Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
Persian
Size:
10K - 100K
Tags:
hezar
import csv | |
import os | |
import datasets | |
from tqdm import tqdm | |
_DESCRIPTION = """\ | |
Persian portion of the common voice 13 dataset, gathered and maintained by Hezar AI. | |
""" | |
_CITATION = """\ | |
@inproceedings{commonvoice:2020, | |
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, | |
title = {Common Voice: A Massively-Multilingual Speech Corpus}, | |
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, | |
pages = {4211--4215}, | |
year = 2020 | |
} | |
""" | |
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets" | |
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" | |
_BASE_URL = "https://huggingface.co/datasets/hezarai/common-voice-13-fa/resolve/main/" | |
_AUDIO_URL = _BASE_URL + "audio/{split}.zip" | |
_TRANSCRIPT_URL = _BASE_URL + "transcripts/{split}.tsv" | |
class CommonVoiceFaConfig(datasets.BuilderConfig): | |
"""BuilderConfig for CommonVoice.""" | |
def __init__(self, **kwargs): | |
super(CommonVoiceFaConfig, self).__init__(**kwargs) | |
class CommonVoice(datasets.GeneratorBasedBuilder): | |
DEFAULT_WRITER_BATCH_SIZE = 1000 | |
BUILDER_CONFIGS = [ | |
CommonVoiceFaConfig( | |
name="commonvoice-13-fa", | |
version="1.0.0", | |
description=_DESCRIPTION, | |
) | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"client_id": datasets.Value("string"), | |
"path": datasets.Value("string"), | |
"audio": datasets.features.Audio(sampling_rate=48_000), | |
"sentence": datasets.Value("string"), | |
"up_votes": datasets.Value("int64"), | |
"down_votes": datasets.Value("int64"), | |
"age": datasets.Value("string"), | |
"gender": datasets.Value("string"), | |
"accent": datasets.Value("string"), | |
"locale": datasets.Value("string"), | |
"segment": datasets.Value("string"), | |
"variant": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
version=self.config.version, | |
) | |
def _split_generators(self, dl_manager): | |
splits = ("train", "validation", "test") | |
audio_urls = {split: _AUDIO_URL.format(split=split) for split in splits} | |
archive_paths = dl_manager.download(audio_urls) | |
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} | |
transcript_urls = {split: _TRANSCRIPT_URL.format(split=split) for split in splits} | |
transcript_paths = dl_manager.download_and_extract(transcript_urls) | |
split_generators = [] | |
split_names = { | |
"train": datasets.Split.TRAIN, | |
"validation": datasets.Split.VALIDATION, | |
"test": datasets.Split.TEST, | |
} | |
for split in splits: | |
split_generators.append( | |
datasets.SplitGenerator( | |
name=split_names.get(split, split), | |
gen_kwargs={ | |
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), | |
"archives": [dl_manager.iter_archive(archive_paths.get(split))], | |
"transcript_path": transcript_paths[split], | |
}, | |
), | |
) | |
return split_generators | |
def _generate_examples(self, local_extracted_archive_paths, archives, transcript_path): | |
data_fields = list(self._info().features.keys()) | |
metadata = {} | |
with open(transcript_path, encoding="utf-8") as f: | |
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for row in tqdm(reader, desc="Reading metadata..."): | |
if not row["path"].endswith(".mp3"): | |
row["path"] += ".mp3" | |
# accent -> accents in CV 8.0 | |
if "accents" in row: | |
row["accent"] = row["accents"] | |
del row["accents"] | |
# if data is incomplete, fill with empty values | |
for field in data_fields: | |
if field not in row: | |
row[field] = "" | |
metadata[row["path"]] = row | |
for i, audio_archive in enumerate(archives): | |
for path, file in audio_archive: | |
_, filename = os.path.split(path) | |
if filename in metadata: | |
result = dict(metadata[filename]) | |
# set the audio feature and the path to the extracted file | |
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path | |
result["audio"] = {"path": path, "bytes": file.read()} | |
result["path"] = path | |
yield path, result | |