Datasets:

Modalities:
Audio
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
File size: 4,836 Bytes
7ce41da
 
ab6c3da
 
 
 
a8cd2b3
b749b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cd2b3
ab6c3da
 
 
7a17c80
 
ab6c3da
 
7a17c80
a8cd2b3
7a17c80
 
7ce41da
c19cef8
2e1290e
c19cef8
 
 
e88f03a
c19cef8
 
2e1290e
 
 
 
 
 
 
825d8db
2e1290e
 
 
 
 
 
 
 
 
 
2d6ccda
 
2e1290e
 
 
 
 
 
2d6ccda
2e1290e
2d6ccda
a8cd2b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: creativeml-openrail-m
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: label
    dtype:
      class_label:
        names:
          '0': A canoon
          '1': A cinj
          '2': A keen
          '3': A lanq
          '4': A ñaaƴ
          '5': A ñamaak
          '6': Alaa
          '7': Bacaac
          '8': Benn
          '9': Bálamuk
          '10': Búbaar
          '11': Caggal
          '12': Ceme
          '13': Ci ginnaaw
          '14': Ci kanam
          '15': Ci kow
          '16': Ci suuf
          '17': Càmmoñ
          '18': Darnde
          '19': Dow
          '20': Doxal
          '21': Déedet
          '22': Eey
          '23': Esuwa
          '24': Eyen
          '25': 
          '26': Fatiya
          '27': Fukk
          '28': Funoom
          '29': Futok
          '30': Futok di sibaakiir
          '31': Futok di sigaba
          '32': Futok di sífeejir
          '33': Futok di yákon
          '34': Fácul
          '35': Garab
          '36': Goo
          '37': Hani
          '38': Jaay
          '39': Jeegom
          '40': Jeenay
          '41': Jeetati
          '42': Jeeɗiɗi
          '43': Jik
          '44': Jiku
          '45': Joy
          '46': Juni
          '47': Junne
          '48': Juroom
          '49': Juroom-benn
          '50': Juroom-ñaar
          '51': Juroom-ñeent
          '52': Juroom-ñett
          '53': Jënd
          '54': Kakamben
          '55': Kamay
          '56': Kanoomen
          '57': Kákambul
          '58': Kárir
          '59': Lal
          '60': Lees
          '61': Leng
          '62': Leɗki
          '63': Li
          '64': Mbaamir
          '65': Mbalndi
          '66': Nano
          '67': Naxik
          '68': Nay
          '69': Ndaxar
          '70': Ndeyjoor
          '71': Ndiga
          '72': Ndiiƭ
          '73': Njong
          '74': O ɓox
          '75': Picc
          '76': Rawaandu
          '77': Sappo
          '78': Sibaakiir
          '79': Sigaba
          '80': Solndu
          '81': Soodde
          '82': Sífeejir
          '83': Tadik
          '84': Tati
          '85': Taxawal
          '86': Teemedere
          '87': Teemeed
          '88': Tentaam
          '89': Tik
          '90': Took
          '91': Tus
          '92': Téemeer
          '93': Ub /Tëj
          '94': Ub/Tëj
          '95': Ubbi /Tijji
          '96': Udditde
          '97': Uddude
          '98': Ujaw
          '99': Ujunere
          '100': Ujuum
          '101': Uñen
          '102': Waafulet
          '103': Waaw
          '104': Weg
          '105': Wet
          '106': Wúli
          '107': Xa-aa
          '108': Xaj
          '109': Xarɓaxay
          '110': Yahdu
          '111': Yeeso
          '112': Yeeyde
          '113': Yákon
          '114': Ñaamo
          '115': Ñaar
          '116': Ñeent
          '117': Ñett
          '118': Ɗiɗi
          '119': Ƥetaa-fo-leng
          '120': Ƥetaa-naxak
          '121': Ƥetaa-tadak
          '122': Ƥetaa-ƭaq
          '123': Ƥetik
  - name: translation
    dtype: string
  - name: locale_id
    dtype: int64
  - name: transcript
    dtype: string
  splits:
  - name: train
    num_bytes: 567773923.639
    num_examples: 26387
  download_size: 546144081
  dataset_size: 567773923.639
---

### Dataset Summary

Keyword spotting refers to the task of learning to detect spoken keywords. It interfaces all modern voice-based virtual assistants on the market: Amazon’s Alexa, Apple’s Siri, and the Google Home device. Contrarily to speech recognition models, keyword spotting doesn’t run on the cloud, but directly on the device. 

The motivation of this paper is to extend the Speech commands dataset (Warden 2018) with African languages. In particular, we are going to focus on 4 Senegalese languages: Wolof, Pulaar, Serer, Diola. 

The choice of these languages is guided, on the one hand, by their status as languages considered to be the languages of the first generation, that is to say, the first codified languages (endowed with a writing system and considered by the state of Senegal as national languages) with decree n ° 68-871 of July 24, 1968. On the other hand, they represent the languages that are most spoken in Senegal.

### Languages
The ID of the languages are the following:
- Wolof: `7`
- Pulaar: `5`
- Serer: `6`
- Diola: `3`




## Dataset Structure

```python
from datasets import load_dataset
dataset = load_dataset("galsenai/waxal_dataset")
DatasetDict({
    train: Dataset({
        features: ['audio', 'label', 'translation', 'locale_id'],
        num_rows: 26387
    })
})
```

### Data Fields

- `audio`: Audio file in MP3 format
- `label`: label of the audio file
- `translation` : Translation of the keyword in french
- `locale_id`: ID of the language