File size: 3,292 Bytes
c2b77a4
 
12af605
c2b77a4
4b60e08
c2b77a4
4b60e08
c2b77a4
08d2ff5
 
4b60e08
08d2ff5
4b60e08
c2b77a4
4b60e08
 
c2b77a4
 
 
 
 
 
 
 
 
 
4b60e08
c2b77a4
08d2ff5
c2b77a4
4b60e08
 
c2b77a4
 
4b60e08
 
 
 
 
 
 
 
 
 
08d2ff5
 
 
 
c2b77a4
 
4b60e08
c2b77a4
 
4b60e08
c2b77a4
 
4b60e08
c2b77a4
4b60e08
 
12af605
 
ade226c
12af605
ade226c
12af605
 
 
ade226c
12af605
ade226c
12af605
ade226c
 
12af605
 
 
 
 
 
 
 
 
 
ade226c
12af605
 
 
ade226c
 
12af605
 
ade226c
 
 
 
 
 
 
 
 
 
12af605
 
 
 
 
 
ade226c
12af605
 
ade226c
12af605
 
ade226c
12af605
ade226c
 
08d2ff5
 
 
 
 
 
 
 
 
12af605
 
 
 
 
 
 
 
c2b77a4
 
2596be0
 
c2b77a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
dataset_info:
- config_name: default
  features:
  - name: version
    dtype: string
  - name: hypothesis
    dtype: string
  - name: hypothesis_formula
    dtype: string
  - name: negative_hypothesis
    dtype: string
  - name: negative_hypothesis_formula
    dtype: string
  - name: negative_original_tree_depth
    dtype: int64
  - name: original_tree_depth
    dtype: int64
  - name: depth
    dtype: int64
  - name: num_formula_distractors
    dtype: int64
  - name: num_translation_distractors
    dtype: int64
  - name: num_all_distractors
    dtype: int64
  - name: proof_label
    dtype: string
  - name: negative_proof_label
    dtype: string
  - name: world_assump_label
    dtype: string
  - name: negative_world_assump_label
    dtype: string
  - name: facts
    dtype: string
  - name: facts_formula
    dtype: string
  - name: proofs
    sequence: string
  - name: proofs_formula
    sequence: string
  - name: negative_proofs
    sequence: string
  - name: prompt_serial
    dtype: string
  - name: proof_serial
    dtype: string
  splits:
  - name: train
    num_bytes: 102281795
    num_examples: 30000
  - name: validation
    num_bytes: 17026757
    num_examples: 5000
  - name: test
    num_bytes: 17022009
    num_examples: 5000
  download_size: 50475725
  dataset_size: 136330561
- config_name: star
  features:
  - name: version
    dtype: string
  - name: hypothesis
    dtype: string
  - name: hypothesis_formula
    dtype: string
  - name: negative_hypothesis
    dtype: string
  - name: negative_hypothesis_formula
    dtype: string
  - name: negative_original_tree_depth
    dtype: int64
  - name: original_tree_depth
    dtype: int64
  - name: depth
    dtype: int64
  - name: num_formula_distractors
    dtype: int64
  - name: num_translation_distractors
    dtype: int64
  - name: num_all_distractors
    dtype: int64
  - name: proof_label
    dtype: string
  - name: negative_proof_label
    dtype: string
  - name: world_assump_label
    dtype: string
  - name: negative_world_assump_label
    dtype: string
  - name: facts
    dtype: string
  - name: facts_formula
    dtype: string
  - name: proofs
    sequence: string
  - name: proofs_formula
    sequence: string
  - name: negative_proofs
    sequence: string
  - name: prompt_serial
    dtype: string
  - name: proof_serial
    dtype: string
  splits:
  - name: train
    num_bytes: 126945152
    num_examples: 30000
  - name: validation
    num_bytes: 21067447
    num_examples: 5000
  - name: test
    num_bytes: 21287828
    num_examples: 5000
  download_size: 61766317
  dataset_size: 169300427
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
- config_name: star
  data_files:
  - split: train
    path: star/train-*
  - split: validation
    path: star/validation-*
  - split: test
    path: star/test-*
---
# Dataset Card for "FLD.v2"
To train a casual language model, simply use "prompt_serial" column for the model input and "proof_serial" for the output.
For more info, see [our project page](https://github.com/hitachi-nlp/FLD/).

[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)