v1.1.0
Browse files- NEREL.py +108 -0
- README.md +92 -0
- data/dev.jsonl +0 -0
- data/test.jsonl +0 -0
- data/train.jsonl +0 -0
- ent_types.jsonl +29 -0
- rel_types.jsonl +49 -0
NEREL.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import json
|
3 |
+
|
4 |
+
_NAME = 'NEREL'
|
5 |
+
_CITATION = '''
|
6 |
+
@article{loukachevitch2021nerel,
|
7 |
+
title={NEREL: A Russian Dataset with Nested Named Entities, Relations and Events},
|
8 |
+
author={Loukachevitch, Natalia and Artemova, Ekaterina and Batura, Tatiana and Braslavski, Pavel and Denisov, Ilia and Ivanov, Vladimir and Manandhar, Suresh and Pugachev, Alexander and Tutubalina, Elena},
|
9 |
+
journal={arXiv preprint arXiv:2108.13112},
|
10 |
+
year={2021}
|
11 |
+
}
|
12 |
+
'''.strip()
|
13 |
+
_DESCRIPTION = 'A Russian Dataset with Nested Named Entities, Relations and Events'
|
14 |
+
_HOMEPAGE = 'https://doi.org/10.48550/arXiv.2108.13112'
|
15 |
+
_VERSION = '1.1.0'
|
16 |
+
|
17 |
+
|
18 |
+
class NERELBuilder(datasets.GeneratorBasedBuilder):
|
19 |
+
_DATA_URLS = {
|
20 |
+
'train': 'data/train.jsonl',
|
21 |
+
'test': f'data/test.jsonl',
|
22 |
+
'dev': f'data/dev.jsonl',
|
23 |
+
}
|
24 |
+
_ENT_TYPES_URLS = {
|
25 |
+
'ent_types': 'ent_types.jsonl'
|
26 |
+
}
|
27 |
+
_REL_TYPES_URLS = {
|
28 |
+
'rel_types': 'rel_types.jsonl'
|
29 |
+
}
|
30 |
+
VERSION = datasets.Version(_VERSION)
|
31 |
+
BUILDER_CONFIGS = [
|
32 |
+
datasets.BuilderConfig('data',
|
33 |
+
version=VERSION,
|
34 |
+
description='Data'),
|
35 |
+
datasets.BuilderConfig('ent_types',
|
36 |
+
version=VERSION,
|
37 |
+
description='Entity types list'),
|
38 |
+
datasets.BuilderConfig('rel_types',
|
39 |
+
version=VERSION,
|
40 |
+
description='Relation types list')
|
41 |
+
]
|
42 |
+
DEFAULT_CONFIG_NAME = 'data'
|
43 |
+
|
44 |
+
def _info(self) -> datasets.DatasetInfo:
|
45 |
+
if self.config.name == 'data':
|
46 |
+
features = datasets.Features({
|
47 |
+
'id': datasets.Value('int32'),
|
48 |
+
'text': datasets.Value('string'),
|
49 |
+
'entities': datasets.Sequence(datasets.Value('string')),
|
50 |
+
'relations': datasets.Sequence(datasets.Value('string')),
|
51 |
+
'links': datasets.Sequence(datasets.Value('string'))
|
52 |
+
})
|
53 |
+
elif self.config.name == 'ent_types':
|
54 |
+
features = datasets.Features({
|
55 |
+
'type': datasets.Value('string'),
|
56 |
+
'link': datasets.Value('string')
|
57 |
+
})
|
58 |
+
else:
|
59 |
+
features = datasets.Features({
|
60 |
+
'type': datasets.Value('string'),
|
61 |
+
'arg1': datasets.Sequence(datasets.Value('string')),
|
62 |
+
'arg2': datasets.Sequence(datasets.Value('string')),
|
63 |
+
})
|
64 |
+
return datasets.DatasetInfo(
|
65 |
+
description=_DESCRIPTION,
|
66 |
+
features=features,
|
67 |
+
homepage=_HOMEPAGE,
|
68 |
+
citation=_CITATION
|
69 |
+
)
|
70 |
+
|
71 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
72 |
+
if self.config.name == 'data':
|
73 |
+
files = dl_manager.download(self._DATA_URLS)
|
74 |
+
return [
|
75 |
+
datasets.SplitGenerator(
|
76 |
+
name=datasets.Split.TRAIN,
|
77 |
+
gen_kwargs={'filepath': files['train']},
|
78 |
+
),
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name=datasets.Split.TEST,
|
81 |
+
gen_kwargs={'filepath': files['test']},
|
82 |
+
),
|
83 |
+
datasets.SplitGenerator(
|
84 |
+
name='dev',
|
85 |
+
gen_kwargs={'filepath': files['dev']},
|
86 |
+
),
|
87 |
+
]
|
88 |
+
elif self.config.name == 'ent_types':
|
89 |
+
files = dl_manager.download(self._ENT_TYPES_URLS)
|
90 |
+
return [
|
91 |
+
datasets.SplitGenerator(
|
92 |
+
name='ent_types',
|
93 |
+
gen_kwargs={'filepath': files['ent_types']},
|
94 |
+
)
|
95 |
+
]
|
96 |
+
else:
|
97 |
+
files = dl_manager.download(self._REL_TYPES_URLS)
|
98 |
+
return [
|
99 |
+
datasets.SplitGenerator(
|
100 |
+
name='rel_types',
|
101 |
+
gen_kwargs={'filepath': files['rel_types']},
|
102 |
+
)
|
103 |
+
]
|
104 |
+
|
105 |
+
def _generate_examples(self, filepath):
|
106 |
+
with open(filepath, encoding='utf-8') as f:
|
107 |
+
for i, line in enumerate(f):
|
108 |
+
yield i, json.loads(line)
|
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
languages:
|
3 |
+
- ru
|
4 |
+
multilinguality:
|
5 |
+
- monolingual
|
6 |
+
pretty_name: NEREL
|
7 |
+
task_categories:
|
8 |
+
- structure-prediction
|
9 |
+
task_ids:
|
10 |
+
- named-entity-recognition
|
11 |
+
---
|
12 |
+
|
13 |
+
# NEREL dataset
|
14 |
+
|
15 |
+
## Table of Contents
|
16 |
+
- [Dataset Description](#dataset-description)
|
17 |
+
- [Dataset Structure](#dataset-structure)
|
18 |
+
- [Citation Information](#citation-information)
|
19 |
+
- [Contacts](#contacts)
|
20 |
+
|
21 |
+
## Dataset Description
|
22 |
+
NEREL dataset (https://doi.org/10.48550/arXiv.2108.13112) is
|
23 |
+
a Russian dataset for named entity recognition and relation extraction.
|
24 |
+
NEREL is significantly larger than existing Russian datasets:
|
25 |
+
to date it contains 56K annotated named entities and 39K annotated relations.
|
26 |
+
Its important difference from previous datasets is annotation of nested named
|
27 |
+
entities, as well as relations within nested entities and at the discourse
|
28 |
+
level. NEREL can facilitate development of novel models that can extract
|
29 |
+
relations between nested named entities, as well as relations on both sentence
|
30 |
+
and document levels. NEREL also contains the annotation of events involving
|
31 |
+
named entities and their roles in the events.
|
32 |
+
|
33 |
+
You can see full entity types list in a subset "ent_types"
|
34 |
+
and full list of relation types in a subset "rel_types".
|
35 |
+
|
36 |
+
## Dataset Structure
|
37 |
+
There are three "configs" or "subsets" of the dataset.
|
38 |
+
|
39 |
+
Using
|
40 |
+
`load_dataset('MalakhovIlya/NEREL', 'ent_types')['ent_types']`
|
41 |
+
you can download list of entity types (
|
42 |
+
Dataset({features: ['type', 'link']})
|
43 |
+
) where "link" is a knowledge base name used in entity linking task.
|
44 |
+
|
45 |
+
Using
|
46 |
+
`load_dataset('MalakhovIlya/NEREL', 'rel_types')['rel_types']`
|
47 |
+
you can download list of entity types (
|
48 |
+
Dataset({features: ['type', 'arg1', 'arg2']})
|
49 |
+
) where "arg1" and "arg2" are lists of entity types that can take part in such
|
50 |
+
"type" of relation. \<ENTITY> stands for any type.
|
51 |
+
|
52 |
+
Using
|
53 |
+
`load_dataset('MalakhovIlya/NEREL', 'data')` or `load_dataset('MalakhovIlya/NEREL')`
|
54 |
+
you can download the data itself,
|
55 |
+
DatasetDict with 3 splits: "train", "test" and "dev".
|
56 |
+
Each of them contains text document with annotated entities, relations and
|
57 |
+
links.
|
58 |
+
|
59 |
+
"entities" are used in named-entity recognition task (see https://en.wikipedia.org/wiki/Named-entity_recognition).
|
60 |
+
"relations" are used in relationship extraction task (see https://en.wikipedia.org/wiki/Relationship_extraction).
|
61 |
+
"links" are used in entity linking task (see https://en.wikipedia.org/wiki/Entity_linking)
|
62 |
+
|
63 |
+
Each entity is represented by a string of the following format:
|
64 |
+
`"<id>\t<type> <start> <stop>\t<text>"`, where
|
65 |
+
`<id>` is an entity id,
|
66 |
+
`<type>` is one of entity types,
|
67 |
+
`<start>` is a position of the first symbol of entity in text,
|
68 |
+
`<stop>` is the last symbol position in text +1.
|
69 |
+
|
70 |
+
Each relation is represented by a string of the following format:
|
71 |
+
`"<id>\t<type> Arg1:<arg1_id> Arg2:<arg2_id>"`, where
|
72 |
+
`<id>` is a relation id,
|
73 |
+
`<arg1_id>` and `<arg2_id>` are entity ids.
|
74 |
+
|
75 |
+
Each link is represented by a string of the following format:
|
76 |
+
`"<id>\tReference <ent_id> <link>\t<text>"`, where
|
77 |
+
`<id>` is a link id,
|
78 |
+
`<ent_id>` is an entity id,
|
79 |
+
`<link>` is a reference to knowledge base entity (example: "Wikidata:Q1879675" if link exists, else "Wikidata:NULL"),
|
80 |
+
`<text>` is a name of entity in knowledge base if link exists, else empty string.
|
81 |
+
|
82 |
+
## Citation Information
|
83 |
+
@article{loukachevitch2021nerel,
|
84 |
+
title={NEREL: A Russian Dataset with Nested Named Entities, Relations and Events},
|
85 |
+
author={Loukachevitch, Natalia and Artemova, Ekaterina and Batura, Tatiana and Braslavski, Pavel and Denisov, Ilia and Ivanov, Vladimir and Manandhar, Suresh and Pugachev, Alexander and Tutubalina, Elena},
|
86 |
+
journal={arXiv preprint arXiv:2108.13112},
|
87 |
+
year={2021}
|
88 |
+
}
|
89 |
+
|
90 |
+
## Contacts
|
91 |
+
Malakhov Ilya
|
92 |
+
Telegram - https://t.me/noname_4710
|
data/dev.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ent_types.jsonl
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"type": "AGE", "link": ""}
|
2 |
+
{"type": "AWARD", "link": "<NORM>:Wikidata"}
|
3 |
+
{"type": "CITY", "link": "<NORM>:Wikidata"}
|
4 |
+
{"type": "COUNTRY", "link": "<NORM>:Wikidata"}
|
5 |
+
{"type": "CRIME", "link": ""}
|
6 |
+
{"type": "DATE", "link": ""}
|
7 |
+
{"type": "DISEASE", "link": "<NORM>:Wikidata"}
|
8 |
+
{"type": "DISTRICT", "link": "<NORM>:Wikidata"}
|
9 |
+
{"type": "EVENT", "link": "<NORM>:Wikidata"}
|
10 |
+
{"type": "FACILITY", "link": "<NORM>:Wikidata"}
|
11 |
+
{"type": "FAMILY", "link": ""}
|
12 |
+
{"type": "IDEOLOGY", "link": "<NORM>:Wikidata"}
|
13 |
+
{"type": "LANGUAGE", "link": "<NORM>:Wikidata"}
|
14 |
+
{"type": "LAW", "link": "<NORM>:Wikidata"}
|
15 |
+
{"type": "LOCATION", "link": "<NORM>:Wikidata"}
|
16 |
+
{"type": "MONEY", "link": ""}
|
17 |
+
{"type": "NATIONALITY", "link": "<NORM>:Wikidata"}
|
18 |
+
{"type": "NUMBER", "link": ""}
|
19 |
+
{"type": "ORDINAL", "link": ""}
|
20 |
+
{"type": "ORGANIZATION", "link": "<NORM>:Wikidata"}
|
21 |
+
{"type": "PENALTY", "link": ""}
|
22 |
+
{"type": "PERCENT", "link": ""}
|
23 |
+
{"type": "PERSON", "link": "<NORM>:Wikidata"}
|
24 |
+
{"type": "PRODUCT", "link": "<NORM>:Wikidata"}
|
25 |
+
{"type": "PROFESSION", "link": "<NORM>:Wikidata"}
|
26 |
+
{"type": "RELIGION", "link": "<NORM>:Wikidata"}
|
27 |
+
{"type": "STATE_OR_PROVINCE", "link": "<NORM>:Wikidata"}
|
28 |
+
{"type": "TIME", "link": ""}
|
29 |
+
{"type": "WORK_OF_ART", "link": "<NORM>:Wikidata"}
|
rel_types.jsonl
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"type": "ABBREVIATION", "arg1": ["<ENTITY>"], "arg2": ["<ENTITY>"]}
|
2 |
+
{"type": "KNOWS", "arg1": ["PERSON", "PROFESSION"], "arg2": ["<ENTITY>"]}
|
3 |
+
{"type": "AGE_IS", "arg1": ["<ENTITY>"], "arg2": ["AGE"]}
|
4 |
+
{"type": "AGE_DIED_AT", "arg1": ["PERSON", "PROFESSION"], "arg2": ["AGE"]}
|
5 |
+
{"type": "ALTERNATIVE_NAME", "arg1": ["<ENTITY>"], "arg2": ["<ENTITY>"]}
|
6 |
+
{"type": "AWARDED_WITH", "arg1": ["PERSON", "PROFESSION", "ORGANIZATION", "WORK_OF_ART", "NATIONALITY"], "arg2": ["AWARD"]}
|
7 |
+
{"type": "PLACE_OF_BIRTH", "arg1": ["PERSON", "PROFESSION"], "arg2": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "LOCATION", "STATE_OR_PROVINCE"]}
|
8 |
+
{"type": "CAUSE_OF_DEATH", "arg1": ["PERSON", "PROFESSION", "NATIONALITY"], "arg2": ["DISEASE", "EVENT"]}
|
9 |
+
{"type": "DATE_DEFUNCT_IN", "arg1": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "EVENT", "ORGANIZATION", "STATE_OR_PROVINCE", "WORK_OF_ART"], "arg2": ["DATE"]}
|
10 |
+
{"type": "DATE_FOUNDED_IN", "arg1": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "EVENT", "LOCATION", "ORGANIZATION", "STATE_OR_PROVINCE", "WORK_OF_ART"], "arg2": ["DATE"]}
|
11 |
+
{"type": "DATE_OF_BIRTH", "arg1": ["PERSON", "PROFESSION"], "arg2": ["DATE"]}
|
12 |
+
{"type": "DATE_OF_CREATION", "arg1": ["WORK_OF_ART", "LAW", "AWARD", "PRODUCT"], "arg2": ["DATE"]}
|
13 |
+
{"type": "DATE_OF_DEATH", "arg1": ["PERSON", "PROFESSION", "NATIONALITY"], "arg2": ["DATE"]}
|
14 |
+
{"type": "POINT_IN_TIME", "arg1": ["EVENT", "PENALTY", "CRIME", "WORK_OF_ART", "AWARD", "PRODUCT"], "arg2": ["DATE", "TIME"]}
|
15 |
+
{"type": "PLACE_OF_DEATH", "arg1": ["PERSON", "PROFESSION", "NATIONALITY"], "arg2": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "LOCATION", "STATE_OR_PROVINCE"]}
|
16 |
+
{"type": "FOUNDED_BY", "arg1": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "EVENT", "LOCATION", "ORGANIZATION", "STATE_OR_PROVINCE", "PROFESSION"], "arg2": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "EVENT", "LOCATION", "ORGANIZATION", "PERSON", "PROFESSION", "STATE_OR_PROVINCE", "FAMILY"]}
|
17 |
+
{"type": "HEADQUARTERED_IN", "arg1": ["ORGANIZATION"], "arg2": ["LOCATION", "CITY", "COUNTRY", "DISTRICT", "STATE_OR_PROVINCE", "FACILITY"]}
|
18 |
+
{"type": "IDEOLOGY_OF", "arg1": ["PERSON", "ORGANIZATION", "PROFESSION", "COUNTRY", "FACILITY", "NATIONALITY", "EVENT"], "arg2": ["IDEOLOGY"]}
|
19 |
+
{"type": "LOCATED_IN", "arg1": ["PERSON", "PROFESSION", "CITY", "COUNTRY", "DISTRICT", "FACILITY", "LOCATION", "ORGANIZATION", "PRODUCT", "STATE_OR_PROVINCE", "WORK_OF_ART"], "arg2": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "LOCATION", "ORGANIZATION", "STATE_OR_PROVINCE"]}
|
20 |
+
{"type": "SPOUSE", "arg1": ["PERSON", "PROFESSION"], "arg2": ["PERSON", "PROFESSION"]}
|
21 |
+
{"type": "MEDICAL_CONDITION", "arg1": ["PERSON", "PROFESSION"], "arg2": ["DISEASE"]}
|
22 |
+
{"type": "MEMBER_OF", "arg1": ["PERSON", "PROFESSION", "ORGANIZATION", "COUNTRY"], "arg2": ["ORGANIZATION", "IDEOLOGY", "COUNTRY", "FAMILY"]}
|
23 |
+
{"type": "ORGANIZES", "arg1": ["CITY", "COUNTRY", "DISTRICT", "ORGANIZATION", "PERSON", "PROFESSION", "STATE_OR_PROVINCE"], "arg2": ["EVENT"]}
|
24 |
+
{"type": "ORIGINS_FROM", "arg1": ["<ENTITY>"], "arg2": ["<ENTITY>"]}
|
25 |
+
{"type": "OWNER_OF", "arg1": ["<ENTITY>"], "arg2": ["<ENTITY>"]}
|
26 |
+
{"type": "PARENT_OF", "arg1": ["PERSON", "PROFESSION", "NATIONALITY"], "arg2": ["PERSON", "PROFESSION", "NATIONALITY"]}
|
27 |
+
{"type": "PLACE_RESIDES_IN", "arg1": ["PERSON", "PROFESSION", "NATIONALITY", "FAMILY"], "arg2": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "LOCATION", "STATE_OR_PROVINCE"]}
|
28 |
+
{"type": "PRICE_OF", "arg1": ["<ENTITY>"], "arg2": ["MONEY"]}
|
29 |
+
{"type": "PRODUCES", "arg1": ["CITY", "COUNTRY", "DISTRICT", "ORGANIZATION", "PERSON", "PROFESSION", "STATE_OR_PROVINCE"], "arg2": ["<ENTITY>"]}
|
30 |
+
{"type": "RELATIVE", "arg1": ["<ENTITY>"], "arg2": ["<ENTITY>"]}
|
31 |
+
{"type": "RELIGION_OF", "arg1": ["PERSON", "ORGANIZATION", "PROFESSION", "COUNTRY", "FACILITY", "NATIONALITY", "EVENT"], "arg2": ["RELIGION"]}
|
32 |
+
{"type": "SCHOOLS_ATTENDED", "arg1": ["PERSON", "PROFESSION", "NATIONALITY"], "arg2": ["ORGANIZATION"]}
|
33 |
+
{"type": "SIBLING", "arg1": ["PERSON", "PROFESSION"], "arg2": ["PERSON", "PROFESSION"]}
|
34 |
+
{"type": "SUBEVENT_OF", "arg1": ["EVENT"], "arg2": ["EVENT"]}
|
35 |
+
{"type": "SUBORDINATE_OF", "arg1": ["PERSON", "PROFESSION"], "arg2": ["PERSON", "PROFESSION"]}
|
36 |
+
{"type": "TAKES_PLACE_IN", "arg1": ["EVENT", "CRIME", "PENALTY"], "arg2": ["CITY", "COUNTRY", "DISTRICT", "ORGANIZATION", "STATE_OR_PROVINCE", "FACILITY", "LOCATION"]}
|
37 |
+
{"type": "WORKPLACE", "arg1": ["PERSON", "PROFESSION"], "arg2": ["CITY", "COUNTRY", "DISTRICT", "FACILITY", "EVENT", "LOCATION", "IDEOLOGY", "ORGANIZATION", "STATE_OR_PROVINCE"]}
|
38 |
+
{"type": "WORKS_AS", "arg1": ["PERSON"], "arg2": ["PROFESSION"]}
|
39 |
+
{"type": "START_TIME", "arg1": ["EVENT", "PENALTY", "CRIME", "WORK_OF_ART"], "arg2": ["DATE", "TIME"]}
|
40 |
+
{"type": "END_TIME", "arg1": ["EVENT", "PENALTY", "CRIME", "WORK_OF_ART"], "arg2": ["DATE", "TIME"]}
|
41 |
+
{"type": "CONVICTED_OF", "arg1": ["PERSON", "PROFESSION", "ORGANIZATION", "FAMILY", "NATIONALITY", "COUNTRY"], "arg2": ["CRIME"]}
|
42 |
+
{"type": "PENALIZED_AS", "arg1": ["PERSON", "PROFESSION", "ORGANIZATION", "FAMILY", "NATIONALITY", "COUNTRY"], "arg2": ["PENALTY"]}
|
43 |
+
{"type": "PART_OF", "arg1": ["ORGANIZATION", "WORK_OF_ART", "LAW", "FACILITY", "PRODUCT", "AWARD"], "arg2": ["ORGANIZATION", "WORK_OF_ART", "LAW", "FACILITY", "PRODUCT", "AWARD"]}
|
44 |
+
{"type": "HAS_CAUSE", "arg1": ["EVENT", "CRIME", "PENALTY", "AWARD", "DISEASE"], "arg2": ["EVENT", "CRIME", "PENALTY", "LAW", "DISEASE"]}
|
45 |
+
{"type": "AGENT", "arg1": ["PERSON", "PROFESSION", "ORGANIZATION", "CITY", "COUNTRY", "STATE_OR_PROVINCE", "FAMILY", "NATIONALITY", "IDEOLOGY", "RELIGION"], "arg2": ["EVENT"]}
|
46 |
+
{"type": "PARTICIPANT_IN", "arg1": ["PERSON", "PROFESSION", "ORGANIZATION", "CITY", "COUNTRY", "STATE_OR_PROVINCE", "FACILITY", "AWARD", "WORK_OF_ART", "FAMILY", "NATIONALITY", "IDEOLOGY", "RELIGION", "NATIONALITY"], "arg2": ["EVENT", "WORK_OF_ART", "CRIME", "PENALTY"]}
|
47 |
+
{"type": "INANIMATE_INVOLVED", "arg1": ["PERSON", "PRODUCT", "FACILITY", "AWARD", "WORK_OF_ART", "LAW", "MONEY"], "arg2": ["EVENT", "WORK_OF_ART", "CRIME", "PENALTY"]}
|
48 |
+
{"type": "EXPENDITURE", "arg1": ["PERSON", "PROFESSION", "CITY", "COUNTRY", "DISTRICT", "ORGANIZATION", "FAMILY", "STATE_OR_PROVINCE", "NATIONALITY"], "arg2": ["MONEY"]}
|
49 |
+
{"type": "INCOME", "arg1": ["PERSON", "PROFESSION", "CITY", "COUNTRY", "DISTRICT", "ORGANIZATION", "FAMILY", "STATE_OR_PROVINCE", "NATIONALITY"], "arg2": ["MONEY"]}
|