Datasets:
metadata
dataset_info:
- config_name: large
features:
- name: audio
dtype: audio
- name: class
dtype: string
- name: class_id
dtype: int64
- name: noise_measurement
dtype: float64
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: altitude
dtype: float64
- name: accuracy
dtype: float64
- name: submitter_id
dtype: int64
- name: timestamp
dtype: string
splits:
- name: train
num_bytes: 1878733113.914
num_examples: 37634
download_size: 1865541717
dataset_size: 1878733113.914
- config_name: small
features:
- name: audio
dtype: audio
- name: class
dtype: string
- name: class_id
dtype: int64
- name: noise_measurement
dtype: int64
id: nullable
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: altitude
dtype: float64
- name: accuracy
dtype: float64
- name: submitter_id
dtype: int64
- name: timestamp
dtype: string
splits:
- name: train
num_bytes: 49675307.833
num_examples: 1001
download_size: 49577542
dataset_size: 49675307.833
configs:
- config_name: large
data_files:
- split: train
path: large/train-*
- config_name: small
data_files:
- split: train
path: small/train-*
task_categories:
- audio-classification
tags:
- audio
- text
size_categories:
- 10K<n<100K
The urban-noise
dataset consists of audio samples representing urban noise environments. It is designed for tasks such as noise classification, audio tagging, or machine learning applications in sound analysis. The dataset includes two configurations, large
and small
, with varying sizes of data.
Example Usage
from datasets import load_dataset
# Load the large configuration
large_dataset = load_dataset("Sunbird/urban-noise", "large")
# Load the small configuration
small_dataset = load_dataset("Sunbird/urban-noise", "small")