File size: 2,758 Bytes
52ae129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a6195
52ae129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a6195
52ae129
 
04dc36e
52ae129
 
 
 
 
 
 
 
 
 
 
b2654be
52ae129
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import textwrap
import datasets
_CITATION = """\\n"""
_DESCRIPTION = """\\n"""
class FixturesCaptioningConfig(datasets.BuilderConfig):
    """BuilderConfig for fixtures captioning"""
    def __init__(
        self,
        data_url,
        url,
        task_templates=None,
        **kwargs,
    ):
        super(FixturesCaptioningConfig, self).__init__(
            version=datasets.Version("1.9.0", ""), **kwargs
        )
        self.data_url = data_url
        self.url = url
        self.task_templates = task_templates
        
class FixturesCaptioning(datasets.GeneratorBasedBuilder):
    """Fixtures for captioning and VQA models. Includes 4 images."""
    BUILDER_CONFIGS = [
        FixturesCaptioningConfig(
            name="image",
            description=textwrap.dedent(""),
            url="",
            data_url="",
        )
    ]
    DEFAULT_CONFIG_NAME = "image"
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "file": datasets.Value("string"),
                }
            ),
            supervised_keys=("file",),
            homepage=self.config.url,
            citation=_CITATION,
        )
    def _split_generators(self, dl_manager):
        
        DL_URLS = [
            f"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/raw/main/{name}"
            for name in ["bbox_sample_image.jpeg", "bus.png", "chart.png", "skateboard.png"]
        ]
        archive_path = dl_manager.download_and_extract(DL_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"archive_path": archive_path},
            ),
        ]
    def _generate_examples(self, archive_path):
        """Generate examples."""
        for i, filename in enumerate(archive_path):
            key = str(i)
            example = {
                "id": key,
                "file": filename,
            }
            yield key, example