Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
fxmeng commited on
Commit
3878b22
·
verified ·
1 Parent(s): 16f3940

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md CHANGED
@@ -1,3 +1,125 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - question-answering
5
+ language:
6
+ - en
7
+ size_categories:
8
+ - 10K<n<100K
9
  ---
10
+
11
+ # Dataset Summary
12
+
13
+ The commonsense reasoning tasks consist of 8 subtasks, each with predefined training and testing sets, as described by LLM-Adapters (Hu et al., 2023). The following table lists the details of each sub-dataset.
14
+
15
+ | | Train | Test | Information |
16
+ | --- | --- | --- | --- |
17
+ | BoolQ (Clark et al., 2019) | 9427 | 3270 | Question-answering dataset for yes/no questions |
18
+ | PIQA (Bisk et al., 2020) | 16113 | 1838 | Questions with two solutions requiring physical commonsense to answer |
19
+ | SIQA (Sap et al., 2019) | 33410 | 1954 | Reasoning about people’s actions and their social implications |
20
+ | HellaSwag (Zellers et al., 2019) | 39905 | 10042 | Commonsense NLI questions including a context and several endings which complete the context |
21
+ | WinoGrande (Sakaguchi et al., 2021) | 40398 | 1267 | Fill-in-a-blank task with binary options, and the goal is to choose the right option for a given sentence which requires commonsense reasoning |
22
+ | ARC_Challenge (Clark et al., 2018) | 1119 | 1172 | The Challenge Set of ARC dataset of genuine grade-school level, multiple-choice science questions |
23
+ | ARC_Easy (Clark et al., 2018) | 2251 | 2376 | The Easy Set of ARC dataset of genuine grade-school level, multiple-choice science questions |
24
+ | OpenBookQA (Mihaylov et al., 2018) | 4957 | 500 | Questions requiring multi-step reasoning, use of additional common and commonsense knowledge, and rich text comprehension |
25
+
26
+ For WinoGrande, the original dataset includes multiple partitions: [xs, s, m, l, xl, debiased]. While LLM-Adapters simply concatenated all these partitions, note that the “xl” partition actually includes all others, leading to extensive data duplication. After removing duplicates, the training data is reduced from 63.2K to 40.4K instances.
27
+
28
+ Additionally, in the LLM-Adapters paper, the training set sizes of ARC_Challenge and ARC_Easy were reversed by mistake; here, we correct that error.
29
+
30
+ # Load with Datasets
31
+
32
+ ```
33
+ # Training using the entire dataset:
34
+
35
+ train_set = load_dataset("fxmeng/commonsense_filtered", split='train')
36
+ Dataset({
37
+ features: ['query', 'answer', 'output'],
38
+ num_rows: 147580
39
+ })
40
+
41
+ # Testing each subtask separately:
42
+
43
+ test_set = load_dataset("fxmeng/commonsense_filtered", data_dir='boolq', split='test')
44
+ Dataset({
45
+ features: ['query', 'answer', 'output'],
46
+ num_rows: 3270
47
+ })
48
+
49
+ ```
50
+ # Citation Information
51
+ If the dataset is helpful for your work, would you be willing to cite our fine-tuning paper?
52
+ ```
53
+ @article{meng2024pissa,
54
+ title={Pissa: Principal singular values and singular vectors adaptation of large language models},
55
+ author={Meng, Fanxu and Wang, Zhaohui and Zhang, Muhan},
56
+ journal={arXiv preprint arXiv:2404.02948},
57
+ year={2024}
58
+ }
59
+ @article{meng2024clover,
60
+ title={CLOVER: Constrained Learning with Orthonormal Vectors for Eliminating Redundancy},
61
+ author={Meng, Fanxu and Zhang, Muhan},
62
+ journal={arXiv preprint arXiv:2411.17426},
63
+ year={2024}
64
+ }
65
+ ```
66
+
67
+
68
+ # Reference
69
+ ```
70
+ @article{hu2023llm,
71
+ title={Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language models},
72
+ author={Hu, Zhiqiang and Wang, Lei and Lan, Yihuai and Xu, Wanyu and Lim, Ee-Peng and Bing, Lidong and Xu, Xing and Poria, Soujanya and Lee, Roy Ka-Wei},
73
+ journal={arXiv preprint arXiv:2304.01933},
74
+ year={2023}
75
+ }
76
+ @article{clark2019boolq,
77
+ title={BoolQ: Exploring the surprising difficulty of natural yes/no questions},
78
+ author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei and Kwiatkowski, Tom and Collins, Michael and Toutanova, Kristina},
79
+ journal={arXiv preprint arXiv:1905.10044},
80
+ year={2019}
81
+ }
82
+ @inproceedings{bisk2020piqa,
83
+ title={Piqa: Reasoning about physical commonsense in natural language},
84
+ author={Bisk, Yonatan and Zellers, Rowan and Gao, Jianfeng and Choi, Yejin and others},
85
+ booktitle={Proceedings of the AAAI conference on artificial intelligence},
86
+ volume={34},
87
+ pages={7432--7439},
88
+ year={2020}
89
+ }
90
+ @article{sap2019socialiqa,
91
+ title={Socialiqa: Commonsense reasoning about social interactions},
92
+ author={Sap, Maarten and Rashkin, Hannah and Chen, Derek and LeBras, Ronan and Choi, Yejin},
93
+ journal={arXiv preprint arXiv:1904.09728},
94
+ year={2019}
95
+ }
96
+ @article{zellers2019hellaswag,
97
+ title={Hellaswag: Can a machine really finish your sentence?},
98
+ author={Zellers, Rowan and Holtzman, Ari and Bisk, Yonatan and Farhadi, Ali and Choi, Yejin},
99
+ journal={arXiv preprint arXiv:1905.07830},
100
+ year={2019}
101
+ }
102
+ @article{sakaguchi2021winogrande,
103
+ title={Winogrande: An adversarial winograd schema challenge at scale},
104
+ author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin},
105
+ journal={Communications of the ACM},
106
+ volume={64},
107
+ number={9},
108
+ pages={99--106},
109
+ year={2021},
110
+ publisher={ACM New York, NY, USA}
111
+ }
112
+ @article{clark2018think,
113
+ title={Think you have solved question answering? try arc, the ai2 reasoning challenge},
114
+ author={Clark, Peter and Cowhey, Isaac and Etzioni, Oren and Khot, Tushar and Sabharwal, Ashish and Schoenick, Carissa and Tafjord, Oyvind},
115
+ journal={arXiv preprint arXiv:1803.05457},
116
+ year={2018}
117
+ }
118
+
119
+ @article{mihaylov2018can,
120
+ title={Can a suit of armor conduct electricity? a new dataset for open book question answering},
121
+ author={Mihaylov, Todor and Clark, Peter and Khot, Tushar and Sabharwal, Ashish},
122
+ journal={arXiv preprint arXiv:1809.02789},
123
+ year={2018}
124
+ }
125
+ ```