MatSynth / scripts /make_crops.py
gvecchio's picture
Add dataset building scripts
244c8ae verified
import argparse
import math
import threading
from pathlib import Path
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from tqdm import tqdm
def rotate_normal_map(normal_map, angle_deg):
angle_rad = angle_deg * (torch.pi / 180.0)
normal_map = normal_map * 2.0 - 1.0 # Convert to [-1, 1]
normal_map = normal_map.unsqueeze(0) # Add batch dimension
# Rotate the Vectors
rotation_matrix = torch.tensor([[math.cos(angle_rad), -math.sin(angle_rad), 0],
[math.sin(angle_rad), math.cos(angle_rad), 0],
[0, 0, 1]], device=normal_map.device)
# Reshape for batch matrix multiplication
reshaped_normal_map = normal_map.view(1, 3, -1) # Reshape to [1, 3, H*W]
rotation_matrix = rotation_matrix.view(1, 3, 3) # Add batch dimension
# Rotate the vectors
rotated_vectors = torch.bmm(rotation_matrix, reshaped_normal_map)
rotated_vectors = rotated_vectors.view(1, 3, normal_map.size(2), normal_map.size(3))
rotated_vectors = rotated_vectors / 2.0 + 0.5 # Convert back to [0, 1]
return rotated_vectors[0]
def process_map(map, mat_dest):
map_name = map.stem
img = Image.open(map)
img = TF.to_tensor(img).cuda()
img = TF.resize(img, (4096, 4096), antialias=True)
img = img.repeat(1, 3, 3)
img = TF.center_crop(img, (5793, 5793))
for rot_angle in range(0, 360, 45):
crop_i = 0
if "normal" in map_name:
rot_img = rotate_normal_map(img, axis='z', angle_deg=rot_angle)
rot_img = TF.rotate(rot_img, rot_angle)
else:
rot_img = TF.rotate(img, rot_angle)
rot_img = TF.center_crop(rot_img, (4096, 4096))
for crop_res in [4096, 2048, 1024]:
# split into crops
crops = rot_img.unfold(1, crop_res, crop_res).unfold(2, crop_res, crop_res)
crops = crops.permute(1, 2, 0, 3, 4)
crops = crops.reshape(-1, crops.size(2), crop_res, crop_res)
for crop in crops:
crop_dir = mat_dest / f"rot_{rot_angle:03d}_crop_{crop_i:03d}"
crop_dir.mkdir(parents=True, exist_ok=True)
crop = TF.resize(crop, (1024, 1024), antialias=True)
if map_name in ["height", "displacement"]:
crop = crop.permute(1, 2, 0).cpu().numpy()
crop = crop.astype(np.uint16)
crop = Image.fromarray(crop[..., 0])
crop.save(crop_dir / f"{map_name}.png")
else:
TF.to_pil_image(crop).save(crop_dir / f"{map_name}.png")
crop_i += 1
if __name__ == "__main__":
# Create argument parser
parser = argparse.ArgumentParser(description="Make dataset crops.")
parser.add_argument("--source_dir", required=True, help="Directory where the original 4K maps are stored.")
parser.add_argument("--dest_dir", required=True , help="Destination directory to store the 1K crops.")
args = parser.parse_args()
source_dir = Path(args.source_dir)
dest_dir = Path(args.dest_dir)
# Find all materials in the source directory
for file in tqdm([x for x in source_dir.glob("**/basecolor.png")]):
mat_dir = file.parent
name = mat_dir.stem
category = mat_dir.parent.stem
split = mat_dir.parent.parent.stem
mat_dest = dest_dir / split / category / name
mat_dest.mkdir(parents=True, exist_ok=True)
thread = []
for map in mat_dir.glob("*.png"):
t = threading.Thread(target=process_map, args=(map, mat_dest))
t.start()
thread.append(t)
for t in thread:
t.join()