pbl-sunda / su_id_asr.py
holylovenia's picture
Upload su_id_asr.py with huggingface_hub
659d26f verified
raw
history blame
5.61 kB
import csv
import os
from typing import Dict, List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "su_id_asr"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["sun"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
year=2018,
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
pages={66--70},
doi={10.21437/SLTU.2018-14}
}
"""
_DESCRIPTION = """\
Sundanese ASR training data set containing ~220K utterances.
This dataset was collected by Google in Indonesia.
"""
_HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr"
_LICENSE = "Attribution-ShareAlike 4.0 International."
_URLs = {
"su_id_asr": "https://www.openslr.org/resources/36/asr_sundanese_{}.zip",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SuIdASR(datasets.GeneratorBasedBuilder):
"""su_id contains ~220K utterances for Sundanese ASR training data."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name="su_id_asr_source",
version=datasets.Version(_SOURCE_VERSION),
description="SU_ID_ASR source schema",
schema="source",
subset_id="su_id_asr",
),
SEACrowdConfig(
name="su_id_asr_seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description="SU_ID_ASR Nusantara schema",
schema="seacrowd_sptext",
subset_id="su_id_asr",
),
]
DEFAULT_CONFIG_NAME = "su_id_asr_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
base_path = {}
for id in range(10):
base_path[id] = dl_manager.download_and_extract(_URLs["su_id_asr"].format(str(id)))
for id in ["a", "b", "c", "d", "e", "f"]:
base_path[id] = dl_manager.download_and_extract(_URLs["su_id_asr"].format(str(id)))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": base_path},
),
]
def _generate_examples(self, filepath: Dict):
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
for key, each_filepath in filepath.items():
tsv_file = os.path.join(each_filepath, "asr_sundanese", "utt_spk_text.tsv")
with open(tsv_file, "r") as file:
tsv_file = csv.reader(file, delimiter="\t")
for line in tsv_file:
audio_id, speaker_id, transcription_text = line[0], line[1], line[2]
wav_path = os.path.join(each_filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))
if os.path.exists(wav_path):
if self.config.schema == "source":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": transcription_text,
}
yield audio_id, ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": transcription_text,
"metadata": {
"speaker_age": None,
"speaker_gender": None,
},
}
yield audio_id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")