File size: 5,979 Bytes
3b7707f 17759a1 35d3966 3b7707f 4f7e8fd c0b958a 3b7707f be8a61c 9f018ca be8a61c 9f018ca 3b7707f 4f7e8fd c0b958a 3b7707f be8a61c 35d3966 19373b9 3b7707f 17759a1 19373b9 17759a1 19373b9 17759a1 e52013b 17759a1 e52013b 17759a1 19373b9 17759a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
license: cc-by-nc-sa-4.0
tags:
- croissant
- idrama-lab
- social-media
- rumble-platform
- youtube
pretty_name: idrama-rumble-2024
source_datasets:
- original
dataset_info:
- config_name: face_embeddings
features:
- name: x1
dtype: float64
- name: x2
dtype: float64
- name: y1
dtype: float64
- name: y2
dtype: float64
- name: height
dtype: float64
- name: width
dtype: float64
- name: embedding
sequence: float32
- name: v_id
dtype: string
- name: filename
dtype: string
- name: channel_name_lower
dtype: string
splits:
- name: train
num_bytes: 859377822
num_examples: 399333
download_size: 1077273116
dataset_size: 859377822
- config_name: representative_images
features:
- name: image
dtype: image
- name: channel_name_lower
dtype: string
- name: v_id
dtype: string
- name: filename
dtype: string
splits:
- name: train
num_bytes: 29786708764.246
num_examples: 252387
download_size: 23599930820
dataset_size: 29786708764.246
- config_name: speaker_diarization
features:
- name: data
dtype: string
- name: v_id
dtype: string
splits:
- name: train
num_bytes: 175609236
num_examples: 6715
download_size: 27025049
dataset_size: 175609236
- config_name: transcripts
features:
- name: v_id
dtype: string
- name: transcription
dtype: string
- name: named_entities
dtype: string
splits:
- name: train
num_bytes: 6863296262
num_examples: 6735
download_size: 1963541596
dataset_size: 6863296262
configs:
- config_name: face_embeddings
data_files:
- split: train
path: face_embeddings/train-*
- config_name: representative_images
data_files:
- split: train
path: representative_images/train-*
- config_name: speaker_diarization
data_files:
- split: train
path: speaker_diarization/train-*
- config_name: transcripts
data_files:
- split: train
path: transcripts/train-*
size_categories:
- 100K<n<1M
language:
- en
---
![iDRAMA-rumble-2024 Header](https://huggingface.co/datasets/iDRAMALab/iDRAMA-rumble-2024/resolve/main/iDRAMA-rumble-2024.jpeg?download=true)
# Dataset Summary
`iDRAMA-rumble-2024` is a large-scale dataset of 6,735 podcast videos from Rumble, an alternative Youtube-like platform. Using state-of-the-art models, we extract information across three modalities: 1) text, 2) audio, and 3) video. We detail the methodology for extracting information from podcast videos in the paper and release a first-of-its-kind dataset including data from different modalities:
- **Metadata:** Details about podcast videos, e.g., channel name, video name, video description, and more.
- **Text:** Transcription (i.e., speech-to-text) of podcast videos.
- **Audio:** Speaker diarization information providing speaker detection over time for each video.
- **Video:** Sampled representative video frames from each video, totaling 200K images. We also detect more than 400K non-unique faces from these images and release face embeddings.
| Repo-links | Purpose |
|:------|:--------------|
| [Zenodo](https://zenodo.org/records/10515991) | On Zenodo, we provide JSON formatted dataset for all modalities and representative images in a zip file. |
| [Github](https://github.com/idramalab/iDRAMA-rumble-2024) | The main repository of this dataset, where we provide code-snippets to get started with this dataset. |
| [Huggingface](https://hf.co/datasets/iDRAMALab/iDRAMA-rumble-2024) | On Huggingface, we provide a dataset that can be accessed through Huggingface APIs in a `parquet` format. |
- **Rumble platform:** [Rumble](https://rumble.com)
- **Link to paper:** [CySoc 2024](https://workshop-proceedings.icwsm.org/abstract.php?id=2024_07)
- **License:** [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
# Quick start with Datasets
Install `Datasets` module by `pip install datasets` and then use the following code:
```python
from datasets import load_dataset
# Download & Load complete dataset
dataset = load_dataset("iDRAMALab/iDRAMA-rumble-2024")
# Load dataset with specific config
dataset = load_dataset("iDRAMALab/iDRAMA-rumble-2024", name="transcripts")
```
> More code-snippets to load the different variant of datasets efficiently are available on [Github](https://github.com/idramalab/iDRAMA-rumble-2024) rpository.
# Dataset Info
Dataset is organized by modalities -- transcripts, representative-images, speaker-diarization, and face-embeddings.
<table style="width:50%">
<tr>
<th style="text-align:left">Config</th>
<th style="text-align:left">Data-points</th>
</tr>
<tr>
<td>Podcast videos</td>
<td>6,735</td>
</tr>
<tr>
<td>Representative images</td>
<td>252,387</td>
</tr>
<tr>
<td>Face embeddings</td>
<td>399,333</td>
</tr>
<tr>
<td>Transcripts & Speaker diarization</td>
<td>6,735</td>
</tr>
</table>
<br>
# Version
- **Maintenance Status:** Active
- **Version Details:**
- *Current Version:* v1.0.0
- *First Release:* 06/03/2024
- *Last Update:* 06/03/2024
# Authorship
This dataset is published at "Workshop Proceedings of the 18th International AAAI Conference on Web and Social Media" hosted at Buffalo, NY, USA.
- **Academic Organization:** [iDRAMA Lab](https://idrama.science/people/)
- **Authors:** Utkucan Balci, Jay Patel, Berkan Balci, Jeremy Blackburn
- **Affiliation:** Binghamton University
# Licensing
This dataset is available for free to use under terms of the non-commercial license [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
# Citation
```bibtex
@article{balci2024idrama,
title = {iDRAMA-rumble-2024: A Dataset of Podcasts from Rumble Spanning 2020 to 2022},
author = {Balci, Utkucan and Patel, Jay and Balci, Berkan and Blackburn, Jeremy},
year = {2024},
journal = {Workshop Proceedings of the 18th International AAAI Conference on Web and Social Media}
}
``` |