albertvillanova HF staff commited on
Commit
93e006e
·
1 Parent(s): 80ade01

Delete loading script

Browse files
Files changed (1) hide show
  1. go_emotions.py +0 -158
go_emotions.py DELETED
@@ -1,158 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """GoEmotions dataset"""
18
-
19
-
20
- import csv
21
- import os
22
-
23
- import datasets
24
-
25
-
26
- _DESCRIPTION = """\
27
- The GoEmotions dataset contains 58k carefully curated Reddit comments labeled for 27 emotion categories or Neutral.
28
- The emotion categories are admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire,
29
- disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness,
30
- optimism, pride, realization, relief, remorse, sadness, surprise.
31
- """
32
-
33
- _CITATION = """\
34
- @inproceedings{demszky2020goemotions,
35
- author = {Demszky, Dorottya and Movshovitz-Attias, Dana and Ko, Jeongwoo and Cowen, Alan and Nemade, Gaurav and Ravi, Sujith},
36
- booktitle = {58th Annual Meeting of the Association for Computational Linguistics (ACL)},
37
- title = {{GoEmotions: A Dataset of Fine-Grained Emotions}},
38
- year = {2020}
39
- }
40
- """
41
-
42
- _CLASS_NAMES = [
43
- "admiration",
44
- "amusement",
45
- "anger",
46
- "annoyance",
47
- "approval",
48
- "caring",
49
- "confusion",
50
- "curiosity",
51
- "desire",
52
- "disappointment",
53
- "disapproval",
54
- "disgust",
55
- "embarrassment",
56
- "excitement",
57
- "fear",
58
- "gratitude",
59
- "grief",
60
- "joy",
61
- "love",
62
- "nervousness",
63
- "optimism",
64
- "pride",
65
- "realization",
66
- "relief",
67
- "remorse",
68
- "sadness",
69
- "surprise",
70
- "neutral",
71
- ]
72
-
73
- _BASE_DOWNLOAD_URL = "https://github.com/google-research/google-research/raw/master/goemotions/data/"
74
- _RAW_DOWNLOAD_URLS = [
75
- "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv",
76
- "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv",
77
- "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv",
78
- ]
79
- _HOMEPAGE = "https://github.com/google-research/google-research/tree/master/goemotions"
80
-
81
-
82
- class GoEmotionsConfig(datasets.BuilderConfig):
83
- @property
84
- def features(self):
85
- if self.name == "simplified":
86
- return {
87
- "text": datasets.Value("string"),
88
- "labels": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES)),
89
- "id": datasets.Value("string"),
90
- }
91
- elif self.name == "raw":
92
- d = {
93
- "text": datasets.Value("string"),
94
- "id": datasets.Value("string"),
95
- "author": datasets.Value("string"),
96
- "subreddit": datasets.Value("string"),
97
- "link_id": datasets.Value("string"),
98
- "parent_id": datasets.Value("string"),
99
- "created_utc": datasets.Value("float"),
100
- "rater_id": datasets.Value("int32"),
101
- "example_very_unclear": datasets.Value("bool"),
102
- }
103
- d.update({label: datasets.Value("int32") for label in _CLASS_NAMES})
104
- return d
105
-
106
-
107
- class GoEmotions(datasets.GeneratorBasedBuilder):
108
- """GoEmotions dataset"""
109
-
110
- BUILDER_CONFIGS = [
111
- GoEmotionsConfig(
112
- name="raw",
113
- ),
114
- GoEmotionsConfig(
115
- name="simplified",
116
- ),
117
- ]
118
- BUILDER_CONFIG_CLASS = GoEmotionsConfig
119
- DEFAULT_CONFIG_NAME = "simplified"
120
-
121
- def _info(self):
122
- return datasets.DatasetInfo(
123
- description=_DESCRIPTION,
124
- features=datasets.Features(self.config.features),
125
- homepage=_HOMEPAGE,
126
- citation=_CITATION,
127
- )
128
-
129
- def _split_generators(self, dl_manager):
130
- if self.config.name == "raw":
131
- paths = dl_manager.download_and_extract(_RAW_DOWNLOAD_URLS)
132
- return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": paths, "raw": True})]
133
- if self.config.name == "simplified":
134
- train_path = dl_manager.download_and_extract(os.path.join(_BASE_DOWNLOAD_URL, "train.tsv"))
135
- dev_path = dl_manager.download_and_extract(os.path.join(_BASE_DOWNLOAD_URL, "dev.tsv"))
136
- test_path = dl_manager.download_and_extract(os.path.join(_BASE_DOWNLOAD_URL, "test.tsv"))
137
- return [
138
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path]}),
139
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [dev_path]}),
140
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path]}),
141
- ]
142
-
143
- def _generate_examples(self, filepaths, raw=False):
144
- """Generate AG News examples."""
145
- for file_idx, filepath in enumerate(filepaths):
146
- with open(filepath, "r", encoding="utf-8") as f:
147
- if raw:
148
- reader = csv.DictReader(f)
149
- else:
150
- reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys()))
151
-
152
- for row_idx, row in enumerate(reader):
153
- if raw:
154
- row["example_very_unclear"] = row["example_very_unclear"] == "TRUE"
155
- else:
156
- row["labels"] = [int(ind) for ind in row["labels"].split(",")]
157
-
158
- yield f"{file_idx}_{row_idx}", row