Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Arabic
Size:
1K - 10K
License:
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- README.md +21 -3
- arcd.py +6 -0
- dataset_infos.json +1 -1
README.md
CHANGED
@@ -1,4 +1,22 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
paperswithcode_id: arcd
|
3 |
---
|
4 |
|
@@ -90,9 +108,9 @@ The data fields are the same among all splits.
|
|
90 |
|
91 |
### Data Splits
|
92 |
|
93 |
-
|
|
94 |
-
|
95 |
-
|plain_text|
|
96 |
|
97 |
## Dataset Creation
|
98 |
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
- ar-SA
|
8 |
+
licenses:
|
9 |
+
- mit
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- question-answering
|
18 |
+
task_ids:
|
19 |
+
- extractive-qa
|
20 |
paperswithcode_id: arcd
|
21 |
---
|
22 |
|
|
|
108 |
|
109 |
### Data Splits
|
110 |
|
111 |
+
| name | train | validation |
|
112 |
+
| ---------- | ----: | ---------: |
|
113 |
+
| plain_text | 693 | 702 |
|
114 |
|
115 |
## Dataset Creation
|
116 |
|
arcd.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
import json
|
5 |
|
6 |
import datasets
|
|
|
7 |
|
8 |
|
9 |
logger = datasets.logging.get_logger(__name__)
|
@@ -79,6 +80,11 @@ class Arcd(datasets.GeneratorBasedBuilder):
|
|
79 |
supervised_keys=None,
|
80 |
homepage="https://github.com/husseinmozannar/SOQAL/tree/master/data",
|
81 |
citation=_CITATION,
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
|
84 |
def _split_generators(self, dl_manager):
|
|
|
4 |
import json
|
5 |
|
6 |
import datasets
|
7 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
8 |
|
9 |
|
10 |
logger = datasets.logging.get_logger(__name__)
|
|
|
80 |
supervised_keys=None,
|
81 |
homepage="https://github.com/husseinmozannar/SOQAL/tree/master/data",
|
82 |
citation=_CITATION,
|
83 |
+
task_templates=[
|
84 |
+
QuestionAnsweringExtractive(
|
85 |
+
question_column="question", context_column="context", answers_column="answers"
|
86 |
+
)
|
87 |
+
],
|
88 |
)
|
89 |
|
90 |
def _split_generators(self, dl_manager):
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"plain_text": {"description": " Arabic Reading Comprehension Dataset (ARCD) composed of 1,395 questions posed by crowdworkers on Wikipedia articles.\n", "citation": "@inproceedings{mozannar-etal-2019-neural,\n title =
|
|
|
1 |
+
{"plain_text": {"description": " Arabic Reading Comprehension Dataset (ARCD) composed of 1,395 questions posed by crowdworkers on Wikipedia articles.\n", "citation": "@inproceedings{mozannar-etal-2019-neural,\n title = {Neural {A}rabic Question Answering},\n author = {Mozannar, Hussein and Maamary, Elie and El Hajal, Karl and Hajj, Hazem},\n booktitle = {Proceedings of the Fourth Arabic Natural Language Processing Workshop},\n month = {aug},\n year = {2019},\n address = {Florence, Italy},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W19-4612},\n doi = {10.18653/v1/W19-4612},\n pages = {108--118},\n abstract = {This paper tackles the problem of open domain factual Arabic question answering (QA) using Wikipedia as our knowledge source. This constrains the answer of any question to be a span of text in Wikipedia. Open domain QA for Arabic entails three challenges: annotated QA datasets in Arabic, large scale efficient information retrieval and machine reading comprehension. To deal with the lack of Arabic QA datasets we present the Arabic Reading Comprehension Dataset (ARCD) composed of 1,395 questions posed by crowdworkers on Wikipedia articles, and a machine translation of the Stanford Question Answering Dataset (Arabic-SQuAD). Our system for open domain question answering in Arabic (SOQAL) is based on two components: (1) a document retriever using a hierarchical TF-IDF approach and (2) a neural reading comprehension model using the pre-trained bi-directional transformer BERT. Our experiments on ARCD indicate the effectiveness of our approach with our BERT-based reader achieving a 61.3 F1 score, and our open domain system SOQAL achieving a 27.6 F1 score.}\n}\n", "homepage": "https://github.com/husseinmozannar/SOQAL/tree/master/data", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "arcd", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 811064, "num_examples": 693, "dataset_name": "arcd"}, "validation": {"name": "validation", "num_bytes": 885648, "num_examples": 702, "dataset_name": "arcd"}}, "download_checksums": {"https://raw.githubusercontent.com/husseinmozannar/SOQAL/master/data/arcd-train.json": {"num_bytes": 939840, "checksum": "6a973fda9f0b066e0547a85a3396e7294fa917e24b6efd7ce430769033a6ce15"}, "https://raw.githubusercontent.com/husseinmozannar/SOQAL/master/data/arcd-test.json": {"num_bytes": 1002559, "checksum": "b4ba4fb4227841bbce71e01b3eaecb33e9f17a08cde1ec91e5bc335da2c75135"}}, "download_size": 1942399, "post_processing_size": null, "dataset_size": 1696712, "size_in_bytes": 3639111}}
|