|
import os |
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
TODO |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_DESCRIPTION = """\ |
|
Text To Image Evaluation (TeTIm-Eval) |
|
""" |
|
|
|
_URLS = { |
|
"mini": "https://huggingface.co/datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval-Mini.zip" |
|
} |
|
|
|
_CATEGORIES = [ |
|
"digital_art", |
|
"sketch_art", |
|
"traditional_art", |
|
"baroque_painting", |
|
"high_renaissance_painting", |
|
"neoclassical_painting", |
|
"animal_photo", |
|
"food_photo", |
|
"landscape_photo", |
|
"person_photo" |
|
] |
|
|
|
|
|
_FOLDERS = { |
|
"mini": { |
|
_CATEGORIES[0]: "TeTIm-Eval-Mini/sampled_art_digital", |
|
_CATEGORIES[1]: "TeTIm-Eval-Mini/sampled_art_sketch", |
|
_CATEGORIES[2]: "TeTIm-Eval-Mini/sampled_art_traditional", |
|
_CATEGORIES[3]: "TeTIm-Eval-Mini/sampled_painting_baroque", |
|
_CATEGORIES[4]: "TeTIm-Eval-Mini/sampled_painting_high-renaissance", |
|
_CATEGORIES[5]: "TeTIm-Eval-Mini/sampled_painting_neoclassicism", |
|
_CATEGORIES[6]: "TeTIm-Eval-Mini/sampled_photo_animal", |
|
_CATEGORIES[7]: "TeTIm-Eval-Mini/sampled_photo_food", |
|
_CATEGORIES[8]: "TeTIm-Eval-Mini/sampled_photo_landscape", |
|
_CATEGORIES[9]: "TeTIm-Eval-Mini/sampled_photo_person", |
|
} |
|
} |
|
|
|
class TeTImConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(TeTImConfig, self).__init__(**kwargs) |
|
|
|
|
|
class TeTIm(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
TeTImConfig( |
|
name="mini", |
|
version=datasets.Version("1.0.0", ""), |
|
description="A random sampling of 300 images (30 for category) from the TeTIm dataset, manually annotated by the same person", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"image": datasets.Image(), |
|
"caption": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
target = os.environ.get(f"TETIMEVAL_{self.config.name}", _URLS[self.config.name]) |
|
downloaded_files = dl_manager.download_and_extract(target) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"path": downloaded_files}), |
|
] |
|
|
|
|
|
def _generate_examples(self, path): |
|
id = 0 |
|
for category, folder in _FOLDERS[self.config.name].items(): |
|
images_folder = os.path.join(path, folder, "images") |
|
annotations_folder = os.path.join(path, folder, "annotations") |
|
|
|
for image in os.listdir(images_folder): |
|
image_id = int(image.split(".")[0]) |
|
annotation_file = os.path.join(annotations_folder, f"{image_id}.json") |
|
with open(annotation_file) as f: |
|
annotation = json.load(f) |
|
|
|
yield id, { |
|
"id": id, |
|
"image": os.path.join(images_folder, image), |
|
"caption": annotation["caption"], |
|
"category": category |
|
} |
|
id += 1 |
|
|
|
|
|
if __name__ == "__main__": |
|
from datasets import load_dataset |
|
dataset_config = { |
|
"LOADING_SCRIPT_FILES": os.path.join(os.getcwd(), "TeTIm-Eval.py"), |
|
"CONFIG_NAME": "mini", |
|
} |
|
ds = load_dataset( |
|
dataset_config["LOADING_SCRIPT_FILES"], |
|
dataset_config["CONFIG_NAME"], |
|
) |
|
print(ds) |