File size: 5,150 Bytes
7fbf41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
languages:
- en
licenses:
- cc-by-4-0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-xsum
task_categories:
- conditional-text-generation
task_ids:
- summarization
---

# Dataset Card for XSum Hallucination Annotations

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://research.google/tools/datasets/xsum-hallucination-annotations/
- **Repository:** https://github.com/google-research-datasets/xsum_hallucination_annotations
- **Paper:** https://www.aclweb.org/anthology/2020.acl-main.173.pdf
- **Leaderboard:** NA
- **Point of Contact:** [[email protected]](mailto:[email protected])

### Dataset Summary

Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input document. The popular metric such as ROUGE fails to show the severity of the problem. The dataset consists of faithfulness and factuality annotations of abstractive summaries for the XSum dataset. The dataset has crowdsourced 3 judgements for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

##### Faithfulness annotations dataset

```
{
'bbcid': 34687720,
 'hallucinated_span_end': 114,
 'hallucinated_span_start': 1,
 'hallucination_type': 1,
 'summary': 'rory mcilroy will take a one-shot lead into the final round of the wgc-hsbc champions after carding a three-under',
 'system': 'BERTS2S',
 'worker_id': 'wid_0'
 }
```

##### Factuality annotations dataset

```
{
'bbcid': 29911712,
 'is_factual': 0,
 'summary': 'more than 50 pupils at a bristol academy have been sent home from school because of a lack of uniform.',
 'system': 'BERTS2S',
 'worker_id': 'wid_0'
 }
```

### Data Fields

##### Faithfulness annotations dataset

Raters are shown the news article and the system summary, and are tasked with identifying and annotating the spans that aren't supported by the input article. The file contains the following columns:


- bbcid: Document id in the XSum corpus.
- system: Name of neural summarizer.
- summary: Summary generated by ‘system’.
- hallucination_type: Type of hallucination: intrinsic (0) or extrinsic (1)
- hallucinated_span: Hallucinated span in the ‘summary’.
- hallucinated_span_start: Index of the start of the hallucinated span.
- hallucinated_span_end: Index of the end of the hallucinated span.
- worker_id: 'wid_0', 'wid_1', 'wid_2'


The `hallucination_type` column has NULL value for some entries which have been replaced iwth `-1`.

##### Factuality annotations dataset

Raters are shown the news article and the hallucinated system summary, and are tasked with assessing the summary whether it is factual or not. The file contains the following columns:


- bbcid: Document id in the XSum corpus.
- system: Name of neural summarizer.
- summary: Summary generated by ‘system’.
- is_factual: yes (1) or no (0)
- worker_id: 'wid_0', 'wid_1', 'wid_2'


The `is_factual` column has NULL value for some entries which have been replaced iwth `-1`.

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]