Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
File size: 11,675 Bytes
31a153c
d4635b4
 
 
 
2122f7b
7fec6c9
2122f7b
1948c75
d4635b4
 
 
 
 
 
 
 
 
 
 
64c8020
3d1d4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64c8020
 
3d1d4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a153c
 
d4635b4
31a153c
 
 
 
f2e4bed
31a153c
 
 
 
f2e4bed
31a153c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0defb13
31a153c
 
efe2c92
 
31a153c
7b4de43
 
 
31a153c
0defb13
31a153c
 
 
 
 
 
 
f2e4bed
31a153c
efe2c92
31a153c
0defb13
31a153c
efe2c92
31a153c
0defb13
31a153c
0defb13
31a153c
7b4de43
 
 
31a153c
efe2c92
31a153c
efe2c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a153c
 
0defb13
31a153c
 
 
 
 
efe2c92
 
 
 
 
 
 
 
 
 
 
 
 
31a153c
 
 
 
efe2c92
 
 
 
 
 
 
 
 
31a153c
 
 
 
 
 
 
 
f2e4bed
31a153c
d4635b4
 
 
 
31a153c
0defb13
31a153c
0defb13
31a153c
 
 
0defb13
31a153c
f2e4bed
 
 
 
 
 
31a153c
 
0defb13
31a153c
f2e4bed
 
 
 
 
 
31a153c
 
0defb13
31a153c
 
 
0defb13
31a153c
0defb13
31a153c
 
 
0defb13
31a153c
 
 
0defb13
31a153c
 
 
0defb13
31a153c
0defb13
31a153c
 
 
0defb13
31a153c
d4635b4
31a153c
0defb13
31a153c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1d4a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: natural-questions
pretty_name: Natural Questions
dataset_info:
  features:
  - name: id
    dtype: string
  - name: document
    struct:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: html
      dtype: string
    - name: tokens
      sequence:
      - name: token
        dtype: string
      - name: is_html
        dtype: bool
  - name: question
    struct:
    - name: text
      dtype: string
    - name: tokens
      sequence: string
  - name: annotations
    sequence:
    - name: id
      dtype: string
    - name: long_answer
      struct:
      - name: start_token
        dtype: int64
      - name: end_token
        dtype: int64
      - name: start_byte
        dtype: int64
      - name: end_byte
        dtype: int64
    - name: short_answers
      sequence:
      - name: start_token
        dtype: int64
      - name: end_token
        dtype: int64
      - name: start_byte
        dtype: int64
      - name: end_byte
        dtype: int64
      - name: text
        dtype: string
    - name: yes_no_answer
      dtype:
        class_label:
          names:
            '0': 'NO'
            '1': 'YES'
    - name: long_answer_candidates
      sequence:
      - name: start_token
        dtype: int64
      - name: end_token
        dtype: int64
      - name: start_byte
        dtype: int64
      - name: end_byte
        dtype: int64
      - name: top_label
        dtype: bool
  splits:
  - name: train
    num_bytes: 97445142568
    num_examples: 307373
  - name: validation
    num_bytes: 2353975312
    num_examples: 7830
  download_size: 45069199013
  dataset_size: 99799117880
---

# Dataset Card for Natural Questions

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://ai.google.com/research/NaturalQuestions/dataset](https://ai.google.com/research/NaturalQuestions/dataset)
- **Repository:** [https://github.com/google-research-datasets/natural-questions](https://github.com/google-research-datasets/natural-questions)
- **Paper:** [https://research.google/pubs/pub47761/](https://research.google/pubs/pub47761/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 45.07 GB
- **Size of the generated dataset:** 99.80 GB
- **Total amount of disk used:** 144.87 GB

### Dataset Summary

The NQ corpus contains questions from real users, and it requires QA systems to
read and comprehend an entire Wikipedia article that may or may not contain the
answer to the question. The inclusion of real user questions, and the
requirement that solutions should read an entire page to find the answer, cause
NQ to be a more realistic and challenging task than prior QA datasets.

### Supported Tasks and Leaderboards

[https://ai.google.com/research/NaturalQuestions](https://ai.google.com/research/NaturalQuestions)

### Languages

en

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 45.07 GB
- **Size of the generated dataset:** 99.80 GB
- **Total amount of disk used:** 144.87 GB

An example of 'train' looks as follows. This is a toy example.
```
{
  "id": "797803103760793766",
  "document": {
    "title": "Google",
    "url": "http://www.wikipedia.org/Google",
    "html": "<html><body><h1>Google Inc.</h1><p>Google was founded in 1998 By:<ul><li>Larry</li><li>Sergey</li></ul></p></body></html>",
    "tokens":[
      {"token": "<h1>", "start_byte": 12, "end_byte": 16, "is_html": True},
      {"token": "Google", "start_byte": 16, "end_byte": 22, "is_html": False},
      {"token": "inc", "start_byte": 23, "end_byte": 26, "is_html": False},
      {"token": ".", "start_byte": 26, "end_byte": 27, "is_html": False},
      {"token": "</h1>", "start_byte": 27, "end_byte": 32, "is_html": True},
      {"token": "<p>", "start_byte": 32, "end_byte": 35, "is_html": True},
      {"token": "Google", "start_byte": 35, "end_byte": 41, "is_html": False},
      {"token": "was", "start_byte": 42, "end_byte": 45, "is_html": False},
      {"token": "founded", "start_byte": 46, "end_byte": 53, "is_html": False},
      {"token": "in", "start_byte": 54, "end_byte": 56, "is_html": False},
      {"token": "1998", "start_byte": 57, "end_byte": 61, "is_html": False},
      {"token": "by", "start_byte": 62, "end_byte": 64, "is_html": False},
      {"token": ":", "start_byte": 64, "end_byte": 65, "is_html": False},
      {"token": "<ul>", "start_byte": 65, "end_byte": 69, "is_html": True},
      {"token": "<li>", "start_byte": 69, "end_byte": 73, "is_html": True},
      {"token": "Larry", "start_byte": 73, "end_byte": 78, "is_html": False},
      {"token": "</li>", "start_byte": 78, "end_byte": 83, "is_html": True},
      {"token": "<li>", "start_byte": 83, "end_byte": 87, "is_html": True},
      {"token": "Sergey", "start_byte": 87, "end_byte": 92, "is_html": False},
      {"token": "</li>", "start_byte": 92, "end_byte": 97, "is_html": True},
      {"token": "</ul>", "start_byte": 97, "end_byte": 102, "is_html": True},
      {"token": "</p>", "start_byte": 102, "end_byte": 106, "is_html": True}
    ],
  },
  "question" :{
    "text": "who founded google",
    "tokens": ["who", "founded", "google"]
  },
  "long_answer_candidates": [
    {"start_byte": 32, "end_byte": 106, "start_token": 5, "end_token": 22, "top_level": True},
    {"start_byte": 65, "end_byte": 102, "start_token": 13, "end_token": 21, "top_level": False},
    {"start_byte": 69, "end_byte": 83, "start_token": 14, "end_token": 17, "top_level": False},
    {"start_byte": 83, "end_byte": 92, "start_token": 17, "end_token": 20 , "top_level": False}
  ],
  "annotations": [{
    "id": "6782080525527814293",
    "long_answer": {"start_byte": 32, "end_byte": 106, "start_token": 5, "end_token": 22, "candidate_index": 0},
    "short_answers": [
      {"start_byte": 73, "end_byte": 78, "start_token": 15, "end_token": 16, "text": "Larry"},
      {"start_byte": 87, "end_byte": 92, "start_token": 18, "end_token": 19, "text": "Sergey"}
    ],
    "yes_no_answer": -1
  }]
}
```

### Data Fields

The data fields are the same among all splits.

#### default
- `id`: a `string` feature.
- `document` a dictionary feature containing:
  - `title`: a `string` feature.
  - `url`: a `string` feature.
  - `html`: a `string` feature.
  - `tokens`: a dictionary feature containing:
    - `token`: a `string` feature.
    - `is_html`: a `bool` feature.
    - `start_byte`: a `int64` feature.
    - `end_byte`: a `int64` feature.
- `question`: a dictionary feature containing:
  - `text`: a `string` feature.
  - `tokens`: a `list` of `string` features.
- `long_answer_candidates`: a dictionary feature containing:
  - `start_token`: a `int64` feature.
  - `end_token`: a `int64` feature.
  - `start_byte`: a `int64` feature.
  - `end_byte`: a `int64` feature.
  - `top_level`: a `bool` feature.
- `annotations`: a dictionary feature containing:
  - `id`: a `string` feature.
  - `long_answers`: a dictionary feature containing:
    - `start_token`: a `int64` feature.
    - `end_token`: a `int64` feature.
    - `start_byte`: a `int64` feature.
    - `end_byte`: a `int64` feature.
    - `candidate_index`: a `int64` feature.
  - `short_answers`: a dictionary feature containing:
    - `start_token`: a `int64` feature.
    - `end_token`: a `int64` feature.
    - `start_byte`: a `int64` feature.
    - `end_byte`: a `int64` feature.
    - `text`: a `string` feature.
  - `yes_no_answer`: a classification label, with possible values including `NO` (0), `YES` (1).

### Data Splits

| name    |  train | validation |
|---------|-------:|-----------:|
| default | 307373 |       7830 |
| dev     |    N/A |       7830 |

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[Creative Commons Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/).

### Citation Information

```

@article{47761,
title	= {Natural Questions: a Benchmark for Question Answering Research},
author	= {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year	= {2019},
journal	= {Transactions of the Association of Computational Linguistics}
}

```


### Contributions

Thanks to [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq) for adding this dataset.