File size: 5,436 Bytes
132eb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d5d529
132eb05
 
2d5d529
132eb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright (C) 2022, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

"""Imagewoof dataset."""

import os
import json

import datasets


_HOMEPAGE = "https://github.com/fastai/imagenette#imagewoof"

_LICENSE = "Apache License 2.0"

_CITATION = """\
@software{Howard_Imagewoof_2019,
    title={Imagewoof: a subset of 10 classes from Imagenet that aren't so easy to classify},
    author={Jeremy Howard},
    year={2019},
    month={March},
    publisher = {GitHub},
    url = {https://github.com/fastai/imagenette#imagewoof}
}
"""

_DESCRIPTION = """\
Imagewoof is a subset of 10 classes from Imagenet that aren't so 
easy to classify, since they're all dog breeds. The breeds are: 
Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, 
English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, 
Old English sheepdog.
"""

_LABEL_MAP = [
    'n02086240',
    'n02087394',
    'n02088364',
    'n02089973',
    'n02093754',
    'n02096294',
    'n02099601',
    'n02105641',
    'n02111889',
    'n02115641',
]

_REPO = "https://huggingface.co/datasets/frgfm/imagewoof/resolve/main/metadata"


class ImagewoofConfig(datasets.BuilderConfig):
    """BuilderConfig for Imagewoof."""

    def __init__(self, data_url, metadata_urls, **kwargs):
        """BuilderConfig for Imagewoof.
        Args:
          data_url: `string`, url to download the zip file from.
          matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
          **kwargs: keyword arguments forwarded to super.
        """
        super(ImagewoofConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url
        self.metadata_urls = metadata_urls


class Imagewoof(datasets.GeneratorBasedBuilder):
    """Imagewoof dataset."""

    BUILDER_CONFIGS = [
        ImagewoofConfig(
            name="full_size",
            description="All images are in their original size.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2.tgz",
            metadata_urls={
                "train": f"{_REPO}/imagewoof2/train.txt",
                "validation": f"{_REPO}/imagewoof2/val.txt",
            },
        ),
        ImagewoofConfig(
            name="320px",
            description="All images were resized on their shortest side to 320 pixels.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-320.tgz",
            metadata_urls={
                "train": f"{_REPO}/imagewoof2-320/train.txt",
                "validation": f"{_REPO}/imagewoof2-320/val.txt",
            },
        ),
        ImagewoofConfig(
            name="160px",
            description="All images were resized on their shortest side to 160 pixels.",
            data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-160.tgz",
            metadata_urls={
                "train": f"{_REPO}/imagewoof2-160/train.txt",
                "validation": f"{_REPO}/imagewoof2-160/val.txt",
            },
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION + self.config.description,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.ClassLabel(
                        names=[
                            "Australian terrier",
                            "Border terrier",
                            "Samoyed",
                            "Beagle",
                            "Shih-Tzu",
                            "English foxhound",
                            "Rhodesian ridgeback",
                            "Dingo",
                            "Golden retriever",
                            "Old English sheepdog",
                        ]
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive_path = dl_manager.download(self.config.data_url)
        metadata_paths = dl_manager.download(self.config.metadata_urls)
        archive_iter = dl_manager.iter_archive(archive_path)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": archive_iter,
                    "metadata_path": metadata_paths["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "images": archive_iter,
                    "metadata_path": metadata_paths["validation"],
                },
            ),
        ]

    def _generate_examples(self, images, metadata_path):
        with open(metadata_path, encoding="utf-8") as f:
            files_to_keep = set(f.read().split("\n"))
        idx = 0
        for file_path, file_obj in images:
            if file_path in files_to_keep:
                label = _LABEL_MAP.index(file_path.split("/")[-2])
                yield idx, {
                    "image": {"path": file_path, "bytes": file_obj.read()},
                    "label": label,
                }
                idx += 1