|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_URL = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/pixel_values.tar.gz" |
|
_URL2 = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/label.tar.gz" |
|
|
|
|
|
|
|
class PIDrayTargz(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
|
|
"pixel_values": datasets.Image(), |
|
"label": datasets.Image(), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/jaradat/pidray-semantics", |
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path = dl_manager.download(_URL) |
|
image_iters = dl_manager.iter_archive(path) |
|
|
|
|
|
path2 = dl_manager.download(_URL2) |
|
label_iters = dl_manager.iter_archive(path2) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": image_iters, |
|
"label": label_iters |
|
} |
|
), |
|
|
|
] |
|
|
|
def _generate_examples(self, images, label): |
|
"""This function returns the examples in the raw (text) form.""" |
|
idx = 0 |
|
|
|
for filepath, image in images |
|
|
|
text = filepath.split |
|
yield idx, { |
|
"pixel_values": {"filepath": filepath, "image": image.read()}, |
|
"label": {"filepath": label[idx]['filepath'], "label": label[idx]['image'].read()}, |
|
} |
|
idx += 1 |
|
|