File size: 3,300 Bytes
c2b77a4
 
12af605
c2b77a4
 
 
 
 
08d2ff5
 
c2b77a4
 
 
 
08d2ff5
 
c2b77a4
 
08d2ff5
c2b77a4
 
 
 
 
 
 
 
 
 
 
08d2ff5
c2b77a4
08d2ff5
c2b77a4
08d2ff5
 
 
 
 
c2b77a4
 
 
08d2ff5
 
 
 
 
 
c2b77a4
 
08d2ff5
c2b77a4
 
08d2ff5
c2b77a4
 
08d2ff5
c2b77a4
08d2ff5
 
12af605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d2ff5
 
 
 
 
 
 
 
 
12af605
 
 
 
 
 
 
 
c2b77a4
 
2596be0
 
c2b77a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
dataset_info:
- config_name: default
  features:
  - name: hypothesis
    dtype: string
  - name: context
    dtype: string
  - name: hypothesis_formula
    dtype: string
  - name: context_formula
    dtype: string
  - name: proofs
    sequence: string
  - name: proof_label
    dtype: string
  - name: proofs_formula
    sequence: string
  - name: world_assump_label
    dtype: string
  - name: original_tree_depth
    dtype: int64
  - name: depth
    dtype: int64
  - name: num_formula_distractors
    dtype: int64
  - name: num_translation_distractors
    dtype: int64
  - name: num_all_distractors
    dtype: int64
  - name: negative_hypothesis
    dtype: string
  - name: negative_hypothesis_formula
    dtype: string
  - name: negative_original_tree_depth
    dtype: int64
  - name: negative_proofs
    sequence: string
  - name: negative_proof_label
    dtype: string
  - name: negative_world_assump_label
    dtype: string
  - name: prompt_serial
    dtype: string
  - name: proof_serial
    dtype: string
  - name: version
    dtype: string
  splits:
  - name: train
    num_bytes: 102341795
    num_examples: 30000
  - name: validation
    num_bytes: 17036757
    num_examples: 5000
  - name: test
    num_bytes: 17032009
    num_examples: 5000
  download_size: 50518265
  dataset_size: 136410561
- config_name: star
  features:
  - name: hypothesis
    dtype: string
  - name: context
    dtype: string
  - name: hypothesis_formula
    dtype: string
  - name: context_formula
    dtype: string
  - name: proofs
    sequence: string
  - name: proof_label
    dtype: string
  - name: proofs_formula
    sequence: string
  - name: world_assump_label
    dtype: string
  - name: original_tree_depth
    dtype: int64
  - name: depth
    dtype: int64
  - name: num_formula_distractors
    dtype: int64
  - name: num_translation_distractors
    dtype: int64
  - name: num_all_distractors
    dtype: int64
  - name: negative_hypothesis
    dtype: string
  - name: negative_hypothesis_formula
    dtype: string
  - name: negative_original_tree_depth
    dtype: int64
  - name: negative_proofs
    sequence: string
  - name: negative_proof_label
    dtype: string
  - name: negative_world_assump_label
    dtype: string
  - name: prompt_serial
    dtype: string
  - name: proof_serial
    dtype: string
  - name: version
    dtype: string
  splits:
  - name: train
    num_bytes: 127005152
    num_examples: 30000
  - name: validation
    num_bytes: 21077447
    num_examples: 5000
  - name: test
    num_bytes: 21297828
    num_examples: 5000
  download_size: 61803899
  dataset_size: 169380427
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
- config_name: star
  data_files:
  - split: train
    path: star/train-*
  - split: validation
    path: star/validation-*
  - split: test
    path: star/test-*
---
# Dataset Card for "FLD.v2"
To train a casual language model, simply use "prompt_serial" column for the model input and "proof_serial" for the output.
For more info, see [our project page](https://github.com/hitachi-nlp/FLD/).

[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)