malayalam_news / malayalam_news.py
albertvillanova's picture
Remove deprecated tasks (#1)
e44fe82 verified
import csv
import os
import datasets
_DESCRIPTION = """\
The AI4Bharat-IndicNLP dataset is an ongoing effort to create a collection of large-scale,
general-domain corpora for Indian languages. Currently, it contains 2.7 billion words for 10 Indian languages from two language families.
We share pre-trained word embeddings trained on these corpora.
We create news article category classification datasets for 9 languages to evaluate the embeddings.
We evaluate the IndicNLP embeddings on multiple evaluation tasks.
"""
_CITATION = """\
@article{kunchukuttan2020indicnlpcorpus,
title={AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages},
author={Anoop Kunchukuttan and Divyanshu Kakwani and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
journal={arXiv preprint arXiv:2005.00085},
}
"""
_URLs = {
"malayalam_news": "https://huggingface.co/datasets/rajeshradhakrishnan/malayalam_news/resolve/main/indicnlp-news-articles.tgz"
}
class MalayalamNewsConfig(datasets.BuilderConfig):
"""BuilderConfig for MalayalamNews."""
def __init__(self, **kwargs):
"""BuilderConfig for MalayalamNews.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(MalayalamNewsConfig, self).__init__(**kwargs)
class MalayalamNews(datasets.GeneratorBasedBuilder):
"""Malayalam News topic classification dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
MalayalamNewsConfig(
name="malayalam_news", version=VERSION, description="Malayalam News topic classification dataset."
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["business", "entertainment", "sports", "technology"]),
}
),
homepage="https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
download_url = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(download_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "indicnlp-news-articles", "ml", "ml-train.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "indicnlp-news-articles", "ml", "ml-valid.csv"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "indicnlp-news-articles", "ml", "ml-test.csv"),
"split": "test",
},
)
]
def _generate_examples(self, filepath, split):
"""Generate Malayalam News examples."""
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
)
for id_, row in enumerate(csv_reader):
label, description = row
#label, title, description = row
# Original labels are [1, 2, 3, 4] ->
# ['World', 'Sports', 'Business', 'Sci/Tech']
# Re-map to [0, 1, 2, 3].
#label = int(label) - 1
#text = " ".join((title, description))
text = description
yield id_, {"text": text, "label": label}