File size: 1,858 Bytes
d01ff0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_URL = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/pixel_values.tar.gz"
_URL2 = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/label.tar.gz"
class pidraySemantics(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
#"text": datasets.Value("string"),
"pixel_values": datasets.Image(),
"label": datasets.Image(),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://huggingface.co/datasets/jaradat/pidray-semantics",
)
def _split_generators(self, dl_manager):
path = dl_manager.download(_URL)
image_iters = dl_manager.iter_archive(path)
path2 = dl_manager.download(_URL2)
label_iters = dl_manager.iter_archive(path2)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": image_iters,
"label": label_iters
}
),
]
def _generate_examples(self, images, label):
idx = 0
# iterate through images
for (filepath, image), (filepath2, image2) in zip(images, label):
yield idx, {
"pixel_values": {"path": filepath, "bytes": image.read()},
"label": {"path": filepath2, "bytes": image2.read()},
}
idx += 1
|