Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    RuntimeError
Message:      Failed to open input buffer: Invalid data found when processing input
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
                  return get_rows(
                         ^^^^^^^^^
                File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
                  return func(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2431, in __iter__
                  for key, example in ex_iterable:
                                      ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1953, in __iter__
                  batch = formatter.format_batch(pa_table)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/formatting/formatting.py", line 472, in format_batch
                  batch = self.python_features_decoder.decode_batch(batch)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/formatting/formatting.py", line 234, in decode_batch
                  return self.features.decode_batch(batch, token_per_repo_id=self.token_per_repo_id) if self.features else batch
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2147, in decode_batch
                  decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id)
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1409, in decode_nested_example
                  return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) if obj is not None else None
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/audio.py", line 204, in decode_example
                  audio = AudioDecoder(f, stream_index=self.stream_index, sample_rate=self.sampling_rate)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/torchcodec/decoders/_audio_decoder.py", line 64, in __init__
                  self._decoder = create_decoder(source=source, seek_mode="approximate")
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/torchcodec/decoders/_decoder_utils.py", line 45, in create_decoder
                  return core.create_from_file_like(source, seek_mode)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/torchcodec/_core/ops.py", line 151, in create_from_file_like
                  return _convert_to_tensor(_pybind_ops.create_from_file_like(file_like, seek_mode))
                                            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
              RuntimeError: Failed to open input buffer: Invalid data found when processing input

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset Card for Upper Waiākea Forest Reserve Passive Recordings

Dataset Details

Dataset Description

This is a dataset containing unlabelled, unprocessed passive acoustic recordings of Hawaiian birds in the Upper Waiākea Forst Reserve in Hawaii. This dataset is intended for use in unsupervised audio analysis methods, classification using existing models, and other machine learning and ecology research purposes.

Supported Tasks and Leaderboards

This dataset contains passive acoustic recordings collected as part of the Fall 2024/Spring 2025 Experiential Introduction to AI and Ecology course through the Imageomics Institute and ABC Global Center during January 2025.

This dataset is intended for use with unsupervised computer vision or acoustic machine learning models. No labels are provided, but recorder locations and recording timestamps are included, allowing for analysis of the relationship between ecological factors and variations in birdsong.

The dataset contains ~1623 hours of recording from 19 different recorders located in the Upper Waiākea Forest Reserve.

Dataset Structure

/upper-waiakea-PAM/
    <recorder_id>/
          <recorder_id>_Summary.txt
          Data/
              <recorder_id>_YYYYMMDD_HHMMSS.wav
              ...
    <recorder_id>/
        ...
    ...
    kipuka_metadata.csv
    check.py
    README.md

Data Instances

All audio files are named (recorder_id)-YYYYMMDD-HHMMSS.wav inside a folder named after the recorder id. Each recording starts at the time listed in the filename. Most recordings are 1 hour long, but some may be shorter. Recordings were taken using a SongMeter Micro 2.

kipuka_metadata.csv provides metadata for each recorder, including latitude/longitude and deployment/retrieval dates.

Data Fields

recorder_id, card_code, point_id, deployment_date, retrieval_date, latitude, longitude

kipuka_metadata.csv

  • recorder_id: Unique identifier for each recorder. Corresponds to the manufacturer ID found on each SongMeter recorder used.
  • card_code: Unique identifier for SD card used in each recorder
  • point_id: Unique identifier for each point where a recorder was placed
  • deployment_date: Date the recorder was deployed
  • retrieval_date: Date the recorder was retrieved.
  • latitude: Latitude of recorder
  • longitude: Longitude of recorder

Data Splits

Only one data split: data. If being used for training/testing/validation of models, splits must be made manually.

Running check.py

check.py is a script that can be run to provide a summary of the data for each recorder, such as number of recordings and total recording length. check.py outputs the summary to recorder_data_summary.txt. check.py can be run using the command python check.py with most python environments. If you are having difficulty running this script, try updating your python version, as it has been validated to work using python version 3.12.

The output will be similar to the following:

Summary generated on: 2025-02-14 11:35:04
Folder, File Count, Total Size (MB), <59min Count, >=59min Count, Total Duration (hour)
2MM00549, 95, 15161.5546, 4, 91, 92.00
2MM01345, 83, 13184.8798, 4, 79, 80.01
2MM01340, 88, 14078.0845, 4, 84, 85.43
2MM01695, 87, 14055.8028, 3, 84, 85.29
2MM00813, 80, 12975.0388, 3, 77, 78.73
2MM01690, 85, 13734.8250, 3, 82, 83.34
2MM01356, 87, 14068.1153, 3, 84, 85.37
2MM01186, 86, 13741.1259, 3, 83, 83.38
2MM01792, 87, 14061.7154, 3, 84, 85.33
2MM01707, 99, 15928.7895, 3, 96, 96.66
2MM00926, 88, 14044.4240, 3, 85, 85.22
2MM01028, 82, 12835.9001, 5, 77, 77.89
2MM01088, 88, 14064.3990, 4, 84, 85.34
2MM01007, 79, 12666.8419, 3, 76, 76.86
2MM01631, 87, 14077.6402, 3, 84, 85.42
2MM00471, 86, 13772.1017, 3, 83, 83.57
2MM01323, 99, 15589.7840, 5, 94, 94.60
2MM01655, 97, 15451.0132, 4, 93, 93.76
2MM01339, 89, 14100.2859, 4, 85, 85.56

Dataset Creation

This dataset was compiled as part of the field component of the Experiential Introduction to AI and Ecology Course run by the Imageomics Institute and the AI and Biodiversity Change (ABC) Global Center. This field work was done on the island of Hawai'i January 15-30, 2025. Audio was recorded in the Upper Waiākea Forst Reserve in Hawaii, at the following sites:

Recorder Locations

Curation Rationale

This dataset was created in order to study Hawaiian bird call variation across kipuka. Passive acoustic monitoring was done to capture Hawaiian bird calls across varying kipuka.

Source Data

These data were originally created by placing recorders in kipuka in the Upper Waiākea Forest Reserve on Hawaii island, recording bird calls.

Data Collection and Processing

Recorder locations were selected to replicate recorder locations from previous work by Sebastián-González, E. and Hart, P.J. (2017). These data have significant overlap the previous recorder locations, while retaining only minimally sufficient overlap with recently collected data to allow for calibration between datasets.

Who are the source data producers?

These data are produced by members of the ABC Global Center and Imageomics Institute, with data collection led by Patrick Hart, Leonardo Viotti, Namrata Banerji, Ekaterina Vepovinnkh, Hikaru Keebler, and Tanya Berger-Wolf, and assistance from all individuals in the AI for Ecology Course.

Considerations for Using the Data

Bias, Risks, and Limitations

These data are unlabelled, unprocessed, and may still contain significant noise due to some recorder's proximity to the road or footpaths. Because of this, humans, cars, or helicopters may also be audible in some recordings.

Additionally, the number of calls recorded for each species is likely long-tailed. Below is a chart depicting the number of occurrences of each species found during different portions of the day using source separation + Perch for species identification:

Species Count Birds

Recommendations

Consider the impact that raw, unprocessed data may have on use cases for these data. Employing source separation or audio preprocessing methods may be beneficial to downstream analyses.

Licensing Information

This dataset is available to share and adapt for any use under the CC BY 4.0 license, provided appropriate credit is given. We ask that you cite this dataset if you make use of these data in any work or product.

Citation

@misc{
  upper_waiakea_pam,
  title = {Upper Waiākea Forest Reserve Passive Recordings},
  year = {2025},
  url = {https://huggingface.co/datasets/imageomics/upper-waiakea-PAM},
  author = {Banerji, Namrata and Nepovinnykh, Ekaterina and Beattie, Jacob and Keebler, Hikaru and Campolongo, Elizabeth and Teixeira Viotti, Leonardo and Navine, Amanda and Hart, Patrick and Berger-Wolf, Tanya and Provost, Kaiya},
  doi = {coming soon}
  publisher = {Hugging Face}
}

BibTeX:

Acknowledgements

This work was supported by both the Imageomics Institute and the AI and Biodiversity Change (ABC) Global Center. The Imageomics Institute is funded by the US National Science Foundation's Harnessing the Data Revolution (HDR) program under Award #2118240 (Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning). The ABC Global Center is funded by the US National Science Foundation under Award No. 2330423 and Natural Sciences and Engineering Research Council of Canada under Award No. 585136. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or Natural Sciences and Engineering Research Council of Canada.

This material is based in part upon work supported by the National Ecological Observatory Network (NEON), a program sponsored by the U.S. National Science Foundation (NSF) and operated under cooperative agreement by Battelle.

Additionally, we would like to thank Patrick Hart from UH Hilo, Ben Gottesman and Aaron Rice from the Cornell Lab of Ornithology, Mike Long, Shea Uehana, Eissas Ouk, Evan Donoso, Avery Dean, and Ann Carey from the National Ecological Observatory Network (NEON), the UH Hilo LOHE Lab, and the Upper Waiākea Forst Reserve in Hawaii.

Dataset Card Authors

Namrata Banerji, Jacob Beattie, Hikaru Keebler, Kate Nepovinnykh, and Elizabeth Campolongo

Dataset Card Contact

[email protected] [email protected] [email protected] [email protected]

Downloads last month
51