File size: 4,151 Bytes
db03e64 2f1e7f5 db03e64 65cb6d6 2f1e7f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: unknown
dataset_info:
features:
- name: node_feat
sequence:
sequence: int64
- name: edge_index
sequence:
sequence: int64
- name: edge_attr
sequence:
sequence: int64
- name: y
sequence: float64
- name: num_nodes
dtype: int64
splits:
- name: train
num_bytes: 376796456
num_examples: 220011
- name: test
num_bytes: 8538528
num_examples: 5000
- name: validation
num_bytes: 41819628
num_examples: 24445
download_size: 20636253
dataset_size: 427154612
---
# Dataset Card for ZINC
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [External Use](#external-use)
- [PyGeometric](#pygeometric)
- [Dataset Structure](#dataset-structure)
- [Data Properties](#data-properties)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **[Homepage](https://zinc15.docking.org/)**
- **[Repository](https://www.dropbox.com/s/feo9qle74kg48gy/molecules.zip?dl=1):**:
- **Paper:**: ZINC 15 – Ligand Discovery for Everyone (see citation)
- **Leaderboard:**: [Papers with code leaderboard](https://paperswithcode.com/sota/)
### Dataset Summary
The `ZINC` dataset is a "curated collection of commercially available chemical compounds prepared especially for virtual screening" (Wikipedia).
### Supported Tasks and Leaderboards
`ZINC` should be used for molecular property prediction (aiming to predict the constrained solubility of the molecules), a graph regression task. The score used is the MAE.
The associated leaderboard is here: [Papers with code leaderboard](https://paperswithcode.com/sota/graph-regression-on-zinc).
## External Use
### PyGeometric
To load in PyGeometric, do the following:
```python
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
dataset_hf = load_dataset("graphs-datasets/<mydataset>")
# For the train set (replace by valid or test as needed)
dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
dataset_pg = DataLoader(dataset_pg_list)
```
## Dataset Structure
### Data Properties
| property | value |
|---|---|
| scale | big |
| #graphs | 220011 |
| average #nodes | 23.15 |
| average #edges | 49.81 |
### Data Fields
Each row of a given file is a graph, with:
- `node_feat` (list: #nodes x #node-features): nodes
- `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
- `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
- `y` (list: 1 x #labels): contains the number of labels available to predict (here 1, equal to zero or one)
- `num_nodes` (int): number of nodes of the graph
### Data Splits
This data comes from the PyGeometric version of the dataset, and follows the provided data splits.
This information can be found back using
```python
from torch_geometric.datasets import ZINC
dataset = ZINC(root = '', split='train') # valid, test
```
## Additional Information
### Licensing Information
The dataset has been released under unknown license. Please open an issue if you know what is the license of this dataset.
### Citation Information
```bibtex
@article{doi:10.1021/acs.jcim.5b00559,
author = {Sterling, Teague and Irwin, John J.},
title = {ZINC 15 – Ligand Discovery for Everyone},
journal = {Journal of Chemical Information and Modeling},
volume = {55},
number = {11},
pages = {2324-2337},
year = {2015},
doi = {10.1021/acs.jcim.5b00559},
note ={PMID: 26479676},
URL = {
https://doi.org/10.1021/acs.jcim.5b00559
},
eprint = {
https://doi.org/10.1021/acs.jcim.5b00559
}
}
```
### Contributions
Thanks to [@clefourrier](https://github.com/clefourrier) for adding this dataset. |