testing A_ : str = PLBartTokenizer(lowercase , language_codes="""base""" , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): A_ : Optional[int] = PLBartTokenizer(lowercase , language_codes="""base""" , keep_accents=lowercase ) A_ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A_ : Any = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A_ : Tuple = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A_ : int = tokenizer.vocab_size A_ : Tuple = [tokenizer.convert_ids_to_tokens(lowercase ) for x in range(end - 4 , lowercase )] self.assertListEqual(lowercase , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A_ : Optional[int] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A_ : Any = tokenizer(lowercase ).input_ids self.assertEqual( tokenizer.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) , lowercase , ) def _a (self ): A_ : Union[str, Any] = PLBartTokenizer(lowercase , language_codes="""multi""" , keep_accents=lowercase ) A_ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A_ : Dict = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A_ : Any = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A_ : Optional[int] = tokenizer.vocab_size A_ : Optional[int] = [tokenizer.convert_ids_to_tokens(lowercase ) for x in range(end - 7 , lowercase )] self.assertListEqual( lowercase , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A_ : Union[str, Any] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A_ : List[Any] = tokenizer(lowercase ).input_ids self.assertEqual( tokenizer.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) , lowercase , ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = 'uclanlp/plbart-python-en_XX' __SCREAMING_SNAKE_CASE : Any = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __SCREAMING_SNAKE_CASE : List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __SCREAMING_SNAKE_CASE : Optional[Any] = [ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def _a (cls ): A_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A_ : int = 1 return cls def _a (self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 50003 ) def _a (self ): A_ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase ) def _a (self ): self.assertIn(lowercase , self.tokenizer.all_special_ids ) A_ : Dict = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] A_ : str = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase ) A_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase ) self.assertEqual(lowercase , lowercase ) self.assertNotIn(self.tokenizer.eos_token , lowercase ) def _a (self ): A_ : List[str] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowercase ) A_ : List[str] = 10 A_ : int = self.tokenizer(lowercase , max_length=lowercase , truncation=lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase ) self.assertEqual(len(lowercase ) , lowercase ) def _a (self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [50004, 50001] ) def _a (self ): A_ : Optional[int] = tempfile.mkdtemp() A_ : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase ) A_ : Optional[int] = PLBartTokenizer.from_pretrained(lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase ) @require_torch def _a (self ): A_ : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase , return_tensors="""pt""" ) A_ : Optional[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _a (self ): A_ : Any = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A_ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _a (self ): A_ : int = self.tokenizer(self.src_text , padding=lowercase , truncation=lowercase , max_length=3 , return_tensors="""pt""" ) A_ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=10 , return_tensors="""pt""" ) A_ : List[str] = targets["""input_ids"""] A_ : Any = shift_tokens_right(lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a (self ): A_ : Union[str, Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowercase ) , { # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50001, } , )
135
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase :Dict = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
1
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : int ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(a__ : Dict , a__ : Union[str, Any]="" , a__ : Union[str, Any]="." ): _UpperCamelCase = [] for k, v in d.items(): _UpperCamelCase = parent_key + sep + k if parent_key else k if isinstance(a__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(a__ , a__ , sep=a__ ).items() ) else: items.append((new_key, v) ) return dict(a__ ) _UpperCamelCase = argparse.Namespace() with open(a__ , '''r''' ) as yaml_file: try: _UpperCamelCase = yaml.load(a__ , Loader=yaml.FullLoader ) _UpperCamelCase = flatten_yaml_as_dict(a__ ) for k, v in flat_cfg.items(): setattr(a__ , a__ , a__ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(a__ , str(a__ ) ) ) return config def lowercase ( a__ : str , a__ : Optional[int] ) -> str: _UpperCamelCase = MobileViTVaConfig() _UpperCamelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): _UpperCamelCase = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: _UpperCamelCase = 384 else: _UpperCamelCase = 256 _UpperCamelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): _UpperCamelCase = 21000 if int(task_name.strip().split('''_''' )[-1] ) == 384: _UpperCamelCase = 384 else: _UpperCamelCase = 256 _UpperCamelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): _UpperCamelCase = 151 _UpperCamelCase = 512 _UpperCamelCase = '''ade20k-id2label.json''' _UpperCamelCase = True elif task_name.startswith('''voc_''' ): _UpperCamelCase = 21 _UpperCamelCase = 512 _UpperCamelCase = '''pascal-voc-id2label.json''' _UpperCamelCase = True # orig_config _UpperCamelCase = load_orig_config_file(a__ ) assert getattr(a__ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" _UpperCamelCase = getattr(a__ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(a__ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _UpperCamelCase = getattr(a__ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _UpperCamelCase = getattr(a__ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: _UpperCamelCase = getattr(a__ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) _UpperCamelCase = getattr(a__ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) _UpperCamelCase = getattr(a__ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} return config def lowercase ( a__ : Union[str, Any] , a__ : Any , a__ : str ) -> Union[str, Any]: _UpperCamelCase = dct.pop(a__ ) _UpperCamelCase = val def lowercase ( a__ : List[str] , a__ : Optional[Any]=False ) -> Dict: if base_model: _UpperCamelCase = '''''' else: _UpperCamelCase = '''mobilevitv2.''' _UpperCamelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": _UpperCamelCase = k[8:] else: _UpperCamelCase = k if ".block." in k: _UpperCamelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: _UpperCamelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: _UpperCamelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: _UpperCamelCase = k_new.replace('''conv_1.''' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: _UpperCamelCase = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _UpperCamelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: _UpperCamelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: _UpperCamelCase = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: _UpperCamelCase = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: _UpperCamelCase = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _UpperCamelCase = [0, 1] elif i == 4: _UpperCamelCase = [0, 1, 2, 3] elif i == 5: _UpperCamelCase = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: _UpperCamelCase = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: _UpperCamelCase = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: _UpperCamelCase = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _UpperCamelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: _UpperCamelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: _UpperCamelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: _UpperCamelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: _UpperCamelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: _UpperCamelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: _UpperCamelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: _UpperCamelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: _UpperCamelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def lowercase ( a__ : str ) -> Tuple: _UpperCamelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(a__ ) for k in keys_to_ignore: state_dict.pop(a__ , a__ ) def lowercase ( ) -> Union[str, Any]: _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def lowercase ( a__ : Optional[int] , a__ : str , a__ : int , a__ : List[str] ) -> Optional[Any]: _UpperCamelCase = get_mobilevitva_config(a__ , a__ ) # load original state_dict _UpperCamelCase = torch.load(a__ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): _UpperCamelCase = MobileViTVaForSemanticSegmentation(a__ ).eval() _UpperCamelCase = False else: _UpperCamelCase = MobileViTVaForImageClassification(a__ ).eval() _UpperCamelCase = False # remove and rename some keys of load the original model _UpperCamelCase = checkpoint remove_unused_keys(a__ ) _UpperCamelCase = create_rename_keys(a__ , base_model=a__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a__ , a__ , a__ ) # load modified state_dict model.load_state_dict(a__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _UpperCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCamelCase = model(**a__ ) # verify classification model if task_name.startswith('''imagenet''' ): _UpperCamelCase = outputs.logits _UpperCamelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant _UpperCamelCase = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , a__ , atol=1e-4 ) Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCAmelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
256
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _lowercase): def __init__( self : List[Any] , __UpperCamelCase : VQModel , __UpperCamelCase : UNetaDModel , __UpperCamelCase : DDIMScheduler ) -> Optional[Any]: super().__init__() self.register_modules(vqvae=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 50 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : Optional[int] , ) -> Union[Tuple, ImagePipelineOutput]: _UpperCamelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCamelCase , ) _UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): _UpperCamelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual _UpperCamelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # decode the image latents with the VAE _UpperCamelCase = self.vqvae.decode(__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
256
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A_ = 50_00_00 A_ , A_ = os.path.split(__file__) A_ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def UpperCAmelCase__ (snake_case__ : datasets.Dataset , **snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = dataset.map(**snake_case__ ) @get_duration def UpperCAmelCase__ (snake_case__ : datasets.Dataset , **snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : int = dataset.filter(**snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : Tuple = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) _snake_case : Any = generate_example_dataset( os.path.join(snake_case__ , """dataset.arrow""" ) , snake_case__ , num_examples=snake_case__ ) _snake_case : List[Any] = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=snake_case__ ) def tokenize(snake_case__ : Tuple ): return tokenizer(examples["""text"""] ) _snake_case : List[Any] = map(snake_case__ ) _snake_case : List[Any] = map(snake_case__ , batched=snake_case__ ) _snake_case : Any = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""numpy""" ): _snake_case : Dict = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""pandas""" ): _snake_case : Any = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): _snake_case : Any = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): _snake_case : Optional[Any] = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) _snake_case : str = map(snake_case__ , function=snake_case__ , batched=snake_case__ ) _snake_case : List[Any] = filter(snake_case__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(snake_case__ , """wb""" ) as f: f.write(json.dumps(snake_case__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
132
"""simple docstring""" from __future__ import annotations from math import gcd def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : int = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> int: return (pow(snake_case__ , 2 ) + step) % modulus for _ in range(snake_case__ ): # These track the position within the cycle detection logic. _snake_case : Optional[int] = seed _snake_case : str = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _snake_case : Any = rand_fn(snake_case__ , snake_case__ , snake_case__ ) _snake_case : Optional[Any] = rand_fn(snake_case__ , snake_case__ , snake_case__ ) _snake_case : int = rand_fn(snake_case__ , snake_case__ , snake_case__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _snake_case : str = gcd(hare - tortoise , snake_case__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _snake_case : Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse A_ = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) A_ = parser.parse_args() A_ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: A_ = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
132
1
"""simple docstring""" import os import string import sys a :Union[str, Any] = 1 << 8 a :Optional[Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a :Union[str, Any] = KEYMAP["up"] a :int = KEYMAP["left"] if sys.platform == "win32": a :int = [] a :str = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a :Dict = ord(str(i)) def _lowercase ( ) -> str: if os.name == "nt": import msvcrt SCREAMING_SNAKE_CASE__ : Union[str, Any] = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCamelCase ) == 0: # Read the keystroke SCREAMING_SNAKE_CASE__ : List[str] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): SCREAMING_SNAKE_CASE__ : Optional[int] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: SCREAMING_SNAKE_CASE__ : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(_UpperCamelCase ) if ord(_UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = chr(KEYMAP["""esc"""] ) except KeyError: SCREAMING_SNAKE_CASE__ : Dict = cha[1] else: SCREAMING_SNAKE_CASE__ : List[str] = ch.decode(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty SCREAMING_SNAKE_CASE__ : List[str] = sys.stdin.fileno() SCREAMING_SNAKE_CASE__ : List[Any] = termios.tcgetattr(_UpperCamelCase ) try: tty.setraw(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCamelCase , termios.TCSADRAIN , _UpperCamelCase ) return ch def _lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE__ : int = get_raw_chars() if ord(_UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCamelCase ) == KEYMAP["esc"]: SCREAMING_SNAKE_CASE__ : List[str] = get_raw_chars() if ord(_UpperCamelCase ) == KEYMAP["mod_int"]: SCREAMING_SNAKE_CASE__ : Any = get_raw_chars() if ord(_UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
132
"""simple docstring""" import sys from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] def snake_case ( self , __a ): return self.node_position[vertex] def snake_case ( self , __a , __a ): __lowerCAmelCase = pos def snake_case ( self , __a , __a , __a , __a ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCAmelCase = 2 * start + 1 else: __lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child] __lowerCAmelCase , __lowerCAmelCase = ( heap[start], positions[start], ) __lowerCAmelCase , __lowerCAmelCase = temp, tempa __lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = position[index] while index != 0: __lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCAmelCase = heap[parent] __lowerCAmelCase = position[parent] self.set_position(position[parent] , __a ) else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , __a ) break __lowerCAmelCase = parent else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , 0 ) def snake_case ( self , __a , __a ): __lowerCAmelCase = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = positions[0] __lowerCAmelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Heap() __lowerCAmelCase = [0] * len(_UpperCamelCase ) __lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCAmelCase = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = 1 __lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCAmelCase = 0 __lowerCAmelCase = distance heap.heapify(_UpperCamelCase , _UpperCamelCase ) for _ in range(1 , len(_UpperCamelCase ) ): __lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): __lowerCAmelCase = distance heap.bottom_to_top( _UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Optional[Any] = int(input("Enter number of edges: ").strip()) A : Dict = defaultdict(list) for _ in range(edges_number): A : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
57
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ): _snake_case = """ZinengTang/tvlt-base""" _snake_case = tempfile.mkdtemp() def lowercase (self , **UpperCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def lowercase (self , **UpperCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def lowercase (self ): shutil.rmtree(self.tmpdirname ) def lowercase (self ): _snake_case = self.get_image_processor() _snake_case = self.get_feature_extractor() _snake_case = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) _snake_case = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def lowercase (self ): _snake_case = self.get_image_processor() _snake_case = self.get_feature_extractor() _snake_case = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) _snake_case = np.ones([12000] ) _snake_case = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ) _snake_case = processor(audio=__lowerCAmelCase , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase (self ): _snake_case = self.get_image_processor() _snake_case = self.get_feature_extractor() _snake_case = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) _snake_case = np.ones([3, 224, 224] ) _snake_case = image_processor(__lowerCAmelCase , return_tensors="""np""" ) _snake_case = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase (self ): _snake_case = self.get_image_processor() _snake_case = self.get_feature_extractor() _snake_case = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) _snake_case = np.ones([12000] ) _snake_case = np.ones([3, 224, 224] ) _snake_case = processor(audio=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def lowercase (self ): _snake_case = self.get_image_processor() _snake_case = self.get_feature_extractor() _snake_case = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
371
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _snake_case = img _snake_case = img.shape[1] _snake_case = img.shape[0] _snake_case = dst_width _snake_case = dst_height _snake_case = self.src_w / self.dst_w _snake_case = self.src_h / self.dst_h _snake_case = _snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowercase (self ) -> List[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case = self.img[self.get_y(UpperCAmelCase )][self.get_x(UpperCAmelCase )] def lowercase (self , UpperCAmelCase ) -> int: return int(self.ratio_x * x ) def lowercase (self , UpperCAmelCase ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase = 800, 600 __lowerCAmelCase = imread('image_data/lena.jpg', 1) __lowerCAmelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
270
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase_( a__ ): """simple docstring""" if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE : Any = version.parse(accelerate.__version__ ).base_version if version.parse(snake_case_ ) < version.parse('''0.17.0''' ): return method def wrapper(self , *a__ , **a__ ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *snake_case_ , **snake_case_ ) return wrapper
313
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : str, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : str=1_2, lowerCAmelCase__ : Optional[Any]=7, lowerCAmelCase__ : Dict=True, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : int=True, lowerCAmelCase__ : int=9_9, lowerCAmelCase__ : List[Any]=3_2, lowerCAmelCase__ : Any=3_2, lowerCAmelCase__ : List[str]=2, lowerCAmelCase__ : Dict=4, lowerCAmelCase__ : Optional[int]=3_7, lowerCAmelCase__ : Tuple=0.1, lowerCAmelCase__ : List[str]=0.1, lowerCAmelCase__ : Any=5_1_2, lowerCAmelCase__ : List[Any]=0.02, lowerCAmelCase__ : str=0, lowerCAmelCase__ : Optional[Any]=None, ) -> int: '''simple docstring''' _UpperCamelCase : Dict = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Optional[Any] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : int = use_input_mask _UpperCamelCase : int = use_labels _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = projection_dim _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : Any = intermediate_size _UpperCamelCase : Optional[Any] = dropout _UpperCamelCase : Optional[Any] = attention_dropout _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Union[str, Any] = scope _UpperCamelCase : int = bos_token_id def snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : Optional[Any] = None if self.use_input_mask: _UpperCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase : Union[str, Any] = input_mask.numpy() _UpperCamelCase : Optional[int] = input_mask.shape _UpperCamelCase : Optional[int] = np.random.randint(1, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): _UpperCamelCase : Any = 1 _UpperCamelCase : str = 0 _UpperCamelCase : List[str] = self.get_config() return config, input_ids, tf.convert_to_tensor(a_ ) def snake_case ( self : Dict ) -> str: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = TFBlipTextModel(config=a_ ) _UpperCamelCase : int = model(a_, attention_mask=a_, training=a_ ) _UpperCamelCase : Optional[int] = model(a_, training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def snake_case ( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _a ( __snake_case , unittest.TestCase ): UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase : str = BlipTextModelTester(self ) _UpperCamelCase : Dict = ConfigTester(self, config_class=a_, hidden_size=3_7 ) def snake_case ( self : int ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' pass def snake_case ( self : List[Any] ) -> str: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def snake_case ( self : Tuple ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def snake_case ( self : List[str] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def snake_case ( self : Dict ) -> Any: '''simple docstring''' pass @slow def snake_case ( self : Any ) -> int: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Tuple = TFBlipTextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def snake_case ( self : Optional[Any], lowerCAmelCase__ : List[Any]=True ) -> int: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=a_ )
352
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _a ( unittest.TestCase ): def snake_case ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase : int = tempfile.mkdtemp() _UpperCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCamelCase : Dict = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], '''do_convert_rgb''': True, } _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, lowerCAmelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : str, **lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Union[str, Any], **lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Any, **lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : str ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] _UpperCamelCase : List[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase__ ) def snake_case ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : Dict = self.get_tokenizer(cls_token='''(CLS)''', sep_token='''(SEP)''' ) _UpperCamelCase : List[str] = self.get_image_processor(do_normalize=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token='''(CLS)''', sep_token='''(SEP)''', do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCAmelCase__ ) def snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = self.get_image_processor() _UpperCamelCase : str = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.prepare_image_inputs() _UpperCamelCase : Any = image_processor(lowerCAmelCase__, return_tensors='''np''' ) _UpperCamelCase : Any = processor(images=lowerCAmelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Tuple = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : List[str] = processor(text=lowerCAmelCase__ ) _UpperCamelCase : Any = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCamelCase : str = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def snake_case ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : int = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase : List[Any] = processor.batch_decode(lowerCAmelCase__ ) _UpperCamelCase : Dict = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = self.get_image_processor() _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : int = self.prepare_image_inputs() _UpperCamelCase : Dict = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
128
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : Any = """focalnet""" def __init__( self , __A=224 , __A=4 , __A=3 , __A=96 , __A=False , __A=[192, 384, 768, 768] , __A=[2, 2, 6, 2] , __A=[2, 2, 2, 2] , __A=[3, 3, 3, 3] , __A="gelu" , __A=4.0 , __A=0.0 , __A=0.1 , __A=False , __A=1e-4 , __A=False , __A=False , __A=False , __A=0.02 , __A=1e-5 , __A=32 , __A=None , __A=None , **__A , ): """simple docstring""" super().__init__(**__UpperCamelCase ) lowerCamelCase : Optional[Any] = image_size lowerCamelCase : List[Any] = patch_size lowerCamelCase : Dict = num_channels lowerCamelCase : Tuple = embed_dim lowerCamelCase : str = use_conv_embed lowerCamelCase : List[str] = hidden_sizes lowerCamelCase : Optional[Any] = depths lowerCamelCase : Union[str, Any] = focal_levels lowerCamelCase : Dict = focal_windows lowerCamelCase : Tuple = hidden_act lowerCamelCase : Optional[int] = mlp_ratio lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : List[Any] = drop_path_rate lowerCamelCase : str = use_layerscale lowerCamelCase : str = layerscale_value lowerCamelCase : Union[str, Any] = use_post_layernorm lowerCamelCase : Any = use_post_layernorm_in_modulation lowerCamelCase : Dict = normalize_modulator lowerCamelCase : str = initializer_range lowerCamelCase : Any = layer_norm_eps lowerCamelCase : Optional[Any] = encoder_stride lowerCamelCase : int = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCamelCase , lowerCamelCase : Dict = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
283
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Any = DanceDiffusionPipeline A__ : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A__ : List[Any] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A__ : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A__ : str = False A__ : Any = False def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_ = IPNDMScheduler() UpperCamelCase_ = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = DanceDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = pipe(**__UpperCamelCase ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def lowerCamelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
122
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __UpperCAmelCase = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
42
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCAmelCase = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: int =len([g for position, g in enumerate(__magic_name__ ) if g == main_target[position]] ) return (item, float(__magic_name__ )) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: Any =random.randint(0 , len(__magic_name__ ) - 1 ) a__: Tuple =parent_a[:random_slice] + parent_a[random_slice:] a__: List[str] =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] ): a__: str =list(__magic_name__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a__: Union[str, Any] =random.choice(__magic_name__ ) return "".join(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : tuple[str, float] , __magic_name__ : list[tuple[str, float]] , __magic_name__ : list[str] , ): a__: List[Any] =[] # Generate more children proportionally to the fitness score. a__: Dict =int(parent_a[1] * 100 ) + 1 a__: Tuple =10 if child_n >= 10 else child_n for _ in range(__magic_name__ ): a__: List[str] =population_score[random.randint(0 , __magic_name__ )][0] a__ , a__: Dict =crossover(parent_a[0] , __magic_name__ ) # Append new string to the population list. pop.append(mutate(__magic_name__ , __magic_name__ ) ) pop.append(mutate(__magic_name__ , __magic_name__ ) ) return pop def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : list[str] , __magic_name__ : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a__: Any =F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__magic_name__ ) # Verify that the target contains no genes besides the ones inside genes variable. a__: int =sorted({c for c in target if c not in genes} ) if not_in_genes_list: a__: str =F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__magic_name__ ) # Generate random starting population. a__: Tuple =[] for _ in range(__magic_name__ ): population.append("".join([random.choice(__magic_name__ ) for i in range(len(__magic_name__ ) )] ) ) # Just some logs to know what the algorithms is doing. a__ , a__: Any =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__magic_name__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a__: Dict =[evaluate(__magic_name__ , __magic_name__ ) for item in population] # Check if there is a matching evolution. a__: Any =sorted(__magic_name__ , key=lambda __magic_name__ : x[1] , reverse=__magic_name__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a__: Optional[int] =population[: int(N_POPULATION / 3 )] population.clear() population.extend(__magic_name__ ) # Normalize population score to be between 0 and 1. a__: List[str] =[ (item, score / len(__magic_name__ )) for item, score in population_score ] # This is selection for i in range(__magic_name__ ): population.extend(select(population_score[int(__magic_name__ )] , __magic_name__ , __magic_name__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__magic_name__ ) > N_POPULATION: break if __name__ == "__main__": __UpperCAmelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCAmelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
42
1
def lowerCAmelCase__( lowercase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __snake_case : Optional[int] = gray_code_sequence_string(lowercase ) # # convert them to integers for i in range(len(lowercase ) ): __snake_case : Optional[Any] = int(sequence[i] , 2 ) return sequence def lowerCAmelCase__( lowercase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case : List[Any] = gray_code_sequence_string(bit_count - 1 ) __snake_case : Dict = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case : Optional[int] = "0" + smaller_sequence[i] sequence.append(lowercase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case : List[Any] = "1" + smaller_sequence[i] sequence.append(lowercase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
1
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient a = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _snake_case ( _snake_case : int ) -> Dict: '''simple docstring''' _A = test_results.split(' ' ) _A = 0 _A = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _A = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_snake_case ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _snake_case ( _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' _A = {} _A = None _A = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , _snake_case ): _A = True _A = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): _A = line _A = False return failures class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ): _A = title _A = doc_test_results['time_spent'].split(',' )[0] _A = doc_test_results['success'] _A = doc_test_results['failures'] _A = self.n_success + self.n_failures # Failures and success of the modeling tests _A = doc_test_results @property def lowerCAmelCase_ ( self : Tuple ): _A = [self._time_spent] _A = 0 for time in time_spent: _A = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_UpperCAmelCase ) == 1: _A = [0, 0, time_parts[0]] _A , _A , _A = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds _A , _A , _A = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return F'''{int(_UpperCAmelCase )}h{int(_UpperCAmelCase )}m{int(_UpperCAmelCase )}s''' @property def lowerCAmelCase_ ( self : Any ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase_ ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def lowerCAmelCase_ ( self : List[str] ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def lowerCAmelCase_ ( self : List[str] ): _A = 40 _A = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(_UpperCAmelCase , _UpperCAmelCase )} _A = '' for category, failures in category_failures.items(): if len(_UpperCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_UpperCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def lowerCAmelCase_ ( self : List[Any] ): _A = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( ): _A = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(_UpperCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[str] ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) _A = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.' _A = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ): _A = '' for key, value in failures.items(): _A = value[:200] + ' [Truncated]' if len(_UpperCAmelCase ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' _A = job_name _A = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: _A = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase_ ( self : List[str] ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) _A = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) _A = sorted(self.doc_test_results.items() , key=lambda _UpperCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): _A = F'''*Num failures* :{len(job_result["failed"] )} \n''' _A = job_result['failures'] _A = self.get_reply_blocks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text=_UpperCAmelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'''Results for {job}''' , blocks=_UpperCAmelCase , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' _A = os.environ['GITHUB_RUN_ID'] _A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' _A = requests.get(_snake_case ).json() _A = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) _A = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(_snake_case ): _A = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _snake_case ) return {} def _snake_case ( _snake_case : str ) -> int: '''simple docstring''' _A = {} if os.path.exists(_snake_case ): _A = os.listdir(_snake_case ) for file in files: try: with open(os.path.join(_snake_case , _snake_case ) , encoding='utf-8' ) as f: _A = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(_snake_case , _snake_case )}.''' ) from e return _artifact def _snake_case ( ) -> int: '''simple docstring''' class lowercase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : str ): _A = name _A = [] def __str__( self : int ): return self.name def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str ): self.paths.append({'name': self.name, 'path': path} ) _A = {} _A = filter(os.path.isdir , os.listdir() ) for directory in directories: _A = directory if artifact_name not in _available_artifacts: _A = Artifact(_snake_case ) _available_artifacts[artifact_name].add_path(_snake_case ) return _available_artifacts if __name__ == "__main__": a = get_job_links() a = retrieve_available_artifacts() a = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' a = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job a = github_actions_job_links.get('''run_doctests''') a = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] a = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: a , a , a = handle_test_results(artifact['''stats''']) a = failed a = success a = time_spent[1:-1] + ''', ''' a = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): a = line.replace('''FAILED ''', '''''') a = line.split()[0].replace('''\n''', '''''') if "::" in line: a , a = line.split('''::''') else: a , a = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): a = docs[file_regex] doc_test_results[category]["failed"].append(test) a = all_failures[test] if test in all_failures else '''N/A''' a = failure break a = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
271
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a = logging.get_logger(__name__) def _snake_case ( _snake_case : bool , _snake_case : bool ) -> Tuple: '''simple docstring''' def run_func(_snake_case : Any ): @wraps(_snake_case ) def run_in_eager_mode(*_snake_case : List[str] , **_snake_case : Tuple ): return func(*_snake_case , **_snake_case ) @wraps(_snake_case ) @tf.function(experimental_compile=_snake_case ) def run_in_graph_mode(*_snake_case : Dict , **_snake_case : Tuple ): return func(*_snake_case , **_snake_case ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int ) -> ["tf.Tensor"]: '''simple docstring''' _A = random.Random() _A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_snake_case , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : TensorFlowBenchmarkArguments UpperCAmelCase : PretrainedConfig UpperCAmelCase : str = "TensorFlow" @property def lowerCAmelCase_ ( self : str ): return tf.__version__ def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): # initialize GPU on separate process _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_inference ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_train ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_inference ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_train ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _A = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _A = __import__('transformers' , fromlist=[model_class] ) _A = getattr(_UpperCAmelCase , _UpperCAmelCase ) _A = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _A = TF_MODEL_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , training=_UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_UpperCAmelCase , training=_UpperCAmelCase ) _A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _A = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _A = __import__('transformers' , fromlist=[model_class] ) _A = getattr(_UpperCAmelCase , _UpperCAmelCase ) _A = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _A = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _A = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _A = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _A = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients _A = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(_UpperCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _A = timeit.repeat( _UpperCAmelCase , repeat=self.args.repeat , number=10 , ) return min(_UpperCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) _A = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) _A = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() _A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _A = nvml.nvmlDeviceGetMemoryInfo(_UpperCAmelCase ) _A = meminfo.used _A = Memory(_UpperCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) _A = None else: _A = measure_peak_memory_cpu(_UpperCAmelCase ) _A = Memory(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _A = stop_memory_tracing(_UpperCAmelCase ) if memory is None: _A = summary.total else: _A = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
271
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : Tuple = "\nHuman: <<task>>\n\nAssistant: " _lowerCamelCase : List[Any] = "huggingface-tools/default-prompts" _lowerCamelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( A__ , A__ , A__="run" ) -> List[Any]: """simple docstring""" if prompt_or_repo_id is None: UpperCamelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , A__ ) is not None: return prompt_or_repo_id UpperCamelCase = cached_file( A__ , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(A__ , 'r' , encoding='utf-8' ) as f: return f.read()
28
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowerCamelCase ( A__ , A__ , A__=1e-1_2 ) -> Dict: """simple docstring""" UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T return jnp.matmul(A__ , norm_emb_a.T ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = jnp.floataa def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase__ , dtype=self.dtype ) UpperCamelCase = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) UpperCamelCase = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) UpperCamelCase = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self : str , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.vision_model(UpperCamelCase__ )[1] UpperCamelCase = self.visual_projection(UpperCamelCase__ ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.special_care_embeds ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase = 0.0 UpperCamelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase__ ) # Use a lower threshold if an image has any special care concept UpperCamelCase = is_special_care * 0.0_1 UpperCamelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = CLIPConfig _SCREAMING_SNAKE_CASE = """clip_input""" _SCREAMING_SNAKE_CASE = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , UpperCamelCase__ : CLIPConfig , UpperCamelCase__ : Optional[Tuple] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : jnp.dtype = jnp.floataa , UpperCamelCase__ : bool = True , **UpperCamelCase__ : List[str] , ): """simple docstring""" if input_shape is None: UpperCamelCase = (1, 2_2_4, 2_2_4, 3) UpperCamelCase = self.module_class(config=UpperCamelCase__ , dtype=UpperCamelCase__ , **UpperCamelCase__ ) super().__init__(UpperCamelCase__ , UpperCamelCase__ , input_shape=UpperCamelCase__ , seed=UpperCamelCase__ , dtype=UpperCamelCase__ , _do_init=_do_init ) def A ( self : int , UpperCamelCase__ : jax.random.KeyArray , UpperCamelCase__ : Tuple , UpperCamelCase__ : FrozenDict = None ): """simple docstring""" UpperCamelCase = jax.random.normal(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = jax.random.split(UpperCamelCase__ ) UpperCamelCase = {'params': params_rng, 'dropout': dropout_rng} UpperCamelCase = self.module.init(UpperCamelCase__ , UpperCamelCase__ )['params'] return random_params def __call__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : dict = None , ): """simple docstring""" UpperCamelCase = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) , rngs={} , )
28
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowercase : str = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A_ ( A__ ) -> Optional[int]: if is_torch_version('<' , '2.0.0' ) or not hasattr(A__ , '_dynamo' ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def A_ ( A__ , A__ = True ) -> int: a__ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a__ : Union[str, Any] = is_compiled_module(A__ ) if is_compiled: a__ : List[str] = model a__ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): a__ : str = model.module if not keep_fpaa_wrapper: a__ : Union[str, Any] = getattr(A__ , 'forward' ) a__ : List[Any] = model.__dict__.pop('_original_forward' , A__ ) if original_forward is not None: while hasattr(A__ , '__wrapped__' ): a__ : int = forward.__wrapped__ if forward == original_forward: break a__ : List[Any] = forward if getattr(A__ , '_converted_to_transformer_engine' , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: a__ : List[str] = model a__ : Any = compiled_model return model def A_ ( ) -> int: PartialState().wait_for_everyone() def A_ ( A__ , A__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def A_ ( **A__ ) -> Any: for key, value in kwargs.items(): a__ : Optional[int] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A_ ( A__ ) -> List[str]: if not hasattr(A__ , '__qualname__' ) and not hasattr(A__ , '__name__' ): a__ : Dict = getattr(A__ , '__class__' , A__ ) if hasattr(A__ , '__qualname__' ): return obj.__qualname__ if hasattr(A__ , '__name__' ): return obj.__name__ return str(A__ ) def A_ ( A__ , A__ ) -> Dict: for key, value in source.items(): if isinstance(A__ , A__ ): a__ : Optional[Any] = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: a__ : Optional[int] = value return destination def A_ ( A__ = None ) -> bool: if port is None: a__ : List[Any] = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
225
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a__ ( A_ ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __magic_name__ = [1, 2, 3] with pytest.raises(A_ ): with parallel_backend("""unsupported backend""" ): map_nested(A_, A_, num_proc=2 ) with pytest.raises(A_ ): with parallel_backend("""unsupported backend""" ): map_nested(A_, A_, num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""", [2, -1] ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = [1, 2] __magic_name__ = {"""a""": 1, """b""": 2} __magic_name__ = {"""a""": [1, 2], """b""": [3, 4]} __magic_name__ = {"""a""": {"""1""": 1}, """b""": 2} __magic_name__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __magic_name__ = [2, 3] __magic_name__ = {"""a""": 2, """b""": 3} __magic_name__ = {"""a""": [2, 3], """b""": [4, 5]} __magic_name__ = {"""a""": {"""1""": 2}, """b""": 3} __magic_name__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa
88
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
0
def UpperCamelCase( lowercase_ ) -> Dict: '''simple docstring''' snake_case_ = [0] * len(lowercase_ ) snake_case_ = [] snake_case_ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: snake_case_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph lowerCamelCase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
34
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = AutoConfig.from_pretrained(lowercase_ ) snake_case_ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase_ ) snake_case_ = checkpoints.load_tax_checkpoint(lowercase_ ) snake_case_ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": snake_case_ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): snake_case_ = f'''layers_{str(lowercase_ )}''' # Self-Attention snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning snake_case_ = flax_model.params["""encoder"""]["""block"""][str(lowercase_ )]["""layer"""] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_global_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = tax_mlp_layer_norm snake_case_ = flax_model_encoder_layer_block # Only for layer 0: snake_case_ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T snake_case_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T snake_case_ = tax_encoder_global_rel_embedding # Assigning snake_case_ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] snake_case_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ = f'''layers_{str(lowercase_ )}''' # Self-Attention snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] snake_case_ = tax_enc_dec_attention_module["""key"""]["""kernel"""] snake_case_ = tax_enc_dec_attention_module["""out"""]["""kernel"""] snake_case_ = tax_enc_dec_attention_module["""query"""]["""kernel"""] snake_case_ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning snake_case_ = flax_model.params["""decoder"""]["""block"""][str(lowercase_ )]["""layer"""] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_pre_attention_layer_norm snake_case_ = tax_enc_dec_attention_key snake_case_ = tax_enc_dec_attention_out snake_case_ = tax_enc_dec_attention_query snake_case_ = tax_enc_dec_attention_value snake_case_ = tax_cross_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = txa_mlp_layer_norm snake_case_ = flax_model_decoder_layer_block # Decoder Normalization snake_case_ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] snake_case_ = txa_decoder_norm # Only for layer 0: snake_case_ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T snake_case_ = tax_decoder_rel_embedding # Token Embeddings snake_case_ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] snake_case_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(lowercase_ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
34
1
def __lowercase ( _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : Union[str, Any] = len(A_ ) for i in range(length - 1 ): lowercase : Tuple = i for k in range(i + 1, A_ ): if collection[k] < collection[least]: lowercase : Optional[int] = k if least != i: lowercase : List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": __a = input('''Enter numbers separated by a comma:\n''').strip() __a = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
337
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''CLIPFeatureExtractor'''] __UpperCamelCase : Optional[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __UpperCAmelCase = HfApi() __UpperCAmelCase = {} # fmt: off __UpperCAmelCase = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) __UpperCAmelCase = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) __UpperCAmelCase = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) __UpperCAmelCase = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) __UpperCAmelCase = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) __UpperCAmelCase = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) __UpperCAmelCase = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) __UpperCAmelCase = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) __UpperCAmelCase = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) __UpperCAmelCase = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) __UpperCAmelCase = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) __UpperCAmelCase = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) __UpperCAmelCase = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) __UpperCAmelCase = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) __UpperCAmelCase = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on __UpperCAmelCase = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __UpperCAmelCase = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'Started running {mod.modelId}!!!') if mod.modelId.startswith("""CompVis"""): __UpperCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: __UpperCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __UpperCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __UpperCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): __UpperCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(F'{mod.modelId} has passed successfully!!!')
139
def snake_case_ () -> List[Any]: for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def snake_case_ (__A : Dict ) -> Tuple: __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : Optional[int] = 2 while i * i <= n: __lowerCAmelCase : Optional[int] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case_ () -> Dict: return next(i for i in triangle_number_generator() if count_divisors(__A ) > 5_0_0 ) if __name__ == "__main__": print(solution())
139
1
'''simple docstring''' _UpperCamelCase = ''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' _UpperCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _UpperCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
254
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False ) -> Dict: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase : Any = os.path.abspath(__magic_name__ ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) lowercase : List[str] = torch.load(__magic_name__ , map_location='''cpu''' ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase : int = convert_pytorch_state_dict_to_flax(__magic_name__ , __magic_name__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(__magic_name__ , __magic_name__ ) return flax_state_dict def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(__magic_name__ ) -> bool: return len(set(__magic_name__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase : str = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__magic_name__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase : Dict = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__magic_name__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase : List[Any] = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__magic_name__ ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase : Optional[int] = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__magic_name__ ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__magic_name__ ): lowercase : Tuple = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__magic_name__ ): lowercase : List[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase : str = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase : Optional[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase : str = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase : List[Any] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case( __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase : Any = flax_model.params['''params'''] else: lowercase : List[Any] = flax_model.params lowercase : str = flatten_dict(__magic_name__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__magic_name__ ) lowercase : Optional[Any] = {} lowercase : List[Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase , lowercase : List[str] = rename_key_and_reshape_tensor( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # add model prefix if necessary lowercase : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase : List[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase : str = jnp.asarray(__magic_name__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__magic_name__ , __magic_name__ ) continue # also add unexpected weight so that warning is thrown lowercase : Any = jnp.asarray(__magic_name__ ) else: # also add unexpected weight so that warning is thrown lowercase : Tuple = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' import torch # Load the index lowercase : Optional[int] = {} for shard_file in shard_filenames: # load using msgpack utils lowercase : Any = torch.load(__magic_name__ ) lowercase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase : Tuple = flax_model.params['''params'''] lowercase : List[str] = flatten_dict(__magic_name__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase : Tuple = flax_model.params lowercase : Optional[int] = flatten_dict(__magic_name__ ) lowercase : int = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase : Dict = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase , lowercase : str = rename_key_and_reshape_tensor( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # add model prefix if necessary lowercase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase : List[Any] = jnp.asarray(__magic_name__ ) continue if "var" in flax_key[-1]: lowercase : Union[str, Any] = jnp.asarray(__magic_name__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__magic_name__ , __magic_name__ ) continue # also add unexpected weight so that warning is thrown lowercase : str = jnp.asarray(__magic_name__ ) else: # also add unexpected weight so that warning is thrown lowercase : Optional[int] = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : str = os.path.abspath(__magic_name__ ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase : Union[str, Any] = getattr(__magic_name__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__magic_name__ , '''rb''' ) as state_f: try: lowercase : List[Any] = from_bytes(__magic_name__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase : str = flatten_dict(jax.tree_util.tree_map(lambda __magic_name__ : x.dtype == jnp.bfloataa , __magic_name__ ) ).values() if any(__magic_name__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase : Dict = jax.tree_util.tree_map( lambda __magic_name__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __magic_name__ ) lowercase : Tuple = flatten_dict(__magic_name__ ) lowercase : List[Any] = pt_model.state_dict() lowercase : Optional[int] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase : Dict = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase : Optional[int] = [] lowercase : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase : Dict = flax_key_tuple[0] == pt_model.base_model_prefix lowercase : Any = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase : Optional[int] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__magic_name__ ) not in pt_model_dict: # conv layer lowercase : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase : Dict = jnp.transpose(__magic_name__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__magic_name__ ) not in pt_model_dict: # linear layer lowercase : str = flax_key_tuple[:-1] + ('''weight''',) lowercase : List[str] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase : List[Any] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase : List[str] = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase : List[str] = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase : int = '''.'''.join(__magic_name__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase : str = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase : Optional[Any] = key.split('''.''' ) lowercase : Union[str, Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase : Tuple = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase : List[str] = key_components[-2] + '''_v''' if name is not None: lowercase : Dict = key_components[:-3] + [name] lowercase : int = '''.'''.join(__magic_name__ ) lowercase : int = key if flax_key in special_pt_names: lowercase : str = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase : str = np.asarray(__magic_name__ ) if not isinstance(__magic_name__ , np.ndarray ) else flax_tensor lowercase : Tuple = torch.from_numpy(__magic_name__ ) # remove from missing keys missing_keys.remove(__magic_name__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(__magic_name__ ) pt_model.load_state_dict(__magic_name__ ) # re-transform missing_keys to list lowercase : int = list(__magic_name__ ) if len(__magic_name__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__magic_name__ ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
116
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCAmelCase_ = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCAmelCase_ = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __a ( self : List[Any] ) -> int: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __a ( self : Any , _A : Dict , _A : Any , _A : Any=None , _A : Any="uniform_average" , _A : Optional[Any]=True ) -> Dict: """simple docstring""" lowercase : Any = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
116
1