File size: 3,300 Bytes
c2b77a4 12af605 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 c2b77a4 08d2ff5 12af605 08d2ff5 12af605 c2b77a4 2596be0 c2b77a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
dataset_info:
- config_name: default
features:
- name: hypothesis
dtype: string
- name: context
dtype: string
- name: hypothesis_formula
dtype: string
- name: context_formula
dtype: string
- name: proofs
sequence: string
- name: proof_label
dtype: string
- name: proofs_formula
sequence: string
- name: world_assump_label
dtype: string
- name: original_tree_depth
dtype: int64
- name: depth
dtype: int64
- name: num_formula_distractors
dtype: int64
- name: num_translation_distractors
dtype: int64
- name: num_all_distractors
dtype: int64
- name: negative_hypothesis
dtype: string
- name: negative_hypothesis_formula
dtype: string
- name: negative_original_tree_depth
dtype: int64
- name: negative_proofs
sequence: string
- name: negative_proof_label
dtype: string
- name: negative_world_assump_label
dtype: string
- name: prompt_serial
dtype: string
- name: proof_serial
dtype: string
- name: version
dtype: string
splits:
- name: train
num_bytes: 102341795
num_examples: 30000
- name: validation
num_bytes: 17036757
num_examples: 5000
- name: test
num_bytes: 17032009
num_examples: 5000
download_size: 50518265
dataset_size: 136410561
- config_name: star
features:
- name: hypothesis
dtype: string
- name: context
dtype: string
- name: hypothesis_formula
dtype: string
- name: context_formula
dtype: string
- name: proofs
sequence: string
- name: proof_label
dtype: string
- name: proofs_formula
sequence: string
- name: world_assump_label
dtype: string
- name: original_tree_depth
dtype: int64
- name: depth
dtype: int64
- name: num_formula_distractors
dtype: int64
- name: num_translation_distractors
dtype: int64
- name: num_all_distractors
dtype: int64
- name: negative_hypothesis
dtype: string
- name: negative_hypothesis_formula
dtype: string
- name: negative_original_tree_depth
dtype: int64
- name: negative_proofs
sequence: string
- name: negative_proof_label
dtype: string
- name: negative_world_assump_label
dtype: string
- name: prompt_serial
dtype: string
- name: proof_serial
dtype: string
- name: version
dtype: string
splits:
- name: train
num_bytes: 127005152
num_examples: 30000
- name: validation
num_bytes: 21077447
num_examples: 5000
- name: test
num_bytes: 21297828
num_examples: 5000
download_size: 61803899
dataset_size: 169380427
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: star
data_files:
- split: train
path: star/train-*
- split: validation
path: star/validation-*
- split: test
path: star/test-*
---
# Dataset Card for "FLD.v2"
To train a casual language model, simply use "prompt_serial" column for the model input and "proof_serial" for the output.
For more info, see [our project page](https://github.com/hitachi-nlp/FLD/).
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |