Commit
·
88d89a0
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/plain_text/1.0.0/dummy_data.zip +3 -0
- xnli.py +120 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"plain_text": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "id": null, "_type": "Translation"}, "hypothesis": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "num_languages": 15, "id": null, "_type": "TranslationVariableLanguages"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "supervised_keys": null, "builder_name": "xnli", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 19419463, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 9582145, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 17865352, "dataset_size": 29001608, "size_in_bytes": 46866960}}
|
dummy/plain_text/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:087e5fb69a4751ad440cfac64e14928dd0ada6afe3d1ec2caaaaf2128b00da6b
|
3 |
+
size 6032
|
xnli.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import collections
|
22 |
+
import csv
|
23 |
+
import os
|
24 |
+
|
25 |
+
import six
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
@InProceedings{conneau2018xnli,
|
32 |
+
author = {Conneau, Alexis
|
33 |
+
and Rinott, Ruty
|
34 |
+
and Lample, Guillaume
|
35 |
+
and Williams, Adina
|
36 |
+
and Bowman, Samuel R.
|
37 |
+
and Schwenk, Holger
|
38 |
+
and Stoyanov, Veselin},
|
39 |
+
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
|
40 |
+
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
|
41 |
+
in Natural Language Processing},
|
42 |
+
year = {2018},
|
43 |
+
publisher = {Association for Computational Linguistics},
|
44 |
+
location = {Brussels, Belgium},
|
45 |
+
}"""
|
46 |
+
|
47 |
+
_DESCRIPTION = """\
|
48 |
+
XNLI is a subset of a few thousand examples from MNLI which has been translated
|
49 |
+
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_DATA_URL = "https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip"
|
56 |
+
|
57 |
+
_LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh")
|
58 |
+
|
59 |
+
|
60 |
+
class Xnli(datasets.GeneratorBasedBuilder):
|
61 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
62 |
+
|
63 |
+
BUILDER_CONFIGS = [
|
64 |
+
datasets.BuilderConfig(
|
65 |
+
name="plain_text",
|
66 |
+
version=datasets.Version("1.0.0", ""),
|
67 |
+
description="Plain text import of XNLI",
|
68 |
+
)
|
69 |
+
]
|
70 |
+
|
71 |
+
def _info(self):
|
72 |
+
return datasets.DatasetInfo(
|
73 |
+
description=_DESCRIPTION,
|
74 |
+
features=datasets.Features(
|
75 |
+
{
|
76 |
+
"premise": datasets.features.Translation(
|
77 |
+
languages=_LANGUAGES,
|
78 |
+
),
|
79 |
+
"hypothesis": datasets.features.TranslationVariableLanguages(
|
80 |
+
languages=_LANGUAGES,
|
81 |
+
),
|
82 |
+
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
83 |
+
}
|
84 |
+
),
|
85 |
+
# No default supervised_keys (as we have to pass both premise
|
86 |
+
# and hypothesis as input).
|
87 |
+
supervised_keys=None,
|
88 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
89 |
+
citation=_CITATION,
|
90 |
+
)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager):
|
93 |
+
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
94 |
+
data_dir = os.path.join(dl_dir, "XNLI-1.0")
|
95 |
+
return [
|
96 |
+
datasets.SplitGenerator(
|
97 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "xnli.test.tsv")}
|
98 |
+
),
|
99 |
+
datasets.SplitGenerator(
|
100 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "xnli.dev.tsv")}
|
101 |
+
),
|
102 |
+
]
|
103 |
+
|
104 |
+
def _generate_examples(self, filepath):
|
105 |
+
"""This function returns the examples in the raw (text) form."""
|
106 |
+
rows_per_pair_id = collections.defaultdict(list)
|
107 |
+
|
108 |
+
with open(filepath, encoding="utf-8") as f:
|
109 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
110 |
+
for row in reader:
|
111 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
112 |
+
|
113 |
+
for rows in six.itervalues(rows_per_pair_id):
|
114 |
+
premise = {row["language"]: row["sentence1"] for row in rows}
|
115 |
+
hypothesis = {row["language"]: row["sentence2"] for row in rows}
|
116 |
+
yield rows[0]["pairID"], {
|
117 |
+
"premise": premise,
|
118 |
+
"hypothesis": hypothesis,
|
119 |
+
"label": rows[0]["gold_label"],
|
120 |
+
}
|