ilos-vigil commited on
Commit
c02f734
·
verified ·
1 Parent(s): cda57ac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -5
README.md CHANGED
@@ -52,18 +52,55 @@ There are 8 aspects to define review in this dataset. I am the only annotator fo
52
 
53
  Take note that few reviews contain language and content that some people may find offensive, discriminatory, or inappropriate. I **DO NOT** endorse, condone or promote any of such language and content.
54
 
55
- ## Model benchmark
56
 
57
- Coming soon.
58
 
59
- ## Download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  You can download Steam review aspect dataset from here (HuggingFace) or one of these sources,
62
 
63
  * [GitHub](https://github.com/ilos-vigil/steam-review-aspect-dataset)
64
  * [Kaggle](https://www.kaggle.com/datasets/ilosvigil/steam-review-aspect-dataset)
65
 
66
- ## Citation
67
 
68
  If you wish to use this dataset in your research or project, please cite this blog post: [Steam review aspect dataset](https://srec.ai/blog/steam-review-aspect-dataset)
69
 
@@ -85,6 +122,6 @@ For those who need it, a BibTeX citation format also has been prepared.
85
  }
86
  ```
87
 
88
- ## License
89
 
90
  Steam Review aspect dataset is licensed under [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0).
 
52
 
53
  Take note that few reviews contain language and content that some people may find offensive, discriminatory, or inappropriate. I **DO NOT** endorse, condone or promote any of such language and content.
54
 
55
+ # Model benchmark
56
 
57
+ Model benchmark on Steam Review aspect dataset split into 3 categories,
58
 
59
+ * Base: Non-attention based language model.
60
+ * Embedding: Inspired by MTEB, obtained embedding trained on Logistic Regressor for up to 100 epochs.
61
+ * Fine-tune.
62
+
63
+ Source code for running these models is available on [GitHub](https://github.com/ilos-vigil/steam-review-aspect-dataset/tree/main/model_benchmark). But take note it may not follow best practice as it was written with the goal of using it only once. I ran those on Linux, RTX 3060 and 32GB RAM.
64
+
65
+ > Base
66
+
67
+ | Model | Macro precision | Macro recall | Macro F1 | Note |
68
+ | ------------------ | --------------- | ------------ | -------- | ---------------------------------------------------------------------------- |
69
+ | Spacy Bag of Words | 0.6203 | 0.5391 | 0.5494 | |
70
+ | FastText | 0.6284 | 0.5713 | 0.5871 | Minimum text preprocessing, use pretrained vector |
71
+ | FastText | 0.6933 | 0.5821 | 0.6027 | Minimum text preprocessing, choose hyperparameter based on K-5 fold autotune |
72
+ | Spacy Ensemble | 0.6043 | 0.6773 | 0.6299 | Choose hyperparameter based on simple grid search |
73
+
74
+ > Embedding
75
+
76
+ | Model | Param | Max tokens | Macro precision | Macro recall | Macro F1 | Note |
77
+ | --------------------------------------------------------- | ----- | ---------- | --------------- | ------------ | -------- | ------------------------------------ |
78
+ | sentence-transformers/all-mpnet-base-v2 | 110M | 514 | 0.7074 | 0.5431 | 0.5853 | |
79
+ | jinaai/jina-embeddings-v2-small-en | 137M | 8192 | 0.7068 | 0.6075 | 0.6437 | |
80
+ | jinaai/jina-embeddings-v2-base-en | 137M | 8192 | 0.6813 | 0.6501 | 0.6618 | |
81
+ | Alibaba-NLP/gte-large-en-v1.5 | 434M | 8192 | 0.7001 | 0.6501 | 0.6729 | |
82
+ | nomic-ai/nomic-embed-text-v1.5 | 137M | 8192 | 0.7075 | 0.6498 | 0.6756 | |
83
+ | McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised | 7111M | 32768 | 0.7238 | 0.6697 | 0.6928 | NF4 double quantization, instruction |
84
+ | WhereIsAI/UAE-Large-V1 | 335M | 512 | 0.7245 | 0.6718 | 0.6946 | |
85
+ | mixedbread-ai/mxbai-embed-large-v1 | 335M | 512 | 0.7215 | 0.6817 | 0.6989 | |
86
+ | intfloat/e5-mistral-7b-instruct | 7111M | 32768 | 0.7345 | 0.7000 | 0.7137 | NF4 double quantization, instruction |
87
+
88
+ > Fine-tune
89
+
90
+ | Model | Param | Max tokens | Macro precision | Macro recall | Macro F1 | Note |
91
+ | --------------------------------- | ----- | ---------- | --------------- | ------------ | -------- | ----------------------------------------------- |
92
+ | jinaai/jina-embeddings-v2-base-en | 137M | 8192 | 0.7485 | 0.7257 | 0.7354 | Choose hyperparameter from Ray Tune (30 trials) |
93
+ | Alibaba-NLP/gte-large-en-v1.5 | 434M | 8192 | 0.8403 | 0.8152 | 0.8231 | Choose hyperparameter from Ray Tune (16 trials) |
94
+
95
+
96
+ # Download
97
 
98
  You can download Steam review aspect dataset from here (HuggingFace) or one of these sources,
99
 
100
  * [GitHub](https://github.com/ilos-vigil/steam-review-aspect-dataset)
101
  * [Kaggle](https://www.kaggle.com/datasets/ilosvigil/steam-review-aspect-dataset)
102
 
103
+ # Citation
104
 
105
  If you wish to use this dataset in your research or project, please cite this blog post: [Steam review aspect dataset](https://srec.ai/blog/steam-review-aspect-dataset)
106
 
 
122
  }
123
  ```
124
 
125
+ # License
126
 
127
  Steam Review aspect dataset is licensed under [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0).