gdxray / pidray-targz.py
ibrahimahmood's picture
Upload 4 files
d01ff0a verified
raw
history blame
2.59 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_URL = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/pixel_values.tar.gz"
_URL2 = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/label.tar.gz"
class PIDrayTargz(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
#"text": datasets.Value("string"),
"pixel_values": datasets.Image(),
"label": datasets.Image(),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://huggingface.co/datasets/jaradat/pidray-semantics",
)
def _split_generators(self, dl_manager):
path = dl_manager.download(_URL)
image_iters = dl_manager.iter_archive(path)
path2 = dl_manager.download(_URL2)
label_iters = dl_manager.iter_archive(path2)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": image_iters,
"label": label_iters
}
),
]
def _generate_examples(self, images, label):
"""This function returns the examples in the raw (text) form."""
idx = 0
# iterate through images
for filepath, image in images
text = filepath.split
yield idx, {
"pixel_values": {"filepath": filepath, "image": image.read()},
"label": {"filepath": label[idx]['filepath'], "label": label[idx]['image'].read()},
}
idx += 1