Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (c874faf2cd0a45d517bf50dbad220938e1e018ae)
- Delete loading script (f404e49644b81ce74f7266ddec1f7c856943cec0)
- README.md +16 -7
- data/test-00000-of-00001.parquet +3 -0
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- disfl_qa.py +0 -199
README.md
CHANGED
@@ -9,8 +9,6 @@ license:
|
|
9 |
- cc-by-4.0
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
-
pretty_name: 'DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question
|
13 |
-
Answering'
|
14 |
size_categories:
|
15 |
- 10K<n<100K
|
16 |
source_datasets:
|
@@ -20,6 +18,8 @@ task_categories:
|
|
20 |
task_ids:
|
21 |
- extractive-qa
|
22 |
- open-domain-qa
|
|
|
|
|
23 |
dataset_info:
|
24 |
features:
|
25 |
- name: squad_v2_id
|
@@ -40,16 +40,25 @@ dataset_info:
|
|
40 |
dtype: int32
|
41 |
splits:
|
42 |
- name: train
|
43 |
-
num_bytes:
|
44 |
num_examples: 7182
|
45 |
- name: test
|
46 |
-
num_bytes:
|
47 |
num_examples: 3643
|
48 |
- name: validation
|
49 |
-
num_bytes:
|
50 |
num_examples: 1000
|
51 |
-
download_size:
|
52 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
---
|
54 |
|
55 |
# Dataset Card for DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering
|
|
|
9 |
- cc-by-4.0
|
10 |
multilinguality:
|
11 |
- monolingual
|
|
|
|
|
12 |
size_categories:
|
13 |
- 10K<n<100K
|
14 |
source_datasets:
|
|
|
18 |
task_ids:
|
19 |
- extractive-qa
|
20 |
- open-domain-qa
|
21 |
+
pretty_name: 'DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question
|
22 |
+
Answering'
|
23 |
dataset_info:
|
24 |
features:
|
25 |
- name: squad_v2_id
|
|
|
40 |
dtype: int32
|
41 |
splits:
|
42 |
- name: train
|
43 |
+
num_bytes: 7712491
|
44 |
num_examples: 7182
|
45 |
- name: test
|
46 |
+
num_bytes: 3865065
|
47 |
num_examples: 3643
|
48 |
- name: validation
|
49 |
+
num_bytes: 1072699
|
50 |
num_examples: 1000
|
51 |
+
download_size: 4246350
|
52 |
+
dataset_size: 12650255
|
53 |
+
configs:
|
54 |
+
- config_name: default
|
55 |
+
data_files:
|
56 |
+
- split: train
|
57 |
+
path: data/train-*
|
58 |
+
- split: test
|
59 |
+
path: data/test-*
|
60 |
+
- split: validation
|
61 |
+
path: data/validation-*
|
62 |
---
|
63 |
|
64 |
# Dataset Card for DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering
|
data/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a8768ab77830bb13e44110d29e41ce49a77698d53ef84f889c30d2bc1e82444
|
3 |
+
size 590102
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e4e82c5d2b8b5c03afe4b8cedb2816abcdcb59dedd9edfa009eb95bd49e3d15
|
3 |
+
size 3221857
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c88a0ae7fcbd0650cd414734948a89ee62ddf2593de5b93efb5c54ab2137b24
|
3 |
+
size 434391
|
disfl_qa.py
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""A Benchmark Dataset for Understanding Disfluencies in Question Answering"""
|
16 |
-
|
17 |
-
|
18 |
-
import json
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
from datasets.tasks import QuestionAnsweringExtractive
|
22 |
-
|
23 |
-
|
24 |
-
_CITATION = """\
|
25 |
-
@inproceedings{gupta-etal-2021-disflqa,
|
26 |
-
title = "{Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering}",
|
27 |
-
author = "Gupta, Aditya and Xu, Jiacheng and Upadhyay, Shyam and Yang, Diyi and Faruqui, Manaal",
|
28 |
-
booktitle = "Findings of ACL",
|
29 |
-
year = "2021"
|
30 |
-
}
|
31 |
-
|
32 |
-
"""
|
33 |
-
|
34 |
-
_DESCRIPTION = """\
|
35 |
-
Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting,
|
36 |
-
namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018)
|
37 |
-
dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as
|
38 |
-
a source of distractors.
|
39 |
-
|
40 |
-
The final dataset consists of ~12k (disfluent question, answer) pairs. Over 90% of the disfluencies are
|
41 |
-
corrections or restarts, making it a much harder test set for disfluency correction. Disfl-QA aims to fill a
|
42 |
-
major gap between speech and NLP research community. We hope the dataset can serve as a benchmark dataset for
|
43 |
-
testing robustness of models against disfluent inputs.
|
44 |
-
|
45 |
-
Our expriments reveal that the state-of-the-art models are brittle when subjected to disfluent inputs from
|
46 |
-
Disfl-QA. Detailed experiments and analyses can be found in our paper.
|
47 |
-
"""
|
48 |
-
|
49 |
-
_HOMEPAGE = "https://github.com/google-research-datasets/disfl-qa"
|
50 |
-
|
51 |
-
_LICENSE = "Disfl-QA dataset is licensed under CC BY 4.0"
|
52 |
-
|
53 |
-
_URL = "https://raw.githubusercontent.com/google-research-datasets/Disfl-QA/main/"
|
54 |
-
|
55 |
-
_URLS_squad_v2 = {
|
56 |
-
"train": "https://rajpurkar.github.io/SQuAD-explorer/dataset/" + "train-v2.0.json",
|
57 |
-
"dev": "https://rajpurkar.github.io/SQuAD-explorer/dataset/" + "dev-v2.0.json",
|
58 |
-
}
|
59 |
-
|
60 |
-
|
61 |
-
class DisflQA(datasets.GeneratorBasedBuilder):
|
62 |
-
"""A Benchmark Dataset for Understanding Disfluencies in Question Answering"""
|
63 |
-
|
64 |
-
VERSION = datasets.Version("1.1.0")
|
65 |
-
|
66 |
-
def _info(self):
|
67 |
-
features = datasets.Features(
|
68 |
-
{
|
69 |
-
"squad_v2_id": datasets.Value("string"),
|
70 |
-
"original question": datasets.Value("string"),
|
71 |
-
"disfluent question": datasets.Value("string"),
|
72 |
-
"title": datasets.Value("string"),
|
73 |
-
"context": datasets.Value("string"),
|
74 |
-
"answers": datasets.features.Sequence(
|
75 |
-
{
|
76 |
-
"text": datasets.Value("string"),
|
77 |
-
"answer_start": datasets.Value("int32"),
|
78 |
-
}
|
79 |
-
),
|
80 |
-
}
|
81 |
-
)
|
82 |
-
return datasets.DatasetInfo(
|
83 |
-
# This is the description that will appear on the datasets page.
|
84 |
-
description=_DESCRIPTION,
|
85 |
-
# This defines the different columns of the dataset and their types
|
86 |
-
features=features, # Here we define them above because they are different between the two configurations
|
87 |
-
# If there's a common (input, target) tuple from the features,
|
88 |
-
# specify them here. They'll be used if as_supervised=True in
|
89 |
-
# builder.as_dataset.
|
90 |
-
supervised_keys=None,
|
91 |
-
# Homepage of the dataset for documentation
|
92 |
-
homepage=_HOMEPAGE,
|
93 |
-
# License for the dataset if available
|
94 |
-
license=_LICENSE,
|
95 |
-
# Citation for the dataset
|
96 |
-
citation=_CITATION,
|
97 |
-
task_templates=[
|
98 |
-
QuestionAnsweringExtractive(
|
99 |
-
question_column="disfluent question", context_column="context", answers_column="answers"
|
100 |
-
)
|
101 |
-
],
|
102 |
-
)
|
103 |
-
|
104 |
-
def _split_generators(self, dl_manager):
|
105 |
-
"""Returns SplitGenerators."""
|
106 |
-
|
107 |
-
squad_v2_downloaded_files = dl_manager.download_and_extract(_URLS_squad_v2)
|
108 |
-
|
109 |
-
return [
|
110 |
-
datasets.SplitGenerator(
|
111 |
-
name=datasets.Split.TRAIN,
|
112 |
-
# These kwargs will be passed to _generate_examples
|
113 |
-
gen_kwargs={
|
114 |
-
"filepath": dl_manager.download_and_extract(_URL + "train.json"),
|
115 |
-
"split": "train",
|
116 |
-
"squad_v2_data": squad_v2_downloaded_files,
|
117 |
-
},
|
118 |
-
),
|
119 |
-
datasets.SplitGenerator(
|
120 |
-
name=datasets.Split.TEST,
|
121 |
-
# These kwargs will be passed to _generate_examples
|
122 |
-
gen_kwargs={
|
123 |
-
"filepath": dl_manager.download_and_extract(_URL + "test.json"),
|
124 |
-
"split": "test",
|
125 |
-
"squad_v2_data": squad_v2_downloaded_files,
|
126 |
-
},
|
127 |
-
),
|
128 |
-
datasets.SplitGenerator(
|
129 |
-
name=datasets.Split.VALIDATION,
|
130 |
-
# These kwargs will be passed to _generate_examples
|
131 |
-
gen_kwargs={
|
132 |
-
"filepath": dl_manager.download_and_extract(_URL + "dev.json"),
|
133 |
-
"split": "dev",
|
134 |
-
"squad_v2_data": squad_v2_downloaded_files,
|
135 |
-
},
|
136 |
-
),
|
137 |
-
]
|
138 |
-
|
139 |
-
def _generate_examples(
|
140 |
-
self,
|
141 |
-
filepath,
|
142 |
-
split,
|
143 |
-
squad_v2_data, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
144 |
-
):
|
145 |
-
"""Yields examples as (key, example) tuples."""
|
146 |
-
|
147 |
-
merge_squad_v2_json = {}
|
148 |
-
|
149 |
-
for file in squad_v2_data:
|
150 |
-
with open(squad_v2_data[file], encoding="utf-8") as f:
|
151 |
-
merge_squad_v2_json.update(json.load(f))
|
152 |
-
|
153 |
-
squad_v2_dict = _helper_dict(merge_squad_v2_json) # contains all squad_v2 data in a dict with id as key
|
154 |
-
|
155 |
-
with open(filepath, encoding="utf-8") as f:
|
156 |
-
glob_id = 0
|
157 |
-
for id_, row in enumerate(f):
|
158 |
-
data = json.loads(row)
|
159 |
-
for i in data:
|
160 |
-
yield glob_id, {
|
161 |
-
"squad_v2_id": i,
|
162 |
-
"disfluent question": data[i]["disfluent"],
|
163 |
-
"title": squad_v2_dict[i]["title"],
|
164 |
-
"context": squad_v2_dict[i]["context"],
|
165 |
-
"original question": squad_v2_dict[i]["question"],
|
166 |
-
"answers": {
|
167 |
-
"answer_start": squad_v2_dict[i]["answers"]["answer_start"],
|
168 |
-
"text": squad_v2_dict[i]["answers"]["text"],
|
169 |
-
},
|
170 |
-
}
|
171 |
-
glob_id += 1
|
172 |
-
|
173 |
-
|
174 |
-
def _helper_dict(row_squad_v2: dict): # creates dict with id as key for combined squad_v2
|
175 |
-
|
176 |
-
squad_v2_dict = {}
|
177 |
-
|
178 |
-
for example in row_squad_v2["data"]:
|
179 |
-
title = example.get("title", "").strip()
|
180 |
-
for paragraph in example["paragraphs"]:
|
181 |
-
context = paragraph["context"].strip()
|
182 |
-
for qa in paragraph["qas"]:
|
183 |
-
question = qa["question"].strip()
|
184 |
-
id_ = qa["id"]
|
185 |
-
|
186 |
-
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
187 |
-
answers = [answer["text"].strip() for answer in qa["answers"]]
|
188 |
-
|
189 |
-
squad_v2_dict[id_] = {
|
190 |
-
"title": title,
|
191 |
-
"context": context,
|
192 |
-
"question": question,
|
193 |
-
"id": id_,
|
194 |
-
"answers": {
|
195 |
-
"answer_start": answer_starts,
|
196 |
-
"text": answers,
|
197 |
-
},
|
198 |
-
}
|
199 |
-
return squad_v2_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|