File size: 5,979 Bytes
3b7707f
17759a1
35d3966
 
 
 
 
 
 
 
 
3b7707f
4f7e8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0b958a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7707f
 
 
 
 
 
 
 
 
 
 
be8a61c
 
 
 
 
 
 
 
 
 
9f018ca
be8a61c
9f018ca
 
3b7707f
4f7e8fd
 
 
 
c0b958a
 
 
 
3b7707f
 
 
 
be8a61c
 
 
 
35d3966
 
19373b9
 
3b7707f
17759a1
 
 
 
 
 
 
 
 
 
 
 
 
19373b9
17759a1
19373b9
17759a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e52013b
17759a1
 
 
e52013b
17759a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19373b9
 
 
 
 
 
17759a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: cc-by-nc-sa-4.0
tags:
- croissant
- idrama-lab
- social-media
- rumble-platform
- youtube
pretty_name: idrama-rumble-2024
source_datasets:
- original
dataset_info:
- config_name: face_embeddings
  features:
  - name: x1
    dtype: float64
  - name: x2
    dtype: float64
  - name: y1
    dtype: float64
  - name: y2
    dtype: float64
  - name: height
    dtype: float64
  - name: width
    dtype: float64
  - name: embedding
    sequence: float32
  - name: v_id
    dtype: string
  - name: filename
    dtype: string
  - name: channel_name_lower
    dtype: string
  splits:
  - name: train
    num_bytes: 859377822
    num_examples: 399333
  download_size: 1077273116
  dataset_size: 859377822
- config_name: representative_images
  features:
  - name: image
    dtype: image
  - name: channel_name_lower
    dtype: string
  - name: v_id
    dtype: string
  - name: filename
    dtype: string
  splits:
  - name: train
    num_bytes: 29786708764.246
    num_examples: 252387
  download_size: 23599930820
  dataset_size: 29786708764.246
- config_name: speaker_diarization
  features:
  - name: data
    dtype: string
  - name: v_id
    dtype: string
  splits:
  - name: train
    num_bytes: 175609236
    num_examples: 6715
  download_size: 27025049
  dataset_size: 175609236
- config_name: transcripts
  features:
  - name: v_id
    dtype: string
  - name: transcription
    dtype: string
  - name: named_entities
    dtype: string
  splits:
  - name: train
    num_bytes: 6863296262
    num_examples: 6735
  download_size: 1963541596
  dataset_size: 6863296262
configs:
- config_name: face_embeddings
  data_files:
  - split: train
    path: face_embeddings/train-*
- config_name: representative_images
  data_files:
  - split: train
    path: representative_images/train-*
- config_name: speaker_diarization
  data_files:
  - split: train
    path: speaker_diarization/train-*
- config_name: transcripts
  data_files:
  - split: train
    path: transcripts/train-*
size_categories:
- 100K<n<1M
language:
- en
---

![iDRAMA-rumble-2024 Header](https://huggingface.co/datasets/iDRAMALab/iDRAMA-rumble-2024/resolve/main/iDRAMA-rumble-2024.jpeg?download=true)

# Dataset Summary

`iDRAMA-rumble-2024` is a large-scale dataset of 6,735 podcast videos from Rumble, an alternative Youtube-like platform. Using state-of-the-art models, we extract information across three modalities: 1) text, 2) audio, and 3) video. We detail the methodology for extracting information from podcast videos in the paper and release a first-of-its-kind dataset including data from different modalities:
- **Metadata:** Details about podcast videos, e.g., channel name, video name, video description, and more.
- **Text:** Transcription (i.e., speech-to-text) of podcast videos.
- **Audio:** Speaker diarization information providing speaker detection over time for each video.
- **Video:** Sampled representative video frames from each video, totaling 200K images. We also detect more than 400K non-unique faces from these images and release face embeddings.
  
  | Repo-links | Purpose |
  |:------|:--------------|
  | [Zenodo](https://zenodo.org/records/10515991) | On Zenodo, we provide JSON formatted dataset for all modalities and representative images in a zip file. |
  | [Github](https://github.com/idramalab/iDRAMA-rumble-2024) | The main repository of this dataset, where we provide code-snippets to get started with this dataset. |
  | [Huggingface](https://hf.co/datasets/iDRAMALab/iDRAMA-rumble-2024) | On Huggingface, we provide a dataset that can be accessed through Huggingface APIs in a `parquet` format. |

- **Rumble platform:** [Rumble](https://rumble.com)
- **Link to paper:** [CySoc 2024](https://workshop-proceedings.icwsm.org/abstract.php?id=2024_07)
- **License:** [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)

# Quick start with Datasets

Install `Datasets` module by `pip install datasets` and then use the following code:

```python
from datasets import load_dataset

# Download & Load complete dataset
dataset = load_dataset("iDRAMALab/iDRAMA-rumble-2024")

# Load dataset with specific config
dataset = load_dataset("iDRAMALab/iDRAMA-rumble-2024", name="transcripts")
```

> More code-snippets to load the different variant of datasets efficiently are available on [Github](https://github.com/idramalab/iDRAMA-rumble-2024) rpository.

# Dataset Info

Dataset is organized by modalities -- transcripts, representative-images, speaker-diarization, and face-embeddings.

<table style="width:50%">
  <tr>
    <th style="text-align:left">Config</th>
    <th style="text-align:left">Data-points</th>
  </tr>
  <tr>
    <td>Podcast videos</td>
    <td>6,735</td>
  </tr>
  <tr>
    <td>Representative images</td>
    <td>252,387</td>
  </tr>
  <tr>
    <td>Face embeddings</td>
    <td>399,333</td>
  </tr>
  <tr>
    <td>Transcripts & Speaker diarization</td>
    <td>6,735</td>
  </tr>
</table>
<br>

# Version

- **Maintenance Status:** Active
- **Version Details:**
  - *Current Version:* v1.0.0
  - *First Release:* 06/03/2024
  - *Last Update:* 06/03/2024

# Authorship
This dataset is published at "Workshop Proceedings of the 18th International AAAI Conference on Web and Social Media" hosted at Buffalo, NY, USA.

- **Academic Organization:** [iDRAMA Lab](https://idrama.science/people/)
- **Authors:** Utkucan Balci, Jay Patel, Berkan Balci, Jeremy Blackburn
- **Affiliation:** Binghamton University

# Licensing
This dataset is available for free to use under terms of the non-commercial license [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).

# Citation

```bibtex
@article{balci2024idrama,
  title  = {iDRAMA-rumble-2024: A Dataset of Podcasts from Rumble Spanning 2020 to 2022},
  author = {Balci, Utkucan and Patel, Jay and Balci, Berkan and Blackburn, Jeremy},
  year   = {2024},
  journal = {Workshop Proceedings of the 18th International AAAI Conference on Web and Social Media}
}
```