Datasets:
Commit
·
4169d92
1
Parent(s):
39f7d3f
Delete loading script
Browse files
asset.py
DELETED
@@ -1,174 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""ASSET: a dataset for sentence simplification evaluation"""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@inproceedings{alva-manchego-etal-2020-asset,
|
25 |
-
title = "{ASSET}: {A} Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations",
|
26 |
-
author = "Alva-Manchego, Fernando and
|
27 |
-
Martin, Louis and
|
28 |
-
Bordes, Antoine and
|
29 |
-
Scarton, Carolina and
|
30 |
-
Sagot, Benoit and
|
31 |
-
Specia, Lucia",
|
32 |
-
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
|
33 |
-
month = jul,
|
34 |
-
year = "2020",
|
35 |
-
address = "Online",
|
36 |
-
publisher = "Association for Computational Linguistics",
|
37 |
-
url = "https://www.aclweb.org/anthology/2020.acl-main.424",
|
38 |
-
pages = "4668--4679",
|
39 |
-
}
|
40 |
-
"""
|
41 |
-
|
42 |
-
_DESCRIPTION = """\
|
43 |
-
ASSET is a dataset for evaluating Sentence Simplification systems with multiple rewriting transformations,
|
44 |
-
as described in "ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations".
|
45 |
-
The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 10 times by different annotators.
|
46 |
-
The corpus also contains human judgments of meaning preservation, fluency and simplicity for the outputs of several automatic text simplification systems.
|
47 |
-
"""
|
48 |
-
|
49 |
-
_HOMEPAGE = "https://github.com/facebookresearch/asset"
|
50 |
-
|
51 |
-
_LICENSE = "Creative Common Attribution-NonCommercial 4.0 International"
|
52 |
-
|
53 |
-
_URL_LIST = [
|
54 |
-
(
|
55 |
-
"human_ratings.csv",
|
56 |
-
"https://raw.githubusercontent.com/facebookresearch/asset/main/human_ratings/human_ratings.csv",
|
57 |
-
),
|
58 |
-
(
|
59 |
-
"asset.valid.orig",
|
60 |
-
"https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.valid.orig",
|
61 |
-
),
|
62 |
-
(
|
63 |
-
"asset.test.orig",
|
64 |
-
"https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.orig",
|
65 |
-
),
|
66 |
-
]
|
67 |
-
_URL_LIST += [
|
68 |
-
(
|
69 |
-
f"asset.{spl}.simp.{i}",
|
70 |
-
f"https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.{spl}.simp.{i}",
|
71 |
-
)
|
72 |
-
for spl in ["valid", "test"]
|
73 |
-
for i in range(10)
|
74 |
-
]
|
75 |
-
|
76 |
-
_URLs = dict(_URL_LIST)
|
77 |
-
|
78 |
-
|
79 |
-
class Asset(datasets.GeneratorBasedBuilder):
|
80 |
-
|
81 |
-
VERSION = datasets.Version("1.0.0")
|
82 |
-
|
83 |
-
BUILDER_CONFIGS = [
|
84 |
-
datasets.BuilderConfig(
|
85 |
-
name="simplification",
|
86 |
-
version=VERSION,
|
87 |
-
description="A set of original sentences aligned with 10 possible simplifications for each.",
|
88 |
-
),
|
89 |
-
datasets.BuilderConfig(
|
90 |
-
name="ratings",
|
91 |
-
version=VERSION,
|
92 |
-
description="Human ratings of automatically produced text implification.",
|
93 |
-
),
|
94 |
-
]
|
95 |
-
|
96 |
-
DEFAULT_CONFIG_NAME = "simplification"
|
97 |
-
|
98 |
-
def _info(self):
|
99 |
-
if self.config.name == "simplification":
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"original": datasets.Value("string"),
|
103 |
-
"simplifications": datasets.Sequence(datasets.Value("string")),
|
104 |
-
}
|
105 |
-
)
|
106 |
-
else:
|
107 |
-
features = datasets.Features(
|
108 |
-
{
|
109 |
-
"original": datasets.Value("string"),
|
110 |
-
"simplification": datasets.Value("string"),
|
111 |
-
"original_sentence_id": datasets.Value("int32"),
|
112 |
-
"aspect": datasets.ClassLabel(names=["meaning", "fluency", "simplicity"]),
|
113 |
-
"worker_id": datasets.Value("int32"),
|
114 |
-
"rating": datasets.Value("int32"),
|
115 |
-
}
|
116 |
-
)
|
117 |
-
return datasets.DatasetInfo(
|
118 |
-
description=_DESCRIPTION,
|
119 |
-
features=features,
|
120 |
-
supervised_keys=None,
|
121 |
-
homepage=_HOMEPAGE,
|
122 |
-
license=_LICENSE,
|
123 |
-
citation=_CITATION,
|
124 |
-
)
|
125 |
-
|
126 |
-
def _split_generators(self, dl_manager):
|
127 |
-
data_dir = dl_manager.download_and_extract(_URLs)
|
128 |
-
if self.config.name == "simplification":
|
129 |
-
return [
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.VALIDATION,
|
132 |
-
gen_kwargs={
|
133 |
-
"filepaths": data_dir,
|
134 |
-
"split": "valid",
|
135 |
-
},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.TEST,
|
139 |
-
gen_kwargs={"filepaths": data_dir, "split": "test"},
|
140 |
-
),
|
141 |
-
]
|
142 |
-
else:
|
143 |
-
return [
|
144 |
-
datasets.SplitGenerator(
|
145 |
-
name="full",
|
146 |
-
gen_kwargs={
|
147 |
-
"filepaths": data_dir,
|
148 |
-
"split": "full",
|
149 |
-
},
|
150 |
-
),
|
151 |
-
]
|
152 |
-
|
153 |
-
def _generate_examples(self, filepaths, split):
|
154 |
-
"""Yields examples."""
|
155 |
-
if self.config.name == "simplification":
|
156 |
-
files = [open(filepaths[f"asset.{split}.orig"], encoding="utf-8")] + [
|
157 |
-
open(filepaths[f"asset.{split}.simp.{i}"], encoding="utf-8") for i in range(10)
|
158 |
-
]
|
159 |
-
for id_, lines in enumerate(zip(*files)):
|
160 |
-
yield id_, {
|
161 |
-
"original": lines[0].strip(),
|
162 |
-
"simplifications": [line.strip() for line in lines[1:]],
|
163 |
-
}
|
164 |
-
else:
|
165 |
-
with open(filepaths["human_ratings.csv"], encoding="utf-8") as f:
|
166 |
-
reader = csv.reader(f, delimiter=",")
|
167 |
-
for id_, row in enumerate(reader):
|
168 |
-
if id_ == 0:
|
169 |
-
keys = row[:]
|
170 |
-
else:
|
171 |
-
res = dict([(k, v) for k, v in zip(keys, row)])
|
172 |
-
for k in ["original_sentence_id", "worker_id", "rating"]:
|
173 |
-
res[k] = int(res[k])
|
174 |
-
yield (id_ - 1), res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|