File size: 3,792 Bytes
244c8ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import argparse
import math
import threading
from pathlib import Path

import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from tqdm import tqdm


def rotate_normal_map(normal_map, angle_deg):
    angle_rad = angle_deg * (torch.pi / 180.0)

    normal_map  = normal_map * 2.0 - 1.0 # Convert to [-1, 1]
    normal_map = normal_map.unsqueeze(0) # Add batch dimension

    # Rotate the Vectors
    rotation_matrix = torch.tensor([[math.cos(angle_rad), -math.sin(angle_rad), 0],
                                    [math.sin(angle_rad), math.cos(angle_rad), 0],
                                    [0, 0, 1]], device=normal_map.device)

    # Reshape for batch matrix multiplication
    reshaped_normal_map = normal_map.view(1, 3, -1)  # Reshape to [1, 3, H*W]
    rotation_matrix = rotation_matrix.view(1, 3, 3)  # Add batch dimension

    # Rotate the vectors
    rotated_vectors = torch.bmm(rotation_matrix, reshaped_normal_map)
    rotated_vectors = rotated_vectors.view(1, 3, normal_map.size(2), normal_map.size(3))

    rotated_vectors = rotated_vectors / 2.0 + 0.5 # Convert back to [0, 1]

    return rotated_vectors[0]

def process_map(map, mat_dest):
    map_name = map.stem
    img = Image.open(map)
    img = TF.to_tensor(img).cuda()
    img = TF.resize(img, (4096, 4096), antialias=True)

    img = img.repeat(1, 3, 3)
    img = TF.center_crop(img, (5793, 5793))

    for rot_angle in range(0, 360, 45):
        crop_i = 0

        if "normal" in map_name:
            rot_img = rotate_normal_map(img, axis='z', angle_deg=rot_angle)
            rot_img = TF.rotate(rot_img, rot_angle)
        else:
            rot_img = TF.rotate(img, rot_angle)

        rot_img = TF.center_crop(rot_img, (4096, 4096))
        
        for crop_res in [4096, 2048, 1024]:
            # split into crops
            crops = rot_img.unfold(1, crop_res, crop_res).unfold(2, crop_res, crop_res)
            crops = crops.permute(1, 2, 0, 3, 4)
            crops = crops.reshape(-1, crops.size(2), crop_res, crop_res)

            for crop in crops:
                crop_dir = mat_dest / f"rot_{rot_angle:03d}_crop_{crop_i:03d}"
                crop_dir.mkdir(parents=True, exist_ok=True)

                crop = TF.resize(crop, (1024, 1024), antialias=True)
                
                if map_name in ["height", "displacement"]:
                    crop = crop.permute(1, 2, 0).cpu().numpy()
                    crop = crop.astype(np.uint16)
                    crop = Image.fromarray(crop[..., 0])
                    crop.save(crop_dir / f"{map_name}.png")
                else:
                    TF.to_pil_image(crop).save(crop_dir / f"{map_name}.png")

                crop_i += 1

if __name__ == "__main__":
    # Create argument parser
    parser = argparse.ArgumentParser(description="Make dataset crops.")
    parser.add_argument("--source_dir", required=True, help="Directory where the original 4K maps are stored.")
    parser.add_argument("--dest_dir", required=True , help="Destination directory to store the 1K crops.")
    args = parser.parse_args()

    source_dir = Path(args.source_dir)
    dest_dir = Path(args.dest_dir)

    # Find all materials in the source directory
    for file in tqdm([x for x in source_dir.glob("**/basecolor.png")]):
        mat_dir = file.parent

        name = mat_dir.stem
        category = mat_dir.parent.stem
        split = mat_dir.parent.parent.stem

        mat_dest = dest_dir / split / category / name
        mat_dest.mkdir(parents=True, exist_ok=True)

        thread = []
        for map in mat_dir.glob("*.png"):
            t = threading.Thread(target=process_map, args=(map, mat_dest))
            t.start()

            thread.append(t)

        for t in thread:
            t.join()